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1. Introduction

Globally, irrigation is the main user of fresh water, and with the growing scarcity of this
essential natural resource, it is becoming increasingly important to maximize efficiency of
water usage. This implies proper management of irrigation and control of application
depths in order to apply water effectively according to crop needs. Daily calculation of the
Reference Potential Evapotranspiration (ETo) is an important tool in determining the water
needs of different crops. The United Nations Food and Agriculture Organization (FAO) has
adopted the Penman-Monteith method as a global standard for estimating ETo from four
meteorological data (temperature, wind speed, radiation and relative humidity), with
details presented in the Irrigation and Drainage Paper no. 56 (Allen et al., 1998), referred to
hereafter as PM:
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where:

R, - net radiation at crop surface [M] m2 day-],

G - soil heat flux density [M] m2 day],

T - air temperature at 2 m height [°C],

uy - wind speed at 2 m height [m s1],

es - saturation vapor pressure [kPa],

e, — actual vapor pressure [kPa],

es-e, — saturation vapor pressure deficit [kPa],

A - slope vapor pressure curve [kPa °C1],

¥ - psychrometric constant [kPa °C-1],

The PM model uses a hypothetical green grass reference surface that is actively growing and
is adequately watered with an assumed height of 0.12m, with a surface resistance of 70s m-1
and an albedo of 0.23 (Allen et al., 1998) which closely resemble evapotranspiration from an
extensive surface of green grass cover of uniform height, completely shading the ground


https://core.ac.uk/display/55618424?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

60 Evapotranspiration — Remote Sensing and Modeling

and with no water shortage. This methodology is generally considered as the most reliable,
in a wide range of climates and locations, because it is based on physical principles and
considers the main climatic factors, which affect evapotranspiration.

Need for reduced-set methods

The main limitation to generalized application of this methodology in irrigation practice is
the time and cost involved in daily acquisition and processing of the necessary
meteorological data. Additionally, the number of meteorological stations where all these
parameters are observed is limited, in many areas of the globe. The number of stations
where reliable data for these parameters exist is an even smaller subset.

There are also concerns about the accuracy of the observed meteorological parameters
(Droogers and Allen, 2002), since the actual instruments, specifically pyranometers (solar
radiation) and hygrometers (relative humidity), are often subject to stability errors. It is
common to see a drift, of as much as 10 percent, in pyranometers (Samani, 2000, 1998).
Henggeler et al. (1996) have observed that hygrometers loose about 1 percent in accuracy
per installed month. There are also issues related to the proper irrigation and maintenance
of the reference grass, at the weather stations. Jensen et al. (1997) observed that many
weather stations are often not irrigated or inadequately irrigated, during the summer
months, and thus the use of relative humidity and air temperature from these stations could
introduce a bias in the computed values for ETo. Additionally, they observed that the
measured values of solar radiation, Rs, are not always reliable or available and that wind
data are quite site specific, unavailable, or of questionable reliability. Thus, they recommend
the use of ETo equations that require fewer variables. These authors compared various
methods, including FAO Penman Monteith, PM, and Hargreaves and Samani, HS, with
lysimeter data and noted 2 values of 0.94-0.97, with monthly SEE values of 0.30-0.34mm.
Based on these data they concluded that the differences in ETo values, calculated by the
different methods, are minor when compared with the uncertainties in estimating actual
crop evapotranspiration from ETo. Additionally, these equations can be more easily used in
adaptive or smart irrigation controllers that adjust the application depth according to the
daily ETo demand (Shahidian et al., 2009).

This has created interest and has encouraged development of practical methods, based on a
single or a reduced number of weather parameters for computing ETo. These models are
usually classified according to the weather parameters that play the dominant role in the
model. Generally these classifications include the temperature-based models such as
Thornthwaite (1948); Blaney-Criddle (1950) and Hargreaves and Samani (1982); The radiation
models which are based on solar radiation, such as Priestly-Taylor (1972) and Makkink
(1957); and the combination models which are based on the energy balance and mass transfer
principles and include the Penman (1948), modified Penman (Doorenbos and Pruitt, 1977)
and FAO PM (Allen et al., 1998).

Objectives and methods

The objective of this chapter is to review the underlying principles and the genesis of these
methodologies and provide some insight into their applicability in various climates and
regions. To obtain a global view of the applicability of the reduced-set equations, each
equation is presented together with a review of the published studies on its regional
calibration as well as its application under different climates.
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The main approach for evaluation and calibration of the reduced-set equations has been to
use the PM methodology or lysimeter measurements as the benchmark for assessing their
performance. Usually a linear regression equation, established with PM ETo values or
lysimeter readings plotted as the dependent variable and values from the reduced-set
equation plotted as the independent variable. The intercept, a, and calibration slope, b, of the
best fit regression line, are then used as regional calibration coefficients:

ET,PM = a+b(ET,Equation) )

The quality of the fit between the two methodologies is usually presented in terms of the
coefficient of determination, 12, which is the ratio of the explained variance to the total
variance or through the Root Mean Square Error, RMSE:

2
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and the mean Bias error:
n
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where n is the number of estimates and ETo ,; is the estimated values from the reduced-set
equation.

2. Temperature based equations

Temperature is probably the easiest, most widely available and most reliable climate
parameter. The assumption that temperature is an indicator of the evaporative power of the
atmosphere is the basis for temperature-based methods, such as the Hargreaves-Samani.
These methods are useful when there are no data on the other meteorological parameters.
However, some authors (McKenny and Rosenberg, 1993, Jabloun and Sahli, 2007) consider
that the obtained estimates are generally less reliable than those which also take into account
other climatic factors.

Mohan and Araumugam (1995) and Nandagiri and Kovoor (2006) carried out a multivariate
analysis of the importance of various meteorological parameters in evapotranspiration. They
concluded that temperature related variables are the most crucial required inputs for
obtaining ETo estimates, comparable to those from the PM method across all types of
climates. However, while wind speed is considered to be an important variable in arid
climate, the number of sunshine hours is considered to be the more dominant variable in
sub-humid and humid climates.

2.1 The Hargreaves- Samani methodology

Hargreaves, using grass evapotranspiration data from a precision lysimeter and weather
data from Davis, California, over a period of eight years, observed, through regressions, that
for five-day time steps, 94% of the variance in measured ET can be explained through
average temperature and global solar radiation, Rs. As a result, in 1975, he published an
equation for predicting ETo based only on these two parameters:
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ET, =0.0135 R (T +17.8) )

where Rs is in units of water evaporation, in mm day-!, and T in °C. Subsequent attempts to
use wind velocity, U, and relative humidity, RH, to improve the results were not
encouraging so these parameters have been left out (Hargreaves and Allen, 2003).

The clearness index, or the fraction of the extraterrestrial radiation that actually passes
through the clouds and reaches the earth’s surface, is the main energy source for
evapotranspiration, and later studies by Hargreaves and Samani (1982) show that it can be
estimated by the difference between the maximum, Ty, and the minimum, T, daily
temperatures. Under clear skies the atmosphere is transparent to incoming solar radiation so
the Ty is high, while night temperatures are low due to the outgoing longwave radiation
(Allen et al., 1998). On the other hand, under cloudy conditions, Ty is lower, since part of
the incoming solar radiation never reaches the earth, while night temperatures are relatively
higher, as the clouds limit heat loss by outgoing longwave radiation. Based on this principle,
Hargreaves and Samani (1982) recommended a simple equation to estimate solar radiation
using the temperature difference, AT:

R,

bRa:KT (T,

max

- Tmin )0'5 (6)
where Ra is the extraterrestial radiation in mm day-l, and can be obtained from tables
(Samani, 2000) or calculated (Allen et al., 1998). The empirical coefficient, Kr was initially
fixed at 0.17 for Salt Lake City and other semi-arid regions, and later Hargreaves (1994)
recommended the use of 0.162 for interior regions where land mass dominates, and 0.190 for
coastal regions, where air masses are influenced by a nearby water body. It can be assumed
that this equation accounts for the effect of cloudiness and humidity on the solar radiation at
a location (Samani, 2000). The clearness index (Rs/Ra) ranges from 0.75 on a clear day to 0.25
on a day with dense clouds.

Based on equations (5) and (6), Hargreaves and Samani (1985) developed a simplified
equation requiring only temperature, day of year and latitude for calculating ETo:

ET, =0.0135 Ky (T +17.78)(T,10r = Tonin )™ R, )

Since Kr usually assumes the value of 0.17, sometimes the 0.0135 Kr coefficient is replaced
by 0.0023. The equation can also be used with Ra in MJ m-2 day, by multiplying the right
hand side by 0.408.

This method (designated as HS in this chapter) has produced good results, because at least
80 percent of ETo can be explained by temperature and solar radiation (Jensen, 1985) and AT
is related to humidity and cloudiness (Samani and Pessarakli, 1986). Thus, although this
equation only needs a daily measurement of maximum and minimum temperatures, and is
presented here as a temperature-based method, it effectively incorporates measurement of
radiation, albeit indirectly. As will be seen later, the ability of the methodology to account
for both temperature and radiation provides it with great resilience in diverse climates
around the world.

Sepashkhah and Razzaghi (2009) used lysimeters to compare the Thornthwaithe and the HS in
semi-arid regions of Iran and concluded that a calibrated HS method was the most accurate
method. Jensen et al.(1997) compared this and other ETo calculation methods and concluded
that the differences in ETo values computed by the different methods are not larger than those
introduced as a result of measuring and recording weather variables or the uncertainties
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associated with estimating crop evapotranspiration from ETo. Lopez-Urrea et al. (2006)
compared seven ETo equations in arid southern Spain with Lysimeter data, and observed daily
RMSE values between 0.67 for FAO PM and 2.39 for FAO Blaney-Criddle. They also observed
that the Hargreaves equation was the second best after PM, with an RMSE of only 0.88.

Since the HS method was originally calibrated for the semi-arid conditions of California,
and does not explicitly account for relative humidity, it has been observed that it can
overestimate ETo in humid regions such as Southeastern US (Lu et al. 2005), North Carolina
(Amatya et al. 1995), or Serbia (Trajkovic, 2007).

In Brasil, Reis et al. (2007) studied three regions of the Espirito Santo State: The north with a
moderately humid climate, the south with a sub-humid climate, and the mountains with a
humid climate (Table 1). The HS equation overestimated ETo in all three regions by as much
as 32%, but the performance of the HS equation improved progressively as the climate
became drier. Only further south, at a latitude of 24° S, and in a warm temperate climate did
HS provide good agreement with PM, though still with a small overestimation. Borges and
Mendiondo (2007) obtained an 12 of 0.997 for HS when compared to PM, when using a
calibrated a of 0.0022 (Sept-April) and 0.0020 for the rest of the year.

On the other hand, in dry regions such as Mahshad, Iran and Jodhpur, India, the HS equation
tends to underestimate ETo by as much as 24% (Rahimkoob, 2008; Nandagiri and Kovoor,
2006). Rahimkoob (2008) studied the ETo estimates obtained from the HS equation in the very
dry south of Iran. His data indicate that the HS equation fails to calculate ETo values above 9
mm day-, even when the PM reaches values of more than 13 mm day (Fig. 1).

Wind removes saturated air from the boundary layer and thus increases evapotranspiration
(Brutsaert, 1991). Since most of the reduced-set equations do not explicitly account for wind
speed, it is natural for the calibration slope to be influenced by this parameter. Itensifu et al.
(2003) carried out a major study using weather data from 49 diverse sites in the United
States. They obtained ratios ranging from 0.805 to 1.242 between HS and PM and concluded
that the HS equation has difficulty in accounting for the effects of high winds and high
vapor pressure deficits, typical of the Great Plains region. They also observed that the HS
equation tends to overestimate ETo when mean daily ETo is relatively low, as in most sites
in the eastern region of the US, and to underestimate when ETo is relatively high, as in the
lower Midwest of the US. As will be seen later, this seems to be a common issue with most
of the reduced set evapotranspiration equations (see section 4.3, Fig. 7).

For the Mkoji sub-catchment of the Great Ruaha River in Tanzania, Igbadun et al. (2006)
calculated the monthly ETo values of three very distinct areas of the catchment: the humid
Upper Mkoji with an altitude of 1700m, the middle Mkoji with an average altitude of 1100
m, and the semi-arid lower Mkoji with an altitude of 900m. Their data indicate a strong
relation between the monthly average wind speed and the performance of the HS equation
as measured by the slope of the calibration equation (PM/HS ratio). Although the three
areas have distinct climates, the HS equation clearly underestimated ETo for wind speed
values below 2-2.3 ms-, and overestimated it for higher wind speed values (Fig. 2).
Trajkovic, et al. (2005) studied the HS equation in seven locations in continental Europe with
different altitudes (42-433m) with RH ranging from 55 to 71%, representative of the distinct
climates of Serbia. Their data show that despite the different altitudes and climatic
conditions, wind speed was the major determinant for the calibration of the HS equation
(Fig. 3). The results from these works indicate that wind is the main factor affecting the
calibration of the HS equation and that the equation should be calibrated in areas with very
high or low wind speeds.
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Fig. 1. Relation between ETo calculated with the HS equation and the PM for the dry

conditions of Abadan, Iran. The Hargreaves Samani equation fails to calculate ETo values
above 9 mm day! (data kindly provided by Rahimkoob)

0,8

0,6

y =0,0947x +0,7636
0,4 R? =0,7598

Ratio of PMto HS

0,2

1 2 3
Average monthly wind speed, m s~

Fig. 2. Correlation between average wind speed and the calibration slope in distinct climates
of the Great Ruana River in Tanzania (based on the original data from Igbadun et al. 2006).

Jabloun and Sahli (2008) studied eight stations in the semi-arid Tunisia and concluded that
in inland stations, HS tends to overestimate ETo due to high AT values. In the coastal station
of Tunis, HS underestimated ETo values, which they attributed to an underestimation of Rs.
Various attempts have been made to improve the accuracy of the HS equation through
incorporation of additional measured parameters, such as rainfall (Droogers and Allen,
2002) and altitude (Allen, 1995). These methodologies have had limited global application,
probably because ETo is influenced by a combination of different parameters, and although
in a certain region there appears to be a good correlation between the calibration slope and a
certain parameter, this might not be so in a different climate.

The alternative is to use regional calibration, in which, based on the climatic characteristics
of the region, the ETo calculated by the HS equation is adjusted to account for the combined
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effect of the dominant climate parameters, and thus accuracy of the equations is improved
(Teixeira et al., 2008). Table 1 presents a compilation of most of the published studies on the
regional calibration of the HS equation. This compilation contains 33 published works
covering 21 countries with all types of climatic conditions according to the Koppen
classification. Whenever various stations from a similar climate were studied, only
parameters from one representative station are presented. In some studies, HS and PM were
calibrated against a third methodology (such as Pan A) and thus no direct calibration
parameters for the PM/HS regression were provided. In these cases, a linear regression
was obtained by plotting the PM calibration equation as the dependent variable and
the HS calibration equation as the independent variable. The parameters of the resulting
regression equation are then presented as the PM-HS calibration parameters.

In order to contextualize the information and allow for extension of the results to other
regions with a similar climate, the locations are grouped according to Koppen climate
classification. These calibration coefficients can be used in the area where they were
obtained or can be extrapolated for areas with similar conditions where no actual calibration
has been carried out yet.
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Fig. 3. Correlation between wind speed and the calibration slope for seven different
locations in Serbia, representing the diverse local climates (original data from Trajkovic,
2005).

2.2 The Thornthwaite method

Thornthwaite (1948) devised a methodology to estimate ETo for short vegetation with an
adequate water supply in certain parts of the USA. The procedure uses the mean air
temperature and number of hours of daylight, and is thus classified as a temperature based
method. Monthly ETo can be estimated according to Thornthwaite (1948) by the following
equation:

Ety = ETyse(N4, (440 ®)
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Table 1. Regional calibration for the Hargreaves Samani equation compiled from published

works
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Where N is the maximum number of sunny hours as a function of the month and latitude
and dm is the number of days per month. ETo, is the gross evapotranspiration (without
corrections) and can be calculated as:

Etysc = 16(10T%)a ©)

where T, is the mean daily temperature (°C), a is an exponent as a function of the annual
index: a = 0.49239 + 1792 x 1051 - 771 x 10 712+ 675 x 109 I3; and I is the annual heat index
obtained form the monthly heat indecies:

I =V:21(TA )1.514 (10)

Bautista et al. (2009) found that the precision of the Thorntwaite methodology improved
during the winter months in Mexico. Garcia et al. (2004) observed that under the dry and
arid conditions of the Bolivian highlands the Thornthwaite equation strongly
underestimates ETo because the equation does not consider the saturation deficit of the air
(Stanhill, 1961; Pruitt, 1964; Pruitt and Doorenbos, 1977). Additionally, at high altitudes, the
Thornthwaite equation also underestimates the effect of radiation, because the equation is
calibrated for temperate low altitude climates. Studies in Brazil have shown that the
underestimation of ETo produced by temperature-based equations under arid conditions,
may be reduced by using the daily thermal amplitude instead of the mean temperature
(Paes de Camargo, 2000) as in the case of the Hargreaves-Samani equation.

Gonzalez et al. (2009) studied the Thorthwaite method in the Bolivian Amazon. They
observed that the Thornthwaite method underestimates evapotranspiration at all the three
stations studied. This is expected, considering that normally this method leads to
underestimations in humid areas (Jensen et al., 1990).

2.3 Blaney-Criddle method

The FAO Temperature Methodology recommended by Doorenbos and Pruitt (1977) is based
on the Blaney-Criddle method (Blaney and Criddle, 1950), introducing a correction factor
based on estimates of humidity, sunshine and wind.

ET,=a+ B[ p(0.46T +8.13) (11)

where o and f are calibration parameters and p is the mean annual percentage of daytime
hours. Values for o can be calculated using the daily RHi, and /N as follows:

a=0043RH,;, - (%} ~141 (12)

%:2(125/1@)—0.5 (13)

For windy South Nebraska, Irmak et al. (2008) compared 12 different ET methodologies and
found that the Blaney-Criddle method was the best temperature method and it had an
RMSE value (0.64 mm d-1) which was similar to some of the combination methods. The
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obtained estimates were good and were within 3% of the ASCE-PM ETo with a high r2 of
0.94. The estimates were consistent with no large under or over estimations for the majority
of the dataset. They attributed this to the fact that, unlike most of the other temperature
methods, this method takes into account humidity and wind speed in addition to air
temperature.

Lee et al. (2004) compared various ETo calculation methods in the West Coast of Malaysia
and concluded that the Blaney-Criddle method was the best, among the reduced-set
equations, for estimating ET in the region. They also observed that HS gave the highest
estimates followed by the Priestly-Taylor equation. Similarly, in the humid Goi4nia region
of Brazil, Oliveira et al. (2005) observed that the Blaney-Criddle method produced the best
results, next to the full PM equation.

Various studies indicate that the Blaney-Criddle equation might show some bias under arid
conditions. For semi-arid conditions of Iran, Dehghani Sanij et al. (2004) found the Blaney-
Criddle and the Makkink method to overestimate ETo during the growing season. Lopéz-
Urrea et al. (2006) compared seven different methods for calculating ETo in the semiarid
regions of Spain and observed that the Blaney-Criddle method significantly over-estimated
average daily ETo.

For arid conditions of Iran, Fard et al. (2009) compared nine different methodologies with
lysimeter data and observed that the Turc and the Blaney-Criddle methods showed very
close agreement with the lysimeter data, while PM showed moderate agreement with the
lysimeter data. The other methods showed bias, systematically over estimating the lysimeter
data (Fig. 4).

Although recognizing the historical value of the Blaney-Criddle method and its validity, the
FAO Expert Commission on Revision of FAO Methodologies for Crop Water Requirements
(Smith et al. 1992) did not recommend the method further, in view of difficulties in
estimating humidity, sunshine and wind parameters in remote areas. Nevertheless, they
emphasized the value of the method for areas having only the mean daily temperature, and
where appropriate correction factors can be found.
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Fig. 4. Comparision of six ET methods with lysimeter data for Isfahan (adapted from Fard et
al., 2009).
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2.4 Reduced-set PM

The PM methodology has provisions for application in data-short situations (Allen et al.
1998), including the use of temperature data alone. The reduced-set PM equation requiring
only the measured maximum and minimum temperatures uses estimates of solar radiation,
relative humidity, and wind speed. Solar radiation, Rs, M] m=2 d-1 can be estimated using
equation 3 (Hargreaves and Samani, 1985) or using averages from nearby stations. For
island locations Rs can be estimated as (Allen et al. 1998):

R,=07R,-b (14)

where b is an empirical constant with a value of 4 M] m=2 d-! . Relative humidity can be
estimated by assuming that the dewpoint temperature is approximately equal to T, (Allen
1996; Allen et al. 1998) which is usually experienced at sunrise. In this case, e, can be
calculated as:

ea = 60 (Tmin (15)

) =0.611exp {%}

T, +237.3

where e(T,ui) is the vapour pressure at the minimum temperature, expressed in mbar. For
wind speed, Allen et al. (1998) recommend using average wind speed data from nearby
locations or using a wind speed of 2 m s, since, they consider, the impact of wind speed on
the ETo results is relatively small, except in arid and windy areas. The soil heat flux density,
G, for monthly periods can be estimated as:

G; =0.07(T;11 ~Tia) (16)
where G; is the soil heat flux density in month I in M] m-2 d-; and T;+1 and Ti-1 are the mean
air temperatures in the previous and following months, respectively.

Allen (1995) evaluated the reduced-set PM (using only Tmax and Tmin) and HS using the
mean annual monthly data from the 3,000 stations in the FAO CLIMWAT data base, with
the full PM serving as the comparative basis. He found little difference in the mean monthly
ETo between the two methods. Wright et al. (2000) found similar results in Kimberly, and 75
years of data from California (Hargreaves and Allen, 2003). Other data generally indicate
that the reduced-set PM performs better in humid areas (Popova, 2005, Pereira et al., 2003),
while HS performs better in dry climates (Temesgen et al. 2005, Jabloun et al. 2008).
Trajkovic (2005) compared the reduced-set PM, Hargreaves, and Thornthwaite temperature-
based methods with the full PM in Serbia and found that the reduced-set PM estimates were
better than those produced from the Hargreaves and Thornthwaite equations. Popova et al.
(2006) found the reduced-set PM to provide more accurate results compared to the
Hargreaves equation, which tended to overestimate reference evapotranspiration in the
Trace plain in south Bulgaria. Jabloun and Sahli (2008) also found the Hargreaves equation
to overestimate reference evapotranspiration in Tunisia and found the reduced-set PM
equation to provide better estimates. Nevertheless, the reduced-set PM can produce poor
results in areas where wind speed is significantly different from 2 ms-! (Trajkovic, 2005).

3. Radiation based methods

It is known that water loss from a crop is related to the incident solar energy, and thus it is
possible to develop a simple model that relates solar radiation to evapotranspiration.
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Various models have been developed, over the years, for relating the measured net global
radiation to the estimated reference evapotranspiration; such as the Priestley-Taylor method
(1972), the Makkink method (1957), the Turc radiation method (1961), and the Jensen and
Haise method (1965).

Irmak et al. (2008) compared 11 ET models and studied the relevance of their complexity for
direct prediction of hourly, daily and seasonal scales. They concluded that radiation is the
dominant driver of evaporative losses, over seasonal time scales, and that other
meteorological variables, such as temperature and wind speed, gained importance in daily
and hourly calculations.

3.1 The Priestley-Taylor method

The Priestley-Taylor method (Priestley and Taylor, 1972; De Bruin, 1983) is a simplified form
of the Penman equation, that only needs net radiation and temperature to calculate ETo.
This simplification is based on the fact that ETo is more dependant on radiation than on
relative humidity and wind. The Priestly-Taylor method is basically the radiation driven
part of the Penman Equation, multiplied by a coefficient, and can be expressed as:

A(R, -G)

ET, =«
A+y

+B 17)
where o and S are calibration factors, assuming values of 1.26 and 0, respectively. This
model was calibrated for Switzerland (Xu and Singh, 1998) and values of 0.98 and 0.94 were
obtained for a and p, respectively. In the Priestley-Taylor equation, evapotranspiration is
proportional to net radiation, while in the Makkink equation (section 3.2), it is proportional
to short-wave radiation.

Van Kraalingen and Stol (1997) found that application of the Priestly-Taylor equation during
the Dutch winter months was not possible because it is based on net radiation. Since net
radiation is often negative in the winter, it predicts dew formation, whereas the actual ET is
positive. The situation would be different for a humid climate such as the Philippines, or in
a semi-arid climate such as Israel, where the equation should compare well with PM.

Irmak et al. (2003) calibrated the Priestly-Taylor method against the FAO PM method using
15 years of climate data (1980-1994) in humid Florida, United States. The monthly values of
the calibration coefficient (Fig. 5) show a considerable seasonal variation, aside from the
natural difference in annual values. In general, the calibration coefficients are lower in
winter months indicating that the Priestley and Taylor method underestimates ETo, and
they are higher than 1.0 during the summer months, indicating that the method
overestimates during the summer months. The long-term average lowest calibration values
were obtained in January and December (0.70) and the highest values in July (1.10). These
results indicate the importance of developing monthly calibration coefficients for regional
use based on historic records. For the semi-arid conditions of southern Portugal, the authors
also observed that the Priestley-Taylor method over-estimates daily ETo during the summer
months (Shahidian et al., 2007).

Shuttleworth and Calder (1979) showed that Priestley-Taylor significantly underestimates
wet forest evaporation, but also overestimates dry forest transpiration by as much as 20%.
Berengena and Gavilan (2005) found that the Priestley-Taylor equation shows a
considerable tendency to underestimate ETo, on average 23%, under convective conditions.
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They concluded that the Priestly-Taylor equation is very sensitive to advection, and local
calibration does not ensure an acceptable level of accuracy.
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Fig. 5. Average monthly calibration coefficient for the Priestly-Taylor equation against PM
for humid southern United States (based on data from Irmak et al. 2003).

3.2 The Makkink method

The Makkink method can be seen as a simplified form of the Priestley-Taylor method and
was developed for grass lands in Holland. The difference is that the Makkink method uses
incoming short-wave radiation Rs and temperature, instead of using net radiation, Rn, and
temperature. This is possible, because on average, there is a constant ratio of 50% between
net radiation and short wave radiation. The equation can be expressed as:

A R
Et,=q————_

5+ 18
A+y 2,45 p (18)

where « is usually 0.61, and g is -0.012. Doorenbos and Pruitt (1975) proposed the FAO
Radiation method based on the Makkink equation (1957), introducing a correction factor
based on estimates for wind and humidity conditions to compensate for advective
conditions. This radiation method has been proven valid, in particular under humid
conditions, but can differ systematically from the PM reference method under special
conditions, such as during dry months (Bruin and Lablands, 1998).

It has also been observed that it is difficult to use this radiation based method during winter
months: Van Kraalingen and Stol (1997) found that application of the Makkink equation in
Dutch winter months was not possible, though the Makkink equation did not produce
negative values for ET, as was the case with the Priestley-Taylor method. Bruin and Lablans
(1998) also concluded that there is no relationship between Makkink and PM in the winter
months, December and January, since Makkink's method has no physical meaning, in this
period.

It is reasonable to expect the Makkink and the Priestley-Taylor equations to compare well
with the Penman's method, since in all these approaches the radiation terms are dominant
and radiation is the main driving force for evaporation in short vegetation.
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ET models tend to perform best in climates in which they were designed. A study by
Amayta et al. (1995) showed that while the Makkink model generally performed well in
North Carolina, the model underestimated ETo in the peak months of summer. Yet, the
Makkink model shows excellent results in Western Europe where it was designed, both in
comparison to PM as well as to the measured ETo data (Bruin and Lablans 1998, Xu and
Singh 2000, Bruin and Stricker 2000, Barnett et al., 1998).

3.3 The Turc method

Also known as the Turc-Radiation equation, this method was presented by Turc in 1961,
using data from the humid climate of Western Europe (France). This method only uses
two parameters, average daily radiation and temperature and for RH>50% can be
expressed as:

T
ET, = «((23,9001R, )+ 50)(@] (19)
And for RH <50% as:
T 50 - RH
ET, :a((23,9001Rs)+50)[T+15j[1+[ 70 D (20)

Where a is 0.01333 and Rs is expressed in M] m2day-L.

Yoder et al. (2005) compared six different ET equations in humid southeast United States,
and found the Turc equation to be second best only to the full PM. Jensen et al. (1990)
analyzed the properties of twenty different methods against carefully selected lysimeter
data from eleven stations, located worldwide in different climates. They observed that the
Turc method compared very favorably with combination methods at the humid lysimeter
locations. The Turc method was ranked second when only humid locations were
considered, with only the Penman-Monteith method performing better. Trajkovic and
Stojnic (2007) compared the Turc method with full PM in 52 European sites and found a SEE
(Standard Error of Estimate) of between 0.10 and 0.37 mm d-1. They also found that the
reliability of the Turc method depends on the wind speed (Fig. 6). The Turc method
overestimated PM ETo in windless locations and generally underestimated ETo in windy
locations.

Amatya et al. (1995) compared 5 different ETo methodologies in North Carolina and
concluded that the Turc and the Priestley-Taylor methods were generally the best in
estimating ETo. They observed that all other radiation methods and the temperature based
Thorntwaite method underestimated the annual ET by as much as 16%.

Kashyap and Panda (2001) compared 10 different methods with lysimeter data in the sub
humid Kharagupur region of India and observed that the Turc method had a deviation of
only 2.72% from lysimeter values, followed by Blaney-Criddle with a 3.16% and Priestly
Taylor with a 6.28% deviation (Fig. 7). The Kashyap and Panda data are also important
because they show that under sub humid conditions, most of the equations, including the
PM, tend to overestimate when evapotranspiration is low, and underestimate when it is
high.
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Fig. 6. Effect of wind on the ratio of evapotranspiration calculated with the FAO PM and the
Turc methods (based on data from Trajkovic and Stojnic (2007), using average annual
values).
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Fig. 7. Comparison of various ETo methods with Lysimeter readings in the sub-humid
region of Kharagpur, India (adapted from Kashyap and Panda, 2001).

For Florida, Martinez and Thepadia (2010) compared the reduced-set PM equation with
various temperature and radiation based equations and concluded that in the absence of
regionally calibrated methods, the Turc equation has the least error and bias when using
measured maximum and minimum temperatures. They also observed that the reduced-set
PM and Hargreaves equations overestimate ET.

Fontenote (2004) studied the accuracy of seven evapotranspiraiton models for estimating
grass reference ET in Louisiana. He observed that, statewide and in the coastal region, the
Turc model was the most accurate daily model with a MAE of 0.26mm day-. Inland, the
Blaney-Criddle performed best with a MAE of 0.31mm day-! (Fig. 8).

Hence, it can be safely concluded that the Turc model can be expected to perform well in
warm, humid climates such as those found in North Carolina (Amatya et al., 1995), India
(George et al., 2002), and Florida (Irmak et al., 2003; Martinez and Thepadia, 2010).



Hargreaves and Other Reduced-Set Methods for Calculating Evapotranspiration 75

10 10
Coastal region Inland
8 8 4
£ g
IS S
g 6 8 61
S s}
< <
3 k]
£ S
5 2 4
< 1 = 1
3 3 —1:01
E u'j —+— Blaney Criddle
—x— Hargreaves Samani
2 2 1 —o— Priestley Taylor
—e— Makkink
—a— Turc
0 T T T T 0 T T T T
0 2 4 6 8 10 0 2 4 6 8 10
ET PM, mm ET PM, mm

Fig. 8. Comparison of five ET methods with PM in two different regions of Louisiana
(Adapted from Fontenote, 1999).

3.4 The Jensen and Haise method

This method was derived for the drier parts of the United States and is based on 3,000
observations of ET. Jensen and Haise used 35 years of measured evapotranspiration and
solar radiation to derive the equation, based on the assumption that net radiation is more
closely related to ET than other variables such as air temperature and humidity (Jensen and
Haise, 1965). The equation can be expressed as:

ET =C,(T -T,)R, 1)

The original study of Jensen and Haise provides a calculation procedure to obtain Rs from
the cloudiness, CI, and the solar and sky radiation flux on cloudless days. The temperature
Constant, C;, and the intercept of the temperature exis, Ty, can be calculated as follows:

C - ! 22

{(451157]( (iji’ (Tmmﬂﬂ

T, =25-014(¢* (Trner) ~ € (Toin)) - % g (23)

where £ is the altitude of the location in m, Rs is solar radiation (MJ m-2 d-1); e°T}ax and eTpin
are vapour pressures of the month with the mean maximum temperature and the month
with the mean minimum temperature, respectively, expressed in mbar.

For the humid and rainy Rio Grande watershed in Brazil, Pereira et al. (2009) compared 10
different equations and concluded that the methods based on solar radiation are more
accurate than those based only on air temperature, with the Jensen and Haise method
presenting the smallest MBE, and thus being the method most recommended for this region.

and
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4. Conclusions

Both temperature and radiation can be used successfully to calculate daily ETo values with
relative accuracy. All the equations can be used for areas that have a climate that is similar
to the one for which the equations were originally developed; while most of the equations
can be used with some confidence for areas with moderate conditions of humidity and wind
speed.

Regional calibration, especially if including monthly calibration coefficients, is important in
decreasing the bias of the ETo estimates. Wind speed can greatly influence the results
obtained with reduced-set equations, since wind removes the boundary layer from the leaf
surface and can significantly increase evapotranspiration. Relative Humidity is another
important factor that can affect the results.

Globally, it is observed that the Turc equation is highly recommended for humid or semi-
humid areas, where it can produce very good results even without calibration, while the
Thornthwaite equation tends to underestimate ETo.

The Priestley-Taylor and the Makkinik equations should not be used in the winter months
in locations with high latitude, such as northern Europe.

Both the Hargreaves and the reduced-set Panman-Monteith can be effectively used with
only temperature measurements, although the results can be improved if wind speed is
taken into consideration.

The use of the reduced-set equations can be very important in actual irrigation management,
since the error involved in using these equations can be much smaller than that resulting
from using data from a weather station located many miles away.
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