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Abstract— In this paper we focus on the problem of assigning
robots to places in a desired formation, considering random
initial locations of the robots. Since we use a leader–follower
strategy, we also address the task of choosing the leader to
each follower. The result is aformation matrix that describes
the relation between the robots and the desired formation shape.
Simple algorithms are defined, that are based on the minimiza-
tion of the distances of robots to places in the formation. Both
these algorithms are implemented in a decentralized way. We
assume that communication is possible, but the requirements
are of very–low bandwidth.

I. INTRODUCTION

The problem of controlling a set of cooperating robots is
very important because of their applications in real scenarios.
The transportation and manipulation of objects [1], [2],
coverage and exploration of specific environments [3], [4],
or localization and mapping [5], [6] are some of the tasks
where the researchers have been focusing. Another important
task is when the set of robots should navigate according to a
prescribed geometric shape, in what is known asformation
control. Several solutions have been proposed to this problem
[7], [8], [9], [10]. Yet, usually, authors focus their attention
on path planning related issues, and neglecting, somehow the
formation initiation task.

This work appears as a consequence of our previous work
[11], [12], [13], where we presented a framework based
on the attractor dynamics approach, using a leader–follower
strategy, that is able to maintain a team of robots navigating
according to a prescribed formation shape. Some of the key
features of our work are: i) the ability to stabilize a desired
formation from any initial state; ii) obstacle (either static
or moving) avoidance; iii) implicit formation split–and–join
(that can occur in the presence of obstacles); iv) commanded
formation switches. Here we endow that work with the
capability of automatically allocate robots to places. More
specifically, considering a team ofN robots that has a pre–
assigned team leader (called thelead robot), to which is
communicated a target location and a desired formation
shape, we formulate the following problem: which robot
should be allocated to which place in the formation, and
how to construct theleader–followerhierarchy.

The rest of the paper is structures as follows: sec. II
presents some of the relevant related work; in sec. III we
introduce the formation matrix, which is where we capture
the formation description; the generation of this matrix
is the subject of sec. IV, while results are presented in

sec.VI; in sec. V we adress the topic of formation robustness
and finalize presenting our conclusions and future work in
sec. VII.

II. RELATED WORK

The problem of, given a desired formation configuration,
which robot to allocate to which position in the formation
is of growing interest and has also been studied and some
solutions have been proposed. [14], for instance, used a cost
function dependent on the distance between the robots. All
the robots run the same allocation algorithm, as if they were
team leaders. The one that reaches the smallest cost has its
allocation assigned to the formation. [15] assigned robotsto
places, following an algorithm based on the robots ID. Since
all robots know the same algorithm and have different IDs
then they’ll assign themselves to different positions in the
formation. The work by [16] is, in general, similar to the
previously described, but it addssocial rolesto the robots
in the formation. These roles characterize the location in the
formation (either to the left or right of the leader). It also
adds a chain of communications (from followers to leaders)
that ensures the leader with the complete knowledge of the
formation, and it enables it to give orders to its followers
(to balance the formation, for instance). In [17] each robot
negotiates with the others the allocation of a specific station
(place within the formation), searching to minimize one of
two costs: either total distance or maximum distance traveled.
Two types of negotiation are also introduced: a pairwise one
(only two robots negotiate each time) and a recursive one (a
robot “consults” the others before deciding). This problem
is also tackled by [18]. Each robot has information about
the nearest target positions in the formation and the nearest
robots. The decision is taken using two utility functions ina
cost–benefit approach. A set of options, where the benefit
is higher than the cost, emerges from this approach (the
satisficing set). Any of these options can then be used.

When all the robots are allocated to the formation, another
problem arises (when using a leader–follower strategy):
which robot should a follower follow? Or, should it follow
more than one robot? [19] present an algorithm that given
an assigned leader and a desired formation geometry, it gen-
erates the leader–follower hierarchy of the entire formation.
Their algorithm tries to minimize the path between the leader
and the follower, and takes into account the sensor visibility
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of each robot. [10] also focus on this problem, from the
sensor usage efficiency perspective.

III. F ORMATION MATRIX

Given a desired formation shape that a number of robots
should adhere, it is necessary to translate it into a suitable
internal representation that captures the desired pattern. In
principle, to characterize a formation it is enough to state
the number of places in it (with each place corresponding to
one robot), how they relate to each other in terms of distance
and orientation (since we follow a leader–follower strategy,
it is necessary to state which is (are) the leader(s) to each
follower), and which is thelead robot, i.e. the robot that
“drags” the formation when it moves.

Figure 1 shows a series of possible formations, where
the darker robot was chosen as thelead robot. The lines
between the robots, try to give an idea about the shape of
the formation. We notice in that figure that almost any given
formation shape can be outlined by a polygon. We can also
identify intuitively some sort of dependence of a given robot
to the others (at least some of the others) around it.
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(c) Inverted V
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(d) Triangle

Fig. 1. Examples of possible formation shapes. Thelead robot is
represented by the darker circle.

In order to represent the information above, the complete
team specification is described by means of aformation
matrix [11] as follows

F =





L1 ∆ψ1,d l1,d

L2 ∆ψ2,d l2,d

... ... ...
LN ∆ψN,d lN,d



 (1)

This matrix codes the shape of the formation in the follow-
ing way: Rowi (= 1, 2, 3, ..., N ) defines the pose of robotRi

in the formation. It is a vectorFi =
(

Li ∆ψi,d li,d
)

,
whereLi (Li 6= Ri) identifies theleaderrobot for robotRi,
∆ψi,d is the desired relative angle between robotRi and its
leaderand li,d the desired distance to itsleader.

When robotRi is the lead robot the parameters for its
dynamics areLi = 0, ∆ψi,d = 0 andli,d defines the distance
at which it must stop from the target location.

For example, one formation matrix that determines the
shape of a hexagon formation isFhex in fig. 2.

In Fhex, we assume that RobotR1 is the lead robot
(i.e. moves toward the target location), and that the desired
distance between the robots is150 cm. RobotR2 follows
R1 on the left side and maintaining an oblique formation

Fhex =











0 0 150

1 π/3 150

1 −π/3 150

2 0 150

4 −π/2 150

1 0 150










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Fig. 2. Hexagon formation as determined byFhex.

(L2 = 1, ∆ψ2,d = π/3, l2,d = 150). RobotR3 follows
R1 on the right side and maintaining an oblique formation
(L3 = 1, ∆ψ3,d = −π/3, l3,d = 150). RobotR4 follows
robot R2 in a column formation (L4 = 2, ∆ψ4,d = 0,
l4,d = 150). Robot R5 follows robot R4 maintaining a
line formation on the right (L5 = 4, ∆ψ2,d = −π/2,
l5,d = 150). Robot R6 follows R1 in column formation
(L6 = 1, ∆ψ6,d = 0, l6,d = 150). Figure 2 shows a
representation of the referred hexagon pattern.

It is important to note that there are many formation
matrices that generate the same geometric configuration for
the formation. By proper manipulation of theF matrix, i.e.
by changing its values, one can drive formation switches and
cope with robot failure.

IV. GENERATION OF THE FORMATION MATRIX

The shape of the formation and the leader–follower hi-
erarchy for the complete team are both described by the
formation matrix. When executing a mission all the robots
in the team must have knowledge of this matrix. This is
mainly for backup reasons in case of robot failure, because
when actually running the mission, each robot just needs to
know about its leader.

The formation matrix is generated in three distinct situ-
ations: i) prior to mission start, right after deploy; ii) by
instruction of thelead robot, which as been ordered (by an
higher level entity) a formation shape switch; iii) when one
of the robots is found to be missing. In all situations, the
generation of theformation matrixinvolves two steps: i) the
allocation of robots to places in the formation and, after, ii)
the definition of leader–follower pairs.

A. Allocation of robots to places

To solve i) in a distributed way, usually, there are two
options: either by direct robot negotiation [17], [20] or by
robot identificationbased assignment [15]. The advantage of
the first option is that, depending on the negotiation effort
and the allocation criteria, it can ensure optimal assignments.
It has the drawback of requiring explicit communication
and also with an increase in the number of agents the
negotiation task can become overwhelming. By allocating
robots to places based on robot ID, one overcomes the
problem of the negotiation effort, because it is a quasi
silent operation (explicit communication is only necessary to
instruct the robots of the desired formation). The drawbackis
the rigidity of the assignment that does not take into account
the actual location of the robots. Given some random initial
configuration, assigning robots to places with this method
can lead to highly suboptimal trajectories.



We will employ a method of allocation by negotiation,
in an auction like process. We assume that thelead robot is
assigned a priori and is the only one aware of the destination
target. Thelead robotis also the one with initial knowledge
of the desired formation, that is mapped into ashape matrix,
S. Thisshape matrixcan be communicated by a higher level
entity, or constructed by thelead robot given some task
constraints. It assumes the following form:

S =





0 0

l2 ψ2

... ...
lN ψN



 (2)

where rowj, with j = 2, 3, ...N , describes the placePj in
the formation.lj andψj are the distance and orientation of
placePj taking thelead robotas reference. Since each row in
the matrix relates to one place in the formation, thus it should
have as many rows as there are places to fill in the formation,
i.e. N . PlaceP1 belongs to thelead robot and, as such,
l1 = 0 andψ1 = 0. Another rule to build the shape matrix is
that places with lower IDs should be closer to the leader, in
terms ofvertical distance, than places with higher IDs (where
vertical distance islj cosψj). We enforce this rule because
it helps to speed up the algorithm of controller assignment.
Fig. 3 shows an example of ashape matrixtogether with its
representation. An hexagon was chosen as example.

Shex =











0 0

l2 ψ2

l3 ψ3

l4 ψ4

l5 ψ5

l6 ψ6











P1

P2 P3

P4 P5

P6

ψ2 ψ3

ψ4 ψ5

l2 l3

l4
l5
l6

Fig. 3. Example of ashape matrixfor an hexagon formation. The place
of index i is described by rowi. The first place always belong to the leader.

The place allocation algorithm is based on the distributed
computation of a cost function and subsequent negotiation
with the team mates. Because each robot needs to know
the shape matrix, prior to executing the algorithm, thelead
robot broadcasts it to all the robots. After, each robot,Ri,
computes the distance separating it from each place,Pj , in
the formation, according to the following equation:

Di,j =
√

l2j + l2i,l − 2ljdi,j cos (ψj − φl + π/2) (3)

where lj and ψj are directly extracted from the rowj of
the shape matrixS, li,l is the actual distance to thelead
robot, andφl is the lead robot’sheading, in thefollower’s
reference frame. If thelead robot’s heading is unknown
to the follower, then it can use its own heading direction
instead. This is a reasonable assumption because, while
executing a mission, the robots move in the same direction
with approximate headings. The problem lies at mission start,
right after deploy, when the robots can have completely
random heading directions.

At this moment we have a distributed matrix of distances
between robots and places,D, with each row located in
different robots. Based on this matrix, our purpose is to
assign to each place the robot that it is closest to it. Here

two alternatives are possible: i) either all robots communicate
their entry in matrixD to one robot that is responsible for
the assignment (thelead robotfor instance); in this case only
one robot executes the allocation algorithm for all the robots
and at the end it communicates results to the team; ii) or the
whole team engages in an auction biding for places in the
formation.

Algorithm 1 shows the procedure for centralized assign-
ment. This algorithm departs from the completeD matrix
and searches for the robot closest to each place. Lines 1 and 2
of the algorithm serve to remove placeP1 and robotR1

of possible assignment (we remove robots and places by
increasing the corresponding cost to infinity), as these are
already allocated (are the place leader and thelead robot).
Then, a cycle to the remaining places is initiated. At every
iterations, from the set of the not yet allocated robots and
places, we find which is the pair that is closest to one another
(line 4). That pair, is the robot identified by the row index
corresponding to the minimum value in theD, while the
place correspond to the column index of the same value.
The selected robot is allocated to the selected place (line 7),
and the pair is removed from the list of unassigned robots
and places. The result is an allocation matrix,A, with as
many lines as there are robots, and with as many columns
as there are places. If the robotRi is allocated to placePj ,
then,Ai,j = 1, while the other elements in the same row
and column all equal 0. The allocation process is terminated
by the broadcast ofA to all other robots in the team.

Algorithm 1 Allocation of robots to places – centralized
1: Drow#1 ←∞

2: Dcol#1 ←∞

3: for k = 2 to N do
4: i, j ← index(min(D))
5: Drow#i ←∞

6: Dcol#j ←∞

7: Ai,j ← 1
8: end for

When, instead of a running the algorithm on a single robot,
the choice is to have an auction by all the team, each agent
follows the procedure in algorithm 2.

This algorithm can be seen as a distributed implementation
of the previous one. At each iteration, each robot selects the
place to which is closest, and broadcasts that information to
the team mates. The message is composed by the emitter
robot ID, place ID and distance to that place. At the
same time it also listens to the other robots communicated
information. After all robots have informed the team mates,
the robot with lower distance to place assigns itself to that
place, informs the team mates, as confirmation, and steps
out of the auction process. The remaining robots remove
that place from their list (by assigning an infinite distance
to it), proceed the auction until there are no more places to
assign.

For the same distance matrix,D, and shape matrix,S, the
generated allocation is always the same, and is independent



Algorithm 2 Allocation of robots to places – decentralized

1: j ← index(min(Di))
2: SEND (i,j,Di,j)
3: while not received all messages from all robotsdo
4: Di,j ←RECEIVE MESSAGE
5: end while
6: if min(D)=Di,j then
7: Ai,j ← 1
8: SEND (i,j,Di,j)
9: remove itself from negotiation

10: else
11: Dk,m=RECEIVE MESSAGE
12: Ak,m ← 1
13: end if

of the used algorithm. If inter–robot communication is to
be minimized, then alg. 1 should be used. Else, if agent
autonomy is a requirement then one should go for alg. 2.

Figure 4 shows examples of the allocation results when
using the previous algorithms in an hexagon shape. The
initial pose of each robot is set randomly. We ran the
algorithm twice: first by assuming that the leader’s heading
is the same as the one of the robot computing the cost, and
secondly, by assuming that each robot is able to determine
the exact leader’s heading direction. As expected the results
when the leader’s heading is known are much better, as
the overall number of trajectory crossings decreases, and
the overall distance to traverse also decreases, thus inducing
faster stabilization times.
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Fig. 4. Examples of robot allocations. The desired shape is an hexagon.
Three initial (random) situations are presented.

B. Definition of leader–follower pairs

After the process of allocating robots to places, it is now
time for each robot to select which will be its leader. At
this moment, each robot possesses information about the
formation shape and also knows which robot is in each
place. The procedure each robot follows to select its leader,
is based on choosing the leader from the set of eligible
leaders. The set of eligible leader’s is the set of robots, to
the front and sides of thefollower, but distant from it no
more thandaloc. This distance should be such to enable the
set to contain at least one robot, and the larger it becomes it
enables the followers to follow robots that are several levels
above them. We limited this value to enforce thefollowersto
choose a leader immediately at the above level. The selected
leader is the one that causes thefollower to follow it in a
column formation, or closest to it. Algorithm 3 implements
the described procedure.

Algorithm 3 Algorithm for robotRi to choose its leader.

1: j ←INDEX(Arow#i = 1)
2: if Ri at top levelthen
3: m← j − 1
4: k ←INDEX(Acol#m = 1)
5: dx← (Sj,1 sin(Sj,2)− Sm,1 sin(Sm,2))
6: dy ← (Sj,1 cos(Sj,2)− Sm,1 cos(Sm,2))
7: Fi,1 ← k
8: Fi,2 ← arctan dy

dx

9: Fi,3 ←
√

dx2 + dy2

10: else
11: m← j − 1
12: while m ≥ 1 do
13: dx← (Sj,1 sin(Sj,2)− Sm,1 sin(Sm,2))
14: dy ← (Sj,1 cos(Sj,2)− Sm,1 cos(Sm,2))
15: l ← 1
16: if (

√

dx2 + dy2 − daloc) < 0 then
17: k ←INDEX(Acol#m = 1)
18: leader setl,1 ← k
19: leader setl,2 ← arctan dy

dx

20: leader setl,3 ←
√

dx2 + dy2

21: end if
22: end while
23: k ←INDEX(min(leader setcol#2))
24: Fi,1 ← leader setk,1

25: Fi,2 ← leader setk,2

26: Fi,3 ← leader setk,3

27: end if

As example, we show in figure 5 the assignment result for
a formation with an hexagon shape. Independently of which
robot is at each place, the assignment (of leaders), in terms
of places, will always be the same.

The outcome of both these algorithms is a complete
formation matrix as described by eq. 1 (including distances
and relatives bearings).
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Fig. 5. The result of the controller assignment, following the procedure
described in algorithm 3, for an hexagon formation.

V. FORMATION ROBUSTNESS

To guarantee robustness against robot failure, every robot
is required to emit analive signal (it can be a visual cue
or a radio signal). Whenever afollower fails to receive its
leader signal, for a predetermined amount of time, it sends
an alarm message to the team requiring a formation update.
Since initially, the number of places in the formation equals
the number of robots in the team, the failure of one robot
causes one of the places to be unattended. Depending on
the mission instructions, thelead robot has three options:
i) either continues the present shape, but with that place
empty, ii) or commands a formation shape change, iii) or
aborts the mission.

In the first scenario (option i)), only the robots that were
following the failed robot need to modify their controller
specification, by selecting another leader, i.e. they rerun
algorithm 3 to update their entry in the formation matrix.
The remaining robots are left out of this process.

If the choice is to change the shape of the formation
(option ii)), then a complete new formation matrix has to
be generated. This choice requires that thelead robot is
able to produce a new formation shape, i.e., a newshape
matrix. To produce this new shape matrix, thelead robot
has to be supplied with sufficient knowledge at mission
start. This knowledge comes in the form ofcontingency
plans. These contingency plans can assume the form of
different shape matrices (the follower can be informed of,
for instance, three different shape matricesS0, the original,
S1, when one robot is missing, andS2 when two robots
are missing), or the form of directives on how to construct
a new shape matrix. Examples of directives can be, for
instance: “distribute the places evenly along a circumference
with radius r”, or “produce a column where the distance
between consecutive place is equal”, or even “in case of
failure of n robots, abort mission and return home”. Another
good example of formation directives, in our understanding,
is the concept ofqueuesas defined by [21].

The failure of one robot is conveniently treated by the
described method in the previous paragraphs, unless the
failing robot is the lead robot. In this case, a newlead
robot has to be assigned and a new formation matrix has
to be generated. Since every place is identified by an ID,
and the place occupied by thelead robot, P1, always is
the first, in case of its failure the new team leader will
be the robot in placeP2. This new lead robotneeds to be
informed about the mission specifications, in terms of target
destination and contingency plans. Since the previouslead

robot is ‘dead, it is not able to share the required information
with the new one. To overcome this problem and to cope
with the possibility of failure of more than onelead robot,
the complete mission specification should be provided to
all robots in the team as a backup strategy. During mission
execution, only thelead robotmakes use of it.

VI. RESULTS

One important feature supported by our framework is the
ability to perform ordered formations switches. Here we will
describe a test where this feature is emphasized. We will use
a team of six robots placed at random initial locations (the
initial status of the team can be seen in figure 6, at time
instant 0). Four formation shapes are provided to thelead
robot. These shapes are described byShex, Slin, Sv and
Stri, which are writen as follows:

Shex =











0 0

150 π/4
150 −π/4
277 π/8
277 −π/8
362 0











Slin =











0 0

125 π/2
125 −π/2
250 π/2
250 −π/2
375 π/2











Sv =











0 0

150 π/4
150 −π/4
300 π/4
300 −π/4
450 π/4











Stri =











0 0

150 π/4
150 −π/4
300 π/4
212 0

300 −π/4











A sketch of those shapes is presented in figure 1. The
team leaderis ordered to move towards the target, starting
in an hexagon formation (Fhex and figure 1(a)). After 36 sec
of mission time, it should switch to a line shape (Flin and
figure 1(b)). It should navigate in line during 44 sec and then
switch to an inverted V (Fv and figure 1(c)). After another
24 sec, again a formation switch is imposed. Now, the robots
should stabilize a triangle formation (Ftri and figure 1(d)).
The mission ends when thelead robotis in the neighborhood
of the target.

Figure 6 depicts the simulated trajectory evolution of
the team, using the control architectures described in [11].
Snapshots are provided at each time instant prior to formation
change. Figure 7 shows each robot position error together
with the average position error of the team (formation). This
position error is the distance between the desired locationof
the robot and the actual location at which it is [22].

The first task of the team is to generate an allocation of
robots to places, for the hexagon formation, with thelead
robot, R1 being already pre–assigned to placeP1. Given the
initial robot location in this particular example, the allocation
was:R2 → P3, R3 → P2, R4 → P4, R5 → P5 andR6 →

P6 (Ri → Pi reads “robotRi allocated to placePi”). Then,
to complete the formation matrix, each robot has to decide
on which leader to follow. In the case of this shape, the
controller assignment of each robot is the one presented in
figure 5. The generated formation matrix is
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Fig. 6. Simulation of a team of six robots performing a mission where
several formation switches occur.

Fhex =











0 0 150

1 −π/4 150

1 π/4 150

3 0 150

2 −π/2 150

4 0 150











Due to the chaotic initial situation of the team, the stabiliza-
tion of the desired formation takes long. In fact, when the
switch to line formation is ordered, the team, although in a
near hexagon shape, still has slightly high formation error
(mainly caused by robotsR5 andR6).
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Fig. 7. Formation error of the experiment depicted in fig. 6.

When the switch to line formation is commanded by the
lead robot, the team engages in the generation of a new
formation matrix. The outcome of the allocation part is

exactly the same as for the hexagon shape. The new complete
formation matrix is

Flin =











0 0 150

1 −π/2 125

1 π/2 125

3 π/2 125

2 −π/2 125

4 π/2 125











As soon as the team has the new formation matrix the
mission is resumed.

When the next formation switch is ordered, now to an
inverted V shape, the team has already stabilized the line
formation. The process of generating a suitable formation
matrix is again performed. The allocation is, once more,
equal to the previous ones. The generated formation matrix
is

Fv =











0 0 150

1 −π/4 150

1 π/4 150

3 π/4 150

2 −π/4 150

4 π/4 150











When the mission is resumed, the team reduces the formation
error to reasonable values rather fast.

Finally, the last switch, to a triangle shape, is issued. Here,
the allocation of robots to places has a small change, with
robotsR5 andR6 changing places, i.e.,R5 → P6 andR6 →

P5. In terms of controller/leader selection the outcome is
similar to the previous shape, except for robotR6, in place
P5, that now follows robotR2 in placeP3. If we increased
the visibility criterion enough, then we could make it follow
directly thelead robot, in a column formation. The formation
matrix is, now, the following:

Ftri =











0 0 150

1 −π/4 150

1 π/4 150

3 π/4 150

2 −π/4 150

2 π/4 150











The mission ends with the team reaching its goal in the
desired shape and with low formation error.

VII. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have developed two algorithms (a centralized and a
decentralized version) for allocating robots to places in a
formation, given its desired shape and team leader. These
algorithms are based on a negotiation by auction. It does not
achieve optimal assignments, nor is that its purpose. Instead
we aimed at simple, easy to implement algorithms, with low–
bandwidth requirements. Also, a decentralized algorithm for
the definition of leader–follower hierarchy was proposed.
Its outcome is a complete formation matrix, that stores
information about the team hierarchy and shape. We have
shown one simulation result, where these algorithms are used
to drive four formation switches.



B. Future Work

Our plans for future work include the use of cognitive
functions [23] to improve the algorithms of formation matrix
generation. The purpose, here, is to guess and anticipate other
team members position, as they move towards it, and in this
away completely avoid the necessity for communication, and
achieving an almost explicit communication–free architec-
ture.

REFERENCES

[1] N. Miyata, J. Ota, T. Arai, and H. Asama, “Cooperative transport
by multiple mobile robots in unknown static environments associated
with real–time task assignment,”IEEE Transactions on Robotics and
Automation, vol. 18, no. 5, pp. 769–780, October 2002.

[2] R. Soares, E. Bicho, T. Machado, and W. Erlhagen, “Objecttrans-
portation by multiple mobile robots controlled by attractor dynamics:
theory and implementation,” inProc. of the IEEE/RSJ Intl. Conference
on Intelligent Robots and Systems, to appear, 2007.

[3] J. Cortés, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,”IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, April 2004.

[4] W. Burgard, M. Moors, C. Stachniss, and F. Schneider, “Coordinated
multi–robot exploration,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 376–386, June 2005.

[5] F. Thomas and L. Ros, “Revisiting trilateration for robot localization,”
IEEE Transactions on Robotics, vol. 21, no. 1, pp. 93–101, February
2005.

[6] A. Howard, L. Parker, and G. Sukhatme, “Experiments withlarge
heterogeneous team: exploration, mapping, deployment anddetection,”
The International Journal of Robotics Research, vol. 25, no. 5–6, pp.
431–447, 2006.

[7] T. Balch and R. C. Arkin, “Behavior-based formation control for
multirobot teams,”IEEE Transactions on Robotics and Automation,
vol. 14, no. 6, pp. 926–939, December 1998.

[8] J. Desai, J. Ostrowski, and V. Kumar, “Modeling and control of
formations of nonholonomic mobile robots,”IEEE Transactions on
Robotics and Automation, vol. 17, no. 6, pp. 905–908, December 2001.

[9] T. Barfoot and C. Clark, “Motion planning for formationsof mobile
robots,” Robotics and Autonomous Systems, vol. 46, pp. 65–78, 2004.

[10] G. A. Kaminka and R. Glick, “Towards robust multi–robotforma-
tions,” in Proc. IEEE Int. Conf. Robotics and Automation, Orlando,
FL, 2006.

[11] E. Bicho and S. Monteiro, “Formation control for multiple mobile
robots: a non-linear attractor dynamics approach,” in2003 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems, Las Vegas, NV, October
27-31 2003, pp. 2016–2022.

[12] S. Monteiro, M. Vaz, and E. Bicho, “Attractor dynamics generates
robot formations: from theory to implementation,” inProc. IEEE Intl.
Conference on Robotics and Automation, New Orleans, LA, 2004.

[13] E. Bicho, A. Moreira, S. Diegues, M. Carvalheira, and S.Monteiro,
“Airship formation control,” in 3rd Int. Conf. on Informatics in
Control, Automation and Robotics, in Workshop Multi-AgentRobotic
Systems (MARS 2006), Setubal, portugal, August 1–5 2006.

[14] F. Michaud, D. Letourneau, M. Guilbert, and J. Valin, “Dynamic
robot formations using directional visual perception,” inProc. of
the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems, EPFL
Lausanne, Switzerland, October 2002, pp. 2740–2745.
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