
Path Planning for Complex 3D Multilevel Environments

Leonel Deusdado*, António Ramires Fernandes† , Orlando Belo‡
CCTC

Universidade do Minho - Portugal

Abstract

The continuous development of graphics hardware is
contributing to the creation of 3D virtual worlds with
high level of detail, from models of large urban areas, to
complete infrastructures, such as residential buildings,
stadiums, industrial settings or archaeological sites, to
name just a few. Adding virtual humans or avatars adds
an extra touch to the visualization providing an enhanced
perception of the spaces, namely adding a sense of scale,
and enabling simulations of crowds. Path planning for
crowds in a meaningful way is still an open research
field, particularly when it involves an unknown polygonal
3D world. Extracting the potential paths for navigation in
a non automated fashion is no longer a feasible option
due to the dimension and complexity of the virtual
environments available nowadays. This implies that we
must be able to automatically extract information from
the geometry of the unknown virtual world to define
potential paths, determine accessibilities, and prepare a
navigation structure for real time path planning and path
finding. A new image based method is proposed that
deals with arbitrarily a priori unknown complex virtual
worlds, namely those consisting of multilevel passages
(e.g. over and below a bridge). The algorithm is capable
of extracting all the information required for the actual
navigation of avatars, creating a hierarchical data
structure to help both high level path planning and low
level path finding decisions. The algorithm is image
based, hence it is tessellation independent, i.e. the
algorithm does not use the underlying polygonal structure
of the 3D world. Therefore, the number of polygons as
well as the topology, do not affect the performance.

CR Categories: I.3.7 [Three-Dimensional Graphics and
Realism]: Virtual RealityAnimation; I.3.5
[Computational Geometry and Object Modeling]:
Geometric Algorithms;

Keywords: path finding, avatars, image based
--

* e-mail: leodeus@ipb.pt
† e-mail: arf@di.uminho.pt
‡ e-mail: obelo@di.uminho.pt

1 Introduction

Virtual humans and avatars are slowly becoming an
intrinsic part of virtual environments. The perception of
scale, for instance, is greatly enhanced when avatars are
present in virtual environments. Research in agents and
avatars has provided these inhabitants of virtual worlds
with skills that, when combined, give rise to complex and
believable behaviours. Amongst these skills, the
navigation in the virtual environment is of surmountable
significance. This fundamental skill requires research in
topics such as the study and analysis of the models
topology, collision detection techniques, path finding and
planning strategies. In order to achieve these goals, it is
required to transform the polygonal definition of
unknown virtual 3D worlds into higher level structures
which facilitate the understanding of the navigational
context, and enable the efficient application of navigation
algorithms.

Research is abundant in areas related to 3D navigation in
virtual environments, however this is not a closed subject
yet. According to [Salomon et.al. 2003], research in
navigation related issues can be classified in two major
categories: those that seek to understand the cognitive
processes that motivate the navigation, and those that are
concerned with the actual navigation in 3D worlds.

The latter category is a long running research topic where
many works can be found that present, classify, apply and
test different techniques with a variable degree of
success. However, when confronted with unknown 3D
complex virtual words with multilevel passages, common
in real environments, more research is required to
perform a fully automated extraction of the navigation
related information.

Determining the principles that rule navigation for 3D
models and environments requires the analysis of the
polygon soup that defines them, and the definition of
procedures capable of simulating autonomous navigation
with predefined goals. Multilevel passages, such as
bridges that can be crossed over or below, or buildings
with more than one floor, imply more navigation options.
Hence, these features represent yet another issue in
navigational related information extraction.

This article addresses the fully automated extraction of
navigational related information from a priori unknown
arbitrarily complex 3D virtual worlds, without requiring
any information about the topological structure of the 3D
world.

Section 2 presents a brief overview of the related work.
Section 3 discusses some issues related to path finding.
Section 4 presents the new method, detailing each of the
stages. Section 5 discusses the usage of the method in a
hierarchical approach in conjunction with A*. Practical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55619122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

results of the application of the method are presented in
section 6. Conclusions are finally presented in section 7.

2 Background

Path finding deals with the search for a path according to
some criteria or cost function. For performance reasons
this function may actually be nonexistent and the
algorithm may settle for the first path it finds. More
complex solutions may attempt to minimize the distance,
or incorporate different costs for certain areas of the
virtual environment.

However, initially a navigation structure must be built, to
enable the definition of accessible areas, waypoints, and
planning of complex paths, namely in a hierarchical
fashion.

The most direct method to address the path finding
problem is to work directly on the geometry of the 3D
world as input of the search method. However, this
method imposes certain conditions on the modelling
process, namely on its polygonal definition, to avoid
having polygons with highly disparate sizes.
The work in [Kreylos 2005] is an example of this
approach, but there are few researchers following this
approach for complex 3D worlds. Most methods rely on
some sort of pre-processing of the 3D world in order to
obtain a higher level representation, more appropriate for
navigation purposes. These methods can be divided in
two main categories: those that receive as input a
navigation map for known environments, and those that
that are able to create the map for a priori unknown
worlds.

Pre defined navigation maps
These maps can be used as tools for building graphs
suitable for navigation purposes. A net of interconnected
places, and the paths to follow the connections, can be
previously manually defined, that allow a fast search for
paths between two points in the world. This approach
simplifies the algorithms and provides a degree of control
difficult to obtain with automatic procedures. However it
is not feasible for arbitrarily complex worlds.
Furthermore, changes on the topology of the world
require a manual intervention. The work in [Ballegooij
and Eliéns 2001; Nitsche and Richens 2005] uses this
approach.

Automatically generated navigation maps

Under this approach, the algorithm builds a hierarchical
graph for a previously unknown 3D world based upon
low level geometric information. This is a pre-processing
stage that provides a result upon which the real time, or
near real time path finding is performed.

The map construction process computes a network of
paths on free and walkable spaces. An example of this
approach is the work in [Arikan and Forsyth, 2001], it
defines connections between pairs of points that are
visible from each other. Voronoi diagrams are used for
the free spaces, to generate the paths [Hoff et. al., 1999;
Hoff III et. al., 2000].

Based upon a geometric description of the environment,
[Lamarche and Donikian, 2004] propose a method to
automatically extract the topology combining Delaunay

triangulations, and computing the shortest distance
between corners and walls of buildings. The resulting
data is stored in a hierarchical graph, latter used for
navigational purposes.

Another example of the application of this approach, seen
in [Andújar et. al. 2004], is used for virtual visits to
buildings such as museums. Also in [Loscos et. al. 2003]
the world is decomposed in a hierarchical structure.

Some works allow for specific behaviours using the
notion of potential fields. The methods are commonly
based on regular grids where each cell has properties that
are then used to define paths for the avatars. [Loscos et.
al. 2003; Dapper et. al. 2006] are examples of pedestrian
path finding using potential fields.

A large chunk of the word in this area, namely [Bandi
and Thalmann 1998; Pettre et. al. 2005; Pettre et. al.
2006], comes from the VR lab from the Swiss Federal
Institute of Technology, headed by Daniel Thalmann.
The most recent works present a method to create a 3D
navigation graph from a previously unknown world.
However the method is not scalable for arbitrarily large
and complex 3D worlds, consuming a large amount of
resources and pre-processing time.

3 Discussion

The definition of a high level spatial representation of the
underlying navigation possibilities in the 3D world, is
essential for the success in path planning for previously
unknown 3D worlds

Some of the work in this area has already been presented
in the previous section, however none of the methods
solves the problem for arbitrarily large and complex
worlds in a fully automated fashion. Limitations include
working only in two dimensions, which is not suitable for
worlds including multilevel passages, scalability issues,
and also requiring extra information to define the
navigation maps.

Finding the walkable areas and creating automatically a
navigation structure, based on the geometric information
may provide costless collision detection, hence freeing
the steps performed in real time for this task. The
advantages of hierarchical spatial subdivision, for path
planning purposes, combined with grid based approaches,
which allow the use of the graphics hardware to help
extracting information from the geometry, make it a
natural option [Sturtevant 2005].

A balance must be accomplished in the definition of the
hierarchy, graphs with too many nodes provide a detailed
representation of the environment, but have impact on the
performance (as can be seen in [Pettre et. al. 2006]), too
few nodes provide a less refined representation but are
more gentle on the performance.

The A* algorithm also has some issues when working in
real 3D [Holte et. al., 1996; Maio and Rizzi, 1994]. The
heuristic functions commonly used [Lester, 2004] do not
contemplate the up direction in a particularly meaningful
way [Frolich and Kullmsann, 2002]. This implies that the
avatar may walk directly upwards without taking into
account the feasibility or requirements of such an action.

The goal is to devise a method to divide, catalogue, and
build a hierarchical structure for a soup of polygons,
without any manual intervention of further information,
that is able to deal with arbitrarily large and complex
worlds, including environments that include multilevel
passages. The method must be fully automatic and
generate a sustainable number of nodes and connections
to allow good performance levels for real time path
finding algorithms. Such a method is presented in the
next sections.

4 Spatial Subdivision Graph

The work presented in here is based upon [Ramires and
Deusdado, 2006]. This previous work provides efficient
conservative collision detection for unknown virtual
worlds with multilevel passages. We propose an
extension that is geared towards the navigation in the
virtual world, namely path finding and path planning.

The simple 3D world in figure 1 will be used to
exemplify and show the features of the method. In this
simple world, the avatar may navigate in four levels,
climb ramps, overcome small obstacles, detect collisions
with the remaining objects, and is not allowed to jump
from one level to the other (or the floor). The avatar must
be able to find the path between any two points, where
such path does exist, if necessary changing levels to do
so.

Figure 1. Simple Multilevel Virtual World

The method can be divided in five stages:

• Information gathering from the geometry to
determine walkable areas

• Area classification based on image processing
• Determining interconnection zones
• Hierarchical Graph construction
• Path planning and path finding

4.1 Information Gathering

Based upon the height based segmentation process
defined in [Ramires and Deusdado 2006], slices with
navigation information have been identified. These slices
may include ramps or stairs (either total, or partially).
The algorithm obtains the minimum number of slices
required for navigation purposes based on hardware Z-
buffer rendering, hence it is efficient performance wise.

This is the only stage that deals with the polygon soup
directly, and the result is not dependent on the topological
structure of the 3D world. Performance wise, this stage is
fast since only a part of the world is rendered for each
slice.

The next step, once the required slices have been
identified, is to identify the connection points between
slices, in practice this amounts to determine which of
slices contain passages between levels of the virtual
building. In figure 2, where 7 slices have been found, 3 of
them, namely slice 1, 3 and 5, contain passages between
levels, in this case access ramps of the parking lot.

Figure 2. Slices found in the first step.

A simple algorithm was defined to locate and classify the
accessible areas at different heights, based upon the
height information present on the slices, generating
binary images for each slice as can be seen in figure 3.
The slice’s information already defines what areas can be
visited by the avatar, so this step is extremely simple.
White areas are accessible, black are not accessible.

A B C D

 E F G

Figure 3. Images generated based on the slices

information

Note that image A, from figure 3, represents the ground
floor and it is therefore almost fully walkable. Also note
that, in image F from figure 3, the largest ramp (on the
left) has no continuity in image G, this can be seen in
figure 1, where one of the ramps that leads to the top
floor is actually blocked. At last, an obstacle that the
avatar can jump over is not present in image E from
figure 3 (the small obstacle on the third floor near the
pillar in figure 1).

4.2 Area Classification Based on Image
Processing

This step subdivides the space and identifies independent
areas in each slice where the avatar can navigate. For
instance in image C from figure 3, we can identify 2
separate areas on the same slice. In images D and F the
two ramps are considered independent as well.

Image processing algorithms, available for instance in
[OpenCV], allowed for the flooding of inner areas, and
contour detection and area identification.

Note that these images are only used to establish the high
level navigation graph, hence the missing details are not
relevant. The low level navigation algorithm, i.e. the
algorithm that determines navigation in each of the areas,
uses the information available in the corresponding slices
images, and not these binary images.

A B C D

 E F G
Figure 4. Result from the image processing stage to

locate the areas where navigation is allowed.

4.3 Locating the interconnections

After determining the independent areas for each slice it
is necessary to find the connections between slices, i.e.
the passages from one slice to the next, the waypoints.

Based on the area information obtained on the previous
step, for each slice, the connections between slices are
searched for in adjacent slices. For instance, image B
from figure 3, corresponding to slice 2 from figure 2, can
only have waypoints with images A or C from image 3,
respectively for slices 1 and 3 in figure 2.

To be able to determine the presence of a waypoint
between two adjacent images the heights recorded on the
respective slices are compared. When the borders of the
areas for different slices have common height values, and
if the number of these equal height points is large enough
for an avatar to pass through, then a waypoint is
discovered.

4.4 The Hierarchical Navigation Graph

Once the waypoints are determined the navigation graph
is easily built. At the highest level, the graph contains the
identification of the areas as nodes, and the waypoints as
the connections between nodes. At a lower level, for each
node, the corresponding area of the slice is stored. Hence
at a higher level we are able to decide if and how an
avatar can move from one independent area to another
independent area, and at a lower level, we decide how the
avatar moves inside each independent area, this time
using the slice’s grid and the waypoints as the origin and
destination.

For instance, considering the simple 3D world in figure 1,
we obtain the following graph, as presented in figure 5.

Figure 5. Navigation graph for the simple world

4.5 Navigation and path planning

The preprocessing stage provides a hierarchical graph
containing all the pertinent information for navigation
purposes. The start and end points may be defined by a
user or by algorithms that deal with the cognitive aspects
of the navigation, such as task oriented procedures. Note
that each avatar should have its own start and end points,
the method presented does not address groups, but rather
individuals. This implies that each avatar will have its
own path to follow, and that this path can be influenced
by the location of other avatars.

In the examples provided, the starting point for each
avatar is chosen at random in the ground floor near a
point, and only the destination is common. As mentioned
before, path planning will be computed for each avatar
individually, hence each avatar may follow a different
route.

To build the roadmap, we initially determine the node
where each avatar is positioned and the node that
contains the goal position. Then the higher level graph is
used to determine which nodes the avatar must visit to
achieve its goal. Finally for each node, path finding is
used again to determine the navigation inside the node.

For the higher level of navigation the A* is used to
determined the sequence of nodes to be visited. In the
lower level, i.e. inside each node, A* is used again to
determine the path inside each node.

5 A* Combined with the Hierarchical

Graph

The preprocessing described on the previous section, and
the analysis and spatial partitioning of the environment,
led to an hierarchical navigation graph that can be
combined with the A* algorithm to perform an efficient
path planning that is scalable even when considering a
significant number of individual avatars. These features
are now presented in more detail.

Sustainable number of nodes and connections:

The number of nodes and connections in a graph has
direct implications on the performance of path finding
algorithms. Graphs with an excessive number of nodes
are not applicable in situations where real time path
finding is required as recognized in [Pettre et. al. 2005;
Pettre et. al. 2006].

The usage of a hierarchical navigation structure enables
the planning of decisions on two different levels, thereby
increasing performance. At a higher level the search is
performed only amongst the nodes and their connections,
whereas at a lower level the search is restricted to the
inside of a node. In this way the search is always
performed in 2D

Fast Results:

The hierarchical structure enables fast results using the
A* algorithm, that would not be achievable if the search
space contained the whole world. This is more evident
when considering situations where there is no path
between two distinct points in the same level. In these
situations the A* would attempt to explore all
possibilities inside the same level just to reach the
conclusion that there was no direct path between them.

This is the case in the second floor of our simple world,
where there is a barrier dividing the floor in two, hence
requiring a change of level to go from one side to the
other, as can be seen on figure 6. Using the hierarchical
approach this impossibility arises naturally at no cost.

3D simple world 2nd height level

Figure 6. Example of inaccessible areas inside the same

level.

Dynamic search:

The usage of the hierarchical structure provides an
analysis of the navigation possibilities that divides the
effort between the low level navigation and higher level
path planning, reducing the search space in each
situation.

For instance consider an avatar that has to be moved from
a point on the second floor in region 3, see figure 7 A and
B, to a point on region 4 on the same floor. The avatar
must go through ramp 5 to the third floor and then go
down again using ramp 6. During its movement five A*
searches will be performed (regions 3, 5, 7, 6, and 4).
Each will have as its goal to reach a waypoint, and in the
last search the destination itself.

2nd floor Access ramps 3rd floor

Figure 7 A. independent areas found during the pre
processing stage.

Figure 7 B. High level path.

The performance gain is due to the restriction of the
search space where the avatar can move at each particular
moment in time, and this search is performed
dynamically, when the avatar reaches a waypoint, hence
the avatar can have its path influenced in real time by the
navigation status of each area.
The cost function:
Adding variable costs to the terrain may be a way to
reflect the effort an avatar has to make to go up or down.
The cost can also be used to implement certain
behaviours in the avatars, such as avoidance of certain
areas. Dynamic adaptation of the navigation cost is also
possible based on the density of avatars in an area. The
A* would then try to find a less crowded area. Since the
paths are computed in real time, all these costs would be
reflected on the path immediately.

6 Tests and Results

Two tests were performed to show the difference between
our hierarchical approach and the A* used alone. Initially
a 3D world that can be transformed into a 2D problem,
see figure 8, was tested with both methods.

The search grid is 512x512 for each slice, however note
that only a part, the area where the avatar is contained, is
searchable for each node.

When considering large number of avatars, their
graphical representation was simplified to a cube to avoid
having the graphics performance causing a strong
influence on the results. When using a smaller number of
avatars an animated articulated 3D person was used see
figure 10.

Figure 8. 3D world and its 2D equivalent

The data in table 1, shows the results in seconds for both
methods. The waiting period reflects the time that it was
required to initially compute the path. The moving period
shows the time it actually took to move the avatars from
the starting point to the end point. Note that the points in
figure 8 are only a reference, i.e. actually a small area
around the point was considered. This implies that each
avatar has its own path, so n different paths were
computed.

It is clear from table 1 that there is a substantial
difference when computing the paths. As expected the

hierarchical approach is much faster in this stage. Moving
the avatars, after the path has been computed, is roughly
equivalent for both situations.

The results in table 2 show the results for the same
problem, but this time considering collision detection
between avatars. When a collision occurs, i.e. an avatar
tries to occupy a position where another avatar is placed,
the path is recomputed for the first avatar with the current
position as the starting point. The waiting periods
reported on table 2 refer to all the path computations,
both initially, and when a collision occurs

 1 avatar
2D classic A* waiting period 0
 moving 1,71
 total 1,71

3D Hierarchical A* waiting period 0
 moving 1,45
 total 1,45

 100 avatar
2D classic A* waiting period 18,9
 moving 2,75
 total 21,65

3D Hierarchical A* waiting period 0
 moving 2,57
 total 2,57

 1000 avatar
2D classic A* waiting period 149
 moving 12
 total 161

3D Hierarchical A* waiting period 1,07
 moving 11,58
 total 12,65

Table 1. Results for world in figure 8. The results are in

seconds.

 10 avatar
2D classic A* waiting 14,5
 total 16,2

3D Hierarchical A* waiting 0,4
 total 2,05

 50 avatar
2D classic A* waiting 43,2
 total 45,2

3D Hierarchical A* waiting 4,67
 total 6,6

 100 avatar
2D classic A* waiting 104,8
 total 112

3D Hierarchical A* waiting 10,53
 total 13,1

Table 2. Results for world in figure 8 with collision

detection between avatars.

Again it is clear that the hierarchical approach represents
a very substantial improvement over the classical, non
hierarchical approach. This is to be expected since in the
hierarchical approach the path is only recomputed inside
each node, whereas in the classical approach the path is
recomputed until the end area.

The world in figure 9 was tested only with the
hierarchical approach as it is a world with multilevel
passages. The starting area is on the centre of the ground
floor, and the finishing point is on the left zone of the last
floor. The search grid is also 512x512 for each slice. As
mentioned before, only the graph node where the avatar
is placed is searched, hence the search space is greatly
reduced, except in the ground floor where almost all the
grid is walkable.

Figure 9. 3D multilevel word with start (green ball) and

end (red ball) positions.

The results in table 3 and 4, show the required times
without and with collisions respectively.

1 avatar
waiting period 0
moving 3,11
total 3,11

100 avatar
waiting period 1,14
moving 6,48
total 7,62

1000 avatar
waiting period 9,23
moving 20,19
total 29,42

Table 3. Results for world in figure 9.

Note that, as mentioned before, each avatar has its own
path, therefore there are as many searches as there are
avatars. Although this is not the optimal situation in this
particular case, where there is a common goal to all the
avatars, it shows how the algorithm scales with the
number of avatars. This is not a restriction of our method,
as we can deal with groups adding another level to the
hierarchy for crowd management, and compute a single
path for the leader.

When comparing the results in tables 3 and 4, it is clear
that adding collision detection between avatars has a

significant impact on the performance. However note that
the collision detection per se is not relevant as shown in
[Ramires and Deusdado, 2006]. The increase in seconds
is due to the recomputation of the path each time there is
a potential collision.

Figure 10. Tests with avatars

10 avatar
waiting period 0,47
total 3,6

50 avatar
waiting period 9,1
total 13,7

100 avatar
waiting period 24,68
total 32,3

Table 4. Results for world in table 9 with collision

detection between avatars.

7 Conclusions

The paper addresses the issue of path planning on
arbitrarily large and complex virtual environments, with
multilevel passages. This is the case in real world
buildings, and large man made infrastructures such as
stadiums, or industrial facilities, although the method is
not conceptually limited to any particular type of world.

The method described is a new approach towards the pre-
processing of an unknown polygon soup in order to
obtain accessibility information and construct a
hierarchical navigation structure that when combined
with A* provides an efficient and complete solution.

The only stage that deals directly with the polygon soup
is the initial stage where the depth maps are obtained for
the world. All other stages are image based.

Being essentially an image based algorithm the
performance does not suffer significantly when the
polygon count increases. Furthermore, the method does
not rely on any particular topology, hence the polygon
soup layout does not affect the navigation maps where
path planning is performed.

The process is fully automated, without any user
intervention, and it is capable of dealing with multilevel
passages in a natural fashion. The algorithm is capable of
extracting navigation features, accessibilities, and
construction of a hierarchical navigation structure.

The method provides a sustainable number of nodes,
although more nodes are probably desired in some
circumstances, for instance in the ground floor of the
simple world. This can easily be achieved through
partioning of larger areas, creating more nodes, or even
adding another level on the navigation hierarchical
structure.

Since the result is by construction a hierarchical
navigation structure, when with traditional path finding
algorithms provides good results, even when considering
collisions between avatars.

Bibliography

SALOMON B., GARBER M., LIN M., MANOCHA D., 2003,
Interactive navigation in complex environments using
path planning, In Symposium on Interactive 3D graphics,
ACM Press, New York, NY, USA, 2003.

KREYLOS O., 2005, Path Finding In Complex Maps And
The Black Art Of Linear Algebra, In
http://graphics.cs.ucdavis.edu/~okreylos/Private/Algorith

mCorner/.

BALLEGOOIJ, A. V., ELIÉNS A., 2001, Navigation by query
in virtual worlds, In Virtual Reality Modelling Language

Symposium - 3D Web technology, Paderbon, Germany.

NITSCHE, M., RICHENS P., 2005, Combining linear content

and spatial design for Mindstage, In Media in Transition
4: The Work of Stories, Boston.

ARIKAN O., FORSYTH A., 2001, Efficient multi-agent path

planning, In Computer Animation and Simulation O1,
Springer-Verlag.

HOFF III, K., CULVER T., KEYSER J., LIN, M., MANOCHA

D., 1999, In Fast Computation of Generalized Voronoi

Diagrams Using Graphics Hardware, SIGGRAPH.

HOFF III, K., CULVER T., KEYSER J., LIN, M., MANOCHA

D., 2000, Interactive motion planning using hardware-

accelerated computation of generalized Voronoi

diagrams, In International Conference on Robotics and
Automation.

LAMARCHE F., DONIKIAN S., 2004, Crowd of virtual

humans: a new approach for real time navigation in

complex and structured environments, In Eurographics
2004, Volume 23. Nr 3.

ANDÚJAR, C., VÀZQUEZ, P., FAIRÉN M., 2004, Way-

Finder: guided tours through complex walkthrough

models, In Computer Graphics Forum.

LOSCOS, C., MARCHAL, D., MEYER A., 2003, Intuitive

Crowd Behaviour in Dense Urban Environments using

Local Laws, In Tpcg.

DAPPER, F., PRESTES, E., IDIART M., NEDEL, A., LUCIANA,
P., 2006, Simulating Pedestrian Behavior with Potential

Fields, In Computer Graphics International 2006 (CGI),
Hangzhou, China.

BANDI, S., THALMANN D., 1995, An Adaptive Spatial

Subdivision of the Object Space for Fast Collision

Detection of Animated Rigid Bodies, In Eurographics ‘95.

BANDI, S., THALMANN D., 1998, Space discretization for

efficient human navigation, In Eurographics '98.

PETTRE, J., LAUMOND, J.P., THALMANN, D., 2005, A

navigation graph for real-time crowd animation on

multilayered and uneven terrain, In First International
Workshop on Crowd Simulation (V-CROWDS´05),
Lausanne, Switzerland.

PETTRE, J., LAUMOND, J.P., THALMANN, D., 2006, Real-

time navigation crowds: scalable simulation and

rendering, In Computer Animation and Virtual Worlds
2006, vol. 17- pp 445-455.

STURTEVANT, N. M. B., 2005, Partial path finding using

map abstraction and refinement, In Twentieth National
Conference on Artificial Intelligence and the Seventeenth
Innovative Applications of Artificial Intelligence
Conference.

HOLTE R., PEREZ M., ZIMMER, R., MACDONALD, A., 1996
Hierarchical A*: Searching abstraction hierarchies

efficiently, In Thirteenth National Conference on
Artificial Intelligence (AAAI-96), 1996.

MAIO, D., RIZZI, S., 1994, A hybrid approach to path

planning in autonomous agents, In Second International
Conference on Expert Systems for Development.

FRÖHLICH, T., KULLMANN, D., 2002, Autonomous and

Robust Navigation for Simulated Humanoid Characters

in Virtual Environments, In First International
Symposium on Cyber Worlds (CW'02).

LESTER, P., 2004, A* Tutorial, in
http://www.policyalmanac.org/games/aStarTutorial_port.
htm, 2004.

RAMIRES A., DEUSDADO L., 2006, Efficient Conservative

Collision Detection for Populated Virtual Worlds, In
Ibero-American Symposium on Computer Graphics -
SIACG(06), Santiago de Compostela, Spain.

OPENCV, in http://www.intel.com/technology/computing/

