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Abstract 
 

This paper describes the multiple object tracking component of an automated 
CCTV surveillance system. The system tracks objects, and alerts the operator 
if unusual trajectories are discovered. Objects are detected by background 
differencing. Low contrast levels can present problems, leading to poor object 
segmentation and fragmentation, particularly on older analogue surveillance 
networks. The model-free tracking algorithm described in this paper 
addresses object fragmentation, and the object merging that occurs when 
proximate objects segment to the same connected component. 

 
1   Introduction 
 
Automated visual surveillance aims to provide an attention-focussing filter to enable 

an operator to make an optimum decision whenever an unusual event occurs [1]. This is 
achieved by directing the operator’s attention only to those events classified as unusual. 
The backbone of such systems typically comprises something like the processing 
pipeline shown in figure 1. 
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Figure 1.   Typical image processing pipeline for automated video surveillance 
 
The blocks outlined in bold are dealt with in this paper, focussing on the object 

tracking module, which must deal with the uncertainty of object segmentation. This 
uncertainty is manifest when moving objects are segmented by background 
differencing, where it is common for the segmented object to fragment due to parts of 
the object matching the greyscale of the background. This problem is exacerbated when 
CCTV system managers wish to implement modern automated surveillance techniques 
on top of the existing surveillance infrastructure. Older cameras are typically low 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/55619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 2

resolution, monochrome, analogue devices with CCD arrays of low dynamic range, 
producing images of low contrast. 

Even complex multimodal background representations cannot successfully segment 
objects if these closely match the background. Typical object tracking algorithms 
employ the Kalman filter or some other predictor-corrector iterative algorithm for 
dealing with uncertainty in the tracking plane [2], [3], [4], [5], [6]. When the uncertainty 
of object segmentation is too great, the tracking algorithm relies on the predictor step, 
and the state of the tracked object is updated using the internal model, rather than the 
observed measurements. It is an implicit assumption in typical background differencing 
and tracking algorithms that segmentation is successful at maintaining objects 
holistically, without fragmentation.  

When objects merge in the binary difference image, predictor-corrector algorithms 
may use partial image evidence to update an object state, but rely more heavily on the 
internal model of object parameters, and do so until such time as the objects separate 
and can be tracked individually. This problem can be overcome, together with other 
phenomena such as occlusion, with an explicit model fit to tracked objects [5], [7], [8]. 

In this paper, a simple, fast object tracking algorithm is described which attempts to 
maintain the morphology of tracked objects, given the evidence provided by the 
segmentation block of the pipeline. This algorithm is part of a hybrid novelty detection 
system [9], [10]. The overall philosophy of the system is that it should be self-
organising, requiring no user defined models of scene elements, object forms or object 
motion. A self-organising map is used to measure the novelty of a vector describing 
local motion, while a hierarchical network classifies the global pattern of  object motion. 

 
2   Summary of Algorithm 
 
The method of choice for moving object segmentation in most tracking algorithms is 

background differencing. Methods based on the calculation of optic flow are 
computationally intensive and use a raw image feature match to maintain a track if the 
object stops moving [11], [12]. The multiple gaussian per pixel representation used in 
[2] is robust, but entails a huge computational cost. To keep the background generator 
computable in real-time on non-specialised hardware, we employ a simple low-pass 
filter [13], [14]. 

The CCTV images are obtained from an analogue, monochrome camera at a 
resolution of 640x480 pixels, with a colour range of 256 grey values. The low-pass filter 
method is able to cope with slow changes in luminance, such as the movement of 
shadows cast by static objects. At time t, the difference and background images are 
calculated as follows: 
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Where r and c are the row and column subscripts of a single pixel, δ is the difference 
image, I is the input image, and B is the background image. If the difference δ(r,c) is 
greater than the threshold, T = 12, the pixel is labelled as foreground, while background 
pixels are modified by expression 2, where β=0.1 and controls the rate of the 
background update. Sufficiently rapid luminance changes cause background 
differencing to fail. To guard against this eventuality, the system counts the total 
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number of pixels assigned to the foreground and if this is greater than 60% of the image, 
the entire background image is reset and tracking is restarted. 

Noise is removed by applying a morphological “opening” operator to the difference 
image. The pixels that remain classified as foreground are collected into 4-connected 
components and assigned unique identities. Examples of pedestrians and their 
segmented silhouettes are shown in figure 2. Along with an identity, each object has an 
associated feature vector, the elements of which are area, width, height and a histogram 
of the greyscale distribution of object pixels. This feature vector is used to match objects 
from frame to frame, as described in detail in the following section. (In this paper, the 
term ‘silhouette’ describes a single connected component, as shown in the two images in 
the central column in figure 2). 

 

Figure 2   Examples of partially segmented silhouettes and the objects they delineate. 

3   Object Tracking 
 
The object tracker described here is a purely measurement based object-to-silhouette 

matching algorithm with morphological manipulation that deals with uncertainty in the 
segmentation algorithm. The philosophy of the tracking algorithm is motivated by 
general top-down assumptions of the types of unusual behaviour and normal activity 
that the system will have to deal with. Based on a typical car park scene, shown in 
figure 2, the following assumptions are made: 

1. Activity of pedestrians is of primary interest; vehicles are tracked but their 
activity will not be passed to the “behaviour” classifier modules. 

2. Vehicle crime, the main form of novel behaviour that is of interest given the 
monitored scene, is most likely to be carried out by independent pedestrians. 

3. Pedestrians entering the scene in a group, i.e. with very similar temporal and 
spatial origins with respect to the tracking plane, are likely to have a common 
origin and destination. Hence, tracking the centroid of the group will give a 
reasonable approximation to individual trajectories within the group. 

4. Pedestrians with differing spatial and temporal origins may also have differing 
intended destinations. A distinct history for each object should be maintained, 
even if the silhouettes of such objects merge. 

Based on the above assumptions, the tracker attempts to track objects in the form in 
which they are initially segmented. Therefore, the system will try to maintain the 
tracking of distinct objects, even if their segmented silhouettes merge with those of 
other objects. This entails the use of a silhouette-partitioning function to separate 
merged silhouettes prior to the best-match process. 

The algorithm will also try to maintain the overall morphology of a group, which 
entails the use of a silhouette-combiner which attempts to maintain the track of a group 



 

 

as a single entity. This function serves a two-fold purpose. If a group of pedestrians is 
being tracked, a global track on the whole group will be maintained by merging any 
group members who temporarily separate from the group silhouette. On the other hand, 
if the segmentation of an object fails and it becomes fragmented into distinct 
components, the silhouette-combiner will attempt to gather the fragments together until 
the best match with the object is achieved (see figure 2). 

After the background differencing step, the binary image consists of silhouettes, 
where a number of silhouettes may correspond to a single object (fragmentation), or a 
single silhouette may “cover” more than one object (merging). Associated with each 
object and silhouette is a feature vector, fi = [a,w,h,g] where g is a 16 element vector of 
the greyscale histogram covered by silhouette i (fig. 3c,d), a is the area, or number of 
pixels making up the silhouette and w and h are the width and height of the minimum 
bounding rectangle (fig.3a). 
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the within population coefficients of variation are roughly equal for the separate feature 
vector elements. 

The match matrix is initialised by assigning silhouettes to objects, on a per object 
basis, where a single silhouette may be matched to more than one object. The elements 
of match matrix M are set where expression 6 is satisfied: 
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where a non-zero entry indicates a match between object Q and silhouette S, and there 
are n objects and m silhouettes. 

At the same time the initial match matrix is being constructed, a valid-match matrix 
is calculated based on an object’s location and search radius around that position. A 
valid search radius, r (80 pixels) establishes a limit on the matches that can be evaluated 
later on in the algorithm, i.e. the merging function will only consider merging 
silhouettes within radius r. Hence we have a matrix V, the same size as M which has 
non-zero elements corresponding to possible matches. After the initial unconstrained, 
naïve match, inappropriate matches are easily removed by the logical AND of the valid-
match and match matrices, thus 

                                                             VMM ∧=:                                                           (7) 

In an ideal situation, the naïve match would be enough to match objects to the 
segmented silhouettes. The remaining steps of the algorithm are designed to address the 
errors  that may arise from object fragmentation and merging. 

Step 2 – Remove Duplicate Matches: As the naïve match is allocated by choosing 
the lowest cost match per object, there exists the potential for match conflicts, where a 
silhouette is initially matched with more than one object. At this stage, objects are 
allocated to one of two classes, transient or non-transient. Transient objects have only 
been instantiated for one frame – an object must find a silhouette match over two frames 
before it is classified as non-transient. If there are match conflicts, silhouette matches to 
transient object are removed if these overlap with matches to non-transient objects. This 
step makes it less likely that false object will interfere with the tracking of real objects. 
False objects may be attributed to noise or interaction of the object with the 
environment, such as reflections on vehicles. 

Step 3 – Evaluate Possible Merges: Where match conflicts arise between non-
transient objects, the objects are combined by treating the separate objects as a single 
macro-object, Θ, and calculating a single feature vector accordingly. The differences of 
the objects assigned to the disputed silhouette are combined as follows, 
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which is an element-wise summation over the k objects matched to silhouette S. The 
cost of the macro-object-to-silhouette match is compared to dSUM in the following 
expression 
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where the summation is across the i elements of the difference vectors. The denominator 
has the property of scaling the elements so the sum is not dominated by the larger 
elements, as discussed above, and the scalar value c(Θ,S) will be greater than zero if the 
macro-object match increases the feature difference, and below zero if the match is 
improved. If c(Θ,S) is less than zero, the conflicting matches are retained and will be 
dealt with at a later stage. Otherwise, the match with the lowest cost is retained and the 
other objects are reallocated to the next best matches available, i.e. to those silhouettes 
not already assigned to non-transient objects, in a greedy incremental search. 

Step 4 – Remove Duplicate Matches: Non-transient object matches modified in the 
last part of step 3 may have been allocated to silhouettes matched to transient objects. 
This is permitted because established objects take priority over transient objects as it is 
possible these may simply be a product of a patch of noise in the last frame. Transient 
object matches that conflict with the relocated non-transient objects are removed. Each 
silhouette allocated to a non-transient object is labelled as “securely matched”, and the 
difference vectors, d(Q,S), recalculated ready for the next step. 

Step 5 – Partition Merged Silhouettes: Here we apply the first of the 
morphological refinement algorithms; the silhouette-partitioning function is applied to 
resolve silhouettes matched to more than one non-transient object. If a duplicated match 
got past step 3, it is likely that the silhouettes of the objects have merged and require 
separating to allow the tracker to maintain a separate track of each object. 

Silhouette Partition Function: Given the (x,y) co-ordinates of each pixel in the 
silhouette, the sum of least squares linear regression line, y=a+bx can be calculated 
directly from the following expressions: 
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where the summation is applied to all pixels in the silhouette. 
Each pixel is projected onto the linear regression line giving a histogram of the 

silhouette’s distribution of mass along the line. The silhouette is divided by placing 
partition lines at intervals along the regression line, lr. To calculate the partition points, 
the sizes of the objects (at t-1) participating in the split are listed in according to their 
relative positions along the x-axis. Given n objects, there will be n-1 partitions p, based 
on their distribution of “mass” among the n objects. If the left-most extent of the 
silhouette along the regression line is the origin, and the right-most extent is unity, the 
partitions pm will lie in the range {0,1}, 
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where pm is partition m, aj is the area of object j and n is the total number of objects 
participating in the split. Moving from left to right along the silhouette regression line 
histogram, the pm ratios are used to place the partition points relative to the total mass of 
the merged silhouette. Each pixel can now be labelled according to its projection onto 
the regression line (figure 4). Calculating the partition intervals with expression (12) 
assumes that the overlap between the participating objects is not significant. Large 
overlaps will mean the partitions are offset with an error that increases as we progress 
from right to left along lr, as illustrated in figure 5. 
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Figure 4   Example of silhouette partitioning. The linear regression line is shown in 
white, and the resulting partition is illustrated by the three grey levels mapping the 
partitioned objects. 

 

Figure 5   If the objects to be partitioned are heavily overlapping, the partitioning 
function may have trouble making the split; here the figure on the right is distorted. 
 
Based on the pixel labels, a feature vector is calculated for each sub-silhouette. The 

differences between the feature vectors of the participating objects and the new 
partitioned silhouettes are calculated and the cost evaluated with the following 
expression 
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Where the sum is across the j elements of the difference vectors, d(Q,S) is the difference 
between the feature vectors of object Q and un-partitioned silhouette S and d(Q,Φ) is the 
feature difference between object Q and one of the partitioned sub-silhouettes, Φ. The 
partition is accepted if at least one object has a c(Q ,Φ) value below zero, indicating that 
it’s match has been improved. Between the participating objects and sub-silhouettes, the 
new matches are assigned on a lowest difference basis, as in the naïve match performed 
in step 1. 

The object match matrix M is adjusted to accommodate the new silhouettes and 
revised match assignments, and these can take part in the subsequent steps in exactly the 
same way as unmodified silhouettes. 

Step 6 – Merge Fragmented Silhouettes: Here, the possibility of object 
fragmentation is addressed, in which an object may appear as several separate 
silhouettes in the binary difference image. Non-transient objects already matched to a 
single silhouette combine this with any other silhouettes lacking a secure match within 
the valid search radius, the feature vector of the combined silhouette, Ψ, treating the 
separate silhouettes as a single entity. By recalculating a single feature vector for 
separate silhouettes, a fragmented silhouette may be recombined provided the 
combination improves the match to the tracked object. The cost of a new match is 
evaluation with the expression 
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As with expressions 6 and 10, if c(Q,Ψ) is below zero the combination is accepted and 
the silhouettes are merged into a single entry in the silhouette list. This process 
continues until all unallocated silhouette fragments within the valid match radius have 
been considered. 

Step 7 – Refine Transient Matches: The so-called transient objects may have been 
instantiated over a patch of noise in the previous frame, or they may be genuinely new 
object entering the field of view. A cost-reducing feature combination step is performed 
across these objects as in step 6, i.e. at this stage only transient objects are examined and 
may only be combined with other transient objects. This priority given to persistent 
objects is one way to reduce the susceptibility of the overall system to short-lived noise 
and temporary object fragmentation. 

Step 8 – Update Objects: Given the match matrix M, the object lists are updated. 
Objects without a match are removed and each unassigned silhouette of sufficient size 
instantiates a new object in the list. The size criterion helps to prevent persistent noise, 
which is usually comprised of small image patches, from instantiating an object list 
entry. 

 
5   Object Based Reference Update 
 
The stationarity of non-pedestrian objects is determined to assist in maintaining a 

valid reference image. When a object is stationary for >16 frames (i.e. 4 seconds at the 
4Hz sampling interval) the object is inserted into the background image, pedestrians 
typically sway even when standing, so inserted objects are typically parked vehicles. 
The previously determined minimum bounding rectangle of the silhouette is used to 
define the region of the input that is copied to the background. 

Once an object has been inserted into the background, its object list entry is 
transferred to a “recently-inserted-object” list, and foreground objects, i.e. pedestrians, 
can now be tracked as they pass in front of or exit the vehicle. If the event was a “drop-
off”, rather than a parking event, the vehicle will subsequently move away from its 
previously stationary position, leaving a “hole” in the background. The negative object 
will be detected as being stationary, and the centroid can be compared to those in the 
“recently-inserted-object” list. If the distance between the stationary object centroid and 
a list entry is below a threshold, the object is inserted immediately into the background, 
thereby patching the “hole” as quickly as possible.  

This stationary object reference update is useful because of the assumption that the 
system will only submit pedestrian activity to the novelty detection components, thereby 
dictating that tracking localises pedestrians at the expense of tracking other objects. 

 
6   Performance of the Object Tracker 
 
The object tracking algorithm was evaluated with respect to the monitored scene as 

interpreted by a human observer, the overall description of which could be called the 
‘operator perceived activity’ (OPA). The operator looked for discrepancies between 
actual activity and that “perceived” by the tracker. 

The system was evaluated on 3 days of live video from 8:00am to 10:00am, 
comprising a total of 6 hours, spanning a range of activity levels, from peak activity to 
relatively quiescent periods. The tracker performance is shown in table 1. The left side 
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of the table summarises results for pedestrian events, and the right shows the vehicle 
events. There were a total of 311 separate events, 264 of which were tracked perfectly, 
i.e. 84.9% correct. Three examples of poorly segmented objects successfully tracked are 
shown in figure 6. The instances where there was a discrepancy between the tracker and 
the OPA are discussed below. 

 
 Table 1   Performance of the object tracker, comparing the number of vehicles and 
pedestrians detected by the object tracker (columns) with the actual events as 
defined by an operator (rows). 

  

 

Figure 6   Examples of fragmented objects that were successfully tracked. 

Correctly tracked events lie down the main diagonal of both sections of the table; 
e.g. there were 120 instances where a single pedestrian was correctly tracked. The 27 
entries where one pedestrian was present but two pedestrians were tracked refers to the 
situation where a pedestrian fragmented and one segment was momentarily tracked as a 
separate pedestrian – this situation was temporary and the extra transient track did not 
interfere with the tracking of the true object. The 3 instances where a pedestrian was 
present but was not tracked (cell {1,0} in the left of table 1) was due to excessively poor 
segmentation, which meant there were no fragments large enough to instantiate an 
object. 

The 9 instances of pedestrians being tracked when in fact there were none (cell {0,1} 
in the left of table 1) was due temporary regions generated by phenomena such as 
reflections of pedestrians on vehicle windows, detached shadows from vehicles or 
elongated fragments of vehicles. The single instance where a vehicle was incorrectly 
tracked (cell {1,2} in the right of table 1) was due to a neatly segmented vehicle giving 
rise to two vehicle sized objects which were tracked separately. It should be noted that 
pedestrian activity is not submitted to the novelty detection networks until the pedestrian 
has been tracked coherently for approximately 3 seconds, so the entries in the left side 
of table 1 lying above the main diagonal, showing tracking false pedestrians, were not 
passed on to the novelty detectors. From the point of view of activity classification, 
significant tracking errors were those lying below the main diagonal in the left side of 
table 1. These were instances where the tracker “lost” the track on one or more 
pedestrians, thereby rendering them “invisible” to the novelty detectors. Therefore, 
considering only those table entries lying on or below the main diagonal, out of 132 
separate pedestrian events, 125 were successfully passed to the classifier stages of the 
surveillance system, a success rate of 94.6%. 

 Number of Pedestrians 
Tracker 

Number of Vehicles 
Tracker 

 0 1 2 3  0 1 2 3 
0  9 1 0 0  0 0 0 
1 3 120 27 2 1 0 139 1 0 
2 0 3 4 0 2 0 0 0 0 

OPA 

3 0 0 1 1 3 0 0 0 0 
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7   Discussion 
 
The tracking algorithm described in section 4 is able to combine object fragments to 

allow tracking when segmentation is poor. The tracking algorithm attempts to maintain 
objects in the form in which they were first instantiated, which is achieved by means of 
two morphological operators. As shown in table 1, sometimes the fragmentation of 
objects is so bad that a perfect track cannot be maintained. However, this can be dealt 
with by the next highest module in the processing pipeline. Indeed, by accepting the 
motion data only from objects that have been in existence for over a given period, the 
novelty detection modules [9], [10], can prevent transient false object tracking from 
generating false alarms. 

The algorithm is able to track poorly segmented objects on the basis of form only, 
and no prior models of size, shape or texture are needed. This is consistent with the 
overall strategy of a self-organising system, were objects are tracked and their behaviour 
is classified without a priori knowledge built into the system. The algorithm is 
extremely fast, as the elements used during the match process are simple macroscopic 
features such as silhouette size, width, height and the greyscale histogram. 
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