The Moore-Penrose inverse of a companion matrix*

Pedro Patrício ${ }^{a}$

March 7, 2012
${ }^{a}$ Departamento de Matemática e Aplicações, Universidade do Minho, 4710-057 Braga, Portugal.
e-mail: pedro@math.uminho.pt

Abstract

Necessary and sufficient conditions are given for the Moore-Penrose inverse of a companion matrix over an arbitrary ring to exist.

Keywords: Companion matrix, Moore-Penrose inverse, von Neumann inverse, rings

AMS classification: 15A09, 16E50, 16W10

1 Introduction

Let R be a ring with 1 and involution $(\bar{\cdot})$. That is, for all $a, b \in R$, the equalities $\overline{1}=1$, $\overline{(a+b)}=\bar{a}+\bar{b}$ and $\overline{(a b)}=\bar{b} \bar{a}$ hold. The involution $(\overline{(\cdot)}$ in R endows an involution $*$ in the set $\mathcal{M}(R)$ of (finite) matrices over R, defined as $\left[a_{i j}\right]^{*}=\left[\overline{a_{j i}}\right]$.

A matrix A is said to be Moore-Penrose invertible with respect to $*$ provided there is A^{\dagger} such that

$$
A A^{\dagger} A=A, A^{\dagger} A A^{\dagger}=A^{\dagger},\left(A A^{\dagger}\right)^{*}=A A^{\dagger},\left(A^{\dagger} A\right)^{*}=A^{\dagger} A .
$$

If such a matrix A^{\dagger} exists, then it is well known it is unique (see [1]).
We say $a \in R$ is regular if $a \in a R a$, or equivalently $a x a=a$ is a ring consistent equation. A particular solution is denoted by a^{-}and called a von Neumann inverse of a. A regular ring is a ring whose elements are regular. It is a standard fact that if R is a regular ring then the ring of $m \times m$ matrices over R is again regular (see, for instance, [2]).

We will use the following known fact:

[^0]Lemma 1.1. Given $x, y \in R$, then $1+x y$ is a unit if and only if $1+y x$ is a unit, and in this case

$$
(1+x y)^{-1}=1-x(1+y x)^{-1} y
$$

Lemma 1.1 has a useful extension for rectangular matrices which we will need later on. Given $n \times k$ matrices B and C, then

$$
\begin{equation*}
I_{n}+B C^{T} \text { is invertible if and only if } I_{k}+C^{T} B \text { is invertible. } \tag{1}
\end{equation*}
$$

Versions of this relation for generalized inverses can be found in [3] and [4].
Using von Neumann inverses, it was shown in [6], [8], [9] how to characterize the existence of a Moore-Penrose inverse by means of units. The equivalence between the existence of M^{\dagger}, the invertibility of $U=M M^{*}+I-M M^{-}$, and the invertibility of $V=M^{*} M+I-M^{-} M$ will play an important role throughout this paper.

Theorem 1.1. Let $a \in R$ be a regular element, and a^{-}a von Neumann inverse of a. The following conditions are equivalent:
(a) a^{\dagger} exists;
(b) $s=a \bar{a} a a^{-}+1-a a^{-}$is a unit;
(c) $h=a^{-} a \bar{a} a+1-a^{-} a$ is a unit;
(d) $v=\bar{a} a+1-a^{-} a$ is a unit;
(e) $u=a \bar{a}+1-a a^{-}$is a unit.

In this case,

$$
a^{\dagger}=\overline{\left(s^{-1} a\right)}=\overline{\left(a h^{-1}\right)}=\overline{\left(u^{-1} a\right)}=\overline{\left(a v^{-1}\right)}
$$

Proof. The equivalences $(a) \Leftrightarrow(b) \Leftrightarrow(c)$ follow from [8, Theorem 2], as well as the first two expressions for a^{\dagger}.
$(b) \Leftrightarrow(d)$. Write $s=a \bar{a} a a^{-}+1-a a^{-}=1-a\left(-\bar{a} a a^{-}+a^{-}\right)=1-y x$ with $y=a$ and $x=-\bar{a} a a^{-}+a^{-}$. Then $v=1-x y=\bar{a} a+1-a^{-} a$ and the equivalence follows using Lemma 1.1, with $v^{-1}=1+x s^{-1} y=1+\left(-\bar{a} a a^{-}+a^{-}\right) s^{-1} a=a^{-} s^{-1} a+1-\bar{a} s^{-1} a$ and $s^{-1}=$ $(1-y x)^{-1}=1+y(1-x y)^{-1} x=1+y v^{-1} x=1+a v^{-1}\left(-\bar{a} a a^{-}+a^{-}\right)=a v^{-1} a^{-}+1-a v^{-1} \bar{a} a a^{-}$.
$(c) \Leftrightarrow(e)$. Now, write $u=a \bar{a}+1-a a^{-}=1-a\left(-a^{-} a \bar{a}+a^{-}\right)=1-x y$ with $x=a$ and $y=-a^{-} a \bar{a}+a^{-}$. Then $h=1-y x=1-\left(-a^{-} a \bar{a}+a^{-}\right) a=a^{-} a \bar{a} a+1-a^{-} a$ and the equivalence follows using Lemma 1.1, with $u^{-1}=1+x h^{-1} y=1+a h^{-1}\left(-a^{-} a \bar{a}+a^{-}\right)=$ $a h^{-1} a^{-}+1-a h^{-1} a^{-} a \bar{a}=a h^{-1} a^{-}+1-a h^{-1} \bar{a}$ and $h^{-1}=(1-y x)^{-1}=1+y(1-x y)^{-1} x=$ $1+\left(-a^{-} a \bar{a}+a^{-}\right) u^{-1} a=a^{-} u^{-1} a+1-a^{-} a \bar{a} u^{-1} a$.

We now derive the expressions for the a^{\dagger}. From $\left[8\right.$, Theorem 2], $a^{\dagger}=\overline{\left(a h^{-1}\right)}$. Since

$$
\begin{aligned}
a h^{-1} & =a a^{-} u^{-1} a+a-a \bar{a} u^{-1} a \\
& =a a^{-} u^{-1} a+u u^{-1} a-a \bar{a} u^{-1} a \\
& =\left(a a^{-}-a \bar{a}+u\right) u^{-1} a \\
& =u^{-1} a
\end{aligned}
$$

then $a^{\dagger}=\overline{\left(u^{-1} a\right)}$.
Finally, since $u a=a \bar{a} a=a v$ then $u^{-1} a=a v^{-1}$ and $a^{\dagger}=\overline{\left(a v^{-1}\right)}$.

Consider the $(n+1) \times(n+1)$ companion matrix

$$
M=\left[\begin{array}{cc}
0 & a \\
I_{n} & b
\end{array}\right],
$$

with $a \in R$ and $\boldsymbol{b} \in R^{n}$. In this paper, we are interested on characterizing the existence of M^{\dagger} by means of units in R. For the group inverse of M the reader is referred to [5] and [10].

We will reduce the Moore-Penrose inverse of the companion matrix M to the lower triangular case, by using the factorization $M=A P$ where

$$
A=\left[\begin{array}{cc}
a & 0 \\
b & I_{n}
\end{array}\right] \text { and } P=\left[\begin{array}{cc}
0 & 1 \\
I_{n} & 0
\end{array}\right] .
$$

Since M is unitarily equivalent to A, then M has a Moore-Penrose inverse exactly when A is Moore-Penrose invertible. Futhermore,

$$
M^{\dagger}=P^{*} A^{\dagger}
$$

In this paper, we will assume a to be regular in R, that is, there exists $a^{-} \in R$ for which $a a^{-} a=a$. Given solutions (possibly distinct) $a^{-}, a^{=}$to $a x a=a$ in R, then one can construct a reflexive inverse of a, that is, a common solution to $a x a=a$ and $x a x=x$, by taking $a^{+}=a^{=} a a^{-}$.

Note that the Moore-Penrose invertibility of A does not imply a is Moore-Penrose invertible. Indeed, consider R the ring of 2×2 complex matrices with transposition as the involution, and set

$$
a=\left[\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } A=\left[\begin{array}{cc}
a & 0 \\
\boldsymbol{b} & I_{2}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & i & 0 & 0 \\
0 & 0 & 0 & 0 \\
\hline 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Using [11], A^{\dagger} exists since $r k(A)=r k\left(A A^{T}\right)=r k\left(A^{T} A\right)=3$, but a^{\dagger} does not since $a a^{T}=0$. Consequently, the Moore-Penrose invertibility of the companion matrix M does not imply the Moore-Penrose invertibility of a.

On the other hand, a may be Moore-Penrose invertible and M^{\dagger} may not exist. As an example, consider R the ring of 2×2 complex matrices with transposition as the involution,

$$
a=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=a^{\dagger}, \boldsymbol{b}=\left[\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right], M=\left[\begin{array}{cc}
0 & a \\
I_{2} & \boldsymbol{b}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 1 & i \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Then $r k(M)=3 \neq 2=r k\left(M^{T} M\right)$ for M as a 4×4 complex matrix, and M^{\dagger} does not exist.
We will divide this paper in two parts. In the first, we will assume a^{\dagger} exists, and in the second we just assume regularity of a.

2 The case a^{\dagger} exists

Suppose a^{\dagger} exists and consider the unit

$$
u=a \bar{a}+1-a a^{\dagger}, \text { with } u^{-1}=\bar{a}^{\dagger} a^{\dagger}+1-a a^{\dagger}
$$

Note that $u^{-1} a=\bar{a}^{\dagger}$ and $\bar{a} u^{-1}=a^{\dagger}$.
The matrix

$$
A=\left[\begin{array}{cc}
a & 0 \\
b & I_{n}
\end{array}\right]
$$

is Moore-Penrose invertible if and only if $U=A A^{*}+I_{n+1}-A A^{-}$is invertible for one, and hence, all choices of von Neumann inverses A^{-}of A, by Theorem 1.1. Applying [7, Theorem 1], we may take

$$
A^{-}=\left[\begin{array}{cc}
a^{\dagger} & 0 \\
-\boldsymbol{b} a^{\dagger} & I_{n}
\end{array}\right]
$$

for which choice we obtain

$$
A A^{-}=\left[\begin{array}{cc}
a a^{\dagger} & 0 \\
0 & I_{n}
\end{array}\right]
$$

and

$$
U=\left[\begin{array}{cc}
a \bar{a}+1-a a^{\dagger} & a \boldsymbol{b}^{*} \\
\boldsymbol{b} \bar{a} & \boldsymbol{b} \boldsymbol{b}^{*}+I_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
\boldsymbol{b} \bar{a} u^{-1} & I_{n}
\end{array}\right]\left[\begin{array}{cc}
u & 0 \\
0 & Z
\end{array}\right]\left[\begin{array}{cc}
1 & u^{-1} a \boldsymbol{b}^{*} \\
0 & I_{n}
\end{array}\right]
$$

where

$$
\begin{aligned}
Z & =\boldsymbol{b} \boldsymbol{b}^{*}+I_{n}-\boldsymbol{b} \bar{a} u^{-1} a \boldsymbol{b}^{*} \\
& =I_{n}+\boldsymbol{b}\left(1-\bar{a} u^{-1} a\right) \boldsymbol{b}^{*} \\
& =I_{n}+\boldsymbol{b}\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*}
\end{aligned}
$$

Now, the invertibility of Z is equivalent to $z=1+\boldsymbol{b}^{*} \boldsymbol{b}\left(1-a^{\dagger} a\right)$ being a unit of R, by the equivalence (1). Writing $\boldsymbol{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$, this is the same as

$$
\begin{equation*}
z=1+\sum_{i=1}^{n} \bar{b}_{i} b_{i}\left(1-a^{\dagger} a\right) \tag{2}
\end{equation*}
$$

being a unit of R.
Theorem 2.1. Given $a \in R$ such that a^{\dagger} exists and $\boldsymbol{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$, then the following are equivalent:
(a) The companion matrix $M=\left[\begin{array}{cc}0 & a \\ I_{n} & b\end{array}\right]$ is Moore-Penrose invertible.
(b) $1+\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*} \boldsymbol{b}\left(1-a^{\dagger} a\right)$ is a unit of R.
(c) $1+\boldsymbol{b}^{*} \boldsymbol{b}\left(1-a^{\dagger} a\right)$ is a unit of R.
(d) $1+\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*} \boldsymbol{b}$ is a unit of R.

We now carry out the construction of the Moore-Penrose inverse of the companion matrix, in the case a^{\dagger} exists.

Using Theorem 1.1,

$$
A^{\dagger}=\left(U^{-1} A\right)^{*}
$$

which leads to

$$
\left[\begin{array}{cc}
0 & a \\
I_{n} & b
\end{array}\right]^{\dagger}=\left[\begin{array}{cc}
0 & I_{n} \\
1 & 0
\end{array}\right] A^{\dagger}=\left[\begin{array}{cc}
0 & I_{n} \\
1 & 0
\end{array}\right]\left(U^{-1} A\right)^{*}
$$

Note that u, U and Z are symmetric, and hence also are their inverses. Therefore,

$$
\begin{aligned}
U^{-1} & =\left[\begin{array}{cc}
1 & -\bar{a}^{\dagger} \boldsymbol{b}^{*} \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
u^{-1} & 0 \\
0 & Z^{-1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\boldsymbol{b} a^{\dagger} & I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
u^{-1}+\bar{a}^{\dagger} \boldsymbol{b}^{*} Z^{-1} \boldsymbol{b} a^{\dagger} & -\bar{a}^{\dagger} \boldsymbol{b}^{*} Z^{-1} \\
-Z^{-1} \boldsymbol{b} a^{\dagger} & Z^{-1}
\end{array}\right],
\end{aligned}
$$

with $Z^{-1}=\left(I_{n}+\boldsymbol{b}\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*}\right)^{-1}=I_{n}-\boldsymbol{b}\left(1-a^{\dagger} a\right) z^{-1}\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*}$ and $z=1+(1-$ $\left.a^{\dagger} a\right) \boldsymbol{b}^{*} \boldsymbol{b}\left(1-a^{\dagger} a\right)$. Then

$$
\begin{aligned}
A^{\dagger} & =A^{*}\left(U^{*}\right)^{-1} \\
& =\left[\begin{array}{cc}
\bar{a} u^{-1}+a^{\dagger} a \boldsymbol{b}^{*} Z^{-1} \boldsymbol{b} a^{\dagger}-b^{*} Z^{-1} \boldsymbol{b} a^{\dagger} & -a^{\dagger} a \boldsymbol{b}^{*} Z^{-1}+\boldsymbol{b}^{*} Z^{-1} \\
-Z^{-1} \boldsymbol{b} a^{\dagger} & Z^{-1}
\end{array}\right] \\
& =\left[\begin{array}{cc}
a^{\dagger}-\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*} Z^{-1} \boldsymbol{b} a^{\dagger} & \left(1-a^{\dagger} a\right) \boldsymbol{b}^{*} Z^{-1} \\
-Z^{-1} \boldsymbol{b} a^{\dagger} & Z^{-1}
\end{array}\right] .
\end{aligned}
$$

Finally,

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & a \\
I_{n} & b
\end{array}\right]^{\dagger} } & =\left[\begin{array}{cc}
0 & I_{n} \\
1 & 0
\end{array}\right] A^{\dagger} \\
& =\left[\begin{array}{cc}
-Z^{-1} \boldsymbol{b} a^{\dagger} & Z^{-1} \\
a^{\dagger}-\left(1-a^{\dagger} a\right) \boldsymbol{b}^{*} Z^{-1} \boldsymbol{b} a^{\dagger} & \left(1-a^{\dagger} a\right) \boldsymbol{b}^{*} Z^{-1}
\end{array}\right]
\end{aligned}
$$

3 The case a is regular

We note that the companion matrix

$$
\left[\begin{array}{cc}
0 & a \\
I_{n} & \boldsymbol{b}
\end{array}\right]
$$

is regular if and only if a is regular. This follows from the factorization

$$
\left[\begin{array}{cc}
0 & a \\
I_{n} & \boldsymbol{b}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
I_{n} & 0
\end{array}\right]\left[\begin{array}{cc}
I_{n} & 0 \\
0 & a
\end{array}\right]\left[\begin{array}{cc}
I_{n} & \boldsymbol{b} \\
0 & 1
\end{array}\right] .
$$

Suppose a is regular and let a^{+}be any reflexive inverse of a.
The matrix

$$
A=\left[\begin{array}{cc}
a & 0 \\
b & I_{n}
\end{array}\right]
$$

is Moore-Penrose invertible if and only if $V=A^{*} A+I_{n+1}-A^{-} A$ is invertible for one, and hence, all choices of von Neumann inverses A^{-}of A, by Theorem 1.1. Applying [7, Theorem 1], we may take

$$
A^{-}=\left[\begin{array}{cc}
a^{+} & 0 \\
-\boldsymbol{b} a^{+} & I_{n}
\end{array}\right],
$$

for which choice we obtain

$$
A^{-} A=\left[\begin{array}{cc}
a^{+} a & 0 \\
-\boldsymbol{b} a^{+} a+\boldsymbol{b} & I_{n}
\end{array}\right]
$$

and

$$
V=\left[\begin{array}{cc}
\bar{a} a+1-a^{+} a+\boldsymbol{b}^{*} \boldsymbol{b} & \boldsymbol{b}^{*} \\
\boldsymbol{b} a^{+} a & I_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & \boldsymbol{b}^{*} \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
\zeta & 0 \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\boldsymbol{b} a^{+} a & I_{n}
\end{array}\right]
$$

where

$$
\begin{aligned}
\zeta & =\bar{a} a+1-a^{+} a+\boldsymbol{b}^{*} \boldsymbol{b}\left(1-a^{+} a\right) \\
& =\bar{a} a+1-a^{+} a+\sum_{i=1}^{n} \overline{b_{i}} b_{i}\left(1-a^{+} a\right)
\end{aligned}
$$

with $\boldsymbol{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$.

Theorem 3.1. Given $a \in R$ and $\boldsymbol{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$, then the companion matrix $M=\left[\begin{array}{cc}0 & a \\ I_{n} & b\end{array}\right]$ is Moore-Penrose invertible if and only if a is regular and, for some reflexive inverse a^{+}of a, the element

$$
\begin{equation*}
\zeta=\bar{a} a+1-a^{+} a+\sum_{i=1}^{n} \bar{b}_{i} b_{i}\left(1-a^{+} a\right) \tag{3}
\end{equation*}
$$

is a unit of R.
We now construct the Moore-Penrose inverse of the companion matrix, in the case a is regular.

Using Theorem 1.1, the Moore-Penrose inverse of A is given by

$$
A^{\dagger}=\left(A V^{-1}\right)^{*}
$$

where

$$
\begin{aligned}
V^{-1} & =\left(A^{*} A+I_{n+1}-A^{-} A\right)^{-1} \\
& =\left[\begin{array}{cc}
1 & 0 \\
-\boldsymbol{b} a^{+} a & I_{n}
\end{array}\right]\left[\begin{array}{cc}
\zeta^{-1} & 0 \\
0 & I_{n}
\end{array}\right]\left[\begin{array}{cc}
1 & -\boldsymbol{b}^{*} \\
0 & I_{n}
\end{array}\right]
\end{aligned}
$$

and $\zeta=\bar{a} a+1-a^{+} a+\boldsymbol{b}^{*} \boldsymbol{b}\left(1-a^{+} a\right)$. Then

$$
\left(V^{-1}\right)^{*}=\left[\begin{array}{cc}
\bar{\zeta}^{-1} & -\bar{\zeta}^{-1} \overline{\left(a^{+} a\right)} \boldsymbol{b}^{*} \\
-\boldsymbol{b} \bar{\zeta}^{-1} & I_{n}+\boldsymbol{b} \bar{\zeta}^{-1} \overline{\left(a^{+} a\right)} \boldsymbol{b}^{*}
\end{array}\right]
$$

Substituting in the expression of A^{\dagger},

$$
\begin{aligned}
A^{\dagger} & =\left(V^{-1}\right)^{*} A^{*} \\
& =\left[\begin{array}{cc}
\bar{\zeta}^{-1} & -\bar{\zeta}^{-1} \overline{\left(a^{+} a\right)} \boldsymbol{b}^{*} \\
-\boldsymbol{b} \bar{\zeta}^{-1} & I_{n}+\boldsymbol{b} \bar{\zeta}^{-1} \overline{\left(a^{+} a\right)} \boldsymbol{b}^{*}
\end{array}\right]\left[\begin{array}{cc}
\bar{a} & \boldsymbol{b}^{*} \\
0 & I_{n}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\bar{\zeta}^{-1} \bar{a} & \bar{\zeta}^{-1}\left(1-\overline{\left(a^{+} a\right)}\right) \boldsymbol{b}^{*} \\
-\boldsymbol{b} \bar{\zeta}^{-1} \bar{a} & I_{n}-\boldsymbol{b} \bar{\zeta}^{-1}(1-\overline{(a+a)}) \boldsymbol{b}^{*}
\end{array}\right]
\end{aligned}
$$

from which we deduce

$$
\begin{aligned}
{\left[\begin{array}{cc}
0 & a \\
I_{n} & b
\end{array}\right]^{\dagger} } & =\left[\begin{array}{cc}
0 & I_{n} \\
1 & 0
\end{array}\right] A^{\dagger} \\
& =\left[\begin{array}{cc}
-\boldsymbol{b} \bar{\zeta}^{-1} \bar{a} & I_{n}-\boldsymbol{b} \bar{\zeta}^{-1}\left(1-\overline{\left(a^{+} a\right)}\right) \boldsymbol{b}^{*} \\
\bar{\zeta}^{-1} \bar{a} & \bar{\zeta}^{-1}\left(1-\overline{\left(a^{+} a\right)}\right) \boldsymbol{b}^{*}
\end{array}\right]
\end{aligned}
$$

4 Questions and remarks

1. If a^{\dagger} exists and $\boldsymbol{b}^{*} \boldsymbol{b} \in a^{\dagger} \boldsymbol{b}^{*} \boldsymbol{b} R$ then $\left[\begin{array}{cc}0 & a \\ I_{n} & \boldsymbol{b}\end{array}\right]^{\dagger}$ exists. Indeed, if $\boldsymbol{b}^{*} \boldsymbol{b}=a^{\dagger} \boldsymbol{b}^{*} \boldsymbol{b} x$ for some x in R then $a^{\dagger} a \boldsymbol{b}^{*} \boldsymbol{b}=a^{\dagger} \boldsymbol{b}^{*} \boldsymbol{b} x=\boldsymbol{b}^{*} \boldsymbol{b}$.
2. If a is regular and $b_{i} \in R b_{i} a$ then $\left[\begin{array}{cc}0 & a \\ I_{n} & \boldsymbol{b}\end{array}\right]^{\dagger}$ exists, with $\boldsymbol{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{T}$, if and only if a^{\dagger} exists. Indeed, if $b_{i}=x b_{i} a$ then $b_{i} a^{+} a=x b_{i} a=b_{i}$, from which the element ζ in equation (3) collapses to $\zeta=\bar{a} a+1-a^{+} a$, which is a unit exactly when a^{\dagger} exists.
3. How can the invertible elements defined in equations (2) and (3) be directly related, in the case a^{\dagger} exists?

Ackowledgement

This problem was proposed by Professor Roland Puystjens more than 10 years ago. The question was to give a similar characterization of the one provided for group invertible companion matrices as in [10].

The author wishes to thank one of the referees for his/her valuable comments and corrections, and namely for providing the simplification for the expression of the Moore-Penrose inverse stated in Theorem 1.1.

References

[1] Ben Israel, A.; Greville, T. N. E.; Generalized Inverses, Theory and Applications, 2nd Edition, Springer, New York 2003.
[2] Brown, B.; McCoy, N. H.; The maximal regular ideal of a ring. Proc. Amer. Math. Soc. 1, (1950), 165-171.
[3] Castro-González, N.; Mendes-Araújo, C.; Patrício, P.; Generalized inverses of a sum in rings. Bull. Aust. Math. Soc. 82 (2010), no. 1, 156-164.
[4] Cvetkovic-Ilic, D.; Harte, R.; On Jacobson's lemma and Drazin invertibility. Appl. Math. Lett. 23 (2010), no. 4, 417-420,
[5] Hartwig, R. E.; Shoaf, J.; Group inverses and Drazin inverses of bidiagonal and triangular Toeplitz matrices. J. Austral. Math. Soc. Ser. A, 24 (1977), no. 1, 10-34.
[6] Patrício, Pedro.; The Moore-Penrose inverse of von Neumann regular matrices over a ring. Linear Algebra Appl. 332/334 (2001), 469-483.
[7] Patrício, Pedro; Puystjens, Roland; About the von Neumann regularity of triangular block matrices. Linear Algebra Appl. 332/334 (2001), 485-502.
[8] Patrício, Pedro; The Moore-Penrose inverse of a factorization. Linear Algebra Appl. 370 (2003), 227-235.
[9] Patrício, Pedro; Mendes-Araújo, C.; Moore-Penrose invertibility in involutory rings: the case $a a^{\dagger}=b b^{\dagger}$. Linear Multilinear Algebra 58 (2010), no. 3-4, 445-452.
[10] Puystjens, R.; Hartwig, R. E.; The group inverse of a companion matrix. Linear and Multilinear Algebra, 43 (1997), no. 1-3, 137-150,
[11] Pearl, M. H.; Generalized inverses of matrices with entries taken from an arbitrary field. Linear Algebra and Appl. 1 (1968), 571-587.

[^0]: *This research was financed by FEDER Funds through "Programa Operacional Factores de Competitividade - COMPETE" and by Portuguese Funds through FCT - "Fundação para a Ciência e a Tecnologia", within the project PEst-C/MAT/UI0013/2011.

