
Security Analysis of Standard Authentication
and Key Agreement Protocols Utilising

Timestamps

M. Barbosa and P. Farshim

Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.

{mbb,farshim}@di.uminho.pt

Abstract. We propose a generic modelling technique that can be used
to extend existing frameworks for theoretical security analysis in order
to capture the use of timestamps. We apply this technique to two of
the most popular models adopted in literature (Bellare-Rogaway and
Canetti-Krawczyk). We analyse previous results obtained using these
models in light of the proposed extensions, and demonstrate their appli-
cation to a new class of protocols. In the timed CK model we concentrate
on modular design and analysis of protocols, and propose a more efficient
timed authenticator relying on timestamps. The structure of this new
authenticator implies that an authentication mechanism standardised in
ISO-9798 is secure. Finally, we use our timed extension to the BR model
to establish the security of an efficient ISO protocol for key transport
and unilateral entity authentication.

Keywords. Timestamp, Key Agreement, Entity Authentication.

1 Introduction

The analysis of key agreement protocols has received a lot of attention within the
cryptographic community, as they are central components in secure communica-
tion systems. Theoretical treatment of these protocols has been performed under
computational models of security, under symbolic models and, more recently, un-
der hybrid models which bridge the gap between these two approaches. However,
a common trait to all previous work in this area is the abstraction of time, even
when key agreement protocols are explicitly synchronous and resort to represen-
tations of local time in their definitions. The use of timestamps in key distribution
protocols was suggested by Denning and Sacco [13]. Nowadays, protocols such
as Kerberos [19], the entity authentication protocols in ISO-9798 [16,17], and
the key agreement protocols in ISO-11770 [15] rely on timestamps. In this paper
we are concerned with the formal security analysis of such protocols.

Perhaps the most common use of timestamps in cryptographic protocols is to
counteract replay and interleaving attacks, and to provide uniqueness or timeli-
ness guarantees [18, Section 10.3.1]. In this sense, timestamps are an alternative

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55619851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to challenge-response mechanisms using fresh random nonces and to message
sequence numbers. In comparison to challenge-response mechanisms, protocols
using timestamps will typically require one less message to complete and will not
require parties to generate random numbers. On the downside, the receiver must
keep a small amount of ephemeral local state to detect the replay of valid mes-
sages within an acceptance window. The amount of state that must be kept when
using timestamps can also be seen as an advantage when compared, for example,
with solutions using sequence numbers where the receiver must keep static long-
term state for each possible peer. In other application scenarios, there is no real
alternative to the use of timestamps. Examples of this are the implementation of
time-limited privileges, such as those awarded by Kerberos tickets, or the legal
validity of authenticated documents, such as X.509 public key certificates.

In short, timestamps are extensively used in cryptographic protocols and
they are adopted in mainstream (de facto) cryptographic standards, because
they have interesting security properties that can be advantageous in many real-
world scenarios. However, to the best of our knowledge, the use of timestamps
has not been addressed in previously published work on the theoretical security
analysis of cryptographic protocols. In particular, the current formal security
models for the analysis of cryptographic protocols do not allow capturing this
sort of mechanism in any reasonable way.

The security of this sort of mechanism relies on the use of a common time
reference. This means that each party must have a local clock and that these must
be synchronised to an extent that accommodates the acceptance window that is
used. The local clocks must also be secure to prevent adversarial modification:
if an adversary is able to reset a clock backwards, then it might be able to
restore the validity of old messages; conversely, by setting a clock forward, the
adversary might have advantage in preparing a message for some future point in
time. These assumptions on the security and synchronisation of local clocks may
be seen as disadvantages of using timestamps, since in many environments they
may not be realistic. For example, it is common that the synchronisation of local
clocks in a distributed environment is enforced by communication protocols that
must themselves be secure in order for this assumption to be valid.

Our contribution. In this paper, we propose a general approach to the en-
richment of said models to permit analysing protocols relying on timestamps.
Our focus is on a generic modelling technique, which can be applied to virtually
any framework for the analysis of cryptographic protocols. For concreteness, we
apply this technique to two of the most popular models adopted in literature
(the family of models stemming from the work of Bellare and Rogaway [4] and
the model proposed by Canetti and Krawczyk in [2]), analyse previous results
obtained using these models in light of the proposed extensions, and demonstrate
their application to a new class of protocols.

An additional contribution of this paper is that the examples we use to
demonstrate our approach are standardised protocols that lacked a formal proof
of security until now. In particular, the timestamped authenticator we present
in Section 4 was described in a footnote in the original paper by Canetti and

2

Krawczyk in [2], but no proof of security was provided to support the claim.
Furthermore, the structure of this new authenticator (and the security proof
we provide) imply that a signature-based unilateral authentication mechanism
standardised in ISO-9798-3 is secure for message authentication. Similarly, to
the best of our knowledge, the ISO-11770-2 key transport protocol we analyse
in Section 5 previously lacked a formal proof of security to validate the informal
security guarantees described in the standard.

Structure of the paper. In Section 2 we briefly review the related work. In
Section 3 we introduce our modelling approach and then use it propose exten-
sions to the BR model and the CK model that permit capturing timestamping
techniques, and discuss the implications for previous results. Finally, we present
two examples of how the extended models can be used to analyse concrete pro-
tocols: an efficient authenticator in the CK model in Section 4, and a one-pass
key exchange protocol from ISO-11770-2 in Section 5. We conclude the paper
with a discussion on directions for future work in Section 6.

2 Related work

Bellare and Rogaway [4] gave the first formal model of security for the analysis
of authentication and key agreement protocols. It is a game-based definition, in
which the adversary is allowed to interact with a set of oracles that model com-
municating parties in a network, and where the adversary’s goal is to distinguish
whether the challenge it is given is a correctly shared key or is a randomly gen-
erated value. This seminal paper also provided the first computational proof of
security for a cryptographic protocol. Subsequent work by the same authors [5]
corrected a flaw in the original formulation and a considerable number of pub-
lications since have brought the model to maturity. This evolution included the
simplification and refinement of the concept of matching conversations, the intro-
duction of session identifiers and the observation that these are most naturally
defined as message traces, the adaptation of the model to different scenarios,
and the use of the model to capture different security goals [6]. In the remainder
of this paper we will refer to the security models that follow this approach of
Bellare and Rogaway as BR models.

In [2] Bellare, Canetti and Krawczyk proposed a modular approach to the
design and analysis of authentication and key agreement protocols. This work
adapted the concept of simulatability, and showed how one could analyse the
security of a protocol in an ideally authenticated world and then use an authenti-
cator to compile it into a new protocol providing the same security guarantees in
a more realistic model. Canetti and Krawczyk [11] later corrected some problems
with the original formulation of this model by merging their simulation-based ap-
proach (in particular they maintained the notions of emulation and compilation
that enable the modular construction of protocols) with an indistinguishability-
based security definition for key exchange protocols. This enabled the authors to
prove a composition theorem, whereby combining a key agreement protocol with
an authenticated encryption scheme for message transfer yields a two-stage se-

3

cure message exchange system. In this paper we will refer to the security models
that follow this approach of Canetti and Krawczyk as CK models.

Handling of time in related work. Cryptographic protocols are analysed in
abstract models, where participants and adversaries are represented by processes
exchanging messages through communication channels. Central to these models
is the way they capture the timeliness of physical communication networks. In
particular, it is possible to split these models into two categories by looking at
the way they handle the activation of processes and the delivery of sent messages.
In synchronous models, time is captured as a sequence of rounds. In each round
all processes are activated simultaneously, and messages are exchanged instantly.
In asynchronous models, there is no explicit assumption on the global passing
of time. Process activation is usually message-driven and the adversary controls
message delivery and participant activation.

Synchronous models are usually adapted when the focus is on a timeliness
guarantee, such as termination of a process. However, asynchronous models are
taken as better abstraction of real communication systems, as they make no
assumptions about network delays and the relative execution speed of the par-
ties, and they nicely capture the view that communications networks are hostile
environments controlled by malicious agents [1]. For this reason, asynchronous
models, such as the ones described earlier in this section, are much more widely
used. This trend, however, comes at the cost of abstracting away many of the
practical uses of time-variant parameters in cryptographic protocols, which rely
on explicit representations of time. For example, it is common practice to treat
timestamps as random nonces, or to assume that all transmitted messages are
different. This is an understandable strategy to simplify analyses, but misses
security-critical protocol implementation aspects such as buffering previously re-
ceived messages to avoid replay attacks, or the use of timestamps and windows
of acceptance to reduce the size of said message buffers [18, Section 10.3.1].

3 Adding time awareness to BR and CK models

3.1 General approach

The objective is to obtain a framework for the analysis of key agreement protocols
relying on timestamps, where one can argue that they satisfy a formal security
definition. We do not introduce an all-new time-aware analysis framework, which
would mean our findings might break away from the current state-of-the-art
and might not be easily comparable to previously published results. Instead, we
propose to extend the existing models for the analysis of key agreement protocols
in a natural way, taking care to preserve an acceptable degree of backward-
compatibility. The basic idea of our approach is applicable to several competing
analysis frameworks that are currently used by researchers in this area, and it
does not imply the adoption of any particular one.

To demonstrate this principle, we propose to extend the BR and CK models
referred in Section 2 in very similar terms. The most important change that
we introduce is that we provide the communicating parties with internal clocks.

4

These clocks are the only means available to each party to determine the cur-
rent (local) time. To preserve the common asynchronous trait in these models,
where the adversary controls the entire sequence of events occurring during an
execution, we do not allow the clocks to progress independently. Instead, we
leave it to the adversary to control the individual clocks of parties: we allow
it to perform a Tick (or activation) query through which it can increment the
internal clock of an honest party (of course it has complete control of the clocks
of corrupted parties). The adversary is not allowed to reset or cause the internal
clocks to regress in any way. This restriction captures the real-world assumption
we described in Section 1 that the internal clocks of honest parties must be, to
some extent, secure.

The addition of these elements to the BR and CK models allows us to capture
the notion of time and internal clock drifts. We preserve the asynchronous nature
of the model by allowing the adversary to freely control the perception of time
passing at the different parties. Through the Tick mechanism, the adversary is
able to induce any conceivable pattern in the relative speed of local clocks, and
may try to use this capability to obtain advantage in attacking protocols that
rely on local time measurements to construct and/or validate timestamps. Of
course by giving this power to the adversary, we are enabling it to drive inter-
nal clocks significantly out of synchrony with respect to each other. However, a
secure protocol using explicit representations of time should make it infeasible
for an adversary to take advantage of such a strategy, or at least should per-
mit formally stating the amount of drift that can tolerated. At this point, it is
important to distinguish two types of security guarantees that may be obtained
from timestamps and that we aim to capture using this modelling strategy.

Resistance against replay attacks. Recall that, in protocols that use times-
tamps to prevent replay attacks, the receiver defines an acceptance window and
temporarily stores received messages until their timestamps expire. The width
of the acceptance window must be defined as a trade-off between the required
amount of storage space, the expected message transmission frequency, speed and
processing time; and the required synchronisation between the clocks of sender
and receiver. Received messages are discarded if they have invalid timestamps,
or if they are repeats within the acceptance window.

In this setting, the local clocks are not explicitly used to keep track of elapsed
time, but simply to ensure that the receiver does not have to store all previ-
ously received messages to prevent accepting duplicates. In fact, for this pur-
pose, timestamps are essentially equivalent to sequence numbers. Furthermore,
synchronisation of clocks between sender and receiver is less of a timeliness issue,
and more of an interoperability problem. For example, two honest parties using
this mechanism might not be able to communicate at all, even without the active
intervention of any adversary, should their clocks values be sufficiently apart. In
our extended model, this is reminiscent of a Denial-of-Service attack, which is
usually out of the scope of cryptographic security analyses. Consistently with
this view and with the original models, the security definitions for cryptographic
protocols using timestamps in this context remain unchanged: it is accepted that

5

the adversary may be able to prevent successful completions of protocols (e.g.
by driving internal clocks significantly out of synchronisation, or simply by not
delivering messages) but it should not be able to break the security requirements
in any useful way.

Timeliness guarantees. For protocols that use timestamps to obtain timeliness
guarantees on messages, the local clock values are taken for what they really
mean: time measurements. In this context, timestamped messages are typically
valid for a longer period of time, and timeliness guarantees can be provided to
either the sender or the receiver, or to both. For example, the sender may want
to be sure that a message will not be accepted by an honest receiver outside
its validity period, which is defined with respect to the sender’s own internal
clock. Conversely, the receiver may require assurance that an accepted message
was generated recently with respect to its own local clock, where recently is
quantifiable as a time interval.

To deal with these guarantees we need to capture accuracy assumptions on
the internal clocks of the honest parties in the system. We can do this by imposing
limits on the maximum pair-wise drift that the adversary can induce between the
internal clocks of different parties. In our modelling approach, we capture this
sort of security requirement by stating that a protocol enforcing such a timeliness
property must guarantee that any adversary breaking this requirement must be
overstepping its maximum drift allowance with overwhelming probability.

3.2 Extending the CK model

Brief review of the CK model [2,11]. An n-party message-driven protocol
is a collection of n programs. Each program is run by a different party with some
initial input that includes the party’s identity, random input and the security
parameter. The program waits for an activation: (1) the arrival of an incoming
message from the network, or (2) an action request coming from other programs
run by the party. Upon activation, the program processes the incoming data,
starting from its current internal state, and as a result it can generate outgo-
ing messages to the network and action requests to other programs run by the
party. In addition, a local output value is generated and appended to a cumulative
output tape, which is initially empty. The protocol definition includes an initial-
isation function I that models an initial phase of out-of-band and authenticated
information exchange between the parties. Function I takes a random input r and
the security parameter κ, and outputs a vector I(r, κ) = I(r, κ)0, . . . , I(r, κ)n.
The component I(r, κ)0 is the public information that becomes known to all
parties and to the adversary. For i > 0, I(r, κ)i becomes known only to Pi.

The Unauthenticated-Links Adversarial Model (UM) defines the capabilities
of an active man-in-the-middle attacker and its interaction with a protocol [11].
The participants are parties P1, . . . , Pn running an n-party protocol π on inputs
x1, . . . , xn, respectively, and an adversary U . For initialisation, each party Pi
invokes π on local input xi, security parameter κ and random input; the ini-
tialisation function of π is executed as described above. Then, while U has not
terminated do:

6

1. U may activate π within some party, Pi. An activation can take two forms:
(a) An action request q. This activation models requests or invocations

coming from other programs run by the party.
(b) An incoming message m with a specified sender Pj . This activation

models messages coming from the network. We assume that every mes-
sage specifies the sender of the message and its intended recipient.

If an activation occurred then the activated party Pi runs its program and
hands U the resulting outgoing messages and action requests. Local outputs
produced by the protocol are known to U except for those labeled secret.

2. U may corrupt a party Pi. Upon corruption, U learns the current internal
state of Pi, and a special message is added to Pi’s local output. From this
point on, Pi is no longer activated and does not generate further local output.

3. U may issue a session-state reveal for a specified session within some
party Pi. In this case, U learns the current internal state of the specified
session within Pi. This event is recorded through a special note in Pi’s local
output.

4. U may issue a session-output query for a specified session within some
party Pi. In this case, U learns any output from the specified session that
was labeled secret. This event is recorded through a special note in Pi’s
local output.

The global output of running a protocol in the UM is the concatenation of the
cumulative local outputs of all the parties, together with the output of the ad-
versary. The global output resulting from adversary U interacting with parties
running protocol π is seen as an ensemble of probability distributions parame-
terised by security parameter k ∈ N and the input to the system1 x ∈ {0, 1}∗,
and where the probability space is defined by the combined coin tosses of the
adversary and the communicating parties. Following the original notation, we
denote this ensemble by UNAUTHU,π.

The Authenticated-Links Adversarial Model (AM) is identical to the UM,
with the exception that the adversary is constrained to model an ideal authen-
ticated communications system. The AM-adversary, denoted A cannot inject or
modify messages, except if the specified sender is a corrupted party or if the
message belongs to an exposed session. Analogously to UNAUTHU,π, we have that
AUTHA,π is the ensemble of random variables representing the global output for
a computation carried out in the authenticated-links model.

Due to space limitations, we refer the reader to [11] for the definitions related
to Key-Exchange protocols and their security in the CK model.

Introducing local clocks. Our modification to the previous model is based on
a special program that we call LocalTime.

Definition 1 (LocalTime Program). The LocalTime program follows the syn-
tax of message-driven protocols. The program does not accept messages from the
network or transmit messages to the network. The program is deterministic and
it is invoked with the empty input. It maintains a clock variable as internal

1 The concatenation of global public data with individual local inputs for each party.

7

state, which is initialised to 0. The program accepts a single external request,
with no parameters, which is called Tick. When activated by the Tick request,
the program increments the counter and outputs Local Time: <clock> , where
<clock> denotes the value of the clock variable.

We introduce the timed variants of the UM and AM, which we refer to as TUM
and TAM, and we require that each party in the TUM and in the TAM runs
a single instance of LocalTime. Note that in the timed models, the adversary
may control the value of the internal clock variables at will, by sending the
Tick request to any party. Consistently with the original models, we assume
that the local output at a given party Pi is readable only by the adversary
and the programs running in the same party. Alternatively, the internal clock
variable can be seen as part of the local state of each party, which is read-only
to other programs and protocols running in the same environment. This means,
in particular, that a program which enables a party Pi to participate in a given
protocol may use the local clock value at that party, but is otherwise unaware of
any other time references. We disallow protocols from issuing the Tick request
to their local clock themselves.

Remark. The approach we followed to integrate the local clocks into the com-
municating parties in the CK model deserves a few words of explanation. Firstly,
the adversary’s interactions with parties in the CK model are either external re-
quests to protocols, or message deliveries. Our choice of modelling the local clock
as a separate program that accepts the Tick activation as an external request is
consistent with this principle, and allows the adversary to control the local clock
as desired. Secondly, by causing the LocalTime program to produce local output
after each tick, protocol outputs do not need to include information about the
time at which a certain event occurred in order to make timeliness properties
explicit: this follows directly from the cumulative nature of the local output. Fi-
nally, our approach makes the concept of protocol emulation time-aware: the fact
that the local clock progression is observable in the local output of each party
also implies that any protocol π′ that emulates a protocol π (see Definition 2
below) is guaranteed to preserve any timeliness properties formulated over the
global output when the original protocol is run in the TAM.

Modular protocol design in the timed models. Central to the methodology
of [2] are the concepts of protocol emulation, compiler, and authenticator, which
we directly adapt for protocol translations between the TAM and the TUM.

Definition 2 (Emulation). A protocol π′ emulates a protocol π in the TUM
if, for any TUM adversary UT , there exists TAM adversary AT such that, for
all input vectors, the global output resulting from running AT against π in the
TAM is computationally indistinguishable from that obtained when running UT
against π′ in the TUM.

We emphasise that the global outputs resulting from running a protocol in the
timed models include the local outputs produced by the LocalTime program,
which reflect the sequence of Tick queries performed by the adversary at each
party, and that these outputs are captured by the emulation definition above.

8

Definition 3 (Timed-Authenticator). A compiler C is an algorithm that
takes for input descriptions of protocols and outputs descriptions of protocols.
A timed-authenticator is a compiler C that, for any TAM protocol π, the proto-
col C(π) emulates π in the TUM.

One can show establish, in an almost identical way to Theorem 6 in [11], that:

Theorem 1. Let π be an SK-secure (see [11] for definition) key exchange pro-
tocol in the TAM and let C be a timed-authenticator. Then π′ := C(π) is an
SK-secure key exchange protocol in the TUM.

In Section 4 we prove that, not only the original AM-to-UM authenticators
proposed in [2] are also timed-authenticators, but also that through the use of
timestamps one can obtain more efficient timed-authenticators. However, in or-
der to argue that these results are meaningful, we need to revisit the modular
approach to the development of cryptographic protocols introduced in [2]. With
the introduction of the timed models, we have now four options for the design
and analysis of protocols. For convenience, one would like to carry out the de-
sign in the authenticated models (AM and TAM), where adversaries are more
limited in their capabilities and security goals are easier to achieve. The choice
of whether or not to use a timed model should depend only on whether or not
the protocol relies on time-dependent parameters to achieve security. On the
other hand, and without loss of generality, we will assume that the overall goal
is to translate these protocols into the TUM, which is the most general of the
more realistic unauthenticated models, given that it accommodates protocols
which may or may not take advantage of the local clock feature. To support this
methodology, we first formalise a class of protocols for which the timed models
are not particularly relevant.

Definition 4 (Time-Independence). A protocol π is time-independent if its
behaviour is oblivious of the LocalTime protocol, i.e. if protocol π does not use
the outputs of the LocalTime protocol in any way.

One would expect that, for time-independent protocols, the TUM (resp. TAM)
would be identical to the UM (resp. AM). In particular, all of the results ob-
tained in [11] for specific time-independent protocols should carry across to the
timed models we have introduced. Unfortunately, proving a general theorem es-
tablishing that, for any time-independent protocol, in the UM (resp. AM) one
can simply recast it in the TUM (resp. TAM) to obtain a protocol which emu-
lates the original one (and satisfying the same security definitions) is not possible
given our definition of the LocalTime program. This is because it is, by defini-
tion, impossible to recreate local time outputs by individual parties in the UM
(resp. AM), and hence a simulation-based proof does not go through. However,
for the specific case of SK-security, we can prove the following theorem estab-
lishing that, for time-independent protocols, one can perform the analysis in the
UM (resp. AM) and the results will still apply in the TUM (resp. TAM).

Theorem 2. If a time-independent UM-protocol (resp. AM-protocol) π is SK-
secure, then it is also SK-secure when run in the TUM (resp. TAM).

9

Remark. We emphasise that, although we are able to show that the newly pro-
posed timed models are a coherent extension to the work in [2,11] for the design
and analysis of key exchange protocols relying on time-dependent parameters,
we are not able to establish a general theorem that carries through all of the
previous results in the CK model. In particular, we cannot prove a theorem
stating that AM-to-UM emulation implies TAM-to-TUM emulation for time-
independent protocols. This would automatically imply that all authenticators
are also timed-authenticators (we will return to this discussion in Section 4).
However, the proof for such a theorem does not seem to go through because
the definition of emulation is not strong enough to guarantee that, using the
existence of suitable AM adversary for all TUM-adversaries, one is able to con-
struct the required TAM-adversary that produces an indistinguishable sequence
of Tick queries.

Theorem 2, combined with the concrete time-dependent and time-independent
timed-authenticators in Section 4, provides the desired degree of flexibility in
designing SK-secure KE protocols, as shown in the table below.

Lower Layer Time-independent authenticator Time-dependent authenticator

Time-
independent
in the AM

Use the original CK modular ap-
proach to obtain an SK-secure pro-
tocol in the UM. Apply Theorem 2
to move to the TUM.

Use Theorem 2 to move result
to the TAM. Apply the timed-
authenticator in Section 4 to ob-
tain an SK-secure KE protocol in
the TUM.

Time-
dependent
in the TAM

Apply one of the original authenti-
cators in [2], which are also timed-
authenticators by Theorem 3, to
obtain an SK-secure KE in the
TUM.

Apply the timed-authenticator in
Section 4 to obtain an SK-secure
KE protocol in the TUM.

3.3 Extending the BR model

Brief review of the BR model [4,6]. Protocol participants are the elements
of a non-empty set ID of principals. Each principal A ∈ ID is named by a fixed-
length string, and they all hold public information and long-lived cryptographic
private keys. Everybody’s private key and public information is determined by
running a key generator. During the execution of a protocol, there may be many
running instances of each principal A ∈ ID. We call instance i of principal A an
oracle, and we denote it Πi

A. Each instance of a principal might be embodied as
a process (running on some machine) which is controlled by that principal.

Intuitively, protocol execution proceeds as follows. An initiator-instance speaks
first, producing a first message. A responder-instance may reply with a message
of its own, intended for the initiator-instance. This process is intended to con-
tinue for some fixed number of flows, until both instances have terminated, by
which time each instance should also have accepted. Acceptance may occur at
any time, and it means that the party holds a session key sk, a session identi-
fier sid (that can be used to uniquely name the ensuing session), and a partner

10

identifier pid (that names the principal with which the instance believes it has
just exchanged a key). The session key is secret, but the other two parameters
are considered public. An instance can accept at most once.

Adversary A is defined as a probabilistic algorithm which has access to an
arbitrary number of instance oracles, as described above, to which he can place
the following queries:

– Send(A,B, i,m): This delivers message m, which is claimed to originate in
party B, to oracle Πi

A. The oracle computes what the protocol says to, and
returns back the response. Should the oracle accept, this fact, as well as
the session and partner identifiers will be made visible to the adversary.
Should the oracle terminate, this too will be made visible to the adversary.
To initiate the protocol with an instance of A as initiator, and an instance
of B as responder, the adversary should call Send(A,B, i, λ) on an unused
instance i of A.

– Reveal(A, i): If oracle Πi
A has accepted, holding some session key sk, then

this query returns sk to the adversary.
– Corrupt(A): This oracle returns the private key corresponding to party A2.
– Test(A, i): If oracle Πi

A has terminated, holding some session key sk and
pid = B, then the following happens. A coin b is flipped. If b = 1, then sk
is returned to the adversary. Otherwise, a random session key, drawn from
the appropriate distribution, is returned.

To capture the security of authenticated key agreement protocols (AKE), we
require the following definitions.

Definition 5 (Partnering). We say that Πi
A is the partner of Πi′

A′ if (1) Both
oracles has accepted and hold (sk, sid, pid) and (sk′, sid′, pid′) respectively; (2)
sk = sk′, sid = sid′, pid = A′, and pid′ = A; and (3) No oracle besides Πi

A and

Πi′

A′ has accepted with session identity sid. Note that partnership is symmetric.

Definition 6 (Freshness). Πi
A is fresh if no reveal or corrupt queries are

placed on Πi
A or its partner Πj

B.

Definition 7 (AKE Security). We say that a key exchange protocol is AKE
secure if for any probabilistic polynomial-time adversary A, the probability that
A guesses the bit b chosen in a fresh test session is negligibly different from 1/2.
The advantage of the adversary, which returns a bit b′, is defined to be:

AdvAKE
KE (A) := |2 Pr[b = b′]− 1|.

Definition 8 (Entity Authentication (EA)). We say that a key exchange
protocol provides initiator-to-responder authentication if, for any probabilistic
polynomial-time adversary A attacking the protocol in the above model, the prob-
ability, AdvI2R

KE (A), that some honest responder oracle Πj
B terminates with pid =

A, an honest party, but has no partner oracle is negligible.

2 For simplicity we adopt the weak corruption model, where Corrupt does not return
the states of all instances of A.

11

Remark. The restriction of being honest that we have imposed above, is in-
troduced to model the setting where authentication relies on symmetric keys.
This is the case for the protocol we analyse in Section 5. In the asymmetric
setting, however, only the authenticated party (initiator in the above) needs to
be honest.

Introducing local clocks. To ensure consistency with the structure of the BR
model, we provide each party with a clock variable, which is initially set to
zero. This variable is read-only state, which is accessible to all the instances of
a protocol running at a given party (very much like the private keys). In order
to model the adversarial control of clocks at different parties we enhance its
capabilities by providing access to the following oracle:

– Tick(A): increment the clock variable at party A, and return it.

It is interesting to note that the relation between the timed version of the BR
model and the original one is identical to that we established in the previous
section between the TUM and the UM in the CK model. Specifically, one can
formulate the notions of AKE security and entity authentication without change
in the timed BR model. It is also straightforward to adapt the definition of time-
independence to protocols specified in the BR model and prove that, for all time-
independent protocols, AKE security and entity authentication are preserved
when we move from the original to the timed version of the model. We omit the
equivalent of Theorem 2 for BR models due to space limitations. However, the
observation that such a theorem holds is important to support our claim that
the extension we propose to the BR model is a natural one.

Capturing timeliness guarantees. The definition of entity authentication for-
mulated over the timed BR model is a good case study for capturing timeliness
guarantees in security definitions. The existential guarantee stated in the defini-
tion implicitly refers to two events: (1) the termination of the protocol-instance
that obtains the authentication guarantee; and (2) the acceptance of the partner
protocol-instance that is authenticated. It seems natural to extend this definition
with additional information relating the points in time at which the two events
occur. To achieve this, we must first isolate a category of adversaries for which
making such claims is possible.

Definition 9 (δ-synchronisation). An adversary in the timed BR model sat-
isfies δ-synchronisation if it never causes the clock variables of any two (honest)
parties to differ by more than δ.

The previous definition captures the notion that clocks must be synchronised
in order to achieve any sort of timeliness guarantee, as described in Section 3.1.
We are now in a position to state an alternative version of the entity authenti-
cation definition. Let Πi

A and Πj
B be two partner oracles where the latter has

terminated. Also, let tB(E) be the function returning the value of the local
clock at B when event E occurred. Finally, let acc(A, i) denote the event that
Πi
A accepted, and let term(B, j) denote the event that Πj

B terminated.

12

Definition 10 (β-Recent Entity Authentication (β-REA)). We say that
a key exchange protocol provides β-recent initiator-to-responder authentication if
it provides initiator-to-responder authentication, and furthermore for any honest
responder oracle Πj

B which has terminated with partner Πi
A, with A honest, we

have that: |tB(term(B, j))− tB(acc(A, i))| ≤ β.

The above definition captures attacks such as that described in [14], where an
adversary uses a post-dated clock at a client to impersonate as him later, when
correct time is reached at the server side. In Section 5 we will prove that a con-
crete key agreement protocol using timestamps satisfies the previous definition,
as long as the adversary is guaranteed to comply with δ-synchronisation.

4 An example in the CK model: timed-authenticators

The concept of authenticator is central to the modular approach to the analysis of
cryptographic protocols proposed in [2]. Authenticators are compilers that take
protocols shown to satisfy a set of properties in the AM, and produce protocols
which satisfy equivalent properties in the UM. Bellare et al. [2] propose a method
to construct authenticators based on the simple message transfer (MT) protocol:
they show that any protocol which emulates the MT protocol in the UM can
be used as an authenticator. Authenticators constructed using in this way are
called MT-authenticators.

In this section we show that this method can be easily adapted to the timed
versions of the CK model introduced in the previous section. We start by recalling
the definition of the MT-protocol and note that, when run in the timed models,
the local output at each party permits reading the local time at which the MT-
protocol signalled the reception and transmission of messages.

Definition 11 (The MT-Protocol). The protocol takes empty input. Upon
activation within Pi on action request Send(Pi, Pj ,m), party Pi sends the mes-
sage (Pi, Pj ,m) to party Pj, and outputs “Pi sent m to Pj”. Upon receipt of
a message (Pi, P j,m), Pj outputs “Pj received m from Pi”.

Now, let λ be a protocol that emulates the MT-protocol in the TUM and, sim-
ilarly to the modular construction in [2], define a compiler Cλ that on input a
protocol π produces a protocol π′ = Cλ(π) defined as follows.

– When π′ is activated at a party Pi it first invokes λ.
– Then, for each message sent in protocol π, protocol π′ activates λ with the

action request for sending the same message to the same specified recipient.
– Whenever π′ is activated with some incoming message, it activates λ with

the same incoming message.
– When λ outputs “Pi received m from Pj”, protocol π is activated with

incoming message m from Pj .

We complete this discussion with two theorems. Theorem 3 is the equivalent of
Theorem 3 in [2]. Theorem 4 is the equivalent of Propositions 4 and 5 in [2].

13

Theorem 3. Let π be a protocol in the TAM, and let λ be protocol which emu-
lates the MT-protocol in the TUM, then π′ := Cλ(π) emulates π in the TUM.

Theorem 4. The signature-based and the encryption-based MT-authenticators
proposed in [2] both emulate the MT-protocol in the TUM.

The proofs are identical to the original ones, with the following exception:
when a TUM-adversary activates the LocalTime protocol of a (dummy) TUM-
party by a Tick request, the simulating TAM-adversary invokes the LocalTime

protocol of the corresponding party in the TAM, and passes back the output,
without change, to the TUM-adversary.

Theorem 4 establishes that the original compilers proposed in [2] can also
be used to translate protocols from the TAM to the TUM, i.e. they are also
timed-authenticators. Intuitively, this is possible because these constructions are
oblivious of time and of the LocalTime programs added to the timed models,
and the MT-protocol is not claimed to provide concrete timeliness guarantees.

Protocol λSig(δ)

– The initialisation function I first invokes, once for each party, the key genera-
tion algorithm of a signature scheme secure against chosen message attacks with
security parameter κ. Let Sig and Ver denote the signing and verification algo-
rithms. Let si and vi denote the signing and verification keys associated with
party Pi. The public information includes all public keys: I0 = v1, . . . , vn. Pi’s
private information is Ii = si.

– Each party keeps as protocol state a list L where it stores message/timestamp
pairs (m, t) corresponding to previously received and accepted messages.

– When activated within party Pi and with external request to send message m to
party Pj , protocol λSig(δ) invokes a two-party protocol that proceeds as follows:
• First, Pi checks the local time value t and constructs a message

(m||t||Sig(m||t||Pj , si)) and sends it to Pj .
• Then, Pi outputs “Pi sent m to Pj”.
• Upon receipt of (m||t||σ) from Pi, party Pj accepts m and outputs “Pj

received m from Pi” if:
∗ the signature σ is successfully verified by Ver(m||t||Pj , vi).
∗ t ∈ [t′ − δ, t′ + δ], where t′ is the value of the local time at Pj when the

message is received.
∗ list L does not contain the pair (m, t).

• Finally, Pj updates list L adding the pair (m, t) and deleting all pairs (m̂, t̂)
where t̂ /∈ [t′ − δ, t′ + δ].

Fig. 1. A signature-based timed-authenticator in the TUM

To complete this section, we present a more efficient one-round timed authen-
ticator, which uses timestamps to eliminate the challenge-response construction
used in the original authenticators. The protocol is shown in Figure 1, and is an
adaptation of the signature-based MT-authenticator in [2]. It is parameterised

14

with a positive integer δ which defines the width of the timestamp acceptance
window. We observe that this protocol is structurally equivalent to the signature-
based unilateral authentication protocol in the ISO-9798-3 standard [17] when
one uses message m in place of the optional text-fields allowed by the stan-
dard. This implies that Theorem 5 below establishes the validity of the claim in
standard ISO-9798-3 that this protocol can be used for message authentication.

The following theorem, whose proof can be found in the full version of the
paper, formally establishes the security properties of the protocol in Figure 1.

Theorem 5. Assume that the signature scheme in use is secure against the
standard notion of chosen message attacks (UF-CMA). Then protocol λSig(δ)
emulates the MT-protocol in the TUM.

Remark. There is a subtlety involving adversaries who can forge signatures but
do not disrupt the simulation needed by a TAM-adversary. Consider an adversary
who activates party P ∗ to send message m at local time t∗, but does not deliver
the message to the intended recipient. Instead, it forges a signature on the same
message, but with a later timestamp, and delivers this message to the intended
recipient much later in the simulation run, taking care that the timestamp in the
forged message is valid at that time. This adversary does not cause a problem
in the proof of the above theorem, since the message is delivered only once. In
fact, this is an attack on the timeliness properties of the authenticator, which
are not captured in the formulation of the MT-protocol. This attack would be
an important part of the proof that protocol λSig(δ) emulates a version of the
MT-protocol with timeliness guarantees, where messages are only accepted on
the receiver’s side if they are delivered within some specific time interval after
they are added to the set M .

5 An example in the BR model: a standard AKE protocol

In this section we use the timed BR model to analyse the security of a one-
pass key agreement protocol offering unilateral authentication, as defined in
the ISO-11770-2 standard. The protocol is formalised in Figure 2. It is a key
transport protocol that uses an authenticated symmetric encryption scheme to
carry a fresh session key between the initiator and the responder. The use of
timestamps permits achieving AKE security in one-pass, and the reception of
the single message in the protocol effectively allows the responder to authenticate
the initiator. In fact, this protocol is presented in the ISO-11770-2 standard as
a particular use of a unilateral authentication protocol presented in ISO-9798-2,
where the session key is transmitted in place of a generic text field. As explained
in Section 3.3, the security proof we present here can be easily adapted to show
that the underlying ISO-9798-2 protocol is a secure unilateral EA protocol.

ISO-11770-2 informally states the following security properties for the pro-
tocol in Figure 2. The session key is supplied by the initiator party, and AKE
security is guaranteed by the confidentiality property of the underlying authen-
ticated encryption scheme. The protocol provides unilateral authentication: the

15

mechanism enables the responder to authenticate the initiator. Entity authen-
tication is achieved by demonstrating knowledge of a secret authentication key,
i.e. the entity using its secret key to encipher specific data. For this reason,
the protocol requires an authenticated encryption algorithm which provides, not
only data confidentiality, but also data integrity and data origin authentica-
tion. Uniqueness and timeliness is controlled by timestamps: the protocol uses
timestamps to prevent valid messages (authentication information) from being
accepted at a later time or more than once.

Protocol πAuthEnc(δ)

– The initialisation function I first invokes, once for each pair of parties, the key
generation algorithm of an authenticated symmetric encryption scheme with se-
curity parameter κ and sets the secret information of party A with pair B to be
KA,B . IA is set to be the list of the keys A shares with B for all parties B.

– All parties keep as protocol state a list L where it stores ciphertext/timestamp
pairs (c, t) corresponding to previously received and accepted messages.

– When activated within party A to act as initiator, and establish a session with
party B, the protocol proceeds as follows.
• A checks the local time value t. It generates a random session key sk and

sets c← AuthEnc(sk||t||B,KA,B). It then sends (A,B, c) to B.
• A accepts sk as the session key, (A,B, c) as sid, B as pid, and terminates.

– Upon receipt of (A,B, c), the responder accepts a key sk as the session key,
(A,B, c) as sid, A as pid and terminates if:
• B is the identity of responder.
• c successfully decrypts to (sk||t||B) under KA,B .
• t ∈ [t′ − δ, t′ + δ], where t′ is local time at B when the message is received.
• List L does not contain the pair (c, t).

– Finally, B updates the list L, adding the pair (c, t) and deleting all pairs (ĉ, t̂)
where t̂ /∈ [t′ − δ, t′ + δ].

Fig. 2. One-pass key agreement with unilateral authentication from ISO-11770-2

The protocol requires that parties are able to maintain mechanisms for gen-
erating or verifying the validity of timestamps: the deciphered data includes a
timestamp that must be validated by the recipient. Parties maintains a list L to
detect replay attacks. In relation to forward secrecy, note that if an adversary
gets hold of a ciphertext stored in L, and furthermore at some point it corrupts
the owner of the list, it can compute the secret key for the corresponding past
session. Identifier B is included in the ciphertext to prevent a substitution at-
tack, i.e. the re-use of this message by an adversary masquerading as B to A.
Where such attacks cannot occur, the identifier may be omitted [15].

The following theorem, whose proof can be found in the full version of the
paper, formally establishes the security properties of the protocol in Figure 2.

Theorem 6. The protocol πAuthEnc(δ) in Figure 2 is an AKE secure key exchange
protocol in the timed BR model if the underlying authenticated encryption scheme

16

is secure in the IND-CPA and INT-CTXT senses. This protocol also provides
initiator-to-responder authentication if the authenticated encryption scheme is
INT-CTXT secure. More precisely, we have:

AdvI2R
KE (A) ≤ 2q2 ·AdvINT−CTXT

AuthEnc (B1) + q2qs/|K|,

AdvAKE
KE (A) ≤ q2(2 + qs) ·AdvINT−CTXT

AuthEnc (B1) + q2qs ·AdvIND−CPA
AuthEnc (B2) + q2qs/|K|.

Here a uniform distribution on the key space K is assumed, q is the maximum
number of parties involved in the attack, and qs is the maximum number of
sessions held at any party.

Furthermore, if the adversary respects β-synchronisation, then the protocol
guarantees (β + δ)-recent initiator-to-responder authentication.

6 Conclusion

In this paper we proposed a general modelling technique that can be used to ex-
tend current models for the analysis of key agreement protocols, so that they cap-
ture the use of timestamps. We have shown that two popular analysis frameworks
(CK and BR models) can be extended in a natural way using this technique, and
that this permits addressing a new class of real-world protocols that, until now,
lacked a complete formal treatment. The paper also leaves many open problems
that can be addressed in future work. We conclude the paper by referring some of
these topics. The approach we introduced can be applied to extend other theoret-
ical models, the most interesting of which is perhaps the Universal Composability
framework of Canetti [10]. Orthogonally, there are many key agreement and au-
thentication protocols which rely on timestamps and that could benefit from a
security analysis in a time-aware framework. Kerberos [19] is an example of such
a protocol, which utilises timestamps in a setting where a server is available. In
order to rigourously analyse the security of this protocol, one would need to de-
fine a timed version of three-party key agreement security models. Moving away
from key agreement and authentication protocols, our approach opens the way
for the formal analysis of time-related cryptographic protocols such as those aim-
ing to provide secure message timestamping and clock-synchronisation. Finally,
it would be interesting to see how one could apply a similar approach to secu-
rity models that try to capture public key infrastructures, where the temporal
validity of certificates is usually ignored.

Acknowledgments

The authors would like to thank Alex Dent for proposing and discussing the
original ideas that led to this work. They would also like to thank Bogdan
Warinschi for important discussions. The authors were funded in part by the
WITS project (FCT - PTDC/EIA/71362/2006) and the eCrypt II project (EU
FP7 - ICT-2007-216646). The second author was also supported in part by the
Scientific and Technological Research Council of Turkey (TÜBİTAK) while at
Middle East Technical University.

17

References

1. M. Backes. Unifying Simulatability Definitions in Cryptographic Systems under
Different Timing Assumptions. In International Conference on Concurrency The-
ory (CONCUR), LNCS 2761:350-365, Springer-Verlag, 2003.

2. M. Bellare, R. Canetti and H. Krawczyk. A Modular Approach to the Design
and Analysis of Authentication and Key Exchange Protocols. In The 30th Annual
ACM Symposium on Theory of Computing, pages 419–428, ACM Press, 1998.

3. M. Bellare and C. Namprempre. Authenticated Encryption: Relations Among No-
tions and Analysis of the Generic Composition Paradigm. In Advances in Cryp-
tology – ASIACRYPT 2000, LNCS 1976:531–545, Springer-Verlag, 2000.

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In
Advances in Cryptology – CRYPTO 93, LNCS 773:232–249, Springer-Verlag, 1994.

5. M. Bellare and P. Rogaway. Provably Secure Session Key Distribution: The Three
Party Case. In Proceedings of the 27th Annual Symposium on the Theory of Com-
puting, pages 57–66, ACM Press, 1995.

6. M. Bellare, D. Pointcheval and P. Rogaway. Authenticated Key Exchange Secure
Against Dictionary Attacks. In Advances in Cryptology – EUROCRYPT 2000,
LNCS 1807:139–155, Springer-Verlag, 2000.

7. B. Blanchet, A.D. Jaggard, A. Scedrov and J.-K. Tsay. Computationally Sound
Mechanised Proofs for Basic and Public-Key Kerberos. In 2008 ACM Symposium
on Information, Computer and Communications Security, pp. 87–99, ACM, 2008.

8. B. Blanchet and D. Pointcheval. Automated Security Proofs with Sequences
of Games. In Advances in Cryptology – CRYPTO 2006, LNCS 4117:537–554,
Springer-Verlag, 2006.

9. A. Boldyreva and V. Kumar. Provable-Security Analysis of Authenticated En-
cryption in Kerberos. In 2007 IEEE Symposium on Security and Privacy, pages
92–100, IEEE Computer Society, 2007.

10. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 42nd IEEE Symposium on Foundations of Computer Science, pages
136–145, IEEE Computer Society, 2001.

11. R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In Advances in Cryptology – EUROCRYPT 2001,
LNCS 2045:453–474, Springer-Verlag, 2001.

12. R. Canetti and H. Krawczyk. Universally Composable Notions of Key-Exchange
and Secure Channels. In Advances in Cryptology – EUROCRYPT 2002, LNCS
2332:337–351, Springer-Verlag, 2002.

13. D.E. Denning and G.M. Sacco. Timestamps in Key Distribution Protocols. In
Communications of the ACM, Volume 24, Issue 8, pp. 533–536, ACM, 1981.

14. L. Gong. A Security Risk of Depending on Synchronized Clocks. In ACM SIGOPS
Operating Systems Review, Volume 26, Issue 1, pp. 49–53. ACM, 1992.

15. ISO/IEC 11770-2: 2008, Information Technology – Security Techniques – Key Man-
agement – Part 2: Mechanisms Using Symmetric Techniques.

16. ISO/IEC 9798-2: 1999, Information Technology – Security Techniques – Entity
Authentication – Part 2: Mechanisms Using Symmetric Encipherment Algorithms.

17. ISO/IEC 9798-3: 1998, Information Technology – Security Techniques – Entity
Authentication – Part 3: Mechanisms Using Digital Signature Techniques.

18. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone. Handbook of Applied Cryp-
tography, CRC Press, 2001.

19. C. Newman, T. Yu, S. Hartman and K. Raeburn. The Kerberos Network Authen-
tication Service (V5). http://www.ietf.org/rfc/rfc4120, 2005.

18

