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Abstract
Nonlinear programming problems are known to be difficult to solve, especially those that involve a mul-
timodal objective function and/or non-convex and at the same time disjointed solution space. Heuristic
methods that do not require derivative calculations have been used to solve this type of constrained
problems. The most used constraint-handling technique has been the penalty method. This method
converts the constrained optimization problem to a sequence of unconstrained problems by adding, to
the objective function, terms that penalize constraint violation. The selection of the appropriate penalty
parameter value is the main difficulty with this type of method. To address this issue, we use a global
competitive ranking method. This method is embedded in a stochastic population based technique known
as the artificial fish swarm (AFS) algorithm. The AFS search for better points is mainly based on four
simulated movements: chasing, swarming, searching, and random. For each point, the movement that
gives the best position is chosen. To assess the quality of each point in the population, the competitive
ranking method is used to rank the points with respect to objective function and constraint violation
independently. When points have equal constraint violations then the objective function values are used
to define their relative fitness. The AFS algorithm also relies on a very simple and random local search
to refine the search towards the global optimal solution in the solution space. A benchmarking set of
global problems is used to assess this AFS algorithm performance.
Keywords: Global optimization, Artificial Fish Swarm, Constraint fitness ranking.

1. Introduction
The algorithm herein presented is a stochastic optimization method, called Artificial Fish Swarm (AFS)
algorithm, with a constraint-handling method based on a competitive ranking of points with respect to
the objective function and constraint violation independently, to solve constrained global optimization
problems.

A variety of constraint-handling methods have been developed in the last decades. The most common
approach to handle constraints uses a penalty function. The history of penalty functions began with the
sequential unconstrained minimization technique by Fiacco and McCormick [5] in which the constrained
problem is solved by a sequence of unconstrained optimization problems. There are many types of penalty
functions used in optimization: static penalty where the penalty parameter is fixed [6]; dynamic penalty
where the penalty factors are derived from the current iteration counter [9]; annealing penalty where the
penalty is increased over time in a Simulated Annealing [10] manner; adaptive penalty where the penalty
is scaled based on the success or failure of the search [19]; and death penalty where the solution is assigned
infinite fitness if it violates any of the constraints [12]. The penalty function approach although simple,
requires assignment of penalty factors which are often obtained based on trial and error and the result of
optimization is known to be highly sensitive to the choice of the penalty factors. Runarsson and Yao [15]
have proposed stochastic ranking to balance between the objective function and the constraint violation.
Although this approach does not need any penalty factors, it uses a probability value (between 0.4 and
0.5) to compare infeasible individuals.

Another method for constraint-handling is to handle feasible and infeasible solutions separately.
Deb [2] implemented three feasibility dominance rules where the objective value is used as the fitness for
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the feasible solutions and the total constraint violation as fitness for infeasible solutions. They can be
described as follows: 1) given two feasible points, pick the one with better objective function value; 2) if
both points are infeasible, pick the point with lower constraint violation; 3) given a pair of feasible and
infeasible points, pick the feasible one.

Dominance based constraint-handling approaches convert the constrained optimization problem (with
k objectives) into a multi-objective (k + 1 objectives or k + m objectives, where m is the number of
constraints) unconstrained optimization problem [17].

In this paper a constraint-handling approach that uses a competitive ranking of the objective values
and the constraint violations separately is embedded in the AFS algorithm. A fitness function based on
this competitive ranking framework will be introduced to compare points in the same population. To
select points between different populations a feasibility dominance criterion is introduced.

The remainder of this paper is organized as follows. Section 2 describes the proposed AFS algorithm
and its properties and Section 3 presents the main ideas concerned with the constraint-handling ap-
proach, namely the problem definition, the competitive ranking framework and the feasibility dominance
criterion. In Section 4 we report our numerical experiments, including a comparison between four fitness
function’s variants. Finally, Section 5 contains the conclusions and ideas for future work.

2. Artificial Fish Swarm Algorithm
In this section we present a stochastic population-based algorithm that simulates fish swarm behaviors
in water. This is an artificial life computing algorithm that has been used in some engineering context
[7, 8, 18, 20]. We will use the words ‘fish’ and ‘point’ interchangeably throughout the paper. The artificial
fish swarm algorithm is based on swarm intelligence and uses a population (or swarm) of points to identify
promising regions looking for a global solution.

The artificial fish is a fictitious entity of a true fish. The AFS movements are simulations and
interpretations of the below listed fish behaviors [7]:

i) random behavior - in general, fish swims randomly in water looking for food and other companions;

ii) searching behavior - this is a basic biological behavior since fish tends to the food; when fish
discovers a region with more food, by vision or sense, it will go directly and quickly to that region;

iii) swarming behavior - when swimming, fish will naturally assemble in groups which is a living habit
in order to guarantee the existence of the swarm and avoid dangers;

iv) chasing behavior - when a fish, or a group of fishes, in the swarm discovers food, the others in the
neighborhood will find the food dangling quickly after it.

The specific and used notation in the AFS algorithm is as follows: n represents the number of variables,
xi ∈ R

n denotes the ith point of the population; xi
j ∈ R is the jth (j = 1, . . . , n) coordinate of the point

xi; and psize is the number of points in the population. We now present the main movements of the points
inside the population. In the remaining part of this section, we assume that the variables are subject to
simple bounds, i.e., l ≤ x ≤ u, where l, u ∈ R

n. The term food in the fish swarm system corresponds to
a minimum in the optimization context.

A crucial parameter of the artificial fish swarm algorithm is a positive constant v that represents the
ray of a closed neighborhood of xi – the ‘visual scope’ – herein defined by

v = δ max
j∈{1,...,n}

(uj − lj), (1)

where δ is a positive visual parameter that is reduced over the iterative process using the update formula
δ = max {δmin, κδδ}, with 0 < κδ < 1, and δmin > 0. The set of indices of the points inside the ‘visual
scope’ of point xi is denoted by Ii, where i /∈ Ii and Ii ⊂ {1, . . . , psize}, and npi is the number of points
inside the ‘visual scope’. Depending on the relative positions of the points inside the visual, the potential
movements to define trial points from the current point xi are:

i) when npi = 0, the ‘visual scope’ is empty, and the point xi, with no other points in its neighborhood
to follow, moves randomly searching for a better region;

ii) when the ‘visual scope’ is crowded, the point has some difficulty in following any particular point,
and the searching behavior is simulated; the point searches for a better region choosing randomly
another point (from the ‘visual scope’) and moves towards it;
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iii) when the ‘visual scope’ is not crowded, the point is able either to swarm moving towards the central
or to chase moving towards the best point, inside the ‘visual scope’.

The condition that decides when the ‘visual scope’ of xi is not crowded is

npi

psize
≤ θ, (2)

where θ ∈ (0, 1] is the crowd parameter. In this situation, point xi has the ability to chase or to swarm.
The chasing behavior is carried out if the movement towards the best point inside the ‘visual scope’

of xi, herein denoted by xmin, improves over xi; otherwise, the searching behavior is activated.
The swarming behavior is characterized by a movement towards the central point in the ‘visual scope’

of xi, defined by

c =

∑

j∈Ii xj

npi
. (3)

However, this movement is carried out only if the central point improves over xi; otherwise, the
point xi follows a searching behavior. We refer to [4, 14, 18, 20] for further details.

We remark that each new point computed as described above is only a trial point to the next iteration.
In fact, the AFS algorithm includes a selection procedure aiming to accept trial points only if they improve
over the previous one.

There is also a local procedure in the AFS algorithm, aiming to gather the local information around
the best point of the population. It corresponds to a simple random line search applied coordinate by
coordinate to one point only - the best point of the population, denoted by xbest. The main steps are
as follows. For each coordinate j (j = 1, . . . , n), xbest is assigned to a trial point y. Next, a random
movement of length

ν max
j

(uj − lj), ν > 0

is carried out and if a better point is obtained within maxlocal iterations, x
best is replaced by y, the search

ends for that coordinate and proceeds to the next coordinate.

3. Constraint-handling approach
This section describes the constraint-handling approach. First, we display the definition of the constrained
optimization problem; then the competitive ranking method is exposed, and the feasibility dominance
criterion used to assess the relative fitness of two points from different populations is presented.

3.1. Problem definition
The general form of the problem of finding a global solution of a nonlinear constrained optimization
problem herein considered is:

minimize f(x)
subject to gi(x) ≤ 0 , i = 1, . . . , p

hj(x) = 0 , j = 1, . . . ,m
x ∈ Ω

(4)

where at least one of the functions f : Rn → R, gi : R
n → R, i = 1, . . . , p and hj : R

n → R, j = 1, . . . ,m
is a nonlinear function and Ω = {x ∈ R

n : l ≤ x ≤ u}. The objective function f may be non-smooth and
may possess many local minima in the feasible region since we do not assume that f is convex.

The constraint violation of a point x is measured by

viol(x) =

p
∑

i=1

max{0, gi(x)}+
m
∑

j=1

|hj(x)| . (5)

In the sequel, a point x with viol(x) = 0 is feasible, whereas if viol(x) > 0 then the point is infeasible.

3.2. Global competitive ranking scheme
In this section the ideas of the constraint-handling technique based on the global competitive ranking
scheme are presented. This is a novel method of ranking points in a population, in order to strike the
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right balance between objective and penalty functions [16]. The comparison criterion may be based
either on the objective function or the constraint violation, a choice randomly determined by a user-
specified probability term Pf . In this method, a point is ranked by comparing it against all other points
of the population. We want to remark that this is different from the stochastic ranking approach from
Runarsson and Yao [15] where only adjacent points compete for a given rank. In the global competitive
ranking scheme, special consideration is given to tied ranks, where in this case the same lower rank will
be used. In the competitive ranking scheme, it is assumed that either the objective or the constraint
violation will be used in deciding a point’s rank.

First we rank the points with respect to objective function value, r1, and then with respect to con-
straint violation, r2, independently. All the points in the population are sorted in ascending order based
on the objective function value to give r1. Then, r2 is determined when all the points in the population
are sorted in ascending order based on the value of the constraint violation. Table 1 shows an example
of this ranking assignment for a population with six points.

Table 1: Example of ranking assignment for a population with six points

Point f(x) viol(x) r1 r2
x1 4 1.20 2 6
x2 5 0.00 4 1
x3 4 0.80 2 4
x4 2 0.73 1 2
x5 19 0.73 6 2
x6 10 1.15 5 5

Clearly, the ranking vectors r1 and r2 are of the same order of magnitude and each one ranges from 1
to psize (at maximum), where psize is the size of the population. As a result, these vectors can be easily
manipulated without bias.

3.3. Fitness functions
In Runarsson and Yao [16], the fitness function for the minimization process is given by the probability
that point xi holds its rank when challenged by any other point of the population:

Φ1(x
i) = Pf

r1(i)− 1

psize − 1
+ (1− Pf )

r2(i)− 1

psize − 1
, (6)

where the permutations r1(i) and r2(i) correspond to the ranking of point xi based on the objective and
constraint violation, respectively, in a population of psize points. Pf indicates the probability that a
comparison is done based on the objective function only.

In practice, the probability should take a value 0 < Pf < 0.5 in order to guarantee that a feasible
solution may be found. The close the probability is to 0.5, the greater the emphasis will be on minimizing
the objective function. Previous studies [15] found that a value of Pf = 0.45 is often sufficient to establish
a pressure against infeasible solutions. When Pf = 0 the ranking is equivalent to an over-penalization.
Hence, the strength of the pressure can be adjusted easily by adjusting Pf .

In our approach, the probability term Pf varies in a stochastic way, i.e., we use a random number
uniformly distributed in [0, 1], λ, so that the establishing pressure against either feasible or infeasible
solutions varies randomly. Thus, the herein proposed fitness function for the minimization problem
becomes

Φ2(x
i) = λ

r1(i)− 1

psize − 1
+ (1− λ)

r2(i)− 1

psize − 1
. (7)

Besides, to further explore the search space for points with better objective function value, and if the
point xi is feasible, the algorithm sets λ = 1.

When solving some difficult problems an over-penalization is occasionally required. A rather simple
strategy consists of extending the fitness function in Eq. (7), replacing (1− λ) by (p+m)− λ as shown
below:

Φ3(x
i) = λ

r1(i)− 1

psize − 1
+ (p+m− λ)

r2(i)− 1

psize − 1
(8)
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only when xi is infeasible. This over-penalization aims to drive the infeasible points into the feasible
region since when assessing their relative fitness they loose over the feasible points in comparison.

Ho and Shimizu’s paper [11] propose an addition of ranking method which is able to balance the
objective function against the constraint violation without requiring any additional parameters, where
the fitness function is also based on the competitive ranking r1 and r2, and is given by

Φ4(x
i) = r1(i) + r2(i) . (9)

Here, the fitness function resumes to Φ4(x
i) = r1(i) for feasible points. In Eq. (9), the r1(i) and

r2(i) terms serve as the penalty function to penalize the infeasible solutions. On the other hand, the
r1(i) term enables us to relate the infeasible individuals to the feasible individuals based on the f(xi)
value alone. The consideration of this term allows one to retain those infeasible solutions with only slight
constraint violation and a small objective function value to the next iteration efficiently. This retainment
is necessary to maintain the diversity of the population by exploring into the infeasible regions of the
search space. Table 1, for example, shows that point x4 (Φ4(x

4) = 3), although infeasible, is preferred
over the feasible point x2 because the latter has a larger f(x2) value (Φ4(x

2) = 5).
Finally note that, the fitness function is used to assess each point of the population and also used

to compare points in the same population. Namely, it is used to determine the point with better fitness
function value, xbest, the point with worst fitness function value, xworst, and xmin. This latter is com-
puted when the chasing behavior is activated.

3.4. Feasibility dominance criterion
The previous ranking method should not be used when comparing a point from the current population
with a trial point - a potential point for the next population -, unless the competitive ranking process is
repeated with all the involved points. A simpler alternative when a point from the current population,
z, is to be compared with another point that is not in the current population, w, is to implement the
feasibility dominance criterion. This criterion picks z against w if

viol(z) < viol(w) or (viol(z) = viol(w) and f(z) < f(w)) .

In the proposed algorithm, this feasibility dominance criterion is implemented:

i) during the selection procedure, that aims to accept a trial point only if it improves over the point
of the current population;

ii) when the swarming behavior is simulated, i.e., when a movement towards the central point inside
the ’visual scope’ is tried;

iii) during the local procedure, which aims to gather the local information around the best point of the
population, and defines a new trial point that will be accepted if it improves over xbest according
to this feasibility dominance criterion.

3.4. Stopping condition
The algorithm terminates when the following condition is verified:

(viol(xbest) ≤ 10−3ǫ and
∣

∣f∗ − f(xbest)
∣

∣ ≤ ǫ
∣

∣f(xbest)
∣

∣) or nit ≥ nmax it (10)

where f∗ represents the known global optimal solution, f(xbest) is the objective function value of the
best point of the population , nit denotes the iteration counter and nmax it is the maximum number of
iterations allowed. The value of viol(x) represents a measure of constraint violation as previously defined
in Eq. (5).

4. Numerical results
In this section, we report the results of our numerical study, after running a set of 24 benchmark con-
strained global problems, described in full detail in [13]. The problems are known as g01-g24 (the ‘g’
suit, where six problems have only equality constraints, thirteen have inequality constraints, five have
both equalities and inequalities and all have simple bounds). Not all problems have multi-modal objec-
tive functions, although some are difficult to solve. The best known solution for problem g20 is slightly
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infeasible. We remark that g02, g03, g08 and g12 are maximization problems that were transformed and
solved as minimization ones. The algorithm is coded in C# programming language, and the results were
obtained in a computer Intel(R) Core(TM)2 Duo CPU 2.93 GHz, with 2.92GHz and 2.97 GB of RAM,
running Microsoft Windows XP V2002.

Since the algorithm relies on some random parameters and variables, we solve each problem 30 times
and take average of the obtained solutions, herein denoted by favg. The best of the solutions found after
all runs is denoted by fbest. The size of the population depends on n, and since some problems have
large dimension, n > 20, we choose psize = min{200, 10n}. Some of the fixed AFS parameters are set
in this study as follows: the initial δ = 1, κδ = 0.9, δmin = 10−8 and θ = 0.8 as previously used in [14].
In the local search, we use the values ν = 0.001 and maxlocal = 10 since good accuracy solutions were
obtained at a reasonable computational cost. The parameters used in the stopping condition Eq. (10)
are: ǫ = 10−4 and nmax it = 1500.

4.1. Performance profiles
To compare the performance of the four fitness functions, we use the performance profiles as described
in Dolan and Moré’s paper [3]. Our profiles are based on the metrics favg, fbest and CPUtimeavg, the
average of the CPU times required over all the 30 runs. We now briefly describe the main ideas behind
the comparison based on profiles. Let P and S be the set of problems and the set of solvers in comparison,
respectively, and mp,s be the performance metric used when solving problem p ∈ P by solver s ∈ S. The
relative comparison is based on the performance ratios defined by

rp,s =

{

1 +mp,s −min{mp,s : s ∈ S}, if min{mp,s : s ∈ S} < 0.00001
mp,s

min{mp,s:s∈S} , otherwise
(11)

and the overall assessment of the performance of a particular solver s is given by

ρs(τ) =
no. of problems where rp,s ≤ τ

total no. of problems
. (12)

Thus, ρs(τ) gives the probability, for solver s ∈ S, that rp,s is within a factor τ ∈ R of the best possible
ratio. The value of ρs(1) gives the probability that the solver s will win over the others in the set. The
solver which attains the least value of the performance metric mostly, has a higher ρs(1). The higher the
ρs the better the solver is. On the other hand, ρs(τ) for large values of τ measures the solver robustness.

4.2. Comparing the performance of fitness functions
Here we aim to compare the performance of the four fitness functions described in Subsection 3.3. using
the competitive ranking method embedded in the AFS algorithm. Figure 1 contains two plots with the
performance profiles obtained of the four functions: Φ1 in Eq. (6), Φ2 in Eq. (7), Φ3 in Eq. (8) and Φ4 in
Eq. (9). From the plot on the left, based on the average performance, we conclude that the version with
Φ2 outperforms the other three in 59% of the tested problems. This means that in 59% of the problems
the values of favg - the metric mp,s in these profiles - obtained by the function Φ2 are better or equal to
those obtained by the other fitness functions in comparison. Their performance ratios rp,s are then equal
to one (see Eq. (11)). We remark that the metric favg is indeed the most important when comparing
stochastic algorithms, since it reports the central tendency of the results over the runs. The metric fbest
has also been used in the literature. However, the best of all solutions obtained over the runs is always
biased since it is always smaller than all the remaining solutions [1].

Nevertheless, we include the plot on the right of Figure 1 to show the profiles based on fbest. Both
fitness functions Φ1 and Φ2 give the best solutions for almost 42% of the tested problems.
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Figure 1: Performance profiles on favg and fbest.

Now, we aim to compare the computation effort of the four fitness functions using CPUtimeavg
(the average of the CPU times) as the performance metric. See Figure 2. Clearly Φ1 is the least time
consuming algorithm followed by the fitness Φ3 and then Φ2. However, the average solutions accuracy
attained by functions Φ1 and Φ3 are rather lower than that attained by Φ2. In less than 20% of the
tested problems, the functions Φ1 and Φ3 are able to reach a value of favg that is equal or smaller than
the other fitness functions in comparison. See the plot on the left of Figure 1.
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Figure 2: Comparison based on CPU time

5. Conclusions
This paper presents a competitive ranking method, which is used to rank the points in a population
with respect to objective function and constraint violation separately, and is embedded in the Artificial
Fish Swarm algorithm for solving constrained global optimization problems. A stochastic fitness function
to assess the relative goodness of the points in the population is proposed and compared with other
proposals found in the literature.

Computational tests carried out with a set of well-known global optimization problems show that the
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proposed global competitive scheme to handle the equality and inequality constraints when embedding
in the AFS algorithm is able to effectively solve constrained problems.
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