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Abstract: Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of
cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling,
controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion.
In general, viruses use host signaling mechanisms for the replication of their genome as well as for
cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in
controlling viral infection and the generation of cancer cells. Epstein–Barr virus (EBV) lytically infects
epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become
resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the
generation of tumors such as Burkitt’s lymphoma. EBV was one of the first human viruses, which
was connected to CK2 in the early nineties of the last century. The present review shows that protein
kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated
in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and
CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have
the potential to provide efficient virus replication and cell transformation. Since there are powerful
inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of
EBV replication and cell transformation.

Keywords: protein kinase CK2; phosphorylation; Epstein–Barr virus; EBV-encoded proteins; signal-
ing pathways; p53; review

1. Introduction

Protein phosphorylation is an essential post-translational modification of proteins in
most cellular processes, and also in viral replication as well as in virally induced neoplastic
transformation. This post-translational modification is achieved by about 518 different
protein kinases expressed in eukaryotic cells [1]. Among these kinases, protein kinase
CK2 (formerly known as casein kinase 2) is responsible for about 25% of the cellular
phosphoproteome [2]. CK2 is a ubiquitously expressed serine/threonine protein kinase
composed of two catalytic subunits (α or its isoform α’) and two non-catalytic β subunits [3],
which form the tetrameric holoenzyme. CK2α and CK2α’ are also active as kinases in
the absence of CK2β [4,5]. CK2α and CK2α’ share some common functions but they also
have unique functions [6–9]. The substrate specificity varies for the holoenzyme and the
individual CK2α and CK2α’ subunits [8]. In addition to the protein kinase activity, the
CK2 subunits bind to numerous cellular and viral proteins [10]. These protein–protein
interactions are implicated in targeting CK2 subunits or the holoenzyme to specific target
proteins in different cellular compartments [10,11]. The binding of CK2β to other protein
kinases appears to play a role in the regulation of these kinases such as A-raf, c-mos, p90rsk
(for review see: [12]), PKC [13] or CHK-1 [14]. CK2 is a regulator of the PI3K/Akt, NF-κB,
Wnt/β-catenin and JAK/STAT signaling cascades [15–20]. CK2 phosphorylates serine or
threonine residues in a consensus sequence S/T-x-x-E/D/pS/pT, where x can be any amino
acid with the exception of proline [21]. This consensus sequence is often found in an acidic
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environment. CK2, which has more than 500 known substrates [22], phosphorylates and
thereby modulates the activities of viral and cellular proteins [23]. CK2 substrates include
proteins involved in the regulation of gene expression or protein synthesis. Other substrates
are implicated in cell growth, proliferation, survival or metabolic processes [22,24,25]. CK2
is associated with a high proliferation rate. It is therefore not surprising that this kinase
also plays a role in the formation of virally induced tumors. Moreover, CK2 expression
and protein kinase activity are higher in a variety of solid tumors compared to the normal
tissue or cells [26]. The first experiments to demonstrate an oncogenic potential of CK2 date
back to 1995, when Seldin and Leder showed that overexpression of the catalytic subunit
of CK2 together with myc was capable of transforming lymphocytes [27]. This property
of CK2 renders the kinase a suitable target for therapeutic treatment of tumor patients.
Over the last decade, a great number of different inhibitors for the kinase activity of CK2
have been established [28–31]. Most of these inhibitors are ATP competitive inhibitors,
although other inhibitors have also been introduced [32]. Comprehensive descriptions
of CK2 inhibitors can be found in a number of reviews [30,33–36]. Recently, Wells et al.
described a new CK2 inhibitor, which is highly CK2 specific and which did not influence
the proliferation of cancer cells [31]. The role of this new CK2 inhibitor in viral replication
and virally induced cell transformation awaits further analysis. Initially, phosphorylation
by CK2 was demonstrated for the human papilloma virus E7 protein [37]. Later, it was
shown that CK2 plays a role in infectious diseases caused by adeno viruses [38], hepatitis C
virus (HCV) [39], human cytomegalovirus (HCMV) [40], human immunodeficiency virus
(HIV) [41], human T-lymphotropic virus type 1 (HTLV-1) [42], human papilloma virus
(HPV) [43], herpes simplex-1 virus (HSV) [44], SARS-CoV-2 [45] and also by Epstein–Barr
virus (EBV) [46].

2. Epstein–Barr Virus

It has been known for many years that viruses account for about 10–15% of all cancer
cases world-wide [47,48]. Epstein–Barr virus (EBV) was first discovered in continuously
growing tumor cells derived from patients with Burkitt’s lymphoma [49]. EBV infects B
cells of the immune system and epithelial cells. After the initial lytic infection, most likely
in oropharyngeal epithelial cells, EBV latently persists in memory B cells for the rest of
the infected individual’s life [50,51]. After infection, the linear viral DNA circularizes due
to the cellular repair mechanism that joins free DNA ends. The viral genome remains in
the nucleus as a circular episome. EBV infection in early childhood mostly takes place
sub-clinically. Infected B-cells, when passing the germinal center (GC), may convert into
functional memory cells; when the memory is recalled by contact with antigen, the cells
mature into plasma cells and thereby shed both antibodies and virus. The resting memory
B-cells do not express EBV proteins but various non-coding miRNAs and the so-called
EBER RNAs. This type of infection is called latency 0 [52]. In endemic Burkitt’s lymphoma,
the viral nuclear antigen 1 (EBNA-1), the non-coding EBER1 and EBER2 RNAs, the so-
called BART miRNAs as well as a viral snoRNA are expressed (latency I). In Hodgkin’s
disease (HD), diffuse large B-cell lymphoma (DLBCL), nasal NKT- cell lymphoma (NKTL),
nasopharyngeal carcinoma (NPC) and gastric cancer (GC), the latent membrane proteins
LMP1, LMP2A and LMP2B are expressed in addition to EBNA-1 and the non-coding RNAs
mentioned above (latency II). LMP1 induces tumors in transgenic animals [53,54] as a
co-carcinogen [55] and has transforming potential in tissue culture [56]. LMP1 mimics the
CD40 molecule [57]. LMP2A blocks the B cell receptor (BCR) [58] and can functionally
replace BCR [59]. Both LMP1 and LMP2A can activate cellular signaling pathways such as
the PI3K/Akt, NF-κB, Wnt and JAK/STAT pathways [60–63]. In a cord-blood humanized
mouse model, LMP1 and LMP2A cooperate in the generation of EBV-induced B cell
lymphoma [64].

Under immunosuppression after organ transplantation or HIV infection, EBV-infected
B-lymphocytes may grow out. The tumor cells in the so-called post-transplant lymphopro-
liferative disease (PTLD) express the full set of latent proteins including the LMPs, the EBV
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nuclear antigens 1–6 and all non-coding RNAs, including the so-called BHRF1 miRNAs
that are expressed from the 3′UTR of the BHRF1 mRNA [65] (latency III) (Table 1).

Table 1. Latency type and expression of EBV transcripts.

Gene(s)/Protein(s) Expressed in EBV Latency Patterns

Latency
Type EBERs BART

miRNAs EBNA1 LMP1/2 EBNA2-6 BHRF1
BHRF1-miRNAs v-snoRNA Cell Type/

Tumor Type

0 + + Memory B-cell

I + + + BL/GC B-cell

II + + + + HD/NPC/DLBCL

III + + + + + + + PTLD/LCLs

Abbrevations: BL: Burkitt’s lymphoma; GC: germinal center; HD: Hodgkin’s disease; NPC: nasopharyngeal
carcinoma; DLBCL: diffuse large B-cell lymphoma; BART: BamHI rightward transcript; BHRF1: BamHI rightward
open reading frame 1; PTLD: post-transplant lymphoproliferative disease; LCL: lympoblastoid cell line.

Multiple sclerosis (MS) appears to be a multi-factorial disease [66], with EBV being
the indispensable trigger [67]. The infection of adolescents or adults may lead to infectious
mononucleosis [68], which increases two-fold the probability for the subsequent induction
of multiple sclerosis [69]. Elevated antibody titers to the EBV nuclear antigen 1 (EBNA-1)
often precede the onset of MS [70]. Cross- reactive antibodies to EBNA-1 acerbate the
immune reaction to glial cells [71]. Vitamin D deficiency also plays an important role in
MS [72]. EBNA-1 binds CK2, which might interfere with the maintenance of vitamin D
levels in the infected cells. Elevated levels of CK2 are not only found in many types of
cancer but may function in reducing the levels of the cancer-preventing vitamin D [73].

The infection with EBV, at least as a cofactor in the induction and possibly the main-
tenance in the various tumors, may be assumed: nasopharyngeal carcinoma has a strong
geographic and viral (EBV) component as virtually all undifferentiated NPC are EBV
positive [74]. The presence of EBV in various tumors of B- and T-cells as well as ones of ep-
ithelial origin has been established [75]. First detected in endemic Burkitt’s lymphoma, EBV
was subsequently found in various lymphoma such as Hodgkin’s disease (HD), diffuse
large B-cell lymphoma (DLBCL), and in virtually all cases of nasal/NK T-cell lymphoma
(NKTL) [76]. The virus is also present in about 15% of gastric carcinoma (GC) cases, which
are as NPC of epithelial origin [75].

In vitro, EBV readily transforms resting B-lymphocytes into permanently growing cell
lines (LCLs), which express the full complement of so-called “latent” genes [77], including
the BART and the BHRF1 miRNAs. These lymphoblastoid cell lines (LCLs) are the in vitro
complement of the PTLDs that occur in immune-compromised patients. Depending on
the type of tumor, different latent genes are expressed. In Burkitt’s lymphoma (BL, latency
I), EBNA-1 is the only detectable EBV protein in addition to the non-(protein)-coding
EBER RNAs and the BART microRNAs. A possible direct role in tumorigenesis has
been suggested by the induction of EBNA-1-bearing tumors in transgenic mice [78], a
supposition that was challenged, however, by a subsequent report that used the same
mouse strain [79]. The EBER transcripts are present in all EBV-positive tumors and inhibit
interferon-α-mediated apoptosis, possibly via the phosphorylation of eukaryotic initiation
factor α (eIF2α) by PKR [80]. The proposition that interferon synthesis was inhibited
via EBER/PKR was, however, subsequently challenged [81]. EBV encodes 44 miRNAs
(http://www.mirbase.org/index.shtml, accessed on 2 November 2022), only five of which
are present in the fully transforming B95.8 strain [82]. Deletion of the three BHRF1 miRNAs
from B95.8 results in a virus with a 20-fold reduction in transformation capacity [83]. The
EBV-encoded miRNAs target genes that are implicated in proliferation, apoptosis and cell
transformation and in targeting viral gene products in order to escape from the cellular
immune response [84].

http://www.mirbase.org/index.shtml
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The EBV early protein EB-2, also known as BMLF1, Mta or SM protein, is expressed in
the initial phase of lytic replication [85,86].

3. Phosphorylation of EBV Proteins by Protein Kinase CK2

Epstein–Barr nuclear antigen 1 (EBNA-1) is required for the replication of the EBV
genome as an extra-chromosomal element and is a key transcriptional regulator of EBV la-
tent gene expression [87]. EBNA-1 is indispensable for the immortalization of B-lymphocytes
and is present in all EBV associated tumors [88]. The EBNA-1-mediated disruption of PML
bodies is an important factor for the development of gastric cancer [89] and nasopharyngeal
carcinoma (NPC) [90]. Through affinity chromatography and tandem affinity purification
(TAP), each CK2 subunit was found to associate with EBNA-1 [91]. Sivachandran et al.
showed that EBNA-1 binds to the CK2β subunit and CK2α appears to be tethered via
CK2β to EBNA-1 [92]. A KSSR motif on the polypeptide chain of CK2β near the CK2β
dimerization domain represents the interacting sequence for the binding to EBNA-1 [93].
EBNA-1 is a phosphoprotein [94,95]. It contains at least three putative CK2 phosphory-
lation sites. To our knowledge, CK2 phosphorylation of EBNA-1 has not been shown so
far. One might speculate that EBNA-1 targets CK2 to other cellular proteins to induce
their phosphorylation.

One of the target proteins appears to be the promyelocytic leukemia nuclear bodies
(PML-NB). EBNA-1 disrupts the tumor-suppressive PML-NB, leading to an impaired DNA
repair and an increased cell survival [96]. EBNA-1 and in particular its association with
CK2, is necessary for the disruption of PML-NB by degradation of the PML proteins
upon phosphorylation [97,98]. CK2 phosphorylates PML at serine 517, which leads to
its polyubiquitylation and degradation [97,98]. Phosphorylation of EBNA-1 at the CDK
phosphorylation site serine 393 [99] is critical for the interaction of EBNA-1 with PML
proteins as well as for their degradation [93]. EBNA-1 mutants, which are defective for the
binding of CK2 had a decreased ability to induce PML degradation.

EBNA1 is essential for the maintenance of the viral episome. In the dividing tumor cell,
the viral DNA is replicated synchronously with the cellular DNA and evenly distributed to
the daughter cells via EBNA-1, which tethers the viral DNA to the mitotic cellular DNA.
Phosphorylation of serine(s) next to a stretch of methylated arginines within an arginine–
glycine (RG) repeat is important for the segregation of the viral genome to the daughter
cells during mitosis [100].

In 1992, EBNA-2 was identified as a substrate for CK2 and the phosphorylation
sites were found to be serine 469 and serine 470 [101] (Table 2). EBNA-2 binds to the
heterogeneous ribonucleoprotein –K (hnRNP-K) and this binding leads to an enhanced
expression of LMP2A [102]. Interestingly, hnRNP-K also interacts with CK2β and the
immediate-early protein 2 of human herpes virus 6 (HHV-6) [103]. Herpes virus-1 (HSV-
1) infection stimulates the CK2 activity and the redistribution of CK2 from the nucleus
to the cytoplasm. Furthermore, CK2 is complexed with the immediate-early protein
IE63, also known as ICP27, of HSV-1. Likewise, CK2 binds and phosphorylates hnRNP-
K [44,104,105]. It would be an interesting question whether EBV infection would also
stimulate CK2 kinase activity, cytoplasmic localization and phosphorylation of hnRNP-K.
The RG-repeat of EBNA-2 confers binding to EBNA-2-regulated promoters [106–108]. It
is therefore possible that DNA binding of both, EBNA-1 and EBNA-2, is regulated by
simultaneous phosphorylation and arginine methylation.

The latent membrane protein 1 (LMP1), expressed in type II and III latency, is a trans-
forming protein ([109] and reviewed in [110]) (Table 1). LMP1 consists of 386 amino acids. It
is an integral membrane protein with a C-terminal cytoplasmic tail, which is engaged in in-
tracellular signal transduction [111]. The C-terminus contains two trans-activating regions
(CTARs), one is located between amino acids 194–232 (CTAR1), which also harbors the CK2
phosphorylation sites and which is known to activate the NF-κB signaling pathway [112]
and the PI3K/Akt pathway [113]. Chi et al. reported that CK2 phosphorylates LMP1 at
least in vitro [92] (Table 2). Using bacterially expressed fragments of LMP1 revealed that
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the C-terminus harbors CK2 phosphorylation site(s). Later, serine residues at position 211
and 215 of LMP1 were determined as substrates for CK2 in vitro [114]; at least serine 215 of
LMP1 was also found to be phosphorylated in human cell lines. The observation that serine
211 is only phosphorylated in the presence of phospho-serine 215 points to a hierarchical
phosphorylation, which was reported for other proteins by Litchfield and co-workers [115].
The functional consequence of the CK2 phosphorylation of LMP1, however, remains to
be elucidated.

The ZEBRA protein, also known as EB-1, Zta or BZLF1, is another EBV-encoded protein
which plays a role in the disruption of viral latency and the initiation of the viral lytic
cycle [46]. ZEBRA, a member of the bZIP family, binds to DNA to initiate viral replication
where it functions as a transcription factor. It is a multifunctional protein that also binds to
cellular and viral proteins. Serine 167 and serine 173 were mapped as in vivo and in vitro
CK2 phosphorylation sites [116,117] (Table 2). By mutating the CK2 phosphorylation sites
into alanine and also through the inhibition of the CK2 kinase activity, it was shown that
the CK2 phosphorylation of ZEBRA leads to impaired DNA binding activity [116,118].

The EBV early protein 2 (EB-2, also known as BMLF1, Mta or SM) is responsible for
the nuclear export of a subset of early and late viral mRNAs and for the production of
infectious viruses [119]. EB-2 was detected as a phosphoprotein in EBV-infected cells. It can
be phosphorylated by CK2 at least in vitro [120]. Furthermore, MALDI-TOF analysis and
co-immunoprecipitation experiments showed that CK2α and CK2β subunits co-purify with
EB-2. Mutant analysis with EB-2, where the CK2 phosphorylation sites were replaced by
non-phosphorylatable alanine residues, revealed that the CK2 phosphorylation of at least
one of the serine residues 55, 56 and 57 of EB-2 is critical for the production of infectious
virus [121,122] (Table 2).

Table 2. CK2 phosphorylation of EBV proteins.

Protein Phosphorylated Amino Acid Reference

EBNA-2 469, 470 [101]
LMP1 211, 215 [92,114]

EB-1 (ZEBRA) 167, 173 [116,117]
EB-2 (SM) 55, 56, 57 [121]

4. CK2 and Cellular Proteins in the Balance between Lytic EBV Virus Replication and
Cell Transformation
4.1. Ikaros and the Switch from EBV Latency to Lytic Replication

Ikaros is a zinc finger, DNA-binding transcriptional regulator [123]. Functions of
Ikaros are regulated by post-translational modifications such as phosphorylation and
sumoylation [124–127]. CK2 phosphorylates Ikaros at multiple sites [128–130]. In particular,
the N-terminal CK2 phosphorylation of Ikaros reduces its DNA binding affinity and
thereby its transcription factor activity [131]. The role of CK2 in the regulation of the
transcriptional activity of Ikaros has very recently been reviewed by Bogush et al. [132].
It was shown that Ikaros plays a role in the maintenance of viral latency in EBV-positive
Burkitt’s lymphoma [133]. So far it has not been directly shown, but it is tempting to
speculate, that the CK2 phosphorylation of Ikaros might play a role in the Ikaros-mediated
switch from latency to lytic replication of EBV.

4.2. CK2 Binding Cellular Protein ARKL1 and the Regulation of EBV Replication

EBV maintains a life-long infection in humans through a switch between a latent and a
lytic replication cycle [68]. The ARKADIA-like-1 (ARKL1) protein acts as a negative regula-
tor of EBV reactivation for a lytic infection by interacting with c-jun. The silencing of CK2β
abrogates the ARKL1 c-jun interaction and thereby EBV reactivation [134]. This function is
explained by the fact that EBNA-1 binds to the same KSSR motif in the polypeptide chain of
CK2β rather than ARKL1 [93]. There is increasing evidence that ARKL1 has a more general
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anti-viral function because it was shown that it also inhibits influenza virus infection [135]
and human T-cell leukemia virus type 1 (HTLV-1) infection [136].

4.3. CK2 and the Autoregulatory Loop between NF-κB, BARTs and LMP1

BARTs are expressed in all types of EBV-infected cells and in EBV-associated tu-
mors [137,138]. High levels of BARTs are associated with the maintenance of the oncogenic
state of NPC. The NF-κB family of transcription factors plays an essential role in inflamma-
tion and cancer initiation and progression [139]. Several members of the NF-κB activation
cascade are phosphorylated by CK2 and thereby activated for transactivation [140]. NF-κB
regulates the expression of BARTs, which repress LMP1 expression. Furthermore, LMP1 is
implicated in the activation of the NF-κB signaling cascade. This autoregulatory loop seems
to regulate the balance between lytic proliferation and cell transformation [141] (Figure 1).
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pathway. As an activated transcriptional regulator, NF-κB increases the expression of BARTs and the
expression of genes implicated in cell survival, proliferation and migration.
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5. Common Targets of EBV and CK2
5.1. EBV, CK2 and the NF-κB Pathway

EBV is thought to exert its oncogenic potential via different cellular signaling path-
ways, including the NF-κB signaling pathway [142]. LMP1 enhances the NF-κB signaling
and activates NF-κB transcription factor activity [65]. NF-κB is a transcription factor com-
plex consisting of p50, p52, RelAp65, RelB and RelC subunits. For the immortalization
of EBV-infected cells, LMP1 activates RelAp65 to bind to the human telomerase reverse
transcriptase (hTERT) to activate telomerase and thereby induce EBV-mediated immor-
talization. It has been known for quite some time that CK2 regulates the NF-κB pathway
through the phosphorylation of several components of this pathway, such as RelAp65, IκB,
IKK2 and NF-κB [143–147] (Figure 1). In the nucleus, CK2 binds to and phosphorylates
RelAp65 at serine 529 [148]. The CK2 phosphorylation of IκB promotes its degradation
and thereby NF-κB activation. In vitro phosphorylation experiments have shown that
CK2 phosphorylates IKK2. The inhibition of CK2 kinase activity with apigenin- or siRNA-
targeting CK2β completely inhibited IKK2 phosphorylation [149] and NF-κB activity. The
incubation of IKK2 with recombinant CK2α leads to an increased activity of IKK2 for the
phosphorylation of serine 32 and serine 36 in the N-terminus of IKBα. On the other hand,
CK2 promotes the IKK-mediated activation of NF-κB [149]. As mentioned above, LMP1 is
phosphorylated by CK2 [92,114]. It remains, however, to be elucidated whether the CK2
phosphorylation of LMP1 is necessary for the stimulation of the NF-κB signaling cascade
(Figure 1).

5.2. EBV, CK2 and the PI3K/Akt Pathway

Another signaling pathway that is implicated in EBV-mediated cell transformation is
the PI3K/Akt signaling pathway (Figure 2). LMP1 and LMP2A activate PI3K [150,151]. The
PI3K/Akt signaling pathway plays a major role in cancer development [152]. PI3K is upstream
regulated by the phosphatase and tensin homologue (PTEN) and regulates downstream Akt
kinase, also known as protein kinase B (PKB). PTEN converts phosphatidylinositol-3,4,5-
triphosphate (PIP3) into phosphatidylinositol-4,5-bisphosphate (PIP2). CK2 phosphorylates
PTEN at serine 370, serine 380, threonine 382, threonine 383 and serine 385, which results
in an increase in PTEN protein stability [153]. Miller et al. found that serine 370 and serine
385 are the main CK2 phosphorylation sites, which are responsible for the inhibition of
the phosphatase activity of PTEN for its substrate PIP3 and the inhibition of the caspase-3
cleavage of PTEN [153,154]. Thus, CK2 phosphorylation of PTEN leads to an elevated
protein stability of PTEN and PTEN inactivation [155]. The inhibition of CK2 by CX-4945
reverses PTEN stabilization, which leads to an elevated cell death by an inhibition of the
PI3K/Akt pathway. CK2 phosphorylates GSK3β, which also phosphorylates PTEN [156] in
a cooperative way; i.e., CK2 phosphorylation at serine 370 strongly enhances the subsequent
phosphorylation at threonine 366 by GSK3β [157]. The threonine 366 phosphorylation
leads to destabilization of PTEN. However, this appears to be a cell type specificity of
the phosphorylation events [157,158]. Akt phosphorylates GSK3β and this results in an
inhibition of GSK3β (Figure 2).
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The EBV-mi-Bart7-3p is highly expressed in nasopharyngeal carcinoma (NPC) and
positively correlated with lymph node metastasis and the clinical stage of NPC [159]. miR-
Bart7-3p promotes the transition from the epithelial to the mesenchymal phenotype by
regulating PTEN/PI3K/Akt, GSK2β, Snail and β-catenin. Snail is tightly regulated at
the transcriptional and post-transcriptional levels. The GSK3β phosphorylation of Snail
regulates Snail protein stability and nuclear export [160]. Furthermore, CK2 in vitro and
in vivo phosphorylates Snail at serine 92. By using a yeast two hybrid screen, pull-down
assays and co-immunoprecipitation analysis, CK2 was identified as a binding partner of
Snail. By replacing serine against the non-phosphorylatable alanine, it was shown that
the CK2 phosphorylation at serine 92 of Snail is required for the efficient transcriptional
repression of E-cadherin. Furthermore, serine 92 phosphorylation appears to increase Snail
degradation [160] (Figure 2).

Furthermore, LMP1 downregulates the expression of PTEN by enhancing the expres-
sion of miR-21, thereby activating the PI3K/Akt pathway [161]. LMP1 also activates the
PI3K/Akt pathway and the HIF1α signaling in EBV positive nasopharyngeal carcinomas
(NPCs) facilitating vascularization of the tumor [162]. LMP1 interacts with the p85 subunit
of PI3K, which leads to an activation of src. Src enhances the activity of the interferon
regulatory factor 4 (IRF4) and thereby promotes cell transformation [163].

5.3. EBV, CK2 and the Wnt/β-Catenin Pathway

Wnt signaling is another pathway which is implicated in the EBV-induced cell transfor-
mation [164] (Figure 3). Activation of the Wnt signaling pathway leads to an increase in cell
survival and a reduction in apoptosis [85]. CK2 is implicated in Wnt signaling through its
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association with and its phosphorylation of Dishevelled (Dvl), which is in a multi-protein
complex containing β-catenin. CK2 phosphorylates β-catenin and thereby promotes its
stability and translocation into the nucleus [165,166]. The inhibition of CK2 by TBBt leads
to an even intracellular distribution of Dishevelled and inhibits a further phosphorylation
by CK1ε and thereby an activation of TCF/LEF-mediated transcription [167] (Figure 3).
Moreover, CK2 phosphorylates Akt at serine 129 [18,168,169]. This CK2 phosphorylation
appears not to be an on or off signal but to increase the activity of the Akt kinase. CK2
phosphorylation at serine 129 hyperactivates Akt for the phosphorylation of β-catenin at
serine 552, which promotes its nuclear accumulation and transcriptional activation. In
addition, CK2 itself phosphorylates β-catenin at threonine 393, which protects β-catenin
from proteasome-dependent degradation and increases its transcriptional activity [165].
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CK2 phosphorylates and activates Wnt, Dishevelled and β-catenin to promote cell proliferation and
a reduction in apoptosis.

5.4. EBV, CK2 and the Janus Kinase/Signaling Transduction and Transcription Activator
(JAK/STAT) Pathway

The tyrosine kinases of the JAK family are either activated by growth factors and
cytokines or as the result of mutations [170]. In EBV-positive diffuse large B-cell lymphoma
(DLBCL), there is some indication that the JAK/STAT pathway is activated [171]. LMP1
appears to trigger the JAK/STAT pathway by the regulation of the JAK3 expression as well
as the phosphorylation of STAT [172]. CK2 is an interaction partner of the JAKs and essential
for the activation of the JAK/STAT pathway [170]. CK2 phosphorylates STAT1 [173] and
STAT3 [174] and also JAK2 and JAK3 [170], which results in an amplification of cytokine
signals [170,175]. CK2 itself is under the control of STAT3 [176], which might indicate an
auto-regulatory loop. Co-immunoprecipitation experiments have revealed that CK2α and
CK2β bind to JAK1 and JAK2. The expression of cytokine signaling 3 (SOCS-3) is inhibited
by siRNA technology targeting CK2 or by pharmacological inhibition of the enzyme activity
of CK2 [170] (Figure 4).
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6. EBV-Encoded LMP1 Protein and p53

p53 is a tumor suppressor which regulates the eukaryotic cell cycle and apoptosis (for
review see: [177]). Since viruses depend on host cells for their replication, the guardian of
the genome p53 [178] plays a central role in the host defense against a virus infection [179].
It was shown that an EBV infection interferes with cell cycle checkpoint control [180,181]
and affects p53 stability [180,182]. There was a controversy whether LMP1 represses
DNA repair by p53 and inactivated the transcriptional activity of p53 [183] or whether it
activates p53 transcriptional activity and increases the stability of p53 through multi-sites
phosphorylation [184,185]. In another study, it was shown that the overexpression of
LMP1 led to a poly-ubiquitination of p53 followed by a decrease in p53 levels [186]. p53
is phosphorylated by different protein kinases, including CK2, and it is associated with
CK2 [187–190]. The phosphorylation of p53 by CK2 at serine 392 leads to the stabilization
of p53 protein [191], indicating that this phosphorylation might counteract LMP1 activity.

7. Conclusions

In the present review, we demonstrated that protein kinase CK2 is strongly implicated
in the regulation of EBV viral replication, in persistent infection and in cell transformation
leading to cancer. These different functions are achieved through the phosphorylation of
virally encoded proteins as well as through the phosphorylation of cellular proteins, which
are regulators of cellular signaling pathways such as the NF-κB, PIP3/Akt, JAK/STAT, and
Wnt/Dishevelled/β-catenin signaling pathways. CK2 and EBV act on the same cellular
signaling pathways. It remains to be elucidated whether and how EBV hijacks CK2 to
influence these different signaling pathways for neoplastic transformation. The binding of
CK2 subunits to viral and cellular proteins might reflect an enzyme–substrate interaction.
Alternatively, the interactions might target CK2 to other substrates. Since a great number of
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different CK2 kinase inhibitors are now known, some of which have already been used to
inhibit signaling pathways, these inhibitors are promising tools for the inhibition of virus
replication as well as of virally induced cancers. Very recently, CK2 was found to play a
role in SARS-CoV-2 infections [45]. The knowledge of the role of CK2 in EBV infection
might also help to find new strategies to fight COVID-19 [192].
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Glossary

BARF1 BamHI-A rightward open reading frame 1
BARTs BamHI-A rightward transcripts
BZLF1 or ZEBRA or EB-1 or Zta BamHI-Z EBV replication activator
BL Burkitt’s lymphoma
DLBCL Diffuse large B-cell lymphoma
PKR Double-stranded RNA-dependent protein kinase
EBER Epstein–Barr encoded small RNA
EBV Epstein–Barr virus
EBNA Epstein–Barr virus nuclear antigen
GC Gastric carcinoma
HCV Hepatitis C virus
HSV Herpes simplex-1 virus
HD Hodgkin’s disease
HCMV Human cytomegalovirus
HIV Human immunodeficiency virus
HTLV-1 Human T-lymphotropic virus type 1
JAK Janus kinase
LMP Latent membrane protein
MS Multiple sclerosis
NKTL Nasal NK/T-cell lymphoma
NPC Nasopharyngeal carcinoma
NF-kB Nuclear factor kappaB
PI3K Phosphatidylinositol-3-kinase
PTLD Post-transplant lymphoproliferative disease
Akt Protein kinase B, also known as Akt
CK2 Protein kinase CK2
PKC protein kinase C
SARS-CoV-2 Severe acute respiratory syndrome coronavirus type-2
STAT Signal transducer and activator of transcription protein
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