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MicroRNAs (miRNAs) are critical regulators of gene expression in healthy and

diseased states, and numerous studies have established their tremendous

potential as a tool for improving the diagnosis of Type 2 Diabetes Mellitus

(T2D) and its comorbidities. In this regard, we computationally identify novel

top-ranked hub miRNAs that might be involved in T2D. We accomplish this via

two strategies: 1) by ranking miRNAs based on the number of T2D differentially

expressed genes (DEGs) they target, and 2) using only the common DEGs

between T2D and its comorbidity, Alzheimer’s disease (AD) to predict and rank

miRNA. Then classifier models are built using the DEGs targeted by each

miRNA as features. Here, we show the T2D DEGs targeted by hsa-mir-1-3p,

hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-

155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-

5p are capable of distinguishing T2D samples from the controls, which serves

as a measure of confidence in the miRNAs’ potential role in T2D progression.

Moreover, for the second strategy, we show other critical miRNAs can bemade

apparent through the disease’s comorbidities, and in this case, overall, the hsa-

mir-103a-3p models work well for all the datasets, especially in T2D, while the

hsa-mir-124-3p models achieved the best scores for the AD datasets. To the

best of our knowledge, this is the first study that used predicted miRNAs to

determine the features that can separate the diseased samples (T2D or AD)

from the normal ones, instead of using conventional non-biology-based

feature selection methods.
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1 Introduction

Diabetes mellitus affects approximately 463 million adults

worldwide, and it is predicted that 700 million individuals will be

affected by 2045, per the 2019 International Diabetes Federation

report (1). Thus, many research studies are aimed toward

Diabetes prevention and/or treatment. Also, the ADDITION-

Europe Simulation Model Study shows early diagnosis reduces

the risk of suffering cardiovascular events and mortality (2),

which also spurs research associated with early diagnosis.

Diabetes mellitus is a metabolic disease characterized by

hyperglycemia. In such cases, hyperglycemia results from defects

in insulin secretion and/or insulin action (3). Over 90% of the

Diabetes mellitus cases are Type 2 Diabetes (T2D) that results

from an insulin action defect, i.e., insulin resistance (4).

Pancreatic endocrine islet b-cells create and release the two

crucial hormones that regulate blood glucose levels: insulin,

which acts to lower blood sugar, and glucagon, which raises

blood sugar. Thus, the dysfunction of pancreatic islet b-cells is a
significant cause of T2D.

MiRNAs play a pivotal role in the regulation of gene expression

and are estimated to regulate over 60% of all human genes (5). The

miRNA sequence being complementary to the 3′UTR of its target

mRNA determines the regulatory effect of miRNA (6). The miRNA

associating with its target mRNA can result in translational

repression, mRNA deadenylation, or mRNA cleavage (7). Several

research findings demonstrate the role of miRNAs in b-cell
stimulus–secretion coupling and insulin biosynthesis. For

example, miR-15a, miR-24, miR-26, miR-30d, miR-122, miR-127,

miR-133, miR-148, miR-182, miR-184, miR-200, miR-204, and

miR-375 have demonstrated involvement in insulin biosynthesis

(8). Additionally, miR-7, miR-9, miR-29a, miR-96, miR-124, miR-

335, and miR-375 were involved in the exocytotic process. More

recently, several of these miRNAs and others were experimentally

shown to be involved in T2D. For example, Sun and colleagues

demonstrated b-cell-specific transgenic miR-29a/b/c mice fed a

high-fat diet (HFD) are predisposed to develop insulin resistance

and glucose intolerance (9). Moreover, they show blocking miR-29

effects attenuates inflammation and T2D, which supports the

findings reported by (10). Su and colleagues determined the

miRNAs expression profiles in the pancreas of high-fat diet

(HFD) fed Zucker diabetic fatty (ZDF) rats and ‘normal’ Zucker

lean (ZL) rats and identified 24 differentially expressed miRNAs

among which miR-34a-5p and miR-452-5p were the most

significantly up- and down-regulated, respectively (11). In

Addition, Liu and colleagues demonstrated that overexpression of

miR-296-5p suppressed b-cells proliferation, arrested cell cycle

progression, and increased the healing rate of diabetic wounds

both in vivo and in vitro. Moreover, they provide TargetScan

analysis that shows miR-296-5p is a direct regulator of sodium-

glucose cotransporter 2 (SGLT2) gene, which is significant as

SGLT2 inhibitors have shown promise in diabetes therapy (12).
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Moreover, miRNAs are most suitable as biomarkers as they

are stable in biofluids such as serum, plasma, blood, tears, urine,

or saliva, collected in a minimally invasive manner, even after

several freeze-thaw cycles (13, 14). In this regard (15), propose

serum miR-491-5p, miR-1307-3p and (16) propose serum as

potential biomarkers for diagnosis of pre-diabetes and T2D.

Patients with T2D have higher risks of developing

comorbidities which include cardiovascular complications (17),

hypertension (17, 18), depression (17–19) thyroid gland diseases

(20), chronic obstructive pulmonary disease (COPD) (21),

Alzheimer’s disease (AD) (22), amongst others. The existence

of these comorbidities means the intersection between genes

expressed in T2D and its comorbidity and the genes-miRNA

relationships are important to the disease’s progression. In this

regard, Pescador and colleagues identified serum miR-15b, miR-

138, and miR-376a as having predictive value for T2D and

obesity (22, 23), and Seleem and colleagues identified serum

miR-342 and miR-450 as indicators of coronary artery disease in

T2D patients (24). Luo and colleagues also identified circulating

miR-30c as a predictive biomarker of T2D with coronary heart

disease (25). No such study exists for T2D and AD even though

several miRNAs we mention here, including miR-9, miR-124,

miR-127, and miR-200, linked to T2D progression, has also been

identified as differentially expressed in AD (26), and several AD

gene expression datasets are freely available.

Thus, our study is directed towards computationally

identifying novel top-ranked hub miRNAs that might be

involved in T2D. We accomplish this via two strategies, 1) by

ranking miRNAs based on the number of T2D DEGs they target,

and 2) using only the common DEGs between T2D and its

comorbidity, AD. For the first strategy, the miRNAs are ranked

based on the number of T2D DEGs they target. Then T2D

classifier models are built using the DEGs targeted by each

miRNA as features. Here, we use the feature’s ability to

distinguish T2D samples from the control samples as a

measure of confidence in the miRNAs’ potential role in T2D

progression. For the second strategy, we repeat this process using

only the common DEGs between T2D and AD to identify

miRNAs capable of distinguishing T2D samples from control

samples and AD samples from control samples.
2 Materials and method

2.1 Gene expression data

To find gene expression datasets of T2D patients, we

searched the Gene Expression Omnibus (GEO) database (27)

using the query: “Type 2 Diabetes* AND Homo sapiens” filtered

by “Expression profiling by array” on the 5th of October 2022.

As a result, we retrieved 147 entries, from which we selected four

datasets, GSE76895 (28), GSE76894 (29), GSE25724 (30), and
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GSE20966 (31), used in this study. The GSE76895 dataset

comprises 68 samples (36 test and 32 control), GSE76894 103

samples (19 test and 84 control), GSE25724 13 samples (6 test

and 7 control), and GSE20966 20 samples (10 test and 10

control) (see Table 1).

We also used GEO to find the AD datasets but used the

query: “Alzheimer* AND Homo sapiens” filtered by “Expression

profiling by array” on the 2nd March 2022. We retrieved 188

entries which we sifted through. We found three gene expression

datasets (GSE5281 (32), GSE48350 (33), and GSE1297 (34))

from AD patients and healthy controls within the same age

range, generated using the same platform.
2.2 Meta-analysis of the gene
expression data

To increase the sample size and statistical power, we used

Integrative Meta-Analysis of GEO Data (ImaGEO) (35), a web-

based platform, to integrate and perform meta-analyses of

multiple GEO datasets. We used ImaGEO’s fixed-effect model

parameter, with an adjusted p-value < 0.05, and only 10%

missing values allowed. Specifically, we used ImaGEO to

integrate the GEO T2D datasets (GSE76895, GSE76894),

perform background correction, normalization, batch effect

correction, and apply initial differential expression analysis.

Through this process, ImaGEO generated an integrated matrix

with 1918 genes as the potential DEGs, which we used in

subsequent analyses. We implemented the same procedure for

the AD GEO datasets (GSE5281, GSE48350, and GSE1297),

through which we identified 924 DEGs.

Finally, we shortlisted 146 genes that were common between

the 1918 T2D DEGs and the 924 AD DEGs.

To further determine the key set of miRNAs associated with

the 1918 T2D genes and the 146 common genes, we used

miRNet (36). We used multiple settings for miRNet with the

1918 genes, including selecting ‘Homo sapiens’, ‘Official gene
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symbol’, and ‘miRNA’. Through this process, 1801 genes were

mapped to 2640 miRNAs. We then used the ‘Degree Filter’

setting to apply a degree cutoff of 475.0 to the ‘miRNA nodes

only’ setting, to restrict our search to the 10 ≥ top-ranked

hub miRNAs.

Here it should be noted that miRNA-target mRNA

relationships are best established through time-consuming and

expensive wet-lab experiments. However, this is an infeasible

approach since miRNAs have numerous target genes. Thus,

several computational methods that predict miRNA target

interactions have been developed based on a combination of

different characteristics, including sequence complementarity,

evolutionary conservation (37–39), free energy (40,) (41), and/or

target site accessibility (42). Examples of popular tools that have

been developed using Machine learning (ML) with these

characteristics include, TargetScan (43), miRanda (44), PITA

(42), and amongst others (26, 45). The miRNA target genes

interaction identified through these tools and the functional

studies of miRNAs using high-throughput experimental

technologies produced an extensive amount of high-quality

data regarding miRNA and their target genes that are difficult

to sift through. Fortunately, miRNet provided an easy-to-use

web-based tool that offers statistical, visual, and network-based

approaches to deal with the comprehensive miRNA networks

which we use in this study. miRNet provide access to miRNA-

target interaction data from well-annotated databases, including

miRTarBase (46), miRecords (47), miRanda (44), EpimiR (48),

TarBase (49), SM2miR (50), Pharmaco-miR (51), miR2Disease

(52), PhenomiR (53), StarBase (54), and miRDB (55).
2.3 Developing ML models

To evaluate the ability of the genes to distinguish between

the test samples and the healthy controls, we implemented two

ML classification models, specifically Random Forests (RF) and

Adaboost (AB). We implemented RF and AB models using
TABLE 1 Description of the GEO gene expression datasets.

Dataset
IDs

Disease Region Healthy
control

Test Female/
Male

GSE76895 T2D Human pancreatic islets 32 36 29/39

GSE76894 T2D Human pancreatic islets 84 19 52/51

GSE25724 T2D Human pancreatic islets 6 7 6/7

GSE20966 T2D Human pancreatic islets 10 10 7/13

GSE5281 AD Entorhinal cortex, Hippocampus, Medial temporal gyrus, Posterior cingulate, Superior
frontal gyrus, Primary visual cortex

87 74 58/103

GSE48350 AD Hippocampus, Entorhinal cortex,
The superior frontal cortex, Post-central gyrus

80 173 129/124

GSE1297 AD Hippocampus, Entorhinal cortex. 22 9 18/13
fr
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Python programming language and the Scikit-learn Python

library (56).

For the ML models, we created a search space for parameter

optimization; we used the GridSearchCV algorithm from Scikit-

learn for the hyperparameter optimization. Moreover, since the

data samples in both classes are imbalanced, we oversampled the

minority class data samples in the training data using Synthetic

Minority Oversampling Technique (SMOTE). We implemented

the oversampling process using the imblearn python package (57).

To create the feature matrices needed to train the ML models,

we downloaded the matrix file provided by GEO for each dataset

(GSE76895 andGSE76894). Then,we integrated the samples of the

twodatasetsusingR.Wehad the fullmatrix containing171 samples

and 1918 features. The features of this dataset are the gene

expression profiles of the DEGs identified in this study. After

that, for each experiment, we selected from these DEG features as

required in experiments (e.g., DEGs associated with each top-

ranked miRNA or DEGs common to T2D and AD datasets

associated with each top-ranked miRNA). The labels of our

dataset are 0 if the sample is healthy and 1 if the sample is T2D.

We fed our feature matrices into ML models. To evaluate

these models, we used cross-validation methods with 5 folds.

Specifically, we did not separate the datasets into training and

testing. Instead, in the training part, we used the combined

GSE76895 and GSE76894 datasets and implemented the five-

fold cross-validation (CV) technique, which divides the data into

5 subsets. Each subset includes the same percentage of positive

and negative samples (i.e., Diabetes and healthy controls). The

five-fold cross-validation (CV) technique holds one subset for

validation and the other four for training. This process is

repeated 5 times to ensure that each subset is used once in the

validation part. This process ensures the training data is not

mixed with the validation data.

Based on the parameter optimization, in RF, we set the

parameters to (max_depth= 10 and n_estimators= 100), and in

AB, we used DecisionTreeClassifier as the base estimator and set

the parameters to (n_estimators = 200 and learning_rate =

0.001). Finally, we reported the results as area under the curve

(AUC) scores. For interpretation of the AUC scores, the closer

the value of AUC is to 1, the better the performance.

Also, we employed a secondary testing stage in which we

used several external/independent sets, which tests the

robustness of the model.
3 Results and discussion

3.1 The study design

The workflow of our study includes five steps, see Figure 1:
Fron
1. We retrieved seven GEO datasets. In total, we obtained

445 AD samples and 325 T2D samples.
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2. We used 171 of the 325 T2D samples to determine T2D

DEGs and all 445 AD samples to determine the AD

DEGs. We identified the common DEGs between the

T2D and AD samples (146 common DEGs).

3. We utilized the miRNet tool to identify the miRNAs

that target the T2D DEGs and the 146 common DEGs.

4. We developed and evaluated ML models using the

DEGs determined in the previous steps.
Wediscuss the steps in detail in the corresponding subsections.
3.2 Using miRNA targets to define the
gene sets used in evaluating ML models

In the first part of our models’ framework, we used GEO

datasets (GSE76895 and GSE76894) to determine T2D DEGs.

Then, instead of using conventional non-biology-based feature

selection methods such as LASSO regression (22) and Ridge

regression (23) to select the gene set/features that would provide

optimal prediction performance, we predefined the sets of

features as each hub miRNA’s targets.

The non-biology-based feature selection methods refer to

the conventional ML feature selection methods. These methods

rank the features according to their ability to predict the correct

class. That is, it allows for the top 10 or 20 ranked features to be

selected to build a model that can best distinguish between

disease samples and the controls without considering biological

levels of control. However, in our study, we don’t use the ML

feature selection methods to define the best set of features;

instead, we predefined the sets of features as each hub

miRNA’s targets. In this way, we compare the performance of

different sets of miRNA-mapped DEGs. Therefore, if a set can

distinguish between disease and control samples and produce

good results, it indicates the importance of the DEGs and

miRNA in the disease state.

To predefine the sets of features as each hub miRNA’s

targets, we predicted the miRNAs that target the 1918 T2D

DEGs using miRNet. Through this process, we identified 10

miRNAs (hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-

mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-

mir-27a-3p, hsa-mir-129-2-3p, and hsa-mir-146a-5p) that are

associated with the majority of T2D DEGs based on miRNet (see

Figure 2). Figure 2 shows that each miRNA is predicted to affect

about 400 - 950 genes, which we use individually as a gene set/

features, similar to features determined by the conventional

feature selection method. This method of determining features

produces a larger set of features than the conventional feature

selection methods (24, 25), which may affect the prediction

accuracy achieved by the ML model. However, achieving

optimal prediction performance is not the goal here, but

rather to use the ML model to gauge if we can use biology in

the form of miRNA targets to determine the gene set/s that not
frontiersin.org
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only allows good classification of T2D and healthy samples but

also allow determining genes-miRNAs relationships that are

potentially key determinants in T2D specific functions.

Here, we used the integrated feature matrix (created with

GSE76895 and GSE76894) and the submatrices corresponding

to the DEGs associated with each of the top-ranked miRNAs to

evaluate the DEGs’ ability to distinguish between the T2D

sample and the healthy controls. Specifically, we fed the DEGs

potentially targeted by each of the ten top-ranked hub miRNAs

(see Figure 2) to RF and AB classifiers separately as features. For

both classification models, we used cross-validation with 5 folds

and resampled the minor class using SMOTE to make a balance

training set and to avoid bias in the classification. We evaluated

the performance of the ML classifiers in each fold based on the

area under the curve (AUC) metric.

In Table 2, we provide the aggregate results in the form of

the average AUC obtained for the five folds. Here it is important

to note that we consider AUC results < 0.6 a failure, while AUC

results ranging from 0.9-1, 0.8-0.9, 0.7-0.8, and 0.6-0.7 are

considered excellent, good, fair, and poor, respectively. Thus,

both RF and AB classifiers achieved excellent and good results

for all the tested gene sets.
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Specifically, for all the gene sets tested, the AB and RF

classifiers achieved AUC ranging between 0.85 to 0.93. Table 2

also provides the average AUC achieved for the two models. The

average of the AUC scores for the two classifiers shows that the

gene sets associated with hsa-let-7b-5p and hsa-mir-27a-3p

allow better classification of the T2D and healthy control

samples with average AUC scores of 0.92 for both.

This result is partially supported by Al-Kafaji and colleagues

(58), who demonstrated that pre-diabetic individuals exhibited

significantly higher miR−1 and miR−133 expression levels than

the controls (P<0.05). Moreover, they show that when

discriminating pre−diabetic individuals from healthy controls

with miR−1 and miR−133, an AUC of 0.813 and 0.810 were

achieved, respectively. Also, in other studies, liver miR-34a-5p is

shown to be involved in hepatic insulin resistance (IR), which

plays a crucial role in the development of T2D (59), and miR-

27a-3p was shown to be negatively associated with peripheral

insulin sensitivity (60).

Also, using all the genes (1918 T2D DEGs), an average AUC

of 0.91 was achieved by both classifiers. Here, to show that the

classifiers’ ranking of the essential features is in line with our

understanding of the pathological process, we also used the
FIGURE 1

A flowchart description of the study design.
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FIGURE 2

Graphical representation of the top-ranked miRNAs predicted to target T2D DEGs. The pink dots arranged linearly are a series of nodes
representing the DEGs targeted by the miRNAs, while the blue squares indicate the miRNAs. The size of the square indicates the degree (the
number of targeted genes); that is, the bigger the number of genes targeted by the miRNA, the bigger the size of the square.
TABLE 2 Prediction performances achieved by RF and AB models using the targeted genes as features.

microRNA RF AB Average

hsa-mir-1-3p 0.915 0.8753 0.89515

hsa-mir-16-5p 0.91 0.8627 0.88635

hsa-mir-124-3p 0.8786 0.9155 0.89705

hsa-mir-34a-5p 0.9005 0.9018 0.90115

hsa-let-7b-5p 0.9167 0.9235 0.9201

hsa-mir-155-5p 0.8562 0.8943 0.87525

hsa-mir-107 0.8991 0.8677 0.8834

hsa-mir-27a-3p 0.9115 0.9349 0.9232

hsa-mir-129-2-3p 0.8983 0.8566 0.87745

hsa-mir-146a-5p 0.8964 0.9133 0.90485

All DEGs 0.9109 0.9138 0.91235
F
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Enrichr (61–63) ‘KEGG 2021 Human’ pathway tool to assess if

the higher-ranked features function in a more T2D-specific role

than the lower-ranked features. We found the top-200 ranked

genes picked up T2D as the most enriched pathway followed by

insulin resistance, while the T2D pathway was not picked up as

enriched for the genes ranked 200-400, 400-600, 600-800, or the

lowest ranked 500 genes (results provided in Supplementary File

S2). This led us to further compare the performances of the two

classifiers using the top-200 and top-50 ranked genes. We found

that the RF and AB classifiers achieved AUCs of 0.9577 and

0.9290 for the top-200 ranked genes, respectively. Moreover, the

performances of both classifiers improved further using the top-

50 ranked genes, i.e., RF achieved an AUC of 0.9620, and AB an

AUC of 0.9504. Interestingly, miRNet shows the top-50 ranked

RF and AB genes are primarily regulated by all the above-

identified hub genes (see Table 2), except hsa-mir-155-5p is

replaced by hsa-mir-195-5p (see Supplementary File S2).
3.3 Using the intersection between T2D
and AD DEGs to build the ML models

Since comorbidity is common among T2D patients, we here

also consider if the intersection between genes expressed in T2D

and its comorbidity can also be a means to identify genes-

miRNA relationships that are important to the disease’s

progression. Here, we consider the intersection between T2D

and AD DEGs, as several studies suggest that adults with T2D

have a higher risk of developing AD (22). As mentioned above,

we identified 146 genes that were common between the 1918

T2D DEGs and the 924 AD DEGs. We predicted the miRNAs

that target the 146 genes and found eight miRNAs associated

with the majority of genes (hsa-mir-1-3p, hsa-mir-16-5p, hsa-

mir-124-3p, hsa-mir-34a-5p, hsa-let-7b-5p, hsa-mir-155-5p,

and hsa-mir-103a-3p). Figure 3 shows that each miRNA is

predicted to affect about 43 - 77 genes. Specifically, the first-

top miRNA, hsa-mir-1-3p, is associated with 77 of the 146

DEGs, the second-top miRNA, hsa-mir-16-5p, is associated with

71 of the 146 DEGs, and so on. All the miRNAs predicted to

target the 146 DEGs, except hsa-mir-103a-3p, were also

identified as top-ranked hub miRNAs (see Figure 3). Thus, we

have used comorbidity here to zoom in on a subset of the genes

evaluated in Section 3.2, which may represent a subset of genes

essential for T2D and AD progression. Supplementary File S1

provides the details of genes associated with each miRNA listed

in Figure 3.

Here, again we used submatrices (from the integrated feature

matrix created with GSE76895 and GSE76894) corresponding to

the DEGs associated with each of the eight miRNAs and the 146

DEGs. Similar to the process used to evaluate the DEGs’ ability

to distinguish between the T2D sample and the healthy controls

in section 3.2, we here also fed the DEGs potentially targeted by

each of the eight miRNAs to RF and AB classifiers separately as
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features and used cross-validation with 5 folds for all

the classifiers.

Figure 4 shows the performance of the 146 DEGs and 1918

DEGs in RF and AB. The RF and AB classifiers achieved an

average AUC score = 0.85 when using the 146 DEGs. Moreover,

Figure 4 shows that even with the huge reduction in the feature

size, the performance of the small sets (146 DEGs) is still close to

the large sets (1918 DEGs), which suggests that several genes

essential for T2D progression were captured in this smaller set.

Further, note that hsa-mir-103a-3p is not shown in Figure 4

because it was not one of the top-ranked miRNAs for the 1918

DEGs, but the genes associated with hsa-mir-103a-3p also

achieved an average AUC = 0.84 both the RF and AB classifiers.
3.4 Evaluating the performance of the
ML classifiers on independent sets

To evaluate the constructed models’ ability to classify the

samples, we tested these models using several external/

independent testing datasets from T2D and AD. We used the

GSE25724 and GSE20966 datasets to evaluate for T2D, and the

GSE5281 and GSE1297 datasets for AD. In this experiment, we

used all the samples of the combined dataset (GSE76895 and

GSE76894) to train the ML models and then tested these models

using the external datasets. We evaluated the results by AUC, F1,

Precision, and Recall scores. The details of the datasets are

provided in Table 1.

The GSE5281 dataset contains samples from six brain

regions, including Hippocampus (HP), Entorhinal Cortex

(EC), Medial Temporal Gyrus (MTG), Posterior Cingulate

Cortex (PC), Superior Frontal Gyrus (SFG), and Primary

Visual Cortex (VCX). We separated the samples of this dataset

according to each region. There are 10 test/13 control samples in

GSE5281-HP, 16 test/12 control samples in GSE5281-MTG, 23

test/11 control samples in GSE5281-SFG, and 19 test/12 control

samples in GSE5281-VCX.

For the T2D testing, the RF classifiers achieved the best

performance; moreover, the results showed that the genes

associated with all the top-ranked miRNAs do not consistently

produce good results (F1 scores < 0.70), except for the gene sets

associated with hsa-mir-103a-3p and hsa-mir-124-3 (see

Figure 5).

The RF classifiers achieved AUC = 0.90 (with an F1 score =

0.89) for the GSE25724 dataset and AUC=0.88 (with an F1 score =

0.84) for the GSE20966 dataset. The AB classifiers achieved AUC

scores above 0.9 (with an F1 score above 0.77) for the genes

associated with hsa-mir-103a-3p, indicating that the 43 genes play

important roles in T2D progression and suggesting the

involvement of hsa-mir-103a-3p. On the other hand, hsa-mir-

124-3p only achieved good performances for the GSE25724

dataset; that is, both classifiers achieved AUCs > 0.85 with F1

scores ranging from 0.68 - 0.75. For the GSE20966 dataset, the
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genes associated with hsa-mir-124-3p only achieved AUCs

ranging from 0.33 - 0.41 and F1 scores ranging between 0.37 -

0.41, which may be a consequence of one missing gene, as

Calponin 2 (CNN2) was not picked up as a DEG in the

GSE20966 dataset, but it was identified as a DEG in the

GSE25724 dataset that achieved AUCs > 0.85. Other datasets

did not have anymissing genes. Nonetheless, for the T2D datasets,

the genes associated with hsa-mir-103a-3p consistently achieved

AUC and F1 scores that are on par or better than those associated

with hsa-mir-124-3p.

Because we here determined the tested gene sets and

miRNAs based on several research studies suggesting that

adults with T2D have a higher risk of developing AD (64), we

also tested these models using several external testing sets from

AD. For the AD testing, the best performances were achieved

with the samples taken from the HP, MTG, and VCX region. For

these regions, using the genes associated with hsa-mir-103a-3p,
Frontiers in Endocrinology 08
the RF classifiers achieved AUC scores ranging from 0.77 - 0.83

(with F1 scores ranging from 0.71 - 0.79), and the AB classifiers

achieved AUC scores ranging from 0.78 - 0.82 (with F1 scores

ranging from 0.68 - 0.77). Moreover, using the genes associated

with hsa-mir-124-3p, the RF classifiers achieved AUC scores

ranging from 0.74 - 0.99 (with F1 scores ranging from 0.74 -

0.84), and the AB classifiers achieved AUC scores ranging

from 0.80 - 0.99 (with F1 scores ranging from 0.71 - 0.95). The

results suggest that the hsa-mir-103a-3p models work well for

all the datasets, especially in T2D, while the hsa-mir-124-3p

models achieved the best scores for the AD datasets. The

results scores of all ML experiments are shown in

Supplementary File S2. The findings are partially supported

by experiments by Zhou and colleagues (65) that show an

intracranial injection of miR-124-3p in an AD model mouse

significantly reduced amyloid -b protein (Ab) deposition and

improved cognitive outcome.
FIGURE 3

Graphical representation of the top-ranked miRNAs predicted to target the 146 DEGs associated with T2D and its comorbidity, Alzheimer’s
disease. The pink dots arranged linearly are a series of nodes representing the DEGs targeted by the miRNAs, while the blue squares indicate the
miRNAs. The size of the square indicates the degree (the number of targeted genes); that is, the bigger the number of genes targeted by the
miRNA, the bigger the size of the square.
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4 Concluding remarks

In this project we identified several top-ranked hub miRNAs

(hsa-mir-1-3p, hsa-mir-16-5p, hsa-mir-124-3p, hsa-mir-34a-5p,

hsa-let-7b-5p, hsa-mir-155-5p, hsa-mir-107, hsa-mir-27a-3p, hsa-

mir-129-2-3p, and hsa-mir-146a-5p) that likely contribute to T2D

progression and we used classifiers built using the T2D DEGs

targeted by each miRNA to increase confidence in the miRNAs’

potential role in T2D progression. Moreover, the results

demonstrate that we can use gene sets targeted by the top-

ranked hub genes as features instead of conventional non-

biology-based feature selection methods. Moreover, we show

other critical miRNAs that can be made apparent through the

disease’s comorbidities, in this case, hsa-mir-103a-3p and hsa-

mir-124-3p, that we can assess using classifiers before moving to

the lab.

Moreover, this study showed several T2D/AD common

genes predicted to be targeted by hsa-mir-103a-3p

downregulated, including MDH1, PTPN3, POLR2C, MYCN,

ACTR3B, UBE2D4, SH2D3C, CYCS, ATXN10, ENO2, XRCC6,

RRAGA, BCAS2, MKKS, UBL3, UQCRC2, CCT7, MRPL48,

HLF, PARP2, ATP6V0B, MDH2, SNCA, RAD51C, UTP18,

MADD, TGFBR3, LAMTOR3, RHBDD3, and NPTX2. Of all

these genes, we find NPTX2 to be the most interesting as the

Cognitive Vitality Reports (last updated on July 20, 2020)

published a piece titled “NPTX2 Modulator” that motivates

the need for NPTX2 Modulator. The reason is that NPTX2

(Neuronal Pentraxin 2 gene) becomes increasingly repressed

with age (66–68), and decreased NPTX2 levels are associated

with cognitive decline, indicating synapse loss, as NPTX2
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functions in maintaining synaptic plasticity and inhibitory-

excitatory balance in the central nervous system (69–71).

Moreover, NPTX2 levels are also reduced in diabetic b-cells,
and streptozotocin-damaged islets treated with GLP-1

(Glucagon-like Peptide-1) gene therapy were found to

upregulate NPTX2 and the GLP-1 gene therapy exhibit b-cell
protective effects (72). However, it is unclear whether or not or

how NPTX2 contributes to this b-cell protection.
Here we should note that other diseases, such as Parkinson’s

Disease (73–75) and late-stage liver cancer (68, 72, 76) exhibit

increased NPTX2 levels; thus, NPTX2 modulators are needed. In

addition, there are currently no NPTX2 modulatory drugs, but

preclinical efforts are underway to develop NPTX2 modulators.

Therefore, in this regard, hsa-mir-103a-3p may be a potential

NPTX2 modulator that we need to consider, or maybe an hsa-

mir-103a-3p modulator.

Vatandoost and colleagues reported increased miR-103

levels in peripheral blood mononuclear cells from diabetic rats

compared to the control group (77). Luo and colleagues further

showed that the circulating miR-103 family are potential

biomarkers for T2D through targeting genes coding for

caveolin 1 (CAV-1) and secreted frizzled-related protein 4

(SFRP4) (61). Interestingly, Trajkovski and colleagues showed

in earlier work CAV-1 as a direct target gene of miR-103 (78).

They further demonstrated that the insulin receptor regulator,

CAV-1, is upregulated upon miR-103 inactivation in adipocytes.

In addition, Natarelli and colleagues show that long noncoding

RNAs (lncRNAs) are also targets of miR-103. Specifically, they

show data that suggest miR-103 programs endothelial cells

toward a maladapted phenotype by targeting lncWDR59,
A B

FIGURE 4

Performance of 146 DEGs and 1918 DEGs using the RF (A) and AB (B) classifier. The results further show that the DEGs associated with each
miRNA could distinguish between the T2D sample and the healthy controls, as they all achieved an average AUC for the classifiers above 0.80.
Furthermore, the results for all miRNAs were similar, with average AUC scores ranging from 0.84-0.87, except for the set of genes associated
with miRNA hsa-mir-107, which had the lowest scores with AUC = 0.78 for both classifiers.
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which can promote the buildup of atheromatous plaques that

causes coronary artery disease, stroke, or kidney problems,

depending on the arteries affected. Moreover, miR-103 has

been suggested to control voltage-sensitive Ca2+ channel

expression in brain, thus miR-103 potential role in the

exocytosis process through the targeting in genes encoding
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subunits of voltage-dependent Ca2+ channels in beta-cells

should also be investigated (79). Moreover, Luo and colleagues

(61) demonstrate that circulating miR-103a and miR-103b not

only provide high sensitivity and specificity to differentiate the

pre-diabetes population but are also T2D biomarkers with high

diagnostic value.
A

B

D

C

FIGURE 5

Prediction performances of the ML models (RF, AB) using the genes targeted by hsa-mir-103a-3p (A, B) and hsa-mir-124-3p (C, D). The
columns in the grey shaded area indicate T2D datasets, while the rest are AD.
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These results suggest miR-103 as a potential target for

treating T2D, obesity, and cardiovascular diseases, while the

current study further suggests miR-103 and hsa-mir-124-3p as

potential targets for AD. Beyond this, this work unveiled

biomarkers with potential prediction capability towards risk of

T2D and (or) AD that we should compare against state-of-art

methods in the future when they are publicly available.
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