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The present study proposes an image analysis methodology for the identification of different types of dis-
turbances in wastewater treatment activated sludge systems. Up to date, most reported image analysis
methodologies have been used in activated sludge processes with the aim of filamentous bulking detec-
tion, however, other disturbances could be foreseen in wastewater treatment plants. Such disturbances
can lead to fluctuations in the biomass contents, affecting the mixed liquor suspended solids (MLSS),
and in the sludge settling ability, affecting the sludge volume index (SVI). Therefore, this work focuses
on predicting the MLSS and SVI parameters for different types of disturbances affecting an activated
sludge system. Four experiments were conducted simulating filamentous bulking, zoogleal or viscous
bulking, pinpoint floc formation, and normal operating conditions. Alongside the MLSS and SVI determi-
nation, the aggregated and filamentous biomass contents and morphology were studied as well as the
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biomass Gram and viability status, by means of image analysis.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Typically, an activated sludge system is a continuous biological
process extensively used in wastewater treatment plants
(WWTPs). As most biological processes, activated sludge systems
are sensitive to sudden changes leading to large economical and
environmental consequences. In an attempt to monitor and control
the biological process, the past decades have witnessed a signifi-
cant growth of activated sludge inspection by means of optical
microscopy. In this context, research increased the knowledge
regarding the determination of activated sludge structure, includ-
ing morphological, physical, and chemical parameters which are
closely related to solid-liquid separation (Li and Ganczarczyk,
1987; Urbain et al., 1993; Wilén et al., 2003; Jin et al., 2004; Liao
et al., 2006; Li and Yang, 2007).

It is known that activated sludge is affected by common mal-
functions such as: formation of pinpoint flocs (PP); filamentous
bulking; and viscous or zoogleal bulking (ZB). PP phenomena are
characterized by the formation of small and mechanically fragile
activated sludge flocs, presenting low settling properties, formed
by floc-forming bacteria and lacking the filamentous bacteria back-
bone (Jenkins et al., 2003). As the majority of these flocs does not
settle, the sludge volume index (SVI) parameter is not strongly af-
fected by the formation of PP. However, in such instances, the clar-
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ifier's supernatant presents high solids concentration, thus leading
to the biomass washout from the reactor, and a correspondent de-
crease on the reactor solids. Filamentous organisms are an essen-
tial part of the floc population in an activated sludge process,
forming the backbone to which floc-forming bacteria adhere. How-
ever, filamentous bulking may take place when filamentous bacte-
ria overgrow, leading to poor sludge settling ability and poor
thickening characteristics of the sludge. Filamentous bulking is
one of the most studied problems regarding activated sludge
(Eikelboom, 2000; Jenkins et al., 2003; Martins et al., 2004; Schuler
and Jassby, 2007). Viscous or ZB is caused by an excessive amount
of extracellular polysaccharides (EPS), and has been shown to have
a negative effect on the biomass thickening and compaction due to
the water-retentive nature of EPS, making the activated sludge
flocs density closer to that of the surrounding water, thus increas-
ing the SVI (Novak et al., 1993; Jobbagy et al., 2002; Jin et al., 2003;
Jenkins et al., 2003; Peng et al., 2003). In extreme, severe instances
of viscous bulking were shown to result in the absence of solids
separation (Jenkins et al., 2003).

Microscopy observations are becoming ever more important
methods to monitor and control activated sludge systems and, as
a result of that, these techniques are becoming widespread for
the characterization of activated sludge microbial aggregates
(Andreadakis, 1993; Barbusinski and Koscielniak, 1995). Further-
more, the association of image processing and analysis methodolo-
gies with microscopy visualization allows an accurate evaluation of
the activated sludge status (Li and Ganczarczyk, 1991; Grijspeerdt
and Verstraete, 1997). Several authors (da Motta et al.,, 2002;
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Cenens et al., 2002; Amaral and Ferreira, 2005; Jenné et al., 2006;
Mesquita et al., 2009a,b; Arelli et al., 2009) have already proposed
an array of image analysis procedures to characterize and relate
operating parameters, such as the SVI, with biomass structure of
activated sludge systems, mainly in terms of aggregated and fila-
mentous biomass. However, up to the present, most studies relating
SVI and sludge morphological properties have been focused on fil-
amentous bulking conditions solely (da Motta et al., 2002; Amaral
and Ferreira, 2005). Moreover, the emphasis of such studies has
been focused on the biomass contents and morphology, and little
attention has been given to the Gram type and physiological status
(viable or damaged) of such biomass.

Gram staining can be problematic regarding large and dense
flocs which may not decolorize correctly, and could be problematic
for Gram status identification through image analysis procedures,
aggravated by the narrow width of the filamentous bacteria
(inducing color distortion effects on the image acquisition) and
the color proximity of Gram (—) and Gram (+) bacteria (pink and
violet, respectively). The development of novel fluorescent nucleic
acid binding dyes, such as SYTO 9 and hexidium iodide (HI), allows
the assessment of Gram status by differential absorption through
bacterial cell walls and without fixative methods. In this sense,
the use of such fluorescent dyes may provide a robust, objective,
and rapid alternative to traditional Gram staining in wastewater
systems (Foster et al., 2002). For viability detection, fluorescent nu-
cleic acid binding dyes such as SYTO 9 and propidium iodide (PI),
differing in their ability to penetrate healthy bacterial cells, differ-
entiate live from dead or damaged cells by detecting cell mem-
brane integrity, even in a mixed population containing a broad
range of bacterial types (Invitrogen Molecular Probes, 2004).

The present study aims to identify and quantify aggregated and
filamentous biomass from a lab-scale activated sludge system
using image processing and analysis procedures in bright field
microscopy. The biomass composition on Gram (+) and Gram (—)
bacteria, as well as viable and damaged bacteria, was also evalu-
ated by image analysis coupled to fluorescent staining. Finally,
the obtained image analysis data were used to identify activated
sludge malfunctions (PP formation, filamentous bulking and ZB),
and further correlated with SVI and mixed liquor suspended solids
(MLSS) parameters.

2. Materials and methods
2.1. Experimental setup

Experiments were carried out in a lab-scale activated sludge
system composed by a 17 L reactor and a 2.5 L settler. The system
was equipped with feed pumps, air supply at the bottom of the
reactor, and sensor apparatus (pH meter with a control pump
and a dissolved oxygen probe). The sludge recirculation was per-
formed from the settler to the reactor by a pneumatic pump.

2.2. Synthetic wastewater composition and sludge characteristics

The system was fed with a synthetic medium prepared with the
following composition (mgL~!): NaCH;COO-3H,0, 2073;
(NH4),S04, 140; MgS0,4-7H,0, 25; KH,PO,, 44; K;HPO4-2H,0, 59;
CaCl,-2H,0, 30; FeCl;-6H,0, 18.8; NaHCOs, 105, and diluted for a
final COD of 1000 mg L™". For biomass maintenance, a micronutri-
ents solution was also added with the following composition
(mgL'): HsBOs;, 50; ZnCl,, 50; Cul,-H,0, 40; MnCl,, 20;
(NH4)sMo,0,4-4H,0, 55; AlCl3, 50; NiCl-6H,0, 110. The pH of the
system was maintained at approximately 7 with a pH meter (Mod-
el 924001, Jenway Scientific, UK) and a control pump (Model BL
7916-BL 7917, Hanna Instruments, Woonsocket, RI, USA) that

dosed 0.01 M HCI solution when the pH was above the set point.
The temperature of the system was maintained at room tempera-
ture. The aerated tank was inoculated with activated sludge from a
domestic wastewater treatment plant. An initial MLSS concentra-
tion of 4-6.5 g L! in the aerated tank was used. The study of the
four conditions (filamentous bulking, PP formation, ZB, and normal
conditions, NC) was sequentially conducted, and between each
experiment, the system was re-inoculated with biomass to guaran-
tee a rapid establishment of the new condition. Images obtained
for each condition are presented in Fig. 1. For the filamentous bul-
king phenomena experiment (FB1 and FB2), the organic loading
rate (OLR) was increased from 0.1 to 0.38 kg COD kg~! MLSS d~'.
The PP experiment was conducted decreasing the OLR from 0.2
to 0.02 kg COD kg~! MLSS d~!, and for the ZB experiment the
OLR was increased from 0.02 to 0.2 kg COD kg~! MLSS d~'. Finally,
the NC experiment was performed with an OLR ranging between
0.126 and 0.152 kg COD kg~! MLSS d~'. For both filamentous and
ZB conditions a solids retention time (SRT) of around 20d was
used, whereas for the PP and NC experiments the SRT was in aver-
age 0.8 and 0.5 d, respectively.

2.3. Off-line process monitoring

During each experiment, MLSS measurements were conducted
in accordance with the procedures described in Standard Methods
(APHA, 1989). The biomass settling ability was measured through
the determination of the SVI in a 1 L Imhoff cone, with the sludge
height variation monitored for 30 min. Whenever a low settling
ability was detected (sludge volume higher than 250 mL), a dSVI
(diluted) was used (Jenkins et al., 2003; Amaral and Ferreira, 2005).

2.4. Bright field image acquisition

Periodic samples were taken from the aerated tank to assess the
morphology of the activated sludge by bright field microscopy. A
recalibrated micropipette with a sectioned tip at the end, with a
large enough diameter to allow larger aggregates to flow, was used
to deposit samples on slides. Three slides per sample were used,
and for each slide a volume of 10 puL was covered with a
20 mm x 20 mm cover slip, for visualization and image acquisi-
tion. Images were acquired in the upper, middle and bottom of
the slide in order to improve the representativeness of the micro-
bial community in the system resulting in a total of 150 images
(3 x 50 images/slide). The slides were examined by means of an
Olympus BX51 optical microscope (Olympus, Tokyo, Japan), at
100x total magnification, coupled with an Olympus DP25 camera
(Olympus, Tokyo, Japan). Images were acquired at 1360 x 1024
pixels and 8-bit format through the commercial software Cell*B
(Olympus, Tokyo, Japan).

2.5. Staining procedures

The Live/Dead BacLight bacterial viability kit was used to differ-
entiate viable and damaged bacteria (Molecular Probes, Eugene,
Oregon, USA). The kit utilizes a mixture of SYTO 9 green-fluores-
cent nucleic acid stain and a red-fluorescent nucleic acid stain,
Pl. Viable bacteria are stained by SYTO 9 and damaged bacteria
are stained by PI.

The Live Baclight bacterial Gram stain allows classifying bacte-
ria as Gram (+) or Gram (—) without the use of fixatives (Molecular
Probes, Eugene, Oregon, USA). This kit utilizes a mixture of SYTO 9
green-fluorescent nucleic acid stain and a red-fluorescent nucleic
acid stain, HI. Gram (—) bacteria are stained by SYTO 9 and Gram
(+) bacteria are stained by HI.

The staining protocol is described in Boulos et al. (1999) and
next are stated some adjustments. First, a sterile solution of
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Fig. 1. (a) Filamentous bulking, (b) pinpoint flocs, (c) zoogleal bulking and (d) normal flocs.

0.85% NaCl was prepared. For the staining solutions, 1.5 pL of each
dye was put into 5 mL of the NaCl solution and the tube was
wrapped with aluminum foil and protected from light. A volume
of 100 pL of undiluted biomass suspension from the reactor was
mixed with 50 pL of staining solution and incubated in darkness
for 15 min at room temperature. A preliminary experiment al-
lowed concluding that this dye concentration was sufficient for
staining the overall bacteria population. The bacteria population
was then visualized through epifluorescence microscopy.

2.6. Epifluorescence microscopy

Periodic samples were taken from the aerated tank to assess the
physiology of the activated sludge by staining and epifluorescence
microscopy. As above, a recalibrated micropipette with a sectioned
tip at the end was used to deposit samples on slides. Two slides per
sample were used, and for each slide a volume of 10 pL of the
stained sludge samples was covered with a 20 mm x 20 mm cover
slip, for visualization and image acquisition. Again, images were
acquired in the upper, middle and bottom of the slide resulting
in a total of 100images (2 x 50 images/slide). The slides were
examined by means of an epifluorescence microscope Olympus
BX51 (Olympus, Tokyo, Japan) at 200x total magnification. Two
long pass filters were used, one in the green wavelength range with
an excitation bandpass of 470-490 nm and emission at 516 nm,
and a second filter in the red wavelength range with an excitation
bandpass of 530-550 nm and emission at 591 nm. Images were ac-
quired at 1360 x 1024 pixels, and 24-bit RGB format (8 bit red, 8
bit green and 8 bit blue channels) through the commercial soft-
ware Cell*B (Olympus, Tokyo, Japan).

2.7. Bright field image processing

Bright field program was adapted from a previous version of
Amaral (2003), developed in Matlab 7.3 (The Mathworks, Natick,
USA) for the recognition of aggregates and filamentous bacteria
in grayscale images. A more detailed description of the image pro-

cessing methods can be found in Mesquita et al. (2010). The origi-
nal grayscale image and the final binary images of aggregated and
filaments biomass are presented in Fig. 2A.

2.8. Fluorescence image processing

Fluorescence program was also developed in Matlab 7.3 (The
Mathworks, Natick, USA) to recognize and characterize the aggre-
gated and filamentous biomass in the fluorescent images, extract-
ing the green and the red channels, followed by background
correction, image segmentation and aggregated and filamentous
biomass recognition, for each of the above channels. The developed
program allowed for the calculation of a fluorescence-based inten-
sity image, for both green and red channels, directly correlated
with the fluorescence of the aggregated and filamentous biomass.
These images were subsequently used, regarding the filamentous
biomass, to accurately identify the Gram and viability status of
overlapping SYTO 9 and PI or HI stained cells. A schematic descrip-
tion of the image processing program is presented in Fig. 2B.

2.9. Morphological and physiological parameters determination

After the image processing step, a routine in Matlab 7.3 (The
Mathworks, Natick, USA) was developed for parameters calculation.
The segmentation of the bright field grayscale images allowed to
automatically determine the aggregated and filamentous biomass
morphology and contents. Aggregates were classified according to
their size in (Eikelboom, 2000): small aggregates (Deq < 25 pum);
intermediate aggregates (25 <Deq<250 um); large aggregates
(Deq > 250 um), where D.q represents the equivalent diameter. For
each studied class, aggregates area percentage (Area %) was calcu-
lated, as defined by Amaral and Ferreira (2005). The aggregates to-
tal area per volume (TA/Vol), filaments total length per volume (TL/
Vol), filaments total length per aggregates total area ratio (TL/TA),
and filaments total length per mixed liquor suspended solids ratio
(TL/MLSS), were also determined according to Mesquita et al.
(2010).
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Fig. 2. (A) Schematic representation of the bright field image processing program (a) Original grayscale image, (B) aggregates binary image, (c) filaments binary image; (b)
schematic representation of the color image processing program. Images from the green filter: (a) original image, (b) area detection image, (c) intensity image; and from the
red filter: (d) original image, (e) area detection image (f) intensity image. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

With respect to the Gram and viability status, the epifluores-
cence images were segmented to determine the Gram (+), Gram
(—), viable and damaged bacteria contents. The ratio between Gram
(=) and Gram (+) filamentous bacteria (G_AG/AR) was determined
as the corresponding filaments area ratio from the images acquired

in fluorescent microscopy of Live BaclightGram stained samples.
The ratio between viable and damaged filamentous bacteria
(LD_AG/AR) was determined based on the corresponding filaments
area ratio from the images acquired in fluorescent microscopy of
Live/Dead BacLight bacterial viability stained samples.
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3. Results and discussion
3.1. SVI and MLSS

The filamentous bulking, PP formation, ZB and NC experiments
were performed sequentially, upon the introduction of fresh inoc-
ulum between each experiment. Two distinct filamentous bulking
conditions were studied, the first one identified as FB1, and the
second as FB2. The second filamentous bulking experiment was
performed due to the low number of samples provided from the
first experiment. Filamentous bulking experiments (FB1 and FB2)
were dominated by Thiothrix spp. identified by microscopic inspec-
tion of Gram stained samples.

The first step of the data analysis aimed at identifying the per-
iod in which each different condition was established. For that pur-
pose, alongside a microscopy inspection, an SVI and MLSS analyses
allowed the identification of bulking conditions and PP phenomena
recognition. Low SVI values indicate that the sludge is dense and
thus the sludge has better settling ability. According to Jenkins
et al. (2003), an activated sludge with SVI lower than 120 mL g~!
is considered satisfactory and over 150 mL g ! is considered bul-
king. The determination of bulking conditions was, therefore,
based on this 150 mL g~! threshold. Fig. 3 depicts the SVI and MLSS
results for each experiment.

Regarding the establishment of bulking conditions, all samples
from the first and second periods of filamentous bulking (FB1 and
FB2), as well as ZB, presented SVI values higher than 150 mLg™!
(with the exception of the last sample of the first fillamentous bul-
king condition with 100 mL g~ '). COD removal percentages of 96%
and 94% were obtained, in average, during the FB and ZB experi-
ments, respectively. It was also found that filamentous bulking phe-
nomena exhibited higher SVI values (in average) than ZB which is in
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Fig. 3. SVI (@) and MLSS (O) behavior for all experiments. (FB1 - filamentous bulking 1;
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accordance with the results obtained by Novak et al. (1993). Fur-
thermore, a microscopy inspection allowed identifying a large
amount of filamentous bacteria emerging from medium sized flocs
in the filamentous bulking experiments, in contrast with the lower
filamentous bacteria contents emerging from larger flocs in the ZB
experiment (further corroborated by the image analysis results).
The presence of filamentous bulking conditions was established gi-
ven the fact that more than 20 filaments (in average) emerged from
each floc, as defined by Jenkins et al. (2003). Furthermore, the image
analysis results further corroborated this assumption with a total
filaments length of an average 555 for the FB experiment, contrast-
ing with 10 for PP, 49.5 mm pL~! for ZB, and 10.6 mm pL~' for NC. It
could also be seen, in the current work that the ZB experiment pre-
sented a constant MLSS increase, in accordance with high EPS pro-
duction found in the literature (Novak et al., 1993; Jobbagy et al.,
2002). Thus, the comparison of the SVI and MLSS data, alongside
the microscopy inspection and image analysis results (referred
below) allowed the distinction between filamentous and ZB
conditions.

Analyzing the MLSS and SVI results for the PP experiment, it
was clear that the SVI remained well below the bulking threshold
value, and that the MLSS contents steadily decreased throughout
the monitoring period, as expected, given the aggregates washout
throughout the experiment.

With respect to the NC experiment, the obtained SVI (lower than
150 mL g~ '), and MLSS values (between 3 and 4 g L~') fell within the
expected ranges. It should be noticed that, the sharp initial MLSS de-
crease (from 6-7 to 3-4g L) was due to the introduction of a
highly concentrated inoculum at the beginning of the experiment,
and that afterwards the MLSS contents remained approximately
constant. COD removal percentages of 92% and 96% were obtained,
in average, during the PP and NC experiments, respectively.
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3.2. Morphological parameters

Image processing techniques are powerful tools in activated
sludge systems for biomass structure inspection, characterization,
and quantification. In the present work, the use of such techniques
allowed the determination of the biomass structure in terms of the
aggregated and filamentous bacteria composition. Furthermore,
the size distribution of the aggregated biomass was also studied
regarding the percentage of small (Deq <25 pum), intermediate
(25 <Deq <250 pm), and large (Deq > 250 um) aggregates, as de-
picted in Fig. 4. During the filamentous bulking experiments (FB1
and FB2), small aggregates prevailed, either dispersed into the
mixed liquor, either linked to filamentous bacteria. In contrast,
the small aggregates originated by the PP experiment were almost
exclusively dispersed in the mixed liquor. Furthermore, through-
out this later experiment the intermediate aggregates prevailed
with respect to the small flocs, which may be explained by the
washout of a considerable percentage of the smaller aggregated
biomass. In fact, looking back at the MLSS results (Fig. 3), the
strong washout phenomena that occurred during the PP experi-
ment, due to the low compaction and settling abilities of the
sludge, could easily have led to the removal of the small aggregates
from the reactor. During the ZB experiment, the percentage of large
aggregates (Deq > 250 um) was higher, on average, than the resid-
ual percentages found on the other experiments. In fact, the per-
centage of large flocs, of 8%, in average, for the ZB experiment,
contrasted with the 2% for FB, 1.6% for PP, and 2.1% for NC. This
result was expected due to the overproduction of exopolymers,
thus increasing the aggregates size. Finally, looking at the structure
of the biomass during the NC experiments, the results revealed a
predominance of the intermediate aggregates regarding the small
aggregates, as expected, and residual percentages of large
aggregates.
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The aggregated biomass (TA/Vol) and filamentous bacteria (TL/
Vol) contents were also studied as shown in Fig. 5a. The filamen-
tous bulking experiments (FB1 and FB2) presented the highest val-
ues of the filamentous bacteria contents (TL/Vol), which could be
expected given that, by definition, filamentous bulking phenomena
occur upon the excessive growth of filamentous bacteria, both in-
side and extending from the flocs. It could also be seen that the two
filamentous bulking events were different from each other, mainly
in terms of the aggregated biomass contents, much higher in the
second event (FB2). Regarding the ZB experiment the aggregated
biomass (TA/Vol) contents increased throughout the experiment,
in agreement with the MLSS increase previously discussed. Fur-
thermore, the filamentous bacteria contents (TL/Vol) presented
moderate values, although decreasing during the experiment,
which could be expected given that the conditions associated with
ZB favors the growth of aggregated rather than filamentous bacte-
ria. During the PP period, the aggregated biomass contents (TA/Vol)
decreased, as expected given the decrease of the MLSS, configuring
biomass washout from the reactor. Furthermore, the filamentous
bacteria contents (TL/Vol) remained low, throughout this experi-
ment. Analyzing the biomass structure during the NC experiment,
low filaments contents (TL/Vol) were obtained throughout the
experiment, whereas the aggregated biomass contents (TA/Vol)
fluctuated between moderate values, in accordance with the MLSS
behavior.

The ratios between filamentous and aggregated bacteria (In(TL/
TA)) and between filamentous bacteria and suspended solids
(TL/MLSS) were also studied as presented in Fig. 5b. It seems clear
the close relationship between In(TL/TA) and TL/MLSS presenting,
in fact, a 0.94 high correlation factor (R?). The close relationship
between these two parameters led to the analysis of the possibil-
ity of assessing the TL/MLSS by the In(TL/TA), further described in
this section, with the advantage, for activated sludge systems
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Fig. 4. Area percentage behavior for each condition studied for small aggregates (®); intermediate (O); and large aggregates (A). (FB1 - filamentous bulking 1; FB2 -
filamentous bulking 2; PP - pinpoint floc; ZB - zoogleal bulking; NC - normal conditions).
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Fig. 5. (a) Experimental behavior of TA/Vol (®) and TL/Vol (O); (b) experimental behavior of TL/MLSS (O) and In(TL/TA) (®) (FB1 - filamentous bulking 1; FB2 - filamentous
bulking 2; PP - pinpoint floc; ZB - zoogleal bulking; NC - normal conditions).

inspection, that the In(TL/TA) is independent of the suspended
solids determination.

The filamentous bulking experiments (FB1 and FB2) presented
the highest values for the ratios for the filamentous bacteria con-
tents versus aggregated biomass (In(TL/TA)) and total suspended
solids (TL/MLSS). This fact strengthens the identification of these
two periods as filamentous bulking phenomena based on the high
percentages of filamentous bacteria regarding the overall biomass.

Distinct to the filamentous bulking experiments, the In(TL/TA) and
TL/MLSS presented lower values for the ZB experiment decreasing
slightly throughout this period (Fig. 5b). These results were ex-
pected, since the conditions associated to ZB favors the growth of
aggregated biomass contrasting to filamentous bacteria. Regarding
the PP experiment, the biomass washout from the reactor led to a
very slight growth of the In(TL/TA) and TL/MLSS parameters
(although within the range of moderate values) due to the decrease
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of suspended solids. With respect to the NC experiment, and in
accordance to the observed low filaments contents, the filamen-
tous bacteria ratios with the aggregated biomass and total sus-
pended solids was kept low throughout the experiment as
demonstrated by the In(TL/TA) and TL/MLSS values.

3.3. SVI assessment

The image analysis dataset was further used to predict the SVIL.
In order to do so, SVI values were plotted against the filamentous
bacteria contents (TL/Vol) and ratios to the aggregated biomass
(In(TL/TA)) and total suspended solids (TL/MLSS). The best results
were obtained for the TL/Vol and TL/MLSS correlations, and are
presented in Fig. 6a and b. A relationship was found between the
SVI and the filamentous bacteria contents (correlation factor R?
of 0.83), above a TL/Vol threshold value of 7 mm pL~. Below this
value the amount of filamentous bacteria seems not to present sig-
nificant relevance in SVI values. Furthermore, this correlation is
influenced the most by the filamentous and ZB conditions, given
the fact that their values extend throughout the majority of the Y
data range. The same analysis was performed for the correlation
between SVI and TL/MLSS, which was widely used in previous
studies (Lee et al., 1983; Matsui and Yamamoto, 1984; Amaral,
2003; Amaral and Ferreira, 2005). A direct dependence (correlation
factor R? of 0.80) for TL/MLSS above 2000 mm mg~' was achieved,
and below this threshold, TL/MLSS values did not seem to influence
the SVI. Again, filamentous and ZB conditions, extending through-
out the majority of the Y data range, influenced the most the SVI
values. Although, past studies have proven the validity of the TL/
MLSS parameter to assess SVI values in filamentous bulking, the
present results, encompassing a wider range of conditions, seem
to point to the TL/Vol parameter as the most adequate overall.
Regarding the adequateness of the In(TL/TA) parameter to capably
substitute the TL/MLSS parameter, this could not be fully con-
firmed given the obtained lower correlation value R? of 0.74.
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3.4. MLSS assessment

In the course of this work it was also attempted to elucidate the
dependence of MLSS with the TA/Vol parameter, as shown in
Fig. 6¢. Given the high percentage of filamentous bacteria contrib-
uting to MLSS and not account for the TA/Vol (representing solely
the aggregates area), all filamentous bulking samples were dis-
carded from this analysis. Therefore, for the PP, ZB and NC MLSS
showed a directly dependence (correlation factor R? of 0.83) with
the aggregated biomass content, but only up to a threshold value
of 5mm? puL~". Thus, in filamentous bulking conditions or in the
case of high aggregated biomass contents it seems not possible
to predict MLSS contents from the TA/Vol parameter. Therefore,
only for PP, NC and ZB phenomena with low TA/Vol contents, this
parameter may be used for the MLSS assessment.

3.5. Physiological status

The results from fluorescence microscopy are depicted in Fig. 7,
presenting G_AG/AR and LD_AG/AR. A slight difference between
the filamentous bulking experiments 1 and 2 was detected.
Although in both cases Gram (—) bacteria predominated, during
FB1 their number varied from 10- to 100-fold the Gram (+) bacte-
ria, whereas in FB2 their number was smaller, varying from 1 to
10-fold. Furthermore, regarding the filamentous bacteria viability,
and although the vast majority of cells were viable, FB1 and FB2
also differed considerably. The two periods presented opposite ten-
dencies with increasing filamentous bacteria viability throughout
FB1 and decreasing filamentous bacteria viability throughout
FB2. Regarding the ZB experiment Gram (—) bacteria predomi-
nated, varying from 1 to 100-fold whereas the filamentous bacteria
viability fluctuated throughout the experiment, although main-
taining a large majority of viable cells. In the pinpoint experiment,
a shift on the filamentous bacteria community was observed from
initially predominant Gram (—) bacteria towards a majority of
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Fig. 6. (a) Correlation between SVI and TL/Vol; (b) correlation between SVI and TL/MLSS. Crossbars represent discarded samples; (c) correlation between MLSS and TA/Vol.
Crossbars represent discarded samples. (FB - filamentous bulking; PP - pinpoint flocs; ZB - zoogleal bulking; NC - normal conditions).
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Fig. 7. Experimental behavior of G_AG/AR and LD_AG/AR (FB1 - filamentous bulking1; FB2 - filamentous bulking 2; PP - pinpoint floc; ZB - zoogleal bulking; NC - normal

conditions).

Gram (+) bacteria at the end of the experiment. Regarding the fil-
amentous bacteria viability no clear trend was observed through-
out the experiment, maintaining a large majority of viable cells.
The NC experiment started with the predominance of filamentous
Gram (—) bacteria that progressively shifted towards the equilib-
rium with the Gram (+) bacteria at the end of the experiment.
Regarding the filamentous bacteria viability a decreasing trend in
the filamentous bacteria viability was noticed throughout the
experiment, although maintaining a large majority of viable cells.

4. Conclusions

Image analysis parameters were used to elucidate several dis-
turbances that may occur in an activated sludge system, and the
possibility of measuring two of the most important operational
parameters (SVI and MLSS) for biomass characterization. During
both filamentous bulking experiments the majority of the aggre-
gated biomass formed small aggregates, either dispersed in the
mixed liquor, either attached to filamentous bacteria. Furthermore,
filamentous bulking presented the largest filamentous bacteria
contents, as well as their ratio versus aggregated bacteria and sus-
pended solids. Differences between the filamentous bacteria com-
position and viability from filamentous bulking experiments 1 and
2 were also detected. Although in both cases viable Gram (—) bac-
teria predominated, FB1 presented a larger Gram (—) fraction with
increasing viability throughout the experiment, opposite to the
decreasing trend in FB2. The ZB experiment presented the largest
contents of large aggregates alongside the increase of both the
aggregated biomass and MLSS. The filamentous bacteria contents
as well as their ratio versus aggregated bacteria and suspended sol-
ids presented a decreasing trend throughout this period, since the
conditions associated to ZB favors the growth of aggregated bio-
mass contrasting to filamentous bacteria. Furthermore it was de-
tected a predominance of Gram (-) and viable bacteria.

Regarding the PP experiment, it was possible to observe a biomass
washout phenomenon leading to the decrease of biomass contents
mirrored by the MLSS and aggregated biomass behaviors, which, in
turn led to a continuous growth of the In(TL/TA) and TL/MLSS
parameters (although within the range of moderate values). During
this experiment, a large majority of viable cells was observed
although the filamentous bacteria community shifted from initially
predominant Gram (—) bacteria towards a majority of Gram (+)
bacteria at the end of the experiment. The biomass structure under
NC showed a predominance of intermediate flocs, low filamentous
bacteria contents and respective ratios versus aggregated bacteria
and suspended solids. Furthermore, it was noticed a shift from an
initial clear predominance of filamentous Gram (-) bacteria to-
wards the equilibrium with the Gram (+) bacteria at the end of
the experiment. Although slightly decreasing throughout the
experiment, a large majority of viable cells was maintained.

Regarding the SVI assessment, a relationship (correlation factor
R? of 0.83) between the SVI and the filamentous bacteria contents
was found, for TL/Vol values above 7 mm pL~'. Although, past
studies have proven the validity of the TL/MLSS parameter to as-
sess SVI values in filamentous bulking, the present results, encom-
passing a wider range of conditions, seem to point to the TL/Vol
parameter as the most adequate overall. In the current work, the
assessment of MLSS by image analysis was limited to PP, NC and
ZB phenomena with low TA/Vol contents (5mm? uL™!), thus
excluding filamentous bulking and high aggregated biomass con-
tents systems. In conclusion it may be inferred that the image anal-
ysis methodology clearly revealed the nature of each studied
condition during this work.
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