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Abstract. The application of Clifford Analysis methods in Combinatorics has some peculiari-
ties due to the use of noncommutative algebras. But it seems natural to expect from here some
new results different from those obtained by using approaches based on several complex vari-
able. For instances, the fact that in Clifford Analysis the point-wise multiplication of monogenic
functions as well as their composition are not algebraically closed in this class of generalized
holomorphic functions causes serious problems. Indeed, this is one of the reasons why in poly-
nomial approximation almost every problem needs the construction of specially adapted poly-
nomial bases. Our aim is to show that the analysis and comparison of different representations
of the same polynomial or entire function allow to link Clifford Analysis and Combinatorics by
means of bijective methods. In this context we also stress the central role of the hypercomplex
derivative for power series representations in connection with the concept of Appell sequences
as analytic tools for establishing this link.
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1 INTRODUCTION

“Remember, it’s supposed to be fun”
Richard Feynman, quoted in

Some time with Feynman
by L. Mlodinow, 2003

Combinatorics as a branch of mathematics concerning the study of finite or countable discrete struc-
tures has enjoyed in the last decades a rapid growth, partially influenced by new connections to other
branches like algebra, topology, geometry, probability theory, and others. It has many applications, for
example, in graph theory, optimization, computer science, and statistical physics.

Several combinatorial subjects like sums, recurrences, binomial identities, elementary number theory,
generating functions, or asymptotic methods can also be successfully treated by methods of complex
analysis (of one or several complex variables). A most comprehensive, though less known, work by
Egorychev on these methods is [10] (originally published in Russian in 1977) where an intensive use of
residue theory is made for bridging the continuous and the discrete. For this purpose he systematically
worked with integral transformations of combinatorial sums (involving binomial coefficients but also
non-hypergeometric expressions). Directly or after simplifications or substitutions the residue-calculus
is applied. Often one can compute combinatorial sums to which classical algorithms are not applicable.
Those manipulations of integral representations also allow a more systematic treatment of combinatorial
sums as those of [24], for instance, and implies a direct approach to asymptotical methods.

But in this connection reference should be made to the feeling that between combinatorial analysts
and true combinatorialists exists a deep trench. It is worth knowing that almost ten years before Ego-
rychev published his book, one of the most famous specialists of that time in enumerative combinatorics,
John Riordan, wrote in the Preface to his book Combinatorial Identities [24] (1968) that

The identity is verified, apart from its putative combinatorial origin, by operations in which
properties of the binomial coefficients are employed. Combinatorialists use recurrence,
generating functions, and such transformations as the Vandermonde convolutions; others,
to my horror, use contour integrals, differential equations, and other resources of mathe-
matical analysis.

There’s no question that after 50 years that opinion has mostly changed and on the occasion of the
Waterloo Workshop in Computer Algebra 2008 in honor of Georgy P. Egorychev and his 70th birthday
D. Zeilenberger called Egorychev a Bridge-Builder between the Discrete and the Continuous [25]. He
mentioned

Eight years after I finished my doctorate, I came across Egorychev’s fascinating modern
classic [10] about using the methods of complex analysis to evaluate (discrete) combinato-
rial sums. That was a pioneering ecumenical work, that influenced me greatly. Its content,
of course, but especially its spirit and philosophy.

In light of this praise the question whether Clifford Analysis methods could be useful for combinatorial
problems or not seems merely rhetoric, since Clifford Analysis is a far reaching generalization of com-
plex analysis of one variable to higher dimensions, different from several complex variable approaches.
The paper [27] is an example of more detailed studies on the corresponding hypercomplex residuum
theory. Other details are explained in [17], but the authors call attention to the fact that the corresponding
general theory is not sufficiently developed, so far. We are convinced that the application to combinato-
rial analysis of a well developed residuum calculus in Clifford Analysis could be very promising. Our
aim here is more modest and tries only to call attention to the subject via some examples relying on a
generalized formal power series approach.
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But even such a seemingly elementary approach suffers from the drawback that in Clifford Analysis
the point-wise multiplication of monogenic functions as well as their composition are not algebraically
closed in this class. This causes serious problems for the use of corresponding formal power series, for
the development of a suitable generating function approach to special monogenic polynomials, or for
establishing relations to corresponding hypergeometric functions etc. It is also the reason why in poly-
nomial approximation of Clifford Analysis almost every problem needs the development of different
adapted polynomial bases (e.g. [3], [5], [6], [7], [19], [22]).

However, the analysis of all those possible different representations led in the past to a deeper un-
derstanding and the construction of a monogenic hypercomplex exponential function which plays the
same central role in applications as the ordinary exponential function of a real or complex variable. This
concerns particularly its application as exponential generating function [12]. Previous constructions of
hypercomplex exponential functions and other special functions like, for instance, a monogenic Gaus-
sian distribution function, are mainly relying on the Cauchy-Kovalevskaya extension principle or - with
some restriction on the space dimension - the so-called Fueter-Sce mapping (see [4, 16, 23]). The latter
connects holomorphic functions with solutions of bi-harmonic or higher order equations. The former is
based on the analytic continuation of complex or, in general, Clifford algebra valued functions of purely
imaginary, respectively purely vectorial, arguments and therefore lacks the direct compatibility with the
real or complex case as explained in [8].

The crucial idea for constructing a hypercomplex exponential function as shown in [12] (which
stresses at the same time the central role of the hypercomplex derivative) was the construction of a mono-
genic hypercomplex exponential function as solution of an ordinary hypercomplex differential equation.
The adequate multiple power series representations in connection with the classical concept of Appell
sequences [2] (c.f. for applications [3, 7, 8, 18]) allowed, for instance, to develop new hypercomplex
analytic tools for linking Clifford Analysis with combinatorics.

After introducing in Section 2 the necessary notations from Clifford analysis, we describe briefly in
Section 3 a basic set of homogeneous polynomials which gained in the last years special interest in Clif-
ford Analysis as generalization of the complex power function w = zk; z ∈ C; k = 1, 2, . . .. In the way
as we use it for illustrating some interesting combinatorial relations, it was introduced in 2006 in [11].
In connection with the theory of basic sets of polynomials, introduced by J. M. Whittaker and B. Can-
non for one complex variable, the paper [1] refers to the same set, but only in terms of a hypercomplex
non-monogenic variable and its conjugate. Neither its representation in terms of monogenic variables
nor its intrinsic properties had been studied therein. At the time of publication of [1] the concept of
hypercomplex differentiability or the corresponding use of the hypercomplex derivative, first published
in [19] resp. [15], have not been at disposal for the investigation of Appell sequences of monogenic poly-
nomials. Since the construction of power-like monogenic functions was of general interest in Clifford
Analysis, the study of sets of Appell polynomials developed in several directions and has been realized
with different methods and by different authors as can be seen, for instance, in [3], [7] or [18]. The clos-
ing Section 4 contains references to some interesting combinatorial properties of the considered basic
set of homogeneous polynomials. We combine, in some sense, the knowledge of different hypercomplex
polynomial bases systems with the problem of establishing and proving new combinatorial identities by
bijective methods. As far as we know, enumerative combinatorics did not deal until now with the cor-
responding function classes arising in Clifford Analysis.Here we can only have a glimpse of the basic
ideas. In the talk we will explain them in more detail and with more and different approaches to the basic
set and its relatives.
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2 PRELIMINARIES

Let {e1, e2, · · · , en} be an orthonormal basis of the Euclidean vector space Rn with a non-commutative
product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, · · · , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, · · · , n}} with

eA = eh1eh2 · · · ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,m over R. Let Rn+1 be embedded in C`0,m by
identifying (x0, x1, · · · , xn) ∈ Rn+1 with the elements (sometimes also denoted by z for underlining the
relation to the complex case) x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C`0,m. Here x0 = Sc(x) =
Sc(z) and x = Vec(x) = Vec(z) = e1x1 + · · · + enxn are the so-called scalar resp. vector part of the
paravector x ∈ An. The conjugate of x is given by x̄ = z̄ = x0 − x and the norm |x| of x is defined by
|x|2 = xx̄ = x̄x = x2

0 + x2
1 + · · · + x2

n. Denoting by ω(x) = x
|x| ∈ S

n, where Sn is the unit sphere in
Rn, each paravector x can be written as x = x0 + ω(x)|x|.

We consider functions of the form f(z) =
∑

A fA(z)eA, where fA(z) are real valued, i.e. C`0,m-
valued functions defined in some open subset Ω ⊂ Rn+1. The generalized Cauchy-Riemann operator in
Rn+1, n ≥ 1, is defined by

∂ := ∂0 + ∂x, ∂0 :=
∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.

C1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left monogenic (resp. right
monogenic). We suppose that f is hypercomplex differentiable in Ω in the sense of [15, 19], i.e. has a
uniquely defined areolar derivative f ′ in each point of Ω (see also [21]). Then f is real differentiable
and f ′ can be expressed by the real partial derivatives as f ′ = 1

2∂, where ∂ := ∂0 − ∂x is the conjugate
Cauchy-Riemann operator. Since a hypercomplex differentiable function belongs to the kernel of ∂, it
follows that in fact f ′ = ∂0f like in the complex case.

We call attention to the fact, that powers of z, i.e, f(z) = zk, k = 2, . . ., are not monogenic, con-
sequently they cannot be considered as appropriate for hypercomplex generalizations of the complex
power zk, z ∈ C. Even the function f(z) = z is monogenic only if n = 1, that is, if A = C. These facts
justify the use of generalized power series of a special structure.

We consider also a hypercomplex structure for Rn+1 based on an isomorphism between Rn+1 and

Hn = {~z : ~z = (z1, . . . , zn) , zk = xk − x0ek, x0, xk ∈ R, k = 1, . . . , n} ,

(cf. [19]).
The hypercomplex variables zk themselves are monogenic, but the same is not true for their ordinary

products zizk, i 6= k. However, this problem can be overcome by the introduction of their permutational
(symmetric) product [19]:

Definition 1 Let V+,· be a commutative or non-commutative ring, ak ∈ V (k = 1, . . . , n), then the
symmetric “×”-product is defined by

a1 × a2 × · · · × an =
1

n!

∑
π(i1,...,in)

ai1ai2 · · · ain (1)

where the sum runs over all permutations of all (i1, . . . , in).
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Convention: If the factor aj occurs σj-times in (1), we briefly write

a1 × · · · × a1︸ ︷︷ ︸
σ1

× · · · × an × · · · × an︸ ︷︷ ︸
σn

= a1
σ1 × · · · × anσn = ~a σ (2)

where σ = (σ1, . . . , σn) ∈ Nn0 and set parentheses if the powers are understood in the ordinary way
(cf.[19], [20]).

The symmetric product along with the established convention permit to deal with a polynomial for-
mula exactly in the same way as in the case of several commutative variables. It holds (see [20], [21])

(z1 + · · ·+ zn)k =
∑
|σ|=k

(
k

σ

)
zσ11 × · · · × z

σn
n =

∑
|σ|=k

(
k

σ

)
~zσ, k ∈ N (3)

with polynomial coefficients defined as usual by
(
k
σ

)
= k!

σ! where σ! = σ1! · · ·σn!.
The generalized powers f(z) = ~zσ, are left and right monogenic and Cl0,n - linear independent.

Therefore they can be used as basis for generalized power series. Following [19] and [20] it has been
shown, that the generalized power series of the form

P (~z) =

∞∑
k=0

∑
|σ|=k

~zσcσ

 , cσ ∈ Cl0,n

generates in the neighborhood of the origin a monogenic function f(~z) and coincides in the interior of
its domain of convergence with the Taylor series of f(~z), i.e, in a neighborhood of the origin we have

f(~z) =

∞∑
k=0

1

k!

∑
|σ|=k

~zσ
(
k

σ

)
∂|σ|f(~0)

∂~xσ

 ,

where ~x = (x1, . . . , xn).

3 A BASIC SET OF POLYNOMIALS

Following the paper [8], where we introduced Appell sequences in Clifford Analysis in their general
operational setting, we refer to

Definition 2 Let U1 and U2 be (right) modules over C`0,n and let T̂ : U1 −→ U2 be a hypercomplex
(right) linear operator. A sequence of monogenic polynomials (Fk)k≥0 is called a T̂ -Appell sequence if
T̂ is a lowering operator with respect to the sequence, i.e., if

T̂Fk = kFk−1, k = 1, 2, . . . ,

and T̂ (1) = 0.

Since the operator 1
2∂ defines the hypercomplex derivative of monogenic functions, a sequence of mono-

genic polynomials that is 1
2∂-Appell is a hypercomplex counterpart of a classical Appell sequence and it

is simply called Appell sequence or Appell set. The well known strong relation of Appell sequences to
combinatorial problems, particularly to combinatorial sums or identities, is also manifest in the Clifford
Analysis setting, where we have the following theorem

Theorem 1 ([8]) A monogenic polynomial sequence (Fk)k≥0 is an Appell set if and only if it satisfies
the binomial-type identity

Fk(x) = Fk(x0 + x) =

k∑
s=0

(
k

s

)
Fk−s(x)xs0, x ∈ An. (4)
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We refer now in some detail to the basic set of Appell polynomials, mentioned in the Introduction. It
was first considered in [11] for A2-valued polynomials defined in 3-dimensional domains and later on
generalized to higher dimensions in [12, 22]. The polynomials under consideration are functions of the
form

Pnk (x) =
k∑
s=0

T ks (n)xk−s x̄s, n ≥ 1 (5)

where

T ks (n) =
k!

n(k)

(n+1
2 )(k−s)(

n−1
2 )(s)

(k − s)!s!
, (6)

and a(r) denotes the Pochhammer symbol, i.e. a(r) = Γ(a+r)
Γ(a) , for any integer r > 1, and a(0) = 1.

The case of the real variable x = x0 (i.e. x = 0) is formally included in the above definitions as the
case n = 0 with

T k0 (0) = 1 and T ks (0) = 0, for 0 < s ≤ k, (7)

so that the polynomials (5) are defined in Rn+1, for all n ≥ 0.
The infinite array of numbers (6) resembles in a lot of aspects a set of non-symmetric generalized

binomial coefficients. Several intrinsic properties of this set can be obtained and are indicators of more
advanced combinatorial relations in the next section. We highlight the following essential properties (see
[11, 12, 22] and the references therein for details):

Proposition 1 The triangle numbers T ks (n) defined by (6) satisfy

k∑
s=0

T ks (n) = 1, for n, k ≥ 0. (8)

Moreover, denoting by ck(n) the alternating sum
k∑
s=0

(−1)sT ks (n), then for n ≥ 1 and k = 1, 2, . . . ,

ck(n) =


k!!(n−2)!!
(n+k−1)!! , if k is odd

ck−1(n), if k is even
(9)

and c0(n) = 1, for n ≥ 0. As usual, we define (−1)!! = 0!! = 1.

Remark 1 It is clear, from (8), that the polynomials Pnk satisfy the normalization condition Pnk (1) = 1,
for k = 0, 1, · · · and n ≥ 0.

We can now state the following fundamental result.

Theorem 2 ([9]) The sequence of polynomials P := (Pnk )k≥0 is an Appell sequence.

Theorems 1 and 2 lead to the binomial-type formula

Pnk (x) =

k∑
s=0

(
k

s

)
xk−s0 Pns (x) =

k∑
s=0

(
k

s

)
cs(n)xk−s0 xs. (10)
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Remark 2 The same result is obtained directly by the possibility to generalize the complex power
through a suitable generalization of its binomial expansion (which is an essential property of Appell
sets)

zk = (x+ iy)k =
k∑
s=0

(
k

s

)
xk−s0 (iy)s.

Therefore one should consider a polynomial in x0 and x of the form

Pnk (x0, x) =

k∑
s=0

ds(n)

(
k

s

)
xk−s0 (x)s =

k∑
s=0

ds(n)

(
k

s

)
xk−s0 |x|s(ω)s

with some unknown coefficients ds(n). Demanding monogenicity and the natural initial values

Pnk (1) = 1, for k = 0, 1, · · · and n ≥ 0, as well Pnk (x0) = xk0, k ≥ 1

it can be shown that ds(n) ≡ cs(n) due to the uniqueness of the hypercomplex Taylor series.

Formula (10) can be used to derive immediately the following properties:

Proposition 2

1. Pnk (x0) = xk0 , for all x0 ∈ R, n ≥ 0.

2. Pnk (x) = ck(n)xk, n ≥ 1.

3. Pnk (x) = Pnk (x0 +ω(x)|x|) = u(x0, |x|) +ω(x)v(x0, |x|), where n ≥ 1 and u and v are the real
valued functions

u(x0, |x|) =

[ k
2

]∑
s=0

(
k

2s

)
(−1)sxk−2s

0 c2s(n)xk−2s
0 |x|2s

and

v(x0, |x|) =

[ k−1
2

]∑
s=0

(
k

2s+ 1

)
(−1)sxk−2s−1

0 c2s+1(n)xk−2s−1
0 |x|2s+1

The second result of Proposition 2 can be seen as the essential property which characterizes the
difference to the complex case. Nevertheless, the polynomials P1

k coincide, as expected, with the usual
powers zk, since we get from (9), ck(1) = 1, for all k. Furthermore, observing that ω2(x) = −1, we
can consider that ω := ω(x) behaves like the imaginary unit, which means that the last property gives a
representation of Pnk in terms of a scalar part and an “imaginary” part.

4 A SECOND BIJECTIVE REPRESENTATION AND BINOMIAL IDENTITIES

The fact that we can write the polynomials

Pnk (x) = Pnk (x0 + x)

in a bijective way also in terms of the hypercomplex variables (z1, · · · , zn)

Pnk (x) = Pk(z1, · · · , zn)

allow now to prove two propositions of combinatorial character by comparing these different representa-
tions of one and the same polynomial. For this purpose we notice that the coefficients ck(n) defined as the
alternating sum

∑k
0(−1)sT ks (n) of T ks (n) appear in the second form of the polynomial representation,

namely we have
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Theorem 3 ([11]) In terms of the generalized powers zν11 × · · · × zνnn the Appell set {Pnk } is given by

Pnk (x) = Pk(z1, · · · , zn) = ck(n)
∑
|ν|=k

zν11 × · · · × z
νn
n

(
k

ν

)
eν11 × · · · × e

νn
n ,

where
(
k

ν

)
=

k!

ν1! . . . νn!
.

Together with the properties explained in the previous section, the next proposition gives a purely
algebraic characterization of the coefficients ck(n).

Proposition 3 The ck(n) in the representation of the generalized power functionPnk (x) = Pk(z1, · · · , zn)
are related to the algebraic generators e1, . . . , en of the Clifford Algebra by∑

|ν|=k

(−1)k
(
k

ν

)
(eν11 × e

ν2
2 × · · · × e

νn
n )2 =

1

ck(n)
.

and fulfill the binomial identity

ck(n) =
k!

(n)k

k∑
s=0

(
−n+1

2

k − s

)(1−n
2

s

)
.

Proposition 4 In the case n = 2, the ck = ck(2) are weighted central binomial coefficients and we have

ck =
1

2k

(
k

bk2c

)
=

∑
|ν|=k

(−1)k
(
k

ν

)
(eν11 × e

ν2
2 )2

−1

=
1

k + 1

k∑
s=0

(
−3

2

k − s

)(−1
2

s

)
.
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