
QoS Aware Multicast Routing Protocols Evaluation
through Simulation

António Costa
Departamento de Informática

Universidade do Minho
Braga, Portugal

costa@di.uminho.pt

Maria João Nicolau
Departamento de Sistemas de

Informação
Universidade do Minho
Guimarães, Portugal

joao@dsi.uminho.pt
Joaquim Macedo

Departamento de Informática
Universidade do Minho

Braga, Portugal
macedo@di.uminho.pt

Alexandre Santos
Departamento de Informática

Universidade do Minho
Braga, Portugal

alex@di.uminho.pt

ABSTRACT
In networking research, the simulation is often the single
way to overcome the lack of equipment needed for labora-
tory setup of complex experimental topologies, with diverse
traffic pattern scenarios. Even for simpler topologies and
traffic scenarios, the simulation remains attractive due to
the available facilities on data collection, graphics generation
and step by step analysis of different protocol machines.

Inter-domain multicast scenarios, where heterogeneous QoS
requirements should be considered, is a particular example
where both complexity and resources availability justify the
use of simulation.

This paper reports the experience gained by the usage of
simulation tools in multicast routing with QoS. It is not
focused on the real simulation results reported but on the
process used to obtain them. NS-2 has been used as the base
of this work.

Keywords
NS2, Multicast Routing, Quality of Service, Simulation Tools

1. INTRODUCTION
Multicast communication is needed to support many appli-
cations, in particular applications with special requirements
on multimedia flows transfer. Even with good application
level multicast solutions, a good multicast routing strategy
enables the minimisation of communication cost and the op-
timisation of the network resources usage. The network layer
approach is suitable for inter-domain multicast, where there

are relevant scalability and policy dependent unsolved pro-
blems. These non local or inter-domain restrictions con-
straint the set of acceptable solutions.

IP based networks are faced with new services models and a
new vocation to become a multi-services universal network.
The existing long term research and developments towards a
QoS aware IP network, replacing the traditional best-effort
network introduced a set of mechanisms inside and outside
the network routers. But it is at inter-domain routing level
where more efforts and solutions are missing. This is noto-
rious for multicast routing, where applications are sensible
to the network available QoS like losses, delays and band-
width. Another important issue at large scale multicast ap-
plications is the existence of users with heterogeneous QoS
requirements.

Most of applications needing multicast with QoS are only
attractive for large scale contexts. A typical example is the
events diffusion, with low commercial impact for traditional
mass media and occurring at a large geographic distance
from potential interested people.

The goal of this work is to show the usage of a simulation
tool as an evaluation framework for inter-domain multicast
routing protocols proposals. The implementation of multi-
cast routing protocols in the simulator and the simulation
results show that the simulation is an important and useful
technique in the study and development of this type of pro-
tocols. Simulation results enable a quantitative performance
evaluation using different metrics for several traffic patterns
and network topologies.

2. NETWORK SIMULATORS
In networking research, the simulation is often the single way
to overcome the lack of equipment for complex topologies
experimental laboratory setup, with diverse traffic pattern
scenarios. Even for simpler topologies and traffic scenarios,
the simulation remains attractive due to the available facili-
ties on data collection and graphics generation and step by
step analysis of the different protocol machines.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55619003?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Discrete event simulation techniques are suitable for com-
puter networks modulation and analysis. Data packet flow
is seen as a sequence of events occurring at different time
instants. Computer networks simulation is a well defined
process including a set of methods to describe the network
topology, network elements behaviour, to observe network
status and an engine to manage and process the events.

There are several commercial and open source computer net-
work simulation packages. Only the more popular will have
here a brief description. For a more exhaustive list, please
see [9].

Network Simulator 2 (NS-2)[3] is a second version of the
simulator developed by Virtual InterNetwork Testbed[8] (VINT).
Now, NSF is funding a third version of Network Simula-
tor (NS-3). NS-2 is a very popular discrete event simulator
within networking research community. It includes a large
number of network protocol models. The NAM (Network
Animator) enables the graphic visualisation and protocol
checking of the simulations generated by NS. NS was devel-
oped using a dual programming language approach: OTcl
for flexibility and C++ for efficiency. C++ is used for very
frequent and persistent functions, like packet transmission
and reception. In the other side, OTcl is used for dynamic
protocol object configuration, source traffic pattern specifi-
cation and topology definition. OTcl defined objects have a
high update rate.

The SSFNet[7] is a mature simulation tool available since
1998. Most of components are distributed using open source,
but there are some commercial components. This package
is built from the following components: the simulation core,
written using Java and C++ named SSF(Scalable Simula-
tion Framework), a language to describe the simulated net-
work model, DML(Domain Modelling Language), and an in-
tegrated development environment (IDE) with a set of tools
for easy development.

GloMoSIM is a scalable simulation environment for wire-
less networks, with plans to include also wired and hybrid
networks support. It is a parallel discrete event simulator.
A commercial version named QualNet is available, but re-
search and academic organisations have free access to source
code and binaries.

The OPNET[6] is a commercial simulation package devel-
oped at MIT. Even without access to the kernel code, needed
for some kind of experiments, it provides a friendly interface
which enables the design of efficient simulations for large net-
works. Furthermore, OPNET provides a large set of docu-
mentation. When compared with NS-2, OPNET is a more
complete package including analytical tools, discrete event,
fluid and hybrid based simulations.

Fluid based simulations are an attractive choice to simulate
inter-domain routing large scale networks topologies. How-
ever as large topologies can be reduced to simpler ones with
identical graph properties and our target research focus is
the behaviour of the protocols, packets based simulations
seems appropriated. So, to benefit from previous experience
NS-2 has been selected.

3. MULTICAST ROUTING IN NS2
To run a simulation in NS-2, it is necessary to create a sim-
ulator instance, an object of the Simulator class. The sim-
ulator core is an event scheduler responsible for manage a
list of time stamped events which will be executed by order.
After that it is necessary to create a network topology: a set
of nodes and links between them.

A node is a set of objects of Classifier Class, called classifiers,
which are responsible for receive and retransmit packets.
The entry point of a node is identified by the entry variable
which points to the first classifier of the node. A data packet
generated by a local agent or received from the exterior, is
always delivered to this first classifier which must extract the
destination address of the packet and do the first classifica-
tion: determine if it is an unicast or multicast packet. It is a
multicast packet the packet is delivered to a multicast clas-
sifier which is referenced by a variable called multiclassifier.
This classifier has the multicast routing table with differ-
ent entries indexed by (S,G) or (*,G). Associated to each
multicast routing entry there is a replicator which has the
capability of send a packet to multiple outgoing interfaces.

To complete the topology, a set of links between nodes must
be created. When creating a link between any pair of nodes,
it is possible to specify the type of the link, its bandwidth,
end-to-end delay and queue type. A link is a collection of
connectors. The first one is referenced by the variable enqT
and its main function is to register the packet entrance into
the link queue. The connector queue is an instance of class
Queue and its main function is to manage a waiting queue. If
a packet is dropped the connector drpT is called. Otherwise,
if a packet is scheduled the connector deqT must register the
event and the connector Link is called in order to take into
account the propagation delay. Finally, the last connector
is ttl and it is responsible for decrementing the TTL (Time-
To-Live) packet field.

When dealing with routing, besides classifiers in all nodes,
it is necessary to create Routing Agents and to implement
a Route Logic Module. Routing Agents are responsible for
exchanging routing messages with routing agents in other
nodes. With this information the Route Logic Module com-
putes the best routes for all known destinations and updates
the routing tables in each classifier. Figure 1 presents a
simple topology with 4 nodes and shows the packets path
(unicast and multicast) between two of them.

4. QOS AWARE MULTICAST ROUTING PRO-
TOCOLS

Most of inter-domain multicast constrained multicast rout-
ing proposals are based on path probing strategy for scal-
ability reasons. This type of strategy is better suitable for
large scale networks, because it does not require the main-
tenance of global state information in the nodes. According
to path probing strategy the path searching process is initi-
ated by the new receiver which explores different alternative
paths and evaluates them in terms of how well do they fulfil
its requirements.

Existing path probing multicast routing protocols differ from
each other in the way multicast routing distribution trees are



multiclassifier_

A
dd

r
cl

as
si

fi
er

Po
rt

cl
as

si
fi

er

Agent/Mcast/Control Agent/Mcast/Control

A
dd

r
cl

as
si

fi
er

M
ul

tic
as

t
cl

as
si

fi
er

R
ep

lic
at

or
cl

as
si

fi
er

enqT_

enqT_deqT_ queue_

queue_ deqT_ link_

link_

ttl_

ttl_

drophead_

drophead_

drpT_

drpT_

Node entry

entry_

A

D C

B

Node
Duplex Link

Node

dmux_

classifier_

head_

Link

Link

1: Data Path between nodes in NS2

built. YAM [1] builds shared trees having the capability to
provide multiple routes to connect a new node onto an exist-
ing tree. In order to find multiple alternative routes from ex-
isting tree nodes to the new receiver, YAM relies on flooding.
QoSMIC[4] tries to alleviate the YAM flooding behaviour by
introducing a new element, the Manager Router. QoSMIC
uses two different procedures to find a feasible tree branch:
a local search and a multicast tree search. Local search is
initiated by the new member router by flooding Bid-Req
messages to its neighbours with scope controlled by TTL.
Any in-tree router that receives a Bid-Req message becomes
a candidate router and replies with a Bid message forwarded
to the new member. The Bid request message, on its way,
collects information about the path that can be used for se-
lection purposes. The multicast tree search occurs at the
same time, initiated by the Manager Router. After receiv-
ing a M-JOIN request from a new receiver, Manager Router
sends a Bid-Order message to a set of in-tree routers, that
became candidate routers and sends Bid messages exactly
as described for local search procedure. Figures 2a and 2b
illustrate the YAM and QoSMIC tree construction process.

PAQoSIDMR[2] is a path probing multicast routing proto-
col that takes network asymmetries into account. The right
way to deal with network asymmetries is to start the tree
construction from its root towards the new leaf member, but
this solution causes a greater join latency. In PAQoSIDMR
this problem is addressed building multiple directed shared
unidirectional multicast distribution tress, one for each mul-
ticast group. To avoid tree root routers overload join re-
quests are handled in a distributed manner by the first in-
tree router that receives them, thus relieving the tree root
of this task. In order to increase the possibilities of finding
a feasible path, a controlled number of retries may be con-
ducted by other in-tree routers if the first in-tree node fails
to find a feasible tree branch to join the new member.

Figure 2c illustrates a tree branch construction as done by
PAQoSIDMR. The new receiver host must send a join-request

message specifying its QoS requirements through the tree-
root of the multicast distribution tree for that group (the
tree root is a well known pre-defined node). The join-request
message is forward hop-by-hop until it reaches a router al-
ready in the multicast distribution tree. This router will
then initiate the new tree branch construction by sending
join-answer probing messages back to the new receiver. Be-
fore forwarding join-answer messages, all routers must col-
lect dynamic QoS metrics and append them to the message.
If the accumulated path QoS metric does not meet the QoS
requirements included in the request, the join-answer mes-
sage must be discarded and a Nack message is sent back.
Any join-answer message that reaches the new receiver con-
tains information about a feasible tree branch. A selection
procedure must be executed to select one of them according
to certain criteria and finally an Ack Message establishes the
new tree branch including the necessary state information in
each router.

If none of the possible alternative paths can meet the QoS
requirements specified, the in-tree node that received the
join-request message and led the new branch construction
can detect branch setup failures as it receives Ack and Nack
messages. If a Nack message arrives for all join-answer mes-
sages sent, the router forwards the original join-request mes-
sage to its upstream-neighbour. In extreme situations with
consecutive retry failures many in-tree routers may be in-
volved in the join procedure, which may result in a very
large join latency. In order to control better the join proce-
dure, a retry counter is included in the join-request to reduce
the number of retries to an acceptable limit.

5. SIMULATION ANALYSIS
NS-2 simulations are written in Tcl files that can be manu-
ally edited or built by scenarios preparation scripts. A sim-
ulation Tcl file contains code to build the topology, set link
and node parameters an run the simulation. It is basically a
set of initial events, tagged by virtual simulation time, that



a

b

d

e h

c

New
Member

Search ring for TTL=1

Search ring for TTL=2
Root

Multicast Tree

Search ring for TTL=3

Local Probing...

(a) Local probing (YAM)

a

b

d

e h

c

New
Member

TTL=1TTL=2

Local search enhanced with tree based search

Search rings

Tree Manager

Root

Multicast Tree

(b) Local search and Tree based search
(QoSMIC)

Inside tree probing (level=1)

a

b

d

e h

c
Root

New
Member

Multicast Tree Inside tree probing (level=2)

a

b

d

e h

c
Root

New
Member

Multicast Tree

(c) Inside tree probing (PAQoSIDMR)

2: Path probing strategies schematically compared

are injected in the scheduler event list. When the simula-
tion starts, each event is processed by simulation time order.
Simulation ends either because there are no more events in
the list or because simulator executes a specific stop event.

Each simulation produces results that usually demand for
further processing, in order to make them useful. NS-2
can generate by default two files, containing all packet level
events. For each packet generated during simulation, the
simulator logs all steps it takes in the simulation topology:
enqueue, dequeue, arrival and drop. The two files contain
the same type of information but in different formats. The
one with the Nam extension can be used to build an anima-
tion.

Animation is really useful on initial development state. At
this phase it is important to define a small fixed topology
with a simple carefully planned scenario. This scenario re-
sults can be used in the future to check if code changes are
affecting results for the test topology. When a patch code
is done, one should perform a simple diff operation between
results produced on the test topology and the ones previ-
ously stored. This allows the detection of good or bad code
patches.

But once the protocol implementation is stable, animation
is no longer useful. At this phase one needs to prepare big-
ger topologies and complex simulation scenarios. Results
can be obtained by two different ways: simple analysis of

the trace file or by forcing special outputs in code imple-
mentation. The best way may be the combination of the
two. Arrange for special log lines at important moments: a
node joining or leaving a group, a link included or excluded
from the multicast tree. Maybe one could also collect and
dump more useful data like the QoS metrics observed on
links, cumulated values for a tree branch, number of retries
in probing phase, etc. Many of this values are easy to ob-
tain because they are already available in protocol internal
state variables, but of course they still demand for further
post-simulation processing, in order to get average values
between multiple simulations. Logs should be produced us-
ing annotate trace method, to keep them in the global trace
file with a known syntax.

With this strategy, one should run a set of 100 or more
simulations for each simulation scenario established, process
the huge trace files produced for each simulation in order
to produce simple text files with average values for most
relevant metrics defined (TreeCost, QoS, etc). Graphics can
be produced using gnuplot or similar tool. We have selected
the R package for graphics.

5.1 Multicast routing strategies used in simu-
lation analysis

Simulation is, in fact, a tool that one uses for a certain pur-
pose. One simple goal is to achieve an implementation as a
simple proof of concept. In this case, it is in fact a protocol
specification tool. But it can be used for protocol analy-



sis. In the example case, three QoS aware multicast rout-
ing protocols have been compared: PAQoSIDMR, QoSMIC
and YAM. A priori we already know that they have char-
acteristics making them comparable. In fact they all use
a path probing strategy to achieve QoS. So the simulation
must be focused only on the probing method efficiency and
cost. Many variables however can affect the results and it
is not practical to make them change one at a time between
simulations, because of the huge number of combinations.
Here we have to identify a small set of variables that have
predictable impact on the probing results, like inter-domain
topology, link congestion, group membership, and plan a re-
duced set of experiments. It is however possible that the
first set of results points us for new experiments, because
some variable not initially considered is affecting results.

So, lets pay attention to the path probing strategies. The
oldest approach is to perform local probing using search
rings (YAM). We know it works well if groups are dense
and the new member is not located far way from the mul-
ticast tree already built. It may fail with small TTL val-
ues (expanded ring size). Recommended value is 5 but we
don’t expect it to behave well on inter-domain topologies
with sparse groups. We have to test this by changing both
topology and group sizes. Group size can be changed dur-
ing a single simulation by forcing join and leave operations
randomly. Topology size can be changed using topology gen-
eration tools.

The second routing strategy (QoSMIC) is an enhancement
of the first one that introduces a second probing phase, con-
ducted by a tree manager and started by several in-tree
nodes. The size of the tree and the position of the tree
manager may affect results. This phase is only a comple-
ment of the local search when it fails. So they are really not
comparable in this way, unless one reduces the time spent
in the first phase. Perform local search with TTL=2 and
move on to multicast tree search after failure. But we have
to introduce some variants to make comparison more rea-
sonable. One could avoid local search and perform only tree
probing (QoSMIC-mcast), or, use the best possible result for
this strategy: full tree search (QoSMIC-full). Every possible
node already in tree launches a probing packet towards new
member. We can also try to have the best possible result
with YAM by expanding TTL until success (YAM-full).

Having the best possible results for each routing approach,
it is also a good idea to have the worst case scenario. In
this case, the worst possible approach is to use a multicast
routing protocol unaware of QoS, that does not do any path
probing, like PIM-SM[5]. While there are many results pub-
lished using some or all of those routing protocols they are
not easy to use without repeating the experiments. To reuse
and share results a set of improbable conditions must hap-
pen: code access, code portability between different NS-2
versions, topology/scenario and result files available. Even
with all that available, metrics used could differ.

Te fourth routing strategy (PAQoSIDMR) pretends to achieve
better results in inter-domain level by avoiding all local ex-
pensive searches. New member tries to find any in-tree node
as fast as possible by sending a control packet towards root.
Probing is done by that node, and by other inner in-tree

Protocol Comments
PAQoSIDMR Retries in case of failure NRe-

tries=2
YAM Maximum search ring TTL=5

QoSMIC standard Local mode with TTL=2; Tree
search mode with 1/3 candidate
fraction, directivity and local mini-
mal enhancements

QoSMIC-mcast Multicast tree search only (with
same parameters)

QoSMIC-full Multicast tree search only with all
in-tree nodes as candidates...

PIM-SM PIM-SM standard version

1: Simulation analysis: multicast routing strategies used

nodes in case of failure, thus avoiding the complexity of hav-
ing a tree manager. It is expected to behave well even when
groups are sparse in inter-domain topologies. Table 1 sum-
marises this.

5.2 Hierarchical and Network Topologies
Simulation also makes possible to run tests in several differ-
ent topologies in an easy way. Topologies can be obtained
by mimic of real ones or algorithmically constructed from
scratch. There are several good topology generators (GT-
ITM, INET, BRITE, etc.) and also a strong effort to further
improve them. The goal of a topology generator is to build
topologies that look like the real ones at least in their major
characteristics. This implies that we must first know well
the real Internet topologies.

For the analysis of the multicast routing strategies, as well
as for other routing strategies in general, topology is a key
element. In our example its importance is even bigger be-
cause there is a claim that one can build a better solution
for the inter-domain scenario. This means that the top level
graph of Autonomous Systems (AS) and their relationships
can influence the efficiency and efficacy of the routing strat-
egy. The size of the topology is also important because it
has a strong impact in inter-member distance in the topol-
ogy. Can we really perform an expanded ring search on a big
topology? Probably we don’t need simulation to conclude
that, but we sure need it to establish the difference between
probing from inside or outside the multicast tree.

At inter-domain level we have to construct topologies, be-
cause it is not possible to mimic Internet topology, and there
are no guaranties that generated topologies have the char-
acteristics of the real one. Topology generators try to en-
sure that constructed topologies verify all power laws. Tech-
niques used are therefore different for straight flat topologies
and hierarchical transit-stub AS ones. Heuristics improve
the results. But perhaps the best solution at the moment is
to try to use as many generators and topologies as possible.
A practical issue that we need to take care of is the ad-
justment of the tool outputs to Tcl. Most of the generators
output in NS-2 friendly format, but some minor changes can
be turned in the source code.

INET generator has been excluded because the smaller inter-
domain topology that it constructs must have at least 3017



Name Generator Parameters
Flat 3.5 GT-ITM Method: geo; 100 × 100;

Links: Waxman; α = 0.033
Flat 6.4 GT-ITM Method: geo; 100 × 100;

Links: Waxman; α = 0.066
TS600 GT-ITM Method: transit-stub; 3

stub-AS for each transit-AS;
BRITE100 BRITE Method: AS + Waxman +

Incremental + Preferential ;
HS: 100; LS:100; N: 100, α =
0.15, β = 0.2

2: Simulation analysis: topologies used

nodes. It is out of the question to even load such a topo-
logy in NS-2 on a normal workstation with a routing proto-
col activated on each node. For multicast simulations this
means at least two protocols and two routing tables per
node. Simulator has to create several objects per node, and
packet level simulation becomes real painful. And that is
when everybody starts looking for other approaches for sim-
ulation, such as the ones based on fluid dynamics. However,
when QoS is the goal, like in this multicast routing experi-
ment, localised congestion, policy limitations and others are
very important issues to consider. Packet level simulation
ensures that they are not excluded.

While the focus is on inter-domain one can not exclude from
initial analysis the behaviour on a standard flat topology.
Table 2 gives the complete range of topologies considered in
our experiments.

5.3 Traffic Models
Besides topologies, that model the static objects of a net-
work, we must also bring traffic to the simulation in order to
reproduce the dynamic behaviour of a real network. Once
more we would like to have traffic patterns similar to the real
ones. One common way to do it is to use traffic generators
like the ones included in NS-2. A traffic generator generates
packets with a given size and puts them in the topology
with a certain rate. For multicast experiments we have used
the CBR traffic generator configured to produce a 210 byte
packet at each 420 ms, thus giving a small constant bit rate
of 4 kbps. Traffic generation greatly degrades the simulation
performance, because the number of resources needed is di-
rectly proportional to the number of packets that traverses
the topology. Each packet is a very small object that does
not really moves in the topology. Travelling is simulated by
moving a pointer to the packet from node to node. But that
does not solve the problem.

Another way to deal with the traffic is to reproduce only
its effects. Packets traversing a link shorten its available
bandwidth. Congestion introduces delays and losses that
can be registered only. On can build a traffic load genera-
tor that reflects the load effects on all objects. This can be
done once only, at the beginning of a simulation, or periodi-
cally through the simulation. Some topology generators, like
BRITE for instance, can use a distribution function (normal,
exponential, heavy tail) to generate the available bandwidth
on each link. This methodology can be followed and further
improved.

Our strategy in here was to generate multicast traffic in each
group, with CBR, and to avoid any other traffic as much as
possible, in order to be able to deal with bigger topologies.
Available bandwidth on links was artificially changed at the
beginning of each simulation and varies from simulation to
simulation. Multicast packets also help tracing tree shape
in NS-2 trace files.

5.4 Simulation Scenarios
Since our goal in the simulation is to compare the four dif-
ferent multicast routing strategies we must deal with group
dynamics in the simulation scenario. Group dynamics are
defined by three major parameters: the number of multicast
groups in each instant, the number of member that join each
group and finally the sequence of join leave operations. Too
many things. We can pay attention only to one group at
each simulation with no problem, considering that other do
exist but are considered as other traffic. Group size can be
varied from small to very large in the same simulation by
increasing or decreasing the number of join operations. In
this way we have reduced the problem to a sequence of join
leave events and the node that must perform it.

Simulation scenario is defined in the simulation script writ-
ten in Tcl and there is no problem to automate it according
to this (or other) scenario. While this can be reviewed at
any time it is very important to clearly define it before sim-
ulation in order to reduce the number of available distinct
results and also to make things easier in result interpreta-
tion. Group dynamics has a strong effect on multicast trees
constructed and good result interpretation demands for a
good knowledge of it.

In our simulations we rooted each tree on one randomly cho-
sen node. Nodes randomly chosen join the group at regular
time intervals until having 60% of all nodes as receivers. In
this set of experiments no leave operations were generated
since the focus of the simulation is the path probing strat-
egy. Path probing occurs at join time and depends on the
tree already constructed and the position of the new mem-
ber. Leave operations would only impact the tree size which
is already changing with the join operations.

Another important issue in this specific simulation scenario
is the QoS needed and really obtained by each member.
Again a lot of things to deal with. If a member expresses
QoS needs that routing protocols can not achieve, a deci-
sion needs to be taken: whether or not to connect the new
member to the tree. One possible approach is to understand
the requirements as mandatory and measure the connection
success rate. To reduce the number of variables changed
per simulation instead of generating QoS requirements per
member, we decided to always join each member to the best
available path. Different strategies can still be compared
with each other by success rate, but success is measured as
the percentage of nodes that achieved a QoS greater or equal
to each possible value.

5.5 Metrics
After having defined what to simulate and how, the next
step is to define what to measure and how. A small set of
metrics should provide a clear view on the efficiency and
efficacy of each multicast routing strategy.



Some metrics are more specific and related to QoS awareness
while others are more general and highlight tree character-
istics. One metric already lined up in the previous section is
the QoS obtained by each member. Each routing strategy,
after path probing, provides the new member with the best
path available. In this set of results the best possible path
is the one with the higher available bandwidth, and QoS ob-
tained is expressed as the available bandwidth on the entire
branch from tree root to the new member. Success measures
can be stressed graphically with the percentage of members
versus the QoS obtained.

Metric Meaning
ObtainedQoS QoS value new member gets when

joining tree

(a) Efficacy: ObtainedQoS

Metric Meaning
NumLinks Number of links in multicast tree
SumLinks Sum of link cost for all tree links
ReplCost Average packet replication cost

TreeHeight Average links per tree branch
TreeCost Average tree branch cost

(b) Efficiency: Global Tree Cost

Metric Meaning
Msgs Average number of control msgs per

request
PathsProbed Number of paths probed per re-

quest
Latency Join probing time (best answer

only)

(c) Efficiency: Control Overhead

3: Simulation analysis: metrics

Efficiency measures are divided in two categories (table 3):
tree cost and control overhead. Global tree cost can be ex-
pressed in a simple way as the number of links that belong
to the multicast tree. This number can be obtained by ex-
plicitly counting them in code implementation whenever a
link is added to the tree. While easy to obtain its expressive
power is reduced because we don’t know how tall or fat is
the tree or the real link cost. Another measure, also global,
can be obtained by adding all tree link costs. It suffers how-
ever from the same limitations of the previous one related to
the tree shape, but takes real link cost and not simple hop
count measures.

But in this category the best metric is the replication cost
because of its improved semantic. Instead of counting the
number of links or its cost, one can use the NS-2 trace file
and follow one packet from source to destination. Each time
the packet is replicated at some node, one most also follow
each replica, cumulating the cost of the link followed. At
first it may look exactly like the sum of links but it is not
because it counts only branches really used by data. The
average number of links per tree branch and the average
tree branch cost give a perspective on the tree height.

The second category of efficiency measures accounts for the
multicast tree construction effort in terms of the number of

control messages generated by each operation. Some ap-
proaches achieve better efficacy but at the expense of a
greater construction effort, so to be fair on result analysis
all metrics are needed. Since the focus in result analysis is
the path probing strategy one may complement the analy-
sis with two specific measures: number of paths probed and
time spent in the entire probing phase. Again, these two
metrics (PathsProbed and Latency) can be collected and
dumped in the protocol implementation while the number
of control messages is better obtainable by counting them in
the NS-2 trace file.

6. RESULTS
Figure 3 presents a set of results obtained. All results pre-
sented are an average of 100 distinct simulation runs for each
topology and scenario.

The upper two graphics (3a and 3b) show efficacy measures
on flat and hierarchical topologies. The first one shows the
QoS obtained for topologies with 100 nodes generated by the
GT-ITM tool while the second presents results also for 100-
node hierarchical AS topologies generated by BRITE. Avail-
able bandwidth varies in both cases between 0 and 10 Mbps.
PIM-SM is, in both cases and as expected, the bottom line
since it does not use any path probing. By looking at the
graph we know that 50% of the nodes that joined the group
achieved only less than 3 Mbps, either in flat or hierarchical
topologies. The relative positions of the other protocols re-
main the same in both graphics showing no strong evidence
that the type of topology affects results. This reading can be
later transformed into a conclusion if confirmed by further
experiments. Figure 3b includes more lines than 3a because
we are trying to see how PAQoSIDMR parameter number
of retries influences the results.

The two bottom graphics (3c and 3d) show the efficiency
metrics. The first one is the average number of control mes-
sages per join operation and the second one shows the aver-
age join latency. They confirm that local search can be very
expensive specially when the tree is small and new members
are far most of the time very far way from it.

7. CONCLUSIONS
This paper reports the experience gained by the usage of
simulation tools in multicast routing with QoS. It is there-
fore not focused on the real simulation results reported but
on the process used to obtain them. NS-2 has been used for
several years and by thousands of investigators with success
and the new NS-3 version is already in beta stage.

One known difficulty founded is that code contributions usu-
ally stay sticked to a NS-2 version. The code that imple-
ments the four mentioned multicast routing strategies runs
well on NS-2 2.1b8 but we haven’t tried to patch it for the
latest 2.30 version. That happens with almost all contri-
butions when they start to receive less attention from the
community.

Many QoS related functions should be integrated in the NS-
2 core to avoid custom adjustments. That already happened
with some important pieces of the DiffServ quality of service
model, like RED queues, Edge/Core nodes, etc. QoS mon-
itoring on links is easy to achieve but users always include



QoS Obtained by Receivers

QoS (bandwidth)

Jo
in

 P
er

ce
n

ta
g

e

Plana100_6.4, Assim., Unif[1.5Mb−10Mb]

0Mb 1.5Mb 3.0Mb 4.5Mb 6.0Mb 7.5Mb 9.0Mb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
PIM−SM
QoSMIC
QoSMIC (mcast only)
QoSMIC (full)
PAQoSIDMR

(a) QoS obtained on Flat100 6.4 topologies

QoS Obtained by Receivers

QoS (bandwidth)

Jo
in

 P
er

ce
n

ta
g

e

BRITE100, Sim., Unif[1.5Mb−10Mb]

0Mb 1.5Mb 3.0Mb 4.5Mb 6.0Mb 7.5Mb 9.0Mb

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
PIM−SM
QoSMIC
QoSMIC (mcast only)
QoSMIC (full)
PAQoSIDMR
PAQoSIDMR (retry 2)
PAQoSIDMR (retry 3)
PAQoSIDMR (retry all)

(b) QoS obtained on BRITE100 topologies

Control Messages

Number of Join/Leave Operations

N
u

m
b

er
 o

f 
C

o
n

tr
o

l M
es

sa
g

es
 S

en
t

BRITE100, Sim., Exp[1.5Mb−10Mb]

0 10 20 30 40 50 60

0

2000

4000

6000

8000

PIM−SM
QoSMIC
QoSMIC (mcast only)
QoSMIC (full)
PAQoSIDMR
PAQoSIDMR (retry all)

intervalos de confiança de
95% para a média estimada

(c) Control messages overhead on BRITE100
topologies

Join Latency

Time (seconds)

L
at

en
cy

 (
m

s)

BRITE100, Sim., Exp[1.5Mb−10Mb]

0 50 100 150 200

0.00

0.05

0.10

0.15

PIM−SM
QoSMIC
QoSMIC (mcast only)
QoSMIC (full)
PAQoSIDMR
PAQoSIDMR (retry all)

intervalos de confiança de
95% para a média estimada

(d) Join Latency on BRITE100 topologies

3: Simulation results: an illustrative snapshot

private variables and procedures to do it, making it more
difficult to share and to upgrade. The same should be said
about inter-domain issues. The definition of AS and a BGP-
like implementation are missing and should be provided as
part of the major distribution to make the usage of NS-2 for
inter-domain routing more easy.

Another important issue, this one not related to NS-2, is
the difficulty to share and compare results between users.
One can observe interesting results published on an article
but the effort to reproduce is huge. With papers of six to
ten pages long, it is not possible to provide all details and
the authors must make their point and prove it. Details are
sometimes forgotten. The learning curve of a powerful tool
like NS-2 is high but the results curve is much higher. After
simulation, and also not related to NS-2, comes the need for
post-processing tools. The natural tendency to build post-
processing scripts à la carte or to try to use some general
purpose analysis tools distracts users from their real goals.
In this point it is up to each users community to share ex-
periments, to enumerate the needs and work on the tools
that can satisfy them. On the evaluation of QoS aware mul-
ticast routing strategies, packet level simulation as the one
provide by NS-2 plays is an indispensable tool.

8. REFERENCES
[1] K. Carlberg and J. Crowcroft. Building shared trees

using a one-to-many joining mechanism. ACM
Computer Communication Review, pages 5–11, 1997.

[2] A. Costa, M. Nicolau, A. Santos, and V. Freitas. A new
path probing strategy for inter-domain multicast
routing. Next Generation Internet Networks, 2005,
pages 9–15, 18-20 April 2005.

[3] K. Fall and K. Varadhan. The NS Manual, Jan. 2001.
URL=http://www.isi.edu/nsnam/ns/ns-
documentation.html.

[4] M. Faloutsos, A. Banerjea, and R. Pankaj. Qosmic:
Quality of service sensitive multicast internet protocol.
In SIGCOMM, pages 144–153, 1998.

[5] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas.
Protocol Independent Multicast - Sparse Mode
(PIM-SM): Protocol Specification (Revised). RFC 4601
(Proposed Standard), Aug. 2006.

[6] O. Inc. Opnet - network modeling and simulation
products, 2005. URL=http://www.opnet.com/.

[7] A. Ogielski, D. Nicol, and J. C. have. Ssfnet - scalable
simulation framework, 2002.
URL=http://www.ssfnet.org/.

[8] V. Paxson and S. Floyd. Why we don’t know how to
simulate the internet. In WSC ’97: Proceedings of 1997
Winter Simulation Conference, pages 1037–1044,
Atlanta, GA, USA, Dec. 1997. ACM Press.

[9] A. E. Rizzoli. A collection of modelling and simulation
resources on the internet, 2005.
URL=http://www.idsia.ch/ andrea/simtools.html.


