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Abstract 

In this thesis we study the adsorption dynamics and self-assembly of anisotropic 

particles at a liquid-liquid interface. Firstly, we couple a Langevin dynamics model with 

the high-resolution finite element analysis software package Surface Evolver, which 

explicitly includes interfacial deformations, to study the adsorption dynamics of 

ellipsoidal particles. Transient contact line pinning due to nanoscale defects on the 

particle surface are also included by renormalising particle friction coefficients and using 

dynamic contact angles relevant to the adsorption timescale. We reproduce the 

monotonic variation of particle orientation with time that is observed experimentally 

and are able to quantitatively model the adsorption dynamics for some experimental 

ellipsoidal systems but not others. However, even for the latter case, our model 

accurately captures the adsorption trajectory (i.e., particle orientation vs. height) of said 

particles.  

 Secondly, we extend our theoretical model to study cylindrical particles with the 

goal of using the adsorption kinetics of cylindrical nanorods at a liquid interface as a 

novel alternative route for assembling vertically aligned nanorod arrays. We find that 

the final orientation of non-neutrally wetting cylindrical nanorods is determined 

by their initial attack angle when they contact the liquid interface. Furthermore,  

the range of attack angles leading to the end-on state is maximised when nanorods 

approach the liquid interface from the bulk phase that is more energetically favorable.  

 Finally, we move from the role anisotropy plays in the adsorption process to  

investigating how particle anisotropy can be utilized to direct the self-assembly of 

particles adsorbed at a liquid-liquid interface. Specifically, by modeling undulating 

hexagonal-like platelets and changing the relative phase axis of the undulation’s peaks 
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and the hexagonal particles vertices, we can direct the assembly to a number of different 

self-assembled ground states including hexagonal close packed, honeycomb and 

kagome lattices. 
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Glossary of Terms 

Adsorption 

The process by which a substance is accumulated at an interface or in an interfacial 

region. 

Adsorption Coordinates 

The specific spatial configuration of an anisotropic particle given in terms of the height 

of the centre of the particle relative to the planar interface and the angle between the 

planar normal and the semi-major axis of the particle. 

Adsorption Kinetics 

The evolution in time and space of a colloidal particle adsorbing at an interface from its 

initial breach to its equilibrated configuration. 

Advancing Contact Angle 

A dynamic contact angle between a liquid and solid which is produced in the course of 

the wetting process.  

Anisotropic 

The property of exhibiting properties with different values when measured along axes 

in different directions. 

Arrhenius Equation 

A formula relating the temperature dependence of reaction rates. 

Area Fraction 

The total area of an interface excluded by adsorbed particles divided by the total area 

of the planar interface. 
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Attack Angles 

The angle formed between the semimajor axis of an anisotropic particle and the 

interface normal at the point of the initial interfacial breach. 

Bijel 

Bicontinuous interfacially jammed emulsion gels consisting of continuous, 

interpenetrating domains of two immiscible fluids maintained in a ridged arrangement 

by a jammed layer of interfacial colloids. 

Bio-Locomotion 

The various movements of organisms employed for self-propulsion. 

Boltzmann Factor 

The proportionality relating the average kinetic energy of particles in a gas to its 

thermodynamic temperature. 

Bond Number 

A dimensionless number describing the ratio of gravitational forces to surface tension 

forces. 

Brownian Motion 

Random fluctuations in the density of molecules in a liquid due to thermal energy. 

Capillary Interactions 

The attractive and repulsive interactions between adsorbed particles due to their 

overlapping menisci. 

Capillary Number 

The ratio of viscous to interfacial forces. 

Centroid 

The geometric centre of a plane figure. 
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Colloid 

State of subdivision in which the particles have at least one dimension on the length 

scale between 1𝑛𝑛𝑛𝑛 and 1𝜇𝜇𝑛𝑛. 

Common Tangent Line 

A straight line which forms two tangents to a function. 

Computational Complexity 

The number of resources required to run an algorithm, which generally varies with the 

size of the input. 

Contact Angle Hysteresis 

The difference between advancing and receding contact angles due to heterogeneities 

of a surface. 

Contact Line 

The line circumscribing all points at which the three phases, liquid, vapour and solid 

meet. 

Contact Line Pinning 

The transient attachment of segment(s) of the three-phase contact line due to surface 

heterogeneities.  

Continuous Phase 

A phase which exhibits continuity throughout a dispersion. 

Crystallography 

The field of study concerned with determining the arrangement of atoms in crystalline 

materials. 
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Crystal Structure 

A description of the symmetric patterns repeating along the principal directions in 

geometric space in a crystalline material. 

Delaunay Triangulation 

A tessellation of a set of points such that no single point lies inside the circumcircle of 

any triangle which composes the tessellation. 

Depolarizing Factors 

When an anisotropic shape is magnetized by a uniform field the total field inside the 

materiel and its surroundings change. Depolarizing factors attempt to correct for the 

shape anisotropy and are also known as demagnetizing factors. 

Dielectric Strength 

The electrical strength of an insulating material measured as the maximum voltage 

required to produce a dielectric breakdown. 

Dimensionally Confined Nanostructures 

A classification of materials having dimension which are outside of the nanoscale regime, 

i.e., less than 100𝑛𝑛𝑛𝑛. Accordingly, the classification of a zero-dimensional (0D) material 

means that all dimensions are less than 100𝑛𝑛𝑛𝑛, one-dimensional (1D) means that one 

dimension is outside this range, two dimensions are outside this range for 2D and all 

dimensions are outside of this scale for 3D materials. 

Dimers 

A colloid assembly consisting of two structural sub-units. 

Dipole 

An interfacial deformation around an adsorbed particle which is characterized by having 

a single depression and elevation with respect to the plane of the interface. 
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Dispersed Phase 

The phase that is distributed in the form of discrete discontinuities within a second 

immiscible continuous phase. 

Dispersion Force 

Weak forces between molecules occurring due to either temporary or permanent 

dipoles which result in attractive or repulsive forces between molecules. 

Dissipative Force 

A force capable of translating mechanical energy into thermal energy causing energy to 

be lost from a system undergoing motion.  

Dry Water 

An air-water emulsion stabilized by silica particles. 

Dynamic Contact Angle 

The contact angle which occurs during the wetting or de-wetting of a solid. 

Dynamical Attractor 

A set of states to which a given system tends to evolve towards given a wide variety of 

initial conditions. 

Dynamical State Vector 

The vector fully describing an individual anisotropic particle’s energetic configuration at 

a snapshot in time during the adsorption process. 

Electrodeposition 

A fabrication method used to create a metallic coating by using an electric current on a 

conductive material immersed in solution which contains a salt of the metal to be 

deposited. 
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Electrolytes 

A substance which conducts current via dissociation into ions.  

Emulsion 

A dispersion consisting of two or more liquid phases. 

Encapsulation 

The creation of selectively permeable capsules composed of colloidal particles. 

Epsilon-Near-Zero Materials 

A category of materials having near zero refractive index resulting in unique linear and 

nonlinear optical properties. 

Equilibrium Contact Angle 

The contact angle satisfying the lowest free energy state of an adsorbed particle or 

droplet. 

Evaporation Driven Assembly 

The process of guiding disordered colloids adsorbed at an interface to ordered 

structures by evaporation of the continuous phase. 

Far-Field 

Far field is defined as the particle separation where only the leading order multipole 

capillary interaction is relevant. This distance is several multiples of the particle radius 

for a spherical particle. 

Finite Element Analysis 

A numerical method for solving partial differential equations. A mesh of an object is 

created from a space discretization having a finite number of points. A system of 

algebraic equations describing the applicable physical behaviour is applied and the 

approximate solution is calculated by minimising an associated error function. 
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Floatation Forces 

The lateral capillary force between particles having a high bond number originating from 

the interaction of their menisci. 

Fluctuation-Dissipation Theorem 

The theory which quantifies the relationship between fluctuations in a system and the 

systems response to applied perturbations. For a given process which dissipates energy 

turning it into heat, for example a solid body translating through a fluid, there is a 

reverse process related to thermal fluctuations. 

Free Energy 

A measure of the capacity of a system to do work. 

Free Energy Landscape 

The free energy of a system as a function of its configuration. 

Freeze-Fracture Shadow Casting cryo-SEM 

The process of experimentally measuring wetting properties by creating a particle laden 

interface, jet-freezing and fracturing it with the interface acting as the weak fracture 

plane to expose immobilized nanoparticles. The interface is then unidirectionally metal 

coated and the nanoparticles heights above the interface measured via the length of 

their shadows. 

Friction Coefficients 

A measure of the amount of friction existing between two surfaces. In this thesis we 

consider two specifically, the translational and rotational friction coefficients. 

Functionalized Facets 

Alterations to the surface chemistry of specific particle faces. 

Gel 

A bicontinuous structure with a solid and liquid component. 
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Graphical Processing Unit 

A specialised electronic circuit used to accelerate numerical calculations via mass 

parallelisation. Frequently abbreviated to GPU. 

Haymaker Constant 

A materiel constant which quantifies the relative strength of the attractive van der 

Waals forces. 

Heterogeneities 

The variance of properties of a system or unit of a system. With respect to colloidal 

particles this is usually due to variations in surface chemistry or particle shape. 

Hexapole 

An interfacial deformation around an adsorbed particle which is characterized by having 

three depressions and elevations with respect to the plane of the interface. 

High Speed Confocal Microscopy 

The experimental technique of producing images with high spatial resolution which uses 

a point illumination source and a pinhole at the confocal plane of a sample to eliminate 

out of focus light rays. 

Holographic Microscopy 

The recording of the light wave front information from an object in the form of a 

hologram and the reconstruction of the object image by a numerical reconstruction 

algorithm. 

Homogeneous 

The uniformity of properties of a system or unit of a system. 

Hydrophobic 

Describes a particle or substances interaction with water, in this case having the 

qualitative meaning “water fearing”. 
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Hydrophilic 

Describes a particle or substances interaction with water, in this case having the 

qualitative meaning “water loving”. 

Interface Compression 

A technique used to compress monolayers on the surface of a subphase, usually with a 

Langmuir-Blodgett trough. 

ITIES 

An Interface between two immiscible electrolyte solutions. 

Janus Particles 

A particle whose surface has two or more distinct physical properties, can arise from 

variations in surface chemistry or particle morphology. 

Kagome Lattice 

A trihexagonal lattice consisting of two regular hexagons and two equilateral triangles 

alternating around each vertex. 

Langevin Dynamics 

A method of modelling the dynamics of molecular systems which approximates the 

canonical ensemble. The force on a given particle is calculated by summing the negative 

of the grad operator acting on a particle interaction potential with a damping term due 

to frictional forces and a final term due to random thermal fluctuations. The model can 

mimic viscous aspects of a solvent but neglects electrostatic screening effects. 

Lattice Vector 

A vector joining any two lattice points. Used to describe the unit cell of a periodic 

structure. 
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Line Tension 

The energy term per unit length of the three-phase contact line due to the imbalance of 

intermolecular forces arising from the three phases intersecting at the contact line. 

Liquid Marbles 

Liquid droplets coated with hydrophobic powder. 

Mesoscale Self-Assembly 

The spontaneous ordering of objects ranging in size from 3𝑛𝑛𝑛𝑛 − 10𝑛𝑛𝑛𝑛 due to capillary, 

magnetic or electrostatic forces. 

Metamaterials 

Materials which have been engineered to have property(s) not found in naturally 

occurring materials such as negative refractive indices. 

Metastable 

An intermediate state in a dynamical system. 

Monolayer 

A layer of colloidal particles which has the thickness of a single particle. 

Monopole 

An interfacial deformation around an adsorbed particle arising from the presence of a 

vertical force acting on the particle. The interfacial deformation is either a depression or 

rise surrounding the particle with respect to the interface plane far from the particle. 

Monotonic 

A mathematical function which varies in a way that either never increases or never 

decreases.  
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Monte Carlo Methods 

A class of simulation techniques which use repeated random sampling to obtain 

numerical results. 

Multicomponent Lattice Boltzmann Model 

A set of models which simulates complex flows from a statistical physics standpoint. A 

fluid is modelled initially by a distribution function used to describe the occupation of a 

lattice site with velocity and time also discretised. The location of particles in space is 

restrained to that of the lattice site and the simulation is propagated forwards in 

timesteps with the particle’s velocity components and any particle collisions being 

updated on each iteration. 

Nanolithography 

A class of techniques for engineering nanometre scale structures. Depending on specific 

material constraints nanolithography can use light, electron beams or charged ions to 

transfer a pattern from a photomask to a photoresist layer which has been coated onto 

a substrate material. 

Nanomaterials 

Materials in which a single unit has a length scale between 1 − 100𝑛𝑛𝑛𝑛 in at least one 

dimension. 

Nanoscale Defects 

Small, nanometre sized heterogeneities on a particles surface due to surface chemistry 

or particle morphology. 

Nearfield 

The distance beyond a colloids surface in which the higher order multipoles involved in 

capillary interactions become dominant. This distance is less than one radius from the 

surface for a spherical particle. 
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Neumann-Boundary Condition 

A boundary condition which specifies the values of the derivative applied to the 

boundary of the domain. 

Optical Trap 

An instrument which uses a highly focused laser beam to trap a dielectric particle near 

the focal point of the laser beam. The particle experiences a force due to the transfer of 

momentum from the incident photons. 

Parallel Computing 

The process of breaking down larger, complex computational calculations into smaller 

parts which can be distributed and executed simultaneously over multiple processers. 

Parallelepiped 

A three-dimensional shape in which all the faces are parallelograms. 

PDMS 

Polydimethylsiloxane, a polymer which is frequently used to immobilise interfacial 

colloidal assemblies. 

Plasmonic Cavity Resonators 

In general, plasmonic cavity resonators are assemblies in which surface plasmons can 

be excited in structures with a geometry of 1D, 2D and 3D space dimensions. 

Plasmonic Sensor 

A sensing device which response to shifts in the spectral properties of plasmons acting 

as a transducer of the sensing signal. 

PMMA 

Poly(methyl methacrylate) a polymer which is frequently used to immobilise interfacial 

colloidal assemblies. 
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Polymeric Coatings 

Thin layers of polymer applied to modify a particles surface properties.  

Polarization Charge 

The material response of a dielectric material when exposed to an electric field. 

Quadrupole 

An interfacial deformation around an adsorbed particle which is characterized by having 

two depressions and elevations with respect to the plane of the interface. 

Quasi-Static 

A process which occurs on a slow enough time frame that it appears to be in 

thermodynamic equilibrium. 

Receding Contact Angle 

A dynamic contact angle between a liquid drop and a solid which has already been 

wetted and is in the course of being de-wetted.  

Reconfigurable Devices 

Devices in which it is possible to switch back and forth between the equilibrium states 

of colloidal self-assembly. This is accomplished through manipulation of size, shape and 

interaction potential of the colloids themselves or alternatively the magnitude and 

direction of applied fields. 

Reynolds Number 

A dimensionless number which expresses the ratio of inertial forces to the viscous forces. 

Separatrix 

The locus of points in space in which the eigenvectors of the hessian matrix, with positive 

and negative values respectively, are parallel to the gradient. 
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Sessile Droplet 

An immobile liquid droplet, in this context used as an experimental technique to 

measure contact angle hysteresis. 

Simplices 

A generalisation of a triangle to arbitrary dimensions. 

Simplicial Complex 

A mathematical set composed of points, line segments and facets. 

Sol 

A liquid dispersion containing particles of colloidal dimensions. 

Stereolithography 

An additive manufacturing process which works by focusing an ultraviolet light onto a 

vat of photopolymer resign and 3D printing an object layer by layer. 

Steric Forces 

Forces arising due to the arrangement of molecules and overlapping electron clouds. 

Surface Energies 

The work required to create an area of a particular surface due to the disruption of 

intermolecular bonds that occurs when a surface is created. 

Surface Enhanced Raman Spectroscopy 

A technique which enhances the inelastic scattering of incident photons by molecules 

adsorbed on rough metal surfaces or plasmonic structures. 

Super-Ellipsoid Equation 

A three-dimensional generalization of the ellipsoid which allows different exponents of 

the variables in its algebraic expression. Permits one to mathematically model a large 

range of shapes from spheres to cubes. 
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Tetramers 

A colloid assembly consisting of four structural sub-units. 

Two Dimensional Materials 

A classification of a material which has two dimensions outside the nanoscale, i.e., less 

than 100𝑛𝑛𝑛𝑛.  

Viscous 

The tendency of a liquid to resist flow because of internal friction. 

Viscous Dissipation 

An irreversible process in which the work done by a fluid on adjacent layers by the action 

of shear forces is converted to heat. 

Viscous Drag 

The resistance to movement felt on an object as it passes through a fluid due to the 

viscosity of the fluid. 

Wettability 

The ability of a liquid to maintain contact with a solid surface. 

Young-Laplace Equation 

An equation which describes the capillary pressure difference across an immiscible 

interface between two static fluids. 
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 Introduction 

The field of interface and colloidal science is a union of disciplines such as 

chemistry, physics, nanotechnology and computational science dedicated to the 

study of colloidal systems. Loosely speaking, a colloid is a heterogeneous mixture of 

insoluble particles dispersed in a continuous medium, the particles of the colloid 

having at least one dimension in the range of 1𝑛𝑛𝑛𝑛 to 1𝜇𝜇𝑛𝑛.1,2 The insoluble particles 

(or droplets) of the colloid being referred to as the dispersed phase and the medium 

being referred to as the continuous phase. The dispersed and/or continuous phase 

can be in gaseous, liquid or solid states with a range of sub-classifications for colloidal 

systems. In the case of an emulsion both dispersed and continuous phases are in the 

liquid state, whereas a gas dispersed in a liquid results in a foam, a solid dispersed in 

a liquid a sol and conversely a liquid dispersed in a solid a gel.2 

1.1 Particles at an Interface 
Solid particles adsorbed at liquid interfaces interface have been of scientific 

interest since the turn of the twentieth century  when Ramsden first recognised that 

the presence of solid particles would prevent oil droplets dispersed in water from 

coalescing.3 The phenomenon of Pickering emulsions was formally described several 

years later by Pickering who noted that the presence of particles at an interface 

between two immiscible phases causes a physical barrier and can lower  the systems 

free energy.4 Specific system parameters such as particle shape, size, hydrophobicity 

and specific fluid phases all playing a part in the stability of a given emulsion.5 While 

the lay-persons interaction with this phenomenon likely stops at painting their walls, 

the interest in such systems both scientifically and commercially extends beyond 

emulsification to include nanostructured materials6, reconfigurable devices7, 

targeted drug delivery8 and even mineral processing and wastewater treatment.9  
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 This thesis studies both the dynamics of solid particles adsorbing to immiscible 

liquid-liquid interfaces and some of the self-assembly characteristics of such systems, 

the focus being on the role particle morphology has to play. Advances in particle 

synthesis over the past decade have enabled the production of ellipsoids10, 

cylinders11, cubes12 and platelets13 as well as a variety of more exotic geometries14–

16 on the colloidal length scale. Anisotropic particles have been shown to be 

particularly effective stabilisers of colloidal emulsions17 as will be thoroughly 

detailed in the literature survey in Chapter 2. For the simplest anisotropic geometries 

such as an ellipsoidal or cylindrical particle adsorbed at the interface, the particle-

particle capillary interactions have been reasonably well studied from both 

theoretical and experimental viewpoints.18–20 However, the adsorption dynamics, 

how the particle evolves from being dispersed in one medium to equilibrating at the 

interface, is an area of active research21–24 and in order advance the field we require 

a comprehensive understanding of the adsorption process. A practical consideration 

to illustrate the importance of a comprehensive understanding of the adsorption 

process is that morphologies such as cylinders can have multiple stable and meta-

stable states.20,21,25 Many plasmonic sensor applications, sensors utilising spectral 

shifts from plasmon interactions upon irradiation, require uniformly spaced “forests” 

of cylinders to be in the upright orientation.26 In order to reliably reproduce such 

two-dimensional structures we require control over the factors which result in this 

state. The adsorption dynamics of anisotropic particles are the topics of Chapters 4 

and 5 in which we study ellipsoidal and cylindrical particles respectively. 

 Particles adsorbed and equilibrated to an interface can interact with one another 

via different mechanisms, given sufficiently small interparticle separations. In 
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addition to the steric27,28 , electrostatic and van der Waals forces29,30 found in bulk 

colloidal systems, at the interface colloids also interact via capillary forces.19,31–33 A 

common, everyday experience of capillary forces is the Cheerio’s effect. The weight 

of a Cheerio is not enough to overcome the surface tension at the air-liquid interface 

but it is enough to deform it in such a way that if any other Cheerio’s are close 

enough there appears to be an attraction and the cereal aggregates.34 Capillary 

interactions are richer still as they can not only be attractive and repulsive but also 

directional, resulting in the observation and documentation of a wide array of two 

dimensional crystal structures self-assembled via capillary interactions, far beyond 

simple particle aggregation.35–39 

1.2 Practical Motivation 
Beyond scientific curiosity there is also much interest in the practical applications 

of materials formed by the organisation and assembly of colloidal particles. Applying 

surface coatings or a surface patterning with colloidal particles can modify surface 

properties such as reflectivity or wetting characteristics.7 Furthermore, the long-

ranged organisation of particles in such coatings gives rise to strong interactions with 

electromagnetic radiation, an area of interest for plasmonic sensing applications. 

Colloidal systems have even attracted the interest of researchers trying to attain 

digital functionalities such as logic gates, switches and data storage. The fluid phase 

bit being postulated as a solution to data storage on ever smaller length scales, the 

flipping between stable states under the influence of an external field taking the on 

the role of current electronic states in memory.40 From an industrial perspective, the 

multinational consumer goods corporation Procter & Gamble (P&G) have 

collaborated with the North American Space Association (NASA) to study phase 

separation and colloidal stabilisation abord the international space station. P&G 
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have spent ten million dollars to research colloids under microgravity using the 

Advanced Colloids Experiments (ACE) platform in the hope of discovering scientific 

insights which could lead to more efficient and improved product formulations, 

given that two thirds of P&G’s product range consist of such soft-matter systems.41 

To illustrate how the interfacial self-assembly process is carried out in practice we 

describe one of the early experiments carried out by Whitesides et al.42 Millimetre 

scale hexagonal platelets were fabricated from PDMS and selected surfaces coated 

with tip-ex before exposure to oxygen plasma. The exposed surfaces become 

hydrophilic under such conditions whereas the tip-ex coated surfaces remain 

hydrophobic once the tip-ex is removed. The particles are then dispersed at a 

Hexane – water or water-air interface and the system agitated with an orbital shaker 

for 24 hours. Changing the geometric configuration of the functionalised facets 

resulted in a variety of different 2D structures such as open and closed packed lattice 

configurations. The reason for the rich variety of self-assembled structures is that 

the shape of the menisci surrounding the particles is altered. We will return to the 

experiments of Whitesides in more detail in Section 2.3.5. 

1.3 Thesis Outline 
 The aims of this thesis are to theoretically investigate the adsorption dynamics 

of anisotropic particles at liquid interfaces, and secondly the self-assembly of such 

particles at a liquid interface. To this end, the rest of the thesis is structured as 

follows. In Chapter 2 we review the relevant literature applicable to our stated goals 

starting from fundamental principles pertaining to the adsorption dynamics of 

isolated, anisotropic particles before reviewing the self-assembly characteristics of 

such adsorbed particles. 
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In Chapter 3 we discuss the finite element analysis method used throughout this 

thesis to analyse the properties of particles adsorbed at the liquid interface – Surface 

Evolver (SE). Due to the large investment of CPU time required for our calculations 

of the adsorption dynamics, we also give a detailed discussion on the practicalities 

and benchmarking which makes these calculations possible. 

In Chapter 4 we study the adsorption dynamics of ellipsoidal particles at a liquid-

liquid interface, furthermore we compare and contrast our results to existing  

theoretical and experimental studies.21,22,43,44 We present a model involving 

deformation of the liquid meniscus around the adsorbing particle, renormalized 

friction coefficients and dynamic contact angles to explain both the timescales and 

the trajectories that are observed experimentally for adsorbing particles. 

In Chapter 5 we extend the model presented in Chapter 4 to consider the 

adsorption kinetics of cylindrical particles which have a variety of aspect ratios and 

wetting properties. It has been reported both experimentally and theoretically that 

cylindrical particles can exist in a metastable ‘end-on’ state.21,45 In this chapter we 

seek to use adsorption kinetics to assemble vertically aligned cylindrical nanorods at 

a liquid interface, with an eye on  applications such as plasmonic sensors. 

In Chapter 6 we move away from adsorption dynamics and present our results 

on the self-assembly of anisotropic particles equilibrated at the interface. Specifically, 

we consider two distinct particle shapes. Firstly, a hexagonal plate with an 

undulating edge, and secondly a distorted version of the same. The focus of the 

chapter is to demonstrate the possibility of engineering the self-assembled crystal 

structure by tuning particle shape alone, as opposed to surface chemistry. Finally, in 
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Chapter 7 we summarise the conclusions of the thesis and discuss potential future 

work.  
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 Theoretical Background and Literature Review 

In this chapter we present key findings from the literature and discuss the salient 

concepts for understanding some of the behaviour of colloids adsorbed at liquid 

interfaces. We firstly deal with the thermodynamic driving force behind adsorption for 

a simple isolated sphere before presenting a general discussion of the role particle 

anisotropy plays in interfacial deformation. In section 2.2 we review the adsorption 

kinetics of particles at liquid interfaces presenting the experimental and theoretical 

evidence from the literature. Finally, after having reviewed how a particle adsorbs in the 

first place, we consider the interactions between them at a particle laden interface and 

their self-assembly characteristics in section 2.3. 

2.1 Isolated Particles at Liquid Interfaces 
2.1.1 Spherical Particles 

To introduce the subject we start with a simple model of a spherical colloid at a 

liquid-liquid interface and follow the pioneering approach presented by Pieranski46, 

considering the changes in surface energies as the colloid passes from one medium to 

the other across the fluid interface. Figure 2-1 (left) illustrates this situation with a 

Figure 2-1 (Left) Spherical colloid of radius 𝑅𝑅  at height 𝑧𝑧 with respect to the particle center and the 

planar interface (modified from 47).Illustrated is the contact angle 𝜃𝜃𝑤𝑤  alongside the three interfacial 

tension terms (𝜎𝜎) in which the subscripts 1,2 and P refer to phase 1, phase 2 and the particle phase 

respectively. (Right) Axonometric projection of the area of the fluid interface that is removed upon 

adsorption of the colloidal particle (green area) and the three-phase contact line (orange line).  
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spherical colloid of radius 𝑅𝑅  at height 𝑧𝑧 above a planar immiscible interface separating 

phases one & two. Included are three interfacial tension terms in which the subscripts 

1,2 and P refer to phase 1, phase 2 and the particle phase respectively. Figure 2-1 (right) 

is an axonometric projection showing the interfacial area (green) excluded by the 

presence of the particle along with the three phase contact line highlighted in orange.47 

Consider this particle, which is initially dispersed in the water phase, migrates to, and 

penetrates the oil-water interface becoming partially wetted by each phase. Henceforth 

we shall generically refer to phase 1 as oil and phase 2 as water. The spherical particles 

presence excludes a circular section of the oil-water interface, constituting a negative 

term with respect to the total interfacial energy and therefore there is a thermodynamic 

motivator for adsorption.46 The total interfacial energy in this isolated case can be 

expressed according to Equation 2-121,25,48 as 

𝐹𝐹 = 𝐴𝐴𝑜𝑜𝑜𝑜𝛾𝛾𝑜𝑜𝑜𝑜 + 𝐴𝐴𝑤𝑤𝑜𝑜𝛾𝛾𝑤𝑤𝑜𝑜 + 𝐴𝐴𝑜𝑜𝑤𝑤𝛾𝛾𝑜𝑜𝑤𝑤                                                                                          ( 2-1 ) 

where 𝐴𝐴 corresponds to the relevant interfacial areas which will be a function of the 

particle height. Substituting in the relevant area terms then leads to 

𝐹𝐹 = 2𝜋𝜋𝑅𝑅2(1 + 𝑧𝑧0)𝛾𝛾𝑜𝑜𝑜𝑜 + 2𝜋𝜋𝑅𝑅2(1 − 𝑧𝑧0)𝛾𝛾𝑤𝑤𝑜𝑜 − 𝜋𝜋𝑅𝑅(1 − 𝑧𝑧02)𝛾𝛾𝑜𝑜𝑤𝑤                                    ( 2-2 )           

where the height of the particle relative to the interface is ( 𝑧𝑧0 = 𝑧𝑧 ⁄ 𝑅𝑅). Equation 2-2 

simplifies to the form 

𝐹𝐹 = 𝜋𝜋𝑅𝑅2𝛾𝛾𝑜𝑜𝑤𝑤 �𝑧𝑧02 + 2𝑧𝑧0�𝛾𝛾𝑜𝑜𝑜𝑜−𝛾𝛾𝑤𝑤𝑜𝑜�
𝛾𝛾𝑜𝑜𝑤𝑤

+ 2�𝛾𝛾𝑜𝑜𝑜𝑜+𝛾𝛾𝑤𝑤𝑜𝑜�
𝛾𝛾𝑜𝑜𝑤𝑤

− 1�                                                         ( 2-3 ) 

Differentiation of Equation 2-3 and equating to zero to extract the equilibrium position 

of the particle with respect to the interface yields a form of the familiar Young’s equation 

𝑧𝑧0𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛾𝛾𝑤𝑤𝑜𝑜−𝛾𝛾𝑜𝑜𝑜𝑜
𝛾𝛾𝑜𝑜𝑤𝑤

                                                                                                                           ( 2-4 ) 
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Unless otherwise stated in all our simulation work presented in chapters four, five and 

six, we refer to the equilibrium contact angle given by Young’s equation 

cos 𝜃𝜃𝑤𝑤 = 𝛾𝛾𝑜𝑜𝑜𝑜−𝛾𝛾𝑜𝑜𝑤𝑤
𝛾𝛾𝑜𝑜𝑤𝑤

                                                                                                                        ( 2-5 ) 

As can be seen from Figure 2-247, substitution of −1 ≤  𝑧𝑧0 ≥ 1 into Equation 2-

3 permits one to estimate the free energy landscape for adsorption in this simplified 

example. In order to remove the adsorbed particle into either phase it follows that 

∆𝐹𝐹𝑜𝑜𝑚𝑚𝑜𝑜 = 𝐹𝐹(𝑧𝑧0 = 1) − 𝐹𝐹�𝑧𝑧0 = 𝑧𝑧0𝑚𝑚𝑚𝑚𝑚𝑚�                                                                                     ( 2-6 ) 

∆𝐹𝐹𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝐹𝐹(𝑧𝑧0 = −1) − 𝐹𝐹�𝑧𝑧0 = 𝑧𝑧0𝑚𝑚𝑚𝑚𝑚𝑚�                                                                             ( 2-7 ) 

Utilizing Young’s equation and expressing the equilibrium configuration in terms of the 

contact angle 𝜃𝜃𝑤𝑤 , we get a more widely used expression for the calculation of the 

attachment energy1,49–51  

Figure 2-2 Free energy of adsorption as a function of particle height as calculated by Equations 2-6 and 2-

7 for a spherical PMMA colloid with radius 𝑅𝑅 =  50 𝑛𝑛𝑛𝑛 (reproduced from47). At 𝑧𝑧0 = −1 the particle is 

fully immersed in hexadecane and at 𝑧𝑧0 = +1 the particle is fully immersed in the water phase. The 

interfacial tensions used in the calculation are 𝜎𝜎𝐻𝐻𝐻𝐻/𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 53.5 𝑛𝑛𝑚𝑚𝑛𝑛−1, 𝜎𝜎𝐻𝐻𝐻𝐻/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 14.2 𝑛𝑛𝑚𝑚𝑛𝑛−1 and 

𝜎𝜎𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 28.5 𝑛𝑛𝑚𝑚𝑛𝑛−1. 
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∆𝐹𝐹 = 𝜋𝜋𝑅𝑅2𝛾𝛾𝑜𝑜𝑤𝑤(1 ± cos𝜃𝜃𝑤𝑤)2                                                                                                   ( 2-8 ) 

Substituting in typical values for a poly(methyl methacrylate) sphere with a radius of 

50𝑛𝑛𝑛𝑛  at a hexadecane-water interface where 𝜎𝜎𝐻𝐻𝐻𝐻/𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 53.5 𝑛𝑛𝑚𝑚𝑛𝑛−1,  the 

detachment energy is on the order of 105𝑘𝑘𝑏𝑏𝑇𝑇.47 This represents such a large energy 

barrier that particle adsorption is essentially irreversible. 

The contact angle 𝜃𝜃𝑤𝑤 quantifies the wettability of a surface. Theoretically a solid, 

liquid and vapor ensemble at a given temperature and pressure have a unique contact 

angle at equilibrium. We illustrate examples of hydrophilic (𝜃𝜃𝑤𝑤 < 90°), neutrally wetting 

(𝜃𝜃𝑤𝑤 = 90°), and hydrophobic (𝜃𝜃𝑤𝑤 > 90°) particles in Figure 2-3. In reality however, not 

only do contact angles vary with physical or chemical defects52, they also have a 

hysteresis curve.53 The contact angle hysteresis can be measured by slowly pumping 

liquid into or out of a sessile droplet. By placing a needle close to the droplets surface 

and injecting liquid the drop volume increases, causing the contact angle to increase and 

eventually reach the advancing contact angle 𝜃𝜃𝑃𝑃  beyond which, the three-phase contact 

line will advance. The receding contact angle 𝜃𝜃𝑅𝑅  being measured in the opposite way54 

with the equilibrium contact 𝜃𝜃𝑃𝑃 angle being found within this range. 

Figure 2-3  Illustration of a spherical particle at an oil-water interface with different contact angles. (a) 

hydrophilic particle 𝜃𝜃𝑤𝑤 = 70° , (b) Neutrally wetting particle 𝜃𝜃𝑤𝑤 = 90°  and (c) a hydrophobic particle 

𝜃𝜃𝑤𝑤 = 120°. 
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The analysis presented so far restricts the discussion to the effect of the three 

interfacial tensions on particle position at the liquid interface. Gravitational forces 

become important for larger sized particles which scale with 𝑅𝑅3 , whereas surface 

tension force scales with 𝑅𝑅.47,55,56 We can quantify the relative importance of gravity and 

surface tension via the bond number, 𝐵𝐵0 = 𝑔𝑔𝑅𝑅2∆𝜌𝜌
𝛿𝛿𝑜𝑜𝑤𝑤
� , where 𝑔𝑔  is gravitational 

acceleration and ∆𝜌𝜌 the density difference between the phases. It can be shown with 

typical values of interfacial tension and density that gravity can safely be neglected for 

𝑅𝑅 < 10𝜇𝜇𝑛𝑛 .56,57 For particles with 𝑅𝑅 > 10𝜇𝜇𝑛𝑛   gravity becomes increasingly more 

important and results in further interesting phenomenon, the most familiar examples of 

this being the ‘Cheerios’ effect or the migration of bubbles to the walls of a container. 

Figure 2-4 (a) illustrates the mechanism of the apparent attraction between bubbles and 

the walls of a glass container. The air-water interface is distorted by the hydrophilic glass 

wall resulting in the familiar meniscus effect. The bubble is buoyant and experiences a 

net upward force 𝐹𝐹𝑔𝑔, however it is constraint to lie at the interface so moves along and 

up the meniscus.34 Figure 2-4 (b) is an image of an upside-down drawing pin floating on 

Figure 2-4 Illustrations of interfacial phenomena which can occur when gravity plays a dominant role 

(reproduced from34). (a) The aggregation of bubbles at a solid wall due to being driven up the meniscus 

curvature due to gravitational force. (b) An image of an upside-down drawing pin floating on water 

demonstrating the reversal of interfacial curvature, in this case surface tension limits the amount of 

interfacial deformation permitting the denser than water pin to float. 
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water, the fact that such a heavy particle can float at all is due to surface tension 

counterbalancing the weight of the pin. In an analogy to the bubble aggregation, 

multiple pins will attract when close enough as they “fall down” the interface.34  

To conclude our discussion of homogeneous, isolated, spherical particles 

adsorbed at an immiscible interface we introduce the concept of line tension (𝜏𝜏). The 

imbalance of intermolecular forces in the interfacial region results in surface tension 

with an energy term per unit area.58 In a similar fashion the three phase contact line has 

an energy term per unit length known as line tension.59 Theoretical and experimental 

results suggest line tension has a magnitude of 1 − 100𝑝𝑝𝑚𝑚  and can be positive or 

negative.60,61 For neutrally wetting spherical particles, positive line tension tends to 

reduce the length of the contact line, with particles laying further in favor of their 

preferred phase shifting the contact angle away from ninety degrees.47 Furthermore, 

Positive line tension has been shown theoretically to lead to large energy barriers to 

adsorption and in some cases, multiple energy minima in the free energy profile. In 

contrast, negative line tension tends to maximize the length of the contact line with 

contact angles tending toward neutrally wetting for spherical particles.47 Line tension, 

along with Brownian motion sets a lower size limit to the adsorption phenomenon. At 

the scale of approximately 10𝑛𝑛𝑛𝑛 the energy barrier to de-adsorption is on the order of 

thermal energy47,62, experimental evidence suggests that below 12𝑛𝑛𝑛𝑛 particles can be 

found dispersed in the bulk. 

2.1.2 Anisotropic Particles 

For spherical particles Young’s constant contact angle constraint can be satisfied 

simply by a change in the particle height relative to the planar interface. However, for 

anisotropic particles the system is more complex because the particles have extra 
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degree(s) of freedom and the liquid interface can deform around the adsorbed particle 

to satisfy the constant contact angle constraint.18,20,63 

In order to understand the behaviour of anisotropic particles adsorbed at a liquid 

interface, we consider the Young-Laplace equation which can be used to describe the 

shape of the meniscus around an adsorbed particle64 written in the form 

∆𝑃𝑃 = 𝛾𝛾 �1
𝑤𝑤1

+ 1
𝑤𝑤2
�                                                                                                                        ( 2-9 ) 

The left-hand side of Equation 2-9 is the pressure difference between the two bulk 

phases, 𝛾𝛾 the surface tension with 𝑟𝑟1 and 𝑟𝑟2 the principal radii of curvature at any given 

point on the meniscus. For small deformations the curvature can be approximated by 

�1
𝑤𝑤1

+ 1
𝑤𝑤2
� ≈ ∇2ℎ where ∇2 is the 2D Laplacian operator and is defined as ∇2= 𝜕𝜕2

𝜕𝜕𝜕𝜕2
+ 𝜕𝜕2

𝜕𝜕𝜕𝜕2
 

in Cartesian coordinates and ℎ is the height of the meniscus.65 Far from the particle the 

meniscus is flat therefore ∆𝑃𝑃 = 0 , continuing under the assumption of low bond 

number the interfacial deformation obeys the 2D Laplace equation  

∇2ℎ = 0                                                                                                                                      ( 2-10 ) 

The general solution in circular polar coordinates for a particle centered at the 

origin is a superposition of multipoles of the form64 

ℎ(𝑟𝑟, 𝜃𝜃) = 𝐴𝐴0𝑙𝑙𝑛𝑛(𝑟𝑟) + ∑ 𝑃𝑃𝑛𝑛
𝑤𝑤𝑛𝑛

cos𝑛𝑛𝜃𝜃 + 𝛼𝛼𝑚𝑚                                               𝑚𝑚                              ( 2-11 ) 

In this expansion the subsequent terms are referred to as the polar monopole, dipole, 

quadrupole, hexapole etc., with An and 𝛼𝛼𝑚𝑚 referring to the amplitude of the interface 

and phase angles respectively. Different leading order modes are activated depending 

on the particle shape, external forces and/or torques acting on the particle which will 

be discussed in the following. 
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 In the presence of a vertical force such as gravity acting on an adsorbed particle 

the interface will deform until the capillary force balances the external force.34 The 

equilibrium expression in the small slope limit is65 

𝐹𝐹𝑤𝑤𝜕𝜕𝑤𝑤 = 𝛾𝛾 ∮∇ℎ ∙𝒎𝒎���⃗  𝑑𝑑𝑙𝑙                                                                                                                ( 2-12 ) 

Equation 2-12 describes the balance of a vertical force from capillary deformation, the 

right-hand side, with an external force on the left-hand side. Integrating along the 

contact line where 𝒎𝒎���⃗  is the normal of the undisturbed interface and the other symbols 

are defined as before. The only term in the multipolar expansion in Equation 2-11 which 

contributes to the right hand side of Equation 2-12 is the monopolar term, 𝐴𝐴0𝑙𝑙𝑛𝑛(𝑟𝑟). 

However, in the absence of any externally applied fields and for particles with sizes less 

than 10µ𝑛𝑛 , 𝐹𝐹𝑤𝑤𝜕𝜕𝑤𝑤 = 0 meaning that the monopolar term is also zero as discussed in 

section 2.1.1.56,57 The next term of the multipolar expansion in Equation 2-11 which 

describes the shape of the meniscus is the dipole which we will discuss as follows. 

 The dipole mode only occurs in the presence of an external torque acting upon 

a particle.65 This can be seen by recognizing the form it takes in Equation 2-11 is 

essentially cos 𝜃𝜃, resulting in a maximum interfacial elevation at 𝜃𝜃 = 0  and depression 

at 𝜃𝜃 = 𝜋𝜋  as illustrated in Figure 2-5.65 Some interesting studies have shown that 

applying a magnetic field on ellipsoidal particles with an embedded magnetic dipole 

Figure 2-5 Illustration of a dipole induced by the presence of an external torque acting on a particle 

(reproduced from65). (a) Planar view of the interfacial rise and depression at the tips of a cylindrical 

particle.  (b) Birds eye view of iso-height contour of the interface with the blue (negative sign) representing 

the interfacial depression and red the interfacial elevation.  
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causes an external torque on the particles, perturbing them from their equilibrium 

position resulting in switchable dipolar capillary interactions.66 In the absence of an 

external field to cause this torque the dipolar term is also zero. Thus, the leading order 

capillary multipole which describes the meniscus shape in Equation 2-11 for low bond 

number anisotropic particles is the quadrupole. 

 Small, anisotropic, chemically homogenous particles under no external field 

result in  the leading term of the interfacial deformation being the quadrupole.19,20,36,65 

The origin of this phenomenon is that the three phase contact line obeys Young’s 

constant contact angle requirement. In the case of a three phase contact line moving 

freely over the surface of smooth particle, it must intersect the particle with a uniform 

contact angle at equilibrium else there will be a force imbalance.65 Consider a neutrally 

wetting ellipsoid (i.e., 𝜃𝜃𝑤𝑤 = 90°), the interface need not deform if the particle center is 

in plane with the interface as the constant contact angle requirement is satisfied. 

However, any deviation from 𝜃𝜃𝑤𝑤 = 90° results in the interface deforming, potentially 

also alongside a shift in the particle height relative to the interface. The quadrupolar 

Figure 2-6 (a) Perspective views of an isolated ellipsoid (a) and cylinder (c) adsorbed at an interface and 

their corresponding interfacial deformations (reproduced from36). Also shown are the contact line profiles 

(b & d) with the height values normalised and expressed in units of the particle semi minor axis.  
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deformation is illustrated in Figure 2-636 for a hydrophilic ellipsoid (a) and cylinder (c) at 

an oil-water interface. The coordinates of the three phase contact lines are plotted in (b) 

and (d) for the ellipsoid and cylinder respectively. The quadrupolar deformation 

surrounding the cylindrical particle is much more concentrated around the flat ends due 

to the increased curvature of the particle at the tips. The distorted quadrupole, or 

concentration of contact line deformation, has been characterized for cylindrical 

particles both experimentally18,20 and through simulation.36,67 This subtle difference in 

the meniscus shape between ellipsoidal and cylindrical particles has a marked effect on 

the capillary interactions at particle laden interfaces. Cylindrical particles approach tip 

to tip and form linear chains, whereas ellipsoids approach in the same manner before 

rolling around each other and assembling side to side.20,36 The physical justification for 

this effect is that the concentration of contact line deformation at the tips of the 

cylindrical particles effectively introduces higher order multipoles in the nearfield. We 

also note that as illustrated in Figure 2-6 for hydrophilic particles, the interface is 

depressed at the tips and rises along the sides of the ellipsoid whereas for the cylinders 

a capillary rise is on the ends and depression occurs along the sides.20,36 For hydrophobic 

particles the signs of curvature are reversed in each case.  

 The equilibrium configuration for ellipsoidal particles is lying flat at the interface, 

however for cylinders it can take other states depending on the aspect ratio, 𝛼𝛼 = 𝐿𝐿
2𝑟𝑟� , 

where 𝐿𝐿 is the length of the particle and 𝑟𝑟 the radius.57 For 𝛼𝛼 > 2 the particles lie flat at 

the interface like ellipsoids25,36, however a metastable state also exists with the cylinders 

stood upright at the interface.21 For 𝛼𝛼 < 2 a tilted states exist in which the leading order 

mode is a hexapole.25 Shrinking the aspect ratio further such that the cylinder more 

closely resembles a disc results in the ‘upright’ state becoming the equilibrium 

orientation.  
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Higher order multipoles, such as the hexapole surrounding lower aspect ratio 

cylinders can also be found for more exotic colloidal shapes. For example, cubic particles, 

which have an extra degree of freedom when compared to cylinders because their 

height and two orientational angles can all vary. This results in three possible stable 

configurations depending on the specific system parameters.39,63,68 We discuss the 

orientation, meniscus deformations and self-assembly characteristics of cubic particles 

in more detail in section 2.3.3. Improvements in particle synthesis techniques10,16,39,69 

have enabled further study into the effects of anisotropy in the form of Janus particles. 

Janus particles can be spherical or anisotropic particles with two different surface 

chemistries and hence two different contact angles.69 Any detailed discussion of Janus 

particles is beyond the scope of this thesis but we note that the introduction of changes 

in the contact line further complicates interfacial deformations. Furthermore, Janus 

particles can have orientational preferences in the self-assembly process, a 

phenomenon we try to exploit in Chapter 6 albeit through morphology alone. 

 

2.2 Adsorption Kinetics of Particles at Liquid Interfaces 
2.2.1 Adsorption of Spheres 

Having discussed the behaviour of isolated particles equilibrated with the 

interface we now consider the adsorption process itself. Specifically, the dynamics that 

occur when a colloid attaches to the interface and relaxes to its energetically preferred 

configuration. Nearly all theoretical models of capillary interactions assume that the 

particles have reached their equilibrium orientation at the interface.36,63,64 The 

motivation for this assumption being the huge reduction in surface energy that occurs 

with binding and maximising the excluded interfacial area as discussed in section 2.1. 

Surface roughness of a particle results in a large increase of surface area in contact with 
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each phase and its importance will become clear when we consider the experimental 

timescales discussed in the next paragraph. We illustrate some of the effects of surface 

roughness in Figure 2-747 which shows that it has a negligible effect on the interfacial 

area removed by the presence of the particle but the surface area in contact with each 

of the phases, and also the length three phase contact line is significantly increased 

(orange line). In general, a water droplet on, for example, a hydrophobic surface can 

experience two different states. The Wenzel state is one in which the liquid follows all 

the contours of the surface and to paraphrase Wenzel, in the case of a spreading droplet, 

for an identical increase in the upper surface of the drop there is a much greater surface 

area underneath the drop which is wetted if the underlying surface is rough than if it 

were smooth.70 Referring back to Equation 2-1, such an effect clearly alters either the 

𝐴𝐴𝑤𝑤𝑜𝑜 term or the 𝐴𝐴𝑜𝑜𝑜𝑜 depending on the specifics of the system under consideration. In 

Figure 2-7 Illustration of the effect of surface roughness on a non-neutrally wetting spherical particle 

(reproduced from47). The particle preferentially wets the lower phase (blue) and here we illustrate 

Cassie Baxter type wetting (left) in which the fluid in the gaps is not replaced as the particle adsorbs 

from the lower phase. (right) The particle adsorbs from the upper phase and the ‘holes’ are replaced 

with the blue phase and the particle has Wenzel type wetting.  
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contrast, Cassie-Baxter wetting describes an incomplete wetting state in which a droplet 

is suspended on a composite surface of both material and air pockets.71 

 Nonomura et al.72–74 considered the theoretical behaviour of both Wenzel  and 

Cassie-Baxter type wetting on rough surfaced, non-neutrally wetting particles, 

illustrated in Figure 2-7. In the case of Cassie-Baxter type wetting, the particle adsorbs 

from the energetically favorable phase and the surface defects are fully wetted by this 

phase. In the case of Wenzel wetting, the particle adsorbs from the non-energetically 

favorable phase and the surface defects are filled with the energetically favorable phase. 

In both cases, Nonomura et al. showed that the presence of surface roughness increases 

the natural wettability of the particles. 

 In an elegant set of experiments Kaz et al. used holographic microscopy to study 

the adsorption process of polystyrene spheres at a decane-water interface, shown in 

Figure 2-8.20 Guiding the particle to the interface with the use of an optical trap the 

group found the surprising result that after an initial, almost instantaneous breach of 

the interface, the particle trajectories are logarithmic in time. Furthermore, the velocity 

and capillary numbers measured, were three orders of magnitude smaller than expected 

from models based on viscous dissipation.75–77 Finally, it was found that even after 100 

seconds the systems were far from equilibrium having an apparent contact angle of 75°, 

yet when measured with other methods the equilibrium contact angle for such systems 

is reportedly 110°.78 In order to explain these results the group proposed a theoretical 

model based on molecular dissipation using the Arrhenius equation 

𝑉𝑉 = 𝑉𝑉0𝑒𝑒𝑒𝑒𝑝𝑝 �
−𝑈𝑈
𝑘𝑘𝑘𝑘

+ 𝐹𝐹𝑃𝑃
2𝑘𝑘𝑘𝑘

�                                                                                                            ( 2-13 ) 
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In Equation 2-13, 𝑉𝑉 is the average velocity of the contact line as it hops from one pinning 

site to the next. Defects can be due to surface roughness as illustrated in Figure 2-7 or 

heterogeneities in surface chemistry. Therefore, Equation 2-13 equates the velocity of 

the contact line with a Boltzmann factor representing the probability of the contact line 

hopping over a defect.  For the contact line to hop from one defect of area 𝐴𝐴 to the next, 

it must overcome the energy barrier 𝑈𝑈. Finally, 𝑉𝑉0 is a molecular velocity and 𝐹𝐹 is the 

force per unit length acting on the contact line and is due to the unbalanced surface 

tension forces at the three phase contact line. This thermally activated hopping model 

of the contact line passing over surface heterogeneities or physical defects79 (red line in 

Figure 2-8) successfully models the experimental results of an adsorbing spherical 

particle. This contact line hopping model will be considered further in Chapter 4. 

2.2.2 Adsorption of Anisotropic Particles 

Due to the relative ease of fabricating spherical sub-micron particles as well as 

their straight-forward mathematical description, it is unsurprising that most of the 

research has focused on this area. However, increasing attention has been devoted to 

the effect particle morphology has on adsorption. The adsorption of anisotropic 

Figure 2-8 (a) Relaxation data from an adsorbing spherical particle and (b) log plot of the same, alongside 

a best fit from the dynamic wetting model (see text), reproduced from20. Clearly a rapid, almost 

instantaneous breach of the interface followed by logarithmically slow relaxation time. 
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particles is more complicated because anisotropic particles can potentially adopt 

multiple stable configurations, resulting in complex free energy landscapes for the 

adsorption process.17,21,57,80–83 Despite active research in this area, the dynamics of 

adsorption for anisotropic particles is still poorly understood, with disagreement 

between available theoretical and experimental results.21,23,43,84 

To our knowledge the first theoretical investigation into adsorption of ellipsoids 

was carried out by de Graaf et al.  using a triangular tessellation simulation technique.57 

The underpinning idea behind their method was to use the tessellation technique for an 

ellipsoid to generate a free energy landscape as a function of particle orientation and 

height with respect to the planar interface. They then used a simplified Langevin 

dynamics model to determine possible trajectories after the initial breach, leading to 

the final equilibrium orientation where the ellipsoids semi-major axis is parallel with the 

Figure 2-9 Reproduced from21, (a) Definition of particle hight (𝑧𝑧) relative to the undisturbed planar 

interface and particle tilt angle (𝜙𝜙) with respect to the interfacial normal. (b) An adsorption trajectory 

of a neutrally wetting ellipsoid with aspect ratio of 6. 𝜂𝜂(𝑡𝑡) Shows the trajectory starting from medium 2 

(M2) and terminating at 𝜙𝜙 𝜋𝜋⁄ = 0.5 and z*=0. Finally, the  𝑧𝑧𝑑𝑑𝑤𝑤𝑤𝑤∗ (𝜙𝜙) lines are the heights at which the 

particle just contacts the interface and are normalised such that 𝑧𝑧∗ = 𝑧𝑧
�𝑤𝑤2+2𝑏𝑏2

 where 𝑎𝑎 and 𝑏𝑏 are the 

semi-major and semi-minor axis of the ellipsoid respectively. (c) Snap shots of the evolution in time of 

the adsorbing ellipsoid from (b). 
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interfacial plane. This quasi-static model included the effects of line and surface tension 

but neglected electrostatic effects and interfacial deformation.21  

As illustrated by Figure 2-9, the authors reported that the adsorption dynamics 

was a two-step process.  Following the initial breach (Figure 2-9 (b) and (c) (t = 0.000)), 

the ellipsoid passes vertically through the interface to its peak height (points (1)-(9)), 

then rotates into its minimum energy configuration (points (10)-(15)), in summary a 

translational step followed by a rotational step.21 The adsorption process is represented 

by a phase plane diagram (Figure 2-9 (b)), the x coordinate representing the centre of 

the particles height above/below the flat interface (𝑧𝑧∗)  and the y coordinate 

representing the tilt angle (𝜙𝜙) of the ellipsoids semi-major axis relative to the normal of 

the flat interface, as defined in Figure 2-9 (a). The two light grey lines in Figure 2-9 (b) 

labelled 𝑧𝑧𝑑𝑑𝑤𝑤𝑤𝑤∗ (𝜙𝜙) in the legend are the configurations where the particle initially contacts 

the flat interface. This phase plane representation will be discussed in more detail in 

Chapter 4. Interestingly, most particle trajectories simulated by the group vary non-

monotonically, first reducing then increasing in tilt angle into their equilibrated 

configuration (as seen in Figure 2-9 (b)). The timescale of the adsorbing particle to 

equilibrate with the interface being predicted to be between 10-1 s and 1s  for typical 

micron sized particles.21 The method de Graaf et al. used was intended as a 

steppingstone to more elaborate models which would include electrostatic and 

interfacial deformation effects. 
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A more physically realistic theoretical study of adsorption dynamics was 

presented somewhat later by Günther et al. in 2014.22 The group combine 

multicomponent lattice Boltzmann (LB) simulations85 and molecular dynamics to study 

the adsorption trajectories and timescales of ellipsoidal particles. Using the LB extension 

introduced by Shan and Chen86 they produced a model incorporating inertia, an inter 

particle potential and hydrodynamic effects, implicitly permitting interfacial 

deformation. The results are qualitatively similar to those reported by de Graaf et al., in 

the sense that they also predict trajectories with non-monotonic variation of particle 

angle (Figure 2-10). For clarity we note that the authors use different symbols to 

represent tilt angle (ϑ in degrees in place of 𝜙𝜙 𝜋𝜋�  in radians) and particle height (𝜉𝜉 in 

place of 𝑧𝑧∗)  with respect to the phase plane diagrams presented by de Graaf but both 

are equivalent. Almost all trajectories (dashed lines) end in the equilibrium tilt angle of 

Figure 2-10 Adsorption trajectories (dashed lines) for a neutrally wetting  ellipsoid (𝜃𝜃𝑤𝑤 = 90° ) with an 

aspect ratio 𝑛𝑛 = 2 ,obtained from LB simulations (reproduced from22). The red lines are the heights at 

which the particle just contacts the interface and are normalised in the same manner as Figure 2-9 with 

the y axis being expressed in degrees as opposed to radians. The authors use different symbols to 

represent tilt angle (ϑ in degrees in place of 𝜙𝜙 𝜋𝜋�  in radians) and particle height (𝜉𝜉 in place of 𝑧𝑧∗)  with 

respect to the phase plane diagrams presented by de Graaf et al. but both are equivalent. The black 

squares correspond to the configuration illustrated in the inset and the red dots denote the stable (top) 

and meta-stable (bottom) points. 
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ϑ = 90° , with the particle tilt angle initially moving in the ‘wrong’ direction, in 

agreement with the findings of de Graaf et al.21 

The adsorption dynamics of ellipsoidal particles has more recently been studied 

experimentally by a number of groups. Using a digital holography technique87 Wang et 

al. studied micron-scale functionalized polystyrene (PS) ellipsoids as they were guided 

by an optical trap to the interface between a decane phase and a water phase containing 

glycerol and salt.23 It is reported that the force from the optical trap, less than 1𝑝𝑝𝑚𝑚, is 

too weak to bend the interface beyond several tenths of a nano-meter.88 The   advantage 

of using the digital holography technique (Figure 2-11 (a-b)) is that it enables one to 

simultaneous recover both the particle height (Figure 2-11 (c)) and tilt angle (Figure 2-

11 (e)) as it adsorbs over time. The experiments show that the timescales for the 

adsorption process were five orders of magnitude longer than predictions from 

simulations 21,22, consistent with the results for the spherical particles89 discussed in 

section 2.2.1. Furthermore, monotonic trajectories were reported in which the particles 

Figure 2-11 (a) Illustration of the experimentle set up in which a particle is guided to the interface by 

optical tweezers while the imaging beam illuminates the sample from above and generates the holograms 

required (b) (reproduced from23). (c) The evoloution the the particle center of mass height (𝑧𝑧𝑐𝑐𝑜𝑜𝑚𝑚) relative 

to the interface over time, the bold black line represents the average of the individual trajectories (grey 

lines) (d) Particle tilt angle 𝜃𝜃 (𝑟𝑟𝑎𝑎𝑑𝑑) vs the particle center of mass height, the red line is the prediction from 

a thermally activated  contact line hopping model. (e) The evolution of tilt angle over time. 
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‘rolled’ into position, i.e., the height and angle are coupled and the two-stage 

translation-rotation predicted by simulations were not observed (Figure 2-11 (c - e)). 

The authors concluded that the adsorption process is not dominated solely by viscous 

dissipation, but contact line pinning also plays a significant role.23 

The logarithmic relaxation times reported for PS spherical and ellipsoidal 

particles has also been reported for particles of different compositions and surface 

functionalities. For certain polymeric particles dispersed in water the energy barrier 

from pinning effects at surface heterogeneities has been reportedly measured as being 

an order of magnitude higher than for other particles, such as oil dispersed PMMA and 

small silica particles, which have resulted in even longer relaxation times.90 We note that 

the unexpectedly slow movement of the contact line has been reported in fields of 

similar study such as the physical aging of spreading droplets91 or the unexpectedly slow 

lateral diffusion of adsorbed particles.92 

The adsorption dynamics of anisotropic particles has also been studied 

experimentally by Coertjens et al.24 Using freeze-fracture shadow casting cryo-SEM93,94 

and measuring the evolution of the particle tilt angle via high speed confocal microscopy, 

the group studied model ellipsoidal particles as they breached the interface. Polystyrene 

ellipsoids with an aspect ratio of 𝑛𝑛 = 4 were fabricated using the stretching method10 

and allowed to migrate to a decane-glycerine/water interface via a buoyancy force from 

a slight density mismatch between the particles and sub-phase.24  Unfortunately the 

methodology employed by Coertjens et al. is only able to accurately capture the 

evolution of particle tilt angle, not the particle centre of mass height with respect to the 

interface. Consistent with the findings of Wang et al. these experiments reported 

significantly longer adsorption timescales than that predicted by simulation. However, 
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in contrast to Wang et al., they found an initial constant angle phase as the particle 

translates through the interface followed by a rotation phase, consistent with some of 

the features of simulations21,22 (Figure 2-12 (a-i)). Furthermore, while the timescales 

reported were longer compared to the afore mentioned simulations, it was much 

shorter compared to the experiments of Wang et al. 

Given the wide range of initial attack angles present in Figures 2-11 & 2-12 

alongside the effect of different initial attack angles predicted by simulations in Figures 

2-9 & 2-10, the question arises, is the initial attack angle truly random? Coertjens et al. 

Figure 2-12 (a-h) Image sequence of an adsorbing particle (lower right of frame) occurring over the course 

of approximately one second (Reproduced from24). (i) Tilt angle versus time measurements for adsorbing 

particles, divided into four distinguishable stages: (I) free diffusion, (II) vertical penetration, (III) rotation 

and (IV) fully adsorbed. Cryo-SEM images of particles in the process of adsorption (circled) for aspect 

ratios of four (j) and six (k). 
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24 undertook a three-dimensional tracking of the ellipsoidal particles on their migration 

to the interface in the same set of experiments discussed above. The group found that 

as the particle traverses the bulk it assumes a random walk with a preferred translation 

direction according to its long axis. Furthermore, when the initial attack angles are 

analysed as a function of the ellipsoid’s aspect ratio, in almost all cases the initial attack 

angle was found over the 35 − 60° range. This is consistent with the large spread of 

initial attack angles observed in Figure 2-11 (e) and Figure 2-12 (i). To our knowledge 

this is the only such study for such experimental systems. 

  In summation, recent experimental studies of ellipsoidal adsorption trajectories 

are at odds with those predicted by simulations in both timescale and spatial evolution.  

Furthermore, there are also discrepancies between experiments, one set suggesting 

that contact line pinning effects dominate the adsorption process, another suggesting 

capillarity plays a large role and mirroring the two-step process predicted by simulation.  

This subject is the focus of Chapter 4 in which we present a model which attempts to 

unify some of the discrepancies between experiments and theory. 

2.3 Capillary Interaction and Self-Assembly of Particles at Liquid Interfaces 
2.3.1 Spheres 

Having discussed the adsorption process itself we now discuss what happens 

after particles have completed the adsorption process and equilibrated at the interface. 

Specifically, we discuss the capillary forces between particles arising from interfacial 

deformation and the role that particle morphology plays. 
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 We start by considering the lateral capillary force between two perfectly smooth 

spherical particles with a high bond number such that a monopolar interfacial 

deformation is present due to gravity. Referred to as floatation forces, these lateral 

capillary forces arise between adsorbed particles when their interfacial deformations 

overlap.31,56,95 The floatation forces can be attractive (Figure 2-13 (a)) or repulsive 

(Figure 2-13 (b)) and this is determined by the sign of the meniscus slope angles 𝜓𝜓1and 

𝜓𝜓2.  The capillary force is attractive if sin𝜓𝜓1 sin𝜓𝜓2 > 0 and repulsive if sin𝜓𝜓1 sin𝜓𝜓2 <

0 . The Cheerio’s effect, discussed in section 2.1.1, is good example of this phenomena 

and perhaps unsurprisingly, as the size of the interfacial deformation grows so too does 

the strength and range of the capillary forces.31 Conversely, as the scale and weight of 

the colloidal particles decreases so too does the monopolar deformation and therefore 

the floatation force. Once these forces become negligible, the interfacial deformations 

and the interactions between them are dependent higher order multipoles which we 

discuss in the following section.  

Figure 2-13 An illustration of floatation forces for two spherical particles adsorbed at an oil-water interface 

(reproduced from31). Each particle has meniscus slope angles denoted by  𝜓𝜓1and 𝜓𝜓2  and interaction is 

attractive (a) when the sign of the slope angles is the same, repulsive (b) when the signs are opposite. 
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2.3.2 Ellipsoids and Cylinders 

As discussed in section 2.1.2 the leading order deformation for ellipsoids and 

cylindrical particles is the quadrupole.  We define the rotational orientation of the two 

quadrupoles as illustrated in Figure 2-1432 viewed from the top down. The positive and 

negative signs represent interfacial rises and depressions with respect to planarity and 

the particle centre to centre separation is denoted by 𝐿𝐿. The interaction energy between 

the two quadrupoles in the far field was derived by Stamou et al.64 as 

∆𝑊𝑊(𝐿𝐿) ≈ −12𝜋𝜋𝜎𝜎𝐻𝐻2 cos(2𝜑𝜑𝑃𝑃 − 2𝜑𝜑𝐵𝐵) 𝑤𝑤𝑐𝑐
4

𝐿𝐿4
                                                                          ( 2-14 ) 

where the coefficients 𝐻𝐻 and 𝜎𝜎 denote the height of the meniscus at the contact line 

and surface tension respectively with 𝑟𝑟𝑐𝑐 the contact radius. We focus on the cosine term 

of Equation 2-14 as it controls the magnitude and sign of the interaction energy given 

that −1 ≤  cos(2𝜑𝜑𝑃𝑃 − 2𝜑𝜑𝐵𝐵)  ≤ 1 as will be discussed in the following.  

To visually illustrate two interacting quadrupoles, Figure 2-1533 is a contour plot 

of the meniscus height for two generic quadrupolar deformations. All units are 

normalised with respect to the generic particle’s radius 𝑟𝑟 and we define their phase 

angle as in Figure 2-14. It costs energy to deform an interface, however this energy cost 

Figure 2-14 Top-down sketch of rotational orientations of generic quadrupoles A and B with centre to 

centre separation L (reproduced from32). Positive and negative signs represent a meniscus rise or 

depression with respect to planarity respectively. 
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can be minimised by overlapping deformations of the same signed curvature which 

manifests as attractive, repulsive and rotational forces on the particles. Figure 2-15 (a) 

Illustrates the overlapping interfacial rises in red for 𝜑𝜑𝑃𝑃 = 𝜑𝜑𝐵𝐵 = 0, equivalent to 𝜑𝜑𝑃𝑃 =

𝜑𝜑𝐵𝐵 = 𝜋𝜋 and also occurs for overlapping depression 𝜑𝜑𝑃𝑃 = 𝜋𝜋
2�  ,𝜑𝜑𝐵𝐵 = −𝜋𝜋 2�  alongside 

all symmetric variations. This snapshot in time of the interface shape results in an 

attraction between the two quadrupoles which pulls the two into contact, as shown 

experimentally in Figure 2-16 (a). Conversely two particles with opposite signs of 

interfacial curvature, as in 2-15 (b), is the least energetically favourable and yields a 

repulsion/rotation.20 

Figure 2-15 Contour plot of two similar interacting quadrupoles in an (a) attractive configuration with a 

respective phase shift of zero or equivalently 𝜋𝜋, and (b) repulsive configuration with a respect phase shift 

of 𝜋𝜋 2�  or equivalently 3𝜋𝜋 2�  (reproduced from33). All units are normalised and expressed in terms of 

particle radius 𝑟𝑟  with red indicating an interfacial rise, green a flat interface and blue an interfacial 

depression. 
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 The far field behaviour of both cylinders and ellipsoids is very similar due to both 

particles having a quadrupolar leading order mode.36 We note here that we refer to the 

far field as the particle separation where only the leading order multipole capillary 

interaction is relevant whereas the near field is the particle separation where higher 

order multipoles become relevant to the capillary interactions. A separation on the 

order of a single particle radii is generally speaking sufficient for nearfield effects to start 

to play a larger role in the interaction. In the nearfield regime the specific details of 

particle geometry start to become important and play a leading role in determining how 

the different particles self-assemble. Figure 2-1620,36,96 illustrates experimentally the 

difference in behaviour between ellipsoids and cylinders and the microstructures they 

self-assemble too when adsorbed at the interface. For sparsely covered interfaces, 

cylindrical colloids assemble tip to tip in linear chains, Figure- 2-16 (a). The chains of 

Figure 2-16 (a) Linear chain of cylindrical particles self-assembled tip to tip at an air-water interface and 

(b) the resulting monolayer that forms after interface compression. (c) Chains of ellipsoidal particle 

assembled side to side at an oil-water interface and (d) monolayers of the same (composite from 20,36,96). 
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cylinders remain relatively straight in denser systems which can arise as a result of 

interface compression as in Figure 2-16 (b). In contrast the ellipsoidal particles in at an 

oil-air or oil-water interface  (Figures 2-16 (c) and (d) respectively) rotate about each 

other assembling in a side to side configuration forming highly curved, sprawling chains.  

Figure 2-17  Normalised capillary energy as a function of centre to centre separation 𝑑𝑑 for ellipsoids (a) 

and cylinders (d), the reference energy is for 𝑑𝑑 = 10𝑟𝑟 (reproduced from36). Normalised capillary energy 

as a function of bond angle 𝜙𝜙, for two ellipsoids (b) and two cylinders (e) in contact. The final row is the 

capillary torque as a function of angular deviation away from the global energy minimum, the side-to-side 

case for ellipsoids (c) and end to end case for cylinders (f). Both ellipsoids and cylinders have an aspect 

ratio of three and contact angle of eighty. 



- 33 - 

To explain the above difference, Botto et al. studied the interactions between 

rod-like particles theoretically and found the presence of edges on the cylinder alters 

the way in which the particles can rotate about each other at contact.36 Figure 2-17 is 

the result of modelling the normalised free energy landscape of two approaching 

ellipsoids (left column) and two approaching cylinders (right column). For a given centre 

to centre separation the tip-to-tip interaction is more energetically favourable for both 

systems up to contact as can be seen from Figure 2-17 (a) for ellipsoidal particles and (d) 

cylindrical particles both having an aspect ratio of six. At contact, the capillary force is 

almost two orders of magnitude larger for the cylinders than the maximum for the 

ellipsoids. For two particles at contact in the tip-to-tip configuration, tiles (c) and (e) 

show the normalised free energy as a function of bond angle. As can be seen there is a 

weak local minimum for cylinders in the side to side configuration, 𝜙𝜙 = 180° , but there 

is a significant energy barrier between them (∆𝐸𝐸𝑏𝑏) as illustrated in tile (e). The same is 

not true for the ellipsoidal particles (c), which monotonically decrease with bond angle  

as the particles can simply ‘roll’ around each other due to the lack of sharp corners 

imposing an energy barrier.36,67,97 A consequence of this property is that chains of 

ellipsoids behave as elastic elements in response to bond bending whereas chains of 

cylinders behave as ‘brittle’ elements remaining ridged for sufficiently small torques36, 

allowing them to be laterally compressed into the close packed structures seen in Figure 

2-16 (b). 

The existence of multiple stable states for cylindrical particles offers an even 

richer landscape for the formation of microstructures. The global equilibrium state is the 

cylinder lying flat with the interface20 and a meta-stable upright state21, but it has also 

been reported that for aspect ratios between 2 and 0.5 the global equilibrium state is a 
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tilted orientation.25 The leading order deformation for these tilted states is no longer 

quadrupolar but hexapolar which we discuss in the next section. Below aspect ratios of 

𝑛𝑛 = 0.5 the cylinders start to resemble discs and stand upright at equilibrium. The 

different leading order modes can lead to different microstructure such as orthorhombic, 

hexagonal closed packed, honeycomb and even more exotic crystal structure like the 

kagome lattice. In the next section we discuss some more exotic anisotropic particles 

and their self-assembly characteristics. 
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2.3.3 Cubes and Other Anisotropic Shapes 

We now consider an isolated cubic particle adsorbed at an immiscible interface. 

Compared to the cylinders and ellipsoids, a cubic particle has an extra degree of freedom 

because the height, tilt and rotation angles, as defined in Figure 2-18 (a), can all vary to 

minimise the surface free energy. Simulations of isolated cubic particles63 reveal three 

stable configurations as illustrated in Figure 2-18 (c), in which the cube can equilibrate 

face up in the {100} orientation (left),  edge up in the {110} orientation (centre) or vertex 

up in the {111} orientation (right).63 Interestingly, including the effects of interfacial 

Figure 2-18 (a) Soligno et al. definition of tilt (𝜑𝜑)  and rotation angles (𝜓𝜓)  for a cubic particle.  (b) 

Adsorption energy of an isolated cube at a fluid-fluid interface, minimised over the particles centre of 

mass and rotation angle for a deformable (blue) and flat interface (red line) for a neutrally wetting system 

(upper) and hydrophobic system (lower) (reproduced from63). (c) illustrations of the three stable 

configurations. (d) contour plots of the two global equilibrium states in (b).  
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deformation significantly changes the free energy landscape by shifting the global free 

energy minima from the {110} to the {111} configuration for neutrally wetting cubes 

(Figure 2-18 (b) top). In the case of hydrophobic cubes (Figure 2-18 (b) bottom) the 

inclusion of interfacial deformation simultaneously reduces the free energy of the 

adsorbed cube in the {111} configuration and also increases the energy barriers to the 

other two stable states. The leading order mode for neutrally wetting cubic particles in 

the {111} orientation is hexapolar as illustrated in the contour plot of Figure 2-18 (d) 

(top). 

Experiments by Song et al. using polystyrene microcubes at an air-water 

interface were shown to self-assemble to linear chains and close-packed hexagonal 

aggregates98,99 as illustrated in Figure 2-19.99 More intriguingly, experiments have also 

revealed that cubic particles can self-assemble into graphene like honeycomb and 

hexagonal crystal structures.37,38,100 Anzivino et al.  and others have explained these 

results from a theoretical perspective by showing that the equilibrium orientation of 

cubic particles varies with contact angle which changes the  interfacial 

deformation.39,63,68 In turn, this effect also changes the capillary interactions leading to 

the different types of self-assembly observed by Song et al. Furthermore, simulations of 

Figure 2-19 Top-down microscopy images of microcubes self assembled at an air-water interface 

(reproduced from99). (a) Linear chains self assembled from hydrophilic cubes and (b) hexagonal closed 

packed structures self-assembled from hydrophobic cubes. We note that the authors use 𝜃𝜃 to denote the 

contact angle of the cubes. 
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cubic particles have shown that more exotic honeycomb structures can self-assemble as 

a result of the interaction of the hexapolar deformations. As a result, the hexagonal 

closed lattice becomes the global free energy state, alongside meta-stable open 

structures.39,63,68 This opens up the exciting possibility of engineering two dimensional 

materials by selection of particle shape coupled with immobilisation techniques.78,101 

2.3.4 Capillarity and Bio Locomotion 

To conclude this section, we briefly discuss insects using capillarity for bio 

locomotion. Water walking insects exploit surface tension through a variety of means 

allowing them to remain suspended on the interface. However, to pass from water to 

land they must climb the meniscus. For a millimeter scaled insect this has been referred 

Figure 2-20 Time lapse of a waterlily leaf beetle climbing a meniscus (reproduced from 102). (Top left) The 

insect is partially wetting and is therefore circumscribed by a contact line. (Top right) The beetle deforms 

the interface by arching it’s back to create a quadrupolar deformation. (Bottom) The attractive force 

between the meniscus deformations pulls the beetle up to the intersection at speeds of up to 

10 𝑛𝑛𝑠𝑠−1  .The scale bar is 3𝑛𝑛𝑛𝑛. 
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to as “climbing frictionless mountains”.102 In an ingenious response, evolution has 

allowed such insects to utilise capillary interactions to propel themselves up the 

meniscus using the exact same physics that is responsible for the colloidal attractions 

discussed so far. As illustrated in Figure 2-20, the beetle larva (top left) arches its back 

to create a quadrupole (top right) which in turn generates a lateral force and drives it to 

the top of the meniscus.102 For a random orientation the beetle larva experiences a 

torque which serves to align it perpendicular to the meniscus, very similar to the torque 

and attraction between cylindrical colloids.20 By deforming the interface, the insect 

converts its muscular strain to surface energy which powers its accent. 

2.3.5 Plates 

In an early series of experiments, Bowden et al.35,65,103 demonstrated the 

potential for precision self-assembly by showing that it was possible to engineer specific 

capillary bonds, achieved by controlling the shape of the menisci of adsorbed particles. 

The purpose of this self-titled mesoscale self-assembly (MESA) was to borrow ideas from 

molecular self-assembly. Specifically, shape-selective interactions between hydrophobic 

surfaces, and use such ideas to self-assemble larger structures to gain insight into 

molecular self-assembly. In previous work in MESA, spherical colloids were shown to 

self-assemble into close packed arrays due to interactions involving capillary104–108 

chemical109,110, electrodynamic111 or even entropic112 forces. While interesting, progress 

in this field requires the development of flexible strategies which can lead to a greater 

range of structures. Bowden et al. presented a simple set of design rules which they then 

demonstrated could led to a rich array of both 2D and 3D structures which we discuss 

below. 
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 The experiments involved dispersing millimetre scale hexagonal platelets with 

functionalised edges at an oil/water or water/air interface and agitating the system with 

an orbital shaker.35 The way in which the undulations are introduced to the menisci is 

by making selected surfaces hydrophilic. The particles were fabricated from PDMS which 

is naturally hydrophobic, coating select surfaces with tip-ex and exposing the particle to 

oxygen plasma made the exposed surfaces hydrophilic. In a final step the tip-ex is 

removed to reveal the original hydrophobic surfaces. 

Figure 2-21 illustrates some of the configurations studied, with black edges 

indicating the hydrophobic faces. Figure 2-21 (a) is a top-down view of the attraction 

between two aligned plates having a single hydrophobic face resulting in a positive 

meniscus (rise), (b) a side view of two positively curved menisci attracting (left), two 

negatively curved attracting (center) and the repulsion between a negatively and a 

positively curved meniscus. (c) Shows some of the specific patterning motifs studied 

Figure 2-21 Illustration of hexagonal platelets from the experiments of Bowden et al. (Reproduced from 
35) showing (a) the attraction between two particles with a meniscus rise (indicated by the dashed lines). 

(b) Side views of two positive menisci (left), two negative menisci (centre) and a negative repelling a 

positive (right). Viewpoints of different patterning motifs, the top row are birds eye view, middle row are 

the side viewpoints and bottom row the profile of the menisci. 
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from a top-down perspective (top row), a side view (row 2) and finally the profile of the 

meniscus these motifs result in. 

In total, 14 motifs where investigated and it was determined that not only the 

shape of the menisci but both the strength and the directionality of the capillary 

interactions could be controlled by the choice of surface patterning.35 The nomenclature 

to discuss the different surface patterning is as follows. The hydrophobic faces are 

numbered by placing them in square brackets such that [1,2] is a plate with 2 adjacent 

sides (Figure 2-21 (c, top row, far left)) and [1,3,5] indicates every other face is 

hydrophobic. Figure 2-22 shows images of some of the self-assembled structures after 

the systems are left for 24 hours, the insets are sketches of the particle patterning. As 

can be seen this technique yields a wide array of lattice structures ranging from simple 

rectangular arrays in (a) and (d) from the [1] and [1,5] patterning, to honeycomb 

Figure 2-22 (a) Hexagons self-assembled into dimmers based on the attraction from the [1] hydrophobic 

faces. (b & c) Hexagons self-assemble to open hexagonal arrays based on the [1,3,5] and [1,2,3,4] motifs.  

(d) Square and extended chains (f) arrays from [1,5] and a combination of [1,5] and [1,2] motifs. (e) Close 

packed arrays arising from chiral surface patterning. The left side of each image is an optical micrograph 

and the right a schematic representation (reproduced from35).  
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structures resulting from the [1,2,3] and [1,2,4,5] patterning and even the chain like 

structures in (e) and (f). 

 The particles remained at the interface in the Bowden et al. experiments despite 

their large size because of the change in surface chemistry. A significant roadblock to 

utilizing self-assembly in practical systems or device fabrication is in miniaturizing such 

assemblies. Colloidal synthesis has developed to permit specific shapes to be fabricated 

such as spheres, ellipsoids, cylinders, cubes and even more esoteric shapes10,12–14,16,113 

out of a variety of materials. However, combining shape control with functionalization 

or patterning specific facets becomes difficult to scale down to the colloidal regime. To 

overcome this obstacle, we present a theoretical solution in Chapter 6 which bypasses 

the need to pattern specific facets in order to control the meniscus shape and achieves 

it through shape alone. In the next chapter we introduce the primary research tool we 

use to study these phenomena, Surface Evolver. 
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 Surface Evolver Method 

In this chapter we discuss our simulation method, the finite element package 

Surface Evolver (SE)114,115  which we use to model particles at interfaces. In its simplest 

form the Surface Evolver program minimises the energy of a surface, subject to user 

defined constraints. A surface is represented as a simplicial complex and the energies 

can include surface tension, gravity, or other forms. The user defined constraints can be 

geometric, such as shape or vertex location, body volumes and pressures or even shapes 

and areas. Finally, the surface energy is minimised through an iterative process which 

guides the specified surface down to its minimum energy configuration, the details of 

which we will discuss in this chapter. 

3.1 Sphere at a Liquid Interface 

We start with a simple case of a hydrophobic, spherical particle at an oil-water 

interface to explain the stages required in creating a Surface Evolver simulation. We 

arbitrarily chose the hydrophobic contact angle to be 𝜃𝜃𝑤𝑤 = 120°. The user specifies an 

initial surface in terms of a finite number of geometric elements and Surface Evolver 

then represents this surface as a union of simplices. The initial surface specifies 

numbered vertices with their associated Cartesian co-ordinates, a numbered edge 

which joins a head and a tail vertex and a facet which is defined as a chain of three or 

more oriented edges. We illustrate this in Figure 3-1 showing the vertices as numbered 

circles which are joined by numbered, colored and directional edges. The magenta edges 

represent the oil-water interface, the cyan edges the particle-oil interface and the black 

edges an initial tessellation which SE does automatically. We omit the facet numbers in 

the figure for visual clarity and we omit the particle-water interface for computational 

efficiency without loss of generality. 
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We impose a variety of constraints on this surface to model the equilibrium 

height of the center of a spherical, hydrophobic colloid with respect to the planar 

interface. Firstly, we impose the sphere equation 𝑒𝑒2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑟𝑟2 on all the facets, 

edges and vertices on the particle (cyan) as a constraint forcing all simplices on the 

surface to obey this equation. Next, we impose a surface tension on these facets via 

Young’s equation  as follows. The total free energy of the system is given by 

𝐹𝐹𝑚𝑚𝑚𝑚𝑤𝑤 =  𝛾𝛾𝑜𝑜𝑤𝑤𝐴𝐴𝑜𝑜𝑤𝑤 + 𝛾𝛾𝑜𝑜𝑜𝑜𝐴𝐴𝑜𝑜𝑜𝑜 + 𝛾𝛾𝑜𝑜𝑤𝑤𝐴𝐴𝑜𝑜𝑤𝑤                                                                                    ( 3-1 ) 

In which the subscripts refer to oil-water (𝑜𝑜𝑜𝑜), particle-oil (𝑝𝑝𝑜𝑜), particle-water (𝑝𝑝𝑜𝑜) and 

area 𝐴𝐴. Using Young’s equation   𝛾𝛾𝑜𝑜𝑤𝑤 cos 𝜃𝜃𝑤𝑤 = 𝛾𝛾𝑜𝑜𝑜𝑜 − 𝛾𝛾𝑤𝑤𝑜𝑜 where 𝜃𝜃𝑤𝑤 is the contact angle 

and noting that 𝐴𝐴𝑜𝑜𝑜𝑜 = 𝐴𝐴𝑃𝑃 − 𝐴𝐴𝑤𝑤𝑜𝑜 (where 𝐴𝐴𝑃𝑃 denotes the total area of the particle) we 

can rearrange Equation 3-1 and drop irrelevant terms to 

𝐹𝐹𝑚𝑚𝑚𝑚𝑤𝑤 =  𝛾𝛾𝑜𝑜𝑤𝑤𝐴𝐴𝑜𝑜𝑤𝑤 + 𝛾𝛾𝑜𝑜𝑜𝑜 cos 𝜃𝜃𝑤𝑤 𝐴𝐴𝑜𝑜𝑜𝑜.                                                                                          ( 3-2 ) 

In order to implement the contact angle within the simulations we typically set 𝛾𝛾𝑜𝑜𝑤𝑤 = 1,  

and rearrange such that 𝛾𝛾𝑜𝑜𝑜𝑜 = cos 𝜃𝜃𝑤𝑤 . We apply this surface tension to the relevant 

Figure 3-1 Example of the initial geometry of a spherical particle at a liquid interface. Vertices are 

illustrated as numbered circles, edges as underlined numbered lines with their directions indicated by 

arrows. As explained in the text, the cyan edges indicate the faces of the particle having a surface 

tension and shape constraints placed upon them and the magenta lines form the facets of the 

interface. The black lines are an initial tessellation SE performs. automatically. 
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facets (cyan structures in Figure 3-1) enabling us to model neutrally wetting, 

hydrophobic or hydrophilic particles by simply changing a single parameter, 𝜃𝜃𝑤𝑤.  

For computational convenience and without loss of generality we center the 

particle at the origin and allow the interface to move freely in the 𝑧𝑧 direction to fully 

equilibrate. This no different to allowing the particles center of mass to vary freely and 

if the simulation cell is large enough, enforces a planar interface far from the particle. 

The boundary is effectively a Neumann  boundary condition because we assume the 

simulation walls are neutrally wetting, having a contact angle of 𝜃𝜃𝑤𝑤 = 90° at the outer 

boundary.20 Once a geometry has been specified, we need to create a suitable 

tessellation and minimization protocol and it is worth making some remarks about how 

SE calculates the free energy minima to justify our choices. 

The iteration step is the fundamental operation of the Evolver, it reduces energy 

where possible while obeying any constraints by employing a gradient decent method. 

For a given surface the total energy is treated as a function of the co-ordinates of the 

vertices. The negative gradient of the energy of a given vertex gives the force and 

therefore the summation of all these forces is the negative energy gradient. After this is 

calculated each vertex is simultaneously moved by a global multiple, called the scale 

factor, of its calculated force.  For completeness, fixed vertices forces are set to zero, 

vertices on boundaries are mapped back to the forces on the boundary parameters and 

vertices on constraints have their forces projected to their tangent spaces.114 

Given that the forces acting on the vertices will result in a velocity, the scale 

factor can be physically interpreted as the time step over which the velocity acts. In the 

default mode the Evolver will successively half or double this factor until a minimum 

energy has an upper and lower bound within the predefined target tolerance. At this 
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point a quadratic interpolation between the two is used to estimate the optimal value 

and this is used on the final iteration.114 We now briefly discuss the options for 

tessellating the surface. 

The main surface operations and when to use them vary for specific systems, 

ultimately relying on trial and error for a known result for comparison (shown later), but 

here we discuss the three most important options, refining, vertex averaging and equi-

angulation. To refine a facet SE creates a new vertex at the midpoint of each of the edges 

and uses these to subdivide the original into four new facets. We can think of this 

physically as increasing the resolution. Equi-angulation uses the Delaunay triangulation 

method in order to make the facets as close as possible to equilateral, a beneficial tool 

to smooth out large effects/forces/outliers. Lastly, vertex averaging computes a new co-

ordinate as the area-weighted average of the centroids of the facets adjoining the vertex. 

Given the outline discussion of the internal workings of SE we can now settle on 

a minimization and tessellation protocol and show an example evolution of a 

hydrophobic, spherical colloid at a water-oil interface as illustrated in Figure 3-2. As can 

be can be seen from the snapshots, we switch between tessellation and minimization 

frequently in order to guide the system to its minimum energy configuration. We can be 

confident the surface is fully minimized when the scale factor stops changing (or does 

so minutely) and also from a visual inspection of the surface. 

Figure 3-2 Snap shots of the evolution of a hydrophobic spherical particle at an oil water interface from 

an axonometric view (top row) and an in-plane view (bottom row). As discussed in the text the interface 

moves down the particle to satisfy Young’s constant contact angle constraint. 
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3.2 Anisotropic Particles at the Interface 

Spherical particles have been well studied from theoretical and experimental points 

of view.1 Advances in particle synthesis techniques over the past decade have open up 

a rich variety of shapes such as ellipsoidal10, cylindrical113, cubic13, tetrahedral16  and 

even exotic Janus dumbbell particles.69 To study these systems in detail from a 

theoretical point of view we require a mathematical definition of their geometry in order 

to simulate them. Unfortunately, this problem is not as clear cut as it may seem within 

finite element analysis software due to the presence of sharp edges in the tessellation. 

When the contact line attempts to pass over a sharp edge, for example on a cubic 

particle, it’s contact angle can no longer be defined. In reality the contact angle is still 

constant but appears trapped at the edge with its value seemingly changing.116 

To overcome this problem, we employ a superquadratic representation, Equation 3-

3, which allows us to model the particle as a continuous surface.117 
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In equation 3-3,  𝑟𝑟𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤 defines the particle size in dimensionless units, 𝑠𝑠𝑚𝑚 controls 

the ratios of the length, width and height of the particle and 𝜀𝜀𝑚𝑚 , the squareness 

parameter controls the specific shape of the particle. Figure 3-3 illustrates the power of 

this parameterization for different settings, demonstrating some of the morphologies 

available. Using the superquadratic representation overcomes the issue of the contact 

line ‘pinning’ at sharp edges because edges and corners are a continuous surface with 

definite curvature, allowing the contact line to smoothly pass them. We can even 

simulate highly sharp edges by shrinking the radii of curvature and setting 𝜀𝜀𝑚𝑚 > 200 

which we have done for cylindrical particles with no problematic effect. Finally, we 

remark that modifications can be made to Equation 3-3 which, when combined with 

piecewise functions within Surface Evolver unlock the possibility to model essentially 

Figure 3-3 Examples of particle morphologies available from Equation 3-3 by varying 𝜖𝜖𝑚𝑚  and  𝑠𝑠𝑚𝑚. For all 

tiles 𝑟𝑟𝑜𝑜𝑤𝑤𝑤𝑤𝑤𝑤 = 1 and the inclusion of the mesh is solely for visual effect. (a) 𝑠𝑠1,2,3 = 1, 𝜖𝜖1,2,3 = 4 (b) 𝑠𝑠1,2,3 =

1, 𝜖𝜖1,2,3 = 20 (c) 𝑠𝑠1,2 = 1, 𝑠𝑠3 = 0.1, 𝜖𝜖1,2 = 2, 𝜀𝜀3 = 20 (d) 𝑠𝑠1,2,3 = 1, 𝜖𝜖1,2,3 = 2 (e) 𝑠𝑠1 = 2, 𝑠𝑠2,3 = 1, 

𝜖𝜖1,2,3 = 2 (f) ) 𝑠𝑠1 = 2.5, 𝑠𝑠2,3 = 1, 𝜖𝜖1 = 20, 𝜀𝜀2,3 = 2.  
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any polyhedral with arbitrary surface modifications we please, as will be demonstrated 

in Chapter 6. 

3.3  Coordinate Transformations 

An isolated and homogenous spherical particle has a single degree of freedom to 

equilibrate with its surroundings, only its height perpendicular to the planar interface 

can vary. However anisotropic particles have more degrees of freedom. In the simplest 

case of an ellipsoid, the particle can change its height and its tilt angle, the angle the 

semi-major axis makes with the planar interface (as shown in Figure 2-9 (a)). A more 

complex example is that of a cuboid which can change its tilt angle, rotation angle and 

height (Figure 3-4). The simplest way to accommodate this in our simulation is using 

coordinate transforms relating the local co-ordinate system aligned along the principal 

axis of the particle to the lab frame aligned to the undisturbed, planar liquid interface.  

Figure 3-4 An example of how coordinate transforms are used to orientate a cubic particle at the 

interface, the solid arrows represent the unit vectors post transform and the dashed arrows are the unit 

vectors from the previous transform for reference (omitted for clarity in some instances). (a) The initial 

unit vectors. (b) the first transform about the unit vector z. (c) the second transform about the y prime 

axis. (d) The final transform about the x prime axis. We note that in the images the interface equilibrates 

with the hydrophobic particle and as such is free to move up and down and deform. 
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Combining Equation 3-3 with the rotational matrices shown in Equations 3-4 through 

Equation 3-7117 we can describe a system which simulates many different particle 

morphology’s at any orientational configuration we desire. The particle reference frame 

is arrived at by rotations 𝛼𝛼,𝛽𝛽 and 𝛾𝛾 about the axis 𝑧𝑧, 𝑦𝑦′ and  𝑒𝑒′′ respectively. 
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Resulting in 

𝒙𝒙 = 𝑒𝑒 cos𝛽𝛽 sin 𝛾𝛾 + 𝑦𝑦 sin𝛼𝛼 sin𝛽𝛽 cos 𝛾𝛾 + 𝑧𝑧 cos𝛼𝛼 sin𝛽𝛽 cos 𝛾𝛾 − 𝑦𝑦 cos𝛼𝛼 sin 𝛾𝛾 +
𝑧𝑧 sin𝛼𝛼 sin 𝛾𝛾                                                                                                                                 ( 3-5 ) 

𝒚𝒚 = 𝑒𝑒 cos𝛽𝛽 sin 𝛾𝛾 + 𝑦𝑦 sin𝛼𝛼 sin𝛽𝛽 sin 𝛾𝛾 + 𝑧𝑧 cos𝛼𝛼 sin𝛽𝛽 sin 𝛾𝛾 + 𝑦𝑦 cos𝛼𝛼 cos 𝛾𝛾 −
𝑧𝑧 sin𝛼𝛼 cos 𝛾𝛾                                                                                                                                 ( 3-6 ) 

𝒛𝒛 = −𝑒𝑒 sin𝛽𝛽 + 𝑦𝑦 sin𝛼𝛼 cos𝛽𝛽 + 𝑧𝑧 cos𝛼𝛼 cos𝛽𝛽                                                                     ( 3-7 ) 

All references to particle orientation are made with respect to the interface who’s 

normal is perpendicular to the planar, undisturbed interface. In this thesis we investigate 

a variety of systems and make definite references of 𝛼𝛼,𝛽𝛽, 𝛾𝛾 in each chapter with respect 

to a specific system. All results presented are based on these simulation methods 

modified in degrees of complexity, for example when considering two particle 

interaction we add in an extra translational transform in the x-y plane.  
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3.4 Simulations with Periodic Boundary Conditions 

The default domain of a surface is Euclidean space 𝑅𝑅3 . In order to implement 

periodic surfaces in the Evolver one can define the domain of a flat torus having an 

arbitrary parallelepiped as its unit cell (i.e., periodic boundary conditions).115 The initial 

geometry we define for these simulations is not the familiar unit cell from 

crystallography but requires the specification of non-degenerate vertices and edges only 

and are given as Euclidean coordinates, not linear combinations of the basis vectors. The 

way in which the unit cell wraps around the torus is specified by how the degenerate 

edges and faces cross the unit cell. We illustrate this in Figure 3-5 which is an example 

of a cubic particle in a HCP unit cell in the {111} orientation. We show the initial 

Figure 3-5 Illustration of the implementation of periodic boundary conditions in Surface Evolver for a cubic 

particle in the {111} orientation in a hexagonal closed packed (HCP) lattice. (a) The ‘unit cell’ as specified 

to the software, yellow facets model the particle and grey the interface. The blue lines are the only 

uniquely specified lines within the script because the red lines are degenerate. (b) The unit cell after 

minimisation procedure.  We note the odd tessellation is simply the visual representation from SE and 

the unit cell is indeed part of a HCP lattice for which we show nine particles pre and post minimisation in 

(c) and (d) respectively. 
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geometry (left column) and the fully minimized outcome (right column) with the 

individual cell on the top row and a collection of nine cells (bottom row). The unit cell in 

(a) specified to the software consists of the yellow & grey facets representing the 

particle and interface respectively, with the blue lines being the only ones specified 

explicitly as the red are all degenerate. 

3.5 Computational Practicalities 

In this final subsection we provide some details of computational practicalities and 

parallelization necessary to facilitate the study. The systems we study in this thesis are 

generally defined as some function of center-to-center separation of two or more 

particles. These particles are sited in a simulation cell and we define the rest of the 

geometry as a function of particle separations in order that we may easily scale it by 

changing a single parameter at runtime.  This procedure can lead to a computational 

difficulty because if we iterate the minimum energy calculations within the Evolver, 

decreasing the inter-particle separation with each iteration, every aspect of the 

simulation cell gets redefined simultaneously and the simulation can become unstable. 

This means we need to manually write and run one simulation for each distance. This 

behavior is not only tiresome but unfeasible for high resolution studies with thousands 

of individual simulations. In fact, during this research we have written and run well over 

a million simulations, and we detail the practicalities of this process in the following, 

providing examples in the appendices. 

Given that the force calculation is in theory done simultaneously on each vertex 

one would immediately expect a significant benefit in computational time and resources 

by running SE on a graphics processing unit (GPU). Simple, parallel and repetitive 

calculations performed at speed is exactly the problem GPUs were designed to solve. 
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Unfortunately, Surface Evolver was conceived and written in 1992, a little over decade 

before the paradigm of parallel computing started to take-over from frequency scaling 

as a way to improved computational efficiency.118 The software is written to run on 

serial architectures, in fact the engineering and technology company Bosch 

commissioned a study to investigate optimizing Surface Evolver via parallelization in 

2012 in order to study thermal fatigue of PCB welds.119 The researchers concluded that 

the software needed such significant reworking to make use of parallel hardware that it 

may as well be written from scratch. We have however found a work around to this 

problem which enables us orders of magnitudes decrease in computational time which 

we outline now for a model simulation of two approaching cylinders at the oil-water 

interface. 

The most obvious way to simulate a pair of approaching cylinders is to run the 

simulation within a loop and decrease the center-to-center separation between them 

on each iteration, minimizing the free energy, outputting calculated values for the 

parameters to file and repeating. Indeed, the Evolver permits this approach with much 

the same syntax as for the C language. The length of time for the set of results being 

dependent on the total simulation box size, the scale of the tessellation and the 

increment size of the separation. Such an approach is absolutely feasible on a personal 

computer for low resolution, computationally simple and small systems. For clarity we 

borrow from the field of computer science and refer to the definition of computational 

complexity as the amount of resources to run an algorithm, which generally varies with 

the size of the input.120 We further note that for geometrically complex simulations (for 

example some of the periodic systems we study in Chapter 6) we frequently require a 
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variety of initialization process to set the system up correctly and remain stable, these 

processes  can take up to 24 hours. 

An alternative way of to simulate a pair of approaching cylinders is to write a 

unique SE script for each center-to-center separation and call them sequentially from a 

batch script. The operating systems task manager allocates this process to one of the 

cores on the motherboard with its designated cache and the entire process stays on this 

local environment. However, with the omnipresence of multi cored machines we can 

simply divide the number of separations we wish to calculate across the number of cores 

we have access to and run them simultaneously because the operating systems task 

manager will allocate each batch script to each core. We initially discovered this by 

happy accident while trying to optimize the simulations to speed them up in a linear 

fashion with the initial testing performed on a low-end intel core i3 – 6006U (2.0Ghz, 

3MB L3 cache) laptop. When calculating the free energy of two approaching cylindrical 

particles both with an aspect ratio of two the linear version took 9 hours 11 minutes to 

run and the parallel version completing in 3 hours 10 mins. Given the prevalence and 

relative cheapness of multicore pc’s (at the time of writing AMDs 32 core/64 thread chip 

is the market leader), we actually use Hull university’s supercomputer Viper, allowing us 

theoretically to run 6000 simulations simultaneously in the same time as a single 

iteration of the loop we outline initially.  

The final problem is how to create the sheer quantity of simulation scripts and keep 

the read/write operations temporally coherent. To achieve this, we develop an initial 

‘master’ simulation of a system we wish to study and give it the .txt file postfix. We then 

run a simple Python parsing program to get line by line access. Finally, we run this in a 

loop and change the quantities of interest by locating their line number and list position, 
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in the case of the cylinders the separation, and giving the output file name the (unique) 

index of the loop which we also used for the file name before adding the .fe postfix. This 

way we can also run the script in Unix on Viper by calling an array job on the numbered 

files. Such an approach results in a directory full of .txt files with the results of each 

individual simulation which we download and compile with a second Python program 

(included in the appendix).  

To give an example of the possibilities the improved procedure unlocks, one of our 

very early studies was the free energy landscape of a neutrally wetting, chemically 

homogeneous and isolated cube. We varied the tilt and rotational angles (Figure 3-4) in 

five degree increments and calculated the free energy with SE for 324 unique 

configurations in order to benchmark our method against the results of  Soligno et al.63 

The original version took us 3 months to reproduce their result, while we can now do it 

on a single overnight run using this massively parallel method. 
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 Adsorption Trajectories of Ellipsoidal Particles at Liquid 
Interfaces 

4.1 Introduction 
Colloidal adsorption at immiscible interfaces is of interest both scientifically and 

industrially yet a thorough understanding of the dynamics of the adsorption process is 

still lacking. In this chapter, we study the adsorption dynamics of ellipsoidal particles 

with a Langevin model. We couple this Langevin model to the Surface Evolver model in 

order to include the effects of interfacial deformation. Contact line pinning due to 

surface defects on the particle is incorporated into the model firstly through the use of 

dynamic contact angles applicable to adsorption timescales and secondly by 

renormalising particle friction coefficients. We compare our results to the experiments 

of Wang et al.23 and Coertjens et al.43 presented in chapter 2, and find we can 

quantitively model the latter but not the former. However, even in the comparison to 

Wang et al. our model accurately captures the spatial evolution of the adsorption 

process, if not the temporal. The purpose of this chapter then, is to clarify the interplay 

between capillary, viscous and contact line forces in determining the adsorption 

dynamics of micron scale colloids. 

Particles adsorbed at liquid interfaces have a wide variety of applications such as 

emulsifications5, encapsulation121, food and pharmaceuticals122, nanostructured 

materials6 or even reconfigurable materials.7 Beyond applications with direct 

commercial utility, these systems even allow for the creation of new exotic states of 

matter such as ‘dry water’123, liquid marbles124 or even bijels.125,126 The equilibrium 

behaviour of adsorbed colloids has been understood since the influential work of 

Pieranaski46, the driving force of adsorption is the enormous reduction in free energy 
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while the final height of a spherical particle with respect to the interface is determined 

by its equilibrium contact angle, see Chapter 2 for a detailed discussion. 

 In opposition to the equilibrium case, the dynamics of the adsorption process of 

micron sized colloids to the liquid interface is much less well understood. The reduction 

in free energy is on the order of 105𝑘𝑘𝑇𝑇 by adsorption, and as such it was expected that 

the process was very fast due to this large driving force.90 Experimentally however, Kaz 

et al.89 found that after the initial breach of the interface a spherical colloid relaxes 

toward its equilibrium position on a timescale orders of magnitude slower than what is 

predicted by theoretical models based on viscous dissipation.75–77 They showed that this 

logarithmically slow time scale for wetting dynamics could be explained when one 

considers transient pinning of the contact line at nanoscale defects as the interface 

traverses the surface of the particle.79,127 Further investigations have shown that 

transient pining of the contact line also plays a crucial role in other dynamic phenomena 

involving adsorbed colloids, for example the anomalously slow in plane Brownian 

diffusion.92 

Wang et al.23 and Coertjens et al.43 have more recently built on the foundations 

laid by Kaz et al.89 and expanded the study of colloid adsorption dynamics to include 

ellipsoidal particles, once again reporting very slow adsorption timescales. The study of 

ellipsoidal particles is complicated by the fact that there is an additional degree of 

freedom, the tilt angle, when compared to spherical particles for whom only the particle 

height relative to the interface is of interest due uniaxial symmetry. The final equilibrium 

state for the ellipsoidal particles is orientated horizontally with its semi-major axis 

parallel to the interface.67 Both experimental studies report a monotonic relaxation 

toward equilibrium with respect to time. This is in disagreement with viscous-based 

models in which the particle orientation with time varies non-monotonically.21,22 The 
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discrepancy between theory and experiment has led to the proposition that both the 

adsorption time scale, and the adsorption trajectory for anisotropic particles, is 

controlled by contact line pinning.44 

The viscous model used by de Graaf et al.21 to predict adsorption trajectories and 

timescales has a number of important omissions. Firstly, the model neglects to account 

for deformation of the liquid interface, for particles in the low capillary number regime 

these deformations are no doubt significant.18–20 Secondly, the model uses a physically 

unrealistic value for the ratio of the translational and rotational friction coefficients. In 

order to develop a model capable of accurately assessing the roles played by capillary, 

viscous, contact line pinning forces etc., in the adsorption of anisotropic particles, these 

effects must be incorporated. 

In theory, the lattice-Boltzmann particle based simulations in refs.22,128 can meet 

some of the requirements, however it is simply not possible to implement the long 

timescales necessary to investigate the low capillary and Reynolds number regimes 

which are experimentally relevant. However, Wang et al. produced a theoretical model 

based on contact line hopping89,127 which was able to accurately capture their 

experimental results for adsorbing ellipsoids. The authors have assumed that the 

interface remains flat during adsorption in order to make their calculations tractable. 

While this model faithfully reproduces the experimental result it is not physically 

realistic as discussed earlier.18–20,65,67 Implementing interfacial deformation in the 

contact line hopping model is a formidable challenge due to its complexity. 

The purpose of this chapter is to address these challenges and incorporate 

interfacial deformation, contact line pinning and the correct ratio for particle friction 

coefficients into a Langevin model. Explicitly, we use Surface Evolver coupled with a 

Langevin model to account for interfacial deformation, renormalise particle friction 
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coefficients to account for contact line pinning, and finally we use the dynamic contact 

angle relevant to the adsorption timescales. This simple model reproduces a large 

amount of the experimental phenomenology, for example the monotonic evolution of 

particle orientation with time. More specifically, we need not explicitly invoke depinning 

dynamics of the contact line because we can obtain this behaviour by accurately 

modelling interfacial deformation and particle friction coefficients. Our approach 

enables us to quantitatively model the adsorption dynamics of Coertjens et al.24 but not 

those reported by Wang et al.23 Yet even in the latter case we are able to accurately 

capture the adsorption trajectory of the system (i.e., the evolution of particle 

orientation vs particle height). 

In summary our theoretical model clarifies the different roles contact line, 

viscous and capillary forces play in determining the wetting dynamics of micron-scale 

anisotropic particles. As the final equilibrium state of anisotropic particles is not 

controlled by the dynamics of the individual adsorption coordinate but by their 

adsorption trajectory, our model can be used as a predictive tool for designing self-

assembly processes for complex particles at immiscible interfaces. 

 

4.2 Theoretical Model 
We consider a prolate ellipsoidal particle adsorbing at a liquid interface, with long 

and short axis 𝑎𝑎, 𝑏𝑏  respectively and aspect ratio 𝑛𝑛 = 𝑎𝑎
𝑏𝑏�  (see Figure 4-1). Following 

experiments, we refer to the top and bottom liquid phases as oil and water respectively. 

The configuration of the ellipsoid at any instant during adsorption is described by the 

generalised coordinates ℎ and 𝜙𝜙, where ℎ is the distance of the particle centre from the 

undeformed liquid interface and 𝜙𝜙 is the angle between the particle long axis and the 

flat interface normal. The particle height when it first contacts the liquid interface is 
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given by ℎ𝑐𝑐 = 𝑏𝑏�𝑛𝑛2𝑐𝑐𝑜𝑜𝑠𝑠2𝜙𝜙 + 𝑠𝑠𝑠𝑠𝑛𝑛2𝜙𝜙 62 so that ℎ = ℎ𝑐𝑐 ,- ℎ𝑐𝑐  corresponds to the particle 

touching the interface from the oil and water side respectively. 

 For micron-sized particles where gravity is negligible, the free energy of the 

system is given by 21,25,48  

𝐹𝐹 = 𝛾𝛾𝑜𝑜𝑤𝑤𝑆𝑆𝑜𝑜𝑤𝑤 + 𝛾𝛾𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜 + 𝛾𝛾𝑤𝑤𝑜𝑜𝑆𝑆𝑤𝑤𝑜𝑜                                                                                             ( 4-1 ) 

where 𝛾𝛾𝑜𝑜𝑤𝑤, 𝛾𝛾𝑜𝑜𝑜𝑜, 𝛾𝛾𝑤𝑤𝑜𝑜 are the interfacial tensions and 𝑆𝑆𝑜𝑜𝑤𝑤, 𝑆𝑆𝑜𝑜𝑜𝑜, 𝑆𝑆𝑤𝑤𝑜𝑜 are the areas of the 

oil/water, particle/oil and particle/water interfaces respectively. Using Young's equation 

𝛾𝛾𝑜𝑜𝑤𝑤 cos 𝜃𝜃𝑤𝑤 = 𝛾𝛾𝑜𝑜𝑜𝑜 − 𝛾𝛾𝑤𝑤𝑜𝑜 where 𝜃𝜃𝑤𝑤 is the contact angle of the oil/water interface at the 

particle surface, noting that 𝑆𝑆𝑜𝑜𝑜𝑜  = 𝑆𝑆𝑜𝑜 − 𝑆𝑆𝑤𝑤𝑜𝑜 (where 𝑆𝑆𝑜𝑜 is the total area of the particle) 

and dropping irrelevant constant terms, we can simplify Equation 4-1 to 

𝐹𝐹 = 𝛾𝛾𝑜𝑜𝑤𝑤𝑆𝑆𝑜𝑜𝑤𝑤 + 𝛾𝛾𝑜𝑜𝑤𝑤 cos 𝜃𝜃𝑤𝑤 𝑆𝑆𝑜𝑜𝑜𝑜                                                                                                          ( 4-2 ) 

Note that we neglect line tension in the above free energies as we have checked that it 

has a negligible effect on adsorption dynamics for experimentally measured values of 

the line tension for micron-sized ellipsoids.129 This observation is also consistent with 

what other authors have found for micron-sized objects.128  

The interfacial areas and hence particle free energy depends sensitively on the 

boundary condition at the three-phase contact line. We consider two limiting cases, 

Figure 4-1 Variables characterizing the configuration of an ellipsoid adsorbing at a liquid interface. 
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firstly where the liquid interface remains flat, secondly where it is deformed due to the 

constant contact angle requirement.25,48 The free energy in both cases is calculated 

using the finite element package Surface.25,48,114 Specifically, the value of 𝐹𝐹(ℎ,𝜙𝜙)  is 

calculated on a 101 × 37  non-equidistant grid ℎ ∈  [−ℎ𝑐𝑐 ,ℎ𝑐𝑐] and 𝜙𝜙 ∈ �0, 𝜋𝜋
2
�. The data 

on this grid are then interpolated with a third order interpolation scheme to yield the 

full free energy landscape.  

The adsorption trajectory is found by solving the Langevin equation for the 

particle at the liquid interface. In the low Reynolds number regime where inertial forces 

are negligible, this is given by the coupled differential equations 

𝜆𝜆 𝑑𝑑ℎ
𝑑𝑑𝑤𝑤

= − 𝜕𝜕
𝜕𝜕ℎ
𝐹𝐹(ℎ,𝜙𝜙)                                                                                                                   ( 4-3 ) 

µ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑤𝑤

= − 𝜕𝜕
𝜕𝜕𝑑𝑑
𝐹𝐹(ℎ,𝜙𝜙)                                                                                                                  ( 4-4 ) 

where 𝜆𝜆 , µ  are the translational and rotational friction coefficient of the ellipsoid 

respectively. The left and right-hand side of the above equations are the frictional and 

capillary forces respectively associated with translational (Equation 4-3) and rotational 

(Equation 4-4) motion. Note that since we are considering particles at liquid interfaces, 

𝜆𝜆 and µ  will include contributions from both viscous forces due to the bulk phases as 

well as contact line forces from the interface.92 Note also that we have neglected 

random forces in the above equations since they are subdominant compared to capillary 

forces at a liquid interface. Finally, in general the coupling between rotational and 

translational friction is described by a tensor, however, as will be seen later, we can 

implicitly include this effect which leads to essentially the same adsorption trajectories 

when we renormalise the particle friction coefficients, along with the presence of 

interfacial drag. 
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In the general case, the friction coefficients 𝜆𝜆 and µ  are functions of ℎ and 𝜙𝜙 

due to the asymmetry in the viscosity of the bulk phases and the anisotropy of the 

particle. However, as we shall see later, the frictional forces in the experimental systems 

are dominated by contact line forces rather than viscous forces. To a first approximation, 

we can therefore assume that both 𝜆𝜆 and µ are independent of ℎ, i.e., the degree to 

which the particle is immersed in each of the two phases. We also note that the 

translational friction coefficient along the long and short axis of the ellipsoid differ by at 

most a factor of 2 in a viscous-based model.21,130 To a first approximation, we will 

therefore also assume that 𝜆𝜆 and µ are independent of 𝜙𝜙. Note that we have included 

the 𝜙𝜙 dependence of 𝜆𝜆 explicitly in our Langevin model130 and found that this leads to 

adsorption trajectories which are essentially the same as what we obtain for constant 𝜆𝜆.  

Assuming 𝜆𝜆, µ  are independent of ℎ and 𝜙𝜙 therefore, we can rescale Equations 

(4-3), (4-4) to 

𝑑𝑑ℎ∗

𝑑𝑑𝑤𝑤∗
= − 𝜕𝜕

𝜕𝜕ℎ∗
𝐹𝐹∗(ℎ∗,𝜙𝜙∗)                                                                                                              ( 4-5 ) 

𝑑𝑑𝑑𝑑∗

𝑑𝑑𝑤𝑤∗
= − 𝜕𝜕

𝜕𝜕𝑑𝑑∗
𝐹𝐹∗(ℎ∗,𝜙𝜙∗)                                                                                                             ( 4-6 ) 

or more compactly to 

𝑑𝑑𝜂𝜂��⃗ (𝑤𝑤∗)
𝑑𝑑𝑤𝑤∗

= −∇��⃗ 𝐹𝐹∗(ℎ∗,𝜙𝜙∗)                                                                                                              ( 4-7 ) 

In the above equations, ℎ∗ = ℎ 𝛼𝛼� , 𝑡𝑡∗ = 𝑡𝑡
𝛽𝛽� ,  𝜙𝜙∗ = 𝜙𝜙

𝜋𝜋�  , 𝐹𝐹∗ = 𝐹𝐹
𝛾𝛾𝑜𝑜𝑤𝑤𝑏𝑏2�  are scaled 

variables, 𝛼𝛼,  𝛽𝛽  are scale factors that will be discussed in a moment, �⃗�𝜂(𝑡𝑡∗) =

�ℎ∗(𝑡𝑡∗),𝜙𝜙∗(𝑡𝑡∗)� is the dynamical state vector of the particle at any given moment in 

time and ∇��⃗ = � 𝜕𝜕
𝜕𝜕ℎ∗

, 𝜕𝜕
𝜕𝜕𝑑𝑑∗

� is the grad operator in (ℎ∗,𝜙𝜙∗)coordinate space. Equation 4-7 

tells us that the adsorption trajectories for the particle are remarkably simple in our 

simplified Langevin dynamics, i.e., they follow the path of steepest descent in the free 

energy landscape 𝐹𝐹∗(ℎ∗,𝜙𝜙∗).21 
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The dynamic scale factors 𝛼𝛼 and 𝛽𝛽 depend on the friction coefficient ratio µ 𝜆𝜆� . 

In ref.21, de Graaf et al. chose 𝛼𝛼 = √𝑎𝑎2 + 2𝑏𝑏2 , 𝛽𝛽 = 𝑤𝑤2+2𝑏𝑏2

𝛾𝛾𝑜𝑜𝑤𝑤𝑏𝑏2
𝜆𝜆 which corresponds to µ

𝜆𝜆
=

𝑤𝑤2+2𝑏𝑏2

𝜋𝜋2
 and we call this choice of scale factors Scaling 1. However, the authors point out 

that this choice is unphysical for a viscous-based model because it does not yield the 

sphere value µ
𝜆𝜆

= 4𝑏𝑏2

3
 for 𝑛𝑛 = 1.21 To overcome this problem, we also consider the scale 

factors 𝛼𝛼 = 2𝜋𝜋
3
√𝑎𝑎2 + 2𝑏𝑏2 and 𝛽𝛽 = 4𝜋𝜋�𝑤𝑤2+2𝑏𝑏2�

9𝛾𝛾𝑜𝑜𝑤𝑤𝑏𝑏2
𝜆𝜆 which corresponds to µ

𝜆𝜆
= 4�𝑤𝑤2+𝑏𝑏2�

9
 and 

we call this choice of scale factors Scaling 2. 
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4.3 Results and Discussion 

To study the impact of different contact line boundary conditions and dynamic 

scaling on adsorption kinetics, in Figure 4-2(a-c) we show the adsorption trajectories 

calculated from our Langevin model for the simple case of neutrally wetting ellipsoids 

(𝜃𝜃𝑤𝑤 = 90°) with 𝑛𝑛 = 2  for a flat liquid interface and Scaling 1 (Figure 4-2a), a flat 

interface and Scaling 2 (Figure 4-2b) and a deformed interface and Scaling 2 (Figure 4-

2c). An equivalent experimental set up, with which we make a direct comparison with 

shortly, is a polystyrene ellipsoid having 𝑎𝑎 = 1200𝑛𝑛𝑛𝑛 , 𝑏𝑏 = 600𝑛𝑛𝑛𝑛   adsorbing to a 

hexane-water interface under standard temperature and pressure. Regardless of the 

initial angle of the particle, we see that all adsorption trajectories that start from particle 

contact with the liquid interface (left/right red curve corresponds to contact from the 

water/oil side) end at the equilibrium state (ℎ = 0,𝜙𝜙 = 𝜋𝜋
2� ) where the ellipsoid lies flat 

Figure 4-2 (a)-(c) Adsorption trajectories in the (ℎ,𝜙𝜙) plane (black lines) for ellipsoids with contact angle 

𝜃𝜃𝑤𝑤 = 90°, aspect ratio 𝑛𝑛 =  2 for (a) flat interface and Scaling 1, (b) flat interface and Scaling 2, (c) 

deformed interface and Scaling 2. The trajectories are superposed on contour plots of free energy 

landscapes, and the red curves bounding the landscape correspond to particles touching the interface 

from the oil side ( ℎ = +ℎ𝑐𝑐(𝜙𝜙) ) or water side (ℎ = −ℎ𝑐𝑐(𝜙𝜙) ). For illustrative purposes, we show 

trajectories starting from either the oil or water side with initial particle angles 𝜙𝜙0 = 22.5°, 45°, 67.5°. 

(d)-(e) Free energy landscape represented as a three-dimensional plot of free energy vs. ℎ ℎ𝑐𝑐⁄  and 𝜙𝜙 and 

system configuration at ℎ = −ℎ𝑐𝑐 for ellipsoids in the vertical or horizontal orientation for (d) flat interface 

case and (e) deformed interface case. 
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along the interface. However, assuming a flat liquid interface leads to trajectories that 

are non-monotonic in 𝜙𝜙  (Figures 4-2a and 4-2b) while assuming a deformed liquid 

interface leads to trajectories are monotonic in 𝜙𝜙 (Figure 4-2c).  

The qualitative change in the variation of 𝜙𝜙  is due to the fact that different 

contact line boundary conditions lead to very different free energy landscapes as shown 

in Figure 4-2d (flat interface) and Figure 4-2e (deformed interface). Recall that we are in 

the low capillary number regime where the adsorption is essentially a quasi-static 

process, i.e., particle adsorption is slow enough for the liquid interface to be in 

equilibrium with the configuration of the ellipsoid at each stage of the adsorption 

process. This means that when the liquid interface can deform, immediately after the 

particle breaches the liquid interface at ℎ = ±ℎ𝑐𝑐(𝜙𝜙), the ellipsoid is attached to the 

liquid interface (effectively instantaneously on particle adsorption timescales) in order 

to satisfy the constant contact angle condition (Figure 4-2e left). The interface 

deformation Illustrated in Figure 4-2e is a transient state, its specific shape being 

dependent on the angle of attack and contact angle of the three-phase system. At the 

instant of attachment, we allow the interface to deform in such a way as to satisfy the 

constant contact angle condition treating it as a quasi-static system. In this case, the free 

energy of the system at ℎ = ±ℎ𝑐𝑐(𝜙𝜙) strongly depends on 𝜙𝜙, for example the horizontal 

state of the ellipsoid (𝜙𝜙 = 𝜋𝜋
2� ) has lower free energy compared to the vertical state 

(𝜙𝜙 = 0) since the former excludes more liquid interface compared to the latter. In 

contrast, when the liquid interface is flat, the ellipsoid is essentially detached from the 

liquid interface for ℎ = ±ℎ𝑐𝑐(𝜙𝜙)  (Figure 4-2d left) and the free energy of the system at 

ℎ = ±ℎ𝑐𝑐(𝜙𝜙)   is independent of 𝜙𝜙. The flat interface assumption thus effectively raises 

up the corners of the landscape at 𝜙𝜙 = 𝜋𝜋
2� , causing the steepest descent paths to 

initially decrease in 𝜙𝜙. The non-monotonic trajectories in Figure 4-2(a, b) are therefore 
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an artefact of the flat interface assumption, and such trajectories are either strongly 

suppressed or disappear altogether when we relax this assumption. 

 We next compare our theoretical model with the experiments of Coertjens et al. 

for fluorescent polystyrene ellipsoids where 𝑎𝑎 = 1200𝑛𝑛𝑛𝑛 , 𝑏𝑏 = 300𝑛𝑛𝑛𝑛 , 𝑛𝑛 = 4 

adsorbing to a hexane/water interface under standard temperature and pressure.43 In 

the experiments a slight density mismatch between the particle (𝜌𝜌 = 1.04 g/cm3) and 

subphase (𝜌𝜌 = 1.15 g/cm3) for a 59 wt.% glycerol-water solution to provide a very small 

buoyancy force to guide the particles to the interface over time. The appropriate contact 

𝜃𝜃𝑤𝑤 we should use for this system is a delicate question since the contact angle evolves 

slowly with time due to physical aging of the contact line.129 To account for this effect, 

we use as our effective contact angle the dynamic (rather than equilibrium) contact 

angle that is relevant to the timescale of the adsorption process. Specifically, since 

adsorption occurs on the ~0.3 𝑠𝑠 timescale in this case, and the dependence of 𝜃𝜃𝑤𝑤 on 

particle stretching is weak129, we use the contact angle measured for equivalent 

fluorescent polystyrene spheres on a similar timescale which is 𝜃𝜃𝑤𝑤 ≈ 90°.129 Note that 

strictly speaking, one should also account for differences in advancing and receding 

angles around the contact line during particle adsorption.44 However, as we are seeking 

a minimal model to capture the essential features of the experimental system, we have 

neglected this difference to a first approximation.  

Due to limitations of their high speed confocal microscopy method, Coertjens et 

al. were only able to measure 𝜙𝜙 as a function of time.43 In Figure 4-3, we compare all 

three models discussed above with a linear-log plot of the 𝜙𝜙 vs. 𝑡𝑡 data of Coertjens et al. 

for an initial particle angle of 𝜙𝜙0 = 30°. We use 𝛽𝛽 as our fitting parameter to the drop 

in the data away from 𝜙𝜙 = 90° . We see that quantitative agreement with the 

experimental data is obtained using the deformed interface and Scaling 2 model (black 
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solid curve) but not for the flat interface models, suggesting that the interface is 

deformed rather than flat during particle adsorption. Note that in Figure 4-3, the 

experimental relaxation data for 𝜙𝜙 is clearly non-logarithmic.  

Using the fitted value of 𝛽𝛽 for the black curve (𝛽𝛽 = 16 𝑠𝑠) and assuming 𝛾𝛾𝑜𝑜𝑤𝑤 =

50𝑛𝑛𝑚𝑚 ∙ 𝑛𝑛−1 yields 𝜆𝜆 = 10−2𝑘𝑘𝑔𝑔 𝑠𝑠−1. It is instructive to compare this value for 𝜆𝜆 with 

that due to the bulk fluid viscosity. For prolate ellipsoids with 𝑛𝑛 >  2, the rotational 

friction coefficient due to the viscosity of the surrounding medium 𝜂𝜂 can be 

approximated by130,131 

𝜇𝜇 = 16𝜋𝜋𝜂𝜂𝑤𝑤3

3[2 ln(2𝑚𝑚)−1]                                                                                                                         ( 4-8 ) 

Combining the above equation with the ratio µ
𝜆𝜆

= 4�𝑤𝑤2+𝑏𝑏2�
9

 assumed in Scaling 2, the 

translational friction coefficient is given by 

𝜆𝜆 = 12𝜋𝜋𝜂𝜂𝑤𝑤3

(𝑤𝑤2+2𝑏𝑏2)[2 ln(2𝑚𝑚)−1]                                                                                                             ( 4-9 ) 

For the experimental system of Coertjens et al.43, 𝜂𝜂 = 20𝑛𝑛𝑃𝑃𝑎𝑎 𝑠𝑠, 𝑎𝑎 = 1200𝑛𝑛𝑛𝑛, 

𝑏𝑏 = 300𝑛𝑛𝑛𝑛  and 𝑛𝑛 = 4 . Inserting these values into Equation 4-9, we obtain 𝜆𝜆 =

2.5 × 10−7𝑘𝑘𝑔𝑔 𝑠𝑠−1 which is more than four orders of magnitude smaller than the value 

Figure 4-3 Linear-log plot of 𝜙𝜙 vs. 𝑡𝑡 comparing the three theoretical models discussed in the main text for 

ellipsoids with 𝑛𝑛 =  4, 𝜃𝜃𝑤𝑤 = 90° with the experimental data of Coertjens et al.43 
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obtained from fitting the experiments in Figure 4-3. This huge discrepancy between the 

viscous model and experiment suggests that the adsorption dynamics in these 

experiments is not controlled by viscous forces but (as we shall see in a moment) by 

contact line forces. 

 In principle, as the particle approaches the interface and the gap between the 

particle surface and the interface tends toward zero, the viscous force involved in 

pushing the liquid out of the gap (i.e., the lubrication force) diverges.132 However, as the 

liquid film separating the interface and the particle thins, the film will become unstable 

due to molecular forces such as van Der Waals interactions, leading to the film inevitably 

rupturing causing the particle to attach to the interface.  

The good fit between our Langevin model and experiment suggests that for this 

system, we can quantitatively model the effect of contact line pinning by renormalising 

the friction coefficient of the particle, similar to what was found by Boniello et al. for the 

in-plane diffusion coefficient of particles at a liquid interface.92  The physical origin of 

the contact line pinning models is the interaction between the three-phase contact line 

and nanoscale defects on the surface of a particle. Heterogeneities on the surface of the 

particle from either surface chemistry or geometric defects, can locally satisfy Young’s 

constant contact angle requirement and cause the three-phase contact line to pin at 

such sites, requiring an input of energy to overcome the potential barrier in the form of 

thermal fluctuations. Note that the renormalisation of friction coefficients due to 

contact line pinning is not merely a phenomenological fitting exercise. Instead, a 

microscopic basis for this procedure has been provided by Boniello et al. 92 who explicitly 

showed that taking into account the thermally activated fluctuations of the contact line 

via the fluctuation-dissipation theorem leads to significant enhancements of particle 

friction coefficients. The underlying assumptions in the derivation of the renormalising 
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factor being that thermally activated deformations of the interface at the three-phase 

contact line drive the system out of mechanical equilibrium and result in extra random 

forces on the particle. 

Adapting such an approach to our problem, the contribution from contact line 

fluctuations to the translational friction coefficient is given by the fluctuation-dissipation 

theorem as133 

𝜆𝜆 = 1
2𝑘𝑘𝐵𝐵𝑘𝑘

〈𝑓𝑓(0)2〉𝜏𝜏𝑐𝑐                                                                                                               ( 4-10 ) 

where 𝑘𝑘𝐵𝐵𝑇𝑇  is the thermal energy, 𝑓𝑓(0)  is the instantaneous surface tension force 

exerted by the liquid interface on a triple-line segment of length ℓD between 

neighbouring nanoscale surface defects and 𝜏𝜏𝑐𝑐 is the correlation time of the fluctuations. 

The random nature of the fluctuations allows us to write the mean squared force as  

〈𝑓𝑓(0)2〉 ≈ 𝓃𝓃(𝛾𝛾𝑜𝑜𝑤𝑤ℓ𝐻𝐻)2                                                                                                            ( 4-11 ) 

where 𝓃𝓃 =
2𝜋𝜋 �(𝑎𝑎

2 + 2𝑏𝑏2)
3� � 1 2�

ℓ𝐻𝐻
� is the number of uncorrelated triple-line 

segments around the ellipsoid. On the other hand, the correlation time due to the 

thermally activated jumps of the contact line has the Arrhenius-like form134 

𝜏𝜏𝑐𝑐 ≈
𝜂𝜂𝑉𝑉𝑚𝑚
𝑘𝑘𝐵𝐵𝑘𝑘

𝑒𝑒𝑒𝑒𝑝𝑝 �ℓ𝐷𝐷
2 𝛾𝛾𝑜𝑜𝑤𝑤(1+cos𝜃𝜃𝑤𝑤)

𝑘𝑘𝐵𝐵𝑘𝑘
�                                                                                               ( 4-12 ) 

where 𝑉𝑉𝑚𝑚 ≈ 3 × 10−29𝑛𝑛3 is the molecular volume of water.  

Substituting Equations 4-11, 4-12 into Equation 4-10, we obtain an expression 

for the friction coefficient 𝜆𝜆 involving only one fitting parameter, namely the distance 

between surface nanoscale defects ℓ𝐻𝐻. Using the value 𝜆𝜆 = 10−2𝑘𝑘𝑔𝑔 𝑠𝑠−1 obtained from 

fitting the experimental data in Figure 4-3 and the experimental parameters for ref.43 

discussed above, we obtain ℓ𝐻𝐻 ≈ 0.9𝑛𝑛𝑛𝑛 . This nanometric value for ℓ𝐻𝐻  is physically 

reasonable and provides support that contact line pinning is indeed what gives rise to 

the significantly enhanced value for the friction coefficient.  
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We next compare our theoretical model with the experiments of Wang et al.44 

for polystyrene ellipsoids with polystyrene ellipsoids where 𝑎𝑎 ≈ 2.6𝜇𝜇𝑛𝑛, 𝑏𝑏 ≈ 1𝜇𝜇𝑛𝑛, 𝑛𝑛 ≈

2.6 at a hexane/water interface under standard conditions. We note that in this set of 

experiments particles were guided to the interface with an optical trap as opposed to 

using a density mismatch technique. The adsorption process for this system is much 

faster, occurring on the ~0.03 𝑠𝑠  timescale. Once again, for 𝜃𝜃𝑤𝑤  we use the dynamic 

contact angle measured for an equivalent sphere on this timescale which is 𝜃𝜃𝑤𝑤 = 45°89. 

The digital holography technique used by Wang et al. is capable of measuring both 𝜙𝜙 

and ℎ as a function of time, allowing us to compare theory and experiment for both the 

dynamics of the individual coordinates (i.e., 𝜙𝜙 and ℎ vs. 𝑡𝑡) and the adsorption trajectory 

(i.e., 𝜙𝜙 vs ℎ). The latter representation of the data is particularly useful as it allows us to 

perform a parameter-free comparison between theory and experiment. 
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In Figure 4-4 (a, b), we compare all three models discussed above with linear-log 

plots of the experimental data for the average value of 𝜙𝜙 vs.𝑡𝑡 (Figure 4-4a) and ℎ/𝑏𝑏 vs. 

𝑡𝑡 (Figure 4-4b). We note that, in contrast to Figure 4-3, the experimental dynamics of 

the individual adsorption co-ordinates are logarithmic. We also note that none of the 

three theoretical models can reproduce the experimental data in Figure 4-4, even if we 

renormalise the friction coefficients to account for contact line pinning. The discrepancy 

between theory and experiment is perhaps not surprising since, as pointed out in 

refs.89,92, it is not possible for a Langevin model where dissipative forces are 

Figure 4-4 Comparison of the three theoretical models discussed in the main text for ellipsoids with 𝑛𝑛 =

 2.6, 𝜃𝜃𝑤𝑤 = 90° with the experimental data of Wang et al.44 for (a) linear-log plot of 𝜙𝜙 vs. 𝑡𝑡, (b) linear-log 

plot of ℎ/b vs. 𝑡𝑡 (c) 𝜙𝜙 vs. ℎ/𝑏𝑏. 
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parameterised by a handful of friction coefficients to generate the hierarchy of 

timescales required for logarithmic dynamics. However, the discrepancy between 

theory and experiment seen in Figure 4-4 also highlights the fact that the contact line 

dynamics in the experiments of Wang et al.44 is qualitatively different from that of 

Coertjens et al.43 (Figure 4-3). We will discuss possible reasons for this difference at the 

end of this section.  

However, while the theoretical models are not able to capture the dynamics of 

the individual adsorption coordinates, in Figure 4-4c we see that they are able to capture 

adsorption trajectory (i.e., 𝜙𝜙 vs. ℎ/𝑏𝑏 plot) of the experimental system surprisingly well. 

In particular, all three models are able to reproduce the essentially linear relationship 

between 𝜙𝜙 and ℎ found experimentally with no fitting parameters. It is also interesting 

that apart from small discrepancies in the early-stage dynamics, all three models 

predicts very similar adsorption trajectories.  

Figure 4-5 Interfacial deformation calculated from Surface Evolver for an ellipsoid with 𝑛𝑛 =  2.6, 𝜙𝜙 =

𝜋𝜋 2⁄ , ℎ = −ℎ𝑐𝑐 for contact angle (a) 𝜃𝜃𝑤𝑤 = 45° and (b) 𝜃𝜃𝑤𝑤 = 90°. 
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We believe that the similarity between the flat and deformed interface models 

(with Scaling 2) in Figure 4-4c is due to the fact that the interfacial deformation during 

particle adsorption is small when we are far from the neutrally wetting regime (recall 

that the effective contact angle relevant to the experiments in ref.44 is 𝜃𝜃𝑤𝑤 = 45°. This is 

illustrated in Figure 4-5 where we show the deformed liquid interface around an 

ellipsoid with 𝑛𝑛 = 2.6, 𝜙𝜙 = 𝜋𝜋
2�   ℎ = −ℎ𝑐𝑐   for contact angle 𝜃𝜃𝑤𝑤 = 45°  (Figure 4-5a) 

and 𝜃𝜃𝑤𝑤 = 90°  (Figure 4-5b). We see that deformation of the liquid interface for 𝜃𝜃𝑤𝑤 =

45°  is much smaller compared to 𝜃𝜃𝑤𝑤 = 90°  (average height of contact line is −0.289𝑏𝑏 

and −0.734𝑏𝑏 in Figure 4-5 a and b respectively). The small interfacial deformation far 

from the neutrally wetting regime may also explain why the flat interface approximation 

works so well in modelling the experimental data of Wang et al.44 However, we 

emphasize that the flat interface approximation is not accurate in general. Specifically, 

close to the neutrally wetting condition, significant discrepancies emerge between the 

flat and deformed interface models (see Figure 4-3). 
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The similarity between the Scaling 1 and Scaling 2 models (with flat interface) in 

Figure 4-4c is most likely due to the fact that far from the neutrally wetting regime, all 

particle adsorption flow lines converge onto a 'dynamical attractor' after the initial 

stages of the adsorption.21 This is illustrated in Figures 4-6(a-c) where we clearly see the 

emergence of an attractor in the adsorption flow lines for all three models. The attractor 

is formally defined as the locus of points in the free energy landscape 𝐹𝐹∗(ℎ∗,𝜙𝜙∗) where 

one of the eigenvectors of the Hessian matrix ∇��⃗ ∇��⃗ 𝑘𝑘𝐹𝐹∗  (the one with positive eigenvalue 

or principal curvature) is parallel to the gradient of the free energy21 and the resultant 

attractor is in general sensitive to the dynamic scaling assumed. However, far from the 

neutrally wetting regime, the free energy landscape develops a narrow valley (see 

Figures 4-6(a-c)), and since attractors are constrained to be in the vicinity of this valley, 

Figure 4-6 (a)-(c) Adsorption trajectories in the (ℎ,𝜙𝜙)  plane, ℎ <  0  (black lines), for ellipsoids with 

contact angle 𝜃𝜃𝑤𝑤 = 45°, aspect ratio 𝑛𝑛 =  2.6 for (a) flat interface and Scaling 1, (b) flat interface and 

Scaling 2, (c) deformed interface and Scaling 2. The trajectories are superposed on contour plots of free 

energy landscapes and the red curve bounding the landscape corresponds to particles touching the 

interface from the water side. Note that in (a)-(c), the adsorption trajectories converge onto dynamical 

attractors which roughly lie along the valley of the free energy landscape. (d) Comparison of dynamical 

attractors from (a)-(c) with the experimental adsorption trajectories for polystyrene ellipsoids from Wang 

et al. 44 
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the attractors effectively become insensitive to the dynamic scaling used. This point is 

illustrated in Figure 4-6d where we see that the attractors from all three models are  

essentially the same. This explains why, apart from small discrepancies in the early-stage 

dynamics, the Scaling 1 and Scaling 2 models with flat interface (and indeed Scaling 2 

model with deformed interface) predict very similar adsorption trajectories in Figure 4-

4c.  

The fact that far from the neutrally wetting regime, dynamic attractors are 

essentially determined by the geometry of the free energy landscape rather than the 

dynamic scaling model may also explain why in Figure 4-4c, all three theoretical models 

are able to capture the main features of the experimental adsorption trajectory even 

though they cannot capture the dynamics of the individual adsorption coordinates. This 

point is evidenced in Figure 4-6d where we see that, after the initial stages of the 

adsorption, the experimental adsorption trajectory (data points) largely coincides with 

the dynamic attractors of all three models (lines).  

Another reason why our theoretical models are able to capture the adsorption 

trajectory in Figure 4-4c even though they cannot capture the time dependence of the 

individual adsorption coordinates may be because the coupling between 𝜙𝜙 and ℎ in our 

Langevin model comes from the capillary forces alone, and these forces depend only on 

particle configuration and are independent of the frictional forces (see Equations 4-3,4-

4). This means that these models may still be able to capture the coupling between 𝜙𝜙 

and ℎ  accurately even if they do not correctly capture the frictional forces resisting 

particle adsorption. 

Finally, we note that the experimental trajectory deviates from the theoretical 

models in the late stages of the adsorption in Figures 4-4c & 4-6d. This deviation is most 

likely due to the fact that when the experimental system is close to the equilibrium tilt 
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angle of 𝜙𝜙 = 90° the capillary force driving particle adsorption becomes too small to 

overcome contact line pinning so that the ellipsoid becomes kinetically arrested and 

therefore cannot reach the equilibrium tilt angle.89  

Before leaving this section, we return to the interesting question about why the 

contact line dynamics seen in the experiments of Wang et al.44 are so different from that 

of Coertjens et al.43 To frame this discussion in a broader context, it is interesting that 

contact line dynamics can be modelled by renormalising friction coefficients in some 

systems, e.g., refs.43,92 but not others, e.g., refs.44,89 We speculate that this difference 

could be due to large differences in the nanoscale surface defect density between the 

two sets of systems, which in turn lead to very different contact line dynamics. For 

example, for the polystyrene spheres at the air/water interface studied in ref.92, the area 

per defect was determined to be 𝐴𝐴 = ℓ𝐻𝐻 ≈ 0.2𝑛𝑛𝑛𝑛2, while for the polystyrene spheres 

at the oil/water interface studied in ref.89, the area per defect was determined to be in 

the range 𝐴𝐴 ≈ 5 − 30𝑛𝑛𝑛𝑛2. Interestingly, for the polystyrene ellipsoids studied in ref.43, 

from the data in Figure 4-3 we determined a rather small area per defect of 𝐴𝐴 = ℓ𝐻𝐻 ≈

0.8𝑛𝑛2, consistent with our speculation above.  

 In order to test this hypothesis we use the contact line hopping model of Kaz et 

al.89 to calculate the contact line dynamics (i.e., particle height vs. time) for the two 

spherical particle systems discussed above. The configuration of a sphere of radius 𝑅𝑅 at 

any instant during adsorption can be described by the height of the particle apex above 

the liquid interface 𝑧𝑧 as illustrated in Figure 4-7. Assuming the liquid interface remains 

flat during particle adsorption, 𝑧𝑧 is related to the dynamic contact angle 𝜃𝜃𝐻𝐻 

𝑧𝑧 =  𝑅𝑅(1 −  𝑐𝑐𝑜𝑜𝑠𝑠 𝜃𝜃𝐻𝐻)                                                                                                              ( 4-13 ) 
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Using the contact line hopping model of Blake et al.79, Kaz et al.89 derived the following 

equation of motion for 𝑧𝑧: 

𝑅𝑅�̇�𝑧  = �𝑧𝑧(2𝑅𝑅 −  𝑧𝑧)𝑉𝑉0𝑒𝑒−𝑈𝑈/𝑘𝑘𝑘𝑘+𝛾𝛾 𝑃𝑃(𝑐𝑐𝑜𝑜𝑜𝑜 𝜃𝜃𝐷𝐷−𝑐𝑐𝑜𝑜𝑜𝑜 𝜃𝜃𝐸𝐸 )/2𝑘𝑘𝑘𝑘                                                       ( 4-14 ) 

where �̇�𝑧 is the 𝑧𝑧 velocity of the particle, 𝑘𝑘𝑇𝑇 is the thermal energy, 𝑉𝑉0 is the molecular 

hopping speed, 𝑈𝑈 is the energy barrier to molecular hopping at the contact line due to 

nanoscale surface defects on the colloid, 𝐴𝐴 is the area per surface defect, 𝛾𝛾 is the surface 

tension of the liquid interface, and 𝜃𝜃𝐸𝐸  is the equilibrium contact angle. Substituting 

Equation 4-13 into Equation 4-14, we can replace 𝜃𝜃𝐻𝐻 with 𝑧𝑧 to get 

𝑅𝑅�̇�𝑧 = �𝑧𝑧(2𝑅𝑅 − 𝑧𝑧)𝑉𝑉0𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝑈𝑈
𝑘𝑘𝑘𝑘

+ 𝛾𝛾𝑃𝑃
2𝑘𝑘𝑘𝑘

(𝑧𝑧𝐸𝐸−𝑧𝑧)
𝑅𝑅

�                                                                     ( 4-15 ) 

where 𝑧𝑧𝐸𝐸  =  𝑅𝑅(1 −  𝑐𝑐𝑜𝑜𝑠𝑠 𝜃𝜃𝐸𝐸  ). Finally, using scaled variables 𝑧𝑧̅ = 𝑧𝑧 𝑅𝑅⁄ , 𝑡𝑡̅ = 𝑡𝑡 𝜏𝜏⁄  where 

𝜏𝜏−1 = 𝑉𝑉0
𝑅𝑅
𝑒𝑒𝑒𝑒𝑝𝑝 �− 𝑈𝑈

𝑘𝑘𝑘𝑘
�, we can write Equation 4-15 more compactly as 

𝑑𝑑�̅�𝑧
𝑑𝑑�̅�𝑤

= �𝑧𝑧̅(2 − 𝑧𝑧̅)𝑒𝑒𝑒𝑒𝑝𝑝[𝑎𝑎(𝑧𝑧𝐸𝐸��� − 𝑧𝑧̅)]                                                                                           ( 4-16 ) 

where 𝑎𝑎 = 𝛾𝛾𝑃𝑃
2𝑘𝑘𝑘𝑘

 is the dimensionless area per defect. Equation 4-16 is a first-order, 

separable ODE which can be easily solved to find 𝑡𝑡̅ as a function of 𝑧𝑧̅, 

𝑡𝑡̅ = ∫ 𝑑𝑑�̅�𝑧′
√�̅�𝑧′(2−�̅�𝑧′)𝑤𝑤𝜕𝜕𝑜𝑜[𝑤𝑤(�̅�𝑧𝐸𝐸−�̅�𝑧′)]

�̅�𝑧
0                                                                                                     ( 4-17 ) 

where the range of 𝑧𝑧̅ is 0 ≤ 𝑧𝑧̅ ≤ 𝑧𝑧�̅�𝐸. 

Figure 4-7 Variables used in the model of Kaz et al.89 to characterize the configuration of a sphere 

adsorbing at a liquid interface. 
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For the sulphate terminated polystyrene spheres at an oil-water interface 

studied by Kaz et al.89, 𝜃𝜃𝐸𝐸  ≈  110°, 𝐴𝐴 ≈ 5 𝑛𝑛𝑛𝑛2, 𝛾𝛾 =  37 𝑛𝑛𝑚𝑚𝑛𝑛−1, and therefore 𝑎𝑎 ≈

 23. In Figure 4-8(a) we show the linear-log plot of 𝑧𝑧̅ versus 𝑡𝑡̅ calculated from Equation 

4-17 for these parameters. We see that the relatively large value of 𝐴𝐴 in this case leads 

to an essentially logarithmic time dependence for 𝑧𝑧̅ (or ℎ). On the other hand, for the 

sulphate or amidine terminated polystyrene spheres at an air-water interface studied 

by Boniello et al.92, 𝜃𝜃𝐸𝐸  ≈  45°, 𝐴𝐴 ≈ 0.18 𝑛𝑛𝑛𝑛2 , 𝛾𝛾 =  71 𝑛𝑛𝑚𝑚𝑛𝑛−1 , and therefore 𝑎𝑎 ≈

 1.6. In Figure 4-8(b) we show the linear-log plot of 𝑧𝑧̅ versus 𝑡𝑡̅ calculated from Equation 

4-17 for these parameters. We see that the relatively small value of 𝐴𝐴 

Figure 4-8 Linear-log plot of normalised height 𝑧𝑧̅ vs. normalised time 𝑡𝑡̅ for micro-spheres adsorbing at 

a liquid interface calculated from contact-line hopping model for experimental parameters from 

systems studied by (a) Kaz et al.89and(b) Boniello et al.92 
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in this case leads to a nonlogarithmic time dependence for 𝑧𝑧̅ (or ℎ). 

Note that contact line pinning may arise from nanoscale surface features due to 

chemical89, topological129 or charge135,136 heterogeneities. This means that small 

differences in surface chemistry or sample preparation protocols may lead to large 

differences in contact line dynamics, even between systems which are nominally similar. 

Regardless of the exact microscopic origin for the different contact line dynamics, what 

seems clear from comparing the different experimental data on interfacial colloid 

dynamics is that while contact line pinning always leads to slower wetting dynamics, the 

logarithmic time dependence may not be universal but may be system dependent. This 

may explain why contact line dynamics can be modelled by renormalising friction 

coefficients in some systems but not others. 

4.4 Conclusions 
In summary, we have developed a simple Langevin model which accurately 

captures the deformation of the liquid meniscus and uses the correct ratio for the 

translational and rotational particle friction coefficients. The effect of contact line 

pinning is incorporated into the model by renormalising particle friction coefficients and 

using the appropriate dynamic contact angle. Using this simple model, we were able to 

reproduce the monotonic variation of particle orientation with time that is observed 

experimentally. Specifically, we were able to obtain this behaviour by accurately 

modelling interfacial deformation and particle friction coefficients without the need to 

explicitly invoke depinning dynamics of the contact line. We were also able to 

quantitatively model the adsorption dynamics of the individual adsorption coordinates 

(i.e., adsorption coordinate vs. time) for some experimental ellipsoidal systems but not 

others. However, even for the latter case, our model was able to accurately capture the 

adsorption trajectory (i.e., particle orientation vs. height) of the particles. 
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Our model clarifies the different roles played by capillary, viscous and contact 

line forces in determining the wetting dynamics of micron-scale objects. Note that since 

the final equilibrium state of the anisotropic particle is controlled by its adsorption 

trajectory rather than by the adsorption dynamics of the individual coordinates, our 

theoretical model can be used as a predictive tool for designing and controlling the 

assembly of complex particles at liquid interfaces and for future work we plan to use it 

to study the adsorption of particles with other non-spherical geometries. 
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 Adsorption Dynamics of  Cylindrical Colloids at The 
Liquid Interface 

5.1 Introduction 

The adsorption of colloids at liquid interfaces has generated increasing 

interest in recent years because of potential applications in areas such as 

emulsification5, encapsulation121, nanostructured materials6,137 and 

reconfigurable systems.138  More fundamentally, interfacial colloids have paved 

the way for the creation of exotic new states of matter such as liquid marbles, 

bijels and ‘dry’ water.123,124,126 Up to now, most of the research in this area has 

focused on spherical or nearly spherical particles. However, advances in synthetic 

methods have made possible the fabrication of anisotropic particles such as 

ellipsoids10,18,19,48,67,139, cylinders20,25,45, cubes39,63,68,98,99 and more complex 

shapes.14,16 The behaviour of such shape anisotropic particles at fluid interfaces is 

richer than that of spherical particles as anisotropic particles can adopt multiple 

locally stable orientations at the liquid interface.25,39,45,63,68,98,99 The possible 

stable orientations of anisotropic particles at liquid interfaces are strongly 

dependent on the shape of the anisotropic particle. For example, ellipsoidal 

particles are always ‘side-on’ (particle long axis parallel to liquid interface)48,67, 

cylindrical particles can be either ‘side-on’ or ‘end-on’ (particle long axis 

perpendicular to liquid interface)25,45 while cubes can be face-up, edge-up or 

corner-up.39,63,68,98,99 

The fact that cylindrical colloids can adopt the end-on state at the liquid 

interface is particularly interesting for many novel applications since arrays of 

vertically aligned nanorods can be used as epsilon-near-zero or hyperbolic 

metamaterials26,140–144, plasmonic cavity resonators145 or in surface enhanced 
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Raman spectroscopy (SERS) for sensing applications.141,146–149 Vertically aligned 

nanorod arrays are particularly versatile platforms for sensing and enhanced 

spectroscopies since the nanorods can be constructed from a wide variety of 

materials, including metals (e.g., gold, silver, aluminum, copper etc.) and 

dielectrics (e.g., polymers, silica etc.), providing maximum flexibility for tuning the 

frequency range over which the array has desired properties.142,150–153 One option 

for creating vertical nanorod arrays is to use nanolithography154, but such top-

down methods have low throughput, complex fabrication protocols and low 

scalability. An alternative approach is to use bottom-up self-assembly on solid 

substrates such as electrodeposition151–153 or evaporation driven assembly.148,155–

157 These approaches allow one to create high quality vertically aligned nanorod 

monolayers over large areas (cm-scale), but the solid nature of the substrates 

used to template the array limits the possibilities for post-processing to vary 

monolayer properties such as the spacing between nanorods.  

In recent years, the self-assembly of particles at liquid interfaces has 

emerged as a powerful method for creating dimensionally confined 

nanostructures.138,158–160 Once these structures have been assembled at the liquid 

interface, the spacing between particles can be tuned through compression or the 

use of coated nanoparticles and the final structures can be transferred to a solid 

substrate and immobilised to create functional nanomaterials.160–164 For example, 

Kim et al. have recently demonstrated that they can prepare vertically aligned 

nanorod monolayers through the adsorption of gold nanorods (GNRs) at a liquid 

interface.149 Specifically, by exploiting the differential surface chemistry between 

the tips and sides of their GNRs and by a suitable choice of the two bulk liquid 

phases, they were able to engineer the end-on state to be the thermodynamic 
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ground state so that the GNRs spontaneously formed a vertically aligned 

monolayer at the liquid interface. However, while this assembly method is very 

attractive due to its simplicity, it is extremely challenging in general to engineer 

nanoparticles to have specific patchy particle surface chemistries, so this method 

may be challenging to generalize to other nanorod systems.  

A more generic method for assembling vertically aligned nanorods at a liquid 

interface has been proposed by de Graaf et al. which is based on adsorption 

kinetics rather than thermodynamics.21 Using a simple viscous-based Langevin 

model, these authors showed that the final orientation of cylindrical colloids at a 

liquid interface is determined by the ‘attack’ angle of the cylinder, i.e., the initial 

orientation of the cylinder when it first contacts the liquid interface. In particular, 

they showed that for a range of attack angles, the final orientation of the cylinder 

is the end-on state, even if the side-on state is the thermodynamic ground state. 

The range of attack angles which lead to the end-on state in turn depends on 

system parameters such as particle contact angle, aspect ratio and which bulk 

phase the cylinder approaches the liquid interface from. This assembly method 

relies on adsorption kinetics rather than the nanoparticles having a specific 

surface chemistry, therefore it is applicable to nanorod systems made from a wide 

range of materials and represents a versatile platform for engineering vertically 

aligned nanorods for specific applications.  

While the viscous-based model of de Graaf et al. serves as a useful initial guide to 

experiments, it does not include a number of important effects. Firstly, the model uses 

a physically unrealistic ratio for the translational to rotational friction coefficients.21,84 

Secondly, it neglects the deformation of the liquid meniscus around the adsorbing 

particle which is significant for particle adsorption in the low capillary number regime.18–
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20,25,63,67 Finally, the model neglects the effect of contact line pinning which has been 

shown to lead to adsorption kinetics which are orders of magnitude slower than what is 

predicted by viscous-based models.43,44,89 In principle, some of these limitations can be 

addressed using particle-based simulations such as Lattice-Boltzmann simulations.22 

However, it is not possible for current simulations to simultaneously achieve the very 

long timescales required to access the low capillary and Reynolds number regimes that 

are relevant to the experiments. We refer the reader to Section 2.2 for a more detailed 

discussion and comparison of the adsorption kinetics of anisotropic particles from both 

an experimental and theoretical perspective. 

In this chapter, we extended the Langevin model of de Graaf et al. to incorporate 

interfacial deformation, the correct ratio for particle friction coefficients and contact line 

pinning. Specifically, interfacial deformation was accurately captured in our model by 

coupling Langevin dynamics to a finite element model for the interface. Using this model, 

we were able to reproduce much of the reported experimental phenomenology for the 

adsorption of ellipsoidal particles. For example, we were able to quantitatively model 

the evolution of particle orientation with time in some experimental systems43, and even 

for systems where this was not possible, we were able to accurately model the 

adsorption trajectory (i.e., particle orientation vs. particle height) of the ellipsoids.44 

Since the range of attack angles giving rise to the end-on state is controlled by the 

adsorption trajectory rather than the dynamics of the individual adsorption coordinates 

per se (see later), our model allows us to accurately determine the final orientation 

nanorods at a liquid interface.  

The aim of this chapter is to use our Langevin model to study the adsorption 

kinetics of cylinders at a liquid interface in order to quantitatively determine the 

conditions required to prepare cylindrical nanorods in the end-on state. Our calculations 
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will help guide experiments to use adsorption kinetics as a low cost and versatile method 

for preparing vertically aligned nanorod monolayers as metamaterials.  

The rest of the chapter is organised as follows. In Section 5-2, we provide details 

of the Langevin model we use to study the adsorption kinetics of cylindrical particles at 

a liquid interface. In section 5-3, we use this theoretical model to determine the 

conditions required to kinetically assemble cylindrical nanorods into vertically aligned 

monolayers. Based on these theoretical results, in section 5-4 we discuss the feasibility 

of using our kinetic assembly method to experimentally prepare vertically aligned 

cylindrical nanorods at the liquid interface. Finally, in section 5-5 we present our 

conclusions.   

5.2 Theoretical Model 

5.2.1 Thermodynamics of Nanorod Adsorption 

We consider a cylindrical particle adsorbing at a liquid interface with long and 

short axis 𝑎𝑎, 𝑏𝑏 respectively and aspect ratio  𝑛𝑛 = 𝑤𝑤
𝑏𝑏

 (Figure 5-1). For definiteness, we 

refer to the top and bottom liquid phases as oil and water respectively. The 

configuration of the cylinder at any instant during its adsorption is described by two 

degrees of freedom, namely the height of the particle center relative to the height of 

the undisturbed interface ℎ, and the angle between the particle’s long axis and the 

normal to the undisturbed interface 𝜙𝜙. Note that we use the sign convention where the 

particle centre is in the water phase for ℎ < 0 and in the oil phase for ℎ > 0. Note also 

that due to symmetry, we only need to consider 𝜙𝜙 values in the range 0° ≤ 𝜙𝜙 ≤ 90°. 
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For sub-micron particles, which are the focus of this chapter, gravity is negligible 

and the free energy of the system is primarily due to interfacial energy and is therefore 

given by 48,84 

𝐹𝐹(ℎ,𝜙𝜙) = 𝛾𝛾𝑜𝑜𝑤𝑤𝑆𝑆𝑜𝑜𝑤𝑤 + 𝛾𝛾𝑜𝑜𝑜𝑜𝑆𝑆𝑜𝑜𝑜𝑜 + 𝛾𝛾𝑤𝑤𝑜𝑜𝑆𝑆𝑤𝑤𝑜𝑜                                                                                  ( 5-1 ) 

where 𝛾𝛾𝑜𝑜𝑤𝑤, 𝛾𝛾𝑜𝑜𝑜𝑜 and 𝛾𝛾𝑤𝑤𝑜𝑜 are the interfacial tensions and 𝑆𝑆𝑜𝑜𝑤𝑤, 𝑆𝑆𝑜𝑜𝑜𝑜 and 𝑆𝑆𝑤𝑤𝑜𝑜 are the areas 

of the oil/water, particle/oil and particle/water interfaces respectively. Using 𝑆𝑆𝑤𝑤𝑜𝑜 = 𝑆𝑆 −

𝑆𝑆𝑜𝑜𝑜𝑜 where 𝑆𝑆 is the total area of the particle, Young’s equation 𝛾𝛾𝑜𝑜𝑤𝑤 cos𝜃𝜃𝑤𝑤 = 𝛾𝛾𝑜𝑜𝑜𝑜 − 𝛾𝛾𝑤𝑤𝑜𝑜 

where 𝜃𝜃𝑤𝑤 is the contact angle and dropping irrelevant constant terms, we can simplify 

Equation 5-1 to 

𝐹𝐹(ℎ,𝜙𝜙) = 𝛾𝛾𝑜𝑜𝑤𝑤(𝑆𝑆𝑜𝑜𝑤𝑤 + cos 𝜃𝜃𝑤𝑤 𝑆𝑆𝑜𝑜𝑜𝑜)                                                                                         ( 5-2 ) 

 Note that we have neglected line tension contributions in Equations 5-1 and 5-2 as 

these are sub-dominant compared to interfacial tensions for the typical nanorod 

systems that we are considering where 𝑎𝑎, 𝑏𝑏 > 10𝑛𝑛𝑛𝑛.129  

For a given particle configuration (ℎ,𝜙𝜙), the free energy given by Equation 5-2 is 

calculated using the finite element package Surface Evolver.25,48,114 One problem with 

using finite element methods to study cylinders is that they become numerically 

Figure 5-1 Geometry of cylindrical nanorod adsorbing at a liquid interface. The illustrated nanorod has 

aspect ratio 𝑛𝑛 = 2.5 and sharpness parameter 𝜂𝜂 = 20. 
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unstable when the three phase contact line crosses the sharp edge of the cylinder.25 To 

overcome this problem, we approximate the cylinder using the super-ellipsoid 

equation117  

𝑔𝑔(𝑒𝑒,𝑦𝑦, 𝑧𝑧) = �𝜕𝜕
′

𝑤𝑤
�
𝜂𝜂

+ �𝜕𝜕
′

𝑏𝑏
�
2

+ �𝑧𝑧
′

𝑏𝑏
�
2

= 1                                                                               ( 5-3 ) 

where 𝜂𝜂 is an even integer that controls the sharpness of the cylinder edge, with 𝜂𝜂 = 2 

and 𝜂𝜂 = ∞  corresponding to the limiting cases of an ellipsoid and a cylinder with 

infinitely sharp edges respectively. In most of our calculations we use 𝜂𝜂 = 20 which 

corresponds to a cylinder with slightly rounded edges (see Figure 5-1), though we also 

consider lower values of 𝜂𝜂 in section 5.3.3 to model experimentally realistic cylinders 

which have more rounded edges. In Equation 5-3, 𝑒𝑒,𝑦𝑦, 𝑧𝑧  correspond to lab frame 

coordinates where 𝑧𝑧 and 𝑒𝑒,𝑦𝑦 lie perpendicular and parallel to the unperturbed liquid 

interface respectively (see Figure 5-1), 𝑒𝑒′, 𝑦𝑦′, 𝑧𝑧′ to particle frame coordinates where 𝑧𝑧′ 

and 𝑒𝑒′,𝑦𝑦′  lie along the long and short axes of the particle respectively, and the two 

coordinate systems are related to each other through a rotation of angle 𝜙𝜙 about the 𝑦𝑦-

axis.62  The particle height when it first contacts the liquid interface, ℎ𝑐𝑐(𝜙𝜙), is a key 

quantity in the adsorption process and can be determined from the condition that at 

the point of contact, the particle surface normal vector 𝛁𝛁𝑔𝑔(𝑒𝑒, 𝑦𝑦, 𝑧𝑧) is parallel to the 𝑧𝑧 

direction, where 𝛁𝛁 is the 3D grad operator in the lab frame and the function 𝑔𝑔 is given 

by Equation 5-3. Solving the three simultaneous equations 𝜕𝜕𝑔𝑔
𝜕𝜕𝜕𝜕

= 𝜕𝜕𝑔𝑔
𝜕𝜕𝜕𝜕

= 0 and Equation 5-

3 allows us to find the coordinates of the contact point and ℎ𝑐𝑐(𝜙𝜙) is given by the 𝑧𝑧 

contact coordinate.  

The interfacial areas and free energy in Equation 5-2 depend sensitively on 

the boundary condition at the three-phase contact line. The original study by de 

Graaf et al. assumed that the liquid meniscus remains flat.21 A more realistic 
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boundary condition is that the liquid meniscus is deformed due to the constant 

contact angle requirement.19,20,25,45,63,67,84 We call these boundary conditions ‘flat 

interface’ and ‘deformed interface’ respectively and consider both limiting cases 

in our study. For both cases, the interfacial energy 𝐹𝐹(ℎ,𝜙𝜙) is first calculated for 

(ℎ,𝜙𝜙) values on a 101×37 non-equidistant grid for ℎ ∈ [−ℎ𝑐𝑐(𝜙𝜙),ℎ𝑐𝑐(𝜙𝜙)] and 𝜙𝜙 ∈

[0,𝜋𝜋 2⁄ ] . The data on this grid are then interpolated with a third order 

interpolation scheme to yield the full energy landscape. To check that this grid 

resolution is sufficient, for selected cases we performed calculations on a higher 

resolution 202x180 grid and found no discernable differences in the final result. 

5.2.2 Kinetics of Nanorod Adsorption 

The adsorption trajectory of the cylinder is found by solving the Langevin 

equation for the particle at the liquid interface in the same manner as detailed in Section 

4.2. In the low Reynolds number regime where inertial forces are negligible, this is given 

by the scaled coupled differential equations 

𝑑𝑑ℎ∗

𝑑𝑑𝑤𝑤∗
= − 𝜕𝜕

𝜕𝜕ℎ∗
𝐹𝐹∗(ℎ∗,𝜙𝜙∗)                                                                                                              ( 5-4 ) 

𝑑𝑑𝑑𝑑∗

𝑑𝑑𝑤𝑤∗
= − 𝜕𝜕

𝜕𝜕𝑑𝑑∗
𝐹𝐹∗(ℎ∗,𝜙𝜙∗)                                                                                                             ( 5-5 ) 

We refer the reader to Section 4.2 for a full derivation and explanation of Equations 5-4 

& 5-5 and note that in the following we use an identical approach. 

By solving Equations 5-4 & 5-7, we obtain the adsorption trajectory (ℎ(𝑡𝑡),𝜙𝜙(𝑡𝑡)) 

for different attack angles, i.e., the initial orientations of the cylinder when it first 

contacts the liquid interface. In ref.84, we showed that the most accurate results for the 

adsorption trajectories of ellipsoids were obtained for the deformed interface boundary 

condition and Scaling 2. However, in order to compare our results with the previous 

work of de Graaf et al. and to study the impact of different contact line boundary 
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conditions and dynamical scaling’s on the adsorption kinetics of cylinders, in what 

follows we calculate the adsorption trajectories for three scenarios, a flat interface with 

Scaling 1, a deformed interface with Scaling 1 and a deformed interface with Scaling 2. 

In what follows, we refer to these three scenarios as models 1, 2 and 3 

respectively. 

5.3 Results 

5.3.1 Stable States of Cylinders at a Liquid Interface 

Before calculating the adsorption trajectories of cylindrical particles, we first 

calculate the stable states of the particles at a liquid interface (i.e., local or global energy 

minima) as these represent the end points of the adsorption trajectories. In Figure 5-2, 

we show the interfacial energy as a function of tilt angle 𝜙𝜙 for cylinders with different 

contact angles and aspect ratios, where the interfacial energy at each 𝜙𝜙 is minimised 

Figure 5-2 (a-h) Interfacial energy as a function of tilt angle ϕ  for cylinders with η = 20 , where the 

interfacial energy at each ϕ is minimised with respect to the particle height h, for contact angles θw = 90° 

(top row) and θw = 120° (bottom row) and for aspect ratios m = 1 (a, e), m = 2.5 (b, f), m = 5 (c, g) and 

m=9.5 (d, h). The dashed red lines and solid black lines are calculated using the flat interface model and 

deformed interface model respectively. (i) Energy barrier for transition from end-on state to side on state 

as a function of aspect ratio for cylinders with η = 20,  θw = 120° calculated using the deformed interface 

model. 
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with respect to the particle height ℎ. The top and bottom rows show results for neutrally 

wetting cylinders (𝜃𝜃𝑤𝑤 = 90° ) and hydrophobic cylinders (illustrated by 𝜃𝜃𝑤𝑤 = 120° ), 

while the first, second, third and fourth columns show results for aspect ratios 𝑛𝑛 =

1, 2.5, 5, 9.5. The dashed red lines and solid black lines are calculated using the flat 

interface model and deformed interface model respectively. We see that the deformed 

interface model generally yields a lower energy compared to the flat interface model at 

any given value of 𝜙𝜙. This is not surprising since the constant contact angle condition 

comes from minimizing interfacial energy. Note that the stable states of the system are 

independent of the assumed dynamical scaling model. 

For neutrally wetting cylinders (Figure 5-2(a)-(d)), both the flat and deformed 

interface models predict that there is only one stable orientation for the cylinder. 

Specifically, for 𝑛𝑛 = 2.5 and 5, the equilibrium state is the side-on state 𝜙𝜙 = ±90° 

while for 𝑛𝑛 = 1, the equilibrium state is the tilted state, with a tilt angle 𝜙𝜙 = ±49.6° 

for the deformed interface model (note that positive and negative 𝜙𝜙  represent 

equivalent states). These results are in good agreement with a previous study25 where 

it was shown that below a critical aspect ratio of 𝑛𝑛𝑐𝑐 = 2.3, the equilibrium orientation 

of neutrally wetting cylinders at a liquid interface transitions from the side-on state to 

the tilted state.  

In contrast, for hydrophobic cylinders (Figure 5-2(e)-(h)), both models predict 

that, provided the aspect ratio is not too large, there are two stable cylinder orientations, 

namely the side on state 𝜙𝜙 = ±90°  and the end-on state 𝜙𝜙 = 0°  with the cylinders 

being mainly immersed in the oil phase in both states, i.e., ℎ > 0, see Figure 5-3(b)-(d). 

For small aspect ratio cylinders 𝑛𝑛 = 1, the deformed interface model predicts that the 

end-on state is the ground state and the side-on state is metastable. On the other hand, 

for larger aspect ratio cylinders 𝑛𝑛 = 2.5, 5, both models predict that the side-on state 
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is the ground state, and the end-on state is metastable. In Figure 5-2(i), we plot the 

energy barrier stabilising the end-on state against the side-on state as a function of 

aspect ratio calculated using the deformed interface model. We see that the energy 

barrier decreases with increasing aspect ratio and indeed disappears altogether for 𝑛𝑛 =

9.5 (Figure 5-2(h)) so that only the side-on state is stable for 𝑛𝑛 ≥ 9.5. Finally, we note 

that a hydrophilic cylinder whose contact angle is the same distance away from the 

neutrally wetting condition (i.e., 𝜃𝜃𝑤𝑤 = 60° in this case) would have exactly the same 

orientational energy landscape as shown in Figure 5-2(e)-(h) except for the fact that the 

stable states of the cylinder would now be mainly immersed in the water phase, i.e., 

ℎ < 0.  

The end on state is meta-stable for non-neutrally wetting particles while the 

adsorbtion energy decreases for non-wetting particles as is evidenced in Figure 5-2. An 

implication here is that given a slight deviation from the globally stable state, say from 

transient contact line pinning site, there is a larger thermodynamic driver toward 

equilibrium for the non-neutrally wetting system than for the non-wetting system for 

equivilent parameters. For example, if we inspect Figure 5-2 tiles(b) & (f) and imagine 

both systems are transiently pinned at 𝜙𝜙 = 45° then the energy difference relative to 

the ground state is aprroximately 2𝛾𝛾𝑏𝑏2 for the wetting particle and 4𝛾𝛾𝑏𝑏2 in the non-

wetting case. 

5.3.2 Adsorption Kinetics of Cylinders at a Bare Liquid Interface 

For convenience, we represent the adsorption trajectories of the cylindrical 

system using phase plane diagrams.21,84,165 This is illustrated in Figure 5-3(a) where we 

show the adsorption trajectories for a hydrophobic cylinder with aspect ratio 𝑛𝑛 = 2.5 

for model 3 (deformed interface + Scaling 2) in the ℎ  vs. 𝜙𝜙  plane for ℎ ∈
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[−ℎ𝑐𝑐(𝜙𝜙),ℎ𝑐𝑐(𝜙𝜙)] and 𝜙𝜙 ∈ [0,𝜋𝜋 2⁄ ]. The solid red curves represent the height of the 

cylinder when it first contacts the liquid interface as a function of particle orientation 

ℎ𝑐𝑐(𝜙𝜙), with the left and right curve representing contact from the water and oil side 

respectively. The two black dots represent the stable states of the cylinder calculated in 

the previous section, with the dots at 𝜙𝜙 = 0°, 90° representing the end-on and side-on 

states respectively. The solid black curves are parametric plots of the adsorption 

trajectories of the cylinder (ℎ(𝑡𝑡),𝜙𝜙(𝑡𝑡)), with all trajectories starting from the contact 

curves and flowing towards one of the two stable states as indicated by the arrows. To 

help visualize what these trajectories mean physically, in Figure 5-3(a) we have 

highlighted three trajectories in bold and show snapshots of the cylinder at different 

stages of the adsorption process along these trajectories in Figure 5-3(b)-(d). The dashed 

green line represents the ‘dynamical attractor’ to which many adsorption trajectories 

Figure 5-3 (a) Adsorption trajectories for a cylindrical nanorod with θw = 120° , m = 2.5 , η = 20  

calculated from model 3 (i.e., deformed interface + Scaling 2) in the h vs. ϕ phase plane. The solid red 

curves represent the height of the cylinder when it first contacts the liquid interface as a function of 

particle orientation hc(ϕ). The black dots represent the stable states of the cylinder, the solid black curves 

are the adsorption trajectories, the dashed green curve is the dynamical attractor and the purple dashed 

line is the separatrix. The trajectories are superposed on contour plots of the free energy landscape. To 

help visualize what the adsorption trajectories mean physically, in (b) – (d) we show snapshots of the 

cylinder at different stages of the adsorption process along the three trajectories highlighted in (a). 
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are attracted at the later stages of the adsorption process. Figure 5-3(a) shows us that 

the range of faverable angles resulting in the end on state depends on the starting phase 

of adsorbtion. There is no reason why the faverable angle range should be the same for 

both phases outside of the neutrally wetting regime as we know that the molecular 

interactions between say, a hydrophobic particle and oil, are different from the same 

hydrophobic particle and water. 

All the features in the phase plane that have been discussed so far also appear 

for adsorbing ellipsoids.165 However, as non-neutrally wetting cylinders possess two 

stable states rather than just one, a new feature emerges called the ‘separatrix’ which 

is given by the dashed pink line. The separatrix divides the phase plane into two 

attractive regions such that all flow lines originating from points in a given region will 

flow towards the stable point associated with that region, see Figure 5-3. Recall that the 

main aim of this chapter is to use adsorption kinetics to prepare cylinders in the end-on 

state. We are therefore particularly interested in where the separatrix intersects the two 

contact lines. These intersections are the boundary attack angles 𝜙𝜙0 which tell us the 

range of particle attack angles which will lead to the end-on state. 

In principle, the attractor and the separatrix lines are defined as the locus 

of points in (ℎ,𝜙𝜙) space where the eigenvectors of the Hessian matrix 𝛁𝛁𝛁𝛁𝑘𝑘𝐹𝐹∗ 

with positive and negative eigen values respectively (i.e., with positive and 

negative principle curvatures respectively) are parallel to the gradient of the free 

energy 𝛁𝛁𝐹𝐹∗ , where 𝛁𝛁 = � 𝜕𝜕
𝜕𝜕ℎ∗

, 𝜕𝜕
𝜕𝜕𝑑𝑑∗�  is the grad operator in (ℎ∗,𝜙𝜙∗)  space.21,84  

However, since calculating second derivatives is very noisy numerically, we 

instead calculate these lines by calculating the adsorption trajectories for multiple 

attack angles in order to identify the boundary attack angles at each of the two 

contact lines. The trajectories starting from attack angles just above and just 
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below these boundary angles will then essentially trace out the separatrix and 

attractor lines.  

From section 5.3.1, we saw that only non-neutrally wetting cylinders can exist in 

the end-on state that we are targeting in this study. Therefore the focus of this chapter 

will be on the adsorption trajectories of non-neutrally wetting cylinders. However, for 

completeness the adsorption of neutrally wetting cylinders is discussed in the following. 

In Figure 5-4, we present the adsorption trajectories for neutrally wetting 

cylinders ( 𝜃𝜃𝑤𝑤 = 90° ) with different aspect ratios calculated using different 

assumptions. Specifically, the top, middle and bottom row show results for aspect 

Figure 5-4 Adsorption trajectories of cylindrical nanorods with θw = 90°, η = 20 for aspect ratio 

m = 1  (top row), m = 2.5  (middle row), m = 5  (bottom row) calculated from model 1 (left 

column), model 2 (middle column) and model 3 (right column). The solid red curves are the height 

of the cylinder when it first contacts the liquid interface as a function of particle orientation hc(ϕ), 

the red dots are the stable states of the nanorod and the solid black curves are the adsorption 

trajectories. The trajectories are superposed on contour plots of the free energy landscape. 
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ratios 𝑛𝑛 = 1, 2.5 and 5 respectively. On the other hand, the left, middle and right 

columns show the results for model 1 (flat interface + Scaling 1), model 2 (flat 

interface + Scaling 2) and model 3 (deformed interface + Scaling 2). For 𝑛𝑛 = 2.5 

and 5 , the equilibrium state is the side-on state 𝜙𝜙 = ±90°  while for 𝑛𝑛 = 1 , the 

equilibrium state is the tilted state, with a tilt angle 𝜙𝜙 = ±49.6°  for the deformed 

interface model. These stable states are represented by the red dots in Figure 5-4. Since 

there is only one stable state in each case, the phase plane diagram for neutrally wetting 

cylinders dose not possess a separatrix.  

We next consider the impact of the calculational model used on the 

adsorption process of cylinders. For all the aspect ratios shown in Figure 5-4, we 

see that for model 1, there is generally strong non-monotonic variation of the 

particle orientation 𝜙𝜙  along the adsorption trajectory, with 𝜙𝜙  initially moving 

away from the stable state orientation before moving towards the stable state 

value at the later stages of the adsorption. However, as we go to model 2 then to 

model 3, the non-monotonic variation of 𝜙𝜙  is either strongly reduced or 

disappears altogether. Finally, we note that for neutrally wetting cylinders with 

𝑛𝑛 = 2.5 & 𝑛𝑛 = 5 the adsorption trajectories of particles approaching the liquid 

interface from the oil side do not converge onto the same dynamical attractors as 

particles approaching from the water side. Indeed, dynamical attractors are 

absent altogether for neutrally wetting cylinders where 𝑛𝑛 = 1. Note that the 

absence of dynamical attractors for neutrally wetting particles is consistent with 

what we observed for the adsorption of ellipsoids at liquid interfaces in the 

previous chapter. 

We now turn our attention to hydrophobic particles with contact angle 𝜃𝜃𝑤𝑤 =

120°, but as we shall see later, our results can be readily generalized to hydrophilic 
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particles. We consider the idealized case of a cylinder with a relatively sharp edges 

(sharpness parameter 𝜂𝜂 = 20) adsorbing at a bare liquid interface. In the next section, 

we will extend this simple model to include experimentally relevant factors such as the 

rounding of the cylinder edge and interactions with other nanorods for nanorods 

adsorbing at an interface with pre-adsorbed nanorods.  

In Figure 5-5, we present the adsorption trajectories for hydrophobic 

cylinders with different aspect ratios calculated using several different 

assumptions. Specifically, the top, middle and bottom row show results for aspect 

Figure 5-5 Adsorption trajectories of cylindrical nanorods with 𝜃𝜃𝑤𝑤 = 120°, 𝜂𝜂 = 20 for aspect ratio 𝑛𝑛 = 1 

(top row), 𝑛𝑛 = 2.5 (middle row), 𝑛𝑛 = 5 (bottom row) calculated from model 1 (left column), model 2 

(middle column) and model 3 (right column). The solid red curves are the height of the cylinder when it first 

contacts the liquid interface as a function of particle orientation ℎ𝑐𝑐(𝜙𝜙), the black dots are the stable states 

of the nanorod, the solid black curves are the adsorption trajectories, the dashed green curves are the 

dynamical attractor and the purple dashed lines are the separatrices. The trajectories are superposed on 

contour plots of the free energy landscape. 
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ratios 𝑛𝑛 = 1, 2.5 and 5 respectively. On the other hand, the left, middle and right 

columns show the results for model 1 (flat interface + Scaling 1), model 2 (flat 

interface + Scaling 2) and model 3 (deformed interface + Scaling 2) respectively. 

For all the aspect ratios shown in Figure 5-5, we see that for model 1, there is 

generally strong non-monotonic variation of the particle orientation 𝜙𝜙 along the 

adsorption trajectory, with 𝜙𝜙  initially moving away from the stable state 

orientation before moving towards the stable state value at the later stages of 

the adsorption. However, as we go to model 2 then to model 3, the non-

monotonic variation of 𝜙𝜙 is either strongly reduced or disappears altogether. This 

trend was also seen in our earlier study of ellipsoids where we found that the non-

monotonic variation in 𝜙𝜙 was strongly suppressed in going from model 1 to model 

3.84 We also note that model 3 agrees best with experiments on ellipsoid 

adsorption which found that particle orientation varied monotonically with time 

during the adsorption process.43,44  

Interestingly, for the aspect ratios shown in Figure 5-5, all three models 

showed very similar dynamic attractor lines. This result is again consistent with 

our earlier results for ellipsoids where we found that, far from the neutrally 

wetting regime, the attractor line becomes essentially insensitive to the assumed 

dynamic scaling model or contact line boundary condition.84 In contrast, the 

specific calculational model used has a strong impact on the shape of the 

separatrix line. Specifically, in going from model 1 to model 2, the boundary attack 

angle on the left contact line (i.e., particle attaching from water side) is 

significantly increased, while in going from model 2 to model 3, that boundary 

angle is significantly decreased again. On the other hand, there is very little 

change in the boundary attack angle on the right contact line (i.e., particle 
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attaching from the oil side) in going from model 1 to model 2 to model 3. The net 

result is that when we change both the dynamical scaling model from Scaling 1 to 

Scaling 2 and the contact line boundary condition from flat to deformed interface, 

there is little change in the left and right boundary attack angles, suggesting that 

there is a cancellation of errors between these two model assumptions.  

We next consider the impact of particle aspect ratio on the adsorption 

process of cylinders. Since we have shown previously in chapter four that model 

3 yields the most accurate results, we will focus on model 3 for this discussion 

(i.e., right column of Figure 5-5). From Figure 5-5, we note that for all aspect ratios, 

the left boundary attack angle is always smaller than the right boundary attack 

angle. Furthermore, as we increase the aspect ratio from 𝑛𝑛 = 1 to 𝑛𝑛 = 5, the 

left boundary attack angle is reduced from 𝜙𝜙0 ≈ 10°  at 𝑛𝑛 = 1  to 𝜙𝜙0 ≈ 0°  for 

𝑛𝑛 = 5. In contrast there is very little change in the right boundary attack angle, 

with the attack remaining essentially constant at 𝜙𝜙0 ≈ 50° as we increase the 

aspect ratio from 𝑛𝑛 = 1 to 𝑛𝑛 = 5. Finally, we note that although our discussion 

so far has focussed on hydrophobic cylinders, all our conclusions also apply to 

hydrophilic cylinders so long as we recognise that the phase plane diagrams in 

this case should be reflected about the ℎ = 0 line. In particular, this means that 

in order to maximize the range of attack angles leading to the end-on state, 

hydrophilic cylinders should be adsorbed onto the liquid interface from the water 

side.   

Based on our discussion above, we conclude that the optimum condition 

for preparing cylindrical nanorods in the end-on state is to adsorb the nanorods 

from their energetically favorable phase, i.e., hydrophobic particles should be dispersed 

in the oil phase and hydrophilic particles in the water phase. Surprisingly, when particles 
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adsorb from the energetically favorable phase, the range of attack angles giving rise to 

the end-on state is only weakly dependent on the aspect ratio of the cylinders. This 

means that it should be possible to use the kinetic assembly method to prepare vertically 

aligned cylindrical nanorods with different aspect ratios, giving us the flexibility to tune 

the aspect ratio for different application (e.g., tune plasmonic modes for sensing 

applications). The caveat is that, while the aspect ratio may not be limited by adsorption 

kinetics, the end-on state becomes kinetically unstable when the aspect ratio of 

the cylinders 𝑛𝑛 ≥ 10. This effect sets the main limiting factor for the cylinder 

aspect ratios that can be assembled using our kinetic method. 
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5.3.3 Adsorption Kinetics of Experimentally Realistic Nanorods 

In the previous section we considered the adsorption of cylinders with sharp 

edges at a bare liquid interface. In real experimental systems, the nanorods generally 

have more rounded edges and adsorption often occurs at a crowded monolayer where 

interactions with other pre-adsorbed nanorods could be important. In this section, we 

study the impact of these factors on nanorod adsorption.  

We first consider the effect of edge rounding. In Figure 5-6(a), we show a 

transmission electron micrograph of a GNR from ref.11 with diameter 48𝑛𝑛𝑛𝑛 , length 

120𝑛𝑛𝑛𝑛  and aspect ratio 𝑛𝑛 = 2.5 . We also superpose on the micrograph outlines 

calculated from the super-ellipsoid Equation 5-3 for the same aspect ratio and various 

sharpness parameter values 𝜂𝜂. From Figure 5-6(a), we see that the edges of the GNR are 

Figure 5-6 (a) Transmission electron micrograph image(reproduced from 11)  of experimental GNR with 

aspect ratio m=2.5 from ref.11 together with outlines calculated from the super-ellipsoid equation Eq.5-

3 for the same aspect ratio and various sharpness parameter values η. (b) interfacial energy as a function 

of tilt angle 𝜙𝜙 for cylindrical nanorods with aspect ratio 𝑛𝑛 = 2.5, contact angle 𝜃𝜃𝑤𝑤 = 120° and sharpness 

parameter 𝜂𝜂 = 4 (solid black line) or 𝜂𝜂 = 20 (dashed red line), where the interfacial energy at each 𝜙𝜙 is 

minimised with respect to the particle height ℎ. (c) Adsorption trajectories of nanorods with 𝑛𝑛 = 2.5, 

𝜃𝜃𝑤𝑤 = 120° and 𝜂𝜂 = 4 (solid lines) or 𝜂𝜂 = 20 (dashed lines). The black and open dots represent the stable 

states for 𝜂𝜂 = 4 and 20  respectively, while the black, green and purple lines are respectively the 

adsorption trajectories, dynamic attractor and separatrix. 
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more rounded than 𝜂𝜂 = 20. Although it is difficult to assign a unique 𝜂𝜂 value to the GNR 

because it does not fully conform to the super-ellipsoid shape (indeed there is evident 

faceting of the GNR ends in this system), we can see that the GNR has an effective 

sharpness parameter lying between 4 ≤ 𝜂𝜂 ≤ 12. In what follows we set 𝜂𝜂 = 4 to give 

us an upper bound estimate for the influence of edge rounding on the adsorption 

trajectory of cylindrical nanorods and we compare these results to the case 𝜂𝜂 = 20 that 

we considered in the previous section.  

In Figure 5-6(b), we show the interfacial energy as a function of tilt angle 𝜙𝜙 for 

cylindrical nanorods with aspect ratio 𝑛𝑛 = 2.5, contact angle 𝜃𝜃𝑤𝑤 = 120° and sharpness 

parameter 𝜂𝜂 = 4 (solid black line) and 𝜂𝜂 = 20 (dashed black line) where the interfacial 

energy at each 𝜙𝜙  is once again minimised with respect to the particle height ℎ . 

Surprisingly, even though the edge is strongly rounded for 𝜂𝜂 = 4 (see Figure 5-6(a)), the 

end-on state is still a metastable state. In addition, although edge rounding clearly 

reduces the energy barrier stabilising the end-on state, the barrier for 𝜂𝜂 = 4  is still 

significant. For example, for a nanorod system with 𝜂𝜂 = 4, 𝑛𝑛 = 2.5, 𝜃𝜃𝑤𝑤 = 120°, 𝛾𝛾𝑜𝑜𝑤𝑤 ≈

30 mN/m and 𝑏𝑏 = 25 nm, the energy barrier is Δ𝐹𝐹 ≈ 1000𝑘𝑘𝑇𝑇 so that the end-on state 

is still kinetically stable. Evidently even for 𝜂𝜂 = 4 , the nanorod end is sufficiently 

flattened to stabilize the endo-on state. In contrast, the end-on state is unstable for 

ellipsoids due to the absence of a flattened end.21,22,84 

In Figure 5-6(c), we show the phase plane diagram for the adsorption of 

nanorods with 𝑛𝑛 = 2.5, 𝜃𝜃𝑤𝑤 = 120°  and 𝜂𝜂 = 4  (solid lines) or 𝜂𝜂 = 20 (dashed lines). 

The black and open dots represent the stable states for 𝜂𝜂 = 4 and 20 respectively and 

we see that increasing the rounding of the edges reduces the heights of both the side-

on stable state (dots at 𝜙𝜙 = 𝜋𝜋 2⁄ ) and end-on stable state (dots at 𝜙𝜙 = 0 ). This 

reduction is not surprising since when the edges are rounded, the hydrophobic nanorod 
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can satisfy the constant contact angle condition by being immersed in the lower water 

phase more (see Figure 5-6(a)). We also see that changing the rounding of the edges 

leads to discernable changes in the adsorption trajectories (black lines), dynamic 

attractor (green lines) and separatrix (pink lines). In particular, the range of attack angles 

leading to the end-on state is slightly decreased and increased respectively for particles 

approaching from the oil side and the water side. However, the changes in Figure 5-6(c) 

are relatively small and none of the key features in in the phase plane diagram are 

changed qualitatively when we decrease 𝜂𝜂. We therefore conclude that the adsorption 

process is not significantly affected by edge-rounding and the sharp cylinders we have 

considered in the previous section therefore provide a good description for the 

adsorption kinetics of nanorods with experimentally realistic rounding.  

5.3.4 Adsorption Kinetics of Cylindrical Nanorods at a Populated Interface 

We now consider the effect of interactions with pre-adsorbed nanorods on the 

adsorption kinetics. In principle, we can calculate this effect by including many pre-

adsorbed nanorods in our simulation and doing an ensemble average over the 

configurations of these nanorods. However, since such a calculation is too expensive in 

Surface Evolver, we instead use a simplified model to mimic the effect of the other 

nanorods. Specifically, as shown in Figure 5-7(a), we assume that the 𝑒𝑒,𝑦𝑦-coordinate of 

the centre of the adsorbing nanorod (colored in green) is in the center of a hexagonal 

lattice with lattice constant 𝑆𝑆 while the pre-adsorbed nanorods (coloured in yellow), 

assumed to be in the end-on state, are represented by the nearest and next-nearest 

neighbors in the hexagonal lattice. For definiteness, we further assume that the 

projection of the long axis of the adsorbing particle on the 𝑒𝑒, 𝑦𝑦-plane is parallel to one 
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of the lattice vectors of the hexagonal lattice and consider a moderately dense 

monolayer with 𝑆𝑆 = 3𝑎𝑎. We remark here that our goal in this highly simplified ensemble 

model is to probe what the effect of pre-absorbed, equilibrated particles may have on 

particles in the process of adsorbing. As such we are constrained by the chosen 

methodology to make a choice as to the specific configuration of the preabsorbed 

particles. Should we have chosen even a single cylinder in its globally stable state, along 

with its quadrupolar deformation, its in plane orientation would also need to be decided 

upon and the associated effects on its neighbors. We hope it is clear that this situation 

would rapidly result in an exponential increase in the degrees of freedom for the 

simulations which the model is not suited to study due to the computational cost such 

Figure 5-7 (a) Top view of simplified model used to study the adsorption kinetics of a nanorod at a 

monolayer with pre-adsorbed nanorods. The adsorbing nanorod (colored in green) is in the center of a 

hexagonal lattice with lattice constant S while the pre-adsorbed nanorods (coloured in yellow), assumed 

to be in the end-on state, are represented by the nearest and next-nearest neighbors in the hexagonal 

lattice. (b) Adsorption trajectories of nanorods with m = 2.5, θw = 120° and η = 20 for a monolayer 

with S = 3a (solid lines) or for a bare interface (dashed lines). The stable states for the monolayer and 

the bare interface are represented by the red and green dots respectively, but only the red dots are visible 

as the stable states in both cases are essentially the same. The black, green and purple lines are 

respectively the adsorption trajectories, dynamic attractor and separatrix. 



- 103 - 

a change introduces. We justify such a choice firstly, as our stated goal is to build a 

simplistic model which captures the salient physics of the system in order to reproduce 

such nanorod forests. Secondly, we only hope to parameterize boundary conditions for 

experiments to try to achieve such states. A deeper analysis would be far more suited 

to alternate simulation methods such as Monte Carlo simulations or lattice Boltzmann 

studies. Finally, we note that the open lattice shown in Figure 5-7(a) is not the final 

equilibrium state of the system but represents a transient arrangement of the rods 

during the adsorption process. 

In the following, we estimate the range of dispersion forces for gold nanorods 

(GNRs) adsorbed at or approaching an oil/water interface in order to verify they can be 

safely neglected for interparticle distances under consideration. For vertical hydrophilic 

nanorods with length 𝐿𝐿 = 2𝑎𝑎, radius 𝑏𝑏 which are attached to the oil/water interface and 

primarily immersed in the water phase, the dispersion interaction energy between two 

nanorods with surface-to-surface separation 𝑑𝑑 through the water phase is given by166 

𝑈𝑈(𝑑𝑑) = −𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝑏𝑏1 2⁄

24𝑑𝑑3 2⁄                                                                                                               ( 5-6 ) 

where 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 is the Hamaker constant for gold interacting with gold through water. By 

setting the interaction energy in Equation 5-6 to the thermal energy 𝑘𝑘𝑇𝑇 and rearranging, 

we find that the critical distance between two GNRs below which dispersion forces 

become significant is  

𝑑𝑑𝑐𝑐1 = �𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝑏𝑏1 2⁄

24𝑘𝑘𝑘𝑘
�
2 3⁄

                                                                                                            ( 5-7 ) 

For 𝐿𝐿 = 120 nm, 𝑏𝑏 = 25 nm and 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴 = 4 × 10−20 J166 we find 𝑑𝑑𝑐𝑐1 ≈ 200 nm. We 

estimate that the dispersion forces between the GNRs only become significant for 

nanorod separation ≲ 200 nm.  Dispersion forces therefore do not play a significant role 
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in the initial and intermediate stages of the adsorption process when the typical 

separation between nanorods is much greater than this value. 

For a hydrophilic GNR approaching the oil/water interface from the water side, 

if we approximate the nanorod tip closest to the interface as a sphere of radius 𝑏𝑏, the 

dispersion interaction energy between the nanorod and the oil phase with surface-to-

surface separation 𝑑𝑑 is166 

𝑈𝑈(𝑑𝑑) = −𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏
6𝑑𝑑

                                                                                                                      ( 5-8 ) 

where 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 is the Hamaker constant for gold interacting with oil through water which 

can be calculated from 𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = �𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 where 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 is the Hamaker constant 

for oil interacting with oil through water.166 Setting the interaction energy in Equation 

5-8 to the thermal energy, we find the critical distance between the GNR and the 

interface below which dispersion forces become important to be  

𝑑𝑑𝑐𝑐2 = 𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏
6𝑘𝑘𝑘𝑘

.                                                                                                                             ( 5-9 ) 

For 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 0.5 × 10−20 J166 and 𝑏𝑏 = 25 nm we find 𝑑𝑑𝑐𝑐2 ≈ 40 nm.   Similarly, for 

a hydrophilic GNR approaching the oil-water interface from the water side, we estimate 

that the dispersion force between the GNR and the oil phase is significant only for 

surface-to-surface separations ≲ 40 nm. Dispersion forces therefore only attract the 

GNR towards the interface when the GNR is quite close to the interface. They are also 

sub-dominant compared capillary forces once the nanorods have adsorbed onto the 

interface158 and therefore do not play a significant role in determining the adsorption 

trajectory of the nanorods. However, dispersion forces will play a significant role in the 

final stages of the adsorption process as the final equilibrium separation is determined 

by balancing the attractive dispersion forces and repulsive forces (e.g., steric forces due 

to polymeric coatings) between nanorods. Finally, we note that since the energy barrier 
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stabilizing the end-on state of typical nanorods is much greater than the thermal energy 

as discussed earlier, we anticipate that the effect of orientational fluctuations of the 

neighboring nanorods on our calculations will be small. 

In Figure 5-7(b), we show the phase plane diagram for particle adsorption at the 

monolayer described above (solid lines) and at a bare liquid interface (dashed lines). The 

stable states for the monolayer and the bare interface cases are represented by the red 

and green dots respectively but note that only the red dots are visible as the stable states 

in both cases are either very close or the same. The fact that the end-on state is the 

same for both monolayers and bare interfaces is as we expect since nanorods in the end-

on state do not generate any interfacial deformations and hence no capillary 

interactions between the adsorbed and pre-adsorbed rods. We also see that 

interactions with pre-adsorbed nanorods lead to discernable changes in the adsorption 

trajectories (black lines) but hardly any changes to the dynamic attractor (green lines) 

and separatrix (pink lines). In particular, the range of attack angles leading to the end-

on state is essentially unchanged for particles approaching from either the oil side or the 

water side, and none of the key features in in the phase plane diagram are changed 

qualitatively for nanorod adsorption at a dense monolayer. From our analysis in this 

section, we therefore conclude that the adsorption of cylinders with sharp edges at a 

bare liquid interface serves as an accurate predictive model for particle adsorption in 

experimentally realistic nanorod systems.   

5.4 Discussion 

Based on our results in the previous section, we now discuss the feasibility of using 

adsorption kinetics to experimentally prepare vertically aligned cylindrical nanorods at 

the liquid interface. As we shall see later, it is easier to use an external electric field to 
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align metallic nanorods when they are in the more polar medium. In our following 

discussion, we therefore consider hydrophilic GNRs with long and short axis 𝑎𝑎 = 25 𝑛𝑛𝑛𝑛 

and 𝑏𝑏 = 10 𝑛𝑛𝑛𝑛 respectively (i.e., 𝑛𝑛 = 2.5) approaching the interface from the water 

side. Our earlier calculations showed that the final state of such GNRs is the end-on state 

for initial attack angles less than  𝜙𝜙0 ≈ 50°. We can visualise the initial orientation of 

the GNR as a point on a hemisphere with radius unity (hemisphere since the range of 𝜙𝜙 

is 0° ≤ 𝜙𝜙 ≤ 90°). Since the initial orientation of these sub-micron particles is essentially 

random due to Brownian motion, the ensemble of initial GNR orientations can be 

represented by points which are uniformly distributed over the hemisphere. The 

fraction of particles contacting the interface that will end up in the end-on state 𝑓𝑓0 is 

therefore the fraction of the hemisphere occupied by a spherical cap which subtends an 

angle of 𝜙𝜙0 at the centre of the hemisphere, i.e.,  

𝑓𝑓0 =
2𝜋𝜋 ∫ sin𝑑𝑑𝑑𝑑𝑑𝑑𝜙𝜙0

0
2𝜋𝜋

= 1 − cos𝜙𝜙0                                                                                          ( 5-10 ) 

For 𝜙𝜙0 = 50°, this yields 𝑓𝑓0 = 0.36. Although substantial, this fraction is too small to 

create high quality vertically aligned monolayers.  

We can increase this fraction by pre-aligning the GNRs in the bulk phase with an 

external electric field that is perpendicular to the liquid interface (see Figure 5-8) so that 

more GNRs have attack angles less than 𝜙𝜙0 when they approach the interface. In the 

presence of such a field, the energy of a GNR as a function of its orientation is given by130 

𝑈𝑈(𝜙𝜙) = −1
2
Δ𝛼𝛼(𝐸𝐸 cos𝜙𝜙)2                                                                                                     ( 5-11 ) 

where 𝐸𝐸  is the electric field strength and Δ𝛼𝛼 = 𝛼𝛼∥ − 𝛼𝛼⊥  is the difference in the 

polarizability of the GNR along the long and short axis. Equation 5-11 predicts that, as 

we would expect, the lowest energy state occurs when the GNR is parallel to the electric 

field. In order to estimate 𝛼𝛼∥, 𝛼𝛼⊥, we approximate the GNR is an ellipsoid, allowing us to 
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calculate the polarizabilities analytically.167 This approximation is reasonable given the 

significant rounding of the GNRs edges in typical experimental systems (see Figure 5-

6(a)). In this case we have167  

𝛼𝛼∥ = 𝜀𝜀𝑤𝑤𝜀𝜀0
𝑉𝑉
𝑚𝑚∥

                                                                                                                               ( 5-12 ) 

𝛼𝛼⊥ = 𝜀𝜀𝑤𝑤𝜀𝜀0
𝑉𝑉
𝑚𝑚⊥

                                                                                                                             ( 5-13 ) 

where 𝜀𝜀𝑤𝑤 is the relative permittivity of the bulk phase, 𝜀𝜀0 is the permittivity of vacuum, 

𝑉𝑉 = 4
3
𝜋𝜋𝑎𝑎𝑏𝑏2is the volume of the ellipsoid, 𝑛𝑛∥, 𝑛𝑛⊥ are depolarizing factors along the long 

and short axis given by 

𝑛𝑛∥ = 1−𝜖𝜖2

2𝜖𝜖3
�ln 1+𝜖𝜖

1−𝜖𝜖
− 2𝜖𝜖�                                                                                                          ( 5-14 ) 

𝑛𝑛⊥ = 1
2

(1 − 𝑛𝑛𝑤𝑤)                                                                                                                       ( 5-15 ) 

and 𝜖𝜖 = �1 − 1 𝑛𝑛2⁄  is the eccentricity of the ellipsoid.  

In the presence of an electric field, the fraction of GNRs with attack angles in the 

range 𝜙𝜙 to 𝜙𝜙 + 𝑑𝑑𝜙𝜙 is given by the Boltzmann factor  

𝑃𝑃(𝜙𝜙)𝑑𝑑𝜙𝜙 = 𝐴𝐴𝑒𝑒−𝑈𝑈(𝑑𝑑)/𝑘𝑘𝑘𝑘2𝜋𝜋 sin𝜙𝜙𝑑𝑑𝜙𝜙                                                                                    ( 5-16 ) 

where 𝐴𝐴 is a normalisation constant given by the condition ∫ 𝑃𝑃(𝜙𝜙)𝑑𝑑𝜙𝜙𝜋𝜋 2⁄
0 = 1 and 𝑈𝑈(𝜙𝜙) 

is given by Equation 5-11. The fraction of GNRs with attack angles less than 𝜙𝜙0  is 

therefore given by  

𝑓𝑓 = ∫ 𝑃𝑃(𝜙𝜙)𝑑𝑑𝜙𝜙𝑑𝑑0
0                                                                                                                       ( 5-17 ) 

Substituting the above equations into Equation 5-17 and changing variables to 𝑢𝑢 =

cos𝜙𝜙, the fraction of GNRs contacting the interface that end up in the end-on state as a 

function of the applied electric field is therefore given by 
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𝑓𝑓(𝜅𝜅) =
∫ 𝑤𝑤𝜅𝜅𝐴𝐴

2
𝑑𝑑𝐴𝐴1

𝐴𝐴0

∫ 𝑤𝑤𝜅𝜅𝐴𝐴2𝑑𝑑𝐴𝐴1
0

                                                                                                                      ( 5-18 ) 

where 𝑢𝑢0 = cos𝜙𝜙0 and 

𝜅𝜅 = Δ𝛼𝛼𝐸𝐸2

2𝑘𝑘𝑘𝑘
                                                                                                                                     ( 5-19 ) 

In Figure 5-8, we plot 𝑓𝑓 as a function of the effective field strength 𝜅𝜅 for 𝜙𝜙0 =

50°. We see that 𝑓𝑓 increases with increasing 𝜅𝜅 as we would expect, starting at 𝑓𝑓 = 𝑓𝑓0 at 

𝜅𝜅 = 0  and saturating at 𝑓𝑓 = 1  for large 𝜅𝜅 . Specifically, 𝑓𝑓 = 0.995  for 𝜅𝜅 = 10 . From 

Equation 5-21, since Δ𝛼𝛼 ∝ 𝜀𝜀𝑤𝑤, for a given electric field 𝐸𝐸 we obtain stronger alignment 

of the nanorods in the more polar medium. This is why we have considered hydrophilic 

GNRs approaching the liquid interface from the water side in this section. Specifically, 

for 𝜅𝜅 = 10, 𝑏𝑏 = 25 nm, 𝑛𝑛 = 2.5, 𝜀𝜀𝑤𝑤 = 80 (permittivity of water) and 𝑇𝑇 = 300 K, from 

Equation 5-21 we find 𝐸𝐸 ≈ 104 𝑉𝑉𝑛𝑛−1, i.e., applying this field in the water phase allows 

us to achieve 99.5% vertical alignment for the final state of the adsorbed nanorods. This 

is a modest electric field which is orders of magnitude smaller than the dielectric 

strength of de-ionised water (70 × 106 𝑉𝑉𝑛𝑛−1)168 and is easily achievable experimentally.  

Note that a common way to enhance the local electric field near a liquid-liquid interface 

is to add electrolytes to the two bulk phases and polarise the interface using an external 

Figure 5-8 (a) Pre-alignment of GNR in the water phase using an electric field E prior to particle attachment 

to the liquid interface. (b) Fraction of GNRs with attack angle less than ∅0 as a function of the effective 

electric field strength κ.   
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field.169–171 Using this so-called interface between two immiscible electrolyte solutions 

(ITIES) arrangement would allow us to lower the external field required to pre-align the 

GNRs even further. We therefore conclude that it is feasible experimentally to use our 

kinetic assembly method to prepare high quality vertically aligned cylindrical nanorod 

monolayers at the liquid interface. 

Finally, we note that applying an external electric field (either in the absence or 

presence of added electrolytes) will create polarization charges at the liquid interface 

which may significantly modify the interfacial tension of the liquid interface.169–171 

However, since interfacial tension only affects the timescale of the adsorption (via the 

scaling factor 𝛽𝛽, see Section 5.2.2) but not the adsorption trajectory itself (i.e., particle 

orientation vs. particle height), applying an external electric field across the liquid 

interface should not in principle affect the main result of our free energy calculation, 

namely the range of particle attack angles which will lead to the end-on state of GNRs. 

5.5 Conclusion 

We have used Langevin dynamics coupled to a finite element model to study 

the adsorption kinetics of cylindrical nanorods at an oil/water interface in order 

to determine the optimum conditions for using adsorption kinetics to assemble 

nanorods into vertically aligned monolayers. Our Langevin model is more 

accurate compared to previous models as it accurately captures the deformation 

of the liquid meniscus during particle adsorption and uses the correct ratio for the 

rotational to translational friction coefficients for the nanorod.  

We find that the end-on state is stable only for non-neutrally wetting 

cylindrical nanorods. We also find that the final orientation of the nanorods at the 

oil/water interface is determined by their initial attack angle when they contact 
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the liquid interface. In particular, the range of attack angles leading to the end-on 

state is maximised when nanorods adsorb onto the liquid interface from the 

energetically favorable phase, i.e., hydrophobic particles from the oil phase and 

hydrophilic particles from the water phase. Surprisingly, we find that the range of 

attack angles is only weakly dependent on particle aspect ratio, thus allowing us 

to use adsorption kinetics to assemble vertically aligned nanorods for a wide 

range of aspect ratios. However, we also find that the energy barrier stabilizing 

the (metastable) end-on state decreases with increasing aspect ratio and/or 

decreasing radius of the cylinder. This effect sets a practical limit of 𝑛𝑛 ≤ 10 on 

the cylindrical nanorods that can be assembled into vertically aligned monolayers 

using our kinetic assembly method.  

Since only attack angles smaller than a threshold value lead to the end-on 

state, in the absence of an external field, only a fraction of nanorods that contact 

the liquid interface end up in the end-on state (typically ≲ 40% under optimum 

conditions). However, by pre-aligning the nanorods in the more polar bulk phase 

with experimentally achievable electric fields, we can increase this fraction to be 

effectively 100%. Our kinetic assembly method is generic and can be used to 

assemble nanorods with a range of diameters, aspect ratios and materials (e.g., 

gold, silver, aluminium, copper, polymer, silica etc.). As such, it represents a 

versatile, low-cost and powerful platform for fabricating vertically aligned 

monolayers of nanorods for metamaterial applications. 
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 Directing Self-Assembly Through Particle Geometry 

6.1 Introduction 
 In this chapter we progress from the role particle morphology and interfacial 

deformation plays in the adsorption process and investigate how these factors affect 

the self-assembly of particles adsorbed at a liquid-liquid interface. Colloids exhibit a 

wide variety of attractive and repulsive interactions over a range of length scales. In the 

bulk these can take the form of electrostatic29,30 or magnetostatic172,173 interactions, 

steric forces27,28 or excluded volume repulsions.174 When adsorbed at an immiscible 

interface capillary interactions play a key role.19,32,33 Through relatively minor 

modifications of colloidal properties, such as shape or wettability, it is possible to tune 

the capillary interactions and in turn direct their self-assembly.35,42,159,175 With 

advancement of particle synthesis techniques10,13,14,176 and stereolithography177 it has 

become possible to control colloidal geometry at sub-micron scales with feature sizes 

on the nanoscale. When combined with immobilization and substrate transfer 

techniques101,164 a powerful platform emerges for creating novel nanomaterials. 

Colloidal systems therefore not only serve as an ideal platform to study the general 

phenomenon of self-assembly, but also unlocks the possibility of artificially engineering  

metamaterials with unique optical, acoustic, thermal, electromagnetic and plasmonic 

properties.29,30,172,173,178,179  

We briefly reiterate here the relevant principles with respect to the effect of 

particle morphology on meniscus deformation. We refer the reader to the theoretical 

background and literature survey presented in chapter two for more detail. Our goal, as 

we demonstrate later, is to study how particle shape affects self-assembly. Specifically, 

we design particle morphologies which favor certain configurations when interacting 
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due to the interplay of far and near-field meniscus deformations. The differentiation 

from the current body of literature is that these favored orientations originate solely 

from shape rather than surface chemistry.  

The constant contact angle requirement at the three phase contact line can lead 

to large deformations of the meniscus surrounding adsorbed anisotropic particles and 

in turn, strong capillary interactions between them.18,19,67 We refer the reader to Section 

2.12  for a mathematical description and discussion of the meniscus shape along with 

the leading order modes. Briefly, consider a freely moving three phase contact line, the 

intersection of particle, liquid and vapor, able to traverse over a perfectly smooth and 

chemically homogenous particle. In order to satisfy Young’s constant contact angle 

constraint, contact line undulations and  interfacial deformation can arise from particle 

anisotropy.19,20 Save for a few special cases, such as perfectly smooth spheres, the  

leading order term describing the interfacial deformation at equilibrium is the 

quadrupole.64,65  

Adsorbed particles can interact when the deformations from nearby particles 

overlap. The range of such interactions is dependent on the leading order mode, with 

higher order modes decaying much faster. It costs energy to deform an interface, 

therefore overlapping deformations having the same signed curvature reduces the 

interfacial area which in tun reduces the free energy of the system, decreasing further 

as these regions approach.65 The inverse is also true, overlapping opposite signs 

increases the free energy of the system and results in particle repulsion. It is well 

reported in the literature, colloidal systems aligning and aggregating but equilibrating in 

different configurations depending on the specific modal superposition.34,36,39,180 



- 113 - 

Yao et al.181 demonstrated that not only is it possible to direct self-assembled 

structures through a suitable choice of particle morphology and wetting characteristics, 

but it is also possible to control near-field interactions by introducing small undulations 

to the particle geometry. Building on the work of Lucassen176, the group used bent, 

corrugated sheet shaped particles and were able to tailor the equilibrium distance of 

approach of their particles by altering the amplitude and phase of the corrugations. The 

leading order mode of the meniscus was a quadrupole, originating from the bent sheet, 

providing the attractive force while the near field repulsion came from the corrugations 

therefore controlling the interplay of the attractive and repulsive forces entirely via 

particle shape.176,181 

In an early experimental demonstration of directed self-assembly, Whiteside’s et 

al. used millimeter scale hexagonal plates, which had a hexapolar meniscus, at an oil-

water interface and changed the surface chemistry of the facets in various 

configurations.103 Changing the surface chemistry altered the contact angle of specific 

facets which in turn changed the position of the three-phase contact line and therefore 

the interfacial deformation (see Section 2.3.5). Doing so allowed them to customize the 

modes of the meniscus deformation which altered the capillary interactions and 

ultimately the final self-assembled structures. Such an approach resulted in open and 

closed pack structures, linear chains, branched chains, dimers and tetramers depending 

on the specific choice of functionalized facets.35,103 While an elegant experimental proof 

of concept, this approach becomes incredibly difficult to scale down due to the 

difficulties in particle synthesis of tightly controlling both geometry and specific facet 

surface chemistry. 
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The aim of this chapter is to build on and extend the work of Whiteside’s by 

demonstrating that it is possible to direct colloidal self-assembly through particle shape 

alone. In a similar fashion we also use polygonal plates however, instead of using 

functionalized facets to control meniscus deformations we use undulating edges. The 

hexagonal shape in the 𝑒𝑒 − 𝑦𝑦 plane controls the longer-range capillary interactions and 

the undulation in the 𝑧𝑧 direction introduces higher order modes in order to precisely 

control the near-field capillary interactions. There are multiple advantages in taking this 

approach as opposed to using functionalized facets. Using plates results in a single stable 

orientation as opposed to multiple stable states when using cubic or cylindrical 

particles.25,63 Secondly, the contact line is pinned to the undulating edge of the plate 

giving superior control over the meniscus shape when compared to ellipsoids, cylinders 

or cubes. This is because for 3D shapes the contact line is movable therefore it is not as 

straightforward to get a specific contact line undulation. Finally, due to significant 

advancements in 3D printing techniques it is possible to control particle shape with 

feature sizes on the nanoscale182, and significantly easier than controlling the surface 

chemistry of specific particle facets down to micron or even nanoscale. 

6.2 Theoretical Model 
6.2.1 Geometry of Undulating Plates  

In this section we present the mathematical model we use to define the platelets 

geometry within our simulations. We simulate five variants in this chapter but all can be 

described by a modified version of the super-ellipsoid equation.117 Equation 6-1 enables 

us to represent a generic polygonal shape with rounded edges which can be customized 

by a suitable choice of coefficients. 
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In Equation 6-1 𝑒𝑒",𝑦𝑦"  and 𝑧𝑧"  are the Cartesian coordinates having undergone two 

rotational transforms we illustrate shortly. The coefficients of 𝑒𝑒,𝑦𝑦 in the numerator of 

the first and third terms in Equation 6-1 are chosen such that 𝐴𝐴𝑒𝑒 + 𝐵𝐵𝑦𝑦 = 1 is a straight 

line of slope �3
2� , 0 and −�3

2�   respectively. This choice of coefficients describe the 

hexagonal plate shown in Figure 6-1(a). Finally, the denominators 𝑎𝑎, 𝑏𝑏, 𝑐𝑐  control 

distance of these straight lines from the origin while 𝑑𝑑 sets the thickness of the platelet.   

A source of difficulty when using FEA to study interfacial systems is that when 

the three phase contact line passes over sharp edges the system becomes numerically 

unstable.116 Equation 6-1 circumvents this issue because 𝜂𝜂1, 𝜂𝜂2, 𝜂𝜂3 control the sharpness 

of the edges in the 𝑒𝑒,𝑦𝑦 plane and 𝜂𝜂4 sets the curvature of the sides of the platelet in the 

𝑒𝑒, 𝑧𝑧 plane. Finally, within Equation 6-1 we use 𝑧𝑧0(𝜃𝜃) to control the undulations of the 

plate such that 

𝑧𝑧0(𝜃𝜃) = 𝐴𝐴 𝑟𝑟𝑐𝑐 cos�3(𝜃𝜃 − 𝜃𝜃0)�                                                                                                  ( 6-2 ) 

where 𝜃𝜃0 is an offset to phase shift the undulations and  

𝑟𝑟𝑐𝑐 = �𝑒𝑒"2 + 𝑦𝑦"2                                                                                                                         ( 6-3 ) 

The hexagonal platelet illustrated in Figure 6-1, described by Equation 6-1, has 

denominators 𝑎𝑎 = 𝑏𝑏 = 𝑐𝑐 = 1 , and 𝑑𝑑 = 0.1 . In the figure, 𝑒𝑒,𝑦𝑦, 𝑧𝑧  correspond to lab 

frame co-ordinates with 𝑧𝑧  perpendicular to the unperturbed liquid interface as 

illustrated. Applying two coordinate transforms, as detailed in Chapter 3, the first a tilt 

of 𝜃𝜃𝑤𝑤  about the 𝑒𝑒  axis and second a rotation of 𝜃𝜃𝑤𝑤  about the 𝑧𝑧′  axis, enables us to 

configure the particle in any desired orientation.  
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In order to study the interplay between short-range steric repulsion and long-

range capillary interactions on self-assembly, we consider two different variations of the 

hexagonal plate Illustrated in Figure 6-1, which we refer to as Plate 1 and Plate 2. Plate 

1 has sinusoidal undulations in 𝑧𝑧  whose peaks correspond with the corners of the 

hexagon. Plate 2 on the other hand, has undulations phase shifted by  𝜋𝜋 6�  such that the 

peaks of the undulations are at the center of the straight edges of the hexagonal plate. 

We finally consider three versions of a distorted Plate 2 which more closely resembles a 

truncated triangular platelet. For visual aids see Figures 6-4 & 6-11. 

6.2.2 Thermodynamics 

In the following we outline a similar theoretical treatment of the thermodynamic 

potentials of interacting particles akin to Soligno et al.39,63,68 With no particle adsorbed 

an immiscible, fluid-fluid interface of area 𝐴𝐴 is the flat plane 𝑧𝑧 = 0. We introduce 𝑚𝑚 rigid, 

smooth, uncharged particles of fixed positions and orientations which are specified by 

Ω = {𝑧𝑧𝑐𝑐𝑚𝑚,𝜑𝜑𝑚𝑚,𝜓𝜓𝑚𝑚 , 𝑒𝑒𝑚𝑚 ,𝑦𝑦𝑚𝑚 ,𝛼𝛼𝑚𝑚}𝑚𝑚=1𝑁𝑁 . Here, 𝑧𝑧𝑐𝑐𝑚𝑚, 𝑒𝑒𝑚𝑚 ,𝑦𝑦𝑚𝑚 refer to the Cartesian coordinates of the 

center of mass of the 𝑠𝑠th particle and 𝜑𝜑𝑚𝑚,𝜓𝜓𝑚𝑚 ,𝛼𝛼𝑚𝑚  to its polar, internal Euler and azimuthal 

angles respectively. As we are considering particles between 10𝑛𝑛𝑛𝑛 and 10𝜇𝜇𝑛𝑛 we can 

Figure 6-1 Definitions of rotational angle 𝜃𝜃𝑤𝑤 and tilt angle  𝜃𝜃𝑤𝑤 with respect to the particle centred at the 

origin. Top down (top row) and in plane (bottom row) views illustrating the lab from coordinates (a) followed 

by a tilt about the 𝑒𝑒 axis of 𝜃𝜃𝑤𝑤 = 45°  (b) then a rotation about the 𝑧𝑧′ axis 𝜃𝜃𝑤𝑤 = 30° (c). 
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safely neglect gravity and line tension. The thermodynamic potential of this system is 

given by183 

𝐸𝐸𝑁𝑁(Ω) = 𝛾𝛾[𝑆𝑆(Ω) − 𝐴𝐴 + 𝑊𝑊(Ω) cos 𝜃𝜃𝑤𝑤]                                                                               ( 6-4 ) 

In Equation 6-4 𝑆𝑆(Ω) is the total area of the interface with particles present and 𝐴𝐴 the 

total area without, where 𝛾𝛾  is the fluid-fluid surface tension. The contact angle is 

denoted 𝜃𝜃𝑤𝑤 where 𝑊𝑊(Ω) is the total surface area of the particle(s) in contact with the 

fluid above the interface. 

 Considering a single, isolated particle 𝐸𝐸1, the interface shape which minimizes 

Equation 6-5 will be the equilibrium shape of the fluid-fluid interface i.e., the solution of 

the Young-Laplace equation with Young’s law as a boundary condition.63,183 For 𝑚𝑚 

particle systems the capillary interaction energy per particle is defined as63 

𝐸𝐸�𝑁𝑁 ≡
𝐸𝐸𝑁𝑁
𝑁𝑁
− 𝐸𝐸1                                                                                                                              ( 6-5 ) 

We use Equation 6-5 to study the dependance on particle-particle separation (𝑆𝑆) for a 

selection of configurations of two approaching particles, 𝐸𝐸�2. We then progress to make 

the periodic extension (𝑚𝑚 → ∞) and calculate 𝐸𝐸�∞ for a lattice unit cell for honeycomb, 

hexagonal close packed, square and kagome lattice structures. Finally, we consider the 

interaction potential between two particles comparing our Surface Evolver results to a 

purely theoretical treatment of interacting multipoles of arbitrary order presented by 

Danov et al.32 The specific details of this treatment are detailed in section 6.4.2 after we 

have presented results which clarify our specific choice of parameters. 

6.2.3 Surface Evolver 

 All simulations are of neutrally wetting particles, i.e., 𝜃𝜃𝑤𝑤 = 90°. We use Surface 

Evolver (SE) to simulate a large,  24𝑟𝑟 × 24𝑟𝑟 , square simulation box. The particle is 

centered at the origin and we allow the interface to move freely in the 𝑧𝑧 direction in 
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order to fully equilibrate. This no different to allowing the particle center of mass to vary 

freely and, if the simulation cell is large enough, enforces a planar interface far from the 

particle.25,48 The Boundary is effectively a Neumann boundary condition because we 

assume the simulation walls are neutrally wetting, having a contact angle of 𝜃𝜃𝑤𝑤 = 90° 

at the outer boundary.20  

For a detailed discussion of the workings of Surface Evolver we refer to chapter 

3 but briefly, SE tessellates a user defined surface and calculates the force on each vertex. 

Next it uses a gradient decent to move the vertex in this direction, iterating this process 

to find the lowest free energy permitted by a given configuration.114 In the final stage of 

surface evolution, we change from a linear tessellation regime to a quadratic one in 

order to model the surface with greater precision. All dimensions are normalized to units 

of 𝑟𝑟 = 1 , which is the distance from the center to the vertex of a plate, with the 

underlying assumption that the results can be scaled within the size ranges outlined 

prior. 

  In the following we study the free energy landscape of an isolated plate then 

move on to pairwise interactions before finally investigating periodic systems for both 

Plates 1 and 2. Finally, in order to study the impact of changing the interplay between 

short-range steric repulsion and long-range capillary interactions on self-assembly, we 

consider a distorted version of the hexagonal plate in the same fashion. 

6.3 Results 
6.3.1 Isolated Hexagonal Plate 

Before we try to tailor the interplay between the short and long-range capillary 

interactions by introducing symmetric undulations to our plate like geometries, it is first 

necessary to verify that introducing these small undulations doesn’t affect the particles 
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equilibrium configurations. If this were the case, we would be potentially altering the 

leading order modes of the meniscus deformation. We verify that this is not the case by 

performing 1620 SE calculations of the free surface energy for particle orientations over 

the ranges −90° ≤ 𝜃𝜃𝑤𝑤 ≤ 90° and  0° ≤ 𝜃𝜃𝑤𝑤 ≤ 90° in one degree increments. The free 

energy is then normalized such that 𝐸𝐸1 = 𝐸𝐸(𝜃𝜃𝑤𝑤 ,𝜃𝜃𝑤𝑤) − 𝐸𝐸(𝜃𝜃𝑤𝑤 = 0, 𝜃𝜃𝑤𝑤 = 0)  and the 

resulting energy landscape plotted in Figure 6-2. 

The normalized free energy landscape illustrated in Figure 6-2 has three main 

features. Firstly, the main valley located along the line corresponding to 𝜃𝜃𝑤𝑤 = 0°. When 

the plate is flat at the interface such that the tilt angle is zero, changing the rotation 

angle over the range 0° ≤ 𝜃𝜃𝑤𝑤 ≤ 90° has no effect on the free energy of the system for 

the isolated plates because the states are all equivalent. In contrast a ripple in the free 

energy landscape is observed for 0° ≤ 𝜃𝜃𝑤𝑤 ≤ 90°, having the greatest amplitude at 𝜃𝜃𝑤𝑤 =

±90°. In this configuration the hexagonal plate is perpendicular to the interfacial plane 

and the undulation in the landscape is consistent with the corners of the plate dipping 

Figure 6-2 Normalised (see text) free energy landscape for Plate 1 as a function of tilt angle 𝜃𝜃𝑤𝑤 and rotation 

angle 𝜃𝜃𝑤𝑤 as defined in Figure 6-1. 
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in and out of the interface, repeating every sixty degrees of rotation and resulting in the 

small fluctuations as shown. 

 One final remark is that setting 𝜃𝜃𝑤𝑤 = 0°  and tilting  0° ≤ 𝜃𝜃𝑤𝑤 ≤ 90° increases the 

free energy as there is increasingly less interfacial area removed by the disk as it tilts 

from being parallel with the interface to perpendicular. Therefore, we conclude that the 

equilibrium configuration of plate like geometry with symmetric undulations is 𝜃𝜃𝑤𝑤 =

0°,𝜃𝜃𝑤𝑤 = 0°, and that the introduction of the symmetric undulations does not change the 

equilibrium orientation of the plate.  

 It follows from the constant contact angle constraint that varying the magnitude 

of the undulations above some threshold could cause the meniscus to no longer be 

pinned at the particles edge. In such a case, the three-phase contact line may start to 

migrate underneath the particle, reducing the effectiveness of the undulations in 

controlling the meniscus shape. In Figure 6-3 we Illustrate a cross sectional slice in the 

𝑒𝑒, 𝑧𝑧 plane of several different undulation amplitudes 𝐴𝐴 and how the interface meets 

Figure 6-3 Cross section of a particle centred at the origin and the equilibrated interface for varying 

undulation amplitudes. Amplitudes expressed as multiples of 𝑟𝑟. As can be seen, larger amplitudes lead to 

the interface migrating below the tip of the particle. 
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them for a contact angle 𝜃𝜃𝑤𝑤 = 90°. We express the amplitude of the undulations in 

terms of multiples of 𝑟𝑟  and can see that in the limiting case 𝐴𝐴 = 0𝑟𝑟 (blue dots) both the 

plate and the interface are perfectly flat. As the amplitude steadily increases so does the 

height of the meniscus and at 𝐴𝐴~0.4𝑟𝑟  (cyan dots) the interface starts to meet the 

particle on its underside. This migration of the three-phase contact line to the underside 

of the particle is problematic for our end goal as it means that the undulation of the 

liquid meniscus no longer faithfully follows the particle edge. Finally, as illustrated in 

Figure 6-3, larger undulation amplitudes result in large deformation amplitudes. 

However, it is desirable to keep the amplitude of deformations small so that 

deformation of the interface remains in the linear regime where linear superposition 

applies. Therefore, in the following we choose an undulation amplitude 𝐴𝐴 = 0.1𝑟𝑟. We 

note here that it would not be expected that the equilibrium configuration 𝜃𝜃𝑤𝑤 = 𝜃𝜃𝑤𝑤 =

0° should change for larger amplitudes because of the symmetry of the particle. Any 

force introduced by increasing the amplitude for an undulating peak would be counter 

balanced on the opposing side by a corresponding but reversed force due to an 

undulation’s trough. Finally, we reiterate that in order for the contact line to be pinned 

at the particle edge and faithfully reproduce the undulations in the meniscus we require 

a neutrally wetting particle, equilibrated with its surroundings and that the undulations 

amplitude be no larger than 10% of plate thickness. 
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 In order to form honeycomb or kagome lattice structures using capillary 

interactions a leading order hexapole is desired. In Figure 6-4 we present contour plots 

of hexagonal Plate 1 (a) and Plate 2 (c) for visualization and define the circular 

coordinates 𝑅𝑅,𝜃𝜃. The peaks and troughs of the hexapole correspond to the corners of 

Plate 1 in (a) whereas they are phase shifted 𝜋𝜋 6�  to the middle of the straight edges for 

Plate 2 (c), as shown in the contour plots. The relevance of this will become apparent in 

the following section when we study pairwise interactions. In Figure 6-4 (b, d)  we extract 

the interfacial height of the meniscus, 𝑧𝑧, at fixed radii 𝑅𝑅 = 1.5𝑟𝑟 and 𝑅𝑅 = 5𝑟𝑟  from the 

particle center (solid black dots and solid blue line respectively) and fit a pure hexapole 

to it (solid magenta line) of the form 𝑧𝑧(𝑅𝑅, 𝜃𝜃) = 3 sin 3𝜃𝜃  for Plate 2 and 𝑧𝑧(𝑅𝑅,𝜃𝜃) =

3 cos 3𝜃𝜃 for Plate 2. The contour plots (a) and (c) are cropped in size for visual clarity 

when in reality the simulation cell is significantly larger. It can be seen in both (b) and (d) 

that the hexapolar mode of the meniscus is essentially perfect at 𝑅𝑅 =  1.5𝑟𝑟,  rapidly 

decaying at a distance of 𝑅𝑅 =  5𝑟𝑟 as would be expected from theory. Note that the small 

Figure 6-4 Contour plots of the meniscus deformation for Plate 1 (a) and Plate 2 (c) with the hexagonal 

plates superimposed on top, alongside the definitions of the circular coordinates 𝑅𝑅,𝜃𝜃. Right column, the 

meniscus height profiles as a function of 𝜃𝜃 at fixed 𝑅𝑅 values for Plate 1 (b) and Plate 2 (d) are also shown 

with an ideal hexapolar fit (magenta lines). See text for Fitting details. 
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degree of noise in the black dots in tiles (b) and (d) is an artifact of the data extraction 

method as we need to extract vertices within a thin shell. Having considered the isolated 

case for both Plate variants we now progress to study the capillary interactions between 

two plates. 

6.3.2 Pairwise Interactions Between Hexagonal Plates 

To study the capillary interactions between two plates we firstly discuss some 

nomenclature and then study several relative orientations. As demonstrated in Section 

6.3.1 the leading order mode of the meniscus is a hexapole. In Figure 6-5 we illustrate 

some of the relative orientations for two interacting plates with hexapolar interface 

deformations and, continuing from the contour plots in Figure 6-4, indicate a rise in the 

interface height profile with a green spot and a depression with a blue spot. The two 

plates have a center-to-center plate separation  𝑠𝑠 , expressed in multiples of 𝑟𝑟 . For 

succinctness we refer to interactions in which two spots overlap as “dipole-dipole” 

interactions (D-D), interactions where three spots overlap a “tripole-tripole” (T-T) and 

interactions in which two spots interact with three a “dipole-tripole”.  We note that the 

Figure 6-5 Illustrations of three different configurations of two interacting plates. A blue spot indicates 

an interfacial depression and a green spot indicates a rise with respect to the planar interface. We show 

the dipole-dipole (top row), tripole-tripole (middle row) and dipole-tripole (bottom row) for Plate 1 (left 

column) and Plate 2 (right column). 
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T-T configuration is attractive for both plates 1 & 2 but it is favorable for plate two 

because the orientation of the antinode of the contact line undulation means that the 

closest distance of approach between the two plates is achieved for the T-T interaction 

in this configuration. 

Having illustrated some of the relative orientations for two interacting plates we 

now calculate the free energy as a function of center-to-center particle separation for 

Plates 1 & 2. Figure 6-6 shows the normalized free energy as a function of centre-to-

centre expressed in terms of 𝑟𝑟  for Plate 1 in attractive (a) and repulsive (b) 

configurations. The dashed lines indicate the contact distances for each configuration 

with red the tripole-tripole, blue the dipole-dipole and black the dipole-tripole. The free 

energy is normalised such that  𝐸𝐸�2 = 𝐸𝐸(𝑟𝑟 = ∞) − 𝐸𝐸2(𝑟𝑟).  As can be seen in the plots, 

the plates start to interact at 𝑟𝑟 ≈  2 and the normalized free energy starts to drop off 

Figure 6-6 Normalised free energy calculations as a function of centre-to-centre expressed in terms of 𝑟𝑟 

for Plate 1. Attractive configurations (a) and repulsive interactions (b). The colour coordinated dashed 

lines indicate the contact distances for each configuration. 
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slowly at first, then more rapidly as the inter-particle distance decreases. As discussed, 

a colloidal system can minimize its free energy by overlapping interfacial deformations 

of the same sign. As the particles approach in Figure 6-6 (a) the T-T interaction lowers 

the free energy more than the D-D interaction (or increases in the repulsive case (b)) 

because there is a greater area of deformation which can interact. However, due to 

undulations on the particle being sited at the corners of the hexagonal plate, this fixes 

the contact distance for the T-T interaction at 𝑟𝑟, whereas for the D-D interactions the 

contact distance is√3
2� 𝑟𝑟. Therefore, because the D-D can get physically closer it has 

the lowest energy of the two, we shall show in the following section that this is the 

reason that Plate 1 favors HCP as the ground state in crystallization. In plot (b) of Figure 

6-6 we show the repulsive versions of the same T-T and D-D interactions along with the 

D-T interaction. The results are in very good qualitative agreement with the results of 

Soligno et al.63 whom studied the interactions between the capillary hexapoles 

surrounding cubic particles as discussed in section 6.1. 

 In order to favor the honeycomb lattice as the ground state we want to design 

the particle such that the closest contact distance corresponds with the tripole-tripole 

interaction. We can achieve this by introducing a phase shift of 𝜋𝜋 6�  between the edge 

undulations and the hexagonal plate geometry (i.e., Plate 2) so that the T-T contact 

distance is now √3
2� 𝑟𝑟 and the D-D contact distance 𝑟𝑟. In Figure 6-7 we once again 

illustrate free energy as a function of center-to-center particle separation expressed in 

terms of 𝑟𝑟, this time for Plate 2, for attractive (a) and repulsive (b) configurations. As can 

be seen from (a) the minimum energy state is now the tripole-tripole orientation for the 
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attractive interactions and similarly the roles have also been reversed for the repulsive 

interactions. One interesting observation of the difference between Plates 1 & 2 is that 

for a given separation (for example 𝑟𝑟 = 1.1) the difference in the normalised free energy 

between the T-T and D-D interactions is much smaller for Plate 2 than it is for Plate 1. 

We attribute this effect to the slightly larger magnitude of the menisci surrounding plate 

two (see Figure 6-4 b & d). In the next section we introduce periodic boundary conditions 

to the simulations in order to calculate the free energy of a variety of crystal structures 

for Plates 1 & 2. 

Figure 6-7 Normalised free energy calculations as a function of centre-to-centre expressed in terms of 𝑟𝑟 

for Plate 2. Attractive configurations (a) and repulsive interactions (b). The colour coordinated dashed 

lines indicate the contact distances for each configuration. 
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6.3.3 2D Crystalline Structures 

To complete our study of undulating hexagonal platelets we implement periodic 

boundary conditions within SE and calculate the normalized free energy as a function of 

area fraction for three different possible crystal structures for each plate. Plate 1 has 

three likely configurations based on energetically favorable overlapping deformations 

illustrated in Figure 6-8, a hexagonal close packed (a), honeycomb (b) and a rectangular 

lattice (c). Interfacial rises and depressions are indicated by green and blue spots 

respectively with the plates shown at intermediate separations for clarity. The 

hexagonal close packed (HCP) and rectangular structures involve both the D-D and T-T 

capillary interactions whereas the honeycomb involves only the T-T capillary interaction. 

We note that the honeycomb lattice is not merely a HCP with the central particle 

omitted because the central space is composed entirely of interfacial depressions (or 

equivalently, rises) which frustrates the inclusion of another particle. In Figure 6-9 we 

show the equivalent candidate crystal structures for Plate 2, having the equivalents: 

rectangular (a), kagome (b) and honeycomb (c). 

Figure 6-8 Candidate crystal structures for Plate 1 illustrated at intermediate particle separations with 

blue and green spots indicating interfacial depressions and rises respectively. (a) Hexagonal close packed, 

(b) honeycomb and (c) rectangular lattice structures. 
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Using Surface Evolver with periodic boundary conditions, we calculate the free 

energy of the unit cell for each configuration. Decreasing the center to center particle 

separation and normalizing such that 𝜂𝜂𝐸𝐸�∞ = 𝜂𝜂(𝑠𝑠)(𝐸𝐸(𝑠𝑠 = ∞) − 𝐸𝐸(𝑠𝑠))
𝛾𝛾𝐴𝐴�  where 𝜂𝜂(𝑠𝑠) 

is the area fraction, 𝐴𝐴 the particle(s) surface area, 𝛾𝛾 surface tension and 𝐸𝐸(𝑠𝑠) the free 

surface energy as calculated from SE. The results are illustrated in Figures 6-10 (a) and 

(b) for Plates 1 & 2 respectively, where the solid dots indicate the simulation result, solid 

lines a polynomial fit, dashed lines the area fraction at contact for the relevant structure 

and finally, the dash dot line is the common tangent construction. The common tangent 

line gives the lowest energy state for any given value of 𝜂𝜂 i.e., the ground state at 𝑇𝑇 = 0. 

Specifically, the lowest free energy state will be a phase coexistence between the two 

states linked by the common tangent line. In the case of Plate 1, Figure 6-10 (a), the 

common tangent construction shows us that the ground state is a coexistence between 

vacuum and all three phases with the proportions dependent on 𝜂𝜂 , and the global 

minima the HCP (magenta line) at 𝜂𝜂 = 1. 

In contrast, the periodic simulations of Plate 2, Figure 6-10 (b), the common 

tangent construction shows us that the ground state is a coexistence between vacuum 

and the honeycomb (green) and rectangular (blue) lattice structures where the global 

minima is the rectangular lattice. Interestingly, the phase behavior of Plate 1 resembles 

Figure 6-9 Candidate crystal structures for Plate 2 illustrated at intermediate particle separations with 

blue and green spots indicating interfacial depressions and rises respectively. (a) Rectangular, (b) 

kagome and (c) honeycomb lattice structures. 
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the capillary interactions of hexapolar deformations surrounding cubic particles in the 

{111} orientation63 whereas the phase behavior of Plate 2 is more similar to the 

hexagonal plates with patterned edges studied by Whitesides et al.35 

  Having shown that by making small alterations to the geometry we can 

theoretically engineer different self-assembled structures we show in the next section 

that it is possible to take this concept further by distorting the plates shape as well as 

including surface undulations in order to selectively distinguish between ground states. 

Figure 6-10 Normalised free energy as a function of area fraction for periodic boundary simulations of: 

(a) Plate 1 in the HCP (magenta), honeycomb (green) and rectangular (blue) lattice structures. (b) Plate 2 

in the kagome (magenta), honeycomb (green) and rectangular (blue) lattice structures. Calculations 

indicated by solid dots accompanied by polynomial fits (solid lines), contact distances (dashed lines) and 

the common tangent construction (dash dot line). 



- 130 - 

6.4 Distorted Hexagonal Plates 
In the previous sections we found that by changing the relative orientation 

between edge undulations and the hexagonal shape, we could stabilise either HCP or 

honeycomb, but not the kagome lattice structure. In the following we show we can 

stabilise the kagome lattice by using a distorted hexagon shape and a superposition of 

multipoles for the edge undulations. 

6.4.1 Isolated Particle 

Up to this point the parametric representation given in Equation 6-1 has been 

used to simulate undulating hexagonal platelets and in principle we can use it to create 

any polyhedron we desire. In the following we distort the hexagonal platelet and ’push’ 

it’s edges out such that it resembles an undulating, truncated triangular plate. The shape 

of interest is illustrated in Figure 6-11 and we refer to it hence forth as a distorted 

hexagonal plate (DHP). In Figure 6-11 we show contour plots with the particle overlaid 

for three variations of the DHP, all having different coefficients in Equation 6-1. We 

define the ratio of the longer edge (𝐿𝐿) to the shorter edge (𝑆𝑆) as 𝛼𝛼 = 𝐿𝐿
𝑆𝑆�  . For Plates 1 

& 2 presented in sections 6.1 – 6.3, 𝛼𝛼 = 1  resulting in hexagonal plates with a pure 

hexapole as shown in Figure 6-4. However, In Figure 6-11 the contour plots illustrate the 

effect varying 𝛼𝛼 has on the meniscus deformations for 𝛼𝛼 = 2, 2.5, 3 (left to right). As 𝛼𝛼 

Figure 6-11 Contour plots of the equilibrated interface over the region  6𝑟𝑟 × 6𝑟𝑟 centred at the origin with 

the particle geometry overlaid to demonstrate the effect of increasing 𝛼𝛼 from 2 (a), to 2.5 (b) and finally 

3 (c). 
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increases we observe some general trends in the meniscus contour. The height of the 

interfacial rise at the short edge increases and extends further out from the particle. 

This is also true for the depressions but less prominent. We remark that the choices of 

𝛼𝛼 are not arbitrary as will be seen shortly. 

From the contour data for 𝛼𝛼 = 2.5 we extract the height of the meniscus, 𝑧𝑧, at a 

fixed radius, 𝑅𝑅 = 1.5𝑟𝑟  around the particle in the same fashion as shown in Figure 6-4 (b 

& d), and in Figure 6-12 plot it alongside the undulation of the top edge of the particle 

at 𝑅𝑅 = 𝑟𝑟  (magenta line). For the meniscus height fitting (blue line) we use a Fourier 

series to represent the height of the liquid meniscus and due to the three-fold symmetry 

of the particle we only  need to include Fourier modes which are multiples of three. In 

order to get a faithful representation of the meniscus profile we need to include terms 

in the Fourier series for  𝑛𝑛 = 3, 6, 9. We require the higher order m= 9 term due to 

distortion from the non-circular shape. The fitting parameters take the form 𝑓𝑓(𝜃𝜃) =

𝐴𝐴0 + 𝐴𝐴1 cos 3𝜃𝜃 + 𝐴𝐴2 cos 6𝜃𝜃 + 𝐴𝐴3 cos 9𝜃𝜃 . Where 𝐴𝐴0 = 0.0108 , 𝐴𝐴1 = 0.03508 , 𝐴𝐴2 =

0.01796 and 𝐴𝐴3 = 0.003765. As in Figure 6-4 (c & d) we offset theta such that the peak 

Figure 6-12 Height of the meniscus, 𝑧𝑧, as a function circular coordinate 𝜃𝜃 at fixed 𝑅𝑅 as defined in Figure 

6-11. The blue line is a Fourier series fit of the simulation data (black dots) at 𝑅𝑅 = 1.5𝑟𝑟 alongside the 

undulation of the top edge of the particle at 𝑅𝑅 = 𝑟𝑟  (magenta line). 
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meniscus height corresponds with 𝜃𝜃 = 0 allowing us to fit with only even functions 

without loss of generality. We find the leading order term a hexapole (𝑛𝑛 = 3 ) as 

expected. 
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6.4.2 Pairwise Interactions of Distorted Hexagonal Plates 

In Figure 6-13 we study the pairwise interactions for the three side length ratios 

𝛼𝛼 = 2, 2.5,3 (a, b & c respectively). Due to particle symmetry, there are three main 

capillary interactions, illustrated in the right column of Figure 6-13, which we refer to as: 

(d) long side short side (LS), (e) short side short side (SS) and (f) long side long side (LL). 

We again express as the normalized free energy 𝐸𝐸�2 = 𝐸𝐸(𝑅𝑅 = ∞) − 𝐸𝐸(𝑅𝑅) where 𝑅𝑅 is the 

center-to-center particle separation as before. In all cases the LS interactions are 

repulsive whereas the SS and LL are attractive. Increasing 𝛼𝛼 increases the distance over 

which the capillary deformations start to interact from approximately 𝑅𝑅 = 3 for 𝛼𝛼 = 2 

(top) up to approximately 𝑅𝑅 = 4  for 𝛼𝛼 = 3  (bottom), most clearly seen for the LS 

interactions (red lines). In order to explain this, we refer back to the remarks on Figure 

Figure 6-13 Normalized free energy vs center to center separation for side ratios 2 (a), 2.5 (b), and 3 (c) 

along with graphical illustrations of the three orientational configurations: (d) long-short, (e) short-short 

(f) long-long. 
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6-11 for the contour plots of isolated particles and note that increasing the side length 

ratio increases the peak meniscus height around the short side, the deformations on the 

longer sides also reach further into the interface taking up a larger area. Fascinatingly, 

the global minima for 𝛼𝛼 = 2 in Figure 6-13 (a) is reached when the short sides are in 

contact. This is somewhat unusual as the L-L can get physically closer and exclude more 

interfacial area when in contact. Furthermore, S-S interactions start to decrease in 

energy sooner than the L-L version in all cases. However, for the larger aspect ratio of 

three (c) The L-L interaction is the global minima because not only can it get physically 

closer but the interface it excludes has a much larger deformation area as can be verified 

from the contour plots in Figure 6-11. The point at which this relationship seems to flip 

is 𝛼𝛼 = 2.5 as can be seen in Figure 6-13 (b) where both the L-L and S-S interactions have 

approximately the same normalized free energy at contact. For the rest of this chapter, 

we consider only 𝛼𝛼 = 2  because, as we will show later, this produces some interesting 

results when extended to periodic boundary conditions. 

 We next make a comparison of our model against a purely theoretical treatment 

derived by Danov et al. which sums up the contributions of each and every mode 

interacting with each other.32 We define two particles A & B as illustrated in Figure 6-14, 

having center to center separation 𝑆𝑆 where Ψ𝑃𝑃 and  Ψ𝐵𝐵 are the angles of rotation of the 

particles with respect to their initial state in which  Ψ𝑃𝑃 =  Ψ𝐵𝐵 = 0. Danov et al. showed 

that the change in surface energy as a function of separation is described as 

∆𝑊𝑊(𝐿𝐿) ≈ −𝜋𝜋𝜎𝜎𝐺𝐺0𝐻𝐻𝑃𝑃𝐻𝐻𝐵𝐵 cos(𝑛𝑛𝑃𝑃𝜑𝜑𝑃𝑃 −𝑛𝑛𝐵𝐵𝜑𝜑𝐵𝐵) 𝑤𝑤𝐴𝐴
𝑚𝑚𝐴𝐴𝑤𝑤𝐵𝐵

𝑚𝑚𝐵𝐵

𝐿𝐿�𝑚𝑚𝐴𝐴+𝑚𝑚𝐵𝐵�
                                                  ( 6-6 ) 
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In which 𝜎𝜎 is the surface tension, 𝐻𝐻𝑃𝑃 & 𝐻𝐻𝐵𝐵 the undulation amplitudes, 𝑛𝑛𝑃𝑃 & 𝑛𝑛𝐵𝐵 the 

specific combination of modes under consideration, 𝑟𝑟𝑃𝑃 & 𝑟𝑟𝐵𝐵 the distance to the 

particles edge and the mode dependent 𝐺𝐺0 calculated as 

∑ 2(−1)𝑚𝑚𝐴𝐴+𝑚𝑚𝐵𝐵𝑚𝑚𝐴𝐴!𝑚𝑚𝐵𝐵!
(𝑚𝑚𝐴𝐴−𝑚𝑚)!(𝑚𝑚𝐵𝐵−𝑚𝑚)!𝑚𝑚!(𝑚𝑚−1)!

 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝐴𝐴,𝑚𝑚𝐵𝐵)
𝑚𝑚=1                                                                                        ( 6-7 ) 

We use the coefficients from the Fourier fitting shown in Figure 6-12 for the 

undulation amplitudes and calculate the nine unique terms due to the 𝑛𝑛 = 3, 6, 9 

modes surrounding each particle interacting with each other. We do this by summing 

the contributions from the [3,3], [3,6], [3,9], [6,3], [6,6], [6,9], [9,3], [9,6] and [9,9] modes 

in order to calculate ∆𝑊𝑊. This is done firstly for two particles with fixed rotations and 

decreasing separation, shown in Figure 6-15, in order to compare to our previous 

pairwise calculations. Secondly, we perform the calculation for two rotating particles at 

a fixed separation such that Ψ𝑃𝑃 =  Ψ𝐵𝐵 in Figure 6-16. 

Figure 6-14 Sketch of two particles A and B at fixed center to center separation S. We use the same 

orientational definitions as Danov et al.32 where Ψ𝑃𝑃 and  Ψ𝐵𝐵  are the angles of rotation of the particles 

with respect to their initial state in which  Ψ𝑃𝑃 =  Ψ𝐵𝐵 = 0. 
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In Figure 6-15 we compare our results for the three orientations studied in Figure 

6-13 (a) to the results from Danov’s model. We find that the Danov formula slightly 

underestimates the L-L interaction and slightly overestimates the S-S interaction but 

otherwise we find excellent agreement with our SE method. Finally, using a fixed 

separation of 𝑆𝑆 = 3.5𝑟𝑟  and letting  Ψ𝐴𝐴 =  Ψ𝐵𝐵  we compare our model to the model 

proposed by Danov et al. and find excellent agreement with the theoretical treatment 

once again. With minima occurring at 60°, 180° and 300°  coinciding with the alignment 

of the short edges. This implies that for a given separation where the particles start to 

‘feel’ each other’s presence there is not only an attractive force driving them together 

but also a torque acting to align them either short side to short side or long side to long 

side. This is very similar to the case of two interacting cylinders with a similar explanation 

of the deformations being concentrated on certain edges leading to the ground state 

being ‘tip-tip’.  Therefore, we have a simple set of analytical formulas which can 

accurately model anisotropic capillary interactions which can be used as inputs in a 

Figure 6-15 Normalized free energy vs center to center separation for 𝛼𝛼 = 2 and its comparison with the 

theoretical model proposed by Danov et al32. 
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particle-based simulation to study self-assembly in future work. It is an interesting 

feature that the superposition approximation works so well in modeling the systems 

discussed, we note that we believe this is due to limiting the amplitudes of undulation 

to be small such that we remain in the linear regime when describing then meniscus 

modes superposition. 

 

 

 

 

 

 

 

Figure 6-16 Rotating particles at fixed separation, in which Ψ𝑃𝑃 =  Ψ𝐵𝐵   simulation calculations for a given 

configuration (black dots) vs Danov et al. model (solid red line).32 
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6.4.3 2D Crystalline Structures 

To conclude this study, we simulate four possible crystal structures which are 

derived from considering possible favorable interface overlaps, the low & high density 

kagome (a, b), rectangular (c) and hexagonal (d) lattices illustrated in Figure 6-17. The 

structures are sketched at an intermediate particle separation with blue and green spots 

indicating interfacial depressions and rises respectively with the particles coloured pink 

and having a side ratio of 𝛼𝛼 = 2. 

We simulate the structures shown in Figure 6-17 using periodic boundary 

conditions within SE in the same way previously expressed and normalized in section 

6.3.3, presenting the results in Figure 6-18. Intuitively one might expect the high density 

kagome (solid green line) to be the ground state because it has the highest interfacial 

coverage at contact (dashed green line), however this is only true at higher densities. At 

lower densities the open packed kagome (solid red line) is the lowest energy state as 

shown by the common tangent construction (black dot dashed line) which gives the 

lowest energy state for any given value of 𝜂𝜂, i.e., the ground state at 𝑇𝑇 = 0. Specifically, 

Figure 6-17 Candidate crystal structures for a distorted hexagonal plate, illustrated at intermediate 

particle separations with blue and green spots indicating interfacial depressions and rises respectively.  

Illustrations depict a low density kagome (a), high density kagome (b), rectangular(c) and hexagonal (d) 

lattice. 
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the lowest free energy state will be a phase coexistence between the two states linked 

by the common tangent line, in this case this is the open and closed packed kagome 

phases. An explanation of this phenomena is that the meniscus deformation around the 

short sides is significantly higher than on the long sides (therefore requiring more energy 

to maintain), as was found previously when considering the pairwise interactions in 

Figure 6-13. Overlapping the deformations originating from the shorts side of the 

platelets is significantly more energetically favorable than overlapping the deformations 

originating from the longer sides at an equivalent particle separation. The HCP and 

rectangular structures are very close energetically, likely due to being highly similar 

structures in this case, the difference being each alternate row being offset half a 

particle width.   

6.5 Conclusions 
We have used the finite element analysis package Surface Evolver to study the self-

assembly characteristics of undulating polygonal plates. Specifically, by using undulating 

Figure 6-18 Normalised free energy as a function of area density for the 4 unit cells simulated in SE with 

periodic boundary conditions along with contact density (dashed lines) and common tangent 

construction (dot-dashed). 
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hexagonal platelets and changing the relative phase axis of the capillary multipole and 

the hexagonal shape we change the self-assembled ground state structure from a 

hexagonal close packed lattice to honeycomb lattice. Furthermore, by distorting these 

undulating platelets and changing the ratio of the side lengths, we can tune the ground 

state structure and direct the self-assembly to assemble to one of two versions of 

kagome lattices. Finally, We find found that the pairwise interactions of the various 

undulating polygons could also be captured quantitatively by the analytical formulas of 

Danov et al. which, for future work, can be used to perform particle based Monte Carlo 

simulations of the self-assembly process. 
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 Conclusions and Future Work 

7.1 Conclusions 
In this thesis we have studied the adsorption kinetics of ellipsoidal and cylindrical 

colloids at liquid interfaces as well as the orientation, capillary forces and self-assembly 

of hexagonal like platelets. We have investigated the former theoretically by coupling a 

Langevin model to Surface Evolver simulations and the latter using Surface Evolver. 

 In Chapter 4, we developed a simple Langevin model which accurately captures 

the deformation of the liquid meniscus and uses the correct ratio for the translational 

and rotational particle friction coefficients. The effect of contact line pinning was 

incorporated into the model by renormalising particle friction coefficients and using the 

appropriate dynamic contact angle. Using this simple model, we reproduced the 

monotonic evolution of particle orientation with time that has been observed 

experimentally. Specifically, we were able to obtain this behaviour by accurately 

modelling interfacial deformation and particle friction coefficients without the need to 

explicitly invoke depinning dynamics of the contact line. We were also able to 

quantitatively model the adsorption dynamics of the individual adsorption coordinates 

(i.e., adsorption coordinate vs. time) for the experimental ellipsoidal systems of 

Coertjens et al.24 but not those of Wang et al.23 However, even for the latter case, our 

model was able to accurately capture the adsorption trajectory (i.e., particle orientation 

vs. height) of the particles. Our model clarifies the different roles played by capillary, 

viscous and contact line forces in determining the wetting dynamics of micron-scale 

objects. Our theoretical model can be used as a predictive tool for designing and 

controlling the assembly of complex particles at liquid interfaces. 
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 In Chapter 5 we again used Langevin dynamics coupled to a finite element model 

to study the adsorption kinetics of cylindrical nanorods at an oil/water interface in order 

to determine the optimum conditions for using adsorption kinetics to assemble 

nanorods into vertically aligned monolayers. Our Langevin model is more accurate 

compared to previous models used by de Graaf et al.21 as it accurately captures the 

deformation of the liquid meniscus during particle adsorption and uses the correct ratio 

for the rotational to translational friction coefficients for the nanorod.  

We found that the end-on state is stable only for non-neutrally wetting 

cylindrical nanorods. We also found that the final orientation of the nanorods at 

the oil/water interface is determined by their initial attack angle when they 

contact the liquid interface. In particular, the range of attack angles leading to the 

end-on state is maximised when nanorods adsorb onto the liquid interface from 

the energetically favourable phase, i.e., hydrophobic particles from the oil phase 

and hydrophilic particles from the water phase. Surprisingly, we find that the 

range of attack angles is only weakly dependent on particle aspect ratio, thus 

allowing us to use adsorption kinetics to assemble vertically aligned nanorods for 

a wide range of aspect ratios. However, we found that the energy barrier 

stabilizing the (metastable) end-on state decreases with increasing aspect ratio 

so the end-on state becomes kinetically unstable when the aspect ratio of the 

cylinders is too large. This effect sets an upper limit of ≲10 for particle aspect 

ratios that can be assembled into vertically aligned monolayers using adsorption 

kinetics.  

Since only some attack angles lead to the end-on state, in the absence of 

an external field, only a fraction of nanorods that contact the liquid interface end 
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up in the end-on state (typically ≲40% even under optimum conditions). 

However, by pre-aligning the nanorods in the more polar bulk phase with 

experimentally achievable electric fields, we can effectively increase this fraction 

to 100%. Our kinetic assembly method is generic and can be used to assemble 

nanorods with a range of diameters, aspect ratios and materials (e.g., gold, silver, 

aluminium, copper, polymer, silica etc.). As such, it represents a versatile, low-

cost and powerful platform for fabricating vertically aligned monolayers of 

nanorods for metamaterial applications. 

 In Chapter 6, we studied the self-assembly of undulating polygonal plates. 

Specifically, by using undulating hexagonal platelets and changing the relative 

phase axis of the capillary multipole and the hexagonal shape we can change the 

self-assembled ground state structure from hexagonal close packed to 

honeycomb. By distorting these platelets into distorted hexagons and changing 

the ratio of the long to short side lengths, we were able to tune the self-assembled 

ground state structure to two different versions of kagome lattices. Finally, we 

found that the pairwise interactions between the various undulating polygons can 

be captured quantitatively using the analytical formulas of Danov et al.32 for the 

interaction between capillary multipoles. The work in this chapter provides a 

proof of concept for engineering directed self-assembly by manipulating particle 

shape alone. Having developed a predictive model for studying the adsorption of 

anisotropic particles at a liquid interface, a natural next step would be to use the 

model to study the adsorption kinetics of particles with other anisotropic shapes, 

e.g., cubes. 

 In Chapter 6 we determined the conditions required to assemble nano-rods in 

the end-on state using adsorption kinetics. We hope these calculations will stimulate 
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further efforts to realize this novel assembly method experimentally. Finally, we showed 

that the Danov formula can accurately capture the pairwise capillary interactions 

between polygons with undulating edges. A natural next step for this research would be 

to use these calculated interaction potentials to carry out Monte Carlo simulations for 

an ensemble of such particles and also to fabricate the necessary shapes (e.g., using 3D 

printing) to study the self-assembly of such particles experimentally. 

7.2 Future Work 

Having developed a simple theoretical model which can be used as a predictive 

tool for designing and controlling the assembly of colloidal particles at an immiscible 

interface a natural next step is to use it to study more anisotropic particles. Furthermore, 

due to the nature of the finite element analysis software, it would be straight forward 

to introduce surface defects to the particles under investigation to more accurately 

model reality. While doing this would allow investigation into pinning sites it would not 

be capable of modeling contact angle hysteresis due to the nature of the model being a 

quasi-static system. 

 In Chapter 6 we showed that the Danov formula can accurately capture pairwise 

interactions between our engineered particles. To push this study further It is desirable 

to use these calculated potential profiles and carry out Monte Carlo simulations for 

these systems. Such a study would be fairly straight forward and make a suitable 

undergraduate dissertation project. 

Finally, to continue the research presented in Chapter 6 on hexagonal platelets 

and variations of them, an experimental validation of this would be desirable. The very 

real difficulties with respect to an experimental demonstration of these concepts is the 

particle fabrication steps and we envision this as a two-step process. Firstly, the low 
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hanging fruit is to use off the shelf 3D printers to print the various (hollow) particles on 

the millimeter scale and use density matching to keep them at the interface using much 

the same experimental approach as Whitesides et al.42 Given that 3D printers print layer 

by layer an interesting branch of this experimental demonstration would be to perform 

two versions of it, firstly printing with PLA and secondly using particles printed from ABS. 

In the first iteration the particles are taken as is from the printer with their rippled edges 

(over 0.16mm – 0.4mm layer height range) and in the second iteration a single batch 

printed and post processed with the acetone vapor techniques to remove the ripples. 

One would expect pinning effects to become apparent at some point over this range. To 

really drive the research to smaller length scales it would require either the use of 

stereolithography or two photon lithography which presents a financial barrier to the 

research if not collaborating with a research institution with access to equipment and 

expertise in the areas. 
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Appendix 1 Surface Evolver Program and Parallelisation 

In the following we outline the technical details of running Surface Evolver in 

parallel across multicore machines to reduce the lead time for a full set of results. We 

run this on The University of Hull’s Linux based supercomputer Viper across 6000 cores, 

managed by a SLURM scheduler. The process can be modified in a straightforward 

manner to run on other machines and/or operating systems as will be detailed. 

The following set up steps all take place within the local Surface Evolver directory, 

in our case /ev272v, in which we create a new folder called array_job and inside this 

folder create a file named submit1.sh which contains the following code: 

 
This submission script looks for files inside the directory:  

home/USER/ev272v/fe/ and searches for files with names between 1.fe -100.fe. When 

a core on Viper becomes free, it copies a simulation script to the core and executes 

everything inside the run command inside the simulation file. Once a simulation set has 

finished, all files on the core get copied back to the local drive, inside the same directory 

as submit1.sh is stored in. There will be the original simulation, an output.txt, error.txt 

and any output from the simulation itself. To modify the process to a local windows 
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machine the array job script would be replaced with a .bat file with the relevant syntax 

and split across the number of cores on the local machine. 

In the following example we simulate two of the hexagonal platelets studied in 

section 6.3.2 at an interface with an initial centre to centre separation (Sep) of 10𝑟𝑟, 

where 𝑟𝑟 is the particle radius.  The simulation file, shown below, has a PARAMETER Sep 

= 10 ∗ 𝑟𝑟 on line 1, and the output command to write the total energy and separation to 

a file : outp := {printf " %f\n", total_energy >> "c:\\Users\\YOU\\output.txt"  } on lines 

229 - 234. We will give an example of how we use Python programs firstly to 

automatically generate 100 unique simulation scripts which decrease the particle 

separation by  0.1 ∗ 𝑆𝑆𝑒𝑒𝑝𝑝  and output the results to a unique file. Secondly, to 

automatically compile all these files into a single one upon completion, as described in 

Chapter 3. Before doing so however, we will first make some notes on the structure and 

salient features of the Surface Evolver script for clarity. 

The Simulation script is shown below and has the C++ syntax, an overview of the 

structure is as follows.  Global parameters, definitions and functions are placed at the 

top of the file followed by function definitions preface by the keywords PARAMETER, 

#define and formula respectively. The systems geometry is then defined, as detailed in 

Chapter 3, with the keyword’s vertices, edges and faces alongside any constraints which 

apply to them. Finally, under the read heading are the execution statements which call 

the various methods of Surface Evolver such as input/output operations, tessellation 

schemes and minimisation procedures. The final “run” statement bundles together all 

the sub-routines and is the statement which is passed from the array job script to 

execute the simulation. A given particle morphology/configuration is developed on a 

local machine and tested with some boundary conditions before the full set is run. 
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// 2d parameterised hexagonal plate 
// define constants: 
PARAMETER Sep = 2.5 
#define r 1 
#define rad pi/180. 
#define component (r*sin(30.0*rad)) 
#define Boxsize 20*r 
 
// coefficients: 
#define a 1 
#define b 1 
#define c 1 
#define d 0.1 
#define h d/2 
PARAMETER eta = 4 
PARAMETER eta2 = 2 
PARAMETER tilt_angle = 0.0  //first rotation about y axis 
PARAMETER ta = 0.0 
PARAMETER rotation = 0.0 //second rotation about x prime axis 
PARAMETER rot = 0.0  
PARAMETER tilt_angleP2 = 0.0  //first rotation about y axis 
PARAMETER taP2 = 0.0 
PARAMETER rotationP2 = 30.0 //second rotation about x prime axis 
PARAMETER rotP2 = 30.0  
#define psi ((pi/180)*tilt_angle) //conversion of first rotation to radians 
#define beta ((pi/180)*rotation) //conversion of second rotation to radians 
#define psiP2 ((pi/180)*tilt_angleP2) //conversion of first rotation to radians 
#define betaP2 ((pi/180)*rotationP2) //conversion of second rotation to radians 
PARAMETER contact_angle = 90.0 
#define gamma  ((cos((contact_angle*pi)/180))/2) 
#define gamma2  ((-cos((contact_angle*pi)/180))/2) 
#define theta0 0   // i.e. at x=r,y=0 
#define A 0.05    // amplitude of undulation 
#define rc sqrt(xprime_2^2+yprime_2^2) //**************** 
#define zZero (A*rc*cos(3*(theta-theta0))) 
#define var (sqrt((yprime_2/(sqrt(yprime_2^2+xprime_2^2)))^2)) 
#define var2 (yprime_2/(sqrt(yprime_2^2+xprime_2^2))) 
#define checkUnity (var-(var%1)) 
#define sign (2*(floor(zprime_2/10))+1) 
#define argument (checkUnity?(sign*(0.9999999999999999)):(var2)) 
#define theta sign*(acos(argument)) 
#define yprime_1 y 
#define zprime_1 ((-x*sin(psi))+(z*cos(psi))) 
#define xprime_1 ((x*cos(psi))+(z*sin(psi))) 
#define xprime_2 ((xprime_1*cos(beta))+(yprime_1*sin(beta))) 
#define yprime_2 ((-xprime_1*sin(beta))+(yprime_1*cos(beta))) 
#define zprime_2 zprime_1 
#define rcP2 sqrt(xprime_2P2^2+yprime_2P2^2) //**************** 
#define zZeroP2 (A*rcP2*cos(3*(thetaP2-theta0))) 
#define varP2 (sqrt((yprime_2P2/(sqrt(yprime_2P2^2+xprime_2P2^2)))^2)) 
#define var2P2 (yprime_2P2/(sqrt(yprime_2P2^2+xprime_2P2^2))) 
#define checkUnityP2 (varP2-(varP2%1)) 
#define signP2 (2*(floor(zprime_2P2/10))+1) 
#define argumentP2 (checkUnityP2?(signP2*(0.9999999999999999)):(var2P2)) 
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#define thetaP2 signP2*(acos(argumentP2)) 
#define yprime_1P2 (y-Sep) 
#define zprime_1P2 z //((-x*sin(psiP2))+(z*cos(psiP2))) 
#define xprime_1P2 x //((x*cos(psiP2))+(z*sin(psiP2))) 
#define xprime_2P2 ((xprime_1P2*cos(betaP2))+(yprime_1P2*sin(betaP2))) 
#define yprime_2P2 ((-xprime_1P2*sin(betaP2))+(yprime_1P2*cos(betaP2))) 
#define zprime_2P2 zprime_1P2 
 
constraint plate 
formula: 
((((sqrt(3)/2)*xprime_2+(1/2)*yprime_2)/a)^eta+(yprime_2/b)^eta+(((sqrt(3)/2)*xprime_2-
(1/2)*yprime_2)/c)^eta+((zprime_2-zZero)/d)^eta2) = 1 
 
constraint plateP2 
formula: 
((((sqrt(3)/2)*xprime_2P2+(1/2)*yprime_2P2)/a)^eta+(yprime_2P2/b)^eta+(((sqrt(3)/2)*xprim
e_2P2-(1/2)*yprime_2P2)/c)^eta+((zprime_2P2-zZeroP2)/d)^eta2) = 1 
 
constraint x_limit_positive   // Set limits of boundary edges 
formula: x = Boxsize 
constraint x_limit_negative 
formula: x = -Boxsize 
constraint y_limit_positive 
formula: y = Boxsize 
constraint y_limit_negative 
formula: y = -Boxsize 
 
vertices 
//upper face 
1 r 0 -h constraint plate 
2 component -r -h constraint plate 
3 -component -r -h constraint plate 
4 -r 0 -h constraint plate 
5 -component r -h constraint plate 
6 component r -h constraint plate 
// lower face 
7 r 0 h constraint plate 
8 component -r h constraint plate 
9 -component -r h constraint plate 
10 -r 0 h constraint plate 
11 -component r h constraint plate 
12 component r h constraint plate 
13 Boxsize -Boxsize 0 constraints x_limit_positive,y_limit_negative 
14 -Boxsize -Boxsize 0 constraints x_limit_negative,y_limit_negative 
15 -Boxsize (Sep/2) 0 constraints x_limit_negative 
16 Boxsize (Sep/2) 0 constraints x_limit_positive 
 
//Particle 2 
//upper face 
17 r Sep -h constraint plateP2 
18 component -r+Sep -h constraint plateP2 
19 -component -r+Sep -h constraint plateP2 
20 -r Sep -h constraint plateP2 
21 -component r+Sep -h constraint plateP2 
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22 component r+Sep -h constraint plateP2 
// lower face 
23 r Sep h constraint plateP2 
24 component -r+Sep h constraint plateP2 
25 -component -r+Sep h constraint plateP2 
26 -r Sep h constraint plateP2 
27 -component r+Sep h constraint plateP2 
28 component r+Sep h constraint plateP2 
29 -Boxsize Boxsize 0 constraints x_limit_negative,y_limit_positive 
30 Boxsize Boxsize 0 constraints x_limit_positive,y_limit_positive 
  
edges 
// lower face 
1 1 2 constraint plate 
2 2 3   constraint plate 
3 3 4   constraint plate 
4 4 5   constraint plate 
5 5 6   constraint plate 
6 6 1   constraint plate 
//upper face 
7 7 8  constraint plate 
8 8 9       constraint plate 
9 9 10      constraint plate 
10 10 11    constraint plate 
11 11 12    constraint plate 
12 12 7     constraint plate 
//sides 
13 1 7  constraint plate 
14 2 8      constraint plate 
15 3 9      constraint plate 
16 4 10     constraint plate 
17 5 11     constraint plate 
18 6 12     constraint plate 
 
//interface 
19 13 14 constraint y_limit_negative 
20 14 15 constraint x_limit_negative 
21 15 16 //constraint y_limit_positive 
22 16 13 constraint x_limit_positive 
23 13 2 
24 14 3 
25 15 4 
26 16 6 
 
//Particle 2 
// lower face 
27 17 18  constraint plateP2 
28 18 19   constraint plateP2 
29 19 20   constraint plateP2 
30 20 21   constraint plateP2 
31 21 22   constraint plateP2 
32 22 17   constraint plateP2 
//upper face 
33 23 24   constraint plateP2 
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34 24 25      constraint plateP2 
35 25 26     constraint plateP2 
36 26 27   constraint plateP2 
37 27 28   constraint plateP2 
38 28 23    constraint plateP2 
//sides   
39 17 23 constraint plateP2 
40 18 24     constraint plateP2 
41 19 25     constraint plateP2 
42 20 26    constraint plateP2 
43 21 27    constraint plateP2 
44 22 28    constraint plateP2 
45 15 29 constraint x_limit_negative 
46 29 30 constraint y_limit_positive 
47 30 16 constraint x_limit_positive 
48 15 19 
49 29 20 
50 30 22 
51 16 18 
 
faces 
// lower face 
1 1 2 3 4 5 6   constraint plate color yellow tension gamma2 
// sides                 
2 7 -14 -1 13           constraint plate color yellow tension gamma 
3 8 -15 -2 14           constraint plate color yellow  tension gamma 
4 9 -16 -3 15           constraint plate color yellow   tension gamma 
5 10 -17 -4 16          constraint plate color yellow   tension gamma 
6 11 -18 -5 17          constraint plate color yellow   tension gamma 
7 12 -13 -6 18          constraint plate color yellow   tension gamma 
//upper face             
8 -12 -11 -10 -9 -8 -7  constraint plate color yellow tension gamma 
//interface 
9 2 -24 -19 23  color green 
10 -20 24 3 -25     color green 
11 -21 25 4 5 -26   color green 
12 26 6 1 -23 -22   color green 
 
//Particle2 
// lower face 
13 27 28 29 30 31 32   constraint plateP2 color yellow tension gamma2 
// sides                 
14 33 -40 -27 39          constraint plateP2 color yellow tension gamma 
15 34 -41 -28 40          constraint plateP2 color yellow  tension gamma 
16 35 -42 -29 41          constraint plateP2 color yellow   tension gamma 
17 36 -43 -30 42         constraint plateP2 color yellow   tension gamma 
18 37 -44 -31 43         constraint plateP2 color yellow   tension gamma 
19 38 -39 -32 44         constraint plateP2 color yellow   tension gamma 
//upper face             
20 -38 -37 -36 -35 -34 -33  constraint plateP2 color yellow tension gamma 
// 
21 -48 21 51 28  color green 
22 -45 48 29 -49    color green 
23 49 30 31 -50 -46 color green 
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24 50 32 27 -51 -47 color green 
 
read 
outp := { 
 {  
                printf " %f\t", Sep >> "c:\\Users\\462915\\.txt" ;  
                 printf " %f\n", total_energy >> "c:\\Users\\462915\\.txt" ; 
 } 
 } 
set background white ; 
groom_length := 0.2; 
groom := { 
   refine edge where length > groom_length; 
   u; V; 
   delete edge where length < groom_length/5; 
} 
gogo := {  
   groom 8; 
   {g 5; groom; } 20; 
fix vertex where on_constraint plate; 
fix vertex where on_constraint plateP2; 
  hessian_seek; hessian_seek; 
  unfix vertex where on_constraint plate; 
  unfix vertex where on_constraint plateP2; 
   
   { g 5; groom; } 5; 
} 
go_more := { 
   { recalc; M 1; 
     {g 5; groom } 10;  
  fix vertex where on_constraint plate; 
  fix vertex where on_constraint plateP2; 
     hessian_seek; hessian_seek; 
 unfix vertex where on_constraint plate; 
 unfix vertex where on_constraint plateP2; 
     {g 5; groom } 10;  
M 2; {g 5; u; V;} 10; 
refine edge where on_constraint plate; 
refine edge where on_constraint plateP2; 
 u; V;   
{g 5; u; V;} 50; 
   } 
} 
 
FacetGeometry:=foreach facet ff do { printf "%d  %d %d %d\n", ff.id,ff.edge[1].oid, 
      ff.edge[2].oid,ff.edge[3].oid } 
    
resolve:={{r; groom}2;u;V}; {r; groom}2} 
init:={gogo;{eta+=2;resolve}4} 
setUp1:={for (ta -= 0 ; tilt_angle < ta ; tilt_angle += 2.0) 
  { 
 gogo; 
  }} 
setUp2:={for (rot -= 0 ; rotation < rot ; rotation += 2.0) 
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  { 
 gogo; 
  }} 
 
setUp3:={for (rotP2 -= 0 ; rotationP2 < rotP2 ; rotationP2 += 2.0) 
  { 
 gogo; 
  }}  
contour:= {  ddd:=sprintf"c:\\Users\\scott\\HexPlateContour.txt"; 
      foreach vertex where not on_constraint plate do 
 { 
  printf "%f %f %f \n" ,x, y, z >> ddd; 
 }} 
 
contact_line :=  { 
       dd:=sprintf"c:\\Users\\comsol\\Contact_line_cube_0_to_20.txt"; 
    foreach vertex where on_constraint plate do 
    { printf "%f\t %f\t %f\n", x ,y ,z >> dd; 
 }} 
run:= {init;setUp2;setUp3;gogo;go_more;outp} 

 

Once we have a working surface evolver simulation and have tested it with some 

boundary conditions it is saved as a .txt file, for this example masterHexPlates.txt. Finally, 

we place the commands we wish to execute in the run statement on the final line of the 

simulation file. This statement contains any initialisation protocols, the tessellation and 

minimisation schemes and any output commands, all of which can be either custom 

written or internal Surface Evolver methods. 

  To automatically spawn the desired number of simulations we use the Python 

script shown below which opens the masterHexPlates.txt file and stores each line as a 

single string type element in an indexed list. Next, we create a loop which iterates over 

the number of simulations we wish to create i.e., 100 simulations each one incrementing 

the particle separation by 0.1 ∗ 𝑆𝑆𝑒𝑒𝑝𝑝 and changing the output file name and simulation 

file name to the index of the loop with the .fe post-fix. In this manner we create 100 

simulations, named 1.fe – 100.fe, inside of which the output destination are 

corresponding output files 1.txt – 100. Note, we need a numbered file name because 
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that is what allows us to call the jobs from the submit.sh script line 

${SLURM_ARRAY_TASK_ID}.fe because the SLURM array is an array of numbers from 1 

– 100. 

FileOutputName = [] 
# note list names not meaningful, reused and edited program many times, left over from 
# older work  
space = ' ' 
filePath = "toUpload\\" 
end = '.fe' 
def file_reader(file_name):             
        #function to read in data line by line, returns all data 
        # in single list,each element is one line. 
        a = open(file_name, "r")               
        data = a.readlines() 
        a.close() 
        return(data) 
 
# Spawn list of parameter values we want to change  in the script, in this case use for 
#Seperaion 
tilts=[] 
number= 10.0 
for i in range(0,100):  
    number-=0.1 
    var=str(number) 
    tilts.append(var) 
 
 
c=0 
for tilt in tilts:  
    c+=1 
    data=file_reader( "masterSpawn.txt" ) # open sim file 
    phi=data[2].split(' ') # this line is: "PARAMETER Sep = 2.5" 
    phi[-1]=str(tilt) # change Sep value 
    newLine1=phi[0]+space+phi[1]+space+phi[2]+space+phi[3] # rebuild line from list 
    data[2]=newLine1 # replace original with newline 
     
    """ Now do the same for the file outputs, want unique name for each loop iteration 
    so use loop counter for this """ 
    x=data[230].split(' ') # line of interest  
    x2=data[231].split(' ') # 2nd line of interest  
    out=x[21] # file name in line of interest 
    out2=x2[22] # file name in line of interest 
     
    new = "" 
    for letter in out: 
    # because string need to rebuild filepath and change to unique file name 
 
        if letter is out[20]: # means now at filename 
            new+=str(c) 
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            new+=letter 
        else: # means sill rebuilding original line 
            new+=letter 
     
    # As above for 2nd line of interest 
    new2 = "" 
    for letter in out2: 
        if letter is out2[20]: 
            new2+=str(c) 
            new2+=letter 
        else: 
            new2+=letter 
    x[21]=new 
    x2[22]=new2 
    replaceLine = "" 
    # now rebuild entire command: 
    for y in x: 
        replaceLine+=y 
    data[230]=replaceLine 
     
    # as above but for 2nd 
    replaceLine2 = '' 
    for y in x2: 
        replaceLine2+=y 
    data[231]=replaceLine2 
         
    fN=filePath+str(c)+end 
       
    # output SE sim:         
    file = open(fN, "w") 
    for line in data: 
        file.write(str(line)) 
        file.write('\n') 
    file.close() 
 

The final step of the process is a simple Python program, shown below, which 

lists all the files in a specified directory, loops over each one, extracts the data and writes 

it to a single master file from which we can perform data analysis. 

 
"""Program looks in directory, iterates over all files within extracting the data on first line, 
compiles and outputs a single file named compiledData.txt """ 
 
import os 
dirName = "forProcessing" # dir to compile 
fileNames = os.listdir(dirName) # returns all filenames in directory 
fullDataSet = [] 
 
def file_reader(file_name):             
        #function to read in data line by line, returns all data 
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        # in single list,each element is one line. 
        a = open(file_name, "r" )               
        data = a.readlines() 
        a.close() 
        return(data) 
     
for x in fileNames: 
    # open each file 
    data = file_reader((dirName+'\\'+x)) 
    y = data[0].split('\t')   # data on first line 
    fullDataSet.append(y) 
   
# output compiled set 
output = open('compiledData.txt','w') 
for z in fullDataSet: 

# note, format to your requirements, currently tab spaced with blank line inbetween    
datapoints 

    for var in z: 
        output.write(str(var)) 
        output.write('\t') 
    output.write('\n') 
output.close() 
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