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Abstract. This paper presents a numerical study of a stochastic augmented Lagrangian algorithm to solve continuous
constrained global optimization problems. The algorithm approximately solves a sequence of bound constrained subproblems
whose objective function penalizes equality and inequality constraints violation and depends on the Lagrange multiplier
vectors and a penalty parameter. Each subproblem is solved by a population-based method that uses an electromagnetism-like
mechanism to move points towards optimality. A comparison with another stochastic technique is also reported.
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INTRODUCTION

This paper presents a numerical study of a stochastic augmented Lagrangian methodology, where the subproblems are
solved by a stochastic population-based algorithm, for continuous constrained global optimization. We aim to address
the problem in the form:

min f (x) subject to g(x)≤ 0 , h(x) = 0 , x ∈Ω, (1)

where f : Rn→R, g : Rn→Rp and h : Rn→Rm are nonlinear continuous functions and Ω = {x ∈Rn : lb≤ x≤ ub}.
We do not assume that the objective function f is convex. There may be many local minima in the feasible region. This
class of global optimization problems arises frequently in engineering applications. Specially for large scale problems,
derivative-free and stochastic methods are the most well-known and used methods.

Methods based on penalty functions are the most used in literature to handle constraints [1, 4, 6, 7]. The constraints
violation is combined with the objective function to define a penalty function. This function aims to penalize infeasible
solutions by increasing their fitness values proportionally to their level of constraints violation. Static, dynamic,
annealing and adaptive penalties are the most popular. Methods based on augmented Lagrangians are common in
deterministic type methods for local optimization, but rare when combined with heuristics that rely on a population of
points to converge to a global solution.

Here, we aim to show the functionality of an augmented Lagrangian methodology to handle the equality and
inequality constraints of the problem (1), where the subproblems are approximately solved by a stochastic global
population-based algorithm. Due to its simplicity, the electromagnetism-like (EM) algorithm proposed in [3] is used
to obtain the solution of each subproblem. Since the EM algorithm has been designed to find a minimizer which
satisfies x ∈ Ω, our subproblem has bound constraints. We implemented the MaxQ method to convert the inequality
constraints of the problem (1) into equality constraints [7]. The usual l2 augmented Lagrangian function is then applied
separately to the original equalities and converted equalities. The bound constrained subproblems are approximately
solved by the EM algorithm.

STOCHASTIC AUGMENTED LAGRANGIAN METHOD

Most stochastic methods for global optimization are developed primarily for unconstrained or simple bound con-
strained problems. Then they are extended to constrained optimization problems using, for example, a penalty tech-
nique. This type of technique transforms the constrained problem into a sequence of unconstrained subproblems by
penalizing the objective function when constraints are violated. The objective penalty function, in the unconstrained
subproblem, depends on a positive penalty parameter that must be updated throughout the iterative process. With most
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penalty functions, the solution of the constrained problem is reached for an infinite value of the penalty parameter. An
augmented Lagrangian is a more sophisticated penalty function for which a finite penalty parameter value is sufficient
to yield convergence to the solution of the constrained problem [2]. We now show the functionality of an augmented
Lagrangian function when solving constrained global optimization problems. Practical and theoretical issues from
the augmented Lagrangian methodology are used with a stochastic population-based algorithm, the EM algorithm as
proposed in [3], to compute approximate solutions of the sequence of bound constrained subproblems.

Formulation based on equality constraints

Our proposal takes the general problem (1) and uses a method, proposed in [7], therein denoted by MaxQ, to convert
inequality constraints into equality constraints as follows:

g j(x)≤ 0 ⇔ Q j(x)≡ [max(0,g j(x))]
q j = 0 (2)

where q j ≥ 1, j = 1, . . . , p are parameters that depend on the level of constraint violation, since they are crucial to the
rate of convergence and solution accuracy. Note that when the constraint is satisfied, Q j(x) is zero. The corresponding
augmented Lagrangian function of the new reformulation is

L E
ρ (x,λ ,µ) = f (x)+

m

∑
i=1

[
λihi(x)+

ρ

2
hi(x)2

]
+

p

∑
j=1

[
µ jQ j(x)+

ρ

2
Q j(x)2

]
, (3)

where λ ∈Rm, µ ∈Rp are the vectors of Lagrange multipliers associated with h(x) = 0 and g(x)≤ 0 respectively, and
ρ is a positive penalty parameter. Hence, the subproblems, at each iteration k,

min
x

L E
ρk(x,λ k,µk) subject to x ∈Ω (4)

are approximately solved using a stochastic global optimization method. The penalty parameter is increased whenever
the infeasibility is not reduced; otherwise it is not changed (lines 9-10 in Algorithm 1). Using the ideas proposed in
[4], the initial value for ρ is

ρ
1 = max

{
10−6,min

{
10, 2| f (x0)|/(‖max(0,g(x0))‖2 +‖h(x0)‖2)

}}
(5)

where x0 is an arbitrary initial approximation. It has been shown that convergence could be accelerated if q j,
j = 1, . . . , p are updated through the iterative process according to the corresponding constraint violation. The original
idea is to define a large q j if g j(x)� 1 and reduce until q j ≈ 1 when g j(x) = 0. The suggestion is q j = s0/(1+
exp(−s1g j(x))) where s0 is a parameter crucial for the convergence precision. The other parameter s1 is chosen to
define q j = 2 when g j(x) = 1, see [7]. The use of the formula (3) requires an updating scheme for the Lagrange
multipliers µ j associated with the constraints g j(x)≤ 0, j = 1, . . . , p:

µ
k+1
j = min

{
max

{
0,µk

j +ρkU j

}
,µ+

}
, j = 1, . . . , p

where U j(xk) =

{
Q j(xk) , if g j(xk)> 0
Q j(xk)−κµk

j , otherwise .

(6)

The decay term κµk
j , κ ≥ 1, only affects the update when the corresponding constraint is satisfied, decreasing the

multiplier. However, it does not affect the updating when the constraint is violated, thus increasing the multiplier. This
places more weight in the constraint, forcing the point into the feasible region. Furthermore, the Lagrange multipliers
λ associated with equality constraints h(x) = 0 are also updated using first order estimates

λ
k+1
i = max

{
λ
−,min

{
λ

k
i +ρ

khi(xk),λ+
}}

, i = 1, . . . ,m. (7)

Note that the safeguarded schemes (listed in (6) and (7)) where λ− � −1, and µ+, λ+ � 1, are crucial issues to
maintain the sequences {λ k} and {µk} bounded.



Augmented Lagrangian algorithm

Our proposed stochastic augmented Lagrangian algorithm is presented in Algorithm 1. Lines 5-8 of the algorithm
show details of the inner iterative process to compute an approximation to the solution of subproblem (4). Since the
EM algorithm is based on a population of points, the point which yields the least objective function value, denoted
by the best point of the population, x(best), after stopping, is taken as the next approximation to the problem (1). The
inner iteration counter is represented by l. This process terminates when the difference between the function value at
the best point, L E

ρk(x(best),λ k,µk), and the average of the function values of the population, L E
avg, is under a specified

tolerance εk. This tolerance decreases as outer iterations proceed (see line 4 of the algorithm).

Algorithm 1 Stochastic augmented Lagrangian algorithm

1: Given: µ+ > 0, λ− < λ+, ρ+ > 0, ε∗ > 0, 0 < α < 1, γ > 1, kmax, lmax, µ1 ∈ [0,µ+], λ 1 ∈ [λ−,λ+]

2: choose arbitrary x0 in Ω; compute ρ1 using (5); set k = 1
3: while max

{
‖Q(xk−1)‖,‖h(xk−1)‖

}
> ε∗ and k ≤ kmax do

4: εk = max
{

ε∗,10−k}; set l = 1

5: while
(
L E

avg−L E
ρk (x(best),λ k,µk)

)
> εk and l ≤ lmax do

6: compute xk, an approximation to the global solution of minx L E
ρk (x,λ k,µk) subject to x ∈Ω, by EM algorithm

7: l = l +1
8: end while
9: if k = 1 or max{‖Q(xk)‖,‖h(xk)‖} ≤ α max{‖Q(xk−1)‖,‖h(xk−1)‖} then ρk+1 = ρk

10: else ρk+1 = min{ρ+,γρk} end if
11: update µ

k+1
j using (6) and λ

k+1
i using (7)

12: k = k+1
13: end while

The electromagnetism-like mechanism

In this section, we briefly present the ideas of the EM mechanism, proposed in [3], for solving the subproblems.
Here, the objective is to compute an approximate minimizer of L E

ρk(x,λ k,µk), for fixed values of the parameters ρk, λ k

and µk. For simplicity we use the notation L k(x) = L E
ρk(x,λ k,µk). Because EM is a population-based algorithm, the

inner iterative process begins with a population of psize solutions. We also note that our stochastic EM algorithm uses
the approximation xk−1 as one of the points of the population to initialize the EM algorithm. The remaining psize−1
points are randomly generated. The best found solution, denoted by x(best), and the average of function values, are
computed by

x(best) = argmin
{
L k(x(s)) : s = 1, . . . , psize

}
and L k

avg =
psize

∑
s=1

L k(x(s))/psize, (8)

respectively, where x(s),s = 1, . . . , psize represent the points of the population. The EM algorithm simulates the
electromagnetism theory of physics by considering each point in the population as an electrical charge. The method
uses an attraction-repulsion mechanism to move a population of points towards optimality. The main steps of the EM
mechanism are shown in Algorithm 2. Details of each step can be found in [3].

Algorithm 2 EM algorithm

1: Given: x(s),s = 1, . . . , psize

2: evaluate the population and select x(best)
3: compute the charges of the points
4: compute the forces between pairs of points
5: compute the total force exerted on each point by the others in the population
6: move the points except x(best)
7: evaluate the new population and select x(best)



TABLE 1. Comparison of our results with the best of 5 variants in [1].

Prob. f ∗ our study [1]
fbest favg fbest favg

g01 -15.0000 -14.9999 -14.7574 -14.9998 -14.9989
g02 -0.80362 -0.47048 -0.27538 -0.79252 -0.72555
g03 -1.00050 -0.99986 -0.99511 -0.99725 -0.77797
g04 -30665.54 -30665.53 -30665.42 -30665.32 -30578.55
g05 5126.497 5127.503 5159.328 5126.779 5323.866
g06 -6961.814 -6942.999 -6426.668 -6961.448 -6805.229
g07 24.3062 24.3156 24.3328 24.5450 27.8486
g08 -0.09583 -0.09583 -0.09583 -0.09583 -0.08769
g09 680.630 680.633 680.673 680.681 681.470
g10 7049.25 7092.93 7434.13 7070.56 8063.29
g11 0.74990 0.75000 0.77000 0.75217 0.88793

In [1]: psize = 100, runs = 25, maximum number of generations = 1000.

NUMERICAL EXPERIMENTS AND CONCLUSIONS

In this section, we report the results of our numerical study, after running a set of 11 benchmark constrained global
problems, described in full detail in [5].

Since the algorithm relies on some random parameters and variables, we solve each problem 30 times and take
average of the obtained solutions, herein denoted by favg. The best of the solutions found after all runs is denoted by
fbest. The size of the population depends on n and we choose psize =min{200,10n}. The fixed parameters are set in this
study as follows: λ+ = µ+ = ρ+ = 1012, ε∗ = 10−6, α = 0.5, γ = 2, λ− =−1012. We define kmax = 50 and lmax = 30
so that a maximum of 1500 iterations are allowed. We remark that the other conditions in the stopping criteria of the
Algorithm 1 (in the outer and inner iterative processes) may cause the termination of the algorithm before reaching
the 1500 iterations. The initial multiplier vectors are set to the null vectors. In the augmented Lagrangian of the MaxQ
method, we set κ = 1, s0 = 3 and s1 =− ln(s0/2−1) as used in [7].

To compare the performance of our stochastic augmented Lagrangian algorithm with another stochastic penalty
technique in the literature [1], we report in Table 1 our results and those of the cited paper. In [1], a genetic algorithm
combined with an adaptive penalty function is implemented. Table 1 reports fbest and favg obtained by our study and
those of [1] for the eleven problems therein registered (g01-g11). We have better performance (both in fbest and favg)
than the adaptive penalty algorithm of [1] in six problems (in boldface).

From our preliminary numerical tests, we may conclude that the proposed stochastic augmented Lagrangian
algorithm is able to effectively solve constrained problems. The MaxQ method that converts inequality to equality
constraints produces solutions with good accuracy and seems to be competitive with a penalty based algorithm.
Practical engineering problems, for example, those reported in [1], will be solved in the near future. We also aim to test
our algorithms with a point-to-point search yet stochastic method, when solving the bound constrained subproblems.
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