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Abstract

We study a class of p-curl systems arising in electromag-
netism, for 6

5 < p < ∞, with nonlinear source or sink terms.
Denoting by h the magnetic field, the source terms consid-

ered are of the form h
(∫

Ω
|h|2

)σ−2
2 , with σ ≥ 1. Existence

of local or global solutions is proved depending on values of
σ and p. The blow-up of local solutions is also studied. The

sink term is of the form h
(∫

Ω
|h|k

)−λ
, with k, λ > 0. Ex-

istence and finite time extinction of solutions are proved, for
certain values of k and λ.

1 Introduction

In the present paper, we study a class of p-curl systems arising in electromagnetism. We consider, as a starting
point, the generalized Maxwell equations

∂td+ j = ∇×h,

∂tb+∇×e = f ,

∇·d = q,

∇·b = 0,

where e and h are the electric and magnetic fields, d and b the electric and magnetic inductions, j the total
current density and q the electric charge. We denote ∂t = ∂

∂t , ∇× = curl, ∇· = div.

As in [1], we adopt b = µh as polarization law and |j|p−2j = σe as Ohm’s law, where µ is the magnetic
permeability and σ the electric conductivity, and we neglect the term ∂td. We assume, for simplicity, µ =
σ = 1.

Let Ω be a bounded open subset of R3 with Lipschitz boundary Γ, T a positive real number, QT = Ω×(0, T )
and ΣT = Γ× (0, T ).

Considering the natural boundary conditions corresponding to a superconductive wall,

h · n = 0 and e× n = 0 on ΣT ,
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where n denotes the external unitary normal vector to the boundary Γ, and h(0) = h0 as initial condition,
where h0 is divergence free, we arrive at the system

∂th+∇×
(
|∇×h|p−2∇×h

)
= f(h), ∇·h = 0 in QT , (1a)

|∇×h|p−2∇×h× n = 0, h · n = 0 on ΣT , (1b)

h( · , 0) = h0 in Ω. (1c)

For mathematical purposes we consider, in the first equation of (1a), nonlinear fields, sources or sinks,
f(h), with special structure, verifying the compatibility conditions ∇·f(h) = 0 in QT and f(h) · n = 0 on
ΣT . The introduction of f(h) causes special qualitative properties of solutions, such as blow-up in a finite
time (an explosion of the magnetic field) or the finite time extinction (disappearance of the magnetic field
in finite time). We believe that these qualitative properties may be important to understand some physical
processes or to motivate the creation of new numerical algorithms. In the considered cases we first prove
theorems of existence of solutions and then we analyze their properties.

In Section 2, we introduce the functional framework and the weak formulation of problem (1).

In Section 3, considering the source term f(h) = h(
∫
Ω
|h|2)σ−2

2 , we prove the existence of weak solution

when p > 6
5 and σ ≥ 1. The solution is global if σ ≤ 2 or 2 < σ < p and is local otherwise. Assuming that

the energy at the instant t = 0 is nonpositive, the blow-up of local solutions is proved.
In Section 4, we consider the sink term f(h) = −h(

∫
Ω
|h|k)−λ, proving the existence of global weak

solution for p > 6
5 , 1 ≤ k < p∗ (critical Sobolev exponent) and for λ positive and bounded from above,

depending on k. In the particular case k = 2 we prove uniqueness of solution for 0 < λ ≤ 1
2 . The finite time

extinction of solutions is proved for λ > 0 and 0 < k ≤ p∗ if p < 3 and k > 0 if p ≥ 3.
The proofs of the blow-up and finite time extinction of weak solutions use methods developed in [2, 3, 4,

5, 6].

2 Weak formulation

Before presenting the weak formulation of problem (1) we need to introduce the functional framework.
From now on Ω is a bounded simply connected domain with C 1,1 boundary.
Spaces of vector-functions will be denoted by boldface symbols, following the standard notations for vector-

functions.
Let us denote byH(div 0,Ω) the space of the divergence-free L2(Ω) functions endowed with the L2-norm.
We define the vector space

Wp(Ω) =
{
v ∈ Lp(Ω) : ∇×v ∈ Lp(Ω), ∇·v = 0 and v · n|Γ = 0

}
.

Remark 1. Wp(Ω) is a closed subspace of W 1,p(Ω). In Wp(Ω), the semi-norm ‖∇× ·‖Lp(Ω) is a norm,

equivalent to the W 1,p-norm (for details, see [7, 8]).

Let us also introduce the functional space

Xp(QT ) =
{
v ∈ Lp

(
0, T ; Wp(Ω)

)
: ∂tv ∈ Lp′

(
0, T ; Wp(Ω)′

)}
,

with the norm ‖v‖Xp(QT ) = ‖v‖Lp(0,T ;Wp(Ω)) + ‖∂tv‖Lp′ (0,T ;Wp(Ω)′).

With convenient assumptions on f and h0, we consider as weak formulation of problem (1), to find
h ∈Xp(QT ) ∩ C

(
0, T ;H(div 0,Ω)

)
satisfying, for a.e. t ∈ (0, T ),∫

Ω

∂th(t) ·ψ +
∫

Ω

|∇×h(t)|p−2∇×h(t) · ∇×ψ =
∫

Ω

f(h(t)) ·ψ, ∀ψ ∈ Wp(Ω), (2a)

h( · , 0) = h0 in Ω, (2b)

where the integral

∫
Ω

∂th(t) ·ψ is interpreted in the duality Wp(Ω)′-Wp(Ω).

We present now some auxiliary lemmas.
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Lemma 2. There exists a positive constant C such that, for h ∈ Wp(Ω),

‖h‖Lq(Ω) ≤ C‖∇×h‖Lp(Ω), (3)

where for

1 ≤ p < 3, q ≤ 3p

3− p
; p = 3, q < ∞; p > 3, q = ∞.

Proof. This is an immediate consequence of Remark 1 and the Sobolev Embedding Theorem.

Lemma 3. Given 1 ≤ k < 2, there exists a positive constant C such that, for h ∈ Wp(Ω),∫
Ω

|h|2 ≤ C
( ∫

Ω

|∇×h|p
) 2θ

p
( ∫

Ω

|h|k
) 2(1−θ)

k

,

where for

p < 3, θ =
1
k −

1
2

1
k −

3−p
3p

; p ≥ 3, θ ∈ (0, 1].

Proof. By Remark 1 the Wp-norm is equivalent to the W 1,p-norm and so the conclusion follows from
Lemma 3.3, p.297, of the Appendix of [2].

Lemma 4. Given h ∈ Wp(Ω), there exists a positive constant C such that∫
Ω

|h|k ≤ C
( ∫

Ω

|∇×h|p
) kθ

p
( ∫

Ω

|h|2
) k(1−θ)

2
, (4)

where for

p < 3, 0 < k ≤ 3p

3− p
and θ =

1
2 −

1
k

1
2 −

3−p
3p

; p ≥ 3, k > 0 and θ ∈ (0, 1].

Proof. Use the same arguments of the proof of Lemma 3.

3 Blow-up: f(h) = h

(∫
Ω
|h|2

)σ−2
2

In this section, for 6
5 < p < ∞, we prove the existence of global or local solution of problem (2), depending

on the values of σ ≥ 1. We also find sufficient conditions for the blow-up of solutions.

3.1 Existence

Considering f(h) = h
(∫

Ω
|h|2

)σ−2
2 in the right-hand side of the first equation of (1a), where f(h) = 0

whenever h = 0, we prove the existence of solution of problem (2), with p > 6
5 and σ ≥ 1, using a fixed point

argument.
For this purpose, given ϕ defined in QT , we want to solve the problem∫

Ω

∂thϕ(t) ·ψ +
∫

Ω

|∇×hϕ(t)|p−2∇×hϕ(t) · ∇×ψ

=
∫

Ω

ϕ(t) ·ψ
(∫

Ω

|ϕ(t)|2
)σ−2

2

, ∀ψ ∈ Wp(Ω), (5a)

hϕ( · , 0) = h0 in Ω. (5b)
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Proposition 5. Let us consider ϕ ∈ C
(
0, T ;H(div 0,Ω)

)
, h0 ∈ H(div 0,Ω), 6

5 ≤ p < ∞ and σ ≥ 1.

Problem (5) has a unique solution hϕ ∈Xp(QT ) ∩ C
(
0, T ;H(div 0,Ω)

)
.

Proof. This result is an immediate consequence of Proposition 2 of [1]. In fact, for ϕ ∈ C
(
0, T ;H(div 0,Ω)

)
we have f(ϕ) ∈ Lp′

(
0, T ;Lq′(Ω)

)
, where q′ is the conjugate exponent of q defined in Lemma 2.

From now on we fix the notation Qt = Ω× (0, t) for a given t ∈ (0, T ).
In the following lemmas we will present some a priori estimates to the solutions hϕ of problem (5).

Lemma 6. Given ϕ ∈ C
(
0, T ;H(div 0,Ω)

)
, h0 ∈ H(div 0,Ω), 6

5 ≤ p < ∞ and σ ≥ 1, there exists a
constant C depending on T , |Ω|, ‖ϕ‖L∞(0,T ;L2(Ω)) and ‖h0‖L2(Ω) such that

‖hϕ‖L∞(0,T ;L2(Ω)) ≤ C, (6)

‖∇×hϕ‖Lp(QT ) ≤ C. (7)

Proof. Using hϕ as a test function in equation (5a) and integrating between 0 and t, we obtain∫ t

0

∫
Ω

∂thϕ · hϕ +
∫

Qt

|∇×hϕ|p =
∫

Qt

ϕ · hϕ
(∫

Ω

|ϕ|2
)σ−2

2

(8)

and so we can write, using the Hölder inequality,

1
2

∫
Ω

|hϕ(t)|2 +
∫

Qt

|∇×hϕ|p ≤
∫ t

0

‖ϕ(τ)‖σ−1
L2(Ω)

‖hϕ(τ)‖L2(Ω) +
1
2

∫
Ω

|h0|2. (9)

Applying now the Young inequality and Remark 1 of [1], there exists a constant C̃, depending on Ω and p
such that∫

Ω

|hϕ(t)|2 +
∫

Qt

|∇×hϕ|p ≤ C̃

∫ t

0

‖ϕ(τ)‖p′(σ−1)

L2(Ω)
+

∫
Ω

|h0|2

and so

‖hϕ‖2
L∞(0,T ;L2(Ω)) + ‖∇×hϕ‖p

Lp(QT ) ≤ C̃T‖ϕ‖p′(σ−1)

L∞(0,T ;L2(Ω))
+ ‖h0‖2

L2(Ω).

which proves (6) and (7).

Lemma 7. Given ϕ ∈ C
(
0, T ;H(div 0,Ω)

)
, h0 ∈ Wp(Ω), 6

5 ≤ p < ∞ and σ ≥ 1, there exists a constant C
depending on T , ‖ϕ‖L∞(0,T ;L2(Ω)) and ‖h0‖Wp(Ω) such that

‖∂thϕ‖L2(QT ) ≤ C, (10)

‖∇×hϕ‖L∞(0,T ;Lp(Ω)) ≤ C. (11)

Proof. To obtain these estimates we need to introduce Galerkin approximations. Let (ψn)n be a topological
basis of Wp(Ω) and denote by 〈ψ1, . . . ,ψm〉 the subspace generated by {ψ1, . . . ,ψm}. Consider a family of
approximated problems in finite dimensions: to find

hm(t) =
m∑

i=1

λm
i (t)ψi

verifying the following m ordinary differential equations∫
Ω

∂thm(t) ·ψi +
∫

Ω

|∇×hm(t)|p−2∇×hm(t) · ∇×ψi

=
∫

Ω

ϕ(t) ·ψi

(∫
Ω

|ϕ(t)|2
)σ−2

2

, i = 1, . . . ,m,

hm( · , 0) = hm,0 in Ω,
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where h0,m ∈ 〈ψ1, . . . ,ψm〉 is such that h0,m −→
m
h0 in Wp(Ω).

Observe that this system has a unique solution hm ∈ C 1(0, T ; 〈ψ1, . . . ,ψm〉) and is equivalent to∫
Ω

∂thm(t) ·ψ(t) +
∫

Ω

|∇×hm(t)|p−2∇×hm(t) · ∇×ψ(t)

=
∫

Ω

ϕ(t) ·ψ(t)
(∫

Ω

|ϕ(t)|2
)σ−2

2

, ∀ψ ∈ C (0, T ; 〈ψ1, . . . ,ψm〉), (12a)

hm( · , 0) = hm,0 in Ω. (12b)

Using hm as test functions in (12) and integrating in (0, t) we obtain, using Hölder and Young inequalities,∫
Ω

|hm(t)|2 + 2
∫

Qt

|∇×hm|p ≤
∫ t

0

(∫
Ω

|ϕ|2
)σ−1

+
∫

Qt

|hm|2 +
∫

Ω

|h0,m|2.

Applying inequality (3), with q = 2, we obtain the uniform boundedness of (hm)m in L∞(0, T ;L2(Ω))
and of (∇×hm)m in Lp(QT ) and so, since by Proposition 5 the solution hϕ is unique,

hm −−⇀ hϕ in L∞
(
0, T ;L2(Ω)

)
− weak∗,

∇×hm −−⇀ ∇×hϕ in Lp(QT )
)
− weak ∗ .

Using now ∂thm as test functions in (12) and integrating in (0, t) we obtain∫ t

0

∫
Ω

|∂thm|2 +
1
p

∫ t

0

∫
Ω

∂t|∇×hm|p ≤
∫ t

0

∫
Ω

|ϕ||∂thm|
( ∫

Ω

|ϕ|2
)σ−2

2
,

and the same inequality is verified by hϕ. Applying Hölder and Young inequalities we obtain

1
2

∫ t

0

‖∂thϕ‖2
L2(Ω) +

1
p
‖∇×hϕ(t)‖p

Lp(Ω) ≤
1
2
T‖ϕ‖2(σ−1)

L∞(0,T ;L2(Ω))
+

1
p
‖∇×h0‖p

Lp(Ω)

and so the estimates (10) and (11) follow.

Proposition 8. Given h0 ∈ Wp(Ω), 6
5 ≤ p < ∞ and σ ≥ 1, the function S that mapsϕ ∈ C

(
[0, T ];H(div 0,Ω)

)
to hϕ ∈Xp(QT ), solution of problem (5), is continuous.

Proof. Let (ϕn)n be a sequence convergent to ϕ in C
(
[0, T ];H(div 0,Ω)

)
. In order to prove that S is

continuous we are going to prove that S(ϕn) = hϕn
converges to S(ϕ) = hϕ in Lp

(
0, T ; Wp(Ω)

)
and ∂thϕn

converges to ∂thϕ in Lp′
(
0, T ; Wp(Ω)′

)
.

Recall that (see, for instance, [9]) there exists a positive constant Cp such that, for all ξ, η ∈ R3, if p ≥ 2,
we have(

|ξ|p−2ξ − |η|p−2η
)
· (ξ − η) ≥ Cp|ξ − η|p (13)

and, if 1 < p < 2,(
|ξ|p−2ξ − |η|p−2η

)
· (ξ − η) ≥ Cp

(
|ξ|+ |η|

)p−2|ξ − η|2. (14)

We obtain the equation∫ t

0

∫
Ω

(∂thϕn
− ∂thϕ) · (hϕn

− hϕ)

+
∫

Qt

(
|∇×hϕn

|p−2∇×hϕn
− |∇×hϕ|p−2∇×hϕ

)
· ∇×(hϕn

− hϕ)

=
∫

Qt

(f(ϕn)− f(ϕ)) · (hϕn
− hϕ),

5
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using hϕn
− hϕ as a test function in problem (2a) both for hϕn

and hϕ.

• The case p ≥ 2

1
2

∫
Ω

|hϕn
(t)− hϕ(t)|2 + Cp

∫
Qt

|∇×(hϕn
− hϕ)|p

≤ C1

∫
QT

|f(ϕn)− f(ϕ)|2 +
1
2
‖hϕn

− hϕ‖2
L∞(0,T ;L2(Ω)),

and so

‖∇×(hϕn
− hϕ)‖p

Lp(QT ) ≤ C

∫
QT

|f(ϕn)− f(ϕ)|2 .

• The case 6
5 ≤ p < 2

1
2

∫
Ω

|hϕn
(t)− hϕ(t)|2

+ Cp

∫
Qt

(
|∇×hϕn

|+ |∇×hϕ|
)p−2|∇×(hϕn

− hϕ)|2

≤ C1

∫
QT

|f(ϕn)− f(ϕ)|2 +
1
2
‖hϕn

− hϕ‖2
L∞(0,T ;L2(Ω)).

Applying the reverse Hölder inequality with 0 < r = p
2 and r′ = p

p−2 we get∫
Qt

(
|∇×hϕn

|+ |∇×hϕ|
)p−2|∇×(hϕn

− hϕ)|2

≥
( ∫

Qt

∇×(hϕn
− hϕ)|p

) 2
p
( ∫

Qt

(
|∇×hϕn

| + |∇×hϕ|
)p

) p−2
p

.

Using the last two inequalities we obtain

‖∇×(hϕn
− hϕ)‖2

Lp(QT ) ≤ C2

∫
QT

|f(ϕn)− f(ϕ)|2
(∫

Qt

(
|∇×hϕn

|+ |∇×hϕ|
)p

) 2−p
p

.

By inequality (7) and because (ϕn)n converges to ϕ in L∞
(
0, T ;L2(Ω)

)
, the term(∫

Qt

(
|∇×hϕn

|+ |∇×hϕ|
)p

) 2−p
p

is bounded independently of n.
In both cases we proved that

‖∇×(hϕn
− hϕ)‖2∨p

Lp(QT ) ≤ C

∫
QT

|f(ϕn)− f(ϕ)|2 , where 2 ∨ p = max{2, p}.

But, by Lebesgue Theorem,

∫
QT

|f(ϕn)− f(ϕ)|2 −→
n

0 and so (hϕn
)
n

tends to hϕ in Lp
(
0, T ; Wp(Ω)

)
.

In what follows 〈 · , · 〉 denotes the duality paring between Wp(Ω)′-Wp(Ω).∫ T

0

〈
∂thϕn

(t)− ∂thϕ(t),ψ(t)
〉

+
∫

QT

(
|∇×hϕn

|p−2∇×hϕn
− |∇×hϕ|p−2∇×hϕ

)
· ∇×ψ

=
∫

QT

(
f(ϕn) − f(ϕ)

)
· ψ

6
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and so∫ T

0

〈
∂thϕn

(t)− ∂thϕ(t),ψ(t)
〉

≤
∫

QT

∣∣|∇×hϕn
|p−2∇×hϕn

− |∇×hϕ|p−2∇×hϕ
∣∣∣∣∇×ψ∣∣ +

∫
QT

|f(ϕn)− f(ϕ)| |ψ|.

Applying Hölder’s inequality and recalling that Lp
(
0, T ; Wp(Ω)

)
⊆ Lp

(
0, T ;Lq(Ω)

)
, where q′ is the conjugate

exponent of q defined in Lemma 2, we have

‖∂thϕn
− ∂thϕ‖Lp′ (0,T ;Wp(Ω)′) = sup

‖ψ‖Lp(0,T ;Wp(Ω))≤1

∫
QT

(∂thϕn
− ∂thϕ) ·ψ

≤
∥∥|∇×hϕn

|p−2∇×hϕn
− |∇×hϕ|p−2∇×hϕ

∥∥
Lp′ (QT )

+ C1

∥∥f(ϕn)− f(ϕ)
∥∥

Lp′ (0,T ;Lq′ (Ω))
.

From the inequality

∥∥|∇×hϕn
|p−2∇×hϕn

− |∇×hϕ|p−2∇×hϕ
∥∥p′

Lp′ (QT )
≤

{
C‖∇×(hϕn

− hϕ)‖p
Lp(QT ), if p ≤ 2,

C‖∇×(hϕn
− hϕ)‖

p
p−1

Lp(QT ), if p > 2,

as we proved that ∇×hϕn
−→

n
∇×hϕ in Lp(QT ), the term

∥∥|∇×hϕn
|p−2∇×hϕn

− |∇×hϕ|p−2∇×hϕ
∥∥p′

Lp′ (QT )
−→

n
0.

On the other hand, as L∞
(
0, T ;L2(Ω)

)
⊆ Lp′

(
0, T ;Lq′(Ω)

)
, the term∥∥f(ϕn)− f(ϕ)

∥∥
Lp′ (0,T ;Lq′ (Ω))

−→
n

0.

So we conclude that ∂thϕn
−→

n
∂thϕ in Lp′(0, T ; Wp(Ω)′).

Proposition 9. Given h0 ∈ Wp(Ω), 6
5 < p < ∞ and σ ≥ 1, the function S̃ = i ◦ S, where i is the inclusion

of Xp(QT ) into C
(
[0, T ];H(div 0,Ω)

)
, is compact.

Proof. Let FR =
{
S̃(ϕ) : ‖ϕ‖L∞(0,T ;L2(Ω)) ≤ R

}
. Recalling that S̃(ϕ) = hϕ, by the estimate (11) FR is

bounded in L∞
(
0, T ; Wp(Ω)

)
.

Observing that∫
Ω

|hϕ(t + δ)− hϕ(t)|2 =
∫

Ω

∣∣∣ ∫ t+δ

t

∂thϕ(τ)
∣∣∣2 ≤ δ

∫
Ω

∫ t+δ

t

|∂thϕ(τ)|2 ≤ δ‖∂thϕ‖2
L2(QT )

and, as Wp(Ω) is compactly included in L2(Ω) (and also in H(div 0,Ω)), using Theorem 5 of [10] with
X = Wp(Ω) and B = Y = H(div 0,Ω), the conclusion follows.

Theorem 10. For h0 ∈ Wp(Ω), 6
5 < p < ∞ and f(h) = h

(∫
Ω
|h|2

)σ−2
2 , with σ ≥ 1, problem (2) has a

solution h ∈ Lp
(
0, T ; Wp(Ω)

)
∩ C

(
[0, T ];H(div 0,Ω)

)
∩ H1

(
0, T ;L2(Ω)

)
for any positive T , if σ ≤ 2 or

2 < σ < p, and for a small enough T > 0, otherwise.

Proof. By Propositions 8 and 9 we conclude that the function S̃ is continuous and compact.
We start by analyzing the existence of global solution, applying the Leray-Schauder Theorem, proving that

the set{
ϕ ∈ C

(
[0, T ];H(div 0,Ω)

)
: ϕ = λS̃(ϕ) for some λ ∈ (0, 1]

}
is bounded independently of λ.

Let ϕ = λhϕ. We consider two different cases.

7
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• The case 1 ≤ σ < 2
Using (8), we get∫

Ω

|hϕ(t)|2 ≤ 2λσ−1

∫ t

0

( ∫
Ω

|hϕ|2
)σ

2
+

∫
Ω

|h0|2.

So ∫
Ω

|ϕ(t)|2 = λ2

∫
Ω

|hϕ(t)|2 ≤ 2λσ+1

∫ t

0

( ∫
Ω

∣∣∣ϕ
λ

∣∣∣2 )σ
2

+ λ2

∫
Ω

|h0|2

≤ 2λT‖ϕ‖σ
C ([0,T ];L2(Ω)) + λ2‖h0‖2

L2(Ω).

Hence

‖ϕ‖2
C ([0,T ];L2(Ω)) ≤ 2T‖ϕ‖σ

C ([0,T ];L2(Ω)) + ‖h0‖2
L2(Ω),

concluding that

‖ϕ‖C ([0,T ];L2(Ω)) ≤ max
{
1, (2T + ‖h0‖2

L2(Ω))
1

2−σ
}

• The case 2 ≤ σ < p

By inequality (3) and since σ < p, we have( ∫
Ω

|hϕ(t)|2
)σ

2 ≤ C
( ∫

Ω

|∇×hϕ(t)|p
)σ

p ≤ 1
2

∫
Ω

|∇×hϕ(t)|p + C1

and by inequality (9),

1
2

∫
Ω

|hϕ(t)|2 +
∫

Qt

|∇×hϕ|p ≤
1
2

∫
Ω

|h0|2 +
λσ−1

2

∫ t

0

( ∫
Ω

|∇×hϕ(t)|p + 2C1

)
,

so

‖ϕ‖C ([0,T ];L2(Ω)) = λ‖hϕ‖C ([0,T ];L2(Ω)) ≤
(
‖h0‖2

L2(Ω) + 2C1

) 1
2 .

We proceed with the proof of existence of local solution when σ ≥ max{2, p}, using the Schauder Fixed
Point Theorem. From inequality (9) we obtain

1
2

∫
Ω

|hϕ(t)|2 ≤ 1
2

∫
Ω

|h0|2 + C

∫ t

0

‖ϕ(τ)‖2(σ−1)

C ([0,T ];L2(Ω))
+

1
4T

∫ t

0

‖hϕ(τ)‖2
L2(Ω)

≤ CT‖ϕ‖2(σ−1)

C ([0,T ];L2(Ω))
+

1
4
‖hϕ‖2

L∞(0,T ;L2(Ω)) +
1
2

∫
Ω

|h0|2

and, finally,

‖hϕ‖2
L∞(0,T ;L2(Ω)) ≤ 2

∫
Ω

|h0|2 + 4CT‖ϕ‖2(σ−1)

C ([0,T ];L2(Ω))
.

The last inequality proves that for positive big enough R, there exists a sufficiently small T such that
S̃(DR(0)) ⊆ DR(0). Any fixed point of S̃ solves problem (2). The additional regularity of the solution is a
consequence of the estimates obtained before.

Remark 11. For p > 3 any solution h of problem (1) belongs to C (QT ). This is an immediate consequence
of Theorem 5 of [10], choosing X = Wp(Ω), B = C (Ω) and Y = L2(Ω).

For p = 3, h ∈ L∞(QT ) since W3(Ω) ⊆ L∞(Ω).
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3.2 Blow-up

In this section, we study sufficient conditions for the blow-up of solutions h of problem (2). Let us introduce
the energy function

E(t) =
1
p
‖∇×h(t)‖p

Lp(Ω) −
1
σ
‖h(t)‖σ

L2(Ω). (15)

Theorem 12. Let h0 ∈ L2(Ω), 6
5 < p < ∞. Assume that

E(0) =
1
p
‖∇×h0‖p

Lp(Ω) −
1
σ
‖h0‖σ

L2(Ω) ≤ 0 (16)

and

max{2, p} < σ.

Then the solution h of problem (1) blows up (in the sense that ‖h(t)‖L2(Ω) becomes unbounded) on the
finite interval (0, tmax), with

tmax =
λσ

(σ − 2)(λσ − 1)‖h0‖σ−2
L2(Ω)

.

Proof. Using, as before, ∂th as a test function in equation (5a), we obtain∫
Ω

|∂th(t)|2 + E′(t) = 0.

Integrating the last equation and taking into account(16), we obtain

E(t) +
∫

Qt

|∂th|2 = E(0) ≤ 0. (17)

Using h as a test function in (2a) and integrating in time, we obtain

1
2

∫
Ω

|h(t)|2 +
∫

Qt

|∇×h|p =
1
2

∫
Ω

|h0|2 +
∫ t

0

( ∫
Ω

|h|2
)σ

2
.

Denoting F (t) =
1
2

∫
Qt

|h|2 we have F ′(t) =
1
2

∫
Ω

|h(t)|2 and so

F ′(t) = −
∫

Qt

|∇×h|p +
1
2

∫
Ω

|h0|2 +
∫ t

0

( ∫
Ω

|h|2
)σ

2
.

Thus

F ′′(t) =
∫

Ω

∂th(t) · h(t) = −
∫

Ω

|∇×h(t)|p +
( ∫

Ω

|h(t)|2
)σ

2
.

For λ ∈ R+, as, by (17), E(t) ≤ 0, we have

λF ′′(t) ≥ E(t) + λ

(( ∫
Ω

|h(t)|2
)σ

2 −
∫

Ω

|∇×h(t)|p
)

=
(1

p
− λ

) ∫
Ω

|∇×h(t)|p +
(
λ − 1

σ

)( ∫
Ω

|h(t)|2
)σ

2
.

Choosing λ such that 1
σ < λ < 1

p , we obtain

λF ′′ ≥
(
λ− 1

σ

)
2

σ
2 (F ′)

σ
2

9
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and so

F ′′ ≥ C(F ′)
σ
2 , C =

1
λ

(
λ− 1

σ

)
2

σ
2 .

Integrating the last ordinary differential inequality, as σ > 2, we arrive at(
F ′(0)

)σ−2
2

1− σ−2
2 Ct

(
F ′(0)

)σ−2
2

≤
(
F ′(t)

)σ−2
2 ,

or

‖h0‖2(
1− σ−2

2 Ct 2−
σ−2

2 ‖h0‖σ−2
L2(Ω)

) 2
σ−2

≤ ‖h(t)‖2
L2(Ω).

Hence

tmax =
λσ

(σ − 2)(λσ − 1)‖h0‖σ−2
L2(Ω)

.

4 Finite time extinction: f(h) = −h
( ∫

Ω
|h|k

)−λ

In this section, we assume that 6
5 < p < ∞ and we find sufficient conditions on k, λ ∈ R+ for the existence

of solution of problem (2). The proof of existence will be done using the Galerkin method. We also study
sufficient conditions for the finite time extinction of solutions.

We start by setting a topological basis (ψn)n of Wp(Ω) such that ψn ∈ L
∞(Ω), for all n ∈ N. Assuming

that h0 ∈ Wp(Ω), let hm,0 be an approximation, belonging to 〈ψ1, . . . ,ψm〉, of h0, in Wp(Ω). Denoting

hm(t) =
m∑

i=1

λm
i (t)ψi,

the system of ODE’s in the unknowns λm
1 , . . . , λm

m, for t ∈ (0, T ),∫
Ω

∂thm(t) ·ψi +
∫

Ω

|∇×hm(t)|p−2∇×hm(t) · ∇×ψi

+
( ∫

Ω

|hm(t)|k
)−λ

∫
Ω

hm(t) ·ψi = 0, i = 1, . . . ,m,

hm( · , 0) = hm,0 in Ω,

has a unique solution hm ∈ C∞(
0, T ; 〈ψ1, . . . ,ψm〉

)
.

The above system is equivalent to the following one:∫
Ω

∂thm(t) ·ψ(t) +
∫

Ω

|∇×hm(t)|p−2∇×hm(t) · ∇×ψ(t)

+
( ∫

Ω

|hm(t)|k
)−λ

∫
Ω

hm(t) ·ψ(t) = 0, ∀ψ ∈ C∞(
0, T ; 〈ψ1, . . . ,ψm〉

)
, (18a)

hm( · , 0) = hm,0 in Ω. (18b)

Using hm as a test function in (18) we obtain

1
2

∫
Ω

|hm(t)|2 +
∫

Qt

|∇×hm|p +
∫ t

0

( ∫
Ω

|hm|k
)−λ( ∫

Ω

|hm|2
)

=
1
2

∫
Ω

|h0|2,

from which we derive the following a priori estimates, for a positive constant C independent of m,

‖hm‖L∞(0,T ;L2(Ω)) ≤ C, ‖hm‖Lp(0,T ;Wp(Ω)) ≤ C. (19)

10
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4.1 Existence

The proof of existence of solution will be split in three different cases, according to different values of k. For
k = 2 uniqueness is proved.

4.1.1 The case k = 2

Theorem 13. Assume that h0 ∈ Wp(Ω), 6
5 < p < ∞ and 0 < λ < 1. Then problem (2) has a solution

h ∈ L∞
(
0, T ;L2(Ω)

)
∩ L∞(0, T ; Wp(Ω)

)
∩H1

(
0, T ;L2(Ω)

)
.

The solution is unique if λ ≤ 1
2 .

Proof. Let hm be the solution of problem (18) and using ∂thm as a test function in (18), we obtain, for
λ < 1,∫

Qt

|∂thm|2 +
1
p

∫
Ω

|∇×hm(t)|p +
1

2(1− λ)

( ∫
Ω

|hm(t)|2
)1−λ

=
1
p

∫
Ω

|∇×hm,0|p +
1

2(1− λ)

( ∫
Ω

|hm,0|2
)1−λ

. (20)

From (19) and (20) we conclude that there exists a function h belonging to L∞
(
0, T ;L2(Ω)

)
∩

L∞
(
0, T ; Wp(Ω)

)
∩H1

(
0, T ;L2(Ω)

)
such that, at least for a subsequence,

hm −−⇀ h in L∞
(
0, T ;L2(Ω)

)
− weak∗,

∇×hm −−⇀ ∇×h in L∞
(
0, T ;Lp(Ω)

)
− weak∗,

|∇×hm|p−2∇×hm −−⇀ χ in L∞
(
0, T ;Lp′(Ω)

)
− weak∗,

∂thm −−⇀ ∂th in L2
(
Q)

)
− weak.

Observe that, given δ > 0, for t ∈ (0, T − δ) we have∫
Ω

∣∣hm(t + δ)− hm(t)
∣∣2 =

∫
Ω

∣∣∣ ∫ t+δ

t

∂thm(τ)
∣∣∣2 ≤ δ‖∂thm‖2

L2(Q) ≤ δC.

Denoting X = Wp(Ω) and B = Y = H(div 0,Ω) we observe that {hm : m ∈ N} is bounded in
L∞(0, T ;X), ‖τδ(hm)−hm‖L∞(0,T−δ;Y ) −→

δ→0
0, where τδ(f(t)) = f(t+ δ), and X is compactly included in

B, as p > 6
5 . Applying, as before, Theorem 5 [10], we conclude that {hm : m ∈ N} is contained in a compact

subset of C ([0, T ];B). So, at least for a subsequence,∫
Ω

|hm(t)|2 −→
∫

Ω

|h(t)|2, for all t ∈ [0, T ].

Integrating (18) in time and passing to the limit in m, for test functions ψ ∈ Lp
(
0, T ; 〈ψ1, . . . ,ψk〉

)
,

k ∈ N fixed, we obtain∫
QT

∂th ·ψ +
∫

QT

χ · ∇×ψ +
∫ T

0

( ∫
Ω

|h|2
)−λ( ∫

Ω

h ·ψ
)

= 0, (21a)

h( · , 0) = h0 in Ω (21b)

and, afterwards, by density, for all ψ ∈ Lp
(
0, t; Wp(Ω)

)
.

The identification of χ with |∇×h|p−2∇×h follows the arguments of Lions (see [11], p 160) for bounded,
hemicontinuous, coercive and monotone operators. Finally, standard arguments allow us to rewrite (21a) as

the weak formulation introduced in (2) for f(h) = −h
( ∫

Ω
|h|2

)−λ
.

11
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To prove the uniqueness of solution in the case λ ≤ 1
2 , let h1 and h2 be two solutions of (2). Use h1−h2

as a test function in the problem solved by h1 and by h2. Then we get, after subtraction, for Cp defined
in (13), in the case p ≥ 2,

1
2

∫
Ω

|h1(t)− h2(t)|2 + Cp

∫
Qt

|∇×(h1 − h2)|p

+
∫ t

0

( ∫
Ω

|h1|2
)−λ( ∫

Ω

h1 · (h1 − h2)
)
−

∫ t

0

( ∫
Ω

|h2|2
)−λ( ∫

Ω

h2 · (h1 − h2)
)
≤ 0

and, for Cp defined in (14), in the case 6
5 < p < 2,

1
2

∫
Ω

|h1(t)− h2(t)|2 + Cp

∫
Qt

(
|∇×h1|+ |∇×h2|

)p−2|∇×(h1 − h2)|2

+
∫ t

0

( ∫
Ω

|h1|2
)−λ( ∫

Ω

h1 · (h1 − h2)
)
−

∫ t

0

( ∫
Ω

|h2|2
)−λ( ∫

Ω

h2 · (h1 − h2)
)
≤ 0.

Calling y1(t) =
∫

Ω

|h1(t)|2 and y2(t) =
∫

Ω

|h2(t)|2, we obtain, for λ ≤ 1
2 ,

0 ≥
∫ t

0

( ∫
Ω

|h1|2
)−λ( ∫

Ω

h1 · (h1 − h2)
)
−

∫ t

0

( ∫
Ω

|h2|2
)−λ( ∫

Ω

h2 · (h1 − h2)
)

≥
∫ t

0

(
y1−λ
1 + y1−λ

2 − y
1
2−λ
1 y

1
2
2 − y

1
2−λ
2 y

1
2
1

)
=

∫ t

0

(
y

1
2−λ
1 − y

1
2−λ
2

)(
y

1
2
1 − y

1
2
2

)
≥ 0.

From the above inequality we conclude that y1(t) = y2(t) = 0 for a.e. t ∈ (0, T ) and∫ t

0

( ∫
Ω

|h1|2
)−λ( ∫

Ω

h1 · (h1 − h2)
)
−

∫ t

0

( ∫
Ω

|h2|2
)−λ( ∫

Ω

h2 · (h1 − h2)
)

= 0.

Consequently,

1
2

∫
Ω

|h1(t)− h2(t)|2 ≤ 0,

which implies that h1 = h2 a.e. in Q.

4.1.2 The case k > 2

Theorem 14. Suppose that h0 ∈ Wp(Ω), 6
5 < p < ∞, 0 < λ < 1

k , where 2 < k < 3p
3−p if p < 3 and 2 < k if

p ≥ 3.
Then problem (2) has a solution

h ∈ L∞
(
0, T ;L2(Ω)

)
∩ L∞

(
0, T ; Wp(Ω)

)
∩H1

(
0, T ;L2(Ω)

)
.

Proof. Let hm be the solution of problem (18) and using ∂thm as a test function in (18), we obtain∫
Qt

|∂thm|2 +
1
p

∫
Ω

|∇×hm(t)|p =
1
p

∫
Ω

|∇×hm,0|p −
∫ t

0

( ∫
Ω

|hm|k
)−λ( ∫

Ω

hm · ∂thm

)
≤ 1

p

∫
Ω

|∇×hm,0|p + |Ω|
λ(k−2)

2

∫ t

0

( ∫
Ω

|hm|2
) 1−kλ

2
( ∫

Ω

|∂thm|2
) 1

2

≤ 1
p

∫
Ω

|∇×hm,0|p + C(|Ω|)T‖hm‖1−λk
L∞(0,T ;L2(Ω))

+
1
2

∫
Qt

|∂thm|2.

12
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As, by (19), ‖hm‖L∞(0,T ;L2(Ω))is bounded independently of m, there exists a positive constant C such
that

‖∂thm‖L2(Q) ≤ C, ‖∇×hm‖L∞(0,T ;Lp(Ω)) ≤ C.

As in the case k = 2, the set {hm : m ∈ N} is contained in a compact subset of C
(
[0, T );H(div 0,Ω)

)
and this implies that∫

Ω

|hm(t)|2 −→
∫

Ω

|h(t)|2.

But, as k is less than or equal to the critical exponent q defined in Lemma 2, there exist positive constants
C1 and C2 such that

‖hm(t)‖Lk(Ω) ≤ C1‖∇×hm‖L∞(0,T ;Lp(Ω)) ≤ C2,

and Lebesgue Theorem implies that∫
Ω

|hm(t)|k −→
∫

Ω

|h(t)|k.

The conclusion follows as in the proof of Theorem 13.

4.1.3 The case 1 ≤ k < 2

Theorem 15. Suppose that h0 ∈ Wp(Ω), 6
5 < p < ∞ and k, λ are such that for

p < 3, θ =
1
k −

1
2

1
k −

3−p
3p

and 0 < λ <
1− θ

k
; p ≥ 3, θ ∈ (0, 1) and 0 < λ <

1
k

.

Then problem (2) has a solution

h ∈ L∞
(
0, T ;L2(Ω)

)
∩ L∞(0, T ; Wp(Ω)

)
∩H1

(
0, T ;L2(Ω)

)
. (22)

Proof. Using ∂thm(t) as a test function in problem (18) we have, as before,∫
Qt

|∂thm|2 +
1
p

∫
Ω

|∇×hm(t)|p =
1
p

∫
Ω

|∇×hm,0|p −
∫ t

0

( ∫
Ω

|hm|k
)−λ( ∫

Ω

hm · ∂thm

)
. (23)

We consider first the case p < 3. Using Lemma 3, Hölder and Young inequalities we obtain,∣∣∣( ∫
Ω

|hm(t)|k
)−λ( ∫

Ω

hm(t) · ∂thm(t)
)∣∣∣

≤
( ∫

Ω

|hm(t)|k
)−λ( ∫

Ω

|hm(t)|
) 1

2
( ∫

Ω

|∂thm(t)|2
) 1

2

≤ C1

( ∫
Ω

|hm(t)|k
)−2λ

∫
Ω

|hm(t)|2 +
1
2

∫
Ω

|∂thm(t)|2

≤ C1

( ∫
Ω

|hm(t)|k
)2( 1−θ

k −λ)( ∫
Ω

|∇×hm(t)|p
) 2θ

p

+
1
2

∫
Ω

|∂thm(t)|2.

Noticing that p > 2θ because 6
5 ≤ p < 3 and 1 ≤ k < 2 , we obtain( ∫

Ω

|hm(t)|k
)2( 1−θ

k −λ)( ∫
Ω

|∇×hm(t)|p
) 2θ

p ≤ C2

( ∫
Ω

|hm(t)|2
) p

p−2θ ( 1−θ
k −λ)k

+
1
2

∫
Ω

|∇×hm(t)|p,

being this inequality true also because, by assumption, λ < 1−θ
k .

As, by (19), ‖hm‖L∞(0,T ;L2(Ω)) is bounded independently of m, by (23), we have∫
Qt

|∂thm|2 +
1
p

∫
Ω

|∇×hm(t)|p ≤ C +
1
p

∫
Ω

|∇×hm,0|p

and the conclusion follows as in the case k > 2.
The case p ≥ 3 is simpler and is treated similarly.
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4.2 Finite time extinction

We consider two different cases, both with λ > 0:
i) the case 0 < k ≤ 2;
ii) the case 2 < k ≤ 3p

3−p if p < 3 and 2 < k if p ≥ 3.

4.2.1 The case 0 < k ≤ 2

Theorem 16. Let h0 ∈ Wp(Ω), 6
5 < p < ∞, 0 < k ≤ 2 and λ > 0. Define

t∗ =
|Ω|

λ(2−k)
2 ‖h0‖λk

L2(Ω)

λk
. (24)

If h is a solution of problem (2), then, for t ≥ t∗, we have ‖h(t)‖L2(Ω) = 0.

Proof. We start by noticing that, for 0 < k ≤ 2 and f ∈ L2(Ω), we have∫
Ω

|f |k ≤ |Ω|1− k
2

( ∫
Ω

|f |2
) k

2
.

As

1
2

d

dt

∫
Ω

|h(t)|2 +
∫

Ω

|∇×h(t)|p +
( ∫

Ω

|h(t)|k
)−λ( ∫

Ω

|h(t)|2
)

= 0,

we get

1
2

d

dt

∫
Ω

|h(t)|2 + |Ω|
λ(k−2)

2

( ∫
Ω

|h(t)|2
)1−λk

2 ≤ 0.

Calling y(t) =
∫

Ω

|h(t)|2, C = 2|Ω|
λ(k−2)

2 and µ = 1− λk
2 , we obtain the differential inequality

y′(t) + Cy(t)µ ≤ 0.

So,( ∫
Ω

|h(t)|2
)λk

2 ≤ −λk|Ω|
λ(k−2)

2 t +
( ∫

Ω

|h0|2
)λk

2
,

concluding that y(t) = 0 for t ≥ t∗, being t∗ defined in (24).

4.2.2 The case k > 2

Theorem 17. Let h0 ∈ Wp(Ω), 6
5 < p < ∞, λ > 0 and k be such that 2 < k ≤ 3p

3−p if p < 3 and 2 < k if
p ≥ 3.

If h is a solution of problem (2), there exists t∗ (see (26)) such that, for t ≥ t∗ we have ‖h(t)‖L2(Ω) = 0.

Proof. Using inequality (4), we have

( ∫
Ω

|h(t)|k
)−λ( ∫

Ω

|h(t)|2
)
≥ C−λ

( ∫
Ω

|∇×h(t)|p
)−λ kθ

p
( ∫

Ω

|h(t)|2
)1−λ

k(1−θ)
2

,

for k defined in the assumptions and θ as in Lemma 4.

Then, calling µ = 1− λk(1−θ)
2 , we obtain

1
2

d

dt

∫
Ω

|h(t)|2 +
∫

Ω

|∇×h(t)|p + C−λ
( ∫

Ω

|∇×h(t)|p
)−λkθ

p
( ∫

Ω

|h(t)|2
)µ

≤ 0.
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So, denoting y(t) =
∫

Ω

|h(t)|2 and Λ(t) = 2C−λ
( ∫

Ω

|∇×h(t)|p
)−λkθ

p

, we arrive to the differential

inequality

y′(t) + Λ(t)y(t)µ ≤ 0. (25)

Choosing β = p
λkθ , we get∫ t

0

Λ(τ)−β = (2C−λ)−β

∫ t

0

∫
Ω

|∇×h|p ≤ 2−(β+1)Cλβ‖h0‖2
L2(Ω),

because

1
2

∫
Ω

|h(t)|2 +
∫

Qt

|∇×h|p +
∫ t

0

( ∫
Ω

|h|k
)−λ( ∫

Ω

|h|2
)

=
1
2

∫
Ω

|h0|2.

Denoting 2−(β+1)Cλβ‖h0‖2
L2(Ω)

= C0 and using the reverse Hölder inequality with 0 < r = β
β+1 < 1 (so

r′ = −β), we get∫ t

0

Λ(τ) ≥
( ∫ t

0

1
) β+1

β
( ∫ t

0

Λ(τ)−β
)− 1

β ≥ C
− 1

β

0 t
β+1

β .

Integrating (25),

1
1− µ

( ∫
Ω

|h(t)|2
)1−µ

≤ −C
− 1

β

0 t
β+1

β +
1

1− µ
‖h0‖2(1−µ)

L2(Ω)
.

So, defining t∗ by the relation

t
β+1

β
∗ =

Cλ

(1− µ)2
β+1

β

‖h0‖
2−2µ+ 2

β

L2(Ω)
, (26)

with µ and β defined above and C defined in (4), we have

∫
Ω

|h(t)|2 = 0 for all t ≥ t∗.
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