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DETECTION OF TARGET SUBSTANCES USING AFFINITY-BASED 
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Abstract: Affinity-based micro/nanosensors intended for detection of various chemical or biological agents in a liquid 
or gaseous environment have a great potential for both civilian and military applications. Selective detection of a target 
substance is based on highly specific binding of its particles to the functionalized surface of the sensing element. 
However, samples taken from the environment often contain substances other than the target, which can also bind with 
a certain affinity to the same functionalizing layer or binding sites, thus affecting the sensor's response. In this paper we 
analyze the influence of limited selectivity of a sensor on its time response. The results show that binding of a non-target 
substance can cause a significant change in both the equilibrium value and the rate of the sensor's response. The 
presented analysis enables improvement of accuracy of determination of the target substance concentration in detection 
methods based on time domain measurements of the sensor's output signal. It is also useful for development of methods 
for simultaneous detection of multiple substances. 

Key words: Micro/nanoelectromechanical sensor, chemical agent, biological agent, sensor selectivity. 

 

1. INTRODUCTION 

Chemical and biological agents, in the form of weapons 
employed by terrorists or by an enemy, toxic spills or 
naturally occurring pandemics, pose a significant risk to 
the health and safety of people in the modern world. 
Globalization and enhanced mobility, as well as the 
progress in chemical and biotechnological expertise, 
facilitate production and transport of hazardous 
substances and spreading of contagious diseases. 
Therefore rapid and accurate detection of the presence of 
chemical and biological threat agents is critical for timely 
warning and effective response. 

A typical high performance chemical or biological 
detection system used today requires time-consuming, 
labor-intensive and costly laboratory processes. For 
example, airborne particles from an environment are first 
captured onto solid filters, which are then collected 
manually and transported to laboratories for analysis, 
where expensive laboratory equipment is used. This 
approach is inadequate if real-time in situ detection of 
chemical and biological agents is needed. 

In order to protect both population and troops from 

harmful agents it is extremely important to have chemical 
and biological sensors of high sensitivity, capable of rapid 
detection and identification of chemicals or pathogens, as 
well as to obtain the data from the sensors as soon as 
possible. Therefore, the sensors have to be portable, i.e. of 
small dimensions and lightweight, or to be distributed in 
the field, which would require their autonomous operation 
and wireless communication for remote real-time or near-
real time readout of measured data and sending of 
warning reports. Rapid sensor regeneration is also 
necessary. An integrated system of sensors is desirable, 
enabling simultaneous detection of multiple threat agents, 
such as chemicals, bacteria, spores, viruses, toxins etc. 

Sensors fabricated using MEMS/NEMS (micro/nano-
electromechanical system) technologies intended for 
detection of various chemical or biological agents in a 
liquid or gaseous environment are highly sensitive and 
enable real-time measurements [1]. They are also low 
power, compact and lightweight devices, and therefore 
portable, making in situ measurements possible. 
MEMS/NEMS sensors are capable of detecting minuscule 
concentrations of target substances in extremely small 
volumes of samples. Additionally, the MEMS technology 
enables integration of transducers with read-out and 
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signal processing electronic circuits, decreasing the 
device size, detection time and cost and making devices 
more reliable. Simultaneous detection of a larger number 
of agents using integrated arrays of MEMS/NEMS 
sensors is also possible [2, 3]. Therefore, chemical and 
biological MEMS/NEMS sensors have a great potential 
for both civilian and military applications [4]. 

In a large group of chemical and biological micro/nano-
sensors, known as affinity-based, surface-based or 
adsorption-based, a selective detection of a target 
substance is based on high-affinity binding (i.e. 
adsorption) of its particles to the functionalized surface of 
the sensing element. This binding changes some optical, 
mechanical or electrical parameter of the sensing element, 
which is converted to the sensor's output signal. 

Samples taken from the environment often contain 
substances other than the target, which can also bind with 
a certain affinity to the same functionalizing layer or 
molecules, thus affecting the sensor's performance. In 
affinity-based sensors various methods (surface 
modifications, blocking agents etc.) are applied in order to 
minimize the unwanted binding of other substances to the 
sensing surface, thus improving sensor selectivity. 
However, in biosensors it is sometimes necessary to use 
functionalizing biomolecules that have multiple binding 
sites (called receptor sites) with the affinity for binding of 
different biomolecular species. Different molecules that 
bind to functionalizing molecules can be of similar size 
and mass as the target molecules and cannot be eliminated 
from the sample. A similar problem of functionalizing 
layer selectivity can also exist in gas sensors. 

In this paper we analyze the influence of limited 
selectivity of an affinity-based MEMS/NEMS sensor on 
its time response. 

2. THEORY 

In affinity-based methods for detection of chemicals or 
biological specimens it is highly desirable that only the 
target entities (atoms, molecules or microorganisms) bind 
to the sensing surface. However, this idealized situation is 
more or less compromised in the reality. We analyze the 
situation when one molecular species existing in the 
sample together with the target molecules, can also bind 
to the molecules used for the sensor functionalization 
(Picture 1). We will call them the interferer molecules. 

Under the following assumptions: 

− in the sensor's reaction chamber reversible binding 
reactions occur between each molecular species (target 
and interferer) and functionalizing molecules, which 
does not alter any of reacting molecules 

− each functionalizing molecule has one type of binding 
sites for one molecular species, and all functionalizing 
molecules are equivalent 

− only one molecule can be bound to a functionalizing 
molecule at any time 

− the target and interferer molecules do not interact with 
each other 

− the binding-unbinding reactions do not change 
significantly the concentrations of unbound target and 
interferer molecules in the sensor's reaction chamber 
(the ambient analyte conditions [5] or the system with 
steady flow of the sample through the reaction chamber 
[6]) 

− transport of both the target and the interferer molecules 
to the sensing surface is fast compared to the binding 
reactions 

the rates of change of the numbers of molecules bound to 
the sensing surface are given by the system of two 
differential equations 

 
/ ( )
/ ( )

T fT T m T i rT T

i fi i m T i ri i

dN dt k C N N N k N
dN dt k C N N N k N

= − − −
= − − −

, (1) 

where NT is the instant number of bound target molecules, 
CT, kfT, and krT are the concentration in the sample, the 
association rate constant and the dissociation rate constant 
of the target molecules, respectively, and Nm=nmA is the 
number of functionalizing molecules (i.e. of binding sites 
for each molecular species) on the surface of area A (nm is 
the binding sites surface density). Ni, kfi, kri and Ci are the 
parameters for interferer molecules, that correspond to 
previously mentioned target molecules parameters NT, kfT, 
krT, and CT. 

 

Picture 1. Illustration of a binding process of both the 
target and the interferer molecules to the functionalized 

sensor's surface 

Eqs. (1) can be solved analytically, yielding  the time 
evolution of the number of bound target and interferer 
molecules 
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After the transient period, whose duration is determined 
by the time constants τI and τII 
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the equilibrium is established, characterized by the 
equilibrium numbers of bound molecules 
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The parameter τT=(krT+kfTCT)-1 is the time constant of 
establishment of the equilibrium number of bound target 
molecules NTe1=kfTCTNmτT, for the case when only the 
target molecules exist in the sample and bind to sensing 
surface, while τi=(kri+kfiCi)-1 and Nie1=kfiCiNmτi are the 
corresponding parameters for the reversible binding 
process of only the interferer molecules. The coefficients 
KI-KIV are determined by the initial conditions NT(0)= 
Ni(0)=0 and Eqs. (1) and (2) which must be satisfied for 
every t 
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The biosensor’s signal depends on the number of bound 
molecules of both kinds. For example, in the dynamic 
mode micro/nanocantilever sensors [7] or thin film bulk 
acoustic resonator (FBAR) sensors [8], as molecules bind 
to the immobilized functionalizing molecules, the 
increasing bound mass on the surface causes a decrease in 
the frequency of the natural mechanical resonance of the 
structure. The resonant frequency can be monitored as a 
direct indication of the presence of bound molecules and 
their quantity. When both the target and the interferer 
molecules bind to the sensing surface the measured signal 
is determined by the total mass of bound molecules 

 iiTTb NMNMm += , (6) 

where MT and Mi are the molecular masses of the target 
analyte and the interferer, respectively. In this paper we 
will consider this case for the illustration of the influence 
of a non-ideal sensor's selectivity on its time response. 

3. RESULTS AND DISCUSSION  

The presented theory is used for the analysis of the 
influence of binding of interferer molecules on the 
biosensor's response which is proportional to the total 
mass of molecules bound to the sensing surface. The 
parameter values used in the analysis are realistic for 
biological samples and MEMS sensors [9]. The target 
molecules parameters are: kfT=8·107 (Ms)-1, krT=0.08 s-1, 
CT=1 nM (unit 1 M=103 mol/m3), MT=5 kDa (unit 1 Da= 
1.66·10-27 kg). The binding sites surface density is nm= 
1·10-11 Mm and the area of the sensing surface of MEMS 
device equals A=1·10-9 m2. The three different interferer 
molecules species are considered separately, so that 
different effects of their binding are encompassed. 

Picture 2 shows the time evolution of the mass of 
molecules bound to the sensing surface when ideal 
selectivity of the sensor is assumed, i.e. binding of the 
target molecules only (solid line), and when binding 
occurs of both the target and the interferer molecules with 
the certain affinity to the functionalizing molecules 
(dashed line). 
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Picture 2. The change of the bound mass in time, for 
three different types of interferer molecules: a) heavier 
than the target (Mi=6MT), present in the same 
concentration in the sample, b) heavier than the target 
(Mi=2MT) and in higher concentration (Ci=2CT), c) lighter 
than target (Mi=MT/2), in higher concentration (Ci=2CT) 
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In the case shown in Picture 2a the interferer molecules 
are heavier than the target molecules (Mi=30 kDa), they 
are present in the sample in the same concentration 
(Ci=1·10-9 M) and have 10 times lower affinity for 
binding to the molecules used for functionalization of the 
sensor's surface (kfi=8·106 (Ms)-1, kri=0.08 s-1). It can be 
observed that binding of the interferer molecules causes 
significant increase of the equilibrium value of the 
sensor’s response compared to the case of ideal 
selectivity, while the influence on the transient is 
negligible. 

Picture 2b shows the case of the interfering binding of 
molecules which are heavier (Mi=10 kDa) and present in 
the sample in the higher concentration (Ci=2·10-9 M) than 
the target particles, and which have more than 10 times 
lower binding affinity (kfi=8·105 (Ms)-1, kri=0.01 s-1). In 
this case, apart from the increased equilibrium value of 
the resulting signal, the sensor's response speed is also 
significantly lower compared to the case of binding of 
only the target molecules. 

The case shown in Picture 2c refers to the case of the 
interferer molecules which are lighter than the target 
molecules (Mi=500 Da). Their concentration in the 
sample is Ci=2·10-9 M, and their affinity for binding is 
more than two times lower (kfi=8·106 (Ms)-1, kri=0.02 s-1) 
than the binding affinity of the target molecules for the 
same functionalizing molecules. Although the additional 
molecular species is bound, so the resulting signal 
corresponds to the sum of the masses of bound molecules 
of both kinds, it is lower than in the case of binding of 
only the target molecules. This is because the interferer 
molecules compete with the target molecules for the same 
functionalizing molecules, leading to the decrease of the 
number of bound target molecules compared to the case 
when there is no interferer molecules in the sample. It 
follows from Eqs. (4) and (6) that the suppression of the 
target molecules binding will result in the decrease of the 
total equilibrium bound mass if Mi<MTθTe1, where 
θTe1=NTe1/Nm is the coverage of binding sites by target 
molecules when only they bind. In the case shown in 
Picture 2c the interferer binding also affects the sensor's 
transient response, and the sensor's response time is 
prolonged. 

The presented results show that interferer binding can 
influence the transient and equilibrium response of the 
affinity-based sensors in various ways, depending on 
parameters of both target and interferer molecules, their 
concentrations and their affinity properties. The influence 
on both the equilibrium value and the response time of the 
sensor can be significant. Therefore, the interferer binding 
can cause false alarms and other misinterpretations of 
measured data (e.g. wrong identification or incorrectly 
determined agent concentration). This points to the need 
for interference binding to be minimized by using 
adequate techniques in order to improve the selectivity 
and effectiveness of chemical and biological sensors. 
Since this is not always possible, the interferer binding 
must be taken into account in the analysis of the output 
signal of sensors used for detection of target agents 
occurring in small concentrations in the environment, 
together with a multitude of other more abundant 

substances. The presented analysis is also useful for 
development of methods for simultaneous detection of 
multiple agents, as well as of pattern recognition methods 
based on sensor arrays. 

4. CONCLUSION 
In both civilian and military applications it is extremely 
important to correctly identify a chemical or biological 
agent and to accurately determine its concentration. In 
this paper the problem of limited selectivity of 
MEMS/NEMS affinity-based sensors for detection of 
chemical and biological agents is considered. The results 
show that binding of a non-target substance can cause a 
significant change in binding kinetics, i.e. in both the 
equilibrium value and the rate of the sensor's response. 
The presented analysis is useful to provide the guidelines 
for improvement of both accuracy and effectiveness of 
detection of the target substance concentration in methods 
based on time domain measurements of the sensor's 
output signal. It is also useful during the development of 
methods for simultaneous detection of multiple 
substances. 
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