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Abstract

Necessary and sufficient conditions are given for the Moore-Penrose inverse of a com-

panion matrix over an arbitrary ring to exist.
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1 Introduction

Let R be a ring with 1 and involution (̄·). That is, for all a, b ∈ R, the equalities 1̄ = 1,

(a+ b) = ā+ b̄ and (ab) = b̄ā hold. The involution (̄·) in R endows an involution ∗ in the set

M(R) of (finite) matrices over R, defined as [aij ]
∗ = [aji].

A matrix A is said to be Moore-Penrose invertible with respect to ∗ provided there is A†

such that

AA†A = A,A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

If such a matrix A† exists, then it is well known it is unique (see [1]).

We say a ∈ R is regular if a ∈ aRa, or equivalently axa = a is a ring consistent equation.

A particular solution is denoted by a− and called a von Neumann inverse of a. A regular ring

is a ring whose elements are regular. It is a standard fact that if R is a regular ring then the

ring of m×m matrices over R is again regular (see, for instance, [2]).

We will use the following known fact:
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Lemma 1.1. Given x, y ∈ R, then 1 +xy is a unit if and only if 1 + yx is a unit, and in this

case

(1 + xy)−1 = 1− x(1 + yx)−1y.

Lemma 1.1 has a useful extension for rectangular matrices which we will need later on.

Given n× k matrices B and C, then

In +BCT is invertible if and only if Ik + CTB is invertible. (1)

Versions of this relation for generalized inverses can be found in [3] and [4].

Using von Neumann inverses, it was shown in [6], [8], [9] how to characterize the existence

of a Moore-Penrose inverse by means of units. The equivalence between the existence of M †,

the invertibility of U = MM∗ + I −MM−, and the invertibility of V = M∗M + I −M−M
will play an important role throughout this paper.

Theorem 1.1. Let a ∈ R be a regular element, and a− a von Neumann inverse of a. The

following conditions are equivalent:

(a) a† exists;

(b) s = aāaa− + 1− aa− is a unit;

(c) h = a−aāa+ 1− a−a is a unit;

(d) v = āa+ 1− a−a is a unit;

(e) u = aā+ 1− aa− is a unit.

In this case,

a† = (s−1a) = (ah−1) = (u−1a) = (av−1).

Proof. The equivalences (a) ⇔ (b) ⇔ (c) follow from [8, Theorem 2], as well as the first two

expressions for a†.

(b) ⇔ (d). Write s = aāaa− + 1 − aa− = 1 − a(−āaa− + a−) = 1 − yx with y = a

and x = −āaa− + a−. Then v = 1 − xy = āa + 1 − a−a and the equivalence follows using

Lemma 1.1, with v−1 = 1 +xs−1y = 1 + (−āaa−+ a−)s−1a = a−s−1a+ 1− ās−1a and s−1 =

(1−yx)−1 = 1+y(1−xy)−1x = 1+yv−1x = 1+av−1(−āaa−+a−) = av−1a−+1−av−1āaa−.

(c) ⇔ (e). Now, write u = aā + 1 − aa− = 1 − a(−a−aā + a−) = 1 − xy with x = a

and y = −a−aā + a−. Then h = 1 − yx = 1 − (−a−aā + a−)a = a−aāa + 1 − a−a and the

equivalence follows using Lemma 1.1, with u−1 = 1 + xh−1y = 1 + ah−1(−a−aā + a−) =

ah−1a− + 1− ah−1a−aā = ah−1a− + 1− ah−1ā and h−1 = (1− yx)−1 = 1 + y(1− xy)−1x =

1 + (−a−aā+ a−)u−1a = a−u−1a+ 1− a−aāu−1a.
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We now derive the expressions for the a†. From [8, Theorem 2], a† = (ah−1). Since

ah−1 = aa−u−1a+ a− aāu−1a

= aa−u−1a+ uu−1a− aāu−1a

= (aa− − aā+ u)u−1a

= u−1a

then a† = (u−1a).

Finally, since ua = aāa = av then u−1a = av−1 and a† = (av−1).

Consider the (n+ 1)× (n+ 1) companion matrix

M =

[
0 a

In b

]
,

with a ∈ R and b ∈ Rn. In this paper, we are interested on characterizing the existence of

M † by means of units in R. For the group inverse of M the reader is referred to [5] and [10].

We will reduce the Moore-Penrose inverse of the companion matrix M to the lower trian-

gular case, by using the factorization M = AP where

A =

[
a 0

b In

]
and P =

[
0 1

In 0

]
.

Since M is unitarily equivalent to A, then M has a Moore-Penrose inverse exactly when A is

Moore-Penrose invertible. Futhermore,

M † = P ∗A†.

In this paper, we will assume a to be regular in R, that is, there exists a− ∈ R for which

aa−a = a. Given solutions (possibly distinct) a−, a= to axa = a in R, then one can construct

a reflexive inverse of a, that is, a common solution to axa = a and xax = x, by taking

a+ = a=aa−.

Note that the Moore-Penrose invertibility of A does not imply a is Moore-Penrose in-

vertible. Indeed, consider R the ring of 2 × 2 complex matrices with transposition as the

involution, and set

a =

[
1 i

0 0

]
, b =

[
1 1

0 1

]
and A =

[
a 0

b I2

]
=


1 i 0 0

0 0 0 0

1 1 1 0

0 1 0 1

 .
Using [11], A† exists since rk(A) = rk(AAT ) = rk(ATA) = 3, but a† does not since aaT = 0.

Consequently, the Moore-Penrose invertibility of the companion matrix M does not imply

the Moore-Penrose invertibility of a.
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On the other hand, a may be Moore-Penrose invertible and M † may not exist. As an

example, consider R the ring of 2× 2 complex matrices with transposition as the involution,

a =

[
1 0

0 0

]
= a†, b =

[
1 i

0 0

]
,M =

[
0 a

I2 b

]
=


0 0 1 0

0 0 0 0

1 0 1 i

0 1 0 0

 .

Then rk(M) = 3 6= 2 = rk(MTM) for M as a 4× 4 complex matrix, and M † does not exist.

We will divide this paper in two parts. In the first, we will assume a† exists, and in the

second we just assume regularity of a.

2 The case a† exists

Suppose a† exists and consider the unit

u = aā+ 1− aa†, with u−1 = ā†a† + 1− aa†.

Note that u−1a = ā† and āu−1 = a†.

The matrix

A =

[
a 0

b In

]
is Moore-Penrose invertible if and only if U = AA∗ + In+1 − AA− is invertible for one, and

hence, all choices of von Neumann inverses A− of A, by Theorem 1.1. Applying [7, Theorem

1], we may take

A− =

[
a† 0

−ba† In

]
,

for which choice we obtain

AA− =

[
aa† 0

0 In

]
and

U =

[
aā+ 1− aa† ab∗

bā bb∗ + In

]
=

[
1 0

bāu−1 In

][
u 0

0 Z

][
1 u−1ab∗

0 In

]
,

where

Z = bb∗ + In − bāu−1ab∗

= In + b(1− āu−1a)b∗

= In + b(1− a†a)b∗
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Now, the invertibility of Z is equivalent to z = 1 + b∗b(1− a†a) being a unit of R, by the

equivalence (1). Writing b =
[
b1 b2 · · · bn

]T
, this is the same as

z = 1 +
n∑

i=1

b̄ibi(1− a†a) (2)

being a unit of R.

Theorem 2.1. Given a ∈ R such that a† exists and b =
[
b1 b2 · · · bn

]T
, then the

following are equivalent:

(a) The companion matrix M =

[
0 a

In b

]
is Moore-Penrose invertible.

(b) 1 + (1− a†a)b∗b(1− a†a) is a unit of R.

(c) 1 + b∗b(1− a†a) is a unit of R.

(d) 1 + (1− a†a)b∗b is a unit of R.

We now carry out the construction of the Moore-Penrose inverse of the companion matrix,

in the case a† exists.

Using Theorem 1.1,

A† =
(
U−1A

)∗
which leads to [

0 a

In b

]†
=

[
0 In

1 0

]
A† =

[
0 In

1 0

] (
U−1A

)∗
.

Note that u, U and Z are symmetric, and hence also are their inverses. Therefore,

U−1 =

[
1 −ā†b∗

0 In

][
u−1 0

0 Z−1

][
1 0

ba† In

]

=

[
u−1 + ā†b∗Z−1ba† −ā†b∗Z−1

−Z−1ba† Z−1

]
,

with Z−1 =
(
In + b(1− a†a)b∗

)−1
= In − b(1 − a†a)z−1(1 − a†a)b∗ and z = 1 + (1 −

a†a)b∗b(1− a†a). Then

A† = A∗(U∗)−1

=

[
āu−1 + a†ab∗Z−1ba† − b∗Z−1ba† −a†ab∗Z−1 + b∗Z−1

−Z−1ba† Z−1

]

=

[
a† − (1− a†a)b∗Z−1ba† (1− a†a)b∗Z−1

−Z−1ba† Z−1

]
.
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Finally, [
0 a

In b

]†
=

[
0 In

1 0

]
A†

=

[
−Z−1ba† Z−1

a† − (1− a†a)b∗Z−1ba† (1− a†a)b∗Z−1

]
.

3 The case a is regular

We note that the companion matrix [
0 a

In b

]
is regular if and only if a is regular. This follows from the factorization[

0 a

In b

]
=

[
0 1

In 0

][
In 0

0 a

][
In b

0 1

]
.

Suppose a is regular and let a+ be any reflexive inverse of a.

The matrix

A =

[
a 0

b In

]
is Moore-Penrose invertible if and only if V = A∗A + In+1 − A−A is invertible for one, and

hence, all choices of von Neumann inverses A− of A, by Theorem 1.1. Applying [7, Theorem

1], we may take

A− =

[
a+ 0

−ba+ In

]
,

for which choice we obtain

A−A =

[
a+a 0

−ba+a+ b In

]
and

V =

[
āa+ 1− a+a+ b∗b b∗

ba+a In

]
=

[
1 b∗

0 In

][
ζ 0

0 In

][
1 0

ba+a In

]
,

where

ζ = āa+ 1− a+a+ b∗b(1− a+a)

= āa+ 1− a+a+
n∑

i=1

b̄ibi(1− a+a),

with b =
[
b1 b2 · · · bn

]T
.
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Theorem 3.1. Given a ∈ R and b =
[
b1 b2 · · · bn

]T
, then the companion matrix

M =

[
0 a

In b

]
is Moore-Penrose invertible if and only if a is regular and, for some reflexive

inverse a+ of a, the element

ζ = āa+ 1− a+a+
n∑

i=1

b̄ibi(1− a+a) (3)

is a unit of R.

We now construct the Moore-Penrose inverse of the companion matrix, in the case a is

regular.

Using Theorem 1.1, the Moore-Penrose inverse of A is given by

A† =
(
AV −1

)∗
where

V −1 =
(
A∗A+ In+1 −A−A

)−1
=

[
1 0

−ba+a In

][
ζ−1 0

0 In

][
1 −b∗

0 In

]

and ζ = āa+ 1− a+a+ b∗b(1− a+a). Then

(
V −1

)∗
=

[
ζ̄−1 −ζ̄−1(a+a)b∗

−b ζ̄−1 In + b ζ̄−1(a+a)b∗

]
.

Substituting in the expression of A†,

A† =
(
V −1

)∗
A∗

=

[
ζ̄−1 −ζ̄−1(a+a)b∗

−b ζ̄−1 In + b ζ̄−1(a+a)b∗

][
ā b∗

0 In

]

=

[
ζ̄−1ā ζ̄−1(1− (a+a))b∗

−b ζ̄−1ā In − b ζ̄−1(1− (a+a))b∗

]

from which we deduce[
0 a

In b

]†
=

[
0 In

1 0

]
A†

=

[
−b ζ̄−1ā In − b ζ̄−1(1− (a+a))b∗

ζ̄−1ā ζ̄−1(1− (a+a))b∗

]
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4 Questions and remarks

1. If a† exists and b∗b ∈ a†b∗bR then

[
0 a

In b

]†
exists. Indeed, if b∗b = a†b∗bx for

some x in R then a†ab∗b = a†b∗bx = b∗b.

2. If a is regular and bi ∈ Rbia then

[
0 a

In b

]†
exists, with b =

[
b1 b2 · · · bn

]T
,

if and only if a† exists. Indeed, if bi = xbia then bia
+a = xbia = bi, from which the

element ζ in equation (3) collapses to ζ = āa + 1 − a+a, which is a unit exactly when

a† exists.

3. How can the invertible elements defined in equations (2) and (3) be directly related, in

the case a† exists?
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