
Capture and Maintenance of Project Total Cost
Minimization Applications’ Results

Rui Moutinho
Informatics Department

University of Minho
Braga, Portugal

rumout@gmail.com

Anabela Tereso
Production and Systems Department

University of Minho
Braga, Portugal

anabelat@dps.uminho.pt

Abstract — In the past several years, various optimization algo-
rithms had been implemented on the project total cost minimiza-
tion problem. Lately, it was developed an application that serves
as a central platform that integrates all those previous implemen-
tations. Currently, such platform allows the access and execu-
tion of each one of the other utilities as modules/plugins. Each
of which can be configured to execute optimizations over differ-
ent projects. Although the platform already saves the optimization
results, it lacks a suitable processing mechanism that would ease
the cross analysis over all the utilities. Therefore, we want to in-
clude capture and analysis of results into the platform in order
to properly aggregate them in a results database. Such database
could then be queried for numerous purposes being the perfor-
mance evaluation, across the optimization utilities, one of the first.
In this project we analyze a total of five heterogeneous optimiza-
tion utilities, all coded in JAVA, using algorithms based on dynamic
programming and global optimization. The heterogeneity poses
a challenge which we overcame by establishing a common results
storage language, by means of XML files.

Project Scheduling; Optimization Applications; XML Process-
ing

I. INTRODUCTION

We start by summarize the context of the developments lead-
ing to all the optimization utilities to be analyzed. Then, a brief
presentation of the specific purpose and method used of each
one of those applications.

A. Context

Over the past years, several contributions were made im-
proving the early developments on project cost optimization [1].

The goal is to determine the resource quantity allocation ta-
ble that minimizes the total – allocation plus tardiness – project
cost. Specifically, models were developed to address that with
multimodal project activities under stochastic conditions whose
precedence relation is fully described by an AOA (Activity-on-
Arc) network. With multimodal, we mean each activity hav-
ing its total duration as a function of the allocated quantity of
each of its resources. Moreover, this relation is non-discrete

and stochastic in nature. In fact, all models use the exponential
distribution. The following major approaches have been used:

DP (Dynamic Programming) based: This relies on the struc-
ture of the AOA network in order to establish a set of
stages by evaluating its UDC (Uniformly Directed Cut-
set) [1]. The method is recursive and evaluates on each
stage a policy table based on the possible state configu-
rations. Due to its complexity, a differentiation on the
variable set (the activities) is enforced: fixed activities
and decision activities. This allows to proceed in order
to one decision variable per stage decreasing the com-
plexity. The other variables are evaluated by testing each
combination of its possible values.

Global optimization: Two algorithms are used: EMA (Elec-
tromagnetic Algorithm) [2] and EVA (Evolutionary Al-
gorithm) [3]. These simulate the dynamic of a set of
elements – possible solutions – by applying electromag-
netic laws on ions or evolution laws on individuals, re-
spectively. On each iteration the elements are randomly
disturbed and when the stoping criteria are meet, the best
one is taken as the solution. Usually, these algorithms are
replicated several times to ensure better results.

B. Optimization Applications

All the applications share the same goal. However they do
so with different strategies and algorithms which we describe,
in chronological order:

AAREC: Is the migration of the initial implementation using
DP (Dynamic Programming) in MATLAB [4] to JAVA [5].
It allows the optimization to process on either distributed
mode or non-distributed mode with a basic level of con-
current programming.

AEM & AEV: The AEM [6] is the migration of the EMA im-
plementation in MATLAB [2] to JAVA. The AEV is the
first to implement EVA [3]. Both applications can exe-
cute on distributed and non-distributed modes.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55619809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


COMURA: Implements all the three optimization algorithms
applied to an extension of the previous models introduc-
ing the multiple resources scenario [7][8][9][10]. The
COMURA does not provide the execution in distributed
mode, rather it uses concurrent programming.

CENTRAL PLATFORM: The purpose of it is to aggregate all
the previous optimization applications under a plug-in plat-
form allowing easier execution of those utilities [11].

C. Objective

Given an extensible aggregating platform, we want to de-
velop a suitable utility that will be responsible for the capture,
processing and storage of the results obtained from the opti-
mization applications on a common database. The immediate
purpose would be the performance comparison between the sev-
eral implementations but the system should be more flexible al-
lowing a wider range of informative potential.

II. APPLICATIONS ANALYSIS

In this section we analyze the plug-in system of the central
platform and the information flow and quality of each applica-
tion.

A. The Central Platform Plug-In System

The central platform allows a single interface point for the
plug-in modules: a panel, within a panel slider. In such panel,
each module should provide to the user whatever configuration
elements needed. The graphical interface of the platform also
provides a text area, to which the standard output stream is redi-
rected; and a control area where the user has additional con-
trol over the selection of the input project and over the results
whereabouts (see Fig. 1).

A

B C

Figure 1. Central platform main view scheme. A Control area; B Plug-in
panels zone; C Text area for output.

Despite its plug-in design, the communication between the
platform and the modules barely goes beyond a “load-start-get”
vocabulary and there is no way to the loaded modules to com-
municate directly with each other.

The platform already enables the storage of results. How-
ever, it only includes the final results and if a module is exe-
cuted several times for the same project, only the last results
are preserved. This is specially unacceptable for those applica-
tions using the global optimization algorithms which are prone
to give different results for the same initial conditions.

B. Information Flow

All the optimization applications have the same objective.
Therefore, all require information about the project and after ex-
ecution, the result is composed of the resources allocation table
and the project total cost. All the applications are console-based
in their stand-alone versions. However, regarding the informa-
tion flow, each one accepts input and delivers output from and
to different vessels: command line, console I/O and files.

The AAREC (see Fig. 2) is configurable from command line,
console and external files. The project information required can
be from user input via console or from external files with pre-
vious saved data. The progress and produced information are
printed to the console and the policy tables saved to external
files.

AAREC

ConsoleAOA network

Problem Policy Tables
c:>

txt

bin

c:> command line use bin binary file txt text file

Figure 2. AAREC information flow scheme.

The AEM and the AEV (on Fig. 3) are only configurable
through external files. The console is used only to give feed-
back with execution configuration and produced data. The same
information is recorded to an external file.

AEM & AEVConfiguration

Reports

Console
txt

txt

txt text file

Figure 3. AEM and AEV information flow scheme.

The COMURA (see Fig. 4) is configured through both com-
mand line and console input. It allows to save a binary file with
the algorithm configuration used for import on subsequent ex-
ecutions. All the runtime information is printed to the console
and varies according to the user defined command line argu-
ments: enabling and disabling progress indication or partial re-
sults output, for example.

COMURA Console

Configuration

c:>

Project

bin

txt

c:> command line use bin binary file txt text file

Figure 4. COMURA information flow scheme.



C. Information Quality

Given the divergences on the data organization, we had to
address the quality and completeness of the information required
and produced by all the applications towards the creation of
a database. Such database must contain enough information
to allow performance and results comparison while providing
enough data per execution in order to prevent future and expen-
sive re-executions. The Tab. I summarizes all the information
available through each application whether externally (files), in-
ternally (console) or produced.

TABLE I. INFORMATION AVAILABILITY ON EACH APPLICATION

Data AAREC AEM & AEV COMURA
Execution

environment
(host machine)

none none none

Project partial
(no project name)

partial
(no project name)

all
(both single and

multiple
resource)

DP algorithm
configuration

enabled
(two parameters)

non-applicable enabled
(four parameters)

EMA
configuration

non-applicable partial
(mostly

hard-coded)

enabled
(all parameters)

EVA
configuration

non-applicable partial
(mostly

hard-coded)

enabled
(all parameters)

Partial results always
(policy tables)

always
(initial and final

populations)

user request

Final results yes yes yes
Other

algorithm
specific data

non-distributed
mode

(UDC (Uniformly
Directed Cutset))

always
(work content
sample tables)

user request
(doesn’t show

UDC)

Application
configuration

yes
(threads count)

yes
(additional stop

criteria)

yes
(used algorithm;
concurrent and
non-concurrent

execution
policies)

D. Decisions

The current results storage system does not meet the require-
ments. A natural thinking is to make a plug-in module that will
add to the platform a suitable results processing mechanism.
However, the interface available induces a bubble-like environ-
ment where the communication between platform and modules
and between the modules themselves is very restricted. Thus,
the capture of the results by another plug-in is very difficult,
if not impossible. So, a new central platform design must be
implemented.

Looking at the Tab. I we notice that the information is het-
erogeneous both in quality and completeness. If we only wanted
to process the information regarding the input project and the
results, that should not be a problem. However, we want to re-
tain as much information as possible. Some information can be
discarded at early studies but, with further developments, such

data may become useful. Therefore, the database should be both
complete and flexible enough to allow a wide spectrum of stud-
ies. On this regard we decided to use XML files for the infor-
mation storage.

III. IMPLEMENTATION

Finally, we present our current developments. Like all the
optimization applications, the implementations were made in
JAVA.

A. The New Central Platform

Due to scheduling reasons it was impossible to us to produce
a complete new platform with a rich plug-in system. Instead,
we developed a prototype – PROCOOL – that integrates the
applications without that feature. The PROCOOL is specially
focused on the information processing: capture, extraction and
translation. This is explained in section III–B.

The PROCOOL is logically divided in three internal units,
all encapsulated in a graphical interface: configuration, execu-
tion and information processing units. The first maintains all
the configurable parameters per application. Then, the execu-
tion unit uses that context when calling an instance of a selected
application. This execution may produce additional files along-
side with the console output – the execution result environment.
Finally, the information processing unit gathers and transforms
the data on both configuration and execution result environment.
The interface provides all externally configurable information
in one panel per application, emulates a console (with input
and output) and provides views of the resulting XML and log
(see Fig. 5).

A

B

Figure 5. PROCOOL – Graphical interface. A: Configuration panel; B:
Console emulation, log and XML preview

B. Information Processing

In this section we begin by explaining the general procedure
followed by the details concerning the XML export format.

1) General Procedure

The all process is composed of three sequential stages: cap-
ture; extraction and translation.

On the first stage – capture – all input and output text writ-
ten on the console is grabbed. This text together with any text
of external files produced/used constitutes the source informa-
tion. This raw data is parsed in the extraction stage. To ease the
coding of this stage we used JAVACC1. The raw data (mostly

1Information and download at https://javacc.dev.java.net/



the one from the console) has many redundant or user-oriented
only information like progress indications and input error mes-
sages, etc2. Such details proved to be tricky to circumvent us-
ing a direct “by hand” approach, hence the tool use. Finally, the
translation phase gets the parsed information and completes it
as needed using the configuration panel and the java machine
properties; producing the final XML file.

2) Structure

The structure of the XML file was decided after identifying
the common information to all applications. Below, we describe
each area of the XML file3.

Header: The execution context of the java virtual machine:
name, version and type of the operating system; proces-
sor count and total available memory.

Project: The information relative to the targeted project. For
completeness, a name based on the characteristics of the
project has to be generated for the AAREC, AEM and
AEV applications due to their lack of such name on their
specifications.

Execution: The results and specific context of the optimization
execution: the allocation table; the obtained project cost
and the elapsed time. Also, there are stored the designa-
tions of the optimization application and algorithm used;
start date; host machine name (a weaker alternative to the
header section) and the name and version of the central
platform used (here named as launcher).

Configuration: It is divided in two areas: optimization appli-
cation and optimization algorithm. The algorithm config-
uration is stored with the maximum available parameters.
Consequently, for the applications do not providing full
algorithm configuration, all non-configurable parameter
values are determined by using the hard-coded ones.

Extras: The remaining extracted information is stored here.

3) Database

The set of all the individual XML files produced be each op-
timization makes the source of our database. In order to begin
the first tests, we created a simplistic application that makes a
simple index of all those files in one folder – PROCORE. It al-
lows us to add new XML files, dealing with eventual conflicts,
and enables the extraction of reports. These reports are XML
files with the gathered allocation tables and costs obtained for
a specific project using the several applications and configura-
tions. Those reports are a basic structure with which to com-
pare the performance of the applications. Furthermore, we use
XSLT4 to produce human-readable versions of the reports.

2Due to limitations, it is not possible to include some printed executions.
You may ask for them by email to the leading author at rumout@gmail.com
with subject “CISTI’10” (to avoid undesired filtering).

3The actual XML schema is too big to be included in this article. However,
if you desire you may send a request for the file by email to the leading author
at rumout@gmail.com. Please use “CISTI’10” as subject to avoid eventual
filtering by the anti-spam engine.

4http://www.w3.org/TR/xslt

IV. RESULTS

Due to limitation rules we only show one formatted output
(see it in Fig. 6) and one report over the database so far created.

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<XOU tag="1243331935962">

<HEADER>

<OS_NAME>Windows Vista</OS_NAME><OS_VERSION>6.0</OS_VERSION>

<OS_ARCH>amd64</OS_ARCH><N_CPU>2</N_CPU>

<AVAIL_RAM>477233152</AVAIL_RAM>

</HEADER>

<PROJECT>

<NAME>Net3_OldFormat</NAME>

<SCHEDULE_TIME>16.0</SCHEDULE_TIME>

<TARDINESS_COST>8.0</TARDINESS_COST>

<PROJECT_RESOURCES>

<PROJECT_RESOURCE id="r1">

<MINIMUM_QUANTITY>0.5</MINIMUM_QUANTITY>

<MAXIMUM_QUANTITY>1.5</MAXIMUM_QUANTITY>

<QUANTITY_COST>1.0</QUANTITY_COST>

<MAINTENANCE_COST>0.0</MAINTENANCE_COST>

</PROJECT_RESOURCE>

</PROJECT_RESOURCES>

<PROJECT_ACTIVITIES>

<PROJECT_ACTIVITY id="a1">

<START_NODE>n1</START_NODE><END_NODE>n2</END_NODE>

<ACTIVITY_RESOURCES>

<ACTIVITY_RESOURCE id="r1"><LAMBDA>0.2</LAMBDA></ACTIVITY_RESOURCE>

</ACTIVITY_RESOURCES>

</PROJECT_ACTIVITY>

<PROJECT_ACTIVITY id="a3">

<START_NODE>n1</START_NODE><END_NODE>n3</END_NODE>

<ACTIVITY_RESOURCES>

<ACTIVITY_RESOURCE id="r1"><LAMBDA>0.07</LAMBDA></ACTIVITY_RESOURCE>

</ACTIVITY_RESOURCES>

</PROJECT_ACTIVITY>

<PROJECT_ACTIVITY id="a2">

<START_NODE>n2</START_NODE><END_NODE>n3</END_NODE>

<ACTIVITY_RESOURCES>

<ACTIVITY_RESOURCE id="r1"><LAMBDA>0.1</LAMBDA></ACTIVITY_RESOURCE>

</ACTIVITY_RESOURCES>

</PROJECT_ACTIVITY>

</PROJECT_ACTIVITIES>

</PROJECT>

<RUN>

<START>2009.05.26 10:58:55.962 BST</START>

<APPLICATION>COMuRA</APPLICATION>

<ALGORITHM>DPA</ALGORITHM>

<LAUNCHER version="1.0">ProCoOL</LAUNCHER>

<HOST>Selenius</HOST>

<RESULT>

<ALLOCS>

<ACTIVITY id="a1" type="decision">

<RESOURCE id="r1">1.5</RESOURCE>

</ACTIVITY>

<ACTIVITY id="a3" type="fixed">

<RESOURCE id="r1">1.5</RESOURCE>

</ACTIVITY>

</ALLOCS>

<COST>62.387</COST>

<RUNTIME>130</RUNTIME>

</RESULT>

</RUN>

<CONFIGURATION>

<COMURA>

<CONCURRENCY>

<EXECUTION_POLICY>Single Task</EXECUTION_POLICY>

<OF_EVALUATION_POLICY>Single Threaded</OF_EVALUATION_POLICY>

</CONCURRENCY>

</COMURA>

<DPA>

<NSQF>3</NSQF>

<NSQD>5</NSQD>

<NSWF>4</NSWF>

<NSWD>4</NSWD>

</DPA>

</CONFIGURATION>

<EXTRAS>

<STATISTICS>

<PROCESSED_TASKS>3</PROCESSED_TASKS>

<MISSED_TASKS>0</MISSED_TASKS>

</STATISTICS>

</EXTRAS>

</XOU>

Figure 6. Formatted output of a COMURA execution.

On Fig. 7 on the next page we show a report that collects all
the registered executions of the COMURA application on the
host named Selenius for a specific project; made by PROCORE
and transformed with a XSLT file5.

5The source XML file of the presented report may be requested by email
to the leading author at rumout@gmail.com. Please specify “CISTI’10” as
subject.



Figure 7. A XML report from PROCORE over the database transformed via
XSLT in HTML as viewed on a browser.

V. DISCUSSION

Despite the same objective, the information extracted from
each optimization application varies both in quantity and qual-
ity. For example, in order to characterize a project is not only
needed to specify its AOA network, tardiness unitary cost and
schedule completion time. A simple name is important for fu-
ture reference: it is far easier to compare names than to compare
all the contents!

The information is, therefore, incomplete and poorly spec-
ified. This happens because the applications were made inde-
pendently from each other and in different points of project
management development. Thus, a central platform was created
trying to homogenize those applications into a plug-in system.
However, such platform failed to provide a suitable processing
of the execution results. A new central platform is, then, created
to fill in the gap.

The information was easy to complete once we established
a common base to all applications. Such basis concerns on re-
taining as much information as possible in order to avoid future
remakes of the same expensive executions. Thus, whereas the
information is absent, we get it by external means – the execu-
tion context of the virtual machine – or by generation through
other properties – project names. Since we have access to the
source code, it was simple to fill the hard-coded values used
as configurations on some applications. But having such a ho-

mogenous basis is not sufficient.

In order to accommodate future applications we want a for-
mat that is also flexible. Some information that is regarded as
secondary today may be useful tomorrow. We chose to cre-
ate XML format, thus, forming a XML database. Perhaps the
same purposes could be fulfilled by a relational database but the
XML allows the storage and specification of the information
in a single file. This brings better support for portability and
interchange. These are required because the team working on
the subject from which this article stems has changed over the
years with several contributions build one over another and is
more likely to continue this way. Of course we are well aware
of the traditional benefit of the relational databases concerning
performance. Specifically when dealing with queries involving
extensive amounts of data. It is possible in a near future to have
a huge collection of data. However, that is not our main concern.
The research is far from concluded and so, more applications
with new models and algorithms are likely to be developed.
These will bring more information which we will need to insert.
By using XML is possible to do some changes on the structure
while ensuring retro-compatibility quite easily. The same is not
true with relational databases where a few changes may imply
an expensive overhead when migrating from one database ver-
sion to another.

VI. CONCLUSION

The need for a new central platform increased our insights
about each optimization application demands. This, together
with the knowledge of the weaker and stronger points of the
other platform allows us to establish a set of guidelines for the
future applications and newer versions of the existent. Thus, the
optimization applications should:

• be console applications. Since they are optimization ap-
plications, it makes little sense to expend useful resources
with graphical interfaces;

• operate by consuming a complete configuration file and
producing a pre-formatted result file. This will minimize
the user interaction and feedback leaving more resources
available to the applications.

A new version of the central platform should provide graphical
(more intuitive) interfaces to edit the configuration files together
with a suitable plug-in system with a translating module for pro-
cessing of the result files.

The actual version of the PROCORE is very basic and lim-
ited. By using a well developed XML database library we can
easily enhance the PROCORE to a more stable and scalable ver-
sion. For this purpose the BERKELEY XML DB6 seems to be
a good candidate because not only its background maturity but
also its zero administration feature. That database library pro-
vides a rich application interface requiring only a couple of files
to be distributed with the main application. Thus, a PROCORE
version powered by it will also retain its portability feature.

6http://www.oracle.com/database/berkeley-db/xml/index.

html



REFERENCES

[1] A. Tereso, Gestão de projectos – alocação adaptativa de recursos em redes
de actividades multimodais, Ph.D. thesis, Production and Systems Depart-
ment, University of Minho, 2002.

[2] A. Tereso, M. Araújo, and S. Elmaghraby, The Optimal Resource Alloca-
tion in Stochastic Activity Networks via the Electromagnetism Approach,
Nancy, France: Ninth International Conference on Project Management
and Scheduling, April 2004.

[3] A. Tereso, L. Costa, R. Novais, and M. Araújo, The Optimal Resource Al-
location in Stochastic Activity Networks via the Evolutionary Approach:
a platform implementation in java, Beijing, China: International Confer-
ence on Industrial Engineering and Systems Management, May 30 – June
2 2007.

[4] A. Tereso, M. Araújo, and S. Elmaghraby, Adaptive resource allocation
in multimodal activity networks, International Journal of Production Eco-
nomics, vol. 92(1), (2004), pp. 1–10.

[5] A. Tereso, J. R. Mota, and R. J. Lameiro, Adaptive resource allocation to
stochastic multimodal projects: a distributed platform implementation in
java, Control and Cybernetics, vol. 35(3), (2006), pp. 661–686.

[6] A. Tereso, M. Araújo, and R. Novais, The Optimal Resource Allocation
in Stochastic Activity Networks via the Electromagnetism Approach: A
Platform Implementation in Java, Reykjavı́c, Iceland: 21st European Con-
ference on Operational Research, July 2006.

[7] R. Moutinho, Gestão de Projectos – Alocação de Múltiplos Recursos,
Tech. rep., University of Minho, Braga – Portugal, December 2007.

[8] A. Tereso, M. Araújo, R. Moutinho, and S. Elmaghraby, Project manage-
ment: multiple resources allocation, Rio de Janeiro, Brazil: International
Conference on Engineering Optimization, 2008.

[9] A. Tereso, M. Araújo, R. Moutinho, and S. Elmaghraby, Duration oriented
resource allocation strategy on multiple resources projects under stochas-
tic conditions, Montreal, Canada: International Conference on Industrial
Engineering and Systems Management, 2009.

[10] A. Tereso, M. Araújo, R. Moutinho, and S. Elmaghraby, Quantity oriented
resource allocation strategy on multiple resources projects under stochas-
tic conditions, Montreal, Canada: International Conference on Industrial
Engineering and Systems Management, 2009.

[11] J. P. Cardoso, Gestão de Projectos – AoA Manager, Tech. rep., University
of Minho, Braga – Portugal, 2008.


