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ABSTRACT  

Background. Machado-Joseph disease (MJD) is an autosomal dominant 

neurodegenerative disorder of late onset, caused by a (CAG)n expansion at the ATXN3 

gene (14q32.1). Variation in age-at-onset is partially explained by the size of the (CAG)n 

tract in expanded alleles. The remaining variation should be the product of other factors, 

namely modifier genes. The genotype at the APOE locus has been described as a possible 

modifier in different neurological disorders, namely Parkinson (PD) and Huntington 

disease (HD). In the CNS, apolipoprotein E constitutes an important mediator of 

cholesterol transport/metabolism, which is essential for synaptic integrity and neuronal 

function. 

Objective. To investigate a modulating effect of the APOE polymorphism on age-

at-onset of MJD. 

Design and Subjects. The APOE polymorphism was typed in a series of 192 MJD 

patients. 

Results. Cases with the ε2/ε3 genotype presented an earlier onset, when compared 

with those with ε3/ε3 or ε3/ε4. In this series of patients, the presence of an APOE ε2 allele 

implies a decrease of nearly 5 years in the age-at-onset. When combining, in a general 

linear model, several other predictors, namely the presence/absence of the APOE ε2 

allele, with the size of the (CAG)n in expanded alleles, the model was significantly 

improved and the explanation of onset variance was raised from 59.8% to 66.5%.  

Furthermore, the presence of the ε2 allele was associated with an onset below 39 years 

(OR=5.00; 95% CI: 1.18-21.14). 

Conclusions. These findings indicate that the polymorphism at the APOE gene 

plays a role as a genetic modifier of MJD phenotype.  
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INTRODUCTION  

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 

(SCA3), is an autosomal dominant neurodegenerative disorder of late onset, caused by an 

expansion of a (CAG)n in the coding region of ATXN3 (14q32.1), encoding for ataxin-3.
1, 

2
 MJD is the most frequent type of SCA,

3
 and reaches its highest worldwide value of 

prevalence in the Azores islands (Portugal).
4
 Wild-type ATXN3 alleles comprise 12 to 44 

CAG repeats, whereas expanded alleles consensually have more than 52 repeat units.
5, 6

 

MJD presents clinical heterogeneity, namely on what concerns the age-at-onset, with a 

mean around 40 years, but with extremes of 4
7
 to 70 years.

8
 Variation in the age-at-onset 

is only partially explained (~50-75%)
9, 10

 by the size of the (CAG)n tract in the expanded 

ATXN3 alleles. Familial factors may explain additional variance in age-at-onset,
11, 12

 

indicating that modifier genes may play a role. The hypothesis that other CAG-containing 

proteins could interact with the expanded ataxin-3 and influence the MJD onset was 

raised.
13, 14

 An association between severity of fasciculations (minor signs in MJD) and 

the CAG length of the large SCA2 allele was found,
14

 but no influence on disease onset 

was detected.  

Apolipoprotein E (apoE) is an ubiquitous protein involved in lipid storage, 

transport, and metabolism.
15

 APOE (19q13.2) has three main alleles (ɛ2, ɛ3, and ɛ4), 

encoding for isoforms E2, E3 and E4 (which differ at positions 112 and 158).
16, 17

 These 

differences alter the protein’s structure, influencing association with lipids and its binding 

to the receptors. While apoE3 and E4 bind to Low-Density Lipoprotein Receptors 

(LDLR) with similarly high affinity, apoE2 has a 50-100-fold weaker affinity.
18, 19

 In 

CNS, ApoE is secreted by astrocytes, and is highly expressed in both intracellular and 

extracellular spaces,
20

 constituting an important mediator of cholesterol and lipid 

transport in the brain (for a review see
21

), specially of cholesterol transport from 



4 
 

astrocytes to neurons; furthermore, it has been suggested that apoE isoforms differentially 

regulate synaptic plasticity and repair.
22

 

The APOE ɛ4 allele has been consistently associated, for example, with increased 

risk (e.g.
23, 24

) and a lower onset in sporadic Alzheimer disease (AD),
24

 increased risk of 

cognitive impairment,
25, 26

 as well as with a more unfavorable outcome after traumatic 

brain injury.
27, 28

 On the other hand, the ɛ2 allele has been associated with a higher 

prevalence
29

 and earlier onset of sporadic PD,
30, 31

 increased risk of frontotemporal 

dementia (FTD),
32

 and an earlier onset in HD.
33

  

The main goal of this work was to investigate a modulating effect of APOE on MJD 

phenotype.  

 

METHODS 

Blood samples from 192 MJD patients (59 from the Azores, 73 from mainland 

Portugal and 60 from Brazil) were collected after informed consent. DNA was extracted 

from all samples using standard procedures. The size of the (CAG)n tract was determined 

following a methodology previously reported,
34

 and the APOE polymorphism was typed 

according to previously described conditions.
35

 For the total series of patients, data on the 

age-at-onset was collected as close as possible from the first complaints of gait instability 

or diplopia (the two most consistent initial symptoms in SCA3/MJD, according to the 

extensive study by Coutinho
8
). Patients with several years of disease progression were 

asked for the age-at-onset of the mentioned symptoms. The age reported by them was 

confronted with the one stated by their close relatives (usually caregivers) and, whenever 

possible, additional information from previous records was also taken into account, in 

order to get an onset as accurate as possible.   
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Conformity with the Hardy-Weinberg equilibrium was tested using the exact 

probability without bias. An exact test of differentiation evaluated differences in APOE 

genotypic frequencies among the three groups of patients, as well as between the patients’ 

groups and the corresponding populations of origin (previously published for the 

populations of Azores,
35

 mainland Portugal
36, 37

 and Brazil
38, 39

). All analyses were 

performed using the Arlequin package.
40

 

Age-at-onset for the three most frequent APOE genotypes was adjusted for the 

mean number of CAGs in the expanded ATXN3 allele, after fitting a linear regression 

model. Differences in the adjusted age-at-onset between APOE genotypes were analyzed 

using the t-test calculator of OpenEpi v.2.3.1 (www.openepi.com). Multivariate linear 

regression analyses were used to test the effect of several variables on age-at-onset: 

CAGs in expanded and normal alleles, presence/absence of the APOE ε2 allele, 

population of origin, and gender. To account for kinship among some patients of the 

Azorean series, a generalized estimating equation model was also applied. The risk of 

developing MJD before 39 years of age (mean for the present series) among patients with 

APOE ε2 allele was estimated as an odds ratio (OR), using logistic regression analysis, 

with onset < 39 yr vs. ≥ 39 yr as the dependent variable. All analyses were performed 

using SPSS v. 15.0.
41

 

 

RESULTS 

The APOE genotypic frequencies were in conformity with Hardy-Weinberg 

expectations. No significant differences were detected in the genotypic frequencies 

among groups of patients (Azores, mainland Portugal or Brazil), nor between the patients’ 

groups and the corresponding populations of origin.   

http://www.openepi.com/
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A summary of descriptive statistics, for the MJD patients studied, is shown in Table 

1. Adjusting onset for the (CAG)n size, patients with the ε2/ε3 genotype had an earlier 

onset than the other two groups (Table 1). This difference was statistically significant 

between ε2/ε3 and ε3/ε3 (t-test; p=0.024), but did not reach statistical significance 

between ε2/ε3 and ε3/ε4 (t-test; p=0.097).  

The (CAG)n size in the expanded ATXN3 alleles is known to be inversely correlated 

with the age-at-onset of MJD (present series: r =–0.769; p<0.001). Given the earlier onset 

observed for APOE ε2/ε3 genotype, the presence/absence of the APOE ε2 allele was 

tested, in a general linear model, in addition to the (CAG)n size in expanded alleles. When 

the APOE ε2 status was taken into account (given the impossibility to dissociate the effect 

of ε2 from ε4, the three patients with ε2/ε4 genotype were excluded), the percentage of 

explanation of the onset variance was significantly increased from 59.8% to 60.9% 

(F=6.46; p=0.012). In this series of patients, the presence of APOE ε2 decreases the onset 

age by nearly 5 years. When adding the number of CAGs in normal ATXN3 alleles, the 

model was not significantly improved; however, the population background (Azores, 

mainland Portugal and Brazil) (F=19.51; p<0.001) and gender of patients (F=8.26; 

p=0.005) majored the outcome of APOE ε2 (F=8.71; p=0.004), improving onset variance 

explanation to 66.5%. Even taking into account the fact that the subseries of patients from 

the Azores contained related patients, the effect of APOE ε2 was still statistically 

significant (Wald Chi-Square=7.12; p=0.008). When patients were divided according to 

onset mean (< 39 yr vs. ≥ 39 yr), an association was found between the presence of ε2 

allele and an earlier onset (OR=5.00; 95% CI: 1.18-21.14).  
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COMMENT 

The present results indicate that the APOE ε2 allele influences the MJD phenotype, 

increasing the risk for earlier onset. When the ε2 allele status was accounted (additionally 

to the CAG repeat size in expanded alleles), an apparent discrepancy between the 

approximately five years earlier onset in ε2 carriers and the minimal (but statistically 

significant) improvement of only about 1% in the explanation of onset variance was 

detected. This observation is probably due to the fact that the number of patients with the 

ε2 allele is not very large (n = 20). Notwithstanding, in our series of patients, the risk of 

developing MJD before 39 years is five times higher in carriers of the ε2 allele in 

comparison with the non-carriers.  

The APOE ε4 is associated with an increased risk for AD, while the ε2 allele may 

be protective.
23

 In contrast, having at least one copy of ε4 may protect against age-related 

macular degeneration or delay vision loss, while having at least one copy of ε2 may 

increase the risk for this disease or for an earlier onset.
42, 43

 The APOE ε2 allele has been 

also associated with an earlier onset of PD
30, 31

 and HD.
33

 This is in agreement with the 

effect we now observed in MJD. Some MJD patients may present a PD-like phenotype,
44-

46
 which may indicate a shared neuropathological mechanism. In HD, the influence of the 

APOE genotype is still controversial (e.g.
33, 47

); nevertheless, in agreement with our 

results, Kehoe and co-workers
33

 found that male patients with the ε2/ε3 genotype had an 

earlier onset than those with other APOE genotypes. In face of the present results, and 

taking into account the postulated differential efficiency of different apoE isoforms in 

cholesterol transport, it can be hypothesized that apoE2 may be less efficient, leading to 

an earlier neuronal damage and MJD onset.  

Rapp et al.,
48

 using the rat as a model, have postulated that neurons and astrocytes 

express different apoE receptors. Astrocytes express preferentially the LDLR, in contrast 
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with neurons, where the principal receptor is LRP (LDL receptor-related protein). In 

hippocampal astrocytes, the efficiency of apoE3 and apoE4 mediated cholesterol uptake 

is similar, whereas it is reduced for apoE2. This low affinity of apoE2 for LDLR in 

astrocytes could contribute to the altered homeostasis of cholesterol in the brain, which 

may ultimately be associated with the earlier manifestation of MJD in ε2 carriers. 

These results support a role of APOE as modulator of MJD phenotypic variability, 

in addition to the known effect of the CAG tract size in the expanded allele.   
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Table 1: Descriptive statistics for the MJD patients studied 

Characteristics 
APOE Genotype 

Total 
ε2/ ε3 ε3/ ε3 ε3/ ε4 ε2/ ε4 ε4/ ε4 

Number of patients (%) 

Population 

Portugal 

Azores 

Mainland 

Brazil 

Gender 

Male 

Female 

20 (10.4) 

 

 

6 (10.2) 

9 (12.3) 

5 (8.3) 

 

10 (10.3) 

10 (10.5) 

134 (69.8) 

 

 

42 (71.2) 

52 (71.2) 

40 (66.7) 

 

71 (73.2) 

63 (66.3) 

33 (17.2) 

 

 

11 (18.6) 

11 (15.1) 

11 (18.3) 

 

13 (13.4) 

20 (21.1) 

3 (1.6) 

 

 

0 (0.0) 

1 (1.4) 

2 (3.3) 

 

2 (2.1) 

1 (1.1) 

2 (1.0) 

 

 

0 (0.0) 

0 (0.0) 

2 (3.3) 

 

1 (1.0) 

1 (1.1) 

192 

 

 

59 

73 

60 

 

97 

95 

Age at onset 

Mean, yr ± SE 

Adjusted onset*, yr ± SE 

Range, yr 

 

36.95 ± 2.83 

34.74 ± 2.27 

21-60 

 

39.30 ± 1.09 

39.16 ± 0.67 

12-70 

 

37.70 ± 1.84 

39.08 ± 1.11 

12-58 

 

33.33± 10.93 

--- 

20-55 

 

36.50 ± 16.50 

--- 

20-53 

 

38.66 ± 0.90 

--- 

12-70 

CAG repeat length 

Normal 

Mean ± SE 

Range 

Expanded 

Mean ± SE 

Range 

 

 

23.45 ± 1.02 

14-34 

 

71.85 ± 0.80 

65-77 

 

 

21.92 ± 0.41 

14-32 

 

72.75 ± 0.34 

63-82 

 

 

21.82 ± 0.94 

14-37 

 

73.30 ± 0.54 

69-80 

 

 

15.67 ± 1.67 

14-19 

 

74.00 ± 1.53 

72-77 

 

 

26.00 ± 3.00 

23-29 

 

75.50 ± 3.50 

72-79 

 

 

22.01 ± 0.35 

14-37 

 

72.80 ± 0.27 

63-82 

*Adjusted for the mean size of expanded CAG repeats in the patient sample. 


