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Abstract: This paper presents modifications of the electromagnetism-like (EM) algorithm for solving 
global optimization problems with box constraints. The modifications are concerned with the charges as-
sociated with each point in the population. The purpose here is to improve efficiency and solution accu-
racy by exploring the attraction-repulsion mechanism of the EM algorithm. Several widely used 
benchmark problems were solved in a performance evaluation of the new algorithm when compared with 
the original one. The modified algorithm has also been compared with other heuristic population-based 
methods. 
Keywords: global optimization; electromagnetism-like algorithm; charge computation; performan-ce 
profiles. 
 

1. Introduction 
In this paper, we consider the problem of finding a global solution of a nonlinear optimization prob-

lem with box constraints 
 ( )xfmin ,   subject to   uxl ≤≤ .  (1) 
Most real problems of this type are non-differentiable and multimodal. Hence, gradient based methods 
cannot be used to find the global solution. To overcome this issue, many researchers have been proposing 
stochastic global methods that do not require any derivative computation. These methods generate a ran-
dom sample of points and based on their objective function values move the sample in order to converge 
to optimality. Recently (Birbil and Fang, 2003) proposed a stochastic population-based method known as 
electromagnetism-like (EM) algorithm. This algorithm simulates the electromagnetism theory of physics 
by considering each point in the population associated with an electrical charge. The method uses an at-
traction-repulsion mechanism to move a population of points towards optimality. Here, we are concerned 
with improving EM efficiency and solution accuracy. To this purpose, we suggest some modifications to 
the computation of the charge associated to each point so that the attraction-repulsion technique can ac-
celerate convergence. The proposed modifications are extensively experimented on a well-known bench-
mark problems set. Performance profile plots, as outline in (Dolan and Moré, 2002), have been made to 
assess the best objective function behaviour, as well as the mean absolute error, of the new algorithm 
when compared with the original EM algorithm. 

The paper is organized as follows. In Section 2 we describe the original EM algorithm and justify the 
adopted charge calculation modifications. Section 3 contains the results of the carried out numerical ex-
periments including a comparison with other heuristics. We conclude the paper in Section 4. 

 
2. The electromagnetism-like mechanism 

To introduce the charge modifications, we first describe the original EM algorithm. The following 
notation is used. The population size is represented by m, xi∈ℜn denotes the ith point in the population, 
xik∈ℜ is the kth coordinate of the point xi (k=1,…,n), and the best point in the population, the point with 
least objective function value, is represented by xbest. The corresponding function value is denoted by fbest. 
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2.1. Original electromagnetism algorithm 
The EM algorithm consists of four main procedures: Initialize, Compute F, Move and Local Search. 

A brief explanation follows.  
Initialize aims to randomly generate the m points of the population inside the feasible region. Each 

coordinate of a point is assumed to be uniformly distributed between the corresponding upper and lower 
bounds. The objective function values of the points in the population are computed and the best point is 
identified. 

In the procedure Compute F, the total force exerted on each point via other points is computed. Ac-
cording to the Coulomb’s law, the force between any pair of points xi and xj is inversely proportional to 
the square of the distance between the points and directly proportional to the product of their charges. The 
charge qi of the point xi is computed according to the objective function value and determines the power 
of attraction or repulsion for that point. In the original EM algorithm (Birbil and Fang, 2003; Birbil et al., 
2004), the charge of a point is computed by 
 ( )∑ =

−−−=
m
j best

j
best

ii fxffxfnq
1

))((/))((exp ,  mi ,...,1= , (2) 
where points with better function values have higher charges. This is a scaled distance of the function 
value f(xi) to the function value of the best point in the population. In this case charges are positive and 
vary from 0 to 1. Each individual component force Fi

j, between any pair of points xi and xj, depends on 
the objective function values at xi and xj. Since charges (2) are positive, the direction of the force Fi

j is 
jixx  if f(xj) < f(xi), meaning that xj attracts xi, and is ij xx  if f(xj) ≥ f(xi) and xj repels xi. Finally, the forces 

exerted on point xi by all other points, xj, j≠ i∈{1,…,m}, are combined by means of vector summation, to 
give the total force vector Fi exerted on that point xi,   
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The procedure Move uses the total force vector, Fi, to move the point xi in the direction of the force 
by a random step length λ, see (3). The best point, xbest, is not moved and is carried out to the subsequent 
iteration. To maintain feasibility, the force exerted on each point is normalized and scaled by the allowed 
range of movement towards the lower or the upper bounds. Thus, for each coordinate, k=1,…,n, 
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and the random step length λ is assumed to be uniformly distributed between 0 and 1. 
The procedure Local Search performs a local refinement and can be applied to one point or to all 

points in the population. The algorithm presented in (Birbil and Fang, 2003) is a random line search that 
is applied coordinate by coordinate only to the best point in the population. First, based on the parameter, 
δ, the procedure computes smax=δ maxk (uk − lk), which is the maximum feasible step length, to guarantee 
that the local search always generates feasible points. Second, the best point is assigned to a temporary 
point y to store the initial information. Next, for each coordinate k, a random number λ between 0 and 1 is 
selected as a step length and yk is moved along that direction, yk = xkbest+λ smax. If an improvement is ob-
served, within nitmax iterations, the best point is replaced by y and the search along that coordinate ends. 

 
2.2. Different point charge calculations 

Formula (2) is not the only one in literature to compute charges associated with points in a EM algo-
rithm context. An alternative has been adopted in hybridization of recent heuristics, the scatter search al-
gorithm (Debels et al., 2006) and the differential evolution algorithm (Kaelo and Ali, 2007). The 
approach therein adopted assumes that each point has another point exerting force on it. So, the charges 
are not computed independently but depend on the point they exert force on, i.e., qi,j depends on the rela-
tive difference of the objective function values at xi and xj. In this case, each charge qi,j ∈[-1,1] and when 
charge is positive, xj attracts xi, while xj repels xi when the charge is negative. Our approach however is 
similar to that of the original EM algorithm. Each point of a population will have m−1 points exerting 
force on it. Thus the charge qi of each point xi is based on the (scaled) distance of its function value to the 
function value of the best point in the population, but, in our case, this scaling is relative to the spread of 
values, i.e., the difference between the worst (fworst) and the best function values in the population, 
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 ( ))/())((exp bestworstbest
ii fffxfnq −−−= ,   mi ,...,1= . (4) 

This formula also defines charges in the set (0,1] and points with better function values also have higher 
charges (close to 1). Although the scaling factor here is quite different from the one in (2), at the end the 
resulting charges have similar behaviour due to the “exp” function. Like formula (2), this new proposal 
depends on the problem dimension. The immediate result is that the charges of points different from the 
best point approach zero more rapidly as n  increases.  

Formula (5) also provides nonnegative charge values that increase from 0 to 1 as the points xi have 
function values closer to fbest. However, in this case, the decrease of the charges to zero, as the function 
values go far away from fbest is slower than that of formula (4), 
 ( )1)/())((/1 +−−= bestworstbest

ii fffxfnq ,   mi ,...,1= . (5) 
In both proposed formulae, the charges depend on the problem dimension. However, it is not clear that 
this dependency is crucial to the algorithm performance. In the next section, we carry out an extensive 
experimental procedure to compare the new charge computation formulae with the original one and ana-
lyze the n dependency effect on algorithm performance. This comparative study relies on the best objec-
tive function value and on the mean absolute error of the mean best solutions. 

 
3. Numerical experiments 

In this section, we report the numerical results obtained by running the original EM algorithm – qi 
from (2) – and the modified with the two proposals for the charges – (4) and (5) – on a set of global opti-
mization problems with box constraints. We use a set of 64 benchmark global optimization test problems, 
produced in full detail in the Appendix B of (Ali et al., 2005). As problem dimensions vary from 2 to 30 
we set the population size dependent on the problem dimension: =m min{200,10n}. The used algorithm 
constants are δ = 0.001 and nitmax = 10. 

 
3.1. Performance assessment by Dolan & Moré´s profiles 

To evaluate and compare the performance of the two charge proposals within the electromagnetism-
like algorithm, performance profiles as proposed in (Dolan and Moré, 2002) are used. The performance 
profiles give, for every value of τ > 1, the proportion ρ(τ) of test problems on which each algorithm under 
comparison has a performance within a factor τ of the best. 

The performance profile plot represents the cumulative distribution function of a performance ratio 
that is computed from an appropriate metric, for example the computing time required to solve a problem. 
A brief discussion of our implementation of this performance assessment follows. Assume that P is the 
set of all problems, S is the set of solvers – algorithm implementation codes – used in the comparative 
study, and m(p,s) is the chosen performance metric, found by solver s∈ S on problem p∈P after a fixed 
number of function evaluations. Then, the performance ratio is defined by 

{ } { }
{ }


∈

<∈∈−+= otherwise,:),(min/),(
000001.0:),(min   if ,:),(min),(1),(         Ssspmspm

SsspmSsspmspmspr , 
and the cumulative distribution function of the performance ratio is represented by ρ(s;τ) = |Pτ| / |P|, 
where |.| denotes the cardinality of a set, and Pτ={p∈P: r(p,s) ≤ τ}. Thus, ρ(s;τ) gives the probability (for 
solver s) that the performance ratio is within a factor τ  of the best possible ratio. To evaluate and com-
pare the best behaviour of the solvers, the following performance metric, which gives a scaled distance of 
the best value computed by solver s on problem p, fbest, to the known optimal function value f*, is used 
 )/()(),( *

)(
* ffffspm sworstbest −−= , (6) 

where fworst(s) is the worst function value computed among all solvers on problem p (fworst(s) and fbest are 
evaluated after running each problem 30 times and fbest=min{fibest, i=1,…,30}). Figure 1 contains the plots 
of the performance profiles after 100n2 function evaluations, over the 30 runs, for the qi formulae previ-
ously presented, see (2), (4) and (5). Formulae (4) and (5) were also tested without using n (n=1). For-
mula (5) with dependency on n is the most efficient for values of τ inferior to approximately 7, and 
formula (4) with dependency on n gives the best results for larger values of τ. It solves all problems to 
optimality, meaning that, according to the metric (6), the best computed function value has a high accu-
racy. Further, with this comparative study we are able to show that the dependency on n of formulae (4) 
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and (5) is important since it provides better results (see Figure 1). To analyze the performance of the algo-
rithm convergence, the most appropriate metric is the mean absolute error, defined by MAE = (|favg − f*|) / 
n, since is gives the distance of the mean best function values over the 30 runs, favg = (∑ =301i

i
bestf )/30, to the 

optimal value. Figure 2 plots the performance profiles of the five cases in comparison. We note that for-
mula (4), to compute the charges qi, wins over the others. The version that depends on n is the best for 
small values of τ while the other, with n=1, is the best for the remaining values (τ > 9). 
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Performance profile on fbest with 100n2 function evaluations

τ

ρ( τ
)

original EM
qi = exp(-n* (f(xi) - fbest)/(fworst-fbest))
qi= exp(- (f(xi) - fbest)/(fworst-fbest))
qi= 1/(n*((f(xi)- fbest)/(fworst-fbest))+1)
qi= 1/(((f(xi)- fbest)/(fworst-fbest))+1)

 Fig. 1. Performance profiles on fbest, for (2), (4) and (5), after 100n2 function evaluations 
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qi = exp(- (f(xi) - fbest)/(fw orst-fbest))
qi= 1/(n*((f(xi) - fbest)/(fworst-fbest))+1))
qi= 1/(((f(xi) - fbest)/(fw orst-fbest))+1))

 Fig. 2. Performance profiles on MAE for (2), (4) and (5), after 100n2 function evaluations 
 

3.2. Behaviour of the modified EM algorithm for different problem dimensions 
Here we pick two problems and analyze the error behaviour, with respect to f*, of the modified EM 

algorithm as problem dimension increases. The measurement of error is based on MAE and the chosen 
problems are: Rastrigin and Griewank with 5 values of n (2, 5, 10, 20, 50) (Ali et al., 2005). Figure 3 il-
lustrates the results of applying formulae (2), (4) and (5) to the 5 versions of each problem. Except in one 
case, the error does not increase as n increases, meaning that the tested versions of the EM algorithm are 
suitable for high dimension problems. 
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Rastrigin Function

-0.1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Dimension

M
A
E

original EM 0.43447 0.53067 0.07297 0.00995 0.00265
0.19923 0.41127 0.41457 0.59367 0.86174
0.51107 0.61026 0.14925 0.00663 0.00663
0.53360 0.50414 0.10946 0.01161 0.00730
0.65707 0.69795 0.06966 0.01493 0.00597

n = 2 n = 5 n = 10 n = 20 n = 50

  q iby (4) n=1
q i  by (5)
q i by (5) n=1

q i by (4)

     

Griewank Function

-0.010
0.015
0.040
0.065
0.090
0.115
0.140

Dimension

M
A
E

original EM 0.13110 0.06360 0.04090 0.01895 0.00819
0.05813 0.05998 0.02140 0.00891 0.00381
0.12161 0.07431 0.04216 0.01989 0.00835
0.12022 0.06338 0.04591 0.01715 0.01086
0.09885 0.06958 0.03735 0.01671 0.00929

n = 2 n = 5 n = 10 n = 20 n = 50

 q iby (4) n=1
q i  by (5)
q i by (5) n=1

q iby (4)

 
 

Fig. 3. Comparison of error behaviour using MAE for 5 values of n 
 

3.3. Comparison with other stochastic population-based algorithms 
To compare the performance of the modified EM algorithm, based on (4) and (5) to compute the 

charges, with other stochastic population-based algorithms – particle swarm optimization (PSO), evolu-
tionary algorithm (EA) and differential evolution (DE) –, five well-known problems for benchmarking 
purposes of optimization algorithms are used (Krink et al., 2004): Schaffer F6 (n = 2), Sphere (n = 5), 
Griewank (n = 50), Rastrigin (n = 50) and Rosenbrock (n = 50). We replicate the conditions therein pre-
sented. Each problem is run 30 times and the number of function evaluations is kept constant for a fair 
comparison with those results: 100000 for problems Schaffer F6 and Sphere and 500000 for the other 
three. We refer to (Krink et al., 2004) for details concerning the other algorithm parameters. For example, 
the population sizes therein reported are: m = 50 in DE, m = 100 in EA, m = 20 in PSO. In our modified 
EM algorithm m = 50 is used. Table 1 reports the mean best function values (favg) and the standard error 
(± se) of the results, over the 30 runs. These two quantities represent the performance of the convergence 
and the stability of the algorithm respectively. Values below 1e-12 are reported as 0 in the table. From the 
results, we may conclude that DE is indeed the best algorithm in comparison. The modified EM algorithm 
outperforms PSO in the optimization of 4 problems and outperforms EA in 2 problems. Comparing the 
four versions of the modified EM algorithm, formula (4) with dependency on n  gives slightly better re-
sults. 

 
Table 1. Mean ± se of results 

 Griewank  Rastrigin   Rosenbrock  Schaffer F6  Sphere  
qi by (4)  0.25732±0.13119 6.667e-7±7.581e-7 47.58370±21.78979 0.00777±0.00395 0±0 
qi by 

(4), n=1 0.63627±0.40296 0.43115±0.89311 42.58174±22.75698 0.00874±0.00297 3.333e-8±1.826e-7 
qi by (5) 0.54585±0.44669 0.23216±0.50147 51.07712±23.75423 0.00842±0.00336 0±0 
qi by 

(5), n=1 0.63993±0.38538 0.16583±0.45881 57.228570±31.68917 0.00812±0.00362 0±0 
PSO 1.54900±0.06695 13.1162±1.44815 5142.45±2929.47 0.00453±0.00090 2.511e-8±0 
EA 0.00624±0.00138 32.6679±1.94017 79.8180±10.4477 0±0 0±0 
DE 0±0 0±0 35.3176±0.27444 0±0 0±0 
 
Finally, we compare the modified EM algorithm, based on formula (4), with the DE algorithm that 

relies on two types of hybrid mutation – integrated (DEIM) and adapted (DEAM) – as outline in (Kaelo 
and Ali, 2007), as well as with the original EM (Birbil and Fang, 2003). In the comparison, we use the 
same set of 9 problems taken from (Dixon and Szegö, 1978), with population sizes (m), maximum num-
ber of iterations (Nit

max) and stopping criterion similar to those used in (Kaelo and Ali, 2007). Table 2 con-
tains the average number of function evaluations computed over the 25 runs. The modified EM algorithm 
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is better than DEIM and DEAM in 6 problems and better than EM in 3 problems. Nonetheless, our modi-
fied EM algorithm wins over the others in terms of the total average number of function evaluations 
(10978 against 14063, 14566 and 15551). 

 
Table 2. Average number of function evaluations 

 Shekel5 Shekel7 Shekel10 Hartman3 Hartman6 Goldprice Branin Six H C Shubert 
m 40 40 40 30 30 20 20 20 20 

Nit
max

 150 150 150 75 75 50 50 50 50 
qi by (4) 1879 755 2242 1139 2851 430 339 239 1104 
DEIM 3662 2716 2656 634 1547 577 814 441 1016 
DEAM 3560 2709 3037 631 1801 594 778 442 1014 
EM 3368 1782 5620 1114 2341 420 315 233 358 

 
4. Conclusions 

We have made a preliminary study on the effect of charges to the performance of the electromagnet-
ism-like algorithm for solving global optimization problems like (1). The results confirm that the pro-
posed formula (4), based on the “exp” function, is the best since the corresponding algorithm is proven to 
be robust, with a high level of accuracy. The behaviour of the modified EM algorithm for different prob-
lem size dimensions has also been analyzed. A comparison with other population-based heuristics shows 
that the modified EM algorithm is competitive. Further research will consider the use of a greedy selec-
tion mechanism within the EM algorithm to accelerate convergence to the solution and the extension to 
equality and inequality constrained optimization problems.  
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