

 1

A Fast Model-Free Morphology-
Based Object Tracking Algorithm

Jonathan Owensa & Andrew Hunterb
aSchool of Computing & Technology

University of Sunderland, UK
jonathan.owens@sunderland.ac.uk

bDepartment of Computer Science
Durham University, UK

andrew1.hunter@durham.ac.uk

Abstract

This paper describes the multiple object tracking component of an automated
CCTV surveillance system. The system tracks objects, and alerts the operator
if unusual trajectories are discovered. Objects are detected by background
differencing. Low contrast levels can present problems, leading to poor object
segmentation and fragmentation, particularly on older analogue surveillance
networks. The model-free tracking algorithm described in this paper
addresses object fragmentation, and the object merging that occurs when
proximate objects segment to the same connected component.

1 Introduction

Automated visual surveillance aims to provide an attention-focussing filter to enable

an operator to make an optimum decision whenever an unusual event occurs [1]. This is
achieved by directing the operator’s attention only to those events classified as unusual.
The backbone of such systems typically comprises something like the processing
pipeline shown in figure 1.

Image
Acquisition

Object
Segmentation

Object
Tracking

Object
Classification

Behaviour
Classification

Scene
Description

Figure 1. Typical image processing pipeline for automated video surveillance

The blocks outlined in bold are dealt with in this paper, focussing on the object

tracking module, which must deal with the uncertainty of object segmentation. This
uncertainty is manifest when moving objects are segmented by background
differencing, where it is common for the segmented object to fragment due to parts of
the object matching the greyscale of the background. This problem is exacerbated when
CCTV system managers wish to implement modern automated surveillance techniques
on top of the existing surveillance infrastructure. Older cameras are typically low

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/55619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

resolution, monochrome, analogue devices with CCD arrays of low dynamic range,
producing images of low contrast.

Even complex multimodal background representations cannot successfully segment
objects if these closely match the background. Typical object tracking algorithms
employ the Kalman filter or some other predictor-corrector iterative algorithm for
dealing with uncertainty in the tracking plane [2], [3], [4], [5], [6]. When the uncertainty
of object segmentation is too great, the tracking algorithm relies on the predictor step,
and the state of the tracked object is updated using the internal model, rather than the
observed measurements. It is an implicit assumption in typical background differencing
and tracking algorithms that segmentation is successful at maintaining objects
holistically, without fragmentation.

When objects merge in the binary difference image, predictor-corrector algorithms
may use partial image evidence to update an object state, but rely more heavily on the
internal model of object parameters, and do so until such time as the objects separate
and can be tracked individually. This problem can be overcome, together with other
phenomena such as occlusion, with an explicit model fit to tracked objects [5], [7], [8].

In this paper, a simple, fast object tracking algorithm is described which attempts to
maintain the morphology of tracked objects, given the evidence provided by the
segmentation block of the pipeline. This algorithm is part of a hybrid novelty detection
system [9], [10]. The overall philosophy of the system is that it should be self-
organising, requiring no user defined models of scene elements, object forms or object
motion. A self-organising map is used to measure the novelty of a vector describing
local motion, while a hierarchical network classifies the global pattern of object motion.

2 Summary of Algorithm

The method of choice for moving object segmentation in most tracking algorithms is

background differencing. Methods based on the calculation of optic flow are
computationally intensive and use a raw image feature match to maintain a track if the
object stops moving [11], [12]. The multiple gaussian per pixel representation used in
[2] is robust, but entails a huge computational cost. To keep the background generator
computable in real-time on non-specialised hardware, we employ a simple low-pass
filter [13], [14].

The CCTV images are obtained from an analogue, monochrome camera at a
resolution of 640x480 pixels, with a colour range of 256 grey values. The low-pass filter
method is able to cope with slow changes in luminance, such as the movement of
shadows cast by static objects. At time t, the difference and background images are
calculated as follows:

�
�
� >−

=
otherwise 0

),(),(1
),(

TcrBcrI
crδ (1)

)1()1()()(−×−+×= tBtItB ββ if 0),(=crδ (2)

Where r and c are the row and column subscripts of a single pixel, δ is the difference
image, I is the input image, and B is the background image. If the difference δ(r,c) is
greater than the threshold, T = 12, the pixel is labelled as foreground, while background
pixels are modified by expression 2, where β=0.1 and controls the rate of the
background update. Sufficiently rapid luminance changes cause background
differencing to fail. To guard against this eventuality, the system counts the total

 3

number of pixels assigned to the foreground and if this is greater than 60% of the image,
the entire background image is reset and tracking is restarted.

Noise is removed by applying a morphological “opening” operator to the difference
image. The pixels that remain classified as foreground are collected into 4-connected
components and assigned unique identities. Examples of pedestrians and their
segmented silhouettes are shown in figure 2. Along with an identity, each object has an
associated feature vector, the elements of which are area, width, height and a histogram
of the greyscale distribution of object pixels. This feature vector is used to match objects
from frame to frame, as described in detail in the following section. (In this paper, the
term ‘silhouette’ describes a single connected component, as shown in the two images in
the central column in figure 2).

Figure 2 Examples of partially segmented silhouettes and the objects they delineate.

3 Object Tracking

The object tracker described here is a purely measurement based object-to-silhouette

matching algorithm with morphological manipulation that deals with uncertainty in the
segmentation algorithm. The philosophy of the tracking algorithm is motivated by
general top-down assumptions of the types of unusual behaviour and normal activity
that the system will have to deal with. Based on a typical car park scene, shown in
figure 2, the following assumptions are made:

1. Activity of pedestrians is of primary interest; vehicles are tracked but their
activity will not be passed to the “behaviour” classifier modules.

2. Vehicle crime, the main form of novel behaviour that is of interest given the
monitored scene, is most likely to be carried out by independent pedestrians.

3. Pedestrians entering the scene in a group, i.e. with very similar temporal and
spatial origins with respect to the tracking plane, are likely to have a common
origin and destination. Hence, tracking the centroid of the group will give a
reasonable approximation to individual trajectories within the group.

4. Pedestrians with differing spatial and temporal origins may also have differing
intended destinations. A distinct history for each object should be maintained,
even if the silhouettes of such objects merge.

Based on the above assumptions, the tracker attempts to track objects in the form in
which they are initially segmented. Therefore, the system will try to maintain the
tracking of distinct objects, even if their segmented silhouettes merge with those of
other objects. This entails the use of a silhouette-partitioning function to separate
merged silhouettes prior to the best-match process.

The algorithm will also try to maintain the overall morphology of a group, which
entails the use of a silhouette-combiner which attempts to maintain the track of a group

as a single entity. This function serves a two-fold purpose. If a group of pedestrians is
being tracked, a global track on the whole group will be maintained by merging any
group members who temporarily separate from the group silhouette. On the other hand,
if the segmentation of an object fails and it becomes fragmented into distinct
components, the silhouette-combiner will attempt to gather the fragments together until
the best match with the object is achieved (see figure 2).

After the background differencing step, the binary image consists of silhouettes,
where a number of silhouettes may correspond to a single object (fragmentation), or a
single silhouette may “cover” more than one object (merging). Associated with each
object and silhouette is a feature vector, fi = [a,w,h,g] where g is a 16 element vector of
the greyscale histogram covered by silhouette i (fig. 3c,d), a is the area, or number of
pixels making up the silhouette and w and h are the width and height of the minimum
bounding rectangle (fig.3a).

Figu
width
grey

Cent

object a
object Q

which is
and wid
differen
be no o
the algo
to track
proceed
preferen
fragmen

Step
calculat

where d
and S, a
vector i
the Euc
denomin

(a)

re 3 (a) Object delinea
 calculated from bina

scale histogram (d).

ral to the algorithm d
nd silhouette feature
 and silhouette S is de

 [QaSQd −=),(

 a four element vecto
th of the object and si
ce vector. When track
bjects to which the ne
rithm will jump to step
ed objects instantiate
s by trying to mat
tially matching silho
tation and merging.
 1 – Naïve Match:
ed, and is given by the

k(Q,S) is the kth elem
nd fk(Q) is the feature
n the denominator of e
lidean length of the v
ator have the effect of
(b)

ted by minimum boun
ry silhouette. (c) Se

escribed below is t
vectors. The differe

fined as

SQSQS wwhha −− ,,

r comprised of the ab
lhouette and the sca
ing begins (or after t
wly segmented silho
 8, where sufficiently
new entries in the o

ch silhouettes cons
uettes to establish

The “cost” of every
 scalar value

 �=
k

k

k
ji

Q
SQc

(
),(

f
d

ent of the difference
 vector of object Q.
xpression (2) is trans
ector. The elements
 scaling the values o
(c)

ding rectangle. (b) Area, h
gmented object used to

he concept of “differen
nce between the featu

() ()]SQSQ gggg −•−,

solute differences of th
lar length of the greysca
he scene has been empt
uettes can be compared
 large silhouettes that a
bject list. Otherwise, t

ervatively to existing
ed objects, new objec

 object to silhouette a

i

ji

Q
S
)(

),

 vector calculated betw
The histogram element
formed into a scalar va
 of the object feature
f the difference vector, a
(d)
4

eight and
 calculate

ce” between
re vectors of

 (3)

e area, height
le histogram
y), there will
; in this case,
re unmatched
he algorithm
objects, by

ts, handling

ssignment is

 (4)

een object Q
in the feature
lue by taking
vector in the
ssuming that

 5

the within population coefficients of variation are roughly equal for the separate feature
vector elements.

The match matrix is initialised by assigning silhouettes to objects, on a per object
basis, where a single silhouette may be matched to more than one object. The elements
of match matrix M are set where expression 6 is satisfied:

100

001
010

1

0

10

�

�����

�

�

�

n

m

Q

Q
Q

SSS

M =
 (5)

 ()},{minarg where1 kjkji SQciM == (6)

where a non-zero entry indicates a match between object Q and silhouette S, and there
are n objects and m silhouettes.

At the same time the initial match matrix is being constructed, a valid-match matrix
is calculated based on an object’s location and search radius around that position. A
valid search radius, r (80 pixels) establishes a limit on the matches that can be evaluated
later on in the algorithm, i.e. the merging function will only consider merging
silhouettes within radius r. Hence we have a matrix V, the same size as M which has
non-zero elements corresponding to possible matches. After the initial unconstrained,
naïve match, inappropriate matches are easily removed by the logical AND of the valid-
match and match matrices, thus

 VMM ∧=: (7)

In an ideal situation, the naïve match would be enough to match objects to the
segmented silhouettes. The remaining steps of the algorithm are designed to address the
errors that may arise from object fragmentation and merging.

Step 2 – Remove Duplicate Matches: As the naïve match is allocated by choosing
the lowest cost match per object, there exists the potential for match conflicts, where a
silhouette is initially matched with more than one object. At this stage, objects are
allocated to one of two classes, transient or non-transient. Transient objects have only
been instantiated for one frame – an object must find a silhouette match over two frames
before it is classified as non-transient. If there are match conflicts, silhouette matches to
transient object are removed if these overlap with matches to non-transient objects. This
step makes it less likely that false object will interfere with the tracking of real objects.
False objects may be attributed to noise or interaction of the object with the
environment, such as reflections on vehicles.

Step 3 – Evaluate Possible Merges: Where match conflicts arise between non-
transient objects, the objects are combined by treating the separate objects as a single
macro-object, Θ, and calculating a single feature vector accordingly. The differences of
the objects assigned to the disputed silhouette are combined as follows,

 �=
k k

SUM SQ),(dd (8)

which is an element-wise summation over the k objects matched to silhouette S. The
cost of the macro-object-to-silhouette match is compared to dSUM in the following
expression

 �
−Θ

=Θ
j SUM

j

SUM
jj S

Sc
d

dd),(
),((9)

 6

where the summation is across the i elements of the difference vectors. The denominator
has the property of scaling the elements so the sum is not dominated by the larger
elements, as discussed above, and the scalar value c(Θ,S) will be greater than zero if the
macro-object match increases the feature difference, and below zero if the match is
improved. If c(Θ,S) is less than zero, the conflicting matches are retained and will be
dealt with at a later stage. Otherwise, the match with the lowest cost is retained and the
other objects are reallocated to the next best matches available, i.e. to those silhouettes
not already assigned to non-transient objects, in a greedy incremental search.

Step 4 – Remove Duplicate Matches: Non-transient object matches modified in the
last part of step 3 may have been allocated to silhouettes matched to transient objects.
This is permitted because established objects take priority over transient objects as it is
possible these may simply be a product of a patch of noise in the last frame. Transient
object matches that conflict with the relocated non-transient objects are removed. Each
silhouette allocated to a non-transient object is labelled as “securely matched”, and the
difference vectors, d(Q,S), recalculated ready for the next step.

Step 5 – Partition Merged Silhouettes: Here we apply the first of the
morphological refinement algorithms; the silhouette-partitioning function is applied to
resolve silhouettes matched to more than one non-transient object. If a duplicated match
got past step 3, it is likely that the silhouettes of the objects have merged and require
separating to allow the tracker to maintain a separate track of each object.

Silhouette Partition Function: Given the (x,y) co-ordinates of each pixel in the
silhouette, the sum of least squares linear regression line, y=a+bx can be calculated
directly from the following expressions:

 ()() ()()
()22

2

��

����
−

−
=

xxn
xyxxy

a (10)

 ()()
()22
��

���
−

−
=

xxn
yxxyn

b (11)

where the summation is applied to all pixels in the silhouette.
Each pixel is projected onto the linear regression line giving a histogram of the

silhouette’s distribution of mass along the line. The silhouette is divided by placing
partition lines at intervals along the regression line, lr. To calculate the partition points,
the sizes of the objects (at t-1) participating in the split are listed in according to their
relative positions along the x-axis. Given n objects, there will be n-1 partitions p, based
on their distribution of “mass” among the n objects. If the left-most extent of the
silhouette along the regression line is the origin, and the right-most extent is unity, the
partitions pm will lie in the range {0,1},

)11(

1

1 −≤≤=
�

�

=

= nm
a

a
p n

k
k

m

j
j

m

 (12)

where pm is partition m, aj is the area of object j and n is the total number of objects
participating in the split. Moving from left to right along the silhouette regression line
histogram, the pm ratios are used to place the partition points relative to the total mass of
the merged silhouette. Each pixel can now be labelled according to its projection onto
the regression line (figure 4). Calculating the partition intervals with expression (12)
assumes that the overlap between the participating objects is not significant. Large
overlaps will mean the partitions are offset with an error that increases as we progress
from right to left along lr, as illustrated in figure 5.

 7

Figure 4 Example of silhouette partitioning. The linear regression line is shown in
white, and the resulting partition is illustrated by the three grey levels mapping the
partitioned objects.

Figure 5 If the objects to be partitioned are heavily overlapping, the partitioning
function may have trouble making the split; here the figure on the right is distorted.

Based on the pixel labels, a feature vector is calculated for each sub-silhouette. The

differences between the feature vectors of the participating objects and the new
partitioned silhouettes are calculated and the cost evaluated with the following
expression

 �
−Φ

=Φ
j

j

jj

SQ
SQQ

Qc
),(

),(),(
),(

d
dd (13)

Where the sum is across the j elements of the difference vectors, d(Q,S) is the difference
between the feature vectors of object Q and un-partitioned silhouette S and d(Q,Φ) is the
feature difference between object Q and one of the partitioned sub-silhouettes, Φ. The
partition is accepted if at least one object has a c(Q ,Φ) value below zero, indicating that
it’s match has been improved. Between the participating objects and sub-silhouettes, the
new matches are assigned on a lowest difference basis, as in the naïve match performed
in step 1.

The object match matrix M is adjusted to accommodate the new silhouettes and
revised match assignments, and these can take part in the subsequent steps in exactly the
same way as unmodified silhouettes.

Step 6 – Merge Fragmented Silhouettes: Here, the possibility of object
fragmentation is addressed, in which an object may appear as several separate
silhouettes in the binary difference image. Non-transient objects already matched to a
single silhouette combine this with any other silhouettes lacking a secure match within
the valid search radius, the feature vector of the combined silhouette, Ψ, treating the
separate silhouettes as a single entity. By recalculating a single feature vector for
separate silhouettes, a fragmented silhouette may be recombined provided the
combination improves the match to the tracked object. The cost of a new match is
evaluation with the expression

 8

 �
−Ψ

=Ψ
j

j

jj

SQ
SQQ

Qc
),(

),(),(
),(

d
dd (14)

As with expressions 6 and 10, if c(Q,Ψ) is below zero the combination is accepted and
the silhouettes are merged into a single entry in the silhouette list. This process
continues until all unallocated silhouette fragments within the valid match radius have
been considered.

Step 7 – Refine Transient Matches: The so-called transient objects may have been
instantiated over a patch of noise in the previous frame, or they may be genuinely new
object entering the field of view. A cost-reducing feature combination step is performed
across these objects as in step 6, i.e. at this stage only transient objects are examined and
may only be combined with other transient objects. This priority given to persistent
objects is one way to reduce the susceptibility of the overall system to short-lived noise
and temporary object fragmentation.

Step 8 – Update Objects: Given the match matrix M, the object lists are updated.
Objects without a match are removed and each unassigned silhouette of sufficient size
instantiates a new object in the list. The size criterion helps to prevent persistent noise,
which is usually comprised of small image patches, from instantiating an object list
entry.

5 Object Based Reference Update

The stationarity of non-pedestrian objects is determined to assist in maintaining a

valid reference image. When a object is stationary for >16 frames (i.e. 4 seconds at the
4Hz sampling interval) the object is inserted into the background image, pedestrians
typically sway even when standing, so inserted objects are typically parked vehicles.
The previously determined minimum bounding rectangle of the silhouette is used to
define the region of the input that is copied to the background.

Once an object has been inserted into the background, its object list entry is
transferred to a “recently-inserted-object” list, and foreground objects, i.e. pedestrians,
can now be tracked as they pass in front of or exit the vehicle. If the event was a “drop-
off”, rather than a parking event, the vehicle will subsequently move away from its
previously stationary position, leaving a “hole” in the background. The negative object
will be detected as being stationary, and the centroid can be compared to those in the
“recently-inserted-object” list. If the distance between the stationary object centroid and
a list entry is below a threshold, the object is inserted immediately into the background,
thereby patching the “hole” as quickly as possible.

This stationary object reference update is useful because of the assumption that the
system will only submit pedestrian activity to the novelty detection components, thereby
dictating that tracking localises pedestrians at the expense of tracking other objects.

6 Performance of the Object Tracker

The object tracking algorithm was evaluated with respect to the monitored scene as

interpreted by a human observer, the overall description of which could be called the
‘operator perceived activity’ (OPA). The operator looked for discrepancies between
actual activity and that “perceived” by the tracker.

The system was evaluated on 3 days of live video from 8:00am to 10:00am,
comprising a total of 6 hours, spanning a range of activity levels, from peak activity to
relatively quiescent periods. The tracker performance is shown in table 1. The left side

 9

of the table summarises results for pedestrian events, and the right shows the vehicle
events. There were a total of 311 separate events, 264 of which were tracked perfectly,
i.e. 84.9% correct. Three examples of poorly segmented objects successfully tracked are
shown in figure 6. The instances where there was a discrepancy between the tracker and
the OPA are discussed below.

 Table 1 Performance of the object tracker, comparing the number of vehicles and
pedestrians detected by the object tracker (columns) with the actual events as
defined by an operator (rows).

Figure 6 Examples of fragmented objects that were successfully tracked.

Correctly tracked events lie down the main diagonal of both sections of the table;
e.g. there were 120 instances where a single pedestrian was correctly tracked. The 27
entries where one pedestrian was present but two pedestrians were tracked refers to the
situation where a pedestrian fragmented and one segment was momentarily tracked as a
separate pedestrian – this situation was temporary and the extra transient track did not
interfere with the tracking of the true object. The 3 instances where a pedestrian was
present but was not tracked (cell {1,0} in the left of table 1) was due to excessively poor
segmentation, which meant there were no fragments large enough to instantiate an
object.

The 9 instances of pedestrians being tracked when in fact there were none (cell {0,1}
in the left of table 1) was due temporary regions generated by phenomena such as
reflections of pedestrians on vehicle windows, detached shadows from vehicles or
elongated fragments of vehicles. The single instance where a vehicle was incorrectly
tracked (cell {1,2} in the right of table 1) was due to a neatly segmented vehicle giving
rise to two vehicle sized objects which were tracked separately. It should be noted that
pedestrian activity is not submitted to the novelty detection networks until the pedestrian
has been tracked coherently for approximately 3 seconds, so the entries in the left side
of table 1 lying above the main diagonal, showing tracking false pedestrians, were not
passed on to the novelty detectors. From the point of view of activity classification,
significant tracking errors were those lying below the main diagonal in the left side of
table 1. These were instances where the tracker “lost” the track on one or more
pedestrians, thereby rendering them “invisible” to the novelty detectors. Therefore,
considering only those table entries lying on or below the main diagonal, out of 132
separate pedestrian events, 125 were successfully passed to the classifier stages of the
surveillance system, a success rate of 94.6%.

 Number of Pedestrians
Tracker

Number of Vehicles
Tracker

 0 1 2 3 0 1 2 3
0 9 1 0 0 0 0 0
1 3 120 27 2 1 0 139 1 0
2 0 3 4 0 2 0 0 0 0

OPA

3 0 0 1 1 3 0 0 0 0

 10

7 Discussion

The tracking algorithm described in section 4 is able to combine object fragments to

allow tracking when segmentation is poor. The tracking algorithm attempts to maintain
objects in the form in which they were first instantiated, which is achieved by means of
two morphological operators. As shown in table 1, sometimes the fragmentation of
objects is so bad that a perfect track cannot be maintained. However, this can be dealt
with by the next highest module in the processing pipeline. Indeed, by accepting the
motion data only from objects that have been in existence for over a given period, the
novelty detection modules [9], [10], can prevent transient false object tracking from
generating false alarms.

The algorithm is able to track poorly segmented objects on the basis of form only,
and no prior models of size, shape or texture are needed. This is consistent with the
overall strategy of a self-organising system, were objects are tracked and their behaviour
is classified without a priori knowledge built into the system. The algorithm is
extremely fast, as the elements used during the match process are simple macroscopic
features such as silhouette size, width, height and the greyscale histogram.

References

1. Foresti, G.L., Mähönen, P., Regazzoni, C.S. (eds): Multimedia Video-Based Surveillance
Systems – Requirements, Issues and Solutions. Kluwer Academic Publishers

2. Stauffer, C., Grimson, W.E.L.: Learning Patterns of Activity Using Real-Time Tracking.
IEEE Trans. PAMI, Vol. 22, No. 8 (2000)

3. Foresti, G.L.: A Real-Time System for Video Surveillance of Unattended Outdoor
Environments. IEEE Trans. Circuits and Systems for Vid Tech, Vol. 8, No. 6 (1998)

4. Foresti, G.L., Roli, F.: Learning and Classification of Suspicious Events for Advanced
Visual-Based Surveillance. In: Foresti, G.L., Mähönen, P., Regazzoni, C.S. (eds):
Multimedia Video-Based Surveillance Systems: Requirements. Kluwer Academic Publishers

5. Remagnino, P., Baumberg, A., Grove, T., Hogg, D., Tan, T., Worral, A., Baker, K.: An
Integrated Traffic and Pedestrian Model-Based Vision System. Proc. BMVC, Vol. 2 (1997)

6. Rasmussen, C., Hager, G.D.: Probabilistic Data Association Methods for Tracking Complex
Visual Objects. IEEE Trans. PAMI, Vol. 23, No. 6 (2001)

7. Ferryman, J.M., Worral, A.D., Sullivan, G.D., Baker, K.D.: Visual Surveillance Using
Deformable Models of Vehicles. Robotics and Autonomous Sys., Vol. 19, No. 3-4 (1997)

8. Pece, A., Worral, A.: A Statistically-based Newton Method for Pose Refinement. Image and
Vision Computing, Vol. 16, No. 8 (1998)

9. Owens, J., Hunter, A.: Application of the Self-Organising Map to Trajectory Classification.
IEEE Third International Workshop on Visual Surveillance (2000)

10. Owens, J., Hunter, A., Fletcher, E.: Novelty Detection in Video Surveillance Using
Hierarchical Neural Networks. Proc. ICANN (to appear) (2000)

11. Boghossian, B.A., Velastin, S.A.: Image Processing System for Pedestrian Monitoring Using
Neural Classification of Normal Motion Patterns. Meas. and Control, Vol. 32, No. 9 (1999)

12. Medioni, G., Cohen, I., Bremond, F., Hongeng, S., Nevatia, R.: Event Detection and
Analysis from Video Streams. IEEE Trans. PAMI, Vol. 23, No. 8 (2001)

13. Makarov, A.: Comparison of Background Extraction Based Intrusion Detection Algorithms.
IEEE Int. Conf. Image Processing (1996)

14. Kehtarnavaz, N., Rajkotwala, F.: Real-Time Vision-Based Detection of Waiting Pedestrians.
Real-Time Imaging, Vol. 3 (1997)

	A Fast Model-Free Morphology-Based Object Tracking Algorithm
	Abstract
	1 Introduction
	Figure 1. Typical image processing pipeline for automated video surveillance

	2 Summary of Algorithm
	3 Object Tracking

