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Abstract

Statistical multivariate approaches for identification of predictors of

academic failure for first year students in a medical school

Academic failure is a frequent phenomena in medical education, with huge

impact on the students and on the medical schools. Understanding of factors that

have the strongest influence on the probability of failure is extremely important to

implement procedures for timely assistance and support to students in difficulties.

The main goal of this work was to gain information (factors) that can be use-

ful in predicting, early in the first year of the medical program, academic failure for

the students of the School of Health Sciences of Minho University. To determine

which factors influence the performance of these students in the 1st year course with

the highest failure rates, administrative data of three cohorts of students were ana-

lyzed using several multivariate statistical tools, namely: logistic regression, linear

discriminant analysis and K-nearest neighbors discriminant analysis.

The results obtained in this study provide substantial empirical evidence that

combination of cognitive and non-cognitive characteristics (personality trait ”Con-

scientiousness”, change of residence at entry, anticipation of difficulties due to enroll-

ment in a medical program) and of academic achievements in the initial university

courses can be useful in the early detection of failure.

Keywords: Logistic regression, Discriminant analysis, Medical students,

Academic performance, Predict.

v



Resumo

Identificação dos preditores de insucesso academico no primeiro ano

curricular do curso de medicina: abordagem estat́ıstica multivariada.

O insucesso escolar é um fenómeno bastante frequente na educação médica,

que tem um enorme impacto sobre os alunos e sobre as escolas de medicina. A

compreensão dos factores que mais influenciam a probabilidade de insucesso é ex-

tremamente importante para que as escolas possam implementar, em tempo útil,

procedimentos de assistência e apoio aos alunos em dificuldades.

O objetivo principal deste trabalho consistia em obter informação (factores)

que pudesse ser útil para prever, logo no ińıcio do primeiro ano do curso de medicina,

o insucesso escolar dos alunos da Escola de Ciências da Saúde da Universidade do

Minho. Para identificar os fatores que influenciam o desempenho desses alunos na

disciplina do 1 o ano do curso que tem as maiores taxas de reprovação, dados ad-

ministrativos relativos a três cohortes de estudantes foram analisados usando várias

técnicas de estat́ıstica multivariada, nomeadamente: regressão loǵıstica, análise dis-

criminante linear e análise dos K-vizinhos mais próximos.

Os resultados obtidos neste estudo fornecem evidência emṕırica de que a com-

binação de alguns fatores cognitivos e não-cognitivos (a caracteŕıstica pessoal ”Con-

scientiousness, a alteração de residência com a entrada na universidade, a ante-

cipação de dificuldades relacionadas com a frequência de um curso de Medicina) e

dos resultados obtidos nas disciplinas iniciais do curso, pode ser útil para a detecção

precoce do insucesso escolar.

Palavras-chave: Regressão loǵıstica, Análise discriminante, Estudante de

medicina, Desempenho académico, Previsão.
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1 Introduction

Academic failure is a frequent phenomena in medical education, with huge

impact both on students and medical school. For students, failure has high financial

and emotional costs and is a cause of personal distress [60]. For the medical school,

it is an issue of organizational, financial and academic accountability. Students

in difficulty demand more attention, more time and more resources. Therefore,

there are potential benefits for both students and institutions on understanding of

determinant of academic failure.

The first year in medical school is the most challenging period for students

[50, 54]. It is a time of transition, which demands several simultaneous organi-

zational and social adjustments. Suddenly, students enter an unknown and more

competitive system. The amount and the complexity of study materials increases

sharply, academic standards and teaching methods change remarkably.

The particular difficulties posed by the first year in medical school result in high

rates of failure and dropout [2]. Furthermore, students who start fail in first year

courses may continue to struggle during the degree and may become poor doctors.

Issues related to professional misconduct of practicing physicians can be traced back

to behavioral concerns while early years in medical school [49, 68]. The existence of

a model that can help the medical school in the identification of students at risk of

failure during their first year, could anticipate supporting interventions to decrease

the probability of subsequent failures.

The primary motivation for this work derived from an institutional need to

gain insight on the factors behind stories of failure in the medical school. Since

2006, the School of Health Sciences of the University of Minho (SHS-UM) develops

the longitudinal research project ”Evaluating the impact of innovation in Higher

Education: implementation and development of a longitudinal study in a medical

school” (FCT- PTDC/ESC/65116/2006), with the main goal of understanding the

factors that influence performance of medical students and professional competence

of SHS-UM graduates.

In the years of existence of the undergraduate medical program at SHS-UM, it

became clear that the course with the highest percentage of failures is ”Functional

and Organic Systems 1” (FOS 1) that is taught in the second part of the first year.

Furthermore, failure in FOS1 results in a great cost to students, since success in this

course is essential for success in subsequent courses. Hence, in this work, we use

the pass/fail score in FOS1 course as an indication of success/failure in the medical

school.

The main goal of this study was to develop predictive models for the prospec-

tive identification of students at risk of failure in the first year of medical degree,

combining variables collected at admission (entry grade point average (GPA), socio-

1



demographic factors, information of administrative nature, personality traits, ex-

pected difficulties during the degree) with the performance on courses taken in the

first seventeen weeks in medical school. The underlying goals were to learn how to

identify, at admission or very early in the medical school, students at risk of academic

difficulties and thus open new opportunities for timely assistance and support.

Traditionally, research problems involving prediction of a dichotomous out-

come are addressed either by logistic regression or by linear discriminant analysis.

In medical education, logistic regression is widely used and a popular approach

to model binary outcome variables, such as ”academic failure” or dropout. For

example, Yates and James [67] presented the results of the study of the risk factors

for poor performance at different stages of the undergraduate medical course at

Nottingham University Medical School. Cleland et al [10] used logistic regression to

determine whether poor performance in degree assessments early in medical school

is a risk factor for poor performance in later examinations. Arulampalam et al [2]

applied logistic regression to analyze the determinants of the probability of dropout,

among first year medical students, in the context of changing admissions criteria in

the UK.

The other popular methodology for classification problems and for exploring

factors that might explain the differences between groups is the discriminant anal-

ysis. Literature provides several examples of application of this methodology in the

field of educational sciences. For instance, Beeman [4] employed linear discriminant

analysis to examine the differences among nursing graduates who failed and who

have passed on the national certification license examinations. Vandamme et al

[64] presented an example of successful application of linear discriminant analysis to

identify first year students at risk of poor academic performance. Morgan [47] used

discriminant analysis to determine how cognitive and non-cognitive characteristics

of students are related to university attrition.

Both parametric techniques, logistic regression and linear discriminant analy-

sis, depend on strict statistical assumptions. These assumptions include linearity of

relationships, lack of multicollinearity among independent variables [26, 32, 44, 63],

normality of independent variables, equality of covariance matrices for discriminant

analysis [28, 31, 55]. Hence, non-parametric methods of classification appear as an

attractive alternative in educational research since they do not require any strict

distributional assumptions and can handle easily discrete and mixed data, which is

quite common in the field.

To determine which factors influence academic performance of medical stu-

dents in the FOS1, we used several statistical techniques, namely: multivariate

logistic regression, linear discriminant analysis and non-parametric K-nearest neigh-

bors discriminant analisys. We compared the classification results derived from the

2



application of the three multivariate approaches with data provided by longitudinal

research project (FCT- PTDC/ESC/65116/2006).

The remainder parts of this dissertation are structured as follows:

• Section 2 discusses the logistic regression model: the estimation and the in-

terpretation of the parameters, assessment of model fit and classification ac-

curacy;

• Section 3 reviews the theoretical background of discriminant analysis and dis-

cusses the non-parametric approach to the classification problem;

• Section 4 discusses the methods of comparison of classification rules;

• Section 5 presents the study settings, the data, displays and interprets the

results of practical application of the three classification techniques;

• Section 6 summarizes the conclusions and presents suggestions for future re-

search.

3



2 Logistic regression

Logistic regression is a statistical tool well suited to describe the relationship

between a binary response variable and one or more predictor variables. Predictor

variables can be of any type: continuous, discrete, qualitative ordinal or dichoto-

mous.

From a theoretical point of view, logistic regression has been intensively studied

during the last decades [26, 32, 41, 44]. Throughout the literature it is possible to find

a wide range of examples of its application in behavioral and educational research.

It is the most popular statistical method used in medical education research on the

issue of undergraduate student performance [10, 36, 67, 68, 69].

There are several alternative ways to introduce the logistic regression model.

In this work we consider logistic regression in the framework of generalized linear

models (GLM) ..

2.1 Logistic regression model

Before describing the form of a generalized linear model we introduce the

exponential family of statistical distributions, which is crucial to understand GLM.

Definition 2.1 (Exponential family of distributions) A random variable W is

said to belong to the exponential family of distributions if the corresponding proba-

bility function can be expressed by

f(w; θ, φ) = exp

{
y θ − b(θ)
a(φ)

+ c(w;φ)

}
, w ∈ SW , (2.1)

where SW is the support of W , a, b and c are some specific functions, and θ and φ

are some real parameters. θ is known as the canonical parameter of the distribution

and φ is known as the dispersion parameter.

Many well-known distributions belong to the exponential family; for example,

Poisson, Gamma and Normal distribution. We can easily prove that the Bernoulli

distribution, a particular case of the Binomial distribution, belongs to the exponen-

tial family.

Example 2.2 Bernoulli distribution as a member of exponential family

Consider a random variable Y ∼ Bernoulli(π), with probability mass function given

by

f(y; π) = πy(1− π)1−y, y ∈ {0, 1}. (2.2)

(2.2) can be written as:

f(y; π) = exp
[
ln
(
πy(1− π)1−y

)]
= exp

[
y ln

(
π

1− π

)
+ ln(1− π)

]
(2.3)

4



Comparing (2.3) with (2.1) we observe that the canonical parameter is

θ = ln

(
π

1− π

)
, (2.4)

the so-called logit of π. From (2.4) we have

π =
exp(θ)

1 + exp(θ)
and 1− π =

1

1 + exp(θ)
.

Rewriting the term ln(1− π) in (2.3) as a function of θ we get

b(θ) = ln (1 + exp(θ)) , a(φ) = 1, c(y, φ) = 0.

For members of the exponential family, the expected value and the variance

are given by

IE(W ) =
∂b(θ)

∂θ
= b′(θ), Var(W ) =

∂2b(θ)

∂θ2
a(φ) (2.5)

We can easily verify these results for the case of the Bernoulli distribution. In fact,

the expected value of the Bernoulli distribution is

IE(Y ) = b′(θ) = [ln (1 + exp(θ))]′ =
exp(θ)

1 + exp(θ)
= π

and the variance of the Bernoulli distribution is

Var (Y ) =
∂2b(θ)

∂θ2
a(φ) =

[
exp(θ)

1 + exp(θ)

]′
· 1 =

exp(θ)

(1 + exp(θ))2
= π(1− π).

Consider a response variable Y, a line vector of p explanatory variables

XXX = (X1, X2, . . . , Xj, . . . , Xp) and n independent realizations of pair (Y,XXX), (yi,xxxi)

for i = 1, 2, . . . , n. Using matrix notation, we have

yyy =



y1

y2
...

yi
...

yn


xxx =



x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p
...

... . . .
... . . .

...

xi1 xi2 . . . xij . . . xip
...

... . . .
... . . .

...

xn1 xn2 . . . xnj . . . xnp


(2.6)

The generalized linear model consists of three elements: the random compo-

nent, the systematic component and the link function [1]. The random component

5



of GLM identifies the conditional distribution of the response variable Yi, given the

observed vector of explanatory variables xxxi. Traditionally, the random component

belongs to the exponential family of distributions, defined in (2.1), with

IE(Yi|xxxi) = µi = b′(θi), for i = 1, 2, . . . , n.

The systematic component of GLM, also called linear predictor, specifies a linear

combination of the explanatory variables, also called covariates or regressors, used

in the model

ηi = zzziβββ, i = 1, 2, . . . , n,

where βββ = [β0, β1, . . . , βj, . . . , βp]
T is a vector of k parameters, with k = p + 1, and

zzzi is a function of the covariates xxxi. In general, zzzi = (1, xi1, xi2, . . . , xij, . . . , xip) is

the i-th line of the following matrix

ZZZ =



1 x11 x12 . . . x1j . . . x1p

1 x21 x22 . . . x2j . . . x2p
...

...
... . . .

... . . .
...

1 xi1 xi2 . . . xij . . . xip
...

...
... . . .

... . . .
...

1 xn1 xn2 . . . xnj . . . xnp


, (2.7)

the so-called design matrix.

The expected value, µi, of the random component and the systematic compo-

nent, ηi, are related by a function h, i.e.

µi = h(ηi) = h(zzziβββ), i = 1, 2, . . . , n,

where h is a monotonic and differentiable function. Taking g = h−1 we get

g(µi) = zzziβββ.

Function g is known as a link function.

There are many possible choices for the link function. The simplest one is the

identity function (g(µ) = µ), that specifies a linear model for the mean response.

When the link function transforms the expected value of the random component

into the canonical parameter of the exponential family member, θ, it is designated

by canonical link function. For example, the identity function is the canonical link

for the Normal distribution.
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For Y ∼ Bernoulli(π), we have 0 ≤ IE(Y |xxx) = π ≤ 1, and the link func-

tion should be one that maps interval [0, 1] into the whole R. The logit function,

logit(t) = ln

(
t

1− t

)
is, therefore, suitable for modeling Bernoulli data.

Performing the logit transformation on π we obtain

g(π) = logit(π) = ln

(
π

1− π

)
= θ,

thus, the logit function is the canonical link for the Bernoulli distribution.

Consider n independent realizations of a random variable Yi ∼ Bernoulli(πi),

i = 1, 2, . . . , n and line vector zzzi = (1, xi1, xi2, . . . , xij, . . . , xip) resultant from vector

of covariates xxxi, i = 1, 2, . . . , n. The logistic model relates the value of πi (the

probability that the outcome of interest occurs) with the set of explanatory variables.

The formulation of the model is the following

IP(Yi = 1|XXX = xxxi) ≡ π(xxxi) =
exp(zzziβββ)

1 + exp(zzziβββ)
. (2.8)

A logistic regression model is a generalized linear model, since:

• the realizations of outcome variables are independent,

• the Bernoulli distribution belongs to the exponential family,

• the expected value µi = π(xxxi) is related to the linear predictor ηi = zzziβββ by

π(xxxi) =
exp(zzziβββ)

1 + exp(zzziβββ)
,

with the link function being the logit function.

2.2 Fitting logistic regression model

To fit a logistic regression (LR) LRLogistic regression model to the data we

need to estimate the set of parameters in the linear predictor ηi = zzziβββ. To estimate

unknown parameters the maximum likelihood method is used.

Lets consider the most simple case of LR model, the univariate model. In

fitting univariate LR model to the given data two unknown parameters β0 and β1

need to be estimated. Denote the vector of parameters by βββ = [β0, β1]
T . Observe

that in an univariate case the design matrix ZZZ defined in (2.7) is given by
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ZZZ =



1 x11

1 x21
...

...

1 xi1
...

...

1 xn1


.

To simplify a notation, from now we denote π(xxxi) by πi.

Since Yi ∼ Bernoulli(πi), for i = 1, 2, . . . , n, the probability mass function of

Yi is given by

f(yi) = πyii (1− πi)1−yi , i = 1, 2, . . . , n.

and the likelihood function is

L(βββ; y1, y2, . . . , yn) =
n∏
i=1

f(yi) =
n∏
i=1

πyii (1− πi)1−yi .

The estimation of βββ’s requires the maximization of the likelihood function or, e-

quivalentely, the maximization of the natural logarithm of the likelihood function

(log-likelihood):

L(βββ;yyy) = ln (L(βββ; y1, y2, . . . , yn)) = ln

(
n∏
i=1

πyii (1− πi)1−yi
)

=
n∑
i=1

[yi ln(πi) + (1− yi) ln(1− πi)]

=
n∑
i=1

[
yi ln

(
πi

1− πi

)]
+

n∑
i=1

ln(1− πi) (2.9)

Since (1 − πi) = [1 + exp(zzziβββ)]−1 and ηi = ln

(
πi

1− πi

)
= zzziβββ, the log-likelihood

given in (2.9) can be written as

L(βββ;yyy) =
n∑
i=1

yizzziβββ −
n∑
i=1

ln[1 + exp(zzziβββ)]

= βββTZZZTyyy −
n∑
i=1

ln[1 + exp(zzziβββ)]. (2.10)

To find the value of βββ that maximizes L(βββ;yyy) we have now to differentiate (2.10)

with respect to β0 and β1 and set the two resulting expressions to zero
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

∂L

∂β0
= 0

∂L

∂β1
= 0

⇔



n∑
i=1

(yi − πi) = 0

n∑
i=1

xi1 (yi − πi) = 0.

(2.11)

This system of equations must be solved by mean of iterative computing methods,

since the likelihood equations are non-linear in β0 and β1. The solutions of system

of equations (2.11), denoted by β̂0 and β̂1, are called the maximum likelihood esti-

mators of β0 and β1, respectively. Hence, the likelihood estimator of the conditional

probability that the event of interest occurs, denoted by π̂i, is given by

π̂i =
exp(β̂0 + β̂1xi1)

1 + exp(β̂0 + β̂1xi1)
,

and the estimated logit by

ĝ(zzzi) = β̂0 + β̂1xi1.

In fitting multiple LR with p explanatory variables the same method of esti-

mation is employed. The log-likelihood function used to obtain the estimators of

vector of parameters βββ = [β0, β1, . . . , βp]
T , is almost identical to (2.10). To obtain

the maximum likelihood estimators β̂0, β̂1, . . . , β̂p we must solve the following system

of k likelihood equations
n∑
i=1

(yi − πi) = 0

n∑
i=1

xij (yi − πi) = 0, for j = 1, 2, . . . , p.

Like in univariate case, the estimated value of the conditional probability that the

event of interest occurs is

π̂i =
exp(ĝ(zzzi))

1 + exp(ĝ(zzzi))
,

where ĝ(zzzi) is the estimated logit, i.e.

ĝ(zzzi) = β̂0 + β̂1xi1 + . . .+ β̂pxip.

The estimation of standard errors of estimated coefficients involves the matrix

of second partial derivatives of the log-likelihood function; this matrix is known

as the observed information matrix and is usually denoted by III(βββ). If the model

assumptions are correct, it can be shown that Var(βββ) = III−1(βββ) = (ZZZT V̂VVZZZ)−1,
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where ZZZ is the n by k design matrix defined in (2.7) and V̂VV is the diagonal matrix,

of dimension n, with general element πi(1− πi) on the main diagonal, i.e.

V̂VV =


π̂1(1− π̂1) 0 . . . 0

0 π̂2(1− π̂2) . . . 0
... 0

. . .
...

0 . . . . . . π̂n(1− π̂n)

 .

The estimated standard error of the j-th estimated logistic regression coefficient βj,

associated with explanatory variable xj for j = 1, 2, . . . , p, is given by

ŜE(β̂j) =
[
V̂ar (β̂j)

] 1
2
, (2.12)

where V̂ar (β̂j) is the j-th diagonal element of the matrix ÎII
−1

(βββ).

2.3 Inference for logistic regression

2.3.1 Test for significance of the model

In this subsection we present a brief description of statistical tests for assess-

ment of overall statistical significance of fitted LR models as well as of individual

coefficients estimates.

Several methods can be employed to test whether explanatory variables in the

model are significantly related to the outcome. In this work we focus on two tests for

assessment of the statistical significance of the model and of individual coefficients

estimates: the likelihood ratio and the Wald test.

Likelihood ratio test compares the fitted model to a saturated model, the last

being a model with as many parameters as subjects. The comparison is based on

the likelihood function and indicates how accurately the fitted model represents

the data. The test statistic, D, also known as deviance, is defined by following

expression

D = −2 ln

[
L(fitted)

L(saturated)

]
= −2

n∑
i=1

[
yi ln

(
π̂i
yi

)
+ (1− yi) ln

(
1− π̂i
1− yi

)]
. (2.13)

To determine statistical significance of a single explanatory variable, we analyze the

difference between the LR model fitted with and without the variable being tested.

Suppose that the model MR is obtained from a full model, MU, by setting the

restriction that the coefficient estimate for the predictor xj is equal to zero. In such

a situation model MR is called constrained, or restricted, and is said to be nested
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in the unrestricted model MU. Thus, we have two models

MU : logit(π) = β0 + β1x1 + β2x2 + . . .+ βj−1xj−1 + βjxj + βj+1xj+1 + . . .+ βpxp,

MR : logit(π) = β0 + β1x1 + β2x2 + . . .+ βj−1xj−1 + . . .+ βj+1xj+1 + . . .+ βpxp.

The null hypothesis of the test is that the constrained model (MR) is nested in a

unconstrained model (MU), or equivalently,

H0 : βj = 0| β1, β2, . . . , βp. (2.14)

The alternative hypothesis of the test is H1 : βj 6= 0| β1, β2, . . . , βp. The likelihood

ratio test statistics named G is given by

G = −2(LMR − LMU), (2.15)

where LMU is a value of the log-likelihood associated with the unconstrained model

and LMR is a value of the log-likelihood for the constrained model (without predictor

xj). Under the null hypothesis the test statistic G ∼ χ2(k1) where k1 equals to the

difference between the degrees of freedom of the unconstrained model and the degrees

of freedom of the constrained model. Under the null hypothesis, i.e. that βj = 0,

likelihood ratio test statistics has a χ2(1) distribution.

Likelihood ratio test can be employed to compare any pair of nested models:

for instance, it can be used to test whether several coefficients are simultaneously

equal to zero.

Logistic regression analysis often includes nominal categorical predictors, such

as gender, ethnicity, citizenship. Such variables are introduced in the model by a set

of dummy variables, coded either 0 or 1. In general, to represent categorical predictor

with m levels it is required that m− 1 dummy variables are used. The category of

predictor coded by 0 in all dummy variables is called reference category. If we wish

to assess the statistical significance of this categorical predictor all m− 1 dummies

should be removed from the model simultaneously. In such case the likelihood ratio

test statistics follows a χ2(m− 1) distribution.

The other method to assess the statistical significance of individual coefficients

estimates is the Wald test. For a single predictor, the test statistic is given by

ZWj
=

β̂j

ŜE(β̂j)
. (2.16)

Under the null hypothesis, provided in 2.14, ZWj
∼ N(0, 1) distribution. We should

note that some statistical software packages for fitting logistic regression compute

square of the ZW statistic and compare it to the χ2(1) distribution.
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2.3.2 Confidence interval estimation

Confidence intervals for the parameters of interest may be more informative

than significance tests. An approximate 100 · (1− α)% Wald confidence interval for

the j-th coefficient, βj, is

]β̂j − z1−α/2 ŜE(β̂j), β̂j + z1−α/2 ŜE(β̂j)[,

where z1−α/2 denotes the (1 − α/2) percentile of the N(0, 1) distribution, ŜE(β̂j)

denotes the standard error of β̂j, given in (2.12).

2.4 Building logistic regression model

This subsection is dedicated to the model building procedure: selection of

variables and verification of model assumptions.

2.4.1 Variable selection strategies

An important problem in statistical model building is the choice of an optimal

model, that includes a small number of parameters and still has adequate fit and

prediction accuracy. We present a brief review of methods for variable selection in

LR modeling.

Stepwise is a standard method for variable selection and is based on the pro-

cedure of sequential inclusion of predictors into the model, one at a time. This

approach has several forms: the main ones are forward selection and backward elim-

ination. The forward selection starts with an empty model and adds predictors, one

at a time. In contrast, the backward elimination begins with the full model and

successively removes predictors, one at a time, based on specified statistical rule,

composed of a combination of selection criteria and stopping criteria. Selection

criterion refers to a test statistic (usually likelihood ratio and/or Wald test) used

for assessment of statistical significance of the coefficients of explanatory variables.

Stopping criterion refers to the p-value, i.e. level of statistical significance, of the

coefficients of explanatory variables.

Almost all statistical software packages allow to perform stepwise selection via

two basic algorithm or their combination: for instance, stepwise method that starts

with forward selection but, at each step, as in the backward elimination, gives the

possibility to remove from the model no longer important variables.

The choice of selection and stopping criteria is of crucial importance in stepwise

procedure. Hosmer & Lemeshow [26] recommend to use a combination of forward

selection and backward elimination. Regarding the selection criterion, the authors

give no preference to any particular statistical test, but they recommend p-value
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in interval [0.15, 0.25]. Wang et al [66] highly recommend to use likelihood ratio

test in the stepwise procedure, claiming that it has better statistical properties than

the Wald test. For the choice of stopping criterion in stepwise algorithm, literature

provides the following guidelines: in exploratory research a conventional p-value of

0.05 may be too small and fail to identify important variables [26, 37, 66]. For

the forward selection method, Lee & Koval [37] show, via simulation study, that

the overall best p-value varies from 0.15 to 0.20. For the backward elimination,

Wang et al [66] recommend p-value in interval [0.2, 0.4] and emphasize that the

choice of optimal level of statistical significance depends on the number of potential

predictors: for forward selection, it should increase with the number of predictors;

for backward elimination the optimal p-value should decrease with the number of

predictors.

The other popular variable selection strategy is the so-called best subset se-

lection. According to this strategy the best model, among all possible models, is

chosen based on the values of a specified information criterion that penalizes model

complexity. The method requires extensive and time consuming computations, be-

cause with set of p predictors it is possible to fit 2p distinct main-effects models.

If interactions are considered, the number of possible models becomes very large.

Which subset of variables is considered to be the best depends on the information

criterion specified. Two commonly used in practice criteria for model selection are

Akaike information criterion (AIC) and Bayesian information criterion (BIC). In the

general case, AIC is given by

AIC = −2 ln(L) + 2 k,

and BIC is given by

BIC = −2 ln(L) + 2 k ln(n),

where L is the model likelihood, k = p + 1 is the number of model parameters and

n is the number of observations in the sample. The information criteria have the

following interpretation:

• −2 ln(L) is a measure of the lack-of-fit of the chosen model;

• 2 k and 2 k ln(n) are penalty terms for model complexity for AIC and BIC,

respectively.

Penalty terms increase with the number of estimated parameters.

Given the data, different LR models can be fitted and ranked according to

the value of information criterion. The preferred model is the one which achieves

the minimum value of information criterion. For more details on the best subset

selection algorithm for the class of GLM, see Calcagno & Mazancourt [6].

An alternative approach to standard computer algorithms described above,
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variable selection for multiple LR model can be based on univariate analysis. Agresti

[1] and Hosmer & Lemeshow [26] recommend, for discrete explanatory variables,

to study marginal effects of each potential predictor on the outcome variable, via

analysis of contingency tables. To investigate effects of continuous predictors on the

outcome, several methods can be employed, namely: graphical analysis, univariate

logistic regression modeling, two sample t-test or its non-parametric analog, Mann-

Whitney-Wilcoxon test. The level of statistical significance in univariate analysis for

inclusion of variables into multiple models should be large enough be able to identify

important variables. Hosmer & Lemeshow [26] recommend p− value < 0.25.

The criterion for variable selection depends on the problem and on the design

of the study. In comparison with stepwise selection, the best subset method has

advantage, since allows to compare both non-nested and nested models, but, on the

other hand, best subset selection is more time consuming. Both stepwise method

and best subset method provide model selection based solely on statistical criteria.

Yet, as a part of model building procedure, practical or ”clinical” importance of

selected variables should be carefully analyzed and taken into account. Variables of

special interest may be included in a model even if their estimated effects are not

statistically significant at 0.05 level [1].

2.4.2 Verification of logistic regression assumptions

In order to be able to fit a LR model, the following conditions should be

satisfied to guarantee valid statistical inference:

• linearity in the logit;

• independence of errors.

LR assumes the existence of a linear relation between any continuous predictor and

the logit of the probabilities of the positive outcome of variable Y , meaning that the

change in the value of the logit associated with a unit change in the independent

variable equals the coefficient in the regression equation.

The simplest way to detect nonlinearity is a graphical analysis. Several scatter

plots can be used check the linearity assumption: see, for instance, Kohler & Kreuter

[33], Hosmer & Lemeshow [26].

We will focus our attention on two analytical method for verification of the

linearity assumption. The first is the so-called Box-Tidwell procedure, that consists

in adding into the model the interaction term between the continuous predictor and

its logarithmic transformation. If the coefficient for the interaction term is statis-

tically significant, nonlinearity in the relationship between the logit and predictor

can be suspected [33, 44, 63].

The other well theoretically established method to examine linearity is frac-

tional polynomial analysis. The technique can be applied to any GLM, in particular
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to logistic regression, and it was developed originally by Royston & Altman [57]

and extended by Royston & Ambler & Sauerbrei [59] to multivariate models. The

method consists of adjusting a number of logit models with power transformations

of continuous predictors.

Definition 2.3 (Fractional polynomial of degree m) For arbitrary set of pow-

ers S and single covariate x, a fractional polynomial of degree m is defined as

t(x; β, s) = β0 +
m∑
j=1

βjFj(x),

where for j = 1, 2, . . . ,m

Fj(x) =


xsj , if sj 6= sj−1;

Fj−1(x)ln(x), if sj = sj−1

Altman & Royston [57] suggest to consider two particular families of fractional poly-

nomial models: first-order models (m = 1) and second-order models (m = 2) with

powers s selected among the values in the set S = {−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3}
where 0 corresponds to a logarithmic transformation of covariate.

To determine a correct functional form of continuous predictor using fractional

polynomials approach on the first step the first-order fractional polynomial models

are fitted. It is possible to adjust 8 different models. The best is one with the highest

value of log-likelihood or equivalently with the lowest deviance. On the second step,

second-order fractional polynomial models are fitted. Similarly with the first step

the best of 45 possible models is one that maximizes log likelihood.

On the third step, the best 1st-order and 2nd-order models and a linear model

are compared by mean of the partial likelihood ratio test. The test statistic is

given by difference in model deviances. More complex model is preferred only if it

provides significant improvement of fit and in assumption of nonlinearity make sense

in practice.

Denote by D(l), D(p1) and D(p1, p2) the deviances, (2.13), of the linear model,

of the best 1st-order and of the best 2nd-order fractional polynomials models, re-

spectively. The test statistics for model comparison are given by

G(l, p1) = D(l)−D(p1), (2.17)

G(p1, (p1, p2)) = D(p1)−D(p1, p2), (2.18)

G(l, (p1, p2)) = D(l)−D(p1, p2). (2.19)
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According to Altman & Royston [57], under the null hypothesis,

G(l, p1) ∼ χ2(1), G(p1, (p1, p2)) ∼ χ2(2), G(l, (p1, p2)) ∼ χ2(3).

Previously mentioned Box-Tidwell procedure rejects linearity without any in-

dication on the form of an existing relationship between the logit and the continuous

predictor. Fractional polynomial approach provides the direct answer for the impor-

tant question of which transformation better describes the functional relationship

and may considerably improve the fit of a model. Graphical analyses are very easy to

implement and also useful to understand where the departure from linearity occurs.

Hence, in this research, we use both graphical analysis and fractional polynomial

methods to check the form of a relationship between logit and independent covari-

ates.

Independence of errors means that, for any two observations in the sample, the

error terms should be uncorrelated. To investigate whether errors are independent,

both graphical and analytical methods can be used. An autocorrelation plot can be

used to check serial correlations between errors. We can also use tests for randomness

and the simplest non-parametric one is based on the number of runs.

Definition 2.4 (Run) Given a sequence of two or more symbols, a run is a se-

quence of one or more identical symbols which are followed and preceded by a differ-

ent symbol, or no symbol at all.

For example, the sequence S1 has only 2 runs and the sequence S2 has 10

runs.

S1 :
run︷ ︸︸ ︷

a a a a a b b b b b︸ ︷︷ ︸
run

, S2 : a b a b a b a b a b

For numerical observations, we need to impose some dichotomizing criterion on the

elements of the sequence. Each observation is compared to a specified threshold,

commonly the median or mean of the sample, and is coded as ”0” or ”1”, according

to whether the observation is larger or smaller than the threshold.

Test for random order is a non-parametric test of the hypothesis that the

observations occur in a random order, by counting the number of runs. Too few

runs or too many runs are very rare in truly random sequences, therefore they can

serve as statistical criteria for the rejection of null hypothesis. For instance, in the

first example we observed too many runs, in fact, we observed the maximum number

of runs for a given sequence of a’s and b’s (that is hardly possible to happen in a

random sequence). In the second example we have too few runs, because a’s and b’s

are clustered together.

For numerical observations, let na and nb denote the number of observations

below and above the threshold, respectively, n = na +nb denote the total number of

observations in the sample and r denote the number of runs. Under null hypothesis,

16



the expectation and the variance of the number of runs are

µr =
2nanb
n

+ 1, σ2
r =

2nanb(2nanb − n)

n2(n− 1)
,

respectively. The test statistic used is

Z =
r − µr
σr

(2.20)

which follows, assintotically, N(0, 1).

2.5 Assessment of model fit

LR models are used to explain the effect of covariates on the outcome variable

and predict the probability of the occurrence of the event of interest. However, con-

clusions drawn from a fitted model can be misleading when the model has lack of

fit, i.e. when the covariates cannot predict the response accurately. There are many

causes of inadequate model fit, for instance, omission of important covariates related

to the outcome, incorrect functional form, influential observations and outliers. Sev-

eral goodness-of-fit measures to assess the adequacy of fitted LR model have been

proposed by researchers in recent years; however, none of them can be considered

the best, each has advantages and disadvantages. In this work, as recommended by

Hosmer & Lemeshow [26], we will use a combination of four goodness-of-fit tests:

Pearson Chi-square test, Hosmer-Lemeshow test, Osius-Rojek test and Stukel test.

Before discussing specific goodness-of-fit tests we need to introduce the term

”covariate pattern”, which is crucial to understand summary measures of goodness-

of-fit and other diagnostic measures in logistic regression.

Suppose that, for i ∈ {1, 2, . . . , n}, (yi,xxxi) represent n independent pairs of

observations, where yi is a realization of the Bernoulli variable, with success proba-

bility πi, and xxxi is a line vector of values of p explanatory variables associated with

yi. A covariate pattern is an observed vector of values of the p covariate variables

used in the model [26]. Denote the number of covariate patterns by J . If each sub-

ject in the sample has a unique vector of values for the p covariates, the number of

covariate patterns J is equal to the number of subjects, i.e. J = n. If some subjects

share the same vector of the p covariates, we have J < n. Denote the number of

subjects in the j − th covariate pattern (i.e. that share the same covariate values

(xxx = xxxj)) by mj, j = 1, 2, . . . , J . Obviously,
J∑
j=1

mj = n. Suppose that the total

number of successes (yi = 1) is n1, the total number of failures (yi = 0) is n0, de-

note the number of successes in the j − th covariate pattern by yj1 and denote the

number of failures observed in the j − th covariate pattern by yj0. Then, obviously,
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J∑
j=1

yj1 = n1 and
J∑
j=1

yj0 = n0. To clarify the meaning of ”covariate pattern” lets

consider the following examples.

Example 2.5 Number of covariate patterns in given data

In the first data set, all the 11 subjects have different vectors of the 4 explanatory

Data 1

Subj y x1 x2 x3 x4
1 0 1 2 0 1

2 0 0 2 0 1

3 1 2 3 1 1

4 0 2 5 0 0

5 0 1 1 1 1

6 1 0 7 1 1

7 0 1 3 0 1

8 1 2 4 0 1

9 1 0 7 1 0

10 0 0 2 0 1

11 1 1 1 0 0

Data 2

Subj y x1 x2 x3 x4
1 0 1 10.2 0 1

2 0 0 8.7 1 0

3 1 0 8.7 1 0

4 1 0 8.7 1 0

5 1 1 10.2 0 1

6 1 0 8.7 1 0

7 1 1 10.2 0 1

8 0 2 9.4 0 1

9 1 2 9.4 0 1

10 0 1 10.2 0 1

11 1 1 10.2 0 1

variables, thus: the number of covariate patterns is J = n = 11, the number of

observations within covariate patterns is m1 = m2 = . . . = m11 = 1, the total

number of positive outcomes is y1 = 5 and total number of null outcomes is y0 = 6.

In the second data set, some of the 11 subjects share the same vector of values for

the 4 covariates. More precisely: subjects 1, 5, 7, 10 and 11 have the same covariate

pattern, (1, 10.2, 0, 1); subjects 2, 3, 4 and 6 also share covariate pattern, (0, 8.7, 1, 0);

subjects 8 and 9 share another covariate pattern, (2, 9.4, 0, 1). Thus, for the second

data set, the number of covariate patterns is J = 3, the number of observations

within covariate pattern is m1 = 5, m2 = 4 and m3 = 2 for the three different

patterns, the total number of positive outcomes is y1 = 3 + 3 + 1 = 7 and the total

number of null outcomes is y0 = 2 + 1 + 1 = 4.

Using the notation introduced above, the Pearson residual for covariate pat-

tern j is computed in the following way

r(yj1, π̂j) =
yj1 −mjπ̂j√
mjπ̂j(1− π̂j)

, j = 1, 2, . . . , J, (2.21)

where π̂j is the maximum likelihood estimate of probability πj associated with co-

variate pattern j. The Pearson Chi-square test statistic is defined as

X2 =
J∑
j=1

r(yj1, π̂j)
2. (2.22)
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Under the null hypothesis, i.e. that the fitted model is correct, X2 ∼ χ2(J− (p+1))

asymptotically.

Pearson Chi-square test statistic is a classical summary measure of goodness-

of-fit, that is available in many statistical software packages for logistic regression

modeling. Several authors [1, 26, 25, 32] emphasize, that Pearson Chi-square test

works very well under condition that J < n, which is often satisfied when the

covariates in the model are categorical. However, when J ≈ n this test provides

incorrect p-values, since the test statistic is no longer χ2(J − (p+ 1)).

Hosmer & Lemeshow developed alternative test of goodness-of-fit based on the

grouping of observations according to the values of the percentiles of the probabilities

estimated from the fitted model. The subjects are placed into c groups, with each

group containing approximately n/c subjects. The number of groups is traditionally

equal to 10 and these groups are designated by ”deciles of risk”. If we divide into

c groups, we have a c × 2 frequency table with columns corresponding to the two

values of the outcome variable Y and rows corresponding to the c groups. The

Hosmer-Lemeshow test statistic C is given by

C =
c∑

k=1

(ok − vkπ̄k)2

vkπ̄k(1− vkπ̄k)
, (2.23)

where vk is the total number of subjects in group k, ok is the number of subjects

with y = 1 in group k and π̄k is the average estimated probability of π for subjects

in group k

π̄k =

ck∑
j=1

mjπ̂j
vk

, k = 1, 2, . . . , c,

where ck is the number of covariate patterns in group k. Under the null hypoth-

esis, i.e. that the model fits, the test statistic follows asymptotically a χ2(c − 2)

distribution.

The Osius-Rojek test statistics [48], is obtained by approximation of the Pear-

son Chi-square test statistics to the standard normal distribution and, therefore it

can be applied only when the number of subjects in the sample is sufficiently large.

The detailed description of the algorithm to obtain the test statistic is provided by

Sarkar et al [?] and Hosmer & Lemeshow [26]. The expression of the test statistics

is

Z =
[X2 − (J − p− 1)]√

A+RSS
,

where X2 is the test statistic from (2.22), A is a correction factor for variance given

by

A = 2

(
J −

J∑
j=1

1

mj

)
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and RSS is the residual sum squares of weighted linear regression of cj =
1− 2π̂j
vj

,

on covariates xxxj, using weights vj = mjπ̂j(1− π̂j), for j = 1, 2, . . . , J . Under the null

hypothesis, i.e. that the model fits, the test statistic Z has, approximately, N(0, 1)

distribution.

The test proposed by Stukel is based on the comparison of the fitted model

logit(π) = ZZZβββ (2.24)

with a more general logistic regression model of the form

logit(π) = ZZZβββ + α1w1 + α2w2.

This general logistic regression model has two additional variables, w1 and w2, de-

fined in the following way: for covariate pattern j,

w1 = 0.5 · ĝ2j · I(π̂j ≥ 0.5), w2 = −0.5 · ĝ2j · I(π̂j < 0.5),

where I(arg) = 1 if arg is true and I(arg) = 0 otherwise, and ĝj denotes the

estimated logit, i.e.

ĝj = ln

(
π̂j

1− π̂j

)
.

The general and fitted model are compared using a likelihood ratio test. Under the

null hypothesis, i.e. α1 = α2 = 0, the test statistic follows a χ2(2) distribution.

Hosmer et al [25] claim that Stukel test is not a proper goodness-of-fit test, since it

does not compare observed and predicted values, but they agree that it is useful for

detecting lack of fit.

2.6 Logistic regression diagnostics

Besides testing goodness-of-fit of a LR model it is also very important to

identify influential observations and outliers. Literature suggests several diagnostic

measures that, in general, can be classified into two groups:

• basic building blocks,

• measures of the effect of covariate patterns on model fit and parameters esti-

mates.

The basic building blocks measures include Pearson residuals, deviance resid-

uals and Pregibon’s leverages. These measures are of interest by themselves for

identification of outlying and influential observations and are also used to derive

other diagnostic statistics.
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Usually residuals are defined as the difference between observed and predicted

values of the probability of outcome for each observation in the sample. Yet, as

explained by Hosmer & Lemeshow [26], in logistic regression the errors are binomial

and error variance depends on the conditional mean of Y , i.e. Var (Y |xxxj) = mjπj(1−
πj). Therefore, in logistic regression residuals are standardized as can be seen in

Pearson residuals r(yj1, π̂j) (2.21). Alternatively to Pearson residuals, we can use

the deviance residuals defined, for covariate pattern j, by

d(yj1, π̂j) = ±
{

2

[
yj1 · ln

(
yj1
mjπ̂j

)
+ (mj − yj1) · ln

(
mj − yj1
mj(1− π̂j)

)]}1/2

. (2.25)

Large values of r(yj1, π̂j) and d(yj1, π̂j) suggest that the model does not fit well

to the given covariate pattern. There is no absolute standard to define a ”large”

residual, but, according to Menard [44], for a large sample, Pearson residuals and

deviance residuals should have N(0, 1) distribution. Hence, according to Menard

[44], residuals that in absolute value are greater than 2 can be considered large.

On the other hand, according to Hosmer & Lemeshow [26], percentiles of N(0, 1)

may provide some guidelines for identification of large residuals, but they should be

used with caution; they claim ”in practice, an assessment of large is, of necessity, a

judgment call based on experience and the particular set of data being analyzed”.

Observations with large residuals do not necessarily have a strong influence on

the estimated parameters of the model, but on the other hand, observations with

relatively small residuals can have a large influence. Influential observations are also

called high-leverage observations. Pregibon [52] extended to the logistic regression

framework the well known diagnostic measure, designated by leverage, in the context

of linear regression. Leverage values are derived from the so-called ”hat” matrix,

i.e.

HHH = VVV 1/2ZZZ(ZZZTVVVZZZ)−1ZZZVVV 1/2, (2.26)

where VVV is the J × J diagonal matrix, with elements mj · π̂j(1 − π̂j), and ZZZ is the

J × (p+ 1) design matrix for J covariate patterns formed from the observed values

of the p covariates. For covariate pattern j the leverage hj is given by

hj = mjπ̂j [1− π̂j]zzzj(ZZZTVVVZZZ)−1zzzj, with zzzj = (1, x1j, x2j, . . . , xpj).

In this formulation 0 ≤ hj ≤ 1, large value of hj indicates that covariate pattern j

has a big effect on the fitted model, even if the corresponding Pearson and deviance

residuals are small.

The other type of diagnostic statistics examine the effect of deleting a single

observation, or a covariate pattern, on the value of the estimated parameters and on

the overall summary measures of fit. Pregibon [52] introduced ∆β̂j, a standardized
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measure of the difference in the coefficient vector, β, due to deletion of all obser-

vations that share covariate pattern j. Change in vector of estimated coefficients,

∆β̂j, is given by

∆β̂j =
r(yj1, π̂j)

2 · hj
(1− hj)2

.

The two following diagnostic statistics allow to identify covariate patterns that are

poorly fit:

• The change (decrease) in the value of Pearson X2 statistic due to deletion of

subjects with covariate pattern j is given by

∆X2
j =

r(yj1, π̂j)
2

(1− hj)
,

• the change in deviance is defined by

∆Dj =
d(yj1, π̂j)

2

(1− hj)
.

A number of different types of diagnostic plots to detect outliers and influential

observations have been suggested in literature, namely:

a) plot of leverages vs Pearson residuals

b) plot of Pearson residuals vs predicted probability

c) plot of deviance residuals vs estimated probability

d) plot of leverages vs predicted probability

e) plot of change in deviance residuals vs predicted probability

f) plot of change in Pearson residuals vs predicted probability

g) plot of change in coefficient vector βββ vs predicted probability

h) plot of ∆X2
j vs π̂j, where the size of plotting symbols are proportional to ∆β̂j.

Details of these plots and their interpretation can be found in Long [41], Hosmer &

Lemeshow [26] and Hosmer et al [27]. In this work we will use, mainly, plots a) e)

and g).

2.7 Classification accuracy of logistic regression model

The ability of the estimated LR model to describe the response variable, Y ,

can be evaluated using a classification table. According to the observed values of

Y , we can distinguish two sub-groups in the sample: group Y = 1 (if the event of

interest occurs) and group Y = 0. It is usual to call the elements from the first

group ”positive” and the elements of the second group ”negative”. From the logistic

regression equation (2.8), we obtain the predicted probabilities that can take any

values in interval [0, 1]. Hence, to be able to compare predicted and observed values

by means of 2 × 2 classification table, we need to select an appropriate threshold,
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the so-called cutoff point, to split observations into two groups according to the

estimated probabilities. If predicted probability exceeds the established cutoff point,

the corresponding observation is classified as ”positive”, otherwise is classified as

”negative”. In Table 1, we can see a typical 2 × 2 classification table. Based in

Table 1: Classification table for LR model

Observed

Y=1 Y=0 Row total

Classified Y=1 n11 n12 n11 + n12

Y=0 n21 n22 n21 + n22

Column total n11 + n21 n12 + n22 n

the classification table, we are able to compute several measures of classification

accuracy:

• Sensitivity (or true positive rate) that represents the proportion of ”positives”

which are correctly classified by the logistic regression model, i.e

Sensitivity = P (Ŷ = 1|Y = 1) =
n11

n11 + n21

;

• Specificity (or true negative rate) that represents the proportion of ”negatives”

which are correctly classified by the logistic regression model, i.e.

Specificity = (Ŷ = 0|Y = 0)
n22

n12 + n22

;

• Count R2, that is a measure of total classification accuracy,

CountR2 =
n11 + n22

n
.

Typically, 0.5 is used as a cutoff point for classification. However, several au-

thors point out that it does not always leads to satisfactory results [1, 44]. Classifica-

tion is highly sensitive to the relative groups sizes and, then the data is unbalanced,

further observations are allocated into the larger group. In such cases using of 0.5

provides a high rate of misclassification. As an alternative option, HosmerLemeshow

[26] suggest the use of a threshold that maximizes both Sensitivity and Specificity.

Such threshold can be easily determined by plotting, on the same graph, Sensitivity

and Specificity curves against possible cutoff points, as shown in Figure 1. The

optimal cutoff point is the intersection point of the two curves. Sensitivity

and Specificity are complementary measures of model performance and both de-

pend highly on the choice of cutoff point. As a general rule, decreasing the value

of cutoff point leads, simultaneously, to an increase of Sensitivity and a decrease of

Specificity. Some acceptable compromise has to be reached, but it might be difficult
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Figure 1: Plot of Sensitivity and Specificity versus all possible cutoff points

to choose which of the two measure is more important in particular circumstances.

Additionally, the arbitrary choice of cutoff point brings difficulties when we want

to compare different models in terms of the described measures of prediction accu-

racy. Thus, we need more than the three measures provided by the classification

table when we want to compare performance of the classification rules provided by

different models.

A plot of Sensitivity versus (1−Specificity) for the full range of cutoff points

is called a Receiver Operating Characteristic (ROC) curve, see Figure 2. It can be

Figure 2: Receiver operating characteristic curve

considered a complete representation of model performance, as the choice of cutoff

points varies. The area under the ROC curve characterizes the predictive ability of

the model. The area below the reference line, that connects points (0, 0) and (1, 1),

is 0.5 and corresponds to prediction by chance. If the area under the ROC curve is

larger than 0.5 it means that the model has some predictive power. The higher this

area is the better predictions the model provides.
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Kleinbaum & Klein [32] propose the following guidelines for assessment of

model’s classification accuracy via Area Under ROC curve (AUC):

• 0.5 ≤ AUC < 0.6 - failed discrimination;

• 0.6 < AUC < 0.7 - poor discrimination;

• 0.7 ≤ AUC < 0.8 - fair discrimination;

• 0.8 ≤ AUC < 0.9 - good discrimination;

• AUC ≥ 0.9 - excellent discrimination.

To compare relative performance of classification methods and their resulting

ROC curves, several statistical tests are suggest in the literature. In this work, we

are interested in comparing pairs of ROC curves, constructed with the same data

set, using the area under the curves. The test statistic for the comparison of areas

under two ROC curves, C1 and C′2, is

Z =
ˆAUC1 − ˆAUC2√

S2
1 + S2

2 − 2rS1S2

, (2.27)

[5], where ˆAUC1 and ˆAUC2 are estimates of area under the corresponding ROC

curves, S1 and S2 are estimates of the corresponding standard errors and r is an

estimate of the correlation between the areas. The value of ˆAUC is calculated

using a non-parametric method (trapezoidal rule) and the values of S1, S2 and r

are computed using the algorithm suggested by DeLong et al [14]. For further

considerations see DeLong et al [14], Cleves [12] and Braga [5]. Under the null

hypothesis, i.e. that the two areas are equal the distribution of Z is approximately

N(0, 1).

2.8 Interpretation of logistic regression model

In previous sections we presented and discussed methods for model fitting, for

selection of predictor variables, for testing the significance and for checking assump-

tions of LR. Now we will focus on the interpretation of logistic regression model

given in (2.24). Like in the linear regression framework, the logistic regression coef-

ficient can be interpreted as the change in the dependent variable associated with a

one unit change in the value of the independent variable. In the framework of mul-

tiple logistic regression, with a set of p explanatory variables x1, x2, . . . , xj, . . . , xp,

the interpretation is the following: for a unit change in explanatory variable xj the

logit of probability of outcome (Y = 1) is expected to change by βj, if all the other

explanatory variables are kept constant. The effect on the logit of probability of

outcome of a change in value xj is constant, since it does not depend on the initial

value of xj (depends only on the amplitude of the change) and does not depend on

the values of the other explanatory variables.
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Unfortunately, the interpretation of the logistic regression coefficients is not

intuitive. In order to discuss and interpret the logistic regression model it is essential

to introduce two quantities: odds and odds ratio.

Definition 2.6 (Odds) Let π be the probability of a success event. The odds of

success is defined as

odds =
π

1− π
.

For example, if the probability of success is 0.25, the odds of success is equal to

0.25/(1− 0.25) = 0.33. The odds compares two probabilities, forming the so-called

ratio of probabilities. If odds > 1, than ”success” is more likely to happen than

”failure”. On the other hand, odds < 1 means that ”success” is less likely to happen

than ”failure”. For example, odds of 3 means that the probability of success is 3

times larger that the probability of failure; odds of 0.5 means that the probability

of ”success” is a 1/2 of the probability of ”failure”.

Definition 2.7 (Odds ratio) Let π(1) and π(2) be the probabilities that a success

event occurs in group 1 and group 2, respectively. The ratio of the odds given by

OR =

π(1)

1− π(1)

π(2)

1− π(2)

,

is called odds ratio and is denoted by OR.

The odds ratio measures how much more likely it is for elements of group 1 to

experience success than for elements of group 2.

To illustrate the relationship between odds ratio and logistic regression model

coefficients consider the univariate model that has a single dichotomous explanatory

variable. In such case, values of the probabilities provided by the logistic regression

model, can be summarized by a 2× 2 table as shown below.

The OR is equals to the odds of success for cases with x = 1 divided by the

Predictor

Outcome x = 1 x = 0

y = 1 π(1) =
eβ0+β1

1 + eβ0+β1
π(0) =

eβ0

1 + eβ0

y = 0 1− π(1) =
1

1 + eβ0+β1
1− π(0) =

1

1 + eβ0

odds of success for cases with x = 0, i.e

OR =

π(1)

1− π(1)

π(0)

1− π(0)

=

(
eβ0+β1

1 + eβ0+β1

)
/

(
1

1 + eβ0+β1

)
(

eβ0

1 + eβ0

)
/

(
1

1 + eβ0

) = e(β0+β1)−β0 = eβ1 .
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Thus, for a categorical predictor with dummy coding, there is an exponential relation

between the logistic regression coefficient and the odds ratio. For a continuous or

qualitative (with more than two categories) explanatory variable, the exponential

of the logistic regression coefficient represents a multiplicative factor by which the

predicted odds change, given that corresponding explanatory variable changed by

one unit and all other explanatory variables are kept constant.

The OR can take any value in R. Odds ratio equal to 1 means that there is no

relationship between explanatory variable and the outcome. Odds ratio greater than

1 reflects the increase in odds of success with a one unit increase in the predictor.

Odds ratio smaller than one reflects the decrease in odds of success with a one unit

change of predictor.

From LR model we can also derive the σj effect, i.e. a standard deviation

change in predictor xj, instead of the one unit change. For a standard deviation

change in xj, the odds is expected to change by a factor of eβj ·σj , if all the other

variables are kept constant.

The percentage change of odds corresponding to one unit change of explanatory

variable xj is given by

[eβj − 1] · 100%.

For example, OR = 1.5 indicates that the odds of success increases by 50% or,

alternativelly, for a one unite change in predictor the odds is expected to change by

a factor of 1.5. OR = 0.4 means that the odds of success decreases by 60%, when

there is a one unit change in the predictor.

Agresti [1], Kleinbaum & Klein [32] and Long [41] provided detailed informa-

tion on alternative approaches to interpretation of results of LR modeling. In this

work, logistic regression results are interpreted in terms of odds ratios, since they

are appropriate for all types of explanatory variables.
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3 Discriminant analysis

Discriminant analysis is a multivariate statistical technique which is used with

descriptive and predictive for purposes[29]. The so-called descriptive discriminant

analysis tries to examine differences between particular groups of subjects, or, in

other words, tries to ”discriminate” between groups on based on a set of character-

istics, trying to find out which characteristics are the most powerful discriminators.

On the other hand, the primary interest of the so-called predictive discriminant

analysis is to define rules that allow to allocate subjects into one of several mutually

exclusive groups, based on the set of characteristics exhibited by the subjects.

Both parametric and non-parametric methods can be used in discriminant

analysis. Parametric methods, namely linear and quadratic discriminant analysis,

are appropriate only when predictors have, approximately, multivariate normal dis-

tribution. If this distributional assumption is not met, non-parametric methods,

such as kernel method and nearest-neighbor method, can be used to derive classifi-

cation criteria. In this work, we consider linear discriminant analysis (LDA) and K

nearest neighbors discriminant analysis(K-NN).

3.1 Linear discriminant analysis (LDA)

First, let us introduce the key terms used in the framework of LDA. The

categorical variable that defines the groups is called grouping or dependent variable.

The p characteristics used to distinguish among a priori defined groups are usually

called independent variables, predictors or discriminating variables, and are usually

denoted by x1, x2, . . . , xp. LDA requires several discriminant functions which are

linear combinations of x1, x2, . . . , xp. The number of discriminant functions may

vary from 1 to s = min(p, g − 1) where g is the number of groups. The k-th

discriminant function has a general form [55]

ζk = uk0 + uk1x1 + uk2x2 + . . .+ ukpxp, k = 1, 2, . . . s, (3.1)

where uk0 is a constant, uk1, uk2, . . . , ukp are the so-called discriminant weights, also

known as discriminant coefficients.

The discriminant weights are estimated in the following way:

• for ζ1 the coefficients are derived so that the means of the discriminant function

ζ1 in the different groups are as different as possible;

• The discriminant weights of ζ2 are derived with the same purpose, under ad-

ditional restriction that Cov(ζ1, ζ2) = 0;

• the other functions are determined in similar way.

The value of discriminant function for a particular observed vector of the p predictors

is called discriminant score.
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3.1.1 Assumptions of linear discriminant analysis

The following assumptions for the use of LDA are outlined in literature [31, 55]:

1. Dependent variable must be categorical with two or more mutually exclusive

groups (g ≥ 2) and each subject must belong to one and only one group;

2. There are at least two cases per group;

3. The number of discriminating variables must be such that 1 ≤ p < (n − 2),

where n is the total number of subjects in the sample;

4. Discriminating variables should be measured at least at the interval scale;

5. Lack of multicollinearity among discriminating variables: non of the discrim-

inating variable may be a perfect linear combination of other discriminating

variables;

6. Each group should be drawn from a population with a p-multivariate normal

distribution;

7. Homogeneity of covariance matrices, i.e. covariance matrices of the different

groups should be equal.

Assumptions 6 and 7 are particularly important for tests of significance, for compu-

tation of probabilities of group membership and for derivation of classification rules.

Of all the requirements of the LDA, assumptions 6 and 7 are the most difficult to

meet.

To test the hypothesis that covariance matrices are identical, the M-Box test

can be employed. For this test we need to compute

M = (n− g) · ln|S| −
g∑
i=1

(ni − 1) · ln|Si|, (3.2)

and

L = 1− 2p2 + 3p− 1

6(p+ 1)(g − 1)

(
g∑
i=1

1

(ni − 1)
− 1

n− g

)
,

where |S| stands for the determinant of the total covariance matrix and |Si| stands for

the determinant of the covariance matrix within group i, i = 1, 2, . . . , g. Under the

null hypothesis, i.e. that covariance matrices are identical, M ·L has approximately

χ2((g−1)p(p+1)/2) distribution (see Reis [55] and Huberty [28] for more details). M-

Box test has two well-known limitations, mentioned in literature [28, 31, 45, 55]: first,

the test is sensitive to multivariate non-normality (that is the null hypothesis could

be rejected either due to heterogeneity of covariance structures or non-normality of

the data) and second, if groups sizes are large, the test becomes extremely sensitive

and even small differences in covariance structures may lead to rejection of the

null hypothesis. In such situations natural logarithms of the determinants of the

covariance matrices across groups should be additionally examined.
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3.1.2 Linear discriminant functions: derivation and assessment of sta-

tistical significance

As mentioned before, the basic idea of LDA is to define some linear composites

of a set of discriminating variables in order to maximize the difference between the

g groups.

In the following, denote by XXX the n× p data matrix

XXX =


x11 x12 . . . x1p

x21 x22 . . . x2p
...

... . . .
...

xn1 xn2 . . . xnp

 ,

denote by TTT the p× p matrix of the total sums of squares and cross-products

TTT =

g∑
j=1

nj∑
i=1

(xxx
(j)
i − x̄̄x̄x)(xxx

(j)
i − x̄̄x̄x)T , (3.3)

where xxx
(j)
i stands for the observed column vector of the p predictors of the i-th

subject in group j and x̄̄x̄x = (x̄1, x̄2, . . . , x̄p)
T is the vector of mean values of predictors

(grand mean), denote by WWW the p× p matrix of the within-groups sums of squares

and cross-products

WWW =

g∑
j=1

nj∑
i=1

(xxx
(j)
i − x̄̄x̄xj)(xxx

(j)
i − x̄̄x̄xj)T , (3.4)

where x̄̄x̄xj is a vector of mean values of p predictors for the group j, and denote by

BBB the p× p matrix of the between-groups sums of squares and cross-products

BBB = TTT −WWW. (3.5)

In order to determine the coefficients of the k-th discriminant function we

should find the value of vector aaakT = (ak1, ak2, . . . , akp) that maximizes the so-called

discriminant criterion, i.e. maximizes

aaaTkBaBaBak
aaaTkWaWaWak

.

To find all the vectors, aaa1, aaa2, . . . , aaas, we need to determine the eigenvalues of matrix

product WWW−1BBB. The number of non-zero eigenvalues equals the rank matrix and is

equal to s = min(p, g−1). Our vectors aaa1, aaa2, . . . , aaas are the eigenvectors associated

with these eigenvalues. Hence, estimation of the discriminant functions coefficients
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implies solving the following equation

∣∣WWW−1BBB − λI
∣∣ = 0.

Let λ1 be the largest eigenvalue. The p-dimensional vector aaa1 is a solution of equa-

tion

(WWW−1BBB − λ1I)aaa1 = 0.

The weights of the first linear discriminant function are obtained through elements

of vector aaa1, within a constant of proportionality. In a similar way,the weights of

the second discriminant function are obtained through the eigenvector aaa2 associated

with the second largest eigenvalue λ2, and so on.

Eigenvalues of matrix WWW−1BBB have the following two important properties.

The first eigenvalue λ1 provides the greatest separation between groups, second

eigenvalue λ2 provides the second biggest separation, and so on, and the λs provides

the smallest group separation. Plus ”eigenvalues derived in a such way are mutually

uncorrelated ”[31].

Although p or (g − 1) discriminant functions can be obtained, whether they

are significant and how many of them should be considered in the interpretation

of resultant group differences are questions that need to be addressed. To evaluate

the significance of combination of s discriminant functions we consider a test to the

value of the eigenvalues of matrix WWW−1BBB. The null hypothesis of the test states that

λ1 = λ2 = . . . = λs = 0. The test statistic, known as Lambda Wilks, is given by

ΛW =
s∏

k=1

1

1 + λk
.

It can be shown that, under the null hypothesis the random variable

X2 = −
[
n− 1− p+ g

2

]
ln(ΛW )

has approximately χ2(p(g − 1) distribution. In a similar way, the statistical

significance of each one of the s discriminant functions can be evaluated. In such

case, for the k-th discriminant function, the null hypothesis is λk = 0 the test

statistic

X2
k =

[
n− 1− p+ g

2

]
ln(1 + λk)

has approximately χ2((p− k + 1)(g − k)) distribution.

The eigenvalues of the matrix WWW−1BBB provide information regarding the

relative contribution of each discriminant function to the group separation. To com-

pare contributions of discriminant functions to separation between groups, eigenval-
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ues should be converted into relative percentages, i.e.

λk
s∑
j=1

λj

· 100%, k = 1, 2, . . . , s, (3.6)

that measure the proportion of variance accounted due to the k-th function. Ad-

ditionally, the canonical correlation associated with each eigenvalue might be used

to assess importance of linear discriminant functions. Canonical correlation for the

k-th eigenvalue is defined by

ηk =

√
λk

1 + λk
, k = 1, 2, . . . , s.

ηk measures of association between the k-th discriminant function and a set of g− 1

dummy variables that define the groups: value zero means no relationship at all and

value close to one denote the high degree of association. Squared canonical correla-

tion indicates the proportion of variance shared between groups and predictors on

the linear discriminant function [63].

Analysis of canonical correlations and of relative percentages allow us to de-

termine the number of discriminant functions to be considered for interpretation

purposes in LDA. Huberty [28] suggests to retain functions on the basis of joint

relative percentages (3.6) defined for one, two or more functions until a substantial

proportion of the group differences is accounted for

100% · λ1
s∑
j=1

λj

, 100% · λ1 + λ2
s∑
j=1

λJ

, 100% · λ1 + λ2 + . . .+ λr
s∑
j=1

λj

.

3.1.3 Interpretation of linear discriminant functions

Literature provides several approaches to the interpretation of linear discrim-

inant functions. The vector of coefficients aaak, derived in the way described before,

can be used to calculate discriminant scores for subjects for the purpose of clas-

sification. However it is common practice to standardize the components of the

vector aaak in order to obtain a discriminant function ζ as in (3.1), with parameters

uk0, uk1, . . . , ukp given by

for i ∈ {1, 2, . . . , p}, uki = aki
√
n− g, uk0 = −

p∑
i=1

uki x̄i, (3.7)

where x̄i is the sample mean value of variable i. uk0 is the intercept of the dis-

criminant function and coefficients uk1, uk2, . . . , ukp are referred in the literature as
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the raw coefficients. As a result of such transformation the discriminant scores over

all cases will have zero mean and a within-group standard deviation of one, which

makes possible the comparison with the z-scores. Discriminant score describes the

position of a case in the discriminant space along the axis defined by the discrimi-

nant function. The transformation provided by (3.7) reallocates the axes defined by

the discriminant functions so that the origin (the point corresponding to value zero)

coincides with the grand centroid (the point of the space where all discriminating

variables have their means). The scores can be interpreted as measures of the dis-

tance between the grand centroid and each particular case. For instance, ζ11 = 1.5

means that subject 1 is one and a half standard deviations in the positive direction

from the center of the axis and ζ12 = −3 means that subject 2 is three standard

deviations in the negative direction from the center of the axis, quite distant from

the origin.

Unstandardized discriminant weights indicate the absolute contribution of each

predictor to value of the discriminant score. To assess relative importance of discrim-

inating variables, standardized discriminant function coefficients should be analyzed.

Standardized coefficients are derived from (3.7) in the following way

uski = uki ·
√

wii
n− g

, i = 1, 2, . . . , p, (3.8)

where wii is the i-th main diagonal element of the covariance matrix WWW defined in

(3.4). However, Huberty [28] and Klecka [31] claim that the use of these standard-

ized discriminant function weights to assess the relative importance of a covariate

has a serious limitation: if there is multicollinearity, standardized coefficients may

have misleading conclusions, since they take into account the joint contribution of all

variables. Given that two discriminating variables are highly correlated, two scenar-

ios are possible: first, both predictors may have lower coefficients that do not reflect

their true effects (since the predictors share the contribution to the discriminant

score), or coefficients may be large but with opposite signs (so that one predictor

cancels the effect of the other). Alternatively, Huberty [28] and Klecka [31] suggest

to judge relative importance of variables in LDA through the correlation between

each discriminating variable and the different discriminant functions. For discrimi-

nant function k and discriminating variable i the correlation in question, known as

structure coefficient or loading, is given by

lki =

p∑
j=1

uskirij, (3.9)

where rij is a pooled within-group correlation coefficient between variables i and j

and uski are given by (3.8).
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The structure coefficients show how a particular variable and discriminant

function are related. A high loading (in absolute value) reveals that variable shares

the most variation with a given function, but a loading close to zero tells us that

function and variable have less in common. On the basis of structure coefficient we

can assign descriptive labels to the linear discriminant functions. On the other hand,

the application of structure coefficients in context of LDA has been criticized by some

authors since structure coefficients fail to provide multivariate information. Rencher

[56] claims that structure coefficients show univariate contribution of each variable

for the group separation but ignore the other predictors, since the value of loadings

do not change when variables are included or excluded from the model. In order to

assess the joint contribution of discriminating variables Rencher [56] recommends

the use of standardized coefficients in the interpretation of discriminant functions.

3.1.4 Classification via linear discriminant analysis

In general form, for predictive discriminant analysis the classification rule can

be defined in the following way. Let xxx = [x1, x2, . . . , xp] denote an observation from

dataset measured on p discriminating variables. Let g denote the number of groups,

G1, G2, . . . , Gg the different groups, ni the number of observations in group Gi and

πi the prior probability of membership in group Gi. For i = 1, 2, . . . , g, let f(xxx|Gi)

be the probability density function of xxx, given that the observation was collected in

an element of group Gi. Let P (xxx|Gi) represent the probability of observing vector

xxx conditional on xxx being collected in an element of group Gi and P (Gi|xxx) denote

the posterior probability of group Gi. The relationship between the two conditional

probabilities, IP(Gi|xxx) and IP(xxx|Gi), may be derived through the multiplication rule:

for any two events A and B, such that IP(A) · IP(B) > 0,

IP(A ∩B) = P (B) · IP(A|B) = IP(A) · IP(B|A).

Hence, we get

P (Gi ∩ xxx) = IP(xxx) · IP(Gi|xxx) = πi · IP(xxx|Gi),

Based on the Bayes’ theorem the posterior probability of xxx membership in the group

Gi is calculated in following way

IP(Gi|xxx) =
πi · IP(xxx|Gi)

IP(xxx)
. (3.10)
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Total probability theorem yields

IP(Gi|xxx) =
πi · IP(xxx|Gi)
g∑
j=1

πj · IP(xxx|Gj)

. (3.11)

The substitution of IP(xxx|Gi) by f(xxx|Gi) in (3.11) results in

IP(Gi|xxx) =
πi · f(xxx|Gi)
g∑
j=1

πj · f(xxx|Gj)

. (3.12)

Hence, the classification rule based on Bayesian theorem for posterior probabilities is

formulated as following: subject b, with observed vector xxxb for the p discriminating

variables, is assigned to group Gi if, for all i 6= j,

IP(Gi|xxxb) > P (Gj|xxxb), (3.13)

with IP(Gi|xxxb) calculated as in (3.12).

Another popular approach to determine the group membership of subject b is

to consider how far the associated vector of observations xxxb is from the centroid of

each group and place b within the closest group. In the context of LDA the squared

Mahalanobis distance, D2, is used to measure the closeness:

D2
b,j = (xxxb − x̄̄x̄xj)TSSS−1(xxxb − x̄̄x̄xj), j = 1, 2, . . . g,

where x̄̄x̄xj is the mean vector for group j and SSS is the pooled within-groups covariance

matrix. After calculating the D2
b,j for all groups, subject b is allocated into the group

with the smallest value. Note that the classification rule based on the Mahalanobis

distance requires equality of group covariance matrices and equal prior probabilities.

Assuming unequal prior probabilities, the following adjustments should be made

D2
ub,j = (xxxb − x̄̄x̄xj)TSSS−1(xxxb − x̄̄x̄xj)− 2 · ln(πj), j = 1, 2, . . . g,

where πj represents prior probability for the group j.

To assess the ability of discriminant analysis model to predict group member-

ship the probability of correct classification known in the literature as hit rate, is

usually used. Alternatively, we can evaluate its complementary probability known

as misclassification rate. The simplest way to estimate misclassification rate is to ap-

ply classification procedure to the same data from which the discriminant functions

were estimated. In such case, the estimate of misclassification rate is designated by
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apparent error rate. When the true group membership of subjects in the sample

is known, the results of classification can be summarized in the form of a g × g

classification table, similar to the 2 × 2 table describe in Section 2.7 for logistic

regression. In the framework of discriminant analysis such table is the so-called

confusion matrix.

3.1.5 Variable selection in linear discriminant analysis

In similarity with logistic regression, the optimal set of variables for LDA can

be selected employing stepwise procedure: forward selection, backward elimination

or combination of these two methods. As mentioned previously, variables are eligible

for inclusion or elimination from the model on the basis of some statistical criterion.

A number of criteria have been suggested in literature in context of discriminant

analysis. Perhaps the most widely used criterion is Wilks Lambda, that is defined

by following expression

ΛW =
|W |

|W +B|
, (3.14)

where W is the within-group matrix of sums of squares and B the between-group

matrix of sums of squares defined in (3.4) and (3.5), respectively. At each step

of the algorithm, the variable that is added is the one with the smallest value of

ΛW . Minimization of the ratio given in (3.14) implies that the within-groups sum

of squares is minimized and between-groups sum of squares is maximized.

Squared Mahalanobis distance and Rao’s V statistic can also be used as criteria

for stepwise variable selection in LDA; for details see Reis [55].

3.1.6 Linear discriminant analysis: two-group case

In this subsection we give a brief description of LDA procedure for the two

group case. Notice that, in this case, we need only one discriminant function.

For two groups of subjects, G1 and G2, characterized by p discriminating

variables, denote by n1 and n2 the number of subjects in G1 and G2, respectively,

by x̄xxi the sample mean vector of group i, by ŜSS the sample covariance matrix. The

estimate of vector aaa is given by

âaa = ŜSS
−1
· (x̄xx1 − x̄xx2).

The linear discriminant function is estimated by Ŷ = âaaTXXXT .

The discriminant score of a subject b with observed vector of discriminating

variables xxxb is given by

Ŷb = (x̄xx1 − x̄xx2)T ŜSS
−1
xxxb,
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and will be used to classify subject b in one of the two groups. Consider the average

scores

Ȳ1 = (x̄xx1 − x̄xx2)T ŜSS
−1
x̄xx1 and Ȳ2 = (x̄xx1 − x̄xx2)T ˆSSS−1x̄xx2,

of G1 and G2, respectively. Thus, the average discriminant score for the whole

sample is

Ȳ =
1

2
(x̄xx1 − x̄xx2)T ŜSS

−1
(x̄xx1 + x̄xx2).

The resultant classification rule is formulated as following: subject b is assigned to

group G1 if

Ŷb >
1

2
(x̄xx1 − x̄xx2)T ŜSS

−1
(x̄xx1 + x̄xx2)

and, otherwise, is assigned to the group G2.

Figure 3 illustrates the classification rule based on cutoff score that assumes

equal sample sizes for the two groups. Letters V , v1 and v2 in the Figure 3 stand for

Ȳ , Ȳ1 and Ȳ2, respectively. For unequal sample sizes the cutoff score is calculated

Figure 3: Classification rule for two groups with equal dimensions

in the following way

V u =
n2Ȳ1 + n1Ȳ2
n1 + n2

,

see [55]. Figure 4 shows the classification rule based on cutoff score that assumes

unequal sample sizes for the two groups. A cutoff score, V u, in such case is shifted

from the central position, V , to ensure equality of probabilities of misclassification

for two groups.

In Section 3.1.4 we presented the general form of classification rule based on

the posterior probability. For observation vector xxxb, posterior probability of group
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Figure 4: Classification rule for two groups with unequal dimensions

membership for the two group case is estimated by

ÎP(Gi|xxxb) =
π̂i · f̂(xxxb|Gi)

2∑
j=1

π̂j · f̂(xxxb|Gj)

, for i = 1, 2.

where

f̂(xxxb|Gi) =
1√

(2π)2
√
|ŜSSi|

exp(−0.5(xxxb − x̄xxi)T ŜSS
−1
i (xxxb − x̄xxi)).

Observe that f̂(xxxb|Gi) is the density function, assuming that multivariate normal

probability model with equal covariance matrices holds. So,

ÎP(Gi|xxxb) =
π̂i · |ŜSSi|−1/2exp(−0.5D2

bi)
2∑
j=1

π̂j · |ŜSSj|−1/2exp(−0.5D2
bi)

, i = 1, 2,

where D2
bi = (xxxb − x̄xxi)T ŜSS

−1
i (xxxb − x̄xxi) is the squared Mahalanobis distance between

observed vector xxxb and x̄xxi. Therefore, subject b is allocated in group G1 if

ÎP(G1|xxxb) > ÎP(G2|xxxb)

and allocated to the group G2, otherwise.

3.2 K nearest neighbor discriminant analysis

In the previous subsections we dealt with a classification technique involving a

set of predictors whose theoretical joint distribution was assumed to be multivariate

normal. In this section we a present non-parametric approach to the problem of

classification, so-called K-nearest neighbor discriminant analysis (K-NN).

K-NN discriminant analysis is a statistical tool used to predict group mem-
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bership of an observation, based on a non-parametric estimator of the distribution

of its K-nearest neighbors. This technique was introduced by Fix and Hodges ?? in

early 50s. Unlike traditional LDA and LR, K-NN is a quite flexible approach to the

classification problem. The technique does not require assumptions of multivariate

normality or homogeneity of covariance matrices (like LDA does), or assumptions

of linearity and link function specification (like logistic regression does). K-NN dis-

criminant analysis is based on the single assumption that members of the same

group have similar characteristics. For example, in the 1-NN rule, the observation is

classified into the group corresponding to the membership of the closest observation,

according to some metric. With K-NN rule, if observation xxx is to be assigned, we

search through the data for the set of the K-nearest neighbors, according to distance

function, and allocate xxx in the most frequent class among these neighbors.

In Section 3.1.4, we calculated the posterior probability of xxx membership in

the group Gi

IP(Gi|xxx) =
πi · f(xxx|Gi)
g∑
j=1

πj · f(xxx|Gj)

. (3.15)

and defined the general form of classification rule (3.13) based on the posterior

probability of group membership. To allocate an unclassified observation, xxx, to

one of mutually exclusive groups according to the maximum posterior probability

rule, K-NN uses simply a non-parametric estimator of f(xxx|Gi), based on the set of

K-nearest neighbors.

A non-parametric estimator of the density function f(xxx|Gi) is the relative fre-

quency of observations from the group Gi in the neighborhood of xxx. Let ki denote

the number of the K-nearest neighbors of xxx that belong to group Gi. Consequently,

the formula for posterior probability, given by equation (3.15), transforms in

ÎP(Gi|xxx) =

π̂i · ki
ni

g∑
j=1

π̂j · kj
nj

,

where ni is the size of group Gi. These estimated probabilities are used to classify

subjects: subject b is classified into the group for which the posterior probability of

membership ÎP(Gi|xxxb) is the highest, where xxxb is the observed vector of covariates

of b.

The performance of the K-NN technique depends crucially on:

• the similarity measure, or distance measure, used for identification of nearest

neighbors;

• number of neighbors used in the classification rule.
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Definition 3.1 (Distance) A distance (metric) on a set U is a function

D : U × U −→ R

that satisfies the following axioms

1. D(x, y) ≥ 0, ∀x, y ∈ U ;

2. D(x, y) = 0 if and only if x = y;

3. D(x, y) = D(y, x), ∀x, y ∈ U ;

4. D(x, z) ≤ D(x, y) +D(y, z), ∀x, y, z ∈ U .

Axioms 1 and 2 mean that D is positive definite, axiom 3 means that D is symmetric

and axiom 4 is known as triangular inequality.

Lets start by considering the most popular and frequently used distance mea-

sure: the Euclidean distance. For two observations in p-dimensional space,

xxxi = [xi1, xi2, . . . , xip] and xxxj = [xj1, xj2, . . . , xjp], Euclidean distance is given by

Dxxxi,xxxj =

(
p∑

k=1

(xik − xjk)2
) 1

2

.

In fact, Euclidean metric is a special case of a more general distance measure, the so-

called Minkowski metric. For the two observations in p-dimensional space, xxxi,±xj
the Minkowski distance is given by

Dxxxi,xxxj =

(
p∑

k=1

(|xik − xjk|)n
) 1

n

,

where n is a fixed natural number. For n = 1 the previous formula is simplified to

Dxxxi,xxxj =

p∑
k=1

|xik − xjk|,

and the metric is known as Manhattan or city-block distance.

It can be proved that Euclidean measure of distance is not invariant for scale.

In other words, this metric assumes that all p variables are measured with the same

metric scale. In practice, it is quite difficult to guarantee this assumption. That’s

why the common practice is to standardize the variables or, alternatively, compute

the Mahalanobis distance, defined in context of LDA. Mahalanobis distance takes

into account the correlation among variables, it is invariant for scale and, for the

independent variables, it is simply reduces to the Euclidean distance.

The metrics described above are designed for continuous variables. However,

some research situations involve other types of variables, for example, binary vari-

ables, that measure presence or absence of the characteristic of interest. In this
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case, the squared Euclidean distance provides a count of mismatches between ob-

servations, however it attributes an equal weight for matching cases. The distance

measures designed for binary data are known as matching or similarity coefficients.

Definition 3.2 (Matching coefficient) For a set X, a similarity coefficient is a

function, C, that maps X ×X into R and, for all x, y in X, satisfies the following

conditions:

• 0 ≤ C(x, y) ≤ 1, ∀x, y ∈ X;

• C(x, x) = 1, ∀x ∈ X;

• C(x, y) = 1, if and only if x = y;

• C(x, y) = C(y, x), ∀x, y ∈ X.

A large number of similarity coefficients have been proposed in the literature.

In order to demonstrate how some of this measures are calculated we will introduce

a simple example. Suppose that we have two subjects (items) characterized by

p binary variables. In this case, the presence or absence of p attributes can be

summarized in a frequency table as shown in a Table 2.

Table 2: Frequency of matches and mismatches for two subjects

Subject 2

Subject 1 presence of characteristic(1) lack of characteristic(0)

(1) a b

(0) c d

In Table 2, cell a counts the number of attributes, in p, that both subjects

have (1− 1 matches). Cell b counts the number of attributes that first subject has

but the second subject does not (1− 0 matches), and so on.

We define some metrics in terms of cells of the Table 2:

• Russell matching coefficient, given by

DR =
a

a+ b+ c+ d
.

In other words, the Russell’s metric simply represents proportion of attributes

present in both subjects.

• Jaccard matching coefficient, given by

DJ =
a

a+ b+ c
.

This coefficient ignores the number of (0− 0) matches; they are considered to

be irrelevant.

• Dice matching coefficient, given by

DD =
2a

2a+ b+ c
.
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The Dice coefficient is closely related to the Jaccard coefficient, with the unique

difference that 1− 1 matches have additional weight.

Example 3.3 Calculating the values of matching coefficients

Consider 6 characteristics of interest for 2 subjects. The number of matches and

Subject x1 x2 x3 x4 x5 x6

1 0 1 1 0 0 1

2 0 0 1 1 1 1

mismatches is summarized in Table 3.

Table 3: Summary of matches and mismatches for two subjects

Subject 2

Subject 1 (1) (0)

(1) 2 1

(0) 2 1

Russell, Jaccard and Dice matching coefficient for these two subjects are

DR =
2

2 + 1 + 2 + 2
= 0.33, DJ =

2

2 + 1 + 2
= 0.4, DD =

2 · 2
2 · 2 + 1 + 2

= 0.57,

respectively.

In existent literature we found several guidelines for the choice of the optimal

value of K in the nearest neighbor discriminant analysis. For instance, for two

groups classification, K should be an odd integer in order to avoid ties. McLahuan

[43] cites Enas and Choi work and, according to their recommendations, for the two

group classification problem with comparable group sizes K should be selected from

interval [n2/8, n3/8].

According to Huberty [28], the value of K should be large enough in order to

obtain consistent density estimates. On the other hand, for data with unbalanced

group sizes this suggestion probably not the most appropriate. When there are

remarkable differences in group sizes, K must be much smaller than the smallest

group. Huberty [28] also suggests that, for each particular situation, the researcher

should try several values of K and make his choice based on the classification results.
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4 Comparison of classification rules

There are two crucial questions in classification problems:

• if the knowledge of independent variables is helpful in predicting the proba-

bility of outcome;

• which of the generated rules is better.

Practical and statistical usefulness of classification rules can be evaluated by several

means. In this section we present a brief description of measures for assessment of the

practical utility of classification rules and some considerations on the performance

of LR, LDA and K-NN.

4.1 Criteria for comparison of classification rules

The statistical criteria described below are suggested by Huberty [28] in the

context of discriminant analysis and, therefore, can be applied to compare perfor-

mance of different classification methods (see [45]). We present the formulation of

criteria for the particular case g = 2. Consider two groups, G1 and G2, and let qi

denote the estimated prior probability of membership in group Gi, i ∈ {1, 2}. The

results of classification can be summarized in the following table

Predicted group Total Row

Actual group G1 G2

G1 n11 n12 n1.

G2 n21 n22 n2.

Total Column n.1 n.2 n
The total observed frequency of correct classifications, denoted by o, is the sum of

the elements in the main diagonal, i.e.

o =
2∑
i=1

nii,

and observed proportion (rate) of correct classifications is given by

Ho =
o

n
. (4.1)

There a number of different ways to determine the chance rate, that is, the rate

of correct classification by chance and without knowledge of predictors. When group

sizes are equal, the proportion of correct classification due to chance is simply
1

2
.

When group sizes are unequal, two different strategies for calculating chance rates

can be used. The first is the so-called maximum chance criterion: the proportion

of correctly classified subjects is equal to the highest value of prior probability of

group membership. This criterion is recommended when the goal of the research
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is to maximize overall rate of correct classification. The second approach is the

proportional chance criterion, that should be used when the researcher is interested

in correctly classify subjects into all of the groups. The chance frequency of correct

classifications for Group Gi is given by

ei = π̂i · ni, (4.2)

where π̂ is the estimated prior probability of group Gi, the total-group frequency of

correct classifications due to chance is given by

e =
2∑
i=1

π̂ · ni, (4.3)

and the overall (expected) rate of correct classifications due to chance is

He =
1

n

2∑
i=1

π̂ · ni. (4.4)

The observed total-group correct classification may be compared with the expected

(4.3) to decide if we have achieved a classification better than the chance classifi-

cation. Hence, we perform a test where the null hypothesis stats that the number

of subjects correctly classified by model is equal to the number correctly classified

by chance. The overall number of correct classifications, o, is the test statistic, that

can take any value from zero to n. Since n is generally large enough in classification

problems, under the null hypothesis, the distribution of o can be approximated by

the N(0, 1) distribution. Thus, a statistic defined by

Z =
(o− e)√
e(n− e)/n

, (4.5)

may be used to test the null hypothesis. The lower bound of a confidence interval

for the true overall frequency of correct classifications is given by

o− z1−α
√
e(n− e)/n,

where z1−α is the 100 · (1−α) percentile of the N(0, 1) distribution. Some times the

researcher is interested in separating group predictions. In such case, for particular

group Gi, the test statistic is

ZGi
=

(nii − ei)√
ei(ni − ei)/ni

, i = 1, 2, (4.6)
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and corresponding lower bound of a confidence interval is given by

nii − z1−α
√
ei(ni − ei)/ni, i = 1, 2.

The other measure, suggested by Huberty [28], is the index of improvement over

chance, I. This index defined as

I =
Ho −He

1−He

, (4.7)

takes into account the expected total rate of correct classification, as well as the

observed rate of correct classification. The index I provides the percent reduction

in error by chance classification if the predictive model is used.

To compare the total-group classification accuracy of two different rules, ap-

plied to the same subjects, Huberty [28], Meshbane & Morris [45] recommend to

apply McNemar test. The results of group membership prediction should be sum-

marize as shown in Table 4, where n11 is a number of subjects correctly classified

Table 4: Comparison of classification rules

Rule 2

Hit Miss Total Row

Rule 1 Hit n11 n12 n11 + n12

Miss n21 n22 n21 + n22

Total Column n11 + n21 n12 + n22 n

by both rules, n12 number of subjects correctly classified by rule 1 and incorrectly

classified by rule 2, and so on. The null hypothesis states that the proportion of

subjects correctly classified by rule 1 equals the proportion of subjects correctly

classified by rule 2. If n12 + n21 ≥ 25, the test statistic is given by

T =
(n12 − n21)

2

n12 + n21

. (4.8)

Under the null hypothesis, T follows χ2(1) distribution. If n12 + n21 < 25, the test

statistic is Te = n12 and, under the null hypothesis, it has Binomial(0.5, n12 + n21)

distribution.

4.2 Relative performance of classification rules

Classification problems are very common in the field of social and educa-

tional sciences. The most frequently used statistical approaches for prediction of

group membership are LR and LDA. These methods are employed to predict uni-

versity drop out, to differentiate between underperforming and successful students
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and graduates. Modern development of statistical software brought more flexible

non-parametric approaches to the classification problem, such as K-NN discrimi-

nant analysis. Non-parametric forms of discriminant analysis are very attractive for

educational research since they do not require any distributional assumptions.

In this section, we present a brief review of literature on relative performance

classification techniques used in this work. Note that, existent literature focuses

mainly on comparison of LR with LDA and relatively little research has been con-

ducted to compare the classification accuracy of K-NN with LDA and with LR.

Performance of classification algorithms can be affected by wide range of fac-

tors, namely: data structure, underlining distributional assumptions, dimension of

groups and sample size. The classification rule based on linear discriminant functions

is derived on the basis of two important assumptions: multivariate normal distri-

bution of explanatory variables within each group and homogeneity of covariance

matrices. However, simplicity of computation and interpretation of linear discrim-

inant functions lead to application of LDA in the field of social and educational

sciences, where the required assumptions are clearly violated. Hence, the question

is: how ”good” is the performance of LDA under non-optimal conditions, i.e. when

the assumptions do not hold?

A number of studies investigated the behavior of the linear discriminant func-

tions when underlying distributions are non-normal. Evidence of LDA efficiency

with mixed continuous and categorical variables is provided in [29, 65]. Lachen-

bruch [35] summarized results of several studies, concluding that, in general, LDA

performs fairly well on discrete data of various types. LDA is recommended by

Asparoukhov et al [3] in presence of binary explanatory variables because of ”ex-

pected stability” when the total number of explanatory variables is large. Regarding

continuous distributions, Lachenbruch [35] claims that LDA is moderately robust

in the presence of mixture of normal distributions and of heavy-tailed symmetric

distributions. Lachenbruch [35] also claims that highly skewed distributions may

cause considerable decrement in the performance of this parametric classification

method. Seber [62], in review on robustness of LDA, cites studies of Moore, and of

Dillon and Goldstein that claime poor performance of LDA in the presence of high

correlations between predictors. Krzanowski [34] investigated performance of LDA

for mixture of normal and dichotomous variables and also concluded that the ability

of LDA to correctly classify individuals is affected if correlations between discrete

and continuous variables differ significantly for the two groups. For the assump-

tion of homogeneity of covariance matrices, a number of studies states that it has

a deleterious impact on the performance of LDA. Although LR does not make this

assumption, it was shown, by empirical research, that LR classification accuracy

may also be affected if covariance matrices are unequal [20, 38].
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Several studies have compared predictive accuracy of LDA and LR models.

Literature provides evidence that LDA is ”asymptotically more efficient” than LR

than the underlying assumptions are met [38]. Press & Wilson [53] concluded that

LR is preferable to LDA when the vectors of explanatory variables do not have

multivariate normal distributions within groups.

Recent research finds non, or very little, differences in classification accuracy

of the two parametric approaches under normality and equality of covariance ma-

trices. More precisely, Finch Schneider [20] demonstrated, via simulations, that

if the assumptions of LDA are met, LDA and LR models have very comparable

misclassification rates. Hastie et al [24] claim that, in practice, LDA and LR give

very similar results, even when LDA is used ”inappropriately”, i.e. when underlying

assumptions are not met, as is the case with qualitative predictors.

Meshbane & Morris [45] compared the leave-one-out classification performance

of LDA and LR for 29 real data sets. The authors considered rates of correct

classification for each group and for the total sample with data of many different

types. The comparisons were made using McNemar test. For 28 data sets, Meshbane

& Morris [45] claim not to have found statistically significant differences in total hit

rates between LDA and LR.

The results of Monte Carlo simulation study on relative efficiency of LDA and

of LR for a two group classification problem, conducted by Fan & Wang [16], indicate

that LR and LDA have similar performance when covariance matrices are equal and

groups have approximately equal sizes.

Fan & Wang [16], Meshbane & Morris [45] and Finch & Schneider [20] sug-

gested that different group sizes have impact on the performance of both methods.

For the two group case, Finch & Schneider [20] demonstrated that, if the assumption

of equal covariance matrices holds, the misclassification rate was very high for the

smaller group, very low for the larger group in both models. According to Fan &

Wang [16], if two groups have very different proportions, like 10 : 90 or 25 : 75, LR

minimizes the error rate for the smaller group, but LDA, appears to minimize the

error rate for the larger group, independently of covariance matrices. On the other

hand, Meshbane & Morris [45] present a study that concludes ”superior performance

of the LR model in classifying the larger group was offset by superior performance

of the LDA model in classifying the smaller group”, for unbalanced group sizes.

Hence, it is not consensual which of the two parametric methods performs better in

a situation of unbalanced group sizes.

Not much information is available on the comparison of traditional LR e LDA

with non-parametric methods of classification. K-NN discriminant analysis is very

flexible and, according to Asparoukhov et al [3], is very efficient in classification

problems with large or moderate number of explanatory variables (greater than 5)
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and with small or moderate sample size. Hastie et al [24] provide some examples of

classification problems for which K-NN technique outperforms traditional paramet-

ric methods such as LR and LDA. Theoretically, K-NN is expected to perform better

than LDA in the precence of heterogeneous covariance matrices and without multi-

variate normality. However, in [19], one example of superiority of LDA over K-NN,

for the two group classification problem, with non-normal data, unequal covariance

matrices and different groups sizes, is presented.

Based on our findings in the literature reported above, LR is expected to

slightly outperform LDA if group sizes are different, there is mixture of quantitative

and qualitative variables. On the other hand, since there is not much information

available in literature on the issue of relative performance of K-NN and LR, it is

difficult to set expectations. Hence, we we decided to use the three methods and

compare the results obtained with the available data.
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5 Application of logistic regression, linear discrim-

inant analysis e K-NN discriminant analysis to

the data

5.1 Academic performance of medical students:

literature review

In this section we present a brief review of existent literature on the issue

of academic performance of medical students. To conduct a literature search, we

used MEDLINE and ERIC databases combining several search terms, such as ”med-

ical student”, ”predict”, ”performance”, ”success”, ”failure”, ”first year”, ”high ed-

ucation”, ”at-risk student”, ”demographic characteristics”, ”admission”, ”student

selection” and ”personality”. MEDLINE and ERIC are databases of published re-

search articles in medical sciences and educational sciences, respectively. The results

highlighted a series of explanatory factors associated with academic performance in

medical school.

A relation between a pre-university performance and performance in medical

school was studied extensively [36, 42, 67, 69]. Although a variety of measures of

previous academic performance were considered in the studies, according to system-

atic review of predictors of success in medical school [17], prior academic abilities

account for a relatively low percentage of variance (up to 23%) in undergraduate

medical student performance.

Among non-academic factors, the most explored are: personality, age, gender

and information of administrative nature from admission records. Psychological the-

ories have identified five dimensions, the so-called ”Big 5” or Five Factor Model, that

describe essence of personality: Neuroticism, Extroversion, Openness, Agreeableness

and Conscientiousness [8]. Table 5 shows the most important characteristics in

each of the 5 dimensions. More detailed information on personality Five Factor

Model is provided by Chamorro-Premuzic [8], Lievens et al (2002) [39] Lievens et al

(2009) [40]. Some personal traits of ”Big 5”, such as low levels of conscientiousness

[15, 18, 39, 40], high levels of extroversion [15, 39] and of neuroticism [9, 15], have

been shown to predispose students to poor academic outcomes.

There are socio-demographic ”factors” internationally identified as being as-

sociated with failure of undergraduate medical students, such as male gender [10,

42, 67, 69] and non-caucasian ethnicity [42, 67, 69]. Regarding age, some studies

provide empirical evidence that being older at entrance is a risk factor for poor

performance in medical school [23], others conclude that mature students are more

likely to be successful [30] and some find no association between age and academic

achievements [10, 67, 69]. Other characteristics, such as family socio-economic sta-
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Table 5: Characteristics of five personality dimensions

Factors Characteristics

Extroversion Warmth, Assertiveness, Humor, Activity,
Excitement seeking

Conscientiousness Competence, Order, Achievement striving,
Self-discipline, Deliberation

Openness Fantasy, Curiosity, Imagination

Agreeableness Altruism, Trust, Modesty

Neuroticism Anxiety, Hostility, Depression,
Impulsiveness, Vulnerability

tus, parents’ level of education and student employment responsibilities, may also

be helpful in predicting academic outcomes (see [2, 13, 42, 46]).

Among admission factors, the presence of negative comments in the academic

reference [67, 69], low interview scores [36] and the late offer of a place [67, 69] are

also recognized as predictors of poor academic achievements in the UK. Other factors

suggested in the literature are personal preference for the degree and commitment

to the university [46].

Trying to uncover the reasons underlying academic failure, qualitative studies

[11, 60] pointed to mental health problems, stress, personal problems and finan-

cial concerns. A comprehensive descriptive study from USA (36 medical schools

involved) claims that the most prevalent learning difficulties of students are asso-

ciated with ”organizing and integrating large amounts of information” and time

management [60].

This brief review of literature allows us to delineate a range of factors interna-

tionally recognized to be associated with academic performance of medical students,

providing us with guidelines for this type of research in the Portuguese University

of Minho.

5.2 The study

5.2.1 Data collection

Since 2006, the SHS-UM develops the longitudinal research project ”Evaluat-

ing the impact of innovation in Higher Education: implementation and development

of a longitudinal study in a medical school” ((FCT- PTDC/ESC/65116/2006), with

the main goal of investigating the factors that influence the performance of students

and the professional competence of SHS-UM’s graduates.

All SHS-UM’s first year students are invited to participate in the longitudinal

study in an annual briefing session delivered by the Medical Education Unit staff
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during freshman welcome week. The project collects multiple data, always with the

participants’ informed consent.

The constitution of this longitudinal is an ongoing project. It contains infor-

mation, of diverse nature, about 857 students (representing ten cohorts) and overall,

39.769 observations on 326 variables. The data comprises:

• socio-demographic variables, for instance, gender, age at entrance, district of

residence prior to enrollment in medical studies, residence during the studies,

level of parents education, parents occupation, student civil status, level of

education and previous qualifications;

• admission variables, for example, pre-university grade point average, regime

of admission, preference for university, degree preference, commitment to uni-

versity for the subsequent years, factors that determine the choice of degree

and university;

• students’perceptions, for instance, anticipation of difficulties due to enrollment

and perceptions about degree program and teaching methods;

• personality variables neuroticism, extroversion, openness, agreeableness and

conscientiousness;

• academic performance variables, that resulted from several types of assess-

ments targeting different aspects of the student performance in medical school,

namely written test scores (knowledge assessments), practical tests scores

(skills assessments), attitudinal scores (behaviors assessments) and measures

of continuous evaluation of professionalism and clinical competence.

Socio-demographic information and students’ perceptions about the training

program are collected with a home-made survey. Students’ perceptions are defined

as self-reported expected difficulties that the admission to the medical degree might

cause (for instance, financial difficulties, difficulties in interpersonal relationships,

in time and stress management, in development of effective learning methods and

strategies).

Personality is measured with NEO-FFI inventory. NEO-FFI is a short version

of the Portuguese NEO-PI-R questionnaire designed to assess five dimensions of

personality: conscientiousness, neuroticism, extroversion, agreeableness and open-

ness to experience. The NEO-FFI inventory contained 60 items, 12 for each of the

five dimensions. The item response is measured in a 5-points Likert scale, ranging

from 0 (strongly disagree) to 4 (strongly agree). Portuguese version of NEO-FFI is

a reliable instrument that reflects the universality of basic dimensions of personal-

ity, with the Cronbach’s Alphas c 0.69 for openness, 0.8 for neuroticism, 0.74 for

extroversion, 0.71 for agreeableness and 0.81 for conscientiousness.

The data this work were extracted from SHS-UM longitudinal database, and

consist of individual measures of academic performance in first year courses, pre-
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university Grade point average (GPA), as well as non-cognitive and socio-demographic

information. Overall, we consider 24 variables, factors that could be of ”clinical”

importance to explain phenomenon of academic failure among SHS-UM medical

students.

5.2.2 First year of medical degree in SHS-UM

The curriculum of SHS-UM is designed in horizontally integrated multidis-

ciplinary courses. The first year corresponds to 60 ECTS and consists of seven

courses: one is a year-long course, Vertical Domains 1 (VD1), and the remaining

six, Introduction to the Medical Degree (IMD), Molecules and Cells (MC), Func-

tional and Organic Systems 1 (FOS1), Training in a Primary Care Unit (THC),

First Aid training (FA) and an elective, Optional Project 1 (OP1), are sequentially

distributed along the academic year. General description of the first year courses

structure, corresponding ECTS and finishing times (in weeks) are represented in

Figure 5.

Figure 5: First year in SHS-UM

In this study, the first three courses are of particular interest. Students start

the training with the introductory course, IMD, that is organized around the fol-

lowing themes: learning by modules of objectives methodology, basic laboratory

procedures, foundations of biostatistics and the essential molecular mechanisms in

biology. After 4 weeks, they take the MC course, that integrates biochemistry and

foundations of genetics. After 17 weeks, students start the FOS1 course, that focuses

on general organization of the skeletal-muscular system and digestive system.

For the purpose of this study, first year failure was defined in terms of academic

performance in the course with the highest failure rates. Students marks range

between 0 and 20 (20 is the maximum score) and students fail a course when they

scored below 9.5 points. In the years of existence of the medical program at SHS-

UM, FOS1, constantly have the highest percentage of failure. Taking 9.5 as cutoff

point, we defined a dichotomous variable that takes value 1 if the student fails FOS1

and takes value 0, otherwise.
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Our analysis strategy consists of descriptive investigation of available data,

univariate analysis and multivariate analysis, that will be described in subsequent

sections. The underlying goal of the study is to learn how to predict academic failure

very early in medical school. Thus, multivariate analysis methods, such as LR, LDA

and K-NN, were used at two distinct instances in time: at admission and after 17

weeks in medical school. Models adjusted at admission are labeled by ”Model week

0”, or abbreviated as ”Model 0”. Models adjusted for data available after 17 weeks

are labeled by ”Model week 17”, or simply ”Model 17”.

5.2.3 Sample characteristics

The study sample consists of 288 first year students from 3 subsequent cohorts

who consented to take part in the study. The sample represents 77% of all matricu-

lants during the period under consideration. Of the total of participants, 30% were

male. The respondents’ ages ranged from 17 to 22 years, with mean age of 18.46

years and a standard deviation of 0.68 years. Of the 288 students considered in

the current study, 62 failed the FOS1 course at the first attempt, and 226 passed

sucessfully. Table 6 summarizes categorical variables considered in the research.

Table 6: Summary statistics for categorical variables

Variable Total N (%) Failure %

Cohort

1 78(27) 26.9

2 106(37) 16.0

3 104(36) 23.0

Gender

Male 86(30) 24.4

Female* 202(70) 20.3

Regime of admission

General* 255(89) 17.6

Special 33(11) 51.5

Preference for University

1st option* 209(72) 17.2

2nd option 34(12) 44.1

3rd − 6th option 45(16) 24.4

Matriculation1

1Whether a participant was enrolled with any high educational institution.
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Table 6: Summary statistics for categorical variables

Variable Total N (%) Failure %

1st matriculation* 214(74) 20.1

Other 74(26) 25.7

IMD course

Pass* 257(89) 15.2

Fail 31(11) 74.2

Level of education of mother

No degree* 144(50) 19.4

High education degree 144(50) 23.6

Level of education of father

No degree* 175(61) 20.6

High education degree 113(39) 23.0

Father’s career♦

Higher managerial, administrative* 36(12) 33.3

Intellectual professions 92(32) 23.9

Intermediate managerial, administrative 26(9) 19.2

Clerical and junior managerial 20(7) 25.0

Service and sales workers 41(15) 12.2

Skilled manual workers 37(13) 21.6

Unskilled manual workers 22(7) 26.7

Mother’s career♦♦

Higher managerial, administrative* 21(7) 23.8

Intellectual professions 124(43) 25.8

Intermediate managerial, administrative 13 23.1

Clerical and junior managerial 42(15) 14.3

Service and sales workers 22(8) 13.6

Skilled manual workers 26(9) 19.2

Unskilled manual workers 17(6) 29.2

Change of residence at entry: leaving home

Yes 144(50) 27.7

No* 144(50) 15.3

AD:2 effective learning

Yes 93(32) 15.1

2AD: anticipation of difficulties.

54



Table 6: Summary statistics for categorical variables

Variable Total N (%) Failure %

No* 195(68) 24.6

AD: time management

Yes 231(80) 16.7

No* 57(20) 36.8

AD: family relationship

Yes 41(14) 26.8

No* 247(86) 20.6

AD: financial

Yes 47(16) 21.3

No* 241(84) 21.6

AD: physiological (anxiety, loneliness)

Yes 57(20) 17.5

No* 231(80) 22.5

Note: * Default category for logistic regression analysis (coded as 0);

♦ Missing observations for 14 participants;

♦♦ Missing observations for 24 participants;

Table 6 indicates that rate of failure among male students is higher than among

female, 24.4% vs. 20.3%. Different failure rates are observed across different ad-

mission groups. Students admitted through the general national process are more

successful in their first year in medical school: in this group the failure rate is 17.6%;

in contrast, those admitted through the special system experienced much more dif-

ficulties in their first year of training program (51.5% of these students failed FOS1

course).

Additionally, failure rates vary with students’ preferences for the degree. Dur-

ing the application to the university, candidates have the possibility to run, simul-

taneously, for several degrees, indicating the order of preference on a scale from 1

to 6. For this study we make a clear distinction between three groups of students:

the reference group is formed by those who chose the SHS-UM as their first option,

the other group consists of those who indicated the school as second option and the

third group puts together all other students. For the reference group, the rate of

failure is 17.2%. Table 6 shows that the proportion of underperforming students is

different for the 2nd and the 3rd group: the proportion of underperformers is about

44% and 24%, respectively.

Table 6 illustrates that the failure rate is remarkably higher among those who
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had history of failure, i.e. those who failed the IMD course: over 74% of students

that failed IMD course failed the FOS1 course too.

The summary statistics (mean and standard deviation) for collected quantita-

tive covariates are displayed in Table 7.

Table 7: Summary statistics for qualitative variables

Failure Success

Mean SD Mean SD

Conscientiousness 29.74 6.49 33.99 6.10

Neuroticism 25.38 7.62 23.79 8.28

Extroversion 31.27 5.42 31.48 5.55

Openness 30.11 5.58 30.24 5.48

Agreeableness 33.45 5.31 32.77 5.80

MC score 8.09 3.79 12.47 1.76

GPA 176.86 12.78 184.15 6.19

Age 18.43 0.79 18.61 0.69

We notice that underperforming students have average lower GPA grades.

Turning to personality traits, underperforming students scored on average 25.38

points of Neuroticism while successful students scored on average 23.79 points. In

contrast, scores for Conscientiousness were higher for successful students, with av-

erage 33.99, while the average for the underperformers group was 29.74. We notice

also that failing students were slightly older than successful ones.

5.3 Univariate analysis

To investigate marginal effects of the 24 potential predictors extracted from

the longitudinal database and to determine which variables should be involved in the

multivariate modeling, we carried out univariate analysis. The analysis consisted of

Pearson Chi-square and Mann-Whitney-Wilcoxon tests. To avoid the risk of losing

any relevant information at this stage, we did not use the traditional significance

levels, but decided to use a higher significance level of < 0.4. The choice of Mann-

Whitney-Wilcoxon test, instead of the parametric t-test, was motivated by the fact

that distributional assumptions were not assured for variables in consideration. The

results of Pearson Chi-square and Mann-Whitney-Wilcoxon tests are summarized

in Tables 8 and 9.

According to the univariate analysis, the factors with statistically significant

(p−value < 0.4 impact on students performance in the first year course with highest

failure rates (FOS1) comprised: Conscientiousness, GPA, Neuroticism, grades on

MC course, change of residence at entry, preference for degree, matriculation, regime

of admission, level of education of mother, pass/fail classification on IMD course,
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Table 8: Chi-square test results

Variable X2(df) p− value
Gender 0.607 (1) 0.436

Change of residence at entry 6.659(1) 0.010

Preference for University 12.618(2) 0.002

Matriculation 1.012(1) 0.314

Regime of admission 19.839 0.000

Father’s career 5.541(6) 0.477

Mother’s career 4.304(6) 0.636

Level of education of mother 0.740(1) 0.390

Level of education of father 0.242(1) 0.623

IMD course 57.037(1) 0.000

AD: time management 9.866(1) 0.002

AD: family relationship 0.795(1) 0.372

AD: effective learning 3.408 (1) 0.065

AD: financial 0.002(1) 0.963

AD: physiological 1.054(1) 0.305

Cohort 3.38 (2) 0.184

Table 9: Mann-Witney-Wilcoxon test results

Variable Z p− value
Conscientiousness 4.59 < 0.001

GPA 5.15 < 0.001

Agreeableness 0.666 0.505

Extroversion -0.179 0.858

Openness -0.035 0.972

Neuroticism -1.217 0.224

Age -1.622 0.105

MC score 9.391 < 0.001
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anticipation of difficulties in time management, family relationship, effective learning

and psychological, and cohort. Level of education of father, parental career, expected

financial difficulties and health problems, Agreeableness, Extroversion and Openness

did not exhibit univariate statistical significance (p− value > 0.4), thus, mentioned

factors were excluded from further multivariate modeling. We opt to test the effect

of variable Gender in a multivariate analysis because of consistent evidence of its

”clinical” importance provided by international research in medical education. Thus,

the total number of variables candidates was 17.

5.4 Results of logistic regression

This section is dedicated to the presentation of results obtained in the LR

modeling.

Several univariate and multiple models were fitted. Two distinct methods

(stepwise selection and best subset selection) were employed to select the best model

for both instances in time (admission and after 17 weeks).

Application of stepwise selection method, with likelihood ratio test as selec-

tion criterion and (p − value < 0.05) as stopping criterion, to the subset of data

formed exclusively by pre-admission factors yielded a model containing 3 explana-

tory variables: Conscientiousness, GPA and AD: time management. The next step

of model building procedure was to test statistical significance of Age and Gender,

was examined, since these factors are internationally recognized as important for

prediction of medical student performance. Rerunning the regression with Gender

included, likelihood ratio criteria found no evidence that the model can be improved

using this independent variable (G(1) = 0.29; p − value = 0.59). Including Age as

predictor we obtained G(1) = 3.8 with corresponding p− value = 0.054. Accepting

statistical significance of predictor at the level of 10%, we included variable Age in

the model. The resultant main effect model is described in Table 10

Table 10: Logistic regression: Model week 0

β̂ SE ZW p− value 95% CI

Conscientiousness -0.115 0.03 -4.455 0.000 -0.166, -0.065

GPA -0.089 0.02 -4.731 0.000 -0.126, -0.052

AD: time management -1.151 0.37 -3.072 0.002 -1.885, -0.417

Age 0.415 0.215 1.93 0.053 -0.006, 0.836

Constant 11.757 5.13 2.292 0.022 1.702, 21.812

Employing glmulti function [6], we performed exhaustive screening of all sub-

sets of data formed by up to 6 explanatory variables. Based on AIC, we obtained

the 10 best subsets of covariates. The subset that provided model with the lowest
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value of AIC (AIC= 245.5) contains: Conscientiousness, GPA, AD: time manage-

ment, Age, Preference for university and AD:effective learning. However, the model

described by Table m0 was also in top 10 (with AIC = 247, 2). Since Taking

difference in values of information criterion for two models is relatively small and

these two models are nested, we performed the likelihood ratio test for comparison.

For the model described in Table 10, the value of the log-likelihood is −118.607.

The log-likelihood for the ”best subset” model is −116.759. Thus, the value of the

likelihood ratio test statistic is G(3) = −2[(−118.606) − (−116.759))] = 3.694 and

p − value = 0.29, which is not significant at the 0.05 level. Thus, we preferred the

parsimonious model resulting from the combination of variable selection based on

univariate analysis and stepwise procedure (given by Table 10).

For the second instance in time (after 17 weeks), stepwise algorithm, based on

the likelihood ratio test with stopping criterion p−value = 0.05, and the best subset

selection, based on AIC with constraints for model complexity (maximum number

of parameters less or equal to 6), yield the same model equation. The inclusion

of the additional predictors, Age and Gender, provided no improvement (likelihood

ratio test statistic was G(2) = 0.67 with p−value = 0.715). Hence, we preferred the

parsimonious model resulting from the best subset selection and stepwise procedure.

Based on the literature of educational research and in our univariate analysis,

we believe that there is a possibility of interaction between two categorical predic-

tors in our model: Change of residence and AD: family relationship. To test such

possibility, we included in the model the interaction term obtained by multiplying

AD: family relationship by Change of residence. Testing the hypothesis that the

regression coefficient for interaction is equal to zero, we obtained ZW = −1.07 and

p − value = 0.283. When interaction term was added, the associated change in

the model deviance was G = (163.96 − 162.94) = 1.02, leading to a non-significant

χ2(1) value (p − value = 0.313). Hence, we concluded that there is no evidence

of interaction and we return to main effect model obtained previously. Estimates

of parameters, standard errors, Wald test statistic ZW , corresponding p-values and

95% confidence intervals for β̂’s of the final model are shown in Table 11.

The next step of the modeling process was to check linearity of the covariates

Conscientiousness and GPA (for Model 0) and MC score and Conscientiousness (for

Model 17).

To investigate linearity in logit we used two graphical methods (a univariate

smoothed scatter plot on the logit scale and plot of regression coefficients for dummy

variables) and one analytical test (method of fractional polynomials).

The lowess smoothed logit plots and plots resultant from dummy variables

analysis for the model described in Table 10 are shown in Figures 13 and 15 in Ap-

pendix A. The lowess smoothed logit plots and results of dummy variables analysis
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Table 11: Logistic regression: Model week 17

β̂ SE ZW p− value 95% CI

Conscientiousness -0.109 0.03 -3.372 0.001 -0.172, -0.046

MC score -0.638 0.11 -5.998 0.000 -0.847, -0.430

IMD course 2.007 0.70 2.858 0.004 0.631, 3.383

AD: family relationship -1.791 0.73 -2.467 0.014 -3.214, -0.368

Change of residence 0.908 0.44 2.087 0.037 0.055, 1.761

AD: time management -1.180 0.48 -2.484 0.013 -2.112, -0.249

Constant 9.589 1.78 5.385 0.000 6.099, 13.079

for model given by Table 11 are shown in Figures 14 and 16 in Appendix A. In

the lowess smoothed logit plots for all covariates in both models, we observed an

S-shaped curve.

Dummy variables were created according the distributional quartiles of Consci-

entiousness, GPA and MC score. The first quartile was considered to be a reference

group with null regression coefficient. For variables Conscientiousness and GPA, we

observed a monotone decrease of LR coefficients that support treating mentioned

variables as linear in logit. For variable MC score it was not possible to apply the

technique due to numerical problems in the estimation of regression coefficients of

dummy variables.

Finally, we present a detailed description of fractional polynomial method for

the two models (Model 0 and Model 17). Recalling that the set of powers considered

in this research is {−3,−2,−1,−0.5, 0, 0.5, 1, 2, 3} where 0 corresponds a logarithmic

transformation of covariate, for each of covariates, we built 8 fractional polynomial

models of the 1st-order, 45 fractional polynomial models of the 2nd-order and the

linear model.

• Model 0

Regarding variable GPA we reached the following conclusion: none of the

fractional polynomials transformations of covariate was significantly better than the

linear model. In particular, the best 1st-order nonlinear model was the one with

cubic transformation of covariate (the corresponding test statistic (2.17) was 0.799

and p − value = 0.371). For test of the best 1st-order nonlinear model versus the

best 2nd-order nonlinear model, we obtained for test statistic (2.18) value 0.985 and

p− value = 0.419. For the test of linear model versus the best 2nd-order model, the

test statistic (2.19) was 1.784 with p− value = 0.409.

Application of fractional polynomials method for Conscientiousness yielded

the same conclusion. The best 1st-order fractional polynomials model contained

Conscientiousness2, the best 2nd-order model included Conscientiousness and

Conscientiousness−3, however in three tests we have not rejected the null hypothesis
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(p−values for three likelihood ratio tests were 0.840, 0.403 and 0.593, respectively).

• Model 17

For variable Conscientiousness the best 1st-order fractional polynomials model

contained Conscientiousness3, that achieved a deviance 160.743. The best 2nd-

order model included Conscientiousness3 and Conscientiousness−3, correspondent

deviance was 158.84. The likelihood ratio test statistic (2.18) was 1.9 with p −
value = 0.387. Thus, we conclude that between the two models, the 1st-order one

should be chosen. Consulting the p-value of the partial likelihood ratio test, we

found that the best 1st-order non-linear model was significantly different from the

linear at the level of 0.1. However the improvement that the model with cubic

transformation provided over the linear model was insufficient to proceed with non-

linear transformation.

For variable MC score the best of fitted 2nd-order fractional polynomials mod-

els, that contained (MC score)3 and (MC score)−3, reached deviance equal to

159.445. For the best 1st-order model (that included (MC score)3)) deviance was

equal to 160.715. Consulting the corresponding p-values of likelihood ratio tests, we

conclude that the covariate MC score should be treated as linear in logit.

Summarizing, we conclude that the fractional polynomials approach and the

plots support the decision to treat variables as linear in the logit.

To assess model adequacy, we performed a combination of four goodness-of-

fit test, as recommended in literature [26]. In our case, the number of covariate

patterns, J , is approximately equal to the sample size n = 288, since continuous

predictors were used. More precisely, for the set of explanatory variables in Model

0 J = 280, and for the set of explanatory variables in Model 17 J = 285. The

goodness-of-fit test statistics and corresponding p−values are reported in Table 12.

Table 12: Assessment of models goodness-of-fit

Model 0 Model 17

Test Statistic (df) p-value Statistic (df) p-value

Pearson X2 279.13(275) 0.4527 201.16 (278) 0.999

Hosmer-Lemeshow C 9.85(8) 0.276 8.38(8) 0.397

Osius-Rojek Z 0.044 0.964 -0.191 0.848

Strukel test 0.05(2) 0.9769 3.48(2) 0.175

Literature warns that Pearson goodness-of-fit statistic may give misleading

results if the number of distinct patterns is large. However, given that the results of

four tests agree, we have no statistically significant evidence against a satisfactory

model fit. Hence, we expect to have few covariate patterns with poor fit.
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First we present summary statistics for the so-called basic building blocks

measures of LR diagnostic and the diagnostic plots discussed in Section 2.6 (plot

of leverage versus Pearson residual, plot of ∆D versus estimated probabilities and

plot of ∆β versus estimated probabilities), for models in Table 10 and in Table

11. Despite the fact that are no fixed cut points that may be used to identify

Table 13: Model 0: summary statistics for basic building block diagnostic measures

Min Max Mean SD

Deviance residuals -1.88 2.45 -0.14 0.9

Pearson residuals -2.20 4.38 -0.001 0.99

Leverage 0.0006 0.1632 0.024 0.029

an exceptionally large value of residuals in LR, the values of percentiles of N(0, 1)

distribution may provide some guidance to assess whether residuals are large. For

Model 0, Pearson residuals appear with magnitude less than −1.96 or greater than

1.96, deviance residuals have relatively lower magnitude, but some exceed 1.96,

which definitely deserves closer inspection.

Table 14: Model 17: summary statistics for basic building block diagnostic measures

Min Max Mean SD

Deviance residuals -2.42 2.48 -0.01 0.74

Pearson residuals -4.2 4.55 -0.02 0.84

Leverage 0.0043 0.1335 0.0183 0.019

In Model 17 we note that both Pearson and deviance residuals for some co-

variate patterns are outside interval [−1.96, 1, 96] and should be examined in detail.

From the graph displayed in Figure 6 we identified subjects within covariate

patterns with large residuals (Model 0: 62, 253, 78; Model 17: 76, 6, 62) and with

relatively high values of leverage (Model 0:160 2, 260; Model 17: 287).

Figure 7 shows the plots of ∆D’s versus estimated probabilities. According to

Hosmer & Lemeshow, the value of quantile 0.95 of the χ2(1) distribution, that is 3.84,

may provide some guidance to assess whether a value of ∆D for a particular covariate

pattern is large. Remembering that ∆D is diagnostic statistics that measures of the

effect of covariate pattern deletion on the model fit, we note that, for model in

Table 10, elimination of subjects 78, 149, 76 49 and 219 can result in improvement

of model fit, since the corresponding values of ∆D exceed 3.84. Regarding Model

17 subjects 76, 6, 150 and 62 are problematic, since corresponding ∆D points lie

in the top corners of the graph. Except mentioned subjects, the plot illustrate that

model fits quite well.
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Figure 6: Plot of Leverage vs Pearson residual
Model 0

Model 17
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Figure 7: Plot of ∆D vs estimated logistic probability
Model 0

Model 17
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Figure 8: Plot of ∆β vs estimated logistic probability
Model 0

Model 17
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Figure 8 shows the plots of ∆β versus estimated probability. We observed

that, for Model 0, the points corresponding to subjects 52 and 29 are located a bit

away from the others. The largest value, ∆β = 0.4, is associated with observation

52. The remaining values belong to interval [0, 0.3]. For Model 17 we noticed that all

∆β´s were below 0.75. Three points, corresponding to observations 62, 55 and 70,

are positioned far from the others, and so these subjects have the greatest influence

on values of estimated parameters of Model 17. According to Hosmer & Lemeshow

[26], to have a notable effect on parameters estimates the covariate patterns must

have ∆β larger than 1.

Table 15 summarizes diagnostic measures for 11 ”outlying” covariate patterns

identified in Model 0. Note, that each problematic covariate pattern detected in

Table 15: LR diagnostic measures for problematic subjects under Model 0

Sub j π̂j r̂j d̂j ĥj ∆X2
j ∆Dj ∆β̂j

78 278 0.0494 4.399 2.451 0.0078 19.35 6.06 0.153

149 155 0.0585 4.022 2.382 0.0053 16.18 5.71 0.087

76 203 0.0658 3.776 2.332 0.0058 14.26 5.47 0.083

219 225 0.0664 3.759 2.328 0.0067 14.13 5.46 0.097

206 150 0.0822 3.350 2.235 0.0056 11.22 5.03 0.064

49 273 0.0921 3.166 2.184 0.0168 10.02 4.85 0.172

13 201 0.0981 3.043 2.155 0.0067 9.25 4.68 0.063

241 140 0.1065 2.906 2.116 0.0062 8.44 4.51 0.052

276 148 0.1292 2.605 2.023 0.0064 6.78 4.12 0.044

267 86 0.1314 2.579 2.015 0.0066 6.65 4.09 0.045

282 212 0.1429 2.488 1.972 0.0311 6.18 4.02 0.19

Sub indicates the position of student in the sample

j indicates the position in the covariate patterns list

Model 0 contains observations referred to a single subject, that belongs to the fail-

ing group (Y = 1). Table 15 indicates that all identified subjects, except one, had

relatively low value of leverage, ĥj (below the average value for the sample) and

also relatively low value of ∆β̂j statistic. Hence, we can conclude that the observa-

tions under consideration had no strong influence on parameters estimate and their

influence is mainly due to lack of fit.

Deleting from the sample the 11 subjects with the largest residuals, resulted in

improvement of the fit of the model. However, deletion reduces the size of the group

of failing students by 17%. Additionally, identified ”outlying” covariate patterns

did not have strong influence on estimated parameters. Taking into account the

arguments stated above, we decided to retain all subjects in the analysis.

For the Model 17, based on regression diagnostic measures, we identified 5

problematic covariate patterns (each one containing observation of a single subject),
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5 of them with Y = 1. Table 16 displays summary of diagnostic statistics for

problematic observations.

Table 16: LR diagnostic measures for problematic subjects under Model 17

Sub j π̂j r̂j d̂j ĥj ∆χ2
j ∆Dj ∆β̂j

6 225 0.049 4.399 2.449 0.0138 19.34 6.083 0.271

21 144 0.098 3.055 2.157 0.0107 9.33 4.702 0.101

76 202 0.046 4.569 2.481 0.0083 20.87 6.207 0.176

149 143 0.129 2.615 2.024 0.0125 6.84 4.148 0.086

150 69 0.065 3.805 2.337 0.0096 14.47 5.513 0.139

62 278 0.947 -4.291 -2.420 0.0391 18.41 6.094 0.748

We note that 5 of these subjects had relatively low leverage and low value

of ∆βj, indicating that the influence is ma due to lack of fit. Subject 62 has high

negative values of residuals, relatively high leverage value and the highest value of

∆βj.

Given that few subjects had large values of diagnostic statistics and that all

these observations except one were associated with the outcome ”failure” we pro-

ceeded in both models with the analysis without deleting any subjects from the

sample.

In order to check LR errors for serial correlations, graphical and analytical

methods were employed. Figure 9 displays the sample autocorrelation for the stan-

Figure 9: Autocorrelation plots
Model 0 Model 17

dardized residuals of the two models, until lag 40. The red horizontal lines in

Figure 9 (plotted at −1.96/
√

288 = −0.115 and 1.96/
√

288 = 0.115) provide critical

values for the test of whether or not the autocorrelation coefficients are significantly

different from zero. Given that all values of the sample autocorrelation are within

the horizontal red lines it is reasonable to infer that error terms are uncorrelated.
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For Model 0, when performing the tests for random order described in Section

2.4.2, we obtained Z = 1.18 and p− value = 0.24. Since p− value is not significant

at the 5% level, we do not reject the null hypothesis of independence of errors. For

Model 17, the same tests provided Z = 0.96 and p− value = 0.34. Hence, based on

the analysis of the autocorrelation plots and of the runs tests, we conclude that in

both models errors should be treated as random sequences of observations.

Turning to prediction accuracy, we computed, for both models, 3 measures

based on classification tables as described in Section 2.7. In this study, Sensitivity

is the ability of model to correctly predict failure and Specificity is the ability to

correctly predict success.

For Model 0 the resulting classification is shown in Table 17. The measures of

Table 17: Classification table for LR: Model 0

Observed

Y=1 Y=0

Classified Y=1 37 43

Y=0 25 183

Column total 62 226

prediction accuracy obtained were:

Sensitivity =
37

37 + 25
= 0.597;

Specificity =
183

29 + 183
= 0.809;

Count R2 =
37 + 183

288
= 0.7638;

meaning that 59.7% of failing students were correctly classified by the model and

the percentage of correct classification for the group of sucessful students, 80.9%,

was remarcably high.

For Model 17 the resulting classification is shown in Table 18. The overall rate

Table 18: Classification table for LR: Model 17

Observed

Y=1 Y=0

Classified Y=1 46 21

Y=0 16 197

of correct classification (Count R2) is 100[(46 + 197)/288]% = 84.4%, Sensitivity is

100[46/(46 + 16)]% = 74.19% and Specificity is 100[197/(197 + 21)]% = 87.61%.

The Figure 10 presents the ROC curves for the two models. Model 0 had AUC
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Figure 10: Comparison of ROC curves for two LR models

of 0.7820, with 95% CI equal to ]0.7156, 0.8483[, and Model 17 had greater AUC,

of 0.92, with 95% CI equal to ]0.8807, 0.9541[.

According to the guidelines of assessment of model’s prediction accuracy via

area under ROC curve, proposed by Kleinbaum & Klein [32], Model 0 provides ”fair

discrimination”, while Model 17 provides ”excellent discrimination”. We carried out

the test for the hypothesis that the difference in area under the ROC curve for two

non-nested models is equal to zero, and obtained for test statistic (2.27),

Z = −4.26, p− value < 0.001.

Since the p-value is extremely significant, we conclude that two models have different

predictive ability.

Do decide if predictions provided by fitted models are better than the ones

obtained by chance, we turn to the ”by chance classification”. To determine the

chance rate, we applied the proportional chance criterion, because in this work we

are mainly interested in maximizing rate of correct classifications for the smaller

group of failing students. For our sample, the estimated prior probabilities of group

membership are 0.215 for the group of failing students and 0.785 for the group of

successful students. According to the criteria described previously, we get:

• the chance frequency of correct predictions for group of failing students is

efailure = 0.215 · 62 = 13.33;

• the chance frequency of correct predictions for group of successful students is

esuccess = 0.785 · 226 = 177.41;

• total-group chance frequency of correct predictions is

e = 13.33 + 177.41 = 190.74;

• overall expected rate of correct predictions is
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He =
1

288
(0.215 · 62 + 0.785 · 226)) =

190.74

288
= 0.662

Hence, 66.2% of students from our sample could be correctly classified by chance.

From Table 17 we compute, for Model 0, the total observed frequency of hits

o = 37 + 183 = 220

and the value of overall statistic Z (4.5)

Z = (220− 190.74)/
√

190.74 · (288− 190.74)/288 = 3.65.

The lower bound for a 99% confidence interval for the true frequency of total-group

correct classifications is 220 − 2.326 · 8.02 = 201.35. For individual groups we get

the following results:

• for failing students,

Zf =
37− 13.33√

13.33 · (62− 13.33)/62
= 7.31,

with the lower bound for a 99% confidence interval for the true frequency of

correct classification equals to 37− 2.326 · 3.23 = 29.5.

• for successful students,

Zs =
183− 177.41√

177.41 · (226− 177.41)/226
= 0.905,

with the lower bound for the 99% confidence interval for the true frequency of

correct classifications equals to 183− 2.326 · 6.17 = 168.6

Results indicate that the rate of correct classifications for the group of failing

students and the total rate of correct classifications are slightly better than expected

by chance rate.

For Model 17, from Table 18, we have o = 46+197 = 243 and the test statistic

(4.5)

Z = (243− 190.74)/
√

(190.74 · (288− 190.74)/288) = 6.51, p− value < 0.01,

which clearly indicates a better than chance result. The lower bound for the 99%

confidence interval for the true frequency of total-group correct classifications is

243− 2.326 · 8.02 = 224.35. For the separate groups the results are the following In

Group njj nj ej ZGi
p-value

Failure 46 62 13.34 10.1 < 0.001

Success 197 226 177.41 3.17 < 0.001
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this case, rate of correct classification for the group of failing students, as well as the

rate of correct classification for the group of successful students, is better than what

may be expected by chance. In other words, information given by the five predictors

enable us to classify students into failing and successful groups statistically better

than by chance.

Finally, we present interpretation of the LR results of Model 17, which has

higher prediction accuracy.

Table 19: Odds ratios for LR: Model week 17

β OR

Conscientiousness -0.109 0.90

MC score -0.638 0.52

IMD course 2.007 7.44

AD: family relationship -1.791 0.17

Change of residence 0.908 2.48

AD: time management -1.180 0.31

According to Table 19 for 3 additional points (correspond to approximate value

of standard deviation) in the MC score estimated odds of failure are expected to

change by factor of 0.25, if all other variables in the model are kept constant. On

the other hand, the odds of failure are 7.44 times larger for students that failed

IMD course. Living away from home (change of residence at entry) increases the

odds of failure by a factor of 2.48. For students who anticipate difficulties in family

relationship due to the enrollment in the medical degree, the odds of failure are

0.17 times smaller. In the same way, for students who anticipate difficulties in

time management the odds of failure are 0.31 times smaller. A standard deviation

increase in Conscientiousness (6.42 points) is expected to change the odds of failure

by factor 0.55.

5.5 Results of Linear discriminant analysis

As mentioned before, our data set contain mixture of quantitative e qualitative

variables. Therefore, we do not expected to meet the assumption of multivariate

normality required for the use of LDA. Evaluating the distribution of continuous

variables across groups, we found that the skewness coefficient ranged from −1.83

to 0.09, the kurtosis coefficient ranged from 2.4 to 5.48 and variables GPA and MC

score, exhibited considerable departure from normality in both groups.

To test the assumption of homogeneity of covariance matrices we used the

M-Box test. We should recall that this test is quite sensitive to multivariate non-

normality. Hence, for our sample, there is very strong possibility to reject the
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null hypothesis. Nevertheless, the M-Box test was routinely used for testing the

homogeneity of covariance matrices across groups. The logarithms of determinants

of covariance matrices were also determined. For the model that explored pre-

enrollment factors exclusively (Model 0), M-Box test statistic X2(6) = 73.03 yield

p−value < 0.001. However the log-determinants of covariance matrices were similar:

5.23 and 7.35 for the large group and small group, respectively. For the model

obtained with data available at week 17 (Model 17), M-Box test statistic X2(15) =

183.72 and corresponding p-value indicated that there is strong evidence in the

sample to reject the null hypothesis of equality of covariance matrices across groups.

The values of log-determinants of covariance matrices were clearly not in the same:

−2.89 for the large group and 1.23 for the small group.

Several empirical studies [29, 35, 65] have reported robustness of LDA to viola-

tion of assumptions 6 and 7 mentioned previously in Section 3.1.1. Hence, although

the required assumption are not satisfied, we proceed with application of LDA.

To formulate a classification rule, equal prior probabilities of group member-

ship were used. A choice of equal prior probabilities was based on the ideas of

Huberty [28], that with groups of unequal sizes use of unequal priors increases the

hit rates for the larger group and decreases the hit rates for the smaller group. Ferrer

& Wang [19] give additional support to Huberty [28] under conditions very similar

to ours (namely with a real data set of size n = 244 characterized by departures

from multivariate normality, unbalanced group size and heterogeneity of covariance

matrices).

Like in LR, the stepwise method was employed to select the best set of discrim-

inating variables to appear in the discriminant function. A stepwise discriminant

analysis was performed based on following criteria:

• Wilks Lambda statistic used as selection criterion, i.e in each step a variable

was added or removed from discriminant function according to the value of

ΛW ;

• a probability levels 0.05 and 0.10 were used for entering and removing of

variables, respectively.

For the subset of data formed exclusively by pre-enrollment factors (Model 0),

the first step of stepwise procedure was to include variable GPA in the discrimi-

nant function, since it provided the maximum separation of two groups according

to the selection criterion ΛW = 0.878, F (1, 286) = 39.77, p − value < 0.001. At

step 2, variable Conscientiousness entered because it minimized the overall Wilk’s

lambda: ΛW = 0.817, F (1, 285) = 31.82, p − value < 0.001. After step 2 non

of the variables was removed from the discriminant function. Then, variable AD:

time management was eligible for inclusion in the discriminant function with overall

ΛW = 0.785, F (1, 284) = 25.94, p − value < 0.001. Again, none of variables was
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deleted form the model and, of the variables that were not in the model so far, none

was a candidate for inclusion. Thus, the stepwise procedure terminated and the re-

sultant discriminant function included 3 variables, namely: GPA, Conscientiousness

and AD:time management. Canonical correlation and the Wilks lambda statistic

ΛW for obtained discriminant function are reported in Table 20. ΛW is significant

Table 20: Linear discriminant analysis: Model week 0

Canonical correlation Eigenvalue ΛW X2 df p-value

0.464 0.274 0.785 68.89 3 0.000

at 0.001 level. The squared canonical correlation, 0.215, indicates that about 22%

of the variation between groups of failing and successful students is accounted for

by these three discriminating variables.

The standardized and unstandardized discriminant function coefficients, as

well as structure coefficients, are given in Table 21. The absolute value of the stan-

dardized coefficient us provides the index of the importance of predictors for the

group separation. The greater in absolute value the standardized coefficient is, the

greater is the relative importance of corresponding variable for the group separa-

tion. The sign of standardized coefficient indicates the direction of the relation

and whether the contribution of variable is positive or negative. The structure co-

efficients measure the importance of contribution of variables to the discriminant

function. Thus, using the standardized coefficients we infer that the separation

Table 21: Model week 0: Standardized, Unstandardized and Structure coefficients
of linear discriminant function

Variable us u l

Conscientiousness 0.597 0.096 0.541

GPA 0.732 0.091 0.712

AD:time management 0.432 1.100 0.360

Constant - -20.637

us=Standardized coefficient; u=Unstandardized coefficient; l=Structure coefficient

among two groups may be attributed mainly to variable pre-university GPA, that

measures cognitive abilities. Conscientiousness score was the second strongest pre-

dictor while AD: time management contributed less for allocation of subjects to the

failing or to the successful group. The analysis of structure coefficients leads to the

same conclusion: the discriminant function is most closely related to variable GPA.

The unstandardized coefficients u are used to calculate individual score on the

discriminant function and to describe each one of the groups in terms of its pro-

file. Let consider one participant who scored 28 points for personality dimension of
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Conscientiousness, had GPA of 160.5 and did not anticipate difficulties due to enroll-

ment, that is AD: time management= 0, the discriminant score for this particular

individual is

−20.673 + 0.096 · 28 + 0.091 · 160.5 + 1.1 · 0 = −3.38. (5.1)

Using the vectors of group means of the discriminating variables ((33.99, 184.15, 0.84)

for the successful group and (29.74, 176.86, 0.66) for the failing group), we determine

the location of the group centroids: for the group of successful students (the larger

group) we have

ys = −20.673 + 0.096 · 33.99 + 0.091 · 184.15 + 1.1 · 0.84 = 0.273

and for the group of failing students we have

yf = −20.673 + 0.096 · 29.74 + 0.091 · 176.86 + 1.1 · 0.66 = −0.996.

In Figure 11 we can see the centroids for the two groups. We observe that

the individual score (5.1) is closer to the centroid of the smaller group, and so the

subject is allocated by the LDA model to the smaller group. The confusion matrix

Figure 11: Plot of group centroids: Model week 0

of linear discriminant model is given in Table 22. The classification results indicate,

that 23 of the failing students have been misclassified as belonging to the group of

successful students and 42 of the successful students have been wrongly classified

into the group of failing students. Correct classification rates in the failing group

and successful group were 69.2% and 81.4%, respectively, and overall hit rate was
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Table 22: LDA classification table: Model 0

Observed

Y=1 Y=0

Classified Y=1 39 42

Y=0 23 184

of 77.4% The value of the overall statistic Z given by 4.5 is

Z = (223− 190.74)/
√

(190.74 · (288− 190.74)/288) = 4.02,

with associated p − value < 0.01, which clearly indicates a better than by chance.

The lower bound for the 99% confidence interval for the true frequency of total-

group classifications is 223 − 2.326 · 8.02 = 204.35. For individual groups we get

Group njj nj ej ZGi
p-value

Failure 39 62 13.34 7.93 < 0.001

Success 184 226 177.41 0.905 0.183

We may also state that the overall hit rate is approximately 33% better than

what may be expected by chance. The hit rate for larger group is no better than

what may be expected by chance, but, in contrast, the hit rate for the smaller group

is about 53% better than what may be expected by chance. Hence, if we use the

derived linear classification rule prediction of failure is about 53% better than by

chance prediction.

Application of stepwise LDA model after 17 weeks, yields the following: MC

score, IMD course pass/fail score, Conscientiousness, AD: family relationship and

AD: time management were included in the final model. The summary of stepwise

discriminant analysis is shown in Table 23. On the first step, variable MC score was

included in the discriminant function, since it provided the maximum separation of

two groups according to the selection criterion. Table 24 illustrates the decrease in

ΛW statistic in the remaining steps of the stepwise procedure. The resultant linear

discriminant function reached statistical significance (ΛW = 0.562, p − value <

0.001). The squared canonical correlation (see Table 5.5) was slightly higher than

previously. The squared canonical correlation indicates that almost 44% of the

variation between the two groups of students is accounted for by these discriminating

variables.

Standardized, unstandardized and structure coefficients of linear discriminant

function are displayed in Table 26. We observed that, in general, standardized and

structure coefficients are similar in magnitude. The considerable difference was de-
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Table 23: LDA: summary of stepwise variable selection for Model 17

Step Variables Tolerance p-value of F to Remove ΛW

1 MC score 1.000 0.000

2 MC score 0.896 0.000 0.802

IMD course 0.896 0.001 0.628

3 MC score 0.896 0.000 0.761

IMD course 0.895 0.001 0.603

Conscientiousness 0.997 0.002 0.602

4 MC score 0.897 0.000 0.736

IMD course 0.894 0.001 0.592

Conscientiousness 0.987 0.001 0.593

AD:time management 0.987 0.025 0.581

5 MC score 0.882 0.000 0.731

IMD course 0.859 0.000 0.588

Conscientiousness 0.980 0.001 0.587

AD:time management 0.986 0.028 0.572

AD: family relationship 0.921 0.039 0.570

Table 24: LDA: summary of ΛW in stepwise procedure

Step ΛW df1 df2 df3 F df1 df2 p-value

1 0.628 1 1 286 169.693 1 286 0.000

2 0.602 2 1 286 68.366 3 284 0.000

3 0.581 3 1 286 68.366 3 284 0.000

4 0.570 4 1 286 53.269 4 283 0.000

5 0.562 5 1 286 43.978 5 282 0.000

Table 25: Linear discriminant analysis: Model week 17

Canonical correlation Eigenvalue ΛW X2 df p-value

0.662 0.78 0.562 163.43 5 0.000
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tected for covariate AD: family relationship. Analysis of standardized discriminant

function coefficients, reported in Table 26, leads to the following conclusion: mea-

sures of previous academic performance, namely MC score and pass/fail classification

in the IMD course, contribute the most for the resulting group differences. On the

basis of structured coefficients, we may label the discriminant function as ”measure

of cognitive abilities”, since these two variables share with discriminant function

more variation than other predictors. Figure 12 displays the plot of centroids for

Table 26: Standardized, Unstandardized and Structure coefficients of linear discrim-
inant function: Model 17

Variable us u l

Conscientiousness 0.313 0.051 0.321

MC score 0.774 0.329 0.872

AD:time management 0.198 0.504 0.213

AD: family relationship 0.193 0.552 -0.06

IMD course -0.345 -1.239 -0.563

Constant - -5.821

us=Standardized coefficient; u=Unstandardized coefficient; l=Structure height

two groups, located in 0.461 and −1.68.

Figure 12: Plot of group centroids: Model week 17

Finally, the 2 × 2 confusion matrix is given in Table 27. Overall Model 17

predicts correctly the group membership of 247 (85.8%) of students, in the failing

group and sucessful group the hit rates are 67.7% and 90.7%, respectively. The

value of the overall Z statistic given by (4.5) is

Z = (247− 190.74)/
√

(190.74 · (288− 190.74)/288) = 7.01,
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Table 27: LDA classification table: Model 17

Observed

Y=1 Y=0

Classified Y=1 42 21

Y=0 20 205

with p − value < 0.001, which is clearly better than classification by chance. The

lower bound for a 99% confidence interval for the true frequency of total-group cor-

rect classifications is 247− 2.326 · 8.02 = 228.35. For separate groups the results are

the following: both separate group hit rates are better than what may be expected

Group njj nj ej ZGi
p-value

Failure 42 62 13.34 8.86 < 0.001

Success 205 226 177.41 4.47 < 0.001

by chance.

5.6 Results of K-NN discriminant analysis

This section represents results of non-parametric K-NN discriminant analysis.

For the two instances of time (admission and week 17) in current study, we applied

non-parametric discriminant analysis to subset of covariates selected previously for

LR modeling and for LDA modeling, with the number of discriminating variables

p ∈ {3, 4, 5, 6}. Euclidean metric and Jaccard’s matching coefficient were used as

distance functions to delineate the set of nearest neighbors. To allow the use of

matching coefficient, we transformed quantitative variables into categorical ones,

based on the quartiles. Recalling that Euclidean distance is sensitive to the scale of

measurement, predictors GPA, MC score and Conscientiousness were standardized.

The nearest neighbor discriminant analysis was performed for three values of the

parameter K, namely K = 3, 4, 7. We choose the best number of neighbors based

on classification error rates estimated from the data. All models were fitted using

prior probabilities estimated from the sample.

Table 28 displays rates of correct classification that resulted from application

of K-NN using the set of predictors formed by GPA, Conscientiousness and AD: time

management. We found that hit rates differ remarkably with the value of K and

with the metric used to formulate the rule. In Table 28 the total hit rate decreased

when K pass from 3 to 7. The non-parametric method of classification was also

sensitive to the choice of distance function. Better results for the smaller group

were obtained with Euclidean metric.

Table 29 summarizes rates of correct classification for the K-NN discriminant
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Table 28: Accuracy of KNN classification rules with 3 predictors

% of correct classifications

Distance K total failure success

Jaccard 3 81.6 37.1 93.8

Jaccard 4 80.9 30.6 94.7

Jaccard 7 79.5 19.4 96

Euclidean 3 88.2 66.1 94.2

Euclidean 4 86.1 72.6 89.8

Euclidean 7 83.7 48.4 93.4

analysis obtained using the following set of 4 discriminating variables: GPA, Con-

scientiousness, AD: time management and Age.

Table 29: Accuracy of KNN classification rules with 4 predictors

% of correct classifications

Distance K total failure success

Jaccard 3 81.6 37.1 93.8

Jaccard 4 80.9 30.6 94.7

Jaccard 7 80.2 25.8 95.1

Euclidean 3 87.8 64.5 95.1

Euclidean 4 87.8 75.8 91.2

Euclidean 7 84 51.6 93.3

Analyzing Table 29 we observe that hit rates for rules formulated with Jaccard

matching coefficient and K = 3, 4 do not differ from hit rates estimated under iden-

tical conditions with three predictors. When K = 7, we observe a slight increase of

in both, the total hit rate and in the hit rate for the smaller group (failing group).

Again, non of the hit rates estimated for the smalled group with Jaccard matching

coefficient were greater than 40%. Additionally, when the Euclidean distance is used

to determine the set of the K-nearest neighbors, the loss of classification accuracy

for the smaller group diminishes for K = 4 and increases for K = 7 (similar with

the previous results for 3 predictors). Finally, these results suggest that, for the

first instance of time (at entrance), the set of four discriminating variables performs

better in predicting group membership when the Euclidean distance and K = 4

were used.

The expected frequencies of correct classifications are: 13.33 for group of failing

students, 177.41 for group of successful students and 190.74 for the total sample.

Hence, the value of the overall Z statistic given by (4.5) is

Z = (253− 190.74)/
√

(190.74 · (288− 190.74)/288) = 7.56,
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with p − value < 0.001, that is clearly better than classification by chance. For

separate groups the results are the following. The results presented above show that

Group njj nj ej Z p-value

Failure 47 62 13.34 10.4 < 0.001

Success 206 226 177.41 4.62 < 0.001

hit rates of non-parametric discriminant analysis model developed using only pre-

enrollment factors differ significantly from the rates of correct classification expected

by pure chance.

Table 30 shows hit rates for K-NN classification rules derived for the following

5 discriminating variables, available after 17 weeks: MC score, Conscientiousness,

AD:time management, AD:family relationship and IMD course. Table 31 displays

Table 30: Accuracy of KNN classification rules with 5 predictors

% of correct classifications

Distance K total failure success

Jaccard 3 85.4 56.5 93.4

Jaccard 4 84.7 53.2 93.4

Jaccard 7 84 46.8 94.2

Euclidean 3 90.9 67.7 97.3

Euclidean 4 90.6 79 93.8

Euclidean 7 88.2 54.8 97.3

hit rates for K-NN classification rules with 6 independent variables, available after

17 weeks: MC score, Conscientiousness, AD:time management, AD:family rela-

tionship, IMD course and Change of residence. In general, for Model 17 all

Table 31: Accuracy of KNN classification rules with 6 predictors

% of correct classifications

Distance K total failure success

Jaccard 3 88.5 74.2 92.5

Jaccard 4 87.2 62.9 93.8

Jaccard 7 86.4 53.2 95.6

Euclidean 3 89.8 61.3 97.3

Euclidean 4 89.6 77.4 92.9

Euclidean 7 87.2 51.6 96.1

non-parametric discriminant functions performed alike with respect to the overall

rates of correct classifications. The differences were observed in terms of separate-

group hit rates. Comparing the models developed with Jaccard matching coefficient

we found that composite of 6 predictors provided better classification accuracy in
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all considered values of K with respect of prediction of smaller group membership.

In contrast, when Euclidean distance is used, relatively larger classification accu-

racy for the smaller group is achieved by models fitted with 5 predictors. Of all

non-parametric models considered the 4-NN classification rule based on MC score,

Conscientiousness, AD:time management, AD:family relationship and IMD course

variables, provided the smallest separate group misclassification rates.

In order to evaluate the effectiveness of classification rule discussed above, we

used Z statistics from (4.5). The results indicate that separate group hit rates, as

Group njj nj ej Z p-value

Failure 49 62 13.34 11.02 < 0.001

Success 212 226 177.41 5.6 < 0.001

Total 261 288 190.74 8.75 < 0.01

well as overall hit rate, were significantly better than may be expected by chance.

5.7 Comparison of classification rules

To develop a multivariate model for the prospective identification of students

at risk of failure in the first year of medical degree in SHS-UM, we applied three

statistical tools. As was mentioned previously, all of them provided total-group rates

of correct classification significantly better that could be expected by chance for our

data set. In this section we discuss, in detail, results of assessment of statistical

and practical significance of classification rules developed by LR, LDA e K-NN. It

should be recalled that to compare classification rules we used estimates of apparent

hit rates.

Table 32 presents summary of measures of prediction accuracy of models built

at the entrance time (at the beginning of academic year).

Table 32: Model week 0: comparison of classification rules

% of correct classifications

Method total failure success Ih
LR 76.4 59.7 71.8 16.79%

LDA 77.4 69.2 81.4 33.22%

K-NN 87.8 75.8 91.2 63.9%

To answer the question whether statistical models could predict a group mem-

bership of students, we calculated an index of improvement over chance. Our results

suggest that

• application of LR model the entrance time reduces an error over chance clas-

sification by 16.79%,
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• application of LDA allows to reduce error of group membership predictions by

33.22%,

• non-parametric K-NN discriminant analysis provides the reduction of error of

63.9%.

hence, of the three methods considered, K-NN provided the greatest index. In

general, the three statistical methods for predicting of students group membership

based, on the set pre-admission factors used in this research, exhibit satisfactory

classification accuracy.

Table 33 presents summary of measures of prediction accuracy of models built

at second instance of time (after 17 weeks in medical school). With the informa-

Table 33: Model week 17: Comparison of classification rules

% of correct classifications

Method total failure success Ih
LR 84.7 74.2 87.6 54.7%

LDA 85.8 67.7 90.7 57.9%

K-NN 90.6 79 93.8 72.2%

tion available after 17 weeks in medical school, our models provided considerable

reduction of overall misclassification, 54.7%, 57.9% and 72.2%.

First of all, comparing the results of Tables 32 and 33, we can conclude that the

percentage of correct classifications is considerably higher for the group of successful

students (the larger group) in all three classification methods. It is of note that, for

both subsets of data, in parametric and in non-parametric discriminant analysis the

observed differences in separate group rates of correct classification were considerably

of higher magnitude when compared with LR.

Finch & Schneider [20] claim that, for LR and LDA, under condition of ex-

tremely unequal group dimensions, the misclassification rates tend to be very high

for smaller group, but very low for the larger group. The two subgroups in our

study sample are clearly of the different size, (ratio 21.5 : 78.5) and our conclusions

agree accordance with existent studies on comparison of effect of sample size ratio

on error rates of different classification rules [20, 66].

Fan & Wang [66] show that drastically unequal prior probabilities, under con-

dition of heterogeneity of covariance matrices, affect performance of LDA and LR in

different ways. In such case, the techniques have very similar overall rates of correct

classification, but differ remarkably on separate group rates of correct classifications:

LR favors the smaller group and discriminant analysis favors the larger group. In

accordance to these results, in our study the application of the LDA and LR to 17

weeks data set yielded very similar overall rates of correct classifications: 85.7% and
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84.6%, respectively. With respect to separate group hit rates we observed consid-

erable differences. For group of failing students (the smaller group - 21.5% of the

sample) the rate of correct classifications was provided by LR was higher.

The best improvement over chance in classification, for both subsets of data,

was obtained with K-NN.

To compare performance of different classification rules we used McNemar test.

A summary of the 288×2 matrix is given in the Table 34. Comparing LR vs LDA we

Table 34: Comparison of rules for Model 0: LR vs LDA

LDA

Hit Miss Row total

LR Hit 213 7 220

Miss 10 58 45

Column total 223 65 288

have 17 misclassified by one of the rules, 7+10 < 25, hence the value of the McNemar

test statistic is Te = 7. Under the null hypothesis, Te ∼ Binomial(0.5, 17) yield p-

value of 0.629. Thus, we may concluded that there are no statistically significant

differences in apparent hit rates of LR and LDA models adjusted at at week 0.

Table 5.7 summarize classification results of LDA and LR models developed

with the data available after 17 week in medical school.

Table 35: Comparison of rules for Model 17: LR vs LDA

LDA

Hit Miss Row total

LR Hit 238 5 243

Miss 9 36 45

Column total 247 41 288

A number of misclassification of interest was 9 + 5 < 25, as such the McNemar

test statistic is T = 5. Under the null hypothesis Te ∼ Binomial(0.5, 14), with

p− value = 0.424. Hence, there is no evidence in the sample to claim the difference

in the total hit rates of LR and LDA models.

Comparing classification accuracy of K-NN and LR in two instances of time,

we observe that number of misclassification of interest was greater than 25. Hence,

for week 0 models, the test statistic was T = 19.1. Under the null hypothesis, i.e that

hit rates are equal, T is approximately χ2(1), with corresponding p−value < 0.001.

For week 17 T = 8.1 with p − value = 0.004 yielded rejection of null hypothesis.

In fact, in instances of time (admission and week 17) the KNN model yielded a

significantly higher rate of correct classifications.
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The number of misclassification resulted from application of LDA and K-NN

was greater than 25 at both pre-defined time instances. Hence, we use McNemar

test statistic defined in (4.8), that under the null hypothesis has approximately χ2(1)

distribution. For week 0 T = 16.07 and p − value < 0.001; for week 17 T = 4.90

and p− value = 0.027. Hence, for both instances of time 4-NN total hit rates were

significantly higher than the LDA hit rates.

It is also of interest to compare separate group hit rates of discussed techniques.

Recalling the main goal of this work, we focus our attention on the accuracy of

predicting the membership in the smaller group (failing students). The results of

comparisons are displayed in Table 36 and suggest that while 4-NN discriminant

analysis hit rate for the group of failing students is statistically higher than the

LDA hit rate and the LR hit rate for the models that explore pre-enrollment factors

exclusively, no statistically significant differences in hit rates were detected when pre-

enrollment data was combined with measures of academic performance in the early

courses in medical school. Hence, the three methods have comparable performance

in predicting a membership in underachieving group.

Table 36: Comparison of efficiency of classification rules for group of underachievers

Rules T (Te)
3 Distribution of T p-value

First timing point models

LR vs LDA 1 Binomial (0.5, 4) 0.625

LR vs K-NN 3 Binomial (0.5, 16) 0.021

LDA vs K-NN 4 Binomial (0.5, 16) 0.077

Second timing point models

LR vs LDA 1 Binomial (0.5, 6) 0.218

LR vs K-NN 5 Binomial (0.5, 12) 0.774

LDA vs K-NN 4 Binomial (0.5, 14) 0.179
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6 Conclusions

To determine which factors influence academic performance of medical stu-

dents in the first year course with the highest failure rates (FOS1) at the SHS-UM,

we used multivariate LR, LDA and non-parametric K-nearest neighbors discrimi-

nant analysis. Predictive accuracy of the multivariate statistical models was assessed

under conditions of unequal group sizes (62:226), mixture of non-normal continu-

ous, ordinal and binary predictor. Regarding performance of parametric and non-

parametric discriminant analysis and LR we concluded the following:

• although the distributional assumptions were not satisfied for our data set,

apparent overall hit rates of LR, with proportional priors, and overall hit rates

of LDA, with equal priors, were relatively close;

• regarding the separate hit rates of the two groups, we found no statistically

significant differences

• with unbalanced group sizes, the percentage of correct classifications were

considerably higher for the larger group, for all the classification methods

used.

Unexpectably, the best improvement over chance in overall classification was

reached with non-parametric discriminant analysis, for both subsets of data. This

should be interpreted with caution. It is mentioned in literature, that K-NN proce-

dure is very flexible and has the tendency to overfit data [3]. Additionally, higher

classification accuracy of the 4-NN discriminant analysis may be explained, in part,

by the fact that apparent hit rates were used to compare rules. Huberty [28] warns

that apparent hit rates, based on an internal analysis, are not as good as those based

on cross-validation. Hence, to compare classification rules, external results should

be used. The performance of this method should be examined in more detail in

further research.

This study illustrates the potential of multivariate statistical approaches for

early identification of cognitive and non-cognitive factors, that predispose under-

graduate medical students to fail in the first year. The results of this study indicate

that multivariate models, with high levels of classification accuracy, can be obtained

combining pre-university GPA, academic performance in early courses, the person-

ality trait Conscientiousness, change of residence in the transition to medical school,

age and self-declared anticipation of difficulties with family relations and with time

management.

The results of this study showed that, in SHS-UM, the influence of pre-

university academic achievements on first year academic performance is moderate.

Models based exclusively on combination of pre-enrolment factors (before admission)

were able to classify correctly 71− 86% of students.
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The substantial improvement in the predictive ability was achieved when pre-

admission variables were combined with performance indicators of first courses in

medical school. The results reveal that failure in the first year can be accounted, at

week 17, by lower levels of Conscientiousness, leaving home, poor academic achieve-

ments in introductory courses and unanticipated difficulties due to enrolment.

The association of higher levels of Conscientiousness and reduced a risk of aca-

demic difficulties, is understandable since conscientious individuals are self-disciplined,

persistent, organized and goal-oriented. This association has been described previ-

ously [15, 39, 40] and supports the value of personality characteristics to succeed in

the first year of medical school.

The conclusion that the anticipation of difficulties is associated with smaller

probabilities of academic failure are a novelty and of interest. The research in high

education suggests that many incoming students have inadequate views regarding

the university life, teaching and assessment styles and the required learning strate-

gies. Hence, they tend to underestimate the amount of study that the medical pro-

gram expects from them. Poor time management and interpersonal problems are

recognized in literature to be the most frequently experienced deficiencies among

medical students [51, 60]. Hence, students who express concern about probable dif-

ficulties during the first year of medical degree seem to be aware of the challenges of

transition phase and of special demands of the medical training program. Recogni-

tion of probable difficulties has positive impact on the academic achievements since

in phase of task analysis and development of strategic plan to pursuit the academic

goals it induce to selection of adequate coping techniques to attain desired outcomes.

Hence, students who express concerns about possible difficulties during the

first year of the medical degree seem to be aware of the challenges of the phase-

transition and of the special demands of a medical training program. Therefore,

recognition of possible difficulties has positive impact on the academic achievements

because students can develop strategies to overcome the difficulties.

Concerning the influence of student accommodation in their academic experi-

ence, some studies claim that on campus residential accommodation is beneficial for

students [2, 50]. However, literature provides insufficient evidence to claim an asso-

ciation between type of accommodation and academic failure. For our data set, we

concluded that living away from home is a risk factor for underperformance in the

first year of medical degree. One possible explanation for the apparent link between

change of residence and academic failure, might be that without family assistance,

first year students are overloaded with academic tasks, housework and social activ-

ities, and are unable to spend an adequate amount of time studying. Association

between high probability of first year failure in medical school and leaving parental

home also, may also be explained, in part, by the decrease of emotional support
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from family and friends.

Factors mentioned in previous studies such as gender, preference for the degree

and parental education were not included in our multivariate models. Since these

factors were in fact analysed in the study, our conclusion is that, in the context of

the SHS-UM, they do not contribute for prediction of first year academic failure.

Our study has, obviously, some limitations. First, it was conducted with a

relatively small sample size. Small sample size may affect the accuracy of param-

eters estimates. Second, it is common, for research based on voluntary response

questionnaires, that volunteers differ from the other members of population on sev-

eral features so that bias may limit the generalization of conclusions. The third

limitation is the method chosen to estimate hit rates and compare performance of

the three multivariate techniques. In this study, we used apparent rates of correct

classification with the intention of performing cross-validation of the models in the

future, as additional data becomes available. Finally, while variable selection in

LR was performed employing two distinct methods, in LDA we used only stepwise

procedure. It is desirable to explore the best subset selection for LDA in future

research.

Despite these limitations, our study provides substantial empirical evidence

that personality characteristics, such as Conscientiousness, and anticipation of diffi-

culties due to enrolment in medical program, as well as academic achievements are

important predictors of first year failure. The study highlights the importance of

non-academic factors for prediction of students failure in the first year of medical

degree. The existence of a statistical model with adequate levels of Sensitivity and

Specificity for prospective identification of students that struggle to perform well in

the medical program, offers interesting opportunities for early remediation.
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Appendix

Appendix A

Figure 13: Model 0: Smoothed scatter plots on the logit scale
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Figure 14: Model 17: Smoothed scatter plots on the logit scale
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Figure 15: Model 0: dummy variables analysis of linearity
Conscientiousness

GPA
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Figure 16: Model 17: dummy variables analysis of linearity
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