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Abstract 

Vitis vinifera is a major crop worldwide and in Portugal. Berry content in sugars, 

organic acids, phenolics and aroma compounds are fundamental for fruit and wine 

quality. These compounds are accumulated/metabolized during the development of the 

berry. In particular, berry sugar content is directly related to the final alcoholic content 

of wine, and regulates the development of its aromatic and organoleptic properties. 

Massive sugar accumulation in berry mesocarp occurs after véraison due to a 

combined action of monosaccharide (MSTs) and disaccharide transporters (DSTs).  

 High-temperatures affect berry set and development and alter the normal sugar 

content of the fruit. Also, peaks of high temperature, nowadays more and more 

frequent, may stop the ripening progress. We have been exploring the mechanisms 

involved in sugar import and compartmentation into the berry. VvHT1 (Vitis vinifera 

Hexose Transporter 1) is a high affinity plasma membrane H+-dependent symporter 

with broad specificity for monosaccharides abundant at early stages of berry 

development. The expression of this transporter is tightly regulated by sugars at 

transcriptional and post-translational levels. In the present study we aimed at the 

elucidation of the effect of high temperature and temperature fluctuations on sugar 

transport in grape cells. Results showed that a temperature treatment of 38ºC for 12 h 

decreased by 40% the Vmax of 14C-glucose transport in CSB (Cabernet Sauvignon 

Berry) cells. Contrarily, abscisic (ABA) and salicylic acid (SA) stimulated sugar uptake 

by 28.7% and 62.5%, respectively. ABA and SA also stimulated 14C-glucose 

accumulation in intact grape berries by 88.7% and 67.8%, respectively. The down-

regulation of glucose uptake mediated by high temperature corroborated the observed 

decrease of the VvHT1 levels in the plasma membrane. Moreover, after high-

temperature treatment the intracellular ROS levels and lipid peroxidation increased by 

97% and 29%, respectively. Proteomic analysis of the plasma membrane of CSB cells, 

allowed the identification of several proteins up-regulated in response to high 

temperature. It is hypothesised that intracellular ROS levels can mediate this cellular 

response to high-temperature. To study the recycling and turnover of VvHT1 in 

response to high-temperature a VvHT1-GFP expression clone was produced and a 

protocol for transient protoplast transfection is currently being optimized.  

 

 

 

 



v 

 

Resumo 

 
A videira (Vitis vinifera) é uma espécie agrícola de elevada importância ao nível 

mundial e em Portugal. O conteúdo do bago em açúcares, ácidos orgânicos, compostos 

fenólicos e aromáticos determina a qualidade final do fruto e do vinho. Estes compostos 

são acumulados/metabolizados durante o desenvolvimento do fruto. O conteúdo do bago 

em açúcares condiciona o teor alcoólico do vinho, além de regular o desenvolvimento das 

suas propriedades aromáticas e organolépticas. A acumulação massiva de açúcares que 

ocorre no mesocarpo após a fase de pintor (véraison) resulta da acção combinada de 

transportadores membranares de mono (MST) e de dissacarídeos (DST). 

Temperaturas elevadas podem afectar a frutificação e o desenvolvimento do bago, 

bem como alterar o seu conteúdo normal em açúcares. Adicionalmente, picos de 

temperatura, muito frequentes no contexto das modificações climáticas em curso, podem 

comprometer o processo de amadurecimento. O nosso grupo de investigação tem 

dedicado atenção particular ao estudo dos mecanismos envolvidos no transporte e 

compartimentação de açúcares no bago. O transportador da membrana plasmática VvHT1 

(Vitis vinifera Hexose Transporter 1), expresso nas fases iniciais do desenvolvimento do 

bago, medeia a incorporação da glucose e de outros monossacarídeos por um mecanismo 

de simporte com H+. A expressão deste transportador é finamente regulada pelo teor em 

açúcares ao nível transcricional e pós-transcricional. No presente trabalho foi estudado o 

efeito de temperaturas elevadas, e de flutuações de temperatura, no transporte de 

açúcares em células de videira. Os resultados demonstram que um pico de temperatura de 

38ºC aplicado durante 12 h reduz em 40% a Vmax de transporte da 14C-glucose em culturas 

celulares (CSB, Cabernet Sauvignon Berry). Contrariamente, o ácido abcísico (ABA) e o 

ácido salicílico (SA) estimularam o transporte de açúcar em 28,7% e 62,5%, 

respectivamente. O ABA e o SA também estimularam a incorporação de 14C-glucose em 

bagos intactos em 88,7% e 67,8%, respectivamente. A repressão do transporte da glucose 

causada por temperaturas elevadas correlacionou-se com a detecção de níveis diminuídos 

do VvHT1 na membrana plasmática. Adicionalmente, a exposição a elevadas 

temperaturas aumentou os níveis intracelulares de ROS e de peroxidação lipídica em 97% 

e 29%, respectivamente. Uma análise de proteómica efectuada em membranas 

plasmáticas de células CSB, permitiu a identificação de diversas proteínas 

especificamente expressas em resposta a temperaturas elevadas. É discutido que o 

aumento observado dos níveis intracelulares de ROS podem mediar esta resposta celular 

a elevadas temperaturas. No sentido de estudar a reciclagem e turnover do transportador 

VvHT1 em resposta a temperaturas elevadas, foi construído um clone de expressão 

VvHT1-GFP e optimizado um protocolo de transformação de protoplastos.  
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Abbreviations and acronyms 

 

2-NBDG  2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose 

ABA    Abcisic acid 

ASR   ABA abscisic acid-, stress-, and ripening-induced 

BOR1   Boron transporter 1 

BSA   Bovine serum albumin 

cDNA   Complementary DNA 

CHIP   Carboxyl terminus of Hsc70-interacting protein 

CSB   Cabernet Sauvignon berry 

DNA   Deoxyribonucleic acid  

DTT   Dithiothreitol 

dpm   Disintegrations per minute  

DST   Disaccharide transporter 

DW   Dry weight 

EDTA   Ethylenediamine tetraacetic acid 

FAO   Food and agriculture organization 

FDA   Fluorescein diacetate 

FW   Fresh weight 

GFP   Green fluorescent protein 

GUS   β-Glucuronidase 

H2DCFDA  2',7'-dichlorodihydrofluorescein diacetate 

HSP   Heat shock protein 

kDa   Kilodalton 

LB    Luria broth 

LC MS/MS  Liquid chromatography-tandem mass spectrometry 

MDA   Malondialdehyde 

MES   2-(N-morpholino)ethanesulfonic acid 

MFS   Major facilitator superfamily 

MS    Murashige and Skoog 

MST   Monosaccharide transporter 

NADPH  Nicotinamide adenine dinucleotide phosphate 

PAGE   Polyacrylamide gel electrophoresis 

PBS   Phosphate buffered saline 

PCR   Polymerase chain reaction 

PEG   Polyethylene glycol 

PMSF   Phenylmethylsulfonyl fluoride 
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PVPP   Polyvinylpyrrolidone 

RNA   Ribonucleic acid 

ROS   Reactive oxygen species 

RT-PCR  Reverse transcriptase-PCR 

SA   Salicylic acid 

SDS   Sodium dodecyl sulphate 

SE/CC   Sieve elements/companion cell 

TBA   Thiobarbituric acid 

TCA   Trichloroacetic acid 

TE   Tris-EDTA 

Tris    Tris(hydroxymethyl)aminomethane 

VvHT   Vitis vinifera hexose transporter 

VvMSA   Vitis vinifera maturation-, stress-, ABA-induced protein 

VvSK1   Vitis vinifera sugar-inducible protein kinase 1 

VvSUC  Vitis vinifera sucrose transporter 
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Grapes (Vitis spp.) are economically the most important fruit species in the world. 

More than 50 species are recognized in the grape genus Vitis, but almost all world wine 

is made from Vitis vinifera, native to the area south of the Caucasus Mountains and the 

Caspian Sea (Kunkee and Goswell 1996). In 2009 the vineyard area cultivated in the 

world and total fruit production was of 7,437,141 ha and 66,935,199 t, respectively. In 

the same year in Portugal the vineyards occupied the largest cultivated area for a fruit 

crop (222,700 ha) and had the greatest production (487,800 t) (FAO 2009). 

Approximately 71% of grape production is used for wine, 27% as fresh fruit, and 2% as 

dried fruit (Conde et al. 2007). Throughout antiquity the conversion of grapes into wine 

was considered a gift from the gods and the best wines were reserved for the elite of 

the society. Nowadays, wine is an integral component of the culture of many countries, 

a form of entertainment in others, and a libation of choice for advocates of its health 

benefits. Unlike many modern foods, wine’s attraction relies not on strong consistent 

flavors, but upon a subtle array of shifting sensations that make its charm difficult to 

define (Bisson et al. 2002).  

Wine is composed of various constituents that include water, sugars, alcohol, 

phenolics, acids and mineral salts. The main constituent of wine is water accounting for 

75 to 90% (v/v), and this variation is explained by the amount of the other constituents 

that form the wine extract that differ from wine to wine. The second largest constituent 

is ethyl alcohol, which, according to the type of wine, varies from 8% to 15% (v/v). 

Another important constituent is sugar, which is directly responsible for the final 

alcoholic content of the wine. A normal dry wine generally has less than 2 g sugar/L, 

while in a botrytized sweet wine it can reach almost 200 g sugar/L (Dominé et al. 

2004).  

Vineyards can be found in Europe, Northern and Southern America, Africa and 

Asia. Although this worldwide distribution, the most important factor for viticulture is 

climate and, above all, temperature. Grapes clearly prefer moderate conditions, and 

rarely thrive where temperatures rise above 25ºC in the summer months. In a large 

part of Western Europe, the location of the majority of Europe’s classic viticultural 

regions, average July temperatures vary between 15 and 25°C. Rainfall and drought 

also play an important role, and it is almost impossible to grow vines with less than 200 

mm of rain a year. On the other hand, too much rain also makes it difficult to cultivate 

grapes. A moderate climate, with adequate to relatively high rainfall, provides ideal 

conditions for producing both fragrant white wines with a good structure and acidity, 

and well-balanced red wines with good potential for maturing (Dominé 2004). Wine 

quality largely depends on the vineyard and on the vine grower. Most of the wine 

compounds are produced by the plant itself, in the leaves (sugars and acids), and in 
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berry (acids and phenolics). Furthermore, some molecules related to aroma and taste 

are produced during the fruit development and ripening, being their spectrum specific 

to a given variety. Theses aromas, called “varietal” or primary aromas, are the grape’s 

signature, recognizable by the consumer during degustation. Thus, the growth and the 

fructification of grapevines in the vineyard are of utmost importance to wine quality 

(Blouin and Guimberteau 2000). 

 

1.1 Grape berry structure and development 

 

Grape berry, a non-climateric fruit, is essentially an independent biochemical 

factory (Gholami et al. 1995), and is mainly composed of three distinct tissues, skin, 

flesh and seeds (Figure 1), with the sheer bulk of wine being derived from the flesh. 

These tissues vary considerably in composition and contribute differently to the overall 

wine composition. The flesh accounts for 75-85% of total berry weight, while the skin 

and the seeds account for about 7% and 4%, respectively (reviewed by Conde et al. 

2007; Jackson 2008).  Also, the grape berry is richly supplied with vascular tissue, 

which after it enters the fruit via the pedicel, branches out to supply the developing 

seeds, the flesh and the skin (Hardie et al. 1996).  

The grape berry skin contributes to the integrity of the whole berry by protecting 

inner tissues against mechanical damage or pathogen attack, promotes seed 

dispersion by providing a high contrast between background foliage and fruits as well 

as providing protection from UV light exposure (Grimplet et al. 2007). The vacuole of 

skin cells is where most of the aromas that arise from volatile compounds, such as 

terpenes, norisoprenoids, and thiols, are stored as sugar or amino acid conjugates. 

These compounds are fundamental for wine making, and the variability of skin 

composition plays an important role in determining the color, aroma, and other 

organoleptic properties of wine (Lund and Bohlmann 2006).  

The primary role of the flesh is to provide a high value nutritional content for 

dispersal agents, including high concentrations of free amino acids and hexose sugars 

(mainly sucrose and fructose). During wine production, the flesh contributes with the 

majority of sugars, which are transformed into alcohol during the fermentation process 

(Grimplet et al. 2007). Also, the berry flesh accumulates organic acids (mainly tartaric 

and malic), mineral cations (especially K+), nitrogenous compounds (soluble proteins, 

ammonia and amino acids), pectic substances (cell wall structural material composed 

of galacturonic acid polymers) and non-flavonoid phenolics (primarily benzoic and 

cinnamic acid derivatives).  
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The seeds are the main source of flavan-3-ol monomers and procyanidins that 

have an important contribute to the organoleptic properties of wine including bitterness 

and astringency (Robichaud and Noble 1990). 

 

 

Figure 1.  Structure of a ripe grape berry, depicting the three primary tissues: skin, flesh 

and seeds (Conde et al 2007) 

 

Grape berry development, from fruit set to full maturation, is a complex series of 

processes requiring the coordination of a large number of events involving substantial 

and rapid changes in a number of tissues (Conde 2007). In grapes fruit set is defined 

as the stage when the berry diameter is between 1.6 and 3.2 mm. Climatic factors have 

a significant effect on fruit set, and, particularly, temperature can inhibit pollen tube 

growth and ovule fertilization. Also, fruit set is greatly reduced when temperatures fall 

below 18.3°C or exceed 37.8°C (Dookozlian 2000).  

The development of the grape berry has been divided into three phases. 

Increases in berry weight, volume, or diameter during development are typically 

characterized by a double-sigmoid curve resulting from two consecutive stages of 

growth separated by a phase of slow or no growth (Figure 2; Coombe 1992; 

Dookozlian 2000). The first phase (green stage) is a period of rapid berry growth that 

occurs immediately after bloom. During this time, berries grow both through rapid cell 

division and cell enlargement. In this phase berry texture is firm, while its color is green 

due to the presence of chlorophyll. The sugar content of the berry remains low, while 

organic acids accumulate, mainly tartaric and malic acids (Figure 2). Berry growth 

during stage I is very sensitive to temperature. Temperatures exceeding 35°C reduce 

growth rate and size at harvest and light is also important for optimum berry growth. 

Berries subject to heavy shade immediately after berry set are significantly smaller at 

harvest than berries that have been well exposed to light. The second phase (lag 
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phase) is marked by decrease in the growth rate while its organic acid concentration 

reaches its highest level and the berries remain firm and begin to lose the chlorophyll 

content. This phase ends with the véraison, a French term that defines the onset of 

ripening, and the last phase of berry development begins (Figure 2). The third phase 

(ripening phase) of berry development is characterized by striking changes in fruit 

characteristics. The berry dramatically increases in size mainly due to cell expansion, 

which is caused by massive sugar accumulation, water import and also to the 

deposition of phenolics, among others (Reviewed by Conde et al. 2007). Also, the 

berries soften and lose chlorophyll, the concentration of organic acids greatly declines, 

and is observed a colour development and the synthesis and accumulation of aroma 

and flavour compounds (Figure 2). This phase of berry development is of remarkable 

importance to wine industry, considering that the accumulation of these compounds 

results in an increase of the organoleptic properties of the fruit and wine. When 

conditions are warm and degree-days accumulate rapidly, ripening is accelerated. 

Prolonged periods of excessively high temperatures following berry softening, for 

instance 3 to 4 consecutive days above 40.6°C, may retard berry ripening. The effects 

of elevated temperatures on fruit ripening are temporary and, depending upon the 

degree of heat stress, sugar accumulation can proceed normally once temperatures 

return to a normal range (Dookozlian 2000). 

 

 

 Figure 2.  Grape berry development and ripening.  
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1.2 Hormonal control of berry development 

Grape berry development is under tight hormonal regulation, and several 

hormones have been identified and characterized as regulators of fruit ripening. The 

pattern of ABA accumulation during berry development is well defined, with high free 

ABA levels in the flesh of young berries, followed by a rapid decreased to low levels 

that remains during most of the pre-véraison phase (Wheeler et al. 2009). After 

véraison, a peak of ABA level occurs simultaneously with an increase in sugar 

accumulation and color development. Following this peak in ABA levels after véraison, 

the levels declined as the fruit reaches full ripeness (Kondo et al. 1998; Owen et al. 

2009). This pattern of accumulation provides correlative evidence for a role of ABA in 

ripening and perhaps in its initiation. Also, ABA is mainly found in the phloem of the 

berry which is consistent with a role in the unloading and uptake of photoassimilates 

(Kataoka et al. 1982; Shiozaki et al. 1999). 

 Salicylic acid is involved in signalling in plants, particularly in the induction of 

defense and stress responses (Bari and Jones 2009). The levels of salicylic acid during 

grape berry development have not yet been reported, and so it is difficult to propose a 

developmental role for this hormone.  

Like other plant hormones cytokinins are involved in a diverse range of processes 

(Werner and Schmülling 2009). Cytokinins levels are high in one week old berry flesh 

but decreased rapidly to low levels by the time of véraison (Zhang et al. 2003). This 

pattern of accumulation is in agreement with the proposed roles for cytokinins in flower 

development and fruit set, and is also consistent with the ability of cytokinins to delay 

berry development (Werner and Schmülling 2009).  

Brassinosteroids are generally associated with plant growth and stress response 

(Haubrick and Assmann 2006). Recently a role for brassinosteroids in fruit 

development, in particular during ripening, was described (Symons et al. 2006). High 

levels of brassinosteroids where found in flowers and young leaves, declining prior to 

véraison. Furthermore it has been described a peak in brassinosteroids after véraison 

followed by a rapid decline (Wang et al. 2001). This pattern of accumulation suggest 

that brassinosteroids may play a role in ripening-associated processes, for example, in 

the post-véraison phase of berry growth or perhaps it is part of a response to the stress 

resulting from the massive sugar influx that occurs after véraison.  

Auxins levels are high in the early phases of berry development, after which they 

decline steadily to very low levels at véraison (Inaba et al. 1976). The high levels early 

in berry development are in agreement with the proposed role for auxin in cell division 

and expansion. 
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Gibberellins are regulators of many processes during plant development involving 

cell division and expansion (Olszewski et al. 2002). The consensus of a number of 

studies is that gibberellins levels in the flesh of seeded berries were high at around 

flowering and early in berry development after which they decreased steadily (Pérez et 

al. 2009). The observed pattern of gibberellins accumulation is consistent with the 

proposed role in cell division and expansion in the initial stages of berry development.  

 

1.3 Effect of temperature on grape berry 

 

High temperatures are a major threat to crop productivity. As it was already 

mentioned, temperature has a dramatic effect in the berry development altering normal 

berry set, inhibiting pollen tube growth and ovule fertilization. Also, high temperatures 

during the initial stages of berry development dramatically reduce the berry size and 

weight at harvest, and it is known that high temperature peaks may stop the ripening 

progress (Dookozlian 2000).  

High temperature affects berry composition, especially titratable acidity, total 

soluble solids, and anthocyanin content (Poudel et al. 2009). It has been reported that 

temperature has a dramatic effect on anthocyanin accumulation in grape berry skin, a 

major contributor to wine organoleptic properties and quality (Mori et al. 2005; Yamane 

et al. 2006). It was found that a 30°C night temper ature greatly reduces the coloration 

of Cabernet Sauvignon grapes as compared to fruits ripened at night time 

temperatures of 15 and 20°C (Kliewer 1972). The lim iting factor behind this decrease in 

anthocyanin synthesis and accumulation under high temperature appears to be a 

reduced accumulation of soluble sugars in fruit (Mazza and Miniati 1993). In fact high 

temperatures appear to limit glucose and fructose accumulation in the berry. Poudel et 

al (2009) reported that vines exposed to 30°C had a  lower glucose and fructose 

content than vines subjected to 20 and 25 °C. The e nhanced expression of various 

genes of the anthocyanins biosynthetic pathway in the berry skin may be correlated 

with the concomitant accumulation of sugars in the flesh and, concordantly, sucrose 

treatment promotes anthocyanin synthesis in V. vinifera cell cultures (Agasse et al 

2007; Agasse et al. 2008). Although some studies have been developed to evaluate 

the effect of temperature on the grape berry composition, little information is available 

at the molecular level. 
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1.4 Long distance sugar transport 

Efficient assimilation and use of nutrients by plants is of prime importance for the 

optimization of crop productivity. The grape berry is considered to be mainly a sink for 

primary metabolites essential for plant survival, and rely on the use of available 

carbohydrate resources produced by photosynthesis to support their growth and 

development. Sugars transport and allocation between the photosynthetic “source 

tissues” and the heterotrophic “sink tissues” is known as assimilate partitioning and is a 

major determinant of plant growth and productivity (Kingston-Smith 2001).  

In the majority of plants sucrose is the main sugar transported via the floem, 

although several other solutes have been identified, including raffinose, stachiose and 

the sugar-alcohols mannitol and sorbitol. The main advantage for long distance 

transport of sucrose is its non-reducing nature and relative insensitivity to metabolism 

(Salisbury and Ross 1994), allowing long distance transport without the problem of 

metabolism easily encountered with glucose. Also, according to Munch’s mass flow 

hypothesis, sucrose, as the major osmotically active constituent in the phloem, also 

provides the driving force for translocating all other compounds in the phloem sap 

(Conde et al. 2006). Sucrose derived from leaf photosynthesis is exported via the 

phloem to the berries. From véraison and throughout ripening the berries accumulate 

roughly equal amounts of glucose and fructose, reaching over 1 M of each hexose, 

suggesting that phloem transported sucrose is hydrolyzed at some step during its 

transport from the leaves to the vacuole of the mesocarp cell (Figure 3; Coombe 1987; 

Conde et al. 2006; Conde et al. 2007; Agasse et al. 2009).  

From its point of synthesis in the mesophyll sucrose may be loaded into the 

SE/CC complex either through plasmodesmata or via the apoplast. Apoplastic loading 

requires sucrose export from the mesophyll or the vascular parenchyma by a sucrose 

exporter that remains unidentified, and reuptake into the SE/CC complex by a 

sucrose/H+ symporter. When in the phloem, hydrostatic pressure drives phloem sap 

movement toward sink tissue. Passive leakage can take place along the path and 

reuptake of leaked sucrose occurs along the phloem. Phloem unloading also occurs 

through a symplastic (via the plasmodesmata) and apoplastic mechanism. Apoplastic 

phloem unloading implies the existence of a sucrose exporter that remains unidentified, 

at the sink tissue. In the berry tissues symplastic connections via plasmodesmata 

between sieve tubes and mesocarp cells remain for quite a long period during fruit 

development. However, several lines of evidence indicate that the apoplastic pathway 

play a major role at late stages of grape berry development. Indeed, there is a shift 

from symplastic to apoplastic phloem unloading at the onset of ripening (Zang et al., 
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2006). The data available on invertase activity also support an apoplastic pathway of 

sugar unloading during grape berry development (Agasse et al. 2006; Agasse et al 

2009). It appears that sugar accumulation in sink organs would rather result from the 

coordinated action of several mechanisms, involving various transporters and 

hydrolytic enzymes. Therefore, the presence of an apoplastic step requires the 

involvement of membrane-located sugar transporter proteins mediating the exit of 

sucrose from the phloem, and the uptake and compartmentation of sugars across the 

plasma membrane and the tonoplast of flesh cells. Concordantly, both DST and MST 

families have been characterized in plants (reviewed by Williams et al. 2000) 

 

 
Figure 3.  Long distance sugar transport through the floem. From the place of sinthesys in 

the leaves mesophyll, sucrose may be loaded into the sieve elements/companion cell complex 

by apoplastic and symplastic mechanisms. Hydrostatic pressure drives phloem sap movement 

toward sink tissues. The unloading of the floem may occur via the apoplast, in coordination with 

cell wall invertases and monosaccharide transporters, or through plasmodesmata (Adapted 

from Lalonde et al. 1999). 

 

1.5 Disaccharide transporters 

 

It has already been mentioned that sucrose is the main carbohydrate transported 

through the phloem. The first plant sucrose transporter was identified in spinach and 

named SoSUT1 (Spinacea oleracea Sucrose Transporter 1), followed by the cloning of 

the potato sucrose transporter, StSUT1 (Solanum tuberosum Sucrose Transporter 1) 
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(Reismeiner et al 1992; Reismeiner et al 1993). In situ studies showed that the sucrose 

carrier from potato, StSUT1, is highly expressed in the phloem of the leaf minor veins, 

the major site of phloem loading (Reismeiner et al 1993). The cloning of several DST 

led to the establishment of a topological protein model. The protein structure is 

composed of 12 α-helices domains highly conserved and a cytoplasmatic loop with a 

high degree of variability. 

The importance of sucrose transporters in phloem loading was further supported 

by studies on transgenic potato and tobacco plants. In these studies, antisense RNAs 

were used to reduce the level of the sucrose carrier SUT1 in the phloem (Reismer et al 

1994; Kuhn et al. 1996; Lemoine et al. 1996; Burkle et al. 1998). Results correlated 

with the expected function of SUT1 in phloem loading, considering that the antisense 

plants showed a retarded growth phenotype on soil, and their source leaves were 

found to export fewer sugars causing an accumulation of carbohydrates in the leaves 

and a concomitant decrease in the sink tissues. These observations clearly showed 

that sucrose transporters in the phloem are essential for carbohydrate partitioning, at 

least in tobacco and potato, both members of the Solanaceae family (Tuernit 2001). 

In Vitis vinifera three DST cDNAs were cloned (VvSUC11, also identified as 

VvSUT1, VvSUC12 and VvSUC27) and characterised as proton-dependent sucrose 

transporters, whereas 9 DSTs sequences are present in Arabidopsis genome (Sauer et 

al. 2004). VvSUC11 and VvSUC12 are intermediate affinity sucrose transporters with 

Km of 0.9 mM and 1.4 mM, respectively (Ageorges et al. 2000, Manning et al. 2001), 

and VvSUC27 is a low affinity sucrose transporter with a Km of about 10 mM (Zhang et 

al. 2008). VvSUC11 is expressed in flowers and fruits whereas VvSUC12 expression is 

restricted to berries and young leaves. VvSUC27 expression is closely related to sink 

activity since its transcripts are strongly accumulated in flowers and unripe berries, 

roots and tendrils but poorly present in mature leaves being associated with the early 

stages of berry development (Davies et al. 1999). Furthermore, VvSUC11 and 

VvSUC12 transcription increases with post-véraison sugar accumulation, which 

suggests a direct pathway for sucrose acquisition by berry cells (Davies et al.  1999). In 

spite of the available information regarding grapevine sucrose transporters, the 

knowledge about the localization of sucrose transporters in berry flesh and the 

mechanisms of sucrose uptake along ripening is scarce and further investigation is 

needed. 
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1.6 Monosaccharide transporters (MST) 

 

Monosaccharides represent the most important carbon and energy source for the 

majority of heterotrophic organisms. In the Calvin cycle and gluconeogenesis the 

carbon (CO2) fixated through photosynthesis is converted to monosaccharides, like 

glucose and fructose (Buttner and Sauer 2000). The first MST cloned was the HUP1 

(Hexose Uptake Protein 1) from the unicellular algae Chlorella kessleri. These cells can 

switch from an autotrophic to a heterotrophic metabolism inducing hexose transporters 

when sugars are available. This interesting feature of the algae metabolism led to the 

identification of a 49 kDa protein by differential screening of cDNA libraries of induced 

and non-induced cells (Sauer and Tanner 1989). The functional characterization of the 

protein by complementation of hexose transport null-mutant yeasts demonstrated that 

the transport was a hexose-proton symport (Sauer et al. 1990). Since then several 

MST have been identified. A. thaliana genome has 53 homologous sequences 

encoding putative MSTs (Büttner 2007).  A remarkable feature is that all MST share the 

same 12 transmembrane domains with N- and C- cytoplasmic termini structure, a 

characteristic of all sugar transporters belonging to the Major Facilitators Superfamily 

(Figure 4; Williams et al. 2000, Delrot et al. 2001).  

In V. vinifera 59 putative hexose transporters encoding genes have been 

identified based on protein motif recognition (Samson et al. 2004, Jaillon et al. 2007). 

Six full length cDNAs encoding for MST and named VvHT1-6 (V. vinifera Hexose 

Transporter 1-6) were previously cloned from various grape cultivars such as Pinot 

noir, Ugni blanc, Chardonnay, Cabernet Sauvignon and Syrah (Fillion et al. 1999; 

Vignault et al. 2005; Hayes et al. 2007).  The predicted peptides share about 60% 

identity to each other (Büttner and Sauer 2000, Büttner 2007). Interestingly, VvHT6 is 

related to AtTMT2 (Arabidopsis thaliana Tonoplast Monosaccharide Transporter 2), a 

member of the Tonoplast Monosaccharide Transporter subfamily of the Major 

Facilitators Superfamily. AtTMTs are tonoplastic hexose-proton antiporters induced by 

abiotic stresses such as cold or drought and were suggested to play a role as sensors 

(Wormit et al. 2006).   

Uptake activities of VvHT1, VvHT4 and VvHT5 have been demonstrated by 

heterologous expression in the hxt-null mutant yeast EBY VW 4000 (Wieczorke et al. 

1999). All three VvHTs are high affinity, H+-dependent transporters mediating the 

uptake of radiolabelled D-[U-14C]glucose according to saturable Michaelis-Menten 

kinetics. VvHT1 exhibits the highest affinity for glucose (Km of 70 µM) compared to 

VvHT4 and VvHT5 (Km about 150 µM and 100 µM, respectively) and is the only one 

able to restore the growth of the complemented yeast on glucose. VvHT3 was not able 
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to transport any of the tested radiolabelled sugars in the deficient yeast model (Vignault 

et al. 2005; Hayes et al. 2007). Up to date, attempts to confirm the transport activity of 

both VvHT2 and VvHT6 in yeast has had little success.  

 

 

 

Figure 5.  Topological model of VvHT1, a typical MST, with 12 trans-membrane domains 

with N- and C- cytoplasmic termini structure characteristic of the Major Facilitators 

Superfamily. 

 

1.7 Identification, localization and characterizati on of the grape berry 

monosaccharide transporter VvHT1  

 

VvHT1 was firstly identified and cloned by Fillion et al. (1999) from two different 

grape cultivars, Pinot Noir and Ugni-Blanc. Preliminary studies by reverse transcription-

PCR suggested that VvHT1 was mainly expressed in the berries, with a first peak of 

expression at anthesis, and a second peak about 5 weeks after véraison. Although it 

has been reported that VvHT1 expression slightly increases after véraison in Ugni-

Blanc berries (Fillion et al. 1999), detailed microarray analysis suggested that the 

second peak of expression does not occur in berries from Chardonnay, Shiraz, and 

Cabernet Sauvignon varieties (Terrier et al. 2005). VvHT1 was characterized as an 

MST by heterologous expression in both Nicotiana tabacum and yeast (Leterrier et al. 

2003; Vignault et al. 2005). Studies performed on tobacco Bright-Yellow cells 

transformed with different lengths of the VvHT1 promoter transcriptionally fused to β-

glucuronidase reporter gene (VvHT1-GUS) suggested that this MST is regulated by 

sucrose, the non-transported sucrose isomer palatinose and glucose, whereas fructose 

did not affect it. Furthermore, the authors demonstrated that in grape cell suspension 

sucrose and palatinose increase the expression of VvHT1 (Figure 5; Atanassova et al 
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2003). These results provided the first example of a putative sugar transporter, which is 

induced by both glucose and sucrose in higher plants (Atanassova et al 2003). 

 

 
Figure 5.  Studies of the regulation of VvHT1 expression. A) Regulation by different 

sugars studied with a fusion of the VvHT1 promoter with the reporter gene GUS. B) Analysis of 

the VvHT1 transcripts enhanced by sucrose and sucrose analog palatinose (Adapted from 

Atanassova et al. 2003). 

Following this line of work, Cakir et al. (2003) identified an ASR protein in grape, 

VvMSA (Vitis vinifera Maturation-, Stress-, ABA-induced protein), by means of a yeast 

one-hybrid approach using as target the proximal promoter of the VvHT1, that contains 

two sugar boxes and is induced by sucrose and glucose, as it was previously 

mentioned. VvHT1 and VvMSA are both inducible by sucrose in grape berry cell 

culture, and sugar induction of VvMSA is enhanced strongly by ABA. Gel-shift assays 

demonstrated a specific binding of VvMSA to the VvHT1, suggesting that this ASR 

protein may be part of the transcriptional complex mediating the sugar-inducible 

expression of VvHT1. Also, the positive regulation of VvHT1 promoter activity by 

VvMSA in planta was confirmed by coexpression experiments (Cakir et al. 2003). 

VvHT1 localization was elucidated by Vignault et al. (2005) using in situ hybridization, 

immunofluorescence and immunogold labelling experiments. In situ hybridization 

showed that VvHT1 transcripts are primarily found in the phloem region of the 

conducting bundles, and immunofluorescence and immunogold labelling experiments 

localized VvHT1 in the plasma membrane of the sieve element/companion cell 

interface and of the flesh cells. These studies suggested that VvHT1 is involved in the 

retrieving of the monosaccharides needed to provide the energy necessary for cell 

division and cell growth at an early stage of berry development (Vignault et al. 2005). 
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Figure 6.  Kinetics and specificity of the monosaccharide transport system of V. vinifera 

cultured cells (CSB, Cabernet Sauvignon Berry). A) Initial uptake rates of 0.02 - 0.5 mM D-

[14C]glucose. B) Eadie-Hofstee plots of the initial uptake rates of D-[14C]glucose in the absence 

of other sugars (closed squares) and in the presence of 5 mM xylitol (open circles), 5 mM 

galactose (lozenge), 5 mM mannitol (open squares), and 5 mM arabinose (inverted triangles). 

C) Eadie-Hofstee plots of the initial uptake rates of D-[14C]glucose in the absence of other 

sugars (closed squares) and in the presence of the glucose analogs L-glucose (8 mM; open 

triangle), 2-deoxy-D-glucose (0.5 mM; open lozenge) and 3-ortho-metil-glucose (0.5 mM; closed 

circles). Adapted from Conde et al. (2006). 

 

In grape cell suspensions Conde et al. (2006) characterized VvHT1 as a high-

affinity (Km= 0.05 mM glucose), broad-specificity (Figure 6) monosaccharide-proton co-  

transport system. The high affinity measured for the H+-dependent monosaccharide 

transport may be important for cell growth in media with limiting sugar supply.  

As shown in Figure 7, VvHT1 transcription, VvHT1 protein amount and glucose 

transport are tightly regulated by sugar availability in the culture medium. Additional 

evidences supported the involvement of hexokinase as a sugar sensor. When high 

levels of glucose are present, energy-independent, diffusional uptake is the preferred 

mode of sugar absorption. Under these conditions, VvHT1 expression is maintained at 

basal levels due to the balance between a positive induction signal generated by the 

presence of glucose and a repression signal due to high glucose levels sensed by 
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hexokinase. Additionally, high glucose levels seem to repress glucose transport activity 

at the protein level, triggering inactivation, mistargeting, and/or proteolysis of VvHT1. 

The absence of the repression signal generated by hexokinase allows the increase of 

VvHT1 transcripts and, in accordance, the number of high-affinity monosaccharide/H+ 

symporters in the plasma membrane (increase of Vmax), ensuring a high-transport 

capacity at limiting glucose conditions (Figure 8). These findings correlate well with the 

expression of the VvHT1 in the early stages of berry development, when the sugar 

levels in the berry are low. 

 

 

 
Figure 7. Regulation of VvHT1 transcripts and protein levels in CSB cells by glucose 

concentration in the growth medium (Conde et al. 2006). 
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Figure 8.  Model of the glucose regulation of VvHT1 expression and glucose transport 

activity. Glucose (closed circles), proton (opened circles), hexokinase (HXK). (Conde et al. 

2006) 
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2.1 Biological Material 

2.1.1 CSB cultured cells 

CSB (Cabernet Sauvignon Berry) cells were maintained in 250 mL Erlenmyers 

with MS medium (Murashige and Skoog 1962) supplemented with 2% (w/v) sucrose, in 

an orbital shaker at 100 rpm and 23°C in the dark. The cells were sub-cultured after 7 

days, at the end of the exponential growth phase.  

 

 2.1.2 Intact grape berries  

Grape berries from the Alvarinho cultivar were used to study sugar incorporation. 

Berries were randomly collected from the bunches 8 weeks after fruit set (10 to 12 mm; 

0.75 to 0.85 g) and maintained at 4ºC before use.  

2.1.3 Bacterial cells 

The E. coli cells used to amplify the plasmid vectors were from the One Shot 

MAX Efficiency DH5α-T1R (Invitrogen), and were transformed with a chemical method, 

accordingly to the manufacturer’s instructions. For long term storage, glycerol stocks 

prepared by adding 400 µL 45% (v/v) sterile glycerol to 200 µL bacterial culture were 

maintained at -80°C. 

 

2.2 Uptake studies of radioactive sugars 

2.2.1 Cell treatments 

Cell suspensions were collected at day 6 after subculture by centrifugation at 

3000 g for 3 min, washed twice in MS medium without carbon source and resuspended 

in the same medium. The cells were placed for 12 h in the orbital shaker, in the same 

conditions to overexpress VvHT1 (Conde et al. 2006). In the following day cells were 

centrifuged at 3000 g for 3 min and resuspended at approximately 5 mg FW/mL in MS 

medium without carbon source, pH 5.0. This pH provides the necessary proton 

gradient to energize the monosaccharide/H+ transport system (Conde et al. 2006).  To 

study the influence of high temperature on sugar transport, the cells were incubated for 

12 h at 38ºC prior uptake studies. To study the influence of SA and ABA on sugar 

transport the cells were incubated with 150 µM of both hormones for 24 h at 23ºC prior 

uptake studies.  
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2.2.2 Determination of initial velocities of D-[ 14C]glucose transport 

One mL of cell suspension was added to 10 mL flasks under constant agitation 

(100 rpm). After 5 min incubation at room temperature, the reaction was started with 40 

µL of a radioactive solution with a specific activity of 500 dpm/nmol glucose. Different 

solutions were used according to the desired final concentrations (0.02-0.5 mM). After 

3 min incubation the reaction was stopped by adding 5 mL of cold MS medium without 

carbon source. This step stops the transport reaction by both decreasing the 

temperature and diluting the reaction mixture. The cells were then separated from the 

culture medium by filtration under vacuum through a GF/C membrane (Whatman), and 

washed in 10 mL of cold MS medium. The membranes were placed in 20 mL 

scintillation vials containing 5 mL of scintillation liquid (OptiPhase HiSafe II, LKB) and 

the radioactivity incorporated in the cells was measured in a Packard Tri-Carb 2200 CA 

(Packard Instruments Co., Inc., Rockville, Md) scintillation counter. D-[14C]glucose was 

obtained from the Radiochemical Center (Amersham). 

 

2.3 Western Blot analysis  

2.3.1 Plasma membrane isolation and purification 

Plasma membrane enriched vesicles from both control cells and temperature 

treated cells were isolated and purified as previously described (Conde et al. 2006). 

Approximately 200 mL of suspension cells were centrifuged at 3000 g for 3 min at 4°C, 

washed twice in ice-cold MS medium without carbon source, and resuspended in 250 

mL of ice-cold extraction buffer [250 mM sucrose, 2 mM EDTA (pH 8.0) 2 mM DTT, 1 

mM PMSF, 70 mM Tris-HCl (ph 8.0), 3 mM MgCl2, 100 mM KCl, 0.1% (w/v) BSA and 

0.2% (w/v) PVPP], and all subsequent procedures were carried out at 4°C. The cells 

were homogenized with an ultra-turrax T25 (IKA WERKE, Janke and Kumkel IKA, 

Germany) for 5 min with approximately 20 s pulses, and centrifuged at 10000 g for 10 

min. The pellet was discarded and the supernatant was filtered through 3 layers of 

cheese cloth and centrifuged at 100000 g for 60 min to obtain the microsomal fraction. 

After discarding the supernatant, the pellet was aspirated and gently homogenized in 8 

mL of resuspension buffer [20 mM Tris-HCl (pH 7.5), 1 mM EDTA (pH 7.5), 1 mM DTT, 

1 mM PMSF and 15% (v/v) glycerol]. The microsomal fraction was layered over a 32% 

and 46 % (w/v) discontinuous sucrose gradient [32/46% sucrose (w/v), 20 mM Tris-HCl 

(pH 7.5), 1mM EDTA (pH 7.5), 1mM DTT and 1 mM PMSF] and centrifuged at 80000 g 

for 3 h in a Beckman SW 28 rotor. The plasma membrane-enriched fraction was 
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collected from the 32/46% sucrose interface with the help of a pipette, diluted 4 times in 

resuspension buffer and centrifuged at 100000 g for 30 minutes. The supernatant was 

discarded and the pellet resuspended in 600 µL of resuspension buffer, aliquoted and 

quickly stored at -80°C.  

2.3.2 SDS-PAGE 

SDS-PAGE of membrane proteins was performed according to Laemmli (1970). 

A stacking gel [4% (w/v) polyacrylamide, 250 mM Tris-HCl (pH 6.8) and 0.1% (w/v) 

sodium dodecyl sulphate (SDS)] was placed on the top of the resolving gel [10% 

polyacrylamide (w/v), 375 mM Tris-HCl (pH 8.8) and 0.1% (w/v) SDS] and submerged 

in TRIS-Glycine running buffer [25 mM Tris-HCl, 250 mM glycine and 0.05% (w/v) 

SDS]. The samples were heated at 70°C for 10 min pr ior to separation in Laemmli 

buffer [50 mM TRIS-HCl (pH 6.8), 2% (w/v) SDS, 5% (v/v) β-mercaptoethanol and 10% 

(v/v) glycerol] and 15 µg of protein from each sample was loaded into the wells. 

2.3.3 Membrane transfer and immunoblotting 

The proteins separated by the SDS-PAGE were electro-transferred to a 0.45 µm 

thick Immobilion-PSQ nitrocellulose membrane (Millipore) in transfer buffer [50 mM Tris-

HCl, 380 mM glycine, 0.02% (w/v) SDS and 20% (v/v) methanol] in a TE Series 

transfer electrophoresis unit (Hoeffer Scientific Instruments). The nitrocellulose 

membrane was incubated 1 h in the blocking solution [5% (w/v) fat-free milk powder, 

1% (w/v) BSA in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, 

pH 7.4), containing 0.1% (v/v) Tween-20] at room temperature in the dark with small 

agitation. All the following steps were performed at room temperature in the dark. The 

membrane was then placed 15 min in the washing solution [1% (w/v) fat-free milk 

powder, 1% (w/v) BSA in PBS, containing 0.1% (v/v) Tween-20] for 15 min, followed by 

2 washes in the same solution for 5 min. The membrane was then incubated with the 

primary antibodies against the C-terminus of VvHT1 diluted 1:1000 in PBS containing 

01% (v/v) Tween-20 and 0.3% (w/v) BSA for 1 h, followed by 3 washes, of 5 min each, 

with the washing solution. A 1 h incubation of the secondary antibodies, anti-rabbit 

immunoglobulin G (IgG) conjugated to goat peroxidase, diluted 1:3000 in PBS 

containing 0.1% (v/v) Tween 20 and 0.3% (w/v) BSA was performed and followed by 3 

washes, 5 min each, with the washing solution. The immunodetection was 

accomplished using the chemiluminescent ECL detection substrate (Amersham). 

Relative levels of antigens on the nitrocellulose membranes were analyzed by the 

KEMIDOK and quantified in the Quantity One Software (Bio-Rad). 
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2.4 Study of solute incorporation in intact grape b erries 

The method used to study substrate compartmentation into intact grape berries 

was based in an approach reported several years ago (Kriedmann 1968). The berries 

were placed in 126-wells ELISA plates in contact with the desired radioactive solution 

via the pedicel. After incubation with the radioactive substrates (30 mM of D-

[14C]glucose or [14C]sucrose at 250 dpm/nmole) at 23ºC during 12 h, the pedicel was 

cut and each berry was placed in 6 mL scintillation liquid and homogenized with a 

pestle. The radioactivity entrapped in the mesocarp tissue was measured in a Packard 

Tri-Carb 2200 CA (Packard Instruments Co., Inc., Rockville, Md) scintillation counter, 

and the results expressed in disintegrations per minute (dpm). SA or ABA (150 µM) 

were added to the radioactive solution to study their effect on glucose internalization by 

grape berries. To study the effect of high temperature on the incorporation of D-

[14C]glucose the berries were placed in a green-house at 38ºC 12 h. The incorporation 

of the fluorescent glucose analog 2-NBDG was also tested. The berries were incubated 

overnight with 1.35 mM of 2-NBDG and the results visualized under a epifluorescent 

microscope. 

 

2.5 Intracellular ROS quantification 

ROS production was measured using the H2DCFDA probe (Molecular Probes, 

Invitrogen). Cultured cells (1 mL) were incubated with 2 µM H2DCFDA for 15 min in the 

dark. After a quick centrifugation, 0.5 mL of the supernatant was collected and diluted 

in 2.5 mL of sterile water. The fluorescence was measured in a Perkin Elmer LS50 

spectrofluorimeter at 488 nm excitation and 525 nm emission with 1 s integration 

(Franklin et al. 2008). 

 

2.6 Malondialdehyde quantification 

MDA was determined according to Heath and Packer (1968). Briefly, 0.5 g of 

filtered cells were grounded in liquid nitrogen and homogenized in 0.5 mL of 10% (w/v) 

TCA and centrifuged at 18000 g for 10 min at 25ºC. 250 µL of the supernatant was 

mixed with 250 µL of reaction buffer [10% (w/v) TCA and 0.6% (w/v) TBA], incubated 

for 30 min at 95°C and then quickly cooled on ice. The absorbance of the supernatant 

was measured at 532 nm, and the value for non specific absorption at 600 nm was 
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subtracted. The amount of MDA complex was calculated from the extinction coefficient 

155 mM-1cm-1. 

 

2.7 Production of a VvHT1-GFP expression clone  

2.7.1 Isolation and purification of total RNA from CSB cells  

For the isolation of total RNA approximately 2 mL from CSB cultured cells were 

filtered and grounded in liquid nitrogen with a mortar and pestle. The TRI Reagent 

(Ambion) was used to isolate the total RNA, according to the manufacturer’s 

instructions. Total RNA was purified with the RNeasy purification kit (QIAGEN), 

according to the manufacturer’s instructions. RNA concentration was measured in a 

Nanodrop ND-1000, and the 260/280 nm and 230/260 nm ratios were used to estimate 

the quality of the isolated RNA. Also, the integrity of the isolated RNA was checked by 

a 1% agarose gel electrophoresis. 

2.7.2 First strand cDNA synthesis 

First strand cDNA synthesis was performed with the LongRange 2Step RT-PCR 

(QIAGEN) following the manufacturer’s instructions.  

2.7.3 Gateway technology 

2.7.3.1 Production of attB-PCR products 

To insert VvHT1 into the donor vector by site specific recombination the attB 

regions were added to both ends of the VvHT1 cDNA. Primers were designed, 

accordingly to the manufacturer’s instructions, to incorporate the attB regions by PCR. 

The primers included a gene specific template sequence and the 25 bp attB1 and attb2 

sequences (VvHT1 forward: ggg acaa gttt gta caa aaa agc agg ctt caa tat gcc ggc tgt 

cgg agg ctt tga taa g; VvHT1 reverse: ggg gac cac ttt gta caa gaa agc tgg gtt tac att ctt 

aac agg gta gtt ttc ctt gac cag ttc gac). The PCR was performed with the Phusion kit 

(FINNZYMES) according to the manufacturer’s instructions. The DNA polymerase of 

the Phusion kit is a PFU (isolated from the hyperthermophilic Pyrococcus furiosus) and 

as a superior thermostability and proofreading properties compared to other 

thermostable polymerases. 
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2.5.3.2 BP recombination reaction  

The VvHT1 entry clone, pDONR-VvHT1, was generated by a BP recombination 

reaction between the attB-PCR product and the donor vector pDONR221, witch has 

the gene that confers resistance to kanamycin. The reaction mixture was composed of 

75 ng VvHT1 attB-PCR product, 75 ng pDONR221, 1 µL BP clonase enzyme and TE 

buffer [10 mM TRIS, pH 8.0 and 1 mM EDTA, pH 8.0] to a final volume of 5 µL. After 

overnight incubation bacterial cells were transformed and plated on solid LB medium 

supplemented with 50 µg/mL kanamycin to allow the selection of transformed bacteria. 

Positive clones were identified by colony PCR. 

2.7.3.3 Colony PCR  

To identify positive clones a colony PCR was performed with the Hot Star Taq 

DNA Polymerase kit (QIAGEN), accordingly to the manufacturer’s instructions. The 

primers are those used for the VvHT1 and a sample of the selected colonies was used 

as template. The results were checked by 1% agarose gel electrophoresis. The 

positive clones were inoculated in liquid LB with the appropriate antibiotic and growth 

overnight at 37°C with vigorous shacking. In the fo llowing day an aliquot of the cells 

was used to make glycerol stocks, and rest to isolate plasmid DNA. 

2.7.3.4 Isolation of plasmid DNA (miniprep) 

The Easy Spin kit (Citomed) was used to isolate plasmid DNA according to the 

manufacturer’s instructions.  

2.7.3.5 LR recombination reaction 

The VvHT1 expression clone, VvHT1-pH7FWG2, was generated by a LR 

recombination reaction between pDONR-VvHT1 and the entry vector pH7FWG2 which 

confers resistance to spectinomycin. The reaction mixture was composed of 75 ng 

pDONR-VvHT1, 75 ng pH7FWG2, 1 µL of LR clonase and TE buffer to a final volume 

of 5 µL, and incubated overnight. In the following day, bacteria was transformed and 

plated on solid LB medium supplemented with 100 µg/mL spectinomycin to allow the 

selection of transformed cells. Positive clones were identified by colony PCR. 

 

2.8 Protoplast isolation 

The suspension cells were collected at day 7 after subculture, centrifuged 4 min 

at 3000 g, and resuspended in digestion buffer [Gamborg B5 medium supplemented 
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with 0.4 mM sucrose, 1.15% (v/v) Y-C cellulase and  0.15 % Y-23 pectoliase], and 

incubated overnight at 25 rpm and 22°C in the dark.  In the following day, the digestion 

mixture was centrifuged 8 min at 750 g and the protoplasts remain in the upper fraction 

that is collected, diluted 1:1 with digestion buffer without enzymes, to remove all the 

remaining enzymes from the protoplasts, and centrifuged again in the same conditions. 

A discontinuous gradient was performed by adding W5 medium [5 mM glucose, 154 

mM NaCl, 125 mM CaCl2 and 5 mM KCl (pH 5.8)] to the protoplasts suspension and 

centrifuged 8 minutes at 750 g. The protoplasts were collected from the interface of the 

discontinuous gradient, diluted 1:1 in W5 medium and centrifuged 8 minutes at 750 g. 

The supernatant was discarded and the pellet washed and resuspended in MMM 

medium [400 mM mannitol, 15 mM MgCl2 and 5 mM MES (pH 8.0)] (Papadakis et al. 

2009; Fontes et al. 2010). 

 

2.9 Protoplast transient transformation 

Transient protoplast transfection protocol was adapted from Yoo et al. (2007). 

50,000 protoplasts were centrifuged for 3 min at 90 g, the supernatant was discarded 

and 100 µL of transfection buffer [600 mM mannitol, 15 mM CaCl2 and 5 mM MES, pH 

5.7] was added. Following, 15 µg of plasmid DNA was added, incubated 15 min at 

room temperature, 110 µL of PEG [40% (w/v) PEG 4000, 300 mM mannitol and 100 

mM Ca(NO3)2] was added and incubated 2 min at room temperature. After this, 440 µL 

of W5 medium [154 mM NaCl, 162 mM CaCl2, 2.5 mM KCl and 2 mM MES, pH 5.7] 

was added, centrifuged 1 min at 110 g and the supernatant was discarded, except ~ 50 

µL. Finally, 100 µL of culture buffer [600 mM mannitol, 4 mM MES and 4 mM KCl, pH 

5.7] was added and incubated overnigh at 20ºC. The transformation was confirmed 

under an epifluorescence microscope. 

 

2.10 Protein quantification 

Protein concentration was determined by the method of Lowry (1951), using BSA 

as the standard. 
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2.11 LC MS/MS analysis 

Plasma membrane proteins were separated by SDS-PAGE (Laemmli 1970), in 

10% acrylamide gel, and the proteins stained with colloidal Blue G-250. A specific 

section of the gel was sliced (~ 31-65 kDa) and immediately subjected to in-gel tryptic 

digestion (Shevchenko et al. 1996). Tryptic peptides were further fractionated by 

reverse-phase chromatography coupled online to an LCQ Deca XP ion trap mass 

spectrometer (Thermo Finnigan). The peptides were analyzed by MS full scan and 

MS/MS scans of the three most intense parent ions. MS/MS data sets were searched 

by SEQUEST through Bioworks 3.2 interface (Thermo Finnigan) against a subset of 

the NCBI protein database downloaded on 08/12/2008 consisting of Vitis vinifera 

sequences. Vitis vinifera homologs were identified using the BLAST search of the NCBI 

(http://ncbi.nlm.nih.gov/) 
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3.1 Effect of high-temperature on glucose transport   

 

A detailed kinetic characterization of glucose transport by CSB cells was 

performed in a previous paper (Conde et al., 2006). In the present study the effect of 

high temperature was evaluated. For this purpose, D-[14C]glucose uptake in 

derepressed cells ([glucose]medium << 0.02%) incubated for 12 h at 38°C and 25ºC 

(control cells) was measured (Figure 9). 

 

 
Figure 9.  Glucose transport by CSB cells cultivated with 2% sucrose up to the mid-

exponential growth phase and transferred to a sugar-depleted medium before treatment at 

different temperatures (derepressed conditions). Initial uptake rates at pH 5.0 by control cells 

cultivated at 25ºC (circles) and by cells exposed for 12 h to high temperature (38°C) (triangles). 

Inset, Eadie-Hofstee plot of the initial glucose uptake rates. Uptake rates are mean values ± SE; 

n = 3. 

 

The kinetic parameters exhibited by control cells were as follows: Km, 0.024 ± 

0.003 mM glucose and Vmax, 1.24 ± 0.04 mmol glucose min-1 mg-1 DW, similar to those 

reported before (Conde et al., 2006). In high-temperature treated cells, the Km was 

similar (0.024 ± 0.003 mM) but the Vmax decreased by 36%, to 0.79 ± 0.04 mmol 

glucose min-1 mg-1 DW. To study if high temperature affects sugar transport at protein 

activity level or by altering protein amount a Western-Blot analysis with a polyclonal 
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antibody targeting to the C-terminal end of the VvHT1 protein was performed (Figure 

10). Plasma membranes from control and temperature-treated cells were purified, as 

described in Material and Methods. 

 

 
Figure 10. Effect of high-temperature on VvHT1 levels at the plasma membrane of CSB 

cells. The western-blot analysis was performed on purified plasma membrane fractions from 

control cells (incubated at 23ºC for 12 h) and high temperature treated cells (incubated at 38ºC 

for 12 h).  

  

The analysis of the results by the Quantity One software (Biorad) showed that the 

overnight incubation at 38°C reduces the amount of the VvHT1 protein in the plasma 

membrane by 55%, which correlated to the decrease of the Vmax of glucose uptake.  

Changes induced by high-temperature in the plasma membrane polypeptide 

pattern were assessed by SDS-PAGE analysis. As shown in Figure 11, a group of 

polypeptides with a molecular mass of ~ 31-65 kDa was up-regulated by high-

temperature. LC MS/MS analysis (Pole Proteomic; Bordeaux, France) allowed the 

identification and characterization of these proteins (Table I).  
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Figure 11. Polypeptide pattern of plasma membrane proteins from CSB cultured cells 

after SDS-PAGE. Purified plasma membranes were isolated from control cells (cultivated at 

23°C) and high-temperature treated cells (cultivate d at 38°C). 

 

 

3.2 Effect of high temperature on ROS homeostasis 

 

High-temperature is commonly associated with ROS production (Dat et al. 2000). 

In the present study the influence of a 12 h incubation of CSB cells at 38ºC in the redox 

state was evaluated. The estimation of the intracellular ROS levels with the H2DCFDA 

fluorescent probe showed that CSB cells exposed to 38ºC increased the levels of 

fluorescence by 97%, when compared to the control (Figure 12). Following this result, 

the effect of the increased intracellular ROS levels on membrane damage was 

evaluated by measuring lipid peroxidation with the MDA method (Figure 13). Results 

showed a 28.7% increase in MDA amount, when the cells were exposed to high-

temperature.  
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Table I. Characterization of the proteins up-regulated by temperature identified by LC MS/MS 

analysis of the excised band depicted in Figure 14.  

Acc. No. 1 Protein Function Taxonomy 
MW 

(kDa)2 

gi|147828051 Plasminogen activator inhibitor 1 RNA-

binding protein, putative 

Ricinus communis 39.17 

gi|147834848 

 

Hsp70-interacting protein 1 Vitis labrusca 41.02 

gi|147845028 

 

Chaperone protein dnaJ, putative Ricinus communis 45.49 

gi|147769068 

 

Chaperone protein dnaJ 15 Arabidopsis thaliana 45.88 

gi|147818771 

 

Methylthioribose kinase, putative Ricinus communis 47.93 

gi|147783001 

 

Eukaryotic peptide chain release 

factor subunit, putative 

Ricinus communis 49.10 

gi|147780810 Eukaryotic peptide chain release 

factor subunit, putative 

Ricinus communis 49.10 

gi|147780179 

 

Glycosyl hydrolase family-like 

protein 

Salvia miltiorrhiza 49.59 

gi|147856780 Serine/threonine-protein kinase 

PBS1, putative 

Ricinus communis 50.06 

gi|147790061 Leucine rich repeat-containing 

protein, putative 

Ricinus communis 58.47 

gi|147784740 

 

Chaperonin containing t-complex 

protein 1, gamma subunit, tcpg, 

putative 

Ricinus communis 60.44 

gi|147790061 

 

Leucine rich repeat-containing protein Ricinus communis 58.47 

gi|147784740 Chaperonin containing t-complex 

protein 1, gamma subunit, tcpg, 

putative 

Ricinus communis 60.44 

gi|147805226 

 

UBQ10 (Polyubiquitin 10) Arabidopsis thaliana 51.16 

gi|147834511 Polyubiquitin Zea mays 60.25 

1 Accession number in the NCBI database 

2 Theoretical molecular weight 
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Figure 12.  Intracelular ROS quantification with the fluorescent probe H2DCFDA in CSB 

cells incubated for 12 h at 38ºC (high temperature treated cells) and in control cells (cultivated 

at 23ºC). Mean of two independent experiments are shown. 

 

 

 
Figure 13.  Quantification of MDA in CSB cells incubated for 12 h at 38ºC (high 

temperature treated cells) and in control cells (cultivated at 23ºC). Mean of two independent 

experiments are shown. 
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3.3 Effect of ABA and SA on glucose transport  

 

As previously reported (Cakir et al. 2003) VvHT1 is regulated by an ASR protein, 

VvMSA, which specifically binds to its promoter region. Also, VvMSA expression is 

strongly enhanced by ABA and glucose, suggesting that ABA can regulate VvHT1. 

Furthermore, ABA levels increase in parallel with sugar accumulation in the grape berry 

and color development and it is mainly found in the phloem of the berry suggesting a 

role on the unloading and uptake of sugars (Kataoka et al. 1982; Shiozaki et al. 1999). 

In the present study the incubation of CSB cells with 150 µM ABA for 12 h promoted a 

consistent increase of the Vmax of the glucose transport system from 1.15 ± 0.02 nmol 

glucose min-1 mg-1 DW (control cells) to 1.48 ± 0.01 nmol glucose min-1 mg-1 DW 

(Figure 14). 

 

 
Figure 14.  Effect ABA (150 µM; 12 h incubation) on the activity of glucose transport in 

CSB cells. Mean of two independent experiments are shown. 

 

SA has been involved in signaling in plants, particularly in the induction of 

defense and stress responses (Bari and Jones 2009), but its role during grape berry 

development remains unclear. In the present study the incubation of CSB cells with 

150 µM SA for 12 h increased the Vmax of the glucose transport system from 0.80 ± 

0.06 nmol glucose min-1 mg-1 DW (control cells) to 1.30 ± 0.04 nmol glucose min-1 mg-1 

DW (Figure 15). 
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Figure 15. Effect SA (150 µM; 12 h incubation) on the activity of glucose transport in CSB 

cells. Mean of two independent experiments are shown. 

 

3.4 Compartmentation studies in intact grape berrie s 

 

In a paper published several years ago (Kriedmann 1978) the pattern of glucose 

incorporation into intact grape berries incubated via the pedicel with radioactive 

substrates was evaluated by autoradiography. That work was the inspiring basis of this  

study where intact grape berries were incubated in ELISA plates with radioactive 

sugars and sugar analogs to evaluate the effect of high temperature, ABA and SA on 

sugar incorporation (Figure 16). As shown in figure 17, after the incubation of intact 

grape berries with 1.35 mM 2-NBDG for 12 h the fluorescent sugar distributed 

throughout the mesocarp tissue. Figure 18 shows that high temperature (38ºC), 150 

µM ABA and 150 µM SA increased D-[14C]glucose uptake by grape berries, after 12 h 

incubation as follows: control, 2.55 ± 0.47 nmol glucose h-1 g-1 FW; 38ºC treatment, 

4.86 ± 1.30 nmol glucose h-1 g-1 FW; ABA treatment, 4.81 ± 0.72 nmol glucose h-1 g-1 

FW and SA treatment, 4.28 ± 0.85 glucose h-1 g-1 FW.  
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Figure 16.  Experimental approach to study the influence of high temperature, hormones 

and inhibitors on sugar incorporation into intact grape berries via the pedicel.  

 

 

 

 
Figure 17.  Study of sugar compartmentation in the mesocarp of intact grape berries by 

the incorporation of the fluorescent glucose analog 2-NBDG via the pedicel. Transversal 

sections of berries incubated with 1.35 mM 2-NBDG for 12 h (A) and of non-incubated berries 

(B) observed under the epifluorescence microscope. 
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Figure 18.  Study of different treatments on glucose compartmentation into intact grape 

berries incubated with D[14C]glucose for 12 h. Results are mean values ± SE; n = 5. 

 

3.5 Study of VvHT1 recycling and turnover induced b y glucose repression 

and high-temperatures 

The information regarding transmembrane transporters recycling induced by 

glucose repression and high temperatures in plants is still scarce. Contrarily, in yeast 

the problematic of catabolic repression is a well studied mechanism. Paiva et al. 

(2002), using Saccharomyces cerevisiae, studied the recycling of the lactate permease 

Jen1p after glucose catabolic repression. In this study the authors demonstrated that 

after a glucose pulse the protein was targeted for degradation in the vacuole, and that 

this pathway was dependent on an ubiquitination step. To study the VvHT1 recycling 

and turnover in response to sugar addition and high temperature, a transient protoplast 

transformation protocol was set up, as previously reported (Yoo et al. 2007). The green 

fluorescente protein was used to study the subcellular localization and expression of 

VvHT1. Up until now a clone harboring VvHT1-GFP under the control of 35S promoter 

was produced (Figure 19). Moreover, the transfection protocol for grape protoplasts 

was already optimized. Protoplasts from grape cells (Figure 20) were prepared 

following the protocol previously optimized by our group. (Fontes et al. 2010) 



                                                                                                                       

 

 

  

Figure 19.  Production of a VvHT1

transient protoplast transformation.

 

Figure 20. Protoplasts of CSB cultured cells stained with FDA and 

epifluorescence microscope. 

 

 

 

 

 

                                                                                                                                                              

Production of a VvHT1-GFP expression clone using Gateway cloning for 

transformation. 

Protoplasts of CSB cultured cells stained with FDA and observed under the 
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4.1 Temperature affects sugar transport/compartment ation in grape cells  

 

Climate, and above all, temperature are fundamental factors influencing vineyard 

crop productivity. High-temperature has a profound effect in the grape berry altering its 

normal development and ripening. Besides reducing berry size and weight at harvest 

(Dookozlian 2000) high temperature alters its normal sugar content (Poudel et al. 

2009). The hypothesis that grape sugar accumulation is negatively regulated by high 

temperature has been proposed for several years. Radler (1965) reported reduced 

sugar accumulation when clusters of Sultana vines were exposed to day and night 

high-temperatures. More recently, Poudel et al. (2009) demonstrated that high-

temperatures reduce the accumulation of glucose and fructose in the interspecific 

hybrid wine grape Kadainou R-1, although the molecular mechanisms involved are far 

from being elucidated. Also, the synthesis of anthocyanines is negatively influenced by 

high temperature (Mori et al. 2005; Yamane et al. 2006).  

In the present study, the influence of high-temperature on glucose transport by 

CSB cultured cells was evaluated. This transport system was previously studied in 

detail at the biochemical and molecular level (Conde et al. 2006). Results showed that 

the application of a temperature shock of 38ºC over 12 h reduced the transport 

capacity, which correlated with the observed decrease in the VvHT1 protein amount at 

the plasma membrane level measured by immunodetection with an anti-VvHT1 

antibody. These findings suggest that high-temperature regulates VvHT1 activity by 

reducing the amount of protein in the plasma membrane, probably decreasing gene 

expression and reducing protein amount by stimulating the degradation of the sugar 

transporter. Further studies are needed to depict the molecular basis of sugar transport 

regulation by high temperatures. The effect of high temperature on the expression of 

monosaccharide transporters, including VvHT1, is currently being studied by Northern-

blot analysis by our group. 

Recent studies in plants regarding the recycling of transmembrane transporters 

may help us to understand the dynamics of these regulatory mechanisms. Takano et 

al. (2005) described the recycling of the root boron transporter from A. thaliana (BOR1, 

Boron Transporter 1). This transporter is expressed in the root xylem when the leaves 

contain low levels of boron, and is endocytosed, sorted and degraded in the vacuole 

when boron levels are normalized. This protein recycling pathway could be responsible 

for the observed decrease of the VvHT1 levels at the plasma membrane after a high-

temperature peak (this work) or after sugar repression, as previously observed (Conde 

et al. 2006). As referred in the Results section, we have already produced a VvHT1-

GFP fusion, and preliminary studies on the recycling/turnover of the VvHT1 after a 
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temperature/sugar pulse are underway in transiently transfected grape protoplasts 

(homologous expression). 

In contrast with the observed reduction of sugar transport by CSB cells, a peak of 

38ºC for 12 h promoted an apparent increase in sugar incorporation in intact grape 

berries. However, these data must be interpreted with caution and further studies are 

needed since glucose could be metabolized during the experiment, 14C subsequently 

being incorporated in other organic substrates/CO2. Then, the apparent increase on 

sugar compartmentation could result from a positive effect of temperature on sugar 

metabolism. The utilization of radiolabelled non-metabolizable sugar analogs will clarify 

this hypothesis.  

 

 

4.2 High-temperature affects ROS homeostasis in gra pe cells  

 

ROS have been considered as central components of plant adaptation to both 

biotic and abiotic stresses, whereas high-temperature is generally associated to a ROS 

production in several plant species (Dat et al. 2000a). The present data suggested that 

high-temperature substantially increased (96.7%) ROS levels in CSB cells and lipid 

peroxidation (29%), as suggested before in other plant models (Davidson et al. 2001; 

Larkindale and Knight 2002; Vacca et al. 2004).  

The increase in the intracellular ROS could be explained by their dual role during 

plant stress responses, exacerbating the damage caused by high temperature and 

activating defense responses (Dat et al. 2000a). It was shown that within 15 min after a 

heat shock potato leaf tissues produced an oxidative burst (Doke 1997) and more 

recently the exposure of tobacco seedlings to 40°C for 1 h in the light was shown to 

induce a significant increase in H2O2 (Dat et al. 2000b; Foyer et al. 1997). Also, a 

similar accumulation of H2O2 after a heat treatment was measured in mustard 

seedlings (Dat et al. 1998). Furthermore, this effect could be caused or potentiated by 

the inhibition of catalase, which is inhibited by high temperature, and is one of the most 

important anti-oxidant mechanisms of plant cells (Lopez-Delgado et al. 1998; Dat et al. 

1998; Feierabend et al. 1992; Hertwig et al. 1992). In plants, the generation of H2O2 

appears to be mediated by a plasma membrane complex, NADPH oxidase, and the 

inhibition of this pathway abolishes stress-induced H2O2 accumulation (Yu et al. 2004; 

Wang and Ma 2008). Furthermore, high-temperature can have a devastating effect on 

plant metabolism, acting on the quaternary structure of protein complexes. When 

different pathways are uncoupled, electrons that have a high-energy state are 

transferred to molecular oxygen to form ROS (Asada and Takahashi 1987; Mittler 
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2002), such as H2O2, O2
-, and HO capable of causing oxidative damage to cell 

macromolecules.  

We cannot conclude, at the moment, what mechanism or mechanisms are behind 

the observed increase in intracellular ROS levels. This effect can be caused by an 

inhibition of catalase, an increase in the activity of the NADPH oxidase, or even an 

increase in the levels of NADPH caused by an overexpression of the Glucose-6-

phosphate dehydrogenase, an enzyme responsible for the production of NADPH in the 

pentose phosphate pathway. Moreover, it is possible that the increase in the 

intracellular ROS levels may be due to a cellular response, independent of catalase 

and NADPH, to cope with high-temperature, or even a synergistic effect of these 

mechanisms.  

High-temperature may cause oxidative damage to proteins, DNA, and lipids 

generated by the uncoupling of metabolic pathways (Asada and Takahashi 1987; 

Mittler 2002). For instance, the impairing of mitochondrial functions at high temperature 

results in the induction of oxidative damage and causes lipid peroxidation (Davidson 

and Schiestl 2001, Larkindale and Knight 2002; Vacca et al. 2004). MDA is formed as 

an end product of the degradation of polyunsaturated lipids caused by ROS, and its 

quantification is commonly used to extrapolate lipid peroxidation. Our results confirmed 

that in high-temperature treated cells higher lipid peroxidation was increased. 

 

 

4.3 A preliminary proteomic analysis of the plasma membrane from grape 

cells reveals the induction of key proteins in resp onse to high temperature 

 

Several proteomic studies have been performed in grape berries, including the 

exocarp proteome (Deytieux et al.2007), mesocarp proteome (Sarry et al., 2004), berry 

proteome (Giribaldi et al., 2007), and the plasma membrane proteome from CSB 

suspension cultured cells (Zhang et al., 2008). Furthermore, proteomic approaches 

have been used to study the berry development (Sarry et al. 2004; Vincent et al. 2006; 

Giribaldi et al. 2007), the berry response to water and salinity stresses (Vincent et al. 

2007; Jellouli et al. 2008) and ABA treatment (Giribaldi 2010). The berry proteome in 

response to high-temperature stress was not yet explored. In the present study a group 

of proteins differentially expressed in response to high-temperature, including HSP’s 

related proteins and polyubiquitins, were identified and characterized (Table I). 

When plants are exposed to high temperatures they synthesize both high 

molecular mass HSP’s (from 60 to 110 kDa) and small HSP’s (from 15 to 45 kDa) 

(Miernyk 1997; Renaut et al. 2006), and, concordantly, a HSP70-interacting protein 1, 
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two Chaperone protein dnaJ and two Chaperonin containing t-complex protein 1 were 

identified in purified plasma membranes from high-temperature cells. HSP’s (Reviewed 

by Wang et al. 2004) interact with a wide range of co-chaperone proteins that regulate 

their activity or aid in the folding of specific substrate proteins (Bukau and Horwich 

1998; Hartl 1996; Frydman 2001; Buchner 1999). HSP70 chaperones, together with 

their co-chaperones (DnaJ/HSP40 and GrpE) have essential functions in preventing 

aggregation and in assisting refolding of non-native proteins under both normal and 

stress conditions (Hartl 1996; Frydman 2001). They are also involved in protein import 

and translocation processes, and in facilitating the proteolytic degradation of unstable 

proteins by targeting the polypeptides to lysosomes or proteasomes (Hartl 1996). In 

plants, many HSP70 proteins have been identified in different species (Boston et al. 

1996; Vierling 1991), and the Arabidopsis genome contains at least 18 genes encoding 

members of the HSP70 family (Lin et al. 2001; Sung et al. 2001), and 12 HSP70 

members have been identified in the spinach genome (Guy et al. 1998). The 

importance of these proteins in stress responses was further emphasized when 

overexpression of HSP70 genes promoted thermotolerance (Lee and Schoffl 1996) 

and resulted in enhanced tolerance to salt and water (Alvim et al. 2001; Sung and Guy 

2003; Sugino et al. 1999; Ono et al. 2001; Leborgne-Castel et al. 1999). Chaperonins 

or HSP60 are a class of molecular chaperones found in prokaryotes and in the 

mitochondria and plastids of eukaryotes (Boston et al. 1996; Hartl 1996). This 

chaperons play a crucial role by assisting a wide range of newly synthesized and newly 

translocated proteins to achieve their native forms (Bukau and Horwich 1998; Frydman 

2001). Also, chaperonins are classified into two subfamilies: the GroE chaperonins that 

are found in bacteria, mitochondria and chloroplasts and chaperonins containing t-

complex polypeptide 1 (TCP1), also named CCT chaperonins, and are found in 

Archaea and in the cytosol of eukaryotes (Ranson et al. 1998). Functional 

characterization of plant chaperonins is limited, but CCTα, a chaperonin from the 

mangrove plant Bruguiera sexangula, enhances salt- and osmotic-stress tolerance of 

E. coli transformants suggesting an important role for these chaperones in stress 

responses (Yamada et al. 2002). 

In grape, some studies have reported the expression of HSP’s in response to 

heat stress. Morrel et al. (1997) described the overexpression of two HSP70 isoforms 

in dormant grape buds after 30 min at 44ºC by two-dimensional western immunoblot. 

Zhang et al. (2008) using immunogold electron microscopic techniques localized 

HSP70 predominantly in the chloroplast, starch granules, mitochondria and nucleus. 

More recently, Kobayashi et al. (2010) identified four heat shock-induced genes in 

grapevine, HSG1, HSG4, HSG14, and HSG19, using a cDNA subtraction method. In 
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spite of the advances that are being made, the cellular mechanisms of HSP70 function 

in plants under stress conditions remains unclear.  

It has been suggested that plant cells sense ROS via redox-sensitive transcription 

factors, such as nitrogen permease reactivator (NPR1) or heat shock transcription 

factors (HSF’s) (Mittler et al. 2004), which in turn activate HSP’s expression, pointing 

out the fact that most HSP’s are intimately associated with ROS (Suzuki and Mittler 

2006). Our results suggest a similar correlation. We observed an increase in the 

intracellular ROS levels in grape cultured cells after an overnight incubation at 38ºC, 

and an increase in the expression of proteins related to stress-responses such a 

HSP70-interacting protein 1, two Chaperone protein dnaJ and two Chaperonin 

containing t-complex protein 1 (Table I). Also, these results strengthened the role of 

ROS as a signal molecule in stress responses in CSB cultured cells, by possibly 

mediating the high-temperature stress response. 

Furthermore, we identified the expression of UBQ10 (Polyubiquitin 10) and a 

Polyubiquitin (Table I). These polypeptides comprise 10 tandemly repeated ubiquitins 

that are intimately related to protein degradation. Virtually all aspects of a plant’s life 

cycle are controlled by the regulated synthesis of new polypeptides and the precise 

degradation of preexisting proteins. Via this “protein cycle,” up to 50% of the total 

protein is replaced by plants every week (Vierstra 1993). In this pathway, the highly 

conserved 76-amino-acid protein ubiquitin serves as a reusable tag for selective 

protein breakdown in a cascade of reactions involving several enzymes E1-E2-E3 (E1 

or ubiquitin-activating enzyme, E2 or ubiquitin-conjugating enzyme and E3 or ubiquitin-

protein ligase). The resulting ubiquitin–protein conjugates are then recognized and 

degraded either by the multisubunit 26S proteasome with the concomitant release of 

ubiquitin for reuse (Vierstra 2003; Smalle and Vierstra 2004) or by the 

lysosome/vacuole in the case of plasma membrane proteins. Furthermore, a role for 

HSP’s in the protein degradation via ubiquitin-proteasome 26S has been proposed. In 

this model, the chaperones play an important role in protein degradation, mediated by 

the ubiquitin ligase CHIP (Hohfeld et al. 2001). This E3 can interact with HSP70 and 

HSP90, through three tandem TPR’s located in the N-terminus, and impair the ability of 

the chaperones to assist cellular protein folding. Also, in the C-terminus of CHIP a U-

box required for ubiquitin ligase activity is present. This suggests an elegant solution to 

the problem of how the degradation machinery recognizes aberrant proteins, and, 

according to this model, a balance of protein folding and degradation would be 

achieved through regulation of chaperone activity (Hohfeld et al. 2001). Our results 

showing an increase in ubiquitin expression may indicate that protein degradation is 

being used in response to high-temperature stress, by possibly reusing the resulting 
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amino acids to synthesize new proteins. Also, the identification of proteins that are only 

present in high-temperature treated CSB cultured cells is consistent with the proposed 

role for proteolysis under high-temperature stress. 

 

 

4.4 ABA and SA stimulate sugar incorporation in gra pe cells  

 

As referred previously, ABA levels are high in the flesh of young berries, and a 

peak is also observed after véraison. In fact, this peak in ABA occurs simultaneously 

with an increase in sugar accumulation and color development, and is mainly found in 

the phloem of the berry which is consistent with a role in the unloading and uptake of 

photoassimilates (Wheeler et al. 2009). In CSB cultured cells a grape ASR protein 

appears to regulate the monosaccharide transporter VvHT1, by integrating the 

transcriptional complex mediating the sugar-inducible expression of VvHT1 (Cakir et al. 

2003). The observation that 150 µM of ABA increased the glucose transport by CSB 

cells is in agreement with these data. Although Cakir et al. (2003) demonstrated that 

VvHT1 could be regulated by an ASR and overexpressed by ABA, an increase in the 

transport activity was not described. Furthermore, several transporters and channels 

can be post-translationally regulated by phosphorylation/dephosphorylation 

mechanisms. In O. europaea the stimulation of glucose uptake by the protein kinase 

inhibitor staurosporine, in glucose-sufficient cells, suggests the involvement of a 

phosphorylation-mediated regulation that may affect protein levels and activity (Conde 

et al. 2010). Also, the first sugar-inducible protein kinase, VvSK1 (Vitis vinifera Sugar-

Inducible Protein Kinase 1), has been described (Lecourieux et al. 2010). VvSK1 is 

mainly expressed in flowers, roots and in the berries, mainly after véraison, when the 

berries accumulate glucose, fructose, and ABA. In grapevine cell suspensions, VvSK1 

transcript abundance is increased by sugars and ABA. This data and the presence of 

phosphorylation consensus sequences in the VvHT1 polypeptide suggest that this 

transporter could be regulated by phosphorylation after ABA incubation. Further studies 

will clarify whether ABA regulates VvHT1 at transcriptional or post-transcriptional 

levels. 

The role of SA in the berry development and sugar accumulation is still obscure. 

It is known that SA is a key signal, involved in the activation of plant defense responses 

to fungal, bacterial and viral attacks. Also, SA is important in the transduction of stress 

signals, in particular during pathogenesis, and many effects of cell infection are 

mediated by the increased level of SA (Hayat and Hamad 2007). Recently, it was 

reported that VvHT5, a Stress-Inducible Hexose Transporter, is up-regulated in 
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response to biotrophic fungal infection (Hayes et al. 2010). Furthermore, Burmistrova et 

al. (2009) described that low concentrations of SA (10-100 µM) regulate phloem 

unloading in the root tip of Zea mays. These results may suggest that SA regulates 

sugar accumulation into sink tissues, which is supported by the data of the present 

study obtained both in CSB cells and intact grape berry. In both models SA stimulated 

sugar uptake. 

 

 

4.5 Future prospects 

 

Studies of sugar incorporation in cultured cell suspensions have several 

advantages over plant tissues where bulk diffusion, tissue penetration barriers, and cell 

heterogeneity impair kinetic studies. Although studies in cell suspensions allowed the 

characterization of several sugar transporters, the extrapolation of the results obtained 

in this model to a plant level is sometimes difficult. To overcome this limitation we 

studied sugar import both in grape cell suspensions and intact grape berries. This 

model of intact grape berry will allow a deeper research on sugar incorporation and 

compartmentation into flesh cells at different stages of fruit development, and how 

temperature, SA and ABA affect sugar status at both biochemical and molecular levels. 

In particular, the expression of hexose transporters, including VvHT1, and disaccharide 

transporters, will be studied in response to high-temperature. 

The indications that ABA may regulate VvHT1 by a post-translational mechanism 

will enable us to identify VvHT1 protein interactors and their functional significance for 

transport activity. This may be studied by coimunnoprecipitation experiments with 

specific antibodies, aiming at the identification of molecular partners of VvHT1 by LC 

MS/MS.  

The increase of glucose transport upon treatment with SA is puzzling. SA has 

been mainly associated with plant responses to pathogen attack. The expression of 

VvHT1 at transcript and protein levels, after eliciting CSB cultured cells with known 

grape pathogens, such as Botrytis cinerea, will elucidate if the increased sugar 

transport is associated with a plant pathogen defence response, as suggested by 

Azevedo et al. (2006). In this work, D-[14C]glucose uptake in Pinus pinaster cell 

suspensions was enhanced by elicitation with Botrytis cinerea spores. This increase in 

glucose accumulation was dependent on calcium influx and on a burst in ROS, 

mediated by NADPH oxidase.  

Following the observation of increased intracellular ROS caused by high-

temperature, the elucidation if the observed ROS peak contributes to the decrease of 
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the VvHT1 in the plasma membrane is of utmost interest. This may be accomplished in 

the presence of antioxidants, for example ascorbic acid or glutathione, during high-

temperature stress, followed by the evaluation of VvHT1 transport activity and level of 

expression. Additionally, the study of the activity and expression of the primary 

enzymes involved in ROS protection, such as glutathione S-transferase, catalases, 

superoxide dismutase and ascorbate peroxidises, as well as ROS production, namely 

plasma membrane NADPH oxidase and glucose-6-phosphate dehydrogenase will be a 

good challenge. This will allow us to evaluate whether ROS function as a signal 

molecule or as a by-product of the deleterious effects of high-temperature.  

The proteomic analysis of high-temperature treated cells showed that HSP’s and 

ubiquitins were overexpressed in response to high-temperature. To evaluate the 

contribution of these proteins in the cell homeostasis at high temperatures, the 

application of a temperature shock in the presence of the protein synthesis inhibitor 

cycloheximide, followed by the quantification of sugar transport, ROS production and 

lipid peroxidation, may provide valuable evidences.  

Protein recycling is fundamental, but the mechanisms that regulate this process in 

plant cells are far from being understood. Our studies aiming at the elucidation of the 

mechanisms behind VvHT1 recycling at high temperature and under sugar repression 

were not concluded. Currently, we are optimizing transient protoplast transfection with 

the VvHT1-GFP fusion, and, in a near future, using this tool we will hopefully be able to 

respond to these fundamental questions: how is VvHT1 recruited from the plasma 

membrane under high temperature or after a sugar pulse? What are the mechanisms 

underlying its degradation?  
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