
CoopDynSim: a 3D robotics simulator

Toni Machado, Miguel Sousa, Sérgio Monteiro and Estela Bicho

Department of Industrial Electronics, University of Minho, 4800-058 Guimarães, Portugal
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Abstract—This paper presents CoopDynSim, a multi-robot 3D
simulator. The main motivations for the development of a new
simulation software lie in the need to emulate specific, custom
made sensors, combined with the desire to smoothly transfer
controller code from simulation to real implementation. The
latter is achieved through the use of the same middleware layer
already implemented in the real platforms. The high modularity
of the solution allows the user to easily add new components or
design new platforms. By having independent simulation threads
for each robot, distributed control algorithms can easily be tested,
abetted by a socket based connection, granting the possibility
for an asynchronous, over the network, controller architecture.
The ability to run simulations in real or simulated time, as
well as a play back option, represent valuable features of the
software. The simulator has been used in several projects, with
different platforms and distinct control applications, proving it
as a heterogeneous and flexible solution. Furthermore, its usage
as a teaching tool in a robotics’ summer school as well as
in an introductory robotics class in our university, upholds its
simplicity and user-friendliness.

I. INTRODUCTION

Computer based robotic simulators have recently gained the

attention of researchers [1], [2], [3], [4]. The availability of

computers with an ever increasing processing power, combined

with accurate physics engines and enhanced visual represen-

tations, of both robots and virtual worlds, made simulators go

from being component or platform specific, often proprietary

with restricted access, to a multi-platform and reconfigurable

tool, widely used (especially) in academia.

Simulations provide a mean for one to collect data without

the dangers of damaging expensive equipment, otherwise

encountered when using the real platforms. For instance, the

process of testing a control algorithm or the validation of a

new sensor or platform are eased by means of simulation,

while keeping the costs low, not only in terms of time spent,

but also in terms of human resources needed. Furthermore, it

becomes possible to perform tests under specific conditions,

which may prove difficult to mimic, or expensive, in the

real world, abetted by the availability of multiple (simulated)

robots, even if only a few real platforms exist.

With a wide array of simulators accessible nowadays, cer-

tain features may help differentiate the available solutions from

one another [5], [6], [7]. Graphical and physical accuracy, as

the extent to which the robots and virtual world are similar to

their real counterparts, flexibility, that is, the type of hardware

that can be simulated, and transparency, implying the possi-

bility for the user to seamlessly migrate from simulation to

the real platforms, represent the key characteristics, from our

perspective. Furthermore, the cost of the solution and openness

of the source code may be important. Moreover, we argue

that the simulator should be simple and user friendly, both in

terms of the installation process and normal usage. Our work

presents a solution, built from the ground up, which meets the

above requirements.

CoopDynSim (Cooperative Dynamics Simulator) is built

on top of the Newton Game Dynamics [8] physics engine,

recurring to OpenGL [9] to render the environment. Albeit

initially designed for the hardware platforms developed in-

house, which feature custom made components (difficult to

add to other available simulators), it still offers the possibility

to add other platforms, designed in third party software, as

well as user-defined worlds.

The main strengths of the proposed simulator architecture

lie in the modularity and level of abstraction of the robotic

components, through the use of a middleware layer. Further-

more, the ability to run in real or simulated time, as well as a

play back feature, which allows the user to replay a simulation,

represent key characteristics of the solution.

The simulator is being used in several research projects

[10], [11] and as a teaching tool for robotics courses in our

university, which further help in its validation. CoopDynSim

is in constant development, and it currently runs on Windows.

The remainder of the paper is organized as follows. Section

II presents a brief description of some related work. Section

III describes the overall architecture of the simulator, its

components and its features. In Section IV, a few use cases

are presented. Finally, Sections V and VI conclude the paper

and present some guidelines for future work, respectively.

II. RELATED WORK

In this section we briefly describe some of the available

simulators. We only aim to give an overall review of a few

products, both free and commercially available. For more in-

depth surveys on the subject, please refer to [5], [6], [7].

A. Freeware

One of the most notorious open-source solutions is the

Player-Stage-Gazebo project [12]. Player represents a hard-

ware network server, and Stage and Gazebo are the 2D and

3D simulators, respectively. Player is a TCP socket based

middleware layer, which guarantees abstraction of the robotic

hardware modules. Stage is the two-dimensional simulator

with low physical accuracy, providing only basic collision

detection and simple models. Nonetheless, it excels in the

simulation of large groups of robots, such as swarms. Gazebo,

on the other hand, is a three-dimensional simulator devised
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for simulating a smaller number of platforms. It can make

use of the ODE physics engine [13], and multiple sensors

and commercial robots are available. The simulator runs only

on UNIX based machines and has a challenging installation

process, which can represent shortcomings of the solution.

USARSim (Unified System for Automation and Robot Sim-

ulation) [14], is a simulation tool based on the Unreal engine.

Although the simulator itself is free, the engine has a cost

associated with it. USARSim is the official simulator used

in the RoboCup’s Rescue simulation league. Because of its

incorporation with the Unreal engine, a high degree of detail

and realist world interactions are provided (Karma is the built-

in physics engine). Robot’s programming and control can be

achieved using UnrealScript, but also through other network

based frameworks (integration with Player, SIMware and Pyro

is possible). USARSim is cross-platform, but its installation

process, here also, can be overwhelming, since one has to

install the engine and several external packages, as well as

become familiar with a large amount of documentation [7].

Simbad [15] is an open source simulator written in Java and

only requires the Java 3D visualization environment to run,

thus making it highly cross-platform. It features only basic

physics simulation, being mainly designed for researchers

in evolutionary robotics and artificial intelligence, since it

includes dedicated libraries for artificial neural networks and

genetic algorithms.

SimRobot [16], built on top of the ODE physics engine,

is mainly used in RoboCup’s Standard Platform League. It

features a user friendly, drag and drop interface to build

the simulated world, as well as the possibility for the user

to easily create its own platform, with generic bodies and

sensors. One characteristic that distinguishes this solution

from others, resides in the built-in code with the simulator’s

executable, rather than a client/server approach, which the

authors argue that allows the user to easily pause and continue

the simulation, easing the debugging process.

B. Commercially available

Within commercial robotics simulators, Microsoft Robotics

Developer Studio [17] is a popular solution. It is based on the

high fidelity physics engine PhysX , and features high quality

visualization, with a large collection of robots available. The

main programming language used is C#, along with the Visual

Programming Language (VPL) developed by Microsoft, which

allows users to easily create a control application, without the

need of being familiar with programming.

Webots [18], developed by Cybertronics, is a multi-platform

simulation software that features a large number of commer-

cially available platforms, as well as the possibility for the

user to create its own, using any of the existing sensors and

actuators. Relying on the ODE physics engine, it is capable

of simulating wheeled, legged and flying robots. Programming

can be done through C, C++ and Java (TCP connection for

external interface is also featured), and applications can be

cross compiled for the real hardware platforms.

Fig. 1. Schematic of the Hardware Abstraction Layer used in all of our
robots.

robotSim [19] is another simulation software solution, from

Cogmation Robotics, which offers a very realistic environ-

ment, along with customizable physics for each robots, which

allow the user to tweak how it interacts with the environ-

ment, in order to get more realistic simulations. Multiple

robots can be simulated, and their (individual) control may

be achieved through the provided C++ API or through the

network. robotBuilder is a concomitant tool from Cogmation

Robotics, allowing the user to create a custom platform, with

any of the available sensors.

III. ARCHITECTURE

CoopDynSim is a 3D robotics simulator, developed in C++,

capable of emulating multiple robots or teams of robots,

obstacles and targets. Newton Game Dynamics [8] is the

chosen physics engine, with Open Graphics Library [9] being

used to render the scene.

The simulator was developed taking into account the robots

existing in our laboratory, i.e. the simulated robots have the

same characteristics and interface as the real ones and follow

the client-server topology, where each robot is composed of

several hardware modules that act as servers, and the control

application has clients that connect to each of these modules.

This modularized approach makes the addition or removal of

hardware (i.e. sensors, actuators) an easy task.

The middleware in use is based on YARP [20] and provides

a wrapper with a socket based interface for each of the hard-

ware modules, as illustrated in Fig. 1. Since this abstraction

layer is employed both in simulation and in real implementa-

tion, the same control application can be used, thus eliminating

the, most of the times, hard and time consuming process of

migrating from simulation to the real platforms. Nevertheless,

a few control parameters may need to be adjusted, due to the

fact that the real platforms have unknown perturbations that

can not be accounted for in simulation.

To interface with each of the modules, a generic protocol

was developed, which is implemented in all of the hardware

modules in our laboratory (from robotic manipulators, to

vision systems and motor drivers, etc). The message format

can be seen in Fig. 2.
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Fig. 2. Communication protocol.

Fig. 3. Thread implementation of the virtual environment.

The message’s fields are as follows: Error Code is an integer

that reports the success of the message; Text is a set of charac-

ters; Command is an integer that contains the command’s id;

M Parameters represents the number of parameters that the

current message has, with Parameter 1, 2, . . . , M accounting

for the parameters sent; in the same way, N Data and Datum

1, 2, . . . , N are the number of floating point values, and the

values themselves, respectively. M Parameters and N Data are

used to unpack the message on its destination. By following

this message protocol, the user can control the robots using

any language that supports socket based connections.

A. Design

Concerning the main implementation scheme, CoopDynSim

runs three main threads, one dedicated to the physics update,

another dedicated to render the scene and the final one

responsible for the interface window. Each of these threads

runs independently from the others, with different update rates.

For instance, the visualization thread does not require a high

rate (we use 10 fps by default), whereas the physics one needs

a greater update rate (around 100 fps in our case). Furthermore,

each robot inserted in the simulator spawns a dedicated thread.

Responsible for updating the values of the actuators (with

the last command received) and sensors (with the last update

from the physics), this thread can run independently from

the physics thread, implying real time simulation, that is, the

time elapsed in simulation is the same as the real time, and

the simulation is independent from the control application(s)

connecting to the robot(s). Conversely, if one wishes to speed

up a simulation or increase the number of platforms in use,

a simulated time option is available, where each iteration step

from the part of the physics will only occur after each robot has

received its control command (thus implying a synchronization

mechanism), and the time to be simulated by the engine is a

Fig. 4. Virtual environment with a team of 2 robots transporting a bar and
a team of 5 robots in a formation.

fixed value, independent from the elapsed time, which can be

defined by the user (it can not be lower than 10 milliseconds,

in order to guarantee physics stability).

As for the objects in the virtual world, each is composed of

physical and graphical properties, Fig. 3. Physical properties

are represented by the shape (simple shapes or composed

ones), the mass, the mass distribution, friction coefficients,

etc. All these properties are predefined, unless if the object

is inserted using a configuration file (see Fig. 7), in which

the user can specify its mass. Graphical properties are defined

by the 3D shape to represent, i.e. the object’s vertices and

colors information. When an object is inserted in the virtual

environment, the physics’ thread “acts on it” and the graphics’

thread updates its location. Hence, each object has a shared

block of memory, accessed by both, that contains information

about its location. The robotic platforms are nothing more than

a set of attached objects, arranged in the best possible fashion,

in order to accurately emulate the real robots.

The virtual robots have the same characteristics as the real

ones, i.e. dimensions, sensors and actuators. Actually, two

main types of robots were implemented at first. Composed of

a cylindrical chassis, eleven distance sensors, two differential

motorized wheels, two caster wheels, one type has, in addition,

a dedicated support needed for cooperative transportation

tasks. To emulate the distance sensors, a ray trace algorithm,

provided by the physics engine, is used in each of the sectors.

As for the locomotion, the motorized wheels are emulated

by two cylinders attached to the main chassis by a hinge

joint, with the caster wheels needed to balance the platform.

The vision system is not being replicated, with the module

simply returning the target (colored marker or another robot)

information. Fig. 4 shows a team of two robots transporting

a bar and its target (magenta cylinder), a team of five robots

in a inverted V shape formation and its target (red cylinder),

and 3 distinct obstacles (box, cylinder and sphere).
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Fig. 5. Objects’, Robots’ and Targets’ Managers.

B. User interaction

After describing the main components of the simulator and

addressing its inner workings, the question of how the user

can interact with the software arises. Starting with an empty

world (with only the floor), navigation through the virtual

environment is achieved via the mouse buttons: left button

for rotation, right button for translation and mouse wheel for

zooming in and out. To insert elements in the world, two levels

of abstraction are available to the user.

1) Basic elements: Accessible through the Manager menu,

these represent the three basic constituents of the virtual

environment: objects, robots and targets.

a) Objects: With the Object Manager (Fig. 5 top left)

the user can easily insert simple objects, such as a Box, a

Cylinder and/or a Sphere, specifying the size, position and

orientation within the virtual world. These can also be updated,

at any time, or removed, through the same menu. Only three

basic objects are available, nevertheless, the implementation

of more complex ones is a trivial task, given the way the code

is organized.

b) Robots: Single or teams of robots (the latter used

for transportation tasks) can be inserted through the Robot

Manager menu (Fig. 5 bottom left). In the same way, position

and orientation can be modified, with the addition of a

customizable color (useful to differentiate the robots from

one another, in multi-robot scenarios) and name. This name

identifies the virtual platform on the network, and each needs

to have a different one. For instance, “/robot1/motors” and

“/robot2/motors” represent the tags, on the YARP network,

for the motors’ module of robots 1 and 2, respectively.

Not only mobile platforms can be emulated though, with

three robotic arms being added to the simulator at the time

of writing (concretely, amtecTMlwa 7dof, ABBTMIRB 120 and

MotomanTMMH5), which helps to prove the flexibility of the

solution, when it comes to the type of platforms it can simulate

(Fig. 6).

c) Targets: Representing a special type of objects, targets

(Target Manager, Fig. 5, right) are colored landmarks which

specify desired destinations for the robots to reach. Each

mobile platform has a target module that returns the distance

Fig. 6. Virtual environment with two robotics arms: ABBTMIRB 120 (left
side) and MotomanTMMH5 (right side) [21].

Fig. 7. World file template.

and angular displacement to these markers, thus (roughly)

simulating the vision system (we use colored boxes, with the

real platforms, to represent the desired location to reach in the

real world).

2) Compound elements: In order to decrease the effort

necessary to setup an experiment, more complex elements are

available, concretely, worlds and scenarios.

a) Worlds: Composed of a floor and N objects, these

arenas help the user to setup a custom environment, and easily

load it into the simulator. Several default ones are already

available via the Arena menu. In order to create a new arena,

a plane text file with the .world extension is used. Fig. 7

shows the structure of such file, where the user can specify the

FLOOR dimensions (length, width and height) and each of the

object’s properties (type, size, position, orientation and mass).

These user defined arenas can be loaded using the Load from

file. . . item in the Arena menu.

b) Scenarios: In order to quickly setup an experiment,

in addition to a custom world, a complete scenario can also

be loaded by the user (plane text file with .scenario extension

file). The same file based approach is used here (its structure

can be seen in Fig. 8), where the world, targets and robots

(type and properties) can also be defined. This option can be

accessed through the Load Scenario. . . item in the File menu.

C. Play back mode

A useful feature implemented in the simulator concerns the

play back option. If the user chooses to, in each iteration

step, the software will save the robots’ positions within the

virtual world to a specific file, as well as the scenario used.
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Fig. 8. Scenario file template.

Afterwards, to recap the simulation, a load menu is prompted

to the user, and the positions from the play back file are

stored in memory. In order to go to a specific time in the

past simulation, a global module based on YARP is used,

which receives said desired time via the network (much like

the modules of the robotic platforms).

Analyzing the dynamics of the robots (along with log files

from the control application), whilst having a visual feedback

of the positions of the robots in the world, makes the process

of debugging a control approach a much easier task, especially

in a multi-robot scenario.

IV. USE CASES

CoopDynSim started being developed to be used with object

transportation tasks by multi-robot teams [22]. Fig. 9 illustrates

a simulation with two teams of two robots transporting a long

bar from an arena’s corner to the opposite one. Here, each

team features a leader, whose main responsibility is reaching

the final destination, and a helper, who helps the leader carry

the load. By making use of the simulated support (custom

made sensor) and replicating a complex joint transportation

task, this scenario is particularly important when it comes to

endorse the flexibility of the simulator.

The software was also used in a multi-robot formation

research [11], in which teams of autonomous mobile robots

navigate in a desired configuration, whilst avoiding obstacles

that may lie in the robots’ path, by breaking formation,

returning to their position after such obstacles are surpassed

(Fig. 10 depicts such scenario).

A different project in development, using the software, is

aimed at using robotic arms to aid in brain surgery. By adding

different arms to the simulator, the study of which is more

appropriate to the task in hand becomes easier, as well as

the testing of different control algorithms, for such a delicate

application.

Concerning its applicability as a teaching tool, it was used

for the first time in the Hands-on Summer School: Neural

Dynamics Approaches to Cognitive Robotics 2011 [10]. The

participants quickly became familiar with the software, and a

Fig. 9. Snapshots taken from a simulation of a team of two robots transporting
long loads [23].

Fig. 10. Snapshots taken from a simulation of a team of three robots
navigating in a triangle formation [11].

few transferred the code that themselves wrote (in the control

application) for the simulation, to the real platforms, with only

a few parameters’ adjustment needed to obtain the same results

as in simulation. This simplicity and complete transparency

of the whole approach made the simulator receive a great

feedback from the participants.

After such successful use of CoopDynSim, it was adopted

as a teaching tool for the Automation, Control and Robotics in

the Industrial Electronics Engineering Master Degree, at the

University of Minho in Portugal. Here, the students are given

a single install package for the simulator and a MATLAB

application to implement the control. The software helps the

students to better understand the theoretical concepts taught

in the course.

V. CONCLUSIONS

We have presented CoopDynSim, a 3D robotics simulator,

based on Newton Game Dynamics, Open Graphics Library

and YARP.
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By having complete transparency, when it comes to the con-

troller code, as one of the design criteria, the simulator greatly

diminishes both the effort and the time spent migrating from

simulation to the real implementation. With this dedicated

solution, but easily expandable to include other robot models,

when the control application is transferred to our real platforms

just fine tunning control parameters may be needed (real robots

are accurately replicated in the simulator, but obviously some

unexpected real perturbations can not be taken into account).

If robot models provided by the most other simulators were

used, the switch to real platforms would exhibit an exaggerated

effort which increases with the number of robots (multi-robot

control) due to the sensory information and motor actuation

are distinct from the one of the real platforms.

Furthermore, the possibility to easily add custom made

sensors and platforms (albeit having to directly modify the

source code), succors the flexibility of the solution, widening

the possible applications in various research projects.

The simulated time and real time options further increase

the software’s flexibility, since the former can be used for

a simulation with a high number of platforms (for instance,

swarms) and the latter is more suitable to use in scenarios with

only a few robots. Also, the play back feature gives the user a

possibility to recall an entire simulation, which represents an

useful feature of the software.

The simulator’s user friendliness and simplicity were vali-

dated by its usage as a teaching tool in our University.

CoopDynSim is free and can be downloaded from our

MARL web server 1.

VI. FUTURE WORK

CoopDynSim is still in an early development stage. The

main requirements for the project have been fulfilled, never-

theless, many aspects can be improved and some features can

be added.

In order to make the simulator more visually appealing,

some textures could be added to the objects on the world.

Furthermore, the possibility to easily add new objects and/or

robots without making changes to the source code, as well as a,

more intuitive, drag and drop user interface are key features

found in many available simulators that are lacking in our

solution.

The simulated vision system is another point that needs

improvement. Instead of just directly returning the angle and

distance to a target, a virtual image of the robot’s field of vision

(virtual camera) will give the possibility to use the same image

processing application that is in use in the real robots.

Moreover, the software should be made platform indepen-

dent (i.e. Linux, Mac OS, etc), liberating the user from having

to use a specific system (currently it only runs on Windows

OS).
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