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Metabolic footprinting has become a valuable analytical approach for the characterization

of phenotypes and the distinction of specific metabolic states resulting from environmental and/or

genetic alterations. The metabolic impact of heterologous protein production in Escherichia coli cells

is of particular interest, since there are numerous cellular stresses triggered during this process that

limit the overall productivity, e.g. the stringent response. Because the knowledge on the metabolic

responses in recombinant bioprocesses is still scarce, metabolic footprinting can provide relevant

information on the intrinsic metabolic adjustments. Thus, the metabolic footprints generated by

E. coli W3110 and the DrelA mutant strain during recombinant fed-batch fermentations at different

experimental conditions were measured and interpreted. The IPTG-induction of the heterologous

protein expression resulted in the rapid accumulation of inhibitors of the glyoxylate shunt in the

culture broth, suggesting the clearance of this anaplerotic route to replenish the TCA intermediaries

withdrawn for the additional formation of the heterologous protein. Nutritional shifts were also

critical in the recombinant cellular metabolism, indicating that cells employ diverse strategies to

counteract imbalances in the cellular metabolism, including the secretion of certain metabolites that

are, most likely, used as a metabolic relief to survival processes.

Introduction

The optimization of bioprocesses using recombinant micro-

organisms is still restrained by the lack of information available

on the metabolic responses induced by various stress conditions.1

Significant knowledge could be gained from a comprehensive

analysis of the metabolic footprint (i.e. extracellular metabolite

profiling) by inspecting key metabolic changes and understanding

their relation with environmental conditions.2–8

Some work has been published addressing various meta-

bolic responses during the production of heterologous proteins

in Escherichia coli.9 Experimental studies showed that the

host cell metabolism undergoes a severe metabolic burden,

resulting in rapid exhaustion of essential precursors and

cellular energy.10 Typically, strong expression systems are

employed to assure the production of large amounts of

heterologous proteins by the host, which uses a large quantity

of metabolic and energy resources in order to maintain and

express the foreign DNA.11

Heterologous protein production is also believed to diminish

flow in the TCA cycle through the withdrawal of intermediates

that serve as precursors for amino acid biosynthesis.12 More-

over, the difference usually observed in amino acid composition

of foreign proteins and the average composition of the host

proteins contributes to this metabolic imbalance.13–16

Stringent response has been associated with the stress

phenomenon caused by the depletion of certain metabolic

resources, namely amino acids.17 The increased level of free

tRNA molecules, due to the lack of amino acids, triggers this

stress response that is characterized by the arrest of the

ribosomal translation process and the rapid RelA-mediated

accumulation of ppGpp.18 This nucleotide has been found19–21

to bind directly to the RNA polymerase, adjusting the

transcriptional activity from the expression of genes required

for rapid growth, to stress-related genes and amino acid

biosynthetic operons.22–25 The regulatory mechanisms of this

ppGpp-induced stress response are known in some detail,26–28

but the impact of this response on the cellular metabolism has

been less studied. Knowledge on how these responses take

place and how to dodge them is of great importance, since

E. coli has become one of the most used microbial systems to

produce heterologous proteins.
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Here, we aimed at investigating the physiological andmetabolic

changes in E. coli cultures during the production of heterologous

proteins by performing a metabolic footprinting analysis.

Furthermore, the focus of the study was not only to evaluate

the changes of the extracellular metabolite pools during hetero-

logous protein production, but also to assess the effect of

removing a gene closely related to the initiation of the stringent

response (relA) on the cellular behaviour. Thus, the W3110 and

the isogenic mutant (DrelA) E. coli strains were grown and

induced to produce a heterologous protein (AcGFP1) at different

nutritional conditions in a controlled fed-batch mode.

Results

Fed-batch fermentations of W3110 and DrelA E. coli cells

To elucidate the physiological responses of theW3110 and DrelA
mutant E. coli strains during recombinant fed-batch fermenta-

tion, cells were grown aerobically with a closed-loop feeding

control to maintain a quasi-steady state growth. Two fed-batch

cultures, one with each strain, were started with a low specific

growth rate (between 0.09 and 0.16 h�1) and growth charac-

teristics were determined prior and after IPTG induction

(phases A and B, respectively). Then, the glucose feeding rate

was increased to maintain the specific growth rate around 0.2 h�1

(phase C) to evaluate the impact of nutritional upshift on the

E. coli cultures during heterologous protein production. Nutrient

limitation by ceasing the glucose feeding (phase D) was finally

examined in these E. coli cultures until growth is arrested.

In Fig. 1, biomass, glucose, acetate and AcGFP1 concentra-

tions are depicted for each fed-batch culture. Table 1 shows the

growth parameters determined at each experimental condition.

As demonstrated, prior to IPTG induction the specific growth

rates were similar for both strains (around 0.16 h�1), but after

IPTG induction the growth of the wild-type strain was signifi-

cantly reduced (0.092 h�1) while the DrelAmutant had a specific

growth rate of 0.13 h�1. In contrast, the AcGFP1 production

increased after IPTG induction to a maximum of around

7 � 10�3 g g�1 DW h�1 for both cultures. Upon the nutritional

upshift (phase C), both strains increased their growth rates and

the AcGFP1 production rates. The maximumAcGFP1 produc-

tion was determined to be close to 20 � 10�3 g g�1 DW h�1 in

both cultures. At these conditions acetate accumulation was

detected in both cultures at rates below 90� 10�3 g g�1 DW h�1.

When the glucose feeding was stopped (phase D) acetate

was consumed and growth was arrested. However, AcGFP1

production continued until the carbon sources (i.e. glucose

and acetate) were completely depleted from the medium.

Fig. 1 (a) Growth curves for the W3110 [pTRC-His-AcGFP1] and the isogenic derivative DrelA251::kan E. coli strains cultured in fed-batch

fermentations with closed-loop feeding control. (b) Sampling scheme for GC-MS analysis. Samples were harvested at regular intervals during the

four fermentation phases: A—prior to induction; B—after IPTG induction; C—after growth upshift; and D—after nutrient downshift. The first

sample (A-1) was taken when the biomass concentration was around 0.6 g kg�1 (corresponding to sampling point T0) and then samples were

collected every 40–50 minutes (corresponding to sampling points T1 to T17). Time series were similarly defined in both fed-batch fermentations.
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Metabolic footprint analysis

Gas chromatography–mass spectrometry (GC-MS) has been

widely used in the analysis of a large number of compounds

such as amino acids, sugars, and organic acids. In this work, a

GC-MS-based analytical platform established by Villas-Bôas’

group29 (detailed in the Experimental section) was used to

detect amino and nonamino organic acids secreted by E. coli

cells during fed-batch cultures. Samples taken for metabolic

footprinting were harvested at regular time intervals and the

amount of samples taken in each growth phase was consistent

between fed-batch fermentations (Fig. 1). Time series data

were further examined to address any changes in the metabolic

footprints resulting from the alteration of culture conditions

and to verify if the relA gene mutation could actually influence

the metabolic behaviour of this recombinant E. coli strain.

A wide variety of metabolites was detected in the extra-

cellular medium, including fatty, amino and organic acids

(see Fig. 2 and ESI 1w). These metabolites could either

accumulate in the extracellular medium via secretion/excretion

by cells or by means of the accumulation of components from

the feeding media that were not completely exhausted, which is

only the case of isoleucine (see media composition in the

Materials and Methods section). Some of these metabolites

were uniquely detected in the fed-batch fermentation with

E. coli DrelA (e.g., phenylalanine (phe), acetyl-L-glutamate

(acglu), octadecenoate (ocdcea) and tetradecanoate (ttdca)),

which indicates that metabolic differences between the two

fed-batch experiments might exist. These metabolites were

found to be mainly involved in the central carbon metabolism,

including the tricarboxylic acid cycle (TCA cycle), the bio-

synthesis of amino and fatty acids as well as other energy

generating metabolic reactions. However, we detected metabolites

such as itaconate, malonate, 2-phenylglycine and benzoate

that could not be linked directly to any known metabolic

pathway of E. coli, according to public databases (such as

KEGG30 and EcoCyc)31 and genome-scale metabolic models

(e.g. iAF1260 model ofE. coliK12).32 However, these metabolites

are known to participate in metabolic reactions of other

organisms.33,34 Therefore, resemblances between enzyme-

coding genes from other organisms that produce these meta-

bolites with the E. coli genome were investigated, but it was

not possible to establish with confidence their participation as

reactants/products in E. coli reactions. Yet, itaconate and

malonate have been described as in vitro inhibitors of a key

enzyme of the E. coli anaplerotic metabolism, i.e., isocitrate

lyase, the first enzyme of the glyoxylate cycle,35 indicating that

at least these metabolites are likely to be produced during

E. coli growth. Further information is available in the ESI 1.w
Principal components analysis (PCA) was initially performed

to investigate whether the samples from different fermentation

phases could be distinguished based on their metabolic

footprints profiles and to determine the significant metabolic

differences between the W3110 and DrelA mutant E. coli

strains (Fig. 3).

To investigate these differences, metabolic footprint data

from the two E. coli cultures were compared (Table 2). For

each metabolite, the Pearson correlation coefficient (r) was

calculated for the average Z-score values in order to evaluate

the similarities between metabolite profiles produced in each

culture and to find which metabolites are likely to explain the

differences depicted in Fig. 3. As shown in Table 2, the majority

of metabolites presented Pearson’s correlation coefficients

that were found significant after performing Student’s t test

(p-values higher than 0.05). However, metabolites like

2-phenylglycine (2paac), fumarate (fum), malate (mal) and

octadecanoate (ocdca) showed relatively lower coefficients,

indicating that their profiles were distinct between the two

E. coli cultures. Although there are few metabolites with

uncorrelated profiles, differences in sample projections along

PCs, in particular samples from phase D, might be associated

with the presence of some metabolites that were only detected in

one of the fed-batch cultures. For example, the metabolites

isoleucine (ile), phenylalanine (phe), acetyl-L-glutamate (acglu),

octadecenoate (ocdcea) and tetradecanoate (ttdca) were only

detected in the fed-batch culture with the DrelA mutant strain

during the last fermentation phase (i.e. phase D), indicating that

cells were likely at different metabolic states and metabolic

activities carried out by the two E. coli strains were distinct.

Although the differences found between the DrelA mutant

and W3110 strain may result from changes associated with the

genetic perturbation, we cannot ignore the intrinsic metabolic

variability that is common to most systems. As reported

previously,36 fluctuations may arise because organisms are

never in the same exact metabolic stage, even when growing

Table 1 Growth parameters of the fed-batch cultures of the W3110 and DrelA E. coli strains. 95% confidence intervals are indicated after the
symbol �

Strain Phases

Specific growth
rate set point/h�1

Expected biomass
yield/gDW g�1

substrate Specific rates/g g�1 DW h�1
Biomass yield/gDW g�1

substrate

m YX/S m qAcGFP1 ( � 10�3) qGluc qAc YX/S

W3110 A 0.1 0.35 0.16 � 0.020 0.60 � 0.12 0.30 � 0.067 — 0.59 � 0.038
B 0.1 0.35 0.092 � 0.023 6.8 � 4.5 0.29 � 0.052 — 0.36 � 0.065
C 0.2 0.2 0.17 � 0.023 19 � 6.0 0.64 � 0.11 0.089 � 0.0074 0.26 � 0.068
D — — — 5.3 � 5.8 0.24 � 0.043 �0.49 � 0.27 0.31 � 0.069a

DrelA A 0.1 0.35 0.16 � 0.019 0.60 � 0.45 0.21 � 0.016 — 0.62 � 0.059
B 0.1 0.35 0.13 � 0.026 6.9 � 3.8 0.25 � 0.036 — 0.48 � 0.022
C 0.2 0.2 0.20 � 0.030 17 � 1.8 0.56 � 0.089 0.084 � 0.0072 0.36 � 0.010
D — — — 14 � 2.1 0.47 � 0.14 �0.92 � 0.23 0.04 � 0.049a

Specific growth rate (m), AcGFP1 production (qAcGFP1), glucose uptake (qGluc) and acetate formation (qAc) specific rates.
a These parameters were

calculated for biomass growth under acetate consumption.
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in the same conditions, and small differences in enzyme con-

centrations may also affect metabolite concentrations. Thus,

to better understand these differences, the metabolic footprints

from each culture were further examined independently by

clustering analyses (Fig. 4 and 5).

Hierarchical clustering analysis (HCA) was used to evaluate

the metabolic footprints produced by cells during the fed-batch

fermentations. As shown in Fig. 4a, for the W3310 culture,

samples from the same fermentation phase, including sample

replicates, were clustered together, which indicates that those

samples have similar metabolite profiles. Metabolite clusters

evidenced the association between metabolite patterns generated

along the fermentation process. The starting hypothesis is that

metabolites that show a similar variation are related, a relation

that conveys information about their proximity or func-

tion within the metabolic map. For example, the metabolite

profiles of citrate (cit), aspartate (asp), 4-hydroxybenzoate

(4hbz), cis-aconitate (acon-C) and itaconate (itcon) were

clustered at these experimental conditions, meaning that in

the W3110 E. coli culture these metabolites follow a close

pattern.

Similarly, samples from the recombinant DrelAmutant were

grouped into four major clusters (Fig. 5a). However, in this

case, samples were clustered differently. Samples from phase A

clustered together, but samples taken immediately after IPTG

induction (triplicate samples from B-1 to B-3) clustered together

with samples from phase A. The following samples from phase

B: i.e. samples B-4 and B-5, including replicates, clustered

Fig. 2 Schematic diagram of the E. coli metabolic map involving the metabolites secreted into the extracellular medium during recombinant

fed-batch cultivations. The accumulation (or assimilation) of metabolites was evaluated along four phases: the pre-IPTG induction phase (A), the

post-IPTG induction phase (B), the post-nutrient upshift phase (C) and the glucose limitation phase (D). Graphs represent the time series data relative

to the concentration levels of each metabolite in the metabolic footprint along the fermentation process for the W3110 strain (dark line) and the DrelA
mutant (light gray line) cultures. Bold dashed lines connecting metabolites and biochemical reactions indicate known inhibitory effects on those

reaction-associated enzymes. Grey boxes represented in the metabolic map indicate other metabolites that participate in the metabolism, but were not

detected in these experiments. The dashed square lists the detected metabolites with unknown biosynthetic reactions in E. coli.
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separately. This indicates that changes in the metabolic foot-

print profiles were not immediate after IPTG induction, as

observed in the W3110 culture. Only in the late stage of this

fermentation phase those changes in metabolite profiles

were detectable. Samples taken immediately after nutrient

downshift (triplicate samples D-1 and D-2) clustered with

samples from phase C, which indicates that these samples have

metabolic profiles more similar to samples from phase C than to

those from phase D. This can be due to the fact that, at this

sampling time, cells were still consuming the excess of glucose

accumulated during phase C (see Fig. 1). The other samples

from phase D clustered separately. In this fed-batch culture,

metabolites were not clustered in the same groups as observed

in the W3110 E. coli culture, which reflects the existence of

important differences in the metabolic footprints produced by

the DrelA mutant cells. For example, the 4-hydroxybenzoate

(4hbz) is, at these conditions, clustered with asparagine (asn),

2-isopropylmalate (2paac) and tetradecanoate (ttdca).

Besides the observed differences between the metabolic

footprints produced at particular growth conditions, differences

between the set of metabolic variables that better characterized

each phase (i.e. loading profiles represented as vectors) were

also explored. Thus, in the next subsections details are exposed

on the key metabolites involved in the alteration of the

metabolic footprints when cells were: (I) induced to express

the heterologous protein; (II) submitted to the nutritional

upshift; and (III) submitted to glucose-limited conditions.

I Impact of IPTG induction on the metabolic footprint.

Fig. 4b shows that the metabolites with the highest positive

loading profiles in PC2 (malonate (mlt), itaconate (itcon) and

cis-aconitate (acon-C)) had their levels increased after IPTG

induction in the E. coliW3110 culture. Similarly, these metabolites

also presented high positive loading profiles in PC1 of samples

from the DrelAmutant culture (Fig. 5b). In addition, itaconate

and cis-aconitate were clustered using a Pearson correlation

metrics, as represented in the HCA diagrams (Fig. 4a and 5a)

presenting a strong association between their levels along both

fed-batch fermentations.

II Impact of nutrient upshift on the metabolic footprint.

Fig. 4b shows that glycine (gly), succinate (succ), lactate (lac),

citrate (cit), aspartate (asp), 4-hydroxybenzoate (4hbz),

cis-aconitate (acon-C) and itaconate (itcon) are the most

significant variables that explain the differences projected in

PC1 (positive loading profiles), which are the differences

between growth phases B and C of the E. coli W3110 culture.

In fact, as illustrated in Fig. 4a they were grouped in the

same metabolite cluster and represent those that were highly

accumulated after the nutrient upshift. Similarly, positive loading

profiles for PC1 and negative for PC2 of the DrelA mutant

culture (Fig. 5b) exposed these metabolites as the most relevant

variables characterizing the samples after nutrient upshift, except

for the hydroxybenzoate (4hbz) and itaconate (itcon).

III Impact of glucose limitation on the metabolic footprint.

In the W3110 E. coli culture (Fig. 4b), negative loading

profiles projected in the PC1, corresponding to leucine (leu),

asparagine (asn), 2-isopropylmalate (3c3hmp) and glutamate

(glu), showed the largest differences after nutrient downshift.

Fig. 3 Principal component analysis (PCA) 2-dimensional projection of

samples from fed-batch cultures of E. coli grown at different conditions

based on mass fragment profiles of extracellular metabolites analysed by

GC-MS. The Z-score values corresponding to sample replicates for each

metabolite variable were averaged at each sampling point. A total of 36

average profiles were considered in the PCA analysis: 18 from samples

taken from the W3110 culture (represented by opened symbols) and the

same amount from the DrelAmutant culture (represented by full symbols).

For each time series, samples represented by squares correspond to samples

withdrawn during the pre-induction phase [A], circles to the post-induction

phase [B], diamonds to the phase after growth upshift [C] and triangles to

the phase after nutrient downshift [D]. Samples are also labelled with letters

corresponding to the cultivation phase (A–D), a number that indicates the

sampling sequence in each cultivation phase and, in some cases the

designation ‘‘relA’’, indicating that it is a sample from the DrelA mutant

culture.

Table 2 Pearson’s correlation coefficients (r) of metabolite profiles
from fed-batch cultures of E. coli W3110 and the DrelA mutant strain.
The corresponding p-values were calculated by a Student t-test and
metabolite profiles with p-values lower than 0.05 were considered
significantly correlated

Metabolite r p-value

2paac 0.3370 0.1714
3c3hmp 0.8020 6.260 � 10�5

4hbz 0.5875 1.030 � 10�2

acglu a a

acon-C 0.9031 2.870 � 10�7

asn 0.7488 3.499 � 10�4

asp 0.8199 3.110 � 10�5

bnz 0.7222 7.124 � 10�4

cbm 0.9568 5.320 � 10�10

cit 0.9115 1.430 � 10�7

fum 0.3664 0.1347
glu 0.8814 1.350 � 10�6

gly 0.7624 2.347 � 10�4

ile a a

itcon 0.8938 5.820 � 10�7

lac 0.9049 2.490 � 10�7

leu 0.9728 1.380 � 10�11

mal 0.01391 0.9563
mlt 0.8640 3.800 � 10�6

ocdca 0.09675 0.7025
ocdcea a a

phe a a

succ 0.7807 1.316 � 10�4

ttdca a a

a Undetected in theW3110 culture.See metabolite abbreviations in Fig. 2.
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These metabolites were also clustered by HCA (Fig. 4a). The

loading profiles of metabolic footprints from the DrelAmutant

culture (Fig. 5b) depicted glycine (gly), succinate (succ) and

lactate (lac) as adjacent vectors corresponding to metabolites

that were immediately assimilated after glucose limitation.

Discussion

The metabolic footprint analysis is supported on the basis that

cells can secrete metabolites to the extracellular medium during

growth and/or in response to environmental changes.37–39

Furthermore, cells may activate a variety of efflux transporters

that work like metabolic relief valves or defensive support to

survive an antagonistic environment.40 In the first case, an

increase in extracellular metabolites would be associated

with an increase in the intracellular concentration of those

compounds, while in the second case there would be a gradient

that has to be maintained by the cells to achieve specific

purposes. In general, the variety and level of the secreted

metabolites reflect the metabolic state of the cell and, therefore,

may be considered the closest indicator of the phenotype.4,41–43

Considering this, and the fact that the metabolic impact of

recombinant protein expression in the host cells is still not

well-understood, the metabolic footprints of the recombinant

W3110 and DrelA mutant E. coli cells grown at different

experimental conditions were analysed.

The metabolic responses of E. coli cells were evaluated

by measuring some physiological parameters, such as the

cellular growth and acetate formation (Fig. 1 and Table 1).

Results corroborated previous works,14–16 indicating that the

decrease on the cellular growth is the major consequence of the

metabolic burden on the recombinant host cells due to higher

demands of energy and amino acids. The drainage of energy

and biosynthetic precursors associated to the expression of

foreign proteins imposes severe changes in the metabolic

activity of cells and, as a result, reduces the cellular growth.

As shown, upon IPTG induction, the specific growth rate of

the W3110 and DrelA mutant E. coli strains decreased 50%

and 32%, respectively. The DrelA mutant strain seems to be

less affected, which can be explained by the failure to stimulate

the RelA-dependent stringent response, a stress response

that has been proposed17,44,45 to occur when there is a lack

of intracellular amino acids associated with the additional

requirements for the production of recombinant products.

Ultimately, this stress response may induce a decrease of

cellular growth and protein production. When increasing the

nutrient availability, cells can generate sufficient metabolic and

energetic resources for the formation of the heterologous

protein, as well as for growth-associated processes, and as a

result no significant physiological differences between cultures

were observed. However, it was expected that at nutrient

deprived conditions (phase D), the physiological responses

of the two strains would be, at some extent, distinct. Besides

the substrate uptake rates, the estimated physiological para-

meters did not show significant differences between the W3110

and DrelAmutant E. coli cultures. Cellular growth was rapidly

arrested and formation of the heterologous protein decreased

to similar levels, which did not allow us to deduce any

Fig. 4 Analysis of the metabolic footprint profiles obtained from the fed-batch aerobic culture of E. coli W3110. (a) Hierarchical clustering

analysis (HCA) distinguished four data classes (vertical clusters), corresponding to extracellular samples taken during each fermentation phase

(including sample replicates), and several metabolite clusters (horizontal clusters) that characterized the metabolic footprint profiles during the

recombinant fed-batch cultivation, based on a Pearson correlation metrics. (b) Principal component analysis (PCA) was performed to determine

the most significant metabolic changes in the extracellular medium when growth conditions were changed: (I) induction of the heterologous protein

expression; (II) nutritional upshift; and (III) glucose downshift. Biplots depict component scores projected in PCs as coloured dots, which represent

samples clustered by HCA: samples from the first cluster (red dots), second cluster (green dots), third cluster (magenta dots) and fourth cluster

(blue dots); and loading profiles represented as vectors that indicate metabolites that contributed the most to discriminate between sample clusters

defined by the HCA. Only metabolites with larger vectors were depicted in the biplots, though the whole metabolic footprint data from the W3110

culture were analysed.
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fundamental alterations in the cellular metabolism caused by

the single gene mutation. Therefore, the analysis of extra-

cellular metabolites was invaluable to determine the main

consequences on the physiology of E. coli cells derived from

the relA mutation and the experimental conditions.

As previously reported,37,38 E. coli cells secrete metabolites

according to the adjustments needed in the cellular meta-

bolism to cope with different physiological demands. A small,

but considerable number of metabolites characterized the

metabolic footprints produced during the fed-batch processes

and their level fluctuations were inspected to estimate their

relationship with the intracellular metabolic changes. Metabolic

footprints allowed us not only to discriminate between samples

withdrawn at different fermentation phases, but also to disclose

some metabolic changes that were not evidenced by the

physiological characterization of the fed-batch cultures.

According to the PCA analysis (Fig. 3), it can be observed

that most samples from the same cultivation phase are close to

each other, except for some samples from phases C and D. On

the other hand, also from PCA results, it can be concluded

that both strains behave similarly during phases A and B, but

quite differently in the remaining phases, in particular when

comparing PC projections corresponding to samples D-3 and

D-4 with D-3-relA and D-4-relA, respectively.

According to HCA results illustrated in Fig. 4a, samples

from the W3110 E. coli fed-batch culture were discriminated

according to the fermentation phases, which defined clusters

with characteristic metabolic properties. In contrast, samples

from the DrelA mutant E. coli culture (Fig. 5a) were not

equally clustered. When cells were induced to express the

heterologous protein (I) or submitted to glucose-limiting

conditions (III), the metabolic footprints observed before and

immediately after these experimental shifts were equivalent.

In order to justify the different behaviour of both strains

regarding the impact of heterologous production and environ-

mental changes in the metabolic profiles, it is hypothesised

that the lack of the relA gene allowed cells to face these

stressful conditions during phases B and D in a more

‘‘relaxed’’ way, therefore making the metabolic profiles closer

to the following (case of phase A to B) or previous stages

(case of phase C to D). These results are consistent with the higher

production rates of the mutant strain in phase D (Table 1).

Although, as seen in Table 2, most of the metabolites exhibit

similar patterns between both strains and some of the changes

found on the metabolite patterns could be associated with the

intrinsic variability of this kind of experiments, the differences

found and the accumulation of certain metabolites only

detected in the DrelA mutant culture (e.g. acetyl-L-glutamate

(acglu)) may result from changes on the cellular metabolism

that were not equivalent in the two E. coli cultures.

Analysing the metabolic footprints of both cultures

independently, and regarding IPTG induction of the heterologous

Fig. 5 Analysis of the metabolic footprint profiles obtained from the fed-batch aerobic culture of E. coli DrelA mutant strain. (a) Hierarchical

clustering analysis (HCA) distinguished four sample clusters (vertical clusters) and several metabolite clusters (horizontal clusters). Here, sample

clusters did not correspond to each fermentation phases, but illustrate data classes that are characterized by different metabolic states defined by

the metabolite footprints detected during the recombinant fed-batch cultivation, based on a Pearson correlation metrics. (b) Principal component

analysis (PCA) was performed to determine the most significant metabolic changes in sample clusters. Biplots depict component scores projected in

PCs as dots, which represent samples clustered by HCA: samples clustered in the first group (red dots), second cluster (green dots), third cluster

(magenta dots) and fourth cluster (blue dots); and loading profiles represented as vectors that indicate metabolites that contributed the most to

discriminate between the sample clusters defined by the HCA. Only metabolites with larger vectors were depicted in the biplots, though the whole

metabolic footprints from the DrelA culture were analysed.

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
id

ad
e 

do
 M

in
ho

 (U
M

in
ho

) o
n 

05
 M

ar
ch

 2
01

1
Pu

bl
is

he
d 

on
 0

9 
D

ec
em

be
r 2

01
0 

on
 h

ttp
://

pu
bs

.rs
c.

or
g 

| d
oi

:1
0.

10
39

/C
0M

B
00

14
3K

View Online



906 Mol. BioSyst., 2011, 7, 899–910 This journal is c The Royal Society of Chemistry 2011

protein expression in the W3110 E. coli fed-batch culture, a set

of metabolites were depicted as key elements characterizing

the metabolic changes associated with this experimental

transition. Three carboxylic acids (malonate, itaconate and

cis-aconitate) were secreted into the culture broth (Fig. 4b)

suggesting that they were released from the cells to prevent any

inhibitory effects on the activity of isocitrate lyase. As

mentioned before, cis-aconitate and itaconate, as well as

malonic acid,35 are inhibitors of this enzyme, controlling the

activity of the first reaction of the glyoxylate shunt that was

reported46 as serving an anaplerotic function in the cell during

heterologous protein production. Since several TCA inter-

mediates are withdrawn from the TCA cycle as amino acid

precursors and need to be replenished, these anaplerotic

reactions are central to balance the intracellular levels of

TCA metabolites, fulfilling this way the additional biosynthetic

requirements associated with the formation of the hetero-

logous protein. The DrelA mutant strain response to IPTG

induction was also manifested by the accumulation of the same

enzymatic inhibitors: malonate, cis-aconitate and itaconate

(see Fig. 5b). However, HCA showed that the metabolic

footprints produced immediately after IPTG induction did

not discriminate these samples from the previous fermentation

phase, which suggests that the mutant strain might retard

these regulatory responses after induction of the heterologous

protein production.

Despite the extensive knowledge on basic aspects such as the

changes of growth rates with nutrient concentrations,47–51

information on the effects of the nutritional upshift during

recombinant processes on the metabolic footprint is still

scarce. In general, studies are focused in the secretion of

acetate, not only because it retards growth and inhibits protein

formation, but also because it represents a deviation of carbon

that might otherwise be used to generate energy and precursors

for biosynthetic purposes.52–54 In this study, a glucose feeding

upshift was applied to increase the specific growth rate during

heterologous protein production and the metabolic footprints

were analysed. Numerous metabolites were immediately

accumulated in the extracellular medium of the W3110 culture

after glucose availability increased, such as glycine (gly),

4-hydroxybenzoate (4hbz), lactate (lac), citrate (cit), cis-aconitate

(acon-C), itaconate (itcon), succinate (succ), fumarate (fum)

and aspartate (asp) (Fig. 4b). If we consider that the increase

in extracellular concentrations is associated with the accumula-

tion of the corresponding intracellular metabolites, which

include TCA intermediaries, amino acids and amino acid

precursors, then two hypotheses can be deduced to explain

this phenomenon. One is the increase in the overall activity of

the metabolic pathways that would lead to a direct increased

concentration of all the intermediates due increased enzyme

activities. The second hypothesis would be related with an

increased inhibitory action that would result in the accumula-

tion of certain metabolites that participate in key reactions

that are subjected to regulation. Although not all TCA cycle

intermediates, amino acids and amino acid precursors have

been measured, there seems to be a clear tendency of increased

concentration of all metabolites, indicating that the first

hypothesis might be more plausible. Moreover, acetate was

also accumulated during this fermentation phase resulted from

the glucose overflow metabolism. It was reported55 that in the

presence of excess glucose, the carbon flux through glycolysis

exceeds the capacity of the TCA cycle and acetate is

accumulated.

The same set of metabolites, except 4-hydroxybenzoate and

itaconate, were accumulated during the DrelA fermentation

process at these conditions, which indicate that metabolic

adjustments induced by the nutrient upshift resulted in similar

alterations in the metabolic footprints from both strains.

Although some metabolite patterns revealed differences

between strains (Fig. 2), in general, these were not very

significant to distinguish the samples (Fig. 3).

The accumulation of lactate at these conditions was found

intriguing. Since the conversion of pyruvate to lactate in E. coli

is usually exclusively induced at anaerobic conditions,56,57 the

presence of this by-product implies that the internal accumula-

tion of pyruvate due to the metabolism overflow overrides any

other mechanism known to control the activity of the lactate

dehydrogenase (LdhA) enzyme under aerobic conditions58 or,

for some reason, local oxygen deficiencies during the E. coli

fed-batch process have triggered the ArcAB system and other

genes involved in the mixed acid fermentation pathway.59 The

latest assumption seems improbable, as good mixing con-

ditions and dissolved oxygen values above 30% were maintained

inside the reactor.

Finally, the metabolic responses to nutritional stress

associated with the restriction of glucose feeding during

recombinant E. coli processes were also evaluated. It is

remarkable the amount of metabolites found to be secreted

after glucose downshift. Besides the decreasing levels of meta-

bolites that can serve as carbon sources for E. coli (e.g. acetic

acid), the accumulation of unexpected metabolites, like amino

acids (e.g. leucine (leu), asparagine (asn), glutamate (glu) and

aspartic (asp)) and amino acid derivatives (e.g. 2-isopropyl-

malate (3c3hmp)), indicate that the cells accumulated these

biosynthetic precursors as a consequence of the delayed

protein translation machinery, as estimated by the experimental

AcGFP1 formation rates (Table 1). It is acknowledged that

under nutrient starvation E. coli cells entail complex protective

processes that ultimately manage the cellular metabolism to

sustain cellular maintenance and viability.60–62 Apparently

the RelA-dependent response is involved in these metabolic

readjustments, as the metabolic footprints exhibited by the

wild-type and DrelA mutant E. coli cultures were somehow

divergent (Fig. 3). When comparing the metabolite patterns of

both strains after nutrient downshift, we found that acetate

utilization by E. coli cells has a strong effect on the accumula-

tion of several metabolites, especially in the DrelA mutant

strain (Fig. 2). Metabolites such as phenylalanine (phe), isoleucine

(ile), leucine (leu), acetyl-L-glutamate (acglu) and octadecenoate

(ocdcea) were accumulated in the medium of the DrelAmutant

culture shortly after acetate consumption has started

(data shown in ESI 1w). Under these conditions, acetate is

converted to acetyl coenzyme A (accoA) at the expense of

ATP which, in turn, is mainly catabolised via glyoxylate cycle

that serves as anaplerotic reactions.63 This shift in the utiliza-

tion of carbon sources involves the activation of various

cellular processes, including the synthesis of new catabolic

enzymes and the activation of substrate-specific transport
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systems. It seems that the metabolic imbalance caused by these

metabolic activities coupled with the additional formation of

the heterologous protein is the basis for the accumulation of

several metabolites, including amino acids, that was more

critical in the DrelA strain (where protein production rates

were also higher in this phase). During glucose starvation the

translational apparatus, as well as cellular growth, are limited

via transcriptional control of several growth-associated genes,

like ribosomal operons. The ppGpp-stringent control has been

related to this cellular response to nutritional deprivation

that redirects the RNA polymerase transcriptional activity

from stable RNA (ribosomal and transfer RNA) synthesis to

stress-related genes, in particular genes that have protective

functions. In the absence of the RelA activity, the ppGpp

accumulation is limited and the translational apparatus stays

unaffected. This seems to be the main cause for the only slight

reduction of heterologous protein production rate in the DrelA
mutant. However, while protein production seems to be

unaffected by nutrient starvation, bacterial growth was arrested

in this strain, probably by action of responses mediated by

other stress proteins. These facts apparently generated an

imbalance in the mutant strain’s metabolism (probably due

to differences in amino acid composition between hetero-

logous and average E. coli proteins) that was evidenced by

the accumulation of some amino and fatty acids. For example,

the synthesis of fatty acids is known to be inhibited during

glucose starvation, which did not seem to happen in the

mutant strain. However, since these compounds had not been

used for biomass production, there was an accumulation of

octadecenoate (ocdcea) and tetradecanoate (ttdca) in the

DrelA mutant strain. Moreover, isoleucine (ile), acetyl-L-

glutamate (acglu) and phenylalanine (phe) were also accumulated

at these conditions by the DrelA mutant strain. It seems

evident that the failure to accumulate ppGpp at these condi-

tions allowed a continuous production of the heterologous

protein (although slightly reduced) resulting in an unbalanced

drainage of precursors. Some metabolites were gradually

replenished while others (less required for the production

of AcGFP1) were over-accumulated. The fact that most

metabolic resources were probably redirected to the formation

of AcGFP1 may explain the higher protein synthesis rate and

lower biomass yield observed for the DrelA mutant strain

when compared to the W3110 strain. It is clear that the

relA mutation influences the natural cellular responses to

nutritional downshifts, which can delay, or even suppress,

E. coli survival and resistance.

Conclusions

Although the characterization of metabolites in E. coli culture

broths has been performed using various detection methods,

such analyses are mostly confined to specific metabolites and

have not been done in a global scale. For example, the

secretion of acetate during aerobic E. coli fermentations is

regularly measured, because it is considered a major obstacle

to enhanced heterologous protein production. However, the

present work reveals that the complexity of the generated

metabolic footprints at different culture conditions is much

higher than what has been admitted. As demonstrated, E. coli

secretes a vast array of metabolites that participate in a wide

range of metabolic pathways. Although the metabolism in

E. coli has been studied more intensively than in any other

bacterium, only recently it has become clear that targeted

studies do not provide an accurate picture of the cellular

metabolism. A typical metabolomic approach is expected

to generate new knowledge from the comprehensive analysis

of the metabolome and the distinctive metabolic patterns

produced at different environmental and genetic conditions.

Metabolic footprints resulted from the IPTG-induction of

the heterologous protein expression have shown that there is a

rapid accumulation of unexpected metabolites in the culture

broth. The secretion of the isocitrate lyase inhibitors suggests

that the anaplerotic glyoxylate shunt was activated to replenish

the TCA intermediaries engaged in the additional formation

of the heterologous protein. Moreover, the detection of

compounds unknown to participate in E. coli metabolism

reinforces the importance of unbiased analytical approaches

in research.

When cells are exposed to conditions of nutrient-excess,

the uncoupling of maximum glucose uptake rates and the

TCA fluxes results in a metabolic overflow with consequent

accumulation of overflow metabolites such as acetate and

lactate. Assuming that the demand for metabolic resources

for cellular growth and heterologous protein production is

exceeded, the secretion of these metabolites can be understood

as a metabolic relief required to avoid adverse effects from the

imbalanced cellular metabolism.4 Also, TCA intermediaries

(e.g. fumarate, succinate, citrate and cis-aconitate) and some

amino acids (e.g. aspartate and glycine) were secreted at these

conditions, probably as a result of the increased activities of

these pathways.

At nutrient-limited conditions (i.e. when glucose feeding

was discontinued), some of these metabolites (e.g. acetate)

were assimilated by the cells as carbon and energy sources.

These metabolic activities, coupled with the formation of the

heterologous protein may have resulted into severe rearrangements

in the cellular metabolism that led to the secretion of amino

acids like: phenylalanine, asparagine, and leucine; and the

acetyl-L-glutamate. Once again, these metabolic imbalances

were more pronounced in the DrelA strain, which fails to

trigger RelA-dependent processes to respond to nutrient

deprivation.

The metabolic flexibility exposed by the alterations in the

metabolic footprints, evidenced that cells entail diverse cellular

mechanisms to sense and rapidly counteract the adverse

environmental conditions. This stringent behaviour was pre-

valent in the W3110 strain, while the DrelA strain showed

some difficulties to cope immediately with the metabolic

imbalances caused by the formation of heterologous protein.

It is evident that, although some disadvantages might have

been indicated concerning the metabolic behaviour of the

DrelA strain (e.g. failure to manage metabolic imbalances),

the enhanced production rate of the heterologous protein

represents a major benefit.

Metabolic footprinting, more than most other analytical

strategies, is a rapid and non-invasive analysis, representing

a powerful approach for the characterization of phenotypes

and the distinction of specific metabolic states due to
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environmental or genetic alterations. Nevertheless, metabolic

footprints are just a shallow representation of the metabolic

state of cells and the full understanding of the underlying

mechanisms controlling these metabolic imbalances caused

by the heterologous protein production, require further

inspection of key metabolites (e.g. metabolites that are

important nodes in the metabolic network) or the combination

with other experimental strategies (e.g. gene expression and

proteomics).

Experimental

Microbial strains

E. coli strains W3110 (F-, LAM-, IN[rrnD-rrnE]1, rph-1) and

the isogenic mutant containing the DrelA251::kan allele

(obtained from M. Cashel, National Institute of Health, USA)

were transformed with the cloned pTRC-HisA-AcGFP1

plasmid encoding the expression of the recombinant AcGFP1

protein. The gfp gene was amplified from the pAcGFP1

plasmid (Clontech, Takara Bio Company, USA) that encodes

for the green fluorescent protein AcGFP1, a derivative of

AcGFP from Aequorea coerulescens. The PCR product was

then cloned into the pTRC-HisA vector (Invitrogen Corpora-

tion and Applied Biosystems Inc, USA) that contains a

trc promoter for high-level expression of the fusion protein

and an ampicillin resistance gene for propagation and selection

in E. coli.

Growth conditions

Precultures were prepared in 500 mL shaking flasks filled with

300 mL of minimal medium consisting of 5 g kg�1 of glucose,

6 g kg�1 of Na2HPO4, 3 g kg�1 of KH2PO4, 0.5 g kg�1 of

NaCl, 1 g kg�1 of NH4Cl, 0.015 g kg�1 of CaCl2, 0.12 g kg�1

of MgSO4�7H2O, 0.34 g kg�1 of thiamine, 2 mL kg�1 of trace-

element solution (described elsewhere)64 and 2 mL kg�1

of vitamins solution (described elsewhere).64 The minimal

medium containing additional 20 mg kg�1 of L-isoleucine

and 100 mg kg�1 of ampicillin was used to grow the recombinant

wild-type strain, while this same medium with further addition

of 20 mg kg�1
L-valine and 25 mg kg�1 kanamycin was used to

grow the DrelA mutant strain. Cells were thereafter washed

and transferred to a 5 L fermenter (Biostat MD, Sartorius)

with a working volume of 2 L containing the same minimal

medium, except glucose. The fed-batch operation was started

immediately after inoculation at 37 1C, pH 7 and dissolved

oxygen (DO) above 30%. The feed media used contained

50 g kg�1 of glucose, 10 g kg�1 of NH4Cl, 4 g kg�1 of

MgSO4�7H2O and the additional requirements for amino

acids and antibiotics as described before. The induction of

AcGFP1 production was performed with 1.5 mM IPTG

(isopropyl b-D-thiogalactoside) when the microbial culture

reached an OD600 nm of 2.3. Fermentation conditions were

monitored and controlled via a computer control system.

A closed-loop feeding control algorithm was employed to

maintain a constant specific growth rate (m) in the fed-batch

culture.65 The algorithm is based on a Monod kinetic model

using glucose as the only growth-limiting substrate. The model

combines terms for cell growth (Xm), glucose consumption

(YX/SSf) and the online measurement of culture medium

weight (WR) to control the feeding profile, represented by:

F ¼ XmWR

YX=SSf

The biomass concentration (X) was initially measured

by optical density and estimated at each acquisition time

(every 3 min). The predicted growth yields on glucose (YX/S)

were set to 0.35 and 0.2, when the specific growth rates were

set to 0.1 and 0.2 h�1, respectively. The fed-batch experiments

were at first conducted at a setpoint of m = 0.1 h�1, corres-

ponding to the pre-induction (A) and the post-induction (B)

phases. Afterwards the setpoint was changed to 0.2 h�1, which

was kept during almost 4 h, corresponding to a nutritional

upshift phase (phase C). When the feeding was ceased (glucose

limitation phase or phase D), growth was followed until the

OD600nm dropped.

Sampling and analytical procedures

Samples were collected from the fermentation broth at regular

time intervals (40–50 min) along the four cultivation phases

from each fed-batch fermentation, one with each E. coli strain.

Cell growth was monitored by measuring optical density

(OD600nm) and cell dry weight. In order to determine cell dry

weight, 10 mL of broth were centrifuged at 10 000 g for 20 min

at 4 1C, washed twice with deionised water and dried at 105 1C
to constant weight. The expression level of AcGFP1 was

determined by fluorescence measurements at a Jasco FP-6200

spectrofluorometer with excitation and emission wavelengths

of 475 and 505 nm, respectively, a bandwidth of 10 nm and a

high sensitivity response in 0.1 s. His-Tag purification of the

AcGFP1 was performed with HiTrap columns (GE Healthcare

Bio-Sciences AB, Sweden) and the concentration was deter-

mined by the Bradford method using BSA as standard. For

further analysis, culture samples were centrifuged (15 min,

3000 rpm, 4 1C) and the resulting supernatants were immediately

filtered and collected. Afterwards the samples were stored at

�20 1C for subsequent analysis and lyophilisation. Glucose

and acetate were analysed by HPLC with a refractive index

detector (Jasco, Canada) and a Chrompack organic acids

column (Varian, USA) at 35 1C. The mobile phase consisted

in a 0.01 N solution of H2SO4 at a flow rate of 0.6 mL min�1.

Derivatization and GC-MS analysis

For the GC-MS analysis, only the supernatants collected from

samples for which biomass concentration was above 0.6 g kg�1

were used to determine metabolic footprints (see Fig. 1b). One

millilitre of the supernatants was lyophilized in triplicate. The

lyophilized samples were then derivatized using the methyl

chloroformate (MCF) method66 and analyzed with a GC-MS

system-GC7890 coupled to an MSD5975—(Agilent Techno-

logies, Inc., Santa Clara, CA, USA) equipped with a ZB-1701

GC capillary column, 30 m � 250 mm id � 0.15 mm

(film thickness) with 5 m guard column (Phenomenex, Inc.,

Torrance, CA, USA), at a constant flow rate of 1.0 mL min�1

of helium. Samples (1 mL) were injected onto the column under

a pulsed splitless mode (1.8 bars until 1 min, 20 mL min�1 split

flow after 1.01 min) and the detector was set with a scan
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interval of 1.47 s and m/z range of 38–650. The oven tempera-

ture was initially held at 45 1C for 2 min. Thereafter, the

temperature was raised with a gradient of 9 1C min�1 until

180 1C and held at this value for 5 min. The temperature was

raised again at a gradient of 40 1C min�1 in three steps: until

220 1C (held for 5 min), 240 1C (held for 11.5 min) and finally

280 1C (held for 2 min). The temperature of the inlet was

290 1C, the interface temperature 250 1C, and the quadrupole

temperature 200 1C.

Data processing and statistical analysis

Time series data consisted in a sequence of samples lyophilized,

derivatized and analyzed in triplicate (in most cases), for the

four cultivation phases for each fed-batch culture. Each time

series consisted in 18 sampling points, where the first five

sampling points (T0 to T4) corresponded to samples collected

during phase A (prior to IPTG induction), the next five

(T5 to T9) to samples from phase B (after IPTG induction),

other four (T10 to T13) to samples from the growth upshift

phase (C) and, the last four (T14 to T17) from the nutrient

downshift phase (D). In the end, about 50–52 samples

(including replicates) were analysed by GC-MS to characterize

the metabolic footprints from each E. coli culture.

The mass fragmentation spectrum was analysed using the

Automated Mass Spectral Deconvolution and Identification

System (AMDIS)67 to identify the compounds through matching

with a library constructed by using analytical chemical

standards. The peak intensity values from the AMDIS analysis

were corrected for the recovery of the internal standard

(D-4-alanine), i.e. divided by the intensity peak of the internal

standard in each sample, and normalized with the corresponding

biomass concentration, i.e. further divided by the biomass

concentration measured in each sampling point. Data are

provided in ESI 2.w These peak intensity values were thereafter

transformed into Z-scores, where each metabolite K has mean

peak intensity values equal to zero and standard deviation of

one. Z-score values were calculated by subtracting the average

peak intensity values for a metabolite K among all the n

samples (including replicates) from the peak intensity value

(IK,i) for that metabolite in sample i, and dividing that result

by the standard deviation of all measured peak intensities

corresponding to that metabolite K, according to:

Z � scorek;i ¼ ðIk;i �mean Ik;1...k;nÞ
SDk;1...k;n

Further data processing and statistical analysis were performed

with MATLAB (version 2009b, The Mathworks, Inc) and Multi-

Experiment Viewer (MeV).68 A first principal component analysis

(PCA) was performed using the princompMATLAB function on

a matrix of the Z-score values of each measured metabolite

(with averages for sample replicates) that included samples from

all cultivation phases and from both E. coli cultures, i.e. a total of

36 average profiles were used in this analysis.

The degree of association between the metabolite profiles

produced by the W3110 and DrelA E. coli cultures was deter-

mined using Pearson’s correlation coefficients (r) estimated by

the MATLAB corr function. P-values associated with each

Pearson correlation coefficient were calculated using a Student

t distribution to test the null hypothesis (H0) of no significant

correlation between the metabolite profiles from the two

cultures, against the alternative hypothesis (H1) that establishes

a significant correlation between the profiles. The p-value for

Pearson’s correlation coefficient is based on the test statistic, t,

with n � 2 degrees of freedom:

t ¼ r� ffiffiffiffiffiffiffiffiffiffiffi

n� 2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

To further examine metabolic changes following alterations in

growth conditions, two clustering analyses were performed on

GC-MS data acquired from independent fed-batch cultures:

hierarchical clustering analysis (HCA) and PCA. Samples used

were not averaged among replicates in these clustering analyses.

Hierarchical clustering analysis (HCA) was used to cluster

samples and metabolites based on the Pearson correlation metrics

(MeV software) and was performed on matrices (corresponding

to each E. coli cultures) of Z-score values determined for each

detected metabolite in samples (including replicates) collected

from four different cultivation phases (A to D). Two-dimensional

score plots and loading profiles of the principal components (PC)

were used to visualize the relative contribution of individual

metabolites to discriminate between sample clusters previously

determined by HCA. In other words, each biplot was constructed

based on component scores and loading profiles estimated by the

princomp MATLAB function with samples from two clusters

defined previously by HCA, in order to identify the metabolic

shifts that best characterize the discrimination of the two sample

clusters. Since samples were clustered in a sequential time course,

samples included in the first cluster were compared with samples

from the second cluster, samples from the second cluster with

samples from the third cluster, and so on. Three biplots were used

to compare the four sample clusters determined in each HCA,

which were associated with specific growth shifts performed

during the fed-batch cultures: (I) IPTG induction of the hetero-

logous protein expression, (II) growth upshift and (III) glucose

downshift. Although these shifts between sample clusters and

cultivation phases were in agreement only for the W3310 culture,

it was assumed that metabolic shifts were fundamentally caused

by these growth alterations. Metabolic shifts are characterized in

each biplot where sample scores are represented by colored dots

according to the cluster enclosing that sample and loading profiles

are represented as vectors that indicate which metabolites

presented the highest alterations among samples (larger vectors).
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