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a b s t r a c t

Ti–Si–Al–N films were prepared by rf reactive magnetron sputtering, in static and rotation modes, using
a wide range of different deposition conditions, which created conditions to obtain Ti–Al–Si–N coatings
with different structural arrangements.
Films prepared below a critical nitrogen flow, under conditions out of thermodynamic equilibrium,
revealed a preferential growth of an fcc (Ti,Al,Si)Nx compound with a small N deficiency. With nitrogen
flow above that critical value, the reduction of the lattice parameter was no longer detected. However,
a thermal annealing showed that a complete thermodynamically driven segregation of the TiN and Si3N4

phases was not yet obtained. The segregation upon annealing induced a self-hardening and showed
a multiphase system, where the crystalline TiN, (Ti,Al)N and (Ti,Al,Si)Nx phases were identified by X-ray
diffraction. This behavior is due to the de-mixing of the solid solution associated to a small N deficiency.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been increasing interest in nano-
structured materials. The so-called nanocomposite films, consisting
of nanocrystalline transition metal nitrides, MeN, and amorphous
Si3N4 phase, which have unique mechanical, chemical and tribo-
logical properties, have been one of the most promising superhard
materials. A wide variety of studies within this nanocomposite
system, in particular in the nc-TiN/a-Si3N4, have been carried out
during the last few years [1–10]. Al addition to these coatings
showed promising results, improving the oxidation resistance,
thermal stability and the performance in cutting tests [11–14].
When prepared under specific conditions, such as intense ion
bombardment, high substrate temperature and high nitrogen
activity, these coatings develop a two-phase system where nano-
crystalline TiN grains are embedded in an amorphous silicon
nitride matrix [1,2]. These conditions increase the thermodynam-
ically driven segregation of TiN and Si3N4 phases, which is influ-
enced by surface kinetics during deposition and thus, by the
deposition temperature and especially ion bombardment condi-
tions of the growing film (both influencing significantly the adatom
mobility) [1,2,15]. The superhardness has its origin in the strong
interface between TiN nanocrystallites and amorphous silicon
nitride tissue. The hardness enhancement is achieved when TiN is
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uta).

All rights reserved.
covered with very thin silicon nitride tissues, corresponding to the
percolation threshold of Si3N4 [16,17]. The interfaces prevent grain
boundary sliding and dislocation propagation, contributing to the
hardness enhancement [9,18].

The low temperature PVD deposition techniques are very
popular and have been used to prepare this type of coatings.
However, the low temperature introduces some kinetic constraints,
which limit the phase formation to metastable ones. Ab initio
calculations on the TiN–SiN system have shown that in case of
some kinetic constraints, the formation of an fcc-Ti1�xSixN meta-
stable phase occurs [19–21]. The same calculations allowed the
calculations of the unit cell dimensions, and a similar lattice
parameter values were obtained for Ti1�xSixN and TiN [19,20]. A
cubic solid solution was already reported by other authors [4,22–
24]. However, the small decrease of lattice parameter, when
compared with the TiN one, is not in accordance with the calculated
lattice parameter for the fcc-Ti1�xSixN metastable phase.

The purpose of this study is to present a comparative analysis of
the structure of the samples and correlate them with different
deposition parameters, in order to identify the nature of the phase
with the reduced lattice parameter.

2. Experimental details

The films were deposited in a mixed Ar/N2 atmosphere by rf
reactive magnetron sputtering. A series of samples were produced in
rotation mode, from high-purity Ti, Si and Al targets with the Ti and
Si targets coupled to a rf source and the Al target coupled to a dc

https://core.ac.uk/display/55618623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:rebouta@fisica.uminho.pt
www.sciencedirect.com/science/journal/0042207X
http://www.elsevier.com/locate/vacuum


35 40 45

0 at.    Si
a= 0.424 nm

Y
ie

ld
 (

a.
u.

)

Angle 2θ (°°)

310 Steel

(111)

2    
a= 0.426 nm

3.5    
a= 0.424 nm

6.5    
a= 0.421 nm

7.7    
a= 0.428 nm

M2 Steel9    
a= 0.428 nm

(002)

+

+

+

11.5 at.     Si

Fig. 1. XRD patterns of samples obtained in rotation mode with different Si contents
(indicated in the figure).
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power supply. In order to change the Si content, only the power
applied to the Si target and the nitrogen flow were changed. A
second series of samples were prepared in static mode from a Ti
target with incrusted Al and Si pieces using rf power supply. The
samples were deposited with substrate bias voltages and tempera-
tures ranging from �25 V to �100 V and from 200 to 500 �C,
respectively. Different discharge power and current combinations
were used in the targets. The starting nitrogen partial pressure
varied up to 6�10�2 Pa. Working pressures of 0.4 Pa were used
during depositions. The films were deposited onto mechanically
polished high-speed steel (AISI M2), austenitic steel (AISI 310),
stainless steel (AISI 316) and mirror polished silicon (100) substrates.

Rutherford Backscattering Spectrometry (RBS) and Elastic Recoil
Detection Analysis (ERDA) were used to access the atomic
composition of the samples. Heavy ion ERDA experiments were
done using a 40 MeV 35Cl7þ beam in order to measure the
concentration of light elements (carbon oxygen and nitrogen) in
some samples. X-ray Photoelectron Spectroscopy (XPS) was used to
analyze the chemical bonding status. The binding energy for the
atomic level was calibrated for the value of carbon peak C 1s at
284.5 eV. X-ray diffraction (XRD) was used for structural charac-
terization. Hardness measurements were performed in a Fischer-
scope H100, using maximum loads between 40 mN and 60 mN,
depending on coating thickness. The corrections used in these
measurements are described elsewhere [25]. The residual stresses
were calculated using Stoney’s equation [26] after measuring the
curvature of the thin substrate (AISI 316) by laser triangulation,
before and after deposition.

The thermal annealing was performed in a vacuum furnace with
a base pressure of 10�4 Pa. The thermal cycle consisted of: 1 h
heating up to the desired temperature, annealing for 1 h and free
cooling in the furnace.

3. Results and discussion

3.1. Chemical composition

From composition analyses, the (Ti,Al,Si)N films used in this
paper revealed Si contents varying between 0 and 13 at.%, Al
contents in the range 8–19 at.% and N contents from 47 to 52 at.%. In
the case of ERDA analysis (five samples), the Al and Si signals could
only be separated down to a depth of around 100 nm. The total
probed depth (for other elements such as Ti or N) was around
300 nm. Average film thickness was approximately 2 mm.

The oxygen contents in the five samples analyzed by ERDA are
within the range 0.27–0.7 at.%. Accordingly with the conclusions of
Veprek et al. [27] these values already decrease the achievable
hardness. Three of the samples with 0.3 at.% of oxygen have hardness
values higher than 40 GPa, while the other two samples (with oxygen
contents of 0.4 and 0.7 at.%) revealed hardness values below 40 GPa.

3.2. Structure and lattice parameter

XRD patterns of samples prepared in rotation mode and
deposited on 310 steel (except one deposited on M2 steel) are
shown in Fig. 1. Although one peak is not enough to identify the film
structure, using previous studies of other (Ti,Al,Si)N and (Ti,Si)N
samples [28,29], it is possible to confirm the development of an fcc-
type structure similar to that of d-TiN in most of the samples. As an
example, an XRD pattern of a (Ti,Al,Si)N sample deposited on an M2
steel is shown in Fig. 2a, where some peaks are clearly observed and
can be assigned to the reflections from (111), (200), (220) and (311)
planes of an fcc-type structure similar to that of d-TiN. From those
reflections a lattice parameter of 0.418 nm was calculated. The fcc-
type structure was also confirmed by electron diffraction, as shown
in Fig. 2b. The Al content of the samples represented in Fig. 1 is
between 14 and 18.5 at.%. The lattice parameter of the crystalline
phases, calculated from XRD Bragg peaks, ranged from 0.419 to
0.429 nm. The (Ti,Al)N coating with 17.5 at.% of Al, revealed a lattice
parameter of 0.424 nm, which agrees with results in literature,
where a reduction in lattice parameter of about 0.004 nm was
reported for this Al content [30,31]. The lattice parameter does not
show any particular relation with Si contents, because samples with
similar composition, for example between 8 and 10 at.% of Si and Al
in the range 12–15 at.% revealed lattice parameters ranging from
0.419 to 0.429 nm and are the deposition parameters that play an
important role. The residual stresses in these coatings are displayed
in Fig. 3, as a function of the Si content. Although the deflection
technique makes essentially an average evaluation on the whole
volume of the coating (ordered and disordered domains) it gives
a good evaluation of the grains’ stress state [32]. All coatings
revealed compressive stress states, which can be responsible for an
increase of the lattice parameter, measured by conventional XRD, of
about 1%. This means that the lattice parameters presented in this
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paper are overestimated, when compared with the unconstrained
ones, within a range of about 1%. The coatings with low Si content
(<5 at.%) have very large compressive stress (>8 GPa), which
decreases at higher Si contents. The development of the amorphous
SiN phase is probably increasing with increasing Si content, which
in turn, could be responsible for some stress relaxation phenomena,
observed for these samples with the highest Si contents. The
intensity decrease seen in the XRD patterns (Fig. 1) is associated
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Fig. 3. Residual stress of the Ti–Si–Al–N samples obtained by rotation mode, as
a function of the Si content.
with a decrease in the film crystallinity and/or film amorphization,
which gives an indication of the possible amorphous SiNx phase
development.

In order to have a rough estimation of the nitrogen availability
during the deposition, the ratio between nitrogen flow (cm3/min)
and deposition rate (nm/min) for the (Ti,Si,Al)N films prepared in
static mode (rf-static series), using the same deposition chamber,
was calculated according to this relation:

nitrogen availabilityðcm3=nmÞ ¼
nitrogen flow

�
cm3=min

�

deposition rateðnm=minÞ

This ratio, measured in cm3/nm, gives better information on the
nitrogen activity than the N2/Ar flow ratio due to the target
poisoning effect, which influences the deposition rate and also
allows the comparison of samples prepared with different power
applied to the target and with different nitrogen flow. The nitrogen
activity is also influenced by other parameters, such as the
substrate temperature and the ion bombardment rate.

In Fig. 4 the lattice parameter is displayed as a function of that
ratio given in cm3/nm. The Si content of each sample is indicated in
the figure. In the case of samples prepared in rotation mode
(Fig. 4a), the sample with the lowest lattice parameter was obtained
with the lowest value of nitrogen availability parameter. For the
case of the static mode series (Fig. 4b), there is also indication of
some of the deposition parameters, like bias voltage, substrate
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temperature, and rf power applied to the target. From these results,
it is possible to conclude that, keeping all the other parameters
unchanged (bias voltage, substrate temperature, and argon pres-
sure), below a critical nitrogen flow the formation of a structure
with lower lattice parameter is favored. In these cases the substrate
peak position did not show any shift.

The ERDA analysis of the one sample with a lattice parameter of
0.421 nm revealed a nitrogen content of 47.2 at.%, 0.71 at.% of oxygen
and 1.2 at.% of carbon. However, another sample with a lattice
parameter of 0.422 nm, revealed a nitrogen content of 51.2 at.%,
0.27 at.% of oxygen and 0.52 at.% of carbon. These compositions were
obtained ignoring the thin surface oxide layer present in the surface
films. The results are not conclusive, but suggest that the reduction
of the lattice parameter can be related with some nitrogen defi-
ciency and possibly with O and C impurities.

A similar shift of XRD peaks was also reported in the preparation
of Ti–Si–N films by inductively coupled plasma assisted magnetron
sputtering, synthesized at low deposition temperature (<150 �C)
and irradiated with an high density low energy (w30 eV) ion flux
(2 mA/cm2) [33]. The films presented relatively low compressive
residual stresses (<1.5 GPa), however, the XRD patterns revealed
a gradual (200) peak shift to higher theta angles (lower lattice
parameters) with the increase in Si content (from 2 to 11.3 at.% of Si)
and with crystallite sizes higher than 20 nm, being ascribed to the
TiN phase, although the correspondent lattice parameter is lower
than that of unconstrained TiN.

An increase of the nitrogen flow above that critical value, leads to
the formation of a phase with higher lattice parameter. In the critical
region, an increase of either the substrate temperature (from 300 �C
to 400 �C, with a bias voltage of�50 V) or the energy delivered to the
substrate (bias voltage from �25 to �50 V, with a substrate
temperature of 300 �C) increases the nitrogen activity, having the
same effect on the lattice parameter. The samples prepared with
a bias voltage of�25 V and a substrate temperature of 300 �C did not
show any lattice parameter change with the nitrogen flow increase.
In this case, the substrate temperature and the ion bombardment are
not high enough, resulting in a low adatom surface mobility. This
behavior can explain what seems a random dependence of the peak
position and peak width on Si content of XRD patterns shown in
Fig.1. The samples were prepared using Ti, Al and Si targets and the Si
content was augmented with an increase of the power applied to the
Si target. The N flow was also increased, but in the some cases, as for
example in the sample with 6.5 at.% of Si (Fig. 4a), the N flow increase
did not follow the deposition rate increase. This resulted in lower
nitrogen availability in the chamber and the sample revealed a peak
position shift to higher theta angles.

Fig. 5 shows the XPS spectra of Si 2p signal for two (Ti,Al,Si)N
samples having a similar Si content (6.5 and 6 at.%, respectively) but
with different lattice parameters (0.421 and 0.428 nm, respec-
tively). The spectra revealed that in these coatings the main signal
(101.8 eV) is in agreement with the silicon fourfold coordinated to
nitrogen as in Si3N4 [34]. A small oxygen contamination is also
present. The 2p signals corresponding to the free Si and to the TiSi2
phase were not found in the spectra, but a small amount cannot be
excluded, being the behavior similar for both samples.

The increase in lattice parameter suggests the formation of the
(Ti,Al)N and Si3N4 phases. The Si3N4 amorphous phase decreases
the mobility of other atoms and limits the (Ti,Al)N grain growth. As
a consequence, a reduction of the average crystallite size occurs, as
seen in the nc-TiN/a-Si3N4 nanocomposite, where the average TiN
grain size was found to decrease with increasing volume fraction of
Si [1,2] using Fourier analysis [35]. The results are shown in Fig. 6 as
a function of the lattice parameter. If deposition parameters are
used according to the requirements reported by Veprek et al. [1,2],
i.e. intense ion bombardment, high substrate temperature and high
nitrogen activity, the grain size would be strongly dependent on the
volume fraction of the Si3N4 amorphous phase. On the contrary,
with low deposition temperature, the grain size is not only deter-
mined by the Si content, but also strongly dependent on the
deposition conditions, which induce thermodynamic and kinetic
constraints and define the volume fraction of the amorphous
phases. The samples that revealed the lowest lattice parameters
(0.418–0.420 nm) have, in general, grain sizes higher than 15 nm.
Grain sizes in the range 4–6 nm were obtained for lattice parame-
ters between 0.427 and 0.429 nm, close to those of TiN. The ab initio



Fig. 7. Low magnification cross-sectional TEM micrographs of two samples prepared in rotation mode and with lattice parameters of 0.421 nm (a) and 0.428 nm (b).
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calculations on the TiN–SiN system concluded that the fcc-Ti1�xSixN
and TiN phases have a similar lattice parameter value [19,20]. From
these calculations the phase with reduced lattice parameter cannot
be attributed to fcc-Ti1�xSixN. As mentioned, the XRD pattern of the
phase with reduced lattice parameter was identified as an fcc B1
NaCl-type structure [4]. The N deficiency suggests that the Ti
replacement by Si and Al in the fcc TiN1�x lattice explains the low
lattice parameter value for this metastable phase (w0.418 nm).

Fig. 7 shows low magnification cross-sectional TEM micro-
graphs of two samples prepared in rotation mode and with lattice
parameters of 0.421 nm (Fig. 7a) and 0.428 nm (Fig. 7b). Both show
the presence of nanocrystalline columns in the growth direction,
being more pronounced in the first sample. This also demonstrates
that, due to the low deposition temperature and low nitrogen
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activity, a metastable phase is formed and the (Ti,Al)N grain growth
inhibition does not occur. In the second case (Fig. 7b) the nitrogen
activity was higher, but still not enough to induce the complete
spinodal segregation of the (Ti,Al,Si)N metastable phase.

3.3. Hardness thermal stability

The variation of hardness as a function of the Si content for the
series obtained in rotation mode is displayed in Fig. 8. A small
increase was found with Si content, with the maximum obtained
with the samples with 6.5 at.% of Si. This sample revealed a rela-
tively high grain size and a lattice parameter of 0.421 nm, which
indicates that the hardening mechanism can be related with solid
solution and defect hardening.
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Several samples were subjected to thermal annealing in vacuum
in order to test both the structural evolution and the hardness
retention with temperature increase. Those samples revealed three
distinct behaviors and those behaviors are described in the hard-
ness values evolution after the thermal annealing shown in Fig. 9
and in XRD patterns shown in Figs. 10–12. The first was the sample
with 6.5 at.% of Si (a¼ 0.421 nm), and another with an average
crystallite size of about 17 nm (a¼ 0.423 nm), both with
a pronounced (111) texture, which revealed hardness values higher
than 40 GPa. A third one (Ti0.54Al0.28Si0.18N) is a sample with a small
grain size (3 nm) and a lattice parameter of 0.430 nm (H¼ 30 GPa).
The hardness of Ti0.60Al0.24Si0.16N and Ti0.50Al0.37Si0.13N samples has
been retained after a thermal annealing at 1000 �C. On the other
hand, Ti0.54Al0.28Si0.18N revealed a significant increase of hardness,
from 30 to 43 GPa, after the annealing at 600 �C, keeping this value
after the annealing at 1000 �C. These distinct behaviors can be
understood with the analysis of the XRD patterns. The samples
shown in Figs. 10 and 11 were deposited on M2 steel, while the last
one was deposited on 310 steel. In order to distinguish the peaks
from the substrate, are also shown in Figs. 10 and 12 the XRD
patterns of substrates, as received and after the annealing in
vacuum at 1000 �C. The as received 310 steel shows the charac-
teristic peaks from austenitic phase (g-Fe) and some peaks from
carbide phases, which disappear after the annealing at 1000 �C, due
to the high cooling speed. The XRD patterns of M2 steel reveal the
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peaks associated with the ferrite phase (a-Fe) and some primary
carbides. Fig. 10 shows the XRD patterns at initial state and after
thermal annealing at 800 �C and 1000 �C for the Ti0.54Al0.28Si0.18N
film. The XRD patterns of the as deposited sample revealed a weak
(200) texture. After the annealing at 800 �C and 1000 �C, three
small peaks appeared in the region 2q¼ 36–37.5�, with corre-
spondence to peaks revealed in the region 2q¼ 42d43�. Assuming
an fcc-type structure, those peaks correspond to lattice parameters
of 0.430 nm, 0.425 nm and 0.417 nm, respectively. These lattice
parameters were identified as belonging to TiN, (Ti,Al)N and
(Ti,Al,Si)N solid solution structures, respectively. This behavior
suggests that thermodynamic segregation of TiN and Si3N4 phases
was not complete, which means that a mixed phase is still present.
The thermal annealing induced a spinodal decomposition, which
was followed by a self-hardening.

The other two selected examples show a different behavior. The
XRD patterns of Ti0.60Al0.24Si0.16N at initial state (Fig. 11) revealed
a lattice parameter of 0.423 nm, which can be assumed as being
(Ti,Al)N. With the thermal annealing a small decrease of the lattice
parameter was found (0.421 nm), which can be explained by
residual stress release. Additionally a small peak corresponding to
TiN (0.429 nm) was revealed, although it could be already present
in the as deposited sample, since it matches with the left tail of the
main peak of the XRD pattern of the as deposited sample. After
annealing, crystallization of the AlN phase was not found in this
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sample, and the hardness retention suggests that (Ti,Al)N nano-
crystallites are covered by the Si3N4 matrix, which avoids the high
temperature decomposition of the (Ti,Al)N films, as reported in
detail by Veprek et al. [11].

The XRD patterns of the third sample (Ti0.60Al0.24Si0.16N) in the
as deposited state, shown in Fig. 12, revealed a lower lattice
parameter (0.421 nm), which slightly increased after thermal
annealing at 800 �C, which is seen in a peak shift towards lower
2q angle values. Additionally, at 1000 �C, the appearance of small
peaks that are in good agreement with hexagonal AlN, suggests
the spinodal decomposition of (Ti, Al)N, which was already
observed by other authors after thermal annealing at 900 �C in
(Ti,Al)N films [36]. Although the hardness values had revealed
a slight decrease after annealing at 1000 �C, the eventual presence
of the AlN phase suggests that nanostructure of the type nc-MeN/
a-Si3N4 is not present. This behavior agrees with the presence of
the solid solution, in this case with a lattice parameter similar to
that expected for (Ti,Al)N. The decomposition occurs because the
silicon nitride tissue is not enough to avoid the segregation of AlN.
These results show that the different structural arrangements play
different roles, contributing: (1) solid solution and defect hard-
ening, (2) formation of a superhard nanocomposite of the type nc-
MeN/a-Si3N4 or (3) formation of a multiphase system. These
contributions explain the different behaviors for samples
prepared in conditions that don’t allow the spinodal segregation
of the metastable phases.
4. Conclusions

Maintaining other deposition parameters unchanged (bias
voltage, substrate temperature, and argon pressure), it was
concluded that below a critical nitrogen flow, the formation of an
fcc-(Ti,Al,Si)N metastable phase with a reduced lattice parameter is
favored. The N deficiency suggests that the Ti replacement by Si and
Al in the fcc-TiN1�x lattice explains the low lattice parameter value
for this metastable phase (w0.418 nm) and the relatively higher
grain size when compared with samples with higher lattice
parameter. The columnar growth presented in the samples also
demonstrate that due to the low deposition temperature and low
nitrogen activity a metastable phase is formed and the (Ti,Al)N
grain growth inhibition does not occur.

An increase of the nitrogen flow above that critical value, leads
to the formation of a phase with higher lattice parameter, but
although revealing lower grain size, the nanocolumnar growth is
still present, which indicates that the deposition conditions are still
not enough to induce the complete spinodal segregation of the (Ti,
Al, Si)N metastable phase.
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