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Abstract. We study relations among various notions of complete non-
malleability, where an adversary can tamper with both ciphertexts and
public-keys, and ciphertext indistinguishability. We follow the pattern
of relations previously established for standard non-malleability. To this
end, we propose a more convenient and conceptually simpler indistingui-
shability-based security model to analyse completely non-malleable sche-
mes. Our model is based on strong decryption oracles, which provide
decryptions under arbitrarily chosen public keys. We give the first precise
definition of a strong decryption oracle, pointing out the subtleties in
different approaches that can be taken. We construct the first efficient
scheme, which is fully secure against strong chosen-ciphertext attacks,
and therefore completely non-malleable, without random oracles.

Keywords. Complete Non-Malleability. Strong Chosen-Ciphertext At-
tacks. Public-Key Encryption. Provable Security.

1 Introduction

Background. The security of public-key encryption schemes has been for-
malised according to various goals and attack models. Extensive work has been
done in establishing relations between these security notions, and converging
towards a core set of standard security definitions. Well-studied goals include
semantic security, indistinguishability, and non-malleability; whereas chosen-
plaintext and (adaptive) chosen-ciphertext are the most common attack sce-
narios considered in literature.

An important criterion for selecting security models is the guarantee of nec-
essary security for a class of applications with practical relevance. Conversely,
it is also expected that one can select a security model that is only as strict
as required by a specific application. Otherwise, one might rule out valid solu-
tions without justification, possibly sacrificing other important factors such as
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set-up assumptions, computational cost or communications bandwidth. Another
important criterion is the conceptual simplicity and ease of use of a model.

Indistinguishability of ciphertexts is the most widely used notion of security
for public-key encryption schemes. This notion was proposed by Goldwasser and
Micali [15] as a convenient formalisation of the more intuitive notion of semantic
security. Other notions of security have been proposed in different contexts. Of
particular interest to this work is non-malleability, initially proposed by Dolev,
Dwork, and Naor [12]. Roughly speaking, an encryption scheme is non-malleable
if giving an encryption of a message to an adversary does not increase its chances
of producing an encryption of a related message (under a given public key). This
is formalised by requiring the existence of a simulator that performs as well as
the adversary but without seeing the original encryption.

The relations between different notions of security for public-key encryption
schemes were examined in a systematic way by Bellare et al. [4]. There, the
authors compare indistinguishability of ciphertexts and non-malleability under
chosen-plaintext and chosen-ciphertext attacks. In doing so, they formalise a
comparison-based definition of non-malleability and establish important results
based on this: non-malleability implies indistinguishability for an equivalent at-
tack model, there is an equivalence between these notions for CCA2 model, and
there are separations between the two notions for intermediate attack models.

Bellare and Sahai [8] established a cycle of equivalence between three defini-
tions of non-malleability: a simulation-based definition similar to that of Dolev,
Dwork and Naor, a comparison-based definition as introduced in [4], and a
new definition called indistinguishability of ciphertexts under parallel chosen-
ciphertext attacks. These equivalence relations essentially establish that the
three definitions are alternative formulations of the same notion. Pass, She-
lat, and Vaikuntanathan [18] revisit this equivalence result, and clarify several
technical aspects in the known equivalence proofs. They consider the impor-
tant question of composability of definitions, and establish a separation between
the simulation-based and comparison-based non-malleability definitions, show-
ing that the former is strictly stronger for general schemes.

Besides being theoretically interesting, the above results are also relevant in
practice. They permit designers of encryption schemes to base their analysis on
the simpler and better understood IND-CCA2 security model. This facilitates the
presentation of conceptually simpler proofs, which are less prone to errors, as
well as the direct application of a well-known set of proof techniques.

Complete non-malleability. Fischlin [13] introduces a stronger notion of
non-malleability, known as complete, which requires attackers to have negligible
advantage, even if they are allowed to transform the public key under which
the related message is encrypted. Put differently, the goal of an adversary is to
construct a related ciphertext under a new public key pair, for which the attacker
might not even know a valid secret key.

Fischlin shows that well-known encryption schemes such as Cramer-Shoup
[10] and RSA-OAEP [14] do not achieve even the weakest form of complete
non-malleability. Furthermore, he proves a negative results with respect to the
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existence of completely non-malleable schemes for general relations: there is a
large class of relations for which completely non-malleable schemes do not exist
with respect to black-box simulators. On the other hand, Fischlin establishes a
positive result for a modified version of RSA-OAEP, with respect to a restricted
class of adversaries, in the random oracle model.

Ventre and Visconti [19] later propose a comparison-based definition of this
security notion, which is more in line with the well-studied definitions proposed
by Bellare et al. [4, 8]. For chosen-plaintext attacks the authors prove that (a
restricted version of) their definition is equivalent to that of Fischlin. They also
establish equivalence for chosen-ciphertext attacks, for a well-defined class of
relations that do not depend on the challenge public key (known as lacking re-
lations). The authors also provide additional feasibility results by proposing two
constructions of completely non-malleable schemes, one in the common reference
string model using non-interactive zero-knowledge proofs, and another using in-
teractive encryption schemes. Therefore, the only previously known completely
non-malleable (and non-interactive) scheme in the standard model, is quite in-
efficient as it relies on generic zero-knowledge techniques.

Motivation. The initial motivation for complete non-malleability resided on
constructing non-malleable commitment schemes. A commitment scheme can be
constructed from an encryption scheme in the following way. To commit to a
message, one generates a key pair and encrypts the message under the generated
public key. The resulting public key/ciphertext pair forms the commitment. To
de-commit, one reveals a valid secret key or the message/randomness pair used
in encryption. In this setting, it is clearly desirable that the encryption scheme
should be completely non-malleable in order to guarantee non-malleability of
the associated commitment scheme.

Furthermore, new notions of security of high practical relevance have been
emerging in the literature that closely relate to different flavours of complete
non-malleability. The pattern connecting these notions is that adversaries are
allowed to tamper with the keys, under which they are challenged, in order to
gain extra advantage. Robust encryption [1] is one such notion, and it is pitched
at applications where ciphertext anonymity is relevant. This notion requires it
to be infeasible to construct a ciphertext which is valid under two distinct public
keys. Another such notion is security under related-key attacks [5], where cipher
operations can be executed over perturbed versions of the challenge secret key.
This model is of particular relevance in the symmetric encryption setting. Also
worth mentioning are concrete attacks on key-agreement protocols and public-
key signature schemes, where attackers are able to introduce public keys of their
choice in the protocol execution [13].

The relations between these new notions of security are understudied and
constitute a novel challenge in theoretical cryptography. A deeper understanding
of the relations between these notions of security should permit identifying a
core set of security models that facilitate the design and analysis of strongly
secure schemes with practical relevance. The main motivation of this work is,
therefore, to take an important step in this direction. We aim to expand the
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current understanding of complete non-malleability, by establishing relations
among notions of complete non-malleability and ciphertext indistinguishability
that are akin to those already known for standard non-malleability. To this
end, we introduce a new indistinguishability based notion, and demonstrate its
applicability by constructing an efficient and completely non-malleable scheme.

Strong chosen-ciphertext attacks. Our search for a suitable indistingui-
shability-based definition of complete non-malleability resulted in a natural ex-
tension of the standard IND-CCA2 security model, in which the adversary can get
decryptions of ciphertexts under arbitrary public keys of its choice. We call this
a strong chosen-ciphertext attack scenario, and say that the adversary is given
access to a strong decryption oracle. This, in turn, brings together two fields
which previously remained unrelated in provable security, namely complete non-
malleability and certificateless cryptography [2, 11]. Indeed, strong CCA attacks
model multi-user scenarios where public keys might not be authenticated, and
were initially proposed as a natural attack model for certificateless schemes that
aimed to do away with public-key certificates.

The question of whether the weakness captured by such a strong model should
be seen as a real vulnerability of public-key encryption schemes has caused some
discussion [11]. Arguments against this approach are based on the fact that such
an attack model is not realistic, since it is highly unlikely that the adversary
is able to get such assistance in a practical scenario. Another way to put this
objection is that security models should be defined through experiments that are
guaranteed to execute in polynomial time: providing decryptions under unknown
secret keys assists the adversary through a super-polynomial time oracle.

The results we present in this paper show that the strength of the complete
non-malleability notion is comparable to that of the strong chosen-ciphertext
attack scenario. This connection allows us to take a more constructive view of
strong decryption oracles, and argue that they can indeed be useful to analyse
the security of practical schemes. To support this view, we show that indistin-
guishability under strong CCA attacks is a convenient formalisation to establish
that a scheme is completely non-malleable. Furthermore, by proposing a concrete
scheme, we also show that both notions are realisable without random oracles.

Finally, we note that strong decryption oracles are closely related to the re-
cently proposed paradigm of adaptive one-way functions [17], which can be used
to construct a number of cryptographic protocols that previously remained open
in the literature. Indeed, the assumptions that underlie the proposed construc-
tions of adaptive one-way functions rely on similar “magic” oracles. It would be
interesting to investigate whether the techniques that we use can be useful in
constructing adaptive one-way functions based on standard assumptions. Con-
versely, the public-key encryption scheme given in [17] seems to achieve strong
chosen-ciphertext security. The relationship between adaptive one-way functions
and strong security models are left for future work.

Contributions. The first contribution of our paper is a general definition of
a strong decryption oracle, which unifies previous definitional approaches. Our
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definition is flexible and expressive in the sense that it allows identifying the
exact power of the decryption oracle that is provided to an adversary in security
analysis. We also show that variants of the strong decryption oracle definition
map to interesting properties of encryption schemes. We establish a connection
with the validity checks that an encryption scheme performs (message validity,
ciphertext validity, public key validity, etc.). More precisely, we identify a sim-
ple and very convenient definition of the strong decryption oracle, which can be
used to analyse schemes that incorporate a well-defined and natural set of va-
lidity checks. For schemes that fail to perform these checks, care must be taken
to identify the exact strength of the strong decryption oracle under which the
scheme can be proven secure.

We then extend the standard indistinguishability and non-malleability mod-
els using strong decryption oracles, and examine the relations between the result-
ing notions. Our approach is consistent with that proposed by Bellare et al. [8,
4], which allows us to naturally describe the relation between these stronger
models and the more established ones. We also identify the relation between the
strong chosen-ciphertext models we propose and the existing notions of complete
non-malleability. To the best of our knowledge, this relation was not previously
known. It permits fully characterising how these independently proposed mod-
els relate to the more standard definitions of non-malleability. The relation we
establish between strong decryption oracles and complete non-malleability pro-
vides the first convincing argument that the strong CCA models are useful in
analysing the security of practical encryption schemes.

Finally, we propose a concrete scheme that efficiently achieves strong chosen-
ciphertext security based on the decisional bilinear Diffie-Hellman assumption.
The scheme is secure under a very general definition of the strong decryption ora-
cle, which is made possible by the insights regarding validity checks we described
above. The scheme is derived fromWaters’ identity-based encryption scheme [20]
using techniques previously employed in constructing certificateless public-key
encryption schemes [11]. Our equivalence result also establishes our scheme as
the first efficient completely non-malleable scheme without random oracles. We
stress that our scheme is based on a standard and well-known problem and does
not rely on interactive assumptions or “magic” oracles.

Organisation. In the next section we fix notation by defining public-key en-
cryption schemes and various algorithms associated to them. In Section 3 we
discuss different approaches in defining strong decryption oracles and propose
a new generic definition. In Section 4 we look at indistinguishability and non-
malleability security models for encryption schemes where adversaries have ac-
cess to strong decryption oracles. We establish relations between these models
and also to models existing literature. We present our scheme in the final section.

2 Preliminaries

Notation. We write x← y for assigning value y to variable x, and x←$ X for
sampling x from set X uniformly at random. If X is empty, we set x←⊥, where
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⊥/∈ {0, 1}? is a special failure symbol. If A is a probabilistic algorithm, we write
x←$ A(I1, I2, . . .) for the action of running A on inputs I1, I2, . . . with random
coin chosen uniformly at random, and assigning the result to x. Sometimes we
run A on specific coins r and write x ← A(I1, I2, . . . ; r). We denote boolean
values, namely the output of checking whether a relation holds, by T (true) and
F (false). For a space Sp ⊆ {0, 1}?, we identify Sp with its characteristic function.
In other words, Sp(s) = T if and only if s ∈ Sp. We say s is valid with respect to
Sp if and only if Sp(s) = T. When this is clear from the context, we also use Sp
for sampling uniformly from Sp. Unless stated otherwise, the range of a variable
s is assumed to be {0, 1}?. The symbol : is used for appending an element to a
list. We indicate vectors using bold font.

Games. We will be using the code-based game-playing language [7]. Each game
has an Initialize and a Finalize procedure. It also has specifications of pro-
cedures to respond to an adversary’s various oracle queries. A game Game is
run with an adversary A as follows. First Initialize runs and its outputs are
passed to A. Then A runs and its oracle queries are answered by the procedures
of Game. These procedures return ⊥ if queried on ⊥. When A terminates, its
output is passed to Finalize which returns the outcome of the game y. This
interaction is written as GameA ⇒ y. In each game, we restrict attention to
legitimate adversaries. Legitimacy is defined specifically for each game.

Public-key encryption. We adopt the standard multi-user syntax with the
extra Setup algorithm [3], which we believe is the most natural one for se-
curity models involving multiple public keys. A public-key encryption scheme
Π = (Setup,Gen,MsgSp,Enc,Dec) is specified by five polynomial-time algorithms
(in the length of their inputs) as follows. Setup is the probabilistic setup algo-
rithm which takes as input the security parameter and returns the common
parameters I (we fix the security parameter implicitly, as we will be dealing with
concrete security). Although all algorithms are parameterised by I, we often omit
I as an explicit input for readability. Gen(I) is the probabilistic key-generation
algorithm. On input common parameters I, this algorithm returns a secret key
SK and a matching public key PK. Algorithm MsgSp(m,PK) is a deterministic
message space recognition algorithm. On input m and PK this algorithm re-
turns T or F. Enc(m,PK; r) is the probabilistic encryption algorithm. On input a
message m, a public key PK, and possibly some random coins r, this algorithm
outputs a ciphertext c or a special failure symbol ⊥. Finally, Dec(c,SK,PK) is
the deterministic decryption algorithm. On input of a ciphertext c and keys
SK and PK, it outputs a message m or a special failure symbol ⊥. The cor-
rectness of a public-key encryption scheme requires that for any I ←$ Setup(),
any (SK,PK) ←$ Gen(), all m ∈ MsgSp(PK), and any random coins r we have
Dec(Enc(m,PK; r),SK,PK) = m.

Remark. We note that the multi-user syntax permits capturing in a single
framework schemes that execute in the plain model, in which case the global
parameters are empty, as well as those which execute in the CRS model. The
relations that we establish between different models hold in both cases.
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Validity checking algorithms. The following spaces (and associated func-
tions) will be used throughout the paper. All of these spaces are parameterised
by I and are subsets of {0, 1}?.

MsgSp(PK) := {m : MsgSp(m,PK)}
KeySp := {(SK,PK) : ∃r (SK,PK) = Gen(r)}
PKSp := {PK : ∃r, SK (SK,PK) = Gen(r)}
SKSp := {SK : ∃r,PK (SK,PK) = Gen(r)}

Validity assumptions. We assume throughout the paper that the encryp-
tion and decryption algorithms check if m ∈ MsgSp(PK) and return ⊥ if it
does not hold. Often the algorithm MsgSp does not depend on PK in the sense
that for any PK,PK′ ∈ PKSp and any m ∈ {0, 1}? we have MsgSp(m,PK) =
MsgSp(m,PK′). For general schemes, case one can consider the infinite message
space MsgSp(PK) = {0, 1}?. However, given that in this paper we will often
consider the set of all valid messages and sample from it, we restrict our atten-
tion to schemes with finite message spaces. As pointed out by Pass et al. [18],
this means that to avoid degenerate cases we must also restrict our attention to
schemes for which all the elements in the range of decryption can be efficiently
encrypted, including the special failure symbol ⊥. A distribution M on messages
is valid with respect to a public key PK if it is computable in polynomial time
and its support contains strings of equal length which lie in MsgSp(PK). We also
assume that key-pair validity KeySp is efficiently implementable and require that
decryption returns ⊥ if this check fails on the keys passed to it (note that this
can easily be achieved for general public key encryption schemes, by including
the input randomness to Gen in SK). We also assume various algorithms check
for structural properties such as correct encoding, membership in a group, etc.

3 Defining strong decryption oracles

The idea behind a strong chosen-ciphertext attack is to give the adversary access
to an oracle that decrypts ciphertexts of the adversary’s choice with respect to
arbitrary public keys. There are a number technicalities involved in defining such
an oracle precisely, which we now discuss.

proc. SDecU,V(c,PK,R):
WitSp← {(m, r) : V(c,PK,m, r, st[V])}
(m, r)←$ {(m, r) ∈WitSp : R(m)}
st[V]← U(c,PK,R,m, r, st[V])
Return m

Fig. 1: Generic definition of a strong decryption oracle. In the first step the search is
performed over sufficiently long bit strings and, for messages, it also includes the special
symbol ⊥. The state st[V] is initialised to some value st0.

We will base our presentation on the generic definition of a strong decryption
oracle presented in Figure 1, which we thoroughly explain and justify in the dis-
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cussion that follows. The oracle proceeds in three steps. The first step models the
general procedure of constructing a set of candidate (valid) decryption results.
The second step consists of choosing one of these candidate solutions to return
to the adversary. The final step updates the state of the oracle, if it keeps one.

More precisely, in the first step, the oracle constructs a set of possible decryp-
tion results WitSp using a polynomial-time validity relation V3. Note that the
search for messages includes the special failure symbol ⊥. This permits making
the subtle distinction of returning ⊥ when a candidate decryption result has
not been found4, or when it has been established that the oracle may return ⊥
when queried on a given (c,PK) pair. In the second step, it selects the message
to return from WitSp. To make sure the security model is not restricting the
adversary by choosing the decryption result in a particular way, we allow the
adversary to provide a polynomial-time relation R to characterise a set of mes-
sages of interest to her. The oracle then samples a message at random from this
set and returns it to the adversary. In the third and final step, the oracle updates
any state it may have stored from previous queries. We require that the update
procedure to be polynomial in the size of its inputs, excluding the state5.

Although we have constrained the algorithms in our definition (i.e. V, R and
U) to be polynomial-time, the calculations carried out in the first two steps may
not be computable in polynomial time and may require an exponential number
of executions of these algorithms. Nevertheless, we emphasise that the search
space must be finite. This is guaranteed by the assumption that the message
space of the encryption scheme is finite, and by the fact that the algorithms
associated with the scheme run in polynomial time in their inputs.

The motivation for having such a general definition is that the notion of the
message encapsulated by the ciphertext can be defined in various ways. For con-
creteness, let us fix U so that st[V] is empty throughout the game execution, and
look at two alternative definitions of V. These derive from two interpretations as
to which message(s) might be encapsulated in a public key/ciphertext pair: they
can be seen as alternative witnesses to the validity of the public key/ciphertext
pair. Concretely one can define validity via the encryption operation, in which
case a message/randomness pair is the witness or via the decryption algorithm,
in which case the natural witness is a message/secret key pair6:

V(c,PK,m, r) := c
?
= Enc(m,PK; r) (1)

V′(c,PK,m, r) := (SK,PK)
?
= Gen(r) ∧m

?
= Dec(c,SK,PK). (2)

The first observation to make on these validity criteria is that neither of them
guarantees that if a message is found to be a valid decryption result, it will
3 This constitutes an NP-relation for the language of valid decryption results.
4 Recall that we assume that sampling from an empty set returns ⊥.
5 Discarding the state size ensures that the run-time of this procedure does not increase
exponentially with queries.

6 Note that we have assumed Dec always performs the key-pair validity check, and so
this is redundant in V′. We include it for the sake of clarity: for schemes which do
not perform the key-pair validity check, this issue must be considered.
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be unique. This is because the correctness restriction only guarantees unique
decryptability for correctly constructed (c,PK) pairs: it says nothing about the
result of decryption when an invalid public key and/or an invalid ciphertext
are provided as inputs. In particular, the validity criterion in Equation 1 could
accept multiple messages as valid, when run on an invalid public key. Ambigu-
ity can also occur for the validity criterion in Equation 2, when multiple valid
secret keys correspond to the queried public key, and decrypt an invalid cipher-
text inconsistently. This discussion justifies the need for the second step in the
definition we propose: there could be many valid decryption results to choose
from, and it is left to the adversary to control how this is done. In the simplest
scenario, where there is only one candidate decryption result, one can assume
without loss of generality that the adversary will choose to retrieve that result
by passing in the trivial relation T.

The need for the first step of the definition is justified by observing that the
two witness sets associated with the above validity algorithms do not always
coincide. To see this, consider an encryption scheme where decryption does not
necessarily fail when run on a ciphertext that falls outside the range of the
encryption algorithm. Then the first witness set will be empty whereas the second
may not be. A concrete example is the Cramer-Shoup [10] encryption scheme.
For other schemes, such as RSA-OAEP [14], it may happen that the encryption
algorithm produces apparently valid ciphertexts for invalid public keys. When
this is the case, the first witness set may not be empty, whereas the second one
will surely contain no messages, given that no valid secret key exists.

We note that the above issues do not arise in the standard definition of a
decryption oracle, in which decryption is always carried out with a fixed secret
key. In other words, the decryption oracle is stateful. To allow capturing this
sort of behaviour in strong decryption oracles, we add the last step to the or-
acle definition. This manages the decryption oracle state, and ensures that the
validity checking algorithm can access it in each query.

Specific definitions. Previous attempts to define strong decryption oracles
have been introduced for certificateless public-key encryption, where public keys
are not authenticated [2, 11]. These definitions implicitly adopt validity criteria
which are adequate only for the concrete schemes discussed in the referred works.

In the definition proposed in [2] the authors simply describe the oracle as
providing “correct decryptions” even though the secret key could be unknown. A
close analysis of the presentation in this work indicates that “correct decryption”
is defined through a search for a message/randomness pair in the domain of the
encryption, similarly to the first validity criterion presented above. However, the
unique decryptability issue is implicit in the definition, since the concrete scheme
the authors consider ensures that the encryption algorithm fails when queried
with an invalid public key. Extending this definition to encryption schemes in
general results in the following validity criterion:

VPK(c,PK,m, r||r′) := c
?
= Enc(m,PK; r) ∧ (?,PK)

?
= Gen(r′).
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Note that this is equivalent to the validity relation in Equation 1 for schemes
which check for public key validity in the encryption algorithm. Alternatively,
a solution adopted in literature [13] is to restrict the class of adversaries to
those which query only valid public keys. In our view, such a restriction on
the adversary’s behaviour is unjustified, and we will look for alternatives which
guarantee stronger security.

In a more recent work [11], the strong decryption oracle is described as con-
structing a private key that corresponds to the queried valid public key, and then
using that key to decrypt the ciphertext. The oracle then stores the extracted
secret key to be reused in subsequent queries under the same public key. This
definition is more in line with the intuition that a decryption oracle should re-
flect the behaviour of the decryption algorithm, and it is also consistent with
the stateful operation of the standard decryption oracle. We can capture this
definition through the algorithms presented in Figure 2. Note that, for those
schemes in which there is a unique valid private key per public key or for those
schemes where all valid secret keys behave consistently for all possible, even in-
valid, ciphertexts, the oracle resulting from these algorithms will be identical to
the one using the criterion in Equation 2.

proc. V(c,PK,m, r, st[V]):
(SK′,PK′)← Gen(r)
If ((SK,PK) ∈ st[V] ∧ SK′ 6= SK)

PK′ 6= PK Return F
If m = Dec(c, SK′,PK′) Return T
Return F

proc. U(c,PK,R,m, r, st[V]):
(SK′,PK′)← Gen(r)
If PK′ 6= PK ∨ (SK,PK) ∈ st[V]

Return st[V]
st[V]← (SK′,PK′) : st[V]
Return st[V]

Fig. 2: Update and validity algorithms for a stateful strong decryption oracle with initial
state st0 = (SK?,PK?).

The previous discussion indicates that different definitions of a strong decryp-
tion oracle can be seen as natural for particular classes of schemes. However, we
can also consider other approaches, which are not so easy to characterise. For
example, a straightforward fix to the ambiguity problem described above is to
have the oracle simply return ⊥ when it arises. Agreeably, this approach ad-
dresses the problem of ambiguity directly, but it is hardly intuitive with respect
to the operation of public-key encryption schemes. In particular, this definition
is best suited for the class of encryption schemes for which the ambiguity never
occurs. However, there is no natural characterisation of this class of schemes.

As a final motivation for a general definition of a strong decryption oracle,
let us look at RSA-OAEP [14]. The non-malleability properties of (a modified
version of) this scheme are analysed by Fischlin [13] using a model related to the
decryption oracle associated with Equation 1. However, the analysis is restricted
to adversaries that only query valid public keys. For such adversaries, the re-
sulting oracle is identical to that resulting from Equation 2, as the decryption
algorithm of the scheme checks for key-pair validity and recovers the random
coins used in encryption. However, once this restriction is dropped, the oracles
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are no longer equivalent. Security with respect to Equation 2 is still implied by
Fischlin’s analysis but, with respect to Equation 1 it remains an open issue.

Simplification. We now characterise a class of schemes for which the above
variants of strong decryption oracle collapse into a simpler definition. This class
consists of encryption schemes which perform checks both at encryption and
decryption stages. They check for public key validity upon encryption, returning
a failure symbol if the key is invalid. Furthermore, in decryption, they check both
key-pair validity and that the input ciphertext lies in the range of the encryption
algorithm. Note that for such schemes, whenever encryption and decryption do
not fail, then correctness ensures that the set of messages which can be obtained
using any of the validity criteria above coincide, and have cardinality 1. The
simplified version of the strong decryption oracle that we arrive at is shown in
Figure 3. The scheme that we present in Section 5 has been designed so that
it belongs to this class of encryption schemes, and could therefore be analysed
using this simpler oracle. Indeed, this observation is central to our argument that
we propose a simpler and more convenient security model in which to analyse
schemes that aim to achieve complete non-malleability.

proc. SDec(c,PK):
m←$ {m : ∃SK,m = Dec(c,SK,PK)}
Return m

Fig. 3: Simplified definition of strong decryption for schemes which perform all checks.
The search over m excludes ⊥.

4 Security under strong chosen-ciphertext attacks

In this section, we use the general definition of a strong decryption oracle in
Figure 1 to extend different security models for encryption schemes. This allows
for a uniform treatment of strong security models, some of which have been
independently proposed in literature. Then, we investigate the relations among
the resulting security notions, as well as those in [13, 19].

4.1 Indistinguishability of ciphertexts

We now introduce ciphertext indistinguishability under strong chosen-ciphertext
attacks as the natural extension of the standard notions of security for public-key
encryption schemes. The IND-SCCAx advantage of an adversary A for x = 0, 1, 2
against a public-key encryption scheme Π is defined by

Advind-sccax
Π (A) := 2 · Pr

[
IND-SCCAxAΠ ⇒ T

]
− 1,

where game IND-SCCAx is shown in Figure 4. Implicit in this definition are
the descriptions of the U and V algorithms, which are fixed when analysing a
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scheme in the resulting IND-SCCAx model. As seen in the previous section, one
can make general claims of security and still use a simple definition for the strong
decryption oracle (Figure 3) by showing that the scheme satisfies a well-defined
set of natural properties.

proc. Initialize():
b←$ {0, 1}; I←$ Setup()
(SK?,PK?)←$ Gen()
List← []; st[V]← st0
Return (I,PK?)

proc. SDec(c,PK,R):
Return SDecU,V(c,PK,R)

proc. LoR(m0,m1):
c←$ Enc(mb,PK?)
List← (c,PK?) : List
Return c

Game IND-SCCAxΠ

proc. Finalize(b′):
Return (b′ = b)

Fig. 4: Game defining indistinguishability under strong chosen-ciphertext attacks. An
adversary A is legitimate if: 1) It calls LoR only once with m0,m1 ∈ MsgSp(PK) such
that |m0| = |m1|; and 2) R is polynomial-time and, if x = 0 it does not call SDec, if
x = 1 it does not call SDec after calling LoR, and if x = 2 it does not call SDec with
a tuple (c,PK) in List.

proc. Initialize():
b←$ {0, 1}; I←$ Setup()
(SK?,PK?)←$ Gen()
List← []; st[V]← st0
Return (I,PK?)

proc. SDec(c,PK,R):
Return SDecU,V(c,PK,R)

proc. LoR(m0,m1):
c←$ Enc(mb,PK?)
List← (c,PK?) : List
Return c

Game IND-SPCAxΠ

proc. PSDec(c,PK,R):
For i from 1 to #c do
m[i]←$SDecU,V(c[i],PK[i],R[i])

Return m
proc. Finalize(b′):
Return (b′ = b)

Fig. 5: Game defining indistinguishability under strong parallel chosen-ciphertext at-
tacks. An adversary A is legitimate if: 1) It calls LoR only once with m0,m1 ∈
MsgSp(PK) such that |m0| = |m1|; 2) It calls PSDec exactly once and after call-
ing LoR, on a tuple (c,PK,R) such that for i = 1, . . . ,#c, the tuples (c[i],PK[i]) do
not appear in List and R[i] are polynomial-time; and 3) R is polynomial-time and, if
x = 0 it does not call SDec, or if x = 1 it does not call SDec after calling LoR, or if
x = 2 it does not call SDec with a tuple (c,PK) in List.

Strong parallel attacks. Bellare and Sahai [8] define a security notion
known as indistinguishability under parallel chosen-ciphertext attacks. Here the
adversary can query a vector of ciphertexts to a parallel decryption oracle exactly
once and after its left-or-right query, receiving the corresponding component-wise
decryptions. It is proved in [8] that parallel security maps well to non-malleability
of encryption schemes. We extend this model to incorporate strong attacks by
defining the IND-SPCAx advantage of an adversary A against an encryption
scheme Π similarly to above, where game IND-SPCAx is shown in Figure 5. Note
that under this definition, and consistently with previous results, IND-SPCA2 is
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equivalent to IND-SCCA2: the parallel oracle is subsumed by the strong decryp-
tion oracle that the adversary is allowed to call adaptively after the challenge
phase. We remark that a stronger definition can be adopted, whereby the ad-
versary is allowed to query the parallel oracle with a relation that takes all the
ciphertexts simultaneously. We will return to this issue in the next section.

KEM/DEM composition. The standard proof technique [10] to establish the
security of hybrid encryption schemes consisting of a secure keys encapsulation
mechanism (KEM) and a secure data encryption mechanism (DEM), fails to
extend to the strong chosen-ciphertext models (strong security for KEMs can be
defined in the natural way). This failure is due to the non-polynomial nature of
the decryption oracle, which cannot be simulated even if one generates the chal-
lenge public key. One way to go around this obstacle is to build schemes which
permit embedding an escrow trapdoor in the common parameters, enabling de-
cryption over all public keys.

4.2 Complete non-malleability

Turning our attention to strong notions of non-malleability, or so-called complete
non-malleability, we shall see in this section how strong decryption oracles can
be used to bring coherence to existing definitional approaches. In particular, we
introduce new definitions using strong decryption oracles that can be used to
establish clear relations with the strong indistinguishability notion introduced
above. We also clarify how the definitions we propose relate to those previously
described in literature.

Simulation-based definition. The first definition of complete non-malleabili-
ty was introduced by Fischlin in [13]. We propose an alternative definition.
We define the SNM-SCCAx advantage of an adversary A with respect to a
polynomial-time relation R and a polynomial-time simulator S against a public-
key encryption scheme Π by

Advsnm-sccax
Π,R,S (A) := Pr

[
Real-SNM-SCCAxAΠ,R⇒T

]
−Pr

[
Ideal-SNM-SCCAxSΠ,R⇒T

]
where games Real-SNM-SCCAx and Ideal-SNM-SCCAx are as shown in Figure 6.
The syntax of public-key encryption that we use includes a Setup procedure
and hence we explicitly include the common parameters I as an input to the
malleability relation. This approach is consistent with the explicit inclusion of the
challenge public key, which is shown in [13] to strictly strengthen the definition.
Additionally, for backward compatibility with [8], our relations also include the
state information stR. For strong decryption oracles that behave consistently
with the standard one for PK?, and for a class of relations that matches those in
the original definition, our definition implies standard assisted and non-assisted
simulation-based non-malleability as defined in [8].

A similar line of reasoning does not permit concluding that our definition
also implies Fischlin’s complete non-malleability. A legitimate adversary under
Fischlin’s definition is also a legitimate adversary under the definition in 6. How-
ever, we cannot identify a concrete version of the strong decryption oracle that
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captures the environment under which such an adversary should run. This is
because Fischlin’s model implicitly uses two definitions of decryption oracle: one
during the interactive stages of the game, where the adversary has access to
a standard decryption oracle that decrypts using the challenge secret key, and
a second one in the Finalize stage, where the ciphertext produced by the ad-
versary is decrypted by searching through the message/randomness space. We
justify our modelling choice with two arguments. Firstly, the construction of
Finalize in Fischlin’s definition makes it impossible to prove that this secu-
rity model is stronger than the apparently weaker definition of non-malleability
proposed in [8], which uses the standard decryption oracle to recover messages
from the ciphertexts output by the adversary (recall the particular case of in-
valid ciphertexts under a valid public key, for which the two interpretations of
valid decryption results do not coincide). This suggests that using a consistent
definition of a (strong) decryption oracle in all stages of the game is a better
approach. Secondly, if this change were introduced in Fischlin’s definition, then
this would simply be a special case of our more general definition.

proc. Initialize():
I←$ Setup()
(SK?,PK?)←$ Gen()
List← []; st[V]← st0
Return (I,PK?)

proc. SDec(c,PK,R′):
Return SDecU,V(c,PK,R′)

proc. Enc(M, stR):
m←$ M()
c←$ Enc(m,PK?)
List← (c,PK?) : List
Return c

Game Real-SNM-SCCAxΠ,R

proc. Finalize(c,PK,R):
For i from 1 to #c do
m[i]←$SDecU,V(c[i],PK[i],R[i])

Return R(I,m,m,c,PK?,PK,M,stR)

proc. Initialize():
I←$ Setup()
(SK?,PK?)←$ Gen()
st[V]← st0
Return (I,PK?)

proc. SDec(c,PK,R′):
Return SDecU,V(c,PK,R′)

Game Ideal-SNM-SCCAxΠ,R

proc. Finalize(c,PK,R,M, stR):
For i from 1 to #c do
m[i]←$SDecU,V(c[i],PK[i],R[i])

m←$ M()
Return R(I,m,m,c,PK?,PK,M,stR)

Fig. 6: Games defining simulation-based complete non-malleability under strong chosen-
ciphertext attacks. An adversary A, playing the real game, is legitimate if: 1) It calls
Enc once with a valid M; 2) R′ queried to SDec is computable in polynomial time; if
x = 0 it does not call SDec; if x = 1 it does not call SDec after calling LoR; and if
x = 2 it does not call SDec with a tuple in List; and 3) It calls Finalize with a tuple
such that all relations in R are computable in polynomial time and, for i = 1, . . . ,#c,
the tuples (c[i],PK[i]) do not appear in List. A non-assisted simulator, playing the
ideal game, S is legitimate if: 1) It calls Finalize with a valid M; and 2) It does not
call SDec. An assisted simulator, playing the ideal game, is legitimate if: 1) It calls
Finalize with a valid M; 2) R′ queried to SDec is computable in polynomial time;
and 3) If x = 0 it does not call SDec.
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Comparison-based definition. The simulation-based definition due to Fis-
chlin was later reformulated by Ventre and Visconti [19] as a comparison-based
notion. We introduce an alternative definition based on the CNM-SCCAx game
shown in Figure 7 and define CNM-SCCAx advantage of an adversary A against
an encryption scheme Π as

Advcnm-sccax
Π (A) := Pr

[
CNM-SCCAxAΠ⇒T

∣∣ b=1]−Pr
[
CNM-SCCAxAΠ⇒T

∣∣ b=0]

Our definition differs from that given in [19] in the following aspects. We
provide the adversary with strong decryption oracles in various stages of the at-
tack. In both models the adversary is allowed to return a vector of ciphertexts,
although in [19] it is restricted to returning a single public key. Also, procedure
Finalize does not automatically return F if any of the ciphertexts is invalid. The
definition in [19] would therefore be weaker than ours, were it not for our mod-
elling choice in the Finalize procedure. In Ventre and Visconti’s definition, the
relation R is evaluated by a complete search over (m[1], r1)× . . .× (m[#c], r#c).
In our definition we have constrained the adversary to performing the search
using the strong decryption oracle independently for each component in c, be-
fore evaluating R. This option is, not only consistent with the standard notions
of non-malleability for encryption schemes [8], but is also essential to proving
equivalence among the different notions we propose.

proc. Initialize():
b←$ {0, 1}; I←$ Setup()
(SK?,PK?)←$ Gen()
List← []; st[V]← st0
Return (I,PK?)

proc. SDec(c,PK,R′):
Return SDecU,V(c,PK,R′)

proc. Enc(M):
m0,m1 ←$ M()
c←$ Enc(m1,PK?)
List← List : (c,PK?)
Return c

Game CNM-SCCAxΠ

proc. Finalize(c,PK,R,R):
For i from 1 to #c do
m[i]←$SDec(c[i],PK[i],R[i])

Return R(I,mb,m, c,PK?,PK)

Fig. 7: Game defining comparison-based complete non-malleability under strong
chosen-ciphertext attacks. An adversary A is legitimate if: 1) It calls Enc once with a
valid M; 2) It always queries SDec with R′ computable in polynomial time; if x = 0
it does not call SDec; if x = 1 it does not call SDec after calling LoR; and if x = 2
it does not call SDec with a tuple (c,PK) in List; 3) It calls Finalize with a tuple
(c,PK,R,R) such that R and all the elements of R are computable in polynomial time
and, for i = 1, . . . ,#c, the tuples (c[i],PK[i]) do not appear in List.

Remark. Recall that Ventre and Visconti’s proof [19] of equivalence between
comparison and (non-assisted) simulation-based complete non-malleability holds
(for x 6= 0) for a restricted class of relations, called lacking relations, which do
not depend on the challenge public key given to the adversary. We note that our
equivalence proof for assisted simulators does not restrict the class of relations
under which equivalence holds. Furthermore, such a restriction would be point-
less in our definitions for non-assisted simulators, since the proof technique of
generating a new key-pair is no longer sufficient to guarantee that the simulator
can answer strong decryption queries under arbitrary public keys.
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4.3 Relations among notions of security

We now present our main theorem that establishes equivalence between the
security notions we have proposed above. The proof, which can be found in the
full version of the paper, follows the strategy used by Bellare and Sahai [8]. We
note that our result holds for any instantiation of the strong decryption oracle
as given in Figure 1, providing further evidence that the security models we are
relating are, in fact, the same notion presented using different formalisms.

Theorem 1 (Equivalence). The IND-SPCAx, CNM-SCCAx and SNM-SCCAx
notions of security are equivalent, for any x ∈ {0, 1, 2}.

Using a standard hybrid argument one can show that IND-SPCAx self-compo-
ses. Together with our equivalence result, we conclude that our notions of com-
plete non-malleability also self-compose [18].

5 An efficient completely non-malleable scheme

The only completely non-malleable scheme (without random oracles) known
prior to this work, was that of Ventre and Visconti [19], which relied on generic
(and hence inefficient) zero-knowledge techniques. In this section, we will present
an efficient and strongly secure scheme based on standard assumptions.

Our scheme, which is shown in Figure 8, uses a computational bilinear group
scheme Γ and a family of collision resistant hash functions Σ mappingGT×G×G2

to bit strings of size n. Our scheme relies on the decisional bilinear Diffie-
Hellman assumption which requires the distributions (g, ga, gb, gc, e(g, g)abc) and
(g, ga, gb, gc, e(g, g)d), for random a, b, c, and d, to be computationally indistin-
guishable. The scheme’s design is based on the certificateless encryption scheme
of [11], which in turn is based on Water’s identity-based encryption scheme [20].
The construction also uses Waters’ hash [20], defined by WH(w) := u0

∏n
i=1 u

[w]i
i .

proc. SetupΓ,Σ,n():
k←$ Key();
(α,β,u0,. . . ,un)←$ G?×Gn+2

I← (Γ,Hk, α, β, u0, . . . , un)
Return I

proc. Gen():
x←$ Zp; X ← gx; Y ← αx

PK← (X,Y ); SK← x
Return (SK,PK)

proc. Enc(m,PK):
t←$ Zp; (X,Y )← PK
If e(X,α) 6= e(g, Y )

Return ⊥
C1 ← m · e(Y, βt);
C2 ← αt

w ← Hk(C1, C2,PK)
C3 ←WH(w)t

c← (C1, C2, C3)
Return c

proc. Dec(c, SK,PK):
(X,Y )← PK
If gSK 6= X ∨ αSK 6= Y

Return ⊥
(C1, C2, C3)← c
w ← Hk(C1, C2,PK)
If e(C2,WH(w)) 6=e(α,C3)

Return ⊥
m← C1/e(C2, β

x)
Return m

Fig. 8: A strongly secure public-key encryption scheme without random oracles.

Validity algorithms. We examine which of the validity algorithms exists for
this scheme. We assume that Γ specifies algorithms to check for group member-
ship, which are used implicitly throughout the scheme. The MsgSp algorithm

16



is the same as checking membership in GT . The SKSp algorithm checks mem-
bership in Zp. The KeySp algorithm checks if gSK = X and αSK = Y where
(X,Y ) = PK. The PKSp algorithm checks if e(X,α) = e(g, Y ). Finally, we
show that decryption rejects all ciphertexts outside the range of encryption. Let
(C1, C2, C3) be a ciphertext. Then, there exists a message m and a t such that
this ciphertext can be written as (m · e(Y, β)t, αt, C3). If this ciphertext is out-
side the range of encryption, then C3 = WH(w)t

′
for some t′ 6= t. But then

e(C2,WH(w)) = e(α,WH(w))t 6= e(α,WH(w))t
′
= e(α,C3) and the equality

check in decryption fails.
The next theorem states the security properties of our scheme. Its proof uses

technique recently proposed by Bellare and Ristenpart [6] and is given in the
full version of the paper.

Theorem 2 (Informal). Under the decisional bilinear Diffie-Hellman assump-
tion in Γ and the collision resistance of the hash function family Σ, the above
scheme is IND-SCCA2 secure (with respect to SDec oracle defined in Figure 3).

Although our equivalence theorems imply that this scheme admits a black-
box assisted simulator, it does not contradict Fischlin’s impossibility results on
black-box simulation [13]. First note that Fischlin’s impossibility result is in
the plain model whereas our scheme has a setup procedure. Furthermore, our
definitions do not require the opening of message/randomness pairs, whereas
Fischlin requires this to derive his impossibility result for assisted simulators.
We can indeed construct a non-assisted simulator for our scheme through a
direct proof, but this requires modifying the common parameters in an essential
way to simulate the strong decryption oracle. Hence this result does not hold
for general relations, but only for those which ignore the I presented at their
inputs (consistently with [19] we call these I-lacking relations). Furthermore,
using a similar technique, we are also able to show (through a direct proof) that
the zero-knowledge-based construction in [19] is completely non-malleable with
respect to black-box simulators for a class of relations that are I-lacking (I in
this case comprises the common reference string). We note that this is a better
result than that obtained in [19], since there the class of relations must be both
I-lacking and PK-lacking (i.e. they must also ignore the PK at their inputs).
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