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Remote Vital Signs Monitoring Based on 

Wireless Sensor Networks 

Abstract 

Governmental and private institutions face a major challenge to provide quality 

health care to a population consisting of a growing number of elderly and chronically ill 

patients. According to the World Health Organization, in 2006, the total global health 

expenditures exceeded US$ 4 trillion and are rising in the majority of countries 

including Portugal which, during 2006, expended 9.9% of its gross domestic product in 

health care. 

The use of remote vital signs monitoring systems increases the probability of early 

detection of risky situations, allows frequent monitoring of in-patients, elderly and 

chronically ill patients, and streamlines the work of health professionals. However, at 

present, these systems are expensive, complex and employ obtrusive sensors, which 

limit their application to intensive care units and cardiac intermediate care units.   

This work is part of a project that aims to design, prototype and evaluate a remote 

vital signs monitoring system based on the IEEE 802.15.4 and ZigBee protocols, which 

allow the development of small low-power sensors. The prototype system comprises 

electrocardiogram/heart rate and axillary thermometer sensors, networking devices and 

three informatics applications that collect, process, and exhibit medical data. 

The wireless sensors, the networking devices and one of the applications were 

developed under this work. Additionally, the wireless sensor network was evaluated 

through simulations at the MAC level and experimental and field tests. Field tests were 

performed at an in-patient floor of Hospital Privado de Guimarães, a Portuguese 

hospital. Finally, questionnaires were used to measure the satisfaction of users and 

catalog their critics and suggestions for improvement.  
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Simulations considered different topologies, operation modes and a crescent 

number of sensors and hops. Experimental and field tests confirmed most of the results 

obtained by simulations, but revealed that networks which did not assign transmission 

time slots to electrocardiogram sensors were unable to maintain a high delivery ratio. 

Contention between devices, aggravated by the inability of routers in receiving 

incoming packets during backoff, and collisions between packets generated by hidden-

nodes were responsible for most message losses. On the other hand, beacon-enabled star 

IEEE 802.15.4 networks that assigned a guaranteed time slot to sensors were able to 

maintain a very high delivery ratio. In contrast, these networks are restricted in terms of 

the coverage area and the number of sensors. Also, field tests showed that under low 

traffic scenarios ZigBee nonbeacon-enabled networks can achieve a high delivery ratio 

even in presence of a high percentage of hidden-nodes.  
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Monitorização Remota de Sinais Vitais 

Baseada em Redes de Sensores sem Fios  

Resumo 

Instituições governamentais e privadas enfrentam um grande desafio para prestar 

cuidados de saúde de qualidade a uma população constituída por um número crescente 

de idosos e doentes crónicos. Segundo a Organização Mundial de Saúde, em 2006, a 

despesa mundial em saúde ultrapassou a quantia de  4 bilhões de dólares americanos e 

cresce anualmente na maioria dos países, incluindo Portugal, o qual, em 2006, gastou 

9,9% do seu produto interno bruto em cuidados de saúde.  

O uso de sistemas de monitorização remota de sinais vitais aumenta a probabilidade 

de deteção precoce de situações de risco, permite que doentes internados, idosos ou 

doentes crónicos sejam frequentemente monitorizados e agiliza o trabalho dos 

profissionais de saúde. No entanto, atualmente, estes sistemas são caros e complexos, o 

que limita a sua aplicação a alguns setores dos hospitais, tais como as unidades de 

cuidados intensivos e as unidades de cuidados intermédios na área da cardiologia. 

 O projeto no qual insere-se este trabalho visa a conceção, a prototipagem e a 

avaliação de um sistema de monitorização remota de sinais vitais com base nos 

protocolos IEEE 802.15.4 e ZigBee, os quais oferecem a possibilidade de construção de 

sensores com consumos energéticos muito baixos e reduzidas dimensões. O sistema 

consiste em sensores de eletrocardiograma/frequência cardíaca e temperatura axilar, 

dispositivos de rede e três aplicações que coletam, processam e apresentam o 

eletrocardiograma e os sinais vitais.  

No âmbito deste trabalho foram desenvolvidos os sensores sem fios, os dispositivos 

de rede e uma das aplicações informáticas. Além disso, foi feita a avaliação do 

desempenho da rede de sensores sem fios através da análise de simulações a nível da 

camada de acesso ao meio (MAC) e de testes de laboratório e de campo. Os testes de 



viii 

campo da rede de sensores sem fios foram executados em um dos pisos de internamento 

do Hospital Privado de Guimarães. Finalmente, foram usados questionários para medir 

a satisfação dos utilizadores e recolher críticas e sugestões de melhoria.  

 As simulações consideraram diferentes topologias e modos de operação, além de 

um número crescente de sensores e saltos. Testes experimentais e de campo 

confirmaram grande parte dos resultados obtidos por simulação mas, adicionalmente, 

revelaram que as redes constituídas por vários sensores de eletrocardiograma e que não 

reservaram um intervalo de tempo de transmissão aos sensores não foram capazes de 

manter uma elevada taxa de entrega de mensagens. Perdas de mensagens ocorreram 

devido a disputas entre sensores pelo acesso ao canal sem fios e devido a ocorrência de 

colisões de pacotes transmitidos por nós escondidos. Por outro lado, as redes baseadas 

no protocolo IEEE 802.15.4 que atribuíram um intervalo de tempo de transmissão a 

cada sensor conseguiram manter uma elevada taxa de entrega. Entretanto, essas redes 

são limitadas em termos da área de cobertura e do número de sensores. Adicionalmente, 

durante os testes de campo em cenários de tráfego reduzido, as redes ZigBee que não 

empregaram beacons atingiram uma elevada taxa de entrega mesmo na presença de uma 

grande percentagem de nós escondidos.   
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Chapter 1 

Introduction 

 
This chapter starts by introducing background information, which consists of basic 

concepts of mobile communications and topics related to vital signs, vital signs 

acquisition using electronic devices and vital signs monitors. These initial sections are 

followed by the thesis motivation, the approach taken and the list of contributions. 

Finally, the thesis organization is presented.  

1.1 Wireless communications 

Telecommunication activities are regulated worldwide by the International 

Telecommunications Union (ITU). A section of ITU, the ITU Radiocommunication 

sector (ITU-R), handles standardization in the wireless sector and is responsible for 

frequency spectrum management.  Additionally, national and regional agencies are 

responsible for further regulation.  Whereas several frequency bands have been 

allocated or licensed to particular services, such as radionavigation and terrestrial 

mobile telecommunication, few specific bands were assigned to industrial, scientific and 

medical (ISM) applications in a license-free basis [4]. These bands, which are called 

ISM bands, are listed in Table 1. Some of these bands, like the 2450 MHz band, are 

allocated worldwide, whereas others can only be used regionally. The main advantage 

of the ISM bands is that they can be used without license, provided that the device 

operating in these bands respects specific regulations. On the other hand, 

communication is subject to interference. Among the ISM bands, the 2450 MHz band is 

of special interest because it is used by wireless local area networks (WLANs) based on 

the IEEE 802.11 protocol, Bluetooth devices, cordless phones and baby monitors among 

others.   
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Table 1 – ISM bands. 

Frequency band Center frequency 

6765–6795 kHz 6780 kHz 

13,553–13,567 kHz 13,560 kHz 

26,957–27,283 kHz 27,120 kHz 

40.66–40.70 MHz 40.68 MHz 

433.05–434.79 MHz 433.92 MHz 

902–928 MHz 915 MHz 

2400–2500 MHz 2450 MHz 

5725–5875 MHz 5800 MHz 

24–24.25 GHz 24.125 GHz 

61–61.5 GHz 61.25 GHz 

122–123 GHz 122.5 GHz 

244–246 GHz 245 GHz 

 

In order to exchange messages, the devices must agree on a communication 

protocol, which is a formal description of the digital message formats and the rules for 

exchanging these messages. Due to the complexity involved in the development of 

communication protocols, their design is structured in layers. The number of layers and 

their designations depend on the network type. Each layer uses services provided by 

lower layers and offers a set of services to the layers above it [193]. The protocol stack 

model used in this work consists of four layers, as shown in Figure 1, where the dark 

vertical arrows represent the interfaces between layers, which are called service access 

points (SAPs), whereas the horizontal arrows symbolize the logical information 

exchange between the same layers of different devices. 

 

Figure 1 – Protocol stack model. 

The physical layer (PHY) is responsible for data transmission and reception. 

Additionally, this layer is responsible for all activities directly involving the radio, such 
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as frequency selection, generation of the carrier frequency, signal detection and 

modulation. The medium access control layer (MAC) arbitrates the access to a shared 

wireless medium. The network layer (NWK) is responsible for routing frames to their 

intended destinations and provides functionalities such as network formation, address 

assignment, and mechanisms for devices to join and leave the network. The application 

layer (APP) is the highest hierarchy layer and provides an interface to applications 

objects [220]. 

Wireless networks are subject to issues intrinsic to the wireless channel, such as 

fading and interference. Unintentional noise consists of interference from other emitters 

that share the same frequency band and broadband interference from incidental radio 

frequency emitters (from instance, radiofrequency interference generated by electric 

power transmission lines [37]). Fading can occur due to multipath propagation, referred 

to as multipath induced fading, or due to shadowing from obstacles that affect the radio 

waves propagation. Multipath induced fading occurs in the presence of surfaces that 

reflect or cause scattering or diffraction of the radio waves. Multiple copies of the signal 

experience attenuation, delay and phase shift, which can result in constructive or 

destructive interference in the receiver. When severe destructive interference occurs, it 

is referred to as deep fade and results in loss of communication [182].  

The quality of the service provided by wireless communication networks can be 

evaluated using quality of service (QoS) parameters such as packet delivery ratio, delay, 

packet delay variation, and throughput [58]. The packet delivery ratio represents the 

percentage of successfully delivered packets to the number of generated packets. Delay 

or latency refers to the time interval between the instant when a packet is generated and 

when it is delivered. The delay suffered by a packet can vary depending on several 

causes, such as the route taken and the amount of traffic in the network. This variation 

in delay is known as the packet delay variation or jitter. Throughput refers to the 

average rate of successful message delivery over a communication channel. If all 

emitters generate the same amount of traffic, ideally, the network throughput increases 

linearly with the number of emitters. However, in practice, when the network traffic 

exceeds a certain limit, the network performance degrades and, in the limit, the network 

may collapse.  
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Several applications require that certain QoS requirements are ensured. For 

instance, remote patient monitoring applications typically have low bandwidth 

requirements, but are highly sensitive to delay and data loss. On the other hand, file 

transfer applications can tolerate relatively large packet delays, but are extremely 

sensitive to data loss [188]. Whereas some wireless communication protocols can only 

offer a single best effort level of service, others can support different levels of QoS 

requirements. A network must be able to prioritize traffic and allocate specific resources 

to each traffic category to provide QoS.  In this case, QoS parameters can be 

probabilistically bounded. Conversely, networks that only offer best effort services 

cannot support QoS. However, high quality communication can be provided by these 

networks by over-provisioning their capacity so that it is sufficient for the expected 

peak traffic load.  

1.2 Vital signs 

According to the Merriam-Webster‘s English Dictionary, vital signs are defined as 

signs of life. [144]. However, for health care providers vital signs are more than 

indicatives of life. Actually, they are used for diagnostic and evaluation purposes 

because they convey essential information about the body functioning.  The primary 

vital signs are the body temperature, the heart rate, the blood pressure, and the 

respiration rate [169].  

The body temperature is regulated by the hypothalamus, a portion of the brain 

[212]. Adults, to a higher degree than infants and children, are capable of maintaining 

their core temperature (the temperature of the deep tissues and organs within the cranial, 

thoracic and abdominal cavities), regardless of the external temperature. The skin 

temperature, however, is heavily dependent on the environmental temperature and the 

site where it is measured, not being directly correlated to the core temperature. It may 

be quite a few degrees below or above the core temperature without affecting the correct 

functioning of the body [169]. Nevertheless, a few accessible sites maintain a 

temperature that can be correlated to the core temperature. It is the case of the 

esophagus, the rectum, the mouth, the tympanic membrane and the axilla. Whereas 

measurements done using esophageal (mainly used during sedation or general 
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anesthesia) and rectal probes can deliver the best results, they are the most intrusive and 

are used only when very accurate readings are necessary.  

The ear (aural temperature) is a very adequate site, but its accuracy depends on the 

operator completely occluding the aural membrane.  The mouth should not be used in 

non-cooperative patients whereas the axilla requires a good skin contact, being less 

accurate if used in obese or very thin patients [85].  

Table 2 presents the normal temperature ranges as a function of the site it is 

measured [212]. As expected, the core and rectal temperature ranges are approximately 

coincident. The oral temperature in healthy children can be as low as 35.5 ºC. The 

axillary temperature, most of the times, is lower than the others and, in healthy adults, 

should not reach 37 ºC.  

Table 2 – Normal temperature (ºC) as a function of the body site and age (from Welch Allyn, [212]). 

Body site/Age 0 - 2 years 3 -10 years 11 – 65 years > 65 years 

Core 36.6 – 37.8 36.4 – 37.8 36.8 – 37.9 35.9 – 37.1 

Rectal 36.6 – 38.0 36.6 – 38.0 37.0 – 38.1 36.2 – 37.3 

Ear 36.4 – 38.0 36.1 – 37.8 35.9 – 37.6 35.8 – 37.5 

Oral --- 35.5 – 37.5 36.4 – 37.6 35.8 – 36.9 

Axillary 34.7 – 37.3 35.9 – 36.7 35.2 – 36.9 35.6 – 36.3 

 

Since the heart rate can be estimated directly by artery palpation or using a 

stethoscope, it can be precisely measured using an electrocardiograph, an instrument 

that records the electrical activity of the heart, that is, the electrocardiogram (ECG). An 

adult resting heart rate ranges from 60 – 100 bpm (beats per minute) though trained 

athletes tend to have lower heart rates (< 60 bpm). On the hand, healthy teenagers, 

children and infants may have higher heart rates (> 100 bpm). Arrhythmias are 

abnormalities of the heart rate. During an arrhythmia the heart can beat very fast, very 

slow, or assume an irregular rhythm. On adults, a heart rate above 100 bpm is referred 

to as tachycardia, whereas heart rates below 60 bpm are referred to as bradycardia 

[155]. The heart rate measurement using the ECG will be discussed in the next section.  

The blood pressure (BP) is the pressure applied on the artery walls as blood is 

forced through them by the heart [85]. Two pressures are measured. The higher or 

systolic is the pressure applied to the arteries while the heart contracts to pump blood to 

the body.  The lower or diastolic occurs when the heart relaxes between beats [10]. A 
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BP of 120/80 mmHg is considered optimal for adults. An adult individual is considered 

to have a high blood pressure if the systolic BP is higher or equal to 140 mmHg or if the 

diastolic BP is over 90 mm Hg [156].  

The BP can be measured using invasive and non-invasive methods. Invasive 

methods involve penetrating an artery wall and are restricted to the hospital 

environment. The auscultatory and oscillometric methods are the most common non-

invasive methods.  The first one requires obstructing the brachial artery (in the upper 

arm) with an inflated cuff. When the pressure is released from the cuff and the blood 

starts to pass through the artery, the turbulence provoked by the cuff can be heard 

(Korotkoff sound) by an operator using a stethoscope placed at the elbow, over the 

artery. The pressure applied to the cuff at this moment corresponds to the systolic BP. If 

the operator continues to release the cuff pressure, the sound will eventually disappear. 

The pressure applied by the cuff at this moment corresponds to the diastolic BP [175]. 

Devices based on oscillometry measure the oscillations (pressure variation in the cuff) 

caused by the blood flow during cuff deflation. The pressure at which the oscillations 

are maximal is defined as mean arterial pressure (MAP). Systolic and diastolic BP 

values are estimated from the successive pressure measurements made by the pressure 

sensor [119]. Other non-invasive methods exist, but all commercial solutions use 

occlusive cuffs.  

Occlusive cuff-based methods are not adequate for continuous long-term BP 

measurements. Over the time, they get uncomfortable and may produce unreliable 

readings [185]. However, non-invasive continuous long-term BP measurements can be 

beneficial in many settings including surgical operation, intensive care units, and home 

health care [30]. Cuffless continuous BP measurement is a very active research area. 

The majority of the systems proposed so far are based on simultaneously processing two 

biosignals: ECG and photoplethysmogram (PPG) to determine the pulse transit time 

(PTT)
1
 [28, 194]; ECG and impedance cardiogram

2
 [217]; or PPG and the pressure 

                                                 

1
 The PPG reflects the changes in blood perfusion (delivery) in limbs and tissues.  The PTT is the 

time it takes the pressure pulse to transfer from the aorta to the peripheral arteries.  

2
 The impedance cardiogram is the derivative of the thorax impedance involving the measurement of 

cardiac-related impedance change.  
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measured in a ring positioned around a finger [185]. Although promising, these methods 

possess serious limitations: the PPG signal is easily distorted by motion artifacts; the 

PTT evaluation looses accuracy when the extremity (finger, earlobe) used to measure 

the PPG signal is exposed to cold; and all require frequent calibrations [184].  

The respiration rate is the number of breaths a living subject takes within a certain 

amount of time. Oxygen (O2) and carbon dioxide (CO2) are the two gases exchanged 

during respiration. An increased CO2 level in the blood is the primary stimulus for 

breathing [85]. Besides assessing if the subject is breathing, the respiration rate and 

pattern are important diagnostic tools that can be used to treat several illnesses such as 

sleep apnea syndrome, lower respiratory tract infections, chronic obstructive pulmonary 

disease, tuberculosis, and lung cancer [148]. Moreover, it is an important tool in the 

detection of life threatening situations for bedridden patients [65].  

Invasive methods are exclusively used in the hospital environment and use probes 

that sense the air flow. The most common non-invasive methods are the impedance 

pneumography and the inductive plethysmography. Impedance pneumographic devices 

measure the voltage drop across thoracic electrodes, which increases during inspiration 

and decreases during expiration. Inductive plethysmography employs arrays of 

sinusoidally arranged copper wires excited by a low-current, high-frequency electrical 

oscillator circuit. Movement of the thorax causes variations in the magnetic fields, 

which are measured as voltage changes over time. Other methods for assessing the 

respiration rate include non-contact approaches. For example, EMFIT, a company from 

Finland, produces a non-contact monitoring system capable of detecting heart beating 

and breathing rate of in-bed patients. It is based on elastic, permanently charged ferro-

electret film that converts mechanical stress into proportionate electrical energy [50]. 

Other non-contact technologies under development include the use of reflection radio 

waves, capacitive and optical sensors, microwave Doppler radar and thermal image 

processing [5, 120, 162, 180, 207].  

Table 3 contains normal vital sign average and range values for various ages [169].  
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Table 3 – Normal vital sign values for various ages (from A.G. Perry and P.A. Potter [169]). 

Age 

Temperature 

Average 

(∘C) 

Heart Rate 

Average and Range 

(beats per min) 

Blood Pressure 

Average 

(mm Hg) 

Respiration Rate 

Range 

(breaths per min) 

Newborn 36.8 (axillary) 120 (70 – 170) 80/40 40 – 90 

1 – 3 years 37.7 (rectal) 110 (80 – 130) 98/64 20 – 40 

6 – 8 years 37.0 (oral) 95 (70 – 110) 102/56 20 – 25 

10 years 37.0 (oral) 90 (70 – 100) 110/58 17 – 22 

Teen 37.0 (oral) 80 (55 – 105) 110/70 15 – 20 

Adult 37.0 (oral) 80 (60 – 100) <120/80 12 – 20  

> 70 years 36.0 (oral) 80 (60 – 100) Up to 160/95 12 – 20 

1.3 Acquisition of vital signs 

The energy produced by physiological processes, including heat, electrical, 

mechanical, or chemical energies, is measured for acquiring a vital sign.  Some 

physiological processes involve electrical activity that can be directly read using 

electrodes attached to the surface of the body. Alternatively, a transducer must be used 

when non-electrical biological parameters are measured using electronic devices. An 

adequate transducer senses the presence, magnitude or variation of a specific form of 

energy produced by a physiological process and provides an electrical output that can be 

accurately correlated to the form of energy sensed.  The transducer selection is critical 

because it significantly contributes to the precision, cost, invasiveness, and complexity 

of the system [183]. Examples of transducers include thermistors and thermocouples, 

used to measure temperature; strain gauges, used to measure pressure and force; and 

linear variable differential transformers, which are commonly used to measure 

displacement.  

1.3.1 ECG acquisition 

Bioelectrical signals originate in the ionic voltages produced by groups of excitable 

cells. When stimulated, a cardiac muscle cell goes through a cycle called action 

potential
3
. In its resting state, this cell is electrically negative with respect to the outside. 

However, when stimulated, its membrane turns more permeable to sodium (Na
+
) ions, 

which results in a rapid influx of Na
+ 

ions. During this period, called depolarization, the 

                                                 

3
 Apart from cardiac muscle cells, action potentials occur in several types of cells, which include 

neurons, other muscle cells, and endocrine cells. 
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electrical polarization of the cell in relation to the outside rises. When the cell reaches 

the depolarized state, the cell membrane begins to return to its original permeability. 

However, rather than Na
+ 

ions flowing out the cell, K
+
 ions diffuse out, causing the cell 

to contract. At the end of this cycle, the cell returns to its resting state. This flux of ions 

during an action potential can be observed as potentials on the body surface [114, 175].   

A stylized ECG waveform is shown in Figure 2. The ECG is recorded to 

continuously measure the heart rate, detect abnormal rhythms and identify if the heart 

muscle has been damaged in specific areas. The baseline of the ECG tracing is called 

the isoelectric line and denotes resting membrane potentials. Deflections from this point 

are lettered in alphabetical order; from P to U. The typical amplitude of the R wave is 

equal to 1 mV.  

 

Figure 2 – ECG waveform (adapted from [25]). 

The electrical conduction system of the human heart is depicted in Figure 3 [157]. 

During diastole, the atria are filled with blood. By the end of diastole, an electrical 

signal is generated by the sinuatrial (SA) node, located in the top of the right atrium. 

This signal is generated by specialized cells that have a property called automaticity, 

which reflects an ability to initiate electrical impulses spontaneously [18]. The signal 

spreads to the right and left atria causing them to contract and pump blood to the 

ventricles. This action pushes blood through the open valves from the atria into both 

ventricles. In the ECG waveform shown in Figure 2, this signal is observed as the P 

wave [157].  
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Figure 3 – Electrical conduction system of the heart (adapted from [157]). 

After that, the electrical signal arrives at the atrioventricular (AV) node. At this 

point, it is slowed down to let the ventricles fill with blood. This period of time 

corresponds to the interval between the end of the P wave and the beginning of the Q 

wave. After that, the electrical signal moves through the bundle of His and divides on 

the right and left bundle branches until it reaches the bottom of the ventricles. In the 

ECG it corresponds to the Q wave. Then, the electrical signal spreads quickly across the 

His-Purkinje system, a set of nerve cells distributed across the ventricle walls, causing 

the ventricles to contract. The left ventricle, however, contracts a few milliseconds 

before the right ventricle.  In the ECG, the R wave marks the contraction of the left 

ventricle whereas the S wave marks the contraction of the right ventricle. As the stimuli 

ceases, the ventricles relax. On the ECG, the T wave marks the point at which the 

ventricles are relaxing. The U wave most likely represents an electromechanical 

phenomenon that occurs after repolarization is completed.  However, this low-amplitude 

low-frequency wave is frequently absent in the limb leads [176]. Finally, the heart 

muscle is relaxed and, in a few instants, the process is again repeated. 

Table 4 shows a summary of the primary ECG waveform components, the electrical 

activity related to each one and their normal duration. The T wave and the ST segment 

durations are not listed because their durations are not commonly measured [121].  

Bundle of His

Sinoatrial 

(SA) node 

His-Purkinje 

system

Left Ventricle

Right atrium

Atrioventricular 

(AV) node

Left atrium

Right ventricle

Right and left 

bundle branches
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Table 4 – Primary ECG components and their durations [121]. 

Primary ECG component Electrical activity related Normal duration (ms) 

P wave Atrial depolarization 80 – 100 

QRS complex Ventricular depolarization 60 – 100 

T wave Ventricular repolarization --- 

P-R interval Atrial depolarization and AV nodal delay 120 – 200 

ST segment Isoelectric period of depolarized ventricles --- 

Q-T interval Action potential duration 200 – 400 

 

A simplified block diagram of a single channel ECG sensor is shown in Figure 4. 

The instrumentation amplifier (IA) amplifies the potential difference between the leads 

applied to its inputs (in this case, the RA and LA leads) while rejecting large values of 

common mode noise. The low pass filter (LPF) and high pass filters (HPF) follow the 

IA and are used to attenuate unwanted frequency components. Most electrocardiographs 

can operate either on diagnostic or on monitoring filter mode. The diagnostic filter 

mode allows physicians to observe time relations that can be altered if the ECG signal 

bandwidth is limited. Generally, several leads are used, which allows the exploration of 

more than one reference plane.  In contrast, the monitoring mode is typically used to 

detect abnormal heart rhythms (arrhythmias). In this case, just one lead (usually lead II, 

I or one of the chest leads) may be sufficient and several frequency components can be 

attenuated in order to limit artifacts.  In diagnostic mode, the high pass filters are set at 

0.05 Hz whereas the low pass filters are set at 40 Hz, 150 Hz or higher (up to 1 kHz). In 

monitoring mode, the high pass filters are set at either 0.5 Hz or 1 Hz whereas the low-

pass filters are set at 40 Hz [138]. A 50 Hz notch filter can be used to attenuate the 

interference from the electrical power system that was not rejected by the IA.  

Then, an analog-to-digital converter (ADC) samples and converts the analog signal 

into discrete samples. Generally, ADCs with resolution equal or greater than 12 bits are 

used. The digital signal from the ADC is then processed by a microcontroller, a 

microprocessor or a digital signal processor (DSP). The digital processing done may 

include signal conditioning, heart rate evaluation, arrhythmia detection, ECG 

components measurement (amplitude and duration), ectopic beats detection and 

episodes onset (ischemia) detection and classification. Depending on the 

electrocardiograph, the processed ECG signal may be displayed or printed. 

Additionally, it may be sent to a monitoring station or to the hospital information 

system (HIS) using a wired connection or a wireless channel. 
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Figure 4 – Simplified single-channel ECG.  

Apart from the components already presented, electrocardiography devices include 

circuits that provide electrical isolation from the mains power and defibrillation 

protection. The electrical isolation limits the possibility of the passage of any leakage 

current from the instrument to the patient. Specifically, leakage currents must be limited 

below the safety standard limit of 10 μA [199]. Wearable devices powered by low-

power batteries may not require an isolation circuit, but it is mandatory for all main 

powered units.  Additionally, electrocardiographs must be protected against very high 

voltages from electric defibrillators that can damage the instrument.   

Although ECG acquisition is well-developed and commercial solutions are 

available, the design of ECG front-ends offer several challenges due to the presence of 

the large DC offset and various interference signals. Whereas ECG signals have 

amplitudes around 1 mV, electrical fields can typically create potentials around 20 mV, 

too intense to be rejected by the IA.  Additionally, unbalance in the electrode-skin 

interface impedance creates higher common mode potentials at one input than in the 

other. Hence, this difference is seen by the IA as differential voltage and is amplified 

causing distortions in the ECG waveform. Motion artifacts can saturate the amplifiers 

and muscle signals (EMG potentials) can appear as interference.  Additionally, 

magnetic induced voltages can be formed in the lead wires producing additional 

interference [208].  Finally, the design of small wearable devices, such as the ECG 

sensor developed under this work, involves positioning electrodes in close proximity. In 

this situation, the ECG waveform amplitude is considerably reduced, which may force 

the addition of a subsequent amplification stage that can introduce noise.   
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A prototype of the developed ECG sensor is shown in Figure 5. As shown, no lead 

wires are necessary since disposable electrodes are connected directly to sensor 

connectors.  It continuously measures a modified projection of the bipolar lead I vector
4
, 

evaluates heart rate, detects abnormal rhythms, namely tachycardia, bradycardia, 

asystole and background arrhythmia
5
, and sends data through the wireless channel.  

 

Figure 5 – The wearable ECG sensor developed: (a) printed circuit board front side; (b) printed circuit board 

rear side; and (c) user case top side. 

1.3.2 Body temperature measurement  

Body temperature is typically measured using thermoresistive temperature 

transducers. These components exhibit a change in resistance with a change in the 

temperature they are submitted to. Thermistors are the most commonly used transducer 

in medical applications. They are made of ceramic semiconductors (metal oxides) and 

can either have a positive temperature coefficient of resistance (PTC) or a negative 

temperature coefficient of resistance (NTC). In PTC devices, an increase in temperature 

corresponds to an increase in resistance, whereas NTC devices behave the opposite way. 

The PTC is best suited for switching applications, whereas the NTC is used for 

                                                 

4
 The ECG sensor uses non-standard electrode positioning on the torso. The resulting waveform is 

adequate for heart rate measurement, but cannot be used for diagnostic purposes.  

5
 Asystole refers to the state of no cardiac electrical activity. A background arrhythmia (variable 

rhythm) occurs if in one minute period, the sensor detects an R-R interval that corresponds to a heart rate 

20% higher or 20% lower than the average R-R interval followed by another R-R interval that 

corresponds, respectively, to a heart rate 20% lower or higher than the average R-R interval.   
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precision temperature measurements, including biomedical instrumentation. 

Thermistors can be manufactured in a wide variety of configurations and protective 

coatings.   

As will be further discussed in Chapter 4, thermistors exhibit a non-linear resistance 

versus temperature (R-T) characteristic. Moreover, each component has a particular 

characteristic, so calibration is required when using thermistors. Vital signs monitoring 

devices use pre-calibrated medical probes which are based on NTC thermistors that 

possess well-defined R-T characteristics. This ensures interchangeability, repeatability 

and accuracy equal or better than ± 0.1 °C between 32 °C and 42 °C [218].  Besides, the 

thermistor excitation current level must be limited to avoid self-heating, which causes 

the thermistor resistance to decrease and give a higher reading than the actual 

temperature.  

Figure 6 shows the simplified block diagram of a wireless body temperature sensor 

based on an interchangeable thermistor. The thermistor excitation is supplied by a 

constant current source. The resistor in series with the thermistor is used to increase the 

voltage on the thermistor terminal that is connected to the difference amplifier (AMP). 

The analog voltage supplied by the amplifier is then converted into a digital value by an 

ADC. Then, this digital value is read by the microcontroller and the temperature of the 

thermistor is estimated. Periodically, temperature values are sent through the wireless 

channel.    

 

Figure 6 – Simplified block diagram of a thermistor-based temperature sensor. 

A prototype of the body temperature sensor developed in this work is shown in 

Figure 7. As shown, an armband holds the sensor to the upper arm and a temperature 

probe extends from the sensor to the axillary region.   
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Figure 7 – The temperature sensor prototype version. 

1.4 Vital signs monitors 

Vital signs monitors can be classified into two broad categories: bedside monitors 

and biotelemetry systems. Whereas bedside monitors are capable of accurately 

acquiring several vital signs from bedridden patients, biotelemetry systems provide the 

opportunity of continuously monitoring a patient without restricting his or her mobility. 

Moreover, biotelemetry systems can be used to monitor out-patients who can benefit 

from continuous monitoring during recovery or throughout their normal activities.  

1.4.1 Bedside monitors 

Presently, a variety of monitoring systems are used in hospitals, where bedside and 

portable monitors are the most common ones. Bedside monitors as the 1500 Patient 

Monitor, from Welch Allyn (Figure 8), are the most expensive, biggest and highest 

performance monitors. They are mainly used during anesthesia and in intensive care 

units (ICUs) to monitor several vital signs, including heart rate, respiratory rate, blood 

pressure and temperature. In addition, special functions such as capnography, oximetry, 

electroencephalography and pulmonary artery catheter measurements can be done 

[213].  Most of these monitors allow data to be transferred to monitoring stations or to 

specific electronic medical record (EMR) database applications. In specific cases, data 

can be transmitted using a wireless channel. 
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Figure 8 – The 1500 Patient Monitor (adapted from [213]). 

Portable bedside monitors, such as the Dinamap Carescape V100 [72], shown in 

Figure 9, are battery powered units that can be carried from one patient to the other, 

allowing nurses to quickly check several patients‘ vital signs or used as a bedside 

monitor to continuously monitor patients. In general, they are smaller and simpler than 

bedside monitors, but some of these units can also transfer vital sign data.   

 

Figure 9 – The Dinamap Carescape V100 vital signs monitor (adapted from [72]).  

1.4.2 Biotelemetry systems 

Biotelemetry systems are used in hospitals to continuously monitor patients whose 

recovery benefits from mobility. These systems are comprised of portable patient units, 

wireless infrastructure and a central monitoring station. The biotelemetry systems 

manufactured by the major health care device manufacturers have many resemblances 

and their portable devices have similar form factors. Figure 10 (a) shows a Micropaq 

patient unit worn by a patient in the hospital environment and Figure 10 (b) shows a 

snapshot of its user interface and external features. This system, which is manufactured 

by Welch Allyn, is capable of measuring the heart activity and the oxygen saturation 



Chapter 1. Introduction 

17 

level (SpO2) [211]. As can be observed, despite being portable, it is relatively large and 

obtrusive.   

  
(a) (b) 

Figure 10 – Micropaq patient unit: a) A patient unit worn in the hospital environment (adapted from [210]); b) 

User interface snapshot and external appearance (reproduced courtesy of Welch Allyn). 

Just recently, biotelemetry manufacturers began using standard-based wireless 

communication protocols, which may become a trend [17]. On 2005, Welch Allyn 

biotelemetry systems started to use the IEEE 802.11 protocol. On the same year, Philips 

Healthcare announced a biotelemetry system designed to work in the 2.4 GHz ISM band 

but, only recently, a new version based on the IEEE 802.11 protocol was released. On 

the other hand, some manufacturers still adopt custom-designed communication 

technologies. GE Healthcare‘s biotelemetry solution, Apex Pro, operates in the 420-460 

MHz radio band and use a proprietary protocol [70]. 

1.5 Motivation 

According to the Sixth Annual Health Grades Patient Safety in American Hospitals 

Study, failure to rescue
6
 events are among the medical errors of highest incidence rates 

in American hospitals, accounting for a total of 14,903 deaths between 2005 and 2007 

[84]. Possibly, some of these events could have been prevented if early signs of 

degradation in patients‘ conditions were available to health care providers in due time.  

                                                 

6
 According to the American Agency for Health care Research and Quality 

(http://www.psnet.ahrq.gov/glossary.aspx), "failure to rescue" refers to the inability of conducting actions 

that could have prevented a clinically important deterioration, such as death or permanent disability, from 

a complication of an underlying illness or a complication of medical care that developed on their watch. It 

may reflect the quality of monitoring, the effectiveness of actions taken once early complications are 

recognized, or both. 

http://www.psnet.ahrq.gov/glossary.aspx
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The assessment of patients‘ conditions generally includes vital signs monitoring 

since they convey important information about a patient‘s condition and response to 

treatments. Ideally, all hospital patients should have one or more vital signs continually 

monitored to reduce the care response delay in case of an adverse event [59]. Still, this 

scenario is the opposite of what presently occurs in most hospitals where typically few 

patients out of the intensive and intermediate care units have their vital signs 

continuously monitored. In case an emergency situation occurs, it is possible that 

several minutes, or even hours, elapse before care is delivered, which can have serious 

consequences to patients.  

Out-patients and elderly can also take advantage from remote vital signs 

monitoring. In addition to avoiding some trips to hospitals and other health care centers, 

care can be greatly improved by maintaining accessible files that contain accurate and 

updated vital signs recordings.  Early detection of problems results in early intervention, 

which can prevent deterioration and improve quality of life often through relatively 

minor, inexpensive interventions such as a change in lifestyle
7
. Possible settings include 

domestic, assisted living facilities, nursing homes, and mobile monitoring. In all these 

settings, wireless communication technologies such as wireless personal networks 

(WPANs), wireless local area networks (WLANs), cellular and GPS technologies can 

play a fundamental role. Nevertheless, out-patients and elderly lack devices capable of 

continuously monitoring their health. Actually, there are not many commercial devices 

tailored for this purpose, although some exist, such as the Ericsson Mobile Health [51]. 

The benefits depicted in the above scenarios, in conjunction with the emergence of 

wireless sensor network (WSN) technologies and low-data rate standard communication 

                                                 

7
 The impact of ageing in health care systems is known for several years. In 1982, the United Nations 

endorsed the Vienna International Plan of Action on Ageing. It acknowledged the increasing population 

ageing and the related trend towards rising costs in health care. In 2003, the Centers for Disease Control 

and Prevention (CDC) published a study where it estimated a high increase in the health care costs due to 

the increase of the number of persons aged ≥ 65 years (available at 

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5206a2.htm). It also warned about the sustainability 

of the health care systems assuming the projected growth in the elderly support ratio (i.e., the number of 

persons aged ≥ 65 years per 100 persons aged 20-64 years).   

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5206a2.htm
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protocols, namely the IEEE 802.15.4 and ZigBee protocols, provided the motivation for 

developing this work.  

1.6 Approach and contributions 

The purpose of this research is to investigate the feasibility of employing WSN 

technologies to monitor non-critical in-patients and chronically-ill out-patients, and 

determine scenarios under which those technologies can be deployed. The focus of this 

research is on the evaluation of the performance of a vital signs monitoring system 

based on the IEEE 802.15.4 and ZigBee protocols to remotely monitor patients.  

The choice of the communication technologies above mentioned is based on the 

several benefits they can offer, such as: 

 Standard protocol stack implementations are reliable and can considerably 

reduce the development costs; 

 Standard-based radios and integrated communication modules are cheaper 

than customized solutions;  

 In case an open health care profile is employed, medical sensors from a 

variety of manufacturers can be used in the same project without 

modification [62]. 

When this work started, on October 2007, few standard wireless protocols were 

available, such as IEEE 802.11 and Bluetooth. Standard low data rate protocols and 

WSN were still emerging technologies. The power consumption requirements of 

IEEE 802.11-based communication modules prevented their use in wearable devices; 

whereas Bluetooth had constraints in terms of topology, scalability and range. These 

restrictions made both protocols unsuitable options for the purpose of this work [22, 

90]. Alternatively, low data rate WPAN standard protocols, such as IEEE 802.15.4 and 

ZigBee, were promising candidates because  both were designed to address the need of 

low-cost, small footprint and low-power wireless devices and provided security services 

[91]. Moreover, ZigBee provided extended range network range through the use of 

routers [220] and means for device interoperability through a standard health care 

profile.  
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Whereas these protocols have appealing characteristics, it is not clear if they are 

able to satisfy the QoS requirements of health monitoring applications. The main 

difficulty arises from the fact that some sensors must be sampled quite often, generating 

a large amount of data and, consequently, requiring the network to operate under high 

load, which is not common in typical WSN scenarios.  

Consequently, the following research questions apply: 

 How stakeholders assess available vital signs monitoring systems and what 

can be done to improve these systems?  

 To which health monitoring scenarios can WSN technologies be applied and 

what relative benefits can be accomplished?  

 Are WSN systems based on the IEEE 802.15.4 and ZigBee protocols capable 

of guaranteeing the QoS requirements typical of vital signs monitoring 

systems?  

 Which mechanisms provided by the IEEE 802.15.4 and ZigBee protocols 

should be used to optimize the proposed application performance?  

The contributions of this research are listed as follows: 

 A review of present remote vital signs monitoring systems followed by 

suggestions to increase their acceptability and performance; 

 An overview of WSNs based on the IEEE 802.15.4 and ZigBee protocols and 

their applications in health and wellness monitoring; 

 The prototyping of HM4All, which stands for Health Monitoring for All, a 

remote monitoring system which consists of one or more WSNs that gather 

vital signs from patients and send this data to monitoring stations through 

gateways. In contrast with the commercial monitoring systems available, the 

ZigBee protocol is used which, despite the limitations in terms of data rate, 

promises great reduction in power consumption, footprint, and cost, with 

direct consequences in the sensors‘ power autonomy, size and cost.  

 Development of test programs used to evaluate HM4All‘s performance;  

 Performance evaluation of HM4All based on simulation, laboratory tests and 

on-site, in a hospital scenario; 

 The development of wearable ECG and axillary temperature sensors, 

including the hardware and the software. 
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Figure 11 presents a monitoring window displayed by HM4All. It shows vital signs, 

namely ECG waveform, heart rate and axillary temperature, and sensor battery levels.  

HM4All is introduced in Chapter 4. 

 

Figure 11 – Individual patient monitoring window. 

The contributions described above have been succinctly presented in international 

conferences [60-64]. 

1.7 Thesis organization 

This thesis is divided into seven chapters and six appendixes, which are described 

as follows: 

Chapter 2 introduces important wireless protocols and describes the main concepts 

on WSNs. Special focus is given to the protocols used to develop the system prototype, 

IEEE 802.15.4 and ZigBee. 

Chapter 3 reviews state-of-the-art research on vital signs monitoring. In addition, it 

briefly presents some commercial remote patient monitoring systems and enumerates 

general issues reported by health care providers and engineers, as well as suggestions to 

increase their acceptability and performance.  

Chapter 4 describes the wireless monitoring system prototyped, including the 

developed hardware and software.  

Chapter 5 analyzes and discusses the performance expected by vital signs 

monitoring systems based on the IEEE 8.2.15.4 and ZigBee protocols based on 

simulations and laboratory tests.  
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Chapter 6 analyzes and discusses the prototype system‘s performance based on 

experimental tests performed in the hospital environment. 

Chapter 7 includes concluding remarks and indicates possible future directions for 

this research topic. 

Appendix A contains the schematic diagram of the electrocardiogram sensor‘s 

board. 

Appendix B contains the schematic diagram of the temperature sensor‘s board. 

Appendix C presents the calculation performed to estimate the temperature sensor 

battery lifetime. 

Appendix D contains the schematic diagram of coordinators‘ and routers‘ board.  

Appendix E includes the questionnaires used to evaluate the developed system user 

acceptance and obtain critics and suggestions for future developments. 

Appendix F describes the results of range tests executed in an in-patient floor of 

Hospital Privado de Guimarães. 

 



 

23 

Chapter 2 

Wireless sensor networks and protocols 

 
Initially, this chapter introduces fundamental concepts of wireless sensor networks. 

Then, it describes the protocols used to develop this work, IEEE 802.15.4 and ZigBee. 

Finally, it overviews other wireless protocols that can be used to remotely monitor 

patients‘ health and compares these protocols with IEEE 802.15.4 and ZigBee in 

different health monitoring scenarios.  

2.1 Wireless sensor networks: definition and 

applications 

Wireless sensor networks (WSNs) are comprised of a large number of spatially 

distributed devices with sensing, processing and radio communication capabilities. The 

main features of these devices include [96, 118]: 

 Self-organizing capabilities and multi-hopping routing; 

 Topology adaptation in response to changes in propagation conditions or 

node failures;  

 Small size and low cost;  

 Limitations in power consumption and processing capabilities. 

Several physical parameters can be measured with small and low consumption 

sensors capable of being integrated in sensing devices. These include, among several 

others, temperature, humidity, pressure, touch, acceleration, motion and vibration.  

Additionally, devices can contain actuators, such as mechanical switches and 

piezoelectric actuators.  
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Numerous protocols have been designed to support different requirements applied 

to WSNs [118, 129, 192]. From an application point of view, protocols can aim, for 

instance, to minimize the energy consumption of individual nodes, to maximize the 

network lifetime, or to provide real-time quality of service (QoS) guarantees. From a 

layered view, medium access control (MAC) protocols provide channel access 

guarantees, whereas in the network layer, protocols provide end-to-end (multi-hop) 

communication services including routing through intermediate nodes. Some protocols 

can cover more than one or all protocol layers including the support to applications, 

which lay in the highest hierarchy layer [129].  

This work is based on the IEEE 802.15.4 and the ZigBee protocols, two standard-

based communication protocols described in the next sections. These protocols were 

designed to address the basic requirements of WSNs and have been implemented by 

several chip manufacturers, like Texas Instruments, Ember or Jennic. The adoption of 

one of these protocols can considerably reduce the final cost of a product. Additionally, 

in case of the ZigBee protocol, it is possible to create interoperable products by 

following an application profile published by the ZigBee Alliance.  

2.2 The IEEE 802.15.4 protocol  

The first version of the IEEE 802.15.4 protocol was published in 2003. Since then, 

it has undergone a revision in 2006 and three amendments had been approved. 

Additionally, at the time this work is being written, three task groups are active.  

The IEEE 802.15.4 protocol is the basis of open-standard based protocols, such as 

ZigBee [220], RF4CE [8], and WirelessHART [82], as well as other proprietary 

network stacks [15, 108]. In contrast, simple applications may be built directly on top of 

it. 

2.2.1 IEEE 802.15.4 protocol overview 

The IEEE 802.15.4 protocol defines the PHY layer and MAC sublayer 

specifications for low-rate (limited to 250 kbps) wireless personal area networks (LR-

WPANs). It is a low-complexity and flexible protocol targeted to provide wireless 

connectivity to resource-constrained devices.  
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Two types of devices can participate in an IEEE 802.15.4-based network: a full-

function device (FFD) and a reduced-function device (RFD).  FFDs implement the 

complete protocol set and can act as coordinators. RFDs implement part of the protocol 

and, consequently, can be implemented on simpler devices. FFDs can communicate 

with other FFDs and with RFDs, whereas RFDs, as simpler devices, can talk only to its 

FFD parent. Additionally, the protocol defines that entities  participating in a network 

can assume the following possible roles [91, 92]:  

 Personal area network (PAN) coordinator: A FFD that is the principal 

controller of a PAN.  

 Coordinator: A FFD that provides synchronization services through the 

transmission of beacons.  

 Alternate PAN coordinator: A coordinator that is capable of replacing the 

PAN coordinator. A PAN can have zero or more alternate PAN 

coordinators. 

 Device:  Any entity (FFD or a RFD) that contain an implementation of the 

IEEE 802.15.4 protocol.  

The protocol supports the star and peer-to-peer topologies depicted in Figure 12. 

These topologies contain only one coordinator, the PAN coordinator. In the star 

topology, all devices are connected to the PAN coordinator, whereas in the peer-to-peer 

topology each device is capable of communicating with any other device within its 

radio sphere of influence. Additionally, the standard mentions the cluster-tree topology 

shown in Figure 13 as an example of a peer-to-peer network. In this topology, any of the 

FFDs may act as a coordinator or cluster head. A RFD can join any of the FFDs, which 

shall act as a coordinator to provide synchronization services. As routing is 

implemented as part of the network layer, the IEEE 802.15.4 protocol alone cannot 

support this topology.  

 

Figure 12 – Star (left) and peer-to-peer (right) topologies [91, 92]. 
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Figure 13 – The cluster-tree topology [91, 92]. 

Four data frames structures are defined by the IEEE 802.15.4 protocol: a) a data 

frame used to transfer data between devices; b) an acknowledgement frame used to 

confirm the successful reception of a data frame; c) a beacon frame used by the 

coordinator to synchronize devices and disseminate information; and d) MAC control 

frames [91, 92].   

Devices contend to access the wireless channel using the carrier sense multiple 

access with a collision avoidance medium access mechanism. If an optional superframe 

structure is used, time slots can be allocated to low-latency applications or applications 

requiring specific data bandwidth [91, 92]. A superframe is limited by successive 

beacon frames transmitted by the coordinator, as shown in Figure 14. The period 

between successive beacons is called Beacon Interval (BI). It includes the Superframe 

Duration (SD), a period used by the coordinator to interact with the network devices, 

and the Inactive Period in which the coordinator switches off its radio and transmissions 

are not allowed. During the Inactive Period, devices enter in sleep mode, a state in 

which little energy is consumed.     

 

Figure 14 – Superframe structure [91, 92]. 

Each superframe contains 16 equally sized time slots. Up to seven time slots can be 

allocated to devices that contain strict bandwidth or latency requirements. These time 
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slots are called guaranteed time slots. The remaining time slots constitute the contention 

access period (CAP). During this period, devices contend to access the wireless channel 

using the slotted version of the CSMA-CA mechanism. A network that supports the use 

of beacons is called a beacon-enabled network, whereas nonbeacon-enabled networks 

do not support the transmission of beacons and, consequently, do not employ a 

superframe structure.  

A PAN may choose not to transmit beacons. In this case, the coordinator is 

permanently active and, when a device wishes to transfer data to the coordinator, it 

simply transmits its data frame using the unslotted version of the CSMA-CA, and then 

switches off its radio.  The CSMA-CA mechanism is presented in Section 2.2.3. 

2.2.2 Physical layer 

The original Physical (PHY) options introduced by the first version of the protocol 

and the optional PHY options included in the 2006 version are shown in Table 5  [47, 

91, 92]. The alternative PHY extensions introduced by the IEEE 802.15.4a (adds 14 

overlapping chirp spread spectrum (CSS) channels in the 2450 MHz band, and 16 

channels in three UWB bands), IEEE 802.15.4c (support to Chinese bands) and IEEE 

802.15.4d (support to Japanese bands) amendments are not included [93-95]. 

Table 5 – PHY options introduced by the IEEE 802.15.4-2006 revision [92]. 

Channel 

page 

Channel 

number 

Optional? Frequency 

band 

Modulation Spreading 

method 

Data rate 

(kbps) 

Symbol rate 

(ksymbol/s) 

0 

0 No 868 MHz BPSK DSSS 20  20 

1 – 10 No 915 MHz BPSK DSSS 40  40 

11 - 26 No 2450 MHz O-QPSK DSSS 250  62.5 

1 

0 Yes 868 MHz ASK PSSS 250  12.5 

1 – 10 Yes 915 MHz ASK PSSS 250  50 

11 - 26 Reserved --- --- --- --- --- 

2 

0 Yes 868 MHz O-QPSK DSSS 100  25 

1 – 10 Yes 915 MHz O-QPSK DSSS 250 62.5 

11 - 26 Reserved --- --- --- --- --- 

 

The 2006 version of the protocol added the concept of page, in which frequency 

channels are defined by a combination of channel numbers and channel pages. The PHY 

options on channel page 0 are the ones originally defined in the 2003 original version of 

the protocol. The PHY options on channels 1 and 2 were included in the 2006 protocol 

version and are optional.  
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The adoption of a specific PHY option must consider specific country regulations. 

For instance, in Europe, the European Standard Institute recommends the use of the 

868 MHz, whereas in the United States, Australia and New Zeeland, the 915 MHz is 

recommended by local regulation agencies. On the other hand, the 2450 MHz is 

allocated worldwide to ISM applications [47].  

The advantages of the 868 MHz and 915 MHz bands are that they offer a longer 

range and are less crowded. Alternatively, the 2450 MHz band is available worldwide, 

offers more channels and requires potentially smaller antennas. 

The center frequency (Fc) of each channel is determined using the following 

Equations (1), (2) and (3) [91, 92]: 

Fc = 868.3 in megahertz, for k = 0 (1) 

 

Fc = 906 + 2 (k – 1) in megahertz, for k = 1, 2,..., 10 (2) 

 

Fc = 2405 + 5 (k – 11) in megahertz, for k = 11, 12,..., 26, where k is the 

channel number. 
(3) 

Figure 15 shows the alignment of IEEE 802.15.4 (2450 band) and IEEE 802.11b 

PHY channels in the United States and Europe
8
. Four channels are between or above the 

guard bands of IEEE 802.11b channels. This is the case of channels 15, 20, 25 and 26 in 

relation to channels used in the United States and channels 15, 16, 21 and 22 in relation 

to channels used in Europe. The IEEE 802.15.4 specification recommends the operation 

in one of these channels to enhance coexistance with IEEE 802.11b networks [91, 92].  

                                                 

8
 The IEEE 802.11b standard recommends the channel selection shown in Figure 15, though channel 

use depends on the restrictions imposed by each country regulations and user preferences.  
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Figure 15 – Alignment between IEEE 802.11b and IEEE 802.15.4 PHY channels [91, 92].   

IEEE 802.11g and IEEE 802.11n also operate on the 2450 MHz band, but have 

distinct PHY channels characteristics. Whereas the receiver bandwidth of a IEEE 

802.11b signal is 22 MHz, that of IEEE 802.11g and IEEE 802.11n signals are 

16.25 MHz and 33.75 MHz, respectively. However, typically, IEEE 802.11g uses the 

same channel structure as IEEE 802.11b (that is, three channels share the same area), 

which cannot occur in the case of IEEE 802.11n [134]. Before setting up an IEEE 

802.15.4 network, it is recommended to make a wireless survey to determine which 

channels are being used by IEEE 802.11-based networks and restrict the use of IEEE 

802.15.4 operating channels to the ones with the least interference.   

Figure 16 showns the PHY layer reference model. As shown, it provides two 

services to the higher layer, accessed by two service access points (SAPs).  

 

Figure 16 – The PHY layer model [91, 92]. 
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The physical data SAP (PD-SAP) supports the transport of data between two MAC 

sublayers [91, 92].  

The physical layer management entity SAP (PLME-SAP) provides service 

interfaces to layer management functions. The services provided by the PLME-SAP 

includes [91, 92]: 

 Energy detection (ED) within the current channel; 

 Link Quality Indicator (LQI) for received packets; 

 Clear channel assessment (CCA) for carrier sense multiple access with 

collision avoidance (CSMA-CA); and 

 Channel frequency selection. 

Additionally, the PLME-SAP maintains a database, the PHY PAN information base 

(PHY PIB), which contains objects that belong to the PHY layer. The PHY PIB 

attributes are described in Table 6 [91, 92]. 

Table 6 – PHY PIB attributes [91, 92]. 

PIB attribute Description 

phyCurrentChannel Channel to use for transmission and reception.  

phyChannelsSupported The list of channels to be scanned in case a higher layer requests any 

kind of scan. Scans include passive, orphan, ED and active scans. 

phyTransmitPower The transmit power and tolerance. 

phyCCAMode The CCA mode to be used (see description in the text).  

 

Before transmitting, devices perform the CCA according to three different modes 

defined in the standard. The following CCA modes are defined and, at least one should 

be implemented [91, 92]: 

 CCA Mode 1 - Energy above threshold. The PHY reports a busy channel if 

the energy detected is above the ED threshold. 

 CCA Mode 2 - Carrier sense only. The PHY reports a busy channel if a 

signal compliant with the standard is detected regardless if the signal is 

above or below the ED threshold. 

 CCA Mode 3 - Carrier sense with energy above threshold. Combines both 

methods. The PHY reports a busy channel if the complaint signal detected 

is above the ED threshold. 
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PHY PIB atributes can be retrieved and updated using get and set primitives 

provided by the PLME-SAP.  

Two important characteristics of the PHY layer are defined by two constants. The 

aMaxPHYPacketSize defines the maximum size of any frame (PHY service data unit or 

PSDU) the PHY can transmit or receive, which is 127 octets.  The PHY constant 

aTurnaroundTime defines the maximum time required by the transceiver to change 

from transmit mode (TX) to receiver mode (RX) and vice-versa, which is equal to 12 

symbol periods.    

2.2.3 Medium access control layer 

Figure 17 shows the MAC sub-layer reference model [91, 92]. The MAC provides 

two services, accessed through two SAPs.  The MAC data service, accessed through the 

MAC common part sublayer-service access point (MCPS-SAP), supports the transport 

of data. The MAC management service, accessed through the MAC layer management 

entity-service access point (MLME-SAP), provides management functions. Similarly to 

the PLME, it maintains a database, the MAC PIB [91, 92]. 

 

Figure 17 – The MAC model [91, 92]. 

Three types of data transfer can occur: a) from a device to the coordinator; b) from 

the coordinator to a device; and c) between peer devices. The two first methods can 

occur in star and peer-to-peer networks, whereas the third method can only occur in a 

peer-to-peer network [91, 92].  

The MAC parameters and constants used and their descriptions are presented in 

Table 7. For each transmission attempt, the device maintains three variables, NB, CW 

and BE. NB is the number of backoffs the device can make before it declares a channel 

access failure. CW is the contention window length and is used only in the slotted 

version of the algorithm. It defines the number of backoff periods that need to be clear 
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of channel activity before the transmission can start. BE is the backoff exponent. It is 

used to determine the number of backoff periods the device shall wait before 

performing the CCA [91, 92].  

Table 7 – CSMA-CA parameters and constants [91, 92]. 

Parameter 
Duration or range and default value 

Description 
2003 version 2006 version 

aUnitBackoffPeriod 
20 symbols (0.32 ms for 2450 MHz 

PHY) 

The number of symbols forming the basic 

time period used by the CSMA-CA 

algorithm. 

macMinBE 
0 – 3 (default = 3) 

0 – macMaxBE 

(default = 3) 

The minimum value of the backoff 

exponent. 

aMaxBE  5 --- The maximum value of the backoff 

exponent. macMaxBE  --- 3 – 8 (default = 5) 

macMaxCSMAbackoffs 0 – 5 (default = 4) 0 – 5 (default = 4) The maximum number of backoff periods. 

aMaxFrameRetries 3 --- The maximum number of retries allowed 

after a transmission failure. macMaxFrameRetries --- 0 – 7 (default = 3) 

 

The unslotted version of the CSMA-CA algorithm defined in the 2003 version of 

the protocol is shown in Figure 18 [91, 92]. In the 2006 version, the constant aMaxBE 

should be substituted by the macMaxBE parameter in step (1). 

 Initially, the backoff exponent (BE) takes the value macMinBE and the number of 

transmission attempts for the current packet (NB) is set to zero. After that, the device 

waits for a random backoff interval defined in the range from 0 to (2
BE

 – 1) unit backoff 

periods, where one unit backoff period is equal to 20 symbols (0.32 ms, in case of the 

2450 MHz band). Next, if the CCA function indicates that the channel is idle, the device 

starts its transmission immediately after its transceiver changes from receiver to 

transmit mode. On the other hand, if the channel is busy, the device defers its 

transmission, increments the number of transmission attempts for the current packet, 

NB, and also increments the BE value, if BE has not exceeded aMaxBE. Then, if the 

maximum number of transmission attempts has not been exceeded, it calculates a new 

random backoff interval it must wait before assessing the channel again. The device can 

try to access the channel a maximum number of times defined by the 

macMaxCSMAbackoffs parameter. When this limit is reached, the MAC layer discards 

the data and declares a channel access failure.  
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Figure 18 – Unslotted version of the CSMA-CA mechanism defined in the 2003 version of the protocol [91, 92]. 

If beacons are being used in the PAN, the MAC sublayer shall employ the slotted 

version of the CSMA-CA algorithm for transmissions in the CAP of the superframe. 

The slotted version of the CSMA-CA algorithm is presented in Figure 19. In the 2006 

version, the constant aMaxBE was substituted by the macMaxBE parameter in step (1).   

In the slotted version, transmissions should start in the beginning of a backoff 

period, where each backoff period is equal to 20 symbols and the first backoff period is 

aligned with the start of the beacon. First, the MAC layer initializes the NB, the CW and 

the BE, which depends if the battery life extension field is set or not. Then, it locates the 

beginning of the next backoff period boundary, delays for a random number of backoff 

periods and request that the PHY perform the CCA in the current superframe. If the 

channel is found busy, the MAC layer updates the values of NB and BE. If the number 

of backoffs exceeds macMaxCSMABackoffs, it shall declare a channel access failure. 

On the other hand, if the channel is found idle, the MAC layer decrements the 

contention window and verify if it has expired. If it has not expired, the device should 

perform another CCA and repeat this process; otherwise, the algorithm declares success 

and the device shall transmit just after its transceiver changes to transmit mode.  
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Figure 19 – Slotted version of the CSMA-CA mechanism defined in the 2003 version of the protocol [91, 92]. 

Despite the CSMA-CA mechanism, even when the channel can be accessed and 

messages get transmitted, they might not reach the destination due to several factors, 

such as collisions, fading and interference. Additionally, the CSMA-CA mechanism has 

no specific means to avoid the hidden-node and the exposed-node problems.   

A generic hidden-node scenario is illustrated in Figure 20 (a), where the 

transmission range of nodes A and B are represented by circles drawn around the nodes. 

If A is transmitting to C, and B starts to transmit to D (B‘s carrier sense fails), A‘s and 

B‘s packets collide at C. In this case, the transmission from A, which is hidden from B, 

is corrupted by B‘s transmission. A more severe problem happens if C and D happen to 
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be the same node, that is, if A and B transmit to a common receiver, C, as seen in Figure 

20 (b). In this case, if B starts to transmit while A is transmitting (or vice-versa), both 

packets are corrupted.  

  
(a) (b) 

Figure 20 – Hidden-node scenarios. 

The exposed-node problem is depicted in Figure 21. Assume that C´s transmissions 

to A do not collide with B‘s transmissions to D, but B can sense  transmissions done by 

C. Suppose that after C starts a transmission to A, B decides to transmit a message to D. 

As B can sense C‘s transmission, the CSMA-CA algorithm reports a busy channel and, 

consequently, B defers its transmission and bandwidth is wasted [13, 118]. 

 

Figure 21 – Exposed-node scenario. 

2.3 The ZigBee protocol  

ZigBee is a standard-based commercial protocol developed by the ZigBee Alliance, 

a non-profit association of companies, governmental regulatory groups and universities 

[221]. In opposition to other related protocols (for instance, RF4CE was designed as a 

replacement technology to IR-controlled products, whereas WirelessHART is targeted 

at industrial automation), ZigBee was designed as a general purpose protocol that can fit 

several applications. Additionally, it was designed to support multi-application 

environments and interoperability between devices from various manufacturers.  

By the time this work is being written, home automation and smart energy were the 

main application areas of the protocol. Home automation products include home 

security systems [7], electronic door locks [127] and light control systems [29]. Smart 

energy products include energy meters that support wireless data communication [46, 

48] and energy management tools that enable consumers to track energy consumption 

A DBC
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[32]. Other interesting applications include a greenhouse monitoring implementation 

[83] and a parking lot automation system [145].    

2.3.1 ZigBee protocol overview 

ZigBee stands on top of the version 2003 of the IEEE 802.15.4 protocol and defines 

the Network and the Application layers. Alike the IEEE 802.15.4, it was designed for 

low battery consumption, low cost, low data rate (250 kbps maximum) and easy 

installation. It adds routing capabilities to support tree and mesh topologies and 

provides enhanced security services. 

The first version of the ZigBee protocol, ZigBee version 1.0, was released in 

December 2004. This work is based on this version. The second version, released in 

December 2006, was followed by the ZigBee 2007/PRO specification. Each new release 

adds to and improves functionality provided in previous versions of the specification 

[42]. The ZigBee 2007/PRO is compatible with the ZigBee 2006 version, whereas the 

back compatibility with the 2004 version is not assured by the ZigBee Alliance. 

The  following types of devices are defined [220, 224]: 

 A ZigBee coordinator is equivalent to the IEEE 802.15.4 PAN coordinator.  

 A ZigBee router is an IEEE 802.15.4 FFD, which can work as an IEEE 

802.15.4 coordinator and is capable of routing messages and accepting 

associations.  

 A ZigBee end device is an IEEE 802.15.4-2003 RFD or FFD participating 

in a ZigBee network, which is neither the ZigBee coordinator nor a ZigBee 

router. 

The ZigBee layer model is shown in Figure 22. Both the Security Services Provider 

and the ZigBee Device Object (ZDO) offer services to the NWK and APL layers. The 

application objects 1 – 240 are developed by manufacturers (user users). They use the 

Application Framework and share Application Support Sublayer (APS) and security 

services with the ZDO [220, 224]. 
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Figure 22 – ZigBee model [220, 224]. 

2.3.2 The Network layer 

The Network (NWK) layer is the lower layer defined by the ZigBee protocol. This 

layer includes mechanisms used to join and leave a network; to apply security to frames 

and to route frames to their intended destinations. In addition, it is responsible for 

discovery and maintenance of routes between devices; the discovery of one-hop 

neighbors; and the storing of pertinent neighbor information are done at the NWK layer. 

The NWK layer of a ZigBee coordinator is responsible for starting a new network, 

when appropriate, and assigning addresses to newly associated devices [224]. 

The NWK layer includes two service entities to provide services to the Application 

layer. The NWK layer data entity (NLDE) provides the data transmission service 

through its associated SAP, the NLDE-SAP, whereas the NWK layer management 

entity (NLME) provides the management service via its associated SAP, the NLME-

SAP. The NLME utilizes the NLDE to achieve some of its management tasks and  

maintains a database of managed objects known as the network information base (NIB) 

[224]. 
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The NLDE is responsible for generating the network level protocol data unit (PDU) 

and for assigning to it the correct address (final destination or the next hop towards the 

final destination).   

Three general communication mechanisms are available: unicast, broadcast and 

multicast. Unicast is used to send a message to a single device, whereas broadcast 

messages are sent to all devices within a given radius.   Broadcast transmissions are not 

acknowledged. Instead, a passive acknowledgement mechanism may be used. Passive 

acknowledgement means that every ZigBee router and ZigBee coordinator keeps track 

of which of its neighboring devices have successfully relayed the broadcast 

transmission [220]. Multicast transmissions are used to send a message to devices that 

belong to a specific multicast group, and within a given transmission radius measured in 

hops.  

The NLME supports network start, join and leave requests; new device 

configuration; address assignment; one-hop neighbor and route discovery; and receiver 

synchronization.  

The ZigBee protocol allows two types of routing: tree and mesh. The tree routing 

allows devices to relay messages based on the address of the destination, without using 

a routing table, because the addresses are assigned to devices in a special way (using the 

Cskip algorithm, described in [224]). In mesh networks, convenient routes to the 

destination are established on demand using the Ad hoc On-Demand Distance Vector 

(AODV) routing protocol [118].  

Tree routing is simpler than mesh routing, but is less reliable. In the first case, there 

are no options, but to follow tree links to reach the destination; while on mesh routing 

devices can establish new routes, picking the best links, in case a new route must be 

established or an old one fails. Tree routing is not allowed by the ZigBee PRO feature 

set.  

Two other routing establishment mechanisms commonly referred as route 

aggregation were introduced in the ZigBee PRO feature set: many-to-one and source 

routing. These mechanisms are tailored to specific situations where the establishment of 

individual routes using the AODV routing protocol is less efficient.   

The many-to-one routing is optimal for networks where most nodes transmit data to 

a data collector node or gateway. The data collector broadcasts a single many-to-one 
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routing request message to establish reverse routes on all devices. The many-to-one 

route request should be sent periodically to update and refresh the reverse routes in the 

network [56, 220]. 

In contrast to many-to-one routing, source routing addresses the situation where 

messages are sent from a data source node out to multiple remote nodes. The source 

node sends periodically many-to-one routes to establish a route to it on each device. 

When a node sends a message using a many-to-one route, it first sends a route record 

transmission. The route record transmission is unicast along the many-to-one route until 

it reaches the central node. As the route record crosses the many-to-one route, it 

appends the 16-bit address of each device in the route into the message payload. When 

the route record reaches the source node, it contains the address of the sender, and the 

16-bit address of each hop in the route. The source node can store the routing 

information and retrieve it later to send a source routed packet to the remote node [56, 

220].  

2.3.3 The Application layer 

The Application (APP) layer consists of the Application Support (APS) sub-layer, 

the application framework and the ZDO [224].  

The Application Support sub-layer 

The APS sub-layer is responsible for data transmission of application PDUs 

between ZigBee devices services. Additionally, all versions provide discovery and 

binding of devices, and maintain a database of objects, called APS information base 

(AIB). Earlier versions support APS-level encryption, duplicate frame rejection and 

fragmentation.  

There are two types of discovery: device discovery and service discovery. Once a 

device joins the network, it may decide to discover a device it can talk to. Device 

discovery involves interrogating a node to discover its MAC address or its network 
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address
9
. Service discovery is the process whereby services available on a receiving 

device are discovered by other devices. It uses the information contained on a descriptor 

[224].  

Four addressing modes are defined by the protocol: direct, indirect, broadcast, and 

group
10

. Direct addressing (or unicast addressing) is used by one device to send a 

message to another one by indicating its full address and endpoint. Indirect addressing is 

used by resource-constrained devices to communicate to bound devices without having 

to know its address. The message is sent to the coordinator, which looks up the required 

addressing fields and retransmits the message to each corresponding destination.  

Broadcast addressing (or application broadcast) is used to send a message to all 

endpoints on a destination device.  Group addressing is used to selectively address a 

specific group of endpoints [220].  

The Application Framework 

The application framework contains up to 240 user-defined application objects, 

each one identified by endpoints 1 to 240. An endpoint is similar to a TCP port; it 

defines a communication entity that provides means to access a specific application 

running on a device and are identified by an 8-bit field [41].  Endpoints also allows for 

different devices to be implemented on a single node [73]. For instance, a device may 

function as an on/off light switch and a heating/cooling unit.  Endpoint 0 is used to 

address the device profile (that is, all node descriptors), whereas endpoint 255 is used to 

address all active endpoints. Endpoints 241-254 are reserved for future use [220, 224].  

Applications are developed based on application profiles. Application profiles 

corresponds to application domains  (for instance, home automation) and defines the 

data exchange form for the application functions of a ZigBee device [57].  Application 

profiles issued by the ZigBee Alliance are called public profiles, whereas profiles 

developed by vendors are called private or manufacturer specific profiles. Application 

profile identifiers (IDs) are 16-bit values that range from 0x0000 to 0x7fff for public 

                                                 

9
 The MAC address or IEEE extended address is a unique 64-bit address attributed to each device 

during manufacturing. The network address is a 16-bit address assigned during network association and 

used by the NWK layer for routing messages between devices. 

10
 Group addressing is not available in the ZigBee v1.0 (2004) protocol version. 
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profiles and 0xbf00 to 0xffff for manufacturer specific profiles. The following public 

application profiles have been released: Home Automation, Building Automation, 

Remote Control, Smart Energy, Health Care, Input Device, Telecom Services, Retail 

Services and 3D Sync [221]. The use of a public application profile allows 

interoperability between products from different vendors.  

Each profile defines an enumeration of device descriptions and cluster identifiers, as 

shown in Figure 23.  Both device and cluster identifiers are described by a 16-bit value.  

 

Figure 23 – Profile definition. 

A device identifier specifies the device description supported on an endpoint. Table 

8 shows few device identifiers defined by the Home Automation profile [223]. Device 

identifiers are mainly used for commissioning tools. ZigBee performs service discovery 

based on profile and cluster identifiers, not on device identifiers [73].  

Table 8 – Some device identifiers defined by the Home Automation profile [223]. 

Device Name Device Identifier 

On/Off Light 0x0100 

Dimmable Light 0x0101 

On/Off Light Switch 0x0103 

Dimmer Switch 0x104 

 

Clusters are application objects and encapsulate both commands and data. For 

instance, in the Home Automation application profile, cluster ID 0x0006 corresponds to 

the cluster name On/Off. This cluster contains the attribute On/Off and defines the 

commands On, Off and Toggle. If an application needs to know the state of a light, it 

may read the value of the attribute associated to it. Additionally, if a bound light switch 

needs to change the state of a light, it should send the command Toggle defined in the 

cluster On/Off [73].  
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Clusters have direction, that is, they are listed as input or output. This is used for the 

purpose of service discovery. For instance, a switch, which implements cluster 0x0006 

as an output, can find a light, which implements cluster 0x0006 as an input. On the 

other hand, a light shall not bind to another light as both implement cluster 0x0006 as an 

input [73]. The ZigBee Cluster Library is a document maintained by the ZigBee 

Alliance that contains cluster functionality. It was first released on October 2007, and is 

updated with new functionality as these are approved by the Alliance. 

Commands are identified by an 8-bit value and their meaning depend on the cluster 

they belong to. For instance, 0x00 is ―off‖ command in the OnOff Cluster, whereas 

0x00 is the ―move-to-level‖ command in the LevelControl Cluster [73].  

Attributes encapsulate the data type and the attribute data and store the current state 

associated to a cluster. For instance, it stores the state of the light (―on‖ or ―off‖) 

controlled by an application that runs on an endpoint that implements the OnOffCluster 

from Home Automation profile.  

Service discovery involves retrieving simple descriptors from peer devices. The 

simple descriptor contains information specific to each endpoint contained in the node, 

such as the profile identifier and the input and output clusters supported by the endpoint 

[220]. 

Apart from the simple descriptor, there are four additional devices descriptors: the 

node descriptor, the node power descriptor, the complex descriptor and the user 

descriptor. These descriptors apply to the complete node, whereas each simple 

descriptor corresponds to one specific endpoint defined in the node. The node, node 

power and simple descriptors are mandatory, whereas the complex and user descriptors 

are optional [220].  

The node descriptor provides information about the capability of the node. For 

instance, it contains the node type (coordinator, router or end device), the frequency 

bands supported by the device and if it is an alternate PAN coordinator. The node power 

descriptor informs whether the device is battery powered and the current level of the 

battery. The complex descriptor is presented in XML form using compressed XML tags 

which contains, for instance, the device serial number and its model name. The user 

descriptor contains up to 16 ASCII characters used to identify the device (for instance, 

porch light or hall switch) [57].  
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Binding is the procedure used to create a unidirectional logical link between 

applications running in two or more devices (specifically, between a source 

endpoint/cluster identifier pair and a destination endpoint). In the 1.0 version (2004), 

resource constrained devices were allowed to send a message omitting the address of 

the bound destination device and other necessary information (endpoint, cluster 

identifier and attribute identifier). The message was addressed to the ZigBee 

coordinator, which maintained a binding table where it recorded the information 

required to relay the message to the destination [224].   

Since the ZigBee 2006 release, the binding mechanism is called source binding. It 

involves the use of a binding table that is maintained by the APS layer of the node and 

allows applications to operate without having to manage recipient address information 

for the frames they generate. This information can be input at commissioning time 

without the main application on the device even being aware of it. The APS layer 

determines the destination address from its binding table, and then forwards the 

message to the destination application (or multiple applications) or group [220]. 

The ZDO 

Endpoint 0 is reserved for the data interface to the ZDO. It is responsible for 

initializing the APS layer, the NWK layer and the Security Service Provider (SSP) and 

implementing discovery, security management, network management and binding 

management. Similar to the application profile defined in the application framework, 

the ZDO contain a profile, which is called ZigBee Device Profile (ZDP).  The ZDP 

contains one device description and mandatory and optional clusters [57].  

The device profile can be configured as a client and/or a server. In the client-server 

model, the server provides services to the client, which initiates requests for these 

services [57]. The standard also refers to clients as local nodes and servers as remote 

nodes [220]. ZDP commands are optional for clients. ZDP commands are divided in 

three groups: device and service discovery, binding management, and network 

management. Some ZDP commands and their descriptions are shown in Table 9 [220]. 

It is also shown the category of the device which originates the command, client or 

server, and if the server response to this command is mandatory or optional.  
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Table 9 – Some ZDP commands [220]. 

Application 

group 

Command 

issued by 

the Client 

(C) or 

Server (S) 

Mandatory 

(M) or 

Optional (O) 

processing 

by the server 

Command Description 

Device and 

Service 

Discovery 

C 

M 

NWK_addr_req 
This command is used to request the 

network address of a remote device. 

S NWK_addr_rsp 
This command is issued in response 

to an NWK_addr_req command. 

Binding 

C 

O 

End_Device_Bind_req 

Command used to request bind with 

a remote device. It is unicast to the 

ZigBee coordinator. 

S End_Device_Bind_rsp 

This command provides the status 

(SUCCESS, NO_MATCH, etc.) in 

response to an 

End_Device_Bind_req command.  

Network 

Management 

C 

O 

Mgmt_Rtg_req 

The local device unicasts this 

command to a remote routing 

enabled device to request the content 

of its routing table.   

S 

Mgmt_Rtg_rsp 

This command is generated in 

response to an Mgmt_Rtg_req 

command. 

Security 

ZigBee security adds to the security model provided by the IEEE 802.15.4 protocol. 

It provides message integrity, authentication, freshness and privacy. The following 

definitions apply [47]: 

 Link key: is a key used by the APS to secure application data between two 

devices. 

 Network key: key used by the NWK layer for broadcast messages and other 

messages generated by this layer. 

 Master key: is an optional key and is used for the generation of the link key. 

 Trust center: is a device (the coordinator or a dedicated network device) that 

stores a list of allowed devices and all keys. Additionally, it performs key 

update and distribution and authenticates devices that request to join the 

network.   

ZigBee security services include methods for key establishment and transport, 

device management, and frame protection. The encryption and authentication services 

are based on a standard security specification called counter mode encryption plus 
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cipher block chaining message authentication code (CCM) with the 128-bit Advanced 

Encryption Standard (AES) protocol [90, 189].   

Security can apply to network and application layers. The layer that generates the 

massage is responsible for securing it.  

There are two security modes: a standard mode used by all ZigBee versions and a 

high-security mode used by ZigBee PRO. In the standard mode, APS communication 

between any two devices may optionally be encrypted with a link key. In the high-

security mode, communication between any two devices may be encrypted with a link 

key. Additionally, in the standard mode, the Trust Center can update the network key by 

broadcasting a new key, which is not allowed in high-security mode. In this mode, link 

keys are derived using the symmetric-key key establishment (SKKE) [93] and no keys 

are exchanged unencrypted. Also, network key update is unicast from the Trust Center 

to each device, encrypted with the proper link key [47, 49].  

In standard security mode, the list of devices, master keys, link keys and network 

keys can be maintained by either the Trust Center or by the devices themselves. In high-

security mode, the Trust Center stores and maintains this information. Consequently, in 

high-secure mode, the Trust Center resource requirements grow with the number of 

network devices. Standard security requires less memory and bandwidth than high 

security, however high security affords greater security because all messages may be 

encrypted with link keys. Further, it allows devices to be forcibly removed from the 

network by excluding them from a network key update [39]. 

2.4 ZigBee versions comparison 

Table 10 compares the different versions of the ZigBee protocol. Although they 

have many common features, recent versions contain improvements that are important 

to certain applications.  
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Table 10 – ZigBee versions feature comparison.  

Feature 
ZigBee v1.0 

(2004) 
ZigBee 2006 ZigBee 2007 ZigBee PRO 

Stack size (1) Smaller Small Bigger 

Frequency agility No Yes Yes Improved 

Fragmentation No No Yes  Yes 

Addressing Tree-based  Tree-based Tree-based Stochastic 

Multicast No No No Yes 

Routing Tree and mesh Tree and mesh Tree and mesh Mesh 

Route aggregation (many-to-one 

and source routing) 
No No No Yes 

Asymmetric link handling No No No Yes 

Standard Security (AES 128 bit) Yes Yes Yes Yes 

High Security mode (SKKE) No No No Yes 

(1) Deprecated stack version. Only used in legacy systems.  

 

The ZigBee PRO feature set requires the larger amount of memory (ROM and 

RAM). On the other hand, it provides the most features. For instance, ZigBee PRO 

establishes a procedure for tracking channel failures and reporting them to a special 

device, the Network Channel Manager, which can take frequency agility measures in 

case interference is detected.  

Fragmentation is the ability to handle data transfers that are larger than the 

maximum payload size that a frame can handle. This functionality is specified in the 

2007/PRO version of the standard. 

The addressing mechanism in all ZigBee versions, except the ZigBee PRO feature 

set, is tree-based. ZigBee PRO devices attribute stochastic addresses to children nodes, 

which they can maintain as long as no conflict is detected.  Though this addressing 

scheme presents advantages [216], a ZigBee PRO-based network requires more time to 

be set up because, when a device joins the network, it broadcasts the address it has 

chosen, to check for any conflict. If a conflict is detected, the device picks a new 

random address and makes a new broadcast to announce its new address. This 

procedure is also executed when a device rejoins the network. 

ZigBee version 2006 has included group addressing, which is also supported by the 

2007 version. Devices can be assigned to groups, and whole groups can be addressed 

with a single frame; thereby reducing network traffic for packets destined for groups 

[43].  
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Broadcasting involves the transmission of a message to every device in the network, 

within a given transmission radius measured in hops. Unlike broadcasting, multicasting 

is used to transmit a message to nodes that belong to a multicast group, despite the 

shape of the multicast group, in a more efficient way.  

All multicast messages received by devices that belong to the multicast group are 

broadcasted again. On the other hand, messages received by devices that do not belong 

to the multicast group are unicasted if the value of the non-member radius field is not 

zero. Every time a message is unicasted, the non-member radius field is decremented. A 

disconnected multicast group is shown in Figure 24. M1 originates a message addressed 

to the multicast group that consists on devices M1-M5. The message is initially received 

by M2 and then broadcasted again. After that, the message is received by A1. 

A1confirms that the value of the non-member radius field attached to the received 

message is greater than zero and unicasts it. Eventually, the message reaches all 

multicast group members [73].  

 

Figure 24 – Multicasting in ZigBee PRO.  

The many-to-one and source routing mechanisms employed by the ZigBee PRO 

feature set were already described in Section 2.3.2. They are more efficient than the 

routing based on the AODV mechanism for situations that involve several remote nodes 

transmitting messages to a data collector node or vice-versa.   

All versions except the ZigBee PRO feature set consider unidirectional links. 

Assuming that A and B are neither neighbors nor have a parent-child relationship, a 

route from A to B must exist before A sends a message to B. Similarly, a route from B 

to A must exist to allow B to send a message to A. ZigBee PRO, on the other hand, 

establishes bidirectional routes and avoids asymmetric low quality links [73]. 

The high security mode improves on the standard security offered by the ZigBee 

stack and is required by certain application profiles such as the ZigBee Smart Energy.   
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The choice of one stack over the other may consider the application requirements 

and the development platform. For instance, the smaller ZigBee stacks are adequate for 

devices that implement the Home Automation profile. Conversely, a deeper network, 

with a high quantity of mobile devices, benefits from the stochastic addressing 

mechanism implemented by the ZigBee PRO feature set [73]. 

2.5 Jennic’s programming environment  

This work is based on the JN5139 modules, from Jennic, which implement the 

ZigBee version 1.0 (2004) protocol. These modules contain a simple operating system 

called Basic Operating System (BOS), designed to be used in conjunction with the 

ZigBee stack implemented. The vendor offers application programming interfaces 

(APIs) that simplify the development of application programs.  

BOS is a non-preemptive task scheduler, and tasks have the same level of priority. 

The lack of context switching between tasks removes the need for individual stacks and 

saves on memory space.  BOS controls the execution of the ZigBee stack and user tasks. 

The ZigBee stack is implemented as a single task. Event mechanisms are provided to 

allow communication between tasks. The passing of data between tasks is achieved 

using a messaging mechanism. There is a default user task that is created as part of the 

BOS initialization. The PHY layer and MAC sub-layer run in interrupt context, as do 

events generated by the on-chip peripherals [103].  

Application programs are developed in C language. Code can be build either using a 

makefile supplied by Jennic or using the Code::Blocks Integrated Development 

Environment (IDE) [105].   

The flow of a generic program is shown in Figure 25. It consists of several 

functions that should be used by the vendor to develop application programs. The 

function AppColdStart is the application program starting point. It is used for system 

initialization. Before leaving this function, BOS must be initialized and started. The 

control goes back to BOS that, after some internal procedures, returns the control to the 

function JZA_vAppDefineTasks. This function is used to register an additional (and 

optional) user task. After executed, BOS assumes the control and, after executing 

internal actions, executes the function JZA_boAppStart. It is used to place calls to the 

application framework to register any ZigBee descriptors for the node‘s endpoints. Once 
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this is complete, a call should be made to start the ZigBee protocol stack before 

terminating the function and returning control to the BOS. At this point, the 

initialization is complete [113]. 

 

Figure 25 – Flow diagram of a generic application developed for the JN5139 module [113]. 

 Once BOS and the ZigBee stack have been initialized, the control is passed to the 

user application through a number of functions. The function JZA_vAppEventHandler 

is called regularly by the BOS (the default user task is executed by this function).  All 

tasks that should be executed regularly should be included in this function. The function 

JZA_vStackEvents is called when an event from the stack is received. For instance, it is 

called when the device joins or leaves the network and when the MAC layer reports a 

failure to access the channel. The function JZA_vPeripheralEvent is called, within the 

interrupt context, when a hardware interruption occurs. Hardware interruptions include 

interruptions generated by any hardware peripheral [113].  

The functions JZA_bAfKvpObject, JZA_vAfKvpResponse and 

JZA_vAfMsgObject are called when a frame addressed to one of the endpoints running 

in the device is received.  The function JZA_bAfKvpObject is called when a KVP 

frame is received, whereas the function JZA_vAfMsgObject is called when a MSG 

frame is received. The function JZA_vAfKvpResponse is called when an incoming 
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KVP response frame is received from another node. This may be an acknowledgment of 

an earlier command frame send to that node, or a response to a request for data [113].  

The JZA_vZdpResponse is called when a response is received from the ZigBee 

Device Profile object (for instance, a response to a binding request) [113].  

2.6 Other standard-based wireless communication 

protocols of interest 

By the time this work started, the IETF (Internet Engineering Task Force) released 

the 6LoWPAN specification. ZigBee and IEEE 802.15.4 were emerging low-power 

wireless technologies; whereas IEEE 802.11 and Bluetooth were already established 

protocols. Only recently, Bluetooth Low Energy specification was released and ANT, a 

wireless protocol used on high-end fitness and sports high-end products, was considered 

for wellness management and home health monitoring applications. In the subsequent 

paragraphs these technologies will be briefly presented and compared in terms of their 

suitability for remote health monitoring applications.  

An IEEE 802.11 standard network consists of stations (mobile or not) and wireless 

access points. A station is a computing device equipped with a wireless LAN network 

adapter. A wireless access point is a networking device equipped with a wireless LAN 

network adapter that acts as a bridge between stations and a traditional wired network, 

such as the Ethernet backbone. Two operating modes are defined by the standard: the 

ad-hoc mode where stations communicate directly and the infrastructure mode where 

there is at least one wireless access point connecting stations to a wired network.  

The IEEE 802.11 family of standards defines the physical medium and MAC 

protocol specification devoted to wireless local area networks (WLANs). The 

technology associated to this family of standards is called Wi-Fi. There are four Wi-Fi 

technologies available, which are based on IEEE standards, as shown in Table 11. The 

IEEE 802.11n introduces a high throughput PHY based on orthogonal frequency 

division multiplexing (OFDM) modulation and MIMO (Multiple Input Multiple Output) 

technology with extensibility up to four spatial streams, resulting in a raw data rate of 

up to 600 Mbps. The IEEE 802.11-2007 includes QoS and high security services. 

Additionally, fast handover procedures are included in the IEEE 802.11r-2008 

amendment. 
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Table 11 – Basic characteristics of Wi-Fi technologies available. 

IEEE Standard Frequency band 11 Maximum data rate 

802.11a 5 GHz 54 Mbps 

802.11b 2.4 GHz 11 Mbps 

802.11g 2.4 GHz 54 Mbps 

802.11n 
2.4, 5 GHz, 2.4 or 5 GHz (selectable) and 2.4 

GHz and 5 GHz (simultaneously) 
600 Mbps 

 

The Bluetooth protocol, defined by the Bluetooth Special Interest Group (SIG), was 

developed to provide a universal radio interface for ad-hoc wireless connectivity, 

interconnecting computer and peripherals, PDAs, cell phones and other devices while 

maintaining high levels of security.  It operates in the 2.4 GHz band and has a gross 

over the air data rate that varies from 1 Mbps to 3 Mbps, depending on the version, 

supporting video streaming, voice and data transmission applications. Three device 

classes are defined according to the range: class 3 devices have approximately 1 m 

range while class 2 devices can achieve 10 m and, finally, class 1 devices have an 

approximate range of 100 m
12

. Frequency hopping and adaptive frequency hopping 

techniques are used to improve coexistence with other networks which operate in the 

same band [22].  

Devices must join a piconet to communicate. A piconet which consists of a group of 

devices arranged in a star topology and synchronized in a specific fashion. In a piconet, 

one device provides the synchronization reference and is known as the master. All other 

devices are known as slaves. Up to seven slaves can actively participate in a piconet.  

Multiple piconets can join together to form a larger network known as a scatternet, but 

this topology is seldom used and is not defined by the core protocol. Likewise ZigBee, 

Bluetooth specification also contains several application profiles, which include the 

Health Device Profile [22].   

By the end of 2009, the Bluetooth SIG released the Bluetooth v4.0 specification 

which includes the Bluetooth Low Energy definition and, in July 2010, this organization 

announced the formal adoption of the new specification. This new Bluetooth version 

                                                 

11
 The 5 GHz band extends beyond the 5800 MHz ISM band (see Table 1). The channels used are 

regulated per country. 

12
 Bluetooth class 2 devices are the most common ones.  
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was designed to optimize the power consumption of low data rate network devices that 

transmit small packets. Bluetooth Low Energy enabled-devices will be able to operate 

on coin cell batteries which, depending on the application, will last more than one year 

[195].  

The ANT protocol, defined by Dynastream, a Garmin owned company, is a 

proprietary wireless sensor network protocol running in the 2.4 GHz ISM band. It was 

initially conceived to be used by fitness devices, but recently it has being presented as 

an alternative for wellness applications [159]. The specification includes the four lower 

layers of the Open Systems Interconnection (OSI) model. ANT uses GFSK modulation 

and 78 radiofrequency (RF) channels. ANT devices transmit data packets that contain 

an 8-byte payload and use a raw data rate of 1 Mbps, four times higher than IEEE 

802.15.4-based devices. The ranges, however, are typically smaller [198]. ANT handles 

peer-to-peer, star topologies and other more complex topologies. The range of an ANT 

network can be extended by using relays nodes, as shown in Figure 26.  

 

Figure 26 – Star and cluster tree topologies in ANT. 

6LoWPAN aims to enable IP version 6 (IPv6) packets to be transmitted over low 

power wireless networks, specifically IEEE 802.15.4. Considering that an IPv6 packet 

is much larger than an IEEE 802.15.4 one, it was necessary to define encapsulation and 

header compression mechanisms that allow IPv6 packets to be sent to and received from 

IEEE 802.15.4-based networks [151]. This approach has many advantages because low 

power devices can access directly IP-based devices without the need of complex 

gateways. Additionally, it is possible to directly adopt IP-based standards developed to 

provide security, configuration and other services. Moreover, the IP-based tools, 

procedures and techniques used to incorporate and manage devices can be readily 

utilized [35].  ZigBee Alliance has created an IP Task Group that is currently working 
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on a new stack that incorporates the support to communication over IPv6 and 

mechanisms to discover and communicate with IETF 6LoWPAN-based devices [219].     

The discussed protocols are compared in Table 12.  As shown, each has its own 

advantages and disadvantages. IEEE 802.11 is already used in hospitals to monitor 

patients. Typically, multi-lead ECG signals and SpO2 values are monitored. Patient 

units are portable, but obtrusive. Newer units are powered by AA batteries that must be 

recharged every 25 hours. However, new low-power communication modules based on 

IEEE 802.11b can be powered by batteries and promise to bring Wi-Fi connectivity to 

portable medical devices. 

IEEE 802.15.4, ZigBee and 6LoWPAN are valid options to IEEE 802.11 in the 

hospital environment to monitor low-acuity patients, in eldercare facilities to monitor 

residents and in residential environments to monitor recovering patients. Systems based 

on these protocols are expected to be pervasive and to include unobtrusive sensors.  

Bluetooth and Bluetooth Low Energy are well fitted for single-hop communication 

links. Two examples are the communication between a blood glucose meter and a 

personal insulin pump and the transmission of heart rate values to a PDA.  Bluetooth 

Low Energy is much more efficient than classic Bluetooth if only small packets are used 

and it is expected that this new protocol will enable a large number of new applications.  

ANT is a proprietary protocol mainly used in fitness. Its simplicity and relatively 

high data rate are advantages over other low data rate protocols for health monitoring 

applications such as ZigBee and 6LoWPAN.   

2.7 Summary 

Initially, this chapter presents some of the main characteristics of WSNs. Then, it 

describes the standard-based wireless protocols used to develop this work: IEEE 

802.15.4 and ZigBee. All protocol versions are addressed and the differences between 

them are pointed out. Finally, it overviews and compares wireless protocols that can be 

employed to develop health monitoring applications, including personal health and 

wellness monitoring, out-patient home monitoring, and vital signs monitoring in the 

hospital scenario.  
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Table 12 – Wireless protocols that can be used to implement patient remote monitoring applications. 

Protocol 
Major 

applications 

Frequency 

band 

Over the 

air raw 

data rate 

Typical 

range 

Typical 

autonomy 

on batteries 

Main relative advantages Main relative disadvantages 

IEEE 802.11x WLAN 2.4 GHz ISM 
band and 5 

GHz  

Up to 600 
Mbps 

 

Several 
meters 

Hours or 
days 

 Pervasive. 

 High throughput: IEEE 802.11a/g or very 
high throughput: IEEE 802.11n. 

 QoS, fast handover and high security 
support. 

 Higher cost. 

 Higher power consumption. 

IEEE 802.15.4 Low data rate 
applications. 
P2P and star 
topologies. 

2.4 GHz ISM 
band and 
sub-1 GHz 
ISM Band 

Up to 250 
kbps 

Indoors: 10 – 
30 m. Better 
in the sub-1 
GHz band. 

Outdoors: up 
to 6,000 m. 

Months or 
years 

 Simple and small stack.  

 Low cost. 

 Supports low latency devices and mesh 
networking. 

 Lower data rate than IEEE 802.11x, 
Bluetooth, Bluetooth Low Energy and 
ANT. 

 Supports only P2P and star topologies 
(only PHY and MAC layers are defined). 

ZigBee Low data rate 
applications. 
Star, tree and 

mesh 
topologies. 

Same as 
IEEE 802.15.

4 

Same as 
IEEE 802.15.

4 

Same as 
IEEE 802.15.4 

Months or 
years 

 Supports large networks with thousands 
of nodes. 

 Interoperability based on public 
application profiles. 

 High-security mode. 

 Lower data rate than IEEE 802.11x, 
Bluetooth, Bluetooth Low Energy and 
ANT. 

 Supports no specific QoS mechanism.  

6LoWPAN Low data rate 
applications 
with direct 

connection to 
IP based 

networks. 

Same as 
IEEE 802.15.

4 

Same as 
IEEE 802.15.

4 

Same as 
IEEE 802.15.4 

Months or 
years 

Enables direct connection to IP-based 
networks. 

 

Interoperability not already considered. 
No application profiles have already 
been issued. 

Bluetooth Cable 
replacement. 
PAN. Video, 

voice and 
data. 

2.4 GHz ISM 
band 

1 - 3 Mbps, 
depending 

on the 
version 

1m, 10m or 
100m, 

depending 
on the 

version. 

Days or 
weeks 

 Present in smart phones, PDAs, 
computers, etc. 

 Higher data rate than IEEE 802.15.4, 
ZigBee and 6LowPAN. 

 A Bluetooth device can communicate to 
only 7 active slave devices. Scatternets 
are not defined in the core protocol. 

 More complex stack than IEEE 802.15.4-
based technologies and ANT.  
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Bluetooth 
Low Energy  

PAN. 
Optimized for 
small packets 
and low data 

rate 
applications. 

2.4 GHz ISM 
band 

1 Mbps 10 m  Months  Some Bluetooth devices will support 
Bluetooth Low Energy too. 

 Bluetooth Low Energy is up to 17 times 
more efficient than classic Bluetooth. 

 The energy usage is much lower than 
classic Bluetooth if only small packets 
are transmitted.  

 A Bluetooth device can communicate to 
only 7 active slave devices.  

 Scatternets are not defined in the core 
protocol. 

ANT WSN and 
PAN. Fitness 
and wellness 

devices 

2.4 GHz ISM 
band 

1 Mbps 10 m Months or 
years 

 Higher data rate than ZigBee. 

 Typically, ANT-based devices consume 
less power than IEEE 802.15.4 based 
devices (relatively smaller on-time).  

 Proprietary protocol.  

 Typically, ANT devices have a smaller 
range than IEEE 802.15.4, ZigBee and 
6LowPAN devices. 
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Chapter 3 

Health monitoring systems based on 
wireless technologies  

 

Wireless communication technologies have been employed to monitor in-patients 

since the 70‘s. Through the years, Wireless Medical Telemetry Systems (WMTS) have 

undergone several changes.  Systems‘ reliability has been considerably enhanced from a 

dropout of 50 min/day to a few seconds per day [17, 210]. Other major improvements 

include the increase in systems‘ capacity and coverage area. Despite these facts and the 

importance attributed by physicians to vital signs monitoring [59], only a small number 

of patients out of intensive and intermediate care units have their vital signs monitored.  

The raise in health care costs and life expectancy combined with recent advances in 

microelectronics, smart textiles and wireless and sensor technologies have motivated 

academia and companies to propose innovative patient monitoring systems, which will 

have a positive impact on the way health care is provided [164]. Apart from hospital 

applications, other scenarios include:  

 Monitoring of recovering patients at home;  

 Chronic active patients health monitoring; 

 Medication intake and specific behavior recording systems used to record 

medication adherence level or monitor specific behaviors (for instance, 

exercise level or food intake); 

 Elderly monitoring at home, in assisted living facilities, in retirement 

communities, or in isolated areas; and  

 Victims in disaster scenarios.  

This chapter starts with a review of general requirements of patient monitoring 

systems, which are referenced in subsequent sections. Then, regulations, standards and 
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profiles applied to medical devices are introduced. Finally, some telemetry systems used 

to monitor patients are described. The limitations of those systems are discussed and 

possible ways to improve them are suggested. These findings are based not only on a 

thorough literature review, but also on several interviews conducted with physicians, 

nurses and engineers during a research period at Massachusetts Institute of Technology 

(MIT).  

This chapter initially presents the most important requirements that must be fulfilled 

by remote monitoring systems and reviews regulation, standards and profiles that apply 

to medical devices. Then, recent research on remote health monitoring is reviewed. 

Finally, the views of physicians and informatics professionals on important aspects of 

remote patient monitoring systems are presented.  

3.1 Patient monitoring general requirements 

The general requirements of patient monitoring systems include the following: 

Identification of emergency situations: It is important that individual sensors or 

network coordinator devices identify a potential life-threatening condition as it emerges 

and make all possible efforts to report it [206]. 

End-to-end reliability: Both routine and emergency messages should have a high 

probability of being correctly received by the health care provider who is intended to 

interpret the data and may have to take actions to assist the patient [206].  

End-to-end delay: Messages must be delivered in reasonable time, determined by 

the level of emergency and according to specific normative documents. 

Security: In telecommunications, security involves the ability to conserve or prove 

that the following attributes apply to devices and to their communications [53]:  

 Authenticity: Ensures that device A is really A and that a packet received 

from device A was not transmitted by device B masquerading as A.  

 Authority: Ensures that an entity is allowed to perform a requested task.  

 Integrity: Ensures that the data received is the same data transmitted. 

 Confidentiality: Ensures that data transmitted by device A to device B is not 

revealed to other devices capable of receiving A‘s transmissions. 
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Additionally, the IEEE P11073-00101 standard [87] recommends the 

implementation of general network security actions to prevent malware and denial of 

service attacks to ensure the physical security of devices.  

Small form-factor and unobtrusiveness: Ideally, devices employed to 

continuously monitor mobile in-patients and out-patients shall be wearable and shall 

have no cables. However, several devices used to monitor patients, despite being 

portable, are relatively obtrusive.    

Power efficiency: It is required that battery replacements are not very frequent so 

that patients can be monitored during their stay in a certain service (for instance, while 

recovering from an ambulatory surgery) and do not interrupt other actions that should 

be taken by health care providers (for instance, it is expected that a telemetry cardiac 

monitor can work for an amount of hours that exceeds a nurse‘s shift).  Ideally, batteries 

should last for several days or even months without replacement.  

Scalability: The communication network should be able to scale well in terms of 

the number of monitored patients. Additionally, it should be able to monitor if, at any 

time, the number of devices reaches its capacity and take measures to ensure that it 

operates as specified.  

3.2 Regulation, standards and profiles 

In the broader sense, a wireless medical device might include the device itself and 

the infrastructure necessary to transport data. The IEEE 11073-00101standard  [87] 

describes a wireless medical device as being comprised of four stages, as shown in 

Figure 27. The first stage includes the medical device, which can be an external device 

(e.g., a blood pressure monitor with wireless connectivity), a wearable or an implantable 

device. Data generated by devices are transported through downstream stages until 

reaching the patient or a health care provider.  
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Figure 27 – Stages of a wireless medical device [87]. 

Medical devices (stage 1 of Figure 27) are regulated by federal government bodies. 

A medical device may be classified as Class I (including Classes Is and Im), IIa, IIb or 

III; with Class III covering the highest risk products. Class I medical devices can be put 

on market by self-certification, whereas medical devices that are classified on the other 

classes must receive a Certificate of Conformity issued by a Notified Body [215]. 

Examples of Class I devices include elastic bandages, examination gloves, and hand-

held surgical instruments. 

Classes IIa, IIb and III medical devices are regulated in European Economic Area 

(EEA) by three approach directives, depending on the classification of the device: 

Active Implantable Medical Device Directive, AIMDD (90/383/EEC); (General) 

Medical Device Directive, MDD (93/42/EEC); or In Vitro Diagnostic Medical Device 

Directive, IVDMDD (98/79/EC). These directives are in convergence to standards 

issued by the International Organization for Standardization (ISO), where the most 

relevant is the ISO 13485:2003, which define the international quality system standards 

for medical devices [99]. These devices should also comply with product risk 

management, electromagnetic interference and compatibility (EMI/EMC), and usability 

regulations and must conform to local country laws on personal data privacy and 

hardware disposal (Restriction of Hazardous Substances Directive or RoHS). 

Whereas stage 1 medical devices are strictly regulated, the other stages are not. 

Current standardized technologies included on stage 2 were not designed to transport 

medical data and to support the QoS requirements that this transport involves. 

According to [87], such systems might not be considered a medical device when 

operating under typical conditions.  Connectivity, including wireless connectivity based 
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on standard-based technologies, is not considered on medical regulatory documents, but 

instead in nonmedical standards (e.g., IEEE standards) and nonmedical consortium 

agreements (e.g., Wi-Fi Alliance and ITU). The regulation within stage 2 would be 

complicated because data transport involves complex combinations of distinct 

technologies that include WPANs, WLANs, wireless metropolitan area networks 

(WMAN) and wireless wide area networks (WWAN). As pointed out in [87], data 

storage in stage 3 share the same difficulties as stage 2 as it is defined by several 

nonmedical standards. Additionally, in several cases, stage 4 merges with stage 3 as it is 

based on applications that include data storage and analysis.  

The IEEE 11073 family of standards, which was adopted as ISO standard through 

ISO TC215, and was developed in coordination with other standards development 

organizations, including IEEE 802 committee, IHTSDO
13

, HL7
14

 and DICOM
15

, aims 

on providing real-time, plug-and-play
16

 interoperability between point-of-care medical 

devices. Additionally, it aims to promote the efficient exchange of care device data, 

where it assumes that information that is captured at the devices ―can be archived, 

retrieved, and processed by many different types of applications without extensive 

software and equipment support, and without needless loss of information‖ [101]. 

Among the IEEE 11073 family of standards, it is important to highlight the 

IEEE 11073-00101 [87], which provides guidance for the use of RF wireless 

communication technologies for point-of-care (PoC) medical devices that exchange 

vital signs and other medical device information using shared information technology 

infrastructure. This standard covers several application use cases and considers potential 

                                                 

13
 The International Health Terminology Standards Development Organization (IHTSDO) is a not-

for-profit association that develops and promotes use of SNOMED CT, a multilingual health care clinical 

terminology. 

14
 The Health Level Seven International (HL7) is a global authority on standards for interoperability 

of health information technology. 

15
 The Digital Imaging and Communications in Medicine (DICOM) is a standard designed to ensure 

the interoperability of systems that deal with medical images and derived structured documents as well as 

to manage related workflow. 

16
 Plug-and-play interoperability means that the user does not need to do any action, apart from 

connecting the device, to allow it to communicate data as defined.  
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applications for standard-based communication technologies, including IEEE 802.15.4 

and ZigBee protocols.  

The IEEE 11073-00101 standard presents QoS parameters (reliability, latency, 

priority, and bandwidth requirements) of typical patient monitoring applications, 

however; whereas maximum latency values are specified for each category of device 

data (real-time alarms and alerts, real-time waveform transmission, non-real time 

events, etc.), reliability is only qualitatively specified (highest/essential, high, medium 

and low). Table 13 presents the QoS attributes defined for some data classes of interest 

(bandwidth requirement is omitted). These parameters may be used in prioritizing 

classes of data generated by devices that share a network system. As shown, real-time 

alarms and alerts should have the highest reliability and priority. On the other hand, 

patient state changes and real-time reminders shall have high reliability, but medium 

priority. Real-time waveform data shall have high reliability and priority [87]. 

Table 13 – QoS requirements for different categories of medical device data [87]. 

Data type Reliability Latency Priority 

Alerts/alarms (real-time) ++++ < 500 ms from the wireless sensor to the 

gateway to the wired network 

< 3 s communication latency 

++++ 

Patient state change (real-

time) 

++++ < 3 s communication latency ++ 

Reminder (real-time) ++++ < 3 s communication latency ++ 

Waveforms (real-time) +++ < 3 s to central station 

< 7 s for telemetry to in-room monitor 

+++ 

Physiologic parameters (real-

time) (e.g., episodic BP, HR, 

SpO2, ETCO2, temperature) 

+++ < 10 s to central station 

< 3 s communication latency from monitor to 

clinician 

+++ 

 

Personal health device standards are a group of standards addressing the 

interoperability of personal health devices such as weighing scales, blood pressure 

monitors and blood glucose monitors. These standards differ from PoC standards due to 

an emphasis on devices for personal use (rather than hospital use) and the usage of a 

simpler communications model. This family of standards is based around a framework 

defined the IEEE 11073-20601-2008 standard [100] and its amendment,  IEEE 11073-

20601a-2010 [89]. At present, the following device specialization standards have been 

released [88]:   

 IEEE 11073-10404 - Device specialization - Pulse Oximeter; 

 IEEE 11073-10407 - Device specialization - Blood Pressure Monitor; 
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 IEEE 11073-10408 - Device specialization - Thermometer; 

 IEEE 11073-10415 - Device specialization - Weighing Scale; 

 IEEE 11073-10417 - Device specialization - Glucose Meter; 

 IEEE 11073-10420 - Device specialization - Body composition analyzer; 

 IEEE 11073-10421 - Device specialization - Peak flow; 

 IEEE 11073-10441 - Device specialization - Cardiovascular fitness and 

activity monitor; 

 IEEE 11073-10442 - Device specialization - Strength fitness equipment; 

 IEEE 11073-10471 - Device specialization - Independent living activity hub;  

 IEEE 11073-10472 - Device specialization - Medication monitor.  

Additionally, other device specialization standards are being developed. They 

include the following [88]: 

 IEEE P11073-10406 - Device specialization - Basic ECG (1 to 3-lead); 

 IEEE P11073-10413 - Device specialization - Respiration rate monitor; 

 IEEE P11073-10418 - Device specialization - INR (blood coagulation);  

 IEEE P11073-10419 - Device specialization - Insulin pump.  

The Personal, Home and Hospital Care (PHHC) profile developed by the ZigBee 

Alliance relies on the on-going work being developed by IEEE 11073 to allow the 

interoperability with medical devices [222]. Instead of developing its own protocol 

format and data encodings, this profile uses the IEEE 11073-20601 standard as the basis 

of the data exchanges between the devices supported by the PHHC profile. 

Additionally, it adopts the encoding formats defined by each device specialization 

standard. Consequently, the last released version of the ZigBee PHHC does not include 

the encoding format definition for devices that do not have a corresponding device 

specialization, such as electrocardiograms and respiration rate monitors.  

Continua Health Alliance, a non-profit organization created to improve the quality 

of personal health care by promoting interoperability between health care devices and 

enterprise services, also relies on the use of industry standards, which include wire and 

wireless technologies such as USB, Bluetooth and ZigBee and the data model defined 

by the IEEE 11073 family of standards.  
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3.3 Wireless medical systems review 

This section reviews wireless medical systems (both commercial and systems 

proposed by academia). Non-wearable and wearable personal monitoring systems 

intended for chronic diseases management and wellness are addressed on Sections 3.3.1 

and 3.3.2. Systems specifically designed for elderly care, including personal monitoring 

systems, are addressed on Section 3.3.3. Finally, systems for hospital use are reviewed 

on Section 3.3.4.  

3.3.1 Non-wearable personal monitoring systems 

Some of the present medical devices used for personal health monitoring (e.g., 

blood pressure monitors and glucose meters) can supply data to applications running on 

personal devices (e.g., a portable dedicated patient unit or a PDA). Among these 

devices, some employ proprietary communication protocols, whereas others are 

interoperable. Interoperable devices are advantageous to users who can, for instance, 

measure a physiological parameter using medical devices from different companies and 

have the devices readings uploaded to an on-line application not created by any of the 

devices‘ manufacturers.  

The Continua Health Alliance, which promotes the interoperability of personal 

health care devices, initially selected two communication technologies: USB (wired) 

and Bluetooth. In 2009, ZigBee and Bluetooth Low Energy were included; however, at 

the present time, no medical device based on these two wireless protocols has already 

been certified by the Alliance.  

WellDoc is a commercial system for chronic disease management [214]. It was 

initially developed to help patients manage Type 2 diabetes, but it can be configured to 

support the management of other chronicle conditions. The results of blood glucose 

measurements are sent wirelessly to a cell phone which runs an application that interacts 

with the patient, helping him attain his goals (see Figure 28). Additionally, the 

application running in the cell phone sends data to a central processing station where 

data are analyzed and added to the patient‘s logbook. Depending on the results of the 

data analysis, the patient‘s primary caregiver is contacted.  
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Figure 28 – WellDoc remote application is asking .a patient to confirm the blood glucose value sent by the 

blood glucose meter using a Bluetooth connection (adapted from [214]).   

3.3.2 Wearable personal monitoring systems 

Wearable systems may contain sensors that directly connect to a data aggregator 

(e.g., a Wi-Fi residential router); often sensors integrate a body area network (BAN), a 

collection of wearable sensors directly connected (using wired or wireless links) to a 

network controller node (also called base station).  

Despite the apparent simplicity, the design of wearable systems for health 

monitoring offers several challenges. Sensors must satisfy strict medical criteria, 

including suppression of noise caused by the displacement of electrodes or sensing parts 

due to user movement. Additionally, sensors should be small and unobtrusive. 

Considering that wireless communication technologies are used, reliability, end-to-end 

latency and data security should be assured. Both sensors and the network controller 

node should minimize energy consumption to increase operational lifetime. Finally, 

these systems need to be affordable to ensure wide public availability [164].  

Mobihealth was one of the first personal health monitoring systems proposed by 

academia [125]. It integrated sensors and actuators to a wireless BAN based on the 

Bluetooth protocol. Other systems based on this communication technology include 

MyHeart [81, 137], WEALTHY [165], and MagIC [177], which integrate sensors and 

smart textiles.   

With the introduction of low-power technologies, several applications proposed by 

academia moved from Bluetooth-based systems to systems based on small embedded 

systems with a wireless low-power transceiver, usually termed motes. Some motes 

manufactured by Crossbow (now Moog Crossbow Inc.) are shown in Figure 29. Both 

CodeBlue [135] and AID-N [201] were developed based on motes and address 

emergency scenarios where overwhelming quantities of patients need to be monitored, 

tracked and triaged. CodeBlue is a common protocol and software framework, which 
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allows wireless monitoring and tracking of patients and health care providers. It consists 

of physiological sensors, a developed 1-lead ECG sensor and a commercial SpO2 sensor 

mounted as daughter boards that attach on Mica2 motes [202]. These sensors 

communicate with handheld commercial devices used by first care responders where an 

application displays measured parameters and waveforms. It also includes wearable 

sensors and RF beacon nodes used to track patients. AID-N extends upon CodeBlue by 

adding electronic triage tags based on MicaZ motes, which contain an IEEE 802.15.4 

compliant RF transceiver [202].  

 

Figure 29 – Cricket, Telos, Mica2 and MicaZ motes (adapted from [204]).   

With the emergence of the IEEE 802.15.4 protocol, several researchers proposed its 

use for personal health monitoring based on BANs consisting of small wearable sensors. 

Some examples are the Ubimon system [133], the health monitoring  systems developed 

as part of the European project Sensation [152], and the physiological sensing 

applications developed under the Human++ research program, from IMEC [167].  

In environments where several patients are being monitored using BAN-based 

systems, it is possible that a sensor, instead of associating to the BAN coordinator 

belonging to the person that is wearing it, incorrectly reassociates to another network in 

the vicinity. Researchers from Philips Research Center have proposed the use of body-

coupled communication to allow a sensor to identify the person it belongs to and, 

consequently, be able to discriminate all other sensors attached to the same person [55]. 

The inconvenience of this approach is the need of a specific transceiver and associated 

hardware and software. On the other hand, it avoids the need of confirming the correct 

association of sensors after network establishment. Additionally, it allows sensors to be 

included to an established BAN without human intervention.  
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An interesting technology to automatically record dietary habits is being developed 

by researchers from TU Eindhoven and ETH Zurich, under the project MyHealth [11]. 

Although the work focuses on the sensors, it can be applied in a typical BAN scenario. 

Authors have employed body sensors (intake gestures, swallowing and chewing) to 

automatically record intake timings, food category and amount. A good recognition 

performance of categorical food (such as fruit and vegetables) intake has been achieved, 

which is an improvement of incorrect and biased self-recoding. However, as sensors are 

very obtrusive, their usability needs yet to be improved.   

CardioNet and Nuvant are examples of commercial wearable systems specifically 

designed to monitor non-lethal cardiac arrhythmias. CardioNet [26] allows patients to 

enroll in a program in which they are continuously monitored using a collar-type 

wearable 3-lead ECG. Data are transmitted by an ECG sensor, using a Bluetooth link, to 

a patient device (a special PDA). When the patient device identifies an abnormality, it 

automatically sends data to a remote patient station, using a cellular connection, where 

specialized nurses analyze data, respond to events and report data to physicians.  

 

Figure 30 – CardioNet system patient devices (adapted from [26]). 

Nuvant [33], from Corventis, improves from CardioNet because it uses PiiX, a 

wearable, band-aid like, single-lead ECG sensor (shown in Figure 31). Like CardioNet, 

when an arrhythmia is detected by PiiX, it sends ECG data (15 sec pre- and 30 sec post-

event) to zLink Mobile, a mobile PDA-like transmitter, through a wireless link. Then, 

data are transmitted using a cellular link, by the zLink Mobile to the company‘s 

monitoring center where emergencies are handled and data are recorded to be sent to 

physicians.  
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Figure 31 – Nuvant system, from Corventis (adapted from [33]).  

The form factor of PiiX has many resemblances with the wireless ECG patch-like 

sensor developed by IMEC under the Human++ project [158]. It is based on the 

nRF24L01 low power radio, from Nordic, and is mounted on a flexible polyimide 

substrate, which increases the user comfort. The sensor without a case is shown in 

Figure 32.  

 

Figure 32 – A patch-like ECG sensor developed by IMEC/Holst Center (adapted from [158]) . 

3.3.3 Systems based on wireless technologies for elderly care  

In this section, the importance of technologies dedicated to help seniors live 

independently, safer and get help in case of emergency situations is discussed. Then, 

wireless systems designed for elderly care are briefly reviewed. Finally, concerns that 

might prevent or hamper the use of these technologies are described.   

Importance of technologies dedicated to elderly care 

The worldwide population of those over 65 is predicted to reach 761 million by 

2025, more than double that it was on 1990 [178]. The proportion of elderly is growing 

in most developed countries. Japan currently leads the world with nearly one-quarter of 
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its population at age 65 or older, followed closely by Italy and Germany. Today, 40 

million people in the United States are age 65 and older, but this number is projected to 

more than double to 89 million by 2050 [102]. In proportion of children, aging numbers 

are growing too in the United States. In 2011, the proportion of children has dropped to 

about one-fourth, whereas the share of elderly has risen to 13 percent. By 2050, one-

fifth of the United States population will be age 65 or older [102].  

Meeting the needs of elderly, many dealing with chronic diseases, is a labor-

intensive chore most governments may not be able to afford. General practitioners and 

other health care agents are overwhelmed [178]. Whereas successful aging shall be 

addressed as a complex system, technology certainly will be a big part of the problem 

solution. Mobile communication, sensing and networking technologies are promising 

enabling tools for assisting the elderly. These technologies will allow seniors to manage 

diseases with less intervention and live independently for more time.  

Personal monitoring and persuasion systems  

Falls by elderly have become a major public health problem in modern society. It is 

both the first cause of accidental death, but also the beginning of the loss of autonomy 

from these people [142]. Presently, among various methods offered to assist seniors in 

case an emergency situation occurs, there are commercial systems based on badges or 

pendants, which can establish a wireless connection to a remote station installed inside 

the user‘s house. Once aware of the emergency, the remote station places a call to an 

operator that handles the situation.  

Personal alarm systems are relatively popular in the United States and in the United 

Kingdom, where several companies offer this service [3, 149]. However, these systems 

require the intervention of the person (by pressing a button), which may be impractical, 

for instance, in the event of a serious fall. Automatic fall detection systems, such as 

Medical Alert,  from Wellcore [150], and Lifeline, from Philips [171] try to solve this 

problem by automatically detecting falls and connecting the operator.  

Because a fall is a complex event (there are several types of falls and each has 

particular features), fall detection algorithms can fail. These and other questions are 

addressed by several academic works. The studies [23, 24, 52, 116] present fall 

detection algorithms based on kinematic sensors, whereas Kangas et al. compare several 

fall detection algorithms in [115]. Another study [19] presents a fall detection system 
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based on the ZigBee protocol, whereas in [20] the authors presents a platform consisting 

of fall detection and physiologic sensors. In [117, 136, 173], the authors present 

algorithms capable of recognizing several human activities, including falls. An 

intelligent walking-aid is presented in [128]. It consists of a smart cane capable of 

detecting a fall and automatically sending an alarm to a smart phone through a 

Bluetooth connection.  

Casas et al. [27] have developed an alarm and automatic fall detection system based 

on ZigBee that aims on monitoring independently-living seniors in an isolated Spanish 

village.  By using ZigBee routers, the authors were able to establish a wireless network 

that covers the exterior spaces of the village and the interior of the houses. In the case of 

an emergency situation, users can press a button to alert a person in charge of handling 

alarms. Additionally, sensors can automatically detect falls and connect to the operator. 

As pointed out by the authors, the use of the ZigBee protocol endows the village with a 

wireless infrastructure that enables the integration with many other systems that might 

potentially improve the users‘ quality of life.  

Elders should be stimulated to regularly exercise.  Context-aware concepts were 

used to design Flowie, a virtual coach designed to persuade seniors to walk regularly 

[6]. The design concept combines a pedometer with wireless connectivity with a touch 

screen photo frame. The user interface runs on the digital photo frame with attractive 

animations and easy to visualize graphs, as those shown in Figure 33. The user interface 

was developed considering the opinion of several users who considered it encouraging 

and stimulating.  

 

Figure 33 – Flowie user interface (adapted from [6]).  

New wireless sensor technologies applied to home automation can replace 

commodity fire alarms and security systems with pervasive systems capable of 

recording routines and detecting a risky behavior. These systems will be comprised of 

several motes installed, for instance, on medication packaging, chairs, beds, glasses and 

clothes. In [78], the authors propose a system to determine a person‘s activities and 
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make decisions about his/her health status. The system is based on a wireless sensor 

network distributed throughout the house and a wearable sensor that interact to permit 

tracking the user.  

Systems designed for assisted living facilities 

The work developed by Fraile et al. [66] proposes a multi-agent system that uses 

smart wearable devices and mobile technology for the care of patients in a geriatric 

home care facility. The system is based on a ZigBee WSN and includes location and 

identification microchips installed in patient clothing and caregiver uniforms.  

Two recent works propose fall prevention (instead of fall detection) systems 

designed to help assisted living facilities‘ care providers avoid patient falls or estimate 

the risk of a patient fall. In [122], the authors present GRiT Chair Alarm, which aims to 

prevent patient falls from chairs and wheelchairs by recognizing the gesture of a patient 

attempting to stand. In case the system detects an attempt to stand up, it tries to persuade 

the patient to remain seated. This system requires the use of capacitance sensors on the 

chair or wheel-chair and dispenses the use of wearable sensors. Najafi et al. propose a 

system capable of estimating the risk of a fall based on the characteristics of postural 

transition (sit-to-stand and stand-to-sit movements). Transitions and their duration are 

measured using a miniature gyroscope attached to the chest and a portable recorder 

placed on the waist [154].  

The ZigBee protocol was used by Gamboa et al. as the basis of a vital signs 

monitoring, fall detection and tracking system specifically designed for patients in 

assisted living facilities [69]. The system is highly scalable and is based on wearable 

sensors that communicate directly with routers distributed all over the facility. 

Andrushevich et al. proposes three solutions for assisted living facilities while discusses 

the benefits of incorporating IPv6 support to the ZigBee protocol, as announced by the 

ZigBee Alliance [14].  

Usability issues 

Usability issues can discourage user from wearing devices. Steele et al. report 

findings of a qualitative study on the perception of elderly people on the use of current 

sensor networking technology for assistive care [190]. According to the authors, the two 

most important factors for elderly acceptance are cost and control. Various levels of 
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control were desired, but all participants expressed a certain desire of control over the 

system. The study in [181] presents two case studies and concludes that user-acceptance 

is inhibited if privacy is violated (e.g., by the use of video cameras) and that the 

perceived usefulness of the system is a crucial factor of acceptance.  

Patients with dementia may not tolerate the use of wearable devices, creating 

additional constraints.  For this group, it should be considered embedding sensors on 

devices and clothes such as belts, shoes and watches.  An example is Actibelt, a system 

developed by the Sylvia Lawry Centre for Multiple Sclerosis Research to measure gait 

and activity parameters and detect falls. The patient unit shown in Figure 34 measures 

accelerations and communicates using a ZigBee link with a remote unit that collects and 

analyzes data [1].  

 

Figure 34 – Actibelt patient unit embedded in a belt buckle (used with permission, adapted from [1]).  

3.3.4 Wireless hospital monitoring systems 

Wireless hospital monitoring systems, also called hospital telemetry systems, 

analyze physiological signals remotely collected and are mostly used to monitor 

patients‘ heart activity. One of their main advantages, as it is used in hospitals, is that it 

allows the patient to get up and move around, at least within the device's transmitting 

range, which is highly valuable for some patients, particularly those going through a 

physical rehabilitation process. It allows a patient whose recovery depends on 

movement to pursue that recovery effectively, while keeping the physicians ability to 

monitor his or her cardiac condition. 

Commercial hospital telemetry systems operate either in specific telemetry bands or 

in one of the ISM bands [17]. ApexPro is a patient telemetry system manufactured by 

GE Healthcare [70]. The system consists of wireless patient units, Ethernet access 

points and network switches, application and database servers, and a monitoring station 
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for patient data visualization. An ApexPro patient unit (see Figure 35) contains a 6-lead 

ECG and an optional SpO2 sensor. This unit operates in the frequency band from 420 

MHz to 460 MHz [71], which is regulated and, consequently, less prone to interference 

than the 2450 MHz ISM band (used by WLANs). In Portugal, it may be configured to 

operate in one of the following frequency intervals defined by ANACOM, the 

Portuguese communications authority: a) 433.05 MHz – 434.79 MHz; b) 434.04 MHz – 

434.79 MHz; or c) 458.1125 MHz – 458.1500 MHz [12].  Since 2009, the system 

included support for remote viewing of telemetry information on portable devices, such 

as PDAs and cell phones [70].  

 

Figure 35 – ApexPro patient unit (adapted from [70]). 

Instead of operating in one of the regulated frequency bands, which do not offer a 

large bandwidth, some vendors like Welch Allyn and Phillips Healthcare have opted for 

the use of ISM bands. Wireless patient monitoring devices from Welch Allyn, including 

the Micropaq wearable monitor (3-lead ECG, heart rate and SpO2 sensors, shown in 

Figure 10, Chapter 1), were designed to share the hospital IEEE 802.11 a/b/g network 

with other hospital applications
17

. This design option lowers network management and 

infrastructure costs. On the other hand, it increases the complexity of network 

management because hospital technicians must ensure that the critical messages, such as 

alarms, are transmitted successfully [17]. 

IntelliVue, from Philips Healthcare, is a wireless patient monitoring system that also 

includes patient portable units. It operates in the ISM band, but it cannot share the 

spectrum with another IEEE 802.11 network. For instance, in case an enterprise IEEE 

802.11b/g/n network is used in the same local area, IntelliVue‘s wireless infrastructure 

                                                 

17
 Depending on the bandwidth availability, the system can run on a dedicated 802.11a network. 
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shall be set to use IEEE 802.11a. The system functionalities and network infrastructure 

are similar to ApexPro [170]. 

Aingeal is a hospital monitoring system presented by Intelesens in 2010 [98]. To the 

best of our knowledge, it is the first commercial remote monitoring system based on a 

wearable sensor designed to monitor ambulatory in-patients, the same scenario 

considered in our work. Patient respiration, ECG signals, skin temperature and activity 

(3-axis accelerometer) are constantly monitored. Any out of range heart or respiration 

rates, or irregular heart events are transmitted via Wi-Fi (IEEE 802.11 b/g) to a central 

processing station for further analysis by clinicians. The wearable sensor (see Figure 36) 

has autonomy of 24 hours.  

 

Figure 36 – Aingeal electrodes and clip-on patient device (adapted from [98]) .  

 Few systems for in-patient remote monitoring were proposed by academia. One of 

the first systems based on WSN technologies to monitor patients in the hospital 

environment was presented by researchers form University of Texas (UT), in 2006, and 

was based on a ZigBee multi-hop network [80]. Patient wearable units consisted of a 

MicaZ mote [34] that was interfaced with a commercial blood pressure and heart-rate 

monitor. Routers were also based on MicaZ motes and were powered by an energy 

harvesting circuit that included solar panels. The system was tested in the laboratory 

environment using three patient units and no data was lost. In opposition to this study, 

our work considers the system scalability and restricts the network depth as it can 

seriously affect the amount of data that can be relayed. 

In 2009, researchers from John Hopkins University temporarily deployed and 

analyzed the performance of MEDiSN (an acronym for Medical Sensing Application), a 

developed remote vital sign monitoring system, in the waiting areas of the emergency 

room (ER) of John Hopkins Hospital [123]. MEDiSN is comprised of a gateway, a 
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variable number of patient monitoring units and a wireless backbone of relay points. All 

wireless devices are based on Telos motes, which incorporate a CC2420 802.15.4 radio. 

The software running on devices uses TinyOS 2.0. Over the IEEE 802.15.4 protocol 

stack, the devices run the Collection Tree Protocol (CTP) provided by TinyOS [74]. 

Patient monitoring units collect ECG signals and oxygen saturation in blood (SpO2) and 

generate a 111-byte data packet every 500 ms, almost the same traffic generated by our 

ECG sensors. The ER is covered by a WLAN operating on channels 1, 6 and 11. The 

system was tested while being used to monitor an average of three patient monitoring 

units. A backbone of eight relay points was employed. Two 24-hour tests were 

executed, one with the system operating on channel 22 and the other on channel 26. The 

authors report an end-to-end delivery ratio greater than 99.9% on both channels, despite 

the quality of the links, because CTP was able to find high quality links. Contrary to our 

study, where several causes for packet losses are found and explained, authors restrict 

their analysis to the quality of the wireless links and the performance of the routing 

protocol. Additionally, despite having patients use the developed system, they do not 

report any mobility issue. 

The study presented on [31] is based on the same hardware and software 

components used by MEDiSN, except that authors have developed a CTP companion 

routing mechanism called Dynamic Relay Association Protocol (DRAP), which is 

deployed on patient nodes to discover and select relay nodes as the patient moves.  

During the system evaluation, sensor nodes were programmed to transmit a data packet 

every 30 s or 60 s. Data collected from 32 patients over a total of 31 days of monitoring 

shows that the median network and sensing reliabilities
18

 per patient were 99.92% and 

80.55%, respectively. For one patient, network reliability was about 95% and, for other 

6 patients, it was smaller than 98%, even considering that patient mobility was quite 

low. 80% and 90% of the services outages (period of time the service is unavailable) 

were less than 0.86 and 1.41 minutes, respectively. The median time between services 

outages was equal to 17.7 minutes. In this study, authors include neither the number of 

patients being concurrently monitored nor the size of the packets transmitted by sensors, 

                                                 

18
 Sensing reliability, as used by the authors, refers to the correction of measurements made by 

sensors. As reported, the sensing reliability was negatively affected by incorrect measurements made by 

the SpO2 sensor used, which was very susceptible to patient movements. 
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which prevents readers from making any judgment about the system reliability 

presented. 

Researchers from MIT developed SMART (an acronym for Scalable Medical Alert 

and Response Technology) [45]. This system can monitor SpO2, ECG, and the location 

of multiple patients. A commercial SpO2 sensor was used, whereas the ECG sensor was 

developed as a Cricket mote daughter board. Figure 37 shows a patient unit. On the left 

side, the sensor box, ECG leads and the SpO2 probe are shown; whereas, on the right 

side, it is shown the PDA responsible for connecting to the dedicated WLAN. Vital 

signs and location data are sent to a PDA using a serial wired connection. All 

information gathered is transmitted using Wi-Fi to a central unit with signal processing 

and data analysis capability. Alarms can be sent to caregivers‘ PDAs.  

 

Figure 37 – The patient unit designed by MIT researchers under the SMART project (adapted from [36]).  

In [36], the authors qualitatively evaluated a temporary deployment of SMART in 

the waiting areas of an emergency department of Brigham and Women‘s Hospital.  The 

evaluation involved patients being monitored, where a maximum number of four 

patients were simultaneously monitored. The authors conclude that the system was well 

accepted by patients and caregivers. Additionally, they mention the occurrence of false 

alarms that should be further investigated. Similarly to our approach, raw ECG data are 

transmitted. In our approach, however, wired BANs are not used, but fully wireless 

sensors connected to an infrastructure distributed throughout the hospital. 

3.4 Interviews 

Several interviews were conducted with physicians and engineers to better 

understand what concerns them about present wireless vital signs monitoring systems 

and what can be done to improve these systems. The cardiologist that contributed to this 

work, Dr. Otílio Rodrigues, from Hospital Privado de Guimarães, was interviewed a 
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few times. Additionally, professionals from the Boston area were interviewed on 

November 2009, while some follow-ups occurred during 2010.  

Dr. Warren Sandberg
19

 stated that, ideally, all in-patients should be monitored, 

which, according to him, will happen in the near future. He added that wireless 

technologies are very attractive because they free patients from their beds and eliminate 

wires which might transport resistant microorganisms that can survive cleaning 

processes used by hospitals. He also pointed out that the cost, including the cost of 

disposable items and maintenance costs, is a decisive factor for the adoption of new 

hospital systems.  

Additionally, he pointed out that health monitoring systems should improve the 

context of alerts and trend reports. Also, these alerts and trends reports should consider 

physicians and nurses in a different way. While both alerts and trends concern 

stakeholders, physicians are more interested in the first ones. On the other hand, nurses, 

who spend longer periods watching over patients, carefully examine trends, in order to 

discuss with physicians the patients‘ response to treatments.  

According to Dr Sandberg, alerts should be sent to physicians‘ personal devices. 

This opinion is shared by Dr. Henry Feldman
20

, who stated that doctors should not carry 

several warning and communication devices. Instead, he suggested alerts should be 

directed to cellular phones instead of dedicated communication devices.  

Dr. Sandberg suggested remote monitoring systems should be integrated with other 

information systems that store patient data (for instance, laboratory, pharmacy, and 

historical data) to anticipate life-threatening events. A prize-awarded investigation, 

jointly conducted by scientists from University of Coimbra and University of Utah, 

integrated, in one place, data supplied by ICU monitoring systems, historical data and 

laboratory results with events, rules, and data mining models to identify, in real-time, 

possible future risks to the patient [77]. A team led by Professor Guttag, from MIT, was 

also investigating the possibility of predicting life-threatening events, such as a cardiac 

                                                 

19
 Dr. Warren Sandberg is an anesthesiologist. He is a professor at Harvard Medical School, and 

works at MGH and at the Center for Integration of Medicine and Innovative Technology (CIMIT). He is 

one of the leaders of the project ―Operating Rooms of the Future‖ that is being developed by CIMIT. 

 
20

 Dr. Henry Feldman is a hospitalist and works as the Chief Information Architect at Beth Israel 

Deaconess Medical Center. 
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failure. However, the development of this research was conditioned to the gathering of 

sufficient data in local ICUs.  

Dr. Feldman referred that remote monitoring systems generate frequent false alarms 

and have low autonomy, deficiencies that must be corrected by manufacturers. Nancy 

Foster, one of the nurses who work in the intermediate care unit of Beth Israel 

Deaconess Medical Center, confirmed that medical telemetry units
21

 used in that service 

generate frequent false alarms and are bothersome to patients. In fact, during the 

interview, some false alarms occurred, which forced her to check patients and reset 

alarms. One of the patients whose monitor unit generated a false alarm complained that 

the monitoring unit was too heavy (it weighs about 0.5 kg) and that the wires were 

bothering him.  

Regarding the biomedical signals to monitor, all doctors interviewed agreed that all 

primary vital signs (body temperature, heart rate, blood pressure, and respiration rate) 

were essential. Dr. Nathaniel Sims
22

 highlighted the importance of monitoring the 

respiration rate, a primary vital sign frequently neglected. Apart from the primary vital 

signs, Dr. Sandberg highlighted the importance of monitoring oxygenation, whereas Dr. 

Otílio Rodrigues considered imperative to monitor ECG because its analysis allows 

cardiologists to detect important conditions, such as damages in the heart muscle and 

arrhythmias.   

William Driscoll, anesthesia information manager at MGH, affirmed that human 

errors are a major concern in hospitals. His team was adapting bed-side vital signs 

monitors to transmit measured vital signs to a handheld computer using a Bluetooth-

based connection. Using the handheld computer, a nurse scans a 2D tag on a patient‘s 

file placed near the patient‘s bed to read the personal data. Then, the nurse acquires vital 

signs that are transferred to the handheld computer. Finally, the nurse confirms that 

patient data and vital signs measurements are correct, and then data are sent through the 

                                                 

21
 The units are part of an IntelliVue system bought several years before the date of the interview. 

New IntelliVue models have an increased autonomy of 25 hours and, according to the manufacturer, new 

algorithms that provide reduced false alarm incidence.  

22
 Dr. Nathaniel Sims is an assistant Professor of Anesthesia at the Harvard Medical School. He also 

works at MGH and is a researcher at the Center for Integration of Medicine and Innovative Technology 

(CIMIT).  
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WLAN to a medical records repository. Another interesting project in early stages of 

development at MGH aimed at remotely programming infusion pumps. For this new 

project, they were considering the ZigBee protocol, which they were not familiar with. 

Rickey Hampton, wireless communications manager at MGH and researcher at 

Partners Health care, stated that telemetry was vital at MGH, which had two telemetry 

systems. One of the systems operated at the WMTS bands and the other on the 2450 

MHz ISM band (this one was being upgraded to operate on the 5800 MHz ISM band). 

By the time he was interviewed, MGH had 17 floors covered by telemetry systems and 

managers had plans to further increase the coverage area. According to him, systems 

that operate on WMTS bands are more reliable than technologies that share the ISM 

spectrum with enterprise WLAN. Nevertheless, he considers that several technologies 

are required to fulfill all patient monitoring needs, including low-power, low data-rate 

communication protocols.  

When questioned about problems concerning monitoring systems, he stated that one 

of the main problems is poor systems integration. According to him, hospitals have 

many interoperability issues that must be solved.  

3.5 Summary 

Wireless medical devices consist of the medical devices themselves and the data 

transport, storage and analysis stages. Whereas medical devices should conform to strict 

regulation, other stages are not heavily regulated, though they should meet guidelines 

issued by standard and regulatory organisms, such as ISO, IEEE and local spectrum 

regulation entities.   

Academic works and commercial products are reviewed and classified into three 

broad categories: personal health monitoring systems, monitoring systems for elderly 

care, and hospital monitoring systems. Most of the commercial products were released 

after this work started, and just a few are based on low power low data-rate protocols.  

Finally, this chapter presents the views of physicians and informatics professionals 

on important aspects of remote patient monitoring systems. Preferably, all in-patients 

should be monitored. However, to achieve this ideal situation, systems should become 

more pervasive, better integrated, less expensive, and should generate more meaningful 

and reliable alerts and alarms. 
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Chapter 4 

The developed monitoring system  

 
As discussed in Section 3.4, despite the concerns of health care providers, few 

patients have their vital signs constantly monitored. HM4All, which stands for Health 

Monitoring for All, was developed to solve some of the issues that prevent vital signs 

monitoring systems from becoming widespread in hospitals, nursing homes and 

residential environments.  

HM4All was designed to allow patients to be constantly monitored using 

unobtrusive and low cost sensors based on the ZigBee protocol, which, as presented in 

Chapter 2, was developed for low battery consumption, low cost and easy deployment. 

Contrary to several previous works, which have opted for an architecture based on body 

area networks (BANs) [133, 161], HM4All was developed considering that sensors 

connect directly to the ZigBee network infrastructure, thus avoiding the use of a patient 

unit that acts as a concentrator. 

This chapter describes HM4All, the developed vital signs monitoring system, which 

comprises wireless medical sensors, ZigBee networking devices, a ZigBee-to-IP 

gateway and Web-based applications.  

4.1 HM4All overview 

HM4All high-level architecture is shown in Figure 38. Data generated by a 

wearable sensor are transported by ZigBee routers and coordinator to a ZigBee-to-IP 

gateway. Then, data are stored in the data server and made available to monitoring 

centers or wireless portable devices carried by health care providers.  
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Figure 38 – HM4All high-level system architecture. 

Two wireless sensors were developed: a single channel (3-lead) electrocardiogram 

(ECG) sensor and an axillary temperature sensor. Both sensors are based on the 

JN5139-M00 wireless module (with integrated antenna) [106]. The amount of data 

generated by each sensor is shown in Table 14. Although ECG waveform and heart rate 

(HR) measurement are transmitted by the same sensor and data are aggregated, the 

amount of data generated by each function is shown separately. Battery level 

information is also sent by both sensors.  

Table 14 – Amount of data generated by sensors.  

Sensor 
Sampling rate 

or period 
Sampling size Data generated 

ECG (single channel, 

modified bipolar limb lead I) 
200 Hz 12 bits per sample 

2400 bps (raw data) or 1200 bps 

(2:1 compressed data) 

Heart rate 10 s 1 byte 1 byte every 10 s 

Axillary temperature 1 min 1 byte 1 byte every minute 

Battery level 3 min 1 byte 1 byte every 3 minutes 

 

ZigBee coordinators and routers are based on the JN5139-M02 high-power module 

[106] and use the same electronic printed circuit board (PCB) and case. These devices 

have two light emitter diodes (LEDs) that allow users to verify when they are powered 

on and when they are actively communicating. Additionally, they contain a reset button, 

a Universal Asynchronous Receiver / Transmitter (UART) serial communication 

ZigBee router

ZigBee medical sensor

Mobile PC, Cell Phone or PDA

Monitoring Centers 

 

(outside the hospital)

Doctors and nurses 

(inside the hospital)

Network 1 (Channel A) Network 2 (Channel B)

Legend:
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Internet

Data and 

Web Server

ZigBee-to-IP gateway
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interface port connection and allow channel selection through a set of dip switches 

(channel selection can alternatively be done by code). 

The ZigBee-to-IP gateway is a graphical user interface (GUI) based application 

developed in C# language that can execute in any computer with the .Net Framework 

installed. It validates and processes data frames received from a ZigBee coordinator and 

sends processed data to the Application Server application through an HTTP (Hypertext 

Transfer Protocol) connection. Additionally, it contains a user interface where sensor 

data are exhibited and recorded and connections are established and monitored.  

The Application Server software comprises a Web server application based on Java 

servlets
23

 and uses the Apache Web server [200] and the MySQL database [153]. This 

application collects sensor data from ZigBee-to-IP applications and sends data to remote 

clients, such as monitoring stations.  

Applications that run on clients provide a user interface that allows care givers to 

execute the following tasks: a) visualize patients‘ vital signs in real-time; b) access 

historical patient data records; c) configure individual alarms; and d) execute 

management functions, such as patient registration, sensor insertion, and association 

between patients and sensors. Figure 39 shows HM4All conceptual diagram, where all 

remote connections are represented.   

                                                 

23
 Java servlets extend and enhance Web servers and can be thought of as an applet that runs on the 

server side. Servlets provide a component-based, platform-independent method for building Web-based 

applications, without the performance limitations of Common Gateway Interface (CGI) programs. 
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Figure 39 – HM4All conceptual diagram. 

The Monitoring Station application consists of several Web pages. Among these, 

the most important is the page that presents patients‘ vital signs, as shown in Figure 40. 

Each small window presents real-time ECG waveform, heart rate and temperature 

values collected from sensors worn by patients. Additionally, it presents patient 

information (name, age, room and bed) and the battery level of each sensor. Finally, 

users can activate or deactivate alarms and access historical temperature and heart rate 

information displayed in graphical form.   

 

Figure 40 – Monitoring page presenting data from several sensors (all data presented in this page was 

previously recorded for testing purposes). 
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The Application Server software and the Monitoring Station application were 

developed by Duarte Pereira, during his Master‘s Program [168].  

4.2 Developed HM4All components 

This section describes, in detail, HM4All components developed under this work. 

All components were developed from scratch, including the design of PCBs and their 

assembly.  The design of sensors and network components includes the development of 

hardware and application software.  

4.2.1 ECG sensor 

The ECG sensor hardware was developed together with Ana Carolina Matos, during 

her Master Program [140]. It consists of a one-channel, three-lead ECG sensor designed 

to continuously monitor a modified projection of the lead I vector
24

 and to determine the 

heart rate.  

A simplified block diagram of the ECG sensor hardware is shown in Figure 41. The 

instrumentation amplifier (IA) amplifies the difference between the right arm and left 

arm signals while rejecting large values of common mode noise. A band-pass filter 

(BPF) and a 50 Hz notch filter follow and are used to attenuate unwanted frequency 

components not rejected by the IA. A non-inverting amplifier follows and is used to 

adjust the desired gain. Finally, a low-pass filter (LPF) is used to attenuate any DC level 

before the signal is buffered and sampled by the 12-bit analog-to-digital converter 

(ADC) internal to the JN5139-M00 module. The right-leg electrode is connected to the 

reference potential.  

                                                 

24
 Lead I or bipolar limb lead I corresponds to the voltage between the (positive) left arm (LA) 

electrode and (negative) right arm (RA) electrode. The developed ECG sensor uses non-standard 

electrode positioning on the torso. The resulting waveform is adequate for heart rate measurement, but 

cannot be used for diagnostic purposes. 
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Figure 41 – ECG sensor block diagram. 

The distance between electrodes is 20 mm, which results in QRS amplitudes of, 

approximately, 0.33 mV
25

. The ECG sensor has a passband between 0.5 Hz and 40 Hz 

and a gain of 4160 V/V, which results in an output signal that does not exceeds 1.37 V 

for normal ECG amplitudes. It is operated by a CR2 lithium battery with power holding 

capacity of 850 mAh and a nominal voltage of 3.0 V. The average current consumption 

is equal to 12.3 mA, resulting in a battery life of, approximately, 70 hours, which was 

confirmed experimentally. The schematics diagram of the ECG sensor is included in 

Appendix A. 

The sensor‘s electronic PCB and its final prototype case are shown in Figure 42. 

The PCB was designed using the PADS tools [143]. The sensor case was designed 

using the SolidWorks computer aided design (CAD) software [187] and was 

manufactured in polyurethane, by SolidTech, a Portuguese company, using rapid 

prototyping techniques. The silicone molds used to manufacture the sensor cases are 

shown in Figure 43 (a), whereas a case just extracted from the mold is shown in Figure 

43 (b). 

 

Figure 42 – ECG sensor case and electronic PCB. 

                                                 

25
 The normal limb lead I QRS amplitude measured for electrodes positioned in the arms and hip or 

near the shoulders and hip is around 1 mV. However, if electrodes are placed closely on the torso, the 

QRS amplitude drops to approximately one third of this value.  
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(a) (b) 

Figure 43 – ECG sensor cases: a) the silicone mold used to produce the final prototype cases; and b) an ECG 

case just extracted from the mold.  

An innovative characteristic of the developed ECG sensor is the absence of cables 

between the sensor and the disposable electrodes. It was achieved by connecting female 

ECG electrode connectors directly to the PCB, as shown in Figure 44.  

 

Figure 44 – Rear side of the ECG sensor.  

Real-time QRS detection was implemented using a slightly modified version of the 

algorithm developed by Pan and Tompkins [163]. It is a high-performance algorithm 

with a very low error rate of 0.68% on the MIT-BIH Arrhythmia database
26

 [124]. It 

includes a pre-processing stage and rules for QRS detection. The pre-processor consists 

of a series of filters that perform low-pass (LP) and high-pass (HP) filtering, derivative, 

squaring and integration operations, as shown in Figure 45. Equations (4) to (8) presents 

the difference equations of each filter or operation, respectively, the low-pass filter, the 

high-pass filter, the differentiator, the squaring and the moving-window average 

integrator defined for a sampling frequency of 200 Hz [174]. 

                                                 

26
 The MIT-BIH database is maintained by the Laboratory for Computational Physiology, which is 

part of the Harvard-MIT Division of Health Sciences and Technology. Several databases, including the 

Arrhythmia database, are accessible at http://www.physionet.org/physiobank/database/#ecg.     
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Figure 45 – Pan-Tompkins pre-processor. 
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Both the LP and HP filters were designed to maximize the QRS energy and contain 

only integer coefficients to reduce the computational complexity
27

.  The derivative filter 

provides QRS slope information and is nearly linear (and, consequently, nearly ideal) 

from DC to 30 Hz. After the derivative, a squaring operation emphasizes higher 

frequencies (especially from QRS complexes) and, consequently, reduces P and T 

waves. Finally, a moving-window integrator performs smoothing of the output of the 

squaring operation. The width of the window W is chosen not to merge the QRS 

complexes and T waves and to avoid the generation of several peaks from a single QRS 

[174].  

Figure 46 shows the result of the pre-processing of an ECG waveform using the 

pre-processor implemented in MATLAB
28

. The top-most trace shows an unfiltered 

ECG signal collected with the developed ECG sensor. The output of the filters results in 

a signal where the energy is concentrated on the band-pass frequencies. The output of 

                                                 

27
 More complex filters may improve the performance of the QRS detector. However, when Pan and 

Tompkins published their work (1985), it was critical to reduce the complexity of the real-time signal 

processing algorithms.  

28
 MATLAB is a high-level technical computing language and interactive environment for algorithm 

development, data visualization, data analysis, and numerical computation. MATLAB is developed by 

MathWorks.  

Bandpass filter Differentiator
Squaring 

operation

Moving-window 

integrator
ECG x(n)



Chapter 4. The developed monitoring system 

89 

the derivative operation attenuates the P and T waves and enhances the QRS complex. 

The squared operator further enhances high frequencies, but the result still possesses 

multiple peaks for each QRS. Finally, the output of the integrator is a large pulse for 

each QRS complex. Smaller additional pulses result from large T waves. The shift 

between the actual QRS location and the corresponding output pulse is due to the 

cumulative delay of the various filters.  

 

Figure 46 – Results of ECG pre-processing. From top to bottom: ECG waveform; output of the band-pass 

filtering; output of the squaring filter; and output of the integrating moving-window filter. 

After pre-processing the ECG waveform, the algorithm searches for peaks which 

are compared to running estimates of signal (QRS) and noise peaks. Every time a new 

peak is detected, it is classified as signal or as noise by comparing the peak‘s amplitude 

with a threshold level, THRESHOLD I1. Then, THRESHOLD I1 and both the signal 

and the peak levels are updated.  Another threshold, THRESHOLD I2, is maintained by 

the algorithm to be used in the search back procedure. A peak that does not exceed 

THRESHOLD I1 but exceeds THRESHOLD I2 (THRESHOLD I1 > THRESHOLD I2) 

is considered for search back. Whenever a QRS is not detected for a time interval within 

1.5 * R-R intervals, the peak considered for search back is taken as a QRS.  

The pre-processing algorithm used by the ECG sensor employs the smaller 80 ms 

integration window proposed by Urrusti and Tompkins [205] instead of the original 

150 ms integration window proposed by Pan and Tompkins because, according to those 

authors, the smaller window slightly increases the QRS detector performance. Also, the 

threshold factor was increased to 0.6 to further enhance the detection performance in 
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presence of high T waves that result in unwanted peaks at the output of the pre-

processor
29

 [79, 163]. Finally, the original HP filter was substituted by a 13
th

-order HP 

equiripple finite impulse response (FIR) filter with stopband frequency at 0.5 Hz and 

bandpass frequency at, approximately, 5 Hz. Figure 47 shows the output of the 

integrator for an ECG waveform acquired using the developed sensor. The top graph 

shows the output produced by the original pre-processor, whereas the bottom graph 

shows the output of the pre-processor that employs the designed HP FIR filter. As 

shown, the designed FIR filter reduces the amplitude of unwanted pulses that 

correspond to T waves, which decreases the probability of false detections. The 

disadvantage of this filter is the increased computational complexity. The coefficients of 

the HP filter designed are presented in Table 15.  

Table 15 – Designed HP FIR filter coefficients.  

Filter coefficients 

a0 a1 a2 a3 a4 a5 a6 

  -0.1348973   -0.05155303  -0.06514797  -0.08656943  -0.1241208 -0.2102601 -0.6359727 

a7 a8 a9 a10 a11 a12 a13 

0.6359727 0.2102601 0.1241208 0.08656943 0.06514797 0.05155303 0.1348973 

 

 

Figure 47 – Results of the Pan-Tompkins pre-processing using different HP filters. Top: original HP filter. 

Bottom: HP FIR filter designed to further attenuate P and T waves.  

Before porting the QRS detection algorithm to the JN5139 module, it was coded in 

C# language. This version was employed to test the performance of the algorithm 

implementation, where ECG waveforms acquired with the developed sensor were used. 

                                                 

29
 The QRS detector was tested using waveforms collected by the developed sensor. It was noticed 

that it achieves a better performance if the threshold factor is increased to 0.6 instead of 0.25, as originally 

proposed by Pan and Tompkins, and further increased to 0.3125 by Hamilton.  
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Figure 48 shows the C# implementation user interface. It processes an ECG signal from 

a text file and presents the number of detected peaks and the mean, maximum and 

minimum heart rate values. The mean heart rate value is obtained considering the 

average of all R-R intervals, whereas the maximum and minimum heart rate values are 

obtained from the shorter and longer R-R intervals, respectively.  Additionally, it 

displays information needed to track the algorithm execution and generates a file that 

contains either the output of a pre-processing filter or a list of samples corresponding to 

location of the R waves detected. 

 

Figure 48 – User interface of the QRS detector implemented in C# language.  

The ECG sensor application that runs in the target board was developed in C 

language and contains four modules: EcgSensorED, PreProc, QrsDet and Printf. The 

EcgSensorED is the main module, responsible for wireless communication and ECG 

data sampling and analysis.  The other modules execute ECG signal pre-processing, 

QRS detection and communication tasks using the UART serial interface, respectively. 

The JZA_vAppEventHandler is the most important function of the EcgSensorED 

module
30

. Figure 49 shows a flowchart that describes the tasks executed by this 

function. Whenever JZA_vAppEventHandler executes, it verifies if one or more 

interruptions have occurred and treats the older one. Every 5 ms (sampling period), a 

                                                 

30
 As discussed in Section 2.5, it is the default user thread and is constantly called by the JN5139 

module‘s scheduler. 
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timer generates an interruption that is captured by JZA_vAppEventHandler. In that 

case, it starts the ADC internal to the JN5139-M00 module to sample at ADC1 input 

and exits. When the ADC is ready to sample data, it generates an interruption. When 

JZA_vAppEventHandler detects this interruption, it calls a function that samples the 

ECG signal and stores the sampled value. After that, JZA_vAppEventHandler 

increments the variable u8EcgMeasurements, which is used to count the number of 

ECG measurements already done. If the value of u8EcgMeasurements is equal to the 

number of samples to be transmitted, the static boolean variable bSendECG is set and 

the transceiver is switched on. Additionally, if it is time to send a new heart rate value 

the static boolean variable bSendHR is set.  

 

Figure 49 – JZA_vAppEventHandler flowchart. 

If no interruption must be served by JZA_vAppEventHandler, it verifies if 

bSendECG is set. In that case, if the transceiver is already powered on, it sets off 

bSendECG. Then, depending on the value of bSendHR, it calls a function that requests 

the transfer of a data frame with the ECG samples or with the ECG samples plus the 

heart rate value.  
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Just after sampling the ECG signal, the ECG sensor application calls functions that 

filter the signal and search for a new QRS complex. If a QRS complex is detected, a 

new R-R interval value is determined and stored in a local variable. Heart rate values 

are determined as the arithmetic mean of a defined number of successive R-R intervals. 

Presently, the heart rate is determined from the previous ten successive R-R intervals.   

The occurrence of tachycardia, bradycardia or asystole
31

 is verified by the sensor. 

The function responsible for asystole detection maintains a static local variable that is 

increased every time a new ECG sample is taken. This variable is initialized every time 

a new QRS is detected. However, if no cardiac activity is detected for 3 seconds, an 

asystole event is detected. Additionally, the ECG sensor detects the occurrence of 

background arrhythmia
32

.  

The ECG signal is sampled at a frequency of 200 Hz. However, the sensor transmits 

2:1 compressed ECG data. Data compression is done using the turning-point algorithm 

[203]. This algorithm is based on the concept that ECG signals are normally 

oversampled to easily visualize the higher-frequency attributes of the QRS complex. It 

provides a way to reduce the effective sampling rate by half to 100 Hz by selectively 

selecting important signal points.  

4.3 Temperature sensor 

The temperature sensor prototype is shown in Figure 50 (a). The case was designed 

using Solid Works CAD and prototyped using stereolithography. As shown in Figure 

50 (b), it is hold in place by a fabric arm band. The thermistor tip of the temperature 

probe is placed in the axillary region.  

                                                 

31
 As presented in Section 1.2, on adults, a heart rate above 100 bpm is referred to as tachycardia, 

whereas heart rates below 60 bpm are referred to as bradycardia. Asystole refers to the state of no cardiac 

electrical activity.    

32
 As discussed in Section 1.2, a background arrhythmia is detected by the ECG sensor if, during a 

one minute period, the heart rate experiences a positive and a negative variation of 20% of its average 

value. In the current implementation, tachycardia, bradycardia and the absence of cardiac electrical 

activity are detected by the Monitoring Station application (presently, background arrhythmias are not 

detected). However, the system can be easily modified to identify and present alarms sent by the ECG 

sensor.     
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The temperature sensor complies with the technical characteristics listed in Table 

16. The axillary temperature was chosen because, unlike other sites for which the 

temperature is correlated to the core temperature of the body, the placement of a probe 

in the axillary region causes only minor discomfort to the patient.  

 

  
(a) (b) 

Figure 50 – Temperature sensor prototype: (a) assembled with arm band and probe and (b) being worn. 

Table 16 – Temperature sensor technical characteristics. 

Parameter  Value 

Measuring site Axillary 

Temperature range 34 °C – 42 °C  

Precision ± 0.2 °C 

Resolution 0.1 °C 

 

The temperature sensor uses a medical thermistor probe. Thermistors are one of the 

most accurate types of temperature transducers despite their non-linear resistance versus 

temperature (R-T) characteristic. This characteristic is approximately described by 

Equations (9) and (10), which are known as the Steinhart-Hart equations [191]. Typical 

values of the constants A0, A1, A2, B0, B1, and B3 are supplied by manufacturers or are 

obtained by the user through calibration.  

 

 
                        (9) 

          
  

 
 

  

 
 (10) 

If an ordinary thermistor is used in a medical device, calibration is required for each 

thermistor used. In order to avoid it, pre-calibrated medical thermistor probes with well-

defined R-T characteristics are used in monitoring devices, such as bedside monitors. 

Temperature 

probe

Arm band LED

ON-OFF 

switch
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This ensures interchangeability, repeatability and accuracy equal or better than ± 0.1 °C 

between 34 °C and 42 °C [218].   

Besides non-linearity, another important concern is self-heating. Being a passive 

component, a thermistor must be excited to determine its resistance and, consequently, 

the temperature it is being subjected to. However, the excitation current level must be 

limited to avoid self-heating, which causes the thermistor resistance to decrease and 

give a higher reading than the actual temperature. As a rule of thumb, manufacturers 

recommend the excitation current does not exceed 100 μA [16] or the dissipated power 

does not exceed 100 μW [141], regardless of the value of the thermistor resistance. 

Two Exacon 400-series interchangeable skin temperature medical probes were 

used: an adult D-S18 and an infant D-S10 [54]. Both probes have a resistance of 2252 Ω 

at 25 °C and are factory-calibrated to conform to a standard R-T characteristic with a 

deviation less than 0.02 ºC. The probes‘ R-T characteristic is defined by the Steinhart-

Hart constants supplied by the manufacturer and listed in Table 17. The R-T curve 

obtained from the constants supplied by the manufacturer is shown in Figure 51.  

Table 17 – Exacon 400-series probes Steinhart-Hart constants. 

Constant Value 

A0 1470.196 x 10-6 

A1 237.7907 x 10-6 

A2 104.6897 x 10-9 

 

 

Figure 51 – Exacon 400-series probes R-T characteristic.  

The circuit diagram of the electronic PCB is included in Appendix B, whereas a 

simplified block diagram of the sensor is shown in Figure 52. It consists of three 

modules: the power supply, the analog front-end and the wireless module [21].  
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Figure 52 – Simplified block diagram of the temperature sensor. 

Figure 53 presents the schematic diagram of the power supply module. The sensor 

is powered by a CR2540 coin battery with power holding capacity of 610 mAh and a 

nominal voltage of 3.0 V. The average current consumption of the sensor is equal to 

107 μA, which corresponds to a battery lifetime of 241 days. The energy consumption 

and the battery lifetime calculations are presented in Appendix C.  

The battery voltage, V_BATT, is permanently applied to the wireless module, but is 

only available to the front-end when a measurement should be done. The voltage VCC 

is controlled by the wireless module by driving the base terminal of Q1, a PMBT3906 

switching transistor, through the digital input-output (DIO) line DIO1. When it is 

necessary to measure temperature, DIO1 is set OFF, Q1 saturates, and the voltage VCC 

is applied to the analog front-end. During saturation, the collector-emitter voltage is 

typically under 100 mV and does not exceed 250 mV.   

 

Figure 53 – Schematics diagram of the power supply of the temperature sensor. 

The voltage across the thermistor probe is measured by the analog-to-digital 

converter (ADC) internal to the JN5139-M00 module, which has 12-bit resolution. If 

the input range of the ADC is set to its maximum value of 2.4 V, the voltage value of 

each bit is equal to 0.59 mV/bit (2.4 / (2
12

 – 1)). In order to correctly measure 

temperatures in the range between 34 °C and 42 °C, the thermometer was designed to 

measure 0.1 °C below and above these minimum and maximum temperature values. For 

a resolution of 0.1 °C, a total of 83 possible temperature values should be measured, 
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consequently, 49 ADC codes are available per 0.1 °C (2
12

 codes / 83 intervals)  which is 

adequate because it exceeds the precision of the temperature probes acquired 

(±0.02 °C).  

Figure 54 shows the schematic diagram of the front-end. The thermistor probe is 

connected to J3 connector. REF200 [197] contains two 100 μA current sources which 

are used to excite the thermistor and a reference load comprised by the fixed resistor R3 

and the variable resistor R9. Both U2 and U4 are OPA336 operational amplifiers [196]. 

These components operate on a single supply as low as 2.1 V. The output is rail-to-rail 

and swings to within 3 mV of the supplies with high impedance loads.  

 

Figure 54 – Schematics diagram of the front-end of the temperature sensor. 

The voltage developed between the thermistor terminals, VTH, is filtered and is 

input to the non-inverting input of U4. The voltage developed across the reference load, 

VREF, is buffered by U2 and is applied to the inverting input of U4. The output of U4, 

VOUT, is then applied to the ADC1 input of the ADC. The output voltage of the non-

inverting amplifier is defined by Equation (11), where the gain G is defined by 

Equation (12). 

                          
(11) 

 

              (12) 

The thermistor probe resistance, RTH, for temperatures equal to 33.9 °C and 42.1 °C 

are equal to 1539.6 Ω and 1102.9 Ω, respectively. The values of the G and VREF are 

obtained from the values of VOUT and VTH. For a temperature equal to 33.9 °C, VTH is 
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equal to 0.1540 V and VOUT assumes a value of 2.4 V. Likewise, for a temperature of 

42.1 °C, VTH is equal to 0.1103 V and VOUT is equal to 0. Substituting these values into 

Equation (11), Equations (13) and (14) are obtained. Solving both equations, it is 

possible to obtain VREF = 0.1123 V and G = 53.92.  

                           (13) 

 

                             (14) 

Using the VREF value just determined, then the sum of R3 and R9 is found equal to 

1123 Ω (approximately, the same value of RTH for T = 42.1 °C). Considering R5 equal 

to 1 kΩ and the value of the gain G, the value of the sum of R6 and R10 is found equal 

to 53.92 kΩ.  Then, choosing 1% values for all fixed resistors and an excursion of, 

approximately, ± 5% for all variable resistors, it is possible to determine the value of all 

other fixed and variable resistors, as shown in Figure 54 and Appendix B.  

A first-order LP filter is created by R6, R10 and C5. The value of C5 is determined 

using Equation (15) for a cutoff frequency Fc of 250 Hz.  R4 and C2 create a first-order 

LP filter designed to remove high-frequency components generated in the temperature 

probe. The values of the R4 and C2 are also determined for the same cutoff frequency. 

C3 and C4 capacitors are used for decoupling.  

   
 

    
 (15) 

The temperature sensor application runs the state machine depicted in Figure 55. 

When the sensor is powered on, the application assumes the state INITIALIZING, 

initializes hardware peripherals and configures the stack. When initialization is 

complete, it assumes the state JOINING, starts the network association process and 

switches on the LED by setting off the digital input-output (DIO) output DIO16 (see 

Appendix B). After joining the network, it switches off the LED by setting on DIO16 

output and moves to the ASLEEP state. Then, it starts a wake-up timer to generate an 

interruption when a certain period of time have elapsed and sends the device to sleep. 

The sleeping period corresponds to the thermistor probe settling time and is equal to 30 

seconds. When the active wake-up timer fires, the application goes to the 

WAITING_TO_READ_TEMP state, switches on the front-end by setting off the DIO 

output DIO1 and configures the ADC internal to the JN5139-M00 module to start 
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sampling at the ADC1 input
33

. When it captures the interruption generated by the ADC, 

it reads the ADC conversion voltage, switches off the front-end by setting on the DIO 

output DIO1, starts the ADC to sample the battery voltage and assumes the state 

WAITING_TO_READ_BATT. When the interruption generated by the ADC is 

captured, the application reads the ADC conversion result and requests the lower layers 

to send both ADC conversion results to its parent. Then, it goes to the state 

WAITING_TO_SEND_DATA. After notified of the result of its request to transmit, the 

application sets a wake-up timer, assumes the state ASLEEP and sends the device to 

sleep. When the application captures the interruption generated by the active wake-up 

timer, it starts again the ADC to sample data in the ADC1 input, switches on the 

front-end and assumes, once more, the state WAITING_TO_READ_TEMP.  

In case the device is unable to communicate with its parent (if three consecutive 

transmission attempts fail), the application assumes the device has moved away from its 

parent. Then, the application switches ON LED1 to indicate communication problems, 

assumes the state JOINING and tries to find a new parent. The application will attempt 

to reassociate repeatedly until successful.    

                                                 

33
 As shown in Figure 54, the output of the front-end is connected to the ADC1 input. 
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Figure 55 – State diagram of the temperature sensor application. 

The front-end was tested using a variable resistor in substitution of the thermistor 

probe. Several values of resistance were adjusted and the voltage at pin 1 of U4 was 

measured. The module of the maximum difference found was equal to 29 mV, which 

corresponds to a deviation of 0.1 °C in the temperature measurement
34

. The precision of 

the ADC conversion was also tested comparing the conversion values with pre-adjusted 

voltage values input to its ADC1 input.  A maximum deviation of 5 mV was found for 

an input range between 0 to 2.4 V
35

.    

                                                 

34
 Resistance and DC voltage were measured using a Fluke 115 multimeter. The resistance scales 

used have an accuracy of ± 0.9% + 1 (± [(% of reading) + counts]). The DC millivolts scale used has an 

accuracy of ± 0.5% + 2.   

35
 The measured deviation is smaller than the specified typical values of the offset and gain errors, 

which are both equal to 20 mV. Consequently, it is possible that other modules present a worst 

performance. 
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The accuracy of the temperature sensor was tested comparing the sensor readings 

with the readings supplied by the GE Dinamap V100 vital signs monitor [72], which has 

an accuracy of ± 0.1 °C. The module of the maximum deviation observed when the 

D-S18 probe was used was equal to 0.3 °C, which is within the specified precision of 

the sensor.  

4.3.1 Coordinators and routers 

Coordinators and routers share the same hardware, but have different application 

programs.  The circuit diagram of the electronic PCB is included in Appendix D. A 

mounted coordinator/router is shown in Figure 56. The antenna and the AC adapter are 

connected to the device.  

 

Figure 56 – Coordinator/router (power on and activity LEDs not shown). 

A USB-to-serial cable, such as the TTL-232R-3V3 [67], from FTDI, is required to 

program the devices (coordinators, routers and sensors) and to connect coordinators to 

computers that run the ZigBee-to-IP gateway application. The TTL-232R-3V3 cable 

operates at +3.3VDC levels (signals only, VCC is still +5 VDC on both ends).   

Coordinators and routers can be powered by an external +5 VDC input applied to J1 

connector or, in case of coordinators, by the +5 VDC input from the USB-to-serial cable 

connected to J2. Jumper J3 is used to select the power source. A RF Solutions ANT-

24G-HL90-SMA 2.4 GHz compact helical antenna is used, however, several 

alternatives are enumerated by Jennic in the JN5139 module datasheet [110]. The EIA 

RS-232 UART serial interface operates in asynchronous mode and can be programmed 

to operate at a baud rate of up to 460,800 baud.   
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Switch SW1 is used to turn on or off the device. Switch SW2 is used to reset the 

device, whereas switch SW3 is used to program it. LED1 (ACTIVITY) blinks to 

indicate that the device is actively communicating, whereas LED2 (POWER ON) is 

permanently lit when the device is connected to a power supply.   

Four slide dip-switches can be used to select the ZigBee channel to be used by the 

device. Each switch selects a binary value, being the right-most one the less significant 

bit. The decimal values 0 to 15 correspond to ZigBee channels 11 to 26. Alternatively, 

the operating ZigBee channel can be selected by the application program. A 

coordinator/router electronic PCB is shown in Figure 57.  

  
(a) (b) 

Figure 57 – Coordinator/router electronic PCB: (a) top side and (b) rear side.  

The router application is quite simple. At first, the device is initialized and then it 

searches for a specific network to join. After associated, it allows other devices to join 

and relays messages on behalf of its children.  

The coordinator application program initially starts a network. Devices can then 

join and send data. When a data packet is received, its payload is framed before sending 

it through the UART serial interface to ensure resynchronization in case one or more 

bytes are lost. The framing procedure includes start and end flags, character count and 

byte stuffing, as shown in Figure 58.  

 

Figure 58 – Data framing structure. 

The start flag, the byte 0xA5, is followed by a byte that represents the size of the 

frame. The frame size includes data bytes, stuffing bytes and the end flag, the byte 

0x5A. If one of the data bytes is equal to the start flag, an ESC flag (0x00) is inserted 

START SIZE DATA DATA ENDDATA START ESC DATA...

DATA BYTES

START FLAG: 0XA5

END FLAG: 0X5A

ESC FLAG: 0x00
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just after it to inform the ZigBee-to-IP gateway application that the previous byte is not 

a start flag. Data bytes include two bytes that identify the sensor that collected the data 

and two bytes that classify the data into four possible categories: ECG, heart rate, 

temperature, and battery level.  

4.3.2 ZigBee-to-IP gateway 

This ZigBee-to-IP gateway application is responsible for processing data received 

from a ZigBee coordinator and sending data to the Application Server software. 

Additionally, it provides an interface where users can monitor the network activity, 

detect packet losses and record data. This application was developed in C# and contains 

seven classes, as shown in Figure 59.  

Whenever data are received, the portDataReceived method from SerialPortManager 

class is invoked. All bytes stored in the SerialPort receive buffer
36

 are read by this 

method and then each read byte is processed by the processByte method. This method 

runs the state machine depicted in Figure 60 to remove framing (START and END 

flags) and stuffing (ESC flag) bytes included by the coordinator application and to 

resynchronize in case a communication is detected.  

The first time the processByte method executes, the state machine assumes the 

initial state INIT_FRAME. If the first byte received is a START flag, the state machine 

goes to the READ_SIZE state. Otherwise, it goes to the SYNC state and remains in this 

state until it receives a START flag.  

                                                 

36
 The SerialPort class belongs to the C# language and represents a serial port resource. The receive 

buffer includes the serial driver's receive buffer as well as internal buffering in the SerialPort object itself. 
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Figure 59 – Class diagram of the ZigBee-to-IP application. 

While in the READ_SIZE state, the state machine goes to the READ_MSG1 state if 

it receives a valid message size. Any valid message should have a message size equal or 

greater than the minimum message size defined by the MIN_SIZE constant. Then, the 

state machine initializes two variables, dataSize and bytesRead. On the other hand, if 

the value of the size byte is invalid, it goes to the SYNC state.  

If a START flag is received while processing message bytes, the state machine 

transitions to the READ_MSG2 state. Then, if an ESC flag is received, the state 

machine recognizes the START flag as a valid data byte, removes the ESC flag and 

goes back to the READ_MSG1 state. Otherwise, it goes to the SYNC state.  

After reading all expected message bytes, the state machine transitions to the 

END_FRAME state.  If the next received byte is an END flag, the message is stored and 

the state machine transitions to its initial state. Otherwise, it transitions to the SYNC 

state.   
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Figure 60 – State diagram of the procedure used to process bytes received by the serial port interface. 

The SyncBuffer class implements a synchronized buffer
37

 to which access is 

controlled by the Available_Slots semaphore. This class provides two access methods: 

insert and remove. The method insert is used by the class SerialPortManager to store a 

valid received message, whereas the method remove is used by the class Domain to 

retrieve a stored message. The critical sections from insert and remove methods are 

mutually exclusive, that is, these sections cannot be executed simultaneously.   

The MainFrame class is defined as a Form class and implements methods that 

provide services and display information to the user. The method connectMenuClick 

uses the method connectSP, from Domain class, to start a serial port connection. Once 

called, this method invokes the method connect, from SerialPortManager class, to start 

the connection. If a serial connection is successfully established, the method connectSP 

creates and starts the thread processThread. This thread runs the method process, also 

from Domain class. This method removes one message at a time from the synchronized 

buffer. Depending on the message data type (ECG, heart rate, temperature or battery 

                                                 

37
 A synchronized buffer is shared by a producer and a consumer thread. The access to this buffer is 

controlled to avoid simultaneous operations.  

[byte != END]
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level) different methods are called to process it: processECG, processHR, processTemp 

or processBatt.  

For each active sensor, the class Domain maintains an object from the class 

SensorList. Objects from this class are binding connected to objects from the class 

SensorData. Information stored by SensorData objects includes, for instance, the 

sequence number of the last message transmitted by a sensor, which can be used to 

count the number of messages lost by each sensor.  

After processing a message, the relevant information is passed by to the sendData 

method, from Domain class, to the monitoring application using an HTTP connection.  

The post method is used and the string included in the request is constructed 

concatenating pre-defined characters (‗&‘ and ‗=‘) and labels with corresponding data 

(previously converted to string format). Data description and values are presented in 

Table 18, whereas the code snippet presented in Figure 61 illustrates the concatenation 

procedure executed by the sendData method.  

Table 18 – Data sent to the Monitoring station application. Data are converted to string format before being 

passed to the method that constructs the data string sent along with the HTTP post request.    

Label Description  Values 

sensorType 

Battery level ―01‖ 

ECG data ―02‖ 

Heart rate ―04‖ 

Temperature ―05‖ 

sensorID Sensor identification code 0x0000 - 0xffff     (2 bytes) 

timestamp 

Time difference, in milliseconds, between the 

local time obtained when the message is received 

by the class SerialPortManager and a reference 

time (1st January 1970, 1AM) 

64-bit word 

data 

Battery level 
0 – 3, where 0 corresponds to 

minimum battery level. 

ECG samples 

50 floating-point values separated 

by ―#‖ characters. ECG samples 

range from 0.6 to 2.4.   

Heart rate value 1 integer value (0 – 240) 

Temperature value 1 floating-point value (34.0 – 42.0) 

seqNr 
Packet sequence number generated by the sensor‘s 

Application layer 

0x0000 - 0xffff (2 bytes) 

 

// Create POST data 

string postData = "sensorType=" + sType; 

postData = postData + "&sensorID=" + sID;  

postData = postData + "&timestamp=" + sTime; 

postData = postData + "&data=" + sData; 

postData = postData + "&seqnr=" + sSNr; 

Figure 61 – Code snippet used to construct the string used to send data along with the post request.   
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The ZigBee-to-IP gateway user interface is shown in Figure 62. The main menu 

contains four items: Serial Port, Data Server, Record and Exit. The Serial Port option 

allows the user to configure the serial port (COM port number, baud rate, number of 

data bits, parity and the number of stop bits), start a connection or disconnect. The Data 

Server option allows the user to set the Internet Protocol (IP) address and port used to 

connect to the remote computer that runs the Application Server application. The 

Record option can be used to define a folder where the application creates log files used 

to record sensor data received from each sensor. Alternatively, it is possible to record 

data sent from one specific sensor. It is also possible to start, interrupt and resume data 

recording. Finally, the option Exit is used to end the application.    

 

Figure 62 – ZigBee-to-IP gateway user interface. 

The top window registers information about sensors and displays the value of the 

vital sign just measured. The information is displayed in tabular format where the 

columns contain the following information (from left to right): sensor identification 

number; the sensor type or information, where four options are defined: ECG, HR (heart 

rate), TEMP (temperature) or BATT (battery voltage); the time the last data packet 

arrived; the data (ECG sample is shown in millivolts, heart rate in beats per minute, 

temperature in Celsius degrees and battery level in volts; in case of ECG data, only the 

value of the first received sample is shown), the number of successfully received data 

packets; and the number of lost packets (presently, this functionality is implemented 

only for ECG packets).   
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On the right side of the user interface, it is shown the number of free slots in the 

synchronized buffer and the number of discarded packets
38

. Additionally, the user 

interface presents the number of frames received with errors. The button Clear is used to 

clear all information presented to the user.  

The bottom window presents log messages that correspond to events and errors. The 

events include the date and time the application was initiated, the date and time the 

serial connection was opened and closed and information regarding data logging 

actions. Errors include failure to open a serial port connection or error during an attempt 

to establish a connection with the remote application.  

4.3.3 User acceptance 

Questionnaires were used to gather information to evaluate the developed 

monitoring system.  Information was collected in two sessions. The first session 

occurred on October 2009, when five patients admitted to Hospital Privado de 

Guimarães wore both the ECG and the temperature sensors. These patients and two 

nurses who accompanied the tests filled questionnaires. Additionally, on September 

2011, eight health care professionals from Hospital Privado de Guimarães, including six 

nurses, one doctor and one biomedical engineer, anonymously answered a new 

questionnaire designed to evaluate the system. The small number of questionnaires is 

insufficient for statistical significance of results, but the goal of this task was merely to 

identify problems that were consensual among patients and care givers. The 

questionnaires are included in Appendix E. 

The graph shown in Figure 63 presents the scaled responses to questions answered 

by patients that evaluated the ECG sensor. All patients recognized that the sensor was 

lightweight, unobtrusive and comfortable. However, one patient was unsure if the 

sensor was portable or small.  Patients also answered yes/no questions. All patients 

stated that the ECG sensor did not drop during the use; that they did not have any of fear 

                                                 

38
 The synchronized buffer can fill if the gateway is unable to send processed data to the Application 

Server software (e.g., in case the connection is broken). If the buffer is full and a new message should be 

stored, the oldest stored message is removed from the buffer and the new one is included. In that case, the 

gateway application increases by one unit the number of discarded messages.  
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to use the sensor; and that they considered the ECG sensor could contribute positively to 

the care provided by the hospital.   

 

Figure 63 – Evaluation of the ECG sensor made by patients. 

The graph shown in Figure 64 presents the scaled responses of health care 

professionals about the ECG sensor. As shown, most of the health care professionals 

agreed that the sensor is easy to put and remove from patients. Also, most agree that it is 

easy to find the correct sensor positioning, clean the sensor and change the battery. 

However, four respondents were unsure if it is easy to switch the sensor on or off, 

whereas three were unsure if it was easily cleaned.   

 

Figure 64 – Evaluation of the ECG sensor made by health care professionals. 
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By analyzing the data gathered, it is possible to conclude that it is important to 

reduce the size of the ECG sensor and ease the way it is switched on and off and 

cleaned. The size of the ECG sensor can be decreased by reducing the size of the 

electronic PCB and by substituting the CR2 lithium battery by a small rechargeable 

battery.  By increasing the number of copper layers and using very small surface mount 

technology (SMT) components (most of the components used have a 1206 case style), it 

is possible to reduce the size of the electronic PCB. The LED hole was appointed by 

one respondent as a difficult area to clean, whereas some respondents have pointed out 

that the on-off switch is not easily accessible. These points should be improved in a new 

sensor version.  

Figure 65 presents the scaled responses to questions answered by patients that 

evaluated the temperature sensor. Despite the overall good impression, it is clear that its 

size should be reduced. Patients who answered to yes/no questions said that the 

temperature sensor did not drop any time during use; that they had no fear to use the 

sensor; and that they considered that it could contribute positively to the care provided 

by the hospital.   

 

Figure 65 – Evaluation of the temperature sensor made by patients. 

Figure 66 presents the result of the evaluation of the temperature sensor made by 

health care professionals. Most of them acknowledged that it is easy to switch on and 

off and that it is easy to put and remove from a patient. However, three respondents 

were unsure if it is easy to change the battery and if it is easy to clean the sensor.    

0

1

2

3

4

I totally 
disagree

I disagree I do not 
agree or 
disagree

I agree I totally 
agree

N
u

m
b

e
r 

o
f 

re
sp

o
sn

se
s

Grade

Temperature sensor - Evaluation by 
patients 

Portable

Small

Lightweight

Unobtrusive

Comfortable



Chapter 4. The developed monitoring system 

111 

 

Figure 66 – Evaluation of the temperature sensor made by health care professionals. 

From the analysis of the questionnaires used to evaluate the temperature sensor, it is 

possible to conclude that its size should be reduced and that it is necessary to improve 

the way it is cleaned and the way the battery is exchanged. As well as for the ECG 

sensor, the size of the temperature sensor‘s PCB could be reduced by using more copper 

layers and smaller components. The sensor case should be smoothed and made water-

resistant to ease the way the sensor is cleaned.  The way the battery is exchanged seems 

simple, though it could not be clearly demonstrated because small parts of the prototype 

sensor box, including the retaining clips of the battery cover, could not be correctly 

manufactured.  

Figure 67 ranks the opinions of eight healthcare professionals about general 

questions. All of the respondents considered the developed system useful. However, one 

respondent considered it is useless out of the ICU and intermediate cardiac unit. 

Additionally, two respondents were not sure of the importance of a remote vital signs 

monitoring in areas such as emergency and other waiting areas. Respondents also 

included general comments about the system.  Several respondents considered it can 

improve in-patients‘ comfort and streamline nurses‘ work. Additionally, two 

respondents considered it would be an ideal solution for palliative care and other 

hospital environments where patients‘ vital signs should be monitored quite often. 
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Figure 67 – System and concept evaluation. 

Figure 68 ranks the functions health care professionals considered that should be 

included in the developed system. The most cited functions are oxygen saturation and 

the blood pressure monitoring. Other missing functions included by respondents are: 

respiration rate and glucose monitoring; issuance of a patient report which lists the 

values of the vital signs monitored; issuance of a trend report which contains all vital 

signs monitored in graphical form; and the ability to simultaneously monitor all in-

patients admitted to one floor.  

 

Figure 68 – Missing functions. 
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Figure 69 list the negative points and the improvement suggestions proposed by the 

health care professionals interviewed. Four respondents suggested reducing the 

dimensions of the sensors. Additional suggestions pointed out by one respondent were: 

including monitoring blood pressure and oxygen saturation; improving the temperature 

sensor exterior design and simplifying the access to historical recordings.   

 

Figure 69 – Negative points and suggestions.  

By analyzing the results of the questionnaires and the respondents‘ verbal opinions, 

it is possible to conclude that patients accepted the sensors well and that health care 

providers considered the developed system useful. Also, most health care providers 

considered that a remote vital signs monitoring can improve the quality of care offered 

to patients and streamline their work. However, it was clear that these professionals 

consider essential monitoring the oxygen saturation and the blood pressure.  

4.4 Summary 

This chapter presents the architecture and the components of HM4All, a remote 

vital signs monitoring system consisting of wireless sensors based on the ZigBee 

protocol and Web-based technologies. The system can be used in hospitals; nursing 

homes; and residential scenarios, provided an Internet connection is available.  

Two distinct sensors were developed: an ECG and an axillary temperature sensor. 

The ECG sensor continuously monitors a modified projection of the bipolar lead I 

vector and determines the heart rate. The distance between electrodes is 20 mm, 
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such as tachycardia, brachycardia, asystole, and background arrhythmia. The 

temperature sensor is based on a medical thermistor probe and has a precision equal to   

0.2  C. It measures the temperature in the axillary area, which is accessible and clinically 

acceptable.  

Networking devices were also developed. These devices are based on high-power 

modules, which offer an extended range. 

The ZigBee-to-IP gateway processes data received from ZigBee coordinators and 

sends processed data, through a remote connection, to the Application Server software. 

A serial communications protocol adopted by the coordinator and the ZigBee-to-IP 

gateway assures that this application can detect serial communication errors and 

resynchronize. Additionally, it employs a synchronized buffer to temporarily store 

messages before they are processed. It ensures that the application can continue 

processing data even in the presence of temporary remote connection problems. Finally, 

the ZigBee-to-IP gateway has a user interface that presents data and sensor information.   

The system acceptance was evaluated using questionnaires answered by patients 

and health care providers from Hospital Privado de Guimarães. Patients have considered 

that the developed sensors can improve the care being provided by the hospital. 

Additionally, most patients considered the sensors lightweight and unobtrusive. All 

health care providers who responded the questionnaires considered the developed 

system useful. However, they have suggested including oxygen saturation and blood 

pressure monitoring. Other suggestions include monitoring the respiration rate, 

providing patient reports and making it easier to access historical information. 
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Chapter 5 

HM4All evaluation based on simulation 
and laboratory tests 

 
Although other authors have previously considered the IEEE 802.15.4 and the 

ZigBee protocols for medical data transport, none have considered a multi-hop topology 

or the amount of traffic typically generated by a single channel electrocardiogram 

(ECG) sensor used for monitoring purposes. For instance, Golmie et al., from the 

National Institute of Standards and Technology (USA), have used simulations to 

evaluate the suitability of the IEEE 802.15.4 standard to health care monitoring [75]. 

The most demanding sensor, a multiple-lead ECG, generates 1500 bytes every 250 ms 

(a much larger amount of data than that generated by the ECG sensor developed in this 

work). It is shown that using just three such devices results in an overload of the 

network capacity. In another work, Liang and Balasingham have also considered 

nonbeacon-enabled star network based on IEEE 802.15.4 protocol [130]. The network 

consists of ten, fifteen or twenty ECG sensors, each of them generating the double of 

the traffic generated by the sensors used in [75]. The highest value of delivery ratio 

(DR) does not reach 90% and is achieved for 10 sensors that transmit full-size packets.  

This chapter describes the results of simulations and laboratory tests used to 

evaluate the performance of the ZigBee network used to transport medical data to the 

ZigBee-to-IP gateway. The first set of simulations evaluates the performance of the 

Carrier Sense Multiple Access (CSMA) mechanism used by the Medium Access 

Control (MAC) layer of the ZigBee protocol when handling the traffic generated by a 

crescent number of ECG sensors in star and tree topologies.  The second simulation 

aimed on estimating the negative effects of hidden-nodes in the performance of ZigBee 

networks. Only ECG sensors were considered because they are, by a great deal, the ones 

that generate the most traffic.  OMNet++ [160], a discrete event simulation environment 
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that can be employed as a network simulation platform, was used to model the IEEE 

802.15.4-2003
39

 MAC layer and evaluate the performance of the protocol applied to the 

system under development. In addition to simulations, experiments were carried out in 

the laboratory in order to confirm the results obtained using simulations. By examining 

packet capture files recorded during the experiments, it was possible to identify the 

occurrence of contention periods that result from different values of devices‘ clock 

drifts and lead to message losses. This issue is described after the presentation of the 

experimental tests results and is followed by the chapter summary.  

5.1 Performance assessment at MAC level  

The objectives of these simulations were threefold: a) to estimate the value of the 

main performance indicators as a function of the number of ECG sensors; b) to assess 

the impact of adding a new hop to a network; and c) to evaluate how data compression 

can improve the performance of the network.  

5.1.1 Simulation configuration and assumptions 

Simulations have considered the star and 2-hop tree topologies. Figure 70 (a) shows 

a star network consisting of three end devices (EDs), N1 – N3, directly associated to the 

personal area network (PAN) coordinator C. A 2-hop tree network is shown in Figure 

70 (b) in which all EDs are associated to the router R. In this case, a message
40

 

generated by an ED cannot be sent directly to the PAN coordinator because an ED can 

only communicate through its parent. Therefore, every message generated by an ED is 

sent to the router, and then retransmitted to the PAN coordinator.   

                                                 

39
 As the original 2003 version of the IEEE 802.15.4 protocol is the basis of the ZigBee protocol, 

only this version is considered in this chapter.    

40
 The terms message and packet are frequently used. A message represents information to be sent 

and a packet is an instance of a message that is transmitted in the channel. Depending on whether 

collisions occur, a node may need to transmit more than one packet to successfully send one message. 
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(a) (b) 

Figure 70 – Star and tree topologies 

The EDs consist of ECG sensors which generate 114-byte messages at a fixed 

period of 250 ms or 500 ms. The first period is used by the developed ECG sensors 

programmed to transmit raw data, whereas the second period is used by ECG sensors 

programmed to compress data at a ratio of 2:1. Acknowledgement packets consist of 11 

bytes sent without using the CSMA-CA mechanism (described in Section 2.2). 

Simulations considered that EDs can either request or not the acknowledgement of 

transmitted messages. If acknowledgements are required, but the acknowledgement 

frame is not received, the ED assumes the message was not received by the destination 

and attempts to retransmit it. On the other hand, if an acknowledgement frame is not 

expected, the ED assumes the transmitted message was correctly received and does not 

perform any retry. The IEEE 802.15.4 standard defines that up to three retries can be 

done before the MAC layer declares that the message transmission has failed [91].  

Before transmitting a message, the MAC layer delays for a random number of 

backoff periods and then requests that the PHY layer performs a CCA. If the channel is 

found busy, the MAC is required to backoff again before requesting another CCA. 

Simulations assumed that the CSMA-CA algorithm retries up to four times before 

declaring a channel access failure. Additionally, the value of the MAC attribute 

macMinBE is assumed to be equal to 3 for all devices (see Table 7, Section 2.2).  

The wireless channel was considered free of fading and interferences. Each ED is 

capable of hearing the transmissions of all others EDs, that is, no hidden-nodes are 

present. EDs start to generate data at a random instant between the beginning of the 

simulation and the transmission period (250 ms or 500 ms). Simulation ends when the 

network coordinator receives 100,000 messages from any ED. 

Table 19 summarizes the simulation parameters and their values.  Table 20 lists the 

operation modes simulated, in which columns represent, respectively, the operation 

mode, the time interval between successive messages generated by EDs, the network 

topology, and if acknowledgements are required or not. 
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Table 19 – Parameters common to all simulations. 

Parameter  Value 

Data packet size (bits) 912 

Acknowledgment frame size (bits) 88 

The maximum number of retries allowed after a transmission failure (aMaxFrameRetries, [91]) 3 

The maximum number of backoffs the CSMA-CA algorithm will attempt before declaring a 

channel access failure (macMaxCSMABackoffs, [91]) 

4 

The minimum value of the backoff exponent in the CSMA-CA algorithm (macMinBE, [91]) 3 

Messages to receive from any node before simulation stops 100,000 

 

Table 20 – Modes considered in the first set of simulations. 

Operation mode T (ms) Topology Ack Tx? 

NoACK_star_ 250ms 250 Star N 

AckTx_star_250ms 250 Star Y 

NoACK_tree_250ms 250 Tree N 

AckTx_tree_250ms 250 Tree Y 

NoACK_star_500ms 500 Star N 

AckTx_star_500ms 500 Star Y 

NoACK_tree_500ms 500 Tree N 

AckTx_tree_500ms 500 Tree Y 

5.1.2 Results 

Packet collision and failed transmission attempt ratios 

Despite the use of the CSMA-CA mechanism, messages may not be delivered due 

to collisions or to failure to access a busy channel.  As the presence of hidden-nodes is 

not considered, collisions are only possible if two or more EDs simultaneously sense the 

channel idle and then transmit their packets.  In this case, all packets are lost. In a star 

network, only EDs contend for the channel. However, in a tree network, both EDs and 

routers compete and, consequently, for the same number of EDs, more collisions are 

expected. The same occurs in terms of failed transmission attempts.  

Figure 71 presents the packet collision ratio for networks that relay the traffic 

generated by EDs that transmit (a) raw ECG data and (b) compressed ECG data. In the 

first case, EDs generate a data packet every 250 ms; whereas, in the second case, the 

interval between consecutive packets generation is equal to 500 ms. In a star topology, 

the number of collisions corresponds to the sum of the packets from EDs to the 

coordinator that collide. For tree topologies, the number of collisions includes a) 

collisions between packets transmitted by EDs to the router, and b) collisions between a 

packet transmitted by an ED to the router and a packet transmitted by the router to the 
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coordinator. Collisions between data packets and acknowledgement frames are not 

included because these events are very rare, even in dense networks. 

  
(a) (b) 

Figure 71 – Collided packet ratio curves for an increasing number of EDs that transmit (a) raw ECG data and 

(b) compressed ECG data. 

In general, when the number of EDs increases, the percentage of packet collisions 

also increases as a result of the crescent number of messages. Also, in general, for the 

same number of EDs, more packets collide in case networks allow the use of 

retransmissions than in the opposite case. This is because the channel gets more 

congested in the first case than it does in the second case. Due to the limited number of 

EDs and hops considered, none of the networks collapsed. However, it can occur in case 

more EDs or hops are added.   

Figure 72 presents the failed transmission attempt ratio curves for EDs that transmit 

(a) raw ECG data and (b) compressed ECG data. Similarly to the packet collision ratio, 

the failure ratio increases when the number of sensors increases. Additionally, failed 

transmission attempts are more frequent in deeper networks and in networks that allow 

the use of retransmissions.   

  
(a) (b) 

Figure 72 – Failed transmission attempt ratio curves for an increasing number of EDs that transmit (a) raw 

ECG data and (b) compressed ECG data. 
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As expected, the curves presented in Figure 71 and Figure 72 show that, for the 

same topology and transmission mode, both the collision and failure ratios are larger for 

networks that relay the traffic generated by EDs that transmit raw ECG data than for 

networks comprised of EDs that transmit compressed ECG data. For instance, for 

networks that contain up to 7 EDs that transmit compressed ECG data, both ratios are 

smaller than 1%. In contrast, to achieve a similar result for networks that relay the 

traffic generated by EDs that transmit raw ECG data, it is necessary to reduce the 

number of EDs to 4.  

Throughput 

The normalized throughput represents the ratio between the amount of traffic 

successfully received by the network coordinator and the network data rate. Figure 73 

(a) and Figure 73 (b) present the normalized throughput for star and tree networks that 

relay the traffic generated by EDs that transmit raw ECG data, whereas Figure 73 (c) 

and Figure 73 (d) present the normalized throughput for star and tree networks that relay 

the traffic generated by EDs that transmit compressed ECG data. The blue straight lines 

in all graphs represent the ideal throughput, which grows linearly as a function of the 

number of EDs.  

For star networks that allow retransmissions, the normalized throughput curves 

present roughly no deviation from the ideal throughput (in fact, both curves are nearly 

superimposed). It happens because, in spite of the collided packets and failed 

transmission attempts, most of the generated messages are transmitted and reach the 

coordinator. Otherwise, for the same topology, if retransmissions are not allowed, the 

deviation increases as the number of EDs increases. For instance, for all topologies, the 

maximum deviation was observed for the maximum number of EDs (30). It is smaller 

than 0.1% and 0.3% for the AckTx_star_500ms and AckTx_star_250ms modes, 

whereas it is equal to 1.53% and 3.44% for the NoAck_star_500ms and 

NoAck_star_250ms modes.  

Tree networks present a much worse performance than star networks. It happens 

because messages transmitted by each ED must be retransmitted by the router, resulting 

in a duplication of the network traffic load relatively to the star network and, 

consequently, in an increased number of collisions and failed transmission attempts.  
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(a)  (b) 

  

(c) (d) 

Figure 73 – Normalized throughput curves for an increasing number of EDs considering: (a) star topology, 

raw ECG data; (b) tree topology, raw ECG data; (c) star topology, compressed ECG data; and (d) tree 

topology, compressed ECG data.  

Delivery ratio 

The DR represents the percentage of successfully delivered messages to the number 

of generated messages. The DR curves for networks that transport raw ECG data are 

shown in Figure 74 (a); whereas the DR curves for networks that transport compressed 

ECG data are shown in Figure 74 (b). It can be observed that if a small number of EDs 

are active, all networks present a high reliability, even if acknowledgment frames are 

not used. However, despite the efforts made by the MAC sublayer to deliver all 

messages, it is possible to observe a decrease in the DR for both star and tree networks 

when the number of EDs increases (notice, though, that for star networks that allow 

retransmissions, the DR does not drop significantly).  This decrease reflects the 

deviations from the ideal throughput shown in the throughput curves, and is ultimately 

caused by collisions and failed transmission attempts.  

Due to the decrease in the traffic load, for the same number of EDs, networks that 

relay the traffic generated by EDs that compress data achieve a larger DR than networks 

that contain EDs that transmit raw data.   
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In general, the use of acknowledgment frames increases the DR. However, when the 

number of EDs is high, as evidenced by tree networks curves, the traffic load increase 

caused by collisions (which trigger retransmission attempts) can cause a decrease in the 

DR relatively to the networks that do not allow retransmissions. It occurs, for instance, 

for tree networks that contain EDs that transmit raw ECG data when the number of EDs 

exceeds 13. Eventually, as shown in the DR and throughput graphs, networks can 

collapse if the number of EDs exceeds a critical value. 

  
(a) (b) 

Figure 74 – DR curves for networks that relay the traffic generated by EDs that transmit (a) raw ECG data 

and (b) compressed ECG data. 

Delay 

The delay a message experiences comprises the access delay, the turnaround time, 

the transmission time, the propagation time (negligible) and the time spent during 

retries. Table 21 shows how to determine the maximum access delay a message can 

experience considering that a variable number of attempts is done until the channel is 

found idle. The MAC attributes macMaxCSMAbackoffs and macMinBE are set to their 

default values, 4 and 3, respectively [91].  For example, if the device must assess the 

channel twice to find it idle and, on both attempts, the MAC layer selects the largest 

possible number of backoff periods, the access delay the message experiences is equal 

to 7.296 ms.  In the limit, a message can experience an access delay of 37.44 ms. 

For the star network topology, the minimum time required to transmit an ECG data 

message is equal to 3.968 ms if acknowledgment frames are not required, or 4.512 ms 

otherwise. The required events, since the message is generated, and their minimum 

durations are listed in Table 22. For the tree topology, the minimum time necessary, 

considering the ED is associated to a router is, approximately, twice as long, as shown 
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in Table 23.  Notice that, on all cases, the backoff periods selected by the devices are 

equal to zero.  

Table 21 – Maximum access delay as a function of the number of transmission attempts done. 

Number of channel access attempts done to find the channel idle Maximum access delay  

1 attempt:   2.368 ms 

 1st try = 2.368 ms   

  Max. random delay (BE = 3, NB = 0) = 7 * 0.32 = 2.24 ms 

  CCA = 0.128 ms  

2 attempts:  7.296 ms 

 1st try = 2.368 ms (channel busy: backoff)  

 2nd try (1st retry) = 4.928 ms  

  Max. random delay (BE = 4, NB = 1) = 15 * 0.32 = 4.80 ms 

  CCA = 0.128 ms  

3 attempts: 17.344 ms 

 1st try = 2.368 ms (channel busy: backoff)  

 2nd try (1st retry) = 4.928 ms (channel busy: backoff) 

 3rd try (2nd retry) = 10.048 ms 

  Max. random delay (BE = 5, NB = 2) = 31 * 0.32 = 9.92 ms 

  CCA = 0.128 ms  

4 attempts: 27.392 ms 

 1st try = 2.368 ms (channel busy: backoff)  

 2nd try (1st retry) = 4.928 ms (channel busy: backoff) 

 3rd try (2nd retry) = 10.048 ms (channel busy: backoff) 

 4th try (3rd retry)  = 10.048 ms  

  Max. random delay (BE = 5, NB = 3) = 31 * 0.32 = 9.92 ms 

  CCA = 0.128 ms  

5 attempts: 37.440 ms 

 1st try = 2.368 ms (channel busy: backoff)  

 2nd try (1st retry)  = 4.928 ms (channel busy: backoff) 

 3rd try (2nd retry) = 10.048 ms (channel busy: backoff) 

 4th try (3rd retry)  = 10.048 ms (channel busy: backoff) 

 5th try (4th retry) = 10.048 ms  

  Max. random delay (BE = 5, NB = 4) = 31 * 0.32 = 9.92 ms 

  CCA  = 0.128 ms  

 

Table 22 – Events and minimum periods of time involved in the transmission of an ECG data message for the 

star topology. 

Event description  Action Time required (ms) 

ED selects a backoff period equal to 0 Backoff 0 (minimum) 

ED senses the channel clear  CCA 0.128 

ED‘s transceiver changes to TX mode Turnaround RX-to-TX 0.192 

ED transmits a data packet to the coordinator TX 3.648 (114 bytes) 

ED‘s transceiver changes to RX mode Turnaround TX-to-RX 0.192 

ED receives the acknowledgment  RX 0.352 (11 bytes) 

  



Chapter 5. HM4All evaluation based on simulation and laboratory tests 

124 

Table 23 – Events and minimum periods of time involved in the transmission of an ECG data message for the 

2-hop tree topology.  

Event description  Action Time required (ms) 

ED selects a backoff period equal to 0 Backoff 0 (minimum) 

ED senses the channel clear  CCA 0.128 

ED‘s transceiver changes to TX mode Turnaround RX-to-TX 0.192 

ED transmits a data packet to the router TX 3.648 (114 bytes) 

ED‘s transceiver changes to RX mode Turnaround TX-to-RX 0.192 

ED receives the acknowledgment frame  RX 0.352 (11 bytes) 

Router‘s transceiver changes to RX mode Turnaround TX-to-RX 0.192 

Router selects a backoff period equal to 0 Backoff 0 (minimum) 

Router senses the channel clear  CCA 0.128 

Router‘s transceiver changes to TX mode Turnaround RX-to-TX 0.192 

Router retransmits the data packet to the coordinator TX 3.648 (114 bytes) 

Router‘s transceiver changes to RX mode Turnaround TX-to-RX 0.192 

Router receives the acknowledgment frame  RX 0.352 (11 bytes) 

 

Table 24 shows how to find the maximum delay an ECG data message can 

experience in a star network considering that the MAC layer fails three times to receive 

the acknowledgment frame and that, for each retry, the CSMA-CA mechanism makes 

up to five attempts to find the channel idle. As shown, in the limit, a message can 

experience a relatively large delay. For a 2-hop tree topology, the maximum delay is, 

approximately, twice the maximum delay experienced in a star network.   

Table 24 – Maximum delay an ECG data message can experience in a star network.  

Maximum delay (worst case) – single hop (aMaxFramesRetries = 3) 

1st attempt, 1st and 2nd retries = [3 * (37.440 + 0.192 + 3.648 + 0.864)] = 126.432 ms 

 5 attempts to access the channel (4 failed attempts have been done before the channel is 

found idle. See Table 21) 
37.440 ms 

 Turnaround time (TX-to-RX) 0.192 ms 

 Time on air (114 bytes) 3.648 ms 

 Wait for the acknowledgment frame (ACK failure reported) 0.864 ms 

3rd retry = 37.44 + 0.192 +3.456 = 41.088 ms 

 5 attempts to access the channel 37.440 ms 

 Turnaround time (TX-to-RX) 0.192 ms 

 Time on air (114 bytes) 3.648 ms 

Maximum delay = 126.432 ms + 41.280 ms = 167.712 ms  

 

The delay also includes the queuing delay, that is, the time a message waits in the 

device‘s buffer. As the IEEE 802.15.4 specification leaves the buffer size definition up 

to the implementation, the transmit buffer size at the MAC layer differs depending on 

the manufacturer and the specific device. For instance, Jennic wireless microcontrollers 

have a transmit buffer at the MAC layer that can hold up to four packets, whereas 

ZigBee routers can queue up to eight packets [112]. In our specific case, as messages 
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are generated at intervals of 250 ms or 500 ms and the maximum delay per hop a 

message can experience is 167.712 ms, the buffer is never used by devices.  

Figure 75 and Figure 76 show the mean and maximum delay curves for networks 

that relay the traffic generated by EDs that transmit raw and compressed ECG data, 

respectively. As shown, when the number of EDs is small, the delay messages 

experience for all modes of operation is approximately constant. However, when the 

number of EDs exceeds a certain limit, the delay increases with the number of nodes. 

As observed, in denser networks, the delay values are high for networks that allow 

retransmissions. As EDs get the opportunity to retransmit messages that collide, the 

channel gets busier. Consequently, EDs backoff more often and the number of collisions 

increases. Although it is possible that a message experience a maximum delay of 

167.712 ms per hop, this is highly unlikely. The maximum delay obtained for a star 

network is 90 ms; whereas, for tree networks, this value is smaller than 190 ms.   

  
(a) (b) 

Figure 75 – Mean and maximum delay for networks that only contain EDs that transmit raw ECG data. 

  
(a) (b) 

Figure 76 – Mean and maximum delay for networks that only contain EDs that transmit compressed ECG 

data.  
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Energy consumption 

The average value of the energy spent by one ED to deliver a message to its parent 

can be obtained as the ratio of the total energy spent by the ED to deliver all messages, 

including packets retransmissions where applicable, to the number of messages sent by 

the ED. Voltage and current consumption values specified for JN5139 ZigBee modules 

[110] were used since the developed sensors are based on these modules. A voltage 

supply of 3 V was considered. When the module‘s microcontroller is switched on, the 

module consumes 9.21 mA, as shown in Figure 77.  During sampling, the ADC is 

switched on, and the current consumption increases to 9.79 mA. When the module 

switches the transceiver on during the backoff process, the current increases to 32 mA 

and, when the module starts transmitting, the current increases to 37 mA.  

 

Figure 77 – JN5139 module current consumption per relevant activity.  

Figure 78 presents the curves of the average energy consumed by an ECG sensor to 

transmit a message, considering only the transceiver consumption. For instance, for a 2-

hop tree network that includes six EDs that transmits compressed ECG data and 

employs acknowledged data messages, the average energy consumed to transmit one 

message is 0.44 mJ. Since during any one second interval the ED transmits two 

messages, the consumption relative to the transceiver is 0.88 mJ. Additionally, the ADC 

is used to make 200 measurements, with each measurement taking 1 ms, which results 

in a consumption of 0.348 mJ. The consumption of the microcontroller is 27.63 mJ, so 

the total energy consumption is equal to 28.858 mJ. If the module is powered by a +3V, 

1200 mAh battery (12960 J), a lifetime of 124 hours of continuous operation can be 

achieved. The calculations are detailed in Table 25. As observed, most of the energy is 

consumed by the microcontroller, which is kept on to process the samples of the ECG 

waveform. 
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(a) (b) 

Figure 78 – Energy consumption per message for networks that contain EDs that transmit (a) raw ECG data 

and (b) compressed ECG data.  

Table 25 – Energy consumption calculation for an ED that transmits compressed ECG data.  

Event description  Period of time Energy consumption (mJ) 

Transceiver consumption 

per message (determined 

by simulation) 

2 messages in 1 s E = 2 * 0.44 mJ = 0.88 mJ 

ADC sampling (200 Hz) 200 * 1 ms E = 3 V * (9.79 – 9.21) mA * (200 * 1 * 0.001) = 0.348 mJ 

Microcontroller on   1 s E = 3 V * 9.21 mA  * 1 s = 27.63 mJ 

Total energy consumption = 0.88 mJ + 0.348 mJ + 27.63 mJ = 28.858 mJ 

5.1.3 Simulation results outline 

Table 26 summarizes the simulation results presented. Two important QoS markers 

are considered: a DR greater than 99.9% and a maximum delay smaller than 250 ms. 

The maximum number of ECG sensors each network can have and still comply with the 

established requirements is shown. For instance, if up to 23 ECG sensors that transmit 

compressed data are active, a star network can achieve a DR better than 99.9%. On the 

other hand, to achieve the same DR for a tree topology, it is necessary to reduce the 

number of ECG sensors to 7. As opposed to the DR, which is severely impacted the 

number of EDs, transmission mode and topology, the delay limit established is not 

reached on any mode. 

Table 26 – Maximum number of ECG sensors to achieve established QoS parameters. 

Operation mode DR > 99.9% Max. delay < 250 ms 

NoACK_star_250ms 4 > 30 

AckTx_star_250ms 20 > 30 

NoACK_tree_250ms 4 > 30 

AckTx_tree_250ms 4 > 30 

NoACK_star_500ms 7 > 30 

AckTx_star_500ms 23 > 30 

NoACK_tree_500ms 7 > 30 

AckTx_tree_500ms 7 > 30 
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It is possible to observe that the use of acknowledged transmissions contributes 

favorably to the performance of the networks, though an increase in the maximum delay 

is experienced and a small decrease in the lifetime of each ED is also expected.  

5.2 Performance assessment with hidden-nodes  

The performance of CSMA-based WSNs can be seriously degraded by collisions 

caused by hidden-nodes. In a CSMA-based network, a node can only transmit if it 

senses the channel idle. As explained on Section 2.2.3, the hidden-node problem occurs 

when the carrier sensing fails and a node starts transmitting when other node has already 

occupied the channel. If both transmissions are within the reach of a receiver, a collision 

occurs.  

No specific mechanism to avoid the hidden-node problem is provided by the IEEE 

802.15.4 protocol, which motivated some authors to consider specific scenarios and 

propose strategies to mitigate it. Three of the most prominent ones involve grouping 

nodes that have bidirectional connectivity between each other [86, 126, 179]. However, 

these strategies require the modification of the original protocol and consider beacon-

enabled networks consisting of static nodes, which is not the scenario considered in this 

work.  

This analysis aims at estimating the degradation of the network performance, 

namely the delivery ratio, in the high load scenario imposed by the transmission of ECG 

data, considering different percentages of hidden-nodes.  The terms node and sensor, 

used throughout this section, are used interchangeably. 

5.2.1 Simulation configuration and assumptions 

The simulations involving hidden-nodes considered an increasing number of EDs 

which send data directly to the coordinator, in a star topology. Five scenarios were 

simulated, where each scenario considered a different percentage of hidden-nodes in the 

network, varying from no hidden-nodes up to 20% of hidden-nodes. The situation 

depicted in Figure 20 (b) was simulated since in the star topology all EDs transmit to the 

coordinator. In that case, if one ED starts to transmit when a node that is hidden from it 

is already transmitting, both packets are lost and no acknowledgements are sent back by 

the network coordinator.  
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The parameters used by this simulation are the same ones used to evaluate the 

performance of star and tree networks, and are presented on Table 19. As before, EDs 

start to generate data at a random instant between the beginning of the simulation and 

the transmission period (250 ms or 500 ms). The wireless channel was considered free 

of fading and interferences. 

5.2.2 Results 

Packet collision and failed transmission attempt ratios 

Collisions can involve data packets and acknowledgment frames.  A collision 

between a data packet and an acknowledgment frame occurs if an ED fails to detect a 

packet transmission and starts transmitting just after the packet is received by the 

network coordinator. These collisions are rare when compared to the collisions between 

packets because acknowledgment frames are relatively small packets that quickly 

follow a received packet.  

Figure 79 shows the collided packet ratio curves for networks that contain EDs that 

transmit (a) raw ECG data and (b) compressed ECG data. When the number of EDs is 

small, the percentage of collided packets is small. However, when the number of EDs 

increases, the collided packet ratio increases for both modes. Also, the collided packet 

ratio increases as the percentage of hidden-nodes increases.  

  
(a) (b) 

Figure 79 – Collided packet ratio curves for networks that contain different percentages of hidden nodes and a 

crescent number of EDs that transmit (a) raw ECG data and (b) compressed ECG data. 

Figure 80 presents the failed transmission attempt ratio curves for networks that 

contain EDs that transmit (a) raw ECG data and (b) compressed ECG data. When the 

number of nodes increases, more collisions and, consequently, more retransmissions 

occur. As a result, the channel gets busy, and the failure ratio increases. Similarly, since 
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collisions are frequent for networks with high percentages of hidden-nodes, the failure 

ratio increases as the percentage of hidden-nodes increases.  

  
(a) (b) 

Figure 80 – Failed transmission attempt ratio curves for networks that contain different percentages of hidden 

nodes and a crescent number of EDs that transmit (a) raw ECG data and (b) compressed ECG data. 

Throughput 

Figure 81 shows the normalized throughput curves as a function of the number of 

EDs, considering a percentage of hidden-nodes ranging from no hidden-nodes up to 

20% of hidden-nodes, for EDs that (a) transmit ECG raw and (b) compressed ECG data. 

The continuous straight lines shown in both graphs represent the ideal throughput. On 

all cases, it is possible to observe a deviation from the ideal throughput when the 

number of EDs increases. Additionally, it observed that as the percentage of hidden-

nodes increases, the deviation between the corresponding throughput curve and the ideal 

throughput curve increases. For instance, if raw data are transmitted, a deviation smaller 

than 1% from the ideal throughput can be achieved if the number of EDs does not 

exceed 34 and no hidden-nodes exist. However, for a percentage of hidden-nodes of 

5%, the number of nodes must be reduced to 25 not to exceed this deviation. In this 

case, when the number of EDs reaches 40, the network starts to collapse due to 

excessive traffic. In the limit, if this percentage is increased to 20%, to achieve a 

deviation smaller than 1% of the ideal throughput, the number of nodes must not exceed 

13.  
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(a) (b) 

Figure 81 – Throughput curves for networks that contain contain different percentages of hidden nodes and a 

crescent number of EDs that transmit (a) raw ECG data and (b) compressed ECG data. 

Delivery ratio 

The DR variation as a function of the number of nodes and the percentage of 

hidden-nodes is shown in Figure 82. Due to the random selection of hidden-node 

combinations, the curves exhibit some fluctuations. Nevertheless, they correctly 

evidence the highly negative effect of hidden-nodes in the network performance. In fact, 

if no hidden-nodes are present, high DR values are achieved with a relatively high 

number of nodes. However, even a small percentage of hidden-nodes can cause a 

considerable increase in the number of collisions and, consequently, seriously affect the 

performance of the network. For instance, consider the transmission of raw ECG data. If 

no hidden-nodes are present, more than 99.9% of the messages generated by up to 20 

EDs are correctly delivered. However, if the percentage of hidden-nodes is increased to 

5% or 10%, the number of EDs must be reduced to 10 or 4, respectively, to achieve the 

same DR. 

  
(a) (b) 

Figure 82 – DR curves for networks that contain different percentages of hidden nodes and a crescent number 

of EDs that transmit (a) raw ECG data and (b) compressed ECG data. 
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5.2.3 Simulation results outline 

Table 27 summarizes the simulation results presented. The first column refers to the 

percentage of hidden-nodes present in the network. The second and third columns 

present the maximum number of ECG sensors a network can contain and still present a 

DR greater than 99.9% for both operation modes. As observed, the hidden-node 

problem causes an increasing number of collisions which seriously affect the network 

throughput and, consequently, the DR. For instance, if no hidden-nodes are present, the 

network can correctly relay the traffic generated by a large number of ECG sensors. 

However, in the presence of hidden-nodes the network performance degrades 

considerably and the number of ECG sensors must be considerably reduced to maintain 

the DR. 

Table 27 – Hidden-node analysis results summary for nonbeacon-enabled ZigBee/IEEE 802.15.4-based star 

networks. 

Percentage of 

hidden-nodes 

(%) 

DR > 99.9% 

Raw data 
Compressed 

data 

0 20 23 

5 10 13 

10 4 11 

15 4 11 

20 4 11 

5.3 Laboratory experiments 

Experimental tests were performed in the laboratory environment to assess the 

performance of star and tree nonbeacon-enabled ZigBee-based WSNs consisting of EDs 

that transmit either raw or compressed ECG data. Additionally, capture files are 

analyzed to understand the causes of message failures and to find possible ways to 

improve the performance.  

5.3.1 Experimental tests configuration 

Experiments were accomplished using the test boards included in the JN5139-

EK010 evaluation kit [109] and developed test boards, all based on the wireless module 

JN5139 [106], from Jennic. All modules run the ZigBee version 1.0 (2004). Figure 83 

shows a developed test board and Figure 84 presents its schematics diagram. This 

design is based on the sensor boards supplied with the evaluation kit and include circuits 
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to program the microcontroller (J2 connector, PROG and RESET buttons), to monitor 

the state of the microcontroller‘s digital input output line DIO16 (LED D1), to sample 

an analog signal using the microcontroller‘s analog to digital controller input ADC1 

(connector J3, pin 3), to power on or off the board (switch SW3), and to monitor its 

power state (connector J3, pins 1 - 2 and LED D2). The boards are powered by two 

AAA batteries (BATT1 and BATT2). 

 

 

(a) (b) 

Figure 83 – Test boards: (a) top side (b) bottom side 

 

Figure 84 – Schematic diagram of the developed test boards. 
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The topologies used to evaluate the performance of the networks are shown in 

Figure 85. The coordinator relied on the sequence number attached to the payload of 

each message transmitted by all EDs to determine the average DR. The average delay 

was estimated by determining the time interval between the instant a message is 

generated by a specific ED and the moment it is received by the network coordinator. 

The specific ED that generated messages used to measure the delay was designated 

Delay Test ED (DTED). One of the DIO pins of the DTED was wire connected to one 

of the DIO pins of the coordinator. This connection is labeled TRIGGER in Figure 85.  

 

Figure 85 – Star and tree topologies used to measure the DR and delay. 

The procedure used to measure the average delay is described as follows. Just 

before the DTED transmits a message, it informs the coordinator by changing the state 

of the DIO pin connected to the coordinator. The application running in the coordinator 

is interrupted and then reads and stores the counting value supplied by an internal 1 ms 

resolution timer. When the message is received, the coordinator reads the counting 

value again and computes the interval between the two events, which results in a good 

approximation of the end-to-end delay experienced by the message transmitted by the 

DTED.  

Packets sent by EDs were addressed to the network coordinator and included a 

payload of 79 bytes, which consisted of 75 data bytes, 2-byte identification number and 

2-byte sequence number added by the Application (APP) layer. All messages used hop-

by-hop acknowledgements. Devices could make up to five attempts to access the 

channel and up to three retries were allowed. All experimental tests were carried out 

using channel 26, to reduce interference from WLANs. Test boards were positioned 

relatively close to each other to avoid the presence of hidden-nodes. It was necessary to 



Chapter 5. HM4All evaluation based on simulation and laboratory tests 

135 

dynamically prevent the network coordinator and some routers (R0 in the three-hop 

topology and R0 and R1 in the four-hop topology) from accepting more than one child 

during network formation to create the desired tree network from devices that were at 

the radio range of each other. Additionally, to preserve the topology, it was necessary to 

prevent routers from establishing direct routes to the network coordinator.  

Up to twelve EDs were used (including the DTED). The DR and delay were 

measured for each configuration (for instance, a 2-hop tree network, 6 EDs transmitting 

raw data) at least three times. For each run, at least 1,000 messages were sent by each 

ED to the network coordinator. 

5.3.2 Results 

Delivery ratio 

Figure 86 shows the lowest DR values measured for all runs and considering 

different topologies and a crescent number of EDs that transmitted (a) raw ECG data or 

(b) compressed ECG data (for each topology and for a specific number of EDS, at least 

three independent test runs were performed). As shown, both star networks were able to 

successfully relay all traffic generated by EDs. However, the traffic increase in tree 

networks impacted their performance. The 4-hop tree networks presented the worst 

performance, followed by the 3-hop tree networks and so on. Additionally, due to the 

lower traffic load, an n-hop network that relayed compressed traffic behaved better than 

an analogous n-hop networks that relayed raw data.  

  
(a) (b) 

Figure 86 – Lowest DR values measured for (a) raw ECG data transmission and (b) compressed ECG data 

transmission.  
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Delay 

Figure 87 present the mean end-to-end delay curves for a variable number of end 

devices that transmit raw and compressed ECG data, respectively. Again, each curve 

represents a different topology. As shown, if the network traffic is not intense, the mean 

delay experienced by packets is almost constant despite the number of EDs. However, 

when the traffic increases, EDs are forced to backup more often and the delay increases. 

This situation was observed for 3-hop and 4-hop tree networks that relayed raw ECG 

traffic and for 4-hop tree networks that relayed compressed ECG data.   

  
(a) (b) 

Figure 87 – Mean delay measured for (a) raw ECG data transmission and (b) ECG compressed ECG data 

transmission.  

Figure 88 show the highest delay values observed for raw and compressed ECG 

data. In the first case, the highest delay observed for a 4-hop tree network was 360 ms. 

If data are transmitted at 250 ms intervals, the total delay experienced by the first data 

sample collected is equal to 610 ms (360 ms + 250 ms). In case of EDs that transmit 

compressed data, the highest delay observed was 181 ms and, as a result, the highest 

delay experienced by a sample is equal to 681 ms (181 ms + 500 ms). The IEEE Std. 

11073-00101-2008 [2] specifies that for real-time waveform transmission, the 

communication delay shall not exceed 3 s (see Table 22). On both cases the delay 

values measured are under acceptable limits, however, it is necessary to add these 
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(a) (b) 

Figure 88 – Highest value of the delay measured for (a) raw ECG data transmission and (b) compressed ECG 

data transmission.  

5.3.3 Laboratory tests outline and discussion 

Some of the DR and delay curves presented are not monotonic, which means that 

DR and delay values do not strictly decrease or increase as the number of EDs 

increases. Additionally, for the same number of EDs, some measured values are lower 

for an n-hop topology than for an (n-1)-hop topology. For example, for networks that 

relay raw data and consists of 6, 7 or 8 EDs, the lower DR measured for a 3-hop tree 

network was higher than the lower DR measured for 2-hop tree networks (see Figure 

86).  These unexpected results happened because in nonbeacon-enabled networks 

transmissions are not synchronized and, consequently, the test outcomes obtained are 

highly dependent on the initial conditions, specifically on the time intervals between 

successive transmission attempts made by EDs. Consequently, in the example just 

mentioned, it is possible and very likely that if additional tests have been done, lower 

DR values would have been measured for 3-hop tree networks.   
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EDs generate messages at approximately regular time intervals (every 250 ms or 500 

ms). During network operation, these intervals change due to clock drifts, which can 

aggravate or improve the overall network performance. It is necessary to significantly 

increase the duration of each experiment to better describe the performance of each 

network. Nevertheless, results presented are important references when considering the 

design of health monitoring systems based on the ZigBee protocol. For instance, it is not 

possible to guarantee an average DR greater than 99% when using a 2-hop tree network 

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12

D
el

ay
 (m

s)

Number of End Devices 

Highest  End-toEnd Delay  - Raw ECG Data 

star tree, 2 hops tree, 3 hops tree, 4 hops

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12

D
el

ay
 (m

s)
 

Number of End Devices

Highest End-toEnd Delay - Compressed ECG Data

star tree, 2 hops tree, 3 hops tree, 4 hops



Chapter 5. HM4All evaluation based on simulation and laboratory tests 

138 

consisting of 6 EDs that transmit raw ECG data. However, it is possible to use this 

topology if ECG sensors transmit compressed data.   

Table 28 summarizes the experimental results. Star networks operating in the 

unslotted CSMA-CA mode can relay at least 99.9% of all the traffic generated by 

twelve ECG sensors on both modes.  The increase of traffic load in multi-hop networks 

imposes a reduction in the number of ECG sensors, but these networks can still reliably 

relay the traffic of a significant number of sensors. Additionally, it was observed that 

messages do not experience large delays even in networks with several hops.   

Table 28 – Experimental results summary. 

Network 

topology 

Max. number of EDs for DR ≥ 99.9% Max. end-to-end delay (ms) 

Raw data Compressed data Raw data Compressed data 

Star 12 12 12 10 

Tree, 2 hops 5 6 96 17 

Tree, 3 hops 5* 5 151 51 

Tree, 4 hops 3 5 360 181 

(*) The result for the 3-hop tree topology exceeds the result for the 2-hop tree topology.  As the first 

topology cannot outperform the second, the smaller number of EDs was considered for both topologies.  

 

Table 29 compare the experimental and simulation DR results obtained for star and 

2-hop tree networks that contain ECG sensors that transmit raw ECG data. The same 

analysis applies to networks that contain sensors that transmit compressed data. Delay 

results are not compared because both simulation and measurement results indicate they 

are acceptable.  

Table 29 – Experimental and simulation results comparison. 

Number of 

EDs 

DR, star (%) DR, 2-hop tree (%) 

Experimental 

(Min. DR) 

Simulation 

(ACK req.) 

Experimental 

(Min. DR) 

Simulation 

(ACK req.) 

1 100 100 100 100 

2 100 100 100 100 

3 100 100 100 100 

4 100 100 100 100 

5 100 100 100 98.3 

6 99.9 100 97.9 98.5 

7 99.9 100 96.1 98.7 

8 100 100 95.5 93.5 

9 99.9 100 97.2 91.1 

10 100 100 95.0 89.4 

11 99.9 100 95.8 80.0 

12 99.9 100 85.4 79.0 
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The DR differences between experimental and simulation results for star networks 

are small. However, for 2-hop tree networks some results disagree. It mainly occurs 

because simulations have considered that the time relationships between messages 

generated by EDs are kept constant. On the other hand, as experiments were repeated 

several times (three times minimum), for each run, devices assumed different time 

relationships. So, while simulations have not considered the occurrence of clock drifts, 

experiments were too brief to capture their effects. Future simulations applied to 

nonbeacon-enabled networks will consider clock drifts in order to account for message 

losses that may occur during contention periods. Additionally, the duration of future 

tests will be significantly extended to capture the effects of clock drifts.    

5.3.4 Clock drift measurement 

The clock drift is often expressed in parts per million (ppm) and gives the number 

of additional or missing oscillations a clock makes in the amount of time needed for one 

million oscillations at the nominal rate. Apart from manufacturing inaccuracies, the 

frequency of oscillators may derive because of aging effects and temperature variations, 

among other causes [118]. Since sensors run on relatively cheap oscillators, large clock 

drifts are expected. If no synchronization method is applied to a WSN, nodes keep no 

time relationship between their clocks.  

In a nonbeacon-enabled WSN, the time differences between transmissions from 

different sensors can vary considerably in a relatively small amount of time due to clock 

drift. The following experience was run to observe the evaluation of the relative time 

differences between transmissions done by sensors. Four test boards based on JN5139 

modules were programmed to generate one message at 500 ms intervals. These modules 

have a maximum clock drift of 40 ppm (that is, their clocks can deviate up to 40 μs in 

1 s) [106]. A nonbeacon-enabled star network was used and packets were captured 

using the SNA network analyzer [40]. Sensors were activated and, periodically, the 

transmission times of successive messages from all sensors were recorded. Collision 

avoidance was disabled during the first iteration of the CSMA-CA algorithm
41

 [91].  

                                                 

41
 That is, the MAC layer macMinBE parameter was set to 0.  
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Representative results are presented in Table 30 where each line contains the 

transmission time of four consecutive messages transmitted by ED1 – ED4 and the 

transmission sequence. The transmission time is partly shown in the first column (hour, 

minutes and seconds, in hh:mm:ss format) and partly in the columns ms/EDX 

(milliseconds). For instance, in the first line, it is shown that ED1 transmitted a message 

at 09:00:00.594. It was followed by a message transmitted by ED2 at 09:00:00.646.  

The sequence of transmissions is shown in the last column. For instance, during the time 

recording performed at 9 am, the message transmitted by ED1 is followed by messages 

transmitted by ED2, ED3 and ED4, respectively.  The last line of Table 30 shows the 

differences, in milliseconds, between the first and the last transmission recorded for 

each ED during the test. The recordings were done using the SNA network analyzer, 

from Daintree [40]. Consequently, all times recorded are relative to the portable 

computer running the SNA. 

Table 30 – Transmission time measurements. 

PC time (hh:mm:ss) 
ms 

Tx sequence 
ED1 ED2 ED3 ED4 

09:00:00 594 646 723 744 ED1 – ED2 – ED3 – ED4 

09:30:00 581 628 706 716 ED1 – ED2 – ED3 – ED4 

10:00:00 527 572 647 654 ED1 – ED2 – ED3 – ED4 

10:30:00 492 534 609 598 ED1 – ED2 – ED4 – ED3 

11:00:00 480 518 592 567 ED1 – ED2 – ED4 – ED3 

11:30:00 464 501 572 536 ED1 – ED2 – ED4 – ED3 

12:00:00 450 484 556 509 ED1 – ED2 – ED4 – ED3 

12:30:00 436 467 536 479 ED1 – ED2 – ED4 – ED3 

13:00:00 390 424 487 417 ED1 – ED4 – ED2 – ED3 

13:30:00 353 381 447 368 ED1 – ED4 – ED2 – ED3 

14:00:00 308 328 395 302 ED4 – ED1 – ED2 – ED3 

Time diff. (ms) 286 318 328 442  

 

The test results presented in Table 30 show that, over time, all sensors slightly delay 

their transmissions due to clock drifts. Additionally, it can be observed that ED4 is the 

one with the greatest drift. As shown in Table 30, since the beginning of the test, the 

time periods between successive transmissions (and, consequently, between messages 

generation) made by ED3 and ED4 are becoming shorter. Figure 89 illustrates what 

happened between 10 am and 10:30 am, where each box represents a message 

transmitted by a sensor. At 10 am, ED3 transmitted a message 7 ms before ED4 made 

its transmission. Between 10 am and 10:30 am, the order of messages changed, that is, 

at 10:30 am, the transmission made by ED4 preceded the transmission made by ED3 by 
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11 ms. During this specific interval, the probability of collisions increases because both 

devices can simultaneously sense the channel idle and transmit packets that are lost at 

the receptor. As shown in Table 30, similar situations occur between 12:30 pm and 

1 pm and between 1:30 pm and 2 pm.  

 

Figure 89 – Relative transmission sequence change due to clock drift. 

A rough estimation of the clock drift of each sensor can be done by considering the 

time differences registered during the test
42

.  For instance, the clock of ED1 has an 

approximate drift of 15.9 ppm (286 ms / (5 h * 60 m * 60 s * 1000 ms)) relative to the 

clock of the personal computer used during the test.  

5.4 Summary 

This chapter presents the results of simulations and laboratory tests used to assess 

the performance of the ZigBee network that will transport data generated by medical 

sensors.  Additionally, it addresses contention issues arising from different sensors‘ 

clock drifts. In view of the results obtained, the following conclusions apply:  

 A nonbeacon-enabled star network can successfully relay the traffic 

generated by up to 12 ECG sensors on both modes with a DR ≥ 99.9%.  

 A 2-hop tree network consisting of up to 6 ECG sensors that transmit 

compressed data can achieve an average DR ≥ 99.9%. For ECG sensors that 

transmit raw ECG data, the number of sensors should be reduced to 5 to 

achieve a DR equal to 99.9%. 

                                                 

42
 An exact estimation of the clock drift should use a set up that eliminates uncertainties. This test did 

not aim at measuring the clock drift, but to observe its effect.  
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 The delay experienced by ECG data messages is within the acceptable limits 

for real-time waveform transmission according to the 

IEEE 11073-00101-2008 standard.  

 As shown for star networks, the presence of hidden-nodes can severely 

affect the performance of IEEE 802.15.4 and ZigBee-based networks. For 

instance, if no hidden-nodes are present, a DR ≥ 99.9% can be achieved 

using up to 23 ECG sensors that transmit compressed data. However, in the 

presence of 5% of hidden-nodes, to maintain the DR, it is necessary to 

reduce the number of ECG sensors to 13. 

 Future simulations should be improved by considering the clock drift values 

typical of low cost devices used to develop sensors based on the 

IEEE 802.15.4 and the ZigBee protocols.  
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Chapter 6 

HM4All evaluation based on field tests 

 
This chapter presents the results of HM4All evaluation based on field tests executed 

in a non-acute in-patient area of Hospital Privado de Guimarães, a private Portuguese 

hospital.  The floor where the tests were executed has three private rooms and nine 

semiprivate rooms (rooms that can be shared by two patients) in which low acuity 

patients and parturients stay for a period of time that, normally, does not exceed five 

days. The system was specified to continuously monitor up to six patients using 

electrocardiogram (ECG) and temperature sensors.  

The following tasks were accomplished:  

 A radio survey to determine the quietest available channels;  

 A physical inspection to determine where fixed devices could be installed; 

 Connectivity tests to define the radio coverage of each network or router; 

 Short range and link quality tests to verify the expected range of devices and 

the quality of the wireless links; and  

 Field tests to evaluate the system performance under different conditions.  

The research team had no control on the environmental conditions during field tests, 

including the use of wireless devices. All tests were conducted under close supervision 

of the hospital staff.    

6.1 Radio survey 

All hospital areas have Wi-Fi connectivity based on the IEEE 802.11g protocol and 

there are no restrictions to the use of wireless devices. Bulky data files from picture 

achieve and communication systems (PACS) and additional traffic related to the 

enterprise resource planning (ERP) system are transferred over the local area network 
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(LAN), whereas the wireless local area network (WLAN) is mainly used by health care 

providers, patients and visitors to access the Internet and legacy applications.  

The WLAN operates on channels 1, 6 and 11, as observed in the screenshot shown 

in Figure 90. This radio activity recording was acquired using the Wi-Spy 2.4x [147], a 

portable spectrum analyzer, and the software Chanalyzer 3.3 for the Wi-Spy 2.4x [146]. 

The software presents three views, namely, the spectral, the topographic and the planar 

views.  

The spectral view registers the activity on the 2.4 GHz spectrum over a time 

window where blue represents the minimum level of activity detected (-110.0 dBm) and 

red the maximum level (-38.0 dBm). As shown, at the time the screenshot was acquired, 

most of the activity was detected on channels 1 and 6. The topographic view is shown 

just below the spectral view. It presents channel signatures, which are drawn for each 

active channel based on the amplitudes of the signals detected during the survey period. 

The last one, the planar view, shows the maximum, the average and current amplitude 

of the signal detected as a function of the frequency. At the time the screenshot was 

acquired, channel 1 was the one with most traffic. The average activity observed, which 

is represented by small green spikes, was low. No other important source of interference 

was detected during the survey though some interference from Bluetooth devices is 

expected. 

 

Figure 90 – 2.4 GHz spectrum activity 
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Table 31 shows the Wi-Fi activity reported by the spectrum analyzer during the 

survey. Three columns are shown: the Wi-Fi channel number, the channel grade and the 

average peak power detected. The channel grade is a measurement of how quiet the 

channel is. Numbers and letters are used to classify a channel. The highest values 

correspond to the quieter channels. An ‗A‘ grade channel is quieter than an ‗A-‘ grade 

channel, which, in turn, is quieter than a ‗B+‘ grade channel and so on. As observed, 

channels 1 and 2 were the busiest, whereas channels 6 and 11 were relatively quiet.   

Table 31 – Wi-Fi report 

Channel Grade Avg. Peak (dBm) 

1 89 (B+) -40.37 

2 90 (B+) -36.46 

3 93 (A-) -35.2 

4 95 (A) -35.57 

5 96 (A) -35.14 

6 95 (A) -35.53 

7 96 (A) -35.39 

8 96 (A) -34.61 

9 97 (A) -34.71 

10 97 (A) -35.85 

11 97 (A) -38.99 

12 97 (A) -44.14 

13 98 (A) -50.42 

14 99 (A) -61.53 

 

Table 32 shows the survey results for the ZigBee channels. As expected, ZigBee 

channels 11 to 14, which overlap Wi-Fi channel 1 (see Figure 15), are the busiest 

channels. All others were relatively quiet, including channels 15, 20, 25 and 26, which 

do not overlap with the Wi-Fi channels used in the hospital. 

Table 32 – ZigBee report 

Channel Grade Avg. Peak (dBm) 

11 91 (A-) -49.28 

12 84 (B) -37.00 

13 85 (B) -35.22 

14 93 (A-) -35.00 

15 98 (A) -34.56 

16 96 (A) -35.28 

17 94 (A) -36.56 

18 94 (A) -34.39 

19 97 (A) -37.72 

20 98 (A) -33.67 

21 97 (A) -34.11 

22 95 (A) -34.11 

23 95 (A) -40.39 

24 98 (A) -45.22 

25 99 (A) -56.94 

26 99 (A) -61.89 
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6.2 Physical inspection 

The floor plan of the in-patient area in which the system was commissioned is 

shown in Figure 91. Rooms R211 to R213 are private rooms; whereas rooms R201 to 

R209 are semiprivate rooms. The floor also has a treatment room (TREAT. ROOM), a 

nursery, a consultation room (CONS. ROOM) and staff exclusive areas, which include a 

pharmacy (PH), a reception (REC), a nurses‘ room and a support area. Blue rectangles 

refer to Wi-Fi access points (APs). 

 

Figure 91 – Floor plan of the in-patient area on the second floor. 

As ZigBee coordinators and routers are mains powered, it was necessary to locate 

available mains plugs or places where new plugs could be installed. Patient rooms had 

no spare mains plugs and it was not possible to install new ones. However, all other 

rooms had spare plugs. The hall had no spare mains plugs, but it was possible to add 

new ones over each emergency light, as indicated by small yellow numbered squares. 

These plugs are positioned at height of, approximately, 2.2 m from the ground level. As 

shown in Figure 91, spots 1 and 4 are close to a Wi-Fi AP and, consequently, should be 

avoided
43

 [104]. 

The monitoring station should be positioned where nurses are constantly present so 

that alarms can be heard. Possible places are the reception, the nurse‘s room, and the 

pharmacy.  

                                                 

43
 Jennic recommends a physical separation from a WLAN AP of 8 m for co-channel operation to 

achieve a PER of 1%. For a particularly saturated WLAN link, 9-10 m may be necessary.  

Floor dimensions:

 5 m0  20 m

A
P 1

2

3 AP 4 5 6



Chapter 6. HM4All evaluation based on field tests 

147 

6.3 Connectivity tests 

Initially, it was necessary to program the sensors‘ transmit power based on the 

desired range. It was necessary that coordinators or routers positioned at one of the 

spots defined on physical survey could communicate with sensors. In this case, the 

range should be at least 13 m (the approximate distance between spot 1, on Figure 91, 

and room R211). The necessary transmit power was estimated using the path loss 

equation adapted to a fading channel [57]: 

                                                         (16) 

where:  

P0 is the transmit power, including the antenna gain, in dBm; 

Pr is the receiver sensitivity, in dBm; 

Fm is the fade margin, in dB; 

n is the path loss exponent;  

f is the signal frequency in MHz; and  

d is the range in meters. 

The fade margin of 6 dB to 10 dB is typical for indoor applications, whereas the 

path loss exponent typically ranges from 2.7 to 4.3 for an office building, without line of 

site [57].   

For Pr = -96.5 dBm, n = 3.5 (average value for the path loss exponent for an office 

building), f = 2480 MHz (channel 26 central frequency), d = 13 m, and assuming 

Fm = 10 dB, then P0 = -1.3 dBm. If sensors‘ transmit power is programmed to 0 dBm, an 

approximate range of 14.1 m is expected.  

 Several tests were performed to verify the wireless connectivity range between 

sensors based on the JN5139-M00 module [106], which is used on sensors. Two boards 

based on these modules were used: one was programmed to continuously send messages 

(transmitter device), whereas the other (receiver device) was programmed to blink a 

LED every time a message was correctly received. These visual clues were used to 

classify the wireless links. A link was considered satisfactory if messages sent from the 

transmitter device placed on area A were correctly received at any point of area B (the 

transmitter was fixed, whereas the receiver was mobile). Alternatively, the link was 

considered intermittent if messages could only be correctly received on same parts of 

area B. Finally, the link was considered unsatisfactory if messages could not be received 
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at any part of area B. As these tests could disturb patients, they were performed in an 

unoccupied in-patient area similar to the floor in which the prototype system was 

commissioned.  

The results are shown in Figure 92 where lines and columns labels refer to patient 

room numbers and other areas accessible to patients, namely, the consultation room (C), 

the nursery (N) and the treatment room (T). Tests started with the transmitter device 

placed at room 201 and the receiver device being moved from one room to the next one. 

The results that correspond to this setting are shown in the first line where dark blue 

cells symbolize satisfactory links (201-202, 201-203, 201-204), medium blue cells 

represent intermittent links (201-C, 201-205 and 201-206) and light blue cells stand for 

unsatisfactory links. Finally, diagonal cells are filled in black. 

TX/RX 201 202 203 C 204 205 206 N T 207 208 209 211 212 213 

201 A               

202                

203                

C                

204     B           

205                

206                

N                

T                

207          C      

208                

209                

211             D   

212                

213                

Figure 92 – Link survey involving all rooms accessible to patients. 

As shown, considering the link categories proposed, most links are symmetrical, 

that is, for a node pair (A, B) the link quality from A to B is similar to the link quality 

from B to A. The only exceptions were 202-206 and 205-T.  

Figure 92 shows four sub-matrixes, A to D, which represent geographic clusters. 

Under the propagation conditions encountered during the tests, most of the devices 

belonging to these clusters can hear each other‘s transmissions. These geographic 

clusters can be used to define the necessary wireless infrastructure. In case of star 

networks being considered, four networks operating in different channels should be 
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employed. If 2-hop tree networks are considered, two networks operating in two 

different channels should be used. In this case, it is not possible to avoid the presence of 

hidden-nodes.  

6.4 Range and link quality tests 

Figure 93 shows the results of tests used to verify the range and quality of links 

between a network coordinator or router and a sensor. The results of additional tests are 

included in Appendix F. 

Two devices were used, a coordinator and an end device (ED). The first one was 

based on the JN5139-M02 high power module [110], which has a receiver sensitivity of 

-100 dBm.  The ED was based on the JN5139-M00 module and was programmed for a 

transmit power output of 0 dBm. From Equation (16), an expected range of 17.8 m is 

obtained for a high fade margin of 10 dB. Alternatively, for a low fade margin of 6 dB, 

an expected range of 24 m results. The application software executed by the coordinator 

was developed to average the Link Quality Indicator (LQI) values attached to a certain 

number of sequentially received messages
44

. In case a message was not correctly 

received, the software assigned it an LQI value equal to zero. The ED was programmed 

to sequentially send messages at regular time intervals.  

The icons shown in Table 33 were used to represent the network devices. Initially, 

the coordinator was positioned on one of the spots chosen during the physical 

inspection, as indicated in each setting shown in Figure 93. Then, the ED was carried to 

all rooms accessible to patients where average LQI values were measured. Each red 

number in Figure 93 represents an average LQI value measured, whereas its position in 

the picture match the spot at which the ED was positioned during the measurement. The 

areas marked in yellow represent sites where the average LQI value measured was equal 

to or less than 30 (according to Jennic, a LQI value equal or less than 30 is associated to 

a low quality link [107, 111]) or the reception was intermittent (INT). The areas marked 

in red correspond to sites where devices were unable to communicate.    

                                                 

44
 According to the IEEE 802.15.4-2003 specification, the LQI measures the received energy level 

and/or SNR for each received packet. In Jennic‘s implementation, the LQI value is proportional to the 

number of gain stages required to properly receive a message. 
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 (a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Figure 93 – Survey used to select adequate spots, as presented on (a) through (f), to position coordinators and 

routers. 
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Table 33 – Icons used to represent network devices. 

 

 

Based on the test results obtained thus far, the following conclusions apply: 

 The measured range involving a JN-5139M02 high-power module with a 

receiver sensitivity of -100 dBm and a regular JN5139-M00 module with a 

transmit power of 0 dBm is, approximately, 24 m if one or both devices are 

inside a room, or 40 m if both devices are placed at the corridor 

(line-of-sight). 

 If star networks are used to relay the traffic generated by the devices 

included on geographic cluster A, a coordinator can be positioned at spot 2 

(spot positions are shown in Figure 91) or at the reception. Spot 1 is an 

alternative. The pharmacy should be avoided.   

 The traffic generated by devices included in the geographic clusters B, C 

and D can be relayed by star networks whose coordinators are positioned at 

spots 3, 5 and 6, respectively. The consultation room is not an adequate 

place to position a star coordinator that connects the devices belonging to 

geographic cluster D.   

 Two 2-hop tree networks can be used to relay the traffic generated by 

sensors from geographic clusters (A, B) and (C, D). The first network can 

consist of a coordinator placed at spot 5 and a router placed at spot 6. 

Alternatively, the coordinator can be placed inside the consultation room 

and two routers at spots 5 and 6. The second network can consist of a 

coordinator placed at spot 1 or 2, whereas the router can be positioned at 

spot 3. Instead, the coordinator can be placed nearby the monitoring station, 

at the reception, whereas two routers can be positioned at spots 1 or 2 and 3. 

Collisions due to the presence of hidden-nodes are anticipated.  

Network device  Icon 

PAN coordinator 
 

Router 
 

ED (sensor) 
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6.5 Experimental tests with no hidden-nodes 

Long-term field tests performed in the hospital environment can provide a good 

estimative of the system performance because they can account for a) the effects of 

clock-drift in nonbeacon-enabled networks; b) the propagation effects caused by 

intermittent movement of people (including patients, health care providers, visitors and 

maintenance personnel), equipment and accessories (for instance, portable vital sign 

monitors, hospital chairs and meal carts); and c) the consequences of different levels of 

interference caused by other wireless networks that share the spectrum (mainly, the 

Wireless Local Area Network (WLAN)).  

This section presents the results of six tests executed to estimate the performance of 

different networks in the absence of hidden-nodes and under different levels of WLAN 

interference.  

6.5.1 Tests configuration 

Three networks were evaluated: a ZigBee-based nonbeacon-enabled star network, a 

ZigBee-based nonbeacon-enabled 2-hop tree network and an IEEE 802.15.4-based 

beacon-enabled star network with guaranteed time slot (GTS) assigned to EDs.   

The transmit power output used by EDs was increased to +2 dB (maximum transmit 

power for JN5139-M00 modules) in order to improve the quality of the links. Though it 

represents an increase in the transmission current of 14% (from 37 mA to 42 mA), the 

corresponding lifetime decrease is not expressive because, for ECG sensors, the 

transceiver consumption represents just 3.2% of the total energy consumption of the 

wireless module.  

EDs were programmed to generate the traffic of ECG sensors that transmit 

compressed data. However, instead of just transmitting a sequence of dummy bytes, 

EDs include the following information into messages‘ payload: a) the cumulative 

number of messages lost because an acknowledge frame was not received after all 

possible retries; b) the cumulative number of failed transmission attempts (nonbeacon-

enabled networks only); c) LQI values associated to received beacons (beacon-enabled 

networks only) and acknowledgment frames; and d) the cumulative number of 

synchronization losses (beacon-enabled networks only). In multi-hop networks, before 
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relaying an incoming message, routers add to its payload the LQI value attached to it. 

As well, for each received data message, the coordinator adds the LQI value attached to 

it to the meaningful bytes it extracts from the payload and sends this data, through the 

serial interface, to the test program. Raw ECG transmission is not considered because 

the waveform resulting from compressed data is adequate for non-acute patient 

monitoring
45

. 

Based on the received data, the test program continuously computes the 

(cumulative) average DR for each sensor. Results are computed every two-seconds and 

updated whenever a new message is received. Also, at 2-second intervals, the test 

program computes the proportion of received messages considering a window holding 

the status (received or dropped) of the last twenty messages expected for each sensor. 

The results can range from 100% to 0, in 5% intervals (100%, 95%, 90% and so on). 

This indicator, which was designated DR Window, is used to analyze the performance 

of the network along small time intervals. Additionally, the test program continuously 

records all performance indicators computed (the average DR, the DR Window and 

performance indicators computed by devices), displays, in real-time, part of the data, 

and allows the user to configure the serial interface. The user interface of the test 

program is shown in Figure 94. Three slightly different versions of the test program 

were developed, one corresponding to each evaluated network.   

 

Figure 94 – Test routine user interface. 

                                                 

  
45

 This analysis was done by Otílio O. Rodrigues, MD, from Hospital Privado de Guimarães. 
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All tests used six test boards programmed as EDs. Hop-by-hop acknowledged 

transmission was used. Each ED was able to make up to three retransmissions. EDs 

operating in unslotted mode could backoff up to five times.   

Since the hospital‘s WLAN is active on channels 1, 6 and 11, tests were performed 

on ZigBee channels 26 and 22. Channel 26 is free from WLAN interference, whereas 

channel 22 overlaps with Wi-Fi channel 11. By choosing these channels, it was possible 

to investigate the impact of the WLAN interference on the IEEE 802.15.4 and ZigBee 

networks.  

The setting presented in Figure 95 (a) was used to perform tests using star networks. 

The coordinator was positioned on the hallway, near the entrance of the consultation 

room; whereas EDs were placed at rooms R201-R204. Figure 95 (b) presents the 

settings used for 2-hop tree topologies. The coordinator was placed on the consultation 

room whereas routers were placed on spots 5 and 6 (see Figure 91). No hidden-nodes 

were present on both settings. In addition to networking devices, the settings included 

the test application running on a PC connected to the coordinator; the SNA protocol 

analyzer running on a netbook; and the 2400E network adapter, which was  placed 

outside the room, in the corridor, as shown in Figure 96.  

  
(a) (b) 

Figure 95 – Settings used for tests using the (a) star topology with no hidden-nodes; and (b) 2-hop tree 

topology with no hidden-nodes. 

ENTRANCE ENTRANCE
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Figure 96 – The test setting inside the consultation room (the 2400E, connected to the notebook, was placed 

outside the room, in the corridor). 

The ocupation of patient rooms varied. However, most of the time, rooms R201 and 

R204 were occupied by two patients, whereas rooms R202 and R203 were vacant. 

During the tests, EDs were positioned near the head of patients‘ beds, as shown in 

Figure 97.  All tests were supervised by the hospital staff. Patients involved were aware 

of the objectives of the tests and agreeded to have the test boads inside their rooms. No 

restriction was imposed regarding the use of any wireless equipment. Tests were run 

without interruptions.  

 

Figure 97 – An ED on the head of a patient bed in room R202. The position of the device is assigned by the 

arrow.  
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6.5.2 Results  

Table 34 lists the characteristics and the most relevant results. The first column lists 

the network configuration and the wireless channel used; whereas the following 

columns presents the test duration in hours, the time of the day each test started, and the 

resulting average DR. As shown, star networks that operated on channel 26 were able to 

deliver almost all generated messages, irrespective of the use of guaranteed time slots or 

the carrier sense multiple access (CSMA) mechanism. As anticipated by simulation and 

laboratory tests, the performance achieved by 2-hop networks is worse than the 

performance achieved by star networks. However, contrary to our expectations, the 2-

hop tree network that operated on channel 22 achieved an average DR slightly higher 

than the one achieved by the 2-hop tree network that operated on channel 26. This is 

because the impact of WLAN interference on the DR is less than the effect of 

contention between devices, which is aggravated for multi-hop networks due to the 

relative increase in the traffic load.  

Table 34 – Field test results. No hidden-nodes are present. 

Protocol and other characteristics Duration(h) Starting time Avg. DR (%) 

IEEE 802.15.4, beacon-enabled, star 

network, channel 26 (GTS) 
4.1 Morning 100 

IEEE 802.15.4, beacon-enabled star 

network, channel 22 (GTS) 
4.1 Morning 99.91 

ZigBee, nonbeacon-enabled star 

network,  channel 26 
5.1 Afternoon 100 

ZigBee, nonbeacon-enabled star 

network,  channel 22  
2.3 Afternoon 99.82 

ZigBee, nonbeacon-enabled 2-hop, tree 

network,  channel 26 
16.7 Morning 98.56 

ZigBee, nonbeacon-enabled 2-hop, tree 

network,  channel 22 
4.5 Afternoon 98.98 

 

Table 35 details the DR results for star networks with no hidden-nodes. For each 

test and each ED, A – F, it is included: a) the number of generated messages; b) the 

average of the LQI values associated to received beacons (only for IEEE 802.15.4-based 

networks); c) the average of the LQI values associated to data messages; d)  the number 

of messages that were not acknowledged; e) the number of failed transmission attempts; 

f) the number of lost messages; g) the number of duplicated messages; and h) the 

average DR. The quantities in a), b), d) and e) were continuously measured by EDs and 

the results were included in the payload of transmitted messages. The quantity in c) was 
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measured by the coordinator. The remaining results were continuously determined by 

the test routine based on data transferred by the coordinator.  

Table 35 – Detailed results for field tests using star networks in the absence of hidden-nodes. 

End Device A B C D E F 

IEEE 802.15.4, beacon-enabled, star network, channel 26 (GTS)  

APP gen msg count  29,290 29,290 29,289 29,290 29,290 29,289 

Beacon average LQI value  109 173 108 116 126 153 

Data packet average LQI value 110 173 108 115 126 152 

Missing ACK count  5 0 2 0 0 0 

Failed transmission attempts  0 0 0 0 0 0 

Lost msg count 5 0 2 0 0 0 

Duplicated message count 0 0 0 0 0 0 

Average DR (%) 99.98 100 99.99 100 100 100 

IEEE 802.15.4, beacon-enabled star network, channel 22 (GTS)  

APP gen msg count  29,820 29,821 29,820 29,820 29,820 29,821 

Beacon average LQI value 120 146 129 114 118 111 

Data packet average LQI value 120 145 130 115 119 111 

Missing ACK count  22 0 2 48 36 57 

Failed transmission attempts  0 0 0 0 0 0 

Lost msg count 22 0 2 48 36 57 

Duplicated msg count  0 0 0 0 0 0 

Average DR (%) 99.93 100 99.99 99.84 99.88 99.81 

ZigBee, nonbeacon-enabled star network, channel 26  

APP gen msg count  36,484 36,484 36,478 36,403 36,480 36,479 

Data packet average LQI value 150 155 122 138 139 85 

Missing ACK count  0 0 1 0 0 0 

Failed transmission attempts  0 0 0 0 0 0 

Lost msg count 0 0 1 0 0 0 

Duplicated msg count 0 0 0 0 0 0 

Average DR (%) 100 100 100 100 100 100 

ZigBee, nonbeacon-enabled star network, channel 22  

APP gen msg count  16,846 16,830 16,851 16,835 16,772 16,857 

Data packet average LQI value 119 121 120 114 115 126 

Missing ACK count  18 34 8 25 92 3 

Failed transmission attempts  0 0 1 0 0 0 

Lost msg count 18 34 9 25 92 3 

Duplicated msg count 0 0 0 1 2 0 

Average DR (%) 99.89 99.80 99.95 99.851 99.45 99.98 

 

In the absence of hidden-nodes, all EDs associated to star networks achieved an 

excellent DR. This performance was, in part, guaranteed by the average good quality of 

links (only average values are presented, though all LQI values measured by devices 

have been recorded during tests).  

As shown in Table 35, the number of channel access failures was small if compared 

to the number of messages that were not acknowledged. These results show that only 
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exceptionally EDs were unable to assess the channel idle. Consequently, most of the 

message losses occurred due to collisions or other effects the wireless channel is subject 

to, such as interference and momentary shadowing.  

The number of duplicated messages is increased by the coordinator whenever it 

identifies a duplicate of a message previously received. As shown in Table 35, the 

number of duplicated messages and, consequently, the number of lost acknowledgment 

frames is very small.   

Although networks subjected to WLAN interference have achieved a high average 

DR, the interference present on channel 22 forced EDs to retransmit several messages, 

as illustrated by the packet timelines shown in Figure 98. Both timelines were generated 

by the SNA protocol analyzer [40] and list packets sniffed from the IEEE 802.15.4 star 

networks tested using a 2400E network adapter [38].  

 

(a) 

 

(b) 

Figure 98 – Packets captured for the IEEE 802.15.4-based networks with GTSs allocated to all EDs on (a) 

channel 26 and (b) channel 22. 

Figure 98 (a) shows beacons and data packets sent by the EDs during the test on 

channel 26
46

. Two red arrows point to beacon packets transmitted by the PAN 

coordinator at the beginning of two consecutive superframes. Following the first red 

arrow, a blue arrow points to a data packet transmitted by ED 0x0006. Five data packets 

                                                 

46
 Acknowledgment frames are shown too. However, since they are only presented on the first line, 

Channel Summary, they are hard to visualize. 
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transmitted by EDs 0x0005 – 0x0001 follow it. During this superframe and the 

followings, no retransmission is observed.  

Figure 98 (b) shows packets sniffed during the test on channel 22. The red arrows 

point to beacon frames, whereas yellow arrows indicate packet retransmissions made by 

EDs. These retransmissions occurred because requested acknowledgment frames were 

not transmitted by the coordinator following data frames transmitted by the EDs; 

whereas acknowledgement frames were not sent because the coordinator was unable to 

correctly decode the data packets
47

. Therefore, it is possible to conclude that the noise 

level increase on channel 22, in relation to channel 26, caused packet losses that, as a 

result, forced EDs to make retransmissions. Despite the allocation of GTSs, if 

acknowledged messages have not been employed, all marked packets would have been 

lost. Consequently, in noisy environments, the use of acknowledge messages greatly 

contributes to increase the DR, even if a TDMA schema is used.  

Table 36 presents the results for 2-hop networks on channels 26 and 22. For each 

ED, A – F, it includes a) the number of generated messages; b) the average value of the 

LQI attached to data messages transmitted by each ED (measured by routers); c) the 

average value of the LQI attached to data messages retransmitted by routers (measured 

by the coordinator); d)  the number of messages not acknowledged to each ED; e) the 

number of messages not transmitted by the ED because the clear channel access (CCA) 

failed; f) the number of expected messages not received  by the coordinator; g) the 

number of retransmitted messages received by the coordinator; and h) the average DR. 

The average DR and, consequently, the proportion of dropped messages, are calculated 

by the test routine based on information transferred by the coordinator.  

                                                 

47
 The network adapter could correctly decode the sniffed packets because its receive sensitivity is 

higher than the coordinator‘s. Moreover, its antenna has a higher gain.   
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Table 36– Detailed results for long tests using 2-hop networks in the absence of hidden-nodes. 

End Device A B C D E F 

ZigBee, nonbeacon-enabled 2-hop network,  channel 26, no HNs  

APP gen msg count  120,096 119,081 115,801 118,170 120,098 119,444 

ED to router link: avg. LQI value 144 127 154 140 140 122 

Router to coordinator link: avg. 

LQI value 

226 200 224 200 224 200 

Missing ACK count 367 508 4,581 928 342 415 

Failed transmission attempts  4 12 52 27 14 14 

Lost msg count 378 1,393 4,672 2,303 375 1,030 

Duplicated msg count 1 38 57 811 28 607 

Average DR (%) 99.69 98.83 95.97 98.05 99.69 99.14 

ZigBee, nonbeacon-enabled 2-hop network,  channel 22, no HNs  

APP gen msg count  32,283 32,224 32,752 31,784 32,754 32,749 

ED to router link: avg. LQI value 123 124 128 117 127 138 

Router to coordinator link: avg. 

LQI value 

191 189 210 190 212 210 

Missing ACK count  493 601 5 1,004 2 2 

Failed transmission attempts  16 10 0 27 0 0 

Lost msg count 468 527 4 967 2 2 

Duplicated msg count 104 104 0 165 0 0 

Average DR (%) 98.57 98.37 100 97.06 99.99 99.99 

 

As shown, both networks could deliver most messages generated by EDs. The worst 

individual DR result occurred for ED C, which lost 4.04% of all generated messages 

during the test using channel 26.  In general, the quality of the links between devices 

was good. 

In case of 2-hop networks, the test routine records only the total number of lost 

messages (Lost msg count) and the number of messages lost by EDs (Missing ACK 

count and CCA failure count). So, the number of messages lost by routers must be 

estimated. For instance, during the test on channel 26, ED A reported that 367 messages 

were not acknowledged. Additionally, it reported that 4 additional messages were lost 

because it could not access the channel. On the other hand, the coordinator reported that 

378 messages were not received. In this case, except for a very small number of 

unacknowledged messages correctly received by the router, 7 messages generated by 

routers were lost.   

Similarly to which occurred for star networks, most messages generated by EDs 

were lost due to collisions and interference, since the number of failed transmission 

attempts is relatively small. The number of duplicated messages was small too. 
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However, for EDs E and F, on channel 26, the proportion of duplicated messages to 

generated messages was equal to 0.69% and 0.51%, respectively.   

LQI values provided by Jennic‘s implementation refer to the reliability of the 

channel, though it is not based on the bit error rate (BER) of the current packet, but on 

the number of gain stages necessary to correctly decode it. Although LQI values can be 

used to estimate the link quality, these values cannot be used to predict how a link will 

perform in the near future because short duration propagation effects, such as 

interference and fast fading, affect the link quality. For the purpose of illustrating this 

fact, refer to Figure 99. This data was recorded for the beacon-enabled star network 

based on the IEEE 802.15.4 protocol operating on channel 22. The horizontal axes of all 

graphs represent the sequence number of messages sent by an ED and correctly received 

by the coordinator. A message is generated every 500 ms. The curves shown in the first 

and second graphs represent the LQI values attached to received beacons and to 

successfully delivered messages, respectively
48

. The third graph displays the cumulative 

number of lost messages. After successfully receiving 83 messages, 3 messages are lost. 

Despite the measured LQI values that remain constant, the number of lost messages 

continues to grow.  

 

Figure 99 – LQI values and lost data packets count for an ED operating in the IEEE 802.15.4 star network on 

channel 22. 

During all tests, the average DR was sequentially calculated at 2-second intervals. 

Also, a 10-second running window was used to continuously determine the DR 

achieved by the network and by individual EDs.  In the first case, each DR value was 

                                                 

48
 Note that the Physical layer attaches an LQI values to each received packet. Consequently, there is 

no LQI information associated to a lost packet. 
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computed by dividing the total number of received packets by the number of expected 

packets since the beginning of the test.  Consequently, if a few packets are lost in the 

beginning of the test, the DR values that follow these events are noticeably affected. 

However, as the test progresses, the loss of a few packets have little influence in 

subsequent DR values.  On the other hand, the window-averaged results allow unbiased 

estimation of the network performance throughout the test.  

Figure 100 (a) presents the cumulative distribution functions (CDFs) of the average 

DR for the networks that operated on channel 26, whereas Figure 100 (b) presents the 

CDFs of the window-averaged DR for the same networks. As shown, for all networks, 

the lower averaged DR values are higher than the lower window-averaged DR values. 

This inconsistency occurs because, in the first case, the effect of packet losses on the 

DR estimation varies with time, what is incorrect. For instance, while the CDF obtained 

from averaged DR values shows that the lower DR verified for the ZigBee-based 2-hop 

tree network was equal to 0.938, the CDF obtained from window-averaged DR values 

correctly shows that this value was equal to 0.783 (94 received messages out of 120 

generated messages)
49

.   

  

(a) (b) 

Figure 100 – CDFs of DR for networks that operated on channel 26 in the absence of hidden-nodes: (a) 

obtained from the continuous values of the average DR and (b) obtained from the average of the DR over a 10-

second sliding window.  

                                                 

49
 The range of possible DR values is a function of the window size. The window-averaged DR is 

obtained as the ratio of correctly received messages and expected messages. As a 10-second window was 

used, the number of expected messages is equal to 120 (one ED generates 2 messages per second; 6 EDs 

generate 120 messages every 10 seconds). For instance, if one message out of 120 messages is lost, the 

resulting window-averaged DR is equal to 0.992.  
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Figure 101 presents the CDFs of the window-averaged DR for the networks that 

operated on channel 22. Except for the 2-hop tree network, the CDFs indicate that the 

performance on channel 22 is worse than on channel 26. However, considering the 

particular hospital scenario in which tests were performed and the test conditions (good 

quality links and the use of acknowledged transmissions), even in presence of WLAN 

interference, the majority of the generated messages was delivered. The CDFs of the 

average DR are not presented for these networks because, as discussed, the average DR 

values just capture the overall performance of the network up to a certain point in time.  

 

Figure 101 – CDFs of average DR over a 10-second sliding window for networks that operated on channel 22 

in the absence of hidden-nodes.  

Figure 102 presents the windowed DR computed for each ED (ED A to ED F) 

associated to the 2-hop tree network that operated on channel 26. The curves for the star 

networks are not presented because these networks only lost a small number of 

messages. Two graphs are used to present the data because the test was quite long. As 

shown, from time to time, two or more devices are unable to successfully deliver all 

generated messages. During the first minutes of test, no packet was lost. However, after, 

approximately, half an hour, the window-averaged DR values for ED C and ED D 

decreased for approximately half an hour before they started to increase again. A similar 

situation occurred for other pairs of EDs. As illustrated, despite the mechanisms 

employed by the Medium Access Control (MAC) layer, a contention-based network is 

subjected to collisions, which reduce its reliability.   
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Figure 102 – DR per 2-second calculated using a 20-message length window for the 2-hop tree network on 

channel 26 with no hidden-nodes.   

6.5.3 Router deadlock 

In multi-hop topologies, apart from EDs, routers also compete to access the wireless 

channel, which aggravates the contention problem. Figure 103 shows events observed 

experimentally concerning the exchange of messages generated by two end devices, 

ED1 and ED2. Both EDs are associated to a router, and this device is directly associated 

to the network coordinator. ED1 transmits a message just after ED2 receives an 

acknowledgement frame from the router. In this situation, the router can neither receive 

the message transmitted by ED1, because it has already initiated the CSMA-CA channel 

access mechanism, nor relay the received message, because it senses the channel busy. 
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ED1 extinguishes all possible retries and, consequently, its message is lost. Finally, as 

shown, the router relays the message transmitted by ED2. However, in other occasions, 

the router can drop the packet previously received if it reaches the maximum number of 

channel access.  

 

Figure 103 – ED1 accesses the channel just after a message from ED2 to the router is acknowledged. Unable to 

receive this message, the router just backs off while ED1 makes all possible retries.  

The packet timeline shown in Figure 104 exemplifies the contention problem just 

described. Every 500 ms, each ED (network addresses 0x1430 – 0x1433) associated to a 

router (network address 0x0001) generated one message that was addressed to the 

network coordinator (network address 0x0000). The MAC parameter macMinBE of all 

devices was set to 3.  

 

Figure 104 – Packet timeline captured during a test using a 2-hop ZigBee-based tree network.  

1 2 3 4
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The packet timeline shown in Figure 104 started with packet 1. Detailed 

information about these packets is also presented in the packet list shown in Figure 105, 

which also starts with packet 1. This packet was sent by ED 0x1431 and acknowledged 

by the router. The acknowledgment frame is followed by a failed transmission 

(packet 2) and two retries made by ED 0x1433. Then, the router finds the channel idle 

and relays packet 1. A few milliseconds after the acknowledgement frame sent by the 

coordinator, end device 0x1433 makes a successful retry and receives an 

acknowledgement frame transmitted by the router. In this case, despite having made 

three retries after a failed transmission, end device 0x1433 was able to deliver its 

message. 

 

Figure 105 – Packet list that includes the packets 1 and 2 shown in Figure 104. 

The packet list shown in Figure 106 starts with packet 3, which was also sent by ED 

0x1431 to the router. The acknowledgment frame sent by the router is followed by one 

failed transmission (packet 4) and three retries (the maximum number of retries allowed 

by the protocol) made by ED 0x1433. After these packets, the router successfully relays 

packet 3. In this case, ED 0x1433 failed to deliver its message.  

 

Figure 106 – Packet list that includes the packets 3 and 4 shown in Figure 104. 

This situation could have been avoided if the router could process incoming packets 

during the backoff period. However, it is not possible for Jennic‘s and other stack 

implementations. Such behavior is not an infringement of the IEEE 802.15.4 standard, 
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which specifies that, during the channel assessment part of the CSMA-CA mechanism, 

the device shall discard any received frames. However, it does not specify what 

procedure must be followed during backoff. In consequence, some manufacturers opted 

for ignoring incoming packets for the duration of backoff. 

Alternatively, if the router had more priority to access the channel than the EDs, the 

contention problem described would occur less frequently. This can be achieved by 

setting different values of the MAC layer parameter macMinBE for each type of device. 

In order to confirm it, simulation was used to estimate the DR values considering a 2-

hop tree network consisting of a variable number of EDs associated to a single router, as 

shown in Figure 107.  

 

Figure 107 – 2-hop tree network. 

Different values of the time interval between messages generated by end devices (0, 

1 ms or 2 ms) were used in each simulation set. These small values were chosen to 

cause contention between devices. In addition, two different values of the router‘s 

parameter macMinBE (3 or 0) and a crescent number of end devices were used. All 

simulation runs considered that the parameter macMinBE was equal to 3 for all end 

devices. Each end device generated one ECG data message every 500 ms. Correctly 

received messages were acknowledged by the receiver device. Each run ended when the 

coordinator correctly received 100,000 messages. 

Table 37 contains the results obtained where each Delta time column specifies the 

time difference between successive packets generated by all EDs. For instance, for 

Delta time = 0, all EDs generate a packet every t = n * 500 (ms) where n is the 

simulation cycle number. Alternatively, if Delta time = 1 ms and the number of EDs is 

equal to 2, ED0 generates a packet every t = n * 500 (ms), whereas ED1 generates a 

packet every t = (n * 500) + 1 (ms). Each MinBE column (MinBE = 0 and MinBE = 3) 

shows the value of the resulting DR. Every Delta DR column shows the relative 

improvement in the DR when the router macMinBE parameter is altered from 3 to 0.  
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Table 37 – DR results obtained from simulation.  

Number 

of EDs 

Delta time = 0 Delta time = 1 ms Delta time = 2 ms 

macMinBE Delta 

DR 

macMinBE Delta 

DR 

macMinBE Delta 

DR 3 0 3 0 3 0 

2 0.684 0.828 21% 0.745 0.902 21% 0.791 0.963 22% 

3 0.544 0.710 31% 0.597 0.807 35% 0.572 0.797 39% 

4 0.437 0.598 37% 0.465 0.691 49% 0.461 0.671 46% 

5 0.352 0.503 43% 0.362 0.570 58% 0.376 0.589 57% 

6 0.290 0.430 48% 0.295 0.492 67% 0.322 0.529 64% 

 

As shown in Table 37, DR values increase significantly when the router‘s 

macMinBE parameter is set to 0. For instance, if two EDs generate messages at the 

same time and the router‘s parameter macMinBE is set to 3, the resulting DR value is 

equal to 0.684. However, if the router‘s macMinBE parameter is set to 0, the DR value 

increases to 0.828, an improvement of 21%. On the other hand, if the interval between 

messages generated by two devices is very small, this strategy alone is not enough to 

prevent packets from being lost.     

6.5.4 Discussion 

By observing the running windowed DR graphs shown in Figure 102, it is clear that 

test results are influenced by initial conditions, that is, by time relations between 

transmitters. Therefore, a reliable estimation of the expected performance of a network 

can only be obtained if sufficiently long tests are performed. Moreover, the global 

average value of the DR is not sufficient to estimate the performance of network. The 

performance of individual devices over time should be considered. Consequently, the 

measurement of window-averaged DR values decisively contributed to the estimation of 

the performance of the wireless networks evaluated.  

6.6 Experimental tests with hidden-nodes 

Up to this point, tests have not included the presence of hidden-nodes. As already 

discussed, the ZigBee protocol, which uses a CSMA mechanism, contains no provisions 

against hidden-node situations [118].  
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6.6.1 Tests configuration 

The setting shown in Figure 108 was used to evaluate the perform of a nonbeacon-

enabled ZigBee star networks in presence of hidden-nodes. The coordinator was placed 

just outside the consultation room, whereas room R201 and the treatment room each 

received three EDs. EDs placed on one room could not communicate or hear the others 

EDs‘ transmissions. Two tests were performed. The first one employed EDs that 

transmitted the same amount of traffic generated by ECG sensors; whereas the second 

one employed EDs that transmitted only heart rate traffic.  

 

Figure 108 – Setting used to evaluate the performance of a ZigBee-based, nonbeacon-enabled star network 

with 50% of hidden-nodes. 

6.6.2 Results for ECG traffic 

During the first test, the devices were active for almost 8 h, but data recording was 

interrupted for approximately 50 minutes. As presented on Table 38, data were recorded 

for around 2.8 h and 4.2 h, respectively, during the first and second parts of the first test. 

In the first part of the test, the network performance was significantly worse than on 

previous tests. However, during the second part of the tests, the network achieved a high 

DR of 99.955%.  

Table 38 – Average DR values for the test using a ZigBee-based, nonbeacon-enabled star network, on channel 

26, 50% of hidden-nodes, ECG waveform transmission. 

Part Duration(h) Starting time Avg. DR (%) 

1 2.8 Morning 83.960 

2 4.2 Afternoon 99.955 

 

Table 39 presents detailed test results. As shown, during the first part of the test, 

some devices lost a large proportion of the generated packets. For instance, ED A and 

ENTRANCE

 EDs on the 

treatment room: 

B, D, and E

 EDs on room 

R201: A, C and F



Chapter 6. HM4All evaluation based on field tests 

170 

ED E lost 34.50% and 27.97% of the generated packets, respectively.  As shown, in 

average, the quality of the links was adequate (the smaller average LQI value 

corresponds to the link between ED B and the coordinator and was measured during the 

second part of the test). As already observed during the previous tests, the number of 

channel access failures is much smaller than the number of not acknowledged messages.  

Table 39 – Detailed results for the test using a ZigBee-based nonbeacon-enabled star network on channel 26 

with 50% of hidden-nodes. ECG data transmission. 

End Device A B C D E F 

ZigBee, nonbeacon-enabled star network,  channel 26, 50% hidden-nodes, ECG waveform transmission, 

part 1 

APP gen msg count  19,646 19,909 19,656 19,903 19,898 19,662 

Data packet average LQI value 112 89 81 113 108 112 

Missing ACK count  6,773 368 42 3,088 5,566 3,193 

Failed transmission attempts  0 7 0 0 1 0 

Lost msg count 6,775 375 42 3,087 5,566 3,193 

Retx msg count 42 12 0 17 23 8 

DR (%) 65.50 98.12 99.79 84.49 72.03 83.76 

ZigBee, nonbeacon-enabled star network,  channel 26, 50% hidden-nodes, ECG waveform transmission, 

part 2 

APP gen msg count  29,969 29,895 29,964 29,966 29,970 29,966 

Data packet average LQI value 84 78 90 120 126 108 

Missing ACK count  0 75 6 0 0 0 

Failed transmission attempts 0 0 0 0 0 0 

Lost msg count 0 75 6 0 0 0 

Retx msg count 0 0 0 0 0 0 

DR (%) 100 99.75 99.98 100 100 100 

 

The CDFs of the window-averaged DR for the two parts of the test are presented in 

Figure 109. These distribution functions reflect the performance of the network, which 

during the first part of the test have achieved an average DR as low as 0.383%.  

 

Figure 109 – CDFs of the windowed DR for the test using a ZigBee-based, nonbeacon-enabled star network, on 

channel 26, 50% of hidden-nodes. ECG traffic transmission (parts 1 and 2). 
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The windowed DR curves for individual EDs are presented in Figure 110.  As 

shown, the curves for ED A and ED E have similar shapes, that is, when the 

window-averaged DR for ED A drops, the same effect is observed for the ED E. Also, 

when ED A stops loosing packets, the same occurs to ED E. The same occurs to ED D 

and ED F and, just before the end of the first part of the test, to ED A and ED B. As 

shown in Figure 108, all these ED pairs are hidden-node pairs. For instance, ED A, 

which was placed at room R201, is hidden form ED E, which was placed at the 

treatment room. 

 

 

Figure 110 – DR per 2-second calculated using a 20-message length window for a ZigBee, nonbeacon-enabled, 

star network on channel 26 with 50% hidden-nodes. ECG traffic transmission. 
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6.6.3 Results for heart rate traffic  

A final test was employed six EDs that generated only heart rate data. The payload 

of data packets was reduced from 79 bytes to 8 bytes
50

, whereas the period between 

messages was reduced from 500 ms to 3 s. The test lasted 10.2 h and an average DR of 

99.90% was achieved. As shown on Table 40, which presents detailed results for 

individual EDs, the worst performance was computed for ED A, which achieved a DR 

equal to 99.71%. The average value of the LQI was relatively low for some EDs, which 

did not contribute to decrease the DR. No packet was lost due to failed transmission 

attempts and just few acknowledgement packets were lost.  

Table 40 – Detailed results for the test using a ZigBee-based nonbeacon-enabled star network on channel 26 

with 50% of hidden-nodes. Heart rate data transmission.  

End Device A B C D E F 

ZigBee, nonbeacon-enabled star network,  channel 26, 50% hidden-nodes, HR tx 

APP gen msg count  12,219 12,219 12,219 12,219 12,219 12,219 

Data packet average LQI value 66 77 53 120 43 78 

Missing ACK count  40 1 21 12 28 12 

Failed transmission attempts 0 0 0 0 0 0 

Lost msg count 35 0 0 12 26 0 

Retx msg count 12 0 0 0 5 3 

Average DR (%) 99.71 100 100 99.90 99.79 100 

 

As EDs generate data messages every 3 s, the length of the window used to 

continuously determine the window-averaged DR was increased to 12 s, which includes 

120 expected messages. The CDF of the window-averaged DR is presented in Figure 

112. As shown, the lowest DR value observed was equal to 0.892%, but most of the DR 

values measured were equal to 100%. 

 

Figure 111 – CDFs of windowed DR for the test using a ZigBee-based, nonbeacon-enabled star network, on 

channel 26, 50% of hidden-nodes. Heart rate data transmission.  

                                                 

50
 It was not possible to further reduce the payload size because test data are transmitted by EDs.    
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Figure 112 presents graphs that show the values of the window-averaged DR 

computed for each ED. In two occasions, two pairs of devices, devices A and E, and 

devices A and D, which were hidden from each other, lost packets while contending to 

access the wireless channel. Comparing these graphs with the graphs shown in Figure 

110, which represent the window-averaged DR measured for EDs that transmitted ECG 

data, it is possible to verify that, during contention periods, EDs that transmitted only 

heart rate data lost much fewer messages than EDs that transmitted ECG data. It occurs 

because much less traffic is generated by a heart rate sensor than by an ECG sensor 

(packets generated by heart rate sensors are smaller and less frequent than packets 

generated by ECG sensors), which decreases the probability of collisions between 

packets generated by heart rate sensors.  

 

Figure 112 – DR per 2-second calculated using a 20-message length window for a ZigBee, nonbeacon-enabled, 

star network on channel 26 with 50% hidden-nodes. Heart rate traffic transmission. 
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6.7 Comparing the communication performance of 

HM4ALL with a commercial vital signs monitoring 

system  

The results shown in Table 41 were extracted from a study that evaluated the 

performance of FlexNet 802.11a wireless infrastructure. This study was supplied by 

Welch Allyn, which uses this infrastructure to remotely monitor patients using portable 

monitors and bedside monitors.  

Hospitals B, D and H monitored patients using Micropaq wireless portable monitors 

(see Figure 10). The monitored areas range from 60 m
2
 to 8,082 m

2 
and included one or 

more departments. According to the authors of the study, the systems operated in 

environments free of interference from other wireless devices.  The results were 

collected during a 7-day period. The average dropout was determined considering only 

communication loss intervals that do not exceed 120 seconds (longer periods were 

considered disconnections). As shown, the average dropout values are quite low, not 

exceeding 0.090%.  

Table 41 – FlexNet (Welch Allyn) communication performance [210].   

Hospital B D H 

Departments Dialysis Cardiac Care 
Radiology, Echo, 

Telemetry 

Total coverage area (m2) 60 1,115 8,082 

Number of Micropaq units 7 22 18 

Seconds of dropout per 24 hours 

of patient monitoring 
12 48 78 

Average dropout time (%) 0.014 0.055 0.090 

 

Unfortunately, it is not possible to directly compare the performance of the 

communication networks used by the prototype system and Welch Allyn‘s systems 

mainly because: a) the tests have followed different metrics (the prototype system tests 

considered the proportion of lost messages, whereas Welch Allyn‘s study considered the 

amount of time the system have been unable to communicate); b) the prototype system 

test did not consider patient mobility; c) the performance results for Welch Allyn‘s 
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systems were obtained in an environment free of WLAN interference
51

; and d) a 

variable number of monitoring units have been employed during Welch Allyn‘s tests, 

whereas the prototype system was tested using a fixed number of sensors. However, it is 

possible to infer that there are resemblances between the operation scenario in hospital 

B and the scenario used to evaluate the prototype system performance because roughly 

the same number of devices has been used and the mobility of patients in a dialysis unit 

is quite restricted. Therefore, it is possible to conclude that the performance observed 

for the IEEE 802.15.4 network on channel 26 was similar to the performance reported in 

Welch Allyn‘s study, which is an encouraging result.  In the absence of hidden-nodes, 

the nonbeacon-enabled ZigBee-based network also performed as well as Welch Allyn‘s 

system.  

6.8 Critical factors on the performance of ZigBee 

networks  

This section presents issues that involve sending data in multi-hop ZigBee networks 

and the support to mobile sensors. Additionally, it discusses the use of end-to-end 

acknowledged messages to send high significance messages, such as alerts, and an 

alternative monitoring scenario which do not involve the transmission of ECG 

waveform data. Finally, it introduces a proprietary protocol recently proposed that is an 

adequate alternative to the IEEE 802.15.4 protocol for star networks comprised of a 

large number of devices that relay real-time traffic.  

6.8.1 Mobility issues 

The prototype system is based on spatially distributed networks. ZigBee 

coordinators and routers are static, whereas sensors, which join the network as EDs, are 

mobile.  So, it is possible that a sensor moves away from its parent and communication 

is interrupted. Two scenarios are possible: a) inter-PAN mobility and b) intra-PAN 

mobility. In the first case, the sensor moves away from the coverage area provided by 

the network; whereas, in the second case, it moves away from its parent, but it is 

                                                 

51
 FlexNet 802.11a infrastructure is based on the IEEE 802.11a protocol, which operates in the 

5 GHz band. The WLANs installed on hospitals B, D and H operated in the 2.4 GHz band.  
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possible to find another parent among the devices that comprise the network. The 

second case is possible if the sensor operates on a multi-hop network. 

In a star network where messages should be acknowledged, a sensor may conclude 

it should search for another network if the MAC layer reports the occurrence of one or 

more consecutive failed transmission attempts. Another strategy involves additionally 

monitoring LQI values attached to acknowledgment frames as an indicator of channel 

impairment. If the sensor concludes it has moved away from its parent, it scans all 

channels or a subset of channels and, if another network is found, it tries to associate. If 

successful, the whole process takes about two seconds
52

.  

In a ZigBee multi-hop network, it is possible that the sensor moves away from its 

parent but enters an area covered by another potential parent operating in the same 

network. In this scenario, the sensor may decide to perform the orphaned device 

realignment procedure [91]. If successful, the device associates to another parent in less 

than one second
53

. If it is unable to find another parent to associate with, it will be 

forced to search for another network.  

During the reassociation process, the data flow is interrupted. The data flow from 

the sensor is resumed as soon as the device reassociates. However, the data flow in the 

other direction can only be resumed when a new route to the device is established.  

During the reassociation process, an ECG sensor would lose one or more packets. On 

the other hand, sensors that use a lower data transfer rate (such as the temperature 

sensor) would delay the transmission of data, but would not experience data loss.  

As mentioned, in case a device is unable to communicate with its parent and must 

associate to another network, the data flow is interrupted for about two seconds. In the 

in-patient floor considered, this situation may occur if, for instance, a patient takes a 

                                                 

52
 The time necessary to find another network and associate to it was measured using test boards 

based on the JN5139 wireless module. A timer was programmed to start counting just before the 

beginning of the scanning process and to stop counting just after the conclusion of the association 

process. According to these experiments, to perform these actions it is required between 1,912 and 1,919 

ms.  

53
 The period of time required to associate with another parent in the same network was measured 

using test boards based on the JN5139 wireless module. It was observed using the SNA protocol analyzer 

and was equal to 762 ms.  
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walk through the corridor or is seeing by a physician in the consultation room (see 

Figure 93). In several settings involving non-acute patients (these are the scenarios 

envisioned for health monitoring systems based on ZigBee and IEEE 802.15.4 

protocols), this delay can be tolerated.  

6.8.2 Use of end-to-end acknowledged messages 

If, on one side, it is important to correctly deliver all generated data messages, it is 

essential to deliver data messages in case an unsafe condition is detected (for instance, 

fever or tachycardia).  

In a star network in which the coordinator works as a sink, it is sufficient that a 

sensor employs acknowledgements to be sure that a message has correctly reached the 

destination. However, sensors that operate on multi-hop ZigBee-based networks may 

opt for end-to-end acknowledgments instead of hop-by-hop acknowledgements. In case 

end-to-end level acknowledgments are employed, in addition to hop-by-hop 

acknowledgments transmitted by the next-hop destination, acknowledgment frames are 

transmitted from the final destination, through the transmission path, to the device that 

originated the message.  

The use of end-to-end acknowledgments increases the reliability of transactions 

above that available from the Network (NWK) layer alone because the application layer 

can request that lower layers make another attempt if a message is not confirmed by the 

final destination [220]. On the other hand, there is a significant cost increase in terms of 

network bandwidth, latency and power consumption. Therefore, the use of end-to-end 

acknowledgments should be restricted not to overload the network. 

6.8.3 An option to IEEE 802.15.4: the eLPTR protocol  

The results have revealed that the use of distributed star networks based on beacon-

enabled mode of the IEEE 802.15.4 protocol is promising when used to concurrently 

monitor several patients using ECG sensors. However, the GTS scheme defined by this 

protocol can support a maximum of only seven devices. The recently proposed eLPTR 

(enhanced Low Power Real Time) protocol [2] cleverly addresses this problem.  

The eLPTR protocol is a proprietary protocol that supports real-time traffic in star 

WSNs [2]. The protocol improves bandwidth utilization and increases the number of 
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supported devices through the division of the superframe into a much larger number of 

slots (500, in the current implementation) than the IEEE 802.15.4 (16 slots). This 

feature increases significantly the granularity of slot allocation in the CFP, avoiding the 

waste of bandwidth and, consequently, contributing to increase the throughput 

efficiency and the number of supported nodes. 

Another interesting feature is the provision of a larger set of options for the 

superframe period, to closely match the packet generation interval imposed by the 

application. This feature is achieved by using 8 bits to encode the superframe period, 

allowing 256 options in comparison with the 15 options provided by the GTS scheme 

implemented by the IEEE 802.15.4 protocol [2]. 

6.9 Summary 

The prototype system was commissioned in an in-patient area of a hospital covered 

by an IEEE 802.11b/g WLAN operating on channels 1, 6 and 11. The commissioning 

was followed by two sets of field tests, which employed six test boards programmed to 

associate as EDs. The first set of tests included no hidden-nodes. The test boards were 

programmed to generate the traffic of ECG sensors, tests was executed on channels 26 

and 22, and employed three different network configurations: a) IEEE 802.15.4-based, 

star topology, beacon-enabled, GTSs assigned to EDs; b) ZigBee-based, nonbeacon-

enabled, star topology; and c) ZigBee-based, non-beacon-enabled, 2-hop tree topology. 

All star networks achieved an average DR greater than 99.9%, except the nonbeacon-

enabled ZigBee network that operated on the channel 22, which achieved an average 

DR of 99.8%. The 2-hop tree networks achieved an average DR of 98.6% for channel 

26 and 99.0% for channel 22.  

However, despite the promising average reliability, when the DR was computed for 

each ED that operated on a 2-hop network using a 10-second length running window, 

periods of contention between EDs were observed. During these periods, EDs could not 

maintain a high DR. These contention periods occurred because, from time to time, the 

instants of the transmission attempts made by two EDs tend to overlap as an effect of 

the different clock drifts of sensors.  

Apart from collisions, during contention periods, devices that operate on multi-hop 

networks are subjected to router deadlock conditions. As the IEEE 802.15.4 protocol 
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does not specify if during backoff a device should interrupt or not the CSMA-CA 

mechanism to receive incoming packets, some vendors opt for neglecting these packets. 

Under this condition, which was termed router deadlock, multi-hop networks may 

experience contention issues that result in several messages being lost. If it is not 

possible to modify the MAC implementation, it was proposed reducing to zero the value 

of the MAC parameter macMinBE to minimize message losses. Simulations that 

corroborate with this assumption were presented. 

Test results have also shown that the LQI values attached to received messages 

cannot be used to predict the quality of the link in the near future (for instance, after 500 

ms from the reception of the last acknowledge frame) because the quality of the wireless 

link may change rapidly due to fast fading or interference from other devices that share 

the wireless channel. Finally, the analysis of the capture files recorded showed that, 

under WLAN interference, the number of retransmissions increased significantly. 

However, under the conditions experienced during the tests, the overall performance 

degradation of the networks was small. 

The second set of tests was performed to measure the performance of networks 

under the presence of hidden-nodes. The test configuration consisted in a nonbeacon-

enabled ZigBee star network comprised of six EDs where three of them were hidden 

from the other three. The first test used EDs programmed to generate the traffic of ECG 

sensors. During the first part of the test, the network achieved an average DR equal to 

84.0%, what confirmed that the presence of hidden-nodes can severely compromise the 

performance of ZigBee-based networks. However, the second test used EDs 

programmed to send only heart rate data. By reducing the amount of traffic generated 

by EDs, the network achieved an average DR of 99.9%. This result shows that 

nonbeacon-enabled ZigBee networks are a valid option to the transport of vital signs in 

scenarios where wireless sensors generate low traffic.  

The communication performance of HM4All was compared with the FlexNet 

802.11a wireless infrastructure used by Welch Allyn to remotely monitor patients. For a 

restrict number of ECG sensors, IEEE 802.15.4 networks that allocate GTSs to sensors 

perform as well as Welch Allyn‘s infrastructure. In the absence of hidden-nodes or if 

only low amounts of traffic are generated by sensors, ZigBee-based nonbeacon-enabled 

networks also perform as well as Welch Allyn‘s infrastructure.  



Chapter 6. HM4All evaluation based on field tests 

180 

The support to mobile sensors and the use of end-to-end acknowledged messages is 

briefly discussed. After an end device recognizes it lost communication with its parent, 

it takes, approximately, 800 ms to reassociate to a new parent, in the same network. In 

case the end device must search for a new parent in another network, the process that 

involves nearby networks discovering and new parent association requires, 

approximately, 2 s. These data flow interruptions may be acceptable to some 

applications that involve remote monitoring of non-acute patients. The use of 

end-to-end acknowledged messages improves reliability, but increases the traffic load. 

However, the use of end-to-end acknowledged messages should be considered when 

transmitting high significance messages, such as alarms.  

In the particular scenario in which the prototype system was commissioned, the best 

way to monitor ECG signals from up to six patients is to use four spatially distributed 

IEEE 802.15.4-based star networks that allocate one GTS to each sensor. On the other 

hand, if instead of transmitting ECG waveform samples and heart rate values, sensors 

transmitted only heart rate and other infrequent vital signs, much less traffic would be 

generated and a single multi-hop network would be able to relay all traffic generated by 

many sensors. This is a convenient solution to residential settings, nursing homes and 

several hospital environments, such as recovery, post-operative and other in-patient 

areas.  
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Chapter 7 

Conclusions and future work 

 
This chapter summarizes the objectives, contributions and conclusions of this thesis. 

It also proposes possible directions for future research. 

7.1 Conclusions 

The objective of this work was to study remote vital signs monitoring based on 

wireless sensor network (WSN) technologies, through the development, implementation 

and performance analysis of such a system.   

The developed system, HM4All, which stands for Health Monitoring for All, is 

based on the ZigBee protocol. It consists of: 

 Electrocardiogram (ECG) and axillary temperature sensors;  

 ZigBee networking devices; and  

 Three applications: ZigBee-to-IP gateway, Application Server and 

Monitoring Station.  

Vital signs measured by wireless sensors are transported by ZigBee networking 

devices to a ZigBee-to-IP gateway, which processes and sends data to the Application 

Server. Remote clients execute the Web pages that comprise the Monitoring Station 

application to exhibit data and manage patients and sensors. Sensors, networking 

devices and the ZigBee-to-IP gateway application were developed under this work.  

The ECG sensor measures electrocardiogram potentials, determines the heart rate, 

detects abnormal rhythms, namely tachycardia, bradycardia, background arrhythmia and 
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asystole
54

, and sends data through a wireless channel. No cables between the sensor and 

the disposable electrodes are required, which causes the sensor to be unobtrusive and 

easy to clean. The ECG signal is sampled at a frequency of 200 Hz. However, the 

sensor can transmit 2:1 compressed ECG data, which does not affect the quality of the 

ECG signal for heart rate monitoring purposes. The sensor employs an established 

algorithm to accurately detect the QRS complexes and evaluates the heart rate by 

averaging the most recent ten consecutive R-R intervals.  The results from tests that 

compared the heart rate measurements done by the sensor and by a vital signs bedside 

monitor revealed a maximum deviation of ±2 beats per minute (bpm). The ECG sensor 

is powered by a CR2 lithium battery with power holding capacity of 850 mAh and a 

nominal voltage of 3.0 V. The average current consumption is equal to 12.3 mA, 

resulting in a battery life of, approximately, 70 hours. 

The temperature sensor employs a thermistor medical probe to measure the axillary 

temperature. It was designed to measure temperature values in the range of 34 °C to 

42 °C with a resolution of 0.1 °C and a precision of ±0.2 °C. Tests compared 

temperature measurements done by the sensor and by a vital signs bedside monitor. The 

results revealed a maximum deviation of ±0.3 °C, which is acceptable considering that 

the precision of the temperature measurements of the vital signs bedside monitor used is 

±0.1 °C. The temperature sensor is powered by a CR2540 coin battery with power 

holding capacity of 610 mAh and a nominal voltage of 3.0 V. The average current 

consumption is equal to 107 μA, which corresponds to a battery lifetime of 241 days. 

The ZigBee-to-IP gateway is a GUI-based application developed in C# language. It 

validates and processes data frames received from a ZigBee coordinator and sends 

processed data to the Application Server application through a remote connection.  

Additionally, it contains a user interface that exhibits sensor data, provides data 

recording functionalities and establishes and monitors remote connections. 

Simulations and laboratory tests preceded HM4All commissioning in the hospital. 

Two simulation sets were executed.  The first one considered an increasing number of 

ECG sensors operating in two different modes, raw or compressed data transmission, 

                                                 

54
 It should be noted that these automated detection procedures have been programmed in the sensor, 

but only tachycardia and bradycardia are featured in the visualization application in the form of alarms.  
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diverse network depths, and the use or not of acknowledgement frames. The second one 

considered different percentages of hidden-nodes for a star topology network consisting 

of a crescent number of ECG sensors. As expected, for dense networks, the best 

performance results were observed for sensors that transmitted compressed data and for 

networks that employed acknowledgement frames.  Simulation results have also shown 

that it was necessary to restrict the network depth and the number of sensors to maintain 

a high delivery ratio (DR). Specifically, it was shown that to achieve a DR of 99.9% 

using ECG sensors that transmit compressed data and use acknowledged transmissions, 

it was necessary to restrict the number of ECG sensors to 23 in a star topology or to 7 in 

a 2-hop tree topology. In the presence of hidden-nodes, the number of nodes should be 

further reduced to 6 in a star topology. These results are due to the relatively small 

bandwidth offered by the ZigBee protocol and its susceptibility to collisions.  

Laboratory tests followed simulations. These tests considered a crescent number of 

ECG sensors that transmitted raw or compressed data and different topologies. Up to 12 

sensors were used and no hidden-nodes were considered. It was observed that a star 

network consisting of up to 12 nodes, on both modes, could achieve a DR of 99.9%. On 

the other hand, to maintain the same DR, a 2-hop tree topology should consist of up to 6 

ECG sensors that transmit compressed data or 5 ECG sensors that transmit raw data. If 

more hops are added, fewer sensors should be employed to obtain a similar DR. The 

maximum and mean delay ECG messages experienced were also measured. For sensors 

that transmit raw and compressed data, the maximum delay values obtained were equal 

to 12 ms and 10 ms for star networks, and 10 ms and 17 ms for 2-hop tree networks. 

These delay values are within acceptable limits for real-time waveform transmission 

according to the IEEE 11073-00101-2008 standard.  

Although sensors were programmed to transmit data at regular intervals, during 

network operation these intervals change due to clock drifts, which can aggravate or 

improve the overall network performance. Laboratory tests have evidenced significant 

DR drops that occur when two or more sensors try to access the wireless channel 

simultaneously or within a small time period. In order to correctly quantify and analyze 

the network performance, including transitory contention effects, long experimental 

tests were planned and executed in the hospital environment. New test routines were 

developed to measure quality of service indicators of individual sensors, including the 

DR calculated using a sliding window.      
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The prototype system was commissioned in an in-patient floor of Hospital Privado 

de Guimarães, an area served by a wireless local area network (WLAN) operating on 

channels 1, 6 and 11.  The first set of field tests employed star and 2-hop tree topologies 

and hidden-nodes were avoided. Six test boards were programmed to transmit 

compressed ECG data and associate as end devices. As well as nonbeacon-enabled 

ZigBee networks, IEEE 802.15.4 beacon-enabled star network using guaranteed time 

slots (GTSs) assigned to EDs were evaluated. All star networks achieved an average DR 

greater than 99.9%, except the ZigBee network that operated on the channel 22, which 

achieved a DR of 99.8%. The 2-hop tree networks achieved an average DR of 98.6% for 

channel 26 and 99.0% for channel 22. However, despite the good average DR 

measured, when DR results were computed for individual sensors belonging to the 

2-hop tree network that operated on channel 26, using a 10-second temporal window, it 

was observed that, occasionally, and for a variable time interval, two or more 

contending sensors were unable to correctly deliver their packets.  

Apart from a small number of collisions caused by simultaneous channel 

assessments, the analysis of packet capture files revealed that the message losses were 

mainly caused by routers not being able to receive incoming packets during backoff. 

After receiving one packet it must relay, a router acknowledges the packet and then 

initiates the CSMA-CA mechanism. If another child end device transmits a new packet 

to the router, instead of interrupting the CSMA-CA to receive the incoming packet, the 

router backoffs because it senses the channel busy and, consequently, the packet is lost. 

If this sequence of events is repeated several times, the child end device may extinguish 

all possible transmission retries and the message is lost. On the other hand, the router 

may also drop the message it was trying to relay if it extinguishes the maximum number 

of transmission attempts. Unlike Jennic‘s CSMA-CA implementation, which ignores 

incoming packets for the duration of the backoff, other implementations, such as Texas 

Instruments‘, support it. However, such behavior is not an infringement of the IEEE 

802.15.4 standard because it does not specify which procedure should be followed 

during backoff. In order to minimize message losses in multihop networks comprising 

routers that are unable to receive incoming packets during backoff, it was proposed 

changing the value of the MAC parameter macMinBE, from its default value of 3 to 

zero. Simulations that corroborate with this assumption revealed a good improvement in 

the resulting DR. For instance, if two ECG sensors always generate their messages at 
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the same time and their router parent has a macMinBE equal to 3, a DR of 68.4% is 

expected. On the other hand, if the macMinBE is set to zero, the DR will increase to 

82.8%, an improvement of 21%.  

The second set of field tests was executed using nonbeacon-enabled ZigBee-based 

star networks consisting of 50% of hidden-nodes. The first test employed six test boards 

programmed as end devices to generate the traffic of ECG sensors. Data was collected 

during two different periods. During the first part of the test, the network achieved a DR 

of 84.0%; whereas during the second part the DR was approximately equal to 100%. 

The low DR achieved during the first part of the test, which affected differently each 

end device, is explained by the increased number of collisions due to the presence of 

hidden-nodes. During the second part, due to clock drifts, nodes did not contend and, 

consequently, a high DR was achieved. This test demonstrated the negative effects of 

hidden-nodes in CSMA-based networks. The second test was executed using the same 

setting as before, but using test boards programmed to transmit only heart rate data. In 

this case, instead of transmitting an 114-byte packet every 500 ms, each test board 

transmitted a 44-byte packet every 3 seconds. The decrease in traffic caused a reduction 

in the number of collisions and a decrease in the contention periods, which resulted in a 

DR of 99.9%.   

The system acceptance in the hospital environment was evaluated using 

questionnaires. All patients considered sensors lightweight and unobtrusive. All health 

care professionals considered the system useful. However, they have suggested 

including oxygen saturation and the blood pressure monitoring. Other suggestions 

included monitoring the respiration rate, providing patient reports and making it easier 

to access historical information.  

Based on several simulations and experimental tests, this work concludes that 

ZigBee networks cannot reliably handle the transmission of a large number of ECG 

waveforms. In the hospital environment in which the prototype system was tested, we 

concluded that the best way to monitor ECG signals from up to six patients is to use 

four spatially distributed IEEE 802.15.4-based star networks that allocate one GTS to 

each sensor. However, if the traffic is considerably reduced, for instance, by just 

transmitting heart rate and temperature measurements, a single multi-hop network 

would be able to relay all traffic generated by a large number of sensors. This is a 

suitable solution to several hospital environments, such as recovery, palliative care and 
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emergency rooms. Another option would be transmitting only one ECG waveform when 

requested. On other even less demanding environments, which include assisted living 

facilities and residences, ZigBee can securely and reliably monitor health and wellness 

of chronically-ill and recovering patients.  

In summary, we conclude that standard-based low-rate wireless personal area 

network (LR-WPAN) communication protocols can be used to remotely monitor vital 

signs if the traffic generated by sensors is restricted. The advantages of this technology 

include the size reduction of sensors, the reduction of the system cost, the increase of 

battery lifetime of sensors, and the possibility of mixing, in a single remote vital signs 

monitoring system, interoperable sensors from several manufacturers.  

7.2 Future work 

There are several possible directions of future work regarding the vital signs remote 

monitoring system developed, which include adding advanced features to the 

application software of the ECG sensor; developing an innovative physiological 

wearable sensor, such as a continuous blood pressure sensor; and validating emergent 

standard communication protocols.  

The ECG sensor software could be further improved to include ECG waveform 

delineation to reduce the amount of data to be transmitted. Digital signal processing 

techniques to be applied include wavelet transforms [9, 139], and hidden Markov 

models [76].  Another possible future work is to develop an automatic heartbeat 

classifier that can be implemented by the ECG sensor‘s application software or as part 

of the ZigBee-to-IP application. In the first case, the classifier input could be either the 

ECG samples or resulting samples from the delineation process. In contrast, if 

implemented as part of the ZigBee-to-IP application, the classifier should accept, as 

input, the ECG samples that result from the delineation process. Several techniques 

could be employed to implement the classifier, including wavelet transforms [131, 132], 

support vector machines [166], and neural networks [97, 209]. Depending on the signal 

processing techniques chosen, the computational complexity involved may require the 

use of a dedicated microprocessor or a digital signal processor (DSP) to process 

sampled data. In this case, a major hardware design change should also be done. Both 
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ECG waveform delineation and heartbeat classification are major improvements that 

require long time to be implemented and evaluated against a standard database.  

The development of a cuffless continuous blood pressure measurement is a very 

active research area, as discussed in Section 1.2. The majority of the systems proposed 

by academia have limitations that include motion artifacts; unsatisfactory accuracy; and 

the need of frequent calibrations. However, a recently released commercial product 

called BPro, a watch-like device that continuously determines blood pressure 

measurements from applanation tonography made at the radial artery, has proven that it 

is possible to determine systolic and diastolic pressure measurements with an 

unobtrusive device [186]. A possible research would involve applying 

micro-electrical-mechanical sensors (MEMS) and micro-manufacturing technologies, to 

reduce the device‘s size and increase its autonomy. Other approach involves improving 

upon other methods already under development by other groups [28, 30, 185, 194]. 

Despite the research line chosen, it would necessarily involve a multidisciplinary team, 

including mechanical, electrical and materials engineers.  

Regarding alternative protocols, IEEE 802.11 networking has emerged as a viable 

solution for embedded applications as low-power chips and modules have been recently 

released [44, 68]. Low-power IEEE 802.11 devices have the advantages of native 

IP-network compatibility and well-known protocols and management tools. However, 

implementing IEEE 802.11 networking for embedded systems poses some challenges. 

Only IEEE 802.11b is presently available for low-power chips, which is a constraint in 

terms of data rate (the maximum data rate is 11 MHz with a downgrade to 1 MHz) and 

quality of service. Moreover, as opposed to laptops or mobile phones
55

, embedded 

devices use Universal Asynchronous Receiver/Transmitter (UART) interface or Serial 

Peripheral Interface Bus (SPI) as the host connection, which can be an additional data 

rate limiting factor.  

                                                 

55
 For instance, Texas Instruments employs a Secure Digital Input Output (SDIO) interface to 

transfer data between the OMAP 5 family of Application processors and the WLAN function 

implemented by the WiLink family of mobile communication systems on a chip (SoC). The SDIO 

interface is roughly two times faster than a 4-bit SPI. 
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Emerging protocols, such as 6LoWPAN and ISA100.11a, can also be evaluated 

considering the requirements of patient monitoring under several scenarios. Like 

ZigBee, 6LoWPAN is based on the IEEE 802.15.4 Physical (PHY) and Medium Access 

Channel (MAC) layers and, consequently, offers a limited bandwidth if compared to 

IEEE 802.11. On the other hand, 6LoWPAN is IP-based, which allows devices to 

directly communicate with other IP-based devices without the need of complex 

gateways. ISA100.11a targets industrial applications. It uses the Physical (PHY) layer 

provided by the IEEE 802.15.4 protocol, but in addition to a CDMA-based MAC, it 

employs a Time Division Multiple Access (TDMA) MAC scheme based on the TSMP 

MAC protocol [172] to support low-latency applications and applications requiring 

specific bandwidth. It offers five different levels of quality-of-service and was designed 

to be extremely reliable.  

Further investigation on the integration of wearable medical sensors, advanced 

signal processing techniques and low-power wireless communication protocols can lead 

to development of more unobtrusive, pervasive and dependable remote health 

monitoring systems.  
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A-1 

Appendix A Schematic diagram of the electrocardiogram sensor board 

 

  

 

 

 

 

 

 

 

 

 

 

 

 





 

B-1 

Appendix B Schematic diagram of the temperature sensor board 

 





 

C-1 

Appendix C Temperature sensor battery lifetime calculations 

The temperature sensor battery lifetime can be estimated using the current 

consumptions and the time periods listed in Table C1. For each temperature 

measurement, it is assumed that the temperature is sampled only once.  

Table C1 – Current consumption per module or component.   

Activity Current consumption (μA) ΔT (ms) 

ADC on for temperature sampling 580 1 

Front-end consumption (except wireless module) 2.4 1 

ADC on for battery level sampling 580 1 

LED on 3000 500 

Radio on (TX or RX) 39000 2.27 

CPU processing 9200 504.27 

CPU sleeping with wakeup timer on 3.3 59495.73 

 

As shown in Table C2, for each transmitted message, the transceiver is switched on 

for a minimum period of 2.72 ms.  

Table C2 – Minimum period of time the transceiver is switched on for each transmitted message.  

Action Activity ΔT (ms) 

ED senses the channel clear CCA 0.128 

ED‘s transceiver changes to TX mode Turnaround RX-to-TX 0.192 

ED transmits a data packet to the coordinator (44 bytes) TX 1.408 

ED‘s transceiver changes to RX mode Turnaround TX-to-RX 0.192 

ED receives the acknowledgment (11 bytes) RX 0.352 

Transceiver ON time (ms): 2.272 

 

All periods of time listed in Table C1 repeat every sixty seconds, as shown in 

Figure C1.  



Appendix C. Temperature sensor battery lifetime calculations 

C-2 

 

Figure C1 – A temperature sensor cycle. 

From Table C1, it is possible to get an average current consumption of 0.107 mA. For a 

620 mAh battery, this consumption corresponds to a battery lifetime of, approximately, 

241 days 
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Appendix D Schematic diagram of the coordinators and routers 
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Appendix E Questionnaires 

ECG sensor evaluation - Patient questionnaire 

  



Appendix E. Questionnaires 

E-2 

ECG sensor evaluation – Health care provider questionnaire 
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E-3 

Temperature sensor evaluation - Patient questionnaire 
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E-4 

Temperature sensor evaluation – Health care provider questionnaire 
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System  evaluation – Health care provider questionnaire (page 1/2)  
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System evaluation – Health care provider questionnaire (page 2/2)  
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Appendix F Range tests  

The tests described in this annex were executed at Hospital Privado de Guimarães, 

on one of the impatient areas. They aimed on a) estimating the range of the wireless 

links; b) defining adequate spots to position routers; and c) quickly verifying the DR in 

several scenarios. 

F.1 Tests configuration 

Nonbeacon-enabled ZigBee networks operating in star and 2-hop tree topologies 

with a variable number of EDs were used. The end devices (EDs) were programmed to 

generate one 108-byte message every 500 ms, the same message size and period used 

by electrocardiogram (ECG) sensors that transmit compressed data. Up to six EDs were 

used because this is the maximum number of patients to be simultaneously monitored. 

Each message included a sequence number added by the Application layer. All 

messages used hop-by-hop acknowledgements. Sensors could make up to four attempts 

to access the channel and up to three retries were allowed.  Each test involved the 

successful reception of at least 1,000 messages. All tests were conducted under the 

supervision of the hospital staff. Some rooms were occupied with patients who 

voluntarily granted the research team access to their rooms. 

The boards used as coordinator and routers are based on JN5139-M02 high power 

modules, whereas EDs‘ boards are based on JN5139-M00 regular modules. The 

receiver sensitivity of high power modules and regular modules is -100 dBm and -96.5 

dBm, respectively. The coordinator and routers were programmed to transmit at +10 

dBm, whereas ED boards were programmed to transmit at 0 dBm.  

F.2 Test results 

Figure 113 shows the settings used on the first tests. The coordinator was positioned 

on the entrance. It was not possible to go into room R213, so two devices were 

positioned at room R211 and one at room R212. Blue curved vectors represents links 

used to send messages.  
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(a) 

 
(b) 

Figure 113 – DR test 1: coordinator at the entrance hall. 

The tests results are shown in Table 42 where each line contains the test results for 

each setting, (a) and (b). The column Average presents the average delivery ratio (DR) 

considering the three EDs involved in the test. Column labels R211 (A), R211 (B) and 

R212 refer to the spots at which EDs were placed. These columns present the DR 

calculated from the messages generated by each device. All other tables in this section 

have similar structure.   

The first test was performed using the setting shown in Figure 113 (a). During this 

test, it was observed that one of the devices on room R211 lost some messages when 

one of the nurses to handle the device, simulating its placement in a patient. It indicates 

that the quality of the link between the device and the coordinator was weak. In fact, 

observing the survey results shown in Figure 93 (a), it is possible to observe that the 

average link quality indication (LQI) associated to this link is 48, not a high value, 

despite being above the limit recommended by the manufacturer (LQI > 30). In 

consequence of that, one router was added at spot 1 (see Figure 93), as shown in Figure 

113 (b). All devices associated to the router and, despite the additional hop, the DR 

increased slightly.   
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Table 42 – DR test 1 results. 

Test 
DR (%) 

Average R211(A) R211(B) R212 

a 99.7 99.1 99.9 100 

b 99.8 99.5 99.8 100 

 

Then, the coordinator was moved to the reception, as shown in Figure 114. The tests 

results shown in Table 43 indicate that, if all devices associate to the router, the average 

DR measured is equivalent to the DR measured for the setting shown in Figure 113 (b). 

However, when one of the devices associated directly to the coordinator, as shown in 

Figure 114 (b), only 74.3% of the generated messages were correctly received, which 

demonstrated that the quality of the direct link between the device and the coordinator 

was much worse than the link between the device and the router (notice that the value of 

the LQI associated to this link is equal to 44, as shown in Figure 93 (b)).    

 
(a) 

 
(b) 

Figure 114 – DR test 2: coordinator at the reception. 

Table 43 – DR test 2 results. 

Test 
DR (%) 

Average R211(A) R211(B) R212 

a 99.9 100 99.8 100 

b 91.4 100 74.3 100 

 

Parent selection is done using the results gathered during the network discovery 

procedure.  This procedure returns to the APP layer a network list detailing the personal 
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area network (PAN) identifications within the device‘s range. This procedure may be 

repeated a certain number of times defined by a Network (NWK) layer parameter. The 

purpose of repeating the network discovering procedure is to provide a more accurate 

neighbor list and associated link quality indications. The information gathered includes 

the PAN ID, the operational mode of the network, the identity of the ZigBee router or 

coordinator identified on the PAN, the depth of the ZigBee router on the PAN from the 

ZigBee Coordinator for the PAN, the capacity of the ZigBee router or coordinator and 

the routing cost [224].  

In the configuration depicted on Figure 114 (b), one of the EDs chooses a poor 

direct link to the coordinator over a better link to the router. During the test, EDs were 

programmed to automatically join a specific network. Possibly, the ED failed receiving 

the beacon transmitted by the router during the discovery procedure. Otherwise, the 

beacon sent by the router could have been atypically attenuated.  Some stack 

implementations automatically repeats the discovery procedure. It allows the joining 

device to obtain more accurate information about potential parents. Jennic‘s stack 

implementation allows programmers to manually join a network and, consequently, to 

repeat the discovery process as many times as one wishes.  

Two tests were performed after moving the coordinator to the reception and placing 

the router and the EDs as shown in Figure 115. All EDs have associated to the router 

and, for both tests, the resulting DR was good, as shown in Table 44.  

 

Figure 115 – DR test 3: coordinator at the reception. 

Table 44 – DR test 3 results. 

Test 
DR (%) 

Average  R209 R208(A) R208(B) 

a 100 100 99.9 100 

b 99.8 99.9 99.7 99.8 
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Two additional tests were performed after moving the coordinator to the pharmacy. 

The new setting and the associations between devices are shown in Figure 116.  

 

Figure 116 – DR test 4: coordinator at the pharmacy. 

As presented in Table 45, both results are worse than the ones obtained using the 

coordinator in the reception (shown in Table 44), which suggests that the quality of the 

link between the coordinator and the router deteriorated when the coordinator was 

moved to the pharmacy.  It was subsequently confirmed, and may be explained by the 

existence of fully-loaded wall-mounted medication cabinets on the pharmacy, which 

can attenuate radiofrequency signals. The atypically bad results obtained on test (b) 

occurred because, frequently, one of two EDs was transmitting a message just after the 

other one has received an acknowledgement frame from the router. 

Table 45 – DR test 4 results. 

Test 
DR (%) 

Average R209 R208(A) R208(B) 

a 97.6 98.1 98.0 96.6 

b 88.1 84.0 98.3 82.1 

 

A few more tests were executed on the right side of the in-patient area. The 

coordinator was kept on the consultation room while a variable number of end devices 

were distributed by the rooms. The first test was performed using the setting shown on 

Figure 117. As shown, a router was positioned on spot 6. Both EDs joined the router 

and the DR was equal to 100%.  
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Figure 117 – DR test 5: coordinator at the consultation room. 

EDs were moved to room R206 and, after turned on, associated directly to the 

coordinator, as shown in Figure 118 (a). Due to the low link quality, several messages 

were lost, as shown in Table 46. A router was added to spot 5, as shown in Figure 118 

(b). The test was repeated and, that time, all generated messages were correctly 

received. 

 
(a) 

 
(b) 

Figure 118 – DR test 6: coordinator at the consultation room. 

Table 46 - DR test 6 results. 

Test 
DR (%) 

Average R206(A) R206(B) 

a 95.6 94.2 97.0 

b 100 100 100 
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Finally, two additional tests with six EDs were performed using the settings shown 

in Figure 119. The results are presented in Table 47 where EDs are designated ED1 to 

ED6 despite the spot at which they were placed.  

 
(a) 

 
(b) 

Figure 119 – DR test 7: coordinator at the consultation room. 

Table 47 – DR test 7 results. 

Test 
DR (%) 

Average ED1 ED2 ED3 ED4 ED5 ED6 

a 100 100 100 100 100 99.9 100 

b 94.7 99.7 99.8 99.8 99.8 86.1 82.9 

 

The average DR measured for the first test was approximately 100%. However, 

during the second test, several messages from two devices located on room R206 were 

lost (ED5 and ED6). The captured files analysis reveals that a message from one ED 

quickly follows a message just transmitted by the other one, which indicates that the 

period between messages generation is very small, which blocked the router. 

F.3 Conclusions 

Considering the specific environment in which tests were executed and the tests 

results, good DR results can be achieved if the PAN coordinator and routers are 

positioned in the spots defined in Section 6.2. However, the results presented in Table 

47 for test (b), indicate that, despite the CSMA-CA mechanism used by the MAC layer, 
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when two EDs generate messages within a small interval, a reasonable percentage of 

messages can be lost by both devices. 
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