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Abstract 

We report on an exploratory study where the first 60 

seconds of the video recording of a user interaction are 

used to predict the user’s experienced task difficulty. 

This approach builds on previous work on “thin slices” 

of human-human behavior, and applies it to human-

computer interaction. In the scenario of interacting with 

a photocopy machine, automated video coding showed 

that the Activity and Emphasis predicted 46.6% of the 

variance of task difficulty. This result closely follows 

reported results on predicting negotiation outcomes 

from conversational dynamics using similar variables on 

the speech signal. 
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Introduction 

Machines are increasingly present in our everyday lives. 

Even the simplest tasks, such as paying for groceries, 
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buying a train ticket, or paying for the car parking, may 

involve dealing with technological devices, often 

without anyone’s help. However, not all of us feel 

equally comfortable when dealing with machines, and 

common machines are still not smart enough to deal 

with our doubts and inadequacies, at our personal pace 

and respecting our own likes and dislikes. 

The present work is part of a project that aims precisely 

at improving the interaction between humans and 

public space utility machines. The overall goal is to 

learn, through a set of observational studies, which 

social signals could express the user’s level of 

experience, the quality of the interaction and any 

interaction incident. By social signals, we mean signals 

that are the expression of a person’s attitude towards 

social interactions, conveyed through a variety of 

nonverbal behaviors and cues [21]. We believe that the 

ability to detect these social cues could then lead to 

systems that are better designed to assess the quality 

of the interaction and provide more effective responses. 

The study presented here follows the methodology of 

analyzing thin slices of behavioral data. This 

methodology has been shown to predict a broad range 

of interaction outcomes [1, 3]. We are relying on the 

user’s “social signaling” towards the machine, conveyed 

through movement, to infer the user’s experienced 

difficulty towards the task.  

Social Signals Processing 

Social Signal Processing (SSP) refers to the analysis of 

human nonlinguistic behavior (e.g., body language, 

facial expressions, and tone of voice) to make 

inferences on social relations and roles, to predict the 

behavioral outcomes of a particular social situation, and 

to reveal attitudes and relevant social information. The 

term was coined to denominate the body of seminal 

work presented by Pentland and colleagues [22] on the 

study and analysis of social signals. 

Though pervasively present in our everyday lives, social 

signals work in somewhat complex ways. Most social 

nonverbal signaling is processed at an unintentional 

and unconscious level, and yet, it is extremely effective 

[7, 12]. Humans seem to be “hardwired” both to read 

other people’s expressive behaviors (decoding), and to 

naturally express them (encoding) [16]. Even with 

minimal amounts of information, we are able to make 

rather accurate judgments [1]. 

In one example of that work [3], it is demonstrated 

that four metrics derived from the conversational 

dynamics occurring within the first five minutes of a 

two-party, simulated employment negotiation, predict 

the outcomes of that negotiation. Activity level, 

conversational engagement, prosodic emphasis, and 

mirroring predicted 30% of the variance in/of individual 

outcomes. 

Cues from Nonverbal Language in HCI 

The first applications for automatically monitoring 

users’ nonverbal signals within HCI emerged from the 

need to closely and frequently check the operators’ 

alertness, attention, and cognitive load in critical 

applications, such as air traffic control or military 

applications, for a review see [20].  

The pioneering work of Picard [17] that lead to the 

establishment of the Affective Computing field launched 

a new era of interest in user’s emotional aspects. Many 

projects were developed to infer the user’s emotions, 
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levels of well-being, attention, interest or confusion 

while interacting with a computer system from 

physiological data, like respiration, heart rate, skin 

conductance, and muscle activity [e.g. 8, 18]. Other 

researchers have turned their focus onto visible and 

audible nonverbal signals such as facial expressions 

and vocal quality [for a review see 14]. In the past few 

years, other implicit modalities are being more 

frequently used, such as body movement, gestures and 

posture [6, 9, 10, 11, 21].   

Besides the choice of modalities, most HCI studies use 

those cues to infer the users’ emotions or affective 

states (hence, affective computing). The standard 

method is to borrow predefined models from 

psychology to understand and organize the expressive 

data collected. Many of the existing applications use 

Ekman’s basic emotions model [4]. However, “pure”, 

clean-cut emotions are seldom experienced by machine 

users; they often display mixed or confusing emotions, 

which makes strict affective categories hard to apply to 

natural interaction contexts [2, 5, 17]. Furthermore, 

while interacting with a machine, the user also 

experiences other rather important mental states [5, 

9], such as attention, cognitive processing, interest, 

engagement, confusion, boredom, frustration, etc. 

These are not proper emotions, but cognitive states, 

not appropriately tackled by the typical affective model 

approach. Some projects, however, have lately been 

designed to approach such high level mental states [9, 

11, 21].  

The main difficulty is that most studies are still typically 

conducted on a laboratory, well controlled environment, 

mostly monitoring the user for relatively short periods 

of time [17, 22]. In a natural scenario, though, 

contextual variables may influence both the interaction 

and the meaning of the displayed cues, and no existing 

device is yet able to collect contextual information [22: 

1062]. Systems based on physiologic measures require 

physical contact with the user, limiting its applicability. 

Time of day, tiredness or even coffee consumption can 

also bias the user’s physiologic responses [19]. 

Nonverbal behavior analysis systems are working 

increasingly well when the users are in a fixed position, 

but, in situations where they are able to move around 

freely, it is still problematic to robustly track the data 

[14]. Moreover, the fact that there are contextual, 

cultural and individual differences in the way emotions 

and attitudes are exhibited [4, 7] introduces further 

challenges. 

A New Approach 

An interesting approach to the problem is presented by 

the SSP domain, originally concerned with human-to-

human interaction. This framework functions as an 

alternative to the affective approach: the question is no 

longer to infer the subjects’ emotions, but their attitude 

towards social interaction, in a context-sensitive 

fashion [22: 1062]. These attitudes are not inferred 

from isolated nonverbal or physiologic signals, observed 

in only one of the interactants, but from signals that 

refer to what one interactant is doing in relation to the 

other [22]. How one interlocutor positions him/herself 

from the other, action/response patterns between the 

two parts, or the amplitude and frequency of prosodic 

and gestural activities are good examples of social 

signals. This type of observable behavior is both even 

less conscious and more stable, and thus reliable, than 

nonverbal cues, because it is influenced by universal 
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biologic, rather than cultural or individual, 

determinations [16].  

With this framework in mind, Pentland and colleagues 

[e.g. 3, 15] have coded four measures of social 

signaling (activity, engagement, emphasis and 

mirroring) to make quite accurate predictions of the 

outcomes of human interaction. The premise behind 

that approach is that humans are generally able to 

accurately predict interaction outcomes from the 

observation of just a thin slice (brief moment) of 

expressive behavior [1]. 

In this project we mean to call these findings onto a 

HCI context, while trying to avoid the limitations of 

previous similar studies. In the first place, our work 

aims to be usable outside the laboratory. Since it is not 

practicable to have users wear sensing devices, we 

relied on the video recording of the users’ behavior. 

Secondly, our approach was not to model the user 

emotional phenomenon, but more the "sense of 

difficulty" by capturing signals that would illustrate the 

quality of the experience. Therefore we use variables 

such as the ones suggested in [3] to infer on the 

experienced task difficulty as self-reported by the user. 

Study design 

In the experiment we are reporting, participants were 

asked to perform three tasks on a photocopier, while 

being recorded on video. Each task had a distinct level 

of difficulty: make a single page copy (easy), make a 

front and back copy (intermediate), and make a front 

and back copy with two pages per side (difficult). The 

order of the tasks was assigned randomly to each 

participant. Participants had different degrees of 

experience in using photocopiers, ranging from seldom 

using any photocopying machine to using this particular 

model several times a day. Half of the participants had 

used this photocopier machine (or a similar one) 

before. 

Before each task, participants were instructed on what 

they were expected to do and filled a form indicating 

the expected level of difficulty on a 5-point Likert scale 

ranging from 1 (easy) to 5 (difficult). They would then 

approach the photocopier to execute the task. Upon 

completion, the participant would return to the seat and 

indicate the experienced level of difficulty on an 

identical scale. In the results reported we are just 

analyzing this last variable, the difficulty level indicated 

after performing the task.   

A total of 24 participants took part in this experiment. 

On average, each task took 3m:14s with a standard 

deviation of 3m:36s. The shortest lasted 18 seconds 

and the longest lasted 12m:51s. 
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Video Processing 

The interaction task was recorded with 3 cameras 

capturing different angles, a general view, a face view 

and a profile view. In this study only the profile view 

recordings were used. These were recorded at a 

1920x1080 image size at 25 frames per second.  

The authors decided to use the first 15, 30 and 60 

second time slices of the video for the analysis. In this 

study we are reporting the results for the first 60 

seconds of video.  

The image processing phase (figure 1) starts with the 

selection of the image’s region of interest, 

corresponding approximately to the user location (Roi 

Image). To remove video noise, a low pass filter 

(Gaussian filter) is applied to the recording and the 

image converted to grayscale (Gray Image). The 

difference between consecutive frames is then used to 

compute the movement on the video. From this frame-

difference signal, the amplitude and the frequency of 

the motion can be identified.  

For each video of the task, we remove the volunteers’ 

entrance in the scene by detecting a maximum peak in 

the frame-difference signal. If the video is shorter than 

the time window used (60s) we also remove the exit 

from the scene in a similar manner. We are left with a 

time interval corresponding to the users’ interaction 

segment.  

figure 1. Image acquisition, image processing and frame-difference processing schematic. 
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From this interaction interval we computed two 

measures that we will introduce next. 

Variables extracted  

Our observations from initial trials suggested that body 

movement might be one of the most telling social 

signals in the present interaction context, namely the 

amplitude and pace of movement and posture changes 

[also suggested by 10, 21]. 

Based on the four measures of the speech signal 

presented on [3]: activity, engagement, mirroring, and 

emphasis, and following the proposed computational 

model of social signaling that those same four 

measures can be applied to video data [15], we 

selected activity and emphasis to analyze movement 

from a video signal. Mirroring and engagement are 

hardly applicable in this context, since they depend on 

the presence of a human interlocutor. 

In [3] activity is the fraction of time a person is 

speaking and is known to be correlated with interest 

levels and extraversion (for a review see [3]). In the 

current study, Activity is defined as the fraction of time 

the volunteer is moving, and measured through the 

frame-difference signal.  

Emphasis represents “jerky, unevenly accented and 

paced” behavior, as described in [16: 4], and is 

associated with emotionality and stress. This measure 

on the speech signal is measured in [3] by variation in 

speech prosody – pitch and volume. In our experiment, 

emphasis means that the user displays an uneven 

rhythm of movements, either moving slowly, with low 

amplitude gestures, or even stopping, and then 

suddenly increasing the pace and gesturing more 

amply. Low emphasis (consistency), on the other hand, 

is observed when, either presenting low or high activity 

levels, the user maintains a steady motor behavior. 

Computed Variables 

Activity: this variable is calculated as the fraction 

between the number of motion frames and the number 

of total frames of interaction time. Motion frames are 

considered to be those where frame-difference is 

greater than a threshold value, defined as 5% of the 

maximum movement for all tasks.  

Hypothesis 1: Activity is correlated with experienced 

difficulty. 

Emphasis: A fast Fourier transform was applied to the 

frame-difference signal of the motion segments to 

compute the frequencies’ weighted standard deviations 

and the signal’s energy standard deviation. The 

Emphasis is the sum of these two measures. In other 

words, Emphasis measures the variation of motion’s 

energy and frequency.  

Hypothesis 2: Emphasis is correlated with experienced 

difficulty. 

Results 

We recorded 24 volunteers, each performing three 

tasks with three different levels of difficulty, totaling 72 

videos. Two volunteers were excluded since the 

instructions were not followed correctly. A single 

recording of another volunteer was also dismissed for 

the same reasons. Another volunteer’s recordings were 

dismissed due to a camera failure during the session. 

In total, 62 video recordings were considered. 
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Table 1 indicates the correlations among all variables. 

The low level of interdependence between Activity and 

Emphasis variables suggests these variables are 

measuring different features of the signal (rs = .187, 

n.s.). 

The results of Pearson1 correlation tests between all 

variables are presented in table 1. The correlation 

between experienced difficulty (M = 3.08, SD = 1.61), 

Activity (M = .358, SD = .216), and Emphasis (M = 

107.01, SD = 57.79) was tested. 

table 1. Pearson correlations among variables. 
          

  Variables 1 2 3 

1 experienced difficulty - -.384** .627*** 

2 Activity  - -.184 

3 Emphasis   - 
          

NOTE: ** p<.01. *** p<.001. (All two-tailed tested) 
 

Hypothesis 1 is confirmed, since Activity is negatively 

correlated with the difficulty level of the task (rs = -

.381, p < .01). Activity levels decrease as experienced 

difficulty increases. 

Hypothesis 2 is also confirmed as Emphasis is positively 

correlated with the experienced difficulty (rs = .646, p 

< .001).  

                                                 
1 We considered the distance between different levels of 

experienced difficulty (a Likert scale of five points) to be well 
defined. The experienced difficulty is therefore used as an 
interval variable. 

 

Multiple regression standardized coefficients (β) are 

presented in table 2. This model takes Activity and 

Emphasis to justify the experienced difficulty.  

table 2. Multiple regression standardized coefficients (β). 
            

  Variables experienced difficulty    

 Activity   -.277**  

 Emphasis    .574***  
      

 R2    .466  
            

NOTE: **p<.01. *** p<.001. (All two-tailed tested) 

 

Comparing both standardized coefficients, Activity is 

less important than Emphasis to justify the experienced 

difficulty. These two variables justify 46.6% of the 

variance of task difficulty. 

In a summary, motion tends to be lower (Activity) and 

more irregular (Emphasis) with the increase in task 

difficulty. 

Discussion 

Previous studies on time slice analysis of behavior have 

consistently revealed the predictive power of the 

signaling in respect to the outcomes of social 

interactions. Those studies look at the phenomenon of 

social interaction and the signals that emerge in that 

context. In [3] it is presented a set of variables 

computed from the interlocutor’s voice to predict the 

outcome of negotiation discussions. The work that we 

present uses two of those same variables computed 

from the movement of the user, Activity and Emphasis 

to explore the hypotheses that they could predict the 

user difficulty with a computer task.  
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Analyzing the user movement to predict the task 

difficulty was to our knowledge never approached 

before. The effect size of those two variables .683 is 

slightly higher than the same level of magnitude 

reported in the work by [3]. 

Something should be said about the nature of the task. 

The interaction with the photocopier was chosen 

because it allows a good view of the body movement of 

the user, while simulating a situation where the 

machine is used by a wide range of people with 

different skill levels. The sort of movements required as 

part of the normal task execution is finger movement, 

to interact with the touch panel, and placing and 

removing paper from the paper tray. Overall body 

movements are not an integral part of the task and 

therefore its presence or absence might very well serve 

as signaling as the results suggest. For tasks of 

different nature one should reflect on the context of the 

movements within the task and which might make 

sense, or not, to analyze. 

From the 62 analyzed videos there are 19 where the 

time for completion was less than 60 seconds. For 

those we should not talk about “time-slice” since the 

task was all contained within the 60 seconds. We 

decided not to remove those videos from the analysis 

since the vast majority corresponded to easy or 

intermediate tasks and removing them would 

unbalance the number of tasks for each difficulty level. 

In any case the overall goal of using brief segments of 

time to infer on the task difficulty remains valid for 

those videos even if we cannot technically call them 

“time-slices”. 

One shortcoming of the study is the lack of validation of 

the variables extracted from the video. The variables 

were automatically calculated by the computer from the 

video signal and there is no attempt to attest if the 

Activity and Emphasis correspond to the intended 

movement dynamics. By construction we did try to 

minimize perturbations to the users’ movement signal 

that could directly result from the increase in task 

difficulty. The movements strictly required for 

completing any of the tasks regardless of its difficulty 

was the same: place a page on the photocopier, 

interact with the touch panel and remove the paper. 

Still, it could be argued that users that experienced 

higher difficulty with the task would need more trials 

and therefore the variables that we are measuring are 

just an effect of the number of trials, for instance the 

movement of placing and removing paper from the 

photocopier. In fact just 3 of the 62 analyzed videos 

contained more than one trial within the 60 seconds, 

for the rest there was only one trial within that time. 

The region of interest from video chosen to compute 

the user movement is centered around the user and it 

remains fixed during the video. The parts of the 

machine that could be moved as part of the interaction 

do not overlap, or they have a minimum overlap over 

that rectangle. The exceptions are the paper drawers 

that are not necessary for a successful execution of the 

task but some users still did use it; in any case those 

represented 5 videos out of the 62. 

More advanced video processing techniques that better 

segment the user’s body and differentiate the different 

body parts could help improve variable measurement 

and the model’s robustness. 
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Also, self-reported measures of experienced task 

difficulty might profit from a more objective validation. 

That goal could be achieved by comparing the 

classifications given by the users with less subjective 

data, such as task duration, number of attempts and 

success or failure in completion. 

Conclusion 

The methodology of applying social signals derived 

from body movement to the study of human-computer 

interaction is a relatively new and unexplored 

approach. Other studies have considered motion or 

posture to infer user states and engagement in 

computing systems and game applications, but none, to 

our knowledge, has focused on the quality of the HCI. 

The results of analyzing 60 second time intervals follow 

previous results on thin slices of behavioral data, shown 

to predict a broad range of interaction outcomes. 

Specifically, this study suggests higher levels of task 

difficulty can origin changes in motion amplitude and 

frequency: Motion tends to be lower (Activity) and 

more irregular (Emphasis).  

The results here discussed, though preliminary, suggest 

that video-based sensing systems could be developed 

that are capable of inferring the users’ task difficulty 

from a thin time-slice of the interaction. The recent 

appearance of commercially available 3D range 

cameras that are capable of tracking the user body in 

real-time indicates that the application of those results 

in generic interactive systems could be possible in a not 

so distance future. Questions are then raised if and how 

those systems could be design to respond to that social 

signaling. 
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