

Software Parametrization of
Feasible Reconfigurable Real-time

Systems under Energy and
Dependency Constraints

Dissertation zur Erlangung des Grades des Doktors der

Ingenieurwissenschaften der Naturwissenschaftlich-Technischen

Fakultät der Universität des Saarlandes

&

Tunisia Polytechnic School

University of Carthage

von

Aicha GOUBAA

Saarbrücken

2022.

Tag des Kolloquiums: 14.12.2022

Dekan: Prof. Dr. Jörn Walter

Vorsitz: Prof. Dr. Dietrich Klakow

Berichterstatter: Prof. Dr. Georg Frey

Prof. Dr. Mohamed Khalgui

Prof. Dr. Luis Gomez

Akademischer Beisitzer: Dr. Klaus Schumacher

Weitere Mitglieder: Prof. Dr. Sofiene Ouni

I dedicate this work to My dear parents Mohamed and Saida,
My two brothers Ayoub and Chokri,

My two sweets sisters, Amel and Besma,
My beloved husband Fethi,

My two young men, I loved more than any other, my sons Haroun and Yaakoub,
My friends and family, for their endless love, support and encouragement.

i

Acknowledgement
With immense pleasure and deep sense of gratitude, I would like to thank my su-
pervisor Mr. Mohamed KHALGUI, professor at INSAT-University of Carthage,
who guided my first steps on the difficult road of research, for his motivation and
continuous encouragement in the course of the elaboration of my thesis.

I am also very grateful to my co-supervisor Mr. Georg FREY, Professor at Saar-
land University, for his constant support, availability, and constructive suggestions,
which were determinants for the accomplishment of the work presented in this thesis.

ii

Abstract
Enforcing temporal constraints is necessary to maintain the correctness of a real-
time system. However, a real-time system may be enclosed by many factors and
constraints that lead to different challenges to overcome. In other words, to achieve
the real-time aspects, these systems face various challenges particularly in terms
of architecture, reconfiguration property, energy consumption, and dependency
constraints. Unfortunately, the characterization of real-time task deadlines is a
relatively unexplored problem in the real-time community. Most of the literature
seems to consider that the deadlines are somehow provided as hard assumptions,
this can generate high costs relative to the development time if these deadlines are
violated at runtime. In this context, the main aim of this thesis is to determine the
effective temporal properties that will certainly be met at runtime under well-defined
constraints. We went to overcome these challenges in a step-wise manner. Each time,
we elected a well-defined subset of challenges to be solved. This thesis deals with
reconfigurable real-time systems in mono-core and multi-core architectures. First,
we propose a new scheduling strategy based on configuring feasible scheduling of
software tasks of various types (periodic, sporadic, and aperiodic) and constraints
(hard and soft) mono-core architecture. Then, the second contribution deals with
reconfigurable real-time systems in mono-core under energy and resource sharing
constraints. Finally, the main objective of the multi-core architecture is achieved in
a third contribution.

iii

Kurzfassung
Das Erzwingen zeitlicher Beschränkungen ist notwendig, um die Korrektheit eines
Echtzeitsystems aufrechtzuerhalten. Ein Echtzeitsystem kann jedoch von vielen Fak-
toren und Beschränkungen umgeben sein, die zu unterschiedlichen Herausforderungen
führen, die es zu bewältigen gilt. Mit anderen Worten, um die zeitlichen Aspekte zu
erreichen, können diese Systeme verschiedenen Herausforderungen gegenüberstehen,
einschliesslich Architektur, Rekonfigurationseigenschaft, Energie und Abhängigkeits-
beschränkungen. Leider ist die Charakterisierung von Echtzeit-Aufgabenterminen
ein relativ unerforschtes Problem in der Echtzeit-Community. Der grösste Teil der
Literatur geht davon aus, dass die Fristen (Deadlines) irgendwie als harte Annah-
men bereitgestellt werden, was im Verhältnis zur Entwicklungszeit hohe Kosten
verursachen kann, wenn diese Fristen zur Laufzeit verletzt werden. In diesem Zusam-
menhang ist das Hauptziel dieser Arbeit, die effektiven zeitlichen Eigenschaften zu
bestimmen, die zur Laufzeit unter wohldefinierten Randbedingungen mit Sicherheit
erfüllt werden. Wir haben diese Herausforderungen schrittweise gemeistert. Jedes
Mal haben wir eine wohldefinierte Teilmenge von Herausforderungen ausgewählt,
die es zu lösen gilt. Zunächst schlagen wir eine neue Scheduling-Strategie vor,
die auf der Konfiguration eines durchführbaren Scheduling von Software-Tasks ver-
schiedener Typen (periodisch, sporadisch und aperiodisch) und Beschränkungen
(hart und weich) einer Mono-Core-Architektur basiert. Der zweite Beitrag befasst
sich dann mit rekonfigurierbaren Echtzeitsystemen in Mono-Core unter Energie und
Ressourcenteilungsbeschränkungen. Abschliessend wird in einem dritten Beitrag das
Verfahren auf Multi-Core-Architekturen erweitert.

iv

Résumé
L’application de contraintes temporelles est nécessaire pour maintenir l’exactitude
d’un système temps réel. Cependant, un système temps réel peut être entouré par
des nombreux facteurs et contraintes conduisant à différents défis à surmonter. En
d’autres termes, pour atteindre les aspects temporels, ces systèmes peuvent faire face
à divers défis, notamment en termes d’architecture, de propriété de reconfiguration,
de consommation d’énergie et de contraintes de dépendance. Malheureusement, la
caractérisation des échéances des tâches temps réel est un problème relativement
inexploré dans la communauté du temps réel. La plupart de la littérature semble
considérer que les échéances sont en quelque sorte fournis comme des hypothèses
dures, cela peut générer des coûts élevés par rapport au temps de développement si
ces échéances sont violées à l’exécution. Dans ce contexte, l’objectif principal de cette
thèse est de déterminer les propriétés temporelles effectives qui seront certainement
respectées à l’exécution sous des contraintes bien définies. Nous avons choisi de sur-
monter ces défis de manière progressive. Tout d’abord, nous proposons une nouvelle
stratégie d’ordonnancement basée sur la configuration d’un ordonnancement faisable
de tâches temps réel de différents types (périodiques, sporadiques et apériodiques)
et contraintes (hard et soft) sur une architecture mono-coeur. Ensuite, la deuxième
contribution traite des systèmes temps réel reconfigurables en mono-coeur sous
contraintes de d’énergie et de partage des ressources. Enfin, l’objectif principal de
l’architecture multi-coeur est atteint dans une troisième contribution.

v

Contents

Contents vi
List of Figures ix
List of Tables xi
1 Introduction 1

1.1 Thesis Context . 2
1.2 Thesis Problems . 4
1.3 Thesis Contribution . 6
1.4 Thesis Output Tools: . 10
1.5 Thesis Organization: . 11
1.6 List of Publications: . 11

2 State of the Art 13
2.1 Introduction . 14
2.2 Real-time Systems: Generalities and Definitions 14

2.2.1 Definition of Real-time Systems 14
2.2.2 Classification of Real-time systems 15
2.2.3 Architecture of Real-time Systems 16

2.2.3.1 Hardware Architecture 16
2.2.3.2 Software Architecture 17

2.3 Real-time Scheduling: Context and Analysis 18
2.3.1 Real-time Tasks: Model and Classification 19

2.3.1.1 Tasks Model . 19
2.3.1.2 Real-time Tasks Classification 20

2.3.2 Real-time Scheduling and Analysis 23
2.3.2.1 Priority-based scheduling algorithms 25
2.3.2.2 Migration-based algorithms 27

2.3.3 Synchronization Protocols . 28
2.3.4 Real-time Scheduling of Mixed Task Sets 28

2.3.4.1 Polling Server . 30
2.3.4.2 Deferrable server . 31
2.3.4.3 Total Bandwidth Server 31

2.4 Energy Consumption of Real-time Systems 32
2.4.1 Environmental Energy Sources 33
2.4.2 Energy Storage Devices . 34

vi

Contents

2.4.3 Approaches for Minimizing Energy Consumption 34
2.5 Reconfigurable Real-time Systems 36

2.5.1 Reconfigurability Definition 36
2.5.2 Type of Reconfigurations . 36

2.6 Analysis of Related Works and Discussion 37
2.7 Conclusion . 39

3 Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture 41
3.1 Introduction . 42
3.2 Motivation . 42
3.3 Formalization . 43

3.3.1 System Model . 43
3.3.2 Task Model . 44

3.4 Feasible Scheduling of Periodic, Aperiodic, and Sporadic Real-time
Tasks with Hard and Soft Deadline Constraints: 46
3.4.1 Overview of the proposed methodology 46
3.4.2 New Periodic Server for Serving Soft Aperiodic Tasks: 47

3.4.2.1 NPS Server Configuration: 47
3.4.2.2 Computing Aperiodic Tasks Soft Deadlines: 49

3.4.3 Hard Real-time Constraints Characterization: 49
3.4.4 New Solution for Deadline Calculation of Periodic, Sporadic

and Aperiodic Real-time Tasks 54
3.5 Simulation and Conducted Experimentation 55

3.5.1 Developed Environment: GIGTHIS-TOOL 55
3.5.2 Case Study . 56

3.5.2.1 Parameterizing the NPS server: 58
3.5.2.2 Hard Real-time Constraints Characterization: 58
3.5.2.3 Case Study Results and Evaluation 60

3.6 Discussion . 61
3.7 Conclusion . 63

4 Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture 65
4.1 Introduction . 66
4.2 Motivation . 66
4.3 Formalization . 67

4.3.1 System Model . 67
4.3.2 Task Model . 68
4.3.3 Energy Model . 69
4.3.4 Problems’ Mathematical Formalization 70

4.4 Parametrizing Feasible Reconfigurable Systems Under Real-time,
Energy and Resource Sharing Constraints 71
4.4.1 Overview of the proposed methodology 71
4.4.2 Real-time Based Deadline Computing Solution 73
4.4.3 Energy-Based Deadline Computing with no Starvation Solution 76

vii

Contents

4.4.4 Resource Sharing Based Deadline Computing Solution 78
4.5 Simulation and Conducted Experimentation 81

4.5.1 Developed Environment . 81
4.5.2 Case Study . 84

4.5.2.1 Application of the Proposed Approach 85
4.5.2.2 Case Study Results Evaluation 92

4.6 Discussion . 93
4.7 Conclusion . 95

5 Configuring Feasible Reconfigurable Multi-core Real-time
System with Energy Harvesting and Precedence Constraint 97
5.1 Introduction . 98
5.2 Motivation . 98
5.3 Formalization . 99

5.3.1 System Model . 100
5.3.2 Energy Model . 100
5.3.3 Processor Model . 101
5.3.4 Periodic Task Model . 101
5.3.5 Aperiodic Task Model . 103
5.3.6 Message Model . 106
5.3.7 Problems’ Mathematical Formalization 107

5.4 Efficient Scheduling of Periodic and Aperiodic Tasks Under
Real-time, Energy and Precedence Constraints on Multi-core
Reconfigurable Systems . 108
5.4.1 Overview of the proposed methodology 108
5.4.2 Parameterizing Operating Modes of System 109
5.4.3 Real-time and Energy Feasibility with Precedence Constraints

on Multi-core Processor . 110
5.4.4 New Solution for Deadline Calculation of Mixed Real-time

tasks on Multi-core Architecture under Energy and
Precedence Constraints . 112

5.5 Conducted Experimentation . 113
5.5.1 Presentation of Temperature controller System 113
5.5.2 Application of the Proposed Approach 114
5.5.3 Case Study Results and Evaluation 116

5.6 Discussion . 118
5.7 Conclusion . 119

6 Conclusion 121
6.1 Thesis Context and Problems . 122
6.2 Thesis Contributions and Originalities 122
6.3 Thesis Perspectives . 123

Bibliography 125

viii

List of Figures

1.1 Real-time tasks characterization. 3
1.2 Mixed tasks problem. 4
1.3 Reconfigurability problem. 5
1.4 Energy availability problem. 5
1.5 Task dependency problem. 5
1.6 The main problem. 6
1.7 First contribution. 7
1.8 Second contribution. 8
1.9 Third contribution. 9
1.10 Reconfiguration scenario: adding or removing tasks. 9
1.11 Reconfiguration scenario: updating tasks’ execution times. 10

2.1 Real-time system structure. 14
2.2 A schematic visualization of the value of a late computational result

under different real-time systems. 15
2.3 Real-time system architecture. 16
2.4 The categories of hardware architecture. 17
2.5 Different states of a real-time task. 19
2.6 Real-time tasks characterization. 19
2.7 Real-time Tasks Classification. 20
2.8 Example of deadlock. 22
2.9 Example of priority inversion. 23
2.10 mono-core and multicore scheduling . 27
2.11 Illustration of the background processing 29
2.12 Illustration of the periodic server . 30
2.13 Illustration of a polling server execution 30
2.14 Illustration of a deferrable server execution 31
2.15 Energy-harvesting components . 33
2.16 Minimizing Energy Consumption with DPM and DVFS. 35

3.1 Π’s tasks sets. 44
3.2 The two main steps for the first contribution. 47
3.3 Tasks’ execution. 50
3.4 The main interface of GIGTHIS-TOOL. 56

ix

List of Figures

3.5 Case study modelisation. 57
3.6 The calculation results from GIGTHIS-TOOL. 61
3.7 Scheduling of tasks after the execution of the proposed approach. 61
3.8 Rates of deadlines reduction in the case of the proposed approach and in

the case of GSF algorithm. 62

4.1 Example of system model. 69
4.2 Energy model schema. 70
4.3 New methodology of effective deadlines calculation. 72
4.4 The branches of the methodology. 73
4.5 Real-time Based Deadline Computing Solution. 74
4.6 Energy-Based Deadline Computing with no Starvation. 76
4.7 Resource Sharing Based Deadline Computing Solution. 79
4.8 The main interface of DEAD-CALC. 82
4.9 The form to add new system. 82
4.10 Example of the first treatment. 83
4.11 Example of a generated histogram. 83
4.12 RANDOM-TASK generator tool. 84
4.13 Case study modelisation. 84
4.14 Steps of branch 4. 86
4.15 First solution results. 89
4.16 Second solution results. 90
4.17 Third solution results. 91
4.18 Scheduling of implementation I2 after the execution of the first solution. 92
4.19 Scheduling of implementation I2 after the execution of the second solution. 92
4.20 Scheduling of implementation I2 after the execution of the third solution. 93
4.21 Deadlines calculation time in the four branches. 94
4.22 Calculation time of the first solution under a huge number of tasks and

implementations. 94

5.1 Renewabele energy availability. 99
5.2 Operating mode and system implementations. 101
5.3 Overview of the proposed methodology. 109
5.4 Case study modelisation. 114
5.5 Presentation of operating modes. 116
5.6 Evolution of the consumed and produced energy inθ1. 117
5.7 Scheduling of tasks by using deadlines in θ1. 118

x

List of Tables

2.1 Processor architectures . 18
2.2 Scheduling algorithms classification . 24
2.3 Related work overview . 39

3.1 System tasks . 57
3.2 Tasks’ calculated deadlines . 60

4.1 System tasks . 85

5.1 System tasks. 114
5.2 Calculation results. 116

xi

Chapter 1

Introduction

1

1. Introduction

1.1 Thesis Context

Nowaday, real-time systems have an increasingly important in many fields of applica-
tion, such as automotive, robotics, industry or telecommunications [12, 11, 61]. A
real-time system is a system for which the correction depends not only on the accu-
racy of the results, but also on the time at which these results are provided [67, 95].
The main software part of a real-time system consists of computer processes called
tasks. Consequently, to achieve its functionalities, a real-time system may execute
tasks of different types: periodic, aperiodic and sporadic tasks. These tasks can be
independent or dependent where they need to cooperate to achieve their missions.
Each task has to be completed in an interval of certain length, the beginning of the
interval is called release time and the end is called deadline [93], it represents the
time at which specific task has to be completed. A deadline can be (i) hard where its
non-respect is considered as a complete system failure and may cause catastrophic
consequences on the system under control, or (ii) soft where its non-respect decreases
the utility of the system result without causing a complete system failure [68].

In order to verify whether the temporal correctness of a real-time system is valid
or not (whether task executions always complete before their specified deadlines), it
is necessary to perform schedulability analysis. However, a real-time system often
needs to execute jointly the hard periodic tasks set mixed with the dynamically
occurring soft aperiodic tasks [30]. Thus the scheduling problem of mixed task set has
been an essential issue in the design of real-time computing systems. In fact, the task
scheduling algorithms in such systems must satisfy the real-time tasks hard deadlines
and improve response times for soft ones [53]. The main solution to schedule mixed
task set, presented in the literature, is the use of a periodic server, accounted as
a periodic task, to manage aperiodic tasks during its service time. Periodic tasks,
including the server, are scheduled to meet their deadlines.

Further, The main entity to perform a real-time schedule is the scheduler [94, 70].
Thid entity relies on a scheduling algorithm to select the task or job to be executed.
A scheduling algorithm can be: (i) mono-core when it is executed to schedule tasks
on mono-core processor [87], where only one task can be executed at the same time,
or (ii) multi-core when it is executed to schedule tasks on multi-core processor [87],
where multiple tasks can be executed at the same time. In multi-core architecture, a
scheduling algorithms can be classified based on task migration. An algorithm which
denies any task migration is called partitioned scheduling algorithm. On the other
side, an algorithm which allows tasks to migrate at any point during the runtime is
called the global scheduling algorithm.

Such systems need to operate continuously without missing the available energy.
Thus, the management of energy consumption for real-time systems must be consid-
ered. Many solutions were proposed in the literature to solve power supply issues for
real-time systems while powering those real-time systems from a renewable energy
source [103, 2, 79]. Energy harvesting is the technique for collecting energy from

2

1.1. Thesis Context

various environmental sources such as solar, wind, etc. However, this type of energy
is often weak and unstable. Thus, this constraint should be considered as well the
temporal correctness of real-time systems, so that the violation of one of them will
lead to system failure. On the other hand, to reduce the energy consumption of real-
time systems, many techniques were applied in the literature[101], Dynamic Power
Management (DPM)[14] and Dynamic voltage and frequency scaling (DVFS)[62].

Real-time systems often have to interact with their environment that may be
changed over time. Thus, real-time systems must constantly be adapted to their
environment evolution while providing reconfiguration techniques. Hence, the notion
of a reconfigurable real-time system. A reconfiguration is an operation allowing the
system to transform its working process in order to adapt to the environment changes.
More precisely, reconfigurability means the capability of the system to be adapted to
the evolution of its environment while executing an adequate reconfiguration scenario.
In fact, reconfiguration scenario is any operation that consists in adding, removing
or updating hardware or software components [111]. Based on this definition, a
reconfigurable real-time system is considered as a set of implementations where each
implementation is executed by the system after a particular reconfiguration scenario.

Figure 1.1: Real-time tasks characterization.

3

1. Introduction

As a fianl point, the real-time correctness is the most prominent part of real-time
systems feasibility. However, such system may be surrounded and influenced by
several factors as presented in figure 1.1 : i) factors outside the real-time system, i.e.,
external interruptions, source of energy, and ii) factors inside the real-time system,i.e.,
type of architecture, type of tasks and their dependencies, reconfigurability aware.

1.2 Thesis Problems

As mentioned previously, a real-time system is one in which the correctness of the
computations not only depends upon the logical correctness of the computation, but
also upon the time at which the results are produced. Thus, the design of a real-time
system must not only incorporate means to tackle functional complexity, but also
means to analyze and predict temporal properties. Hence, enforcing timeliness
constraints is necessary to maintain the correctness of a real-time system. However,
as indicated previously, a real-time system may be enclosed by many factors that
lead to different constraints. These constraints may affect the execution of the tasks
and may cause some delays in such a way tasks may exceed their deadlines. i.e., may
cause a system failure. Hence, predictability of the system behavior and factors is
an important concern in these systems. The factors that will be considered in this
thesis are:

• Type of tasks: scheduling both periodic, sporadic and aperiodic tasks in real-
time systems is a much more difficult than scheduling a single type of tasks. In
fact, as presented in figure 1.2, the invocation of an aperiodic task may cause
the violation of hard periodic deadlines. Thus, it is a key challenge to address
how to calculate the effective deadlines (hard and soft) of the different mixed
tasks to guarantee that all tasks, with hard deadlines, will always meet their
deadlines.

Figure 1.2: Mixed tasks problem.

• Reconfigurability: Real-time system are employed to assist humans by perform-
ing tasks that require an interaction with the physical world. In fact, these
systems need to modify thier functions to be adapted to environment changes
by adding/removing/updating a hardware/software component. In fact, as
presented in figure 1.3, if the system need to add a periodic task to complete its
treatment, the real-timle corcetness may be violated. Thus, it is a key challenge

4

1.2. Thesis Problems

to address how calculate effective deadlines to guarantee system’s feasibility
under any reconfiguration secenario(adding/removing/updating task).

Figure 1.3: Reconfigurability problem.

• Energy availability: Typically, the harvested energy availability varies with
time, depending on environmental conditions. The uncertain energy harvesting
availability makes the problem of task scheduling more challenging, and may
cause the violation of the energy constraints, i.e., when a real-time software
task execution is incomplete because the required energy necessary to process
its job by its deadline is not available, as presented in figure 1.4.

Figure 1.4: Energy availability problem.

• Task dependency: as presented in figure 1.5, a task may violate its deadline
as it is blocked due to: i) precedence constraint (it waits message from its
successor) or ii) resources sharing (it waits that the resource is unlocked).

Figure 1.5: Task dependency problem.

Thus, In order to ensure a required real-time performance, the designer should
predict the behavior of a real-time system by ensuring that all tasks meet their

5

1. Introduction

hard deadlines while considering the different factors that could infect the real-time
system correctness (architecture, type of tasks, reconfigurability, energy, and tasks
dependency. Unfortunately, the characterization of real-time tasks deadlines is a
relatively unexplored problem in the literature. Moreover, the techniques to calculate
systems’ deadlines are very seldom presented, and they provide limited support to
the designer to forecast real-time properties. Thus, It is a primordial need to have
an effective solution that can provide designers with real-time properties that should
maintain real-time system correctness.
As presented in figure 1.6, we can recapitalize our problems with the fact of how
parameterizing feasible real-time system under all predicted constraints that can
affect the system execution.

Figure 1.6: The main problem.

1.3 Thesis Contribution
Fom the design phase of real-time systems, it would be necessary to be able to
predict the potential of the design retained with regard to the satisfaction of the
temporal requirements. However, there is no tooled engineering methodology to
identify the temporal properties of systems. In fact, the characterization of deadlines
is a relatively unexposed problem in the real-time community. Most of the literature
seems to consider that the deadlines are somehow provided as hard assumptions,
and the designer have to verify if these deadlines are correct or no by performing
many scheduling tests. This may take a lot of time especially with a big number
of tasks and of constants, and generates high costs relative to the development
time, which could be lengthened if it is belatedly realized that the chosen deadlines
may be violated at runtime. Thus, to facilitate the task of a designer, we propose
a new solutions base on identifying the constraints that may affect the real-time
system, and then determining the effective temporal properties that will surely be

6

1.3. Thesis Contribution

met at runtime under different constraints that may affect its correctness. In fact,
we went to overcome these constraints in a step-wise manner. Each time, we elected
a well-defined subset of challenges to be solved and then we parametrize a feasible
real-time system under the given constraints. As a consequence, we propose in this
thesis three contributions, each of which is done offline and works around a subset of
possible constraints that may affect any real-time system. These contributions are
presented below:

• The first contribution focuses on mixed tasks set with hard and soft temporal
constraints executing on mono-core architecture. The proposed approach,
presented in figure1.7, deals with a combination of mixed sets of tasks. First,
this approach builds a New Periodic Server noted NPS to serve aperiodic
tasks, it allows meeting real-time constraints of aperiodic tasks. Second, it
computes deadlines to meet hard deadlines of periodic and sporadic tasks
while considering aperiodic tasks invocations. The proposed approach greatly
improves response times for soft deadline aperiodic tasks and computes hard
deadlines for both periodic and sporadic tasks that ensure system feasibility.

Figure 1.7: First contribution.

• The second contribution focuses on reconfiguration aware, renewable energy,
and resource sharing constraints under mono-core architecture. The proposed
method, presented in figure1.8, consists of three solutions to calculate the
deadlines of tasks. The first serves to compute the deadlines ensuring the real-
time system feasibility and also minimizes the number of context switches by
assigning the highest priority to the task with the smallest maximum deadline.
The second computes the deadlines ensuring the respect of energy constraints,
and the third computes the deadlines ensuring the respect of resource sharing
constraints. These three solutions calculate the possible deadlines of each task
in the hyper-period of the corresponding implementations. In fact, we assume

7

1. Introduction

that the reconfigurable real-time system is defined as a set of implementations,
each of which is encoded by real-time periodic software tasks and executed
under well-defined conditions to adapt the system to any related environment
evolution. We develop a new simulator called DEADCALC that integrates a
new tool called RANDOM-TASK for applying and evaluating the proposed
solutions.

Figure 1.8: Second contribution.

• The third contribution focuses on mixed tasks, reconfiguration aware, renewable
energy, and precedence constraints under multi-core architecture. The proposed
approach, presented in figure1.9, serves to effectively compute deadlines allowing
for tasks and messages to meet related constraints. This method consists of
two phases:

– The first one defines different operating modes each of which is char-
acterized by energy and frequency parameters to cope with the energy
availability issue. In each operating mode, the execution times of tasks are
updated according to the defined processor’s frequency. In other words,
a given implementation is executed by the system after an updating
reconfiguration scenario.

– The second one calculates the deadlines ensuring real-time system feasi-
bility by considering the invocation of aperiodic task execution and task
precedence constraints while considering the communication messages
between cores.

8

1.3. Thesis Contribution

Figure 1.9: Third contribution.

As mentioned above, a reconfiguration scenario consists in the addition, removal
or update of hardware and software components.In this thesis, we focus on the
scenarios of adding removing or updating software tasks. Furthermore, we address
this consideration in two parts:

• First, the reconfiguration is based on adding/removing tasks, as in the case
of the second contribution. Each implementation is encoded by a subset of
real-time software tasks. These tasks always keep their initial parameters.(See
figure 1.10)

Figure 1.10: Reconfiguration scenario: adding or removing tasks.

9

1. Introduction

• Second, the reconfiguration is based on updating tasks (execution time) as in
the case of the third contribution. Each implementation gathers all tasks of the
system. However, the tasks’ execution times differ from one implementation to
another.(See figure 1.11)

Figure 1.11: Reconfiguration scenario: updating tasks’ execution times.

1.4 Thesis Output Tools:

During this thesis, we have developed 3 tools each of which has a specific function:

• GIGTHI-TOOL: is a visual environment that applies the services of the first
proposed methodology to compute and display effective deadlines with few clicks
in arranged tables and short time. For more details concerning the framework
please visit our website https://projects-lisi-lab.wixsite.com/gigthistool.

• DEAD-CALC: is a visual environment serves to apply and evaluate the second
contribution, it allows computing efficiently the deadlines of reconfigurable
real-time devices to run possibly under energy and resource sharing constraints
in all the system implementations. For more details concerning the framework
please visit our website https://projects-lisi-lab.wixsite.com/deadcalc.

• RANDOM-TASK: is a random tasks generator tool, i.e, that allows the user
to fill in the desired number of tasks and then generates randomly a set of
software real-time tasks.

10

https://projects-lisi-lab.wixsite.com/gigthistool
https://projects-lisi-lab.wixsite.com/deadcalc

1.5. Thesis Organization:

1.5 Thesis Organization:

In chapter 1, we present the general context,the problems and the contributions of
the thesis.

In chapter 2, we present the state of the art to describe the current knowledge
about the work throughout this thesis. we introduce several generalities related to
the real-time systems. In addition, the related works on reconfigurable real-time
systems are exposed in both mono-core and multi-core architecture.

In chapter 3, we propose a new approach that configures feasible scheduling of
software tasks of various types (periodic, sporadic and aperiodic) and constraints
(hard and soft) in the context of dynamic priority, preemptive, monocore scheduling.
This approach allows to provide good average response times for soft aperiodic tasks
without compromising the hard deadlines of the periodic ones.

In chapter 4, we propose a new methodology for parametrizing feasible reconfig-
urable systems under real-time, energy and resource sharing constraints. The system
consists of a set of tasks implementing the applicative functions that we assume
periodic and dependent if they share resources. This methodology serves to assign to
each task an effective relative deadline that it will meet in all its implementations.

In chapter 5, we present a new approach that serves to configure feasible schedul-
ing of software tasks with precedence constraints upon a multi-core processor powered
by renewable energy harvested from the environment. This approach ensures that
each core in the multi-core platform satisfies the real-time constraints, in which tasks
must meet their deadlines and have the required energy for their execution.

In chapter 6, we present a summary of our thesis while and restating the research
contributions. We introduce the future improvements to enhance the work proposed
in this thesis.

1.6 List of Publications:

Journal papers:

• Aicha Goubaa, Mohamed Kahlgui, Frey Georg, Zhiwu Li, MengChu Zhou.
(2020). Scheduling periodic and aperiodic tasks with time, energy harvesting
and precedence constraints on multi-core systems. Information Sciences 520 :
86-104 . IF= 5,91

• Aicha Goubaa, Mohamed Kahlgui, Frey Georg, Zhiwu Li, Abdulrahman Al-
Ahmari. (2020). On Parametrizing Feasible Reconfigurable Systems Under
Real-Time, Energy, and Resource Sharing Constraints. IEEE Transactions on
Automation Science and Engineering 18(3): 1492-1504. IF= 5.13

11

1. Introduction

International Conference:

• Aicha Goubaa, Mohamed Kahlgui, Frey Georg, Zhiwu Li: New Approach for
Deadline Calculation of Periodic, Sporadic and Aperiodic Real-time Software
Tasks. ICSOFT 2020, 452-460. (B ranked)

Book Chapter:

• Aicha Goubaa, Mohamed Kahlgui, Frey Georg, Zhiwu Li: Efficient Scheduling
of Periodic, Aperiodic, and Sporadic Real-Time Tasks with Deadline Con-
straints. ICSOFT 2020, 25-43. (Selected paper)

12

Chapter 2

State of the Art

13

2. State of the Art

2.1 Introduction

This chapter is devoted to present several generalities related to the real-time
systems while discussing some basic concepts like task models, scheduling algorithms,
reconfiguration, energy consumption in both mono-processor and multi-processor
architecture. We start by presenting the definition of real-time systems and their
classifications, and we finish this chapter by giving an overview about the existing
approaches and methods in the literature for the synthesis of reconfigurable real-time
systems’ problem.

2.2 Real-time Systems: Generalities and Definitions

2.2.1 Definition of Real-time Systems

Real-time systems are reactive computing systems that react to input events by per-
forming a correct information processing within a specific time interval, the beginning
of the interval is called release time and the end is called deadline [93]. Therefore,
successful completion of a real-time operation depends not only on the value of the
logical result, but also on the response time to which the result is produced [67, 95].
Moreover, real-time systems are subjected to different environmental and resource
constraints like power consumption, cost, resources and memories, etc [72, 45].

As presented in figure 2.1, a real-time system is in permanent interaction with
its external environment, generally represented by a physical process, in order to
control its evolving behavior over time [13]. Such system must be capable of detecting
and reacting to changes in the state of the environment, carrying out processing
operations that make it possible to produce a change of state at the output within a
limited time interval. The interaction of the system with the environment is obtained
by acquiring information from sensors in the form of interruptions, and then reacting
to these interruptions by sending adequate commands via actuators [18, 66].

Figure 2.1: Real-time system structure.

14

2.2. Real-time Systems: Generalities and Definitions

2.2.2 Classification of Real-time systems

Depending on the consequences that may occur because of a missed deadline, three
categories of real-time system can be distinguished [71, 74]:

• Soft real-time system: Such a system considers that missing a time con-
straint (deadline) is acceptable but undesirable [48]. In other words, it is a
system whose operation is degrade if results are not produce according to the
specified timing requirement but without causing serious consequences (see
figure 2.2 curve a). Example: Console hockey game.

• Firm real-time system: Such a system considers that missing a few dead-
lines will not lead to total failure, but missing more than a few can lead to
catastrophic system failure [31, 50] (see figure2.2 curve b). Example: Multime-
dia applications.

• Hard real-time system: Such a system considers that producing results
after a given deadline as a system failure [109, 69], i.e. it is necessary for
the system to respond within the specified delay, otherwise this could lead
to serious consequences (see figure 2.2 curve c). Example: Aircraft systems.
Consequently, a hard real-time system should be predictable, deterministic,
and reliable:

– Predictability: The performance of the real-time application must be
defined in all possible cases in such a way as to ensure compliance with
time constraints in the worst case.

– Determinism: There is no uncertainty about the behavior of the system.
In other words, for a given context, the behavior of the system is always
the same.

– Reliability: In real-time systems, reliability concerns compliance with
real-time constraints.

Figure 2.2: A schematic visualization of the value of a late computational result
under different real-time systems.

15

2. State of the Art

2.2.3 Architecture of Real-time Systems

A real-time system is a combination of computer hardware coupled with proposed
software that operates under time constraints to meet performance criteria [84] (see
figure 2.3).

Figure 2.3: Real-time system architecture.

2.2.3.1 Hardware Architecture

The hardware architecture integrats several complex and heterogeneous components
such as processors (CPUs), communication networks, storage components, memories,
input/output peripherals, etc. As schown in figure 3.2, these different hardware
components interacts together under different manner which leads to three categories
of architecture [89] :

• Monoprocessor architecture: a single processor works to perform system tasks.

• Multiprocessor architecture: multiple processors operate in parallel while
sharing memory, bus, peripherals, computer clock, etc.

• Distributed architecture: A set of nodes each of which is represented as a
mono-processor or a multi-processor architecture and which communicate via
networks and work in parallel without sharing memory.

16

2.2. Real-time Systems: Generalities and Definitions

Figure 2.4: The categories of hardware architecture.

On the other hand, a processor itself can be manufactured using different tech-
nologies. Thus, it can be a single-core processor [100] or a multi-core processor [21],
as presented in the table 2.1:

2.2.3.2 Software Architecture

The software architecture incorporate two main parts as shown in figure2.3:

• Real-time operating system(RTOS): it is an operating system that is used
in real-time applications to obtain real-time output without buffer delay. It
consists of a real-time kernel, which is the vital and central component of a
RTOS. The kernel is responsible for: task management, task scheduling, task
Synchronization, memory management, etc.

• The application program: this software is devoted to execute various functions
to perform a specific treatment. The application program is divided into a set
of tasks, each of which ensures a sequence of instructions to respond to system
needs..

17

2. State of the Art

Table 2.1: Processor architectures

Parameter Single-core processor Multi-core processor
Number of cores It has just one core inside(see

figure below.
It has two or more cores em-

bedded into one integrated circuit
called die (see figure below).

Performance Single Core performance is im-
portant in older applications that
are not programmed efficiently to
use multiple cores.

Multicore processing can
increase performance by run-
ning multiple applications
concurrently.

Memory In single core processor memory
is utilized by itself.

In multi-core processor memory
is shared.

Multitasking Multitasking is not allowed, as a
single-core processor can execute
a single instruction at a time.

Multitasking is allowed, as a
multi-core processor can execute
multiple instructions by using
multiple cores, i.e., run two or
more processes at the same time.

Reliability The software is assigned to a
single core, thus it is unable to
resist faults.

The software is always assigned
to different cores. When one
piece of software fails, the others
remain unaffected.

First, this thesis deals with mono-core processors. Then its contribution is
extended to support multi-core architecture.

2.3 Real-time Scheduling: Context and Analysis

A real-time application is composed of a set of software tasks executed by processors
to achieve specific treatments. Therefore, it is necessary to organize the execution
of tasks over time and manage their competition on the processor. This process
is called real-time scheduling which is performed by a scheduler [94, 70]. In fact,
according to the performance criteria, the scheduler orders for every time interval
the execution of tasks on processor.
In order to perform real-time scheduling analysis, it is important to construct an
analytical model describing the timing behavior of the analyzed system.

18

2.3. Real-time Scheduling: Context and Analysis

2.3.1 Real-time Tasks: Model and Classification

The active entities of a real-time system are their tasks. In fact, a real-time task is
a computation code, i.e. sequence of given operations, that has to be executed by
the processor in order to perform one or many system functions. Each task consist of
an infinite sequence of identical activities, called instances or jobs, that are regularly
activated at a constant rate.

At a given moment, a task can be in different states as shown in the following
diagram presented in figure 2.5:

Figure 2.5: Different states of a real-time task.

2.3.1.1 Tasks Model

In the literature, a task τi is often represented by a time-line diagram, as shown in
figure 2.6, that contains a part of most used properties [63]. Each task τi is assumed
to generate one or more identical instances which are called jobs denoted τij. :

Figure 2.6: Real-time tasks characterization.

19

2. State of the Art

• Release time Ri: it corresponds to the activation date of task τi after its
creation, i.e., the activation instant of the first job of task τi. A task is concrete
if its release time is known. Otherwise, the task is non-concrete.

• Start time Si: The date when the task τi starts its executing on the processor,

• Finish time Fi: The date when the task τi finishes its execution.

• Execution time Ci: The time needed for executing task τi on a processor. In
the majority of real-time scheduling works, this parameter is considered as the
worst-case execution time (WCET) which is the upper bound of all possible
execution times of any job.

• Response time RTi: duration spent by task τi to produce its results.

• Deadline Di: The time at which task τi must finish its execution,

• Period Pi: The execution frequency of task τi.

2.3.1.2 Real-time Tasks Classification

As mentioned previously, a real-time system must react to events from the controlled
environment while executing specific tasks that can be classified according to various
parameters: periodicity, dependency, synchronization and activation as presented in
figure 2.7.

Figure 2.7: Real-time Tasks Classification.

20

2.3. Real-time Scheduling: Context and Analysis

• Periodicity:
Real-time tasks are classified according to their trigger mode, then a task can
be:

– Periodic task: It is activated on a regular cycle, where its instances are
separated by a fixed time interval (period) [52].

– Aperiodic task: It is activated randomly to cope with external events. Its
arrival time and the minimum separation duration between two consecutive
instances are unknown at design time [41].

– Sporadic task: It arrives to the system at arbitrary points in time where
consecutive jobs are separated by a minimum inter-arrival time [38].
In this thesis, we use the following notation:
∗ emphτ0

i is the notation of a periodic task, and it can be written as a
4-tuple (R0

i , C
0
i , P

0
i , D

0
i).

∗ emphτ1
e is the notation of a sporadic task, and it can be written as a

4-tuple (R1
e, C

1
e , P

1
e , D

1
e).

∗ emphτ2
l is the notation of an aperiodic task, and it can be written as

a 3-tuple (C2
l , D2

l).

• Dependency:
In a real-time system, if tasks need to work together to perform a specific
functionality, then they are dependent tasks, else they are independent:

– Independent task set: All tasks are independent from each other, in such
a way they can be executed in any order [22].

– Dependent task set: Dependency between two tasks can be of two types:
∗ Precedence dependency: A task need the result provided by another

one before its execution [73]. Generally, the precedence dependency of
a task-set is represented by a directed acyclic graph DAG where a task
τi precedes τk is represented by τi ≺ τk, and task τi is a predecessor
of task τk (i.e., τk is a successor of task τi). In this case, τk cannot
be executed before τj is finished. In a DAG, a task is represented as
a node and a communication message among two tasks is represented
as an edge [34].
∗ Shared resource dependency: When two or more tasks need to advance
their executions sharing the same software or hardware resource by
using the mutual exclusion algorithm, i.e., this resource cannot be
used by more than one task simultaneously [43]:
· Deadlock: two or more tasks are waiting for each other to be
completed, but neither ever does because each task locks the
resources required by the other task [77]. Example: let us consider
two tasks τ1 and τ2 with priority from low to high are 1 and 2.
These tasks are completely preemptive, and share two resources
R1 and R2. As shown in figure 2.8, we have:

21

2. State of the Art

1. At instant t0, τ1 runs and locks R1.
2. At instant t1, τ2 preempts τ1 and locks R2, and then attempts

to lock R1. Since R1 is already locked, τ2 enters the waiting
state.

3. At instant t2, τ1 resumes execution and attempts to lock R2.
Since R2 is already locked, τ1 enters the waiting state.Thus, τ1
and τ2 can never continue to execute.

Figure 2.8: Example of deadlock.

· Priority inversion: a low priority task preempts a high priority
task for an unbounded time when the shared resource is locked
by the low priority task [5, 76]. Example: let us consider three
tasks τ1, τ2, and τ3, with priority from low to high are 1, 2, 3.
These tasks are completely preemptive, and tasks τ1 and τ3 share
resource a R. As shown in figure 2.9, we have:
1. At instant t0, τ1 runs and locks resource R.
2. At instantt1, τ3 is activated to preempt task τ1 and attempts

to lock resource R.As R is locked by τ1, τ3 enters the waiting
state and τ1 recovers from the preempted instant.

3. At instant instant t2, τ2 is activated and preempts τ1 as τ2
is have a higer priority than τ1, and τ2 executes successfully.
We observe that τ2 has a lower priority than τ3 but actually
preempts τ3. This is the priority inversion.

4. At instant instant t3, τ1 resumes execution and releases R, and
it completes.

5. At instant instant t4, τ3 resumes and locks resource R and
completes execution.

22

2.3. Real-time Scheduling: Context and Analysis

Figure 2.9: Example of priority inversion.

To avoid these problems, several synchronization protocols have been
proposed that will be studied later in this chapter.

At different stages in this thesis, we consider independent tasks, dependent
tasks by resource sharing, and dependent tasks by precedence constraint.

• Synchronization:
Synchronous tasks are activated at the same time, contrary to the asynchronous
ones, where each task has its own release time.

• Activation:
If the system is event-driven, the first activation dates of tasks are unknown,
then tasks are considered non-concrete. Otherwise, if the system is time-driven,
an activation scenario is imposed, then tasks are considered concrete.

In this thesis, we assume that all tasks are concrete and synchronous.

2.3.2 Real-time Scheduling and Analysis

The real-time scheduling refers essentially to the process of deciding how to order the
execution of tasks by the processor [1]. The real-time scheduling theory is classically
based on a set of rules that determines the order in which tasks are executed, called
an algorithm[16].

Based on various criteria, scheduling algorithms can be classified as presented in
table 2.2.

23

2. State of the Art

Table 2.2: Scheduling algorithms classification

Preemptive Non-preemptive
The running task can be in-

terrupted at any time to assign
the processor to another high
priority task ready for execu-
tion.

Once started, a task is exe-
cuted by the processor until
the end of its execution. In
other words, interruption by
another task is allowed and all
scheduling decisions must be
made after the task has fin-
ished executing.

Static Dynamic
Static priority algorithms

are those in which priorities
are considered fixed parame-
ters, and which are assigned
to tasks before they are acti-
vated.

Dynamic priority algorithms
are those in which the priori-
ties are calculated during the
execution time of the system.

Off-line Online
A scheduling algorithm is off-
line if it assumes prior knowl-
edge about arrival times, ex-
ecution times, and deadlines
to construct the sequence on
the entire task set before the
system starts operation.

A scheduling algorithm is
online if scheduling decisions
are is done at run-time based
on the information about the
tasks arrived so far.

Heurestic Optimal
An algorithm is heuristic if it
solves the feasibility problem,
giving a good enough schedul-
ing, rather than finding the
best possible one.

A scheduling algorithm is op-
timal with respect to a system
if it is able to find a feasible
schedule, if one exists.

The main aim of scheduling analysis is to provide conditions and tests that help
designers to determine if the temporal correctness of a real-time system is valid or
not prior to run-time. We define below some properties needed to understand of the
schedulability analysis:

A schedule consists of a list of times at which a set of ready jobs are intended
to take place in the processor.

A scheduler is the entity that is responsible for making a particular schedule[96].

24

2.3. Real-time Scheduling: Context and Analysis

Feasible schedule if every job completes by its deadline while satisfying all
other constraints like resource constraints, precedence constraints, etc.

Feasible task set: a task set is considered feasible if exist an algorithml that
generates a feasible schedule.

Schedulable task set: a task set is considered schedulable with an algorithm
A if A generates a feasible schedule.

Feasibility analysis: determines whether there exists a feasible schedule of
the system where all jobs meet their deadlines irrespective to the used scheduling
algorithm.

Schedulability analysis: determines whether a given scheduling algorithm will
always meet all jobs deadlines.

A feasibility analysis is more general than a schedulability one. As presentend in
figure, a task set at is schedulable according to a specific algorithm, is necessarily
feasible.

The worst-case scenario of task τi: is the configuration of the system to lead
to the Worst Case Response Time of τi denoted WCRTi. A schedulability test can
be obtained by checking if the WCRT of each task is lower than its relative deadline.

Processor demand: over an interval [t1, t2], the processor demand is defined
as the total time needed for completing all jobs having arrival times at or after
time-instant t1, and deadlines at or before time-instant t2.

Task processor utilization: the processor utilization of task τi denoted Ui is
the ratio of time spent in the execution of τi’s jobs. It can be obtained as follows:

Ui = Ci
Pi

(2.1)

System processor utilization: denoted U is the ratio of time spent in the
execution of the whole task set. It is the sum of all tasks of processor utilization. It
can be obtained as follows:

U =
n∑
i=1

Ci
Pi

(2.2)

Hyper-Period (HP): the hyper-period of a task set is the smallest interval of time
after which the global periodic jobs of all the tasks are repeated [83]. It is defined as
the Least Common Multiple (LCM) of the periods of all the tasks of the system.

2.3.2.1 Priority-based scheduling algorithms

Many scheduling algorithms are priority-based, they are used to define a priority
assignment strategy, i.e., define an order of ready tasks. Thus, a task with the highest
priority will be selected by the scheduler to be executed.

25

2. State of the Art

We present below the priority-based scheduling algorithms most often encoun-
tered in the literature.

Static priority algorithms:

• Rate Monotonic(RM): This algorithm was introduced by Liu and Layland in
1973 [64]. It is a preemptive scheduling algorithm that applies to periodic
independent tasks. The priority of a task is proportional to its period, i.e. the
smaller the period of a task, the higher its priority. This algorithm is optimal
in the class of algorithms with fixed priorities for independent preemptive tasks.
A sufficient condition for the schedulability of the algorithm RM for a set of n
periodic tasks is given by:

U ≤ n(2
1
n − 1) (2.3)

where U is the processor utilization.

• Deadline Monotonic(DM): Although RM is optimal in the class of periodic tasks
with deadlines are equal to periods, this is no longer the case when the deadlines
are less than the periods. To resolve this issue, an algorithm named Deadline
Monotonic (DM) was proposed by Leung and Whitehead in [56]. Indeed, the
priority of a task is inversely proportional to its deadline, i.e., the smaller the
deadline of a task, the higher its priority. This algorithm is optimal in the
class of preemptive algorithms with fixed priorities for independent preemptive
tasks with deadlines are less than the periods. A sufficient condition for the
schedulability of the algorithm DM for a set of n periodic tasks is given by:

n∑
i=1

Ci
Di
≤ n(2

1
n − 1) (2.4)

Dynamic priority algorithms:

• Earliest Deadline Firs (EDF): it is a dynamic priority scheduling algorithm
for real time systems [64]. Earliest deadline first selects a task according to
its deadline such that a task with earliest deadline has higher priority than
others,i.e., priority of a task is inversely proportional to its absolute deadline.
Since absolute deadline of a task depends on the current instant of time so
every instant is a scheduling event in EDF as deadline of task changes with
time,i.e., priorities are reviewed, if necessary, over time. A sufficient condition
for the schedulability of the algorithm EDF for a set of n periodic tasks is given
by:

U ≤ 1 (2.5)

26

2.3. Real-time Scheduling: Context and Analysis

• Least-Laxity First (LLF): This algorithm selects the task with lowest laxity to
be executed [9]. A sufficient condition for the schedulability of the algorithm
LLF for a set of n periodic tasks is given by:

U ≤ 1 (2.6)

In our work, we have chosen the EDF algorithm as the scheduling algorithm,
view of its optimality and performance.

2.3.2.2 Migration-based algorithms

In general, multi-core scheduling is more complex than mono-core scheduling, as
shown in figure 2.10. In fact, in mono-core scheduling, it is enough to satisfy the
temporal problem, i.e. when to start, interrupt and resume each task. However, in
addition to temporal issue, the multicore scheduling has to solve the spatial one, i.e.,
on which core a task will be executed.

Figure 2.10: mono-core and multicore scheduling

In the case of multicore systems, the scheduling algorithms are classified according
to the allocation issue. The authors in [19] proposed the following classification:

• No migration: This approach considers that tasks are not allowed to migrate
from one core to another. In fact, it statically partitions tasks into disjoint
subsets, each of which is handled on a specific core by a scheduling policy that
can be different from the others.

27

2. State of the Art

• Restricted Migration: This approach allows to different task jobs to run on
different core with the only constraint, that each job only runs on one CPU.

• Full migration: This approach allows to each job to migrate and run on a
different core, but without any parallel execution of the job.

In this thesis, we do not allow task migration and each core receives a subset
statically.

2.3.3 Synchronization Protocols

As mentioned previously, the concurrent accesses of tasks to shared resources may
cause some problems like the deadlock and the priority inversion. In order to avoid
these issues, several synchronization protocols have been proposed [80]. The following
protocols are widely used:

• The Priority Ceiling Protocol (PCP)[81]: is a method for eliminating deadlock
issue. The basic idea of this protocol is to assign a priority ceiling to each
shared resource. This priority is equal to the highest priority of any task that
may lock the resource. Thus, a task can only take a resource if this one is free
and if its priority is greater than the ceilings of all resources currently taken.

• The Priority Inheritance Protocol (PIP)[86]: is a protocol for eliminating the
priority inversion. Thus, if a job blocks one or more high-priority jobs, it would
temporarily inherit the priority of the blocked task (the one with higher priority)
to prevent the execution of intermediate priority tasks while the blocking tasks
owns the critical section. Then, the priority of the blocking tasks returns to its
nominal value when it left the critical section.

• StackResourcePolicy(SRP) [6]:similar to PCP, this protocol uses the concept of
priority ceiling. The SRP protocol allows a task to start executing only when
its own preemption level is higher than the one of the executing task and also
higher than the ceilings of all the resources.

2.3.4 Real-time Scheduling of Mixed Task Sets

A real-time system often needs to execute both periodic and aperiodic tasks to
achieve its functionalities [30]. The scheduling problem for mixed task set (aperiodic
and periodic tasks) is more difficult than the scheduling problem for periodic tasks
[53]. In fact, scheduling algorithms for mixed task set must be able to provide
good average response times for soft aperiodic tasks without compromising the hard
deadlines of the periodic ones. Thus, it is a primordial challenge to work out a
solution that allow to execute aperiodic tasks with a fast average response times
while guaranteeing the hard deadlines of periodic tasks.
A simple way to accomplish this aim is the background processing [55]. In fact,
background execution serves aperiodic tasks as lowest-priority tasks [92]. In other
words, aperiodic tasks can be scheduled and executed only whenever the processor is

28

2.3. Real-time Scheduling: Context and Analysis

idle, i.e. if there are no pending periodic or sporadic tasks. Figure 2.11 illustrates an
example of background execution for tow periodic tasks τ1(period=4, WCET=2),
τ2 (period=10, WCET=2) and an aperiodic task Ap1 (WCET=1). We assume that
the periodic tasks are scheduled according to the RM algorithm, yielding a higher
priority for τ1.

Figure 2.11: Illustration of the background processing

Since background execution occurs when the processor is idle, we observe that
the aperiodic task cannot begin until time = 7. Thus, the response time of the ape-
riodic task is long (equal to 6 units), even it needs only 1 unit of time to be completed.

To overcome these limitations, several important approaches are proposed in the
literature. The basic idea is to serve aperiodic tasks by periodically invoked servers,
which are accounted for in periodic task schedulability analysis [53]. A periodic
server is characterized by a period Ps and a capacity Cs (budget), and it serves
aperiodic tasks until budget expires. As shown in figure 2.12, aperiodic tasks are put
into a queue for the periodic server, then the server takes tasks from its queue for
execution while using its available capacity. The server is scheduled as any periodic
task. We will discuss some aperiodic server scheduling algorithms in what follows.

29

2. State of the Art

Figure 2.12: Illustration of the periodic server

2.3.4.1 Polling Server

This server is used under fixed priority assignments, it consists of creating a periodic
task for servicing any pending aperiodic tasks [54]. At regular intervals equal to its
period Ps, the polling server is instantiated, then it examines the aperiodic tasks
queue to execute the pending aperiodic requests for up to Cs time units when it has
the highest current priority. However, if the aperiodic queue is empty, the polling
server suspends itself until its next period Ps, and gives up its budget. The server
capacity is replenished every period. The major disadvantage of this server lies in its
limited performance if an aperiodic task arrives just after the server has suspended.
In this case, the aperiodic task has to wait until the next period, which causes a
long response time. Figure 2.13 presents an example of polling server execution
for a periodic task τ1(period=4, WCET=2) and a list of aperiodic requests. We
suppose that all aperiodic tasks have execution time equal to 1, and the periodic
server parameters are: Ps = 5 and Cs = 2.

Figure 2.13: Illustration of a polling server execution

The interference by a server task is the same as the one introduced by an equivalent

30

2.3. Real-time Scheduling: Context and Analysis

periodic task in rate monotonic fixed priority scheduling. Thus, a sufficient condition
for the schedulability of n periodic tasks and a server task is given by:

Cs
Ps

+
n∑
i=1

Ci
Pi
≤ (n+ 1)(2

1
n+1 − 1) (2.7)

Where Cs
Ps

is equal to the server utilization factor denoted by Us.

2.3.4.2 Deferrable server

Unlike PS, the deferrable server DS Keeps the balance of the budget until the end
of the period [97]. In other words, aperiodic tasks can be serviced at the server’s
high priority at anytime as long as the server’s capacity for the current period has
not been consumed. Thus, the DF can improve average response times for aperiodic
tasks. Figure 2.14 shows the illustration of the deferrable server execution of the
previous example (done with polling server).

Figure 2.14: Illustration of a deferrable server execution

A sufficient condition for the schedulability of the algorithm RM for a set of n
periodic tasks and a server task is given by:

U ≤ ln Us + 2
2Us + 1 (2.8)

2.3.4.3 Total Bandwidth Server

The total bandwidth server TBS is a dynamic priority server used with EDF[17]. The
main aim of this server is to execute the aperiodic while achieving good aperiodic
responsiveness. When an aperiodic task arrives at time t = rk, it receives a deadline
dk. Once a deadline is assigned, the aperiodic task is inserted in the ready queue
of the processor and scheduled together with the periodic hard tasks. The main

31

2. State of the Art

disadvantage of TBS is that after starting executiion, a task takes more time than
the one declared, which can cause the violation of hard deadlines for periodic tasks.

dk = max(rk, dk−1) + Ck
Us

(2.9)

where Ck is the execution time of the aperiodic task and Us is the server utiliza-
tion factor. By definition, d0 = 0.

A sufficient condition for the schedulability of the algorithm EDF for a set of n
periodic tasks and a server task is given by:

Cs
Ps

+
n∑
i=1

Ci
Pi
≤ 1 (2.10)

2.4 Energy Consumption of Real-time Systems

To perform its tasks correctly, a real-time system needs to consume the adequate
amount of energy for its execution [35, 36, 46]. Hence, monitoring energy consumption
is of critical importance in real-time systems [110, 82]. Exists environmental energy
sources that can be exploited to supply real-time systems with the necessary energy
[113, 10], such energy is defined as energy generated from natural resources like
sunlight, wind, tides, geothermal heat, etc., that are naturally replenished. As a
consequence, energy harvesting technology is required [78, 33]. In fact, this technology
consists of converting energy from the environment into electrical energy and storing
it in an energy storage unit[8]. Such an energy storage unit is needed since a real-time
system have to operate continuously without missing the available energy [24, 26].
However, using renewable energy sources to power these systems makes it more
difficult to schedule real-time tasks and can lead to energy starvation due to its
availability that typically varies with time, depending on environmental conditions.
Thus, the energy consumption constraint must be considered and added to temporal
constraints where scheduling tasks in real-time systems [102]. Therefore, the violation
of one of them will conduct to system failure.
In this case, a job misses its deadline when:

• It reaches its deadline at time t, its execution is incomplete because the time
needed to complete the job by its deadline is insufficient.

• It reaches its deadline at time t, its execution is incomplete because the energy
necessary to process the job by its deadline is not available.

Usually, energy-harvesting technology is composed of three main parts, as described
in figure 2.15,

• The energy harvester is the part in charge of collecting the ambient energy and
converting it into electrical energy.

32

2.4. Energy Consumption of Real-time Systems

• The energy storage unit, such as rechargeable batteries or super-capacitors, is
a device used to store the harvested energy.

• The computing unit is the energy consumer which can be an embedded appli-
cation or a mission part of the system, it is typically composed of data sensors,
a processing unit and a data transmission device.
In this thesis, we assume that the computing unit represents the execution
support of the real-time tasks.

Figure 2.15: Energy-harvesting components

2.4.1 Environmental Energy Sources

The main aim of this subsection is to present some environmental energy sources
[44].

Solar energy: it is simply the light and heat that come from the sun. The
power is collected using photovoltaic cells that transform sunlight into electricity
and can supply different devices.

Wind energy: it describes the process that used to generate electricity from
the wind. The power is collected using wind turbines that convert the kinetic energy
in the wind into electrical energy.

Hydroelectric energy: it works similarly to wind power in that it is used to
spin a generator’s turbine blades to create electricity. This energy is based on fast
moving water in rivers to spin the turbine blades.

Biomass energy: it uses organic material from animals and plants, including
trees, waste wood, and corps. This biomass is used to create heat, that powers a
steam turbine and generates electricity.

33

2. State of the Art

Geothermal energy: it is the heat that comes from the sub-surface of the
earth. This energy source can be made greener by pumping the steam and hot water
back into the earth, thereby lowering emissions.

In this thesis, we work on real-time reconfigurable systems powered by renewable
energy harvested from the environment.

2.4.2 Energy Storage Devices

As mentioned previously, the production of renewable energies strongly depends on
the variable environment conditions (sunlight, wind speed, water availabilit, etc.)[20].
Thus, it seems crucial to store the harvested energy for future use. In fact, there
are two widely used alternatives for energy storage [88] Rechargeable Batteries and
supercapacitors.

Batteries :
They provide a way to power electric devices that cannot be plugged into a mains
supply at all times. Batteries are classified into two categories based on their ability
to be reused: non-rechargeable (primary) and rechargeable (secondary) batteries.
The main difference between them is that rechargeable batteries can be charged
and reused again after have been fully discharged, while non-rechargeable batteries
cannot be charged again once they discharge fully.

Supercapacitors :
They are high-capacity capacitors with a capacitance value much higher than other
capacitors, but with lower voltage limits, that bridges the gap between electrolytic
capacitors and rechargeable batteries. It typically stores 10 to 100 times more energy
per unit volume or mass than electrolytic capacitors, can accept and deliver charge
much faster than batteries, and tolerates many more charge and discharge cycles
than rechargeable batteries.

2.4.3 Approaches for Minimizing Energy Consumption

Energy consumption is a key challenge in the design of real-time systems[101]. There-
fore, there are two popular techniques are applied to reduce energy consumption of
a real-time system presented in figure2.16 Dynamic Power Management (DPM) and
Dynamic Voltage and Frequency Scaling (DVFS).

34

2.4. Energy Consumption of Real-time Systems

Figure 2.16: Minimizing Energy Consumption with DPM and DVFS.

Dynamic power management (DPM) is a control strategy aimed to dynam-
ically adapt the operating mode of a real-time system to its workload in order to
minimize the power consumption under given performance constraints[14]. In other
words, this technique serves to switch from idle mode to active mode and vice versa
according to system activity. Therefore, the processor is temporarily turned off
whenever necessary. For example, at a given instant not all tasks of a real-time
system participate in performing different functions, so it is useful to switch the
unused tasks to the sleep state to reduce power consumption. However, this technique
incurs performance loss because of the overhead associated with shutdowns and
wake-ups. An effective DPM policy must therefore seek to maximize power savings
while keeping performance degradation within acceptable limits [62].

Dynamic Voltage and Frequency Scaling(DVFS) serves to dynamically
change the frequency of the processor when necessary to manage energy consumption[98].
In fact, energy consumption is a quadratic function of frequency, thus the reduction
in frequency value has a significant impact on minimizing energy consumption. This
technique should be applied to processors that allow varying the supply voltage and
thus the operating frequency. However, using this technique may violate real-time
constraint. In fact, the execution time of a task is equal to its number of execution
cycles divided by the operating frequency, thus if the frequency is reduced, the
running job will take longer time to be executed and may violate its deadline. For
example, if the frequency is reduced to half, the task will take twice as long to
execute. An effective DVFS policy must therefore save energy while controlling the
expense of stretching the execution times, so that the temporal constraint can still
be met [3].

In this thesis, we apply the frequency variation technique when necessary to
manage the energy consumption.

35

2. State of the Art

2.5 Reconfigurable Real-time Systems

Real-time software systems need to modify its behavior or its architecture according
to the evolution of the requirements of its context of use and the variation of the
constraints of its execution environment, hence the notion of reconfigurable real-time
system. With the increasing complexity of these systems and the autonomy required
to manage them, the reconfigurability is more important than ever.

2.5.1 Reconfigurability Definition

Real-time systems are highly coupled to the external world and are increasingly
facing changing environmental conditions. That is, during its lifetime, a real-time
system should be adapted to changing environmental conditions and parameters
such as available battery power, varying communication bandwidth, available mem-
ory or faults in software components in order to preserve desired application-level
quality of service while continuously meeting all tasks deadlines. The reconfiguration
technology presents a powerful solution to adapt a real-time system to face envi-
ronmental changes and to perform autonomous behavior. Reconfigurability means
the capability to adapt the system behavior to the evolution of its environment by
applying a reconfiguration scenario by adding, removing or updating hardware or
software components [111]. In other words, reconfiguration is a runtime flexible
scenario that adapts the current system’s implementation to any related environment
evolution under well-defined conditions. More precisely, at a given moment and
under well-defined environmental conditions, only a subset of the system’s tasks will
be executed to achieve the required functionalities.

2.5.2 Type of Reconfigurations

In literature, two policies are defined for the reconfiguration:

• Static vs Dynamic: Static reconfiguration is applied off-line to configure the
system before starting its execution. However, dynamic reconfiguration is
applied on-line when the system is under operation.

• Manual vs Automatic: Manual reconfiguration is needs to be done manually by
user to achieve the system functionality. Automatic reconfiguration is applied
by automatic program or by intelligent agents without manual intervention.

• Hardware vs Software: A hardware reconfiguration is assumed to be any
addition and/or removal of hardware components required to ensure the exibility
of the system. The software reconfiguration is an execution scenario that allows
moving from one implementation to another by adding/removing/updating
software tasks.

36

2.6. Analysis of Related Works and Discussion

2.6 Analysis of Related Works and Discussion

The related and relevant research works are presented in this section. These works
related to our contributions range from static analysis techniques to energy-aware
scheduling of multi-core reconfigurable real-time systems with a mixed set of depen-
dent software tasks, and are further detailed as follows.

Several studies have been done in recent years focusing on real-time systems such
as those reported in [7, 99, 105, 37, 49]. They neither deal with energy and depen-
dency constraints nor with multi-core architectures. Some of them reported in [7]
aim to minimize deadlines on a mono-core processor without considering energy and
dependency constraints. Moreover the rate of deadlines reduction can be improved
compared to the one delivered in the work presented in this thesis. On other hand,
in [28], the authors consider multicore architecture where the tasks are independent
and their deadlines are known.

Task scheduling process is one of the most important objectives for the designing of
the real-time systems as it determines the appropriate and optimal resource utilization
and overall quality of the system [65, 57]. In [51] the authors work on scheduling
independent task with hard real-time constraints and multicore systems, where the
processors can be manipulated to change the clock cycle speed and power levels.
Zhou et al. [114] considered heterogeneous multiprocessors systems with deadline
constraints and reliability. In fact, the authors tried to develop a earliest finish-time
based algorithm for heterogeneous multiprocessor systems to maximize reliability.
However, it didn’t take energy consumption management into account. Some research
contributions have been dedicated to working on reconfigurable real-time systems in
various areas [12, 11, 104]. In [12], the authors proposed a methodology to design safe
reconfigurable medical robotic systems without considering energy and dependency
constraints.

The energy-aware task scheduling is of major importance for the energy-aware
real-time systems. One of the main approaches here is to change the processor’s
scheduling and DVFS frequency in order to ensure energy requirements. Abdel-Basset
et al. [2] proposed an approach to reduce the energy consumption with DVFS tech-
nique while satisfying memory capacity constraints. The work reported in [79] deals
with the minimization of energy consumption on heterogeneous processors. In fact,
it focuses only on energy constraint while calculating the desired minimum energy.
Furthermore, the work reported in [103] considers mixed time criticality levels for
different energy criticality modes, i.e. the energy-constraint may surpass the temporal
constraint when this latter is considered less critical. However, this approach may
cause a catastrophic event in hard real-time systems as they operate within the
confines of a stringent deadline. In addition, the studies in [108, 25, 42, 91, 112]
considered energy-awre scheduling without considering temporal constraints anal-
ysis. In [108, 25, 24, 32] the authors only seek to schedule tasks to respect energy
constraints since deadlines are given beforehand. In these researches, the input is a
defined system with all parameters, and in the output, they verify if the tasks can

37

2. State of the Art

be scheduled with the given deadlines for the purpose of energy consumption or not.

On the other hand, there has been a large body of works trying to optimize
energy as well as guarantee dependency constraints. The works presented on [23] and
[29] investigated the problem of minimizing energy consumption for task scheduling
on heterogeneous multiprocessor systems while meeting the precedence constraints
of these tasks. These researches have received extensive attention in the literature.
However, they considered neither the hard time constraint of tasks nor their types.
Thus, the proposed solutions can affect the reliability of a real-time system with hard
temporal constraints. Moreover, Huang et al. [47] considered dynamic scheduling of
tasks modeled by directed acyclic graphs without considering the time constraint.

Table 2.3 describes the comparison of the work developed in this thesis with
previous related work. Even if the research results of each topic are separately rich,
to our best knowledge, none of these solutions simultaneously considers real-time,
energy, dependency constraints, multi-core architecture, communication messages,
mixed tasks set, and reconfiguration property. The originality of this work is that
it is the first that computes effective deadlines, ensuring the feasibility of real-time
reconfigurable systems while considering:

• The multi-core architecture which deliver higher throughput at energy con-
sumption than mono-core architecture,

• The reconfiguration-aware property to ensure system adaptation to changing
environmental conditions,

• The ability to adjust the frequency of the processor to manage energy con-
sumption,

• The characterization of tasks and messages’ deadlines which will be certainly
respected online,

• The dependency between tasks (by sharing resources or by precedence con-
straints),

• The energy harvested from the environment to power systems to alleviate the
burden of periodic battery replacement.

38

2.7. Conclusion

Table 2.3: Related work overview

Work Mixed
Tasks
Set

Deadline
Calcuta-
tion

Reconfiguration
Property

Multi-
core
Architec-
ture

Energy
Con-
straint

Dependency
Con-
straint

Communication
Mes-
sages
Con-
straint

[28] - - X X X - -
[24] X - - - X - -
[7] - X - - - - -
[49] - X X X X - -
[99] X X - - - - -
[32] X - - - X - -
[114] - X - X - X X

[51] X - - X X - -
[29] - - - X X X X

Our the-
sis

X X X X X X X

2.7 Conclusion
For a better understanding to the presented works in this dissertation, the state of
the art is introduced. We explained the methods that have been used in the literature
to solve the problem of real-time tasks scheduling. We have introduced the real-time
systems, their different classes and their software and hardware architectures. We
talked about the concept of tasks and the related constraints such as real-time,
energy and dependency constraints. Furthermore, we presented the problem of
real-time scheduling under the different constraints on a reconfigurable architecture.
The existing researches and approaches in the literature are studied as complete as
possible. The next chapters will detail our contributions, which are dedicated to
mono and multi-core architectures.

39

Chapter 3

Efficient Real-time Scheduling
Algorithm for Mixed Task Set
on Mono-core Architecture

41

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

3.1 Introduction
The previous chapter discussed various generalities about real-time systems related to
reconfigurability analysis, type of architecture, energy consumption etc. In addition, it
gave an overview of existing methodologies in the literature working on reconfigurable
real-time systems. In this chapter, we cope with three main factors, which are: mixed
tasks set, hard and soft temporal constraints, and the mono-core architecture. In
other words, we propose a new approach that serves to schedule a set of software
tasks with various types (periodic, aperiodic, and sporadic) and constraints (soft and
hard) on mono-core real-time systems.
The outline of the chapter is organized as follows: First, we present the motivation
section. Then, the computational model and the assumptions considered are defined.
After that, we explain in detail our contribution. Furthermore, a formal case study
is also proposed in order to pinpoint the main problem studied in this chapter.Lastly,
the discussion section is presented to analyze and interpret this chapter’s findings.
Note that this chapter has been published in the International Conference on Software
Technologies[39, 38].

3.2 Motivation
Due to temporal perspective, real-time systems design is inherently different from
other forms of systems design. In other words, such design must not only integrate
ways to address functional complexity, but also ways to analyze and predict temporal
constraints.

Real-time systems are found in diverse application areas, including critical control
applications where time-critical control activities should be implemented as hard
periodic tasks. In fact, with hard timing constraints, all task instances must be
guaranteed to complete within their deadlines to deny any catastrophic consequence
on the controlled system. However, hard real-time tasks usually coexist with soft
real-time activities. In fact, these applications, need to serve aperiodic user requests
while executing soft aperiodic tasks that do not need to be guaranteed, but if they
are completed as early as possible, they provide good performance. For example,
in an aircraft control system, turning on/off autopilot mode is an aperiodic event
that demands the closest attention and should be completed as soon as possible.
Therefore, handling soft aperiodic simultaneously with hard periodic and sporadic
tasks is an important aspect in real-time scheduling.

Definitely, working on scheduling different types of software real-time tasks
simultaneously is more difficult than considering a single type of tasks. Consequently,
a designer given an application composed of mixed tasks and constraints has to
predict the behavior of a real-time system by ensuring its feasibility while considering
three main factors:

• the system architecture.

42

3.3. Formalization

• the different type of tasks.

• the type of temporal constraints: hard or soft.

Therefore, the problem to be treated in this chapter is how parameterizing feasible
scheduling of real-time tasks with various types and constraints in the context of
dynamic-priority, preemptive, mono-core scheduling. Thus, the two main goals to be
achieved are

• an aperiodic task must be executed as early as possible without jeopardize the
schedulability of periodic and sporadic tasks.

• a periodic or sporadic job has to meet its deadline using the EDF scheduling
algorithm even in worst-case conditions,i.e., .

In order to solve these issues, we propose a new offline approach that:

• addresses initially the mono-core architecture,

• deals with real-time tasks of various types and constraints simultaneously,

• parameterizes periodic server to execute aperiodic tasks,

• calculates soft deadlines of aperiodic tasks,

• calculates periodic and sporadic tasks hard deadlines which will be certainly
respected online,

• improves response times of aperiodic tasks which can lead to a significant
improvement of the system performance,

• presents new tool called GIGTHIS-TOOL to evaluate the proposed solution.

3.3 Formalization

In this section, we aim to explicit and formalize a real-time system having hybrid
task set. Therefore, we introduce the mathematical expressions that represents the
characteristics of each type of task.

3.3.1 System Model

Let us consider that a real-time system denoted Π is defined as having three task
sets as presented in figure 5.1:

43

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

Figure 3.1: Π’s tasks sets.

• Set of periodic tasks: denoted P, containing n periodic software tasks, i.e., P
= {τ0

1 , ..., τ0
n}. We suppose that all these tasks are activated at t = 0.

• Set of sporadic tasks: denoted S, containing m sporadic software tasks, i.e., S
= {τ1

1 , ..., τ1
m}.

• Set of aperiodic tasks: denoted A, containing o aperiodic software tasks, i.e.,
A = {τ2

1 , ..., τ2
o }.

3.3.2 Task Model

The main aim of this section is to present and describe the parameters and charac-
teristics of each type of task.

• Each periodic task τ0
i , i ∈ [1, ..., n], in P is a 5-tuple (R0

i , C0
i , P 0

i , D0
i , Dmax0

i)
where:

– R0
i is the release time at which τ0

i becomes ready for execution,
– C0

i is the worst-case execution time (WCET),
– P 0

i is the period,
– D0

i is the relative deadline to be calculated,
– Dmax0

i is the maximum relative deadline.

Each periodic task τ0
i produces an infinite sequence of jobs τ0

ij . Each job τ0
ij is

described by:

• a release time r0
ij ,

• a relative deadline d0
ij ,

• end execution time E0
ij .

44

3.3. Formalization

• Each sporadic task τ1
e , e ∈ [1, ...,m], in S is a 5-tuple (R1

e, C1
e , P 1

e , D1
e , Dmax1

e)
where:

– R1
e is the release time at which τ1

i becomes ready for execution,
– C1

e is the worst-case execution time (WCET),
– P 1

e is the period which measures the minimum interval between the arrival
of two successive instances of a task τ1

e ,
– D1

e is the relative deadline to be calculated,
– Dmax1

e is the maximum relative deadline defined by user.

Each sporadic task τ1
e produces an infinite sequence of jobs τ1

ef . Each job τ1
ef is

described by:

• a release time r1
ef ,

• a relative deadline d1
ef ,

• end execution time E1
ef .

• Each aperiodic task τ2
l , l ∈ [1, ..., o], in A is a 2-tuple (C2

l , D2
l) where:

– R2
l is the arrival time which is unknown at design time.,

– C2
l is the worst-case execution time (WCET),

– D2
l is the relative soft deadline to be calculated.

Each aperiodic task τ2
l consists of an infinite sequence of identical jobs τ2

lp;
however, their activations are not regularly interleaved. Each job τ2

lp is described
by:

– a release time r2
lp,

– a relative soft deadline d2
lp,

– end execution time E2
lp.

In a given interval of time, an aperiodic task can arrive in a completely random way.
Thus, we model this number by the Poisson distribution with a parameter λ which is
a discrete probability distribution that expresses the probability of a given number
of events occurring in a fixed interval of time. We note by OC the maximum number
of aperiodic tasks’ occurrences estimated on the hyper-period.

Let us denoted by HP the hyper-period of a set of periodic tasks. It is the least
common multiple of periods of all the tasks in that set.

HP = LCM{P 0
i } (3.1)

For example, two periodic tasks τ0
1 and τ0

2 having periods P 0
1 = 4 and P 0

2 = 5
respectively will have a hyper-period, HP = lcm(P 0

1 , P
0
2) = lcm(4, 5) = 20.

This section starts with an overview of the proposed methodology. Then, it
presents in detail the solutions involved in this chapter.

45

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

3.4 Feasible Scheduling of Periodic, Aperiodic, and
Sporadic Real-time Tasks with Hard and Soft
Deadline Constraints:

In this section, we present our contribution that we propose to compute effective
deadlines of mixed tasks set having both hard and soft constraints in order to ensure
system feasibility.

3.4.1 Overview of the proposed methodology

The fundamental purpose of this contribution is to ensure a feasible scheduling for a
set of software real-time tasks having various types (periodic, aperidoci and sporadic)
and constraints (hrad and soft) simultaneously.
This methodology is composed of two main steps as shown in figure 3.2:

• First, this approach starts by parameterizing a New Periodic Server NPS
server which is a service task, with a period P s and a capacity Cs. This
server is invoked periodically to execute aperiodic tasks. then, this approach
calculates soft deadlines of aperiodic tasks while supposing that an aperiodic
task, with the smallest WCET, gets the highest priority.
The NPS can provide a substantial reduction in the average response time of
aperiodic tasks.

• Second, The proposed approach move to characterize hard deadlines for periodic
and sporadic tasks. It starts by calculating jobs’deadlines. In fact, for each
periodic/sporadic task, it calculates the deadlines of its jobs that occur on the
hyper-period based on the maximum cumulative execution time requested by:

– other periodic/sporadic jobs that will occur before the considered peri-
odic/sporadic job on the hyperperiod based on the degree of criticality,

– aperiodic tasks that may occur before periodic/sporadic job on the hyper-
period.

Then, for each periodic/sporadic task, its deadline will be equal to the maximum
of its jobs’ deadlines. Thus, at runtime, even if an aperiodic task occurs, this
methodology ensures certainly real-time system feasibility of periodic and
sporadic tasks.

46

3.4. Feasible Scheduling of Periodic, Aperiodic, and Sporadic Real-time Tasks
with Hard and Soft Deadline Constraints:

Figure 3.2: The two main steps for the first contribution.

3.4.2 New Periodic Server for Serving Soft Aperiodic Tasks:

The main aim of this subsection is to present the steps for serving tasks with soft
constraints. First we start by parametrize the NPS server, then we move to aperiodic
tasks soft deadlines calculation.

3.4.2.1 NPS Server Configuration:

As mentioned previously, aperiodic tasks will be run periodically by the periodic
server NPS. This server behaves much like a periodic task with a period P s, and a
capacity Cs. The server can serve aperiodic tasks until its capacity expires; then it
can be replenished every period. The server’s parameters will be calculated to meet
time requirements. P s computing:
P s is calculated in such a way that the periodic execution of the aperiodic server is
repeated as many times as the maximum number of aperiodic tasks occurrences in
the hyper-period. As, OC is the maximum number of aperiodic tasks’ occurrences
estimated on the hyper-period, then, NPS must be activated OC times to serve all
possible activations of aperiodic tasks that may occur. Thus, its period is calculated
as below:

P s = bHP
OC
c (3.2)

47

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

Example 1: let us consider a real-time system having two periodic tasks τ0
1 and

τ0
2 with P 0

1 = 3 and P 0
2 = 7 are their periods respectively, and an aperiodic one τ2

1
which at most will operate 3 times in the hyper-period HP :i.e., OC = 3 occurrences.
Thus, we have

HP = lcm(3, 7) = 21 (3.3)

then,
P s = bHP

OC
c = b21

3 c = 7 (3.4)

Cs computing:

Cs is calculated based on unused processing time by a given set of periodic and
sporadic tasks in the hyper-period in such way aperiodic task execution should not
jeopardize schedulability of periodic and sporadic tasks.

Moreover, aperiodic tasks are scheduled by utilizing unused processing time by a
given set of periodic and spordic tasks in the hyper-period. Thus, the capacity of
server is calculated as follows:

• First, we calculate the unused time by subtracting the maximum cumulative
execution time requested by periodic and sporadic jobs from HP . Let Q be
the maximum cumulative execution time requested by periodic and sporadic
jobs on the hyper-period HP .

Q = (
∑
τ0

i ∈P
(C0

i ×
HP

P 0
i

)) + (
∑
τ1

e∈S
(C1

e × d
HP

P 1
e

e)) (3.5)

• Second we divide the obtained result by OC, i.e., the possible activation
number, to affirm that in each period the same amount of execution time will
be executed. Thus, the server capacity value is calculated as below:

Cs = dHP −Q
OC

e (3.6)

Example 2: Let us take the previous example, we suppose that C0
1 = 2 and

C0
2 = 1 are the WCET for τ0

1 and τ0
2 respectively. The unused processing time in

the hyper-period, denoted t, is calculated as below:

t = HP − (C0
1x
HP

P 0
1

+ C0
2x
HP

P 0
2

) = 7 (3.7)

Cs = b t

OC
c = b73c = 2 (3.8)

48

3.4. Feasible Scheduling of Periodic, Aperiodic, and Sporadic Real-time Tasks
with Hard and Soft Deadline Constraints:

3.4.2.2 Computing Aperiodic Tasks Soft Deadlines:

After having parameterize the server, it only remains to know how the aperiodic
tasks will be performed on the server. Thus, a soft deadline will be affected to each
aperiodic task to guide the schedulability.

We suppose that the aperiodic task with the smallest C2
l gets the highest priority,

we calculate the deadlines D2
l as following:

D2
l =

x=k∑
x=1

C2
x × αx (3.9)

where,

αx =
{

1 if (C2
l > C2

x) or (C2
l = C2

x and l ≥ x),
0 else. (3.10)

3.4.3 Hard Real-time Constraints Characterization:

As mentioned previously, this contribution works on real-time constraints with vari-
ous types: soft deadlines for aperiodic tasks and hard ones for periodic and sporadic
tasks. Thus, this contribution aims to provide a feasible schedule for periodic and
sporadic tasks. In fact, it assigns for each task a relative hard deadline so that these
tasks meet their deadlines while using the EDF scheduling algorithm.

As the hyper-period is the smallest interval of time after which the periodic
patterns of all the tasks are repeated, the computing of hard deadlines for each
periodic or sporadic task is performed on the hyper-period.

A real-time system must behave in a way that can be predicted mathematically.
In this context, the main idea of this contribution for effective characterization of
tasks’ deadlines is based on predicting mathematically the maximum cumulative
amount of time that has to be executed before a given task. However, the response
time of each job instance from the same task is likely to differ. This is due to the
difference in the amount of work to be done between the instant when the given job is
ready for execution, and the instant when it starts its execution (see Example 3 below).

49

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

Example 3: Let us consider three periodic tasks where deadlines are equal to
periods: τ0

1 (0, 1, 5, 5), τ0
2 (0, 2, 4, 4), and τ0

3 (0, 3, 7, 7). We assume that these tasks
are scheduled according to the EDF algorithm.
Figure 3.3 illustrates the execution of these tasks. We observe that the amount
of work executed before jobs of the same task differs from one to another. For
example, before executing τ0

11 the total amount of time that the processor executes
is 2, while before executing the second job τ0

12 the total amount of time that the
processor executes is equal to 3, etc.

Figure 3.3: Tasks’ execution.

Thus, the first step is determining the deadlines of each task jobs while computing:

• the maximum cumulative execution time requested by other periodic and
sporadic jobs that have to be executed before the considered job on the hyper-
period,

• the maximum cumulative execution time requested by aperiodic tasks that
may occur before this job.

computing hard periodic tasks deadlines:
As aforementioned, we need firstly to compute the maximum cumulative execution
time requested by periodic and sporadic jobs that may be executed before a periodic
job τ0

ij , denoted ∆ij .

∆ij includes three factors:

• ∆0
ij : which is the maximum cumulative execution time requested by the other

instances of task τ0
i that have to be executed before jthjob τ0

ij . Thus, we
need to determine the number of these instances and then multiply it by the
execution time as presented in 4.4:

∆0
ij = (j − 1)× C0

i (3.11)

• ∆1
ij : which is maximum cumulative execution time requested by jobs having

maximum absolute deadlines less than that of job τ0
ij or having maximum

50

3.4. Feasible Scheduling of Periodic, Aperiodic, and Sporadic Real-time Tasks
with Hard and Soft Deadline Constraints:

absolute deadlines equal to that of job τ0
ij and arrival times less than that of

job τ0
ij . ∆1

ij is given by:

∆1
ij =

∑
τ0

l
∈P

(C0
l × βτ0

l
) +

∑
τ1

l
∈S

(C1
l × βτ1

l
) (3.12)

where,

βτ0
l
is the number of jobs produced by a periodic task τ0

l having maximum
absolute deadlines and arrival time equal to those of job τ0

ij , represented as

βτ0
l

=
⌈

(j − 1)P 0
i +Dmax0

i −Dmax0
l

P 0
l

⌉
(3.13)

βτ1
l
is the number of jobs produced by a sporadic task τ1

l having maximum
absolute deadlines and arrival time equal to those of job τ0

ij , represented as

βτ1
l

=
⌈

(e− 1)P 1
e +Dmax1

e −Dmax1
l

Pl

⌉
(3.14)

• ∆2
ij : which is maximum cumulative execution time requested by the periodic

and sporadic jobs having maximum absolute deadlines equal to that of job τ0
ij

and arrival times equal to that of job τ0
ij and their indices are less than i, i.e.,

in case of equality we will refer to apply the strategy of first in first out (FIFO)
by assuming that the task with the smallest index is executed at first. ∆2

ij is
given by:

∆1
ij =

∑
τ0

l
∈P

(C0
l × βτ0

l
) +

∑
τ1

l
∈S

(C1
l × βτ1

l
) (3.15)

where,

βτ0
l
is the number of jobs produced by a periodic task τ0

l having maximum
absolute deadlines equal to that of job τ0

ij and arrival times equal to that of
job τ0

ij and their indices are less than i, represented as

βτ0
l

=
⌈

(j − 1)P 0
i +Dmax0

i −Dmax0
l

P 0
l

⌉
+ 1 (3.16)

βτ1
l
is the number of jobs produced by a sporadic task τ1

l to be executed before
job τ0

ij , having maximum absolute deadlines equal to that of job τ0
ij and arrival

times equal to that of job τ0
ij and their indices are less than i, represented as

βτ1
l

=
⌈

(e− 1)P 1
e +Dmax1

e −Dmax1
l

Pl

⌉
+ 1 (3.17)

51

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

Note: jobs having maximum absolute deadlines greater than that of job τ0
ij are

executed after τ0
ij , i.e., we do not consider their cumulative execution time.

Thus, the maximum cumulative execution time ∆ij requested by other periodic and
sporadic jobs, at runtime, that may be executed before τ0

ij is given by:

∆ij = ∆0
ij + ∆1

ij + ∆2
ij (3.18)

Secondly, we need to compute the maximum cumulative execution time requested
by aperiodic tasks that may occur before a periodic job τ0

ij , denoted ∆s
ij . In order to

ensure that periodic tasks will certainly respect their deadlines even if an aperiodic
task is executed at runtime, we assume that at each NPS server period, there is an
aperiodic task to execute. Thus, ∆s

ij is given by:

∆s
ij =

∑
τ2

l
∈A

(C2
l × d

Pi0

P s
e) (3.19)

After computing the maximum cumulative execution time ∆ij to be performed
before the execution of τ0

ij , we proceed to calculate its deadline d0
ij . If ∆ij is achieved

before the activation of τ0
ij , i.e., ∆ij < r0

ij , then as soon as it is active, τ0
ij starts

its execution. Otherwise, τ0
ij is executed after a delay equal to ∆ij − r0

ij ,i.e., the
remained cumulative execution time of other jobs to be executed after r0

ij . Thus, the
value d0

ij that guarantees the feasibility of τ0
ij takes the form

d0
ij =

∆s
ij + ∆ij − r0

ijC
0
i

if ∆ij > r0
ij ,

∆s
ij + C0

i else.
(3.20)

For each periodic task, the maximum among its calculated jobs deadlines will be
its relative deadline. Thus, the deadline D0

i of task τ0
i is expressed by

D0
i = max{d0

ij} (3.21)

Finally, D0
i is the fixed deadline for τ0

i that will surely be meeted at runtime.
In other words, even if an aperiodic task occurs at runtime, the periodic and sporadic
tasks will certainly respect their deadlines and the response time of aperiodic task is
improved as the invocation of aperiodic task execution is considered when calculating
hard deadlines.

computing hard sporadic tasks deadlines:
A sporadic task τe runs at most each P 1

e . In this case, we can estimate the value r1
ef

of each job τ1
ef . Therefore, to calculate the deadline of a sporadic task, we follow the

same procedure of a periodic task deadline calculation. For that, the deadline def of
the sporadic job τ1

ef is given by:

d1
ef =

∆s
ef + ∆ef − r1

efC
1
e+

if ∆ef > r1
ef ,

∆s
ef + Ce1 else.

(3.22)

52

3.4. Feasible Scheduling of Periodic, Aperiodic, and Sporadic Real-time Tasks
with Hard and Soft Deadline Constraints:

where,
∆ef is the maximum cumulative execution time requested by periodic and sporadic

jobs that may be executed before the sporadic job τ1
ef , itis given by:

∆ef = ∆0
ef + ∆1

ef + ∆2
ef (3.23)

where,
∆0
ef = (f − 1)× C1

e (3.24)

and,
∆1
ef =

∑
τ0

l
∈P

(C0
l × βτ0

l
) +

∑
τ1

l
∈S

(C1
l × βτ1

l
) (3.25)

where,

βτ0
l

=
⌈

(f − 1)P 1
e +Dmax1

e −Dmax0
l

P 0
l

⌉
(3.26)

and,

βτ1
l

=
⌈

(f − 1)P 1
e +Dmax1

e −Dmax1
l

P 1
l

⌉
(3.27)

and,
∆2
ef =

∑
τ0

l
∈P

(C0
l × βτ0

l
) +

∑
τ1

l
∈S

(C1
l × βτ1

l
(3.28)

where,

βτ0
l

=
⌈

(f − 1)P 1
e +Dmax1

e −Dmax0
l

P 0
l

⌉
+ 1 (3.29)

and,

βτ1
l

=
⌈

(f − 1)P 1
e +Dmax1

e −Dmax1
l

P 1
l

⌉
) + 1 (3.30)

and, ∆s
ef the maximum cumulative execution time requested by aperiodic tasks that

may occur before the sporadic job τ1
ef , denoted ∆s

ef .

∆s
ef =

∑
τ2

l
∈A

(C2
l × d

Pe1

P s
e) (3.31)

Finally, D1
e is the fixed deadline for τ1

e that will surely be meeted at runtime.

D1
e = max{d1

ef} (3.32)

53

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

3.4.4 New Solution for Deadline Calculation of Periodic, Sporadic
and Aperiodic Real-time Tasks

The algorithm below implements the proposed approach.

Algorithm 1 New method for deadline calculation
Require: P, S,A, OC
Ensure: D0

i , D1
e , D2

o

1: function NPS_Parameters(HP,OC)
2: P s = bHP

OC
c

3: Q = (
∑
τ0

i ∈P
(C0

i ×
HP

P 0
i

)) + (
∑
τ1

e∈S(C1
e × d

HP

P 1
e

e))

4: Cs = dHP −Q
OC

e
5: end function
6: for all τ2

o ∈ A do
7: D2

o =
∑x=k
x=1 C

2
x × αx

8: end for
9: function H_Dead_Calc(P,S)

10: for all τ0
i ∈ P do

11: ∆ij = ∆0
ij + ∆1

ij + ∆2
ij

12: if ∆ij > r0
ij then

13: d0
ij = ∆s

ij + C0
i + ∆ij − r0

ij

14: else
15: d0

ij = ∆s
ij + C0

i

16: end if
17: end for
18: D0

i = max{d0
ij}

19: for all τ2
e S do

20: ∆ef = ∆0
ef + ∆1

ef + ∆2
ef

21: if ∆ef > r0
ef then

22: d0
ef = ∆s

ef + C2
e + ∆ef − r2

ef

23: else
24: d2

ef = ∆s
ef + C2

e

25: end if
26: end for
27: D2

e = max{d2
ef}

28: end function

It uses the following functions:

• NPS_Parameters(HP,OC)which is a function that returns the NPS server
parameters.

• H_Dead_Calc(P,S) which a function that returns the periodic and sporadic

54

3.5. Simulation and Conducted Experimentation

hard deadlines. This function starts by computing jobs deadlines and then for
each periodic/sporadic task, it calculates its fixed deadline to be equal to the
maximum of its jobs’ deadlines.

3.5 Simulation and Conducted Experimentation

This section reveals the developed tool called GIGTHIS-TOOL. This simulator serves
to implement the concepts of the proposed methodology. Furthermore, we present a
case study to test and evaluate the proposed approach.

3.5.1 Developed Environment: GIGTHIS-TOOL

In order to bring out the importance of the proposed approach and to test it, we
have created a visual software environment, called GIGTHIS-TOOL. This simulator
is an open source environment that applies the services of the proposed methodology.
GIGTHIS-TOOL serves to facilitate the task of a designer; the main actor interacting
with the simulator. In fact, it can be simply used by designers to compute and
display effective deadlines, with few clicks, in arranged tables and in short time.
Hence, this project can be a future reference for industrial partners who will be
focusing on various real-time applications design.

The simulator is a multi-panel interface application as presented in figure 3.4,
each area of functionality appears in a specified panel. Panel number 1 allows the
designer to define the initial parameters of the real-time system. i.e., allows user
to fill in with the desired task parameters. After clicking on button validate, the
designer has access to the second panel to:

• Compute the hyper-period.

• Generate the aperiodic tasks’ occurrence number.

• Parameterize the NPS server: calculate it capacity and it period.

• Compute tasks deadlines by applying the formulas of the proposed methodology.

55

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

Figure 3.4: The main interface of GIGTHIS-TOOL.

3.5.2 Case Study

The considered case study is the anti-lock braking system (ABS)[90]. It is an active
safety system designed to prevent a car’s wheels from locking up and avoiding
uncontrolled skidding. In fact, it allows the wheels of the vehicle to maintain tractive
contact with the road surface according to driver inputs while braking. Figure3.5
illustrates a descriptive diagram of the ABS. The system consists of:

• a speed sensor for each wheel that detects the speed of the wheel and delivers
this information to the calculator,

• a calculator that treats the information sent by the sensor and If the speed
becomes too low and close to blocking, the computer alerts the hydraulic unit
to reduce the pressure,

• a hydraulic system: regulates the braking pressure.

Thus, thanks to the speed sensor, the calculator and the hydraulic unit, the pressure
is regulated when pressing the brake pedal to obtain the best braking efficiency
without locking.

56

3.5. Simulation and Conducted Experimentation

Figure 3.5: Case study modelisation.

We assume that the speed sensor reads the speed every 15s for two seconds, then
it sends this information to the calculator in the same period. This latter takes 4s to
evaluate the speed value every 20s. If the measured speed is not in the desired value,
then the calculator sends an alert for 3s to the hydraulic unit, which is activated for
2s to correct this problem. We present in table3.1 the system’s tasks parameters.

Table 3.1: System tasks

Task Fonction WCET Period Maximum
dead-
line

τ0
1 detetct

speed
2 15 10

τ0
2 send speed

value to the
calculator

2 15 15

τ0
3 trait the

speed value
4 20 18

τ1
1 alert the hy-

draulic unit
3 20 24

τ2
1 adjust pres-

sure
2

Thus, Π is implemented by three sets: P = {τ0
1 , τ

0
2 , τ

0
3 }, S = {τ1

1 } and A = {τ2
1 }.

We have, HP = LCM{15, 20} = 60s.

Let’s suppose that the parameter λ of the Poisson distribution is equal to 1
occurences in 30 seconds. Thus, in the hyper-period we have HP

30 × λ = 60
30 × 1 = 2

occurences, i.e., OC = 2.

57

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

3.5.2.1 Parameterizing the NPS server:

The periodic server parameters P s and Cs are computed respectively as following:
According to Equation (3.2), P s = b60

2 c = 30
According to Equation (3.5), Q = 2× 4 + 2× 4 + 4× 3 + 3× 3 = 37
According to Equation (3.6), Cs = b60− 37

3 c = 7
After that, we calculate aperiodic tasks’ deadlines. According to Equation (3.9)

D1
1 = C1

1 × α1

= 2× 1 = 2

3.5.2.2 Hard Real-time Constraints Characterization:

We move to periodic and sporadic tasks’ deadlines calculation. As an example, we
take the calculation of deadline D0

3 for task τ0
3 . The number of jobs of task τ0

3 in the
hyper-period HP is HP

P 0
3

= 60
20 = 3 jobs.

Job τ0
31: First, we compute the maximum cumulative execution time requested

by periodic and sporadic tasks that may occur before this job,i.e., ∆31.
According to Equation (4.9), we have to calculate ∆0

31, and ∆1
31 and ∆2

31:
According to Equation (4.4)
∆0

31 = (1− 1)× 4 = 0
According to Equation (4.5)
∆1

31 = C0
1 × 1 + C0

2 × 1 = 4

For the sporadic task τ1
1 , the first job τ1

11 has an absolute deadline greater than
that of τ0

31. Therefore, this job is not considered when computing the deadline of τ0
31.

According to Equation (4.7)
∆2

31 = 0 because there is no periodic or sporadic job having a maximum absolute
deadline and arrival time equal to that of job τ0

31.
Thus, ∆31 = 4.

Second, we compute the maximum cumulative execution time requested by
aperiodic tasks that may occur before this job,i.e., ∆s

31.

∆s
31 =

∑
τ2

l
∈A

(C2
l × d

P30

P s
e)

= C2
1 × d

P30

P s
e

= 2× d20
30e

= 2

58

3.5. Simulation and Conducted Experimentation

We have r0
31 = 0, so ∆31 > r0

31. Thus, according to Equation (4.10),

d0
31 =

∑
τ2

l
∈A

(C2
l × d

Pi1
P s
e) + C0

3 + ∆31 − r31

= 2 + 4 + 4− 0 = 10

Job τ0
32: First of all, we calculate the cumulative execution time ∆0

32. According
to Equation (4.9), we have to calculate ∆0

32, and ∆1
32 and ∆2

32:

According to Equation (4.4)
∆0

32 = (2− 1)× 4 = 4
According to Equation (4.5)
∆1

31 = C0
1 × 2 + C0

2 × 2 + C1
1 × 1 = 11

For the sporadic task τ1
1 , the second job τ1

11 has an absolute deadline less than
that of τ0

32. Therefore, this job is considered when computing the deadline of τ0
32.

According to Equation (4.7)
∆2

32 = 0 because there is no periodic or sporadic job having a maximum absolute
deadline and arrival time equal to that of job τ0

32 is equal to that of job τ0
32.

Thus, ∆31 = 4 + 11 = 15.

We have r0
32 = 20, so ∆31 < r0

31.

Second, we compute the maximum cumulative execution time requested by
aperiodic tasks that may occur before this job,i.e., ∆s

32.

∆s
32 =

∑
τ2

l
∈A

(C2
l × d

P30

P s
e)

= C2
1 × d

P30

P s
e

= 2× d20
30e

= 2

Thus, according to Equation (4.10),

d0
32 = ∆s

32 + C0
3

= 2 + 4 = 6

Job τ33: First of all, we calculate the cumulative execution time ∆33. According
to Equation (4.9), we have to calculate ∆0

33, and ∆1
33 and ∆2

33:
According to Equation (4.4)
∆0

32 = (3− 1)× 4 = 8
According to Equation (4.5)

59

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

∆1
31 = C0

1 × 4 + C0
2 × 4 + C1

1 × 2 = 22

According to Equation (4.7)
∆2

32 = 0 because there is no periodic or sporadic job having a maximum absolute
deadline and arrival time equal to that of job τ0

33 is equal to that of job τ0
32.

Thus, ∆31 = 8 + 22 = 30.

We have r0
33 = 40, so ∆31 < r0

33.

Second, we compute the maximum cumulative execution time requested by
aperiodic tasks that may occur before this job,i.e., ∆s

32.

∆s
32 =

∑
τ2

l
∈A

(C2
l × d

P30

P s
e)

= C2
1 × d

P30

P s
e

= 2× d20
30e

= 2

Thus, according to Equation (4.10),

d0
33 = ∆s

33 + C0
3

= 2 + 4 = 6

Finally, according to Equation(4.11),
D0

3 = max{d0
31, d

0
32, d

0
33} = max{10, 6, 6} = 10

3.5.2.3 Case Study Results and Evaluation

After completing the execution of the proposed approach, the calculated effective
deadlines of the different tasks are given in table3.2.

Table 3.2: Tasks’ calculated deadlines

Task τ0
1 τ0

2 τ0
3 τ1

1 τ2
1

Calculated Deadline 4 6 10 13 2

Figure3.6 illustrates the results of the case study by using GIGTHIS-TOOL1.

1As writing index and exponent is not allowed in GIGTHIS-TOOL then the tasks notation
becomes as follows: T pi for a periodic task, T se for a sporadic task and T ao for an aperiodic one.

60

3.6. Discussion

Figure 3.6: The calculation results from GIGTHIS-TOOL.

Figure3.7 shows the scheduling of tasks after the execution of the proposed
approach. We note that the real-time constraints are respected by the proposed
methodology, and the response time of the aperiodic task is equal to its execution
time, i.e, it is executed with the best response time.

Figure 3.7: Scheduling of tasks after the execution of the proposed approach.

A second case study, using GIGTHIS-TOOL,is presented in our website https://projects-
lisi-lab.wixsite.com/gigthistool.

3.6 Discussion

In this section we highlight the contribution and originality of the prposed approach
through discussing the use of the proposed solution in comparison to other existing
works.

We have randomly generated instances with 10 to 50 periodic and sporadic tasks.
We compare the proposed approach with the work reported in [7], where the critical
scaling factor (CSF) algorithm is developed. We focus on the reduction rate of the

61

https://projects-lisi-lab.wixsite.com/gigthistool
https://projects-lisi-lab.wixsite.com/gigthistool

3. Efficient Real-time Scheduling Algorithm for Mixed Task Set on
Mono-core Architecture

calculated deadlines compared to maximum deadlines.

Figure 3.8 shows that the reduction rates of deadlines by using [7] are smaller
than those by using the proposed work. We conclude that the rate of reduction of
deadlines in [7] can be improved. Hence, the gain is offered by the proposed approach.
Moreover, the gain is more significant when increasing the number of tasks. If 10
tasks are considered, then the gain is equal to (0.31-0.2) = 0.11, and if 50 tasks are
considered, then the gain is equal to (0.61-0.35) = 0.26.

10 20 30 40 50

0.2

0.3

0.4

0.5

0.6

0.31

0.4

0.49
0.54

0.61

0.2
0.24

0.29
0.32

0.35

Number of total tasks

R
at
es

of
de

ad
lin

es
re
du

ct
io
n

Output of the prposed approach Output of GSF algorithm

Figure 3.8: Rates of deadlines reduction in the case of the proposed approach and in
the case of GSF algorithm.

Real-time systems are widely used in several fields where the development cycle
takes several months, even several years. This can generate high costs relative to
the development time, which could be lengthened if it is belatedly realized that
the chosen deadlines do not allow the system feasibility. Thus, we propose in this
chapter a new approach that parameterizes feasible scheduling of real-time tasks with
various types and constraints in the context mono-core architecture. The numerical
results show that this methodology reduces the development time by computing the
deadlines for periodic and sporadic tasks to be certainly respected at runtime, and
allows to minimize the response time for aperiodic tasks.

Despite its advantages, there is still some scopes that need to be improved in
this contribution. For example, the software tool is still in a proof of concept level
and needs to be more robust/mature in order to be used in more complex real-life
systems. Moreover, many other factors that may affect the real-time correctness
should be studied.

62

3.7. Conclusion

3.7 Conclusion
This chapter first discusses real-time systems executing periodic, sporadic, and aperi-
odic tasks on a mono-core architecture. The proposed work is to create the NPS
server invoked periodically to run aperiodic tasks and then calculate the soft and
hard deadlines for all the tasks. As the invocation of aperiodic task execution is
considered when calculating hard deadlines, this methodology ensures certainly the
real-time feasibility of periodic and sporadic tasks. A new visual simulator called
GIGTHIS-TOOL is developed to apply the services of the proposed methodology.

As mentioned above, there are many other constraints that can affect real-
time accuracy that need to be considered. Thus, the following chapter works on
reconfiguration aware while dealing with real-time constraints, energy, and resource
sharing.

63

Chapter 4

Configuring Feasible
Reconfigurable Real-time
System under Energy and
Resource Sharing on Mono-core
Architecture

65

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

4.1 Introduction

The previous chapter copes with three main factors, which are: mixed tasks set, hard
and soft temporal constraints, and mono-core architecture. In this chapter, the main
focus is solving additional constraints which are reconfiguration property, renewable
energy and tasks dependency if one or more resources are shared by several tasks.
Thus, the main aim is parametrizing a feasible reconfigurable real-time system that
may be powered by a renewable energy source and their tasks may share resources
on mono-core architecture.
The outline of the chapter is organized as follows: First, we present the motivation
section. Then, we present the computational model and the assumptions and problem
formulation. After that, we detail the main proposed contribution. A formal case
study is proposed in order to pinpoint the main problem studied in this chapter.
Finally, we present the discussion section to analyze and interpret this chapter’s
findings.
Note that this chapter has been published in the international journal IEEE Trans-
actions on Automation Science and Engineering [40].

4.2 Motivation

Real-time correctness is the most prominent part of real-time systems’ feasibility.
However, such system may be surrounded and influenced by several factors. Thus, a
real-time system should be adapted to their environment changes while applying the
adequate reconfiguration scenario by adding/removing real-time tasks. In fact, a re-
configurable real-time system is a set of implementations, each of which is encoded by
real-time periodic software tasks. At runtime, only one implementation is executed.
The moving from one implementation to another results from adding/removing
real-time tasks. These tasks may be independent or dependent when they use same
resources. Moreover, each system needs an energy source to be in an operating
mode. This source can be permanent, as the electricity sector provides a continuous
energy load. Thus, there is no energy starvation. It can also be renewable as solar
energy. Naturally, the amount of harvested renewable energy varies over time due
to changing environmental conditions, like the angle of sunlight incidence, cloud
density, etc. Thus, the system may have energy starvation. So in this situation, in
addition to real-time and resource sharing constraints, the system must consider the
renewable energy limitations.

To maintain the correctness of a real-time system, the designer should predict
the behavior of a real-time system by ensuring that all the tasks meet their deadlines
while having the required energy and resources. It is within this context that the
problem, considered in this paper, is how to calculate the effective deadlines of the
different periodic tasks in the different implementations under possibly the predicted
renewable energy source and the sharing resource constraints.

66

4.3. Formalization

The main contribution proposes is a new offline methodology for calculating
effective deadlines under resource and energy constraints while minimizing the context
switching on a mono-core real-time system. This methodology is divided into three
solutions, each of which is dedicated to ensuring the respect of a given constraint.
Thus, it is usable even if the system is powered by a permanent energy source
(no energy requirement) and even if the system does not use shared resources (no
dependence relation between tasks):

• The first solution serves to compute the deadlines ensuring the real-time system
feasibility and also minimizes the number of context switches by assigning the
highest priority to the task with the smallest maximum deadline.

• The second solution computes deadlines ensuring the respect of energy con-
straints

• The third solution compute deadlines ensuring the respect of resource sharing
constraints.

This methodology provides deadlines without affecting neither the load nor the
processor speed while reducing the calculation time. Moreover, the calculated
deadlines will certainly be respected at runtime without wasting time doing the
schedulability tests. We develop a new simulator called DEADCALC that integrates a
new tool called RANDOM-TASK for applying and evaluating the proposed solutions.
The conducted experimentation proves that this methodology provides deadlines
with affecting neither the load nor the processor speed, while reducing the calculation
time.

4.3 Formalization
In this section, we introduce the mathematical expressions that represent the charac-
teristics of a reconfigurable real-time system in mono-core architecture. Moreover,
we introduce a formal description of the energy model.

4.3.1 System Model

We focus in this chapter on periodic tasks. Thus, based on the formalization made in
first contribution, we define a real-time reconfigurable system, denoted by Π, as a task
set P containing n periodic software tasks, i.e., P = {τ1, ..., τn}, which is the set of
all tasks that can implement Π. We suppose that all these tasks are activated at t = 0.

as mentioned above, one of the constraints to be considered in the chapter is the
reconfiguration property. We assume that a reconfiguration scenario is an operation
that allows the adding or removing software tasks. Consequently, we define a recon-
figurable real-time system as a set of implementations, each of which is encoded by
a subset of real-time software tasks, and is able to perform the system’s intended
function under stated conditions without failure for a given period of time. In

67

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

other words, at a given time t, only one subset of P is executed after applying a
reconfiguration scenario according to user requirements (and possibly an evolution
of the environment). Thus, we define by I the set of system implementations,i.e., Ik,
k ∈ [1, ..., x], i.e., I = {I1, ..., Ix}. Each element Ik, k ∈ [1, ..., x], subsets of P.

4.3.2 Task Model

In the first contribution, a periodic task τ0
i in P , i ∈ [1, ..., n], is a 5-tuple (R0

i , C0
i ,

P 0
i , D0

i , Dmax0
i). However, in this contribution, there are two additional parameters

for each task τ0
i :

• E0
i is the required energy for τ0

i to be executed. In fact, the other additional
constraint considered is the energy requirements.

• B0
i is the maximum blocking time that can delay τ0

i . This blocking time results
from taking into account the resource sharing constraint in this contribution.
We denote by R the set of shared resources and Rsis a shared resource in R.

Thus, each periodic task τ0
i , i ∈ [1, ..., n], in P is a 7-tuple (R0

i , C0
i , P 0

i , D0
i , Dmax0

i ,
E0
i , B0

i).

We assume that each task τ0
i in implementation Ik is denoted by τik. It is

characterized by a deadline d0
ik that guarantees the respect of real-time constraints

by task τ0
i in implementation Ik) and by blocking time b0ik that is the time that can

delay τ0
i in implementation Ik.

For example, as shown in figure4.1, we consider a reconfigurable real-time sys-
tem Π having four periodic tasks, P = {τ0

1 , τ
0
2 , τ

0
3 , , τ

0
4 } and two implementations,

I = {I1, I2}, where I1 = {τ0
21, τ

0
41}, and I2 = {τ0

12, τ
0
22, τ

0
32}. A reconfiguration sce-

nario is applied at instant t1, where the implementation before t1 is I2 and after t1
is I1. At t1, I2 I1

68

4.3. Formalization

Figure 4.1: Example of system model.

Each periodic task τik in Ik produces an infinite sequence of jobs τ0
ijk, where j

is a positive integer. Each job τ0
ijk is described by a release time r0

ij and a deadline
d0
ijk. Also, each job τ0

ijk has two parameters s0
ijk and f0

ijk which represent the start
and the end execution time, respectively.

Finally, we denote by HPk the hyper-period which is the lowest common multiple
(LCM) of the tasks’periods in Ik.

4.3.3 Energy Model

The chapter focus on real-time systems powered by renewable energy source. Energy
harvesting[25] is the technique for collecting energy from various environmental
sources such as solar, wind, etc. However, this type of energy is often weak and un-
stable. Thus, for their reliable operation, these systems require ensuring constraints
in both execution time and energy consumption in order to guarantee the completion
within given resource budgets.

As mentioned above, we assume that Π is alimented by a renewable energy source
[106, 107]. For this, we propose an energy model, presented in 4.2, to be used to
meet energy requirements. This model is characterized by:

• The amount of energy Ea estimated to be available in the battery at time
t = 0.

69

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

• An instantaneous charging rate Eu that represents the worst case energy
production per unit of time.

• The produced energy between t = 0 and the end execution time of job τ0
ijk,

denoted by Epijk(0, f0
ijk), where E

p
ijk(0, fijk0) =

∫ f0
ijk

0 Eudt = Eu × (f0
ijk − 0).

• The energy consumed between t = 0 and the end execution time of job τ0
ijk,

denoted by Ecijk(0, f0
ijk).

Figure 4.2: Energy model schema.

4.3.4 Problems’ Mathematical Formalization

To ensure that Π runs correctly, it is necessary solving the given constraints which
are reconfiguration aware, renewable energy and resource sharing. Whatever the
implementation, each job, even if it has been blocked because of resource sharing,
should reach its deadline without energy starvation. These constraints are given as
follows:

• Real-time constraint: all task’s jobs has to be completed before its absolute
deadline,i.e.,

∀ i, j and k, f0
ijk ≤ r0

ij +D0
i (4.1)

• Resource sharing constraint: each job, blocked because of resource sharing, has
to be completed before its absolute deadline, i.e,

∀ i, j and k, f0
ijk ≤ r0

ij +D0
i (4.2)

• Energy constraint: each job has to obtain required energy for its execution to
be finished before its absolute deadline, i.e.,

∀ i, j and k, Ea(0) + Epijk(0, f
0
ijk)− Ecijk(0, f0

ijk) > 0 (4.3)

70

4.4. Parametrizing Feasible Reconfigurable Systems Under Real-time, Energy and
Resource Sharing Constraints

4.4 Parametrizing Feasible Reconfigurable Systems
Under Real-time, Energy and Resource Sharing
Constraints

This section starts with an overview of the proposed methodology. Then, it presents
in detail the solutions involved in this chapter.

4.4.1 Overview of the proposed methodology

The approach proposed in this chapter consists in configuring reconfigurable real-
time systems implemented on a mono-core architecture. In addition to the temporal
requirements, this approach ensures the energy and resource sharing constraints.
Thud, this methodology presented in figure 4.3 is divided into three solutions, each
of which guarantees respect of a given constraint.

• Real-time based deadline computing solution:it calculates effective dead-
lines, ensuring real-time constraints. This solution is achieved by two consecu-
tive functions:

– RTS is executed to calculate the maximum of jobs’ deadlines for each task
in the hyper-period of any related implementation, i.e., an implementation
to which the task belongs. The output is the deadline of the task in this
implementation.

– SRT is executed to calculate the maximum of deadlines of each task in all
related implementations.

• Energy-based deadline computing with no starvation solution:it is
invoked when the system is powered by a renewable energy source to cope with
the energy availability issue. In fact, this solution computes the portion of the
time needed to produce the tasks’ energy requirements and then adds it to
the deadlines outputted by the first solution. The novel deadlines prevent any
energy starvation as there is more time for energy production. This solution is
ensured by two functions:

– ENS calculates the maximum portion of time needed by task jobs in the
hyper-period of any related implementation to prevent energy starvation.

– SEN calculates the maximum portion of time needed by each task in all
related implementations. This maximum time will be added to the deadline
calculated by SRT in the first solution. The novel deadlines guarantee the
energy feasibility, as they give more time for energy production.

• Resource sharing based deadline computing solution: it is executed if
the system uses shared resources to cope with the blocking time may delay
a task’execution. In fact, the main aim of this solution is to determine the
maximum blocking time that may delay a task execution and adds it its deadline

71

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

outputted by the second solution if the system is powered by a renewable energy
source, or by the first solution otherwise. It is ensured by two functions:

– BTS calculates the maximum blocking time of the different tasks in any
related implementation.

– SBT is executed to add the maximum blocking time of each task to its
deadline, coming from SEN if the system is powered by a renewable energy
source or from SRT if not. These novel deadlines guarantee the resource
sharing feasibility.

Figure 4.3: New methodology of effective deadlines calculation.

The fact that the proposed approach is divided into three solutions, each of which
is dedicated to guarantee the respect of given constraints, that it can be applied
even if there are no energy requirements or shared resources. Thus, the splitting of
the solutions makes it possible to engage four branches, each of which is executed
under well-defined constraints, as presented in figure 4.4. As the timing constraint is
paramount to maintain the correctness of a real-time system, the real-time based
deadline computing solution is invoked at the outset of each branch.

• Branch 1: it is executed to ensure the feasibility of the reconfigurable real-time
system. In fact, it assumed that the system is powered by a permanent energy
source, i.e., there are any energy requirements, and that tasks are independent.
Thus, it is enough to execute the first solution.

72

4.4. Parametrizing Feasible Reconfigurable Systems Under Real-time, Energy and
Resource Sharing Constraints

• Branch 2: it is executed to ensure the feasibility of the reconfigurable real-time
system powered by renewable energy and has independent tasks. Thus, it is
necessary to execute the first solution to guarantee real-time correctness, and
the second solution to prevent any energy starvation.

• Branch 3: it is executed to ensure the feasibility of the reconfigurable real-time
system powered by a permanent energy source and their tasks share resources.
Thus, it is necessary to execute the first solution and the third solution to
guarantee real-time correctness even if there is a blocking time due to resource
sharing.

• Branch 4: it is executed to ensure the feasibility of the reconfigurable real-time
system powered by a renewable energy source, and it has one or more shared
resources. In this case, it is necessary to execute successively the three solutions.

Figure 4.4: The branches of the methodology.

4.4.2 Real-time Based Deadline Computing Solution

The main aim of this solution is the calculation of tasks’ deadlines for a feasible be-
havior of the real-time system. As presented in figure 4.5, the first step is computing
the deadlines of each task in all its related implementations. Then, the second step is
selecting the maximum value from these calculated deadlines as the relative deadline

73

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

of the considered task.

Figure 4.5: Real-time Based Deadline Computing Solution.

Function RTS
The function serves to resolve the temporal constraint on reconfigurable real-time sys-
tems. We can denote that they are points in common with the previous contribution
proposed in chapter 3. In fact, the second step of the first contribution consists of
computing deadlines of periodic and sporadic tasks while considering aperiodic tasks’
invocations. Its basic idea is predicting mathematically the maximum cumulative
amount of time that has to be executed before a given task. However, this second
contribution has different challenges, as it works on a reconfigurable real-time system,
i.e., many implementations, and considers only periodic tasks. Thus, to compute the
deadlines of a given task in its related implementations, we follow the same steps
except that we consider only periodic tasks.

The first step is determining the deadlines of each task jobs τijk in each related
in implementation Ik. Thus, for each job τijk, we compute the maximum cumulative
execution time requested by jobs in implementation Ik that may be executed before
it, denoted ∆ijk.

∆ijk includes three factors:

• ∆0
ijk: which is the maximum cumulative execution time requested by the

other instances of task τ0
ik that have to be executed before jthjob τ0

ijk in the
implementation Ik. Thus, we need to determine the number of these instances
and then multiply it by the execution time as presented in 4.4:

∆0
ijk = (j − 1)× C0

i (4.4)

• ∆1
ijk: which is maximum cumulative execution time requested by jobs in the

implementation Ik having maximum absolute deadlines less than that of job

74

4.4. Parametrizing Feasible Reconfigurable Systems Under Real-time, Energy and
Resource Sharing Constraints

τ0
ijk or having maximum absolute deadlines equal to that of job τ0

ijk and arrival
times less than that of job τ0

ijk. ∆1
ijk is given by:

∆1
ijk =

∑
τ0

lk
∈I‖

(C0
l × βτ0

lk
) (4.5)

where,

βτ0
lk

is the number of jobs produced by tasks τ0
lk having maximum absolute

deadlines and arrival time equal to those of job τ0
ijk, represented as

βτ0
lk

=
⌈

(j − 1)P 0
i +Dmax0

i −Dmax0
l

P 0
l

⌉
(4.6)

• ∆2
ijk: which is maximum cumulative execution time requested by jobs in the

implementaion Ik having maximum absolute deadlines equal to that of job τ0
ijk

and arrival times equal to that of job τ0
ijk and their indices are less than i, i.e.,

in case of equality we will refer to apply the strategy of first in first out (FIFO)
by assuming that the task with the smallest index is executed at first. ∆2

ijk is
given by:

∆1
ijk =

∑
τ0

lk
∈I‖

(C0
l × βτ0

lk
) (4.7)

where,

βτ0
lk

is the number of jobs produced by task τ0
lk, in implementation Ik, having

maximum absolute deadlines equal to that of job τ0
ijk and arrival times equal

to that of job τ0
ijk and their indices are less than i, represented as

βτ0
lk

=
⌈

(j − 1)P 0
i +Dmax0

i −Dmax0
l

P 0
l

⌉
+ 1 (4.8)

Note: jobs having maximum absolute deadlines greater than that of job τ0
ijk are

executed after τ0
ijk, i.e., we do not consider their cumulative execution time.

Thus, the maximum cumulative execution time ∆ijk requested by other jobsin
implementation Ik, at runtime, that may be executed before τ0

ijk is given by:

∆ijk = ∆0
ijk + ∆1

ijk + ∆2
ijk (4.9)

After computing the maximum cumulative execution time ∆ijk to be performed
before the execution of τ0

ijk in the related implementation Ik, we proceed to calculate
its deadline d0

ijk. If ∆ijk is achieved before the activation of τ0
ijk, i.e., ∆ijk < r0

ij ,

75

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

then as soon as it is active, τ0
ijk starts its execution. Otherwise, τ0

ijk is executed after
a delay equal to ∆ij − r0

ij ,i.e., the remained cumulative execution time of other jobs
to be executed after r0

ij . Thus, the value d0
ijk that guarantees the feasibility of τ0

ijk

takes the form

d0
ijk =

∆ijk − r0

ijC
0
i +

if ∆ijk > r0
ij ,

C0
i else.

(4.10)

For each task τ0
ik and after calculating all the d0

ijk of all jobs τ0
ijk on the hyper-

period HPk of each implementation Ik, we propose the following formula to compute
d0
ik that guarantees the feasibility of τ0

ik in the related implementation Ik.

d0
ik = max{d0

ijk} (4.11)

Function SRT

After executing RTS , the function SRT is executed to calculate D0
i of task τ0

i . This
function is used to calculate D0

i according to the solution executed before it. This
function starts by assigning to each D0

i the maximum value among d0
ik, i.e.,

D0
i = max{d0

ik} (4.12)

Finally, D0
i is the fixed deadline for τ0

i in all the related implementations.

4.4.3 Energy-Based Deadline Computing with no Starvation
Solution

The main aim of this solution is to cope with energy requirements. As presented in
figure 4.6, the solution takes as input the tasks with their deadlines outputted from
the first solution, i.e., the deadlines ensuring real-time feasibility. The first step is
computing the maximum portion of time needed by task jobs in the hyper-period
of any related implementation to prevent energy starvation. Then, the second step
selects the maximum value from these calculated potion of time to add it to the
tasks’ deadlines.

Figure 4.6: Energy-Based Deadline Computing with no Starvation.

76

4.4. Parametrizing Feasible Reconfigurable Systems Under Real-time, Energy and
Resource Sharing Constraints

To calculate of effective deadlines to be respected by tasks under energy con-
straints, this solution is based on predicting mathematically the maximum cumulative
energy that has to be consumed by the jobs. It considers two functions, ENS and
SEN .

Function ENS

Let ∆E
ijk be the maximum cumulative energy requested by the jobs in implementation

Ik whose (i) absolute deadlines, calculated by Equation (4.12), are less than that of
job τ0

ijk. This condition is denoted by DL2, or (ii) absolute deadlines, calculated in
Equation (4.12), are equal to that of job τ0

ijk and their arrival times are less than
that of job τ0

ijk or their indices are less than i, i.e., we apply the strategy of first in
first out (FIFO) by assuming that the task with the smallest index is the one that
comes at the beginning. This condition is denoted by DE2, i.e.,

∆E
ijk =

∑
τ0

lk
∈Ik

(El × δijklk) (4.13)

where δijklk is the number of jobs produced by task τ0
lk in implementation Ik that have

to be executed before τ0
ijk according to their calculated deadlines in RTS . It verifies

one of the following cases given by

δijklk =

⌈
(j − 1)P 0

i +D0
i −D0

l

P 0
l

⌉
if (DL2= true

and DE2 = false,)⌈
(j − 1)P 0

i +D0
i −D0

l

P 0
l

⌉
+ 1

if (DL2= true and DE2 = true),

1 if (DL2 = false and DE2 = true),

0 else.

(4.14)

To calculate Epijk(0, f0
ijk) and Ecijk(0, f0

ijk), we use respectively the following for-
mulas.

Epijk(0, f
0
ijk) = (Eu − Ea(0)

HPk
)× f0

ijk

= (Eu − Ea(0)
HPk

)× (Ci +
∑
τlk∈Ik

(Cl × δijklk)) (4.15)

In Eq. 4.15, Ea(0)
HPk

has been subtracted from Eu to reserve the same amount of
energy at the beginning of the next hyper-period.

Ecijk(0, f0
ijk) = ∆E

ijk + Ei (4.16)

77

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

Let ωijk be a portion of time to be added to job τijk to prevent the energy
starvation. During this portion of time, the processor will be idle, i.e., the energy is
produced without any consumption. ωijk is given by

ωijk =

E
c
ijk(0, f0

ijk)− (Epijk(0, f0
ijk) + Ea(0))

Eu − Ea(0)
HPk

if Ecijk(0, φijk) > Epijk(0, f0

ijk) + Ea(0),
0 else.

(4.17)

Then, we propose the following formula to compute ωik which is the maximum of
ωijk, i.e., the portion of time needed to produce the energy requirements of task τ0

ik

in all its related implementations.

ωik = max{ωijk} (4.18)

To reach the portion of time that prevent energy starvation in all implementations,
we propose this formula.

ωk = max{ωik} (4.19)

Function SEN

After executing ENS , the function SEN is executed to calculate D0
i to be respected

by tasks under energy constraints. This function starts by adding to each D0
i the

maximum value among ωk, i.e.,

D0
i := D0

i + ω (4.20)

where ω = max{ωk}.
Finally, D0

i is the fixed task deadline in all the related implementations.

4.4.4 Resource Sharing Based Deadline Computing Solution

The main aim of this solution is to cope with the resources sharing constraint. As
presented in figure 4.7, the solution takes as input the tasks with their deadlines out-
putted from the second solution if the system needs to cope with energy requirements
or the first solution overview. The solution is based on computing the maximum
blocking time that may delay a task due to the use of a shared resource and adding
it to its deadline outputted.

78

4.4. Parametrizing Feasible Reconfigurable Systems Under Real-time, Energy and
Resource Sharing Constraints

Figure 4.7: Resource Sharing Based Deadline Computing Solution.

This solution calculates the deadlines to be respected by tasks under resource
sharing constraints while executing BTS and SBT .
Function BTs
Let b0ik be the blocking time of task τ0

ik resulting from the resource sharing in
implementation Ik. It is given by

b0ik =
∑
τ0

lk
∈Ik

(C0
l − 1)× σikl (4.21)

where

σikl =
{

1 if τ0
ik and τ0

lk have a common resource and i 6= l,
0 else. (4.22)

Function SBT

After executing BTS , the function SBT is executed to calculate D0
i to be respected

by task τi under resource sharing constraint. This function starts by adding to each
D0
i the maximum blocking time, i.e.,

D0
i := D0

i +B0
i (4.23)

where B0
i is the blocking time of task τ0

i ,

B0
i = max{b0ik} (4.24)

Theorem: Let Π be a reconfigurable real-time system powered by a renewable
energy source and uses shared resources, P = {τ0

1 , ..., τ0
n} is the set of all periodic

software tasks that can implement Π. By applying successively (RTS + SRT),
(ENS + SEN) and (BTS + SBT), the inequality below will be verified

f0
ijk ≤ r0

ij +D0
i

i.e., each job τ0
ijk completes before the related absolute deadline.

79

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

Proof. Let Qijk be the job quantity to be executed after r0
ij and before the execution

of τ0
ijk expressed per unit of time, i.e., the cumulative execution time requested by

jobs such that their priorities are higher than the priority of τ0
ijk, and their execution

will be performed after r0
ij .

We assume that τ0
ik violates the related real-time constraint even we apply the

proposed methodology, i.e., there exists job τ0
ijk such that f0

ijk > r0
ij + d0

ik. In this
case, f0

ijk is calculated as follows: f0
ijk = r0

ij + Qijk + C0
i . Since d0

ik = max{d0
ijk},

r0
ij +Qijk + C0

i > r0
ij + d0

ijk if

C0
i +Qijk > d0

ijk (a)

According to Eq. (4.10), if ∆ijk > r0
ij , we have

d0
ijk = C0

i + ∆0
ijk − r0

ij (b)

Since Qijk is the work quantity to be executed after r0
ij and before the execution of

τ0
ijk, and ∆ijk is the job quantity to be executed from r0

i1 until the instant before the
execution of τ0

ijk, Qijk = ∆ijk − (r0
ij − r0

i1). Since all the tasks are activated at t = 0,
r0
i1 = 0. Thus,

Qijk = ∆ijk − r0
ij (c)

By (a), (b) and (c), we have C0
i + ∆ijk − r0

ij > C0
i + ∆ijk − rij0 ⇔ C0

i > C0
i , absurd.

Therefore, f0
ijk < r0

ij + d0
ik.

According to Eq. (4.10), if ∆ijk < r0
ij , we have

Qijk = 0 (d)

and,
d0
ijk = C0

i (e)

By (a), (d) and (e), we have C0
i + 0 > C0

i ⇔ C0
i > C0

i , absurd.
Then, f0

ijk < r0
ij + d0

ik. We have D0
i = max{d0

ik}, then f0
ijk < r0

ij +D0
i .

We assume that τ0
ik violates the energy constraint, i.e., there exists job τ0

ijk such
that r0

ij +Qijk + C0
i + ω > r0

ij +D0
i . In this case, f0

ijk is calculated as follows:

f0
ijk = r0

ij +Qijk + C0
i + ω (f)

Since Di is the sum of D0
i of the first solution and ω,

D0
i := D0

i + ω (g)

80

4.5. Simulation and Conducted Experimentation

We have (from the observations previously collected)

rij +Qijk + C0
i < r0

ij +D0
i (h)

By (g) and (h), we have

r0
ij +Qijk + C0

i + ω < r0
ij +D0

i (i)

By (f) and (i), we have f0
ijk < r0

ij +D0
i .

We assume that τ0
ik violates the resource sharing constraint, i.e., there exists job

τ0
ijk such that r0

ij + Qijk + C0
i + b0ik > r0

ij + D0
i . In this case, f0

ijk is calculated as
follows:

f0
ijk = r0

ij +Qijk + C0
i + b0ik (j)

Since D0
i is the sum of D0

i of the first solution and B0
i ,

D0
i := D0

i +B0
i (k)

We have (from the observations previously collected)

r0
ij +Qijk + C0

i < r0
ij +D0

i (l)

By (k) and (l), we have r0
ij +Qijk + C0

i +B0
i < r0

ij +D0
i

As B0
i = max{b0ik}, then

r0
ij +Qijk + C0

i + b0ik < r0
ij +D0

i (m)

By (j) and (m), we have f0
ijk < r0

ij +D0
i .

We conclude that f0
ijk ≤ r0

ij +D0
i .

4.5 Simulation and Conducted Experimentation

4.5.1 Developed Environment

In order to bring out the importance of the proposed approach and to test it,
we have implemented the proposed methodology in a graphical simulator named
DEAD-CALC, presented in figure 4.8. This tool is an open source environment that
supports and implements the three proposed solutions. More details about our tool
are presented on this website https://projects-lisi-lab.wixsite.com/deadcalc.

81

https://projects-lisi-lab.wixsite.com/deadcalc

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

Figure 4.8: The main interface of DEAD-CALC.

Through the main interface, the user have to access to:

• The form, presented in figure 4.9, for adding a new system in which the user
fills in the system parameters and constraints.

Figure 4.9: The form to add new system.

• The interfaces that calculates the deadlines of tasks by applying the formulas
of the proposed methodology. For example, figure 4.10 shows the interface
of applying the first solution that serves to resolve real-time requirements. It
shows the deadlines calculation time that reflects the speed of computing the
deadlines.

82

4.5. Simulation and Conducted Experimentation

Figure 4.10: Example of the first treatment.

• The interface of evaluation. In fact, this tool allows to generate a histogram
that reflects the difference between the maximum deadlines and the calculated
effective deadlines, and shows the decreased rate of deadlines, as presented in
figure 4.11.

Figure 4.11: Example of a generated histogram.

• The tool RANDOM-TASK, presented in figure 4.12, is a random tasks generator.
It allows the designer to fill in the desired number of tasks and generates a
random list of tasks after clicking on the button Generate. The list of tasks
can be saved as Excel file by clicking the button Save.

83

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

Figure 4.12: RANDOM-TASK generator tool.

4.5.2 Case Study

We present in this section a case study to evalute and test the proposed contribution.
We consider the chocolate production line system. We assume that the chocolate
factory is powered by the energy collect by photovoltaic solar panels, as shown in
figure 4.13. A second case study is detailed in our website https://projects-lisi-
lab.wixsite.com/deadcalc/simple-case-study.

Figure 4.13: Case study modelisation.

The chocolate production line system, denoted Π, is implemented with the
following tasks:

• τ0
1 serves to dose the chocolate to have the right amount of chocolate in the
molds.

• τ0
1 serves to transfer the molds in moving frames to ensure continuous line
production.

• τ0
1 serves to control the amount of chocolate in the tank.

84

https://projects-lisi-lab.wixsite.com/deadcalc/simple-case-study
https://projects-lisi-lab.wixsite.com/deadcalc/simple-case-study

4.5. Simulation and Conducted Experimentation

• τ0
1 serves to fill the chocolate tank if the amount of chocolate in the tank falls
below the threshold value.

Therefore,Π is implemented by four tasks presented in table 4.1, P = {τ0
1 , τ

0
2 , τ

0
3 , τ

0
4 }.

Table 4.1: System tasks

Task R0
i C0

i P 0
i Dmax0

i E
0
i

τ0
1

0 4
20

18 1

τ0
2

0 3
20

20 1

τ0
3

0 1
10

8 1

τ0
4

0 3
10

12 3

Moreover, this system has a shared memory Rs1 used by τ0
2 and τ0

3 for data
storage, i.e., R = {SR1}.

On the other hand, this system has two implementations, I = {I1, I2}:

• I1 is executed when the amount of chocolate in the tank is greater than the
threshold value. Thus, there is no need to execute τ0

4 ,i.e., I1 = {τ0
11, τ

0
21, τ

0
31}.

• I2 is executed when the amount of chocolate in the tank is less than the
threshold value. In this case, there is a need to fill the tank with chocolate,i.e.,
I2 = {τ0

12, τ
0
22, τ

0
32, τ

0
42, }.

The factory is powred by energy solar with a lowest instantaneous charging rate
is equal to 0, 6j, i.e., Eu = 0, 6j. Moreover, we assume that the aivlebele energy in
the battery when the system turned on is equel to 1j ,i.e, Ea = 1j.

4.5.2.1 Application of the Proposed Approach

In the proposed case study, the chocolate production line system is powered by solar
energy, and it uses shared memory for data storage. In other words, this system
deals with real-time, energy, and resource sharing constraints. Thus, to ensure the
system’s feasibility, we have to apply the proposed approach in the fourth branch.
As presented in figure 4.14, we need to execute successively, Real-time based deadline
computing solution, Energy-based deadline computing with no starvation solution,
and Resource sharing based deadline computing solution.

85

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

Figure 4.14: Steps of branch 4.

Real-time based deadline computing solution:
RTS execution:
As first example, we present the deadline computing of task τ0

3 .
This task belongs I1 (it will be noted τ31), and I2 (it will be noted τ32).

We start with the first implementation, I1 = τ11, τ21, τ31. We have HP1 =
LCM20, 20, 10 = 20. Thus, τ31 has HP1/P

0
3 = 20/(10) = 2jobs in the hyper-period

HP1.
Job τ0

311: First, we compute the maximum cumulative execution time all jobs
that may occur before this job,i.e., ∆311.
According to Equation (4.9), we have to calculate ∆0

311, and ∆1
311 and ∆2

311:
According to Equation (4.4): ∆0

311 = (1− 1)× 1 = 0
According to Equation (4.5): ∆1

311 = 0 because the jobs τ0
111, and τ0

211 have absolute
deadlines greater than that of τ0

311.
According to Equation (4.7): ∆2

311 = 0 because there is no job having a maximum
absolute deadline and arrival time equal to that of job τ0

311.
Thus, ∆311 = 0.
We have r0

311 = 0, so ∆311 = r0
311. Thus, according to Equation (4.10),

d0
311 = C0

3 = 1

Job τ0
321: First, we compute the maximum cumulative execution time all jobs

that may occur before this job,i.e., ∆321.
According to Equation (4.9), we have to calculate ∆0

321, and ∆1
321 and ∆2

321:
According to Equation (4.4): ∆0

321 = (2− 1)× 1 = 1
According to Equation (4.5): ∆1

321 = 0
According to Equation (4.7): ∆2

31 = 0 because there is no job having a maximum
absolute deadline and arrival time equal to that of job τ0

321.
Thus, ∆321 = 5.
We have r0

321 = 10, so ∆321 < r0
321. Thus, according to Equation (4.10),

d0
321 = C0

3 = 1

86

4.5. Simulation and Conducted Experimentation

According to Equation (4.11), the deadline d0
31 that guarantees the feasibility of τ0

31
in the related implementation I1 is equal to,

d0
31 = max{d0

311, d
0
321} = 1

Then, in the second implementation, I2 = τ12, τ22, τ32, τ42. We have HP2 =
LCM20, 20, 10, 10 = 20. Thus, τ32 has HP2/P

0
3 = 20/(10) = 2jobs in the hyper-

period HP2.
Job τ0

312: First, we compute the maximum cumulative execution time all jobs
that may occur before this job,i.e., ∆312.
According to Equation (4.9), we have to calculate ∆0

312, and ∆1
312 and ∆2

312:
According to Equation (4.4): ∆0

312 = (1− 1)× 1 = 0
According to Equation (4.5): ∆1

312 = 0 because the job τ0
112, τ0

212, and τ0
412 have

absolute deadlines greater than that of τ0
312.

According to Equation (4.7): ∆2
312 = 0 because there is no job having a maximum

absolute deadline and arrival time equal to that of job τ0
312.

Thus, ∆312 = 0.
We have r0

312 = 0, so ∆312 = r0
312. Thus, according to Equation (4.10),

d0
312 = C0

3 = 1

Job τ0
322: First, we compute the maximum cumulative execution time all jobs

that may occur before this job,i.e., ∆322.
According to Equation (4.9), we have to calculate ∆0

322, and ∆1
322 and ∆2

322:
According to Equation (4.4): ∆0

322 = (2− 1)× 1 = 1
According to Equation (4.5): ∆1

322 = C0
4 × 1 = 4

According to Equation (4.7): ∆2
322 = 0 because there is no job having a maximum

absolute deadline and arrival time equal to that of job τ0
322.

Thus, ∆322 = 5.
We have r0

322 = 10, so ∆322 < r0
322. Thus, according to Equation (4.10),

d0
322 = C0

3 = 1

According to Equation (4.11), the deadline d0
32 that guarantees the feasibility of τ0

32
in the related implementation I2 is equal to,

d0
32 = max{d0

312, d
0
322} = 1

As second example, we present the deadline computing of task τ0
4 .

This task belongs I2 (it will be noted τ42).
In the implementation, I2 = τ12, τ22, τ32, τ42. We have HP2 = LCM20, 20, 10, 10 =
20. Thus, τ42 has HP2/P

0
4 = 20/(10) = 2jobs in the hyper-period HP2.

Job τ0
412: First, we compute the maximum cumulative execution time all jobs

that may occur before this job,i.e., ∆412.
According to Equation (4.9), we have to calculate ∆0

412, and ∆1
412 and ∆2

412:
According to Equation (4.4): ∆0

412 = (1− 1)× 3 = 0
According to Equation (4.5): ∆1

412 = C0
3 × 1 = 1

87

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

According to Equation (4.7): ∆2
412 = 0 because there is no job having a maximum

absolute deadline and arrival time equal to that of job τ0
412.

Thus, ∆412 = 1.
We have r0

412 = 0, so ∆412 > r0
412. Thus, according to Equation (4.10),

d0
412 = C0

3 + ∆412 − r412 = 4

Job τ0
422: First, we compute the maximum cumulative execution time all jobs

that may occur before this job,i.e., ∆422.
According to Equation (4.9), we have to calculate ∆0

422, and ∆1
422 and ∆2

422:
According to Equation (4.4): ∆0

322 = (2− 1)× 3 = 3
According to Equation (4.5): ∆1

422 = C0
1 × 1 + C0

2 ×+C0
3 × 2 = 9

According to Equation (4.7): ∆2
422 = 0

Thus, ∆422 = 12.
We have r0

422 = 10, so ∆422 > r0
422. Thus, according to Equation (4.10),

d0
422 = C0

4 + ∆422 − r422 = 5

According to Equation (4.11), the deadline d0
42 that guarantees the feasibility of τ0

42
in the related implementation I2 is equal to,

d0
42 = max{d0

412, d
0
422} = 5

SRT execution:
SRT execution: This function is executed to compute D0

1, D0
2, D0

3, and D0
4:

D0
3 = max{d0

31, d
0
32} = 1

d0
4 = max{d42} = 5

While applying the same steps of RTs function of τ0
1 , τ0

2 , we have:

D0
1 = max{d0

11, d
0
12} = 8

D0
2 = max{d0

21, d
0
22} = 12

Figure4.15 illustrates the results of the case study by using DEAD-CALC tool.

88

4.5. Simulation and Conducted Experimentation

Figure 4.15: First solution results.

Energy-Based Deadline Computing with no Starvation Solution:
This solution is executed to cope with energy requirements. It takes as input the
tasks with their deadlines outputted from the first solution.

ENS execution:
This function serves to compute the maximum portion of time needed by task jobs
in the hyper-period of any related implementation to prevent energy starvation.

We take as exemple task τ0
42 in the second implementation I2. We have HP2 =

LCM20, 20, 10, 10 = 20. This task has two jobs in the hyper-period HP2.
Job τ0

412:
First of all, we calculate ∆E

412. According to Eq.4.13,

∆E
412 =

∑
τ0

l2∈I2

(El × δ412
l2)

Then, we calculate δ412
l2 as below (Eq.4.14)

δ412
12 = 0

δ412
22 = 0

δ412
32 = 1

δ412
42 = 0

Thus ∆E
412 = 1× 1 = 1.

After that we calculte,according to Eq.4.15 and Eq.4.16, Ep412(0, f0
412) and Ec412(0, f0

412).

Ep412(0, f0
412) = 0, 55× 4 = 2, 2

and,
Ec412(0, f0

412) = 1 + 3 = 4

89

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

According to Eq.4.17, we calculate the portion of time to be added to job τ4120 to
satisfy its energy requirement. We have Ep412(0, f0

412) + Ea(0) < Ec412(0, f0
412), then,

ω412 =
⌈4− 3, 2

0, 55

⌉
= 2

We follow the same approach for the other tasks.

SEN execution:
This function selects the maximum value from these calculated potion of time to add
it to the tasks’ deadlines.

ω = max{ω1, ω2} = 2
According to (4.20), the tasks’deadlines ensuring real-time, and energy constraints

are:

D0
1 := D0

1 + ω = 10

D0
2 := D0

2 + ω = 14

D0
3 := D0

3 + ω = 3

D0
4 := D0

4 + ω = 7

Figure4.16 illustrates the results of the case study by using DEAD-CALC tool.

Figure 4.16: Second solution results.

Resource Sharing based deadline computing:
This solution calculates the deadlines to be respected by tasks under resource sharing
constraints.

BTS execution:
As the shared memory is used by τ0

2 and τ0
3 , the computing of the blocking time will

90

4.5. Simulation and Conducted Experimentation

be performed in the same way in l1 and l2.
According to (4.21),

b021 = b022 = (C0
3 − 1)× 1 = 0

b031 = b032 = (C0
2 − 1)× 1 = 2

SBT execution:

After executing BTS , this function adds to each deadline, outputted by the second
solution, its maximum blocking time. As τ0

1 and τ0
4 do not use any shared resource,

thus B0
1 = B0

4 = 0
According to (4.21),

B0
2 = max{b021, b

0
22} = 0

B0
3 = max{b031, b

0
32} = 2

According to (4.23), the tasks’deadlines ensuring real-time, energy, and resources
sharing constraints are:

D0
1 := D0

1 +B0
1 = 10 + 0 = 10

D0
2 := D0

2 +B0
2 = 14 + 0 = 14

D0
3 := D0

3 +B0
3 = 3 + 2 = 5

D0
4 := D0

4 +B0
4 = 7 + 0 = 7

Figure4.17 illustrates the results of the case study by using DEAD-CALC tool.

Figure 4.17: Third solution results.

91

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

4.5.2.2 Case Study Results Evaluation

In order to check the system feasibility with the computed deadlines a scheduling
test with EDF algorithm is performed presented in figure 4.18. We note that the
real-time constraints are respected by the proposed methodology. Moreover, we note
that for each task, there is at least one of its jobs that ends exactly on its deadline.
Hence, the efficiency and accuracy of calculated deadlines.

Figure 4.18: Scheduling of implementation I2 after the execution of the first solution.

Figure 4.19 describes two schedules: (i)The first is done with the deadlines
delivered by RTS (i.e., before the execution of ENS . We note that there is energy
starvation (-1,8) at instant t = 4 of time. In fact, the energy necessary to process the
job τ4120 by its deadline is not available. (ii) The second is done with the deadlines
delivered by ENS . We note that From instant t = 1 to t = 3, the processor is idle for
two units of time to allow energy production. Thus, there is any energy starvation
and the real-tile correctness is also ensured. Hence, the effectiveness of the proposed
approach in respecting both real-time and energy constraints.

Figure 4.19: Scheduling of implementation I2 after the execution of the second
solution.

Figure 4.20 describes two schedules: (i)The first is done with the deadlines
delivered by ENS (i.e., before the execution of BTS . We note that job τ3220 exceeds
its deadline, as it has been blocked in instant t = 12 waiting for the resource to

92

4.6. Discussion

be released. (ii) The second is done with the deadlines delivered by BTS . We
note that job τ3220 meets its deadline even though it waited for the resource to be
released. Thus, the proposed approach ensures resouce sharing constrants in addtion
to real-time and energy requirements.

Figure 4.20: Scheduling of implementation I2 after the execution of the third solution.

We conclude that the proposed methodology ensure the system feasibility under
real-time, energy and resource sharing constraints.

4.6 Discussion

This contribution proposes a new approach to configure feasible reconfigurable real-
time system. Compared to the existing researches, that are presented in detail in
Chapter 2, the originality of the current work is to not only calculate system deadlines
that will certainly be respected online without any additional feasibility analysis of
the device, but also to overcome additional challenges such as energy requirements
and shared resources constraints whatever system implementation. Moreover, it has
introduced software tool implementing the methodology concepts.

DEAD-CALC reduces the development time by computing the deadlines to be
certainly respected without any feasibility analysis of the device. If we consider 300
tasks, then identifying effective deadlines will take certainly dozens of hours to be
done. We used RANDOM-TASK to generate a set of random tasks, and then we used
DEAD-CALC to compute the effective deadlines. Figure 4.21 shows the deadlines
calculation time in branches 1, 2, 3 and 4. For example, we present demonstrative
videos of generating 5O tasks and applying the four branches of the proposed approach
in our website https://projects-lisi-lab.wixsite.com/deadcalc/services.

93

https://projects-lisi-lab.wixsite.com/deadcalc/services

4. Configuring Feasible Reconfigurable Real-time System under
Energy and Resource Sharing on Mono-core Architecture

100 200 300 400 500

5

10

15

20

25

Number of tasks

T
im

e(
se
co
nd

)

d = branch1
d = branch2
d = branch3
d = branch4

Figure 4.21: Deadlines calculation time in the four branches.

Moreover, DEAD-CALC reduces the development time even if there are several
tasks and implementations to work on. Figure 4.22 presents the variation of the
deadlines calculation time of the first solution depending on both the number of
tasks and implementations.

1,000 2,000 3,000 4,000 5,000

5

10
0

2,000

(0)
(1)

(2)

(3)

(4)

Number of tasks
Number of impls

T
im

e
(s

ec
on

ds
)

Figure 4.22: Calculation time of the first solution under a huge number of tasks and
implementations.

DEAD-CALC reduces the development time by computing the deadlines to be
certainly respected without any additional feasibility analysis of the device. The
calculation can only consider the real-time aspects, or both the renewable energy and
resource sharing constraints. To the best of our knowledge, no one in all related works

94

4.7. Conclusion

considers the calculation of deadlines for feasible reconfigurable real-time systems
under energy and resource sharing constraints.

4.7 Conclusion
This chapter focuses on a reconfigurable real-time system powered by a renewable
energy source and encoded by a set of periodic tasks which may share resources under
mono-core architecture. The main aim of the chapter is to calculate the deadlines to
be certainly respected under the given constraints, without wasting time performing
schedulability tests. This contribution is illustrated through three solutions that
are dedicated respectively to overcoming the real-time, energy, and resource sharing
challenges. A new visual simulator called DEAD-CALC is developed to be used by
designers to compute and display deadlines, with few clicks, in arranged tables, and
in a short time. This project can be a future reference for industrial partners who
will be focusing on various real-time applications design.
In the next chapter, the proposed approach is focused on multi-core reconfigurable
real-time systems.

95

Chapter 5

Configuring Feasible
Reconfigurable Multi-core
Real-time System with Energy
Harvesting and Precedence
Constraint

97

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

5.1 Introduction

The previous chapters dedicated to parametrize feasible real-time systems under given
constraints in mono-core architecture. This chapter tackles the real-time scheduling
problem on multi-core architecture. Moreover, renewable energy challenge and tasks
precedence constraints are studied. The tasks are assumed to be mapped to cores
statically and not allowed to migrate, and they can be periodic or aperiodic which are
invoked to cope with external interruptions. A novel scheduling strategy is proposed
to effectively compute deadlines, allowing for tasks and messages to meet related
constraints. To cope with the energy availability issue, this method defines different
operating modes, each of which is characterized by energy and frequency parameters.
Then, this contribution determines deadlines ensuring real-time system feasibility by
considering the invocation of aperiodic task execution and task precedence constraints
on multi-core architecture.
The outline of the chapter is organized as follows: First, we present the motivation
section. Next, we present the computational model and the assumptions based on
the model proposed in the first chapter. Then, we explain in details the proposed
approach. Last, we illustrates the approach on a case study while evaluating its
efficiency. Finally, we present the discussion section to analyze and interpret this
chapter’s findings.

Note that this chapter has been published in the international journal Information
Sciences[41].

5.2 Motivation

Multi-core real-time systems are becoming prevalent across all industries as they can
increase performance by running multiple applications concurrently. In addition, the
allocation of software to multiple cores also supports failure tolerance by supporting
failover from one core to another. On another hand, these system introduce additional
challenges such as finding efficient solutions to the task scheduling problem especially
when taking into consideration various type of tasks. In fcat, such system is generally
specified by a large number of tasks of various type and that may be dependent
and need to transfer messages to communicate together when they are portioned in
different cores.

On another hand, real-time systems operated by batteries are growing in different
application domains. To prolong their lifetime, there is a need to reduce energy
consumption. Hence, a new generation of processors [60, 59, 58] is designed to allow
a dynamic variation of the voltage and operating frequency to balance computational
frequency and energy consumption. Moreover, as presented in figure, renewable
energy sources generate most of their energy at certain times of the day depending
on environmental conditions, but it does not match the peak demand hours. The
intermittency of renewable energy is unpredictable. Hence, it cannot provide an

98

5.3. Formalization

on-demand power source 24 hours a week. Therefore, the problem of allocating
appropriate frequencies to the cores of the real-time system must be considered to
cope with the uncertain energy availability.

Figure 5.1: Renewabele energy availability.

The problem to be overcome in this chapter can be summarized as parametrizing
feasible reconfigurable multi-core real-time systems having both periodic and aperiodic
real-time tasks, powered by renewable energy and may have precedence constraints.
Even if research results of each topic are separately rich, to our best knowledge there
is no work that treats all the mentioned challenges together. From this viewpoint,
this contribution proposes a new methodology to configure feasible scheduling of
real-time tasks of various type on multi-core architecture while considering tasks
dependency and energy harvesting challenges. This appraoch aims to:

• Parameterize operating modes by identifying energy and frequency parameters
for each one, this Generates a new implementation of the system having tasks
with updated parameters,

• Identify tasks and messages’ deadlines which will be certainly respected online,

• Ensure precedence constraints by using calculated deadlines for tasks based
on deadlines of their predecessors, i.e., a task must have longer deadline than
those of its predecessors if they exist.

5.3 Formalization

In this section, we introduce the mathematical expressions that represents the
characteristics of multi-core reconfigurable real-time system. Moreover, we introduce
a formal description of the energy model.

99

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

5.3.1 System Model

This contribution focuses on multi-core architecture. Hence, a real-time system
Π, has an z-core architecture, is denoted as a set of cores Π = {X1, X2, ..., Xz}.
Moreover, Π consists of periodic and aperiodic tasks which are assigned to x cores .
Same as previous contributions, P is the set of periodic tasks, , P = {τ0

1 , ..., τ0
n}

and A is the set of aperiodic tasks, A = {τ2
1 , ..., τ2

o }.

As in this contribution we consider dependent tasks, we must model the set
of messages to ensure the communication between the dependent tasks. Thus, we
denote byM = {m1,m2, ..., mb} the set of b messages.

5.3.2 Energy Model

Certainly, the amount of harvested energy from a renewable source is not considered
to be stable over time due to the variation of environmental conditions, such as
the angle of sunlight incidence and cloud density. Thus, in this contribution we
choose to work variation of instantaneous charging rate. Let E = [Eumin, Eumax]
be the instantaneous charging rate variation Eumin is the minimum instantaneous
charging rate produced by the energy source and Eumax is the maximum one. The
energy available in an ideal energy battery at t = 0 is denoted as Ea. The produced
energy in the interval time [0, t1] is denoted as Ep(0, t1), where its minimum value
is Eumin × t1, and the maximum one is Eumax × t1. Moreover, the energy consumed
Ec(0, t1) is the cumulative amount of energy of tasks executed by x cores in [0, t1].
Moreover, each core Xp requires energy, denoted Ep, to execute its tasks on time
interval [0, t1], where p ∈ {1, ..., z}.

As mentioned above, the amount of harvested energy from a renewable source is
out of control. To overcome this issue, we rely on designating different operating
modes, each of which is defined as a time slot characterized by its own energy and
frequency parameters. We denote by Θ = {θ1, θ2, ..., θx} the set of operating modes,
each of which is described by two intervals:

• F k = [fkm, fkM] is the processor frequency variation in the operating mode θk,
where k ∈ {1, ..., x}.

• Ek = [Ekm, EkM] is the instantaneous charging rate variation in θk, in such a
way that the difference between minimum instantaneous charging rate and
maximum one is almost constant at each operating.

As aforementioned, we focus in this chapter on reconfiguration scenarios that
consist on updating tasks parameters. As the execution time of a task is equal to
its number of execution cycles divided by the operating frequency [75], then the
modification of the frequency from one operating mode to another leads to the
modification of the tasks’ execution times. Hence, as represented in figure 5.2, each
operating mode θk leads to new system implementation Ik while tasks execution

100

5.3. Formalization

times are updated. Thus, I = {I1, ..., Ix} is the set of implementations, where each
element Ik contains all tasks in P.

Figure 5.2: Operating mode and system implementations.

5.3.3 Processor Model

We assume in this contribution that processors allow varying the supply voltage and
thus the operating frequency. In other words, they support Dynamic voltage and
frequency scaling (DVFS), a technique that aims at reducing the dynamic power
consumption by dynamically adjusting voltage and frequency of processor. Thus,
a processor can dynamically adapt its working frequency in a continuous range
F = [fm, fM]. Thus, in each operating mode θk, each core Xp may run at different
frequency fp, where fp ∈ F .

On another hand, we assume that the interconnection among cores is based on a
mesh topology where each core has a communication bus to each of the other cores.

5.3.4 Periodic Task Model

Each periodic task τ0
i , i ∈ {1, ..., n}, in P is characterized by: i) release time R0

i , ii)
worst-case execution cycle (WCEC) C0

i , iii) period P 0
i , iv) relative deadline D0

i to
be calculated for system feasibility, i.e., D0

i ≤ P 0
i , v) required energy E0

i , and vi)
execution time T 0

i which depends on the frequency of core Xp on which τ0
i is running

and WCEC. Hence, to compute T 0
i [75], it is enough to satisfy (1).

T 0
i =

⌈
C0
i

fp

⌉
(5.1)

Also, we prove that the required energy E0
i depends on fp when τ0

i is running on
Xp. The details of calculating E0

i are presented in Proof 1 below.

E0
i = Cst3 × (fp)2 × C0

i (5.2)

101

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

where, Cst3 is a constant.

Proof 1: Calculation of the required energy by a task
In the liturature [4, 85, 15, 27], the power consumption P is

P = Cst1 × V 2 × F (a)

where Cst1 is a constant switched capacitance, V is the supply voltage and F is the
frequency. Moreover, the frequency F can be expressed in terms of supply voltage
V ,and threshold voltage V t as follows [4]:

F = Cst2 × (V − V t)2

V
(c)

We neglect V t compared to V , i.e., V − V t ≈ 0, then formula (c) becomes

F = Cst2 × V 2

V
= Cst2 × V

According to the previous formula, V can be expressed in terms of frequency F as
follows:

V = F

Cst2
(d)

where Cst2 is a constant related to the circuit type of the processor.
If the system is running over ω time, the energy consumption is

E = P × ω (b)

By (a), (b) and (d), we have

E = Cst1 ×
F 2

Cst22
× F × ω = Cst3 × F 3 × ω (e)

where Cst3 = Cst1
Cst22

.
If we apply formula (e) to the formalization proposed in this work, we can calculate
the energy consumption E0

i for each task τ0
i , i.e.,

E0
i = Cst3 × (fp)3 × T 0

i (f)

where fp is the frequency of the related core Xp in which τ0
i is running, and T 0

i is

the execution time of τ0
i . As we have in (1), T 0

i =
⌈
C0

i
fp

⌉
, the formula (f) can be

written as:

102

5.3. Formalization

E0
i = Cst3 × (fp)3 ×

⌈
C0
i

fp

⌉

⇔ E0
i = Cst3 × (fp)2 × C0

i

Likewise for an aperiodic task τ2
l , its required energy can be written as:

E2
l = Cst3 × (fp)2 × C2

l

Each periodic task τ0
i produces an infinite sequence of jobs τ0

ij , where j is a positive
integer. Each job τ0

ij is described by: i) release time r0
ij , ii) relative deadline d0

ij to
be calculated, and iii) end execution time f0

ij .

5.3.5 Aperiodic Task Model

Each aperiodic task τ2
l , l ∈ {1, ..., o}, is defined by: i) WCEC C2

l , ii) execution
time T 2

l which depends on the frequency of core Xp on which τ0
i is running and the

WCEC, and iii) required energy E2
l , where

T 2
l =

⌈
C2
l

fp

⌉
(5.3)

and,
E2
l = Cst3 × (fp)2 × C2

l (5.4)
An aperiodic task can arrive in a completely random way. Thus, for each aperiodic
task τ2

l we note by Nl the maximum number of occurrences estimated on time
interval [1, t1].

After defining periodic and aperiodic tasks, we identify the formula to compute

• Consumed energy Ep(0, t1) by each core Xp on time interval [0, t1].
Let us denote by Ψ0

p the periodic tasks’ required energy which have to be
executed before instant t1 on Xp. We calculate for each periodic task the
maximum number of its jobs that can be executed on time interval [0, t1], then
we multiply it by task’s required energy in each invocation,

Ψ0
p =

∑
τ0

i ∈Xp

E0
i ×

⌈
t1
P 0
i

⌉
(5.5)

and by Ψ1
p the aperiodic tasks’ required energy which have to be executed

before instant t1 on Xp. We calculate for each aperiodic task the maximum
number of occurences in time interval [0, t1], then we multiply it by the task’s
required energy,

Ψ1
p =

∑
τ2

l
∈Xp

E2
l ×Nl (5.6)

103

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

Ep(0, t1) = Ψ0
p + Ψ1

p (5.7)

• Consumed energy Ec(0, t1) by the entire system as the sum of cores’ consumed
energy in time interval [0, t1], i.e., all periodic and aperiodic tasks’ required
energy which have to be executed before instant t1.

Ec(0, t1) =
z∑
p=1

Ep(0, t1) =
n∑
i=1

E0
i ×

⌈
t1
P 0
i

⌉
+

o∑
l=1

E2
l ×Nl (5.8)

• Minimum frequency of the whole system as detailes in Proof 2 below,

fm = max{fXp
m } (5.9)

where,

fXp
m = 1

t1
(
∑

τ0
i ∈Xp

C0
i ×

⌈
t1
P 0
i

⌉
+

∑
τ2

l
∈Xp

Nl × C2
l)

• Maximum frequency of the whole system as detailes in Proof 3 below,

fM =
√√√√√ Eumax × t1

Cst3(
∑n
i=1C

0
i ×

⌈
t1
P 0

i

⌉
+
∑k
l=1C

2
l ×Nl)

(5.10)

where x ∈ {1, ...,m}.

104

5.3. Formalization

Proof 2: Calculation of fm In each core Xp, the cumulative execution time
requested by jobs’ tasks running on given time intarval [0, t1] must be at most
equal to its duration t1 − 0 = t1, i.e., there is no any an overload on this interval,

∑
τ0

i ∈Xp

T 0
i ×

⌈
t1
P 0
i

⌉
+

∑
τ2

l
∈Xp

Nl × T 2
l ≤ t1 (a)

Since task execution time depends on the frequency of the core on which it is
executed as mentioned in (1), then we must consider the case where this time is
the greatest, i.e., when the core frequeny is the smallest.
Let us denote by fXp

m the minimum frequency in core Xp, so the formula (a) can
be written as:

∑
τ0

i ∈Xp

C0
i

f
Xp
m

×
⌈
t1
P 0
i

⌉
+

∑
τ2

l
∈Xp

Nl ×
C2
l

f
Xp
m

≤ t1

⇔ 1
f
Xp
m

(
∑

τ0
i ∈Xp

C0
i ×

⌈
t1
P 0
i

⌉
+

∑
τ2

l
∈Xp

Nl × C2
l) ≤ t1

⇔ 1
t1

(
∑

τ0
i ∈Xp

C0
i ×

⌈
t1
P 0
i

⌉
+

∑
τ2

l
∈Xp

Nl × C2
l) ≤ fXp

m

Since fXp
m is the minimum frequency in Xp, then

fXp
m = 1

t1
(
∑

τ0
i ∈Xp

C0
i ×

⌈
t1
P 0
i

⌉
+

∑
τ2

l
∈Xp

Nl × C2
l)

Finally, to find the minimum frequency fm of the whole system Π it is enough to
take the maximum among the minimum frequencies of its cores:

fm = max{fXp
m }, where p ∈ {1, ..., z}

105

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

Proof 3: Calculation of fM
The processor’s energy consumption must be at most equal to the maximum energy
harvested in the storage associated to the processor. For that, we check that the
harvested energy is less than or equal to the energy consumption by the system’s
tasks running on given time interval [0, t1].

Ec(0, t1) ≤ Ep(0, t1)

⇔
n∑
i=1

E0
i ×

⌈
t1
P 0
i

⌉
+

o∑
l=1

E2
l ×Nl ≤ Eumax × t1 (a)

Based on (2) and (4) and using the maximum frequency fM by all cores, the formula
(a) becomes as follows:

n∑
i=1

Cst3 × (fM)2 × C0
i ×

⌈
t1
P 0
i

⌉
+

o∑
l=1

Cst3 × (fM)2 × C2
l

×Nl ≤ Eumax × t1

⇔ (fM)2(
n∑
i=1

Cst3 × C0
i ×

⌈
t1
P 0
i

⌉
+

o∑
l=1

Cst3 × C2
l ×Nl)

≤ Eumax × t1

⇔ (fM)2 ≤ Eumax × t1∑n
i=1Cst3 × C0

i ×
⌈
t1
P 0

i

⌉
+
∑o
l=1Cst3 × C2

l ×Nl

⇔ fM ≤
√√√√√ Eumax × t1

Cst3(
∑n
i=1C

0
i ×

⌈
t1
P 0

i

⌉
+
∑o
l=1C

2
l ×Nl)

Since fM is the maximum frequency in Π, then

fM =
√√√√√ Eumax × t1

Cst3(
∑n
i=1C

0
i ×

⌈
t1
P 0

i

⌉
+
∑o
l=1C

2
l ×Nl)

5.3.6 Message Model

Message msi ensures the communication between two periodic dependent tasks τ0
i

and τ0
s where τ0

i depends on τ0
s , i ∈ {1, ..., n} and s ∈ {1, ..., n}. It is defined by: i)

release time R3
si, while msi can be activated only when the predecessor task τ0

l ends,
then we consider the case when the activation is done as soon as possible, i.e., R3

si =

106

5.3. Formalization

C0
l , ii) worst-case transmission cycle (WCTC) C3

si, iii) transfer time T 3
si which is the

time required to pass through the communication bus, iv) delay time Bsi, v) period
P 3
si, where P 3

si = P 0
i = P 0

l , and vi) relative deadline D3
si. It is assumed that the

energy consumed to make the transfer of messages is neglected. The transfer time
T 3
si depends on the frequency of core Xp on which τ0

l is running and the WCTC:

T 3
si =

⌈
C3
si

fp

⌉
(5.11)

Each message msi produces an infinite sequence of instances msif , where f is a
positive integer. Each instance msif is described by: i) release time r3

sif , and ii)
delay time bsif .

5.3.7 Problems’ Mathematical Formalization

The problem to be treated in this chapter is how to parameterize feasible scheduling
of real-time tasks with precedence constraints upon a multi-core processor powered
by renewable energy harvested from related environment. Our scheduling problem
contains three subproblems,

• Harvested energy availability: During each operating mode, it is necessary to
identify the appropriate frequency for ensuring the tasks’ energy requirements
without missing a given deadline. To cope with this issue, we define p operating
modes each of which is described by the energy and frequency variation intervals.
After that in each operating mode, we must ensure that energy consumed to
execute tasks on time interval [0, t1] is always less than the energy harvested
plus the initial energy stored in the ideal energy battery. This constraint is
given by

Ec(0, t1) ≤ Ea + Ekm × t1 (5.12)

• Real-time tasks’ scheduling: During each operating mode, each job has to be
completed before the absolute deadline using the EDF scheduling algorithm.
This constraint is given by

∀i ∈ {1, ..., n}, and j ∈ {1, ...,
⌈
t1
P 0
i

⌉
], f0

ij ≤ r0
ij +D0

i (5.13)

• Precedence Constraints: Given a partial order ≺ on tasks, the idea behind
consistency with a given order is to enforce precedence constraints by using
earlier deadlines. Thus, if τ0

l ≺ τ0
i then this constraint is given by

R0
l = R0

i , and D0
l < D0

i (5.14)

when both τ0
l and τ0

i are on the same core, otherwise by

R0
s = R0

i , and D0
s < D3

si < D0
i (5.15)

107

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

5.4 Efficient Scheduling of Periodic and Aperiodic
Tasks Under Real-time, Energy and Precedence
Constraints on Multi-core Reconfigurable Systems

This section presents and details the proposed methodology to solve the challenges
posed.

5.4.1 Overview of the proposed methodology

Compared to the previous contributions, the latter aims to deal with additional
constraints, the most important of which is the multicore architecture. In fact,
this contribution focuses on real-time scheduling with precedence constraints on
multi-core systems powered by renewable energy harvested from the environment
and having mixed task sets. The uncertainty of energy availability in energy har-
vesting systems makes the problem of dependent tasks scheduling on multi-core
architecture more challenging. To overcome this issue, we rely, in this contribution, on
varying the processor frequency according to the predefined environmental conditions.

As presented in figure 5.3, the proposed approach is decomposed into two phases
as fellow:

• The first defines different operating modes, each of which is characterized by
energy and frequency parameters to cope with the energy availability issue.
The variation of frequency leads to the modification of tasks parameters. Hence,
each operating mode corresponds to well-defined system implementation. In
fact, each implementation contains all system tasks with updated parameters.

• The second computes the deadlines, ensuring the real-time system feasibility
by considering the invocation of aperiodic tasks execution. Moreover, the
tasks may run under precedence constraints. Based on tasks dependency, the
computing of tasks deadlines has two alternatives:

– If a task has not any predecessor, then the identification of deadlines is
based on the maximum value among its jobs’ deadlines.

– If a task has one or more predecessors, then the identification of deadlines
is based on the maximum value among its jobs deadlines and on the time
needed to ensure message transfer.

108

5.4. Efficient Scheduling of Periodic and Aperiodic Tasks Under Real-time, Energy
and Precedence Constraints on Multi-core Reconfigurable Systems

Figure 5.3: Overview of the proposed methodology.

5.4.2 Parameterizing Operating Modes of System

As mentioned previously, each operating mode θk is described by energy and frequency
variation intervals.

Based on number p of operating modes, Eumin and Eumax, we calculate energy
variation interval Ek = [Ekm, EkM] for each operating mode θk in such a way the
difference between Ekm and EkM is constant.

Ekm = Eumin + (y − 1)× (E
u
max − Eumin

p
) (5.16)

EkM = Eumin + y × (E
u
max − Eumin

p
) (5.17)

The calculation of frequency variation interval F k = [fkm, fkM] for each operating
mode θk is done as detailed in Appendix D.

fkm = max{
√√√√√ EkM × t1

Cst3 × (
∑n
i=1C

0
i ×

⌈
t1
P 0

i

⌉
+
∑o
l=1C

2
l ×Nl)

} (5.18)

109

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

fkM = min{
√√√√√ EkM × t1

Cst3 × (
∑n
i=1C

0
i ×

⌈
t1
P 0

i

⌉
+
∑o
l=1C

2
l ×Nl)

} (5.19)

where x ∈ {1, ...,m}.

5.4.3 Real-time and Energy Feasibility with Precedence
Constraints on Multi-core Processor

After having parameterized operating modes, we present the deadline computing
method which is executed in each one. Indeed, task execution time depends on the
frequency of the core on which it is executed as mentioned in (1), i.e., task parameters
change at each operating mode.

Remark 1. Throughout calculating deadlines in the proposed approach, we
impose that fp = fkm for the fact that we consider in each operating mode its
minimum instantaneous charging rate of energy Ekm ⇒ its minimum frequency fkm
⇒ the maximum execution time for each task.

Let ∆ij be the maximum cumulative execution time requested by tasks that have
to be executed before each job τij in Xp. ∆ij includes three factors:

• φ1 = (j − 1)× T 0
i represents the cumulative execution time requested by the

previous instances of τ0
i , i.e., if we are working on the jth instance, then we

are sure that there are (j − 1) instances that have already been executed.

• φ2 =
∑
τ0

l
∈Xpandl 6=i(b

j×P 0
i

P 0
l
c−αil)×T 0

l represents the cumulative execution time

requested by the other tasks’ jobs that are in the same core as τ0
i , where α

ij
l is

an integer, and

αijl =

 0 if b j×P
0
i

P 0
l
c × P 0

l < (j − 1)× P 0
i

1 else.
(5.20)

• φ3 =
∑
τ2

l
∈Xp

T 2
l ×Nl represents the cumulative execution time requested by

aperiodic tasks instances that are in the same core as τ0
i .

where, l 6= i.

∆ij = φ1 + φ2 + φ3 (5.21)

After calculating the maximum cumulative execution time ∆ij estimated to be
executed before τij , we proceed to calculate its deadline d0

ij . It is enough to take the
difference between ∆ij and the release time r0

ij of τ0
ij , added to its execution time,

where j ∈ {1, ...
⌈
t1
P 0

i

⌉
], i.e., the jobs of τ0

i that are executed on time interval [1, t1].

d0
ij = T 0

i + (∆ij − r0
ij)× b

∆ij

r0
ij

c (5.22)

110

5.4. Efficient Scheduling of Periodic and Aperiodic Tasks Under Real-time, Energy
and Precedence Constraints on Multi-core Reconfigurable Systems

The proposed approach has the following alternatives:

• If task τ0
i has not any predecessor, i.e., τ0

i does not depend on any task, then
it is enough to assign to each D0

i the maximum value among d0
ij .

D0
i = max{d0

ij}+ T 0
i (5.23)

• If task τ0
i has one or more predecessors τ0

l , i.e., Ωi 6= ∅ and the execution of
τ0
i needs the response of its predecessors. Thus, for each task τ0

s ∈ Ωi, we
calculate the deadline D3

si of each message msi. For that, we must consider the
time needed to ensure message transfer, the finishing time of τ0

s , i.e., R3
si and

the delay time Bsi.

The delay time of message msi before being transmitted is due to the waiting of
the end of the messages’ transmission that are activated before msi, i.e., first come,
first served. The considered messages are only those using same communication bus
as msi that we denote byMsi.

Let us denote by Lsif the last idle instant before starting the fth instance of
msi, i.e., before r3

sif . Lsif correspond to the minimum messages release time whose
inMsi and their executions remain until starting the fth instance of msi and it is
given by

Lsif = min
mvs∈msi

{βvs} (5.24)

where,

βvs =

⌈
r3
sif − r3

vs

P 3
vs

⌉
0
× P 3

vs + r3
vs if

⌈
r3
sif − r3

vs

P 3
vs

⌉
0
× P 3

vs + r3
vs ≤ r3

sif⌊
r3
lsif − r3

vs

P 3
vs

⌋
0
× P 3

vs + r3
vs else.

(5.25)

where dqe0 = max{0, q} and bqc0 = max{0, q}.
Let us denote by w(t) the workload requested by the messages mvs ∈Msi before

the instant t,

w(t) =
∑

mvs∈Msi

⌈
t−R3

vs

T 2
vs

⌉
0
× T 3

vs (5.26)

As Lljf is the last idle instant before starting the fth instance of msi, the difference
between Lsjf and w(Lsjf) gives the total idle period before r3

sjf that we denote by
Iljf ,

Isjf = Lsjf − w(Lsjf) (5.27)
To calculate the delay time bsjf of msif it is enough to take the difference between
w(Lljf) the workload requested by the messages mvs ∈Msi added to the total idle
period before r3

sjf and r3
sjf ,

bsjf = (w(r3
sjf) + Isjf − r3

sjf)0 (5.28)

111

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

The delay time Bsi is defined as the maximum among bsif ,

Bsi = max{bsif} (5.29)

where (q)0 = max{0, q}

The deadline of message msi is given by

D3
si = D0

s + T 3
si +Bsi (5.30)

Remark 2. If a task τ0
i depends on another task τ0

s running on the same core,
then there is no any message transfer, i.e., T 3

si = 0 and no any delay time, i.e., Bsi = 0.

Let DPred
i be the maximum duration so that τ0

i can receive all the messages
coming from its predecessors after its activation.

DPred
i = max{D3

si}, ∀ s ∈ Ωi (5.31)

A task must wait for the arrival of all messages coming from its predecessors and
also must wait for the end of execution of the tasks having a priority higher than its
own. Thus, its deadline must be the maximum value among these two waiting time.

D0
i = max{DPred

i ,max{d0
ij}}+ T 0

i (5.32)

5.4.4 New Solution for Deadline Calculation of Mixed Real-time
tasks on Multi-core Architecture under Energy and
Precedence Constraints

The recursive algorithm below implements the proposed approach. It is based on
the function D_Computing(Ωi) that applies the proposed approach to calculate a
deadline for a given task τ0

i . If the considered task has one or more predecessors, i.e.,
it depends on other tasks, then this function calls itself to compute the deadlines of
these tasks. Indeed, the considered task τ0

i must have a deadline longer than those
of its predecessors to ensure the precedence constraints.

112

5.5. Conducted Experimentation

Algorithm 2 New method for deadline calculation
Require: Ωi, P
Ensure: D0

i

1: function D_Computing(Ωi)
2: for all τ0

ij do
3: d0

ij = T 0
i + (∆ij − r0

ij)× b
∆ij

r0
ij
c

4: end for
5: if Ωi = ∅ then
6: D0

i = max{d0
ij}+ T 0

i

7: return D0
i

8: else
9: while Ωi 6= ∅ do and τ0

l ∈ Ωi

10: if P 3 τ0
l then

11: D0
l= D_Computing(Ωl)

12: end if
13: Ωi = Ωi − τ0

l

14: D3
si = D0

l + T 3
si +Bsi

15: end while
16: DPred

i = max{D3
si}

17: D0
i = max{DPred

i ,max{d0
ij}}+ T 0

i

18: return D0
i

19: end if
20: P = P − τ0

i

21: end function

5.5 Conducted Experimentation

In this section, we illustrate the proposed approach through a case study which
consists on temperature controller system powered by a renewable energy source.

5.5.1 Presentation of Temperature controller System

The temperature controller system, presented in figure 5.4, is used in in the healthcare
industry to increase the accuracy of temperature control. It does this by first
measuring the temperature, it then compares it to the desired value. The difference
between these values is known as the error. Temperature controllers use this error
to decide how much heating or cooling is required to bring the process temperature
back to the desired value.

113

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

Figure 5.4: Case study modelisation.

We assume that the system has on two cores. The first core has three periodic
tasks τ0

1 , τ0
2 and τ0

5 . The second one has two periodic tasks τ0
4 andτ0

3 and an aperiodic
task τ2

1 which is activated at most once on time interval [0, 60] according to user
requirements. We present in Table 5.1 the tasks set.

Table 5.1: System tasks.

Task Function WCEC Period core

τ0
1 mesure the temperature 2 10 X1

τ0
2 send the mesured value for displaying 5 20 X1

τ0
3 adjust the temperature 1 15 X2

τ0
4 compare the temperature to the desired value 2 10 X2

τ0
5 display the temperature value 1 20 X1

τ2
1 refresh display 2 X2

We assume that τ0
2 depends τ0

5 . As they are in the same core X1, thus the
communication between them is established without the intervention of any message.
Moreover, τ0

4 depends on τ0
1 . In fact, according to , it compares the measured

value by τ0
1 with the desired value. As τ0

1 and τ0
4 are not in the same core, thus the

communication between them is established with the message m14, where T 3
14 = 2,

5.5.2 Application of the Proposed Approach

According to user requirements, the cold room has three operating modes, i.e., p = 3,
and it is powered by a renewable energy source, where Eumin = 0, 6, and Eumax = 6, 6.
Furthermore, the processor can dynamically adapt its working frequency in some
continuous range F = [fm, fM] which is determined as bellow, (we suppose that
Cst3 = 1)

114

5.5. Conducted Experimentation

Let fX1
m be the minimum frequency in core X1, according to (9):

fX1
m = 2

10 + 5
20 + 1

20 = 10
20 = 0, 5

Let fX2
m be the minimum frequency in core X2, according (9):

fX2
m = 1

15 + 2
10 + 2

30 = 2
30 + 6

30 + 2
30 = 10

30 = 0, 3

Thus, fm = max{0, 5, 0, 3} = 0, 5

According to (10) :

fM =
√

6, 6× 60
Cst3 × (2× 6 + 5× 3 + 1× 4 + 2× 6 + 1× 3 + 2× 1) = 2, 9

Then, we parameterize the three operating modes θ1, θ2, and θ3. For that, we
define energy parameters as follows:
According to (16),

E1
m = Eumin + (1− 1)× (E

u
max − Eumin

3) = 0, 6 + (1− 1)× (6, 6− 0, 6
3) = 0, 6 (5.33)

According to (17),

E1
M = Eumin + 1× (E

u
max − Eumin

3) = 0, 6 + 1× (6, 6− 0, 6
3) = 2, 6 (5.34)

Similarly, we have E2
m = 2, 6, E2

M = 4, 6, E3
m = 4, 6, and E3

M = 6, 6.

We present in 5.5 the operating modes’ energy parameters.

115

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

Figure 5.5: Presentation of operating modes.

After that, we define the frequency parameters as follows: According to (18),

f1
m = max{

√
0, 6× 20

16 ,

√
0, 6× 30

28 } = max{0, 85, 0, 80} = 0, 85 (5.35)

According to (19),

f1
M = min{

√
2, 6× 20

16 ,

√
2, 6× 30

28 } = max{1, 8, 1, 6} = 1, 8 (5.36)

Similarly, we have f2
m = 1, 8, f2

M = 2, 4, f3
m = 2, 4, and f3

M = 2, 9.

5.5.3 Case Study Results and Evaluation

The calculated results are displayed in Table 5.2.

Table 5.2: Calculation results.

τ0
1 τ0

2 τ0
3 τ0

4 τ0
5 m14 m25

Deadline in θ1 4 9 2 10 11 7 9
Deadline in θ2 2 5 1 6 8 4 5
Deadline in θ3 2 5 1 4 7 3 5

116

5.5. Conducted Experimentation

Figure 5.6 shows the evolution of consumed and produced energy in θ1 while
calculating the consumed energy by using the minimum instantaneous charging in,
i.e., 0, 6j. In fact, as presented in fig.5.5, the instantaneous charging in θ1 varies
between 0, 6j and 2, 6j. We note that the curve of consumed energy is under the
one of produced energy. Thus, we conclude that ,even if we consider low energy
production, the energy produced is greater than the energy consumed over time, i.e.,
the energy constraints are respected.

0 5 10 15 20 25 30

0

5

10

15

20

Time(s)

En
er
gy

(j
))

Produced energy
Consumed energy

Figure 5.6: Evolution of the consumed and produced energy inθ1.

Figure 5.7 shows the scheduling of tasks by using the calculated deadlines in θ1.
We note that real-time constraints are respected even if there is a wait time due to
messages’ transmission between dependent tasks. Therefore, the proposed approach
guarantees the respect of both real-time and energy constraints while considering
task dependency.

117

5. Configuring Feasible Reconfigurable Multi-core Real-time System
with Energy Harvesting and Precedence Constraint

Figure 5.7: Scheduling of tasks by using deadlines in θ1.

5.6 Discussion
The main contribution in this chapter is parametrizing feasible reconfigurable multi-
core real-time systems while considering et set of challenges together. The main
steps followed are the parameterization of operating modes to cope with energy
requirements, and the computing of tasks and messages’ deadlines to ensure real-time
and precedence constraints by using calculated deadlines for tasks based on deadlines
of their predecessors.

The originality of the current work compared with related researches, detailed
in Chapter 2, is that it configures feasible scheduling of multi-core reconfigurable
real-time system while considering mixed task sets, dependency, energy harvesting,
and real-time constraints.

• Multi-core architecture: tasks are partitioned into different cores.

• Reconfiguration: tasks parameters are updated from one implementation to
another.

• Real-time correctness: all periodic tasks meet their deadline.

• Energy requirements: each task has the required energy for its execution.

• Precedence constraints: each task have a longer deadline than those of its
predecessors, if they exist.

118

5.7. Conclusion

• Mixed tasks set: the consideration of aperiodic tasks invocation.

5.7 Conclusion
In this chapter, we presented a new method for configuring feasible reconfigurable
multi-core real-time systems having both periodic and aperiodic real-time tasks,
powered by renewable energy and may have precedence constraints. Firstly, to cope
with the energy harvesting availability issue, the proposed approach defines different
operating modes and assigns to each one the appropriate interval of energy and
frequency variation. Due to this variation, tasks parameters are updated from one
operating mode to another, resulting new implementation of the system. Secondly,
in each operating mode as-well as in each implementation, it calculates the tasks’
deadlines which will be certainly respected online without any additional feasibility
analysis. The originality of the contribution is that treats different and independent
challenges together, i.e., multi-core, task dependency, energy constraints, and periodic
and aperiodic real-time tasks. To the best of our knowledge, no one in all related
studies treats these issues together.

119

Chapter 6

Conclusion

121

6. Conclusion

6.1 Thesis Context and Problems
The design of reconfigurable real-time systems is developing more and more with the
increasing integration of critical functionalities in industrial processes. These systems
face many challenges, the main one is the respect of real-time feasibility, where each
task must meet its deadline. Furthermore, a real-time system often needs to execute
both periodic and aperiodic tasks to achieve its functionalities, which complicates the
scheduling problem. In fact, scheduling algorithms for mixed tasks set must be able to
improve response times for soft aperiodic tasks without jeopardizing the schedulability
of hard periodic tasks. Moreover, as they are reconfigurable, these systems can adapt
their behavior at any time according to the evolution of the environment and the user
requirements. This adaptation is manifested by adding or removing tasks, so that at
a given time and under well-defined conditions, the system may only need to execute
a subset of its tasks to achieve the required functionality. However, the real-time
constraints may be violated, and the system may not be feasible. In addition to this,
a real-time system may cope with several other constraints:

• Energy constraint: a real-time system have to operate continuously without
missing the available energy. In fact, a task may not be able to complete its
execution and then violates its deadline because of a lack of energy.

• Task dependency constraint: the real-time software tasks may be blocked
because of :(i) resource sharing (a task may violate its deadline when it waits
for a resource locked by another task) or (ii) precedence dependency (a task
may violate its deadline when it waits for the result provided by another one,
before its execution)

Thus, the main goal of this thesis is an efficient characterization of tasks’ deadlines
to ensure feasible real-time scheduling while coping with the exposed challenges
above. However, the characterization of a deadline is by itself a relatively unexplored
problem in the real-time community. To the best of our knowledge, most of the
literature seems to consider that deadlines are somehow provided by others, possibly
by control system engineers and no one in all related works considers the calculation
of deadlines under the exposed challenges.

6.2 Thesis Contributions and Originalities
As mentioned previously, the main objective of the thesis is therefore to propose a
new strategy for computing efficient tasks deadlines ensuring real-time feasibility
on mono or multi-architecture with mixed tasks set while considering the energy
availability and tasks dependency. In this thesis, we have chosen to address this issue
incrementally to progressively deal with related problems.

First, we are particularly interested in the scheduling of tasks for mono-core
architecture. We propose a new strategy based on parametrizing feasible scheduling
of software tasks of various types (periodic, sporadic, and aperiodic) and constraints

122

6.3. Thesis Perspectives

(hard and soft). We propose a new simulator called GIGTHIS-TOOl that applies
the proposed approach.

Then we have extended it to address the scheduling tasks under energy and
resource sharing constraints and reconfiguration property. We propose a new visual
simulator named DEAD-CALC that encodes the proposed approach and integrates
another tool RANDOM-TASK that is a random tasks generator.

Finally, an extension of the latter is proposed in order to configure feasible multi-
core real-time systems having both periodic and aperiodic real-time tasks, powered
by renewable energy, and may have precedence constraints. To cope with the energy
harvesting availability issue, the proposed approach defines different time slots and
assigns to each one the appropriate interval of energy and frequency variation.

6.3 Thesis Perspectives

The research project aims to resolve the identified problems. Nevertheless, the
developed work is open to many perspectives:

• The combination of our proposed approaches is a necessity to make a more
complete and reliable solution that integrates all the exposed challenges at the
same time. This makes the proposed solutions more complete and reliable.

• After accomplishing the first prospect (the combination of the contributions),
we will integrate artificial intelligence methodologies in making decisions to
execute the adequate treatments that can respond to real-time system needs.
In other words, we will develop intelligent agents, each of which integrates well-
defined treatment to cope with well-defined constraints. Then, after predicting
all possible factors that may affect system feasibility, another intelligent agent
will alert the adequate agent to be executed to determine the effective temporal
properties.

• Consideration of memory constraints: Real-time applications are often char-
acterized by highly fluctuating memory requirements. However, the use of
memory management in real-time systems has not been considered as an im-
portant issue, and has not received much consideration. In fact, each task
should have enough access to the memory for its execution. Otherwise, it is
probable that one or more tasks couldn’t make progress because of a lack of
memory, and then it may violate its deadline. Thus, we will consider memory
constraints when identifying the temporal properties of tasks.

• The concepts of the proposed frameworks are implemented using WLangage
and sql language. The developed tools in chapter 2 and chapter 3 need some
improvements, such as more testing by applying more case studies. Moreover,
we aim to improve the quality of the code to make the tool more powerful.

123

6. Conclusion

Furthermore, we aim to develop another tool that applies the contribution
proposed in chapter 4.

• Implementing and applying the contribution of our thesis to a real-time oper-
ating system that will be evaluated by considering real case studies.

124

Bibliography

[1] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions. Acm
Sigmod Record, 17(1):71–81, 1988.

[2] M. Abdel-Basset, R. Mohamed, M. Abouhawwash, R. K. Chakrabortty, and
M. J. Ryan. Ea-msca: An effective energy-aware multi-objective modified
sine-cosine algorithm for real-time task scheduling in multiprocessor systems:
Methods and analysis. Expert systems with applications, 173:114699, 2021.

[3] M. S. Ajmal, Z. Iqbal, F. Z. Khan, M. Bilal, and R. M. Mehmood. Cost-based
energy efficient scheduling technique for dynamic voltage and frequency scaling
system in cloud computing. Sustainable Energy Technologies and Assessments,
45:101210, 2021.

[4] M. H. Awadalla. Processor speed control for power reduction of real-time
systems. Intr. J. of Electrical and Computer Engineering, 5:701–713, 2015.

[5] Ö. Babaoğlu, K. Marzullo, and F. B. Schneider. A formalization of priority
inversion. Real-Time Systems, 5(4):285–303, 1993.

[6] T. P. Baker. Stack-based scheduling of realtime processes. Real-Time Systems,
3:67–99, 1991.

[7] P. Balbastre, I. Rippol, and A. Crespo. Minimum deadline calculation for
periodic real-time tasks in dynamic priority systems. IEEE Trans. Comput.,
57:96–109, 2008.

[8] S. Banerjee, J. Chatterjee, and S. Tripathy. Application of magnetic energy stor-
age unit as load-frequency stabilizer. IEEE Transactions on Energy Conversion,
5(1):46–51, 1990.

[9] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate
progress: A notion of fairness in resource allocation. Algorithmica, 15(6):600–
625, 1996.

[10] M. Bell, F. Berkel, and S. Liu. Real-time distributed control of low-voltage
grids with dynamic optimal power dispatch of renewable energy sources. IEEE
Transactions on Sustainable Energy, 10(1):417–425, 2018.

125

Bibliography

[11] M. O. Ben Salem, M. Khalgui, A. Koubaa, E. Guerfala, Z. Li, and E. Tovar.
Dual mode for vehicular platoon safety: Simulation and formal verification. J.
Information Sciences, 402:216–232, 2017.

[12] M. O. Ben Salem, O. Mosbahi, M. Khalgui, Z. Jlalia, G. Frey, and M. Smida.
Brometh: Methodology to design safe reconfigurable medical robotic systems.
Eur. Phys. J. B., DOI: 10.1002/rcs.1786:353–362, 2016.

[13] A. Benveniste and G. Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79(9):1270–1282, 1991.

[14] L. Borin, G. Lima, M. Castro, and P. D. Plentz. Dynamic power management
under the run scheduling algorithm: a slack filling approach. Real-Time
Systems, 57(4):443–484, 2021.

[15] T. Burd and R. Brodersen. Energy efficient cmos microprocessor design. In
Proc. 28th Hawaii Inter. Conf. System Sciences, USA, 1995. Wailea, HI.

[16] G. C. Buttazzo. Hard real-time computing systems: predictable scheduling
algorithms and applications, volume 24. Springer Science & Business Media,
2011.

[17] M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for enhancing
aperiodic responsiveness. In Proceedings Real-Time Systems Symposium, pages
330–339. IEEE, 1997.

[18] S. Cai and V. K. Lau. Mimo precoding for networked control systems with
energy harvesting sensors. IEEE Transactions on Signal Processing, 64(17):4469–
4478, 2016.

[19] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson, and S. K.
Baruah. A categorization of real-time multiprocessor scheduling problems and
algorithms., 2004.

[20] S. Carrara and G. Marangoni. Including system integration of variable renew-
able energies in a constant elasticity of substitution framework: the case of the
witch model. Energy Economics, 64:612–626, 2017.

[21] E. Carrascosa, J. Coronel, M. Masmano, P. Balbastre, and A. Crespo. Xtratum
hypervisor redesign for leon4 multicore processor. ACM SIGBED Review,
11(2):27–31, 2014.

[22] J. Chen, P. Han, Y. Liu, and X. Du. Scheduling independent tasks in cloud
environment based on modified differential evolution. Concurrency and Com-
putation: Practice and Experience, page e6256, 2021.

[23] S. Chen, Z. Li, B. Yang, and G. Rudolph. Quantum-inspired hyper-heuristics
for energy-aware scheduling on heterogeneous computing systems. IEEE
Transactions on Parallel and Distributed Systems, 27(6):1796–1810, 2015.

126

Bibliography

[24] M. Chetto. Optimal scheduling for real-time jobs in energy harvesting comput-
ing systems. IEEE Transactions on Emerging Topics in Computing, 2(2):122–
133, 2014.

[25] M. Chetto. Optimal scheduling for real-time jobs in energy harvesting comput-
ing systems. IEEE Trans. Emerg. Topics Comput., 2:122–133, 2014.

[26] M. Chetto and H. El Ghor. Scheduling and power management in energy
harvesting computing systems with real-time constraints. Journal of Systems
Architecture, 98:243–248, 2019.

[27] H. Chniter, Y. Li, M. Khalgui, A. Koubaa, Z. Li, and F. Jarray. Multi-agent
adaptive architecture for flexible distributed real-time systems. IEEE Access,
6:23152–23171, 2018.

[28] H. Chniter, O. Mosbahi, M. Khalgui, M. Zhou, and Z. Li. Improved multi-core
real-time task scheduling of reconfigurable systems with energy constraints.
IEEE Access, 8:95698–95713, 2020.

[29] Z. Deng, Z. Yan, H. Huang, and H. Shen. Energy-aware task scheduling
on heterogeneous computing systems with time constraint. IEEE Access,
8:23936–23950, 2020.

[30] M. Digalwar, P. Gahukar, B. K. Raveendran, and S. Mohan. Energy efficient
real-time scheduling algorithm for mixed task set on multi-core processors.
International Journal of Embedded Systems, 9(6):523–534, 2017.

[31] P. Dziurzanski and A. K. Singh. Feedback-based admission control for firm real-
time task allocation with dynamic voltage and frequency scaling. Computers,
7(2):26, 2018.

[32] R. El Osta, M. Chetto, and H. El Ghor. An efficient aperiodic task server for
energy harvesting embedded systems. In 2019 IEEE International Conference
on Internet of Things and Intelligence System (IoTaIS), pages 148–153. IEEE,
2019.

[33] N. Elvin and A. Erturk. Advances in energy harvesting methods. Springer
Science & Business Media, 2013.

[34] X. Fu, B. Tang, F. Guo, and L. Kang. Priority and dependency-based dag
tasks offloading in fog/edge collaborative environment. In 2021 IEEE 24th
International Conference on Computer Supported Cooperative Work in Design
(CSCWD), pages 440–445. IEEE, 2021.

[35] A. Gammoudi, A. Benzina, M. Khalgui, and D. Chillet. Energy-efficient
scheduling of real-time tasks in reconfigurable homogeneous multicore platforms.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(12):5092–
5105, 2018.

127

Bibliography

[36] M. Gasmi, O. Mosbahi, M. Khalgui, L. Gomes, and Z. Li. Performance optimiza-
tion of reconfigurable real-time wireless sensor networks. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 50(7):2623–2637, 2018.

[37] O. Gasmi, M.and Mosbahi, M. Khalgui, L. Gomes, and Z. Li. R-node: New
pipelined approach for an effective reconfigurable wireless sensor node. IEEE
Trans. Syst., Man, Cybern., Syst., 48:892–905, 2018.

[38] A. Goubaa, M. Kahlgui, F. Georg, and Z. Li. Efficient scheduling of peri-
odic, aperiodic, and sporadic real-time tasks with deadline constraints. In
International Conference on Software Technologies, pages 25–43. Springer,
2020.

[39] A. Goubaa, M. Khalgui, G. Frey, and Z. Li. New approach for deadline
calculation of periodic, sporadic and aperiodic real-time software tasks. In
ICSOFT, pages 452–460, 2020.

[40] A. Goubaa, M. Khalgui, Z. Li, G. Frey, and A. Al-Ahmari. On parametrizing
feasible reconfigurable systems under real-time, energy, and resource sharing
constraints. IEEE Transactions on Automation Science and Engineering,
18(3):1492–1504, 2020.

[41] A. Goubaa, M. Khalgui, Z. Li, G. Frey, and M. Zhou. Scheduling periodic and
aperiodic tasks with time, energy harvesting and precedence constraints on
multi-core systems. Information Sciences, 520:86–104, 2020.

[42] H. Grichi, O. Mosbahi, M. Khalgui, and Z. W. Li. New power-oriented
methodology for dynamic resizing and mobility of reconfigurable wireless
sensor networks. IEEE Trans. Syst. Man Cybern.: Systems, 48:1120–1130,
2018.

[43] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Resource sharing protocols for
real-time task graph systems. In 2011 23rd Euromicro Conference on Real-Time
Systems, pages 272–281. IEEE, 2011.

[44] J. P. Holdren, G. Morris, and I. Mintzer. Environmental aspects of renewable
energy sources. Annual Review of Energy, 5(1):241–291, 1980.

[45] W. Housseyni, O. Mosbahi, and M. Khalgui. Adaptive task mapping and
scheduling for reconfigurable distributed embedded energy harvesting systems.
In 2017 IEEE/ACS 14th International Conference on Computer Systems and
Applications (AICCSA), pages 630–636. IEEE, 2017.

[46] W. Housseyni, O. Mosbahi, M. Khalgui, Z. Li, L. Yin, and M. Chetto. Multia-
gent architecture for distributed adaptive scheduling of reconfigurable real-time
tasks with energy harvesting constraints. IEEE Access, 6:2068–2084, 2017.

128

Bibliography

[47] J. Huang, R. Li, X. Jiao, Y. Jiang, and W. Chang. Dynamic dag scheduling on
multiprocessor systems: reliability, energy, and makespan. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 39(11):3336–
3347, 2020.

[48] C. Imes, D. H. Kim, M. Maggio, and H. Hoffmann. Poet: a portable approach
to minimizing energy under soft real-time constraints. In 21st IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 75–86. IEEE,
2015.

[49] F. Jarray, H. Chniter, and M. Khalgui. New adaptive middleware for real-
time embedded operating systems. In 2015 IEEE/ACIS 14th International
Conference on Computer and Information Science (ICIS), pages 610–618. IEEE,
2015.

[50] B.-S. Kim, H. Park, K. H. Kim, D. Godfrey, and K.-I. Kim. A survey on real-
time communications in wireless sensor networks. Wireless communications
and mobile computing, 2017, 2017.

[51] S. I. Kim and J.-K. Kim. A method to construct task scheduling algorithms
for heterogeneous multi-core systems. IEEE Access, 7:142640–142651, 2019.

[52] W. Lakhdhar, R. Mzid, M. Khalgui, Z. Li, G. Frey, and A. Al-Ahmari. Multi-
objective optimization approach for a portable development of reconfigurable
real-time systems: From specification to implementation. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 49(3):623–637, 2018.

[53] S. Lee, H. Kim, and J. Lee. A soft aperiodic task scheduling algorithm in
dynamic-priority systems. In Proceedings Second International Workshop on
Real-Time Computing Systems and Applications, pages 68–72. IEEE, 1995.

[54] J. P. Lehoczky and S. Ramos-Thuel. An optimal algorithm for scheduling
soft-aperiodic tasks in fixed-priority preemptive systems. In RTSS, volume 92,
pages 110–123. Citeseer, 1992.

[55] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic responsiveness
in hard real-time environments. In Unknown Host Publication Title, pages
261–270. IEEE, 1987.

[56] J. Y.-T. Leung and J. Whitehead. On the complexity of fixed-priority scheduling
of periodic, real-time tasks. Performance evaluation, 2(4):237–250, 1982.

[57] J. Li, G. Zheng, H. Zhang, and G. Shi. Task scheduling algorithm for hetero-
geneous real-time systems based on deadline constraints. In 2019 IEEE 9th
International Conference on Electronics Information and Emergency Commu-
nication (ICEIEC), pages 113–116. IEEE, 2019.

[58] K. Li. Energy and time constrained task scheduling on multiprocessor computers
with discrete speed levels. J. Parallel Distrib. Comput., 95:15–28, 2016.

129

Bibliography

[59] K. Li. Power and performance management for parallel computations in clouds
and data centers. J. Comput. Syst. Sci., 82:174–190, 2016.

[60] K. Li. Energy-efficient task scheduling on multiple heterogeneous computers:
Algorithms, analysis, and performance evaluation. IEEE Trans. Sustain.
Comput., 1:7–19, 2017.

[61] Q. Li and C. Yao. Real-time concepts for embedded systems. CRC press, 2003.

[62] C. Lin, N. Xiong, J. H. Park, and T.-h. Kim. Dynamic power management
in new architecture of wireless sensor networks. International Journal of
communication systems, 22(6):671–693, 2009.

[63] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[64] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming
in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61,
1973.

[65] Y. Liu, G. Xie, Y. Tang, and R. Li. Improving real-time performance under
reliability requirement assurance in automotive electronic systems. IEEE
Access, 7:140875–140888, 2019.

[66] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu,
L. Nie, and Y. Chen. Real-time wireless sensor-actuator networks for industrial
cyber-physical systems. Proceedings of the IEEE, 104(5):1013–1024, 2015.

[67] J. C. Lyke, C. G. Christodoulou, G. A. Vera, and A. H. Edwards. An intro-
duction to reconfigurable systems. Proceedings of the IEEE, 103(3):291–317,
2015.

[68] S. Malik, S. Ahmad, I. Ullah, D. H. Park, and D. Kim. An adaptive emer-
gency first intelligent scheduling algorithm for efficient task management and
scheduling in hybrid of hard real-time and soft real-time embedded iot systems.
Sustainability, 11(8):2192, 2019.

[69] P. Marwedel. Embedded system design: embedded systems foundations of
cyber-physical systems, and the internet of things. Springer Nature, 2021.

[70] A. Mascitti, T. Cucinotta, M. Marinoni, and L. Abeni. Dynamic partitioned
scheduling of real-time tasks on arm big. little architectures. Journal of Systems
and Software, 173:110886, 2021.

[71] I. S. Moreno and J. Xu. Customer-aware resource overallocation to improve
energy efficiency in realtime cloud computing data centers. In 2011 IEEE
International Conference on Service-Oriented Computing and Applications
(SOCA), pages 1–8. IEEE, 2011.

130

Bibliography

[72] P. K. Muhuri, R. Nath, and A. K. Shukla. Energy efficient task scheduling
for real-time embedded systems in a fuzzy uncertain environment. IEEE
Transactions on Fuzzy Systems, 29(5):1037–1051, 2020.

[73] P. K. Muhuri, A. Rauniyar, and R. Nath. On arrival scheduling of real-
time precedence constrained tasks on multi-processor systems using genetic
algorithm. Future Generation Computer Systems, 93:702–726, 2019.

[74] C. Obermaier, R. Riebl, A. H. Al-Bayatti, S. Khan, and C. Facchi. Measur-
ing the realtime capability of parallel-discrete-event-simulations. Electronics,
10(6):636, 2021.

[75] T. Okuma, T.and Ishihara and Y. H. Real-time task scheduling for a variable
voltage processor. In in Proc. IEEE Int. Symposium on System Synthesis,
1999.

[76] S. Pandey and U. Shanker. Causes, effects, and consequences of priority
inversion in transaction processing. In Handling Priority Inversion in Time-
Constrained Distributed Databases, pages 1–13. IGI Global, 2020.

[77] S.-J. Park and J.-M. Yang. Supervisory control for real-time scheduling of
periodic and sporadic tasks with resource constraints. Automatica, 45(11):2597–
2604, 2009.

[78] S. Priya and D. J. Inman. Energy harvesting technologies, volume 21. Springer,
2009.

[79] Y. Qin, G. Zeng, R. Kurachi, Y. Matsubara, and H. Takada. Energy-aware
task allocation for heterogeneous multiprocessor systems by using integer linear
programming. Journal of Information Processing, 27:136–148, 2019.

[80] R. Rajkumar. Real-time synchronization protocols for shared memory mul-
tiprocessors. In Proceedings., 10th International Conference on Distributed
Computing Systems, pages 116–117. IEEE Computer Society, 1990.

[81] R. Rajkumar, L. Sha, and J. P. Lehoczky. Real-time synchronization protocols
for multiprocessors. In RTSS, volume 88, pages 259–269, 1988.

[82] G. Rehaiem, H. Gharsellaoui, and S. B. Ahmed. Real-time scheduling ap-
proach of reconfigurable embedded systems based on neural networks with
minimization of power consumption. IFAC-PapersOnLine, 49(12):1827–1831,
2016.

[83] I. Ripoll and R. Ballester-Ripoll. Period selection for minimal hyperperiod in
periodic task systems. IEEE Transactions on Computers, 62(9):1813–1822,
2012.

[84] D. Sangorrin, S. Honda, and H. Takada. Dual operating system architecture
for real-time embedded systems. Jul, 6:1–24, 2010.

131

Bibliography

[85] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient scheduling of real-time
tasks on multicore processors. IEEE Trans. Parallel Distrib. Syst., 19:215–236,
2008.

[86] J. P. Sha, L.and Lehoczky and R. R. Task scheduling in distributed real-time
systems. IECON’87, 857:909–917, 1987.

[87] L. Sha, T. Abdelzaher, A. Cervin, T. Baker, A. Burns, G. Buttazzo, M. Cac-
camo, J. Lehoczky, A. K. Mok, et al. Real time scheduling theory: A historical
perspective. Real-time systems, 28(2):101–155, 2004.

[88] P. Simon, Y. Gogotsi, and B. Dunn. Where do batteries end and supercapacitors
begin? Science, 343(6176):1210–1211, 2014.

[89] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a flexible real time
scheduling framework. In Proceedings of the 2004 annual ACM SIGAda inter-
national conference on Ada: The engineering of correct and reliable software
for real-time & distributed systems using Ada and related technologies, pages
1–8, 2004.

[90] A. Slimani, P. Ribot, E. Chanthery, and N. Rachedi. Fusion of model-based and
data-based fault diagnosis approaches. IFAC-PapersOnLine, 51(24):1205–1211,
2018.

[91] A. Soroudi, A. Rabiee, and A. Keane. Stochastic real-time scheduling of wind-
thermal generation units in an electric utility. IEEE Syst. J., 11:1622–1631,
2017.

[92] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time
systems. Real-Time Systems, 1(1):27–60, 1989.

[93] J. A. Stankovic. Misconceptions about real-time computing: A serious problem
for next-generation systems. Computer, 21(10):10–19, 1988.

[94] J. A. Stankovic, C. Lu, S. H. Son, and G. Tao. The case for feedback control real-
time scheduling. In Proceedings of 11th Euromicro Conference on Real-Time
Systems. Euromicro RTS’99, pages 11–20. IEEE, 1999.

[95] J. A. Stankovic and K. Ramamritham. Hard real-time systems. IEEE Computer
Society Press, 1988.

[96] G. L. Stavrinides and H. D. Karatza. Scheduling real-time parallel applications
in saas clouds in the presence of transient software failures. In 2016 International
Symposium on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS), pages 1–8. IEEE, 2016.

[97] J. K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm
for enhanced aperiodic responsiveness in hard real-time environments. IEEE
Transactions on Computers, 44(1):73–91, 1995.

132

Bibliography

[98] D. Suleiman, M. Ibrahim, and I. Hamarash. Dynamic voltage frequency scaling
(dvfs) for microprocessors power and energy reduction. In 4th International
Conference on Electrical and Electronics Engineering, volume 12, 2005.

[99] K. Tanaka. Real-time scheduling for reducing jitters of periodic tasks. Journal
of Information Processing, 23(5):542–552, 2015.

[100] V. Vargas, P. Ramos, J.-F. Méhaut, and R. Velazco. Nmr-mpar: A fault-
tolerance approach for multi-core and many-core processors. Applied Sciences,
8(3):465, 2018.

[101] P. Wägemann, C. Dietrich, T. Distler, P. Ulbrich, and W. Schröder-Preikschat.
Whole-system worst-case energy-consumption analysis for energy-constrained
real-time systems. Leibniz International Proceedings in Informatics, LIPIcs
106 (2018), 106:24, 2018.

[102] P. Wägemann, C. Dietrich, T. Distler, P. Ulbrich, and W. Schröder-Preikschat.
Whole-system worst-case energy-consumption analysis for energy-constrained
real-time systems. Leibniz International Proceedings in Informatics, LIPIcs
106 (2018), 106:24, 2018.

[103] P. Wägemann, T. Distler, H. Janker, P. Raffeck, V. Sieh, and W. Schröder-
Preikschat. Operating energy-neutral real-time systems. ACM Transactions
on Embedded Computing Systems (TECS), 17(1):1–25, 2017.

[104] X. Wang, I. Khemaissia, M. Khalgui, Z. Li, O. Mosbahi, and M. Zhou. Dynamic
low-power reconfiguration of real-time systems with periodic and probabilistic
tasks. IEEE Trans. Autom. Sci. Eng., 12:258–271, 2015.

[105] X. Wang, Z. Li, and W. M. Wonham. Optimal priority-free conditionally-
preemptive real-time scheduling of periodic tasks based on des supervisory
control. IEEE Trans. Syst., Man, Cybern., Syst., 47:1082–1098, 2017.

[106] Y. Xiang and S. Pasricha. Run-time management for multicore embedded sys-
tems with energy harvesting. IEEE Transactions on very large scale integration
(VLSI) Systems, 23(12):2876–2889, 2015.

[107] Y. Xiang and S. Pasricha. Mixed-criticality scheduling on heterogeneous
multicore systems powered by energy harvesting. Integration, 61:114–124, 2018.

[108] G. Xie, Y. Chen, X. Xiao, C. Xu, R. Li, and K. Li. Energy-efficient fault-
tolerant scheduling of reliable parallel applications on heterogeneous distributed
embedded systems. IEEE Trans. Emerg. Topics Comput., 3:167–181, 2018.

[109] J. Xu and D. L. Parnas. On satisfying timing constraints in hard-real-time
systems. IEEE transactions on software engineering, 19(1):70–84, 1993.

[110] R. Xu, D. Mossé, and R. Melhem. Minimizing expected energy consumption
in real-time systems through dynamic voltage scaling. ACM Transactions on
Computer Systems (TOCS), 25(4):9–es, 2007.

133

Bibliography

[111] J. Zhang, H. Li, G. Frey, and Z. Li. Reconfiguration control of dynamic
reconfigurable discrete event systems based on ncess. IEEE Transactions on
Control Systems Technology, 28(3):857–868, 2019.

[112] L. Zhang, K. Li, Y. Xu, J. Mei, F. Zhang, and K. Li. Maximizing reliability
with energy conservation for parallel task scheduling in a heterogeneous cluster.
J. Information Sciences, 319:113–131, 2015.

[113] T. Zhang, S. Liu, W. Qiu, Z. Lin, L. Zhu, D. Zhao, M. Qian, and L. Yang. Kpi-
based real-time situational awareness for power systems with high proportion
of renewable energy sources. CSEE Journal of Power and Energy Systems,
2020.

[114] J. Zhou, M. Zhang, J. Sun, T. Wang, X. Zhou, and S. Hu. Drheft: Deadline-
constrained reliability-aware heft algorithm for real-time heterogeneous mpsoc
systems. IEEE Transactions on Reliability, 2020.

134

	Contents
	List of Figures
	List of Tables
	Introduction
	Thesis Context
	Thesis Problems
	Thesis Contribution
	Thesis Output Tools:
	Thesis Organization:
	List of Publications:

	State of the Art
	Introduction
	Real-time Systems: Generalities and Definitions
	 Definition of Real-time Systems
	Classification of Real-time systems
	Architecture of Real-time Systems
	2.2.3.1 Hardware Architecture
	2.2.3.2 Software Architecture

	Real-time Scheduling: Context and Analysis
	Real-time Tasks: Model and Classification
	2.3.1.1 Tasks Model
	2.3.1.2 Real-time Tasks Classification

	Real-time Scheduling and Analysis
	2.3.2.1 Priority-based scheduling algorithms
	2.3.2.2 Migration-based algorithms

	Synchronization Protocols
	Real-time Scheduling of Mixed Task Sets
	2.3.4.1 Polling Server
	2.3.4.2 Deferrable server
	2.3.4.3 Total Bandwidth Server

	Energy Consumption of Real-time Systems
	Environmental Energy Sources
	Energy Storage Devices
	Approaches for Minimizing Energy Consumption

	Reconfigurable Real-time Systems
	Reconfigurability Definition
	Type of Reconfigurations

	Analysis of Related Works and Discussion
	Conclusion

	Efficient Real-time Scheduling Algorithm for Mixed Task Set on Mono-core Architecture
	Introduction
	Motivation
	Formalization
	System Model
	Task Model

	 Feasible Scheduling of Periodic, Aperiodic, and Sporadic Real-time Tasks with Hard and Soft Deadline Constraints:
	Overview of the proposed methodology
	 New Periodic Server for Serving Soft Aperiodic Tasks:
	3.4.2.1 NPS Server Configuration:
	3.4.2.2 Computing Aperiodic Tasks Soft Deadlines:

	Hard Real-time Constraints Characterization:
	New Solution for Deadline Calculation of Periodic, Sporadic and Aperiodic Real-time Tasks

	Simulation and Conducted Experimentation
	Developed Environment: GIGTHIS-TOOL
	Case Study
	3.5.2.1 Parameterizing the NPS server:
	3.5.2.2 Hard Real-time Constraints Characterization:
	3.5.2.3 Case Study Results and Evaluation

	Discussion
	Conclusion

	Configuring Feasible Reconfigurable Real-time System under Energy and Resource Sharing on Mono-core Architecture
	Introduction
	Motivation
	Formalization
	System Model
	Task Model
	Energy Model
	 Problems' Mathematical Formalization

	Parametrizing Feasible Reconfigurable Systems Under Real-time, Energy and Resource Sharing Constraints
	Overview of the proposed methodology
	Real-time Based Deadline Computing Solution
	Energy-Based Deadline Computing with no Starvation Solution
	Resource Sharing Based Deadline Computing Solution

	Simulation and Conducted Experimentation
	Developed Environment
	Case Study
	4.5.2.1 Application of the Proposed Approach
	4.5.2.2 Case Study Results Evaluation

	Discussion
	Conclusion

	Configuring Feasible Reconfigurable Multi-core Real-time System with Energy Harvesting and Precedence Constraint
	Introduction
	Motivation
	Formalization
	System Model
	Energy Model
	Processor Model
	Periodic Task Model
	Aperiodic Task Model
	Message Model
	 Problems' Mathematical Formalization

	Efficient Scheduling of Periodic and Aperiodic Tasks Under Real-time, Energy and Precedence Constraints on Multi-core Reconfigurable Systems
	Overview of the proposed methodology
	Parameterizing Operating Modes of System
	Real-time and Energy Feasibility with Precedence Constraints on Multi-core Processor
	New Solution for Deadline Calculation of Mixed Real-time tasks on Multi-core Architecture under Energy and Precedence Constraints

	Conducted Experimentation
	Presentation of Temperature controller System
	Application of the Proposed Approach
	Case Study Results and Evaluation

	Discussion
	Conclusion

	Conclusion
	Thesis Context and Problems
	Thesis Contributions and Originalities
	Thesis Perspectives

	Bibliography

