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Abstract 
Machine Learning (ML) methods represent a potential tool to support and optimize virtual 

patient-specific plan verifications within radiotherapy workflows. However, previously reported 

applications did not consider the actual physical implications in the predictor’s quality and model 

performance and did not report the implementation pertinence nor their limitations. Therefore, 

the main goal of this thesis was to predict dose deliverability using different ML models and 

input predictor features, analysing the physical aspects involved in the predictions to propose a 

reliable decision-support tool for virtual patient-specific plan verification protocols. 

Among the principal predictors explored in this thesis, numerical and high-dimensional features 

based on modulation complexity, treatment-unit parameters, and dosimetric plan parameters 

were all implemented by designing random forest (RF), extreme gradient boosting (XG-Boost), 

neural networks (NN), and convolutional neural networks (CNN) models to predict gamma 

passing rates (GPR) for prostate treatments. Accordingly, this research highlights three principal 

findings. (1) The dataset composition's heterogeneity directly impacts the quality of the 

predictor features and, subsequently, the model performance. (2) The models based on 

automatic extracted features methods (CNN models) of multi-leaf-collimator modulation maps 

(MM) presented a more independent and transferable prediction performance. Furthermore, 

(3) ML algorithms incorporated in radiotherapy workflows for virtual plan verification are 

required to retrieve treatment plan parameters associated with the prediction to support the 

model's reliability and stability. Finally, this thesis presents how the most relevant automatically 

extracted features from the activation maps were considered to suggest an alternative decision 

support tool to comprehensively evaluate the causes of the predicted dose deliverability. 
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 Introdcution 

Machine learning (ML) applications in radiation therapy (RT) dedicated to patient-specific plan 

verification require studies to define what model-reliability involves and what are the actual 

applications of those physical aspects, given by the predictors, linked to the dose deliverability. 

While other ML applications for organ contouring or detection can be intuitively assessed and 

corrected during the RT plan design-optimization process [1], the dose deliverability predictions 

based on ML models face several hidden challenges in their actual application due to the implicit 

uncertainty of the ground truth definition of a predicted ‘passing’ or ‘failing’ plan [2,3]. 

Specifically, the no control of physical aspects within the dataset, such as the dose detection 

device, the treatment unit hardware, the dose optimization/calculation software, and the 

clinical configurations established in each RT facility, impact the minimum conditions needed to 

decide if a specific treatment is suitable for delivering to the patient [4–6]. Thus, the dose 

deliverability analysis supported by ML models should become a more customized protocol to 

attempt more robust prediction. 

Considering already reported ML models predicting gamma passing rates (GPRs ) (Section 2.3.1), 

the main technical aspects considered in their designs were: the kind of predictors, the ML 

algorithms,  and the dataset size [2]. However, their potential applications in practice, the 

predictors' quality, and their technical limitations have not been thoroughly discussed, which 

generates important gaps in the reliability of the published ML models [3]. Therefore, this 

research addressed these aspects through a series of studies designing an ML model that 

predicts GPR values,  oriented to transfer modeled features to physical parameters from the 

treatment delivery, promoting reliable ways to verify the prediction quality and model stability, 

and suggesting potential indicators of technical tolerance limits for further plan designing. 

Accordingly, this thesis is oriented to contribute to the medical physics field,  implementing ML 

models to support the RT virtual dose deliverability evaluation and defining more 

comprehensive challenges and limitations of these models predicting GPRs. Thus, this research 

was developed in four main steps, (I) extracting and calculating all the complexity metrics and 

plan parameters as predictor features (Chapter 4), (II) verifying the effect of the dataset 

assembling conditions on model performance (Chapter 5), (III) implementing high-dimensional 

features to avoid the numeric calculated predictors (Chapter 6), and (IV) proposing the minimum 

aspects needed to implement these ML models in practice (Chapter 7). Correspondingly, the 

main contributions of this thesis are (I) the new modulation complexity metrics for treatments 

based on dual-layer MLC models, (II) the demonstration of dataset-composition effects in 

prediction quality, (III) the suitability of high-dimensional features implementation to predict 
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GPRs, and (IV) the verification of model reliability extracting the activated maps from the high-

dimensional features, and including them within an RT plan verification workflow. 

Considering the above-mentioned and the available resources provided by the University of Hull 

and the Hull University Teaching Hospitals NHS Trust, the whole research developed in this thesis 

was oriented to demonstrating the following hypothesis: “It is possible to use ML models to 

support virtual patient-specific treatment verification in prostate radiotherapy, retrieving 

critical physical aspects involved in dose deliverability.” Moreover, this hypothesis 

encompasses the dataset quality, the virtual patient-specific treatment verification workflow 

design, and the verification of model reliability by including the physical plan parameters 

associated with the prediction. 

Considering these three aspects associated with the hypothesis, the principal aim of this thesis 

was to explore the best dataset and model configuration to predict GPR values retrieving 

specific features corresponding to physical aspects involved in the dose deliverability. 

Accordingly, this objective was developed intending to answer the following research questions: 

1. Which input features are more convenient for GPR predictions using ML models? 

2. What dataset configuration is optimal for a reliable GPR modelling performance? 

3. Are the ML models based on high-dimensional input features suitable for GPR 

predictions? 

4. What decision-support strategy for virtual plan verification might be beneficial in 

practice? 

The structure of this thesis, intending to address the research questions, is as follows. Chapter 

2 gives a literature review with the main generalities and technical aspects of RT, ML, and ML 

applications in RT. Chapter 2 includes the background necessary to understand the related state 

of the art and the different technical aspects referenced in this thesis that will be described in 

the introduction sections of each following chapter.  

In Chapter 3, a four-steps workflow of this thesis was included describing the methods and 

materials implemented. This section summarises the research pathway followed in this study, 

from the predictor features extraction and the dataset assembling evaluation to the predictions 

based on high-dimensional features to design a decision-support rationale for virtual patient-

specific treatment verification. Also, additional information regarding the materials used in this 

thesis were summarised in this section. 
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Chapter 4 describes the modulation complexity metrics, feature extraction procedures, and all 

the predictors considered in this thesis. Additionally, since many plans from the available dataset 

were designed and delivered in a relatively new treatment unit (Halcyon-v2) with a different 

multi-leaf collimator (MLC) design, a study was included in this chapter (Section 4.2) to propose 

and validate modulation complexity metrics tailored to the new hardware conditions. 

Consequently, in this chapter, the first question regarding the suitable inputs for GPR predictions 

was initially addressed, exploring the origin of the modulation complexity metrics, their 

representation, and their impact on GPR values or dose deliverability. 

In Chapter 5, the effects of the dataset configuration on the ML model performance were 

explored, addressing the first and second research question. Once the predictors were discussed 

previously, this section intended to explore and demonstrate the potential effects of the dataset 

composition on the model prediction performance. Consequently, the results included in this 

section opened the discussion about the variation of the potential predictors that the model 

relies on to perform a prediction, suggesting a poor interpretability and control of physical 

aspects linked to any GPR prediction based on ML methods. Accordingly, new modelling 

approaches were proposed using high-dimensional features, as shown in Chapter 6. 

Chapter 6 addressed the third research question, demonstrating the suitability of high-

dimensional features associated with modulation complexity to predict GPR values. In this 

section, straightforward model architecture designs were considered to control the changes in 

the input features, which were extracted from the variations of treatment unit parameters 

associated with the MLC movements, the gantry speed, and the dose rate. This section 

demonstrates that features directly represented by physical aspects of the treatment unit 

performance during the treatment time are suitable predictors and might improve the model's 

reliability and interpretability since it provides an understanding of actual patterns or hardware 

conditions related to dose deliverability. 

In Chapter 7, a practical application of the model designed in Chapter 6 is proposed to generate 

a decision-support strategy for virtual plan verification, according to the last (4th) research 

question. This practical application was designed to explore the potential advantages of using 

the model's activated feature maps, retrieving specific treatment physical aspects that might 

contribute in three main technical instances: (I) the model interpretability and reliability, 

understanding the potential technical properties related to the prediction, (II) the identification 

of critical hardware conditions to set new tolerance limits in the dosimetric planning or re-

planing scenarios, and (III) the understanding of the model limitations and obsolescence 

scenarios in practice. 
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Finally, in Chapter 8, the conclusions from all previous chapters were summarised and oriented 

to consider the feasibility and requirements to develop ML models to support virtual patient-

specific treatment verification in prostate radiotherapy, retrieving critical physical aspects 

involved in dose deliverability. 
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 Background 

This section describes the general aspects of one standard RT treatment unit, including the 

multi-leaf collimator (MLC) as a beam modulator hardware device (Section2.1). Indeed, the MLC 

trajectories were used to calculate the complexity metrics used in this thesis as GPR predictors. 

Additionally, an overview of the treatment modality (volumetric modulated arc therapy - VMAT) 

applied to all dataset’s plans and the software (treatment planning system - TPS) used to 

generate those treatments are also described. Next, a general RT workflow is described to 

contextualize the RT area to which this thesis aims to contribute. On the other hand, from the 

ML point of view, Section 2.2 summarises the basic concepts of ML, including a description of 

the algorithms used in this thesis. Finally, Section 2.3 describes the ML applications in RT 

predicting GPRs.  

2.1 Radiotherapy 
RT is the therapy dedicated to cancer treatments using ionizing radiation. The World Health 

Organization and the International Atomic Energy Agency have considered it one of the principal 

cancer treatment branches since up to 48% of the patients should receive RT as part of their 

treatment for palliative or curative purposes [7,8]. RT can be classified as external or internal, 

depending on the radiation source location. External radiotherapy, the most common type, is 

delivered by machines that provide conformed radiation energy from outside the patient, 

whereas internal radiotherapy can be classified as brachytherapy and radionuclide therapy. 

Respectively, brachytherapy consists of treatments using solid radioactive materials to be locate 

within the natural body cavities (i.e., gynaecological regions), within the body interstice (i.e., 

prostate), or superficially. The sealed radiation sources can be located through hollow 

applicators and needles, or by contact. Contrastingly, the radionuclide therapy consists of 

injection of liquid radioactive material linked to biomarkers needed to take the radionuclide to 

the tumoral region. In this thesis, the treatment plans retrieved to conform the dataset were 

planned with external radiotherapy. 

2.1.1 Treatment Unit 

The most common treatment unit in external radiotherapy is a linear accelerator (linac) of 

electrons, which are generated by the thermionic effect and are ejected by the electron gun. 

The ejected electron bunches are accelerated by radiofrequency pulses through one waveguide 

system to be subsequently impacted against a high atomic-number target (usually tungsten), 

generating X-ray photons by the Bremsstrahlung effect [9]. Finally, the radiation is collimated 

and modulated by jaws and mechanical devices controlled by computer systems delivering to 

the patient the planned dose, using as a position reference guide one common geometrical point 
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located between the rotation axes of the gantry, the collimator, and the couch, known as the 

isocentre (Figure 2.1). 

 

Figure 2.1 Schematic diagram of one radiotherapy treatment unit known as c-arm linac. Here are 
represented the radiofrequency (RF) generator, the gantry with the waveguide, and the unit head with 
the bending magnet, target, and multi-leaf collimator (MLC) array. Adapted from [9]. 

 

2.1.2 The Multi-Ceaf collimator - MLC 

The MLC is a linac component that sets the shape of the radiation beam and modulates it to 

deliver a specific dose distribution through the calculated pattern of leaves trajectories. The 

shape and model of this device influence the RT performance in terms of dosimetric factors such 

as dose distribution complexity (dose map resolution), dose fall-off, and dose transmission 

trough and between the leaves [10–13]. The MLC of Varian linear accelerators (Varian Medical 

Systems - Palo Alto, USA) has rounded tips, as shown in Figure 2.2, generating a dose region 

named dosimetric leaf gap (DLG) [13,14]. The DLG is a factor measured in the machine 

commissioning process included in TPS and is related, along with faster and thinner MLC, to the 

dose fall-off and conformity within complex geometries [15–17].  
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Figure 2.2 (a) Image representation of DLG, (b) Leaf model of Millennium 120-MLC (M120-MLC) with 
radius curvature of 80 mm and thickness of 67 mm, (c) Leaf model of dual-layer MLC configuration with 
a radius of curvature of 234 mm and thickness of 77 mm. Taken and adapted from [25, 26].  

In this thesis two treatment units were implemented, the TrueBeam and Halcyon-v2 

(Section3.2.1). The Varian TrueBeam is a conventional c-arm linac model with the option to have 

the millenium-120 MLC with 120 leaves of tungsten, each with a radius curvature of 8 cm (Figure 

1.2.a). The maximum conformed radiation fields by this MLC model are up to 40 cm wide and 

long, and the centred 32 pair-leaves have a width of 5 mm at the isocentre while the remaining 

28 pairs are 10 mm wide. In contrast, the Halcyon-v2 (Varian Medical Systems - Palo Alto, US) is 

a ring-linac with jaw-free mode that has a stacked-staggered MLC with two layers of leaves 

(distal and proximal to the linac target) offset by 5 mm (Figure 1.2.b). As described in the work 

of Cozzi et al. [18],  each leaf has a 10 mm width projected at isocentre and has an effective 

conformity-resolution of 5 mm because of the overlap arrangement. Furthermore, the Halcyon-

v2 allows independent displacements of the proximal and distal layers simultaneously, resulting 

in more modulation possibilities [18–23]. 

2.1.3 Volumetric Modulated Arc Therapy - VMAT 

VMAT is an RT modality that continually delivers a series of beam fluencies with variations on 

the beam intensity (i.e., dose rate) modulated by the MLC during the gantry rotation across the 

patient. These variations in beam fluence and dose rate during the arc trajectory conform and 

modulate volumetric dose distributions to cover the target volume with the desired dose and 

simultaneously avoid the surrounding organs at risk (Figure 1.3) [24–26]. Consequently, this 

treatment modality can deliver a highly conformed dose in a short time, representing lower 

patient toxicity [27] and reducing the potential errors by patient motion during the treatment 

delivery [9]. However, this technique implies demanding hardware conditions, especially for the 

MLC movements and the gantry speed, that might compromise the accuracy of the dose 

delivered according to the planned treatment. For this reason, empiric2al modulation metrics 

based on these hardware parameters have been explored as dose deliverability predictors 

(Section 4.1) [28]. 
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Figure 2.3 VMAT representation with the different beam intensities across the arc surrounding the patient. 
The dose conformation is achieved by the dose rate variation and the multi-leaf collimator, which is 
changing their leave positions to modulate the beam fluency. The dose is delivered to conform the target 
volume and to reduce the dose contributions to the healthy tissue.  

 

2.1.4 Gamma Index and Gamma Passing Rate 

In RT, the dose deliverability evaluation has been studied using different dose measurement 

protocols, being the gamma index evaluation the most implemented metric worldwide [5]. The 

gamma index (g), developed by Low et al. [29], is a geometric approach to comparing the 

displacement between two dose-distributions points in a region of interest. As is displayed in 

Figure 2.4,  g is the minimum distance between one reference dose point and one measured 

dose point, given by the dose and geometric variations considered as evaluation criteria (dD/dr) 

[5]. Consequently, the GPR is the percentage of all measured points within the dose distribution 

representing g values lower than 1. In other words, is the proportion of all dose points that are 

acceptably close enough according to the dose and distance criteria. 
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Figure 2.4 Representation of gamma Index calculation. The x and y axis represent distance and dose, 
respectively. The reference point (rR) is marked with the centred red cross, representing an evaluated 
point to be compared to the measured dose points (yellow points, rE) represented in the blue line. The dD 
and dr are the dose/distance acceptance criteria (e.g., dD/dr = 3%/3 mm), creating an acceptance ellipse 
around the reference point. Adapted from [5,29]. 

 

2.1.5 Treatment Planning System - TPS 

The TPS is the software dedicated to designing and calculating RT treatments, having a 2D/3D 

image visualization interface suitable for target volume contouring, irradiation beam designing, 

and dose calculation [30] (Figure 2.5). For the latter, the TPS uses dose calculation algorithms 

based on electron transport approximations and the electron densities extracted from the CT 

images given by the Hounsfield Units (HU) [30,31]. Additionally, the TPS is dedicated to the 

inverse optimisation process needed to generate VMAT treatment plans. This process sets the 

desired gantry arc trajectory, the target volume dose, and the organs at risk dose. 

 

Figure 2.5 TPS visualization with the 2D/3D interface of the axial, coronal, and sagittal view of the CT 
images corresponding to the patient anatomy with the target volume delimited, the field array, and the 
dose distribution. 
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Eclipse-v15.6 TPS (Varian Medical Systems - Palo Alto, U.S.) performs the inverse optimisation 

of VMAT plans with the Photon Optimiser (PO) algorithm [32]. The PO, based on a direct 

aperture optimization process, uses a multi-resolution (MR) approach with fast and periodical 

calculations of the dose distribution, starting with a lower number of dose calculation segments 

and initial MLC positions conforming to the target volume. When this optimisation is continued, 

and the MR level increases, the dose calculation segments also increase, interpolating the MLC 

positions to obtain new leaf apertures that correspond to the improved dose distribution. During 

the MR optimisation, the dose calculation accuracy increases as the number of dose segments 

increases with a maximum separation of 2-4 degrees, depending on the arc span [33]. 

The different TPS options have parameters that impact the final dose fluence by the hardware 

setting parameters such as MLC velocity, gantry speed, and dose rate [34–36], as it will be 

discussed in Section 4.2. Consequently, if these TPS parameters are not handled properly, 

treatments with challenging dose requirements may bring unrealistic or high demanding 

machine conditions (i.e., highly modulated plans), reducing the accuracy of dose delivery [37,38]. 

2.1.6 RT Workflow 

The radiotherapy workflow (Figure 2.6) consists of one assessment moment directed by a 

Physician that decides if the patient is or is not a candidate for radiotherapy treatment based on 

laboratory information (i.e., pathology examination, or genetic tests, such as Oncogene) and 

previous clinical examination. If the patient requires radiotherapy, they need to have a 

computerized tomography (CT) in a specific position, ensuring the setup reproducibility and the 

same immobilization conditions as in the treatment room. With this CT and possibly other 

modality images, such as Positron Emission Tomography (PET) or Magnetic Resonance Imaging 

(MRI), the physician contours the organs at risk (OARs) and the gross tumour volume (GTV), 

defined as the structures detected by visual changes [39,40]. With those volumes, the Medical 

Physicist and dosimetrists calculates the optimal dose distribution to get better dose coverage 

and OARs sparing results. These calculations might be verified by computational and 

experimental protocols involving radiation detectors and alternative dose calculation systems. 

Subsequently, the original set-up of the patient is verified through images in the treatment room. 

If all technical conditions are achieved successfully, radiation treatment is delivered, and 

verification images evaluate the pertinence of a possible adaptation to the therapy during the 

whole treatment. Finally, after fulfilling all the programmed schedules, the patient is sent for 

follow-up [1].  
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Figure 2.6 Radiotherapy standard workflow displaying each step where ML applications can be 
implemented, assisting the treatment prognosis (Assessment). Synthetic image generation or image 
reconstruction, Image detection, or segmentation (Simulation). Error prediction and dose deliverability 
evaluation (Treatment Delivery). Survival or end-points prediction (Follow-Up). 

 

Considering this general RT workflow, it is essential to note that this thesis intends to improve 

the "Treatment Plan & QA" section, developing virtual patient-specific plan verification tools to 

avoid the dose measurements of plans that might not pass the physical tests, making this step 

more efficient. However, this virtual verification tool might also result in high interest in the 

"Treatment Delivery" step due to the onboard plan adaptation therapies that have been 

increasingly implemented [41–43]. Here, new adapted plans are automatically generated if 

significant changes in the patient are evident through the set-up verification images. Hence, 

while the patient is positioned in the treatment room, a new plan is generated, intending to be 

delivered immediately to avoid changes in the patient's condition. Thus, a virtual verification of 

these automatically created plans might help make a fast evaluation protocol to support the 

accuracy of treatment delivery evaluation. 

2.2 Machine Learning Algorithms 
Artificial Intelligence (AI) is an active field of computer sciences that comprehends the models 

and computer processes based on ‘knowledge learned’ by previous input features applied to 

new information scenarios, emulating how humans learn [44]. The name of AI was proposed by 

John McCarthy in 1956 [45,46], settling a starting point of several developments based on this 

rationale [47–49], such as the first Machine Learning (ML) publication in 1959 about one 

program that plays checkers using previously gained information [49]. 

ML is an AI division dedicated to data processing using training information to predict accurate 

outcomes from limited experienced datasets, making data generalizations without direct 

programmed instructions [49]. In the middle of the '90s and the beginning of the '00s, ML 
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becomes an accessible tool for image recognition and medical purposes because of its 

outstanding performance in this area [46,50]. Furthermore, although ML demands high 

expertise in features representation modeling, it has been a field with a high and fast 

development in the Radiation Therapy (RT) area [1]. 

ML comprehends a series of highly developed programming methods dedicated to data analysis. 

Its applications include pattern recognition, computer vision, spacecraft engineering, economy, 

social media, sentiment analysis, computational biology, and biomedical applications [51]. 

Generally, an ML algorithm does not require extensive computer codes to resolve a particular 

task. Instead, its programming architecture parameters improve through iterative periodical 

events, adapting the desired outcomes based on minimizing objective functions. This process is 

called training, in which the input data are simultaneously provided with the desired outcomes. 

Then, the algorithm ‘learns’ (through various statistical methods) to optimize its performance 

and generalize the predicted outcomes to new (or unseen) input data [1,52,53]. 

The ML models can be categorized in terms of how the ‘learning task’ is performed as 

unsupervised, supervised, reinforced, and transferred [46,54]. In supervised learning, the model 

algorithm must have training inputs and known desired outputs (e.g., categorizing functions by 

labels). In contrast, in unsupervised learning, the outcomes are groups of structures instead of 

referenced known outputs (e.g., clustering functions for image recognition). Reinforcement 

learning is determined by the interaction with its dynamic environment to predict specific long-

term responses (e.g., exploring possible scenarios and responses of cellular growth). Finally, the 

transferred learning use information from other training sets to perform another task improving 

the data processing, and  it is applicated when incomplete or low information is available.   

This thesis implemented a series of ML algorithms to predict GPR values using numeric and high-

dimensional predictor inputs. The numeric predictors were used to train the models: random 

forest (RF), XG-Boost, and a neural network to verify the effects of the dataset composition. 

Contrastingly, the high-dimensional predictors were dedicated to training convolutional neural 

network (CNN) models to be incorporated in an RT workflow plan verification. The models' 

descriptions are explained below. 

2.2.1 Random Forest 

Random forest (RF) has been used in RT applications as a decision support tool to verify outcome 

and toxicity predictors in different treatment modalities, especially pneumonia and xerostomia 

for breast, lung, and head and neck treatments [54,55]. Similarly, RF has also supported patient-

specific plan verifications as it will be described in Section Error! Reference source not found. 
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and Section Error! Reference source not found.. In general terms, RF is an ensemble-based 

model that combines the prediction results from several decision trees using a bagging method 

[56]. To explain more in detail this model, a deifinition of decision tree and bagging is included 

below. 

2.2.1.1 Decision Tree 
A decision tree is a model generated through different boolean operations applied to attributes 

or input features to explain a predicted condition with a series of disjunctive hypothesis. This 

model generates an flowchart or a tree-ike stucture weightening the entropy of each tested 

hypothesis by classifying all possible scenarios given by the dataset. Thus, each dcission tree will 

start with a root node representing the whole dataset that will subsequently be divided in two 

or more sets or sub-trees. Next a decision node or internal node set the dominant condition 

founded that dominates the attributes description. Finally, a leaf node is the final output from 

the specific branch.  

 

Figure 2.7 Decision Tree representation including the root node, decision/internal nodes, leaf nodes, 
and sub-tree sections. 

The root and internal nodes are organized by measuring each decision node's entropy changes 

or dataset-description impurity. The purity is the inverse concept of entropy and is related to 

how balanced is the dataset split in the decision denoted by the node. For a decision node with 

not a complete segregation of the options given by the dataset, the impurity degree is usually 

calculated with the Gini index (GI) that is given by 𝐺𝐼 = 1 −	∑ 𝑃!"! , where P is the probability of 

a specific condition provided by the number of splits (j) that the decision node generates. 

During the decision tree optimization using the training dataset, the decision node splitting and 

organization are improved by measuring the impurity generated by each sub-tree and the 

information gained by the model. This “information gained” is given by subtracting all the sub-

nodes entropy from the decision node with all attributes' entropy; particularly, the information 

gained measured the changes in entropy after the segmentation or node splitting of a dataset 
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based on a specific attribute. Finally, a tree branch stops growing when a node achieves a 

completely "pure" data splitting or all the attributes have been used. 

2.2.1.2 Random Forest 
RF is a meta-algorithm that ensembles the learning of several decision trees. This ensembling 

procedure is performed by a bagging technique known as bootstrap aggregation. In this method, 

random samples from the training dataset are selected with the possibility of being chosen 

repeatedly (i.e., sample with replacement) for the different generated decision trees that are 

subsequently trained independently. Once all models are trained, the average results (for 

regression) or the majority class predicted (for classification) generally yield a more accurate 

estimate than a single decision tree prediction. This approach is commonly used to reduce 

variance within a noisy dataset without increase the bias  (Figure 2.8) [57]. 

After training, a simplified mathematical representation of one prediction of one unseen event 

(𝑥#) by one decision tree 𝑓$ trained with bagging  𝐵 times is displayed in Equation 1.1 (being 𝑏 =

	1, . . . , 𝐵). This mathematical average of several trees predictions implies the no sensitivity on its 

total prediction against the prediction of a single tree. 

   (1.1) 

The main hyperparameters in RF models are the number of trees, the maximum depth of trees 

(i.e., the number of nodes in the tree), and the number of features sampled. 

 

Figure 2.8 Random Forest representation with the bagging of the independent trained decision trees 
based on different and interchangeable sub-datasets randomly created (replacements). 
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2.2.2 XG-Boost 

XG-Boost, which stands for extreme gradient boosting,  is a model based on the gradient-

boosted decision tree method known as boosting [56]. Unlike the “bagging” ensembling method, 

which follows a parallel-rationale flow because of the simultaneous and independent training of 

each tree, boosting might be considered a serial assembling method since the prediction of the 

initially formed tree influence the prediction performance of the following decision tree until an 

objective function reaches the minimum  (Figure 2.9). Commonly, this model tends to be more 

efficient by consuming fewer machine resources since the decision tree calculations are not 

performed at once. Moreover, this boosting model is also considered more effective because it 

plays a crucial role in dealing with bias-variance trade-offs; unlike bagging algorithms, which only 

control for high variance in a model, boosting controls both the aspects (bias & variance) and is 

considered to be more effective. 

Gradient boosting intends to minimize a loss function by adding weak learners using a gradient 

descent optimization algorithm. The loss function is given by the difference between the 

expected and predicted value, estimating how the model is better in making predictions with 

the given data, depending on the type of problem (regression or classification). For regression, 

the loss function is a sum of all squared residuals calculated between the observation and the 

predicted value by the initial model. In contrast, for classification, is a sum of the log-likelihood 

functions taking values between 0 and 1. Gradient boost is the first-order gradient of the 

calculated loss function, also known as the gradient descent algorithm, and is widely used to 

direct and optimize the next added weak model. 

In XG-Boost, the second-order gradients are calculated from the loss function based on the 

Taylor expansion to implement a mathematical method  (Newton–Raphson [58]) to reach the 

loss function minimum. In addition to this, XG-Boost implements a loss function containing 

regularisation (‘penalty’) terms for adding new decision tree leaves to the model (‘pruning’) with 

a penalty proportional to the size of the leaf weights, preventing overfitting by avoiding 

unnecessary longer trees. Similarly, XG-Boost introduces another regularization strategy 

introducing randomness within the fitting/training process, selecting a random part of the 

training data. Mathematically, the model prediction 𝑦%0  can be expressed as Equation 1.2, where 

K is the number of trees, 𝑓&  is a function in the ℱ  functional space with al possible set of 

classification and regression trees. 

𝑦%0 = 	∑ 𝑓&(𝑥'), 𝑓& ∈ ℱ(
&)*     (1.2) 
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Consequently, the respective objective function is given by Equation 1.3, where 𝜔(𝑓&) is the 

complexity of te tree (𝑓&).  

𝑜𝑏𝑗	(𝜃) = 	∑ 𝑙 :𝑦' , 𝑦;'
(,)< +	.

')* ∑ 𝜔(𝑓&)(
&)*     (1.3) 

The boosting or additive training can be expressed by the prediction value at a step 𝑡 as 𝑦;'
(,) 

given by Equation 1.4. 

𝑦;'
(/) = 0 

𝑦;'
(*) = 𝑓*(𝑥') = 𝑦;'

(/) +	𝑓*(𝑥') 

𝑦;'
(") = 𝑓*(𝑥') + 𝑓"(𝑥') = 𝑦;'

(*) +	𝑓"(𝑥') 

… 

   𝑦;'
(,) =	∑ 𝑓&(𝑥') =,

&)* 𝑦;'
(,0*) +	𝑓,(𝑥')    (1.4) 

In summary, the XG-Boost model combines the results of each independent tree from the 

beginning, adjusting the weights of the dynamic cost function in every iteration (residuals), 

improving the next tree's performance by fitting new predictors to the previous tree using the 

residuals to calculate new regularization parameters. The common XG-Boost hyperparameters 

are the number of trees, the maximum depth of trees, and the learning rate that controls the 

weighted contribution of each tree in the overall result  (Figure 2.9). 

 

 

Figure 2.9 XG-Boost representation. The residual of each tree is used to improve the prediction of the 
next tree, calculating a new regularization parameter to be included in the next aggregated tree. 



17 
 

2.2.3 Deep Learning 

Deep Learning (DL) is a set of Machine Learning (ML) models that use layers of mathematical 

process functions to generate different data representations with multiple levels of features 

from one data set. Generally, each layer of a DL model has different numbers of transformation 

nodes named neurons. As it is represented in Figure 2.10, each neuron summarizes the input 

feature including a weighted factor (w) and a bias parameter (b), mimicking biological neurons 

and synapsis processes. The calculated sum of the weighted input features parameters and the 

bias coefficients of the data is computed by a logistic function (activation function, f) that defines 

if a neuron is activated or not, generating an output (y) [46,50]. This function controls the data 

flow to the output or to the next layer of neurons trough non-linear functions, depending on the 

model architecture. The elemental mathematical expression of the predicted output (y) is noted 

in Equation 1.5, where n is the number of inputs. 

 

𝑦 = 𝑓(𝑥𝑤 + 𝑏) = 𝑓B∑ 𝑥'.
!)* 𝑤' + 𝑏C    (1.5) 

 

 

Figure 2.10 Workflow representation of one “artificial” neuron compared to one biological neuron 
identifying the similarities between dendrites, cell body, and axons, and the input signal nodes, the 
optimization-activation function, and the output, respectively. Adapted from [46]  
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2.2.4 Neural Networks 

Neural Network (NN) is a DL model based on connections between several neurons  [1,46,59,60]. 

Depending on the designed architecture, each randomly weighted hidden layer inputs comes 

from the input dataset or another neuron output based on  the activation functions to create 

their respective output (Figure 2.11). This action is repeated over the model's training process 

to reduce the error function, between the predicted and the expected output [1]. The NN 

hyperparameters commonly tunned are  the number of layers, the number of neurons per layer, 

and the loss function. 

 

Figure 2.11 Representation of a neural network with three inputs in the input layer, four neurons in the 
single hidden layer, and one output. 

 

In NN, forward propagation (FP) process is known when a loss function (LF) evaluates the 

outputs of the model, calculating how different are these values from the expected results (e.g., 

the error in the prediction), following the normal pathway of one neural network (Figure 2.12). 

On the contrary, the backward propagation (BP) occurs on the inverse direction, optimizing the 

calculated LF by a series of derivative functions to minimize the error and find more accurate 

weighted parameters, starting a "learning process" loop (i.e., training) [60]. 
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Figure 2.12 Forward (left) and backward (right) propagation scheme. The equations used for computing 
the forward pass in a NN can be backpropagate gradients. These gradients can be used, through the 
chain law of derivative equation, to calculate the better weighted parameters to reduce the difference 
between the predicted and real output, optimizing the process again until the minimum is reached. This 
way to work lets the model to learn progressively. Adapted from [60]. 

 

2.2.4.1 Convolutional Neural Networks 
Convolutional Neural Network (CNN) is the DL architecture most popular implemented in video 

and image analysis. It consists of several successive arranged layers of convolution data 

processing plus pooling layers, given by a series of filters used to extract features associated with 

the prediction desired (Figure 2.13) [61]. CNN-based models might be designed for data 

processing following unsupervised or supervised approach and is widely used in the medical 

context because it processes information organized originally in multiple dimensional arrays. 

The 1D arrays are normally signals sequences data, and 2D or 3D arrays are mostly images, video, 

and volumetric data.  

 

 

Figure 2.13 Convolutional Neural Network representation with two convolution layers, two pooling 
layers and one layer that connect and assemble the processed data to take it to the output. Adapted 
from [50].  
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2.3 ML applications in RT 
Publications in ML dedicated to improving dedicated aspects of radiotherapy workflow have 

increased dramatically in the past ten years [2,3,46,50,62–65]. Indeed, as shown in Figure 

2.14,Meyer et. al. [46] and Sahiner et. al. [50] demonstrated the increasing contributions of DL 

to contouring, segmentation, and detection of critical structures in medical imaging oriented to 

RT. Actually, after following and reviewing these major publications references, it was found 

that more published contributions were dedicated to the organs brain, breast, hearth, and lungs 

(Figure 2.15). In the case of the brain, the dominant programming architecture is CNN (Figure 

2.15.a) and was mostly orientated to GTV segmentation tasks (Figure 2.15.b). For breast, the 

leading architecture is also CNN, oriented to GTV detection. Whereas, for heart, OAR 

segmentation was the principal application using autoencoder-based architectures (AE). Finally, 

for lungs, the dominant architecture was CNN, which was oriented mainly to GTV detection. 

 

Figure 2.14 Main contributions in deep learning (DL) to imaging and radiation therapy (RT). Updated to 
2022 the number of publications by PubMed for the search phrases with the terms: (“deep learning” OR 
“deep neural net- work” OR deep conv# OR “shift-invariant artificial neural network”) AND (radiography 
OR x-ray OR mammography OR CT OR MRI OR PET OR ultrasound OR therapy OR radiology OR MR OR 
mammogram OR SPECT). Adapted from Sahiner et al. [50].  
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Figure 2.15 Bar-plot representation of the main DL contributions to RT considering the model 
architecture (Left) and the model objective Right). 

 

Further to imaging processes, ML methods has been applied in radiation toxicity modelling 

associated to RT treatments using Support Vector Machine (SVM), K-Means Clustering (k-

means), and Linear Regression (LR) models to predict pneumonitis [66], esophagitis-

pneumonitis-xerostomia [67], and tumor control probability (TCP) or normal tissue complication 

probability (NTCP) [68], respectively. Additionally, other ML models has been implemented in 

lung cancer prognosis [69], genitourinary toxicity prediction [70], decision-tool for melanoma 

indications [71], local control prediction of non-small cell lung cancer (NSCLC) [72], prostate RT 

side effects modelling [73], and adaptative RT applications [42]. 

2.3.1 ML methods applied in QA evaluation or dose deliverability 

In recent years, machine learning (ML) methods dedicated to quality assurance (QA) predictions 

of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) 

treatments have increasingly been studied [2–4,74,75]. The most common ML models 

implemented in this matter are Poisson regression [76], decision trees-based models (e.g., 

random forest or gradient boosting models) [77], support vector machine (SVM) [63], and 

artificial neural networks (ANN) or convolutional neural networks (CNN) [78–81]. These CNN-

based models, which were being less explored in QA predictions, are characterized commonly 

by convolution plus pooling layers arranged consecutively, ending with fully connected layers 

and a Softmax activated dense layer for classification or a Linear activated dense layer for 

regression [82]. The convolution operations intend to detect patterns from the input images 

using specific filters and reducing their dimensions. Then, these newly detected features are 

processed by the pooling layers, weighting the found features and their nearby values to be the 
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input of the next convolutional-pooling layer arrangement, filtering intricated ‘hidden’ features 

that will potentially be associated with the predicted output[60,83]. 

From the specific-plan verification perspective, models dedicated to QA prediction were 

implemented generally to detect potential treatment errors [84–87] and predict gamma passing 

rate (GPR) values [3,63,78,88,89]. The GPRs account for the dosimetric regions in agreement 

with the gamma index analysis between the calculated and the measured dose distributions 

[4,5,29]. In turn, the gamma index is a metric that evaluates the coincidence between both dose 

distributions, calculating the dose difference (DD) and the distance to agreement (DTA) [29,89]. 

Commonly, a verified treatment is suitable for delivery if the GPR is higher than one reference 

value, selecting the DD/DTA criteria defined in each institution and per the expert 

recommendations [4,75]. For instance, a specific treatment might be considered appropriate if 

its GPR is equal to or higher than 98% based on 3%/2 mm criteria. Nevertheless, although this 

metric has been studied and implemented widely, some gaps have been identified in detecting 

errors with clinical impact or retrieving information needed to detect specific discrepancies 

regarding treatment parameters [5,6,90]. Hence, the GPR evaluation and the modelled 

predictions should be considered complementary tests to other assessment protocols (e.g., 

dose-volume histogram changes evaluation) rather than one exclusive verification method. 

Consequently, a useful GPR prediction model based on ML methods should be able to provide 

additional information to complement and explain the expected dose deliverability evaluation 

results, featuring the predominant predictors and achieving a more robust evaluation of the 

treatment parameters. Similarly, it might be beneficial to track possible ‘problematic’ treatment 

features, as suggested by Park et al. [91,92], McNivell et al. [93],  and Chiavassa et al. [94] using 

modulation complexity metrics and plan parameters. However, the reported models using 

automatic-extracted features methods (e.g., CNN-based models) are based mainly on dose 

distributions [77,79,81], and predictor features associated with the plan parameters cannot be 

extracted. In contrast, other input features, such as modulation maps (MM) given by the MLC 

trajectories per control points (CP), gantry speed variations, or monitor units (MU) variations 

profiles, have not been explored, and it might help to complement the dose deliverability 

evaluation because their direct relation to specific treatment conditions. 

In terms of the studied features for GPR predictions using ML models, classification or regression 

solutions have been proposed based on IMRT beam fluencies [78], planar dose images plus 

organs at risk volumes and total MU values [81], radiomic features from the dose distribution 

images [77], and various calculated modulation complexity metrics [63,80]. In fact, benefits on 

prediction performance have been reported when more than one input feature category is 
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implemented (i.e., hybrid datasets or hybrid models) [77,81]. However, considering that 

complexity metrics and features related to MLC movements are the most relevant features for 

GPR predictions [74,93,95–97], it is necessary to contemplate complementary features, such as 

the MM and the MU per CP (MUcp) variations as potential GPR predictors, implementing 

automatic-feature extraction methods and avoiding in this way the use of conventional 

complexity formulas [74,93,97,98] that might limit the amount of information extracted. 

 



24 
 

 Materials and Methods 

In RT, the dose deliverability evaluation of specific-treatment plans includes mechanical and 

dosimetric tests to verify potential differences between one calculated treatment plan and its 

corresponding dose distribution delivered by the linac [4]. Thus, dosimetric protocols to 

measure the delivered absorbed dose and evaluate the spatial distribution differences between 

the calculated and the measured plans are usually implemented in each RT facility [6,99].  

As it is mentioned and explained in Section 2.1.4 and Section 3.2.2, the more accepted and 

implemented dose verification test is the gamma index evaluation, where one treatment plan 

can be considered suitable for clinical delivery if the GPR is higher than one defined value (e.g., 

GPR ³ 98%) under one specific DD/DTA criteria (e.g., 3%/2 mm, considering each institution 

protocols). Accordingly, predicting GPR values based on ML applications is a straightforward step 

to support virtual specific-treatment verification protocols, mainly focused on reducing the 

unnecessary irradiation time of treatment plans with a high probability of presenting 

unaccepted GPR values. However, the reported GPR prediction models based on dose 

distributions or calculated modulation complexity metrics are not focused on recognizing 

concrete physical treatment parameters implied in the GPR value prediction, limiting the models’ 

reliability.  

This chapter describes the general research methodology following a workflow map (Figure 3.1) 

that encloses all the technical aspects needed to address the formulated central thesis 

hypothesis and research questions (Chapter 1). Additionally, the implemented materials, 

including the datasets, treatment units, detector specifications, and ML models, are also 

specified. However, specific materials or additional information needed for each chapter are 

included in their respective introduction sections. 

3.1 Methods 

The workflow of this research, represented in Figure 3.1,  was designed to verify if “It is possible 

to use ML models to aid virtual specific-treatment verifications in prostate radiotherapy, 

retrieving critical physical aspects involved in dose deliverability.” Hence, the main four tasks or 

steps followed were: (I) the features extraction, (II) the dataset assembling, (III) the GPR 

modelling, and (IV) the retrieving of the specific predictors involved in the GPR predictions.  

Due to the widely reported correlation between modulation complexity and the GPRs 

[91,93,94,96], the feature extraction section was dedicated to calculating reported complexity 

metrics, retrieving dosimetric quality parameters, extracting new high-dimensional (2D) 
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features related to modulation complexity, and proposing new modulation complexity metrics 

tailored to the treatment unit with dual-layer MLC (Halcyon-v2, Section 3.2.1) since a major part 

of the treatments used were designed and delivered in this linac. Then, with these metrics, a 

study was developed to find the optimal dataset assembling conditions to improve the GPR 

prediction performance using the RF, XG-Boost, and NN algorithms. Next, considering the 

optimal dataset conditions and the low information provided by the numeric predictors, the GPR 

modelling was implemented using high-dimensional data and CNN-based models. Finally, the 

models’ activated features were retrieved to assist a decision-support protocol and evaluate the 

dose deliverability of individual RT treatments. Besides, a model verification with an external 

dataset was performed to evaluate the model generalization. 

 

 

Figure 3.1 Workflow map of the research pathway following four main research steps: (1) Extracting, 
calculating, and creating the input features based on modulation complexities. (2) Analysing the best 
dataset configuration. (3) Modelling GPRs using automatic extracted features. (4) Implementing decision-
support tools to evaluate data deliverability using the previous information generated. 
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3.1.1 Features Extraction 

The input features (Section 4.1, Section 4.3, and Section 4.4) were extracted from anonymized 

treatment plans optimized and calculated using the Eclipse v15.6 TPS (Section 2.1.5). The 

dosimetric and quality plan parameters (Section 4.2.1.4) were retrieved using the Eclipse 

scripting application programming interface (ESAPI), which is an interface based on the C# 

programming language, and it is incorporated in Eclipse to ease the development of 

automatized tools needed to retrieve, organize, and systematically collect treatment 

information managed in the TPS [100]. In contrast, the information needed to calculate the 

modulation complexity metrics and the high dimensional features were extracted from the 

anonymized files saved in the Digital Imaging and Communications in Medicine (DICOM) 

protocol in RT (DICOM-RT) format, implementing Python scripting [101,102]. Moreover, the 

DICOM-RT plan, DICOM-RT dose, and DICOM-RT image files contain specific hardware 

parameters (such as the MLC trajectories and irradiation beam geometry during the treatment), 

the dose distribution, and the composite dose images for dose verification, respectively. 

Since the reported modulation complexity scores [94] were originally developed and created for 

conventional treatment units with single-layer MLC models. Two new complexity metrics (plus 

one adapted metric) were proposed and evaluated for Halcyon-v.2 to incorporate additional 

complexity features related to dose deliverability (Section 4.1.5, Section4.1.6). 

3.1.2 Dataset Assembling 

The dataset’s composition effects on the model performance were studied to evaluate how 

specific heterogeneities within the datasets might compromise the model’s reliability. The 

motivation of this study was based on the several reported ML models predicting GPR values 

that were commonly trained using unbalanced datasets with heterogeneous treatment 

conditions, such as different anatomic regions, dose per fraction, number of beams, different 

treatment units, or different beam energy, among others [2,3]. Indeed, these treatment 

conditions have been previously associated with variations in GPR values [76,89,92,103,104], 

suggesting that special care might be necessary for GPR modelling, considering the 

representation of each treatment condition within the dataset to ease the model data 

generalization. 

Consequently, the prediction performance of models (RF, XG-Boost, and NN) trained with 

various datasets assembled with controlled variations of treatment plans (having different 

treatment conditions) was evaluated. Additionally, the main features of each dataset were 

retrieved to verify if the predictors correspond to actual physical aspects of the treatment that 

might help the dose deliverability evaluation. 
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3.1.3 GPR Modelling 

Considering the dataset assembling evaluation and the more convenient dataset configuration, 

the GPR values were predicted using the numeric extracted and calculated features using RF, 

XG-Boost, and NN models (Section 2.2), whereas CNN-based models were implemented with 

the MU per control point MUcp profiles, the modulation maps (MM) images generated with the 

MLC movements, and the composite dose images (CDI) generated to perform portal dosimetry. 

The ML models design and implementation were developed with Python with scikit-learn, Keras, 

and TensorFlow as main ML libraries [105]. 

3.1.4 Decision Support Workflow 

The decision-support protocol was based on the retrieved predictor features and the features 

extracted by the models as potential technical plan parameters involved in the GPR prediction. 

A reliable evaluation method should include different physical properties linked to the dose 

deliverability prediction to formulate and establish reference hardware or dosimetric 

acceptance criteria, verifying if the predicted GPR value reflects realistic scenarios that might 

help to adjust or design new treatment plans with more accurate dose deliverability. For this 

reason, the proposed protocol is more oriented toward understanding the prediction causes 

rather than just a predicted value or a classification. 

3.2 Materials 

3.2.1 Treatment Unit 

The linac models implemented in this research are the TrueBeam and Halcyon-v2 (Varian 

Medical Systems - Palo Alto, USA) with c-arm and ring-gantry architecture, respectively (Figure 

3.2). The treatment unit were three Varian linear accelerators calibrated at the same reference 

conditions, two dosimetrically matched TrueBeams (TB) and one Halcyon-v2 (HL), with the same 

nominal resolution at isocentre (5 mm) and same electronic portal imaging device (EPID) model 

(Section 2.3.3). Both TBs have a Millennium 120 multi-leaf collimator (MLC) with a maximum 

leaf speed of 25 mm/s, 6 MV flattened filter (FF) photon beam, and dose rate at isocentre of 800 

Gy/ min. In contrast, the HL has dual-layer MLC with a maximum leaf speed of 50 mm/s, 6 MV 

flattening filter-free (FFF) photon beam, and 740Gy/min dose rate at isocentre (Figure 3.2). 
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Figure 3.2 Comparison between the treatment units TrueBeam and Halcyon-v2. The plot shows the 
equivalent aspects highlighting the beam target, where is located the multi-leaf collimator, the isocentre, 
and the EPID device. 

3.2.2 Gamma Index  

In this research, the GPR values considering the 3%/3 mm, 3%/2 mm, 2%/3 mm, 2%/2 mm, and 

2%/1 mm criteria were retrieved from the measurements related to the clinical plans. These 

GPR values were used to identify a GPR threshold (percentage of evaluated points passing the 

gamma index < 1) that grants balanced distributions within the dataset (i.e., ideally, 50% pass 

and 50% fail).  Simultaneously, the chosen GPR criteria and threshold had to be suitable for 

detecting potential clinical errors [106], avoiding unbalanced datasets [81,104,107], and 

excluding this potential bias within the model performance. The balanced distributions on the 

dataset were necessary to ensure similar representation of both conditions and avoid overfitting 

during the model training. 

3.2.3 Electronic Portal Dosimetry Device 

The dose measurements needed for the gamma index evaluation and obtaining the specific-

treatment GPR value were performed using the same EPID model (aS1200) attached to each 

treatment unit and calibrated in the same reference conditions. This EPID is a silicon-based 

detector with a resolution of 1280x1280 pixels, 0.34 mm/pixel at the panel and 0.22 mm/pixel 

at the isoplane, and a panel size of 43 cm x 43 cm [108].  The image is created because one 

incident photon interacts against the electron’s shells from a copper plate which releases an 

electron to a scintillator, generating one light photon that in turn generates a hole-electron pair 

within an amorphous silicon layer, creating and storing the charge on the intrinsic photodiodes’ 

capacitors (Figure 3.3). Consequently, an image pixel corresponds to a single light-sensitive 

photodiode plus one thin film transistor configuration, generating a discrete electric signal based 

on the charge held by the photodiode switched by the transistor. 
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Figure 3.3 Dose detection process for electronic portal imaging devices based on amorphous silicon 
detectors. For the pixel image: (1) Data Line, (2) Bias Line, (3) Photodiode, (4) Thin Film Transistor (TFT), 
and (5) Gate Line. 

 

3.2.4 ML Model Evaluation 

Different evaluation metrics might be implemented to evaluate the prediction performance 

depending on the ML model task (classification or regression). The metrics used over all this 

study are summarised in Table 3.1 

Table 3.1  Evaluation metrics implemented in this study 

Model Prediction Metric Description 

Regression 

MAE 

 

MAE =%|(𝑦! − 𝑦")| 𝑛,  

 

RMSE 
RMSE = /%(𝑦! − 𝑦")# ⁄ 𝑛 

 

r 

(Spearman’s 
correlation coefficient) 

High, moderate, and lower correlations were defined for 
r<0.4, 0.4≤r≤0.7, and r>0.7 values, respectively 

Classification 

Accuracy 𝐴 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 

Specificity (Sp) 𝑆𝑝	 = 	𝑇𝑁	/	(𝑇𝑁 + 𝐹𝑃) 

Sensitivity (Se) 𝑆𝑒	 = 	𝑇𝑃	/	(𝑇𝑃 + 𝐹𝑁)  

ROC_AUC Area under the receiver operating characteristic curve 

Abbreviation: MAE, mean absolute error. RMSE, root mean square error. yi, actual value. yp, predicted 
value. n, number of observations. TP, true positives. TN, true negatives. FP, false positives. FN, false 
negatives. r, Spearman’s correlation coefficient. ROC_AUC, area under the receiver operating 
characteristic curve. A, accuracy. Sp, specificity. Se, sensitivity, or recall. 
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 Modulation Complexity and Feature Extraction 

 

Beam modulation is a principal feature in advanced RT techniques using static field Intensity 

Modulation or Volumetric Modulated Arc-Therapy (VMAT). Due to the synchronised motion of 

the MLC leaves, the radiation dose can be conformed to complex planning target volume (PTV) 

shapes, increasing the treatment effectiveness and keeping the adverse effects as low as 

possible by avoiding organs at risk (OARs) [109,110]. Nevertheless, high modulation levels or 

complex conformity scenarios might demand challenging or unrealistic treatment unit 

performances, compromising the dose deliverability. Consequently, the modulation complexity 

has been studied widely on linacs with single-layer MLC architecture to predict dose 

deliverability, using metrics such as modulation index (MI) [96], modulation complexity score 

(MCS) [93], texture methods [111], dimensional fractal analysis [95], and aperture-based 

methods [112]. These complexity analyses have proven to help compare linac performances 

between treatment techniques [20], evaluate the best plan parameters in specific planning 

scenarios [74,112], establish reference values for dosimetry audits [113], and predict delivery 

accuracy in terms of GPRs [76,114]. 

GPR predictions applying ML methods [77,81,115,116] have been explored using modulation 

complexity metrics as the principal predictor variables due to their reported relationships with 

dose deliverability [76,94,114,117]. However, two main gaps related to the modulation 

complexity calculations and the need for new modulation features were addressed in this 

chapter. (1) The lack of information about complexity metrics dedicated to dual-layer MLC linacs 

and (2) the nonexistence of high dimensional features that might reflect the modulation 

complexity more comprehensively. 

Considering the above, this chapter is dedicated to featuring the main modulation complexity 

metrics implemented in this thesis and demonstrating the suitability of the new proposed dual-

layer MLC complexity metrics. Additionally, the consideration and extraction methods of the 

high dimensional modulation complexity features are included. 

 

4.1 Modulation Complexity metrics 
The modulation complexity metrics have been comprehensively reported by Park et al. [92] and 

Antoine et al. [28] covering various modulation indices dedicated to predicting the plan-delivery 

accuracy in VMAT treatments. Similarly, the literature review by Chiavassa et al. [94] includes all 
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current complexity indices and the relevance of each metric. However, all these metrics based 

on MLC movements (i.e., beam fluence modulation), were explored for treatment units having 

conventional single-layer MLC. Contrastingly, Tamura et al. [97] propose a modulation metric 

dedicated to dual-layer MLC architecture (for Halcyon-v2), considering a weighted method 

taking the distal and proximal layer contributions in the field conformation, adapting the metric 

originally suggested by McNiven et al. in 2010 [93]. Nevertheless, this metric does not consider 

technical aspects implied in the stacked MLC arrangement, and a new way to measure 

modulation complexity in this treatment unit model are needed.  For this reason, two new 

modulation complexity metrics (plus one adapted metric) were proposed in this section to 

improve the further ML modelling performances implemented in this research. 

The complexity metrics implemented in this studio were calculated using Python scripting [98], 

processing the information from DICOM-RT plan files [118,119], and reading the leaves positions 

per control point (CP) using the Pydicom library [119]. The calculated or extracted complexity 

metrics were the number of MU (MU) [97], the average MU increment by CP (MUcp) [97], the 

modulation complexity score (MCS) for VMAT treatments (MCSv) [74], and the weighted MCSv 

for DL-MLC architecture (MCSw) [97]. Additionally, two new complexity metrics and one 

adapted metric were proposed: the uncovered-layer score (UL), the number of peaks score (NP), 

and the MCSw weighted by UL (MCSUL), respectively. 

4.1.1 MU 

The total monitor units (MU) planned to be delivered in the treatment corresponds to the dose 

delivered by the linac in terms of output energy. Depending on the linac calibration, 1 MU 

represents 1 cGy at a reference depth in a reference phantom at a specific distance from the 

linac source having a reference field size [75]. 

4.1.2 MUcp 

The averaged monitor unit increment by control point (MUcp) is the factor that accounts for all 

the MU variations between two adjacent CPs (j, j+1) for the total MU of the plan (4-1). 

   

     (4-1) 

4.1.3 MCSv 

The modulation complexity score is defined in 4-2, where 𝑗 is the control point number, 𝐴𝐴𝑉𝑗	is 

the Aperture area variability (4-3), 𝑀𝑎𝑥 − 𝑝𝑜𝑠1  is the maximum aperture of each leaf bank, 𝐴 is 
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the number of leaves in the arc, 𝐿𝑆𝑉 is the leaf sequence variability (4-4), and 𝑁 is the number 

of moving leaves [74]. 

  

  (4-2) 

  (4-3) 

 

 (4-4) 

4.1.4 MCSw 

The weighted MCS for a dual-layer MLC configuration is defined in    

 (4-5 adapted from MCSv (4-4). The 	𝑝𝑀𝐶𝑆𝑤  is the proximal weighted modulation 

complexity score ((4-6), and the 𝑑𝑀𝐶𝑆𝑤	is the distal weighted modulation complexity score 

((4-7). The 𝑤2  and 𝑤3  are the proximal and distal weighted factors for each MLC layer, 

respectively, and are estimated from the contributions of each layer in the field conformation 

(𝑤2 +𝑤3 = 1) [97]. 

  

     (4-5) 

    (4-6)
  

  (4-7) 
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4.1.5 UL 

The uncovered layer UL considers all leaf-pairs uncovered by their respective leaves from the 

complementary MLC layer (above or below). Figure 4.1 shows an example from an MLC 

sequence where the proximal layer leaves do not cover a distal leaf-pair section, creating an 

uncovered region that might increase the interleave-dose transmission, and thus, it might be 

related with dose measurement discrepancies due to the reported incomplete attenuation of 

the beam [19]. This metric is calculated by summing the number of uncovered gaps per CP 

considering both, the distal and proximal layers. This sum is weighted by the relative fraction of 

MU in that CP ((4-8). 

 
Figure 4.1 Uncovered leaves junction of the distal multi-leaf collimator (MLC) layer by the proximal MLC 
layer. This figure shows a conformed field in one control point (CP) from a specific treatment. The green 
and purple leaves differentiate the MLC banks (right and left). 

For the UC defined in (4-8, 𝑗 is the CP number, pulj is the number of uncovered spots in the 

proximal layer at j, dulj is the number of uncovered spots in the distal layer at j, MUj is the 

fraction of MU at j, and MU is the total number of monitor units.   

   (4-8) 

4.1.6 NP 

The number of peaks NP, accounts for the modulation complexity of both MLC models, 

calculating the average number of peaks presented in the trajectory profiles of all moving leaves 

in a VMAT treatment. As is shown in Figure 4.2, the position at each CP of a single leaf can be 

visualized within a trajectory profile, where the peaks represent significant changes in leaf speed 

and position. These variations can be associated with demanding hardware conditions that may 

generate dose delivery inaccuracies [13,120]. 
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Figure 4.2 Trajectory profile of the 30th leaf of TrueBeam (TB) from a prostate treatment plan labelled 
TB-plan_1. The red marks indicate the number of detected peaks using the function find_peaks from 
SciPy (41). 

 

The NP is defined in Equation 4-9, where 𝑛𝑝'  is calculated using the Python function 

scipy.signal.find_peaks [38] with the default parameters values, and N is the number of CPs. 

    

     Equation 4-9 

4.1.7 MCSUL 

The metric, MCSUL, is an adapted version of MCSw, including UL as an additional factor to be 

considered in the complexity score of each MLC layer. Its calculation is described in Equation 

4-10, Equation 4-11, and Equation 4-12, where 𝑝𝑀𝐶𝑆45  is the modulation complexity of 

proximal layer including the average number of uncover spots in the proximal (same to distal 

layer) between two CPs (p𝑢𝑙!,!#$). AAV and LSV are calculated to its respective layer considering 

previous metrics’ calculations. 

    Equation 4-10 

Equation 4-11 

  

Equation 4-12 
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4.2 Validation of Complexity Metrics 
This section describes the study dedicated to verifying the correlation between the reported 

complexity metrics with GPR values and validating the proposed novel metrics for dual-layer 

MLC linac models. Therefore, 192 VMAT plans were calculated using one virtual prostate 

phantom (avoiding volume effects) considering three main settings:  

(1) Three TPS-parameters (Convergence; Aperture Shape Controller, ASC; and Dose 

Calculation Resolution, DCR) selected from Eclipse v15.6 to modify systematically the 

TPS conditions within the inverse optimization to verify if these parameters are related 

to dose deliverability. 

(2) Four levels of dose-sparing priority for organs at risk (OAR), to emulate four levels of 

hardware demanding conditions. 

(3) Two treatment units with same nominal conformity resolution and different MLC 

architectures (Halcyon-v2 dual-layer MLC and TrueBeam single-layer MLC).  

(4) Seven complexity metrics to evaluate the modulation complexity, including two new 

metrics and one adapted metric for dual-layer MLC, assessed by their correlation with 

gamma passing rate (GPR) analysis. 

4.2.1 Methods 

4.2.1.1 Treatment plan configuration 
Ninety-six VMAT plans were generated in one institution 1  with Eclipse 15.6 using a single 

prostate patient dataset as a virtual phantom to deliver 2Gy per fraction in one full arc. The linac 

configuration was Halcyon-v2 with dual-layer MLC, maximum leaf speed of 50 mm/s, 6 MV 

flattening filter-free (FFF) photon beam, and a dose rate of 740 Gy/min. The same plans were 

replicated using the TrueBeam linac configuration with single-layer MLC Millennium-120, 

maximum leaf speed of 25 mm/s, 6 MV FFF photon beam, a dose rate of 800 Gy/min, with jaw 

tracking mode turned off. For both cases, the plans were calculated with the anisotropic 

analytical algorithm (AAA) and were optimised with the PO algorithm, applying automatic mode 

for normal tissue objective and a structure optimisation resolution of 2.5 mm. Both treatment 

units were calibrated at the same reference conditions [121]. 

4.2.1.2 TPS parameters 

 
 

1 Queen's Centre for Oncology and Haematology - Castle Hill Hospital. Hull University Teaching Hospitals 
NHS Trust. 
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The three studied parameters from Eclipse TPS features were Convergence (Conv), Aperture 

Shape Controller (ASC), and Dose Calculation Resolution (DCR), and their respective modes were 

Conv{off; on; extended}, ASC{off; low; moderate; very_high}, and DCR{normal; high}.  

1. The Conv parameter controls the internal schedule of the transitions between and 

within the different multi-resolution (MR) levels of the PO. These changes in the 

transition times expect improved optimization results in dose fluence because the 

number of iterations increase, when modes= on/extended (respect the mode= off) by a 

factor of 2.5/11.2 on MR-1, 2.0/17.8 on MR-2, 1.0/17 on MR-3, and 1.0/15 on MR-4 for 

modes On/Extended respectively. However, the MU values may increase, and the 

optimisation time rises 1.2 - 3-fold for On mode, and a few hours for Extended mode 

[31]. 

2. The ASC parameter is a tool of the leaf-motion sequencer of the PO that penalises the 

leaf position deviations with respect to the adjacent leaves in the same continuous 

target projection. This penalty is introduced in the optimisation process, and its 

magnitude depends on the selected mode (Off, Very_low, Low, Moderate, high, and 

Very_high).  Controlling the size and shape of the field with ASC may help to reduce the 

MU, the dose delivery inaccuracies, and the control quality failures [31]. For single-layer 

MLC architecture, Binny et al [122] found that ASC may be useful to improve the 

distribution of MU per degree throughout the treatment time, but it requires to 

evaluate its potential impact on treatment time. In this study, the modes explored were 

off, low, moderate, and very_high, evaluating the impact of the parameter and 

differences in the obtained results between extremes (off and very_high) and small 

changes (low and moderate). 

3. The DCR is a dose optimisation parameter related to the grid resolution of the internal 

dose calculation engine of PO [31]. The modes High (1.25 mm) and Normal (2.50 mm) 

of DCR change the internal grid size within each MR dose calculation, influencing the 

pre-calculated dose resolution, which impacts directly in the leaf sequencing, the dose 

rate, the MU/deg, and thus, the final dose distribution within the optimisation process. 

4.2.1.3 Dose sparing Priority 
To simplify the planning process, the OARs (OAR1: rectum, OAR2: bladder) were considered as 

independent structures to be avoided with no clinical differentiation between them. The 

avoidance was controlled by reducing their mean dose using the optimization objective 

upper_gEUD (from generalized Equivalent Uniform Dose)[123]. This optimization tool tries to 

reduce the volume that receives mid-dose levels (mean dose) using the parameter 'a' that is set 
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as 1 for parallel organs (following the rationale of Lyman-Kutcher-Burman NTCP model) [124–

126].  This parameter a can take values up to 40 for serial organs minimizing the maximum dose 

contributions to the OAR. In this experiment, it was assumed both OARs as parallel organs using 

a=1.  

Parallel organs are the functional human structures that can remain functional, even if a specific 

part has been affected by considerable damage (i.e., high absorbed radiation dose). Some 

examples are the liver or lungs. In contrast, serial organs are functional structures that cannot 

remain functional when part of it is affected by considerable damage. Some examples are the 

spinal cord or the optic nerve. 

To counter the dependence of the same-patient dataset [127] and to consider possible effects 

of the TPS parameters over various dose-sparing scenarios, four levels of dose-sparing priorities 

for OARs were implemented within the optimization process. Priority values of 20, 40, 60, and 

80 were selected to be applied with the upper_gEUD parameter, representing lower, moderate, 

high and very-high dose sparing conditions respectively. Contrastingly, a priority value of 100 

was used with the dose coverage (100% of the prescription dose) and maximum dose (105% of 

prescription dose) parameters for the PTV, and for the maximum dose constraint for the whole-

body structure. In summary, 96 plans were produced, covering all permutations of the three 

TPS-parameters mode settings (four for ASC, three for Conv, and two for DCR), and four 

optimisation priority settings for the OAR mean dose constraint. 

4.2.1.4 Plan quality indices 
The metrics used to evaluate the plan quality were based on the recommendations of the 

International Commission on Radiation Units & Measurements (ICRU) Report 83 [40]. It was  

selected: the conformity index (CI), defined as the ratio between the volume that enclose the 

prescription dose (Vp) and the volume of PTV (VPTV), {CI= Vp / VPTV}; and the homogeneity 

index (HI), defined as the ratio between the dose difference that covers 98% and 2% of the 

volume (D98% and D2% respectively) and the prescription dose (Dp), {HI= (D2%-D98%) / Dp)}. 

Additionally, it was recorded the mean dose of the PTV (mD-PTV), the volume enclosed by the 

50% isodose (V50%) as a dose spillage metric, and the mean dose of OAR1 and OAR2 (mD-OARn). 

4.2.1.5 Complexity metrics 
The complexity metrics used in this study are summarised and explained in Section 4.1. 

4.2.1.6 Complexity metrics validation 
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The new complexity metrics were introduced in this study to investigate the deliverability and 

quality of the plans produced with DL-MLC. To assess the value of these, they were compared 

with the gamma passing rate (GPR) calculated using gamma analysis [29]. 

To analyse the correlation of the new complexity metrics with GPR, the prostate plans for 

Halcyon-v2 were measured with the integrated EPID (Section 3.2.3). Furthermore, the accuracy 

of dose delivery was evaluated with gamma analysis (γ) [29] using various levels for global dose 

difference (DD) of prescribed dose and distance to agreement (DTA) for at least 98% of all pixels.  

The DD/DTA criteria were 3%/3 mm, 3%/2 mm, 2%/3 mm, 2%/2 mm, and 2%/1 mm. The images 

were processed using the portal dosimetry tool available in Eclipse 15.6, with the absolute 

absorbed dose correction and the improved gamma evaluation mode utilised.  

In contrast with the Halcyon-v2, portal dosimetry on the TrueBeam with 6 MV-FFF mode is not 

possible in the treatment institution due to the detector saturation and lack of an image 

prediction algorithm, depending on linac model used. For this reason and based on the reported 

correlation between the MU values and the dose deliverability (18-29), the MU was selected as 

a reference index to compare the performance of each calculated complexity metric. 

4.2.1.7 Statistical Analysis 
The statistical significance of the correlations between the TPS-parameters, the complexity 

metrics and the gamma analysis were evaluated using Spearman's rank correlation coefficient 

(r) with a threshold of p<0.05 [92].  The low, moderate and high correlations were considered 

for values of IrI<0.4, 0.4≤IrI≤0.7, and IrI>0.7 respectively [97,128].  The correlation between the 

modes of each TPS-parameter were tested for significance (p<0.05) using Wilcoxon signed-rank 

test.  

4.2.2 Results 

After calculating the VMAT plans as described earlier, three main aspects were assessed for this 

study. First, as a general overview, the modulation complexity metrics and plan quality indices 

calculated for both linacs were compared. Second, the impact of each TPS-parameter mode on 

modulation complexity and plan quality were evaluated, considering the MLC architecture. 

Finally, to verify the implications in plan deliverability, the correlations between the complexity 

metrics and MU, and between GPRs and the novel metrics for dual-layer MLC were evaluated. 

To compare the performance between the two linacs-MLC designs, Figure 4.3 presents the 

boxplots of all complexity metrics and plan quality indices that demonstrated a significant 

difference (p<0.05) between Halcyon-v2 and TrueBeam plans. It was found that Halcyon-v2 

plans demonstrated lower values of V50%, mD-OAR1 (rectum), CI, MUcp, MCSv, and NP, 
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compared to TB plans. Additionally, it was noticed that TB plans presented more outliers, 

indicating less consistent results. 

 

 

 

Figure 4.3 Boxplots of complexity metrics and plan quality indices that presented a significant difference 
between Halcyon-v2 (Hv2) and TrueBeam (TB) plans. The boxplot displays the minimum and maximum 
values of the data distribution indicated by the end of the whiskers; the lower and upper box limits are 
the first and third quartile; the horizontal line indicates the median value, and the red dot represents the 
mean value. Any additional point outside is considered as an outlier). 

 

For each combination of TPS-parameter modes, the complexity scores and plan quality indices 

were compared using the Wilcoxon signed-rank test. Table 4.1 summarizes the parameter 

modes where significant changes were found. For Halcyon-v2 plans (dual-layer MLC) with 

Conv{off} were associated with slightly lower V50% values than Conv{extended}. However, the 

other TPS-parameters combinations did not influence the complexity nor the plan quality 

metrics significantly. In TrueBeam plans (single-layer MLC), the CI, HI, mD-PTV, and V50%, 

demonstrated significant differences for parameters combinations including ASC and DCR (Table 

4.1). Furthermore, significantly lower values of MU were presented with ASC{off} compared to 

ASC{moderate}. 

Table 4.1 Significant differences between the TPS-parameter modes on plan quality indices and 
complexity metrics for Hv2 and TB plans. 

linac Metric Sample 
Size TPS-parameter Mean ± SD p 

Halcyon V50% [cc] 
32 Conv{Off} 597 ± 18 

0.04 
32 Conv{Ext} 603 ± 24 

TrueBeam CI 
24 ASC{off} 1.14 ± 0.01 

<0.01 
24 ASC{very_high} 1.15 ± 0.05 
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48 DCR{normal} 1.16 ± 0.06 
<0.01 

48 DCR{high} 1.13 ± 0.02 

HI 
24 ASC{off} 0.10 ± 0.03 

0.04 
24 ASC{very_high} 0.11 ± 0.05 

mD-PTV 

24 ASC{off} 105 ± 2 
0.04 

24 ASC{moderate} 104 ± 2 

24 ASC{low} 104 ± 2 
<0.01 

24 ASC{very_high} 105 ±3 

V50% [cc] 
48 DCR{normal} 678 ± 101 

<0.01 
48 DCR{high} 641 ± 54 

MU 
24 ASC{off} 802 ± 149 

0.04 
24 ASC{moderate} 880 ± 134 

Abbreviations: TPS treatment planning system, Hv2 Halcyon-v2, TB TrueBeam, CI conformity 
index, HI homogeneity index, mD-PTV means dose of planning target volume, mD-OARn 
mean dose of OARn, V50% volume enclosed by the 50% isodose, ASC aperture shape 
controller, DCR dose calculation resolution, Conv convergence, SD standard deviation. 

 

Figures 4.4 and 4.5 present scatterplots of all the complexity scores against required MU for Hv2 

and TB plans, respectively. For Hv2 plans, required MU showed a high correlation to MCSv (IrI= 

0.97), MCSw (IrI= 0.96), MUcp (IrI= 0.78), and NP (IrI= 0.76); and a moderate correlation to UL 

(IrI= 0.69) and MCSUL (IrI= 0.58). For TB plans, MU showed high correlation only to MCSv (IrI= 

0.92).  Additionally, a remarkable data clustering by the upper_gEUD priority values was 

demonstrated for Hv2 plans (Figure 4.4), which is not present in the case of TB (Figure 4.5) 

 

 

Figure 4.4 Scatterplot of all complexity metrics for Hv2 plans using the MU values as the reference score 
and considering the effect of different levels of dose sparing priorities (upper_gEUD values). Abbreviations: 
Hv2 Halcyon-v2, MU monitor units, MUcp average MU increment by control point, MCSv modulation 
complexity score for volumetric modulated arc therapy, MCSw the weighted MCSv for dual-layer multi-
leaf collimator architecture, UL uncover layer score, MCSUL weighted MCSw by UL, NP number of peaks 
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Figure 4.5 Scatterplot of all complexity metrics for TB plans using the MU values as the reference score 
and considering the effect of different levels of dose sparing priorities (upper_gEUD values). Abbreviations: 
TB TrueBeam, MU monitor units, MUcp average MU increment by CP, MCSv modulation complexity score 
for volumetric modulated arc therapy, NP number of peaks. 

 

The GPR’s for evaluation criteria of 3%/3 mm, 3%/2 mm, and 2%/ 3mm were always 100% for 

all cases and thus, were not considered in the analysis. The mean value and standard deviation 

(SD) for GPR with 2%/1 mm criteria were 96.3% and 1.7% respectively.  Figure 4.6 shows the 

scatterplot of the complexity metrics against GPR, again plotted to indicate the associated 

upper_gEUD priority values. The GPR presented high correlation to MU, MCSv, and MCSw (IrI= 

0.74, 0.74, and 0.72); moderate correlation to MUcp, UL, and NP (IrI= 0.66, 0.48, and 0.63); and 

low correlation to MCSUL. Additionally, the GPR present a similar clustering data effect as seen 

in Figure 4, with less differentiation for upper_gEUD priority values of 40, 60, and 80, compared 

to upper_gEUD values of 20.  

 

Figure 4.6 Scatterplot of all complexity metrics from 96 prostate plans delivered on Halcyon-v2 (Hv2), 
considering the gamma passing rate (GPR) values. 
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4.2.3 Discussion 

This in silico study investigated the possible effects of the selected TPS-parameters on different 

plan quality and mainly in the modulation complexity metrics. At the same time, it was intended 

to verify and validate the modulation complexity metrics needed to train the further ML models 

designed to predict GPR values. Accordingly, three main aspects were considered to develop 

this research, (1) the TPS-parameters of ASC, DCR, and Conv were chosen because of their 

possible effects on the final dose fluence (i.e., MLC movements) [31] , (2) the selected linacs 

Halcyon-v2 with dual-layer MLC and TrueBeam with single-layer MLC (since all the treatments 

from the ML models’ datasets were planned and delivered in this linacs), and (3) one prostate 

CT data set was used as a virtual phantom to control any effects attributable to differences in 

anatomy or planning volumes [127]. 

Figure 4.3 summarises the statistically significant differences observed in the plan quality indices 

and modulation complexity, comparing Halcyon-v2 and TrueBeam plans. It was found that 

Halcyon-v2 plans were associated with a higher median value of CI, better dose-sparing 

contributions (lower V50%), and lower mean dose values in OAR1 (mD-OAR1) (p<0.05). As it is 

described in previous reports [20,108,128,129], these results can be attributed to the Halcyon-

v2 features of lower penumbra (due to the leaf tip shape), higher leaf speed, lower dosimetric 

leaf gap, and higher gantry speed, compared to TrueBeam with Millennium-120 MLC. In the 

same way, it is important to note that these differences in features (hardware and beam 

modelling) make it impossible to directly compare the complexity metrics between the two 

linacs [127], and these differences are part of a fundamental aspect needed to be addressed in 

the next chapter (Chapter 5) regarding the real impact of dataset heterogeneities (datasets with 

various treatments having different treatment units, dose, anatomic region, etc.) on the ML 

modelling of GPR values. 

From Figure 4.3, it is also clear that metrics from Halcyon-v2 plans demonstrate less spread or 

variation than the data from TrueBeam plans. Furthermore, the TrueBeam data exhibits 

considerable outliers in the CI, V50%, and MCSv. It was inferred from this observation that the 

Halcyon-v2 plans show more consistent outcomes or less sensitivity to the TPS parameters, than 

those for the TrueBeam configuration with SL-MLC. As we move towards the era of on-table 

adaptation (47-49), this reduced sensitivity to parameter variation may be an important feature 

regarding the requirement for rapid (high pressured) re-planning using either manual or 

automatic techniques, given both require some oversight and quality control (QC). 

The results summarized in Table 4.1 demonstrate the selected TPS-parameters combinations do 

not impact the modulation complexity of plans with DL-MLC. Contrastingly, plans with SL-MLC 
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presented lower MU values for treatments with ASC{off} decreasing the plan complexity  (Figure 

4.5). For Halcyon-v2 plans, only the comparison between Conv{off} and Conv{extended} 

demonstrated a statistically significant difference in the V50% metric. Interestingly, with the 

mode set to “off”, a lower mean V50% value was obtained; however, this reflected the narrower 

range of values achieved for this parameter settings compared to the “extended” mode. Thus, 

although the difference was evident, it is important to note that these variations may not 

represent considerable clinical differences.  

For TrueBeam plans, the same scenario (low variations) happened to the CI, HI, and mD-PTV 

metrics. Moreover, lower values of V50% (achieved by DCR{high}) and MU (achieved by ASC{off}) 

presented relevant changes that might impact the plan quality and dose deliverability (26, 27). 

Nevertheless, the statistical significance needs to be careful considered in each particular case 

because each mode has different plans depending on their respective TPS-parameter. For 

instance, ASC with four modes has 24 plans each, whilst DCR (two modes) has 48 plans. 

Figure 4.4 shows the correlation of all modulation complexity metrics with MU for Halcyon-v2 

plans. Aside from the strong correlation seen in this data, a clear grouping level is evident with 

the priority settings used with the upper_gEUD optimisation constraint. For each of the plots 

(the different modulation) the data groups to the lower (20), moderate (40) and high/very-high 

(60/80) priority settings for the dose sparing parameter. These well-differentiated regions 

suggest a strong dependence between the modulation complexity degree (measured in 7 

different ways), and the priority levels used to reduce the mean dose of OARs in the optimization 

process, therefore, providing an opportunity to “pre-select” the required range of solution in 

terms of acceptable complexity. These results showed that high demanding dose sparing 

conditions might generate plans with higher MU values, with more complex modulation (lower 

values of MCSv and MCSw), with higher number of uncovered leaves junction per CP (UL), but at 

the same time with a lower number of demanding changes in the leaf position throughout the 

modulation process (NP), albeit a small effect of the latter. 

Figure 4.5, showing the same analysis for the TrueBeam plans, does not show a strong 

correlation, nor grouping. It is likely that the latter reflects the weaker overall correlation and 

the wider range of plan metrics previously highlighted. Comparison of the corresponding plots 

in Figure 4.4 and Figure 4.5 suggests again that the variation of the treatment planning 

parameter modes has a smaller effect on the plans produced for the Halcyon-v2 model over that 

for the TrueBeam. This is particularly apparent in the behaviour seen in Figure 4.5c, where a 

much greater heterogeneity is seen in the data. The large variation in Numbers of Peaks seen in 

the leaf trajectories suggest an ‘unstable’ relationship between the leaf sequences generated 
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and parameter variation. In turn this indicates the ‘TrueBeam’ optimisation search space is far 

more complex and poorly behaved, with many local minima, leading to these spreads of ‘optimal’ 

solutions. This should not be taken as a reason to distrust the algorithms; however, it does 

emphasize the need for caution, QC and oversight of the planning process. 

The different behaviour shown in Figure 4.4 and Figure 4.5, suggests that PO algorithm might 

work differently for the two Linac/ MLC models when the optimization priorities are used to 

reduce the OAR mean dose. In general terms, it was expected that more demanding plans (with 

higher dose sparing priorities) would require more complex beam modulation with higher MU 

values. This was evident in the results seen for Halcyon-v2 cases, however for TrueBeam plans, 

it seems to be uncorrelated; suggesting that a common optimization template could not be 

expected to produce similar results for the different Linac/MLC models. Nevertheless, this 

behaviour needs to be analysed in additional investigations considering other optimization 

parameters used to control the dose of OARs and the potential impact on dose deliverability. 

Considering previous publications that explored various modulation complexity metrics 

[92,94,97], it is important to note the contrasting results regarding their correlation to GPR 

values. While this study found high and moderate correlations for specific metrics using the 

2%/1 mm criteria (high correlation: MU (IrI= 0.74), MCSv (IrI= 0.74), and MCSw (IrI= 0.72), 

moderate correlation: MUcp (IrI= 0.66), UL (IrI=0.48), and NP (IrI=0.63)), studies performed by 

Park et al. [92] and Tamura et al. [97] found, respectively, low correlation to GPRs analysing the 

TrueBeam results (MCSv (IrI= 0.21)) with 40 prostate plans, and low correlation analysing the 

Halcyon-v2 results (MCSw (IrI=0.0122), MUcp (IrI=0.0084), MCS5 (IrI=0.2131)) with 15 prostate 

plans. These remarkable results might be attributed to different treatment unit models, TPS, 

and the detectors, used in the previous studies. In contrast, as it was studied before with a 

standard phantom [127], constant target volume geometry and constant treatment conditions 

should be considered as a factor that improves the correlation between the dose deliverability 

and modulation complexity. In other words, analysing together the GPR values of a series of 

patients treated with different technology (hardware, dosimetry, and software) and with 

different plan conditions (static beams, VMAT plans with one, two, or more arcs) are always 

prone to introduce additional noise to the data representation since those treatment 

parameters should not be comparable because of their physical representation in practice. 

Finally, and more directly connected to the goals of the present thesis exploring new complexity 

metrics, the correlation between the novel modulation complexity scores (UL, NP) and the GPR 

showed a moderate correlation (Figure 4.6). In line with the thesis objectives regarding the need 

to track the specific treatment parameters associated with the predicted dose deliverability 
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evaluation, these new complexity metrics designed for dual-layer MLC account for traceable 

physical aspects that may impact the delivered dose, while other published metrics cannot, 

being valuable to include them in a treatment verification programs. However, a clear clustering 

of the data with dose-limiting priority value is evident and suggests a simple connection between 

driving the optimiser harder (higher priority) and obtaining more complex solutions (higher MU 

and MUCP, and lower MCSV, MCSW, NP), which intuitively challenge attaining a maximum GPR.  

4.3 Radiomic Features 
The radiomic features are a set of mathematical extracted metrics based on texture analysis 

performed mainly in high-dimensional datasets [130,131]. In oncology and medicine, the images 

have been studied with these features implementing statistical tests contributing to genomics, 

protein sequencing, metabolomics, and medical images analysis for treatment outcome 

predictions [54,83,130]. In RT, specifically, the analysis of the dose distribution images is called 

dosiomics, and it has been implemented to predict lung toxicity, overall survival, and linac 

performance [77,132,133]. 

The radiomic features were calculated with Pyradiomics [131] using the 3D dose distribution 

(i.e., dosiomics), and are summarised in Table 4.2. Additionally, it was proposed two new 

radiomic features sets. First, using the 2D image created with all the MLC movements through 

each control point per arc (modulation maps, MM), extracting additional features related to 

modulation complexity that might not be calculated using conventional equations. And secondly, 

it was extracted the radiomic features using the calculated blended image per arc used for portal 

dosimetry evaluations to consider the final composite dose distribution of each beam used for 

gamma index analysis 

Table 4.2 Radiomic features and sub-features [131] 

Main 
Radiomic 
Feature 

Num. of 
sub-

features 
Sub-features Description 

First Order 
Statistics 19 

Energy, Total Energy, Entropy, Minimum, 10th 

percent, 90th percent, Maximum, Mean, Median, 
Interquartile range, range, Mean abs deviation, 
Robust mean abs dev, Root mean square, Standard 
deviation, Skewness, Kurtosis, Variance, Uniformity. 

Based on the 
distribution of 
voxel intensities 
from the image 

Shape-Based 
(3D) 16 

Mesh volume, Voxel volume, Surface area, Sphericity, 
Compactness 1, Compactness 2, Surface area to 
volume ratio, Spherical disproportion, Max 3D 
diameter, Max 2D diameter (slice), Max 2D diameter 
(column), Max 2D diameter (row), Mayor axis length, 
Minor Axis Length, Least Axis Length, Elongation, 
Flatness. 

Descriptors of 
three-
dimensional 
shape and size 
calculated on the 
non-derived 
image 
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Shape-Based 
(2D) 10 

Mesh Surface, Pixel Surface, Perimeter, Perimeter to 
Surface ratio, Sphericity, Spherical Disproportion, 
Maximum 2D diameter, Major Axis Length, Minor Axis 
Length, Elongation 

Descriptors of 
two-dimensional 
shape and size 
calculated on the 
non-derived 
image 

Gray Level 
Cooccurrence 

Matrix 

 (GLCM) 

24 

Autocorrelation, Joint Average, Cluster Prominence, 
Cluster Shade, Cluster Tendency, Contrast, 
Correlation, Difference Average, Difference Entropy, 
Difference Variance, Dissimilarity, Joint Energy, Joint 
Entropy, Homogeneity 1, Homogeneity 2, 
Informational Measure of Correlation (IMC) 1, 
Informational Measure of Correlation (IMC) 2, Inverse 
Difference Moment (IDM), Maximal Correlation 
Coefficient (MCC), Inverse Difference Moment 
Normalized (IDMN), Inverse Difference (ID), Inverse 
Difference Normalized (IDN), Inverse Variance, 
Maximum Probability, Sum Average, Sum Variance, 
Sum Entropy, Sum of Squares. 

GLCM describes 
the second-
oriented joint 
probability 
function of an 
image contrasted 
with a mask 

Gray Level 
Run Length 

Matrix 

(GLSZM) 

 

16 

Small Area Emphasis, Large Area Emphasis, Gray Level 
Non-Uniformity, Gray Level Non-Uniformity 
Normalized, Size-Zone Non-Uniformity, Size-Zone 
Non-Uniformity Normalized, Zone Percentage, Gray 
Level Variance, Zone Variance, Zone Entropy, Low 
Gray Level Zone Emphasis, High Gray Level Zone 
Emphasis, Small Area Low Gray Level Emphasis, Small 
Area High Gray Level Emphasis, Large Area Low Gray 
Level Emphasis, Large Area High Gray Level Emphasis 

Quantify grey 
level zones in an 
image 

Gray Level 
Size Zone 

Matrix 

(GLRLM) 

16 

Short Run Emphasis, Long Run Emphasis, Gray Level 
Non-Uniformity, Gray Level Non-Uniformity 
Normalized, Run Length Non-Uniformity, Run Length 
Non-Uniformity Normalized, Run Percentage, Gray 
Level Variance, Run Variance, Run Entropy, Low Gray 
Level Run Emphasis, High Gray Level Run Emphasis, 
Short Run Low Gray Level Emphasis, Short Run High 
Gray Level Emphasis, Long Run Low Gray Level 
Emphasis, Long Run High Gray Level Emphasis. 

Quantifies the 
grey level runs, 
which are 
defined as the 
length in number 
of pixels, of 
consecutive 
pixels that have 
the same grey 
level value 

 

Neighbouring 
Gray Tone 
Difference 

Matrix 

(NGTDM) 

5 
Contrast Feature Value, Coarseness Feature Value, 
Busyness Feature Value, Complexity Feature Value, 
Strength Feature Value. 

Quantifies the 
difference 
between a grey 
value and the 
average grey 
value of its 
neighbours 
within a defined 
distance 

Gray Level 
Dependence 

Matrix 

(GLDM) 

14 

Small Dependence Emphasis, Large Dependence 
Emphasis, Gray Level Non-Uniformity, Gray Level 
Non-Uniformity Normalized, Dependence Non-
Uniformity, Dependence Non-Uniformity Normalized, 
Gray Level Variance, Dependence Variance, 
Dependence Entropy, Dependence Percentage, Low 
Gray Level Emphasis, High Gray Level Emphasis, Small 

quantifies grey 
level 
dependencies in 
an image. A grey 
level dependency 
is defined as the 
number of 
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Dependence Low Gray Level Emphasis, Small 
Dependence High Gray Level Emphasis, Large 
Dependence Low Gray Level Emphasis, Large 
Dependence High Gray Level Emphasis 

connected voxels 
within distance d 
that are 
dependent on 
the centre voxel.  

 

 

4.4 High-dimensional Complexity Features 
The input features considered for CNN-based models to predict GPR were selected because its 

direct relation with the conventional modulation complexity scores. They are:  

4.4.1 Modulation Maps - MM 

The modulation maps (MM) input feature from a single VMAT-arc is a two-dimensional image 

created with all MLC positions per cp (Figure 4.7.a). The leaf number indicated on the y-axis 

includes both MLC banks (four in the case of Halcyon-v2), and the displacements were 

normalized to take values from zero to one. Additionally, to optimize the model's "learning 

process," the static leaves were removed, keeping just the active ones during the treatment 

(Figure 4.7.b). 

 

Figure 4.7 (a) Modulation maps (MM) of one prostate plan VMAT-arc including both MLC banks 
representing each leaf trajectory throughout 180 control points. (b) MM of the same treatment 
removing the static fields 

4.4.2 MUcp_profile 

The MUcp_profile is one-dimensional data containing all MU contributions per cp during one 

VMAT-arc trajectory, normalized from zero to one based on the total MU values (Figure 4.8). It 

is extracted from the dose contribution coefficient within the DICOM-RT tag [300A,010C] 

labelled CumulativeDoseReferenceCoefficient. 
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Figure 4.8 Normalized monitor units per control point profiles (MUcp_profile) throughout 180 control 
points from one prostate VMAT-arc plan. Additionally, a polar plot is integrated to represent the MU 
contribution in each VMAT-arc section.  

4.4.3 Composite Dose Image - CDI 

The composite dose image (CDI) is a two-dimensional image created with the superposition of 

all calculated dose fluencies during the VMAT-arc trajectory over a gantry perpendicular 

common plane. It is calculated by the Portal Dosimetry Image Prediction algorithm [31,134] 

integrated into Eclipse (Figure 2. d) and is used to be compared to the dose measured by the 

EPID to perform the gamma analysis. For modelling purposes, the CDIs were normalized from 

zero to one.  

 

Figure 4.9 Composite dose image created with all dose fluences delivered per each control point from 
one prostate VMAT-arc. This image is calculated by the TPS and is used to perform portal dosimetry 
evaluation, comparing this dose distribution with the measured by the EPID. 
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4.5 Conclusions 
Metrics dedicated to accounting for new ways to measure modulation complexity for dual-layer 

MLC models were developed and validated, generating new numeric predictors that might 

improve the prediction performance of GPR modelling using ML algorithms. However, the study 

followed to validate these metrics also highlights two main aspects. First, the variations of 

hardware and planning optimization parameters influence the range of possible modulation 

complexity scores, even for similar clinical conditions. And secondly, the conventional 

modulation complexity scores do not provide exact information about the hardware planning 

parameters linked to a specific predicted GPR value. 

The modulation complexity score variations for treatments with different optimization 

conditions or treatment unit hardware are an essential starting point to evaluate the potential 

technical effects in modelling GPRs using datasets with diverse treatment conditions (as it will 

be studied in the next chapter, Chapter 5). Explicitly, due to the modulation complexity 

corresponds to specific treatment conditions, an ML model trained with a dataset with not 

enough data representation of specific treatment conditions (a heterogeneous dataset), might 

present a prediction weighted by random processes rather than physical parameters involved in 

the treatment deliverability. 

Since the conventional complexity metrics do not provide information about specific plan 

parameters, high dimensional metrics associated with modulation complexity and its variations 

throughout the time (control points) are a natural step to be explored by implementing CNN-

based models (Chapter 6). For this reason, it was extracted the MM and MUcp profile (Section 

4.4.1), which might support a more comprehensive analysis of dose deliverability, rather than 

predict one GPR value, retrieving specific plan delivery moments more relevant to the GPR 

modelling. 

In summary, the proposed extracted metrics for Halcyon-v2 and the other retrieved or 

calculated metrics suggest two main aspects that will be addressed in the following chapters. 

First, the effect of the dataset composition using conventional GPR predictors (Chapter 5) since 

it was demonstrated that changes in hardware and software conditions influence the GPR 

results. And second, the poor utility of these metrics in understanding the model prediction 

reliability and the lack of specific plan parameters representation associated with dose 

deliverability. For this reason, models with high-dimensional features were also explored 

(Chapter 6). 
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 Dataset effects 

 

As it has been discussed previously (Chapter 4), GPR predictions applying ML methods 

[77,81,115,116] have been explored using complexity metrics as the principal predictor variables 

due to its reported relationships with dose deliverability [94]. One of the first reported studies 

in this field, performed by Valdes et al.[116], proposed a generalized linear model (GLM) with 

Poisson regression and Lasso regularization. They predicted GPR values based on 498 intensity-

modulated radiation therapy (IMRT) plans for six anatomical sites2, 78 complexity metrics, and 

diode-array detector measurements, reporting prediction error of up to 3%. These results were 

validated later[63] using an external dataset consisting of 139 plans (no anatomical sites 

specified), 90 complexity metrics, and EPID measurements, reporting an overall error of up to 

3.5%. In their report, Valdes et al. suggested the need to explore potential effects in model 

performance with datasets having various anatomical regions, treatment unit models, or 

detector types. Simultaneously and based on the same dataset, Interian et al. [78] proposed a 

convolutional neural network (CNN) using transfer learning and a VGG-16 architecture [60] to 

predict the GPR values using the dose fluence maps from each field, reporting a mean absolute 

error (MAE) of 0.70 ± 0.05. As a result of all these previous works, they noted that the model 

performance might be compromised by factors such as the dataset size, potential detector 

misalignments, the use of different dose detectors, and, more critically, the imbalanced dataset 

(i.e., most of the plans from the training dataset had GPR values close to 100%, inducing a poor 

model performance when plans with lower GPR values are predicted).  

Exploring new GPR prediction strategies, Tomori et al.[81] implemented a 15-layer CNN 

architecture with sagittal planar dose distributions (Gafchromic EBT3 films) from 60 IMRT 

prostate plans and the volume data from the planning target volume (PTV), rectum, and their 

corresponding overlapping regions. Despite having a small dataset, Tomori et al. found 

moderated and strong correlations between the predicted and calculated GPR values. In 

addition, they suggested that exploring other GPR criteria with new threshold reference levels 

might provide better information about potential clinical errors [106] dealing with imbalanced 

datasets simultaneously. This rationale was further explored by Li et al. [135], who presented 

GPR regression and classification implementing Poisson Lasso and random forest (RF) models, 

 
 

2 Breast (N=110), Central Nervous System (N=58), Gastrointestinal (N=78), Genitourinary (N=64), 
Gynaecologic (N=19), H&N (N= 5), Lung (N=134), Paediatrics (N=30). 
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respectively, evaluating the GPR criteria of 3%/3 mm, 3%/2 mm, and 2%/2 mm. They calculated 

54 complexity metrics and used a dataset with 303 VMAT plans with two different anatomical 

regions (head and neck - H&N, and gynaecologic) and various dose per fraction schemes, 

achieving a prediction error of up to 4.2% and classification sensitivity of 100% for 2%/2 mm 

criteria, which was the GPR criteria with less imbalanced results. Moreover, Li et al. suggested 

that classification would be a more convenient method than regression for virtual specific-plan 

verification, following the American Association of Physicists in Medicine (AAPM) task group 218 

[4] recommendations regarding clinical feasibility and action limits to classify one plan as fail or 

pass. Indeed, as it was studied later by Nguyen and Chan [107], after choosing one GPR criteria 

and one tolerance reference level able to detect potential clinical errors in practice, as more 

interpretable to identify if one plan will pass or fail rather than predict one single GPR value.  

The features variations and their weighted importance for GPR predictions were investigated by 

Lam et al.[136] with AdaBoost, RF, and extreme gradient boosting (XG-Boost) algorithms. 

Despite the differences in their operational basis[57,137], the three models identified the same 

nine most important complexity features (all related with modulation complexity and treatment 

unit model). Lam et al. used a dataset with 189 IMRT plans consisting, heterogeneously, of 

treatments from 10 different anatomical regions3, 31 complexity metrics, four dosimetrically 

matched treatment units, and EPID dose measurements. Although their dataset was highly 

unbalanced, they evidenced that GPR prediction is feasible with EPID measurements achieving 

an accuracy of up to 3%. Also, Lam et al. emphasized the need to explore potential variations in 

complexity metrics when considering different anatomic regions and treatment units. Similarly, 

Ono et al.[80] investigated the variations of the features importance for GPR predictions using 

one regression tree analysis (RTA), multiple regression analysis (MRA), and one neural network 

(NN) models adopting a dataset with 600 VMAT plans with 28 complexity metrics and helical 

diode-array measurements. Even with an unbalanced dataset consisting of different anatomic 

regions 4  (heterogeneously represented), they noticed that regression tree models are not 

always suitable for continuous values predictions due to their implicit accuracy dependency on 

the number of nodes and the values range of the predicted feature. On the other hand, the NN 

 
 

3 head-and-neck (N=38), abdomen (N=5), bladder and rectum (N=6), brain (N=36), lung and oesophagus 
(N=20), breast and chest-wall (N=12), pelvis(N=27), extremity (N=2), and prostate (N=36) 
4 Brain(N=184), head and neck (N=89), lungs (N=36), oesophagus (N=39), abdomen (N=15), pancreas 
(N=82), prostate (N=106), pelvis (N=46), and spine (N=3) 
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model presented the best prediction performance with an error of up to 0.70% ± 0.05%, 

evaluating the GPR 3%/3 mm criteria. 

As an alternative method to predict dose deliverability, Granville et al.[138] demonstrated that 

complexity metrics, plan parameters, and data from daily quality assurance (QA) measurements 

applied to the treatment units were adequate predictor features of ‘dose differences’ between 

measured and calculated dose distributions. They used a support vector (SV) classifier with a 

linear kernel to identify three potential conditions: hot, normal, and cold plans based on dose 

differences higher, in between, or lower than 1%, respectively. Simultaneously, they showed the 

model performance advantages associated with recursive feature elimination, reducing the 

model complexity to increase the results interpretability. More recently, Wall and Fenot [87] 

also investigated the positive impact of feature selection on GPR predictions, implementing 

three feature selection methods (extra-trees, mutual information, and linear regression), three 

machine learning algorithms (SV, tree-based model, and NN), and using a 500 VMAT plans 

dataset with different anatomical sites5. Besides confirming a considerable improvement in 

prediction performance with a reduced number of features, they also suggested the potential 

benefit of bringing dedicated datasets for each anatomical region due to their different 

variations in GPR values. Subsequently, Well and Fenot [139] used the same dataset and the SV 

machine to improve the inverse optimization process for VMAT plans, detecting potential lower 

GPRs and changing specific treatment unit parameters (e.g., field aperture) and benefit the final 

treatment prediction. Aside from proposing the first application of GPR prediction directly in 

VMAT optimization, they recommended exploring the benefits of dedicated machine-specific 

models for GPR predictions, supported by previously reported suggestions[63]. 

New approaches to improve ML-based GPR predictions have been recently studied, proposing 

alternative features or datasets, and changing how dose deliverability could be inferred from 

the calculated and measured dose data. That is the case of Hirashima et al. [77], who reported 

model performance improvements using radiomic features [83,84] as additional predictors for 

GPR prediction. They used a dataset containing 1225 VMAT plans6 with 24 complexity metrics 

and 851 radiomic features extracted from 3D dose distributions of each plan (3D dosiomics). In 

addition, the regression and classification of GPR values were performed with the XG-Boost 

model, showing improvements in sensitivity and specificity using a hybrid dataset with both 

 
 

5 Abdomen (N=29), reast (N=13), Chest (36), chest wall (13), H&N (148), lung (127), prostate (61), 
prostatic fossa (30), pelvis (32), and miscellaneous (11). 
6 Brain (N=480), H&N (N=171), Oesophagus (N=70), Lung (109), Pancreas (115), Abdomen (38), Pelvis 
(N=119), Prostate (N=153) 
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types of features. Also, Hirashima et al. found that the classification performance might be 

affected if the dataset includes many treatment sites due to the correlation between modulation 

complexity and the anatomical region. In contrast, Tomori et al.[79] considered a new synthetic 

dataset for model training using 96 dummy plans based on virtual spheric phantoms with 

different dose restrictions and OARs to emulate various dose delivery scenarios. They tested the 

model with a 51 clinical plans dataset, predicting 36 pairs of GPR criteria simultaneously. 

Although they found moderate statistical significance in testing dataset results, even in extreme 

GPR criteria like 0.5%/1 mm, they proposed new ways to understand and extract potential 

predictor features for GPR values. Nevertheless, the results might be limited by the training 

dataset size and its variations within the synthetic dataset in the target volumes, number of 

OARs, and dose per fraction. 

Considering the previously mentioned ML-based methods and their potential options for 

virtualspecific-plan verification, their implementations in clinical practice can represent benefits 

regarding time and new safety filter protocols. However, two limitations might influence the 

models' interpretability and the quality of their predictions. First, previous publications had 

imbalanced datasets in GPR terms (most plans have the 'passing' criteria label or high GPR 

values), leading to a limited prediction performance in plans with low GPR values when it is more 

critical to act. In addition, the classification performances were measured with the area under 

the curve (AUC) from the receiver operating characteristic (ROC) analysis (ROC-AUC), which is a 

metric suited for balanced datasets. Second, the datasets referenced before were assembled, 

not proportionally, by treatments for different anatomic regions having, in turn, unbalanced 

differences in the numbers of beams, the dose per fraction scheme, the beam energy, and the 

treatment units. These heterogeneity factors might influence the model performance due to the 

demonstrated correlation between GPR values and treatment parameters such as modulation 

complexity metrics, anatomic region, and dose per fraction [76,92,103,140–142].  

Moreover, the dataset heterogeneities could impact the weighted importance of the predictors 

used by the model [87,138], missing the ‘real’ physical aspects involved in the prediction process 

that correspondingly might explain the GPR prediction causes of one unrepresented plan. For 

this reason, the main goal of this study was to understand how dataset heterogeneities might 

impact the model performance in GPR predictions. Consequently, it was aimed to explore 

enhanced dataset conditions to create dedicated datasets that will be explored in the Chapter 

6. 
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5.1 Specific materials and methods 
Anonymized VMAT plans for 945 cases treated in one institution7 were retrospectively extracted 

to evaluate the potential effects of dataset heterogeneities on model prediction performance 

for GPR binary classification (pass/fail). Accordingly, 25 datasets were designed controlling the 

number of treatments based on four heterogeneity factors: anatomical region, dose per fraction, 

treatment unit, and the number of arcs (VMAT-arcs). From these plans, 309 predictor features 

were extracted, 20 of them were plan parameters (dose and volume data), 14 were complexity 

metrics, and 285 were radiomic features. Finally, the classification performance of three AI 

algorithms were evaluated for each dataset to verify the most favourable dataset assembling 

conditions.  

The 945 VMAT plans contained a total of 1150 VMAT-arcs and represented prostate (N= 840), 

H&N (N= 49), and brain (N= 56) treatment sites. The plans were optimized with Eclipse 15.6 

(Varian Medical Systems, CA) using the anisotropic analytical algorithm (AAA), setting a 0.25 mm 

grid size calculation resolution and 2o spacing per control point. The treatment unit models were 

three Varian linear accelerators calibrated at the same reference conditions, two dosimetrically 

matched TrueBeams (TB) and one Halcyon-v2 (HL), with the same nominal resolution at 

isocentre (5 mm) and same EPID model. Both TBs and HL hardware specifications were described 

in Section 3.2.1. 

5.1.1 The datasets 

Four groups with six datasets each (24 datasets) were assembled to study the individual impact 

of their corresponding four heterogeneity factors. For each datasets group, the six datasets were 

designed with systematic variations of the number of plans with one of the two contrasting 

treatment characteristics ({a}, {b}), representing their specific heterogeneity (Table 1). For 

instance, for the dose per fraction heterogeneity, the six datasets were assembled with 

variations of the number of prostate plans having {a}= 2 Gy or {b}= 3 Gy per fraction, keeping 

constant the dataset size (n= 210) and the other heterogeneity factors, such as treatment unit, 

number of arcs, and anatomical region. Therefore, the first of the six datasets was constituted 

by 100% of plans having the characteristic {a} plus 0% of plans with the characteristic {b} ({a%/b%} 

= 100%/0%), and subsequently the other five datasets had 80%/20%, 60%/40%, 40%/60%, 

20%/80%, and 0%/100% proportions. The makeup of the datasets groups is defined in Table 5.1.  

 
 

7  Queen's Centre for Oncology and Haematology - Castle Hill Hospital. Hull University Teaching Hospitals 
NHS Trust. 
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The heterogeneity factor of anatomical region considered prostate plans as characteristic {a}, 

and non-prostate plans as characteristic {b}. Due to the limited dataset, H&N and brain plans 

were combined as the non-prostate characteristic. For the number of arcs heterogeneity, {a} 

and {b] were prostate plans delivered by one single arc and two arcs (first and second arc), 

respectively. As it was mentioned before, the dose per fraction heterogeneity considered 2 Gy 

as characteristic {a} and 3 Gy as characteristic {b}. Finally, for treatment unit heterogeneity, the 

TB and HL were the characteristic {a} and {b}, respectively. 

Additionally, one reference dataset was randomly assembled without any control of the 

characteristics within the heterogeneity factors (Table 1). This reference dataset was used to 

compare the models' performances against those observed with the datasets with controlled 

heterogeneity factors. Thus, to ensure that across the created datasets, the inputs to each model 

were the same, 210 inputs were provided for each dataset. Given the plans had one or two arcs, 

each arc was taken as a single input to the model, therefore the number of plans contributing 

to the heterogeneity characteristics within the datasets reflected the relative combinations as 

well as the number of arcs. 

Table 5.1 Datasets classification for each principal heterogeneity 

Heterogenei
ty evaluated 

Total 
inputs 

Number 

Datasets 
Anatomic 
region Type of arc Dose per 

fraction [Gy] 
Treatment 
Unit 

Reference 210 1 

P (n= 94) 

B (n=71) 

H&N (n=45) 

Single (n=35) 

Two (n 
=175) 

2.0 (n= 138)                                
3.0 (n= 72) 

HL (n=57) 

TB (n=153) 

Anatomical 
region 

 

210 
6 

{a} P (n= 105) 

----------------- 

{b} B (n= 53), 
H&N (n=52) 

 

Two 

 

2 
TB 

Number of 
arcs 210 6 P 

{a} Single 

-------------- 

{b} Two 

3.0 HL 

Dose per 
fraction 210 6 P Single 

{a} 2.0 

----------------- 

{b} 3.0 

HL 

Treatment 
unit 

210 

 
6 P Single 3.0 

{a} TB 

-------------- 

{b} HL 

Abbreviations: Treatment units, TU; flattening-filter-free, FFF; flattened-filter, FF; Halcyon-v2, HL; 
matched treatment unit, ML; prostate, P; brain, B; head and neck, H&N. {a}: Initial plan 
characteristic, {b}: contrasting plan characteristic. 
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The specific-plan verification was performed with EPID measurements and their respective 

image analysis by Eclipse's portal dosimetry tools, applying the absolute dose correction and the 

improved gamma evaluation mode. The TBs and HL machines had the detector model aS1200, 

specified in Section 3.2.3. These GPR values were used to identify a GPR threshold (percentage 

of evaluated points passing the comparison criteria) that grants balanced distributions within 

the dataset (i.e., ideally 50% pass and 50% fail).  Simultaneously, the chosen GPR criteria and 

threshold had to be suitable for detecting potential clinical errors[106], avoiding unbalanced 

datasets[81,104,107], and excluding this potential bias within the model performance. 

5.1.2 Feature selection 

For each of the 945 VMAT plans, the anonymized files of the Digital Imaging and 

Communications in Medicine Radio Therapy (DICOM-RT) [118] plan, DICOM-RT dose, and 

DICOM-RT image were extracted. These files contain the plan parameters (such as the MLC 

trajectories and field geometry), the dose distribution, and the composite dose image (CDI) of 

each individual VMAT-arc used for portal dosimetry analysis, respectively. Based on previous 

studies[80,143],  the predictor features associated with complexity metrics and plan parameters 

were calculated using Python [98] and ESAPI [100] (Eclipse Scripting Application Interface) 

scripting. Considering the different designs, appropriate complexity metrics were used 

respectively for single (TB) and dual (HL) layered MLCs. For HL, the complexity metrics were 

weighted by the respective MLC-layer contribution to the final field conformation [143], 

following the recommendations of Tamura et al.,[97]. Additionally, and considering the 

demonstrated improvements in model performance due to the inclusion of texture analysis 

features from dose distributions [77,83,84], radiomic features were calculated with Pyradiomics 

[131]  using the 3D dose distribution (i.e., dosiomics).  Also, it was proposed two new radiomic 

features sets. First, using the 2D image created with all the MLC movements through each 

control point per arc (modulation maps, MM), extracting additional features related to 

modulation complexity that might not be calculated using conventional equations. And secondly, 

it was extracted radiomic features using the CDI per arc used for portal dosimetry evaluations 

to consider the final composite dose distribution of each beam used for gamma index analysis. 

All features are listed in Table 2. 

To evaluate the impact of all these radiomic features on the classification performance, the AI 

algorithms were tested using the reference dataset evaluating four conditions, (1) dataset with 

only plan (volume and dose) parameters and complexity metrics as predictor features, (2) 

previous condition plus radiomic features from MMs, (3) previous conditions plus radiomic 
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features from 3D dose distributions, and (4) previous conditions plus radiomic features from 

CDIs. 

Table 5.2 Classification and summary of predictor features. 

Feature 
Classification Description N Features 

Volume/Dose  

Plan 
parameters 

 

Planning parameters 

specific dose values received in 
PTV and OARs 

Volume of overlapping structures 

Treatment unit 

20 

Dose per fraction, dose calculation algorithm, 
treatment unit, anatomic region, number of arc, 
PTV volume, volume of OARs in contact with 
PTV, volume of the overlapping region between 
PTV and OARs, beam mode, PTV-D98%, PTV-
D95%, PTV-D50%, PTV-MD, OAR1-D50%, OAR1-
MD, OAR1-D2%, OAR2-D50%, OAR2-MD, OAR2-
D2% (Section 4.2.1.4) 

Modulation 
Complexity 

Beam modulation, 

Field variability 

Gantry speed and dose rate 
variation 

14 LSV, AAV, MCSv, MCSw, LTMCS, NP, MU, MUcp, 
AA, AI, AM, PA, PI, PM (Section 4.1) 

Radiomic 
metrics 

pixel size, / voxel volume, 
skewness, etc.[144] 

MM (Radiomics1) 

3D dose distribution (Radiomics2) 

CDI (Radiomics3) 

 

285 

GLCM (N= 24), GLDM (N= 14), GLRLM (N= 16), 
GLSZM (N= 16), NGTDM (N= 5), first order (N= 
10), shape (N= 10) 

Abbreviations:  leaf sequence variability, LSV; aperture area, AAV; modulation complexity score for volumetric modulated arc 
therapy, MCSv; MCSv weighted by dual-layer multi-leaf collimator, MCSw; average leaf travel for MCSv, LTMCS; number of peaks 
of leaf trajectory, NP; monitor units, MU; averaged MU increment per control point, MUcp; aperture area, AA; area irregularity, AI; 
aperture modulation, AM; plan-averaged beam area, PA; plan-averaged beam irregularity, PI; plan-averaged beam modulation, 
PM; planning target volume, PTV; organ at risk, OAR; dose received by y% of the X structure’s volume, X-Dy%, grey level co-
occurrence matrix, GLCM; Gray level dependence matrix, GLDM; grey level run length matrix, GLRLM; Gray level size zone matrix, 
GLSZM; neighbouring grey tone difference matrix, NGTDM. 

 

5.1.3 Models 

Three machine learning (ML) models, RF, XG-Boost, and NN (Section 2.2) were implemented to 

perform GPR binary classification, using standardized datasets with 80% and 20% stratified train-

test split. Five-fold-cross-validation (5-CV) was applied to reduce potential overfitting effects, 

and the hyperparameters tuning was performed by the grid-search method provided by Scikit-

learn [145] package. The three models were optimized using the reference dataset to set the 

fixed model parameters for the remaining datasets and analyse the models’ capabilities 

considering only the different datasets compositions. In addition, for each modelled dataset for 

RF, the features importance was calculated based on Gini importance [146] method using the 

Scikit-learn function ‘feature_importances_’ due to its features managing consideration. 

5.1.4 Model evaluation 

The model performance was evaluated using ROC-AUC [77,104], which is defined as the area 

score from the curve calculated with the true positive rate (TPR) and the false positive rate 
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(FPR)[147]. The TPR (also known as Sensitivity) is defined as the ratio between the number of 

correctly positive classified cases, true positives (TP), and the actual total number of positive 

cases, which are the TP plus the classified false negative (FN) events (TPR = TP/(TP+FN)). In this 

study, sensitivity measures the model’s capability to detect pass-plans that will pass the PPSTV 

when actually performed. Similarly, the FPR is defined as the inverted Specificity (FPR = 1-

Specificity), or the number of false positives (FP) divided by the sum of FP and the true negative 

(TN) classifications (FPR = FP/(FP+TN)). This metric summarizes how often a plan is classified as 

pass when, in fact, it will fail in practice. When used as a ‘screening-tool’ to decide which plans 

may require actual measurements, a model with low TPR and high FPR would over-estimate 

those predicted to fail and result in the irradiation of more plans than necessary. 

The Spearman’s rank test (r) was performed to investigate whether the predictors features 

correlated with GPR values for a specific dataset. Low, moderate, and high correlations were 

considered for values of |r|< 0.4, 0.4 ≤|r|≤ 0.7, and |r|> 0.7 respectively. 

5.2 Results 

5.2.1 Analysis of datasets  

The clinically measured/calculated GPR values for all HL plans with 3%/3 mm, 3%/2 mm, 2%/3 

mm, and 2%/ 2mm criteria were 100%. Thus, to ensure balanced datasets, the GPR 

classifications were performed adopting a GPR threshold of 95% as a plan pass/fail indicator for 

2%/1 mm GPR criteria. Their respective distributions of the GPR values in all six datasets for each 

of the reference and the four heterogeneity factors are displayed in Figure 5.1. 

 

 

Figure 5.1 Distribution of Gamma Passing Rate (GPR) values for all dataset groups considering the 
reference dataset and each heterogeneity factor: Number of arcs, Dose per fraction, Treatment Unit, and 
Anatomic site. Each distribution group accounts their respective six datasets. The red dashed line marks 
the GPR threshold of 95% considered for the model classification pass/fail. Plans with GPR < 95% might 
be considered as plans that need to be investigated and will potentially fail. 

Statistically moderate correlations to GPR with 2%/1 mm criteria were found for the predictors 

MCSv and the GLRLM radiomic feature extracted from MMs (Table 5.1). The scatterplot of these 

features against GPR values are included in supplementary material 1.1. 
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Table 5.3 Predictor features with statistically moderate correlation (Spearman’s rank test) with GPR 
measurements based on 2%/1 mm criteria. 

Dataset 

[Heterogeneity (a%/b%)] 
Feature |r| 

Number of arcs (20%/80%) * MCSv 0.47 

Number of arcs (0%/100%) MCSv 0.62 

Treatment Unit (60%/40%) ** 

original_GLRLM_RunLengthNonUniformity 0.45 

original_ GLRLM _RunVariance 0.43 

original_GLRLM_RunLengthNonUniformity 
Normalized 0.42 

original_ GLRLM _RunEntropy 0.45 

Treatment Unit (40%/60%) 
original_ GLRLM _RunLengthNonUniformity 0.44 

original_ GLRLM _RunVariance 0.41 

Treatment Unit (20%/80%) original_ GLRLM _RunVariance 0.41 

Abbreviations: GLRLM, grey level run length matrix from MM (Modulation Map); MCS, 
modulation complexity score. *Number of arcs: {a} Single arc, {b} Two arcs, ** Treatment 
Unit: {a}TrueBeam {b}: Halcyon 

 

The split between plans passing and failing the specific-plan verification is displayed in Figure 

5.2 for each dataset. These two plots represent the plans reserved for the training and testing 

data sets for the modelling, respectively. The uncertainty bars represent the variations between 

the six datasets (with characteristic composition, a%/b%) for each heterogeneity group and for 

the reference group. 

 

Figure 5.2 Distribution of dataset split between pass and fail plans for each heterogeneity factor, 
considering the training (left) and testing (right) datasets. The deviation of each column is calculated with 
the variation of the dataset split for each of the six datasets in every heterogeneity dataset group. 
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5.2.2 Analysis of modelling 

As a result of the grid-search optimization, the hyperparameters for RF were 100 trees and 3 

maximum depths of trees; for XG-Boost, the hyperparameters were 170 trees, 2 maximum 

depths of trees, and a 0.01 learning rate; and for NN, three layers (121, 60, and one neuron for 

each layer, respectively) and binary-cross entropy loss function were selected.  

5.2.2.1 Reference dataset and evaluation of radiomic features 
The reference dataset was randomly created with prostate (45.2%), H&N (33.8%), and brain 

(21%) treatment sites; dose per fraction of 1.8 (8.1%), 2 (57.7%), and 3 Gy (34.2%); plans with 

single (16.7%), first or clockwise (42.9%), and second or counter clockwise (40.4%) VMAT-arcs; 

and TB (72.8%) and HL (27.2%) treatment units (Table 5.1). The effect of radiomic features 

inclusion in the reference dataset were evaluated in all three ML models using the ROC-AUC 

metric (Table 5.4). 

Table 5.4 Mean and standard deviation of AUC values for RF, XG-Boost and NN binary classification using 
the reference dataset with four sets of predictor features. 

 

Condition 

 

 Model 

 

1 2 3 4 

V/D + C 
V/D + C 

+ R1 

V/D + C 

+ R1+ R2 

V/D + C 

+ R1 + R2 + R3 

RF 0.58 ± 0.16 0.67 ± 0.25 0.75 ± 0.14 0.78 ± 0.15 

XG-Boost 0.60 ± 0.14 0.59 ± 0.12 0.61 ± 0.16 0.65 ± 0.13 

NN 0.82 ± 0.08 0.85 ± 0.05 0.87 ± 0.04 0.87 ± 0.03 

Abbreviations: area under the curve, AUC; random forest, RF; neural network, NN; 
feature predictors based on volume and dosimetric plan parameters, V/D; 
complexity metrics, C; radiomic features extracted from the leaves-trajectories 
maps, R1, radiomic features extracted from dose distribution, R2; radiomics 
features extracted from calculated CDI, R3. 

 

5.2.2.2 Features importance 
To evaluate model's most important features, the predictor features were grouped and labelled 

as Volume/Dose, Complexity, Radiomics1, Radiomics2, and Radiomics3, corresponding to plan 

parameters, complexity metrics, the MMs' radiomics, the 3D dose distributions' radiomics, and 

the radiomics from CDI, respectively. The ten most important features distribution for the 

reference dataset were: one feature from Volume/Dose (‘Dose_per_fraction’), two from 

Complexity (‘MUcp’ and ‘Number_of_arcs’), four from Radiomics1 (‘first_order_x’), and 3 from 

Radiomics2 (‘GLDM’, ‘GLRLM’, ‘first_order_x’). Furthermore, the distribution of the 10 most 
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important features for each heterogeneity factor with their respective datasets is summarized 

in Figure 5.3. 

 

 

 

Figure 5.3 Ten most important feature classes distribution for each dataset scenario considering the 
heterogeneities of (a) anatomic region, (b) number of arcs, (c) dose per fraction, and (d) treatment unit. 

 

5.2.2.3 Model performance 
Figure 5.4 shows the plots of ROC-AUC values for RF, XG-Boost, and NN based on the reference 

and the 24 controlled heterogeneities datasets. The standard deviation is represented by a 

dotted red line for the reference models, and green shades for the other models. The individual 

lines correspond to the heterogeneity conditions. The additional data of ROC curves and TPR-

FPR values are included in supplementary material 1.3. 

 



63 
 

 

Figure 5.4 AUC results and its standard deviations values for (a) RF, (b) XG-Boost, and (c) NN models, 
considering the reference dataset, each heterogeneity source, and its different proportions. 

 

5.3 Discussion 
Having considered the reported feasibility of GPR predictions in the literature using ML methods 

[77,80,88,148], this study was designed to investigate the impact of the dataset composition on 

classification performance from models dedicated to virtual specific-plan verification. Rather 

than proposing new GPR prediction model in this chapter, it was intended to investigate 

strategies to increase models’ reliability from the dataset quality and their interpretability from 

a physical perspective. For this reason, it was evaluated the ROC-AUC of three different models 

(RF, XG-Boost, and NN) by applying them to one reference dataset (constructed from random 

cases to be unbalanced by design) and 24 datasets with controlled heterogeneities variations 

(anatomical region, number of arcs, dose per fraction, and treatment units). These 

heterogeneity factors were implemented based on the demonstrated correlation of GPR values 

with the PTV size or anatomical region [5,149], the MU or dose delivered by each field (beam or 

VMAT-arc) [6], and the treatment unit or beam modelling [5,6,99]. Thus, it was hypothesized 

that an ML model predicting GPR values would not have a reliable performance if the plan to be 

predicted is underrepresented in the training dataset (i.e., the model dataset would have a few 

or any plans comparable with the predicted treatment conditions). 

The fail/pass plan classification selected in this study was resulted from (I) the low extrapolation 

capabilities of tree-based models beyond the training dataset’s range values [57,146] and (II) 
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the reported advantages of implementing a decision-making tool within a specific-plan 

verification program [4,77]. Duly, it was considered this classification approach to be the more 

reasonable strategy for GPR predictions using RF or XG-Boost models, having the benefit of 

retrieving the weighted features' importance to understand the main variables involved in the 

predictions. Consequently, it was implemented the ROC-AUC metric to measure the model 

performance, ensuring that all datasets had comparable balanced cases of ‘pass’ and ‘fail’ plans 

(Figure 5.2). For this reason, the 2%/ 1mm GPR criteria and a 95% cut-off value (Figure 5.1) was 

chosen, avoiding any unbalanced effects within the model performance, and excluding this error 

factor from the results. Otherwise, unlike most reported datasets [77,80,147], it would suggest 

that the PR-AUC (AUC from the precision-recall curve) might be a more relevant metric (than 

ROC-AUC) if the datasets are unbalanced with a bias towards passing plans [147]. Finally, based 

on the differences in the structural basis between RF, XG-Boost, and NN algorithms [1,55], and 

because in this section it was intended to understand the dataset’s effects rather than achieve 

the optimal classification model, the classification performance comparisons between these 

models were not intended. Nevertheless, the lower variability and higher reproducibility of NN 

models were observed (Figure 5.4). 

Besides this analysis of dataset composition effects on the model performance, it was also 

proposed new features to be included based on radiomics. It was included the MM texture 

analysis, as it represents the whole arc modulation behaviour in each control point [150] and 

contains the information needed to calculate most of the reported complexity metrics [91,94]. 

In addition, the conventional modulation complexity metrics have shown to be not always highly 

correlated to GPR values[94]. Hence, this automatic texture analysis might bring additional 

information beyond the ‘hand-extracted’ features by the complexity equations. In the same way, 

the CDI were included for radiomic features extraction because the ‘blended’ image represents 

the final dose distribution that will be compared with the EPID dose measurements for gamma 

analysis. Thus, shape and texture variations from the calculated blended dose image could be 

considered as an indirect way to measure dose fluence complexity. 

Similarly, as reported by Hirashima et al., [77] it was confirmed that radiomic features extracted 

from 3D dose distributions improved the three models' classification performance, compared to 

the models using just the plan parameters and complexity metric features (Table 5.4). 

Furthermore, it was showed that combining all the radiomic features, including the extracted 

from the MMs and the CDI, might improve the classification performances. However, it was 

noticed that XG-Boost was less susceptible to improvement until the three radiomic features 

were used together. Also, the NN model was not sensitive to the CDI radiomic features. These 

behaviours could be attributed to the boosting method implemented by XG-Boost [56] and the 
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data generalization power of NNs [60,83]. As it has been described [56,57], the model 

classification performance might not increase if the newly added features represent redundant 

information about the dataset system. Nevertheless, further studies must be performed to 

analyse each radiomic group individually with higher datasets. 

This study confirms that modulation complexity metrics were important classification features 

for datasets having mostly plans with two arcs ({a%/b%} = 20%/80%, 0%/100%) and that 

features based on GLRLM analysis from MMs radiomics (Radiomics1) were relevant predictors 

in datasets having plans with different treatment units ({a%/b%} = 60%/40%, 40%/60%, 

60%/80%) (Table 5.3). The same behaviours were corroborated by Figure 5.3.a, Figure 5.3.b and 

Figure 5.3.d, respectively. These dependencies were expected due to the prominent difference 

in modulation complexity values, between the first and second arc, due to their respective MU 

range values differences (first arcs have higher MU values and modulation than second arcs in 

prostate plans).  

This study demonstrates the dataset heterogeneities effects in two main related aspects. First, 

the type of features the model relies on to make its predictions (Figure 5.3), and second, the 

classification model performance (Figure 5.4). Indeed, the progressive variations in features 

importance for each heterogeneity factor (Figure 5.3) and dataset variations confirm that the 

model does not account for the same kind of plan parameters to perform its GPR predictions, 

except the datasets from the dose per fraction heterogeneity (Figure 3.c). Although further 

investigations are needed, these results suggest that potential ML model implementations in 

practice for GPR classification should be considered more stable (in terms of explainable 

predictors) if the dataset account plans with similar treatment conditions excluding the 

differences in dose per fraction. Consequently, it is considered that analysing the variation of 

features' importance might explain the predictors' stability in differentiating and predicting 

specific GPR values (or categories). Therefore, the presented feature analysis could be 

considered as a potential strategy to evaluate and control the model stability of long-term or 

dedicated virtual specific-plan verification programs implemented in radiotherapy facilities after 

feeding the model dataset with additional inputs. 

The present study found that models based on datasets with fewer heterogeneities have higher 

classification performance (higher AUC values) and lower variability than models with highly 

heterogeneous datasets (Figure 4). This trend might represent the potential effect of dataset 

composition on the model efficiency to find solid predictor factors for GPR values. Indeed, 

models with one predominant treatment condition (or just one), presented higher AUC values 

compared with those more heterogeneous models ({50%-50%}), which can intricate an 
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appropriate model optimization. Specifically, a poor model data generalization due to the 

mentioned heterogeneous datasets could promote model predictions less related to physical 

treatment characteristics and dose deliverability parameters, increasing random feature 

associations that might fit or describe the training dataset, but it might not have an optimal 

performance predicting new underrepresented plans. Otherwise, well-classified plans from 

these kinds of unbalanced heterogeneous models could be expected just because of random 

correlations instead of dosimetric or physical properties that reflect the actual plan deliverability, 

reducing the model reliability. 

Considering the RF and XG-Boost results from Figure 5.4, it is also important to note that the 

heterogeneity factor with a lower impact on prediction performance was the treatment unit, 

which suggests that the data generalization and model training are more affected by plan 

parameters such as PTV volume (anatomic region), number of arcs, or dose per fraction. These 

results might be considered in the dataset design when there is a limited number of treatment 

plans. However, these variations between treatment conditions and their implicit effects on 

modulation complexity scores, and consequently, on dose deliverability, ease the GPR models 

based on numeric features to rely on the differences between the dataset plan categories rather 

than individual patient-specific properties, which compromise the prediction reliability and 

further analysis. For this reason, models using CNN architectures (automatic extraction features) 

based on high dimensional plan parameters might be more reliable in including specific physical 

aspects of the treatment (Chapter 6, Chapter 7). 

This work is among the first to analyse the implications of the dataset heterogeneities in the 

model performance considering its potential applications for virtual plan verification protocols. 

However, there are some limitations in this study. First, the results obtained in this study were 

based in plans from one institution, and further studies are required using hybrid datasets from 

other radiotherapy centres to achieve broad conclusions. Additionally, it is important to 

highlight the potential benefits of larger datasets in further investigations in terms of 

reproducibility and feature predictor definitions. 

Finally, confidence in any virtual specific-plan evaluation requires a deep understanding of its 

results and the selection process of the features used in these predictions, rather than just 

demonstrating a high accuracy model without practical interpretability and using datasets that 

do not represent the treatment conditions related to the GPR value intended to predict. Based 

on these results, it is recommend performing GPR predictions based on datasets with similar 

treatment characteristics. These considerations suggest a better understanding of the features 

needed in the prediction process and their physical impact. 
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5.4 Conclusion  
Evaluating ML-based models applied to virtual specific-plan verification needs to consider 

strategies to measure their prediction reliability and interpretability to ease their 

implementation in practice. Therefore, assessing the impact of the dataset components on the 

model data-generalization (given by the treatment plan characteristics in the dataset) must be 

an essential strategy to understand the physical aspects involved in the prediction process. 

Additionally, radiomic features from MM, dose distribution, and CDI were associated with 

improvements in model prediction performance. Finally, the plan parameter treatment unit 

represented the heterogeneity factor with less adverse impact on model performance. 

Contrastingly, with these results, the most relevant question now relies on the actual utility of 

the ‘more important features’ used by the model to predict certain GPR values. Once the model 

assembling was analysed, the reliability of their predictions is still questionable because their 

predictor features cannot retrieve specific plan parameters associated with dose deliverability. 

Thus, in Chapter 6, high-dimensional features associated to dynamic treatment unit conditions 

(MM and MUcp profile) were explored to predict GPR, attempting to locate specific activated 

features that might improve the model reliability (Chapter 7). 
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 GPR modelling 

 

As more widely mentioned in Chapter 5, ML models dedicated to QA have often been 

implemented to predict GPR values [2,29], exploring calculated modulation complexity metrics 

and implementing models such as Poisson regression [76], decision trees [77], support vector 

machine (SVM) [63], and artificial neural networks (ANN). Also, CNN-based models [78–81] have 

been reported using dose distributions or static beam fluence maps [2]. However, neither the 

empirical complexity metrics nor the dose distributions directly account for the modulation 

complexity. For this reason, it is necessary to contemplate a more comprehensive prediction 

method considering high dimensional information, such as the MM and the MUcp profile 

variations (Section 4.4) as potential GPR predictors, implementing automatic-feature extraction 

methods, and avoiding the use of conventional complexity formulas [74,93,97] that might limit 

the amount of information extracted. 

Considering the above mentioned, this chapter aims to explore features directly related to 

treatment unit parameters to predict GPR values based on CNN models, contributing to the 

inclusion and evaluation of additional treatment parameters that might facilitate the design of 

more robust dose deliverability evaluation protocols. For this reason, the primary objective of 

this study was to evaluate the potential utility of MM and MUcp profiles as input features for 

GPR predictions. Consequently, since the GPR values were calculated using EPID measurements, 

it was decided to include the calculated CDI as a third evaluated input feature (i.e., dosimetric 

input feature). The second objective was to verify whether concatenated models presented an 

improved GPR prediction performance or not. Furthermore, it was aimed to evaluate the model 

stability in terms of the quality of the learned features extracted by each model. 

In this chapter a workflow followed to develop this study, a descriptions of the dataset 

assembled based on the recommendations and conclussions from Chapter 5, the designed CNN-

models’ architectures, and the predicting performance evaluation of those models. Finally, a 

discussion and conclusions about the present findings implications in RT virtual QA is presented. 

 

6.1 Method 

6.1.1 Workflow 

The four-step workflow followed in this chapter is illustrated in Figure 6.1. (I) From 1024 DICOM-

RT files, the MM, MUcp, and CDI were retrieved and classified to form three specific datasets 
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representing each feature category. (II) An independent CNN model was designed for each input 

dataset to predict GPRs (classification and regression). The architecture optimization, the hyper-

parameter tuning, and stability tests were performed with TensorFlow [105]. (III) In addition, 

four hybrid models based on all possible previous models' combinations were proposed to verify 

if the GPR prediction improves concatenating two or more models. (IV) Finally, the ROC-AUC 

and the accuracy were calculated to evaluate the prediction performance of classification 

models, and the MAE, RMSE, and Spearman correlation coefficients were calculated for 

regression models. 

 

Figure 6.1 Workflow of the present study, including the (1) dataset creation, (2) the corresponding 
designed main models (M_1, M_2, and M_3) plus their optimization and stability evaluation, (3) the 
design of the assembled hybrid models, and (4) the prediction performance evaluation, for the training 
and testing sub-datasets. 

 

6.1.2 Dataset 

A total of 1024 anonymized DICOM-RT files from 746 prostate plans were retrieved to extract 

the MM, the MUcp profiles, and the CDI features by Python scripting [98]. The treatments were 

planned with Eclipse version 15.6 (Varian Medical Systems, Palo Alto, CA), 2 degrees per CP 

configuration, and 6 MV beam energy in two Varian treatment units (TrueBeam and Halcyon-v2) 

available in our institution with the same EPID model (aS1200) and calibrated under the same 

reference conditions. Since the dataset was limited, it was decided to create a dataset with just 

variations of the treatment unit based on Chapter 5 findings. Both treatment units have 5 mm 

of nominal resolution at the isocentre with Millennium 120 MLC (TrueBeam) and dual-layer MLC 
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(Halcyon-v2) models and a maximum leaf speed of 25 mm/s and 50 mm/s, respectively. 

Furthermore, the dataset was divided into 80% for training and validation sub-datasets (80%/20% 

in turn, N= 819) and 20% for the testing sub-dataset (N= 205), as it is illustrated in Figure 6.2. 

The treatment plan conditions are summarised in Table 6.1.  

 

Table 6.1 Summary of planning conditions for prostate dataset considering 

Treatment 
unit 

Energy  

Mode 

Number  

of arcs 

Dose per 

Fraction [Gy] 

Number of 

plans 

Number 
of inputs % 

TrueBeam 6-MV FF 
1 

2 

2.7 

3 

85 

70 

236 

85 

70 

236 

8.3 

6.8 

23.0 46.6 

2 2 43 86 8.4 

Halcyon 6-MV FFF 
1 3 77 77 7.5 

53.4 
2 3 235 470 45.9 

Abbreviations: Flattening filter, FF. Flattening filter free, FFF.  

 

The GPRs were calculated from gamma analysis evaluation [29] based on EPID measurements 

and a global 2% dose and 1 mm distance differences criteria (2%/1 mm) because of the same 

rationale explained in Section 5.2.1. For classification models, the VMAT dose distributions with 

a GPR ≥ 98% were labelled as ‘pass’ (N= 49%); otherwise, they were labelled as fail (N=51%). This 

2%/1 mm reference value was chosen considering both treatment units and one evaluation 

threshold able to discriminate potential errors that might affect the planned dose distributions, 

in accordance with the AAPM-TG 218 recommendations [4]. However, this value also promoted 

the best-balanced conditions in GPR terms when the datasets were divided into sub-datasets 

(Figure 6.2.b), avoiding unreliable classification modelling and overfitting effects [151]. As it is 

registered in the Supplementary Material 2.1, most measured plans evaluated with 3%/3mm, 

3%/2 mm, 2%/ 3mm, and 2%/2 mm criteria presented GPR values of 100%, generating highly 

unbalanced datasets. 
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Figure 6.2 Distribution of the number of plans (counts) for (a) all GPR values with the GPR criteria of 98% 
(dotted red line), and (b) the representation of all sub-dataset splits. Plans labelled as ‘fail’ were 
represented with [0] and plans labelled as ‘pass’ were represented with [1].  

    

6.1.3 Input features 

The input features used in this chapter were described in Section 4.4. They are MM, MUcp 

profile, and CDI (Figure 6.3). 

 

Figure 6.3 Representation of the three features used in this study. (a) The full modulation map (MM) 
and (b) the edited MM removing the static leaves. (c) The monitor units per control point (MUcp) profile 
and its representation in polar coordinates. (d) Composite dose image (CDI) calculated by the portal 
dosimetry tools in the treatment planning system. 
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6.1.4 Models 

The designed models for MM, MUcp profile, and CDI features were noted as M_1, M_2, and 

M_3, respectively. An r or c character was included at the end of the notation to differentiate 

between regression and classification models (e.g., M_1r for regression and M_1c for 

classification). Additionally, four hybrid models were created from the three main previous 

models and were noted as M_12, M_13, M_23, and M_123, indicating the included 

concatenated models with their indexed notation. Furthermore, five-fold cross-validation was 

applied and ‘Horizontal Flip’ was the only data augmentation explored in this study to ensure 

that all input features keep accurate physical representation within training modelling. 

Accordingly, all models implemented in this study were based on CNN architectures and were 

designed using the most straightforward possible architectures, establishing the minimum 

optimal number of CNN-Maxpool layers and filters for each type of input category. This direction 

might help to control overfitting events, track specific features from each input increasing the 

model reliability, and reduce the predictions predominated by random features with no physical 

context [61,151,152]. 

After the models were designed and optimized, the three main models, M_1c, M_2c, and M_3c 

were modified, including drop-out layers after each convolution/max-pooling layer arrangement 

to evaluate their performance stability as the drop-out rate increases systematically. This test is 

proposed to verify the minimum number of nodes needed to extract features that correlate to 

GPRs and simultaneously evaluate the contribution of the random extracted features created 

by the convolutions. 

6.1.5 Evaluation 

The prediction performance for regression models were evaluated measuring the mean 

absolute error (MAE), the root mean squared error (RMSE), and the Spearman’s correlation 

coefficient (r) between the measured and the predicted GPR values. High, moderate, and lower 

correlations were defined for r<0.4, 0.4≤r≤0.7, and r>0.7 values, respectively. Furthermore, the 

classification model performance was assessed calculating the area under the receiver operating 

characteristic curve (ROC_AUC), accuracy, specificity, and sensitivity (Table 3.1) 

 

6.2 Results 

6.2.1 Model architecture 

The M_1, M_2, and M_3 models were designed independently using HParam tool in 

TensorBoard, optimizing for each model the number of layers, number of filters, kernel size, 
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drop-out rate, and activation functions. A brief representation of the resulting models’ 

architecture is displayed in Figure 6.4 and a detailed description is available in the 

Supplementary Material 2.2 [105].  

 

Figure 6.4 Convolutional Neural network architectures corresponding to the models M_1, M_2, M_3, 
and M_123. The output is also represented as a dual output for classification (pass-fail) and a single 
output for regression. 

 

6.2.2 Architecture stability  

The results for the model stability test are represented in Figure 6.5. The models M_1, M_2, and 

M_3 presented more stability with up to 50% activated nodes (Drop-Out rate of 0.5) of each 

convolution layer, indicating that the remaining extracted features are still enough for GPR 

predictions. These results are consistent with the original models’ performances, however, is it 

clear that M_2 is more susceptible to reduce the accuracy compared to M_1, which represent a 

more robust prediction based on the remaining features. 
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Figure 6.5 Model stability test of ROC_AUC and accuracy for models M_1c, M_2c, and M_3c. 

 

6.2.3 Modelling performance 

The modelling classification and regression performances for all models were summarised in 

Table 6.2, and in Figure 6.6 and Figure 6.7. 

Table 6.2 Evaluation metrics results for classification and regression models 

 Metric M_1 M_2 M_3 M_12 M_13 M_23 M_123 

Cl
as

sif
ic

at
io

n 

ROC_AUC 
Val. 

Test 

0.91 ± 0.01 

0.84 ± 0.03 

0.81 ± 0.05 

0.77 ± 0.07 

0.78 ± 0.03 

0.75 ± 0.04 

0.95 ± 0.01 

0.94 ± 0.03 

0.89 ± 0.04 

0.85 ± 0.06 

0.93 ± 0.01 

0.89 ± 0.06 

0.93 ± 0.02 

0.91 ± 0.03 

Accuracy 
Val. 

Test 
0.83 ± 0.09 
0.81 ± 0.03 

0.68 ± 0.04 
0.66 ± 0.10 

0.71 ± 0.07 
0.68 ± 0.03 

0.87 ± 0.10 
0.83 ± 0.04 

0.91 ± 0.02 
0.90 ± 0.02 

0.82 ± 0.13 
0.78 ± 0.05 

0.87 ± 0.02 
0.88 ± 0.03 

Re
gr

es
sio

n 

MAE [%] 
Val. 

Test 

1.11 ± 0.33 

1.41 ± 0.23 

2.02 ± 0.23 

2.31 ± 0.43 

1.09 ± 0.29 

1.12 ± 0.23 

1.05 ± 0.81 

1.08 ± 0.32 

1.03 ± 0.12 

1.41 ± 0.29 

1.40 ± 0.12 

1.81 ± 0.46 

1.12 ± 0.13 

1.71 ± 0.11 

RMSE [%] 
Val. 

Test 

2.13 ± 0.01 

2.61 ± 0.03 

2.66 ± 0.01 

3.01 ± 0.02 

2.05 ± 0.01 

2.11 ± 0.03 

2.02 ± 0.01 

2.71 ± 0.33 

3.02 ± 0.01 

3.11 ± 0.12 

2.11 ± 0.02 

3.07 ± 0.05 

2.41 ± 0.12 

3.16 ± 0.08 

r 

spear 
corr. 

Val. 

Test 

0.62 

0.61 

0.46 

0.33 

0.65 

0.61 

0.66 

0.58 

0.53 

0.42 

0.58 

0.49 

0.68 

0.59 

Abbreviations. ROC_AUC, area under the receiver operating characteristic curve. MAE, mean absolute error. 
RMSE, root mean square error. 
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Figure 6.6 ROC plots and ROC_AUC values of the main models (M_1c, M_2c, and M_3), and the hybrid 
models (M_12c, M_13c, M_23c, M_123c) for validation (Fig. 6.a, Fig. 6.b) and training sub-datasets (Fig. 
6.c, Fig. 6.d). 

 

 

Figure 6.7 Regression results for the models M_1r, M_2r, M _3r, and M_13r with a 3% deviation (dotted 
green lines) from the ideal GPR distribution represented by the red line. 

6.3 Discussion 
This chapter investigated the suitability of MM, MUcp profiles, and CDI for GPR predictions 

implementing ML models. These three input features were used to explore new treatment-plan 
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information apart from the already studied dose distributions and reported complexity metrics 

[74,93,94,97]. Indeed, the MM and MUcp profiles can be considered high-dimensional 

modulation complexity features directly related to the treatment unit performance, which 

correlates to the dose deliverability [91,92,94]. Hence, it was intended to predict GPRs based on 

practical physical aspects of the treatment delivery, avoiding calculating limited complexity 

metrics from empirical equations. Furthermore, the CDI was evaluated as an additional predictor 

feature because the GPR values in this study were calculated from EPID measurements, and 

these dose images might contain information associated with demanding linac conditions 

[89,120,153]. In addition to the exploratory study, it evaluated and confirmed the potential 

benefit of including more than one treatment feature within the GPR prediction process (Figure 

6.6). Indeed, a GPR prediction model should consider all possible physical aspects involved in 

the treatment simultaneously, whether dosimetric or mechanic features, to achieve a more 

robust performance based on all variables that intervene in each treatment plan delivery. 

Considering the above, the goal of this study was not to propose the more efficient and complex 

CNN-based models but to (1) implement straightforward architecture models to evaluate the 

potential utility of MM, MUcp profiles, and CDI features in GPR predictions, (2) verify if 

concatenated models increase the GPR prediction performance, and (3) assess the quality of the 

learned features extracted by each model in GPR predictions. 

This study is the first reported evaluation of the MM, MUcp profiles, and CDI as potential GPR 

predictors using ML methods [2,3]. Previous works have implemented regression models based 

on modulation complexity metrics and dosimetric parameters, reporting mean prediction errors 

between 2.2% and 4.5% [88,89,104,152]. Similarly, MAE values between 0.74-4.2, RMSE= 1.54-

5.6, and r= 0.38-0.73 have been reported from models using: one VGG-16 adapted architecture 

model based on 2D IMRT fluencies [78]; one CNN-based hybrid model based on planar (sagittal) 

dose images, volumes data, and MU values [81]; one gradient-boosting model based on 

radiomic features, clinical parameters, and modulation complexity metrics [77]; and one support 

vector machine based on complexity metrics and plan parameters  [87]. Likewise, using similar 

input features, reported classification models presented ROC_AUC values between 0.7-0.88 

[77,138]. In contrast, this study’s MAE, RMSE, r, and ROC_AUC values presented comparable 

results for all models (Table 6.2), demonstrating the potential benefits of these features for GPRs 

prediction. Indeed, for model classification, the models designed in this study demonstrated 

outstanding performance with similar or higher ROC_AUC values than the reported studies. 

However, while many published models did not report the model performance with the 

validation tests [2,3], the results obtained in this study using the validation dataset are also 

comparable (ROC_AUC values of 0.84±0.01, 0.77±0.05, and 0.75±0.03 for M_1, M_2, and M_3 
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respectively). These results demonstrate the present models’ suitability since the validation 

results are one of the main approaches to verify the model generalization and the overfitting 

level; consequently, it is usual that these values are lower than those obtained by the training-

testing dataset. 

Following the already reported works [77,81] and the discussion regarding model evaluation, 

we also confirm the improving effects of concatenating models using more than one feature 

category, especially from the validation dataset point of view, combining MM and CDI for model 

M_13 having ROC_AUC value of 0.91 ± 0.02 (Figures 6, 7). However, the general improvement 

effects of concatenated models are still a field not completely explored and should be evaluated 

independently in each case because of the different origins and dimensions of the predictor 

features[82,154]. Furthermore, although the benefits of concatenating various multi-scale 

features have been reported, even in radiotherapy [28,31], concatenating too many features 

might compromise the model's performance and the training model[154]. However, using 

concatenated models and controlling the different types of inputs might represent a technical 

advantage in mitigating premature or suboptimal gradient optimization[81], plus the benefit of 

implementing additional treatment plan features that describe treatment plan parameters 

related to dose deliverability during the same control points. 

From the dataset conformation point of view, it is important to notice that the GPRs and 

modulation metrics ranges are susceptible to change between treatment units and anatomic 

regions [87,99,139]. Thus, the previously reported models trained with their respective datasets 

(having a heterogeneous number of anatomic regions, beam energies, treatment units, and 

unbalanced GPR values) might potentially experience low data generalization and overfitting 

events[151,155], heading suboptimal predictions. Therefore, it is deemed that our datasets 

were designed using treatment plans for one single pathology (prostate), planned for two 

different treatment units (46.6% TB and 53.4% Halcyon, Table 6.1) in accordance to Chapter 5, 

and ensuring that the passing and failing plans contribute equally to the dataset. Furthermore, 

with this dataset design and adopting the most straightforward CNN architectures, it was 

intended that the extracted features by the CNNs correspond mainly to specific treatment 

conditions and, in turn, be able to associate physical or mechanical aspects to the final prediction. 

Consequently, it was only explored horizontal flip for data augmentation. This rationale, from a 

practical point of view, might procure more robust models since the predicting process is highly 

focused on features with a real physical meaning and does not rely completely on random 

weighted feature extractions. Eventually (as it is described in Chapter 7), tools like activation 

maps [155] might be used to narrow specific treatment moments susceptible to contributing to 

a ‘fail’ or lower GPR prediction, or to assist onboard adaptative therapy strategies. Accordingly, 
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similar insights will be beneficial to develop ML solutions from a closer medical physics 

perspective, contemplating potential strategies to evaluate the model’s reliability and 

consistency of in-house or commercial models dedicated to dose deliverability predictions. In 

this study, it is proposed to evaluate the architecture model stability and the relevance of the 

‘learned’ (extracted) features in the prediction performance, increasing systematically drop-out 

rates after each CNN layer (Figure 5). With this method, it is implicitly estimated for each model 

(1) the proportion of the minimum active nodes (i.e., remaining features) to maintain 

comparable prediction performances, and subsequently, (2) the potential random features 

extracted by the model that not necessarily contributes to the prediction. 

The GPR evaluation is widely used as a deliverability metric and is one of the worldwide standard 

tests for specific treatment verification [4]. However, it has been thoroughly questioned because 

of its arguable sensitivity to reflect or discriminate plan errors with potential clinical 

implications[5]. Nevertheless, this study, rather than predicting just one metric, shows the 

promising opportunity to explore more treatment-associated parameters that can be part of an 

integral evaluation method of dose deliverability evaluation. It is considered that this evaluation 

does not have to be enclosed by one single metric; hence, ML-based models in this matter will 

have to explore how to include new treatment parameters to predict relevant features 

contributing to a multiple-factors analysis to decide if the deliverability of a specific plan is 

acceptable or not. Additionally, it is noted that ML-based applications within treatment 

verification protocols are not intended to replace the quality assurance evaluation. Instead, ML 

models are recommended as part of decision-making tools to ease the evaluation workflow and 

reduce the number of dose measurements from suboptimal plans, as it is discussed in Chapter 

7. 

This study was performed with limitations also identified in previously reported works. First, the 

dataset size is a fundamental factor related to ML model performance, especially for CNN-based 

models [79,81]. However, considering that our dataset size is similar to, or higher than, others 

reported, our principal aim was to explore the suitability of three treatment features, and our 

results were consistent, encouraging further investigations. Similarly, it is acknowledged that 

the extracted datasets were based on treatment plan information from one institution, and 

external verifications will be necessary to perform further validations. Finally, it is also 

acknowledged that further studies are necessary to explore and evaluate the effects of including 

the intrinsic uncertainty of the dose detectors, the dose calculation, and mainly the uncertainty 

from the model itself [1,51,83]. It might be considered that including different sources of 

uncertainty in ML algorithm design is an essential field to be explored, which might increase the 

model's robustness and reliability, mainly if it is intended to be implemented in practice. 
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In summary, this research was aimed to contribute to three main gaps within the ML models 

predicting dose deliverability using CNN-based models. First, the implementation of new 

treatment features, especially with potential traceable physical factors. Also, the use of multiple 

feature inputs to increase the prediction performance. And finally, to opening the discussion 

about how to develop and understand ML applications in radiotherapy that might help to design 

new strategies to evaluate dose deliverability. 

6.4 Conclusions 
The MP, MUcp profiles, and CDI are convenient features for dose deliverability predictive 

models implementing ML methods. Additionally, hybrid models including two or more input 

features are susceptible to improving the prediction performance compared to models with 

single features. Besides, decision-making strategies based on ML models might help to support 

new methodologies to evaluate dose deliverability within the patient-specific treatment 

verification protocols, as it is explored in Chapter 7. 
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 Decision Suppor applications 

 

Several contributions of ML models applied to patient-specific QA have been discussed 

previously (Chapter 5 and Chapter 6), highlighting their acceptable performance in predicting 

GPRs within 3% error (accuracy, MAE or RMSE) [2]. Among these reported models, Poisson 

regression [76], AdaBoost [89], and Random Forest [89] presented a 3% error, and DNN [156], 

CNN [81], and ANN [80] models reported up to 1.8%, 1.1%, and <1% errors, respectively. 

However, as mentioned before (Section 5.3), all the datasets used for model training were 

unbalanced in terms of GPR values, and they were created heterogeneously with plans from 

different anatomic regions treated with different energies and plan modalities (VMAT or IMRT). 

These factors are the leading causes of model overfitting and lack of model generalizability, 

which might lead to incorrect predictions due to the known dependence of modulation 

complexity [94], anatomic region [138], and beam energy [88] on GPRs. 

From the model interpretability point of view, the reported CNN-based models dedicated to GPR 

predictions [79,81] do not offer straightforward ways to retrieve or identify the features 

associated with the predictions [65,157], limiting the understanding and evaluation of the model 

quality because they were developed using dose distribution regions as predictors [2]. These 

inputs do not provide enough explanatory parameters for plan deliverability analysis; hence, DL 

models considering high dimensional treatment parameters are also needed to contemplate the 

utility of retrieving the activation maps pinpointing specific hardware or dosimetric aspects that 

might influence the dose deliverability in a particular treatment moment (i.e., control point, CP). 

In general terms, the activation map of one input image is generated by applying the model 

filters from one layer to the original input, identifying the regions or features considered to 

compute the resulting prediction. As it was defined initially by Bolei et al. [158], this activated 

filter map can be extracted using a global average pooling (GAP) layer or a global max pooling 

(GMP) layer method, which respectively, computes all the different input regions activated by 

the filters or calculates one single discriminative region maximizing all these activated regions. 

Besides the previously considered model’s performance aspects (Chapter 5), it is noticeable that 

their actual application in practice has been a poorly studied topic, generating some technical 

gaps about their relevance within a QA protocol in RT departments. Indeed, gaps regarding 

indicators of model reliability to implement these algorithms in practice are poorly defined. 

Accordingly, the reported reviews of ML contributions in patient-specific QA protocols for RT 

[2,157] only agreed on the need to establish precise ML support-decision tools based on trained 
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models with at least more extended datasets (according to Valdes et al. [88]) and dedicated-

anatomy conditions. In the same way, Kalet et al. [159,160] briefly mentioned the need to 

consider the data quality, adaptability, and limitations of each model applied in RT. Nevertheless, 

specific parameters to contemplate "before, during, and after" ML model implementations for 

virtual patient QA verification were not widely discussed. For these reasons, the designed 

models in Chapter 6 were considered to design a potential QA protocol dedicated to prostate 

treatment verification, extracting the activation maps of MM and MUcp profiles to retrieve and 

understand the main features or regions of interest considered by the models to perform their 

GPR prediction. The designed workflow using the activated features are considered to open a 

discussion about the utility of ML model applications and their stability in evaluating dose 

deliverability. 

Finally, it is paramount to mention that all previously reported ML models were trained with 

datasets having treatment information from plans created in independent institutions following 

their planning protocol and technology availability. Thus, the models’ capabilities to transfer the 

‘learned features’ to new scenarios have not been evaluated yet, which might be the final 

verification of the model’s utility. For this reason, the models developed in Chapter 6 were 

applied to predict GPR values to one dataset with plans designed and delivered in an external 

institution with similar dose prescription and technology conditions to those that were 

contemplated in the original training, testing, and validation datasets.  

This chapter gives the activation maps from models M_1, M_2, and M_3 from Chapter 6. Next, 

it is proposed a designed treatment verification QA workflow to assist the dose deliverability 

evaluation of RT prostate plans, including the virtual patient-specific treatment verification. In 

this workflow, the dose deliverability analysis will be supported by the activation maps of MM 

and MUcp profiles to identify potential error causes. Additionally, the models’ generalization is 

analysed using an external dataset and their respective activation maps. 

7.1 Methods 

7.1.1 Activation maps and workflow design 

The activation maps of six plans from the testing datasets used in Chapter 6 were generated 

using the GAP method to demonstrate the potential applicability of virtual plan verification 

identifying regions of interest linked to the predictions. Three cases were randomly selected 

from the correctly classified plans labelled as ‘Pass’, and three plans correctly labelled as ‘fail’. 

The regions were associated to plan conditions that might be considered to change in future re-

planning cases. Furthermore, one workflow for dose deliverability evaluation protocol was 

designed by incorporating a virtual patient-specific plan verification section, which might be able 
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to retrieve specific plan parameters or physical aspects associated with dose deliverability that 

could be included in new plans or re-planning scenarios. 

7.1.2 Model validation with external dataset 

To externally validate the models M_1, M_2, and M_3, and the hybrid models M_12, M_13, 

M_23, and M_123 (Chapter 6), the information from 32 anonymized prostate plans from an 

external institution 8  was extracted. The treatment plan conditions were the same as the 

TrueBeam parameters specified in Section 6.1,with the same detector model and calibration 

conditions. The prediction performance was evaluated with the same metrics used in Section 

6.1.5. Finally, the activation maps were generated for 5 external plans to verify the pertinence 

of the activated features. 

7.2 Results 

7.2.1 Activation maps and workflow design 

The activation maps from ‘failing’ plans (Plan_181, Plan_200, and Plan_197) are displayed in 

Figure 7.1, Figure 7.2, and Figure 7.3, respectively. Contrastingly, the activation maps from the 

‘passing’ plans (Plan_3, Plan_119, and Plan_2) are displayed in Figure 7.4, Figure 7.5, and Figure 

7.6, respectively. These figures show a distinctive and consistent difference for activation maps 

in MM. The failing plans presented specific activated leaf movement regions, which might be 

associated to challenging leaf trajectories (further studies and robust research implementing 

dosimetric tests are needed to confirm that these group of leaf movements are associated to 

lower dose deliverability conditions). On the contrary, In the case of passing plans, longer and 

narrow activated regions corresponding to static leaf trajectories were identified. Furthermore, 

for MUcp profiles and CDIs, the activation maps do not provide differentiated regions between 

passing and failing plans.  

 
 

8 Centro de Control de Cancer, Bogotá-Colombia 
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Figure 7.1 The activation maps of model M_1, M_2, and M_3 applied to features extracted from the 
‘failing’ plan Plan_181. (a) Activation map from model M_1 applied to the modulation map. (b) Leaf 
trajectories corresponding to the activated regions, highlighting in red the control points. (c) Activated 
regions, in red, from model M_2 applied to the respective MUcp profile. (d) Activation map from model 
M_3 applied to the CDI. 

 

 

Figure 7.2 The activation maps of model M_1, M_2, and M_3 applied to features extracted from the 
‘failing’ plan Plan_200. (a) Activation map from model M_1 applied to the modulation map. (b) Leaf 
trajectories corresponding to the activated regions, highlighting in red the control points. (c) Activated 
regions, in red, from model M_2 applied to the respective MUcp profile. (d) Activation map from model 
M_3 applied to the CDI. 
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Figure 7.3 The activation maps of model M_1, M_2, and M_3 applied to features extracted from the 
‘failing’ plan Plan_197. (a) Activation map from model M_1 applied to the modulation map. (b) Leaf 
trajectories corresponding to the activated regions, highlighting in red the control points. (c) Activated 
regions, in red, from model M_2 applied to the respective MUcp profile. (d) Activation map from model 
M_3 applied to the CDI. 

 

 

Figure 7.4 The activation maps of model M_1, M_2, and M_3 applied to features extracted from the 
‘passing’ plan Plan_3. (a) Activation map from model M_1 applied to the modulation map. (b) Leaf 
trajectories corresponding to the activated regions, highlighting in red the control points. (c) Activated 
regions, in red, from model M_2 applied to the respective MUcp profile. (d) Activation map from model 
M_3 applied to the CDI. 
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Figure 7.5 The activation maps of model M_1, M_2, and M_3 applied to features extracted from the 
‘passing’ plan Plan_119. (a) Activation map from model M_1 applied to the modulation map. (b) Leaf 
trajectories corresponding to the activated regions, highlighting in red the control points. (c) Activated 
regions, in red, from model M_2 applied to the respective MUcp profile. (d) Activation map from model 
M_3 applied to the CDI. 

 

Figure 7.6 The e activation maps of model M_1, M_2, and M_3 applied to features extracted from the 
‘passing’ plan Plan_2. (a) Activation map from model M_1 applied to the modulation map. (b) Leaf 
trajectories corresponding to the activated regions, highlighting in red the control points. (c) Activated 
regions, in red, from model M_2 applied to the respective MUcp profile. (d) Activation map from model 
M_3 applied to the CDI. 
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The workflow for treatment QA  was designed including a virtual patient-specific verification,  as 

it is displayed in Figure 7.7.  The present workflow, similar to standard adaptative RT workflows, 

is a more comprehensive way to use and evaluate ML tools predicting GPRs, since the model has 

to be robust enough to predict a GPR value and also retrieve potential causes that might explain 

the prediction. Besides, the information retrieved should be used to improve and reconsider 

change certain parameters of the actual or further treatment plans. The workflow will be  widely 

commented in Section 7.3.  

 

Figure 7.7 Workflow dedicated to patient-specific treatment verification including a section for virtual 
plan verification with the opportunity to retrieve specific plan parameters associated with the prediction.  

7.2.2 Model validation with external dataset 

The classification results for the modes’ prediction performance using an external dataset are 

summarised in Table 7.1. Additionally, the ROCs with their respective calculated AUC are 

displayed in Figure 7.8 for models M_1, M_2, and M_3, and in Figure 7.9 for the hybrid models. 

Table 7.1 Prediction performance of all models applied to the external dataset. 

 Metric M_1 M_2 M_3 M_12 M_13 M_23 M_123 

Cl
as

sif
ic

at
io

n  ROC_AUC 0.70 0.49 0.47 0.51 0.50 0.47 
 

0.57 

Accuracy 0.66 0.44 0.53 0.47 0.44 0.63 0.47 

Re
gr

es
sio

n 

MAE [%] 7.3 8.6 10.6 11.8 13.6 
 

17.6 
 

14.2 

RMSE [%] 7.5 9.2 13.4 13.6 
 

14.3 
 

18.3 
 

14.9 

r 

spear corr. 
0.5 0.2 0.1 0.2 0.1 0.1 0.4 

Abbreviations. ROC_AUC, area under the receiver operating characteristic curve. MAE, 
mean absolute error. RMSE, root mean square error. 
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Figure 7.8 ROC plot and ROC_AUC value of the model classification performance for models M_1, M_2, 
and M3, predicting the ‘passing’ or ‘failing’ dose deliverability evaluation based on one external dataset. 

 

 

Figure 7.9 ROC plot and ROC_AUC value of the model classification performance for hybrid models M_12, 
M_13, M_23, and M_123, predicting the ‘passing’ or ‘failing’ dose deliverability evaluation based on one 
external dataset. 
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Given the low performance of all models except M_1, the activation maps from this model 

applied to the external dataset are displayed in Figure 7.10 and Figure 7.11 for correctly 

predicted “failing” and “passing” plans, respectively. 

 

 

Figure 7.10 The activation maps of model M_1 applied to features extracted from the ‘failing’ plans (a) 
Plan_8 and (c) Plan_11. Leaf trajectories corresponding to the activated regions, highlighting in red the 
control points of interest for (b) Plan_8 and (d) Plan_11. 

 

 

Figure 7.11 The activation maps of model M_1 applied to features extracted from the ‘passing’ plans (a) 
Plan_19 and (c) Plan_29. Leaf trajectories corresponding to the activated regions, highlighting in red the 
control points of interest for (b) Plan_19and (d) Plan_29. 
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7.3 Discussion 
To support the implementation of one virtual patient-specific treatment verification protocol 

using ML tools, the designed models developed in Chapter 6 were implemented in this section 

opening the discussion about their potential applications, limitations, and additional required 

developments when it is included in a general treatment QA verification workflow. Furthermore, 

the same models were tested with an external dataset, evaluating the level of data 

generalization acquired with the original training dataset. For these reasons, this section will 

address the main issues regarding the quality of the dataset, the model interpretability, and the 

model stability. 

The proposed workflow in Figure 7.7 starts with the optimized treatment plan and dose 

calculation, which will be verified to determine if this ‘theoretical’ dose distribution agrees with 

the actual dose delivered by the treatment unit. However, since the dose verification procedure 

is time-consuming because of the detector/phantom setup and the irradiation/evaluation time, 

an ML model can be implemented to determine if a specific plan has a high probability of 

‘passing’ the evaluation criteria (e.g., gamma passing rate) and proceed to the dose 

measurements. Otherwise, if the plan prediction is ‘fail,’ it is recommended not to be irradiated 

and to analyse the potential causes. Nevertheless, there is no reported any direct way to 

establish the potential treatment causes of such ‘failing’ prediction [2,3], and this is one of the 

main issues that this research addresses, the interpretability of each prediction, which is 

necessary for medical physicists to understand and possibly correct error causes. Indeed, the 

previously reported models were trained with empirical functions based on the MLC movements 

or automatically extracted feature methods from dose fluencies[2], and these predictors do not 

ease the tracking or identification of real plan parameters involved in the prediction 

performance.  

Accordingly, it is essential to highlight the importance of the present study, using plan features 

that describe the treatment unit and the dosimetric performance (MM and MUcp profile). Thus, 

the activation maps can be considered as one essential tool to be included in a virtual verification 

protocol for two main aspects, (I) it might help to verify if the model is ‘learning’ meaningful 

features from plan parameters linked to physical aspects, and (II) it might help finding 

challenging treatment conditions in new plans and aid re-planning scenarios. The latter is the 

case of the failing plans from Figure 7.1, Figure 7.2, and Figure 7.3, where it was possible to 

retrieve the leaf positions (Figures 7.1a, 7.1b, 7.2a, 7.2b, 7.3a, 7.3b) potentially related to a 

demanding hardware performance and the MU output variations also associated with 

challenging gantry speed variations (MUcp profiles in Figures 7.1c, 7.2c, 7.3c). These parameters 
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can be verified with parallel and additional dosimetric and mechanical tests, setting tolerance 

limits in future designed treatments. Contrastingly, the activation maps from model M_3 

(Figures 7.1.d, 7.2.d, 7.3.d) have the same issue as the previously reported ML models in terms 

of interpretability, and it corresponds to the problematic applicability of these dose region 

features found by the model in a re-planning scenario or to set tolerance limits based on the 

mechanical performance tests. 

Despite the activation maps between failing and passing plans localized distinctive regions, 

mainly for MMs, further studies are needed to verify that these changes in MLC position 

represent demanding hardware scenarios that might compromise the dose deliverability, 

setting tolerance limits for MLC trajectories or configuring TPS tools associated to the MLC 

sequencing algorithms [31]. These critical features are the key to proposing a patient verification 

workflow with the possibility to reconsider treatment parameters and reduce the number of 

measurements from plans with unacceptable dose deliverability. However, these retrieved 

features might become obsolete with time if the hardware or plan conditions change since the 

new planning conditions might no longer represent the conditions that the training dataset 

represents. Consequently, it is necessary to ensure that the new evaluated plan conditions 

remain the same as those represented by the training dataset; otherwise, the physical aspects 

extracted from the model will not represent reliable predictors. Therefore, it is recommended 

to control at least the anatomic region, beam energy, TPS configuration (optimization and dose 

calculation algorithms), and hardware (model and performance) as the minimum constant 

planning parameters. 

From the clinical evaluation point of view, it is important to note that the GPR predictions 

implemented in this study, like the real GPR calculations, are just one metric associated with 

dose deliverability. Thus, additional tests should be performed to analyse the impact of a specific 

GPR value (predicted or calculated) on clinical endpoints or changes in the dose coverage or 

dose sparing. For this reason, it is essential to clarify that these ML models are intended to aid 

decision-support tools in deciding if it is necessary to recalculate or adjust plan parameters 

before one treatment is verified by dose measurements, and additional models are needed to 

predict/evaluate their clinical impact. Moreover, this is one of the main clarifications needed to 

be considered before implementing these models in practice. However, besides this limitation, 

the aggregated value of the present ML applications in this matter is the extraction and 

identification of potential problematic hardware parameters that compromise the dose 

deliverability. 
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Considering the results from the model evaluation using an external dataset, the model with 

better prediction performance was M_1 based on MM inputs, suggesting that the MLC 

modulation images given by the leaf trajectories might represent more transferable features; 

still, it needs to be explored in further applications. However, it is noticed that mechanical and 

dosimetric aspects, such as leaf speed or DLG (dosimetric leaf gap) variations, are needed to be 

considered following the minimum requirements to maintain homogeneous planning conditions 

to generate models capable of identifying actual physical parameters linked to appropriate dose 

deliverability conditions. On the other hand, the other models’ performance confirms the need 

to develop dedicated ML applications (predicting GPRs) trained with the datasets from each 

institution to learn and represent their own mechanical and dosimetric conditions. 

Consequently, further studies with more extensive datasets will be required to generate more 

transferable ML models while keeping the same physical considerations. 

7.4 Conclusions 
A reliable ML application incorporated within a plan verification QA workflow must retrieve and 

detect relevant physical aspects linked to dose deliverability to understand and control the 

pertinence of their predictions. Additionally, this information should be included in re-planning 

scenarios. 

ML models dedicated to GPR predictions are based on specific dosimetric and mechanical 

conditions; thus, designing transferable or general models to be applied in different institutions 

might require strictly controlled conditions to maintain their reliability and physical 

interpretability. 
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 Conclusions 

8.1 Conclusions 
The outstanding contribution of the present thesis is the better understanding of the minimum 

conditions required to propose and implement an ML tool to support virtual patient-specific 

plan verification protocols in RT. Considering the findings from all the studies followed to 

address the research questions, it is essential to highlight the relevance of the conclusions 

obtained chronologically.  

First, Chapter 3 opened the discussion about the predictors’ quality, how they are calculated, 

and which metrics represent physical aspects within the treatment plan. Although this section 

recorded the retrieved and calculated metrics, it also gives the proposed and verified new 

complexity metrics for Halcyon-v2, considering the potential leaf gaps that the MLC sequencer 

in the TPS generated during the MLC  movements. In this study, there are two main aspects of 

notice. First, the variations of hardware and planning optimization parameters influence the 

range of possible modulation complexity scores, even for similar clinical conditions. And 

secondly, the conventional modulation complexity scores do not provide exact information 

about the hardware planning parameters linked to a specific predicted GPR value. Therefore, 

although these complexity scores were dedicated to train ML models predicting GPR values with 

acceptable results, in this context, the predictors' quality is not optimal and might reduce the 

model interpretability due to the difficulty of retrieving specific treatment aspects related to the 

prediction. This analysis, and the consideration of the other predictor metrics and high-

dimensional features, promote the discussion regarding which predictor features might be more 

suitable to design a reliable model and how all these metrics are susceptible to change between 

different treatment conditions. In this section, and in accordance with the initial research aiming 

to predict GPR values, it was suggested that ML models should consider the nature of the 

predictors (which specific treatment unit parameters and clinical conditions represents) to 

understand better the physical meaning of the predictions. 

Consequently, in chapter 4, following the rationale of finding the physical sense of ML model 

predictions to generate reliable decision support tools in RT, a study was performed to 

demonstrate how heterogeneous datasets with no balanced representation of defined 

treatment plan conditions might present suboptimal performance, training models based on 

random feature associations rather than physical predictors related directly to dose 

deliverability. This study confirmed that models must be trained by predictor features 

corresponding to similar treatment conditions to obtain a more robust performance. However, 

in an indirect way and echoing those mentioned above, it was also noted that the most critical 
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numeric feature predictors based on modulation complexity scores do not retrieve specific 

physical conditions that are needed in the verification of potentially challenging treatment unit 

conditions, which opens the need to use high-dimensional features, as discussed in Chapter 5 

Chapter 6 demonstrates and confirms the suitability of high-dimensional features to predict 

GPRS, especially MM and MUcp profiles are convenient features that retrieve specific treatment 

plan parameters within a particular treatment time (specific control points) related to the final 

prediction performance. As well as confirming the benefits of hybrid models, this section 

promotes the discussion about accurate and more reliable ML models applied to predicting dose 

deliverability indicators, as discussed in Chapter 7. In this section, a practical application 

workflow of these models suggested the benefits of retrieving the treatment unit and plan 

parameters associated with challenging dose deliverability scenarios. Finally, the model 

verification with an external dataset confirms the technological and clinical configuration's 

dependence on the treatment plans and their impact on the model generalization. However, 

this study also found that the MM might be a predictor with potential transferable attributes to 

be explored in interinstitutional studies. 

This thesis using a prostate dataset demonstrates the suitability and potential advantages of 

virtual patient-specific treatment verification workflow, supported by the activation of detected 

physical aspects associated with dose deliverability. Summarizing this thesis' findings from a 

practical application point of view: ML methods trained with high-dimensional features 

(corresponding to similar treatment approaches) are more convenient to assist the dose 

deliverability evaluation of treatment plans because their application goes further than just 

predicting or classifying one GPR value. These applications are essential to open the discussion 

regarding the main physical causes related to dose deliverability predictions, which might 

represent a potential benefit in re-planning and adapting treatment plans, or in exploring 

mechanical-dosimetric tolerance limits to be considered in each institution. 

In a more detailed pathway to the routine use of these ML applications, it is necessary to note 

the need to establish the reference parameters of a specific pathology or treatment modality. 

Therefore, before creating the dataset to start a customized model training, it is necessary to 

retrieve and control any change in the TPS version for plan optimization or dose calculation, 

register any change or upgrade in the hardware parameters,  and manage any modifications in 

the portal dosimetry or radiation dose detector. Once this is controlled and model training is 

implemented, a constancy test must be incorporated into the whole QA process, determining if 

the model can still identify or determine the same plan parameters linked to the predicted GPR 
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value. In the same way, identifying any technical or planning process related to changes in the 

physical conditions used to train the model is mandatory to ensure the model's interpretability. 

 Figure 8.1 displays a detailed workflow with the main steps needed to implement an ML method 

that predicts GPR values in practice. First, deciding which treatment modality and protocol is an 

initial step to analyse the consistency of the irradiated volume. This step is essential to ensure 

the homogeneity of the physical parameters linked to the delivered treatments within the 

training dataset. Second, identify and set the inclusion criteria for those treatments in the 

training dataset. For instance, plans with prosthetic implants close to the target volume or 

having high-density changes might not contribute to the model generalization. Considering 

these previous steps, training and validating the model is the next task to test and evaluate the 

prediction power of the model. Once the model is evaluated, a pilot test must be implemented 

with specific plans, verifying its efficacy. After showing acceptable results, it is ready to be 

implemented in practice. Furthermore, it is necessary to constantly evaluate any change in the 

critical parameter of the planning process considered in the training dataset to assess the model 

obsolescence using customized constancy tests based on reference plans. 

 

Figure 8.1 Workflow for clinical implementation of ML applications in radiotherapy facilities predicting 
GPR values 

8.2 Future work 
The research developed in this thesis opens the discussion regarding reliable and interpretable 

ML applications in dose deliverability evaluation, assisting virtual patient-specific QA. Therefore, 

the future work to support the thesis hypothesis is to explore and implement additional high-

dimensional input features to keep a critical dose deliverability evaluation. A more 

comprehensive and integrated evaluation workflow should consider the ML model prediction of 

hardware position misalignments (e.g., gantry or MLC), the potential clinical differences 

predicted based on the dose-volume histogram variations, or dose deliverability changes by 
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anatomic deformations. Indeed, all these considerations might be highly beneficial for onboard 

plan verification workflows when automatic re-plan protocols are implemented. 
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Appendix 1  

Supplementary material 1.1 
Scatterplot of moderate correlated features and GPR:2%/1 mm 

  

 

  

Supplementary material 1.2 
Grid search optimization for each model using the reference dataset. 

 

Random Forest (RF) 

Grid search method (scoring= “roc_auc”) was performed in RF to find the best 

hyperparameters. The number of trees (n_estimators= 100) and the number of nodes 



II 

(max_deepth= 3) were calculated three times shuffling the dataset split. The roc curves (cv=5) 

for the model with their respective learning curve are displayed below. 

Different modifications of the number of trees and nodes were performed and measured. It 

was concluded that 100 and 3 were de best parameters. 

 

 

 

max_depth n_estimators Accuracy ROC_AUC_CV_5 Precision Recall F1 

3 100 0.73 0.79+-0.03 0.71 0.59 0.65 

 

 



III 

 

XG-Boost 

To achieve up to 95% maximum prediction accuracy, a simple XGBoost identified 72 features 

as the most important. The hyperparameters resulting from Grid search for XGBoost with all 

features were learning_rate=0.01, max_depth=2, n_estimators=170. 

 

 

 

 

 

max_depth n_estimators Learning 

Rate 

Accuracy ROC_AUC_CV_5 Precision Recall F1 

2 170 0.01 0.80 0.87+-0.08 0.78 0.84 0.81 

 



IV 

 

 

Neural Network 

A simple NN was trained to predict GPRs, changing the number of layers and nodes intuitively 

keeping the simplest architecture. Using all features the model performance with CV= 5 is 

shown below in terms of AUC and confusion matrix. 

Model: "sequential_157" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

layer_1 (Dense)              (None, 210)                12474      

_________________________________________________________________ 

layer_2 (Dense)              (None, 60)                2211       

_________________________________________________________________ 

layer_3 (Dense)              (None, 1)                 34         

================================================================= 

Total params: 14,719 

Trainable params: 14,719 

Non-trainable params: 0 

_________________________________________________________________ 

 

 



V 

 

 

 

Accuracy ROC_AUC_CV_5 Precision Recall F1 

0.72 0.81+-0.04 0.66 0.66 0.66 
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Supplementary Material 1.3 
Classification performance metrics for each heterogeneity 

Random Forest 

Heterogeneity Metric 
100% - 0% 80% - 20% 60% - 40% 40% - 60% 20% - 80% 0% - 100% 

mv sd mv sd mv sd mv sd mv sd mv sd 

Dose per 
fraction 

Sensitivity 0.75 0.04 0.70 0.16 0.84 0.03 0.55 0.05 0.74 0.03 0.84 0.02 

Specificity 0.75 0.01 0.73 0.03 0.79 0.06 0.78 0.00 0.67 0.04 0.58 0.04 

Precision 0.77 0.01 0.65 0.05 0.61 0.03 0.68 0.02 0.69 0.03 0.73 0.02 

F1 0.76 0.03 0.70 0.09 0.70 0.02 0.61 0.04 0.71 0.02 0.78 0.01 

AUC 0.82 0.04 0.70 0.03 0.62 0.12 0.71 0.11 0.77 0.09 0.88 0.07 

Number of 
arcs 

Sensitivity 0.80 0.01 0.72 0.01 0.78 0.01 0.68 0.01 0.71 0.03 0.72 0.07 

Specificity 0.81 0.03 0.81 0.01 0.63 0.01 0.67 0.01 0.75 0.03 0.80 0.02 

Precision 0.83 0.02 0.80 0.01 0.73 0.01 0.63 0.03 0.73 0.02 0.72 0.02 

F1 0.81 0.01 0.75 0.01 0.75 0.00 0.65 0.02 0.72 0.02 0.72 0.04 

AUC 0.88 0.06 0.81 0.07 0.80 0.04 0.75 0.13 0.79 0.08 0.86 0.07 

Treatment 
Unit 

Sensitivity 0.80 0.10 0.84 0.08 0.81 0.11 0.80 0.10 0.78 0.12 0.81 0.04 

Specificity 0.65 0.02 0.60 0.08 0.56 0.13 0.48 0.06 0.65 0.13 0.83 0.05 

Precision 0.75 0.07 0.74 0.05 0.71 0.02 0.71 0.08 0.67 0.10 0.81 0.09 

F1 0.77 0.09 0.78 0.06 0.75 0.04 0.75 0.08 0.69 0.08 0.81 0.06 

AUC 0.83 0.09 0.68 0.13 0.78 0.10 0.78 0.13 0.76 0.11 0.91 0.09 

Anatomic 
Region 

Sensitivity 0.77 0.04 0.67 0.09 0.61 0.11 0.44 0.03 0.46 0.10 0.48 0.06 

Specificity 0.65 0.06 0.66 0.04 0.62 0.19 0.83 0.11 0.87 0.05 0.93 0.05 

Precision 0.73 0.03 0.66 0.06 0.65 0.06 0.68 0.16 0.67 0.10 0.79 0.09 

F1 0.75 0.03 0.66 0.08 0.62 0.06 0.53 0.03 0.52 0.10 0.64 0.03 

AUC 0.84 0.13 0.78 0.07 0.73 0.11 0.72 0.06 0.78 0.11 0.82 0.05 

 

 



VII 

XG-Boost 

Heterogeneity Metric 
100% - 0% 80% - 20% 60% - 40% 40% - 60% 20% - 80% 0% - 100% 

mv sd mv sd mv sd mv sd mv sd mv sd 

Dose per 
fraction 

Sensitivity 0.69 0.02 0.72 0.09 0.80 0.04 0.56 0.06 0.73 0.03 0.84 0.02 

Specificity 0.64 0.06 0.65 0.08 0.44 0.10 0.71 0.06 0.67 0.16 0.58 0.04 

Precision 0.73 0.02 0.67 0.06 0.66 0.02 0.64 0.02 0.70 0.08 0.73 0.02 

F1 0.70 0.02 0.70 0.07 0.72 0.01 0.60 0.03 0.72 0.03 0.78 0.01 

AUC 0.87 0.09 0.75 0.1 0.66 0.1 0.70 0.05 0.78 0.09 0.89 0.07 

Number of 
arcs 

Sensitivity 0.82 0.02 0.71 0.04 0.77 0.02 0.56 0.07 0.61 0.13 0.75 0.15 

Specificity 0.75 0.10 0.84 0.05 0.66 0.03 0.70 0.01 0.68 0.04 0.89 0.06 

Precision 0.81 0.05 0.80 0.01 0.75 0.02 0.62 0.04 0.62 0.08 0.83 0.01 

F1 0.80 0.01 0.75 0.02 0.77 0.01 0.59 0.06 0.62 0.11 0.78 0.07 

AUC 0.85 0.07 0.81 0.04 0.80 0.07 0.69 0.05 0.77 0.12 0.87 0.09 

Treatment 
Unit 

Sensitivity 0.80 0.03 0.74 0.06 0.76 0.09 0.78 0.12 0.68 0.13 0.77 0.07 

Specificity 0.58 0.11 0.61 0.14 0.64 0.16 0.55 0.04 0.65 0.12 0.77 0.06 

Precision 0.70 0.07 0.74 0.04 0.75 0.09 0.72 0.10 0.65 0.11 0.75 0.08 

F1 0.75 0.04 0.73 0.05 0.75 0.08 0.75 0.11 0.66 0.12 0.76 0.07 

AUC 0.80 0.04 0.68 0.12 0.76 0.12 0.71 0.17 0.84 0.17 0.86 0.06 

Anatomic 
Region 

Sensitivity 0.81 0.02 0.65 0.11 0.60 0.05 0.46 0.14 0.63 0.24 0.65 0.10 

Specificity 0.63 0.10 0.68 0.02 0.67 0.08 0.78 0.12 0.73 0.18 0.91 0.02 

Precision 0.74 0.05 0.66 0.05 0.66 0.01 0.60 0.10 0.67 0.13 0.78 0.05 

F1 0.77 0.02 0.66 0.08 0.62 0.02 0.50 0.14 0.59 0.13 0.61 0.08 

AUC 0.84 0.09 0.78 0.07 0.67 0.1 0.75 0.04 0.76 0.18 0.88 0.08 

 

 

 

 



VIII 

Neural Network 

Heterogeneity Metric 
100% - 0% 80% - 20% 60% - 40% 40% - 60% 20% - 80% 0% - 100% 

mv sd mv sd mv sd mv sd mv sd mv sd 

Dose per 
fraction 

Sensitivity 0.93 0.06 0.91 0.03 0.91 0.06 0.80 0.05 0.78 0.11 0.92 0.01 

Specificity 0.90 0.02 0.92 0.04 0.87 0.06 0.86 0.10 0.91 0.04 0.89 0.06 

Precision 0.90 0.02 0.93 0.03 0.91 0.03 0.84 0.10 0.90 0.05 0.88 0.06 

F1 0.90 0.02 0.92 0.01 0.91 0.04 0.81 0.04 0.83 0.08 0.90 0.03 

AUC 0.94 0.03 0.89 0.04 0.87 0.03 0.88 0.05 0.93 0.02 0.92 0.03 

Number of 
arcs 

Sensitivity 0.87 0.07 0.80 0.08 0.88 0.01 0.90 0.06 0.90 0.05 0.94 0.06 

Specificity 0.80 0.03 0.84 0.05 0.67 0.04 0.68 0.01 0.70 0.04 0.84 0.02 

Precision 0.83 0.04 0.82 0.03 0.89 0.05 0.87 0.02 0.89 0.02 0.92 0.03 

F1 0.84 0.01 0.80 0.01 0.90 0.03 0.88 0.01 0.91 0.01 0.91 0.01 

AUC 0.90 0.05 0.84 0.01 0.90 0.02 0.83 0.11 0.88 0.04 0.96 0.04 

Treatment 
Unit 

Sensitivity 0.98 0.04 0.98 0.02 0.89 0.01 0.95 0.05 0.86 0.10 0.93 0.08 

Specificity 0.92 0.08 0.90 0.10 0.91 0.02 0.86 0.07 0.89 0.02 0.95 0.08 

Precision 0.94 0.06 0.92 0.07 0.93 0.02 0.91 0.06 0.88 0.01 0.96 0.07 

F1 0.96 0.02 0.95 0.05 0.90 0.01 0.92 0.04 0.87 0.07 0.95 0.05 

AUC 0.97 0.03 0.96 0.02 0.89 0.07 0.92 0.03 0.94 0.01 0.98 0.01 

Anatomic 
Region 

Sensitivity 0.90 0.10 0.92 0.01 0.88 0.05 0.91 0.04 0.83 0.13 0.93 0.07 

Specificity 0.79 0.07 0.87 0.05 0.93 0.06 0.92 0.07 0.91 0.04 0.98 0.03 

Precision 0.83 0.06 0.88 0.05 0.92 0.08 0.88 0.10 0.86 0.06 0.97 0.04 

F1 0.86 0.03 0.89 0.03 0.90 0.06 0.89 0.07 0.85 0.09 0.95 0.03 

AUC 0.94 0.04 0.90 0.02 0.90 0.05 0.93 0.03 0.95 0.04 0.95 0.04 

 

 

 

 



IX 

Appendix 2 

Supplementary Material 2.1 

 

Supplementary Figure 1: Distribution of GPR values from plans evaluated with 2%/1 mm 
criteria. 

 

Supplementary Table 1: Mean and standard deviation values (mv, sdv) of gamma passing rate (GPR) 
evaluation of 547 prostate treatment plans for Halcyon-v2 and TrueBeam, using different criteria values 
of dose difference (DD) and distance to agreement (DTA). 

DD [%]/DTA [mm] 
Halcyon TrueBeam 

mv sdv mv sdv 

3/3 100 0 99.6 0.3 

3/2 100 0 99.2 0.7 

2/3 100 0 99.0 0.8 

2/2 100 0 98.1 1.5 

2/1 98 1.6 97.4 2.2 

 

Supplementary Material 2.2 

Model_1 architecture summary 

Model: "model_1"  
_________________________________________________________________  
Layer (type)   Output Shape    Param # 
=================================================================  
input_2 (InputLayer)  [(None, 70, 177, 1)]   0 
_________________________________________________________________  
conv2d_2 (Conv2D)  (None, 70, 177, 64)   640 
_________________________________________________________________  
max_pooling2d_2  (MaxPooling2 (None, 35, 88, 64)  0 
_________________________________________________________________  
dropout_2 (Dropout)  (None, 35, 88, 64)   0 
_________________________________________________________________  



X 

conv2d_3 (Conv2D)  (None, 35, 88, 64)   36928 
_________________________________________________________________  
max_pooling2d_3  (MaxPooling2 (None, 17, 44, 64)  0 
_________________________________________________________________  
dropout_3 (Dropout)  (None, 17, 44, 64)   0 
_________________________________________________________________  
flatten_1 (Flatten)  (None, 47872)    0 
_________________________________________________________________  
dense_2 (Dense) (None, 90) 4308570 
_________________________________________________________________  
dense_3 (Dense) (None, 1) 91 
=================================================================  
Total params: 4,346,229  
Trainable params: 4,346,229  
Non-trainable params: 0 

 

Model_2 architecture summary 
Model: "model_2" 
_________________________________________________________________ 
Layer (type) Output Shape Param # 
================================================================= 
input_1 (InputLayer) [(None, 176, 1)] 0 
_________________________________________________________________ 
conv1d (Conv1D) (None, 176, 70) 420 
_________________________________________________________________ 
max_pooling1d (MaxPooling1D) (None, 58, 70) 0 
_________________________________________________________________ 
dropout (Dropout) (None, 58, 70) 0 
_________________________________________________________________ 
flatten (Flatten) (None, 4060) 0 
_________________________________________________________________ 
batch_normalization (BatchNo (None, 4060) 16240 
_________________________________________________________________ 
dense (Dense) (None, 90) 365490 
_________________________________________________________________ 
dense_1 (Dense) (None, 1) 91 
================================================================= 
Total params: 382,241  

Trainable params: 374,121  

Non-trainable params: 8,120 

 
 
 

 

Model_3 architecture summary 

Model: "model_3" 

_________________________________________________________________ 

Layer (type)                 Output Shape              Param #    

================================================================= 

input_10 (InputLayer)        [(None, 512, 512, 1)]     0          

_________________________________________________________________ 

conv2d_25 (Conv2D)           (None, 512, 512, 64)      1664       



XI 

_________________________________________________________________ 

max_pooling2d_27 (MaxPooling (None, 170, 170, 64)      0          

_________________________________________________________________ 

dropout_19 (Dropout)         (None, 170, 170, 64)      0          

_________________________________________________________________ 

conv2d_26 (Conv2D)           (None, 170, 170, 32)      18464      

_________________________________________________________________ 

max_pooling2d_28 (MaxPooling (None, 85, 85, 32)        0          

_________________________________________________________________ 

dropout_20 (Dropout)         (None, 85, 85, 32)        0          

_________________________________________________________________ 

conv2d_27 (Conv2D)           (None, 85, 85, 32)        9248       

_________________________________________________________________ 

max_pooling2d_29 (MaxPooling (None, 42, 42, 32)        0          

_________________________________________________________________ 

dropout_21 (Dropout)         (None, 42, 42, 32)        0          

_________________________________________________________________ 

flatten_8 (Flatten)          (None, 56448)             0          

_________________________________________________________________ 

dense_24 (Dense)             (None, 360)               20321640   

_________________________________________________________________ 

dense_25 (Dense)             (None, 90)                32490      

_________________________________________________________________ 

dense_26 (Dense)             (None, 1)                 91         

================================================================= 

Total params: 20,383,597 

Trainable params: 20,383,597 

Non-trainable params: 0 

 


