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Abstract 

Dastgāh are modal systems in traditional Persian music. Each Dastgāh consists of a 

group of melodies called Gushé, classified in twelve groups about a century ago (Farhat, 

1990). Prior to that time, musical pieces were transferred through oral tradition. The 

traditional music productions revolve around the existing Dastgāh, and Gushe pieces. In this 

thesis computational intelligence tools are employed in creating novel Dastgāh-like music.  

There are three types of creativity: combinational, exploratory, and transformational 

(Boden, 2000). In exploratory creativity, a conceptual space is navigated for discovering new 

forms. Sometimes the exploration results in transformational creativity. This is due to 

meaningful alterations happening on one or more of the governing dimensions of an item. In 

combinational creativity new links are established between items not previously connected. 

Boden stated that all these types of creativity can be implemented using artificial intelligence.  

Various tools, and techniques are employed, in the research reported in this thesis, for 

generating Dastgāh-like music. Evolutionary algorithms are responsible for navigating the 

space of sequences of musical motives. Aesthetical critics are employed for constraining the 

search space in exploratory (and hopefully transformational) type of creativity. Boltzmann 

machine models are applied for assimilating some of the mechanisms involved in 

combinational creativity. The creative processes involved are guided by aesthetical critics, 

some of which are derived from a traditional Persian music database. 

 In this project, Cellular Automata (CA) are the main pattern generators employed to 

produce raw creative materials. Various methodologies are suggested for extracting features 
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from CA progressions and mapping them to musical space, and input to audio synthesizers. 

The evaluation of the results of this thesis are assisted by publishing surveys which targeted 

both public and professional audiences. The generated audio samples are evaluated regarding 

their Dastgāh-likeness, and the level of creativity of the systems involved.  
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 Glossary of Terms 

Dastgāh is a modal system in traditional Persian music (During, 2011; Farhat, 1990; Zonis, 

1965). There are twelve principle groups of modes in Persian music, namely, Shur, 

Abou'atā, Bayāt-e-Tork, Afshāri, Dashti, Homāyoun, Bayāt-e-Esfahān, Segāh, 

Chāhārgāh, Māhour, Rāstpanjgāh, Navā (Farhat, 1990). The Dastgāh concept determines 

both the title for a group of individual pieces with their characteristic modal identity and 

the primary mode in each group.  

Radif of Persian Music is the repertoire of the ancient melodies in traditional Persian music. 

Radif consists of the different Dastgāhs. Radif was preserved throughout successive 

generations by being transfered through oral tradition and been memorized by heart. 

Therefore interpretations and varieties entered Radif and some melodies have possibly 

been lost. The Radifs collected and suggested by ‘Mirzā Abdollah Farāhāni ’ and ‘Mirzā 

Hossein-Qoli’ are the oldest and most famous Radifs in traditional Persian music (During, 

2011; Farhat, 1990; Zonis, 1965). The provision of the musical notation for all the pieces 

of Radif of ‘Mirzā Hossein-Qoli’ and ‘Mirzā Abdollah Farāhāni’ took place in 2001, and 

1970, respectively. One of the characteristics of Radif of Persian music is that most of the 

pieces do not necessarily follow a tempo; the duration specification of musical motives 

may vary during the performance depending on different factors. Some of these factors 

reflect the personal moods of the performer or the singer expressions along the 

performance, or the audience preferences. The implication derived from the discussion is 

that the quality of the performance of Radif differs in any single performance. 

http://en.wikipedia.org/wiki/Musical_mode
http://en.wikipedia.org/wiki/Persian_traditional_music
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Santur is a hammered dulcimer. A musical instrument originating in Persia whose invention 

is assigned to Fārābi the Persian scientist. Santur consists of a trapezoidal box, and the 

strings are stretched parallel on the upper surface of Santur. The strings are excited by 

means of two light hammers (mezrāb) held in three fingers of each hand (Sadie & Tyrrell, 

2001). There are different variations of Santur in Iran and other parts of the world. Nine 

and eleven bridged Santurs are very common versions of Santur in Iran. In a nine-bridged 

Santur, there are 27 notes present, and there are a group of four strings associated with 

each of the notes in Santur. In fact, the high number of strings and the resonations 

occurring in the body of the instrument causes special acoustical characteristics of the 

instrument. Santur, by changing its tuning, is capable of being played in different Persian 

musical systems (Arshi, 2012). 

Ostad is a title that is often given to the masters or professionals of Arts or Science. 

Gushé: Each Dastgāh consists of individual melodies called Gushé, which vary in length and 

importance. 

Bemol ‘ ’: This symbol is a musical notation, if placed near a musical note, the pitch of the 

note is flattened by a semitone. This symbol and the three consecutive symbols are used 

in Appendix E. 

Diese ‘#’: A symbol in musical notation that raises the pitch of the note by a semitone. 

Koron ‘ ’: This symbol and its counterpart ‘Sori’ are two Eastern musical symbols, which 

are used to change the tuning of the musical notes according to the characteristics of 

Persian music. ‘Koron’ symbol flattens the pitch of the note by a quartertone. 
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Sori ‘ ’: This Persian musical symbol raises the pitch of the note by a quartertone.  

Quarter tone: A musical terminology often applied in the Persian music or generally Eastern 

music which changes the tuning of the note by a quarter of an interval. In fact, the 

application of the quarter is erroneous, but it is an established terminology. The changing 

of the tuning performed by an amount approximating a quarter of a note.  

Semi tone: is half an interval, which is the smallest interval applied in Western music. This 

musical term is common in Persian music.  
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List of Abbreviations and Symbols 

BM Boltzmann Machine 

CA  Cellular Automata 

CRBM Conditional Restricted Boltzmann Machines 

DBM Deep Boltzmann Machine 

FN False Negative 

FP False Positive 

GA  Genetic Algorithm 

H-Creativity Historical Creativity 

-Inf Minus Infinity 
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MIDI Musical Instrument Digital Interface 
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SVM  Support Vector Machine 
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Chapter 1. Introduction 

1.1 The Persian Musical Dastgāh  

Dastgāh is a modal system in traditional Persian music (During, 2011; Farhat, 1990; 

Zonis, 1965). There are twelve principal groups of modes in Persian music. Each Dastgāh 

consists of individual pieces called Gushé. Performing in a Dastgāh begins with Darāmad 

which has the mode and melodic patterns of the Dastgāh itself (Farhat, 1990; Nettl, 1987). 

Then the modulation occurs; which can be a move from one Gushé to another or a change in 

the central tone, or Shāhed note, which may consist of an alteration in the tuning as well 

(Peyman Heydarian & Reiss, 2005).  

The current Dastgāh system is the result of centuries of evolution of Persian music 

conjoint with historical and cultural transmutations. However, there are still varieties of other 

possible musical systems and melodies waiting to emerge. Once modulated with Western 

music it can be considered as a potential source for cross-cultural interactions. Although 

Persian music has vast musical systems and intervals in comparison to its Western 

contemporary music counterpart, one of the problems encountered is the entrapment in the 

existing structures. This makes the composition more reliant on the emergence of great 

masters whom with their novel creativity and familiarity of the complexities of Persian music 

are able to take a step forward in this field and add new melodic pieces to different Dastgāh. 

Therefore, the variety of melodies and Gushé in a Dastgāh are limited to what was produced 

in the past. Perhaps another possible weakness could be the adherence to the current musical 

frameworks; the creation of a variety of musical systems giving a new essence to the current 

http://en.wikipedia.org/wiki/Musical_mode
http://en.wikipedia.org/wiki/Persian_traditional_music
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Persian music will enable both the composer and the audience to experience novel 

atmospheres.  

1.2 The Emergence of New Musical Instruments and New Musical Forms  

Archaeological discoveries, on primary musical instruments, suggest that the human’s 

natural tendency towards music has a long history. These primary musical instruments were 

usually made from elementary materials (for example, skin, bones and wood) (Rault, 2000). 

The first humans were affected by natural sounds such as thunderstorm, rain, water flow, 

sound of animals, etc. They were trying to use the power of sounds to express meanings and 

communicate. The invention of musical notes are more assigned to a random process, where 

the first people gained different effects by changing the physical factors in a sound producing 

media, for example by changing the length of an excited string (Khaleghi, 2013). The 

formation of musical octaves and tunings for many musical instruments continued through 

trial and error. Mathematicians, for example Pythagoras (Farhat, 1990), helped classify the 

mathematical proportions between notes and make the process more methodological. This 

innovation had great impact on the progression of what we have today as musical systems. 

The evolution process of musical instruments have also benefited from cultural 

transmutations. New forms of musical instruments were introduced to different countries and 

been customized to different cultures and tastes. For instance, Santur the hammered dulcimer 

is a famous Persian musical instrument. There are different versions of Santur around the 

world, for example the Kamboujfi from India, Yangqin from China, Butterfly from Britain, 

Macper from Austria, Santorini from Greece, Zither from United States (Sadie & Tyrrell, 

2001). Some of the musical instruments are described as evolutions of previous versions. For 
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example, the Piano follows the same string excitation mechanism as a hammered dulcimer 

and can be considered as a modern version of the traditional hammered dulcimer. Likewise, 

musical systems had undergone similar evolutionary processes and gradually became as 

inseparable parts of various cultural signatures. With the advent of new technologies, 

electrical musical instruments were introduced where acoustical effects were added to the 

compositions. Iranian music has benefitted from electronic music as well. Electronic music 

in Iran was pioneered by Alirezā Mashāyekhi (Cont & Gluck, 2008; Gluck, 2013). The 

contemporary Iranian music uses electroacoustic and sound designing in order to add 

electronic musical elements to the compositions. With the advent of computational and 

artificial intelligence tools, the search for new music, and musical forms, can be advanced at 

a greater pace with the possibility of truly novel forms emerging.  

Boden classifies creativity into two main groups according to the novelty of their 

origins. These are psychological and historical types of creativity (P-creativity and H-

creativity respectively). The P-creativity refers to the type of creativity that is new to the 

person who created it, no matter how many times it has happened before. The historical type 

of creativity refers to a type of creativity, which has never been manifested throughout 

history. For instance, undergraduate students implementing the Perceptron algorithm are 

performing P-creativity; they may come to new ideas and concepts, which were already 

discovered. However, a PhD student should come up with a new idea in their thesis, whether 

in methodology or in the nature of the produced knowledge, which is H-creative.  

Various musical genres have been revolutionized and continue to be developed; 

therefore, they can be categorized as H-creativity from many respects. However, once new 
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styles are introduced, the artists or authors are likely to explore the same creativity space. 

Maintaining the previous established musical concepts, makes the productions likely to be 

considered as P-creativity types. For instance what are considered as consonant and dissonant 

chords and the related rules for chord progressions remain the same throughout newly 

composed music. Similarly, composing Traditional Persian music is followed in one of the 

existing Dastgāh. The number of musical Gushe have not exceeded the ones collected by 

‘Mirzā Abdollah Farāhāni’ from old musical references about a century ago (Farhat, 1990). 

However, many of the Gushe have been forgotten or altered through history as well, in a way 

that only the names of those pieces are available from ancient Persian literatures (Khaleghi, 

2013). 

The Dastgāh concept embeds ancient spiritual messages and conceptual meanings. This 

introduces them as complex structures. Musical novices are often encouraged to stick to the 

available framework as a requirement for advancing to higher levels. Compositions of new 

pieces are often suspended until the mastery of the Dastgāh itself; at the time when the artist 

gains a deep perception of Dastgāh concept and Gushe meaning. The descriptions of the 

Dastgāh are often limited to words in ranges of emotional expressions together with limited 

general tonal characteristics of the melodies in a Dastgāh. Therefore, composition in Dastgāh 

music is often reliant on the emergence of great masters who intuitively understand the 

complexity of traditional Persian music. However, these compositions are still exploring 

musical forms within quite constrained musical spaces, while there are various other musical 

possibilities, beyond these constraints, that transcend these traditional forms. 

There is the controversy of how the computational creativity experiments in the area 
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of music art can generate quality music, particularly as they are in their early stages of 

development. This is particularly the case with Dastgāh where most current traditional 

musical pieces are regarded as masterpieces. The research in computational creativity is 

strongly interconnected to cognitive sciences and psychology. While there are so many 

unresolved questions in those areas, there is the hope that these types of experiments unveil 

some of the answers or at least lead to new approaches for making the underlying nature of 

creative processes more tangible. 

It should be emphasized that the creativity space for producing music is, to all intents, 

infinite. The aim is to find the proper means for exploring those spaces. The fact is that there 

are human composers, machines that can create and compose, and human composers who 

use machines to create. If it is accepted that the computer can produce the desired music, then 

there would be the debate upon whether the composing machines would supersede their 

human counterparts. 

The process of introducing novel musical systems with their related musical theory can 

be considered as historical type of creativity. Exploring the possibility of creating novel 

Persian Dastgāh musical systems by help of computational intelligence tools is one of the 

ultimate goals of this project. However, a question that comes into mind is how to produce a 

novel style of music, which can be associated with traditional Persian music. There is always 

the possibility that the search space gives new types of music, which does not belong to any 

specific genre, and are quite new in many respects. If the search space is constrained to 

specific compositional rules, there is the hope that the new type of music generated possesses 

the essential and key features of a desired musical style or class.  
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1.3 On Computational Creativity 

“What is creativity?” –This can be considered as an open-ended philosophical question. 

There are no boundaries for creativity, yet binding creativity in a framework for a definition 

is a necessary but difficult task. However, an artefact has some representative features which 

describe its qualities to some extent. These qualitative descriptions clarify the attributes an 

artefact should have to be considered as a piece of artwork. Amongst all descriptions, what 

is clear is that art and novelty are two inseparable concepts. Sometimes a black circle on a 

white canvas is defined as a masterpiece and is exhibited in art galleries (Black Circle by 

artist Kazimir Malevich is kept in State Russian Museum). The work of John Cage in his 

composition “four minutes and 33 seconds of silence” (Gutmann, 1999) unbounds framed 

viewpoints towards art and creativity with avant-garde music. In a silent musical performance 

he lets the energy from audience noise vibrate the strings of a grand piano. The interaction 

of audience noises and musical instruments made John Cage’s performance one-of-a-kind. 

There are criteria for defining creativity other than novelty, for example quality (Ritchie, 

2007). This discusses how the creation is a high-quality instance of its genre. Jon McCormack 

defines this attribute of creativity as being exhibitable (McCormack, 2007). 

Two different viewpoints exist about man-machine creativity. The machines that create 

art-like productions, and the machines which are autonomous in creating art (McCormack, 

2007). The aim of creating could be to satisfy an audience or could involve the exploration 

of general meaning of creativity, without contributing to human comprehension or 

appreciation.  

Boden (Boden, 2000) defined three types of creativity: combinational; exploratory; and 
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transformational. She stated that all creativity types can be modelled by artificial intelligence. 

Combinational creativity consists of populating pre-existing materials and linking them in an 

artistic manner for generating new ideas. Exploratory creativity includes navigating in a 

conceptual space with implicit constraining rules. This exploration can result in discovering 

new transformed styles which would not have existed before an alteration happening on one 

or more of their defining dimensions (transformational creativity).  

1.4 On Algorithmic Composition 

The use of algorithmic composition has been under investigation for many years with 

different motivations: mechanization of music production; exploration of the behaviour of 

the algorithms; mathematical models in generating the patterns; studying the cognitive 

behaviour of creation in human being (McCormack, 2007); and modelling biological patterns 

in nature in respect to music.  

Mechanisation of music generation were done for producing melody, rhythm, 

harmonization, and counterpoint or imitating a specific genre of music or composition style 

(Fernández & Vico, 2013). The level of automation varies from generating motifs for 

inspiration to more complex corpus composition tasks. Computer aided algorithmic 

composition is the term applied for assisting musicians in the composition process and 

providing them with new materials. Some available frameworks or languages for making 

musical software include Csound (Boulanger, 2000), MAX/MSP (Puckette, 2002; Zicarelli, 

2002), while some musical software include EMI (Cope, 1987, 1996), GenJam (Biles, 1994), 

and LBM (Turner, 2008; Woods, 2009)). Higher levels of composition automation target 

minimal or no interactions with human, Melomics corpus generation (Diaz-Jerez, 2011) is 
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an example of this kind. 

Methodologies in algorithmic composition can be categorized, based on the report from 

(Fernández & Vico, 2013), in four groups: knowledge based systems, machine learning, 

evolutionary algorithms, and computational intelligence (e.g. cellular automata). They have 

been widely used both for style imitation and creating novel music. There have been good 

progress with the research into genre imitation; successful applications include Strasheela 

(Anders, 2007). All of the aforementioned categories except the last one apply human 

knowledge in their application. However, cellular automata are able to generate novel 

material without utilising existing human domain knowledge. This potential for creativity 

makes them well suited for exploring new dimensions of music composition. Some of the 

possible future research directions for algorithmic composition includes hybrid methods 

(Fernández & Vico, 2013) that use cellular automata (CA) as their music generator. 

1.5 A Brief Overview of Liquid Brain Music System  

This subsection gives a brief overview on Liquid Brain Music (LBM) system (Turner, 

2008; Woods, 2009). The underlying LBM mechanism for audio generation has been 

established as the basis for this research. LBM is a Cellular Automata (CA) based audio 

software, which was first developed at the University of Hull. In LBM, patterns are extracted 

from CA progressions. These patterns are mapped to the musical space and are employed for 

populating the parameters of an audio synthesizer. As will be later discussed in chapter 3, 

CA are computational intelligence tools which can generate creative materials without using 

the human domain knowledge. The generative power of CA are established as the main 

source for obtaining a variety of patterns.  LBM system also provides the basic means for 
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interpreting the emerging patterns from CA progressions. The scope of this PhD thesis is 

refined by the constraint of investigating how the LBM system can be applied to the task of 

generating Persian Dastgāh-like music. Chapter 4 provides further details on LBM system 

and the developed version Liquid Persian Music (LPM). 

1.6 PhD Hypothesis and Research Objectives 

The research hypothesis explored in this PhD thesis is that it is possible to create 

Dastgāh-like music using appropriate computational intelligence methods. This gives rise to 

the following questions: 

• How to use computational intelligence methods to produce creative (audio) artefacts? 

• How to guide this process to produce Persian Dastgāh-like music? 

• How to assess our musical productions in terms of aesthetics? 

• Is there a measurement for the creativity of the generated materials? 

We hope that by applying the main concepts of LBM software and establishing advanced 

systems using computational intelligence tools we are able to create and experience new 

dimensions of music composition for generating Dastgāh-like music. The research will see 

the application of computational intelligence tools (such as cellular automata and Boltzmann 

machines) for generating creative material without using explicit human defined domain 

knowledge. On this account the main objectives explored in this thesis are: 

• Developing LBM to produce Dastgāh-like music. It should be emphasized that part 

of producing Dastgāh-like music is to use appropriate timbres compatible with 

Persian music. On this account, the LBM synthesizer should be updated to produce 
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the sounds of a Persian musical instrument.   

• Finding aesthetical criteria, which are in accordance with Dastgāh music. We hope to 

create Dastgāh-like music by the help of computational intelligence tools and by 

finding aesthetical criteria, which are in accordance with Dastgāh music. The 

aesthetics should be measurable in order to be employed in the music generation 

process.  

• Designing systems based on computational intelligence, which enable the navigation 

of creativity spectrum including combinational, exploratory and transformational 

types of creativity. Targeting these various types of creativity in algorithmic 

composition are hoped to be achieved by the application of various computational 

intelligence tools and techniques.  

• Investigating the application of evolutionary algorithms for creating Dastgāh-like 

music by the usage of appropriate fitness functions. This step can be considered as 

analogous to the exploration in a musical space for obtaining the desired aesthetical 

effects. This objectives embeds further investigations for determining an efficient 

search space traversal. Furthermore, competent designs for the genotypes, 

phenotypes, and fitness function should be taken into account.  

• Measuring the creativity of the designed systems. Evaluating the creativity of the 

systems should be followed through standard methodologies in the computational 

creativity area. Evaluating the generated audio materials would also give insights to 

the extent of the success of this project.  
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1.7 Thesis Roadmap 

This section presents a structural overview of the research presented in this thesis. The 

next two chapters deliver fundamental backgrounds and literature reviews underpinning this 

PhD thesis. The background materials are arranged in two different chapters according to the 

nature of the application of the presented tools and techniques. This would implicitly reduce 

the volume of the information delivered as background material in one chapter. Chapter 2 

starts with an overview on audio synthesis techniques which are used in LBM and LPM 

systems. Chapter 2 covers the musical information retrieval topics which are employed for 

extracting features from traditional Persian music and LPM sequences later in chapter 5. The 

fundamentals of support vector machine regression (SVMR) model is also presented in 

chapter 2. SVMR was employed as a fitness function for an evolutionary architecture which 

is presented in chapter 5.  Chapter 3 revolves around computational intelligence and machine 

learning tools used as creative or generative processes. This includes cellular automata as a 

computational intelligence tool, Genetic Algorithms (GA) for exploring the musical space, 

and Boltzmann machines as stochastic generative models. The discussion on CA are also 

motivated by the fact that LBM system is cellular automata based.  Chapter 4 is dedicated to 

describing the LBM software and the developed version, Liquid Persian Music (LPM), in 

further detail. In chapter 4, Cellular Automata are presented as the main core of creative 

behaviour for a novel algorithmic composition system (‘Liquid Persian Music’). Chapter 5 

and 6, experiment with the Boden’s three types of creativity (Boden, 2009) in the context of 

traditional Persian music. Chapter 5 portrays a model for performing a meaningful navigation 

in a conceptual musical space. Genetic algorithms are responsible for evolving LPM voices 

sequences which are considered as genotypes in the population. The GA search is guided by 
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comparing the individuals’ aesthetical characteristics with those of Persian music pieces. The 

model presented in chapter 5 is responsible for experimenting with exploratory and possibly 

transformational types of creativity. Chapter 6, benefits from various characteristics of 

Boltzmann machine families for implementing a simple audio generation model based on 

Boden’s  associative creativity notion. The feature extraction powers of Boltzmann machines 

introduce a novel approach for interpreting the patterns from CA progressions, as well.  In 

the seventh chapter, the results of human evaluation on the produced audio in the experiments 

in chapters 5, and 6 are presented. The criteria of the designed evaluations are in alignment 

with the objectives of the thesis. Chapter 8 is dedicated to a discussion on the conducted 

experiments in terms of computational creativity and the specified targets. Chapter 9 

concludes the thesis, and proposes further research directions. Extra detail relating to specific 

chapters is given in the various appendices. 
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Chapter 2. Background and Literature 

Review 

This Chapter revolves around overviews on some important and fundamental concepts 

and computational techniques. These are employed in approaching various agendas in 

different stages of the conducted research. There are three main sections in this chapter, 

namely, musical instrument sound synthesis, musical data mining, and some important 

machine learning concepts. This chapter starts with an elemental discussion on digital sound 

synthesis of musical instruments. Some of these techniques are employed to design and 

implement the core of the synthesizer model to be introduced in Chapter 4. The subsequent 

section brings up a review on musical data mining together with different sorts of features 

which can be extracted from audio for further processing. These features are later extracted 

from Persian music and machine compositions, and been post processed using the data 

cleaning techniques mentioned in this chapter. The Machine learning section covers brief 

reviews on support vector machine (SVM) and support vector regression (SVR) models 

which are employed as fitness function evaluators in the first experiment (chapter 5). Support 

vector machine models are subsequently trained to differentiate between the human 

compositions and those of the designed machine composer. The machine compositions are 

produced in an evolutionary environment using the scores given to them by applying support 

vector regression model. Chapter 3 considers further machine learning techniques where they 

are used as part of the creative process.  
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2.1  Musical Instrument Sound Synthesis 

There are various methodologies for synthesizing the sound of a musical instrument. 

Additive synthesis (Manning, 1985; Roads, 1978, 1988) model works based on the addition 

of a series of signals to produce the final waveform. Additive synthesis works as a 

fundamental part of other synthesis techniques. The oscillators in additive synthesis 

technique are parameterized to generate sinusoidal waves. All the generated sinusoidal waves 

are later added together to produce the final wave.  

Other sound synthesis methodologies includes the implementation of the physical 

model of the musical instrument (Essl, 2002). In this technique, all the physical components 

concerned with the sound production are simulated. These components include the excitation 

of the resonating part of the instrument and the instrument body amplification. The process 

can result in obtaining an assembly of sequenced digital filters known as digital waveguide 

models (Smith III, 2004). The design of the filters for the constituent parts of a digital 

waveguide model usually takes place by numerical calculation of a series of partial 

differential equations which describe the mathematical model of vibration phenomena 

(Bilbao, 2006; Gustaffson, Kreiss, & Oliger, 1995; Strikwerda, 1989). 

2.1.1 Musical Instruments Sound Synthesis based on the Physical Model  

The excitation of a musical instrument plays an important role in designing the 

characteristics of the produced tone (Fletcher & Rossing, 1991). Various classes of musical 

instruments whether in the groups of stringed, brass, wind, and percussion musical 

instruments family, follow their own sound production rules. The strings are considered to 

be the hearts (Bank, 2006) of the stringed musical instrument models. Some of the important 
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factors that determine the timbre of stringed musical instruments are the way the strings are 

excited, allowing the differentiation into groups of bowed, struck or plucked instruments. 

Other effective factors are the coupling between the strings and the instrument body, the way 

the strings are fastened to the instrument, the strings and wood materials, the instrument body 

patterns, and the various physical aspects that take place between the stringed instrument and 

the air itself as wave transfer medium. Modelling the musical instruments body are usually 

possible by measuring the impulse response of the body to a transient signal. A digital filter 

model would take the responsibility of modelling the musical instrument body (Karjalainen 

& Smith, 1996). 

 

Figure 2-1. Block diagram of a plucked string model.  

The delay line 𝒛−𝒍 is responsible for implementing the loop delay. 𝑭(𝒛) is used for 

simulating the fine-tuning of the model. The loop filter 𝑯𝒍(𝒛) implements the 

damping of the harmonics (Jaffe & Smith, 1983).  

Figure 2.1 shows the block diagram of a plucked string model. The general string 

synthesis model 𝑆(𝑧) consists of a delay line 𝑧−𝐿, a fractional delay filter 𝐹(𝑧), and a loop 

filter 𝐻𝑙(𝑧). The string length (𝐿) determines the fundamental frequency (𝑓0) of the excited 

string. By having (𝑓𝑠) as the sampling frequency, one can accomplish the delay line length 

(𝐿) according to the following equation: 

 𝐿 =  𝑓𝑠 𝑓0⁄  (1) 
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The value obtained for the delay line length may not be an integer value. Therefore 

another filter is usually introduced to model the fractional part of the string length and 

compensate for the non-integer part of the division presented in equation 1 (Erkut, Välimäki, 

& Karjalainen, 2000). Therefore, the delay line and the fractional delay filter both contribute 

to the value of the fundamental frequency of the produced tone. The loop filter guarantees 

the attenuation of the harmonics of the generated signal (Jaffe & Smith, 1983). The loop filter 

is generally implemented as a low pass filter. This low pass filter has a frequency dependent 

damping effect. The loop filter is designed in a way that different harmonics are attenuated 

with different rates.  

Synthesis tool kit (Cook & Scavone, 2008) is an open source application programming 

interface written in C++ which includes both low and high level signal processing classes. 

Synthesis tool kit provides implementations of the general string model. Various classes of 

stringed musical instruments implemented inside synthesis toolkit are based on the general 

string model. The parameterizations of the filters vary for different musical instrument cases. 

In addition, more filters may accompany the general string model for assimilating various 

physical effects happening with a musical instrument. 

2.2 Music Information Retrieval  

Music information retrieval is a broad branch of science which focuses on attaining 

information from musical data (Muller, 2015; Ogihara & Tzanetakis, 2012). Music 

information retrieval benefits from multi interdisciplinary research in musicology, music 

theory, digital signal processing, data mining, machine learning, and psychology (McKay, 

2010). This field of research is expanding rapidly with the advent of new technologies, 
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facilitating the process of extracting features from musical data. The assumption is that there 

are various aspects of music yet to be recognized as features, but once retrieved they can give 

insight to the process of music production itself. 

The information attained from musical data are employed in various applications 

including automatic music transcription (Klapuri & Davy, 2010) and archiving, obtaining 

musical notation from audio, audio mining (Lerch, 2012), automatic music composition, 

watermarking, genre/ artist classification (Tzanetakis & Cook, 2002), plagiarism detection, 

and associating musical features with moods.  

Many software tools and libraries have been designed so far for the purpose of music 

information retrieval. JMIR (McKay, 2010), MIR Toolbox (Lartillot & Toiviainen, 2007, 

2008), MIDI toolbox (Eerola & Toiviainen, 2004), Aubio, Essentia, BeatRoot (Dixon, 2007), 

and Praat (Boersma & Weenink, 1995), are some of the libraries and software used for 

analysing musical data. JMIR is a suite of open source software tools written in Java for its 

platform independence advantages. The components include ACE XML, jAudio, jSymbolic, 

jWebMiner, and jMusicMetaManager aimed to work in isolation or in combination with each 

other (McKay, 2010). MIR and MIDI toolboxes consist of set of functions implemented in 

Matlab (Matlab, 2016) for extracting features from audio and symbolic musical data 

respectively. 

2.2.1 Audio Feature Extraction  

In this subsection, some of the widely used techniques in audio feature extraction as 

used in this research are discussed. These include Signal segmentation, Frame Based 

Analysis, Fourier transform, Envelope detection method, Autocorrelation and Peak picking 
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algorithms. 

Signal segmentation: segmentation techniques divide the signal into smaller chunks, 

for studying their characteristics individually. The signal can be segmented to equal sized 

fragments or chunks with variable lengths after gaining some more information about the 

signal. For example, by first obtaining the overall envelope of the musical signal and locating 

the bursts of energy as note onsets, the signal can be segmented, with each subsequent piece 

containing of one note (Lartillot, 2013).  

Frame Based Analysis: Analysis of a signal on a frame by frame basis provides the 

chance of studying the changing behaviour of measured features during the signal 

progression (in time or frequency domain) (Lartillot, 2013). 

 

 Figure 2-2. An example of framed audio signal. 

 An example of framed audio signal with overlapping frames. The size of the 

frames are 8 seconds, and the audio file is about 220 seconds. 

This technique includes sliding a window over the original signal in an overlapping or 

non-overlapping manner determined by the hop size (as seen in Figure 2.2 for the case of 

overlapping frames). The hop size shows the overlapping between the windows. The length 

of the framing window is often taken as constant value in number of samples or seconds. 

Framing is often applied or accompanied by other signal processing techniques as well as 
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transforms. 

The Fast Fourier transform is the basis of many of the algorithms and toolboxes that 

were employed in this research for extracting features from Persian music database. Fourier 

transform decomposes a signal to its constituent sinusoids. Obtaining many of the features in 

a time domain is a complex task. The Fourier transform converts a signal from its time 

domain representation to frequency domain (Oppenheim & Schafer, 2013).  

Envelope detection methods: The envelope of a signal produces an external contour 

over a signal regardless of the related temporal details. The envelope curves provide the 

advantage of detecting some musical events such as note onsets, and duration. Hilbert method 

and down-sampling are two important approaches for obtaining the envelopes of a signal 

(Frerking, 1994; Marple, 1999; Tretter, 2008).  

Autocorrelation method provides a measurement of the amount of inner similarity of 

a signal with itself or with shifted versions of itself within specific number of samples 

(Broersen, 2006; Proakis & Manolakis, 2007). It is often applied for recognizing repeating 

patterns of events as well as periodicity, and tempo. Autocorrelation methods can also be 

used to estimate the pitch of a signal. 

Peak picking algorithms: Onset detection curves have an important role in measuring 

the periodicities present in musical signals. This gives clues for estimating the tempo in beat 

per minute units (Lartillot, 2013).  

2.2.2 Zipf’s Law  

Zipf’s law (Zipf, 1949), determines the scaling characteristics of many natural 
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phenomenon and is employed in physics, social sciences, and language processing. Zipf’s 

law states that the frequency of occurrence of an event is inversely proportional to its 

statistical rank. Zipf’s law is expressed by formulations such as 𝑍 ∝  𝑟−𝑎. Here 𝑍 stands for 

the frequency of occurrence of an event and 𝑟 is the statistical rank. The rank is to the power 

of 𝑎 in the given formulation. The power (𝑎) in the formulation characterizes the statistical 

nature of the phenomenon. The more the 𝑎 parameter approaches 1, the better the distribution 

approximates to the ideal Zipfian distribution. Another important statement for Zipf’s law is 

through 𝑃(𝑓) = 1 𝑓𝑛⁄  equation. 𝑃(𝑓) specifies the probability of occurrence of an event with 

rank 𝑓. Zipf’s ideal distribution is also known as pink noise when it has the value of 𝑛 = 1 

in the formulation. In cases of 𝑛=0 and 𝑛=2 the noises are called white, and brown noises 

respectively (Manaris, Romero, et al., 2005).  

In order to determine the Zipfian characteristics of a phenomenon, the occurred events 

within the scope of the studied phenomenon are recorded within a dataset. The elements in 

the database are then ranked in a descending order considering their importance or 

prevalence. The ranks and the frequency of occurrence of the events are then taken to a 

logarithmic scale and plotted against each other. A linear regression is applied to the resultant 

graph. The slope of the line determines how the distribution follows Zipf’s law. A slope of   

-1 indicates an ideal Zipfian distribution. The R-squared value associated with linear 

regression has a range between 0 and 1 and indicates whether the linear regression model fits 

well to the data. 

Zipf’s law has had applications in audio and music analysis and generation as well. 

Voss and Clarke (Voss & Clarke, 1978) first observed the existence of 1/f like distributions 
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in audio. They later developed an innovative algorithm for producing music which had 

spectral densities consisting of white, pink and brown noises. The outcomes suggested that 

the music produced based on pink noise had more desirable musical attributes and were more 

pleasing to hear due to their self-similarity characteristics. The white noises produced music 

seemed too random while the music generated considering the spectral density of brown 

noise was monotonous due to the high correlation between the musical events.  

Other more recent musical applications of Zipf’s law can be traced in (Lo & Lucas, 

2006; Manaris, Machado, Mccauley, Romero, & Krehbiel, 2005). In the musical domain, the 

Zipfian characteristics are expressed through a number of metrics. Various events like note 

numbers and durations occurring in a piece of music are enumerated and stored. The 

frequency of occurrence of the musical events are extracted and mapped in a log-log scale 

versus their rankings. The obtained slopes of the linear regression model would vary between 

−∞ to 0. The more the slope tends to minus infinity, the higher the levels of monotonicity 

identified within the audio. The experiments in (Manaris et al., 2011; Manaris, Romero, et 

al., 2005) demonstrate successful applications of Zipf’s metrics in music generation. Manaris  

et al. introduced two sets of simple and fractal Zipfian metrics that were captured from music. 

The simple metrics were obtained by calculating musical events such as pitch and chromatic 

tones separately and in relation to each other. The fractal Zipfian metrics were built on top 

of simple Zipfian metrics. Manaris et al. employed the acquired Zipfian metrics to train a 

neural network for classifying musical pieces based on the musical style and their composers. 

The success of this application was reported to exceed by ninety percent. In the context of 

Manaris et al. experiment, Zipf’s law was able to capture useful information from music as 
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well as being able to further specify the Zipfian characteristics of musical pieces. This 

research forms part of the reasoning why Zipfian metrics play an important role in this thesis 

for extracting aesthetical characteristics of Persian music and generating audio on that basis.  

Music is a subjective matter and there might not be universals in measuring the 

aesthetics of musical pieces. However, there is still the need to investigate aesthetical criteria 

applicable to the research at hand. Being measurable is one of the important specifications 

that the aesthetical criteria should have. Measuring the aesthetics should happen in an 

automatic way without human intervention. These qualities help in embedding the aesthetical 

evaluation as a part of the audio generative process. To this date the author have not found 

any aesthetical criteria other than Zipfian metrics which has these qualities. Zipfian metrics 

are measurable for Persian music pieces and for Liquid Persian music audio sequences. Some 

of the other potential aesthetical criteria refer to consonance and dissonance of the audio 

samples. These qualities may be determined by cultural preferences or through 

psychoacoustical tests. The consonance and dissonance of the audio samples are measurable 

and can be quite helpful while working with the ADSR envelopes or harmonizing the musical 

notes. However, in this thesis the attention was towards generating audio with desirable 

melody rather than harmony or ADSR envelopes in the first place. Zipfian metrics have been 

found suitable option for the task at hand.  It is worthwhile mentioning that there are some 

ongoing PhD researches for identifying aesthetics in Eastern music which might be useful 

for future investigations.  

2.2.3 Data Cleaning and Attribute Selection 

Data mining (Kononenko & Kukar, 2007) consists of processing data through several 
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phases for extracting information and discovering knowledge from potentially large scale 

and complex databases. The extracted information can be in the form of patterns, structures, 

or behaviours which are not explicitly represented in the raw database.  

Data cleaning is an important pre-processing stage which is performed on raw data 

prior to any other data mining tasks (Han, Kamber, & Pei, 2011). Purifying the database from 

inconsistent data has benefits. It not only saves subsequent processing times and refrains 

from over-fitting problems by identifying outliers; it also increases confidence in the 

subsequent data mining processes. The quality of the data base (Rahm & Do, 2000) can be 

increased by removing redundant, and invalid data and handling noisy, or missing and 

unknown attributes or records (Han et al., 2011). The reduction process should not affect the 

integrity of the information (for example loss of information).  

The attribute selection methods represented in this section are going to be employed in 

chapter five for selecting useful and relevant attributes out of the Zipfian metrics databases 

for Persian music, and the ones related to our system’s output. Four attribute selection 

methods are going to be employed: ReliefF, Information Gain, Gain Ratio, Symmetrical 

Uncertainty. These methods are briefly overviewed here.  

ReliefF (Kira & Rendell, 1992; Kononenko, Šimec, & Robnik-Šikonja, 1997) is an 

attribute selection method which works based on obtaining a worthiness measurement for an 

attribute. A weight is assigned to each of the features based on their capabilities in 

discriminating between the classes. The associated weights are obtained based on the 

calculation of probability values: the probabilities of the items of each of the classes having 

the same value for a feature are calculated. Likewise, the probabilities of the samples from 
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the different classes having the different values for an attribute are computed. The higher the 

weights related to each of the features, the more chances the attribute will have for survival 

in the attribute selection process. 

Information gain, gain ratio (Karegowda, Manjunath, & Jayaram, 2010; Novaković, 

Strbac, & Bulatović, 2011) and symmetrical uncertainty are examples of attribute selection 

techniques which are based on the concept of entropy. Entropy is a measure used in 

information theory and contributes to the unpredictability of a system. The information gain 

related to a feature in the dataset attains a measurement in the reduction of the entropy of the 

class. The information gained about attribute 𝐴 by observing attribute 𝐵 is the decrease in 

the entropy of 𝐴. In other words, the information gain determine to what extent the 

knowledge gained about an attribute 𝐵 can predict attribute 𝐴 or whether the two attributes 

are completely uncorrelated. The information gain measure is symmetrical for attributes 𝐴, 

and 𝐵 (Novaković et al., 2011). The bias about information gain method is its tendency 

towards selecting attributes with large number of values (Karegowda et al., 2010; Novaković 

et al., 2011). The gain ratio, and symmetrical uncertainty feature selection methods are 

extensions of information gain method. They aim to resolve the bias associated to 

information gain method by performing a normalization procedure.  

CfsSubsetEval (Correlation-based Feature Subset Selection) (Hall, 1999) is a feature 

selection method in Weka software (Hall et al., 2009) which is also employed in chapter five 

as an attribute selection option. CfsSubsetEval evaluates the worthiness of a subset of 

attributes. The predictive power of each of the features are calculated. The correlation of each 

of the attributes and the classes are calculated together with the inter correlation of the 
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attributes. The chosen subset is the one which has attributes with maximum correlation with 

the classes and minimum inter correlation.  

2.3 Machine Learning 

Machine learning is a field in computer science where the goal is to produce learning 

algorithms capable of generalizing to new data after being trained on existing data. The 

trained models can be utilized for decision making and prediction applications. Machine 

learning methods follow learning processes which fall into broad categories of supervised 

and unsupervised learning.  

Bayesian classifier, rule-based classifiers, and decision tree induction (Kononenko & 

Kukar, 2013) are some of the machine learning models which are used in chapter 5 (table 

5-5) for comparing their performance as classifiers. Naïve Bayes classifiers are probabilistic 

models which use Bayes theorem. Naïve Bayes classifier treats each of the attributes in the 

feature vectors independently. A probability is achieved for each of the attributes which 

shows the independent contribution of the feature for determining the classes. Decision tables 

are predictive machine learning tools. Decision tables predicts the target classes of the items 

by following a set of branches related to the features of the items. J48 is a Weka (Hall et al., 

2009) implementation of the C4.5 algorithm (Quinlan, 1993) which is widely used for 

generating decision trees. Rule-based classification utilizes a collection of logical rules (IF-

THEN-ELSE) to determine the target classes. Detail on support vector regression, and 

Boltzmann machines is supplied later in this and the next chapter. 
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2.3.1 Confusion Matrix 

A confusion matrix (Witten, Frank, & Hall, 2011) allows the portrayal of the 

performance of a classifying algorithm and is widely utilized in machine learning 

applications (Powers, 2007; Tom Fawcett, 2006). The confusion matrix (Witten et al., 2011) 

clarifies how a classifying algorithm positions the data with regard to the class labels. The 

confusion matrix table is built upon true positive, true negative, false positive and false 

negative terminologies as shown in table 2-1. 

Table 2-1. Confusion Matrix. 

 Predicted : True Predicted : False 

Actual : True True Positive False Negative 

Actual : False False Positive True Negative 
 

True positive (hits) specifies the number of instances the classifier predicted to be true 

and they are actually true. The true negative items determine the number of instances the 

classifier expects to be false and it correctly classified them. The false positive individuals 

are those which are expected to be false but they are mislabelled as true items. The False 

negative (misses) determines the number of items predicted as false but are actually true. 

Overall true positive and true negative instances show the number of items being correctly 

classified (Witten et al., 2011).  

Table 2-2 depicts some of the terminologies derived from confusion metrics and their 

implications (Witten et al., 2011). Accuracy alone does not necessarily show a good 

performance of the classifier. One should take the other measurements (for example, 

sensitivity, and specificity) into account to see how the classifier performs in predicting the 

individuals in the pre-specified categories. These metrics are used in the experiment 

described in Chapters 4 and 5. 
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Table 2-2. Some terminologies and concepts inferred from confusion matrix which are used in this 

thesis. 

Terminology Concept Formula 
Formula 

Number 

Accuracy 

Identifies the proportion of 

successfully classified items over 

the total number of instances. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2) 

Sensitivity 

Shows the rate of correctly 

classified items over the total 

expected true items. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

Specificity  

Shows the rate of the correctly 

excluded non-true items over total 

actual false items. 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (4) 

Negative Predictive 

Value (NPV) 

Shows the rate of true negative 

results over all the items predicted 

as false. 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (5) 

Positive Predictive 

Value (PPV) 

Shows the proportion of true 

positive outcomes over all the 

items classified as true. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

 

2.3.2 Support Vector Machines  

Support Vector Machines (SVM) are popular machine learning tools which are used 

widely for both classification and regression applications (Vapnik, 1995). Support vector 

machines have high performance in solving classification and regression problems with small 

numbers of data points, while effectively avoiding high number of dimensions present in the 

database (Yin, Wu, Luo, & Gao, 2015). One of the advantages of SVM over some other 

machine learning tools is that they are trainable using a small number of training samples. 

SVM can be employed for both linear and nonlinear classification problems. Kernel functions 

are an important property of support vector machines, employed for data which are 

nonlinearly separable. The kernel functions are designed to project the data samples to a 

higher dimensional space, where they can be linearly differentiated.  
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2.3.2.1 Support Vector Regression Model 

Support vector machines can be used for regression applications as well as 

classification. A support vector machine which performs regression tasks is called a Support 

Vector Regression (SVR) model. In this subsection, some major theoretical concepts for 

solving the optimization problem for the case of SVR are discussed which are adapted from 

various sources (Burges, 1998; Cristianini & Shawe-Taylor, 2000; Smola & Schölkopf, 

2004; Steinwart & Christmann, 2008; Theodoridis, 2009; Vapnik, 1998). Support vector 

regression model maintain the same principles as support vector machines with slight 

differences. In traditional linear regression, the problem is to map a linear function 𝑓(𝑥) =

 𝑤𝑇𝑋 + 𝑏 to the data samples in least squares sense as: 

 𝑚𝑖𝑛∑( 𝑦𝑛 −𝑤
𝑇𝑋𝑛 − 𝑏)

2

𝑁

𝑛=1

 (7) 

This is only valid where a linear function can be well mapped to the data. If data are 

not linearly distributed, they can be transformed to a higher dimensional space, where a linear 

function can be mapped to them. Since the training samples are not necessarily placed on the 

regression line, the concept of margins are introduced to the problem (Wang & Gao, 2012). 

The bigger the margin, the higher the generalization capability of the trained support vector 

model to the new data.  

In SVR a small boundary with the distance of 𝜀 from the separating hyperplane is 

assumed. All the points inside this boundary are ignored as having any contributions for 

determining the separating hyperplane. A function of this type is called an 𝜀-intensive loss 

function. 
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Figure 2-3 A schematic example of the support vector regression model mechanism.  

Figure 2-3 illustrates an 𝜀 boundary condition for the case of regression. The solid blue 

line represents the optimal hyperplane surrounded by an 𝜀 tube. The solid blue line works as 

a regression line which has a deviation allowance of 𝜀. The data samples outside of the tube 

are penalized proportionate to their distance from the marginal line. 𝜉𝑖 and ξ𝑖
∗ are slack 

variables which are the orthogonal distances of training points from the 𝜀 boundary. Slack 

variables determine the deviation of the training samples from the 𝜀 boundary. 𝜀-intensive 

loss function for SVR model denotes zero loss for data points inside the 𝜀 tube. The slack 

variables are zero inside the tube. The SVR problem can be solved through a constrained 

optimization problem in its primal form formulated as:  

 𝑃𝑟𝑖𝑚𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚:

{
 
 

 
 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 

1

2
‖𝑤‖

2
+  𝐶∑(𝜉𝑛 + 𝜉𝑛

∗)

𝑁

𝑛=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: {
 𝑦𝑛 −𝑤

𝑇𝑋𝑛 − 𝑏 ≤ 𝜀 + 𝜉𝑛 

𝑤𝑇𝑋𝑛  −  𝑦𝑛 + 𝑏 ≤ 𝜀 + 𝜉𝑛
∗

 (8) 

Slack variables ξn, ξ𝑛
∗ > 0 are introduced to the optimization problem to handle the 

cases where the 𝜀 precision assumption is neglected. 𝐶>0 is the trade-off between putting the 
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focus on minimizing ‖𝑤‖ or tolerating the deviations bigger than 𝜀. The primal problem is 

converted to a dual optimization problem by the use of Lagrange function. The solution to 

the optimization problem has a saddle (minimax) point. By taking the partial derivatives of 

the parameters and equalling them to zero on the saddle point, a basis is achieved which helps 

finding the optimal 𝑤𝑇 , 𝑏. 

2.4 Previous Experiments of Music Information Retrieval and classification of 

Persian Music 

Some of the previous musical information retrieval experiments for the case of Persian 

music can be found in (Abdoli, 2011; Dārābi, Azimi, & Nojumi, 2006; Peyman; Heydarian 

& Reiss, 2005; Peyman Heydarian & Reiss, 2007; Heydarian, 2016; Lāyegh, Haghipour, & 

Sarem, 2013). In (Peyman; Heydarian & Reiss, 2005) the pitch frequencies for an 11-bridged 

Santur were obtained. In (Peyman Heydarian & Reiss, 2007) the Empirical Mode 

Decomposition technique was used to extract features from long-term rhythmic structures. 

In the suggested approach, the signal can be decomposed to a collection of oscillations which 

can be later applied for further feature extraction applications.  

In (Dārābi et al., 2006) Darabi and his colleagues, performed an experiment for 

recognition of Dastgāh Persian music with detecting skeletal melodic models. They used 

statistical measures on the Fast Fourier Transform spectrum of music pieces to obtain the 

prevalent mode and Shāhed tones of the pieces.  

Abdoli in (Abdoli, 2011) suggested a model for classifying Iranian traditional musical 

Dastgāh based on Fuzzy logic. The Fuzzy logic was responsible for modelling the uncertainty 

of tuning the scale steps of each Dastgāh. He used scale steps for each of the Dastgāhs which 
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were later weighted using fuzzy similarity and distance measures. His dataset consisted of 

210 tracks from different Dastgāh vocal pieces.  

Layegh in (Lāyegh et al., 2013) performed a classification of the Radif of Mîrzā 

Abdollāh Farāhāni using support vector machines. The used database consisted of 1250 

samples played using Tar or Sitar instruments. The extracted features mainly included 

frequency domain attributes such as: pitch; mean and standard deviation of spectral centroid; 

inharmonicity; and Mel frequency Cepstral coefficients. 

In (Heydarian, 2016) Heydarian provided a recorded database using different musical 

instruments (most of the samples were played on a Santur; either 11 bridged or 12 bridged). 

He used Gaussian Mixture models to estimate the modes of different Dastgāh musical pieces. 

The features included were spectrograms, chromagrams, and pitch histograms as popular 

attributes for mode recognition. He suggested some parameterization for the classification of 

Persian music intervals, which gave better performance.  

In (Beigzadeh & Koochesfahani, 2016) they employed a multi-layer perceptron for 

classifying Dastgāh music played with different musical instruments including Ney (similar 

to Flute), Violin, as well as vocal Dastgāh pieces. The extracted features included the top 

twenty peaks from the frequency spectrum of each of the musical pieces. Some older 

experiments of classifying Dastgāh music using neural networks can be found in 

(Hajimolāhoseini, Amirfattāhi, & Zekri, 2012; Mahmoodan & Banooshi, 2012). 

As have been discussed in this section, the previous experiments for the case of Persian 

music focus on feature extraction and classification of Persian music. The previous research 

does not consist of algorithmic music generation studies. In this thesis, there will be an in-
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depth study on the possibility of creating Persian Dastgāh-like music using computational 

intelligence tools. This makes the work in the thesis a novel contribution.   

2.5 Chapter Summary 

In this chapter, the technical fundamentals which are used for the modelling and 

implementations in the thesis have been introduced. The current chapter consists of three 

main bodies: musical instrument sound synthesis, music data mining, and a section dedicated 

to some machine learning tools. The signal processing techniques are employed for 

synthesizing the sound of a musical instrument in the context of Liquid Persian Music 

software. The music data mining approaches are applied for extracting features from the 

Persian musical pieces. These features are later employed for training a support vector 

regression model. The SVR model is applied as the fitness function in evolving the sequences 

of voices of the Liquid Persian music audio generator as discussed in chapter 4. 

In the next chapter an overview of creativity and algorithmic music composition is 

given, covering cellular automata, genetic algorithm fundamentals and their applications in 

computer music. This also includes the background on Boltzmann machine families to be 

employed as stochastic tools for generating audio and extracting features from Persian music 

and cellular automata progressions. 
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Chapter 3. Creativity and Algorithmic 

Composition 

The first part of this chapter studies Cellular automata (CA) as a computational 

intelligence tool in musical applications. The most important properties of one-dimensional 

CA rule space and the basins of attraction concept are discussed. CA can generate creative 

patterns. This vast possibility allows CA to be considered as a source for generative 

behaviours in different areas of computational creativity and computer music. CA are the 

main core of pattern generation in the proposed compositional machine in this thesis. The 

second part of this chapter revolves around genetic algorithms (GA) as a member of the 

family of evolutionary algorithms. They have important applications in algorithmic 

composition, since they can be applied as a navigational tool to explore musical space.  

The remainder of the chapter describes Boltzmann Machine families and their usage in 

generating musical artefacts as deployed for the experiments in chapter 6. Boltzmann 

machines as a type of associative memories are described. Restricted Boltzmann Machines 

(RBM), Deep Boltzmann Machines (DBM), Conditional Restricted Boltzmann Machines 

(CRBM), and Multimodal Deep Boltzmann Machines (Multimodal DBM) are the models 

which are employed in this thesis. Each of them has their specific benefits in the musical 

application in chapter 6.  

3.1 Creativity and Synthetic Music  

Creativity can be considered as a universal principle. In this work, we are talking about 
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more specific types of creativity. As has been mentioned in chapter 1, three types of creativity 

have been identified: combinational, exploratory, and transformational. In combinational 

creativity new links are discovered and established between elements which are not directly 

related to each other. In exploratory creativity, a conceptual space is navigated in the hope 

for finding forms within the predefined constraints. Transformational creativity alters one or 

more of the governing dimensions of the forms yet to be created. Transformational creativity 

can happen during the navigation in the conceptual space. 

In algorithmic composition, these types of creativity are hoped to manifest themselves 

through the application of various tools and techniques. Some of the tools establish human 

domain knowledge in music as a guideline for generating musical material. This knowledge, 

such as music theory, are often embedded in the algorithmic composition system. In another 

perspective the music information are retrieved from musical pieces databases and applied 

with various techniques to the system. There are also computational intelligence tools which 

are capable of generating creative materials without the contribution of human domain 

knowledge. One of the targets of algorithmic composition system is generating music within 

the pre-specified musical styles, or achieving styles and musical pieces which has not been 

encountered throughout history. 

Combinational creativity is a type of creativity which is very difficult for an algorithm 

to achieve, yet it is easier for humans to find associations between matters that are not directly 

connected to each other. Samples of this can be found in collage painting. Music is an arena 

which has various governing dimensions. Interpreting the various musical motives within a 

musical piece needs more complicated analysis. Likewise, enabling a computer to find the 
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hidden associations between existing musical pieces seems to be a labour intensive research. 

Achieving this type of creativity for computational music seems difficult to obtain at the 

moment. Exploratory creativity is a type of creativity which is more easily achievable by 

computers. Evolutionary algorithms are machine learning tools which enable this type of 

exploration in the space of all possible musical forms. This kind of navigation needs to be 

constrained by the usage of musical critics in order to get admissible results. 

Transformational creativity are easier for computers to perform. Achieving this type of 

creativity within a musical context in an algorithmic composition system seems to be a 

complex task. Such a system should be able to go beyond the existing musical rules and 

current expectations in a way that the outcomes would be the result of discovery of new 

possible domains for music.  

Enabling a computer program to perform an act of creativity might not be that easy. 

The more advancement achieved in the arena of understanding human creativity, the better 

the clarifications would be towards the required steps for building a machine which can be 

creative in a stand-alone manner. In this chapter, a computational intelligence tool (cellular 

automata) together with genetic algorithms and Boltzmann machines are described which are 

employed in this thesis to enable the manifestation of creativity within our domain of 

synthesized Persian music.  

3.2 Cellular Automata and Music  

The advent of cellular automata goes back to 1940s. CA was studied as a specific 

discrete dynamical system in 1960s (Peragine, 2013). Stephan Wolfram started a methodical 

study of CA from 1980s, his research contributed to various areas considering CA (Weisstein, 
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2016). According to Wolfram, CA is not only of particular significance in computer science. 

Wolfram emphasized that CA can be applied in other domains such as physics and chemistry 

to represent some problems. (Wolfram, 2002).   

Cellular Automata consists of simple regular elements, with identical configurations. 

Each cell has k finite states at time t, and all the cells evolve simultaneously. The time-space 

evolution of a one dimensional CA can be represented by a two dimensional mesh (Beyls, 

1988; Burraston & Edmonds, 2005; Wolfram, 2002) .  

  

(a) (b) 

Figure 3-1. Von Neumann (a), Moore (b) CA neighbourhoods 

An elementary CA consists of an assembly of 𝑛 cells arranged in a one-dimensional 

array which can be represented by 𝐴𝑡 = {𝑥1, … , 𝑥𝑛}. Each cell takes 𝑠 pre-specified 

states: 𝑥𝑖
𝑡 ∈ {0,1, … , 𝑠}. In each time step, the colour (state) of the cell is determined by the 

colours of the same cell in the previous iteration together with the states of its adjacent left 

and right neighbours. The states of neighbourhood of cell 𝑖 at time 𝑡 can be depicted as 𝑁𝐻𝑖
𝑡 ∈

{0,1, … , 𝑠}2𝑟+1, where r is the neighbourhood radius. Possible specifications for 𝑁𝐻𝑖 are 

𝑠2𝑟+1. The sum of all CA rules can be represented as 𝑠𝑠
2𝑟+1

.A more specific generalization 

considering the updating of the state of a cell is computed as 𝑠𝑛. The possible number of 

transition rules are 𝑠𝑠
𝑛
, where s is the number of possible states for a cell, and 𝑛 is the number 

of cells involved in determining the final state of a cell in each time step (Wolfram, 2002). 

Two of the most popular neighbourhoods are Neumann and Moore’s neighbours shown in 



 

37 

 

figure 3-1. If the 𝑛 cells in the neighbourhood vicinity have binary values, then there would 

exist 2𝑛 mixture of cells as specifications. For such a system there would exist 22
𝑛
 number 

of rules. The rules determine the quality and nature of the CA dynamics. Each of the rule 

numbers (from 0 to 22
𝑛
) are represented in their binary format. Each bit from the binary 

representation of the rule number are arranged from low bit to high bit. Each of the possible 

neighbourhood configurations (from 0 to 2𝑛 − 1) are also arranged in order and are assigned 

to their associated bits in the binary rule number.  

 

 

(a) (b) 

Figure 3-2. Transition rule and evolution for CA rule 54. 

 (a) Transition rule table for rule 54 (b) An elementary 

cellular automata progression in eight iterations after 

applying rule 54. The random intitial state in this example 

is : 1-0-0-0-1-0-0-0-1-0 

In the case of elementary CA, the initial state consists of a series of cells each depicting 

a binary state (0 or 1). This one-dimensional sequence will generate a two-dimensional 

presentation during CA progression. Each cell is in one of the two finite states at time t, and 

all the cells evolve simultaneously. The state of a cell at time t depends on its state and its 

neighbours’ states at time 𝑡 − 1. In the one-dimensional elementary CA (which is the subject 

of this study), the permutations of each cell with its two adjacent left and right neighbours 

defines 22∗1+1 = 8 specifications. Once allocated to binary states, the selection of one of the 
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256 local transition rules specify the CA progression (Wolfram, 2002). For instance, the 

binary representation of 54 as a rule number is displayed as 00110110 (bits from 0-7). The 

transition rule table for rule number 54 is obtained as in figure 3-2:a. A simple mapping is 

performed between the cell neighbourhood configuration and the binary representation of the 

rule number. The cell’s state, and its left and right neighbours’ states determine the cell state 

in the next time step. Starting from a random initial state, the CA progression for 8 iterations 

are achieved as depicted in figure 3-2:b. 

3.2.1 Rule-space Classification  

    

(a) (b) (c) (d) 

Figure 3-3. Four Wolfram classes. 

Class 1: invariant, e.g.: rule 96 (a), class 2: cyclic/periodic, e.g.: rule 123 (b), class 

3: chaotic, e.g.: rule 151 (c), class 4: complex, e.g.: rule 147 (d) behaviours. 

Different studies have been performed for investigating the dynamical behaviour of 

CA. The ones conducted by Wolfram, suggest four classifications of the applying rules on 

the pattern propagation of CA (Burraston, Edmonds, Livingstone, & Miranda, 2004; 

Wolfram, 2002). Much of this classification from plain uniform repetitive structures to 

patterns with nearly no regularity is done by visual inspection. According to Wolfram, an 

approximate fourteen percent of CA reveals complicated sort of patterns. 
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Wolfram classifications on CA emergent patterns can be studied in four categories as 

(The behaviour of four Wolfram classes are illustrated in figure 3-3): 

1. Fixed (or invariant): Patterns become permanent or annihilate each other and disappear: 

resulting to a homogeneous state. 

2. Cyclic: patterns evolve to repetitive fixed structures; oscillating between steady 

combinations forever. 

3. Chaotic: pseudo-random patterns emerge, which do never alternate. Any stationary 

patterns are perished rapidly; they never find the chance to survive. 

4. Complex: the yielded patterns are in complex formation which may or may not maintain 

their self-similarity in successive steps. These complicated assembly can be in the form 

of fractal or nested patterns (Wolfram, 2002), distributed both spatially and temporally 

(Burraston et al., 2004; Wolfram, 2002). This class is often named as the “edge of chaos” 

(Langton, 1990); the boundary between classes 1, 2 and class 3; consisting of both 

ordered and irregular organizations (Wolfram, 2002).  

Table 3-1. The one-dimensional elementary cellular automata Wolfram classes percentages. 

Class Percentage Rules examples 

1 9.3 % 0,8,32,40,128,136,160,168 

2 76.1 % 

1,2,3,4,5,6,7,9,10,11,12,13,14,15,19,23,24,25,26,27,28,29,33, 

34,35,36,37,38,41,42,43,44,46,50,51,56,57,58,62,72,74,76,77, 

78,94,104,108,130,132,134,138,140,142,152,154,156,162,164, 

170,172,178,184,2,204,232 

3 11.7 % 18,22,30,45,60,73,90,105,106,122,126,146,150 

4 2.3 % 54,110 
 

The percentages of rule numbers belonging to each of the four Wolfram classes are 

depicted in table 3-1. For each of the classes a set of rule numbers have been given as 

examples. Most of the CA rules belong to the second class of behaviour. Class 4 has the least 
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number of rules belonging to it.  

Li and Packard (Li; Packard, 1990) propose five classes of behaviour. This kind of 

classification were determined based on rules with periodic and non-periodic dynamics, and 

more specifically whether they have short or long periodicity.  

   

(a) (b) (c) 

Figure 3-4. Examples of second, third, and fourth Li-Packard classes . 

Fixed point, e.g.: rule 232(a), periodic, e.g.: rule 28 (b), locally chaotic, e.g.: rule 

109(c). 

The subdivision of the CA behaviours as proposed in (Li; Packard, 1990) is reported 

as: 

1. The first class consists of rules with homogeneous patterns. This class is the same as 

Wolfram first class and is called Null rules class.  

2. The Li-Packard second class consists of cellular automata rules which yield 

heterogeneous patterns. 

3. The third class contains CA rules with periodic patterns with intervals greater than unity. 

4. The rules in the fourth class have locally chaotic behaviour which are entrapped between 

fixed walls.  
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5. The fifth class consists of global chaotic rules. The CA progressions have random looking 

spatiotemporal patterns, and/or the periodicity cycles have highly divergent lengths. The 

fifth class is the combination of Wolfram’s third and fourth classes.  

The second, third, and fourth Li-Packard classes are subdivisions of Wolfram’s second 

class. Different behaviours of the second, third, and fourth Li-Packard classes are illustrated 

in figure 3-4. 

Langton introduced Lambda parameter (Langton, 1990) as a tuner for moving between 

the classes of CA rule space. He investigated the characteristics of various CA behavioural 

dynamics by reflecting those to the state-space of attractor basins, which helps recognizing 

the evolution of CA in terms of stationary, oscillating, chaotic, or complex realms. Langton’s 

Lambda parameter would become an important criteria in determining the behaviour of the 

system in more complicated CA configurations (Burraston & Edmonds, 2005). 

Wolfram conducted a series of experiments on the level of complexity of the 

underlying rules and the emergent behaviour of CA. What he found out was that increasing 

the complexity of the initial rules and conditions does not necessarily contribute to more 

complex behaviour and does not essentially add more characteristic properties to CA 

(Wolfram, 2002).  

An important property of CA is that the rules can be categorized into classes with 

essentially the same dynamic behaviours (Li; Packard, 1990; Powley, 2009; Wolfram, 1986, 

2002). Equivalent rules can be obtained by application of reflection, conjugate, and both 

transformation operators (shown in formula 9). One-dimensional elementary CA has 256 

rules. 88 distinct behaviours can be obtained by enumerating the essential dynamics using 
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formula 9 (Table B-7 in Appendix B depicts the equivalent CA rule numbers in elementary 

one-dimensional CA). The representatives of each of these 88 behaviour classes are the 

equivalent rule with the lowest values (Powley, 2009). The transformation rules for the 

elementary CA rules have the following forms (Li; Packard, 1990; Powley, 2009; Wolfram, 

1986, 2002): 

 {

Reflection                                𝑓(𝑎, 𝑏, 𝑐) = 𝑓(𝑐, 𝑏, 𝑎)                               
Conjugate                                𝑓(𝑎, 𝑏, 𝑐) = 1− 𝑓(1− 𝑎, 1 − 𝑏, 1 − 𝑐) 
Conjugate and Reflection  𝑓(𝑎, 𝑏, 𝑐) = 1− 𝑓(1 − 𝑐, 1 − 𝑏, 1 − 𝑎)

 (9) 

3.2.2 Basin of Attraction in Cellular Automata 

The dynamics of CA can be better illustrated in structures known as basin of attraction 

(Wuensche, 1999, 2004; Wuensche & Lesser, 1992). In order to clarify this notation, the 

meaning of state space is briefly overviewed. A state space consists of all possible 

configurations or patterns. For instance, a binary vector of size 𝑁 has 2𝑁 patterns, and a 

binary matrix of size 4*4 has 216 different configurations. For a CA rule number, this state 

space can be divided to sections with each section having a structure relating its constituent 

patterns. These structures are known as basins of attraction. They often consist of a central 

point or a collection of patterns arranged on a circular path. There might be branches with so 

many sub-branches connecting to these figures. The links between patterns in a basin of 

attraction is formed according to the accessibility by previous observed patterns. These outer 

branches are pre-images of the inner ones. The leaves are Garden of Eden states, which are 

not accessible by any previous states (Wuensche, 1999, 2004; Wuensche & Lesser, 1992). 

Two examples of basin of attraction models (Arshi & Davis, 2017) are depicted in figure 3-5. 
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(a) (b) 

Figure 3-5.Examples of Basin of Attraction model .  

Two basin of attractions for Cellular automata configuration for (a) rule 54, and (b) 

rule 90. The star signs shows the Garden of Eden states. These graphs are manually 

obtained, however, there are algorithms available for obtaining basin of attraction 

models for any CA rule space with different configurations (Wuensche, 2009).  

3.2.3 Cellular Automata in Music Composition Systems  

Cellular Automata are discreet dynamical systems. They have a global behaviour 

which is influenced by the local behaviour of identical elements. These reciprocal 

components are the cells in the lattice of one-dimensional elementary CA. Cellular automata 

demonstrate various genres of behaviour. This specific feature has brought CA into the 

attention of artists as a creative tool. By changing the configurations of the neighbourhoods 

and/or increasing the number of possible states for each of the cells, the state space would 

expand exponentially. The normal life span of a human is not adequate for navigating through 

all the generated patterns. Therefore CA have emergent behaviour and been looked as a 

source of creative material for artists. They have been employed for MIDI sequencing, 

structuring the compositions, and sound synthesis (Burraston & Edmonds, 2005).  

Beyls’ Cellular Automata Explorer, and CAM developed by Millen are two of the early 
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models of musical CA. Beyls investigated the application of time-dependent rules. He 

included the neighbourhood states from previous and future time steps from CA progression. 

Beyls investigated broad criteria of configurations for CA rules, and cell neighbourhood 

(Burraston et al., 2004). Cellular Automata Explorer targets the formation of complex 

musical patterns in the output (Fernández & Vico, 2013). Dale Millen exploited two and 

three-dimensional game of life cellular automata and projected the results to the melody 

structure. He later navigated the formation of musical organization from CAM (Burraston et 

al., 2004). 

CAMUS and Chaosynth are two other famous CA music generation systems (Miranda, 

2001, 2002). CAMUS employed Game of Life and Demon Cyclic Space. A Cartesian space 

is applied for mapping the patterns to MIDI domain for obtaining the musical triplets. The 

propagation of the musical patterns in CAMUS are inspired by the similar effect happening 

during CA progression (Miranda, 2002). Chaosynth is another CA sound generator which is 

based on the model of chemical reactions of a catalyst. The sound production process in 

Chaosynth is based on additive synthesis technique. The sound granules generated by the 

system are added together to obtain the results. The produced tones do not often resemble the 

acoustic sounds found in the musical instruments. They are often reminiscent of the natural 

sounds flow as well as the sound of waterfalls, or insects swarms (Miranda, 2001). The 

interested reader is referenced to (Burraston et al., 2004; Fernández & Vico, 2013) for a 

thorough review on previous research on the application of CA in generating electronic 

music.  

CA as computational intelligence tools are usually accompanied by other artificial 
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intelligence models to produce hybrid music composition systems. In isolation CA do not 

presently produce melodic sounds. CA can be embedded in assisted composition systems 

used as a source of creativity for helping musicians (Fernández & Vico, 2013). Patterns 

generated by CA have also been used independent of any frameworks and as raw material 

for inspiring artists. Xenakis is one of the pioneers who used CA for structuring his 

composition (“Iannis Xenakis webpage”.). Xenakis (Georgaki, Solomos, Zervos, & 

Proceedings, 2006; Hoffmann, 2002; Solomos, 2005) also stated that the generated sounds 

may need heavy editing by the composer to conform to results being musically pleasant 

(Hoffmann, 2002; Lo, 2012). Similar issue have been reported by Miranda, the creator of 

CAMUS, who considers the results as not being very musical (Miranda, 2007). 

3.3 Genetic Algorithm and its Applications in Music Composition   

Genetic Algorithms (GA) are a type of Evolutionary Algorithms (Goldberg, 1989). 

Genetic algorithms are inspired by natural selection which was first discovered by Darwin 

(Darwin, 1906). Natural selection guarantees the survival of the most competent (fittest) 

genes. GA have applications in various areas for finding optimal solutions to problems. 

Previous applications of GAs demonstrate their success in problem solving for domains with 

widespread solution spaces (Buckles & Petry, 1992). There are infinite possible musical 

combinations and structures. Genetic algorithms are good candidates for exploring the music 

space and be applied in music composition domain. The fitness function guides the GA 

exploration in the search space and constrain the musical productions. For instance one can 

tailor fitness functions which fulfil musical aesthetical aspects or adhere to certain musical 

tastes or styles (Burton & Vladimirova, 1999). 
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The classic genetic algorithm pursues the following structure: An initial population of 

individuals are randomly generated in a mating pool. The individuals are coded as genotypes 

and are progressively evolved in each of the consecutive generations. Each of the individuals 

inside the mating pool are potentially a solution candidate. The individuals are rated 

according to the level of their conformation to the fitness criteria. The fitness function task 

in the reproduction process is to evaluate the solution candidates. The fittest individuals in 

the population are selected as parents for breeding. The parents undergo crossover and 

mutation operations. In crossover, individual parents are selected and their genes are 

transmitted to each other by swapping (mostly in a meaningful manner). The mutation 

operator involves the changing of a random gene in the genotype (Goldberg, 1989). The 

mutation operation takes place with a low probability and is designed to avoid the search 

being trapped in local solution spaces. There are also elites in the population who are the 

fittest individuals in the population. Elites are transferred to the next generation without 

alteration. Their good genes might be contributed in the evolutionary process for elevating 

the quality of the individuals in the population. This can appear as the increase in the mean 

fitness of the population.  

The algorithm continues until a pre-specified criterion has been satisfied. Another 

possible way for stopping the algorithm is to limit the time spent for execution or to constrain 

the number of generations (Burton & Vladimirova, 1999). The parameterization of GA is 

often performed in a way that raises the expectancy of convergence to optimal solutions. 

3.3.1 Genetic Algorithms in Algorithmic Music Composition 

Genetic algorithms have been widely applied for composing melodies, and 
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harmonizing pre-specified melodies. Genetic algorithms were applied independently or as 

hybrid models accompanying various self-governing artificial intelligence methods as well 

as knowledge-based models, hidden Markov models, and artificial neural networks.  

Horner and Goldberg (Horner & Goldberg, 1991) were pioneers who presented the 

application of genetic algorithms in algorithmic composition. Thematic bridging is a 

composition methodology; starting from an initial pattern, the system undergoes a series of 

transformations to manifest the final target pattern. In the GA system proposed by Horner 

and Goldberg the individuals are the transformation operators. The fitness function calculates 

the distance between the individuals and the target pattern. The output of this system were 

the sequences of the generated patterns.  

The fitness function can be interactive or autonomous. Interactive fitness functions 

work based on a human user assessment on the competence of the candidate individuals in 

the population. The existence of some dynamics as well as musical expressions make them 

seem to rely more on human intelligence, which allows a composed musical piece to be rated 

more as human-like rather than machine-like. Adding fitness functions which benefit from 

human scrutinized evaluations may result in outcomes which are more similar to artefacts 

generated by human or at least cover the areas which are very difficult to implement using a 

machine. However, there is a bottleneck problem often associated with interactive fitness 

functions. Evaluating a high number of individuals in consecutive generations often 

contribute to user fatigue and should be used in domains where autonomous fitness functions 

are unable to gain the desired results. The autonomous types of fitness functions are based 

on machine learning tools. In the following, some examples of both types of fitness functions 
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are described. 

Jacob (Jacob, 1995) proposed a composition system with three phase modules: the Ear, 

the Composer and the Arranger. The Ear and Arranger are modules where their qualities and 

nature are determined by human user. The Ear was trained by the user and acts as an 

assessment module in the process of creating musical motifs according to authorized 

intervallic combinations. The Composer is the core of music generation system. The 

Arranger reorders and assembles the output with the structure of musical phrases.  

In GenJam (Biles, 2014), Biles devised an evolutionary algorithm for generating Jazz 

melodies. The initial version of GenJam used to have an interactive fitness function. Biles 

later applied an artificial neural network to automate the evaluation task and overcome the 

interactive fitness function bottleneck. The artificial neural networks did not demonstrate 

success in evaluating new cases. In fact the trained artificial neural network failed to expand 

the assessments to cases other than what have already been specified in their training dataset 

(Fernández & Vico, 2013).  

The fitness function in an evolutionary algorithm agenda can be designed based on 

some standard evaluation criteria for creativity (which are discussed in chapter 7). On this 

account, human-evaluation on the levels of creativity of the system can be embedded as part 

of the design of the GA system for criticising the iteration of artefacts during the production 

process. Jordanous in (Jordanous, 2010) designed a system to evolve creative entities based 

on their levels of creativity. The system employed a GA to evolve the musical parameters for 

algorithmic music. The system relied heavily on human interventions since it worked based 

on Ritchie’s empirical criteria for creativity (Ritchie, 2007).  
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Some of the designed genetic algorithms with autonomous fitness functions for 

algorithmic composition are presented in the following:  

 One of the simple approaches for designing fitness functions is the calculation of the 

weighted sum of distances to a target melody. This method needs a strong selection of 

musical features for reaching satisfactory results (Dahlstedt, 2007; Laine & Kuuskankare, 

1994).  

In a series of applications, neural networks were used as fitness functions. Neurogen 

(Gibson & Byrne, 1991) is an algorithmic music composition system which possesses two 

different artificial neural networks as fitness functions. One of the neural networks evaluates 

the intervals between pitches, and the other one is used for assessing the overall musical 

structure.  

Manaris and his colleagues proposed one of the successful hybrid models consisting of 

neural networks and genetic algorithms (Manaris, Romero, et al., 2005). Manaris et al. trained 

neural networks as a fitness function trained with Zipfian metrics to identify individual 

compositions which contributed to the target Zipfian distribution property.  

In (Lo, 2012; Lo & Lucas, 2006), N-gram models were applied as trainable fitness 

functions in a series of experiments where Zipf’s law, and information entropy were used as 

musical aesthetics measurements. An N-gram classifier was trained with musical samples 

consisting of three consecutive notes (i.e. N =3). The designed fitness function was employed 

for assessing the sequences of pitches. The genetic operators worked as tools for navigating 

the search space. Later in the same project, evolutionary algorithms evolved CA progressions 

in a music generator system. In the survey held by Lo, on average, the human compositions 
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were preferred to machine generations and only one piece was recognized to be 

indistinguishable from human composition.  

3.4 Boltzmann Machines and their Generative Nature  

Deep learning is based on a collection of machine learning tools which are sourced 

from neural networks terminology and structures. The general trait in deep architectures is 

that they often consist of a hierarchy of layers which are stacked on top of each other. This 

type of stacked architecture serves the purpose of achieving several representations of data 

in various layers. Some instances of deep learning architecture are Recurrent Neural 

Networks (RNN), Long Short Term Memory (LSTM), Convolutional Neural Networks, 

Deep Boltzmann Machines (DBM), and Deep Belief Networks (DBN).  

DBM are capable of modelling the probability distribution of the input data. These new 

representations of the observable data, are accumulated in the intra-layer weights. 

Consequently, these networks are widely used in feature extraction, dimensionality 

reduction, and classification applications. Some examples of these kinds are available in 

(Gehler, Holub, & Welling, 2006; Larochelle & Bengio, 2008; Salakhutdinov & Hinton, 

2009b). For instance, once this network is trained, the features which are now embedded in 

weights in the DBM network can be used as data for further machine learning applications 

(Hinton & Salakhutdinov, 2006; Salakhutdinov & Hinton, 2012).  

This section provides fundamentals about some Boltzmann machine families including 

DBM, Multimodal Deep Boltzmann Machines (Multimodal DBM), and Conditional 

Restricted Boltzmann Machines (CRBM), as they are going to be utilized in chapter six of 

this thesis.  
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3.4.1 Boltzmann Machines and Restricted Boltzmann Machines 

Boltzmann Machines (BM) are stochastic networks invented by Hinton and Sejnowski 

(Ackley, Hinton, & Sejnowski, 1985). Boltzmann machines can be considered as extended 

versions of Hopfield networks. Hopfield networks are a type of associative memory with the 

storage capability (Rojas, 1996). Hopfield networks’ underlying memorization process is 

known to resemble that of human. For example, memorizing names according to people’s 

faces features is a sample of associative memories (Freeman & Skapura, 1991). BM have 

stochastic decision rules for determining the states of units opposed to binary decision rules 

as in Hopfield networks. The dynamics of Boltzmann machines are governed by an energy 

concept. The global energy function in BM is similar to its counterpart in Hopfield networks 

as denoted in equation 10. 

 𝐸 = − ∑ 𝑠𝑚𝑠𝑛𝑤𝑚𝑛 −∑𝑎𝑚𝑠𝑚
𝑚𝑚<𝑛

 (10) 

where 𝑠𝑚, 𝑠𝑛 are states of units 𝑚, and 𝑛 respectively. 𝑤𝑚𝑛 is the weight between units 𝑚 

and 𝑛. 𝑎𝑚 is the bias connected to the 𝑚𝑡ℎ unit. The states of the units are denoted as s =

{0,1}. The 𝑚 < 𝑛 condition is for assuring that the states are not counted twice in the formula. 

The minus sign before each of the terms in the formulation indicates that the minimization 

of energy is a desirable trait in the training process of Hopfield and Boltzmann machine 

families (Coughlin & Baran, 1995).  

Training a fully connected Boltzmann machine is an intractable process in a network 

with large number of units. On the other hand, constraining the connectivity of BM units to 

be solely between visible and hidden neurons would provide a base for inferring tractable 
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training formulas and procedures (Carreira-Perpiñán & Hinton, 2005). Limiting the 

connectivity between visible-visible, and hidden-hidden neurons, produces a bi-partite graph, 

where the connections are only between visible and hidden units. Therefore, the units will be 

grouped in two sections (a bi-partite graph): visible units, and hidden units. Restricted 

Boltzmann machines (RBM) (Smolensky, 1986) are constrained versions of Boltzmann 

machines which only retain the pair-wise connections between the neurons in the visible and 

hidden layers.  

RBM are capable of modelling the probability distribution of the presented data in their 

visible units. Restricted Boltzmann machines build new representations of data and 

accumulate them in the weights in the bi-partite graph model. RBMs employ hidden units for 

achieving a model for the distribution of the binary units presented in the visible layer. RBM 

were used in various applications for extracting features from data, dimensionality reduction 

and classification (Gehler et al., 2006; Larochelle & Bengio, 2008; Salakhutdinov & Hinton, 

2009a). For instance, the new features which are embedded in the weights of the RBM 

network can be employed for other machine learning classification tasks. Some other 

examples of this kind can be found in (Hinton & Salakhutdinov, 2006; Salakhutdinov & 

Hinton, 2012). RBMs have also been employed in music applications (Lauly, 2007). 

 𝐸(𝑣, ℎ) = −(ℎ𝑇𝑊𝑣 + 𝑎𝑇𝑣 + 𝑏𝑇ℎ) (11) 

 𝐸(𝑣, ℎ) = −( ∑∑𝑤𝑚𝑛𝑣𝑚ℎ𝑛
𝑛

+∑𝑎𝑚𝑣𝑚
𝑚

+∑𝑏𝑛ℎ𝑛)

𝑛𝑚

 (12) 

The behaviour of the RBM system is governed by the energy function specified in 

equations 11 and 12. In which 𝑣, and ℎ terms stand for the observable and hidden units. The 
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bias parameters 𝑎, and b, respectively contribute to visible and hidden units. The energy 

function in RBM model is achieved by summing the linear products of the visible units, 

hidden units and their associated connecting weights. The additional terms in the following 

formulas stand for the products of the visible and hidden units and their related biases.  

The general type of RBM has binary random variables in their hidden and visible 

layers. Other extensions of RBM provide other types of variables in the visible units as 

well. For example, the units in the visible units can accept unbounded real number 

observations to form a Gaussian-Bernoulli RBMs. Multinomial observations or binomial 

ones are other examples. It is noteworthy that in these extensions, the elements in the hidden 

layer remain Boolean. The energy function is a hyper-dimensional surface. The energy of the 

system is minimized on the learning patterns to be stored. Appendix A.1 provides further 

details for training RBM by the usage of contrastive divergence algorithm.  

3.5 Conditional Restricted Boltzmann Machines 

Conditional restricted Boltzmann machines are a variety of RBM systems, which are 

employed for representing the dependability or relationship of data which inherit some sort 

of inner-attachment (Mnih, Larochelle, & Hinton, 2011). For instance, the data may appear 

in time-frame sequences. Some successful applications of CRBMs can be traced in 

simulating human motion (Taylor & Hinton, 2009; Taylor & School, 2012), and pigeon 

behaviour (Zeiler, Taylor, Troje, & Hinton, 2009).  

An architecture of CRBMs is illustrated in figure 3-6 (Arshi & Davis, 2017). In 

comparison to RBMs, CRBM model encompasses an additional layer which supplies 

temporal information to hidden, and visible units. 
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(a) (b) 

Figure 3-6 The architectures of (a) RBM, and (b) conditional RBM, 

In a RBM there are pairwise connections between the units in the visible layer, and 

those of hidden layer, in conditional restricted Boltzmann machine there are 

additional connections provided by (visible) units from previous time steps (ui in 3-

10b). 

The visible and hidden layers are conditioned on the data from previous steps in a 

temporal format. The energy function of the system can be represented as: 

 𝐸(𝑣, ℎ, 𝑢) =  −𝑣𝑇𝑊ℎ − 𝑢𝑇𝑈𝑢𝑣𝑣 − 𝑢
𝑇𝑈𝑢ℎℎ − 𝑣

𝑇𝑎 − ℎ𝑇𝑏 (13) 

In which 𝑣,ℎ,𝑢 stand for observables, hidden neurons, and the additional layer, 

respectively. The additional layer is associated to visible units in the previous time steps. The 

units in the additional layer is represented by 𝑢. 𝑊 are the weights between visible layer, and 

hidden layer, 𝑈𝑢𝑣 corresponds to the weights between visible layer and additional layer, and 

finally, 𝑈𝑢ℎ represents the weight matrix between conditional layer, and hidden units. 𝑎, 𝑏 

are bias matrixes. The training in the CRBM models are performed by the application of the 

contrastive divergence algorithm. 

3.5.1 Deep Boltzmann Machines  

A Deep Boltzmann Machine (DBM) is a multi-layered restricted Boltzmann machine 
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with several hidden layers (Salakhutdinov, 2010; Salakhutdinov & Hinton, 2009a, 2012; 

Salakhutdinov & Larochelle, 2010). Each of the hidden layers is built on top of the previous 

hidden layers. An example of a two-layered DBM is presented in figure 3-7. 

 

Figure 3-7. Deep Boltzmann machine architecture with two hidden layers. 

By having 𝑣 as a set of units in the visible layer and 𝐻 = {ℎ(1), ℎ(2)} as a set of units 

in the first and second hidden layers, the model parameters are expressed as: 𝜏 =

{𝑊(1),𝑊(2), 𝑏(0), 𝑏(1), 𝑏(2)} . 𝑊(1),𝑊(2) are the weights between visible to first hidden layer 

and the first hidden layer to the second hidden layers. The 𝑏(0), 𝑏(1), 𝑏(2) parameters are the 

biases of the visible, first hidden and the second hidden layers. The energy of the joint 

configuration can be obtained as (Salakhutdinov & Hinton, 2009a, 2012):  

 

𝐸(𝑣, ℎ; 𝜏) = −∑∑𝑊𝑙𝑚
(1)
𝑣𝑙ℎ𝑚

(1)

𝑁1

𝑚=1

− ∑∑𝑊𝑚𝑛
(2)
ℎ𝑚ℎ𝑛

(2)

𝑁2

𝑟=1

𝑁1

𝑚=1

−∑𝑏𝑙
(0)
𝑣𝑙

𝑁0

𝑙=1

𝑁0

𝑙=1

− ∑ 𝑏𝑚
(1)
ℎ𝑚
(1)

𝑁1

𝑚=1

−∑𝑏𝑛
(2)
ℎ𝑛
(2)

𝑁2

𝑛=1

 

(14) 

Appendix A.2 obtains the procedure for obtaining the weights in the above 

formulations. The algorithm presented for training a DBM is a basis for training the Multi-

channelled DBM.  
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3.5.2 Multimodal Deep Boltzmann Machines 

Multimodal Deep Boltzmann Machines (Multimodal DBM) are employed for data 

which have more than one data modality (Srivastava & Salakhutdinov, 2012). For instance, 

the video data consists of a sequence of frames accompanied by their related audio signal. 

The image and audio frames from video are two different data modalities with their specific 

statistical properties. If a DBM is used for working with such data then the multiple 

modalities are representable by separate Boltzmann machines. 

A Multimodal DBM consists of multiple channels where each channel represents one 

data modality. Each of the pathways in the model can be trained separately and then be 

reunited in a conjoint section. In a Multimodal DBM, the intersection part embeds a joint 

representation of various modalities of data. By clamping the data on one side of the pathway, 

the related modalities can be retrieved on the other sides of the pathway. 

 

Figure 3-8. Multimodal Deep Boltzmann Machine with three sections. 

Figure 3-8 demonstrates the architecture of a Multimodal DBM. This structure consists 

of three pathways each of which has two hidden layers. The presented Multimodal DBM 

architecture is going to be employed in chapter six. The accompanied formulations in this 
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chapter are tailored for the Multimodal DBM with three pathways. The original formulation 

can be found in (Srivastava & Salakhutdinov, 2012) where the Multimodal DBM were 

introduced. The pathways are tagged with English alphabets, which assist in the presented 

formulations in this subsection. The set of units in the visible layer and the first and second 

hidden layers of the first pathway are denoted as: 𝑝𝑎𝑡ℎ1 = {𝑣(𝑟), ℎ(1𝑟), ℎ(2𝑟)}. These sets for 

the other existing pathways in the presented structure are 𝑝𝑎𝑡ℎ2 =

{𝑣(𝑠), ℎ(1𝑠), ℎ(2𝑠)}, 𝑝𝑎𝑡ℎ3 = {𝑣(𝑡), ℎ(1𝑡), ℎ(2𝑡)}. The model parameters including the weights 

and biases related to the three pathways are expressed as: 𝜏𝑟 , 𝜏𝑠 , 𝜏𝑡. The parameters of the 

conjoint layer is depicted as 𝜏𝑚. Appendix A.3 obtains the required formulations for 

designing a training algorithm for a three-channelled Multimodal DBM, which is employed in 

chapter 6.  

3.5.3 Applications of Boltzmann Machine Families in Creating Artefacts 

Boltzmann machine families are stochastic generative artificial neural networks. 

Unlike other types of artificial neural networks, which have deterministic nature, Boltzmann 

machines have stochastic nature. Moreover, they do not have separate output layer. The input 

and output layers for Boltzmann machines overlap with each other. In order to achieve an 

output from this system, one needs to populate the input layer. In the next phase the sampling 

procedure, takes place which may include bottom-up and top-down passes from several 

layers (depending on the depth of the architecture in a deep Boltzmann machine structure). 

The stochastic nature for Boltzmann machine means they are able to obtain different results 

providing the same input. RBM were applied for generating chords, and producing music.  

RBM were first utilized for generating polyphonic music in (Boulanger-Lewandowski, 
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Bengio, & Vincent, 2012; Briot & Pachet, 2017). In (Boulanger_Lewandowski, 2015) 

sampling technique (like Gibbs sampling) were applied for music generation by the help of 

RBM with units accepting real values instead of binary numbers. In (Lattner, Grachten, & 

Widmer, 2016) RBM learned local musical structures. Further global structures were 

imposed to the music generation process by performing constrained sampling techniques. 

The constrained sampling technique consisted of gradient descent optimization for imposing 

the desired global structure and the Gibbs sampling as contrastive divergence training 

technique. The constraints that Lattner and his colleagues imposed to their generated music 

were tonality constraints and meter constraints (Briot & Pachet, 2017).  

CRBM have had applications in music classifications as well as composition. CRBMs 

were used for auto tagging music in (Mandel, Eck, & Bengio, 2010; Mandel, Pascanu, 

Larochelle, & Bengio, 2011). The proposed CRBM model in Mandel’s papers were 

outperforming support vector machines as a machine learning tool. Loeckx and Butheel 

designed a CRBM structure for improvising music in the desired musical style. The music 

was reconstructed based on the first musical note provided to the system (Loeckx & Bultheel, 

2015). In (Lauly, 2007) CRBM were used for learning melodic sequences and long term 

dependencies between notes. Their model outperformed n-gram, and artificial neural 

networks.  

3.6 Chapter Summary 

This chapter provides information on three of the tools which are employed in this 

thesis for the design of algorithmic composition systems. CA are a computational intelligence 

tool. CA offer a diverse range of behavioural patterns as a source of non-human based 
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creative material. They have the potential to directly or indirectly accompany the process of 

creating artefacts. On the other hand, evolutionary algorithms provide a range of tools for 

exploratory and transformational creativity. They navigate the space of possible musical 

solutions, accompanying the chance of new forms to appear. In this thesis, CA and genetic 

algorithms are combined as a hybrid tool for an algorithmic composition system. The 

requirement of such system includes targeting proper architectures of the fitness function and 

the right definition of the criteria for evaluating the emerging forms. The next chapter 

investigates a system which makes this idea possible. Chapter 5 proposes a design for the 

fitness function based on an aesthetical criteria (Zipfian metrics) to evolve the productions 

from a CA based system.  

Boltzmann machines are extended versions of Hopfield networks. They have stochastic 

nature. This attribute makes them desirable as a generative machine learning tool for 

producing artefacts. Moreover, Boltzmann machine families have the capability of storing 

data and obtaining new representations of the data. In this thesis, Boltzmann machine families 

are employed as a tool for extracting features from CA progression. Chapter 6 provides 

further means for extracting patterns from CA iteration using Boltzmann machine families. 

Later in chapter 6, multimodal deep Boltzmann machines are used for associating Zipfian 

features from CA and Persian music. This system is also used for generating audio samples.  



 

60 

 

Chapter 4. Methodology for producing 

Synthetic Persian Music 

In this chapter, the fundamental ideas behind the main designs of the software 

experiments in this thesis are explored. The experiments in this chapter are important in the 

flow of the thesis since they illuminate the direction as further explored in the next two 

chapters. The heart of this chapter revolves around analysing some aesthetical aspects of 

patterns extracted from Cellular Automata (CA) progressions. Later in the chapter, patterns 

extracted from CA are employed for producing musical forms. Liquid Brain Music (LBM) 

system as a cellular automata based audio generator is presented and later developed to 

Liquid Persian Music (LPM). Once the outputs of LPM system are considered as musical 

motives (known as voices in this chapter), the concern would be to produce musically 

meaningful sequences of the voices. An initial experiment is proposed for performing 

competency measures on the output voices from LPM system. The competency criterion 

considers Zipf’s law as an aesthetical measure. Subsequently, an evolutionary framework is 

suggested for evolving the sequences of LPM voices. The proposed evolutionary framework 

establishes the foundation for further experiments in chapter 5.  

4.1 Liquid Brain Music System 

Liquid Brain Music (LBM) is a cellular automata based tool developed at the 

University of Hull (Turner, 2008; Woods, 2009). LBM explores the idea of artificial life 

systems in generating audio. The first and second versions of LBM are based on additive 

sound synthesis (Manning, 1985; Roads, 1978, 1988) for producing the sounds. The LBM 
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software takes advantage of the synthesis toolkit (Cook & Scavone, 2008) for performing 

tasks such as parameterizing the signals and adding them together for yielding the results. 

The nature of the sounds generated by the system changes with CA progressions. Moreover, 

the user can alter the configuration of the system to feed the signals’ parameters with different 

CA rules and pattern-matching rules.  

In every time step of the CA progression, the pattern-matching rule obtains values for 

populating the synthesizer parameters. In one-dimensional elementary CA, the progression 

in each iteration is representable by an array of white or black cells. The suggested pattern-

matching rules in (Turner, 2008; Woods, 2009) work by extracting patterns from each CA 

iterations or by computing the difference between the specifications of two consecutive 

iterations. The twenty pattern-matching rules proposed in LBM are presented in table 4-1.  

Table 4-1. The twenty pattern-matching rules used in LBM project. 

BS stands for block size, and RL stands for run length encoding. The 

numbers show the size of the white or black blocks. The size of the 

consecutive white or black cells were chosen to be from 1 to 4.  

1. BS_1_White 2. BS_2_White 3. BS_3_White 4. BS_4_White 

5. BS_1_Black 6. BS_2_Black 7. BS_3_Black 8. BS_4_Black 

9. RL_1_White 10. RL_2_White 11. RL_3_White 12. RL_4_White 

13. RL_1_Black 14. RL_2_Black 15. RL_3_Black 16. RL_4_Black 

17. Hamming_Difference 18. Jaccard_Similarity 19. Jaccard_Difference 20. Dices_Coefficient 
 

 Sixteen of the pattern-matching rules are based on specifications of consecutive 

white/black cells in only one CA iteration. Block-size and run-length encodings calculate the 

number of sequences of white or black cells. The lengths of the white/black sequences to be 

detected by pattern-matching rules were chosen to be 𝑁 = 1, 2, 3, 4 consecutive cells. This 

would provide sixteen pattern-matching rules based on block-size, and run-length encoding 

techniques. The difference between block-size, and run-length encoding is the way these two 
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methods behave towards the surrounding cells of the target sequence to be calculated. In 

block-size encoding for 𝑁 white/black cells, a block sequence of exact size 𝑁 will be counted. 

Therefore, longer sequences of all white or black cells are not broken into smaller chunks of 

size 𝑁 consisting of the same-coloured cells. In run-length encoding for 𝑁 white/black cells, 

the array is divided into chunks of size 𝑁, and the chunks with same-coloured cells are 

calculated. Figure 4-1 illustrates the difference between the underlying procedures in block-

size, and run-length encoding methods.  

 

(a) 

 

(b) 

Figure 4-1 Calculating the Block-size run-length encoding. 

One 3 sized block is shown in (a), and three chunks of run-length encoding 3 in (b) 

from pattern-matching rule 3 BS_3_White in (a) and rule 11 RL_3_White in (b) 

One of the features associated with the pattern-matching rules based on block-size and 

run-length encodings is that they calculate the specific number of patterns in just one binary 

string of cells at a time (one CA progression). If two consecutive strings in the CA 

progression happen to have the same number of detected patterns, the auditory result would 

produce the same result after being mapped to the musical space. The remaining pattern-

matching rules work based on calculating the difference between the specifications of two 

consecutive CA iterations. Hamming distance, Jaccard similarity, Jaccard difference, and 

Dice’s coefficient perform binary string comparisons between the consecutive CA iterations. 

Hamming distance calculates the number of cells with opposite colours in the two strings.  
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Figure 4-2 Finding Hamming distance between two binary strings.  

The values of the cells are compared in the same locations over the 10-bit binary 

array using pattern-matching rule 17, giving result of 5. 

 

Figure 4-3 Calculating the Jaccard similarity and difference. 

In this example two 10-bits binary strings are the subject for finding Jaccard 

similarity/difference. The Jaccard similarity (pattern-matching rule 18) is obtained 

as : 
5

5+3
 , and the Jaccard difference (pattern-matching rule 19) is calculated as 1 −

5

5+3
. 

Figure 4-2 illustrates an example for calculating Hamming distance between the two 

strings. Jaccard similarity and difference calculate the number of cells which happen to be 

black in the same locations in both strings (this number is specified by 𝑝). Afterwards the 

number of cells with opposite colours on the two strings in the same array locations are 

calculated (this number is specified as 𝑞). The Jaccard similarity is calculated as 𝑝 (𝑝 + 𝑞)⁄ . 

The Jaccard difference is yielded as 1 − (𝑝 (𝑝 + 𝑞))⁄ . Computing the Dice’s coefficient is 

similar to the case of Jaccard similarity and is obtained by 2𝑝 (2𝑝 + 𝑞)⁄ . Figure 4-3 shows 

an example for computing Jaccard similarity/difference. 

4.2 From Liquid Brain Music to Liquid Persian Music 

Liquid Persian music (LPM) is a version of LBM software developed for the research 

presented in this thesis. The physical model of a stringed musical instrument (Sitar) is 
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responsible for sound production in the early versions of LPM system (Arshi & Davis, 2015). 

(In a later version of LPM system an alternative synthesiser model, based on the Santur 

musical instrument, is responsible for generating audio). Some of the synthesizer parameters 

in LPM include ADSR (Attack, Decay, Sustain, and Release) envelopes, loop gain, and the 

musical instrument string length for defining the notes frequencies.  

 

Figure 4-4 The Initial Liquid Persian Music user interface. 

The defined twenty pattern-matching rules in LBM are also employed in LPM system. 

(Later experiments looked to replace the pattern-matching rules with Boltzmann machines). 

The obtained values from the pattern-matching rules are then fed as parameters into the 

synthesizer for producing the sounds. Configuring the system with a CA rule and a pattern-
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matching rule (for each of the synthesizer parameters) produces a collection of notes over 

CA iterations. These collections are referred to as voices throughout the thesis. Each of the 

voices aggregates a collection of notes or sounds (in the case of LBM). 

The code related to LBM and LPM are written in C++ and the OpenAL library is 

responsible for propagating the produced voices. Further information about the software (and 

audio samples) can be found in (Davis, 2016). Figure 4-4 illustrates the LPM user interface. 

A manual for working with LPM user interface is presented in the Appendix L.  

A one-dimensional elementary CA consists of 256 rules. The musical behaviour 

derived from one-dimensional (1D) CA does not require examining the 256 rules’ 

behaviours. As discussed in the third chapter, the rule sets with inherently equivalent 

behaviour can be identified by the application of conjugate, reflection and both 

transformations together (Powley, 2009). In fact, the rule space of one-dimensional 

elementary CA can be reduced down to 88 fundamental behaviours (Li; Packard, 1990; 

Powley, 2009; Wolfram, 2002). 

In the remainder of this section, the number of the produced voices by LPM system is 

calculated. There are 88 ∗ 20 possible configurations for CA rules and pattern-matching 

rules. The synthesizer in LPM takes 7 parameters (contributing to pitch and timbre of the 

notes). The 88 1D CA rule behaviours, 7 defined synthesizer parameters related to pitch and 

timbre, together with 20 pattern-matching rules expand the number of voices to 887 ∗ 207. 

Considering the number of CA progressions involved, the number of voices would expand 

to 887 ∗ 207 ∗ 𝑡, where t is the number of CA iterations. This defines the base auditory search 

space for the computational framework being developed. By counting the number of other 
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parameters including speed of music (similar to tempo), note durations, note onset times, and 

note intervals, 4 more parameters will be involved in generating the melodic and rhythmic 

structures. This extends the search space to  8811 ∗ 2011 ∗ 𝑡. Considering all the possible 

initial CA configurations on an array of 100 cells would add a factor of 2100 to the search 

space figure. The constituent elements in the search space are depicted in figure 4-5. In the 

next chapter, this space is constrained to be  883 ∗ 203 ∗ 𝑡 for reducing the complexity of the 

system to be developed. Only one of the 7 synthesiser parameters (pitch frequency) plus note 

duration and note onset times are selected as the varying parameters. Further alterations on 

this search space are used in Chapter 6, where only pitch frequency and note duration are 

used. 

 

Figure 4-5 Constituent components in the maximal LPM search space. 

4.3 Discussion on the LPM Musical Output 

After describing the LPM underlying methodology for producing audio, the output 

results from LPM were analysed in terms of musicality. The musicality of LPM outputs were 

investigated by the combination of two approaches. In the first approach, the decision of a 

human subject was taken into account by performing auditory tests. In the second approach, 

the musicality property was explored through studying the plots of pattern-matching rules 
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outputs through visual investigations. Both the auditory tests and visual tests were performed 

by the author of this thesis. In the visual tests, the values of 20 pattern-matching rules for 88 

CA rules over 10000 iterations were extracted. In this chapter, only one out of 2100 possible 

initial CA configuration was selected. This initial seed for the CA progressions was selected 

randomly. 

Table 4-2 Examples of human evaluation on the musicality of LPM outputs by auditory test. 

In this table nine CA behaviours were studied. The equivalent CA behaviours 

are also demonstrated in this table (obtained by conjugate, reflection and both 

transforms as described in chapter 3). Ten pattern-matching rules in this table 

are responsible for extracting features from CA progressions. In the table, 

cells show the constant (yellow), oscillatory (dark blue), and disordered 

fluctuations (red) behaviour categories. ‘y’, and ‘n’ are abbreviations for 

‘yes’ and ‘no’ to indicate the musicality or nonmusicality of the related 

output from CA, and pattern-matching rule. ‘l’ stands for low levels of 

musicality.  

 

In fact, the derived values would normally be employed for populating the parameters 

of the synthesizers. The auditory tests were performed by listening to short audio pieces of 

lengths up to 30 seconds each. In the auditory experiments, the pattern-matching outputs 

were used for populating the frequency parameters of the synthesizer. The rest of the 

synthesizer parameters were kept constant. Therefore, the timbres of the notes were left 
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unchanged and only the pitch frequencies of the notes were varied. Table 4-2 demonstrates 

some examples of result of the human evaluation. The CA rules with equivalent behaviours 

are shown in this table; meaning that the LPM outputs were not separately analysed for the 

equivalent rule behaviours. Ten out of twenty pattern-matching rules are shown in this table. 

The last two columns show the opinion of a human subject on the LPM musical outputs in 

terms of melody, and rhythm. All the voices were considered to be rhythmic, due to the sound 

synthesizer changes in each CA time step. Tables B-1 to B-6 in appendix B illustrate the 

complete tables consisting of 88 CA rules behaviour. The tables in Appendix B were 

classified based on their constituent four Wolfram classes and Li and Packard (Li; Packard, 

1990) extensions on the second class.  

The visual investigations on the nature of the LPM outputs took place by studying plots 

similar to figure 4-6. Figure 4-6 illustrate some examples of specific pattern-matching rules 

outputs behaviours for CA rule numbers 168, 11, 38, 110, 22, 27, 51 (more examples are 

shown in Appendix C). In fact, the visual investigations were complementary to auditory 

tests. The visual investigation of LPM outputs using graphs (as in figure 4-6) enabled us to 

study the behaviour over larger number of CA iterations while saving time. The graphs in 

figure 4-6 suggest that for some CA rules, there are oscillations occurring at the beginning 

of the CA progression before the CA reaches a stable state. Converging to stable states 

requires more iteration in some of the graphs (e.g. CA rule 110, pattern-matching 5) while 

this happens very quickly for other rules (e.g. CA rule 11, pattern-matching 2).  

The behaviour of CA were studied after a certain number of progressions. After 

becoming stable, the CA progressions for various rules show different behaviours. Some stay 
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on the same value while others start fluctuating between different values. In the cases where 

CA progressions converge to a value, the result would be a monotonous audio. The 

oscillation ranges from two values to more than thirty in some cases. In the auditory tests, 

these phenomena show themselves as oscillations between two or more pitches.  

 

 Figure 4-6 Pattern-matching values for CA over 10000 iterations  

The nine examples show (a) rule 168 : pattern 4, (b) rule 11 : pattern 2, (c) rule 38 : 

pattern 16, (d) rule 110 : pattern 5, (e) rule 11 : pattern 13, (f) rule 22 : pattern 1, (g) 

rule 27: pattern 2, (h) rule 51: pattern 13, (i) rule 27 : pattern 20. 

The investigations over LPM outputs determine three groups of LPM audio outputs 

(table 4-3). Investigating the audio output of the LPM over all the graphs for 88 rules have 

explicitly shown that the musical behaviour of the designed system can be categorized in the 

following groups: 

• In the first group, after a few number of iterations, the CA progression converges to a 

homogeneous state, in which no differences can be measured over consecutive iterations. 

The output values of pattern-matching rules remain constant during the CA progression 

Iterations Iterations Iterations 

Iterations Iterations Iterations 

Iterations Iterations Iterations 

2 
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resulting in a uniform sound.  

• The behaviour of the identified second group demonstrates the fluctuation of pitches 

between two or more frequencies. Oscillations between two or more different voices 

occur periodically.  

Table 4-3 The investigations over LPM outputs determine three groups of behaviour. 

The table shows the three groups obtainedby studying the different pattern-

matching outputs over CA progressions with one random initial seed. In this 

table R stands for rule number, and P stands for pattern-matching rule number 

(Appendix C provides supporting illustrations for this table). 

Wolfram 

Classes 

W-class 1 W- class 2 W-class 3 W- class 4 

Li-Packard 

Classes 

LP- Class 1 LP- Class 2 LP- Class 3 LP- Class 4 LP- Class 5 

Group 1 R168:P7 R184:P5 R38:P20 R73:P1 R18:P1 R110:P20 

Group 2 R168:P1, 

R168:P9 

R184:P2 R38:P8, 

R11:P9, 

R51:P3, 

R27:P1 

R73:P12 R22:P1, 

R146:P6 

R110:P1 

Group 3 none None R27:P20 none R22:P20, 

R146:P19,20 

none 

 

• The third group has audio in which the frequencies just wander between a diverse range 

of values. The third pattern of behaviour is observed as a disordered fluctuation between 

a large number of values. In this case, the previous values might be met; however, 

fluctuations happen through diverse ranges of values. This means that this behaviour can 

hardly be considered as a periodic behaviour. 

The three groups based on audio and visual analysis of pattern matching over the CA 

iterations cuts across the Wolfram and Li and Packard groupings. The pattern matching has 

affected the interpretation of the CA classes of behaviour, and therefore the input to the 

synthesiser is now independent of the original (4 or 5) CA groupings (as shown in table 4.3). 

(It should be mentioned that the author of this thesis examined further initial seeds and 
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studied the pattern-matching outputs through visual investigation. The obtained result on the 

three grouping behaviours persisted for those cases as well.) 

4.4 Investigation on LPM output and Zipf’s law 

 

 Figure 4-7 Various examples of Zipfian distributions for different CA and Pattern-matching rules. 

Zipfian distributions for (a) rule 168 : pattern 4, (b) rule 11 : pattern 2, (c) rule 38 : 

pattern 16, (d) rule 110 : pattern 5, (e) rule 11 : pattern 13, (f) rule 22 : pattern 1, (g) 

rule 27: pattern 2, (h) rule 51: pattern 13, (i) rule 27 : pattern 20. 

In this section, Zipfian metrics are employed as an aesthetical measurement to study 

LPM outputs. The values achieved from the pattern-matching rules for the 88 CA rules were 

applied for investigating the behaviour of LPM in terms of Zipfian distribution. The pattern-

matching rules outputs for each of the CA rules were ranked in compliance with their 

redundancy (a stage in the procedure for obtaining Zipfian slopes). Linear regression was 

applied on the rank and frequency of occurrence of the pattern-matching rule values. The 

obtained slopes and R-squared measurements characterize the Zipfian distribution and the 

precision of the linear regression fit respectively, (the procedure for determining Zipfian 
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slopes are described in chapter 2).  

Table 4-4 Zipfian slopes for some CA and pattern-matching rules examples. 

The first column on left depicts CA rules and the first row stand for pattern-

matching rules (please refer to table 4-5 for colour coding) (this table was 

originally presented in (Arshi & Davis, 2015)). In this table PM followed by 

numbers 1 to 9 stands for pattern-matching rule numbers. (The complete table 

can be found in Appendix D) 

 

 

The values of the twenty pattern-matching rules were extracted from 10000 iterations 

of CA progression. The Zipfian distribution characteristics of LPM outputs were studied 

from the five-hundredth to ten-thousandth CA iterations. This time delay is to let the CA 

progressions to reach stability after the initial state. Figure 4-6 and 4-7 (and figures in 

Appendix C) illustrate the linear regression lines fitted to Zipfian data distribution of LPM 

outputs for specific CA rules. Table 4-4 depicts the obtained Zipfian slopes for a range of 

CA rules and pattern-matching rules. The subfigures in figure 4-6, and 4-7 have colour-coded 

labels in their upper left corners. The cells in the table 4-4 are colour coded as well (the colour 

coding are defined in table 4-5). 

The remainder of this section provides an analysis on the colour coding given for table 

4-4 (the complete table can be found in appendix D). The colour coding were determined 

based on a scrutinized comparison over the results from auditory tests together with visual 

study performed on the LPM outputs, and the Zipfian data. Most of the parameters attained 

CA 

rule 

PM1 PM2 PM3 PM4 PM5 PM6 PM7 PM8 PM9 

168 -2.53 -4.43 -3.12 -2.87 -2.53 -2.53 -Inf -4.43 -0.61 

11 -2.33 -1.21 -2.52 -2.78 -1.94 -2.19 -1.96 -2.00 -0.75 

27 -1.54 -3.37 -1.57 -3.15 -1.60 -3.30 -1.61 -3.13 -1.99 

38 -3e-4 -1.18 -0.11 -1.74 -1.22 -0.93 -1.36 -1.19 -3e-4 

51 -3.30 -3.18 -3.19 -2.84 -3.28 -3.28 -3.34 -3.00 -1.95 

22 -2.60 -2.86 -2.96 -3.07 -3.26 -2.94 -3.44 -3.29 -1.64 

110 -3e-4 -3e-4 -3e-4 -3e-4 -Inf -Inf -Inf -Inf -3e-4 
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from the Zipfian slopes are in accordance with the investigations performed in the previous 

section on the musicality of LPM outputs. This means that the Zipfian results are as expected 

according to the output graphs and auditory tests from the previous section.  

Table 4-5 Colour coding interpretations in terms of confusion matrix.  

Colour Coding Colour interpretation Wolfram CA Classes Number of occurrences 

 FN 2, 3 207 

 FP 1, 2-2, 3 30 

 TN 1,2,3,4 1031 

 TN 1, 2-2, 3 71 

 TN 1, 2-2, 2-3, 3, 4 167 

 TP 2-2, 3 254 
 

In the remainder of this section, the confusion matrix is built to investigate how the 

predicted and actual classes overlap with each other. The target classes were yielded by 

human decision as described in the previous section. The human labelling was performed 

according to the auditory tests on LPM outputs and by investigating the LPM outputs 

presented in graphs as in figure 4-6. The LPM outputs were obtained by varying CA rule 

numbers and pattern-matching rule numbers. The predicted classes were obtained by 

studying LPM outputs musicality in terms of Zipf’s law. The slopes of the linear regressions 

were used to categorize the musicality of LPM outputs. The slopes which were mostly near 

to the Zipf’s ideal (-1) govern the LPM output as being musical. In this experiment, it was 

decided that Zipfian slopes between -2.1 and -0.6, are expected to have musical LPM outputs 

(This range was obtained empirically and for the case of LPM outputs). The colour coding 

in the tables 4-4, and 4-5  have the following meanings: 

❖ The rusty orange cells show the cases (LPM outputs) where the distribution follows 

Zipf’s law (slopes between -0.6 and -2.1). The auditory tests and studies on the LPM 

output graphs demonstrated musical LPM outputs for these cases. 
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❖ The yellow cells indicate that the LPM outputs have minus infinity slopes in their Zipfian 

distributions. The auditory tests and studies on the LPM output graphs had also shown 

non-musical results for these cases.  

❖ The dark green cells stand for monotonous LPM outputs according to Zipfian slopes 

(slopes less than -2.1 excluding minus infinity). The auditory tests and studies on the 

LPM output graphs had also demonstrated non-musical LPM outputs for these cases. 

❖ The light green cells depict the situations in which the author found the LPM outputs 

pleasing to hear and/or the LPM outputs graph demonstrated their musical 

characteristics. Therefore, the author expected the LPM output to have Zipfian ideal 

parameters, however, the obtained Zipfian parameters were found to be far from ideal. 

❖ The light blue cells demonstrate the cases where the Zipfian distribution is nearly ideal 

(slopes approximating to -1 and slopes between -0.6 and -2.1); however, the auditory 

tests and the study on the LPM output graphs proved to be the contrary. 

❖ The dark purple indicate the LPM outputs having Zipfian slopes near to zero, and 

according to the auditory tests and graphs the outputs are not expected to be musical. 

The author found the LPM outputs for these cases tedious and monotonous. However, 

according to Zipf’s law, zero value for slope govern the cases with high random events. 

A study on the LPM output graphs clarifies the reason for these situations (where the 

Zipfian slope is zero but the data has monotonous characteristics). In fact, in these graphs 

the logarithm of the frequency of occurrence of the events has almost the same values. 

Since there is limited number of such occurrences for these cases, the slope of the linear 

regression will tend to be zero. A sample of this case is depicted in figures 4-6:c, and 4-7 
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:c where the LPM outputs oscillate between two values, and the number of oscillations 

for the two values are equivalent. The logarithm of the frequency of occurrence of events 

would have almost the same values and the regression line fitted to these values will 

have zero slopes. The important thing to note is that although the Zipfian slopes do not 

show the true situation for these cases, they show that the LPM outputs are not musical. 

The items in the purple category are not expected to be musical (according to auditory 

tests and study of LPM output graphs) and the Zipfian slopes demonstrate that they are 

not musical. 

The confusion matrix in table 4-6 is defined in the following (Table 4-6 was originally 

presented in (Arshi & Davis, 2015)): 

• TP (True Positive) items have musicality according to human evaluation and their Zipfian 

slopes affirm their musical attributes (rusty orange cells). 

• FP (False Positive) are items that are not musical (the human investigations show they 

are not musical) but their Zipfian slopes indicate that they have musical attributes (light 

blue cells).  

• TN (True Negative) indicate items not labelled as musical by human and are correctly 

classified outside of the musical group according to their Zipfian distributions (yellow, 

dark green, and purple cells).  

• FN (False Negative) refer to cases with musical output (according to human critics), 

however, Zipf’s metric is not showing that (light green cells). 

The Accuracy, sensitivity, and specificity of the classifier are computed as 87%, 55%, 
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98% respectively. High accuracy indicates that the Zipfian values for LPM outputs are likely 

to predict the musical and non-musical samples correctly. Middle range rate for sensitivity 

suggests Zipfian classifier average ability for identifying musical elements. The specificity 

demonstrates its success rate in correctly excluding non-musical individuals.  

Table 4-6 Confusion Matrix.  

Confusion Matrix Musicality =True  Musicality=False  

Zipf’s musicality (Positive) TP (254 items) FP (30 items) 

Zipf’s musicality (Negative) FN (207 items) TN (1269items) 

4.5 Applying Zipf’s Law on a Crafted Sequence of Voices 

  

 

 Figure 4-8 Examples of Zipfian distributions for the first experiment  

Voices of random length, up to 10000 CA iterations,with obtained results of (a) 𝑠 =
−1.44, 𝑟2= 0.66, (b) 𝑠 = −3.06, 𝑟2= 0.81, (c) 𝑠 = −1.91, 𝑟2= 0.96. 

In the previous section the musicality of LPM outputs were studied individually for all 

the combinations of 88 CA rules, and 20 pattern-matching rules. In this section, two further 

experiments are conducted, where sequences of LPM outputs were investigated for their 

musicality based on Zipf’s law. This section tests the assumption that sequences of LPM 
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voices are more likely to achieve Zipfian ideal distributions rather than single LPM voices. 

In the first experiment, 100 sequences were produced by randomly juxtaposing LPM 

outputs consisting of lengths up to 10000 iterations. The LPM outputs were selected 

randomly from all the possible configurations for CA rules and pattern-matching rules. In the 

first stage, the length of voices were randomly chosen amongst the total number of CA 

iterations (10000). The obtained Zipfian slopes range from -3.06 to -1.44 and their respective 

r-squared values are 0.81 and 0.66. Figure 4-8 illustrate the Zipfian distributions for three 

sample sequences.  

Figure 4-9 Examples of Zipfian distributions for the second experiment  

Voices of random length, up to 20 CA iterations, with obtained results of (a) 𝑠 =
−0.89, 𝑟2= 0.91, (b) 𝑠 = −1.56, 𝑟2= 0.96, (c) 𝑠 = −1.36, 𝑟2= 0.97. 

In a subsequent experiment the length of each of the voices were limited to consist of 

maximum 20 CA iterations. It was assumed that by decreasing the length of each of LPM 

voices in the sequences, the monotonicity of those characteristic elements would be lowered, 

while the diversity of the LPM voices presented in the sequences might resulted in having 
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sequences with acceptable ranges for Zipfian slopes. In this last experiment, the minimum 

and maximum achieved Zipfian slopes were reported to be -1.56 and -0.89; and the R-squared 

values were 0.92 and 0.91. Some examples are depicted in figure 4-9. The experiments imply 

that sequencing voices with more appropriate characteristics are more likely to achieve better 

Zipfian results.  

4.6 Why Evolve LPM Output 

Tailoring the aesthetically pleasing combinations from the possible space of LPM 

emerging voices is a task, which seems to be consistent with the usage of evolutionary 

algorithms. The pattern-matching rules over CA define structured sounds known as 

voices. The applications of genetic algorithms have the possibility to tailor sequences 

of LPM output voices to make them aesthetically acceptable to audience. The search 

for finding optimal solutions is guided by assigning higher credits to more competent 

sequences.  

The application of genetic algorithms has special necessities in search and optimization 

of musical sequences. Defining the search space; specifying the search space 

constraints; and the choice of appropriate fitness functions (Burton & Vladimirova, 

1999) are some of the requirements for designing an evolutionary framework. There 

are infinite possibilities for generating music; therefore, it is necessary to specify 

suitable constraints to limit the search space. An idea could be to keep those melodies 

that conform to ideal Zipfian slopes and to discard the pieces that do not conform to 

the pre-determined aesthetical standards. Associating the music evolution to GA 
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progression is another criterion that needs to be addressed. In fact, we need to clarify 

how the audio compositions are influenced by genetic algorithm operators.  

4.7 A Design for Evolving LPM Output Using Genetic Algorithm 

In the beginning of this chapter, LPM outputs were defined as a set of voices. These 

voices can be assimilated to musical motives of varying lengths. Crafting competent 

sequences of voices was recognized to be a suitable problem for evolutionary algorithms. In 

this section, sequencing LPM voices is taken as a search problem for producing aesthetically 

pleasing melodic structures. Designing such a system gives raise to the following questions 

(Arshi & Davis, 2016): 

• How to design an efficient search space traversal, which resolves the sequencing 

problem within the constraints of given hardware resources? 

• What are the possible approaches for sequencing voices in an aesthetically pleasing 

manner?  

• What are the possible designs for the genotypes and phenotypes of a musical sequencer 

based on LPM?  

• How to define musical critiques in order to criticize the musicality of LPM sequences? 

The number of possible LPM voices are specified as  887+4 ∗ 207+4 ∗ 𝑡, in which 𝑡 is 

the number of CA iterations involved in generating LPM voices. It was previously stated that 

this number is reducible to  883 ∗ 203 ∗ 𝑡 to simplify the current evolutionary problem at 

hand. Evolving LPM sequences based on their melodic structure and acoustics require the 

definition of a multi-optimization framework. The first search problem would target 
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competent structures for the melody, including pleasing combinations of pitch frequencies, 

and note durations. The second search problem contributes to the optimization of the 

synthesizer parameters like ADSR envelopes. This division would provide different 

categories for exploration. Aesthetical critics required for evaluating the different dimensions 

of the produced audio would have different natures. However, in this thesis the focus will be 

kept on the  883 ∗ 203 ∗ 𝑡 number of LPM voices. The evolutionary framework would be 

based on evolving sequences of LPM voices considering their melodic characteristics. 

The definition of a search space consisting of all of the possible sequences of LPM 

voices is nearly impossible. Therefore, other approaches should be taken into account in order 

to reduce the search space by a notable amount. The definition of the search space should 

also consider our current hardware, and software facilities. Selecting a limited number of 

sequences of voices and evolving them at each time step of the evolutionary algorithm would 

be a feasible solution. During the evolution of the LPM sequences, all the involving 

parameters change dynamically to fulfil the predetermined musical expectations. Gradual 

changes of musical parameters provide general improvements in each generation. In the 

proposed evolutionary framework, there are no guarantees for having unique solutions to 

musical problems. In fact starting from the same initial conditions, the exploration may result 

to differing sets of LPM sequences in every execution.  

A suitable design of genotypes and phenotypes are necessities for an efficient search. 

The genotypes are the underlying codes, which manifest a more tangible level of behaviour 

or appearance that is known as the phenotype. For example, the hair colour is coded in genes. 

The hair colour seen as brown, blonde, etc., are known as phenotypes. In the LPM system, 
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the genotypes are the set of genes coded whether as binary or integer representations. The 

phenotypes are the audio sounds, which are heard as the characteristics of the individuals. In 

the beginning of the next chapter, the genotypes are defined as sequences of values, which 

embed the required information for producing audio pieces. 

Zipfian aesthetical measurements were selected as critics for determining the 

musicality of the generated LPM sequences. In the next chapter, a fitness function will be 

defined with a core based on Zipfian metrics extracted from Persian music. This fitness 

function is responsible for giving more credits to LPM sequences with more acceptable 

Zipfian distributions based on Persian music. 

4.8 Chapter Summary 

This chapter presents one of the fundamental experiments of this thesis. LPM was 

introduced which works on the basis of pattern-matching rules. The pattern-matching rules 

extract features from CA progression and feed a Persian musical instrument synthesizer. The 

emergent behaviour of CA is the heart of our machine composition system. Different choices 

of CA and pattern-matching rules once given, define the parameters of the synthesizer, and 

therefore they produce voices. These voices can be assimilated to musical motives.  

In the next step the output of the LPM system were studied according to their musicality 

and in terms of Zipf’s law as an aesthetical criterion. It was illustrated that the musicality of 

the produced audio can benefit from sequencing different CA rule behaviours and pattern-

matching rules. This effect was studied through contrasting limited CA and pattern-matching 

rule output behaviours, which did not produce desirable Zipfian characteristics.  

It was demonstrated that sequencing those voices might need to undergo many tailoring 
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processes to produce the final desirable outcome. Since LPM system deals with a large 

number of possible voices, evolving them in an evolutionary environment might be the first 

choice in such a design. In the next chapter, an architecture is proposed for performing such 

experiments on the output of LPM voices.  
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Chapter 5. Evolving LPM Voices using 

Genetic Algorithms 

A computational framework for evolving LPM voice sequences was proposed in the 

previous chapter. In this chapter, an experiment is performed based on the idea of exploring 

the LPM audio space by the application of evolutionary algorithms. The audio space is a 

conceptual space consisting of all the combinations of LPM voices. There are countless 

possible sequences of voices available. Exploring this space is assimilated to exploring the 

space of creativity in the hope for finding new musical forms or artefacts. In this chapter, 

aesthetical measurements based on Zipf’s law are employed as a base for designing fitness 

function for an evolutionary algorithm. An evolutionary environment is developed to enable 

the search problem contributing to the melodic structure of LPM output. 

5.1 The Design of LPM Sequencer based on Zipfian Metrics  

5.1.1 Genotype Representation 

The evolution of LPM sequences by the application of genetic algorithm (GA) requires 

the design of a competent evolutionary computational environment. This involves the 

establishment of the representation of genotypes, and phenotypes. The design of the genetic 

operators and fitness function are other important requirements of an evolutionary 

framework. Two possible representations of genotypes are suggested in this chapter.  

The evolution of first level of genotypes can be assimilated to evolving the musical 

motives in a sequence. The altering of the musical motives in the first level can consist of a 
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dramatic change to the musical motive as well as replacing it with a complete different 

musical motive. The second level of evolution gives access to elements of musical motives 

including musical notes frequencies, note durations, and note onset times. The second level 

of evolution alters a small proportion of the musical notes and/or durations and note onset 

times in a musical motive.  

Voice 1, Layer 1 (from 1 to 9) Voice 2, Layer 1(from1 to 9)

Cellular 

Automata

 Rule #

Pattern

Matcher 

Rule #

Number 

of 

Generations

Cellular 

Automata

 Rule #

Pattern

Matcher 

Rule #

Number 

of 

Generations
...

 

Figure 5-1. The genotypes in the first level for each of the three constituent layers. 

Voice 1 Voice 2 Voice 3 Voice 4 ... Voice n

 

Figure 5-2. The genotypes in the second level, after expanding the genotypes in the first level. 

In the first proposed representation, the genotypes consist of sequences of triplet 

blocks. The values in each block stand for the CA rule number, pattern-matching rule 

number, and the number of CA iterations. A schema of the described genotype representation 

is presented in figure 5-1. The alternative representation of genotypes incorporates the 

expanded version of the triple-block schema, demonstrated in figure 5-2. In this level of 

presentation, the genotypes are the outputs of pattern-matching rules applied on t iterations 

of CA progressions for each of the triple-blocks in the first level genotype format. The 

sequences of blocks are expanded in their representational form in a way that individual 

elements in the sequence are subject to evolution. Genotypes in their expanded format allow 

for genetic operations which have more detailed impact on the sequence. Therefore, their 

associated crossover and mutation operators cover alterations at an elemental level (for 

3 3 
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instance pitch frequency or duration of a musical note).  

The two designs for genotypes can be considered as representations prepared for two 

different levels of evolution (which can occur sequentially or independent of each other). In 

the first level of evolution, the nature of a whole triple blocks in a sequence are subject to 

evolution. Each of the triple-blocks represents one voice (or musical motive). For instance if 

the CA rule number and/or the pattern-matching rule number changes for a block as a subject 

of evolution, the whole voice associated with the triple block will change. Extending the 

genotypes provides the potential for defining additional operators for evolving the sequence 

in a more scrutinized manner and having access to the elements of the musical motives. The 

two different genotypes require the design of distinct set of crossover and mutation operators 

regarding their natures.  

In the proposed genotype architectures, the length of the genotypes may be different 

from each other. Therefore, the musical pieces produced by this method would have varying 

lengths. Nevertheless, due to potential computational overload, this length has a maximum 

constraint. It is notable that the allowance of having various numbers of musical motives 

would produce sequences with variable lengths. Additionally, the number of CA iterations 

for each of the voices governs the length of the sequences from the aspect of number of notes 

in the musical motives. However, the sequences are subject to evolution and their lengths 

may vary throughout the execution of the algorithm according to their competence.  

5.1.2 Genetic Algorithm Operators 

Evolutionary algorithm operators, are tools which assist in the navigation of search 

space (Burton & Vladimirova, 1999). In this section a series of genetic algorithm operators 
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are presented. The selection, crossover and mutation operators are inspired from (Goldberg, 

1989; Lo, 2012; Matlab, 2016) and justified for evolving LPM sequences. Each of the 

chromosome blocks consists of the required information for producing musical motives. 

Then there are sequences of blocks which would be translated to a sequence of musical 

motives.  

Apart from traditional or classical genetic operators (Goldberg, 1989; K.F. Man et al., 

1999), additional sets of operators are proposed in (Lo, 2012; Manaris et al., 2007) and are 

specifically designed for working in the musical search space. These types of operators are 

inspired from compositional techniques as well as transposition, retrograding, rearranging, 

and swapping the musical motives. These sets of operators are customized for evolving LPM 

sequences as described below.  

5.1.2.1 Mutation Operators 

A proportion of the individuals are selected for performing mutation operator on them. 

Mutation fraction parameter settles the fraction of the population which are nascent by 

mutation operation. Mutation rate parameter determines the probability of a genome in an 

individual chromosome undergoing the mutation process. Various mutation operators 

examined in the implementation are: 

• Classic Mutation: Mutation probability determines whether each of the genes along the 

chromosome would undergo the mutation operation. Each of the genes are allocated a 

random number. In case this number is greater than the mutation probability, the gene 

will mutate, otherwise it will be left untouched. The rest of the mutation operators are 

inspired by (Lo, 2012) and are in the following.  
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• Multiple Element Modification: 𝑁 random genes are chosen along the chromosome. The 

selected genes are then subject to mutation.  

• Segment Alteration: A portion of elements are selected from the chromosome and the 

associated genes in the chromosome are altered.  

• Segment Placement: Two segments are selected randomly (within a single chromosome 

or two different chromosomes). The fitter segment is replicated and replaces the weaker 

segment. Determining the competence for each of the segments follows the same 

procedure for obtaining the fitness value for the individuals in the population. 

Alternatively, the fitness of the randomly selected segments can be measured in 

association with their contribution in the fitness of the chromosomes that they are going 

to be embedded. 

• Segment Retrograde: The elements in a randomly selected segment are sorted in a reverse 

manner.  

• Segment Transposition: A constant value is added or subtracted from the elements in a 

randomly selected segment. The constant value is chosen in a way that performing the 

computation does not hurt the acceptable threshold ranges of the element values.  

• Segment Ordering: The elements in a randomly selected segment are ordered in an 

ascending or descending manner according to the elements’ values. 

• Segment Copy/Paste from musical dataset: A segment from a musical piece in the 

original database is randomly selected and then replaces a random segment from an 

individual in the population.  
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5.1.3 Fitness Function Design 

One of the challenges in the design of an evolutionary framework is the determination 

of a suitable fitness function. In this thesis, aesthetical aspects of the generated audio are the 

focus of attention. These are aspects which contribute to aesthetical criteria while preserving 

the novelty of the generated materials and directing the formation of voice sequences to be 

comparable to the style of traditional Persian music. Fitness function built on the basis of 

Zipfian metrics are aimed for directing the evolution towards producing sequences which 

have Zipfian metrics similar to those of Persian music. The aesthetical critic is a support 

vector machine regression (SVR) model which is trained to differentiate traditional Persian 

music and LPM sequences. The dataset for training the SVR model consists of Zipfian 

metrics extracted from traditional Persian music and LPM sequences. In order to train the 

SVR model, the Persian music pieces and LPM sequences are labelled as 1, and 0 

respectively. When the SVR model is used as fitness function, it assigns decimal point 

numbers to the members of the population. The assigned credits determine the similarity of 

the generated sequences to traditional Persian music pieces or to LPM sequences. The higher 

the score attained, the more chances are given to the genes survival and it will become more 

likely for the genes to pass their information to the next generations. In this chapter, all the 

required considerations for designing the fitness function are presented. 

The reason for applying support vector regression models in this thesis instead of 

support vector machines lies behind the values that the trained SVM and SVR models achieve 

by being the fitness functions of an evolutionary algorithm. Support vector machines obtain 

0 or 1 values as the label of classes for the newly generated audio samples (as a result of 
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evolution of LPM sequences). However, in the current research, decimal point numbers (as 

produced by SVR) are more desirable as fitness function values for utilization in the genetic 

algorithm. 

5.1.3.1 Training Dataset 

One of the obstacles in the way for doing research on traditional Persian music is the 

lack of existence of standard MIDI databases. The existence of a standard pre-processed 

database help different researchers to compare their results while applying various tools. 

Having such MIDI databases would make the calculation of Zipfian metrics easier and more 

precise. This gap is usually fulfilled by signal processing tools and working with audio files 

instead. For this project, a MIDI like database was prepared by the help of signal processing 

toolboxes. The extracted features from Traditional Persian music audio data includes pitch 

frequencies of notes, note durations, and note onset times. This section delivers the procedure 

for preparing the traditional Persian music dataset and also discusses about how the collection 

of LPM sequences were arranged.  

The traditional Persian music audio databases were selected from Radif musical pieces 

collection from “Ostad Faramarz Paivar” and were performed and recorded by “Ostad Saeed 

Sabet” (Paivar & Sabet, 2004). The musical instrument utilized for performance was Persian 

Santur. The permission for academic usage of the music recordings were granted from “Ostad 

Saeed Sabet”. There are a total number of 110 pieces from 10 different Dastgāhs present in 

the audio database. The lengths of the musical pieces vary from around 50 seconds to 5 

minutes. Signal processing tools and techniques were required for extracting the musical 

features from the audio files. The pitches and note onset times, and durations were attained 
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for producing a symbolic dataset. Various toolboxes were studied as well as Aubio, and MIR 

toolbox (Lartillot, 2013). MIR and MIDI toolboxes were widely used in this research for 

feature extraction purposes. One reason for choosing those toolboxes was that the scientific 

experiments for studying the nature of Liquid Persian Music (LPM) voices were written in 

Matlab for its suitability for working with matrices (However, LPM user interface was 

written in c++). Applying those toolboxes helps to stay in the same experimental 

environment.  

An algorithm was setup for extracting the notes information as well as duration and the 

pitch frequencies in each of the musical files. Note onset times determine a series of 

consecutive times when the musical notes were excited. This specification was detected by 

the application of mironset command from MIR audio library which discovers the bursts of 

energy. The mironset command is followed by mirsegment and mirpitch commands as 

described below. The segmentation of the audio pieces were performed in the next step in 

regards to the achieved onset times. In other words, the notes starting times are the beginning 

of the segments. Each of the segments were analysed for recognizing the note’s dominant 

pitch by the application of an autocorrelation algorithm.  

The auto-correlation algorithm may achieve slightly different results for the note 

pitches as they occur in the musical piece. However, obtaining Zipfian metrics for musical 

events requires the calculation of the number of occurrence of those events. Therefore, further 

refinements on the achieved pitch values were required. On this account, the concept of pitch 

bins was introduced for justifying the pitch values. The midpoints of the pitch bins were 

selected to be the standard pitches of nine-bridged Persian Santur with their various tunings 
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for performance in different Dastgāh. A table of the 27 Santur notes and their pitches are 

provided in Appendix E. The obtained pitch values for musical notes were standardized 

according to the pitches in table E-1. 

Extracting the onset times and duration of the musical notes were obtained by following 

the mironset command using MIR toolbox. The existence of ornamental notes and nature of 

Radif music makes the definition of duration bins complicated. In fact, one of the 

characteristics of Radif of Persian music is that most of the pieces do not necessarily follow 

a tempo; the duration specification of musical motives may vary during the performance 

depending on different factors. Some of these factors reflect the personal moods of the 

performer or the singer expressions during the performance, or the audience preferences. The 

implication derived from this discussion is that the quality of the performance of Radif differs 

in any single performance. Perhaps this reason makes the preparation of standard MIDI 

databases more difficult. The definition of the duration bins is only possible for the pieces 

which follow a tempo. The note onset times and durations values were extracted from music 

pieces and were directly inserted in the MIDI tables without using duration bins. This is 

unlike the cases of note pitches which were standardized using pitch bins.  

Table 5-1.The Normalization value ranges for the musical dimensions in LPM sequences. 

Musical Dimension Metric Lower Range Upper Range 

Pitch Frequency Hertz 100  3000  

Duration seconds 1/16  2  

Onset seconds 1/16  2  
 

In the remainder of this sub section, there would also be a look towards how the LPM 

sequences dataset were prepared for training SVR model along with traditional Persian 

music. The LPM sequences consist of a consecutive arrangement of voices; each of which 
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were obtained by applying a pattern-matching rule over 𝑡 number of iterations of a CA rule 

progression. The length of a sequence of voices equals the total number of iterations applied 

in such a system. Since each of the voices can have 11 governing dimensions as mentioned 

in the end of section 4.2 in chapter 4, the production of databases can continue to 11 

dimensions. The evolution of melodic structures of LPM sequences is the focus of the 

research in the first place. Therefore, the pitch, duration, and onset times were taken into 

account as 3 dimensions out of the 11 dimensions. Evolving the audio sequences based on 

the remaining dimensions is subject for future investigations and are out of the scope of the 

thesis. This is also because the Persian music databases at hand are not based on the alteration 

of ADSR envelopes since a traditional musical instrument is applied. Table 5-1 demonstrates 

the normalization parameters used for preparing LPM sequences database (The complete 

table for normalizing all the 11 governing dimensions can be found in table E-2 in Appendix 

E for the interested reader). 

The length of the sequences may differ from each other; however, there should be a 

correspondence between the lengths of the associated sequences in different dimensions. If 

each of the sequences occupies a record in the database, the number of columns would be 

dissimilar; however, the identical records in the databases associated with the data 

dimensions would have the same lengths since they correspond to the different dimensions 

of the same musical events.  

The parameters should also make sense from the aspect of the structure of the music as 

well. For example, the time distance between consecutive notes should not take too long in 

a single composition. For example, ten minutes is not acceptable as note duration. The 



 

93 

 

normalization makes sure that there is rationality in the eventuality of the musical events and 

the synthesizer parameters. Of course, putting this kind of limitation on the note duration 

might be in contrast with willing to break the norms and expectations in order to have 

outcomes which might be considered as creative. For instance, the work of John Cage in his 

composition “four minutes and 33 seconds of silence” (Gutmann, 1999) is an example of a 

creative artefact which surprised the audience by breaking the music norms and expectations. 

However, the productions of the designed system in this project are no longer than a few 

minutes and we did not intend to produce audio which might have been almost silent. The 

audio samples were selected to be short for the purposes of the auditory surveys designed in 

chapter 7.  

5.1.3.2 Zipfian Feature Extraction 

The Zipfian metrics were extracted from both the traditional Persian music database at 

hand and from LPM sequences samples. The number of musical pieces are 110 in the 

database which were later segmented to 20 second pieces without overlapping. This provided 

766 training samples from the Persian music database in total. The number of samples in the 

LPM database have also been selected to be 766. The length of the LPM sequences in time 

have also been selected to be approximately 20 seconds each. The number of instances in the 

training dataset becomes 1532 (766 Persian Music segments +766 LPM sequences). A total 

number of 248 Zipfian features were extracted from each of the available pieces in the 

databases. The Zipfian metrics can be calculated in three different stages all of which 

contribute to the final Zipfian metrics. These stages or categories are defined by (Manaris et 

al., 2005) and are as follows:  
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• Regular Metrics: The sets of values in regular metrics were achieved by taking the first 

level musical events directly into account. This includes the counts of pitch, duration, and 

note onset occurrence in a musical piece. 

• Higher Order Metrics: These metrics calculate differentiations of the events from the 

previous stages. The differentiations are often calculated up to three or four degrees. 

Further degrees of differentiation may not reveal further information. The differentiations 

were achieved by taking the differences between the two events in the regular metrics. 

The derivatives of regular metrics were calculated up to 4 levels. Some of the examples 

of higher order metrics are duration_d1, duration_d2, duration_d3, duration_d4. 

• Local variability metrics: The metrics in this category were dedicated to the calculation 

of the entropy difference of an event from the local mean. These metrics were obtained 

from the regular metrics and the attributes up to second degree derivatives. For instance, 

Duration_LV, Duration_d1_LV, and Duration_d2_LV are some of the attributes which 

were built upon the duration matrix.  

5.1.3.3 Data Cleaning 

Data cleaning is one of the important steps in the process of preparing the data for 

training to learning machines. The Zipfian metrics obtained from traditional Persian music 

and LPM sequences were studied in detail for further refinements prior to the achievement 

of the final SVR model as fitness function. Data cleaning makes the fitness function more 

efficient, since only the necessary attributes will be left for training to the model. As will be 

discussed in this section, only a few number of attributes were selected for having a machine 

learning model capable of crediting the items. The data cleaning performed in this section 
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was assisted by Weka (Hall et al., 2009).  

Table 5-2. A list of example attributes which have been removed.  

Supporting graphs showing their value distribution are available in figure 5-3. 

Attribute Name Feature Category Reason Removed 

Durations First level metrics 

Non- overlapping classes 
Melodic_Interval_d2 Higher order metrics 

Pitch_distance2_d1_LV Higher order Local variability metrics 

Duration_Bigram_LV Local variability metrics 

Harmonic_Bigram_d2 Higher order metrics 

Zero, Nan or minus infinite 

values for one or both of 

the classes 

Duration_Distance2_d1 Higher order metrics 

Harmonic_Interval_LV Local variability metrics 

Combined_Pitch_Duration First level metrics 

Harmonic_4gram_d2 Higher order metrics 

Chord_Progression_d3 Higher order metrics 

Harmonic_Bigram_d4 Higher order metrics 

Melodic_Consonance_d2 Higher order metrics 

Quantized_Duration_Distance1_LV Local variability metrics 

Harmonic_Consonance First level metrics 
 

The data cleaning phase would cut down the burden of computing a large number of 

Zipfian features for all the population member sequences in each of the evolutionary 

generations. The process of data cleaning started with identifying attributes with large 

number of same values. They were counted as redundant data and been eliminated from both 

of the traditional Persian music Zipfian metrics and LPM Zipfian metrics. The attributes with 

redundant values came with a large number of minus Infinite (-Inf) and NaN, or zero values. 

Minus infinite (-Inf) indicates that the measured musical data is monotonous. NaN (Not a 

Number) shows the unavailability of the related event so that it could not be measured. 

Despite the meaning NaN and -Inf values have in Zipfian terminology, when they are overly 

repeated for various records, it makes the related attributes biased and meaningless. There 

were also few records present in the database which had single minus infinite values. These 

records were also eliminated due to the fact that the attributes values would make the Weka 

classifier act abnormally and produce erroneous results. Performing the data cleaning in this 
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manner left the database with 82 attributes out of 248 features. 

 

Figure 5-3.Some examples of the discarded attributes. 

The red colour stands for samples from LPM sequences class, while the blue color 

shows the samples from Persian music class. Discarded attributes are those which 

have undefined, minus infinity, many zeros, or redundant values over one or both 

classes. This also includes the attributes which do not have spectacular overlapping 

over the two classes (It is discussed in the main text that we are not looking for 

these kind of attributes although they have strong dichotomizing characteristics).  

Our data cleaning procedure also followed another step, which is not often common in 

general practices of data cleaning and is specific to this application. In machine learning, the 

classification usually follows making progress into producing strong dichotomizers between 

the classes under study. Studying the attributes in the categories may reveal those that are 

non-overlapping. Obviously, in the classification practices, attributes with such 

specifications will overcome the rest of the attributes and the machine learning tools will rely 
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on those certain attributes for performing the classification tasks. The point to make here is 

that, despite the discriminating power of non-overlapping attributes, they are undesirable 

attributes in this research and the attention was to eliminate those bipolar attributes in the 

data cleaning phase. Table 5-2 and figure 5-3 provide a list of undesirable attributes examples 

which were removed from the databases due to their redundancy or having bipolarity 

characteristics. 

 

Figure 5-4. Example of attributes with acceptable overlapping classes.  

The red colour stands for smaple from LPM sequences class, while the blue color 

shows the samples from Persian music class. 

The overlapping attributes are of interest in the training of the SVR fitness functions. 

The reason for omitting the bipolar attributes is that a fitness function based on bipolar 

attributes would make most of the generated audio samples to be discarded in the first few 

generations without giving them the chance to evolve and contribute in the evolutionary 

process. On the other hand, the designed fitness function based on overlapping features would 

give higher credits to those sequences which bear more resemblance to traditional Persian 
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music Zipfian metrics and will try to evolve LPM sequences in the style of Persian music. 

Taking out the non-overlapping attributes would leave the database with 49 features. Figure 

5-4 depicts features that possess overlapping specification over the distribution graphs of 

records from both classes of LPM and traditional Persian music Zipfian metrics.  

5.1.3.4 Attribute Selection 

Table 5-3. Example of Attribute Selection procedure. Values less than 0.1 are colour coded. 

Attributes coded yellow have values greater than 0.1 for all metrics. (Full table in table F-1 in 

Appendix F )  

Attribute 

Number 

Attribute Name 

ReliefF 

Gain 

Ratio 

Information 

Gain 

Symmetrical 

Uncertainty 

1 Pitches 0.0638 0.0862 0.1304 0.1038 

2 Chromatic 0.0854 0.1504 0.2489 0.1875 

3 Pitch_Distance1 0.0581 0.2671 0.5951 0.3687 

4 Contour_Melody_Pitch 0.1122 0.2683 0.5462 0.3599 

5 Melodic_Bigrams 0.0232 0.0524 0.0474 0.0498 

6 Melodic_Trigrams 0.0205 0.0984 0.1373 0.1146 

7 Melodic_4grams 0.0211 0.1193 0.1864 0.1455 

8 Contour_Melody_Pitch_d1 0.194 0.3681 0.7087 0.4845 

9 Contour_Melody_Duration_d1 0.1309 0.2843 0.6016 0.3862 

10 Melodic_Bigram_d1 0.0298 0.1456 0.2104 0.1721 

11 Chromatic_DataSet_d2 0.1428 0.3007 0.5296 0.3836 

12 Pitch_Distance1_d2 0.0585 0.346 0.6392 0.449 

13 Contour_Melody_Pitch_d2 0.0677 0.2372 0.4624 0.3136 

14 Contour_Melody_Duration_d2 0.0311 0.0955 0.1797 0.1247 

15 Chromatic_DataSet_d3 0.0425 0.1201 0.19 0.1472 
 

After performing initial data cleaning, the second phase would be the attribute selection 

phase. The attributes were evaluated in Weka by different algorithms such as ReliefF, Gain 

Ratio, InfoGain, and Symmetrical Uncertainty by the application of Ranker search method 

(Kononenko & Kukar, 2007) (as described in chapter 2).  

The attributes were ranked in descending order by Weka and were assigned scores 
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between zero and one. The given values assist in the detection of competent features. The 

underlying attribute selection process started with marking the attributes with evaluation 

values below 0.1 as undesirable ones. Table 5-3 depicts a small portion of attributes and the 

accredited evaluation values by different random search methods. The complete table is 

available in appendix F. Table 5-3 also illustrates the methodology for selecting the attributes 

consisting of four different ranker searches. The attributes were then sorted by their attribute 

numbers by the help of Excel custom sort. 

Table 5-4.Ten features having the values of greater than 0.1 among all evaluators. 

 Continuing the attribute selection process with CfsSubset Evaluation 

achieves 8 attributes shown in colour-coded format. 

Attribute 

Number 

Attribute Name 

ReliefF 

Gain 

Ratio 

Information  

Gain 

Symmetrical 

Uncertainty 

4 Contour_Melody_Pitch 0.1122 0.2683 0.5462 0.3599 

8 Contour_Melody_Pitch_d1 0.194 0.3681 0.7087 0.4845 

9 Contour_Melody_Duration_d1 0.1309 0.2843 0.6016 0.3862 

11 Chromatic_DataSet_d2 0.1428 0.3007 0.5296 0.3836 

19 Chromatic_DataSet_d4 0.1394 0.2269 0.4473 0.301 

26 Contour_Melody_Duration_LV 0.1242 0.2161 0.4945 0.3008 

27 Melodic_Interval_LV 0.1235 0.2762 0.4584 0.3447 

33 Chromatic_DataSet_d1_LV 0.1653 0.2829 0.5545 0.3747 

36 Contour_Melody_Duration_d1_LV 0.1644 0.3564 0.7508 0.4833 

42 Chromatic_DataSet_d2_LV 0.1838 0.4275 0.7631 0.548 
 

This would arrange different evaluators’ value for each attribute in one row, so that the 

evaluations can be compared with each other. Colour coding assisted throughout the attribute 

selection procedure. Those attributes which were not marked as undesirable in any of the 

evaluators’ categories win the selection process and will enter the final phase of cleaning 

before the training is performed. A total of 10 attributes remain which have the evaluation 

values greater than 0.1 among all the rankers. The number of the selected attributes shrinks 

further by the application of CfsSubset (Hall et al., 2009) evaluation. Eight attributes remain 
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in the final stage which are colour coded in table 5-4. As can be seen in the table attribute 

number 4, and 27 were discarded, although they have higher scores than attribute 19 in the 

symmetrical uncertainty column. The fact is that CfsSubset obtains the most competent set 

of attributes for classification.  

Table 5-5. Classification performance for SVM , J48, and NaiveBayes for attribute selection.  

The complete table is provided in table F-2 in appendix F. The first section of 

the table shows the results of SVM, J48, and naiveBayes algorithm on the 

original dataset with 248 features. The second section of the table shows the 

results of the classifiers with 49 features which were left after performing the 

attribute cleaning phase (The attributes with redundant values, so many Nan 

or minus infinite, or zero values were removed. In this phase the 

nonoverlapping attributes for the two Persian music and LPM pieces were 

also eliminated.) The third phase of attribute selection leaves us with ten 

features (ReliefF, Gain Ratio, Symmetrical uncertainty, and Information gain 

methods were used for performing attribute selection). The last phase of 

attribute selection after performing CfSSubset evaluation leaves us with 8 

feaures. Although the attributes were shrinked by a significant amount, the 

different classifiers maintain their performance. Working with a small 

number of attributes saves processing time in the computations of our 

evolutionary algorithm. All parts relate to 1532 instances in the training data. 

 

  

Number 

of 

Features 

Attributes 

Correctly 

Classified 

Instances(%) 

Sensitivity 

(%) 

Specificity 

(%) 
PPV (%) NPV (%) 

1 

SVM 248 100 100 100 100 100 

trees.J48 248 98.82 99.09 98.56 98.57 99.08 

bayes.NaiveBayes 248 99.80 99.61 100 100 99.61 

               

2 

SVM 49 100 100 100 100 100 

trees.J48 49 98.82 99.09 98.56 98.57 99.08 

bayes.NaiveBayes 49 99.80 99.61 100 100 99.61 

               

3 

SVM 10 99.67 99.35 100 100 99.35 

trees.J48 10 98.95 99.22 98.69 98.70 99.21 

bayes.NaiveBayes 10 99.80 99.61 100 100 99.61 

               

4 

SVM 8 99.73 99.48 100 100 99.48 

trees.J48 8 98.95 99.22 98.69 98.70 99.21 

bayes.NaiveBayes 8 97.78 99.61 99.87 99.87 99.61 

               
 

Table 5-5 shows the performance of various machine learning tools trained with 
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different number of attributes in various stages of data cleaning, and attribute selection. The 

number of features are 248, 49, 10, and 8 in the experiment. The result provided in the table 

witnesses that the classifiers are still able to perform outstandingly after the dramatic 

shrinkage of the initial attribute sets. The table shows that the eight subset of attributes has 

better performance than ten attributes for SVM model.  

5.1.4 The Genetic Algorithm Implementation 

GA evolution starts by generating the initial population of LPM sequences, each 

consisting of a level one genotype. The second level genotype is then expanded from each 

individual of the first type. It has been demonstrated that the types of operators which work 

on these genotypes are different from each other. However, the concept of GA stays the same 

for both of the models. In other words, they can be considered as two stages of evolution 

occurring one after another. This would provide the chance to study the effects of operators 

on the evolution of chromosomes in different levels. The program is designed in a way that 

these stages can occur consequently or the user can only choose one level of evolution as 

well as directly select to evolve the LPM sequences by the application of the extended forms 

of genotypes. The evolving sequences can be stored in a dataset for various generations. This 

gives more flexibility since the programmer can delve into the code for manipulating the GA 

operators for studying their effects and/or resume the evolving of the genotypes from a 

specific generation.  

The first population of genotypes were produced by generating random sequences of 

LPM in three dimensions. Each of the governing dimensions stands for pitch, duration, and 

note onset time information. The genotypes in the first level consist of the arrangement of 
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triplet arrays including CA rule number, pattern-matching rule number and the number of 

CA iterations. In the first level, the sequences are evolved based on the suitability of the 

triplets. The genotypes in the second stage can be considered as the extended format of the 

genotypes in the first level genotype. Once this stage is settled and/or specific number of 

iterations is visited, the second level of evolution starts by expanding the genotypes taken 

from the latest evolved generation of the first evolutionary stage. This is due to the nature of 

GA operators working on the genotypes which target the elements in a more scrutinized 

manner. Once the level one genotypes are decoded to their level two format, the 

transformation of the genotypes to their former format is irreversible. This means that the 

triplets in the sequence can no longer be reversed to the format of: CA rule number- pattern-

matching rule number- and number of CA progressions. In the second level, a variation of 

operators targets the sequences in elemental level and operators are based on some aspects 

of musical theory. For each of the GA iterations, the reduced set of Zipfian metrics were 

extracted from the individual sequences in the population.  

5.2 Results 

Table 5-6. GA Configuration Parameters for Graphs shown in Figures 5-5 to 5-9. 

 Parameter Fig a Fig b Fig c Fig d Fig e Fig f 

mutation_rate 0.8 0.8 0.25 0.5 0.5 0. 25 

mutation_fraction 0.9 0.9 0.25  0.5 0.5 0.25 

crossover_rate 0.5 0.8 0. 5 0.5 0.8 0.9 

 

In this section, the results of evolving LPM sequences are presented and further 

refinements are suggested. The experiment is conducted with 8 features after final attribute 

selection process for training the support vector regression model. The performance of the 
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algorithm is studied against different parameterizations and choice of operators, as indicated 

in table 5-6. Elite percentage and tournament size are fixed at 5%, and 5 respectively. Figures 

5-5 to 5-7 present the minimum, mean, maximum of the fitness function over GA progression 

for both genotype format levels. Figure 5-5 is associated with the first level of evolution and 

depicts gradual growth in the max of the fitness function values over 100 generations. 

 

Figure 5-5. Mean, min, and max of fitness values for the first level genotype. 

These subfigures illustrate the first level of evolution over 100 generations. This 

experiment is conducted with fitness function on the basis of 8 cleaned features. 

The x axis represents the evolution progression, while the y axis shows the fitness 

values. The 6 GA configurations for different subfigures are presented in table 5-6. 

The gradual growth in the values of the fitness function suggest the improvement of 

LPM voices from Zipfian aesthetical critics point of view.  

Figure 5-6 magnifies the max fitness function over 1000 generations in the first level 

of evolution. The first level of evolution shows improvement in the fitness values during the 

GA evolution. Figure 5-7 shows the result of the evolution after decoding the genotypes and 

performing the second range of operators (second level of evolution). This, as depicted, does 

not produce further improvements. This is in contrast with the first level of evolution where 

the fitness values shows gradual improvements.  
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Figure 5-6 Max of fitness values for the first level genotypeover 1000 generations. 

 These subfigures relate to the first level of evolution over 1000 generations. This 

experiment is conducted with fitness function on the basis of 8 cleaned features. 

The x axis represents the evolution progression, while the y axis shows the fitness 

values. The 6 GA configurations for different subfigures are presented in table 5-6. 

The gradual growth in the values of the fitness function suggest the improvement of 

LPM voices from the Zipfian aesthetical critcs point of view.  

 

Figure 5-7. Mean, min, and max of fitness values over 100 generation in the second level of 

evolution continued from the evolution in the first phase.  

This experiment is conducted with fitness function on the basis of 8 cleaned 

features. The x axis represents the evolution progression, while the y axis shows the 

fitness values. This sub figures illustrate the second evolution stage in the 

continuation of the first one. The 6 GA configurations for different subfigures are 

presented in table 5-6. Fitness function values suggest no further improvements in 

the quality of evolved voices considering the defined aesthetical objective based on 

Zipfian metrics. 
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Comparing the resulting figures in the first (figures 5-5, and 5-6) and second (figures 

5-7) levels of evolution show an improvement of the fitness values occurs in the first level 

of evolution, unlike the second level of evolution process. 

Figures 5-8 and 5-9 consider the progression of the mean value of the Zipfian slopes 

metrics in both evolution stages. This shows the effect of GA operators over the underlying 

metric for the two levels of evolution. High fluctuations in the Zipfian mean values over GA 

progression is a common characteristic over various parameterizations in the first level of 

evolution (figure 5-8). However, for the second level (figure 5-9) the mean values follow 

their alterations in a steadier manner.  

 

Figure 5-8. Mean of slope values for 8 features over 1000 generations using the first level format 

for the genotypes.  

The six GA configurations (a to f) for different subfigures are presented in table 

5-6. The mean values for the slopes undergo more fluctuation which show the 

effect of evolutionary operators in the first level of evolution. 

The reason for this effect is that the Zipfian metrics calculate the number of unique 

events regardless of the places of their occurrence. For instance, the Zipfian metrics of pitches 

occurring in the sequence remains the same and independent of the different arrangements 
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of the voices. On this account, a number of musical operations based on altering the order of 

elements in the sequences or swapping the segments does not have the desired effect on the 

fitness function values involved. The second level of evolution involves decoding the voices 

and applying a series of operators consisting of segment swapping and retrogration. 

However, they may have effects on the musical aspects of the produced audio which can be 

revealed in auditory tests or by other means of measurement.  

 

Figure 5-9. Mean of slope values for 8 features over 1000 generations using the second level format 

for the genotypes.  

The 6 GA configurations for different subfigures are presented in table 5-6. The 

mean values for the slopes tend to fluctuate around steady state values unlike the 

previous figure 5-8. This result shows that the genetic operators in this stage do not 

tend to improve Zipfian metrics over time, although they may improve the 

sequences in the auditory test. 

The experiment shows that this series of operators does not affect Zipfian values and 

therefore fitness values. Therefore, the fitness values tend to stay the same eventually. The 

defined fitness function based on Zipfian metrics is unable to reflect the changes occurring 

in the auditory sequences in the second level of evolution. 

An auditory survey was performed at this stage of the thesis. The evaluation criteria 
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and the result of the survey are reported in chapter 7.  It is worthwhile mentioning that the 

audience often reported some forms of discontinuity between the musical motives. This 

jumping effects between the musical motives is sourced from the fact that the LPM sequences 

were generated by random arrangements of voices in the initial population. It appears that 

Zipfian metrics were not successful in detecting these effects in the audio pieces. Therefore, 

some of these effects remained through the future generations. 

5.3 Going Beyond Exploratory and Transformational Creativity 

The evolutionary algorithm agenda discussed in this chapter was responsible for 

experimenting with exploratory and transformational creativity. The genetic algorithm was 

used for evolving LPM voices sequences. The genetic algorithm operators provide the chance 

to navigate the search space. The members of the population undergo a series of crossover 

and transformation operators. At the end of each generation, the population individuals are 

credited with a fitness value. The competency of the evolved forms provide hints of whether 

some interesting forms were generated. Sometimes this exploration would end up in creating 

truly novel forms, which is the subject of transformational creativity. It was hoped that this 

GA model would provide pleasing LPM sequence. The extent of reaching the targets for 

exploratory and transformational creativity are further discussed in the three final chapters 

of the thesis.  

As have been specified previously, exploratory and transformational creativity are 

more easier for computers to achieve, rather than combinational creativity. In the next 

chapter, a model is proposed based on Boltzmann machines to investigate a naïve 

implementation of combinational creativity. Boltzmann machines are associative memories. 
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This property of Boltzmann machines are employed for implementing a basic model for 

experimenting with combinational creativity. Cellular automata progressions would remain 

as a core for providing raw materials for creativity. CA progressions and Persian music pieces 

are trained to multimodal deep Boltzmann machine architectures. A novel series of patterns 

are extracted from the training data. Meanwhile, new links and associations are cultivated 

between the stored patterns.  

5.4 Chapter Summary 

In this chapter, an evolutionary framework for evolving LPM sequences was designed 

and implemented. This experiment was followed by a study on LPM voices regarding their 

aesthetical aspects, where Zipfian metrics characterized LPM voices individually and in 

respect to each other. The consideration in the current chapter was towards sequencing LPM 

voices in a musical manner by navigating a search space. In this regard, random sequences 

of voices were taken to be genotypes in the proposed architecture.  

The fitness function is a machine learning tool trained with Zipfian measurements 

extracted from both Persian music and LPM sequences. Support vector machine regression 

model was trained to differentiate these two classes of audio while giving higher credits to 

the sequences which bear more resemblance to traditional Persian music. A total number of 

248 Zipfian features were extracted from traditional Persian music and LPM sequences. 

However, not all these features were recognized to be necessary for the procedure, nor they 

were compatible with the purpose of the evolutionary algorithm. Therefore, further pre-

processing and data cleaning procedures were involved. The desirable features in this system 

are those whom do not produce strong dichotomizer for SVR model but those who introduce 
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overlap between the two classes. Strong dichotomizing features are bipolar attributes in the 

dataset. Preparing a database according to overlapping features between the classes would 

enable the SVR model not to decide solely based on the bipolar features. Otherwise, the 

majority of the LPM sequences would have eventually been discarded during their initial 

phases of evolution without giving them chances to contribute in the evolutionary process. 

The experiment performed in this chapter provides guidelines for further investigations 

and was an important step in this research. However, some issues were associated with this 

designed architecture. Initializing the evolutionary algorithm by randomizing LPM 

sequences of voices would leave traces of vivid jumps between musical motives in the 

sequences, which may not be refined by the application of defined genetic algorithm 

operators. These dramatic effects cannot be detected by Zipfian aesthetical benchmarks as 

well.  

Although a fitness function based on Zipfian metrics critics plays a successful role in 

recognizing the sequences which have more similarity to traditional Persian music, the need 

for covering other aesthetical aspects of the produced audio becomes more evident. To this 

effect, auditory surveys were performed for evaluating some aspects of the produced audio 

which is the subject of chapter 7. Some interesting and desirable pieces were produced 

according to the survey results. The next chapter proposes a design based on Boltzmann 

machines. The design benefits from the generative and feature extracting powers of 

Boltzmann machines family for capturing the dynamics of CA, and achieving the internal 

representations of traditional Persian music. The architecture in the next chapter is 

responsible for experimenting with combinational creativity.  
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Chapter 6. Recognising LPM patterns using 

Boltzmann Machines 

This chapter revolves around the design and implementation of an architecture which 

applies Boltzmann machine families  in the Liquid Persian Music composition system. The 

memory storage, generative and data retrieval capabilities of this class of networks are the 

focus of attention throughout this chapter. Boltzmann Machine (BM) family models are used 

as pattern-matching tools for extracting features from CA progression. The information 

retrieval capability of BM is not limited to CA. It is also applied for extracting patterns from 

traditional Persian music. The LPM system can then benefit from the generative aspects of 

BM trained with CA and Persian music data whether individually, and in a connected 

architecture. The design in this chapter includes a Multimodal Deep Boltzmann Machines 

(Multimodal DBM) structure which has multiple channels for learning data with various 

modalities. Two Multimodal DBMs are trained with CA progressions and Persian music data. 

These two structures are later applied for generating patterns as materials for populating 

synthesizer parameters. The experiments in this chapter are implemented in Matlab and with 

inspiration from the software and libraries provided in (Kauffman, 1969; Salakhutdinov, 

2012; Taylor, 2010). 

6.1 The Approach for Applying Boltzmann Machine in LPM System 

Recognition of various phenomena, environments, and objects are possible by their 

identifying features. This is one of the possible ways that enables the human brain to 

remember and store information (Freeman & Skapura, 1991). The underlying mechanisms 
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in human brain, systematically recognizes the patterns. The describing characteristics of 

various phenomena do sometimes overlap and that is often how the similarity or linkage 

between objects or situations are recognized. One thing that usually happens is that a 

phenomena or object reminds a sequence of memories of another phenomena or object. This 

occurs when the features of a memory resonates with associated or similar characteristics of 

other memories. So many artefacts were created from being inspired from a phenomena and 

introducing links with other domains. This fact is more prominent in studying an artist’s work 

of art which is directly influenced by the viewpoints and mentality of the creator.  

Miscellaneous subjects produce different meanings for people depending on their 

backgrounds and the types of associations they produce with their prior knowledge. An 

informal proverb says that learning becomes possible by establishing associations with 

previous knowledge. There are several research projects about relevance of prior knowledge 

in learning; for instance please refer to (Hein, 1991). Therefore, the various people’s 

perspectives and viewpoints refer to the associations taking place between upcoming data 

and previous knowledge. According to Boden, associative creativity takes place when new 

links are discovered between elements that were not directly linked. 

One of the characteristics of deep learning techniques is that they can extract features 

in various layers (Salakhutdinov, Tenenbaum, & Torralba, 2013). The representations of data 

in various layers provide means for having further generative powers and further chances for 

recognizing the possible links between items. In this work, the representations that are 

available on each layer can be considered as new artefacts or as new creations.  

The generative nature of Boltzmann machines in the LPM project application, 
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originates from the fact that Boltzmann machine family models have a stochastic nature. 

Many types of neural networks have deterministic characteristics meaning that under the 

same circumstances the output of the system would remain the same (Briot & Pachet, 2017). 

By providing the same inputs as training data in various implementations, the system outputs 

would be identical. However, the Boltzmann machine families have stochastic nature which 

turns out to be beneficial as a part of a system which generates artefacts. There are various 

possible equilibrium states existing for such systems. These phenomena can be considered to 

be like crystals being settled on their different facades. Richards in (Wulff & Hertz, 1993) 

has first suggested the resemblance of memories to be like crystals. The network is like a 

plasma which undergoes a crystallization process. Respecting the initial configurations of the 

plasma like system, the associations of the elements of the system are structured during the 

transition process from plasma to solid. Using the terminology of solid crystals for 

Boltzmann machines needs to be approached with caution. Once the BM reach their 

equilibrium status, the states of the neurons may still keep on oscillating (Hinton, 2010). 

Therefore, the neurons status are not necessarily frozen or solidified. However, the 

crystallization metaphor is employed for a better clarification over the training paradigm 

taking place in BM family models. 

Anytime the crystal is formed, the association of the elements would be different to 

each other. The angle of looking into the crystal determines how the proportions and relations 

of elements are perceived. Looking through the crystal from different angles reveals different 

associations between the elements of the crystal. Likewise, collecting the connecting weights 

from each of the hidden units in a Boltzmann machine reveals various patterns. Dissimilar 
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results are achieved depending on the choices of neurons for the output of the system.  

Cellular automata display stochastic yet determinable dynamical nature. Therefore, 

they can be treated and stored as memories. The current viewpoint allows saving the CA 

dynamics in the selected BM configurations. In this respect, Boltzmann machine families 

would provide a handful of pattern-matching tools. The pattern-matching outputs are 

considered as the patterns revealed from looking through a crystal from different angles.  

In this chapter, the units in the Boltzmann machine families are used as new types of 

pattern-matching tools. This would allow a large collection of patterns which can be used for 

generating audio. Moreover, the resonating characteristics of Boltzmann machine families as 

associative memories are employed for replicating characteristics similar to some of the 

possible mechanisms happening in human brain while creating an artefact (based on 

combinational creativity). A hypothesis is examined in this chapter to see how computational 

tools might be useful in generating Persian music based on a naïve model of combinational 

creativity. Boltzmann machine families are employed for testing this hypothesis. 

6.2 The proposed architecture 

The application of Boltzmann machines in this proposed design is manifold. One 

revolves around the generative nature of Boltzmann machines which are stochastic. Another 

is about their feature extraction capability in capturing high level, and complicated features. 

Extending the architecture of RBM (Restricted Boltzmann Machine) into DBM (Deep 

Boltzmann Machine) by building further hidden layers would provide additional feature 

extractors. Therefore, applying RBM model for extracting features has the functionality of 

pattern-matching rules in the LPM system as described in chapter 4. The features extracted 
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from CA progressions are collectively stored in the memory of BM family models. Each of 

the hidden units and their connecting weights represent a set of extracted features. The hidden 

units act as standalone pattern-matching tools. Each of the units in different hidden layers 

would provide a set of patterns, which could later be used to populate the synthesizer’s 

parameters. The correspondence between the visible and hidden units are representable in 

the form of a matrix; the dimensions of which are equivalent to that of the initial training data 

prepared for the visible units. The initial configuration of CA, the number of cells and history 

of iterations, all have contributions in the final weights. Therefore, various patterns can be 

generated by altering the initial parameterization and configuration of the system. This would 

have effects on the generative power of the LPM system in the matter of the number of 

patterns produced, which are later mapped to the musical domain. In the section related to 

capturing the dynamics of CA using RBM, and CRBM (Conditional Restricted Boltzmann 

Machine) the procedure for achieving new pattern-matching tools are explained in more 

detail.  

In a different experiment in this chapter, Persian music are segmented and stored inside 

Multimodal DBM structure. Multimodal DBMs are mostly employed for data which inherit 

multiple modalities, for instance the video and audio represent two modalities in movie data 

bases, where each frame of video is associated with the related audio. In our application, in 

order to store music inside Multimodal DBM, each of the constituent dimensions of music 

(note pitches, and duration) are presented to one of the channels in the Multimodal DBM 

structure. The whole architecture is responsible for providing fused representations of note 

numbers and durations. The related details about the procedure taken for storing Persian 
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music in Multimodal DBM structures are presented in section 6.2.2 (titled: Storing Persian 

Music in Multimodal Deep Boltzmann Machines Multimodal DBM).  

Cellular automata progressions are also trained to a separate Multimodal DBM structure. 

There are initially no association between Persian music and CA progressions. However, 

regardless of the Boltzmann machine family type used for each of those pathways in the 

multimodal architectures, an additional modality is added as a pathway to each of the CA 

and Persian music Multimodal DBM structures. This modality is trained with Zipfian metrics 

of the related data in the other pathways. The Multimodal DBMs trained with CA, and Persian 

music are later joined with each other via their Zipfian pathways. 

6.2.1 Extracting Cellular Automata Features using Boltzmann Machines  

The Restricted Boltzmann Machines (RBM) were applied in various ways towards 

extracting features from CA progressions. One of these is to take 88 unique one-dimensional 

behaviours over certain numbers of iterations and train them using a RBM model. The CA 

progressions were taken as static images with white (on) and black (off) cells. The cells were 

mapped to the neurons in the visible units of RBM model representing on/off states.  

There are some queries that need to be addressed about the quality of the training 

performed; one is about the quantity of CA cells that should be presented to visible units in 

every visit. In other words, the number of cells in the initial array and the count of CA 

progressions, which attend the training agenda, should be considered. Further prevailing 

questions refer to the configurations of the initial seeds which the CA progressions should be 

built upon. The initial seed influences the upcoming patterns generated in a CA progression. 

Starting from different initial configurations, various basin of attraction collections are 
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obtained. In this experiment only one possible configuration were taken into account as the 

initial seed. This was performed to limit the size of the training set and saving the processing 

time. The increasing in the number of provided patterns for a RBM would require increase 

of the number of hidden units. Changing the initial configurations of CA gives different 

training samples. This was assumed to be one of the ways for getting various results in 

different implementations.  

The initial seed was taken to be an array with the size of 25 cells. The total number of 

CA iterations allowed were taken to be 24. By adding 24 CA iterations to the initial seed, the 

25 progressions will be achieved. In the implementations of the experiment with RBM, a 

total number of 88 main CA behaviours were taken into account. The training set consisted 

of 88, 25*25 metrics. This produces 625 visible units. The training was performed in batches 

of 20 with overall number of 200 epochs. It is notable that the same visible RBM units should 

be associated with the same cell locations in the CA progressions throughout the experiment. 

The order of the presented cells should be kept constant while visiting all members in the 

training set.  

The number of hidden units was taken to be 400 units (figure 6-1), and 1000 units 

(figure 6-2) in two different implementations in order to examine the nature of the patterns 

extracted with different numbers for hidden units. Figures 6-1 shows a portion of the weights 

between the visible units and hidden units of the RBM with 400 units. Each of the squares 

represents all the connecting weights to a hidden neuron. Figure 6-2 depicts a portion of the 

weights between the visible units and hidden units of the RBM with 1000 units. The weights 

in both cases are in fact real numbers, some of which are negative. The negative numbers are 
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represented as black pixels in the images; however, there is a spectrum of negative numbers, 

which have not been equitably presented in the figures.  

 

Figure 6-1. Looking into a small portion of the memory of RBM after the training procedure with 

400 hidden units.  

Each of the small squares are associated to one of the units in the RBM architecture 

and all its connecting weights. These squares are a portion of 65 units out of 400 

hidden neurons. 

 

Figure 6-2. Looking into a small portion of the memory of RBM after the training procedure with 

1000 hidden units.  

Each of the small squares are associated to one of the units in the RBM architecture 

and all its connecting weights. These squares are a portion of 44 units out of 1000 

hidden neurons. 

The comparison of figures 6-1 and 6-2 imply that by raising the number of hidden units, 

the connecting weights to the different neurons becomes more similar. Visual inspections on 

the extracted patterns show that the patterns extracted from a trained RBM with 400 hidden 

units have more contrast. However, the patterns extracted from a trained RBM with 1000 

hidden units tend to lose their contrast and become more uniform in colour or more blurred. 

Greater contrast between weights should favour greater variations in the musical patterns. 

The nature of the extracted patterns will have effects on the generated audio. For instance if 

the mapping procedure to the musical space involves selecting the connecting weights to one 

neuron as the musical pattern, then the second configuration for the number of hidden units 
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is more likely to produce a more monotonous (less musical) audio sequence.  

6.2.1.1 Extracting Cellular Automata Features using Conditional Restricted Boltzmann 

Machines 

The CA progressions have been applied in the form of certain configurations to another 

BM model called conditional restricted Boltzmann machines (CRBM). CRBMs are often 

applied for modelling time series data. Performing this experiment was inspired from the 

concept of basin of attraction models which are employed for studying the dynamics of CA 

(there are some literatures available about the attempts made for modelling the dynamics of 

CA by the help of neural network models (Tanaka, 2016)). 

The behaviours of each of the CA rules are studied through a set of basin of attractions. 

The basin of attraction field consists of all the possible states transitions for a specific CA 

configuration. Therefore, in a CRBM, an arbitrary but fixed number of CA progressions can 

be conditioned on an arbitrary but fixed number of their previous transitions. The remaining 

issue would be the labour intensive task of identifying all the various topologies available in 

a basin of attraction field for configuring the CRBM model. The truth is that the basin of 

attraction models do not follow the same structure throughout all the basin of attractions for 

a CA rule (there might be a basin of attraction which consists of a single node or one with 

miscellaneous branches possibly connected to other nodes in a circular path). Moreover the 

topologies vary among different CA rules, since each of them follow a separate structure and 

that makes the training complicated for CRBM model. Hence, it is not possible for taking 

one basin of attraction model as a unique standard for establishing it as a base model for 

training CRBM. Production of basin of attraction graph models are addressed elsewhere in 
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(Wuensche, 2009). The suggested approach in here would save the computations regarding 

the construction of the basin of attraction fields for different CA rules.  

For this experiment, all the CA initial configurations were explored and the training is 

based on the history of CA progressions as time series data. All the transients up to 20 

iterations were considered starting from the initial seeds. However, this approach raises 

another issue. Visiting the transitions by this technique would increase the chance that the 

branches or the basins may be visited several times due to the nature of the CA behaviour in 

some of the CA rules. However, some of the transitions may be visited fewer times as 

occurring less in the training data. For example, the rules in the first and second CA categories 

(described in the section related to cellular automata in the third chapter) will soon enough 

produce a repeated pattern. Specifically the rules in the first category would converge to 

homogeneous patterns irrespective of the initial seeds. This invokes the existence of bias in 

the training set. Therefore, attempts were taken into account to transform the dataset which 

initially consisted of 100 number of iterations for different CA rules, in order to avoid 

homogeneous or repetitive patterns in the training set. For instance, the dataset may contain 

a large number of transients which have fallen into the homogeneous or heterogeneous 

patterns. This denotes that all the states will evolve to the same pattern or cyclic patterns in 

the upcoming iterations. For overcoming this problem, the number of iterations involved for 

the transients should be considered more cautiously.  

The determination on the number of CA progressions for training, are based on the CA 

behaviours and whether they are in the classes of fixed, cyclic, chaotic, or complex. On this 

account, the number of CA iterations for the rules in the fixed, and cyclic groups were limited. 
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The number of involved iterations in the first CA category (fixed) was cropped by 75 percent 

(from the initial 100 iterations), while this number is 50 percent for the second category 

(cyclic). Instead, more CA iterations (100 iterations) were allocated to the progression of 

rules in the chaotic and complex behavioural classes. 

 

 

(a) (b) 

 

(c) 

Figure 6-3.Looking into a small portion of the memory of CRBM after the training procedure.  

In the configuration of the CRBM for this experiment, Figure (a) relates to the 

weights between the visible and hidden units, figure (b) demonstrates the weights in 

between past and visible units, while figure (c) shows the weight values between 

past and hidden units. 

In this experiment, 88 CA behaviours were studied for all the possible initial 

transitions. Various configurations can be assumed for employing CRBM model to learn CA 

dynamics. For instance, the state of the cells in each iteration can be trained to CRBM and 

be conditioned to the state of the cells in previous CA iterations. A more complicated 

configuration, involves conditioning one or more CA progression to an arbitrary number of 

previous iterations. Whatever configurations been determined, it will stay constant for 

selecting the CA cells from different CA rule progressions. The configuration chosen in this 

experiment uses a series of 3*3 metrics consisting of the cells in 3 consecutive iterations. 

These cells were conditioned on their three past iteration ancestors, regarding their history of 

appearance. This would imply a total number of 9 visible units conditioned on 27 past units. 
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The number of hidden units was selected to be 400. Figure 6-3 demonstrates examples of the 

weight metrics between visible-hidden, visible-past, and present-hidden units mapped to 

greyscale images for illustration purposes. 

6.2.2 Storing Persian Music in Multimodal Deep Boltzmann Machines 

What has been described so far was related to training the CA progressions to 

Boltzmann machine families. This has attained an arbitrary number of pattern-matching tools 

depending on the number of units in the layers of Boltzmann machine family architecture. 

This section represents the details for implementing the Multimodal DBM for learning Persian 

music data.  

The multimodal structure related to Persian music consists of three pathways. The 

training samples are obtained from segmenting Persian music into short frames. There are 

three sets of values related to the musical pieces. Two of the sets of values are associated to 

the occurring musical events including note frequencies and durations. The other pathway 

consists of Zipfian metrics extracted from the related Persian music segment (As have been 

described in the previous chapters, Zipfian metrics were applied as aesthetical critics and 

guidelines in creating artefacts). The pathways were prepared for accepting the frequencies 

of the occurring notes, the musical duration of the notes and the Zipfian metrics associated 

with the musical frames. These values were applied for retrieving pieces with similar 

characteristics, and for generating audio.  

The pathways consist of a two layered DBM. Each of the layers provides a higher 

representation of the data presented in the previous layers. The state of neurons in the hidden 

layer of each RBM is the input to the upper RBM in the layered stack. A collection of stacked 
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RBMs in each of the pathways would attain a deep belief net architecture for the pathways. 

However, the overall structure cannot be considered as a Multimodal DBM unless mean-

field training is performed. The pre-training of the Multimodal DBM consists of training each 

of the individual RBM layers. The pre-training phase initializes the weights and prepares the 

network for mean-field training phase. This indicates that the mean-field training would 

converge faster after the pre-training is performed rather than having random initialization 

(Salakhutdinov & Hinton, 2012). The formulation and algorithm for training Multimodal 

DBMs are provided in chapter 3, and appendix A. Mean-field inference consists of bottom-

up and top-down passes. In a Multimodal DBM architecture, a joint representation is provided 

for the data in different pathways. This means that the manifestation of patterns in one 

pathway is conditioned on the occurrence of related modalities in the other pathways. From 

the training point of view, this condition becomes possible by assigning high probability to 

the concurrence of the events (training samples) associated to one another. The mean-field 

training is performed for the overall structure of the Multimodal DBM.  

The training samples include frames of Persian music pieces each of which were 

limited to a number of 20 musical events (musical notes). Extracting such features from 

Persian music were discussed in the previous chapter, where a MIDI-like database was 

obtained for Persian music database. The note frequencies and the corresponding note 

durations for each frame were presented to each of the pathways. The third pathway was 

populated with Zipfian measurements of each of the frames.  

The units in all the Multimodal DBM pathways were selected to be binary units. 

Therefore, the training data in all the pathways were converted to binary values. Another 
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option would be the application of Gaussian units instead of binary ones. The frequencies of 

the extracted notes from Persian music as training samples for the system have a range 

between 158 to 1396 Hz. The note durations vary between 1/16 and 2 seconds. For converting 

these values to binary domain, the following considerations were taken into account. A total 

number of 22 bits were allocated to the frequency binary points values. The duration values 

consists of 14 bit binary numbers. Having training samples consisting of 20 musical notes 

each, the binarization procedure would result in having 20*22 number of visible units in the 

note frequency pathway. This number would be 20*14 for the note duration pathway.  

The Zipfian metrics from Persian music frames were extracted in the same way as 

discussed in the previous chapter. The Zipfian features were extracted from frames of Persian 

music each consisting of 20 notes (unlike the experiment in the previous chapter which 

extracted Zipfian metrics out of 20 second segments of Persian music). The number of 

attributes in the Zipfian metrics are 30 features for this experiment. Cleaning on the Zipfian 

metrics have been performed. The attributes which were related to onset time were discarded. 

This is due to the fact that only the note duration and pitch frequencies were targeted in this 

experiment. The attributes which consisted of notable number of zeroes, NaN, or minus 

infinite among the records were also eliminated. This cleaning left 30 attributes in Zipfian 

metrics. The Zipfian slope values are negative decimal point numbers. The fraction part needs 

to be converted to binary with a high precision. 16 bits were allocated for storing the Zipfian 

binary values. This results in a total number of 30*16 input units for the Zipfian channel. 

The number of hidden units in the layers of different channels were taken to be 500 

units. However, 500 is relatively a small value considering the high number of patterns to be 
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learned. Therefore the training database was divided into smaller sets each consisting of 100 

samples. In each implementation, the user can select which part of the big dataset is going to 

be used for the training of the Multimodal DBM. Alternatively, the trained weights from 

various implementations can be stored and later be used for benefitting from the 

miscellaneous patterns that were generated. This case can be assimilated to the situation 

where we have several numbers of Multimodal DBMs. It should be mentioned that the mean 

field training with 500 hidden units in each channel with the limited number of training 

samples took notable amount of time. The training was performed in batches of 30, and 200 

epochs were involved. 

Later in this chapter, the Multimodal DBM structure related to Persian music is 

employed in accordance with another Multimodal DBM trained with CA data. The Multimodal 

DBM related to CA has a similar architecture to Persian music Multimodal DBM. These two 

Multimodal DBMs resonate each other for attaining further patterns as will be discussed in the 

remainder of this chapter. 

6.2.3 Design of the Multimodal DBM Trained with CA Progressions  

Section 6.2.1 demonstrated the application of RBM and CRBM for extracting features 

from CA progressions. In this section, an overview will be presented towards training a 

Multimodal DBM structure with CA data. The structure of the CA Multimodal DBM is similar 

to the Multimodal DBM used for training Persian music, and has three pathways. The three 

channels were trained with data associated with CA. The first channel is employed for 

performing the mappings to note frequencies. The second channel is used for mappings 

associated with notes durations. The third pathway was trained with the CA data Zipfian 
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metrics. 

The Zipfian attributes selected for CA were the same Zipfian attributes calculated for 

Persian music pieces. In fact, the Zipfian modalities in the CA Multimodal DBM structure are 

configured identically to the Zipfian pathway from the Multimodal DBM trained with Persian 

music. One may ask about the possibility of calculating Zipfian musical measures based on 

musical terminologies from CA which do not presently have any musical characteristics. The 

approach that is taken for performing the mapping to the musical space is suggested to be a 

basis for extracting Zipfian metrics associated with CA progressions as well. There are 

various agendas for performing the mapping, therefore the selection of the inputs made 

available for extracting the Zipfian metrics would vary. Two different paradigms are 

suggested for extracting Zipfian metrics from CA progressions in this experiment. Other 

possible varieties are subject for future work. In the following, these two suggested mappings 

are further discussed.  

In one paradigm an arbitrary hidden unit or group of units were selected. These hidden 

units play the role of pattern-matching tools. The values of the connecting weights to the 

hidden units are considered to be pattern-matching outputs. The weights connected to the 

chosen hidden units were taken into account and mapped to musical note frequency and 

duration. The Zipfian metrics were calculated according to the combinations of note 

frequencies, and durations. The frequencies and duration values together with their related 

Zipfian metrics were stored as training data to be provided to the Multimodal DBM structure. 

The final musical results in this approach completely depend on the selection of the hidden 

units mapped to the musical space. In other words, the way the extracted patterns are 
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interpreted and projected to the musical domain determines the quality of the generated audio 

patterns. 

In another paradigm, the CA progressions were trained against their Zipfian metrics 

obtained from pattern-matching rule values (Twenty pattern-matching rules from LBM). In 

the study in the previous chapters, it was demonstrated that the pattern-matching rules 

introduced in LBM system were employed to populate the synthesizer parameters. It has been 

shown how these values were tailored in a sequence in order to achieve the initial grounds 

for Zipfian metrics calculations. In this experiment an arbitrary pattern-matching rule number 

(rule 20 for instance as described in chapter 4) was chosen for extracting the Zipfian metrics 

from CA progression and performing training on the Zipfian pathway. In this paradigm, the 

CA Multimodal DBM note frequency and duration branches were trained with CA 

progressions. The training sets for these two branches contained the same elements, however, 

the presentation order in the training sets were randomized. This situation conditions random 

CA rules with each other in the two Multimodal DBM branches. For example, rule 32 will be 

associated with rule 55. Later the data related to rule 32 will be mapped to note frequencies 

and CA rule 55 extracted data will be mapped to musical notes durations.  

6.2.4 Associating Persian Music, and CA Multimodal DBM structures 

Associative memories resemble the particularities of human brain in memorizing 

things in association to each other. This is similar to the capability of human brain where 

similar ideas resonate each other and associated phenomena remind of one another. The 

computational model of this phenomenon is manifested in Hopfield networks with storage 

ability. BMs can be considered as extended versions of Hopfield networks that inherit this 



 

127 

 

property as well.  

 

Figure 6-4. Resonation taking place between the Zipfian pathways of two multimodal deep 

Boltzmann machine structures.  

The pathways pertaining to Zipfian metrics are employed for resonating related data in 

the other pathways. This model is inspired from associative memory architectures. The 

Zipfian pathways in two Multimodal DBM architectures follow the same configurations in the 

matter of the number of visible and hidden units and the types of the units. However, the 

Zipfian pathways are independent from each other. Once the values in each of the pathways 

are populated, they are capable of evoking the associated modalities in such structure. This 

phenomenon was employed for triggering the patterns with similar Zipfian metrics in CA 

and Persian music multimodal architectures. Figure 6-4 illustrates the resonation occurred 

between the two Multimodal DBMs via their Zipfian channels.  

One of the possible paradigms in this architecture is to populate the CA pathway to 

obtain the associated Zipfian metrics from the related pathway and then use it for populating 

the Zipfian pathway from Persian music multimodal structure for triggering the related 
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frequency and duration modalities in Persian music Multimodal DBM structure. This 

procedure can be performed in the alternate direction as well; the Zipfian metrics related to 

Persian music patterns or training samples can trigger patterns associated with CA 

progressions with similar Zipfian metrics. This model is used to provide links between items 

that have not been previously linked before in a direct manner. 

6.3 Musical Experiments 

Various approaches are possible for applying the RBM, CRBM, and Multimodal DBM 

structures discussed in this chapter for musical applications. Here four of the possible ways 

for mapping the results to musical space are discussed. The outputs of the suggested 

mappings are embedded in the surveys (auditory tests) in the next chapter.  

Approach one: Each of the hidden units in the RBM, and CRBM architectures trained 

with CA progressions can be considered as a pattern-matching tool. The connecting weights 

to each of the units embed patterns from CA progressions. The values of the weights can be 

directly used and mapped to musical space. In this approach, the number of pattern-matching 

tools are determined by the number of visible and hidden units and the initial configurations 

of CA. 

Approach two: the Multimodal DBM model trained with Persian music data are applied 

for performing the musical mappings. This approach is similar to saying that we have various 

interpretations and patterns extracted from musical pieces. Binary representations of the 

musical pieces are stored inside the weights connected to the units. The weight values can be 

employed for performing the mapping. Moreover, the states of the hidden units in various 

layers can be used for musical mapping. 
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Approach three: By clamping musical segments on the visible units in Multimodal 

DBM, the related patterns can be obtained from other channels. For instance by once 

providing note durations in one pathway, the related note pitches can be inferred from the 

other pathway. Since the system has a stochastic nature, the values inferred in the other 

pathways might be different every time the system is up and running. The provided 

information to be clamped on different channels can be selected from the training set, or be 

selected from other musical sources. On this account, different sets of results can be obtained. 

Approach four: Data can be provided for the visible units of a channel in one of the 

Multimodal DBM structures (the Multimodal DBM trained with CA data, or the one trained 

with Persian music data). The Zipfian metrics related to the activated Multimodal DBM will 

call patterns with similar associated data in the channels of the other Multimodal DBM. The 

Zipfian values observed in one of the Multimodal DBM, populates the visible units of the 

Zipfian modality in the other Multimodal DBM.  

6.4 Chapter Summary 

Boltzmann machines are associative artificial neural networks, which have stochastic 

units. RBM achieve binary representations of data provided in their visible layer. Higher-

level representations of data can be obtained by building extra layers on top of RBM in order 

to construct a deep Boltzmann machine architecture. In this chapter, Boltzmann machine 

families were applied both as pattern-matching tools, and as associative memories. RBM and 

CRBM were employed for extracting patterns from CA progressions. It was shown that each 

of the units in the hidden layers provides a pattern-matching tool. These pattern-matching 

tools were later used for generating audio. In this project the capability of Boltzmann machine 
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families as pattern-matching tools were in the attention. Studying the capacity of Boltzmann 

machine families and their success in storing the CA progressions as training data are out of 

the scope of this thesis. They have been looked upon as pattern-matching tools for generating 

raw materials for populating the synthesizer parameters. Altering the configurations for 

obtaining various results was emphasized throughout the chapter. 

Two Multimodal DBM structures were presented which were separately trained with 

data from Persian music database, and from CA progressions. Each of the Multimodal DBM 

architectures consists of three channels, which stand for note pitches, note durations, and 

Zipfian metrics. The two Multimodal DBM architectures provide further approaches for 

mapping data to musical space. The pathway associated to Zipfian metrics are used as a 

resonator for triggering the associated patterns in the other pathways. The idea is that similar 

Zipfian metrics would trigger the related patterns from CA pathway and Persian music 

pathway. The suggested architecture provides a pathway for exploring the possibility of 

combinational creativity (in a small scale). Using Boltzmann machine families as associative 

memories were made a bold target for assimilating some of the possible mechanisms that 

happen in human mind for creating artefacts based on combinational type of creativity. In 

the previous chapter, evolutionary algorithm was responsible for navigating the spectrum of 

exploratory and transformational creativity. In the next chapter, auditory surveys are 

designed and published that helps us to estimate the extent of accomplished thesis targets. 
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Chapter 7. Human Evaluation: Online 

Surveys 

The previous two chapters were dedicated to the design and implementations of 

algorithmic composition systems. This chapter provides the opportunity for studying the 

human evaluation of the audio generated by the systems in the conducted experiments. This 

will give an insight to the quality of the performance of the designed systems and reveal 

further steps for refining the architecture of the systems and suggesting the future research 

directions. Evaluation provides the chance for determining the progression of the research 

against the pre-specified goals of the thesis. 

In this chapter, three surveys are designed and published. The criteria for the evaluation 

of each of the surveys are different from each other; however, there is some overlap between 

the evaluation criteria of the three surveys. The first survey is based on the evaluation of the 

audio output from the architecture presented in chapter five (The first survey is older than 

the consecutive surveys (2 and 3), and was published before performing the experiments in 

chapter 6). The second survey targets the audio generated from the models presented in 

chapters 5, and 6. The second survey makes use of extended set criteria for evaluation. Both 

of these surveys (1 and 2) target the same group of audience. The third survey is the most 

comprehensive in its coverage with criteria specifically selected for professional audience. 

The audio samples for the third survey cover the audio pieces generated from both 

architectures in the two previous chapters 5, and 6 (No separate surveys have been designed 

for chapter six, Although, the sets of the algorithms are different from the ones used in chapter 



 

132 

 

5. The genetic algorithm in chapter 5 was responsible to experiment with exploratory and 

possibly transformational type of creativity, while the Boltzmann machine families employed 

in chapter six experimented with combinational type of creativity. Both the compositional 

algorithms build the project for creating Dastgāh-like music. The outputs of both of the 

systems are embedded in the survey. In this chapter by referring to the evaluation of the 

system, we mean the evaluation of both of the systems in chapters 5, and 6 as a whole). 

7.1 Introduction on the Evaluation of Creativity in Creative Systems 

The beginning of this section presents an overview on the necessity of evaluation of 

the results of the systems generating creative materials. Some of the challenges in the 

evaluation pathway are described. General standard approaches for evaluating the creative 

systems are briefly discussed and the criteria for assessing the results of the computational 

composition models in the previous chapters are specified.  

The establishment of evaluation benchmarks have been identified as a difficult task 

throughout the history of computational creativity (Cardoso, Veale, & Wiggins, 2009). This 

is partially due to the lack of a comprehensive definition for creativity. Evaluation of many 

artefact generator systems based on standard criteria has not always been the focus of 

attention of the founders of those systems. A part of this problem goes back to the 

nonexistence of established standardized evaluation methods at the time. Nonetheless, 

scientists and philosophers in the area of computational creativity have not yet claimed a full-

scale standard evaluation method. However, this does not imply that one is immune to not 

following the evaluation procedures at hand. 

 The evaluations, which are designed based on standard milestones, provide the 
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opportunity for comparing various systems according to the specified criteria. This 

comparison may identify the potentials of the initial tools and computational models 

involved. The evaluation would provide guidelines for the development of systems. On this 

account the design of standard evaluation methods, become important.  

A note to make here is that there might be some existing bias in participants’ 

evaluations. People may have bias towards the design of the survey, as well as the length of 

the survey. Other influencing factors that may contribute to bias are the judge’s moods, the 

time in the year when the survey is published, the critic’s background knowledge in general. 

What people expect from the system may also affect the way people rate their answers. More 

importantly, the bias might be associated with the fact that the presented artefacts are machine 

improvisations. It might be a good idea to raise the consciousness of the audience about their 

possible existing bias towards machines generating music. In (Moffat & Kelly, 2006) an 

investigation was performed towards people’s bias against computational creativity and 

music composition. Moffat and Kelly found that people’s ratings on the creativity of 

machine-generated music is influenced by their conscious and subconscious prejudice 

towards computational creativity. Identification of people’s bias has been practiced by 

Jordanous in (Jordanous, 2012b). The audience were asked to answer some questions related 

to their mind-set towards computers being creative. This factor was taken into account in the 

design of the second and third surveys where the audience were asked to answer to some 

questions related to computational creativity and Persian music. 

7.1.1 Some Evaluation Methodologies 

During the past decades, the attempt has been towards standardizing the evaluation 
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methodologies. In the following, some of the most significant standard methodologies for 

evaluation are demonstrated. The remainder of the section considers some main standard 

evaluation techniques. The suitability of each of these evaluation techniques are justified in 

the surveys design sections. The surveys designed in this chapter cover some domain 

dependent and domain independent aspects for evaluating creativity and in regards to the 

targets of the thesis. The first survey is based on human evaluation of creativity. The second 

and third surveys will cover human opinions on creativity and Ritchie’s evaluation methods.  

• Turing-style Test  

One of the famous directions often followed by researchers for evaluating the results 

of their systems is the conducting of a Turing test. On this basis, the measurement of the 

success of a system is according to the opinions of human subjects on the origins of the 

productions. For instance, the agenda of a Turing test for evaluating a system whose artefacts 

are musical pieces is as follows: The human subjects distinguish the machine-composed 

pieces from the human composed ones. Higher scores are assigned to undistinguishable 

pieces. The Turing tests usually suffer from biases caused by selection of testing samples. 

However, Turing test was widely employed and has been very popular since its introduction. 

Turing test attain general measurements based on human evaluation. More scrutinized 

assessment criteria are often required for determining the creativity of a system. There are 

methodologies applied for evaluating the output of different systems in terms of creativity.  

Unlike Turing test which can be considered as a blind test, the following methodologies 

usually consist of informing the subjects that the artefacts are machine generated: 

• Human Outlooks and Judgements On Creativity 
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In this methodology, the human judgements on creativity are taken as ground truth by 

assuming that people by nature recognize the difference between creative and non-creative 

items (Zhu, Xu, & Knot, 2009). Many researchers have benefited from the human viewpoint 

on creativity in the evaluation of their works. A definition on creativity can be presented to 

the people taking the survey and they are later asked to rate the system generated artefacts 

(Jordanous, 2012b). One of the possible definitions of computational creativity is as follows: 

“A behaviour or action generated by computer is said to be creative if the same action enacted 

by human would appear to be creative.”  

• Ritchie’s Creativity Evaluation Criteria  

Ritchie provided a framework for evaluating the creativity of a system based on its 

produced artefacts (Ritchie, 2001, 2007). Ritchie’s methodology evaluates aspects of the 

typicality and quality of the outputs of the system:  

• To what extent is the produced item an example of the artefact class in 

question? (Ritchie, 2007)  

• To what extent is the produced item a high quality example of its genre? 

(Ritchie, 2007) 

Ritchie determined 18 criteria for creativity (Ritchie, 2007) which are formally 

represented in set-theory form. The suggested criteria can be customized for different 

applications. The parameterization and weightings of the criteria may be different from each 

other for evaluating outputs from different systems. Likewise, some of the 18 criteria may be 

discarded during the evaluation if they are found to be impractical or redundant. The Ritchie’s 

framework for evaluation is used in the design of the second and third surveys in this chapter. 
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Ritchie’s evaluation criteria for creativity are presented in sections 7.3.6 (in table 7-3), and 

7.4.5 (in table 7-5) where they are analysed for the second and third surveys.  

One of the drawbacks from Ritchie’s framework is that it lacks guidelines for setting 

up the parameterizations of the different criteria. This has been left to the choice of the 

evaluators. Ritchie suggests using the data gathered from human assessments to deduce the 

parameters for implementing the evaluation criteria (Jordanous, 2012b). There are 

application examples in (Jordanous, 2012b; Pereira, Mendes, & Gervas, 2001; Ritchie et al., 

2007) available, which implement Ritchie’s evaluation criteria.  

• Pease’s Evaluation Tests for Creativity  

Pease et al. in (Pease, Winterstein, & Colton, 2001) suggests a wide area for making 

judgements on the creativity levels of a system. This criterion not only investigates on the 

outputs of the system, it takes a scrutinized look over the input of the system and the process 

involved in the system as well. Pease suggested a collection of evaluation criteria to be 

measured. Some of the evaluation criteria include perceived novelty, surprisingness, and 

emotional response. 

• Colton’s Tripod for Evaluating Creativity 

Colton’s (Colton, 2008) evaluation methodology highlights the evaluation of the 

creativity process. Colton suggested that a creative process should possess three behaviours 

Skill, Imagination, and Appreciation. Skill demonstrates the extent the system is skilful in a 

certain domain, Imagination demonstrates how the system can come up with variety in their 

creation, and Appreciation governs on how the system can think and evaluate during the 

process. 
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• SPECS (Standardised Procedure for Evaluating Creative Systems)  

Jordanous in (Jordanous, 2011, 2012a, 2012b) proposed SPECS evaluation 

methodology. It demands the evaluators to specify the creativity requirements in the domain 

they are working with. As a standardized methodology, SPECS consists of three main steps: 

Step 1: Determine domain dependent and domain independent aspects of creativity 

Step 2: Standardize the determined aspects of creativity for evaluation 

Step 3: Perform evaluation tests  

Jordanous found 14 criteria for measuring the creativity, obtained by mining through 

previous publications about creativity in a wide discipline. These fourteen criteria can be 

used in SPECS evaluation method and are available to other researchers. Some of these 

criteria include social interaction and communication, intention and emotional involvement, 

domain competence, active involvement and persistence, variety divergence and 

experimentation, dealing with uncertainty, originality, and independence and freedom.   

7.2 The First Public Survey 

7.2.1 The Criteria and Design for the First Survey 

The first survey was designed for assessing the progression of the project. The 

evaluation criteria in the first survey addressed musicality, Dastgāh-likeness, and 

pleasantness of the evolved sounds. At the time of the first survey, the author was not 

intending to evaluate the creativity of LPM system itself. She performed the test for getting 

feedback on the produced audio for progressing her research as described and continued in 

the sixth chapter. The results from the first survey contributed in the progression of the thesis. 
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Although the first survey is about two years older than the consequent ones (second, and third 

survey), the author decided to keep it in the thesis.  

 Designing the process of evaluation requires determining the evidence for the chosen 

evaluation criteria. The evaluation can take place as quantitative or qualitative judgements. 

The quantitative methodology involves gathering the evaluation values and performing 

statistical computations on the test outcomes. The qualitative assessments are usually 

performed by means of feedbacks from surveys. The qualitative survey accompanies our 

evaluation methodology, which provides us with some feedback on the evolved sounds.  

The first survey was designed in survey monkey and has 10 questions, 9 of which 

consist of audio evaluations and the last question asks the participants to provide their 

opinions and feedbacks on the presented material. The audio files were made available in 

sound cloud where they were hosted and later embedded in the survey monkey questionnaire 

design. The questions try to gather evaluations on the produced audio based on their 

musicality, whether the audience liked them and if they were Persian-like. In the beginning 

of the survey the audience were presented with some Persian music (of about one minute 

length) to give the participants some clue about the Persian likeness of the produced audio. 

Appendix G provides further details on the first survey design. 

7.2.2 The Results of the First Survey 

The survey invitation was circulated to a list of postgraduate students and staff at the 

University of Hull. 35 participants took part in the survey. Only a few questions were skipped 

during the survey. The feedback areas were filled out by 20 participants. The participants 

were not presented with any statement such as “computer generated audio”. This was done 
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in order to avoid possible biased responses.  

 

Figure 7-1. The average response value for different pieces according to their musicality criteria. 

A few number of participants might knew about the fact that the audio materials were 

machine generations due to previous contacts in academia and poster presentation gatherings 

held at the University of Hull. The rates of the responses for the evaluation criteria are 

presented in the following. (A complete table of the data gathered from the first survey are 

provided in table G-1 in appendix G): 

• Musicality: The total proportion of agreed responses on the musicality of the generated 

audio is around 15%. Moderately agreed responses are around 30%. Around 56% of the 

total responses were rated as low or very low. Figure 7-1 demonstrates the result of the 

assessment on the musicality of the audio samples. 

 

Figure 7-2. The average response value for different pieces according to their Persian-

likeness criteria. 
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• Dastgāh-likeness: Approximately 43 percent of the responses were positively rated upon 

Dastgāh-likeness of the audio pieces. The rest of the respondents (around 57 percent) 

did not agree about the Dastgāh-likeness of the audio pieces in total (Figure 7-2). 

• Respondents’ musical preferences: On average, an approximate proportion of 30% of 

participants liked the audio pieces moderately or highly. Around 70 percent of the 

audience rated their preferences rather low or very low among the audio pieces. Figure 

7-3 shows the preference ratings of the audio samples. 

 

Figure 7-3. The average response value for different pieces according to the participants’ 

preferences criteria.  

Some notable feedbacks in the first survey include those that associated the produced 

audio to be as if a child was trying to learn a new musical instrument or was trying to compose 

a musical piece. The audio samples were attributed with randomness. Some comments 

suggested over defining better constraints over the duration of the musical notes since they 

appeared to be random. Most of the feedbacks attribute the sounds to be sourced from a 

musical instrument such as Piano, Santur, and guitar. Feedback of this kind shows the success 

of the system on mimicking the timbre of musical instrument. Comparing the audio to Santur 

(the Persian musical instrument) and the Piano as a hammered musical instrument (which 
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follows the same excitation mechanism as Santur) are both warming comments. Some of the 

comments suggested that some audio pieces were dissonant and harsh to the ear: “As if 

someone is randomly exciting the broken strings of a guitar.” Is one of the comments that 

states this situation. 

7.3 The Second Public Survey 

7.3.1 The Design and Evaluation Criteria of the Second Survey 

In this section the design and evaluation for the second survey is discussed. This test 

was published throughout the mailing list of postgraduate students at the University of Hull. 

The introductory part of the survey is similar to the welcoming part of the first survey. A 

brief introduction of the research at hand and its purpose were presented. People were invited 

to familiarize themselves with Persian Dastgāh music through some links for those people 

who were not familiar with traditional Persian music. The audience were suggested to contact 

the creators of the survey for further questions, assistance and requests for the results. 

 The evaluation tests performed in this thesis were kept as compact as possible yet 

designed in such a way for the evaluations to be robust. The design of the surveys should not 

have needed a significant amount of time from the audience to complete. More exhaustive 

and time-consuming evaluations would have possibly required the assignment of rewards for 

the judges. However, this option was negated due to constraints on the budgets and fundings 

of the research project. Nevertheless, for avoiding possible fatigue in the critics, the tests 

were kept short and simple.  

The first question in the survey evaluates people’s bias towards computational 
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creativity and generated Persian music. Questions about people’s mind-set towards 

computational creativity make them aware of their subconscious biases before entering the 

main part of the survey. The questions associated to bias issues are presented in table 7-1 

(some of which are inspired from (Jordanous, 2012b)). The participants were made available 

with a likert for each component. The likert choices are Strongly Disagree/ Disagree / Neutral 

/Agree / Strongly Agree. 

Table 7-1 The first question components in the second survey is for identifying the particiants’ bias 

towards computational creativity, and Dastgāh music.  

a Computers can produce creative outputs. 

b Computers can occasionally or randomly be creative. 

c Computers cannot be creative because they merely reflect the creativity of programmer. 

d The idea of computers being creative disturbs me. 

e Computers might be or can be creative in the future but currently are not creative. 

f Computers will never be creative. 

g Computers cannot generate Persian music. 

h Dastgāh Persian music should not be a subject for computational creativity. 

i I like the idea of computers being creative. 

j I do not like the idea of computers generating Dastgāh-like music. 
 

In the auditory section of the second survey, a total number of seven audio samples are 

presented. Three of the samples were selected from the audio pieces generated from the 

compositional algorithm from chapter 5. Four of these audio samples were selected from the 

pieces generated from the models in chapter 6.The participants were invited to listen to each 

of the audio samples and answer the related queries. The audience were informed that they 

were going to listen to machine generated audio. Once the assumption was established that 

the audio pieces were machine generations, they could be judged against the predetermined 

criteria.  

The evaluation criteria in the second survey are a combination of human opinion on 

creativity, Ritchie’s criteria, and some other criteria that are related to the targets of this 
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thesis. The combination of these methodologies were taken into account both in the hope of 

finding out more information that can help progress the work and both for establishing 

stronger grounds for reasoning about the achieved targets of this PhD thesis. The possibility 

of using Pease’s criteria for evaluation, Colton’s creativity tripod, and Jourdanous evaluation 

criteria were considered. The evaluation processes in these methodologies rely on the input, 

output, and the process itself. However, in this thesis the attention was kept towards 

evaluating the system by its outputs.  

Applying Ritchie’s criteria as a computational creativity evaluation method enables the 

assessment of the creativity of the system by its output. Ritchie’s criteria evaluate the 

typicality, and value of the generated audio pieces. Ritchie’s criteria were customized for 

evaluating the audio samples and are rephrased accordingly to be suitable for the current 

application. Therefore, the Ritchie’s questions in this survey are slightly different from 

Ritchie’s original questions and are taken from (Jordanous, 2012b) to fit the evaluation of a 

musical system: 

• Is the audio an example of a musical improvisation? (Typicality) 

• Is the audio a good musical improvisation? (Value) 

Evaluation of the typicality and value of the generated audio pieces as musical 

improvisations are important. This is due to the improvised nature of performance of 

Dastgāh. The above Ritchie’s criteria evaluate how the generated audio resemble Dastgāh 

music in this respect. Asking people about the creativity of the audio pieces and relying on 

their perspectives on creativity can be considered as a straightforward way of evaluation. The 

designed question for evaluating people’s opinions on the creativity of the system is: 
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• Is the piece the result of a creative process? 

The rest of the queries are domain specific questions and are designed to see how the 

system is successful in achieving the targets of the thesis.  

• Is the audio music-like?  

• Is the audio Dastgāh-like?  

• Is a Persian musical instrument being played? 

The participants were asked whether the audio are music-like. This question is different 

from the first query about typicality of audio pieces. If an audio piece is considered as a 

musical improvisation then it would be music-like.  

A Persian musical instrument (Santur) model was employed as the synthesizer. We 

wanted to investigate how the changing of the parameters would keep the generated audio to 

be perceived as being played by Santur. Moreover, we wanted to take a look at how the 

acoustical aspects of the audio would effect the way they were perceived as Persian music. 

The additional queries were: 

• Did you like this audio piece? 

• How much confident were you in answering these questions? 

Liking an audio piece and rating it as creative or perceiving it as a good music, are 

different matters. It was assumed that separating these queries from each other might help 

the participants to differentiate these criteria from each other and rate them more independent 

of one another. The audience were asked about the level of their confidence in answering the 
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queries (Jordanous, 2012b). The evaluation queries were repeated for all the seven audio 

samples presented in the survey from second to eighth question.  

Table 7-2.The subqueries presented in the ninth question of the second public survey. 

a I spend as much time as I can listening to music. 

b I consider myself a Musician. 

c I consider myself as a Computer Scientist/ Computer Programmer. 

d I play at least one musical instrument. 

e I am familiar with Persian music. 

f I am familiar with Dastgāh Persian music. 

g I can identify the genres of music relatively easy. 

h I have/had formal training on music theory. 
 

The ninth question in the survey (table 7-2) asks people about their familiarity with music, 

and computer science and their levels of proficiency (whether they are amateur or 

professional). People were asked if they are computer scientists or musicians. The queries 

also ask the participants whether they are familiar with Persian music. Responses to this 

question set should reflect the nature of the society of the participants. The last question in 

the survey asks the participants to leave their comments. Further details about the design of 

the second survey are presented in Appendix H. In the next sections, the survey evaluation 

results are presented.  

7.3.2 Analysis according to Musical Backgrounds and Computer Science 

Knowledge  

The second survey was circulated around the postgraduate students of the University 

of Hull. Overall, 53 people took part in the survey. The survey results show that most of the 

respondents spend as much time as they can listening to music. Likewise, most of these 

people can identify the genres of music relatively easy. 18 people out of 53 considered 

themselves moderate to very good computer scientists. 21 people present in the survey 
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consider themselves as moderate to professional musicians. More than 50% of the survey 

takers play at least one musical instrument from modest to professional levels. 

 

Figure 7-4 Collected responses about musical background, and computer science knowledge of 

respondents. 

 Each of the bars from left to right are associated with the queries a-h (in question 

9) respectively (Please refer to table 7-2 for criteria a-h).  

Around 59% of the respondents did not receive formal music theory to a moderate 

level. The familiarity of the respondents with Persian music and Dastgāh were limited. This 

is inferred from the fact that higher numbers of people selected the negative side of the likert 

(Figure 7-4).  

7.3.3 Analysis of the Biases towards Computational Creativity and Dastgāh Music 

In this subsection, an analysis is given to the set of queries designed for identifying the 

possible respondent’s biases towards Persian music and computational creativity. Figure 7-5 

illustrates the responses collected about queries regarding people’s bias towards 

computational creativity, and Dastgāh music. The quantitative analysis of each of the under 
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studied bias criteria (a-j) are presented in the following:  

 

Figure 7-5 The responses collected about queries regarding people’s bias towards computational 

creativity, and Dastgāh music. 

Each of the bars from left to right are associated with the queries a-j (in question 1) respectively. 

 a. “Computers can produce creative outputs.” 35 out of 53 people had moderately to 

strongly agreed that computers can produce creative material. 11 people stayed neutral, while 

the rest (7 people) had negative tendencies towards the matter.  

b. “Computers can occasionally or randomly be creative.” The second statement were 

rated with a similar trend to the previous statement in (a). 34 out of 53 people agreed with 

the statement (including all the moderately to strongly levels of agreement). 9 people 

disapproved the verdict. While the rest of the respondents (10 people) stayed neutral. 

c. “Computers cannot be creative because they merely reflect the creativity of the 

programmer.” The responses for the third statement are quite varying. However, a 

symmetrical pattern in the responses can be detected. The number of people who expressed 

strong approval (6) and strong disagreement (4) do not differ to a high extent. The rate of 
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people who agreed (13) or disagreed (17) with the statement are near to each other and most 

of the ratings for this statements are allocated to the agree/disagree groups. The rest of people 

moderately agreed (9) or selected the neutral ground (4). The figure for this statement shows 

that 28 respondents in total agreed with the statement, and 21 people objected. 

d. “The idea of computers being creative disturbs me.” Only 8 out of 53 people agreed 

or strongly agreed that computers being creative are disturbing to them. 7 respondents agreed 

moderately. 24 people disagreed with the statement. 14 people stayed impartial.  

e. “Computers might be or can be creative in the future but currently are not creative.” 

This claim attracted various ratings while about 30 percent (16/53) of the respondents stayed 

indifferent. The percentage of people who had positive tendencies towards this statement 

were 40%. Thirty percent of the respondents disagreed with this statement. 

f. “Computers will never be creative.” Around 71 percent (37/52) of the respondents 

disagreed that computers will never be creative. This figure is in contrast to the low number 

of people (8/52) who positively rated their agreement. The rest of the survey attendees 

expressed their neutral position towards the comment. One person did not leave their ratings 

for this comment.  

g. “Computers can not generate Persian music.” Most of the survey takers (62%) 

opposed to the statement that computers cannot generate Persian music. About 25 percent of 

the respondents stayed neutral. While approximately 13 percent of the respondents 

(moderately to strongly) believe that computers cannot generate Persian music.  

h. “Dastgāh Persian music should not be a subject for computational creativity.” This 

comment was opposed by 68 percent of the survey attendees. While only around 13 percent 
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of people agreed with the statement, and around 19 percent of the respondents stayed 

impartial. The figure of the ratings for this statement is similar to that of the previous 

comment. 

i. “I like the idea of computers being creative.” Most of the people who took part in the 

survey (32/53) do like the idea of computers being creative. This liking is rated from 

moderate to strong level. Eleven people did not particularly had preferences about this 

statement. 10 people (about 18%) did not like the idea of computers being creative.  

j. “I do not like the idea of computers generating Dastgāh-like music.” There were only 

about 11 percent of the respondents who supported this comment. About 62 percent of the 

respondents disapproved the statement. Around a quarter of people who participated in the 

survey stayed neutral about this statement. 

7.3.4 Quantitative Analysis of the Responses about the Machine Generated Audio  

In this subsection the quantitative analysis of the responses about the machine 

generated audio are presented. The represented numbers and figures are calculated by taking 

the average responses over all respondents on the likert for all the seven audio pieces. Figures 

7-6, 7-7, and 7-8 demonstrate pie charts related to the analysis of the responses to queries a-

h about the machine generated audio in the second survey. 

a. “Is the audio music-like?” 29 percent of the respondents on average moderately 

agreed that the audio pieces are music like. On average, the rate of people who agreed with 

the music-likeness of the audio pieces are slightly more than 27 percent. This figure shows 

that around 56 percent of the respondents go for the idea of music-likeness of the generated 
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audio pieces. A mean of 12 percent of the respondents stayed impartial. While less than 15 

percent and 9 percent of the participants disagreed and totally disagreed with the statement. 

   

(a) Music-Like (b) Improvisation (c) Good improvisation 

Figure 7-6 The pie-charts related to the analysis of the average responses to queries a,b, 

and c, about the machine generated audio in the second survey. 

The colours in the pie-charts are associated to the likert ranges: Totally Disagree, 

Disagree, Neutral, Moderate,  Strongly agree,  Agree 

b. “Is the audio an example of a musical improvisation?” On average, the highest rate 

of the likert is dedicated to moderate rating for this statement. This rating is around 25 percent 

in the moderate group which is followed by the ratings in the agree and neutral groups with 

23.35% each. Slightly less than 17 percent of the participants disagreed with the statement 

while 7 percent of the survey attendees totally disagreed that the audio samples are examples 

of musical improvisations. 

c. “Is the audio a good musical improvisation?” The mean proportion of the 

respondents who disagreed or totally objected this statement was around 26 percent in total. 

An average of 23 percent of the participants stayed impartial in rating the various audio 

pieces. A mean proportion of 18.45% of the respondents moderately agreed that the audio 

samples are good musical improvisations. The mean percentages of the participants who 

agreed or strongly agreed with the statement are 7.98%, and 4.13% respectively.  
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d) Dastgāh-like (e) Persian Instrument (f) Creative 

Figure 7-7 The pie-charts related to the analysis of the responses to queries d,e, and f, 

about the machine generated audio in the second survey. 

The colours in the pie-charts are associated to the likert ranges: Totally Disagree, 

Disagree, Neutral, Moderate, Strongly agree,  Agree 

d. “Is the audio Dastgāh-like?” 34.61% of the participants stayed neutral in rating this 

comment while going through the audio samples. The proportion of the respondents who 

moderately agreed and those who disagreed with this statement are very similar and they are 

both approximating a mean of 21 percent. Around sixteen percent of the respondents stayed 

in the agree, and strongly agree groups together. About 8 percent of the respondents strongly 

disapproved of the audio samples to be Dastgāh-like. The quantitative analysis of this 

comment shows that an average of around 36 percent of the respondents approved the 

comment with different levels of positive agreements. This figure is around 30 percent for 

those who disapproved the Dastgāh-likeness of the audio samples. 

e. “Is a Persian musical instrument being played?” On average, the highest proportion 

is allocated to the group of neutral orientation as in the case of previous statement about 

Dastgāh-likeness of audio samples. 27.19% of the participants on average chose to be neutral 

in rating this statement. The approximate proportion of the respondents who agreed with this 
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statement (from moderate to strongly agree level) over all the audio clips is 40 percent. The 

average percentage of the respondents who chose the negative side of the likert for this 

statement is slightly more than 32 percent in total. 

f.  “Is the piece a result of a creative process?” On average about 30 percent of the 

respondents stayed neutral in giving rates to this comment. The gravity of the responses stays 

in the positive side of the likert. A mean of 25.06% of the respondents moderately agreed 

that there had been a creative process behind the scenes of the production of audio samples. 

An approximate average proportion of 25 percent of the participants agreed or strongly 

agreed with the statement. The average proportions of the disagreements are around 20 

percent in total. 

g. “Did you like this audio piece?” The average gravity of the ratings for this statement 

is in the negative side of the likert for different audio pieces. These ratings are 32.68%, and 

2.19% for the disagree and totally disagree ratings for the different presented audio clips in 

the survey. On average, the preferences of the respondents for the audio pieces decreases 

from 16.06% in the moderate group to 5.26% in the strongly agree group. There were about 

13 percent of the respondents who stayed impartial about their preference of the audio 

samples presented. 

h. “How much confident were you in answering these questions?” An average 

approximation of 70 percent of the ratings fall in the positive categories for this statement; 

meaning that most of the respondents rated to the queries with confidence. Only a mean of 

12 percent of the participants reported negatively to this statement. A mean of 18.13% of the 

people taking the survey stated neutral position while rating this comment.  
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(g) Like (h) Confidence 

Figure 7-8 The pie-charts related to the analysis of the responses to queries g, and h about 

the machine generated audio in the second survey. 

The colours in the pie-charts are associated to the likert ranges: Totally Disagree, 

Disagree, Neutral, Moderate, Strongly agree,  Agree 

7.3.5 Summary Analysis of the Second Public Survey 

Fifty-three people from the list of postgraduate students of the University of Hull 

participated in the survey. The analysis of their musical background shows that they generally 

like to listen to music, and they are capable to identify genres of music. Most of the 

participants have played at least one musical instruments in their life. Generally, they have 

limited familiarity with Dastgāh music. Most of them are not musicians or computer 

scientists.  

The result of the analysis for identifying the possible biases of the respondents towards 

computational creativity, and Dastgāh music are briefly discussed here: Most of the 

respondents agreed that computers can produce creative materials. In addition, most of the 

survey participants agreed that computers can be creative or can occasionally or randomly be 

creative. However, the dominating thought is that computers merely reflect the creativity of 

the programmer. Almost half of the participants are not disturbed by the idea of computers 
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being creative. The rest of the respondents whether belonged to the neutral group or to the 

group of people who are actually disturbed by the matter. The belief of the possibility of 

computers being creative in the future and not as a current fact, raised three major orientations 

among people: the three groups of orientations of neutral, and positive and negative 

tendencies are almost of the same sizes. The number of people who agreed with the statement 

were slightly more than those who disagreed. Most of the people who participated in the 

survey did not go for the idea that computers will never be creative. Likewise, more than half 

of the respondents did not agree that computers cannot generate Persian music. A quarter of 

the respondents did not oppose or agree with this statement (stayed neutral). Around 70 

percent of the respondents approved that Dastgāh Persian music should be a subject for 

computational creativity. 62 percent of the participants approved that they like the idea of 

computers generating Dastgāh-like music. Generally, most of the people who took part in the 

survey do like the idea of computers being creative. 

More than half of the respondents on average agreed with the idea of music-likeness of 

the audio samples. Slightly less than 50 percent of the participants, on average agreed that 

the audio clips are examples of musical improvisation. This is while around a quarter of them 

stayed neutral. The average proportion of the respondents who disagreed that the audio 

samples are good musical improvisation are 6 percent more than the rate of people who 

agreed about the matter. The mean rate of the people who agreed that the audio clips are 

Dastgāh-like are around six percent more than those who disapproved the Dastgāh-likeness 

of the productions. On average one-third of the respondents stayed impartial in rating the 

Dastgāh-likeness of the audio samples. The statement about the usage of a Persian musical 



 

155 

 

instrument in the samples attracted a mean of 40 percent of various degrees of approvals from 

the audience. The disapprovement figure is about 9 percent less than the agreement ratio. A 

mean rate of around 27 percent of the respondents stayed neutral in rating this comment. The 

statement about whether a creative process is being involved in the audio generations 

gravitates towards positive responses rather than negative ones. The figure of about 30 

percent neutrality in the rating of this statement persists (as in the ratings of the previous 

cases about Dastgāh-likeness and the statements regarding the typicality, and value of the 

audio pieces). More than 50 percent of the people who took part in the survey did not like 

the audio samples in general. A large proportion of the respondents stated that they had 

confidence in responding to the questionnaire. 

7.3.6 Summary Results from Ritchie’s Criteria for Evaluation  

The set of questions for evaluating the Ritchie’s criteria in the second survey are:  

• Is the audio an example of a musical improvisation (Typicality)?  

• Is the audio a good musical improvisation (Value)? 

The full procedure for obtaining the Ritchie’s evaluation criteria are presented in the 

appendix J. The respondents were provided with a likert to rate their answers. The ratings 

were weighted according to Ritchie’s 0-1 standard range. The obtained values were applied 

for extrapolating the parameters for Ritchie’s criteria formulations. 

The mean typicality and mean value for each of the seven audio pieces in the second 

survey were calculated. These measurements were then compared with the typicality, 

atypicality, and value threshold parameters from Ritchie’s formulations. In this stage, the 
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audio pieces might be tagged as typical/atypical or valuable items. All the seven audio pieces 

were tagged as typical, and only two of them were considered to be valuable. The 18 Ritchie’s 

criteria were then implemented by counting the members of different sets (for example 

members of typical and valuable groups) and populating the parameters of the set theory 

formulations. Table 7-3 demonstrates how the different Ritchie’s criteria are satisfied or 

dissatisfied in the second survey.  

Table 7-3 Results from applying Ritchie’s criteria in the second survey.  

 Evaluation Criteria RESULTS 

1 At least an average amount of the outputs should be competently typical. TRUE 

2 An acceptable proportion of the outputs should be competently typical. TRUE 

3 At least an average amount of the outputs should be adequately valuable. TRUE 

4 An acceptable proportion of the outputs should be adequately valuable. FALSE 

5 An acceptable proportion of the results should be both competently typical, and 

adequately valuable. 

FALSE 

6 An acceptable proportion of the outputs should be competently atypical and 

adequately valuable. 

FALSE 

7 An acceptable proportion of the atypical results should be worthy. NOT 

APPLICABLE 

8 An acceptable proportion of the qualified valued outputs should be competently 

atypical. 

FALSE 

9 The system should be capable of reproducing an acceptable proportion of the 

artefacts originally presented to the system as inspiring set. 

NOT 

APPLICABLE 

10 A decent proportion of the outputs of the system should be novel (should not be 

replications of the items in the inspiring set). 

TRUE 

11 On average, the outputs of the system which are novel should also be competently 

typical. 

TRUE 

12 On average, the outputs of the system which are novel should also be worthy. TRUE 

13 An acceptable proportion of the results of the system should be competently typical 

novel outputs. 

TRUE 

14 An acceptable proportion of the results of the system should be worthy novel 

outputs. 

FALSE 

15 An acceptable proportion of the novel outputs should be competently typical. TRUE 

16 An acceptable proportion of the novel outputs should be worthy. TRUE 

17 An acceptable proportion of the novel results should be both competently typical 

and adequately valuable. 

FALSE 

18 An acceptable proportion of the novel results should be both competently atypical 

and adequately valuable. 

FALSE 

 

 

The summary of applying Ritchie’s criteria is demonstrated in table 7-4. In the 

appendix J it is demonstrated how some of the criteria are equivalent for this application 



 

157 

 

(This is due to the fact that none of the generated audio pieces were replicating members of 

the training set also known as inspiring set). Neglecting the equivalent criteria would leave 

11 distinct criteria. Allowing the equivalent criteria, 50% of the 18 criteria are TRUE, 2 of 

them are not applicable and the remaining 7 are FALSE. This can be interpreted that the 

system fulfils half of the Ritchie’s criteria to be considered as a creative system. Four of the 

distinct criteria out of 11 were true, while five were false and two of the criteria were not 

applicable. This suggests that the interpretation of the system as creative is compromised 

through using stricter criteria. 

Table 7-4 The summary of the results of applying Ritchie’s criteria in the second survey. 

Top three rows show all 18 criteria; last three rows show just the 11 distict 

criteria 

9/18 Criteria TRUE 1,2,3,10,11,12,13,15,16 

7/18 Criteria FALSE 4,5,6,8,14,17,18 

2/18 Not Applicable 7,9 

4/11 Distinct Criteria TRUE 1,2,3,10 

5/11 Distinct Criteria FALSE 4,5,6,8,17 

2/11 Not Applicable 7,9 

7.4 The Survey for Professional Persian Musicians 

7.4.1 The Design and Criteria for the Survey aimed for Professionals 

The design of the third survey is similar to the second survey with some additional 

evaluation criteria. The question regarding participants’ bias towards Persian music, and 

computational creativity are the same as in the second survey. There were 8 audio samples 

evaluated in the third survey and the audio samples were selected from the output results 

from systems described in chapters 5, and 6. Half of the samples belong to the composition 

set from algorithm in chapter 5, and the other half were associated to the outputs from the 

algorithm in chapter 6. The people who were invited to take part in the third survey belong 
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to one or more of these categories: 

• Have sufficient/great domain knowledge from Persian Dastgāh music.  

• They are improvisers and music producers in the style of Dastgāh Persian music. 

• They are professionals in playing at least one Persian musical instrument.  

• They are singers who sing vocals and lyrics for Dastgāh music.  

The additional evaluation criteria target the typicality and value of the audio pieces as 

Dastgāh music. These queries are:  

• To what extent is the generated audio an example of the Dastgāh Persian music 

genre? (typicality) 

• To what extent is the produced audio a high quality example of Dastgāh?(value) 

While this survey gathered only 7 responses, it is presented as it offers a different 

audience set to the previous two surveys. Further details about the design of the third 

survey can be found in appendix I. In the following subsection, the results of the 

professional people evaluations on the outputs of the systems are presented. 

7.4.2 Analysis of the Biases towards Computational Creativity and Dastgāh music 

An analysis is provided according to the set of questions designed for identifying the 

possible respondent’s biases towards Persian music and computational creativity. Figure 7-9 

illustrates the responses collected about queries regarding people’s bias towards 

computational creativity, and Dastgāh music. The quantitative analysis of each of the under 

studied bias criteria (a-j) are presented in the following: 
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a. “Computers can produce creative outputs.” Around 43 percent of the 

professional respondents were moderately fond of the idea that computers can produce 

creative materials. The rest of the respondents had disagreement about computers producing 

creative materials. The proportions of the respondents who went for each of the disagreement 

and totally disagreement choices were 28.57%. This contributes to the fact that more than 

half of the participants believe that computers cannot produce creative outputs.  

b. “Computers can occasionally or randomly be creative.” 5 out of 7 respondents 

had negative tendencies about the statement that the computers can randomly or occasionally 

be creative. 2 people moderately supported this statement. 

c. “Computers cannot be creative because they merely reflect the creativity of 

the programmer.” A total number of 4 people out of 7 agreed that computers cannot be 

creative because they merely reflect the creativity of the programmer, however 3 respondents 

disagreed with the statement.  

d. “The idea of computers being creative disturbs me.” Around 81 percent of the 

survey participants were not disturbed by the idea of computers being creative. 14.29 percent 

of the respondents did strongly agree with the statement. The same proportion of the 

respondents (14.29%) stayed neutral. Most of the people taking the survey were not disturbed 

by the idea of computers being creative. 

e. “Computers might be or can be creative in the future but currently are not 

creative.” 42.86% of the participants moderately agreed with the statement and a proportion 

of 28.57% of the respondents agreed that the computers can be creative in the future but are 

not currently creative. 28.57% of the survey takers totally disagreed with the statement. 
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f. “Computers will never be creative.” A proportion of 42.86% of the respondents 

disagreed with the statement and 14.29% of the people totally objected with the remark that 

computers will never be creative. This means that the gravity of the responses for this 

comment lies in the negative side of the likert. The percentages of the people who selected 

the neutral choice or those who agreed, or strongly agreed with the statement were all the 

same: 14.29%. 

 

Figure 7-9 The responses collected about queries regarding people’s bias towards 

computational creativity, and Dastgāh music in the third survey. 

Each of the bars from left to right are associated with the queries a-j (in 

question 1) respectively. 

g. “Computers cannot generate Persian music.” A proportion of 57.14% of the 

people who took part in the survey disagreed with the comment that Computers cannot 

generate Persian music. The rest of the ratings for this comment is equally distributed 

between the choices of moderately agree, agree, and strongly agree. The proportions of the 

responses in each of these three positive groups are 14.29%. 
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h. “Dastgāh Persian music should not be a subject for computational creativity.” 

Most of the respondents (6 out of 7) opposed the comment that Dastgāh Persian music should 

not be a subject for computational creativity (It can implicitly infer that 6 out of 7 people 

thought Dastgāh music can be a subject for computational creativity). The figure in the 

negative side of the likert, suggests that there are 57.14% of the respondents who disagreed 

with the comment, and a proportion of 28.57% who totally disagreed. The proportion of 

people who went for strongly agree choice was 14.29%. 

i. “I like the idea of computers being creative.” 2 of the respondents moderately 

supported the statement and only 1person agreed that they like the idea of computers being 

creative. On the negative side one of the respondents totally disagreed with the statement and 

2 people disagreed. 1 out of 7 people stayed neutral about this remark. 

j. “I do not like the idea of computers generating Dastgāh-like music.” A total number 

of 6 respondents out of 7 stated their opposition towards this statement. Only 1 person 

strongly agreed with the statement.  

7.4.3 Analysis of the Responses about the Machine Generated Audio Clips 

In this subsection the quantitative analysis of the responses about the machine 

generated audio are presented. The represented numbers and figures are calculated by taking 

the average responses over all the respondents on the likert for all the eight audio pieces. 

Figures 7-10, 7-11, and 7-12 demonstrate pie charts related to the analysis of the responses 

to queries a-i about the machine generated audio in the third survey. 

a. “Is the audio music-like?” On average, there are only 16.07% of the 
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respondents who moderately agreed and 3.57% who agreed with the statement. A 

considerable proportion of the participants counter voted for the musicality of the audio 

pieces. The average rate of people who chose the negative side of the likert for the different 

audio pieces is slightly more than 71 percent. A mean proportion of 7.14% of the participants 

stayed neutral while rating different audio pieces. 

   

(a) Music-like (b) Improvisation (c) Good improvisation 

Figure 7-10 The pie-charts related to the analysis of the responses to queries a,b, and c, 

about the machine generated audio in the third survey. 

The colours in the pie-charts are associated to the likert ranges: Totally Disagree, 

 Disagree,  Neutral, Moderate,  Strongly agree,  Agree 

b. “Would you agree that this is an example of musical improvisation?” The figures 

show that a large average proportion of around 91 percent of the respondents disagreed or 

strongly disagreed that the audio-clips represent samples of musical improvisation. Only 

3.57% of the respondents on average moderately agreed that the audio pieces represent 

examples of musical improvisations. A mean proportion of 5.35% of the participants chose 

the neutral option while rating this statement over different audio pieces.  

c. “Would you agree that this is a good musical improvisation?” A mean proportion of 

73.21% of the respondents totally disagreed and an average rate of 12.5% disagreed that the 

39.28

32.14

7.14

16.07

3.57 0

60.71

30.35

5.35

3.57 0 0

73.21

12.5

0

00
14.28



 

163 

 

audio samples are good musical improvisations. Only 14.28% of the respondents on average 

strongly agreed that the audio pieces are good musical improvisations.  

d. “To what extent is the generated audio an example of the Dastgāh Persian music 

genre?” A large proportion of participants did not agree that the audio samples are in the 

genre of Dastgāh Persian music. An average proportion of 98 percent of the survey attendees 

disagreed and totally disagreed with this comment. A mean of 1.78% of the respondents 

stayed neutral while rating the audio pieces. 

e. “To what extent is the produced audio a high quality example of Dastgāh?” A notable 

mean proportion of 83.92% of the respondents, totally disagreed, and 10.71% of the 

respondents disagreed with this statement. This implies that most of the concentrations of the 

ratings for this comment are in the negative side. An average proportion of 1.78 % of the 

respondents moderately agreed with this remark and a mean proportion of 1.78% of the 

respondents stayed neutral. 

   

(d) Dastgāh-like (e) Quality Dastgāh (f) Liked 

Figure 7-11 The pie-charts related to the analysis of the responses to queries d,e, and f, 

about the machine generated audio in the third survey. 

The colours in the pie-charts are associated to the likert ranges: Totally Disagree, 

Disagree, Neutral, Moderate, Strongly agree,  Agree 
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f.  “Do you like this audio piece?” Most of the respondents did not like the audio 

samples. A mean proportion of 69.64% totally disliked the audio clips and 21.42% did not 

like them. A mean percentage of 8.92 of the respondents stayed neutral. 

g. “To what extent would you agree the piece was a result of a creative process?” Only 

10.71% of the respondents on average moderately agreed the productions as a result of a 

creative process. A mean rate of 3.67% of the survey participants had slightly better 

agreements with the matter. On average around 82 percent of the professionals did not agree 

the pieces to be the result of a creative process. A proportion of 3.57% of the respondents on 

average chose the neutral grounds in rating this statement. 

   

(g) Creative process result (h) Persian instrument (i) Confidence 

Figure 7-12 The pie-charts related to the analysis of the responses to queries g,h, and i, 

about the machine generated audio in the third survey. 

The colours in the pie-charts are associated to the likert ranges: Totally Disagree, 

Disagree, Neutral, Moderate, Strongly agree,  Agree 

h. “Does the audio sound as if a Persian musical instrument is being played?” Most of 

the responses belong to the negative side of the likert. A mean proportion of around 70 

percent of the respondents disagreed that a Persian musical instrument was being played 

throughout the audio clips. An average rate of 16.07% of the respondents moderately agreed 
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with the statement. The mean proportion of respondents who agreed and strongly agreed with 

the matter is around 11 percent. A mean percentage of 3.57 of the participants stayed 

impartial. 

i. “How much confident were you in answering these questions?” On average, the 

participants had high levels of confidence in rating the audio samples. All the concentration 

of the ratings lies in the high end of the likert.  

7.4.4 Summary of the Result of the Professional Survey 

More than half of the professional participants disagreed that computers can produce 

creative outputs. Most of them believe that computers cannot occasionally or randomly be 

creative. The number of people whom agreed that computers merely reflect the creativity of 

the programmer is almost the same as the number of respondents whom disagreed with the 

statement. A large proportion of the people taking the survey stated that they were not 

disturbed by the idea of computers being creative. Most of the respondents (approximately 

seventy-one percent) agreed with the comment that computers might be or can be creative in 

the future but are not currently creative. Around 30 percent of the respondents totally 

disagreed with this remark. Most of the respondents disagreed with the claim that the 

computers will never be creative, meaning that they believe at some point or in some ways 

that computers will be creative in the future. The survey takers disagreed with the negative 

statement that the computers cannot generate Persian music. All the survey participants 

except one of them agreed that Dastgāh Persian music should be a subject for computational 

creativity. Equal numbers of respondent like and dislike the idea of computers being creative. 

Almost none of the respondents had oppositions about computers generating Dastgāh-like 
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music. 

The results of the analysis of the ratings of the audio samples do not seem to be very 

satisfying in the survey designed for professionals. On average, there are slightly less than a 

fifth of the respondents who agreed on the musicality of the generated audio pieces. 

Moreover, a large proportion of the respondents on average, did not agree on audio clips to 

be valuable examples of musical improvisations nor even typical examples of musical 

improvisations. Almost all of the participants disagreed that the audio samples are examples 

of Dastgāh music genre. Likewise, the audio clips were not considered as high-quality 

examples of Dastgāh. Most of the participants did not like the audio pieces. Only a mean of 

13 percent of the respondents agreed that the audio clips are the results of creative process. 

A large mean proportion of around 70 percent of the respondents disagreed that a Persian 

musical instrument is being played throughout the audio clips. The respondents stated that 

they were confident while rating the audio samples according to the evaluation criteria. 

7.4.5 The Results of Evaluation from Ritchie’s Criteria 

In the third survey analysis, the Ritchie’s evaluation criteria were implemented for 

evaluating the systems based on the audio samples being typical and valuable musical 

improvisations as well as being typical and valuable Dastgāh musical pieces. The first set of 

typicality and value questions in the third survey are: 

• Is the audio an example of a musical improvisation? (Typicality)  

• Is the audio a good musical improvisation? (Value) 

The second set of typicality, and value questions in the third survey are: 
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• To what extent is the generated audio an example of the Dastgāh Persian music genre? 

(Typicality) 

• To what extent is the produced audio a high quality example of Dastgāh? (Value) 

The full procedure for obtaining the Ritchie’s criteria evaluation for the first set and 

second set of questions are presented in the appendix K. In this paragraph the summary of 

the procedure for evaluating Ritchie’s criteria for the question sets are presented. These 

question sets were evaluated independently in appendix K-1, and K-2, yet the procedure is 

similar. In the main survey the respondents were provided with a likert to rate their answers. 

The ratings were weighted according to Ritchie’s 0-1 standard range. The obtained values 

were applied for extrapolating the parameters for Ritchie’s criteria formulations. The mean 

typicality and mean value for each of the eight audio pieces in the third survey were 

calculated. These measurements were then compared with the typicality, atypicality, and 

value threshold parameters from Ritchie’s formulations. In this stage, the audio pieces were 

investigated and they were tagged as typical/atypical or valuable items where suitable.  

The audio pieces were all tagged as atypical samples for both sets of questions. None 

of the audio pieces was tagged as valuable for the first set of questions (related to musical 

improvisation). Only one of the pieces was tagged as valuable for the second set of question 

(related to Dastgāh music). The 18 Ritchie’s criteria were then implemented by counting the 

members of different sets and populating the parameters of the set theory formulations. The 

results from applying Ritchie’s criteria for the first set of questions are demonstrated in table 

7-5. The results indicate that only 1 out of 18 criteria is fulfilled. The results from applying 

Ritchie’s criteria for the second set of questions are shown in the last column of table 7-5. 
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The results show that only 2 criteria out of 18 criteria are met.  

Table 7-5 Evaluating the Ritchie’s 18 criteria for the third survey. 

The evaluation results are given for the two sets of evaluation criteria: The 

first set of results refers to the typicality, and value evaluations of the audio 

pieces as musical improvisations. The second set of results refers to the 

typicality, and value evaluations of the audio pieces as Dastgāh music. 

 Evaluation Criteria First set  Second set  

1 At least an average amount of the outputs should be competently 

typical. 

FALSE FALSE 

2 An acceptable proportion of the outputs should be competently 

typical. 

FALSE FALSE 

3 At least an average amount of the outputs should be adequately 

valuable. 

FALSE FALSE 

4 An acceptable proportion of the outputs should be adequately 

valuable. 

FALSE FALSE 

5 An acceptable proportion of the results should be both 

competently typical, and adequately valuable. 

FALSE NOT 

APPLICABLE 

6 An acceptable proportion of the outputs should be competently 

atypical and adequately valuable. 

FALSE FALSE 

7 An acceptable proportion of the atypical results should be worthy. FALSE FALSE 

8 An acceptable proportion of the qualified valued outputs should 

be competently atypical. 

NOT 

APPLICABLE 

TRUE 

9 The system should be capable of reproducing an acceptable 

proportion of the artefacts originally presented to the system as 

inspiring set. 

NOT 

APPLICABLE 

NOT 

APPLICABLE 

10 A decent proportion of the outputs of the system should be novel 

(should not be replications of the items in the inspiring set). 

TRUE TRUE 

11 On average, the outputs of the system which are novel should also 

be competently typical. 

FALSE FALSE 

12 On average, the outputs of the system which are novel should also 

be worthy. 

FALSE FALSE 

13 An acceptable proportion of the results of the system should be 

competently typical novel outputs. 

FALSE FALSE 

14 An acceptable proportion of the results of the system should be 

worthy novel outputs. 

FALSE FALSE 

15 An acceptable proportion of the novel outputs should be 

competently typical. 

FALSE FALSE 

16 An acceptable proportion of the novel outputs should be worthy. FALSE FALSE 

17 An acceptable proportion of the novel results should be both 

competently typical and adequately valuable. 

FALSE FALSE 

18 An acceptable proportion of the novel results should be both 

competently atypical and adequately valuable. 

FALSE FALSE 

 

In the appendix K, it is demonstrated how some of the criteria are equivalent for this 

application. This is due to the fact that none of the generated audio pieces were replicating 

members of the training set (known as inspiring set). Neglecting the equivalent criteria would 
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leave 11 distinct criteria. 

Tables 7.6 and 7.7 show the summary results for first and second set of questions on 

Ritchie’s Criteria, respectively. Allowing the equivalence of criteria, 1 out of the 18 criteria 

are TRUE for question set 1, 2 of them were not applicable and the remaining 15 were 

FALSE. The second question set shows similar results with 2 of the 18 criteria as TRUE, 2 

not applicable and the remaining 14 FALSE. This can be interpreted as stating the responses 

of the professional Persian musicians suggest the system is NOT being creative. 

Table 7-6 The summary of Ritchie’s criteria for the first set results in the third survey. 

The first set of results refers to the typicality, and value evaluations of the 

audio pieces as musical improvisations. Top three rows show all 18 criteria; 

last three rows show just the 11 distict criteria 

1/18 Criteria TRUE 10 

15/18 Criteria FALSE 1,2,3,4,5,6,7,11,12,13,14,15,16,17,18 

2/18 Not Applicable 8,9 

1/11 Distinct Criteria TRUE 10 

8/11 Distinct Criteria FALSE 1,2,3,4,5,6,7,17 

2/11 Not Applicable 8,9 
 

Table 7-7 The summary of Ritchie’s criteria for the second set results in the third survey  

The second set of results refers to the typicality, and value evaluations of the 

audio pieces as Dastgāh music. Top three rows show all 18 criteria; last three 

rows show just the 11 distict criteria 

2/18 Criteria TRUE 8,10 

14/18 Criteria FALSE 1,2,3,4, 6,7,11,12,13,14,15,16,17,18 

2/18 Not Applicable 5,9 

2/11 Distinct Criteria TRUE 8,10 

7/11 Distinct Criteria FALSE 1,2,3,4,6,7,17 

2/11 Not Applicable 5,9 

 

A similar set of results are shown for the distinct criteria. 1 of the 11 were TRUE for 

question set 1, 2 not applicable and the remaining 8 FALSE. The second question set shows 

similar results with 2 of the 11 TRUE, 2 not applicable and the remaining 7 FALSE. This 

suggests that the interpretation of the system as creative is further compromised through 
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using stricter criteria. 

7.5 Chapter Summary 

After the completion of modelling and implementation of the suggested architectures 

for algorithmic composition in chapters 5, and 6, the next important step in the progression 

of this research was to provide means for evaluating the results. This would attain an insight 

to the quality of the performance of the designed system. The assessments of the results of 

the systems identify their potentials. The tests would achieve a sense of the nature of the 

system’s output. 

Three surveys were presented in this chapter. The first survey was published right after 

the release of the results of the system according to the proposed architecture for genetic 

LPM system in chapter five. This evaluation method was based on human assessment 

regarding the musicality and Persian-likeness of the audio, and people’s preferences.  

The second survey was accompanied by further questions and was targeted for 

evaluating LPM system according to the architectures proposed in chapters five and six. This 

survey was designed for evaluating the creativity of the system based on two standard 

evaluation criteria: human opinion towards creativity and Ritchie’s criteria for evaluation.  

The third survey was aimed for professional groups of people and benefits from their 

perspectives towards Dastgāh Persian music and computational creativity. The third survey 

was also according to the architectures proposed in chapters five and six. The survey embeds 

a few more questions regarding the level of knowledge of the participants towards Dastgāh 

music. 
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Nonetheless, we cannot escape the reality that people would critic the generated 

sequences based on their own tastes of music and perception of creativity. Despite this fact, 

the surveys of this kind possibly reveal some hidden aspects about human aesthetical 

perceptions beyond current knowledge for measuring such, especially for the case of Persian 

music. Further collected information through the survey comments are presented in the 

discussion chapter. 
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Chapter 8. Discussion 

This chapter discusses the theoretical aspects of creativity of the composition systems 

proposed in this project. It determines how the system fulfils the aesthetical goals and to what 

extent. It discusses whether the system was successful in achieving the goals mentioned in 

the hypothesis section from the first chapter. 

There are some questions left here which we would want to find an answer for:  

• How successful was the system in creating Dastgāh-like music?  

• Can the productions of this project be considered as H-creative materials or do they 

contribute to P-creativity?  

• Are the systems presented in the thesis creative? 

• How Boden’s three types of creativity have been targeted by the thesis work, and to 

what extent they have been achieved by the thesis work? 

In order to answer to these questions, there would be a more scrutinized look over the 

comments provided by the participants in the survey to grasp a better perspective towards the 

extent of success of this project.  

8.1 Evaluation of the Systems through the Survey Comments  

In this section, some of the comments left by the survey participants are highlighted. 

They are used to achieve further insight towards the potentials and weaknesses of the 

generated audio.  
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• In the beginning of the second and third survey, it was emphasized that the audio 

were computer generated. There were comments, which suggested that some of the audio 

pieces were indistinguishable from human audio generations. The lack of human performer 

expressions made some of the audio to appear as computer generated; for others lack of 

consonance had made the audio pieces to seem random. There is an audio piece in which the 

parameterization of the model of the synthesizer produced piano like sounds; indeed, in a 

number of generated pieces the audio notes have the timbres of Piano or guitar. The space of 

familiar musical instruments might have had impact on the way an audio piece was perceived 

as human production. Here are some of the comments of this kind: 

‘Much of the material very much felt computer generated. What I mean by that is it 

lacked the microscopic blemishes you'd expect from any human performer. With the one 

exception being the track on prepared piano, I was unable to determine whether this was 

computer generated or actually performed.’ 

‘The audios do sound music-like but in a very computerised way. If I heard the audios 

with no context then I would still come to the conclusion that they were computer generated.’ 

‘I'm not sure if some of these are computer generated and some done on real 

instruments.’ 

• The synthesizer produces the sound of a Persian musical instrument (Santur). What 

is normally expected is that the timbre of Santur should be perceived through all the audio 

samples, however, this has not been the case. The obtained parameters from the pattern-

matching rules (the 20 original LBM pattern-matching rules and those introduced in chapter 

6) had sometimes caused the pitch frequencies to fall in the ranges which resulted in the 
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sounds to be normally excluded as Santur tones as perceived by audience. For instance since 

one of the audiences subjects commented the sound to be like the sound of Piano or guitar. 

This effect is not considered as a weakness. The author wished the algorithms to explore 

tones and frequencies beyond the limitations of the physical instrument itself. Therefore, the 

produced audio does not contribute to realistic pitch ranges. There are also audio samples 

which are similar to bursts of energy or noisy sounds. In fact, the parameters make the 

synthesizer unstable causing to those auditory effects. Some of the mentionable comments in 

this range are: 

‘After listening to the first Youtube clip provided, which I really enjoyed listening to, 

moving to these clips seemed coming from a computer generated sound (an electronic version 

of the instrument). Being a musician I was very aware of the difference in sound, which is 

why I was a little hesitant at the question on whether a Persian instrument was being played 

in the questionnaire clips. At times this was better than others though.’ 

 ‘In some of the samples, I have also had a feeling of hearing fast and varied Jazz 

rhythms.’ 

‘Not very experienced with Persian music or Dastgāh music but most of the samples 

sounded plausibly realistic.’  

‘It is clearly produced using some form of digitised production technique. If we are 

studying the compositional process of intelligence it may be worthwhile to transfer these 

across to the real instruments. This would increase our ability to determine an opinion based 

solely on the composition. The production of the audio is therefore too unreflective of the 

acoustic sound of such zither instrumentation that it automatically adds connotations to our 
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listening perceptions. The music also is not reflective of the realistic pitched range of the 

‘instrument’ used. This could be a point of development for random computer generated 

music to be specified and limited by human intuition and/or musical expertise.’ 

• Some people left comments on the creativity of the system. The ideas in this range of 

responses were diverse. Some people believe that creativity is a human possession and is not 

transferrable to computers. Some comments implied that more clarification were needed 

about what we meant by creativity and about the description process involved in the genration 

of audio samples. Some notable comments towards creativity are: 

‘I didn't feel I could comment on whether or not the musical process was creative with 

little background on what process was being used. If it was totally random code then I would 

have said no, but if the computer was programmed to make a choice based on a preference 

then I would have agreed it was creative.’ 

‘In my opinion 'creativity' is subjective; therefore, what I may deem to be creative for 

a computer may not be what I would consider to be creative for a person.’ 

‘It seems that there is a far way to go for computers being creative. I'm happy to hear 

from this type of research.’ 

‘Creativity in the music is nascent from human brain. Creativity is not acquired. What 

is acquired is experience that becomes a tool for manifesting creativity and flourishes the 

creativity itself. Similarly, it can be concluded that the transfer of creativity to the machine 

is not possible. At least not at the moment.’  

• The preferences of people towards the audio pieces was quite varied and subjective.  
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 ‘I was very surprised with the rhythms because I find them surprisingly credible and 

nice. I immediately imagined Bossa Nova songs with such rhythms. There is something 

strange to my ears, though... there are very rich rhythms and the notes variations generally 

as well... I asked myself is there any way of extracting the rhythms and some notes and 

building on top of them with other genres?’ 

‘In my opinion all of the audios are very creative and unique.’ 

 ‘Some of them were very nice to listen to and although they weren't very familiar to 

me, but I think they were very creative and I even played them twice.’ 

‘This was quite painful to listen to. There wasn't even one piece that I liked.’ 

• The timings of the audio pieces were determined by the patterns generated by the 

algorithm. No attempts took place for defing tempo for the audio pieces. Not setting tempo 

for the audio pieces caused them to appear random in the auditory tests. It can be inferred 

that the settings of the onset time in the mapping process needs a more intelligent design as 

a future work. Nonetheless it would have been more fair to have audio samples with set time 

signatures in the samples collection. Moreover, some part of the randomness results from the 

jumping effect caused by sequencing random musical motives in the initial population of the 

genetic algorithms.  

‘The timing of the zither parts seems random, almost like it is electrical signals literally 

transferred into zither sound..’ 

‘All the audio had the same thing in common- it didn't have a set time-signature, which 

made it uncomfortable to listen to and very different from almost all other types of music.’ 



 

177 

 

 ‘Many of these pieces seem to be the result of a random process, rather than innovative 

improvisation. (I wish you would have explained more about the creative process and its 

difference with a random process especially for the case of improvisation of traditional 

music).’ 

 ‘I focused too much on what I perceived as discontinuities in the music.’ 

• The feedback provided by the professionals mention the lack of the formation of 

modes in the generated audio. This is one of the areas that needs further investigations.  

‘Very interesting experience to listen to. I think the timbres were often quite convincing 

but it definitely lacked a sense of mode in both repetitive shaping (formulas) and chromatic 

shading (microtones).’ 

 ‘For me the thing that imposed gaps between the generated pieces and Persian music 

was the lack of modes and melodies based on the Dastgāh and vocal models of Persian 

music.’ 

‘The generated audio enlivened more of Persian Santur's tuning space. Of course in 

some of the cases the tonality quality represented the sound of Persian Santur. However, the 

lack of the formation of musical modes did not guide me through the space of improvisation 

of traditional music.’ 

‘In the discussion of improvisation in Persian music, the mere production of a random 

melody cannot be taken into account as an improvisation. Improvisation has its own 

coordinates and is based on a very strong infrastructure,’ 

• The execution of the systems proposed in the thesis requires high demands of time 
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and memory capacity. Therefore the sizes of the audio pieces that the systems were supposed 

to generate were often selected to be short. Furthermore, the audio samples which were used 

in the surveys were required to be short, in order to make the surveys brief. However, this 

has harmed the sense of narrative nature which is often found in longer pieces of audio.The 

following comment states this problem clearly: 

‘I have listened to the beautiful piece given in the link prior to the survey and I was 

captivated by the sense of musical narrative I felt whilst listening. About the samples, I have 

felt that it sounded like it, but because the samples where short, I didn't feel the sensorial 

story/narrative that I have felt with the Dastgāh player. Maybe I would need a full piece to 

get it.’ 

• The auditory results suggest that the pieces were distant from Dastgāh music. 

Introducing further constraints to the algorithm may cause the generated audio to stay in the 

space of Persian music. This is opposed to discovering spaces alien to traditional notions of 

Persian music. Producing historical creative artefacts and yet sustaining a specific musical 

space or style is a narrow pathway.  

8.2 How successful were the Systems in Creating Dastgāh-like Music? 

Some principal questions addressed in this section are:  

• How musical are the audio pieces? 

• Can the generated audio be considered as Persian Dastgāh pieces?  

In order to find a response for these questions we first consider the evaluations provided 

in the (second and third) surveys. 
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There were fifty-three respondents in the second survey. More than half of the public 

respondents in the second survey agreed about music-likeness of the audio pieces on average. 

Similarly, a mean of about 50 percent of the respondents agreed that the audio pieces are 

examples of musical improvisation. On average, about a third of the public respondents 

agreed about audio pieces to be good musical improvisations. Slightly less than forty percent 

of the public respondents agreed that the audio pieces were Dastgāh-like. The responses in 

the second audio survey imply average success in the generation of Dastgāh-like music.  

The responses in the third survey are somehow despairing. It should be noted that there 

were only seven participants in the third survey. The bias analysis showed the existence of 

some levels of bias towards computational creativity and Dastgāh music among the 

professional participants. The average proportion of the professional participants who agreed 

about music-likeness of the audio pieces was around 20 percent. An average rate of about 4 

percent of the respondents agreed that the audio pieces were examples of musical 

improvisation. While the people who agreed on the quality musical improvisations were 

around fourteen percent, on average. None of the participants agreed that the audio pieces 

were examples of Dastgāh music, while a mean rate of 2 percent agreed that they were good 

examples of Dastgāh music. According to the third survey and perspective of professionals, 

the system was not successful in creating Dastgāh-like music.  

8.3 Evaluation of the Creativity of the System  

Some of the questions revolving around the creativity of the system are:  

• Are the systems presented in the thesis creative?  
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• Can the productions of this project be considered as historical creative materials or 

do they contribute to psychological creativity?  

Around half of the public participants agreed that the audio pieces were resulted by a 

creative process. In order to find more robust responses to these questions we consider the 

Ritchie’s evaluation criteria. The analysis of the second survey shows that nine out of 

eighteen of the Ritchie’s criteria were met. An average amount (and an acceptable 

proportion) of the audio samples are competently considered as examples of music 

improvisation. At least an average amount of the outputs are adequately valuable music 

improvisation. A decent proportion of the outputs of the system are novel (they are not 

replications of the items in the inspiring set). 

Some of the comments in the second survey suggested that the audio pieces look like 

machine generations, or they assimilate the productions of a child starting to learn a new 

musical instrument. Some of the other comments suggested mixing the audio pieces with 

Persian music or other genres of music in the future. The comments suggest that the audio 

pieces are not generally historical type of creativity. However, they can be considered as 

psychological type of creativity. This is due to the fact that the audio pieces remind people 

of generated audio or of a child trying to learn a new musical instrument.  

In the third survey the proportion of people who agreed that the audio productions are 

the results of a creative process were about 14 percent only. The study on the Ritchie’s 

evaluation criteria about audio samples being examples of musical improvisation, gathered 

one out of eighteen TRUE results. The fulfilled criteria imply that the audio samples are 

novel and have not been previously existed in the training set. The Ritchie’s criteria about 
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audio samples being typical examples of Dastgāh music fulfilled two out of eighteen criteria. 

One of the criteria was that the items were novel, the other criteria shows that an acceptable 

proportion of the qualified valued outputs are competently atypical. This means that the 

professional people believe that there are valuable audio samples, yet they cannot be 

considered as Dastgāh pieces. This may imply that the valued outputs belong to a different 

genre of music (unknown) other than Dastgāh.  

Producing creative audio pieces while maintaining the style of Persian music has been 

the attention of the designed systems. However, the auditory survey from professionals 

suggests that this navigation were distant from Persian music. On this basis, criticizing the 

audio pieces to be samples of psychological or historical types of creativity becomes difficult 

or non-applicable. Never the less, this direction of research which is established in this thesis 

is in its infancy. More progression in this direction requires better scrutiny in the area of 

computational creativity itself, and better grasping of Dastgāh music.  

8.4 Discussion on Boden’s Three Types of Creativity 

One fundamental question arising out the reported research is: How Boden’s three 

types of creativity have been targeted by the thesis work, and to what extent they have been 

achieved by the thesis work?  

Boden defined three types of creativity: combinational, exploratory, and 

transformational types of creativity. The systems designed and described in this thesis try to 

navigate the spectrum of various types of creativity by the application of computational 

intelligence tools. In chapter 5, an evolutionary system was designed which was responsible 

for experimenting with exploratory and possibly transformational types of creativity. Chapter 
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6 provided a computational structure to experiment with combinational type of creativity.  

In these experiments, a population of random sequences of LPM were generated. The 

individuals in the population were considered as potential artefacts that can exist in the space 

of all possible LPM sequences. The system in chapter 5 explored this space of creativity by 

the help of genetic algorithm operators. By performing crossover, and mutation operators it 

is hoped that the system visits possible new artefacts. There is also a chance that the 

exploration ends up in transformational creativity; meaning that one or more of the governing 

dimensions of a sample are transformed with admissible results. The designed fitness 

function was a support vector machine regression model trained with Zipfian features 

extracted from Dastgāh music, and LPM sequences. The fitness function guides the search 

by giving higher scores to individuals with Zipfian metrics more similar to Persian music 

Zipfian metrics.  

The Multimodal DBM employed in chapter six was responsible for experimenting with 

combinational creativity by discovering new links between patterns that were not directly 

associated with each other. Patterns were extracted from Persian music pieces and cellular 

automata progressions and were stored in consequent layers in the multimodal architecture. 

The resonation occurring between similar patterns in the Zipfian channel activates associated 

patterns in the other channels. The idea behind this architecture is inspired from some of the 

possible underlying mechanisms related to combinational creativity. The constituent 

elements or materials in an artefact have features (or patterns). The similarity or associations 

between those features are assumed to be the hidden links between the constituent elements 

in the artefact. 
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8.5 Chapter Summary 

In the discussion chapter, we attempted to find answer to some questions regarding the 

success of the project and the level of creativity of the designed systems. The results from 

the surveys in the previous chapter were taken into account for finding answers for the 

questions presented in the beginning of this chapter. The comments left by survey 

participants were helpful in identifying the strengths and potentials of the systems. According 

to the analysis of the public survey, on average the system was successful in creating 

Dastgāh-like music. The survey for professionals shows the contrary: that the system was not 

successful in creating Dastgāh-like music. Instead, the analysis of the third survey suggested 

that an acceptable proportion of the audio pieces were not in Dastgāh category, yet they were 

valuable pieces of audio. It can be inferred that the audio pieces did not meet the expectations 

of the professionals about being in the Dastgāh genre. However, they can still be categorized 

in another genre (presumably unknown). Moreover, the second public survey shows the 

creativity scores of the system being in the midrange. The professionals’ scores given to the 

creativity measures were low.  

The comments left by the participants revealed so many facts. It can be indirectly 

inferred that the Zipfian metrics were not sufficient aesthetical measures for guiding the 

systems in creating Dastgāh-like music. The fitness function designed based on the Zipfian 

metrics do not seem to be able to adequately reflect all the possible aesthetical aspects related 

to Persian music. There are possible other areas which needs to be identified for measuring 

the aesthetical aspects of Persian music. Moreover, better possible ways should be taken into 

account for generating the initial population in genetic algorithms. 
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Chapter 9. Conclusion  

In this last chapter an overview on the goals, methodologies taken, and the 

contributions of the PhD project are provided. Other possible directions and future works are 

discussed. Firstly a summary of the research underpinning this thesis is given. 

The first chapter introduced the research motivations and hypothesis. The second and 

third chapters were dedicated to background knowledge required for performing the research 

experiments. Various machine learning tools, computational intelligence tools, and signal 

processing techniques were described in the background chapters. Cellular automata as 

computational intelligence tools was the main core responsible for generating creative 

materials in the designed systems. Liquid Persian Music (LPM) software was introduced in 

chapter 4. LPM is an audio generator that works by employing pattern-matching rules for 

extracting features from CA progression and feeding the parameters of a synthesizer. Later 

in chapter 4, sequences of pattern-matching outputs were studied according to their Zipfian 

characteristics. The fourth chapter determined the research direction by designing an 

evolutionary framework for evolving LPM sequences according to their Zipfian 

characteristics.  

In chapter 5, Zipfian metrics were embedded in the presented evolutionary algorithm 

as aesthetical critics. A support vector regression (SVR) model was employed as fitness 

function in the evolutionary algorithm framework for evolving LPM sequences. The SVR 

model was trained with the Zipfian metrics extracted from Dastgāh music and LPM 

sequences. The evolutionary algorithm was used to navigate the space of possible LPM 
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sequences. The Zipfian metrics were used to guide the search. In chapter 6, Boltzmann 

machine families were the focus of attention, for their various different capabilities. 

Restricted Boltzmann machines and conditional restricted Boltzmann machines were used as 

pattern-matching tools for extracting features from CA progression. Two multimodal deep 

Boltzmann machines (Multimodal DBM) were trained with Persian music and CA 

progression. The Multimodal DBMs were mainly used as resonators for experimenting 

possibilities for assimilating some of the mechanisms related to combinational creativity.  

Chapter 7 dealt with the design and execution of three auditory surveys. The surveys 

criteria were in alignment with the targets of the thesis about creating new types of Dastgāh 

music. Ritchie’s evaluation criteria were taken into account. People’s opinions about the 

creativity of the generated materials from the experiments in chapters 5, and 6 were measured 

and analysed. Chapter 8 is the discussion chapter and provides further analyses on the survey 

results. The extent of success of the project in creating Dastgāh-like music was discussed. It 

was shown that the system achieved mid-range success in creating Dastgāh-like music 

according to public survey participants. The levels of creativity of the systems were rated in 

average levels. The third survey analysis shows that the systems were not successful in 

creating Dastgāh-like music and the systems were not creative.  

9.1 Research Questions Investigated 

It is worthwhile mentioning about how the research questions posed in chapters 1 and 

4 were fulfilled implicitly throughout this project. The research questions cited in sections 

1.5 and 4.7 are presented in the following: 

• How to use computational intelligence methods to produce creative (audio) artefacts? 
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Cellular automata as a computational intelligence tool was employed as the main core 

for providing raw creative materials for the algorithmic composition models in the thesis. 

LBM software concepts were established as a basis for this research. Pattern matching rules 

were responsible for extracting features from CA progressions. Moreover, Boltzmann 

machines extracted patterns from CA progressions. The stochastic and generative natures of 

Boltzmann machines have also provided us with creative materials.  

• How to guide this process to produce Persian Dastgāh-like music? 

I investigated how the Liquid Brain Music system can be applied to the task of 

generating Persian Dastgāh-like music. LBM software was developed to LPM with a new 

synthesizer based on a Persian musical instrument. Later the voices produced by this system 

were studied according to their aesthetical aspects. Genetic algorithms were used for evolving 

LPM voices sequences. Boltzmann machine families were also used in a separate experiment 

for generating Persian-like music. 

• How to design an efficient search space traversal, which resolves the sequencing problem 

within the constraints of given hardware resources? 

A search space was designed at the end of chapter 4, and some of the dimensions of 

this space were eliminated for addressing the hardware constraints issues and for simplifying 

the search scope. The remaining dimensions determine the melody of the compositions. No 

attempts have been taken for harmonizing the audio pieces. Meanwhile the ADSR envelopes 

were not allowed to vary throughout the experiments. 

• What are the possible approaches for sequencing voices in an aesthetically pleasing 

manner?  
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An evolutionary algorithm agenda was used to address the voices sequencing problem. 

The design and implementation of the related model is the subject of chapter 5.  

• What are the possible designs for the genotypes and phenotypes of a musical sequencer 

based on LPM? 

The beginning of chapter 5 is dedicated to the design of the genotypes as the members 

of the genetic algorithms populations, It is specified in the same chapter that the phenotypes 

are the auditory versions of the genotypes encodings.  

• How to assess our musical productions in terms of aesthetics? 

Zipfian metrics  were identified as suitable aesthetical criteria in our applications. One 

of the main reasons behind this choice was the measurability of the Zipfian metrics. This 

enables the automation of the fitness evaluation of the GA population members.   

• How to define musical critiques in order to criticize the musicality of LPM sequences? 

The musical critiques employed in this project were defined based on the Zipfian 

metrics of Persian music pieces. We wanted the LPM voice sequences to have Zipfian metrics 

similar to those of Persian music. A fitness function based on support vector regression model 

was trained to credit the LPM voice sequences according to their Zipfian metrics. The more 

competent individuals in the population have the chance to survive and pass their genes to 

the future generations. 

• Is there a measurement for the creativity of the generated materials? 

Chapter 7 was dedicated to the design of evaluation criteria for determining the 

creativity associated with the generated materials. Three research surveys were published 
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accordingly, and the results are reported in chapters 7, and 8. 

9.2 Achievements 

The research hypothesis explored in this PhD thesis was that it is possible to create 

Dastgāh-like music using appropriate computational intelligence methods. We hoped that by 

applying the main concepts of LPM software and establishing advanced systems using 

computational intelligence tools we would become able to create and experience new 

dimensions of composition for generating Dastgāh-like music.  

This thesis is the first research project that considers the creation of Dastgāh music by 

the help of computational intelligence tools. Research of this kind has existed for a longer 

time for the case of Western music. The results presented in Chapter 7 and further discussed 

in Chapter 8 demonstrate that there is a journey ahead to get results that satisfy professional 

Persian musicians. In this thesis, only one aesthetical aspect has been considered for directing 

the compositions to follow Persian music: Zipfian metrics. The knowledge about aesthetics 

of music is limited and, in addition, it is a very subjective matter. However, the results from 

the surveys suggest that Zipfian metrics may be able to distinguish between LPM sequences 

but provide poor guidelines for generating Dastgāh-like music. 

In this thesis, less discussion was directed towards different Dastgāh and their melodic 

characteristics. Most of the efforts were concentrated on tools and techniques for extracting 

features from Persian music and employing those features for algorithmic composition. 

Zipfian aesthetical features extracted from different Persian musical pieces became the 

guidelines for the composition task. There are still various other possibilities that can be used 

as aesthetical measures to be applied in this research, such as explicit representations that 
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model domain knowledge about Dastgāh. Other possible directions are discussed in the 

section related to future work. 

The list of contributions and achievements in this thesis are given here: 

• This project is the first research that has been performed for creating Persian Dastgāh-

like music by the usage of computational tools. (Previous and ongoing works on Persian 

music are related to music information retrieval and classification tasks. The resources in 

(Abdoli, 2011; Beigzadeh & Koochesfahani, 2016; Heydarian, 2016; Lāyegh et al., 2013) 

have investigated information retrieval from Persian music databases and performed 

classification of different Dastgāh) 

• Developing LBM software to LPM software. Updating the additive synthesizer that 

worked based on adding sinusoidal waves and transforming the LBM synthesizer to a musical 

instrument synthesizer (guitar, Sitar, and Santur model) have been explored. It should be 

emphasized that part of producing Dastgāh-like music was to use appropriate timbres 

compatible with Persian music. On this account, the LBM synthesizer was updated to 

produce the sounds of a Persian musical instrument (Santur).  Some other developments also 

took place to achieve further means for extracting features from cellular automata 

progressions. The twenty pattern-matching rules suggested in the initial LBM software were 

expanded to the number of hidden units in the Boltzmann machine family architecture trained 

with CA progression. This number is practically infinite according to the arbitrary 

architectures and topologies selected for Boltzmann machines. 

• Extracting Zipfian metrics from the collection of the Radif music by Ostad Faramarz 

Paivar for Santur. Performing this required the extraction of the information related to 
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musical notes, duration time, and onset times from audio databases using signal processing 

tools and toolboxes. The extracted features were stored inside MIDI databases where they 

were further analysed for deriving their Zipfian attributes. 

• Design of systems (based on Boltzmann machines and cellular automata) for 

generating creative materials without human domain knowledge contributions. The obtained 

patterns were applied as musical motives and for populating the parameters of the 

synthesizer. The stochastic nature of Boltzmann machines are also a favourable trait that 

contributed to the variety of generated patterns. 

• Design an architecture based on evolutionary algorithms for navigating the space of 

possible LPM sequences. This system was designed in the hope of experimenting with 

exploratory and transformation types of creativity. The exploration in the space of creativity 

was constrained by the application of a fitness function that assigned higher credit to LPM 

sequences with Zipfian metrics more aligned with those Zipfian attributes extracted from 

Persian music. 

• Design of a system based on multimodal deep Boltzmann machines. This system was 

designed in the hope of experimenting with combinational type of creativity. The associative 

nature of Boltzmann machine families were investigated for replicating some of the traits 

related to combinational creativity. Two Multimodal DBMs were trained with Persian music 

data, and CA progressions. The patterns with similar Zipfian metrics in Multimodal DBM 

channels were used to resonate and call on the similar patterns in the other channels. 

Discovering links between items that have not been previously linked is a naive form of 

combinational creativity.  
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• Three surveys were designed and published in order to evaluate the creativity 

associated with the systems. This evaluation was performed based on the outputs generated 

by the systems. The criteria for evaluation were determined based on the objectives of the 

thesis. Ritchie’s criteria for evaluation were also considered.  

9.3 Future Work  

In this section, some of the criteria for further development and future work are 

discussed: 

• Designing user interface for the systems presented in the thesis: 

One of the potentials of the current LPM system is the addition of manual controllers. 

This would enable the users to have direct contributions towards the parameterization of the 

model and the process of mapping to the musical space. The former Liquid Brain Music 

model was based on the real time interaction with the users. The user could choose the CA 

rule and pattern-matching rules for various configurations of the system as parameterization 

sources for different synthesizer configurations on a real-time basis. However, There were 

some limitations associated to the type of interactivity in LBM system which the author tried 

to overcome: The output of LBM system were solely based on the user interaction and choice 

of CA rule numbers and pattern-matching rules parameterization. By adding the option of 

saving and loading, the user had the opportunity to resume their previous navigations in the 

musical space. This provided the opportunity to explore various possible paradigms for the 

output voices manually. The author of this thesis also increased the number of possible 

concurrent voices in the LBM system, where each channel accepted different 

parameterizations.  
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As the development of LPM progressed throughout the PhD, the tasks of the system’s 

voice sequencing were taken over by machine learning and evolutionary algorithms. The 

directions of the research were more focused on automating the audio generation in a musical 

manner rather than being performed manually. Building a user interface in the format of a 

composition software (or a composition assisting software) are suggested as future work. 

(These are in harmony with the purpose of this research and similar researches in algorithmic 

composition.)  

In the following, some limitations in this direction and some further suggestions are 

presented. The limitation of the architectures proposed in chapters 5 and 6 is that the support 

vector machine and restricted Boltzmann machines models are not generally designed as 

machines with adaptive learning capabilities. These machines are often employed after 

performing the training phase. Once these systems are trained, they are applied as 

components in the general architecture. In this respect, the nature of the designed systems 

can be considered to be autonomous with minor interactions with users. The intensive 

training process required is particularly time consuming; this constrains a real-time manual 

manipulation of the parameters by the users. In spite of the mentioned limitations, there are 

still some measures that can be manipulated by the users and can be taken into account as 

parameters for designing the user interface of LPM system. The suggested measures and 

parameters are discussed separately for the systems described in chapters five and six.  

In chapter 5, a SVR was trained to differentiate between LPM random sequences and 

Persian music pieces. The SVR model was later applied as a fitness function for an 

evolutionary algorithm. The aim of the navigation was towards the enhancement of the LPM 
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voice sequences in a musical manner. Although the computations of the evolutionary 

algorithm are labour intensive and time consuming, there are still chances remaining for 

designing an interactive based system by increasing the computational power of the 

processor. As been described in chapter five there are various parameters and operators 

involved for initializing the evolutionary algorithm process and even altering those operators 

and parameters during the evolution; a list of suggested evolutionary algorithm operators are 

provided in section 5.1.2 in chapter five. Other evolutionary parameters include the mutation 

rate, and crossover rate, which can be systematically changed. Moreover, the initial 

population can be chosen arbitrarily from previous population generations to continue to 

evolve with different parameterizations.  

Some of the controllable measures for building a user interface on top of the 

architecture suggested in chapter six are discussed in the following. It has been demonstrated 

that once the Multimodal DBM are trained they are capable of storing the higher 

representations of the data provided as training set. The user interface can be equipped with 

a graphical tool that allows the user to visualize the connecting weights to neurons and for 

selecting the neurons for getting the outputs to be mapped to the musical space.  

• Design of a hybrid system based on the evolutionary architecture proposed in chapter 

five, and the related architectures based on Boltzmann machine families in chapter six: The 

patterns achieved from Boltzmann machine pattern-matching tools can be used as an 

important option for initializing the first population in the evolutionary algorithm. This 

choice would provide a hybrid system based on the architectures suggested in chapters five 

and six. As been demonstrated previously, the effects of the random initialization of the LPM 
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sequences would remain to some extent even after the evolution process. The effect shows 

itself as significant jumping between the musical motives in the LPM sequences. However, 

if this initialization is performed by the outputs generated by system suggested in chapter six 

it is hoped that the jumping effect will be minimised. Furthermore, the generated output from 

Multimodal DBM architectures will enter an evolutionary system where they will have the 

chance for being evolved. In this manner, the design of further fitness functions in accordance 

with the new hybrid system might enhance the overall musical results. 

• Expanding the design of evolutionary system to evolve all the eleven dimensions of 

the produced audio: In the LBM software, seven synthesizer parameters were introduced. All 

of these parameters contribute to the quality essence of the generated audio. For instance, the 

ADSR parameters govern the nature of the notes envelopes. A space of all possible 

configurations for LPM voices was portrayed in chapter four. An evolutionary framework 

for navigation through this space was designed in chapter five. The dimension of the 

evolutionary algorithm search space was limited to only 3 of the 11 original parameters. 

These three parameters determine the pitch frequency, the duration of the notes and the notes 

onset times. This implies that the focus was kept on evolving sequences of voices based on 

their melodic structure. The other governing aspects of the audio were kept constant. For 

instance, the ADSR envelopes parameters were left untouched. The reasons behind this 

decision are manifold which were stated in chapter five and are briefly mentioned here to be 

considered as a future work. The reason for the reduction of the dimensions of the voices 

relied on the designing complexity of the fitness function. The designed fitness functions 

were based on the features extracted from Persian music databases. The used database 
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consisted of Dastgāh pieces performed with one musical instrument only. The timbre of the 

instrument did not change. Therefore, presently, no information exists in our databases to 

attain measures for effective timbral changes to use as a guideline for evolving voices on that 

basis. The only changing parameters throughout the musical pieces were the pitches and 

durations of the musical notes. Therefore varying the ADSR envelopes of LPM pieces would 

require guidelines that were outside the scope of the explored traditional Persian music 

database. The design of fitness function for evolving LPM sequences based on other ADSR 

envelopes and other signal processing parameters can be performed based on their psycho 

acoustical measurements. Designing fitness functions based on psycho acoustical aesthetics 

are subjects for further investigations.  

•  Obtaining further means for interpreting patterns from CA progressions and mapping 

them to musical domain. CA has been in the attention of people in the computer music 

community. This is because CA produces new genres of behaviour. There have been various 

approaches for mapping CA patterns to music domain. The interpretation of patterns of CA 

progressions plays an important role in the result. For instance in (Kirke & Miranda, 2007) 

some approaches for performing the mapping from CA domain to music space were 

discussed. In the earlier LBM software, 20 pattern-matching rules were originally introduced. 

These twenty pattern-matching rules were the basis of the experiments performed in chapters 

4, and 5. Chapter 6 introduced new classes of pattern-matching tools by applying Boltzmann 

machines families. The proposed approach for extracting features from CA would practically 

produce vast number of pattern-matching tools depending on the number of RBM units and 

the employed topologies in RBM structures. There is a question left here which goes back to 
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the interpretation of the patterns extracted from CA sequences. Interpreting the extracted 

patterns from CA using Boltzmann machines or in another words describing what the model 

has learnt is very difficult. Let alone be the mapping of those features to musical domain. 

Projecting the extracted patterns from CA progressions to musical space requires further 

investigations.  

• Obtaining further aesthetical measures other than Zipf’s law for guiding the designed 

systems: The truth is that there are limited knowledge about the universal measurements for 

associating aesthetical qualities to music. Moreover, people’s musical preferences are a 

subjective matter. People state whether they like or dislike a piece of music and they can 

often describe what they like/dislike about a piece of music. However, the practice of 

capturing universals for musical aesthetics especially in a measurable manner is extremely 

challenging and the subject of controversy. In this project, the only guidelines applied for 

directing the compositional algorithm were the Zipfian metrics extracted from Persian music. 

Yet there are other possible potentials which can be applied as aesthetical measurements for 

guiding the algorithmic composition of Persian music. Improving the model can be 

performed by choosing further aesthetical measures based on Persian music that would cover 

other aspects of the produced audio.  

• Design of a hybrid model based on the compositional systems suggested in this thesis 

with the addition of knowledge-based systems: research in the area of artificial intelligence 

and Persian music are recent. With the development of tools and methodologies, further 

achievements can be obtained in the area of algorithmic composition and Persian music. A 

hybrid system benefitting from both knowledge based systems and the compositional 
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systems suggested in this thesis can possibly be one of the future directions for this project. 

A system with this specification could possibly be able to create in the space of the target 

musical style. This requires the intelligence and creativity to both conform in the target style 

while being able to break the norms, the rules, and the constraints of the specified style. The 

identification of balance between maintaining and breaking the style constraints are 

challenging tasks. 

In fact, the designed system can benefit from a hybrid structure where a knowledge-

based system can infuse the model with specialized domain knowledge on Persian music. 

Achieving a knowledge-based system for traditional Persian music would require the 

cooperation of Persian musician experts that would provide the knowledge they have gained 

through years of exposure to traditional Persian music. Farhat’s book (Farhat, 1990) is one 

of the most complete books which discusses the Dastgāh concept in Persian music and offers 

some classifications of the modes and occurring patterns in each Dastgāh. To date, no 

research exists in how to represent the concept of Dastgāh in a form understandable to 

knowledge systems. However, preparing a comprehensive knowledge-based representation 

for Persian music can be considered as a necessary task for future researchers in this area.  
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Appendix A.  Training a Three-Channelled Multimodal 

Deep Boltzmann Machine 

This appendix provides further information for training a Deep Boltzmann Machine 

(DBM), and a three-channelled Multimodal Deep Boltzmann Machines (Multimodal DBM) 

followed from chapter 3. The presented algorithm is applied in chapter 6.  

A.1 Training Restricted Boltzmann Machine 

The probability of a particular configuration over 𝑣 visible input vector and ℎ hidden 

vector is obtained by equation 15, which is also expanded to its fractional representation. 𝑍 

is known as the partition function which is recognized as the normalization term. In theory, 

the 𝑍 normalising value is resulted by computing the value of 𝑒−𝐸(𝑣,ℎ) for all the 

configurations for 𝑣, and ℎ . 

 𝑝(𝑣, ℎ) =  
𝑒−𝐸(𝑣,ℎ)

𝑍
= 𝑒

−(ℎ𝑇𝑊𝑣+ 𝑎𝑇𝑣+𝑏𝑇ℎ)

𝑍
⁄  (15) 

Obtaining 𝑍 is intractable due to the large number of existing binary units in the 

network. Inferring the joint probability distribution of 𝑣, and ℎ can be achieved by more 

practical approaches rather than computing the value of the partition function directly. In 

order to tract the value of the 𝑝(𝑣, ℎ) a procedure is taken by first determining the conditional 

probabilities 𝑝(𝑣|ℎ), and 𝑝(ℎ|𝑣). This step would eventually assist in marginalizing out ℎ 

from the joint probability 𝑝(𝑣, ℎ) (Mnih et al., 2011). 

The procedure for achieving 𝑝(ℎ|𝑣) is given in sources (Hinton, 2007, 2010; 

Salakhutdinov & Hinton, 2012). Since RBM is an undirected network with symmetrical 
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weights, no more complications are involved for gaining the conditional probability of 

observing visible layer given the hidden layer. The conditional probability of observing 

hidden units having visible units; (𝑝(ℎ|𝑣)) is the product of conditional probabilities of 

individual hidden units. This is another confirmation that hidden units are conditionally 

independent given the value of the visible units. Independency of the units in the two groups 

of hidden and visible layers is caused by having no inter-layer connections. Obtaining 𝑝(𝑣|ℎ) 

can be similarly approached.  

 𝑝(ℎ|𝑣) =∏𝑝(ℎ𝑛|𝑣)

𝑛

 (16) 

  𝑝(𝑣|ℎ) =∏𝑝(𝑣𝑚|ℎ)

𝑚

 
(17) 

According to formula 18 and 19, 𝑝(ℎ𝑛 = 1|𝑣) and 𝑝(𝑣𝑚 = 1|ℎ) can be achieved which 

are of the form of the sigmoid function 
1

1+𝑒−𝑥
. In the formulations below, 𝑊𝑛 is the nth row 

of the W, while 𝑊𝑚 is the 𝑚𝑡ℎcolumn of W from its matrix notation. 

 𝑝(ℎ𝑛 = 1|𝑣) =  
1

1 + 𝑒−(𝑏𝑛+𝑊𝑛𝑣)
 (18) 

 
𝑝(𝑣𝑚 = 1|ℎ) =  

1

1 + 𝑒−(𝑎𝑚+ℎ
𝑇𝑊𝑚)

 
(19) 

The marginal probability distribution of a visible vector equals the sum of the 

exponential of the energy function over all possible configurations as in equation 20. The 

procedure for deriving 𝑝(𝑣) is available in (Hinton & Sejnowski, 1983). 
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 𝑝(𝑣) =  ∑𝑒−𝐸(𝑣,ℎ) =∑𝑒−(ℎ
𝑇𝑊𝑣+ 𝑎𝑇𝑣+𝑏𝑇ℎ)

hℎ

 (20) 

The target would be to maximize the logarithm likelihood of 𝑣 (which is expressed as 

log(𝑝(𝑣))) for the training vectors presented in the visible units. Differentiating the 

logarithm likelihood with respect to 𝑊,𝑎, and 𝑏 would provide a basis for employing 

gradient descent method for training RBM weights and biases. The weights parameter update 

(Salakhutdinov & Hinton, 2012) can be achieved from the following equation. Likewise, the 

values for bias changes can be achieved similarly:  

 
𝜕𝑙𝑜𝑔𝑃(𝑣)

𝜕𝑊
= (𝐸𝑃𝑑𝑎𝑡𝑎(𝑣ℎ

𝑇) − 𝐸𝑃𝑚𝑜𝑑𝑒𝑙(𝑣ℎ
𝑇)) (21) 

Equation 21 comprises of two terms known as data dependent and data independent 

terms. 𝐸𝑃𝑑𝑎𝑡𝑎(. ) stands for the data dependent term and obtains the expectation over the data 

distribution. 𝐸𝑃𝑚𝑜𝑑𝑒𝑙(. ) is the data independent term which presents the expectation over the 

model distribution. The direct computation of these expectations are infeasible, however, 

there are approaches which enable the approximation of these values. Alternating Gibbs 

sampling between the visible and hidden units provide an opportunity for estimating the 

expectation values.  

The training procedure for RBM can be pursued by utilisation of the contrastive 

divergence algorithm. The contrastive divergence algorithm (Hinton, 2010; Tieleman, 2008) 

works according to the following steps for each of the training sample vectors: 

1. A training vector is presented to the visible units as input vector.  

2. The probabilities of the hidden units are computed and their states are specified 
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accordingly and by the following stochastic rule: 

 
𝑠(ℎ𝑚) = {

1, 𝑝(ℎ𝑚=1|𝑣) > 𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑟𝑜𝑚 𝑎 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 
−1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                                      

 (22) 

3. Gibbs sampling is performed in 𝑘-levels: The vector �̃� is reconstructed by sampling from 

the hidden units and the hidden units ℎ̃ are resampled from �̃�. This alternate procedure 

takes place in 𝑘 step times (A schematic of Gibbs sampling is illustrated in figure A-1). 

4. The learning rules determine how the weights and biases should be updated. 

 

𝑊𝑡 = 𝑊𝑡−1 +  𝛾(ℎ𝑡𝑣𝑡
𝑇
− ℎ̃𝑡�̃�𝑡

𝑇
) 

𝑎𝑡 = 𝑎𝑡−1 +  𝛾(𝑣𝑡 − �̃�𝑡) 

𝑏𝑡 = 𝑏𝑡−1 +  𝛾(ℎ𝑡 − ℎ̃𝑡) 

(23) 

5. The algorithm iterates from step 1, until a stopping criteria is met. 

 

Figure A-1. A schematic view of the Gibbs sampling. 

The updating of the weights and biases in the contrastive divergence algorithm consists 

of a positive phase and a negative phase. The positive phase can be assimilated to the 

memorization phase, however, the negative phase is a forgetting process; the contrastive 

divergence algorithm keeps the equilibrium between the two phases. Performing the storage 

of memories causes the weights to grow which may cause the system to crash eventually. 
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However, the right amount of forgetting is controlled automatically throughout the 

contrastive divergence algorithm (Hinton, 2012).  

A.2 Procedure for Training a Deep Boltzmann Machine 

 The procedure for training a two-layered DBM is presented in this Appendix 

subsection. The training procedure followed in DBM is a basis for training a multi-channelled 

DBM that is the case for Appendix A.2. The formulations are adapted from (Salakhutdinov 

& Hinton, 2009a, 2012).  

By having 𝑣 as a set of units in the visible layer and 𝐻 = {ℎ(1), ℎ(2)} as a set of units 

in the first and second hidden layers, the model parameters are expressed as: 𝜏 =

{𝑊(1),𝑊(2), 𝑏(0), 𝑏(1), 𝑏(2)} . 𝑊(1),𝑊(2) are the weights between visible to first hidden layer 

and the first hidden layer to the second hidden layers. The 𝑏(0), 𝑏(1), 𝑏(2) parameters are the 

biases of the visible, first hidden and the second hidden layers. The energy of the joint 

configuration can be obtained as:  

 

𝐸(𝑣, ℎ; 𝜏) = −∑∑𝑊𝑙𝑚
(1)
𝑣𝑙ℎ𝑚

(1)

𝑁1

𝑚=1

− ∑∑𝑊𝑚𝑛
(2)
ℎ𝑚ℎ𝑛

(2)

𝑁2

𝑟=1

𝑁1

𝑚=1

−∑𝑏𝑙
(0)
𝑣𝑙

𝑁0

𝑙=1

𝑁0

𝑙=1

− ∑ 𝑏𝑚
(1)
ℎ𝑚
(1)

𝑁1

𝑚=1

−∑𝑏𝑛
(2)
ℎ𝑛
(2)

𝑁2

𝑛=1

 

(24) 

The probability that the model assigns to visible units with respect to the model 

parameters 𝜏 is expressed as: 

 𝑃(𝑣; 𝜏) =
(∑ exp (−𝐸(𝑣, ℎ(1), ℎ(2); 𝜏))ℎ )

𝑍(𝜏)
 (25) 



 

225 

 

where 𝑍 is the partition function. The derivative of the logarithm likelihood with 

respect to 𝑊(1), 𝑎𝑛𝑑 𝑊(2) takes the following forms: 

 

𝜕𝑙𝑜𝑔𝑃(𝑣; 𝜏)

𝜕𝑊(1)
= 𝐸𝑃𝑑𝑎𝑡𝑎[𝑣ℎ

(1)𝑇] − 𝐸𝑃𝑚𝑜𝑑𝑒𝑙[𝑣ℎ
(1)𝑇] 

𝜕𝑙𝑜𝑔𝑃(𝑣; 𝜏)

𝜕𝑊(2)
= 𝐸𝑃𝑑𝑎𝑡𝑎[ℎ

(1)ℎ(2)
𝑇
] − 𝐸𝑃𝑚𝑜𝑑𝑒𝑙[ℎ

(1)ℎ(2)
𝑇
] 

(26) 

 The data dependant expectation and model expectations are denoted as 𝐸𝑃𝑑𝑎𝑡𝑎[. ] , and 

𝐸𝑃𝑚𝑜𝑑𝑒𝑙[. ] respectively. The exact computation of the data dependent expectation and 

model’s expectation are intractable. Some applicable approaches are mean field inference for 

achieving data-dependant expectations and Markov chain Monte Carlo method for 

approximating the data independent expectation.  

Variational inference method works by replacing the true posterior probability 

distribution 𝑃(ℎ|𝑣; 𝜏) by an approximation probability 𝑄(ℎ|𝑣; 𝜇). The approximate 

probability is written in its factorized form as: 

 𝑄(ℎ|𝑣; 𝜇) = (∏ 𝑞(ℎ𝑖
(1𝑟)
|𝑣)

𝑁(1𝑟)

𝑖=1

∏𝑞(ℎ𝑗
(2𝑟)
|𝑣)

𝑁(2𝑟)

𝑗=1

) ∗∏𝑞(ℎ𝑘
(3)
|𝑣)

𝑁(3)

𝑘=1

 (27) 

The above probability is obtained by approximating its constituent factorized marginal 

probabilities as 𝑞(ℎ𝑛
(𝑙)
= 1|𝑣) = 𝜇𝑛

(𝑙)
 in which 𝑙 represents the layer numbers and 𝑛 is the 

neuron number. The 𝜇 are called mean field parameters that are obtained by considering the 

following maximization boundary problem:  

 log(𝑃(𝑣; 𝜏)) ≥ 𝑙𝑜𝑔𝑃(𝑣; 𝜏) − 𝐾𝐿(𝑄(ℎ|𝑣; 𝜇)||𝑃(ℎ|𝑣; 𝜏)) (28) 
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In the above formulations, 𝐾𝐿 stands for Kullback-Liebler divergence method which 

is used for measuring the divergence between the true posterior probability and the 

approximate posterior probability distributions. The target is to minimize the divergence 

between the true and approximate probabilities. Therefore, in the variational inference 

approach the inference problem is converted to an optimization problem. The approximations 

are obtained based on the solution to the optimization problem. The mean field parameters 

for a two-layered deep Boltzmann machine can be obtained as:  

 𝜇e
(1)
= 𝐺 (∑𝑊de

(1)vd

N(0)

d=1

+∑𝑊ef
(2)μf

(2)

N(2)

f=1

) , 𝜇f
(2)
= 𝐺 (∑𝑊ef

(2)μe
(1)

N(2)

e=1

+ ∑𝑊fm
(3)μm

(3)

N(3)

m=1

) (29) 

 Variational inference tries to maximize the log-likelihood mean while minimizing the 

divergence between the true and approximate probabilities. The mean-field equations are 

obtained while the model parameters are kept fixed. The stochastic approximations are then 

applied to update the model parameters. The data dependent expectation can then be 

achieved:  

 

𝐸𝑃𝑑𝑎𝑡𝑎[𝑣
𝑟ℎ(1𝑟)

𝑇
] =

1

𝑁
∑𝑣𝑛

𝑚𝜇𝑛
(1𝑚)𝑇

𝑁

𝑛=1

 

𝐸𝑃𝑑𝑎𝑡𝑎[ℎ
(1𝑚)ℎ(2𝑚)

𝑇
] =

1

𝑁
∑𝜇𝑛

(1𝑚)
𝜇𝑛
(2𝑚)𝑇

𝑁

𝑛=1

 

(30) 

By once obtaining the mean field values, the parameters of the model are yielded by 

applying Markov chain Monte Carlo based stochastic approximation. The model parameters 

and states are updated in a sequence of Markov chains. The new states �̃�𝑡+1 =

{�̃�𝑡+1 , ℎ̃𝑡+1
(1)
 , ℎ̃𝑡+1

(2)
} are sampled from the previous state 𝑥𝑡 using Gibbs sampling. A gradient 



 

227 

 

step is used to update the model parameters and the intractable model’s expectation in the 

gradient equations in 26 is replaced by the point estimate at sample 𝑥𝑡+1 - an average over 

the particles are the weight updates in the next step (t+1) for a DBM can be obtained from 

the following formulations in 31. 𝛾𝑡  is the learning parameter. 𝑊𝑡+1
(1)

, and 𝑊𝑡+1
(2)
 are the weights 

in the next time step.  

𝑊𝑡+1
(1)
= 𝑊𝑡

(1)
+ 𝛾𝑡(

1

𝑁
∑ 𝑣𝑛
𝑁
𝑛=1 (𝜇𝑛

(1)
)
𝑇

−
1

𝑊
∑ �̃�𝑡+1,𝑤(ℎ̃𝑡+1,𝑤

(2)
)
𝑇

𝑊
𝑤=1 ) 

𝑊𝑡+1
(2)
= 𝑊𝑡

(2)
+ 𝛾𝑡(

1

𝑁
∑ 𝜇𝑛

(1)𝑁
𝑛=1 (𝜇𝑛

(2)
)
𝑇

−
1

𝑊
∑ ℎ̃𝑡+1,𝑤

(1)𝑊
𝑤=1 (ℎ̃𝑡+1,𝑤

(2)
)
𝑇

) 

(31) 

The formulations in this section are expandable for building a structure with more 

hidden layers. The point to make here is that stacking restricted Boltzmann machines on top 

of each other does not produce a deep Boltzmann machine architecture; instead it produces 

a deep belief network structure (Salakhutdinov & Hinton, 2012). For the construction to form 

a deep Boltzmann machine, further considerations should be taken into account. In a deep 

belief network, the upper layers receive their input from previous bottom layer. Lower layers 

are not provided with feedback from higher layers. However, in a deep Boltzmann machine 

the bottom up and top down passes both exist in the united structure. Some considerations 

should be taken into account for the pre-training of a DBM.  

The pre-training of a deep Boltzmann machine plays an important role in the 

convergence of the mean-field inference (Salakhutdinov & Hinton, 2012). Therefore sensible 

initialization of the weights are desirable rather that randomly initializing the weights. During 

the pretraining phase, all the weights are doubled to compensate for the lack of top-down 

pass. This is due to the fact that the stack of RBMs have not yet been combined as a DBM 
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structure and the bottom layers provide inputs for the higher level layers. However, this 

procedure does not work quite right unless further modifications are performed on the 

magnitudes of the weights. The fact is that the first layer and last layer receive input from 

only one layer, while all the other intermediate layers accept inputs from their bottom and 

top adjacent layers. The states of all the hidden layers except the last hidden layer are inferred 

by geometrical means of their immediate bottom and top layer distributions. For a hidden 

layer ℎ(1), the states of the units are influenced by both 𝑊(1), and 𝑊(2) weights equally. The 

states of the intermediate layers are resampled considering the sum of top and bottom layers 

input influences. The Gibbs sampling requires symmetrical weights in both directions for the 

first and last layers. However, this cannot happen since they receive input from only one 

layer. Overcoming this problem is accomplished by constraining the bottom up weight to be 

twice the top-down weights in the first layer. The top-down weights in the last layer is 

constrained to be twice the bottom-up weight in the last layer. The rest of the weights are 

doubled in the rest of the layers in both directions. This guarantees the symmetrical condition 

for the weights. The pretraining algorithm for DBM is in the following (Salakhutdinov & 

Hinton, 2012):  

1. The first RBM is trained using contrastive divergence algorithm with mean-field 

reconstruction while the bottom-up weights are constrained to be 2𝑊(1) and top-down 

weights are 𝑊(1). 

2. The second RBM uses the states ℎ(1) inferred from 𝑃(ℎ(1)|𝑣, 2𝑊(1)) as input vectors. 

This RBM is trained using contrastive divergence algorithm with mean-field 

reconstructions. The weights in both bottom-up and top-down directions are kept to be 
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2𝑊(2). 

3. The procedure performed in the second step is repeated for layers 𝐿 = 2,… , 𝐿 − 1. The 

states of the hidden units in the (𝐿 − 1)𝑡ℎ layer are inferred from 

𝑃(ℎ(𝐿−1)|𝑣, ℎ(𝐿−2), ℎ(𝐿−3), … , ℎ(1), 2𝑊(𝐿−1), … , 2𝑊(1)). One step contrastive divergence 

takes place with both the bottom-up and top-down weights to be 2𝑊(𝐿−1). 

4. The last layer is trained by one-step contrastive divergence with top-down weights being 

constrained to be twice the bottom-up weights.  

The weights obtained from the pre-training procedure are employed for initializing the 

network. The main training algorithm is discussed in the next section related to Multimodal 

DBM.  

A.3 Algorithm for Training a Three Channelled Multimodal Deep 

Boltzmann Machine 

Figure 3.12 in chapter 3 demonstrates the architecture of a Multimodal DBM. This 

structure consists of three pathways each of which has two hidden layers. The presented 

Multimodal DBM architecture is employed in chapter six. The accompanied formulations in 

appendix A.2 are tailored for the Multimodal DBM with three pathways. The original 

formulation can be found in (Srivastava & Salakhutdinov, 2012) where the Multimodal DBM 

were introduced. The pathways are tagged with English alphabets that assist in the presented 

formulations in this subsection. The set of units in the visible layer and the first and second 

hidden layers of the first pathway are denoted as: 𝑝𝑎𝑡ℎ1 = {𝑣(𝑟), ℎ(1𝑟), ℎ(2𝑟)}. These sets for 

the other existing pathways in the presented structure are 𝑝𝑎𝑡ℎ2 = {𝑣(𝑠), ℎ(1𝑠), ℎ(2𝑠)},
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𝑝𝑎𝑡ℎ3 = {𝑣(𝑡), ℎ(1𝑡), ℎ(2𝑡)}. The model parameters including the weights and biases related 

to the three pathways are expressed as: 𝜏𝑟 , 𝜏𝑠 , 𝜏𝑡. The parameters of the conjoint layer is 

depicted as 𝜏𝑚. 

The probability that the deep Boltzmann machine assigns to the visible units in a 

pathway (𝑟) can be achieved from equation 32. Since all the pathways have binary units for 

the visible layer, a similar formulation for 𝑃(𝑣𝑠; 𝜏𝑠), and 𝑃(𝑣𝑡; 𝜏𝑡) can be inferred. 

 

𝑃(𝑣𝑟; 𝜏𝑟) = ∑ 𝑃(𝑣𝑟, ℎ(1𝑟), ℎ(2𝑟); 𝜏𝑟)

ℎ(1𝑟)ℎ(2𝑐)

= 
1

𝑍(𝜏𝑟)
∑ exp (∑∑𝑊𝑙𝑚

(1𝑟)
ℎ𝑚
(1𝑟)
𝑣𝑙
𝑟

𝑚𝑙ℎ(1𝑟)ℎ(2𝑟)

+∑∑𝑊𝑚𝑛
(2𝑟)
ℎ𝑛
(2𝑟)
ℎ𝑚
(1𝑟)

+∑𝑏𝑙
(0𝑟)
𝑣𝑙
𝑟

𝑙𝑛𝑚

+∑𝑏𝑚
(1𝑟)
ℎ𝑚
(1𝑟)

𝑚

+∑𝑏𝑛
(2𝑟)
ℎ𝑛
(1𝑟)

𝑛

) 

(32) 

The probability that is assigned to the visible layer in the conjoint Multimodal DBM 

architecture can be achieved from equation 33. 𝐿 =

{𝑣𝑟 , 𝑣𝑠, 𝑣𝑡, ℎ(1𝑟), ℎ(2𝑟), ℎ(1𝑠), ℎ(2𝑠), ℎ(1𝑡), ℎ(2𝑡), ℎ(3), ℎ(4)} denotes all the visible and hidden 

variables. 𝜃 = {𝜏𝑟 , 𝜏𝑠, 𝜏𝑡 , 𝜏𝑚} consists of all the model parameters of Multimodal DBM . 
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𝑃(𝑣𝑟, 𝑣𝑠, 𝑣𝑡; 𝜃) = ∑ 𝑃(ℎ(2𝑟), ℎ(2𝑠), ℎ(2𝑡), ℎ(3))

ℎ(2𝑟),ℎ(2𝑠),ℎ(2𝑡),ℎ(3)

∗ 

(∑ 𝑃(𝑣𝑟, ℎ(1𝑟)|ℎ(2𝑟)))(∑ 𝑃(𝑣𝑠, ℎ(1𝑠)|ℎ(2𝑠)))ℎ(1𝑠) (∑ 𝑃(𝑣𝑡, ℎ(1𝑡)|ℎ(2𝑡)))ℎ(1𝑡)ℎ(1𝑟) =

1

𝑍(𝜃)
∑ exp (ℎ  

∑∑𝑊𝑑𝑒
(1𝑟)
ℎ𝑒
(1𝑟)
𝑣𝑑
𝑟 +∑∑𝑊𝑒𝑓

(2𝑟)
ℎ𝑓
(2𝑟)
ℎ𝑒
(1𝑟)

+∑𝑏𝑑
(0𝑟)
𝑣𝑑
𝑟

𝑑𝑓𝑒𝑒𝑑

+∑𝑏𝑒
(1𝑟)
ℎ𝑒
(1𝑟)

𝑒

+∑𝑏𝑓
(2𝑟)
ℎ𝑓
(2𝑟)

𝑓

⏞                                                            
𝐹𝑖𝑟𝑠𝑡 𝑝𝑎𝑡ℎ𝑤𝑎𝑦

+ 

∑∑𝑊𝑙ℎ
(1𝑠)
ℎℎ
(1𝑠)
𝑣𝑔
𝑠 +∑∑𝑊ℎ𝑛

(2𝑠)
ℎ𝑖
(2𝑠)
ℎℎ
(1𝑠)

+∑𝑏𝑔
(0𝑠)
𝑣𝑔
𝑟

𝑔𝑖ℎℎ𝑔

+∑𝑏ℎ
(1𝑠)
ℎℎ
(1𝑠)

ℎ

+∑𝑏𝑖
(2𝑠)
ℎ𝑖
(2𝑠)

𝑖

⏞                                                          
𝑆𝑒𝑐𝑜𝑛𝑑 𝑝𝑎𝑡ℎ𝑤𝑎𝑦

+ 

∑∑𝑊𝑗𝑘
(1𝑡)
ℎ𝑘
(1𝑡)
𝑣𝑗
𝑟 +∑∑𝑊𝑘𝑙

(2𝑡)
ℎ𝑙
(2𝑡)
ℎ𝑘
(1𝑡)

+∑𝑏𝑗
(0𝑡)
𝑣𝑗
𝑡

𝑗𝑙𝑘𝑘𝑗

+∑𝑏𝑘
(1𝑡)
ℎ𝑘
(1𝑡)

𝑘

+∑𝑏𝑙
(2𝑡)
ℎ𝑙
(2𝑡)

𝑙

⏞                                                          
𝑇ℎ𝑖𝑟𝑑 𝑝𝑎𝑡ℎ𝑤𝑎𝑦

+ 

∑∑𝑊𝑓𝑚
(3𝑟)
ℎ𝑚
(3)
ℎ𝑓
(3𝑟)

+∑∑𝑊𝑖𝑚
(3𝑠)
ℎ𝑚
(3)
ℎ𝑖
(3𝑠)

+

𝑚𝑖𝑚𝑓

∑∑𝑊𝑙𝑚
(3𝑡)
ℎ𝑚
(3)
ℎ𝑙
(3𝑡)

+

𝑚𝑙

∑𝑏𝑚
(3)
ℎ𝑚
(3)

𝑚

 )
⏞                                                        

𝐽𝑜𝑖𝑛𝑡 𝑙𝑎𝑦𝑒𝑟

 

(33) 

 

The required formulations for training a Multimodal DBM can be induced similar to the 

deep Boltzmann machines. After all, a Multimodal DBM consists of several deep Boltzmann 

machine pathways. In a Multimodal DBM, the maximum likelihood learning approach is 

intractable. In fact maximum likelihood learning is an NP hard problem for the case of RBM 

families. Therefore, variation inference and Gibbs sampling are followed for training the 

model. The naive mean field approximation employs a distribution that is fully factorized. 

The approximate posterior probability in its factorial form for a Multimodal DBM with three 

pathways is written as in: 
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𝑄(ℎ|𝑣; 𝜇) = (∏ 𝑞(ℎ𝑖
(1𝑟)
|𝑣)

𝑁(1𝑟)

𝑖=1

∏𝑞(ℎ𝑗
(2𝑟)
|𝑣)

𝑁(2𝑟)

𝑗=1

)(∏ 𝑞(ℎ𝑖
(1𝑠)
|𝑣)

𝑁(1𝑠)

𝑖=1

∏𝑞(ℎ𝑗
(2𝑠)
|𝑣)

𝑁(2𝑠)

𝑗=1

) ∗ 

(∏𝑞(ℎ𝑖
(1𝑡)
|𝑣)

𝑁(1𝑡)

𝑖=1

∏𝑞(ℎ𝑗
(2𝑡)
|𝑣)

𝑁(2𝑡)

𝑗=1

)∏𝑞(ℎ𝑘
(3)
|𝑣)

𝑁(3)

𝑘=1

 

(34) 

The mean field parameters can be derived relatively and given in equations 35. The procedure 

for training a Multimodal DBM is shown in the algorithm presented in the following. This 

algorithm is applied in chapter 6 for training a Multimodal DBM. 

The following algorithm is repeated for 𝑡 = 0, . . . , 𝑇 number of iterations:  

1. For each of the training samples 𝑣𝑛 = {𝑣𝑛
𝑟 , 𝑣𝑛

𝑠, 𝑣𝑛
𝑡} , and 𝑛 = 1, . . . , 𝑁 the mean-field 

parameters are updated. In 35 formulation, the mean field parameters are presented 

for one pathway. The mean-field parameters for the second and third pathways are 

achieved similar to those of the first pathway.  

 

{
 
 
 
 

 
 
 
 

𝜇e
(1r)

= 𝐺 (∑ 𝑊de
(1r)vd

(r)

N(0r)

d=1

+ ∑ 𝑊ef
(2r)μf

(2r)

N(2r)

f=1

) , 𝜇
f

(2r)
= 𝐺 (∑ 𝑊ef

(2r)μe
(1r)

N(2r)

e=1

+ ∑𝑊fm
(3r)μm

(3)

N(3)

m=1

)

⏞                                                          
Mean field parameters for the musical note pitches pathway (first pathway)

𝜇m
(3)
= 𝐺 (∑ 𝑊fm

(3r)μf
(3r)

N(2r)

f=1

+ ∑ 𝑊im
(3s)μi

(3s)

N(2s)

i=1

+ ∑ 𝑊lm
(3t)μl

(3t)

N(2t)

l=1

)

⏞                                        
Mean field parameter for the Conjoint layer:

 (35) 

2. 𝑘-steps of alternate Gibbs sampling is performed. The vector �̃� is reconstructed by 

sampling from the hidden units and the hidden units ℎ̃ are resampled from �̃�. The 

stochastic approximations of the conditional probabilities are achieved for one 

pathway by the following formula. The related conditional probabilities for the  other 

pathways are achieved similarly. 
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{
 
 
 
 
 
 

 
 
 
 
 
 

𝑝(ℎ𝑒
(1𝑟)

= 1|𝑣𝑟 , ℎ(2𝑟)) = 𝐺 (∑ 𝑊𝑑𝑒
(1𝑟)𝑣𝑑

𝑟 + ∑ 𝑊𝑒𝑓
(2𝑟)ℎ𝑓

(2𝑟) + 𝑏𝑒
(1𝑟)

𝑁(2𝑟)

𝑓=1

𝑁(0𝑟)

𝑑=1

)

𝑝(ℎ𝑓
(2𝑟)

= 1|ℎ(1𝑟), ℎ(3)) = 𝐺(∑ 𝑊𝑒𝑓
(2𝑟)
ℎ𝑒
(1𝑟)

+ ∑ 𝑊𝑓𝑚
(3𝑟)
ℎ𝑚
(3)
+ 𝑏𝑓

(2𝑟)
)

𝑀

𝑚=1

𝑁(1𝑟)

𝑓=1

𝑝(ℎ𝑚
(3)
= 1|ℎ(2)) = 𝐺(∑ 𝑊𝑓𝑚

(3𝑟)
ℎ𝑓
(2𝑟)

+ ∑ 𝑊𝑖𝑚
(3𝑠)
ℎ𝑚
(2𝑠)

+ ∑ 𝑊𝑙𝑚
(3𝑡)
ℎ𝑚
(2𝑡)

+ 𝑏𝑚
(3)

𝑁(2𝑡)

𝑙=1

𝑁(2𝑠)

𝑖=1

𝑁(2𝑟)

𝑓=1

𝑝(𝑣𝑑
(𝑟)
= 1|ℎ(1𝑟)) =

exp (∑ 𝑊𝑑𝑒
(1𝑟)𝐸

𝑒=1 ℎ𝑒
(1𝑟)

+ 𝑏𝑑
(𝑟)
)

∑ exp (∑ 𝑊𝑑𝑒
(1𝑟)
ℎ𝑒
(1𝑟)

+ 𝑏𝑑
(𝑟)𝐸

𝑒=1 )𝐷(𝑟)
𝑑=1

 (36) 

3. The model parameters are updated. In the formulations below the parameter update 

for weights in the first pathway is given. The parameter update for the other pathways 

are obtained in a similar way. 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Parameter update for weights in the first pathway:

𝑊𝑡+1
(1𝑟)

= 𝑊𝑡
(1𝑟)

+ 𝛾𝑡(
1

𝑁
∑𝑣𝑛

(𝑟)

𝑁

𝑛=1

(𝜇𝑛
(1𝑟)
)
𝑇
−
1

𝑊
∑ �̃�𝑡+1,𝑤

(𝑟)

𝑊

𝑤=1

(ℎ̃𝑡+1,𝑤
(2𝑟)

)
𝑇

𝑊𝑡+1
(2𝑟)

= 𝑊𝑡
(2𝑟)

+ 𝛾𝑡(
1

𝑁
∑𝜇𝑛

(1𝑟)

𝑁

𝑛=1

(𝜇𝑛
(2𝑟)
)
𝑇
−
1

𝑊
∑ ℎ̃𝑡+1,𝑤

(1𝑟)

𝑊

𝑤=1

(ℎ̃𝑡+1,𝑤
(2𝑟)

)
𝑇

Parameter Update for weights in the conjoint section:

𝑊𝑡+1
(3𝑟)

= 𝑊𝑡
(3𝑚)

+ 𝛾𝑡(
1

𝑁
∑𝜇𝑛

(2𝑟)

𝑁

𝑛=1

(𝜇𝑛
(3)
)
𝑇
−
1

𝑆
∑ℎ̃𝑡+1,𝑠

(2𝑟)

𝑆

𝑠=1

(ℎ̃𝑡+1,𝑠
(3)

)
𝑇

𝑊𝑡+1
(3𝑠)

= 𝑊𝑡
(2𝑠)

+ 𝛾𝑡(
1

𝑁
∑𝜇𝑛

(2𝑠)

𝑁

𝑛=1

(𝜇𝑛
(3)
)
𝑇
−
1

𝑆
∑ℎ̃𝑡+1,𝑠

(2𝑠)

𝑆

𝑠=1

(ℎ̃𝑡+1,𝑠
(3)

)
𝑇

𝑊𝑡+1
(3𝑡)

= 𝑊𝑡
(2𝑡)

+ 𝛾𝑡(
1

𝑁
∑𝜇𝑛

(2𝑡)

𝑁

𝑛=1

(𝜇𝑛
(𝑡)
)
𝑇
−
1

𝑆
∑ℎ̃𝑡+1,𝑠

(2𝑡)

𝑆

𝑠=1

(ℎ̃𝑡+1,𝑠
(3)

)
𝑇

 (37) 
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Appendix B.  The Human Evaluation in Terms of 

Musicality, and Rhythmic Structures 

The following material adds further detail to the material given in Chapter 4, and 

presents the human evaluation of LPM audio and visual outputs derived from 88 CA rules 

and 20 pattern-matching rules. The tables in Appendix B illustrate the 88 CA rules based 

on the Wolfram four classes and Li and Packard (Li; Packard, 1990) extensions on the 

second class.  

Table B-1.The human evaluation on Wolfram’s class one on twenty pattern-matching rules in 

terms of musicality, and rhythmic structures. 

 

Tables B-1 through to B-6 present the human evaluation on the extended Wolfram 

CA classes. B-1 shows Class1. Tables B-2 to B-4 the three subtypes for Class2. Class3 is 

given in Table B-5 and the fourth Class in Table B-6. Table C-7 shows how the 256 CA 

rules are mapped onto 88 through conjugation and reflection as explained in Chapter 3. 

 

  

Class Rule 

Pattern Metric (Frequency) 
Human 
evaluation 

P
M

1 

P
M

2 

P
M

3 

P
M

4 

P
M

5 

P
M

6 

P
M

7 

P
M

8 

P
M

9 

P
M

10
 

P
M

11
 

P
M

12
 

P
M

13
 

P
M

14
 

P
M

15
 

P
M

16
 

P
M

17
 

P
M

18
 

P
M

19
 

P
M

20
 

M
e

lo
d

ic
 

R
h

yt
h

m
ic

 

Class 1: 
Homogeneous 

0 n n n n n n n n n n n n n n n n n n n n n y 

8 n n n n n n n n n n n n n n n n n n n n n y 

32 n n n n n n n n n n n n n n n n n n n n n y 

40 n n n n n n n n n n n n n n n n n n n n n y 

128 n n n n n n n n n n n n n n n n n n n n n y 

136 n n n n n n n n n n n n n n n n n n n n n y 

160 n n n n n n n n n n n n n n n n n n n n n y 

168 n n n n n n n n n n n n n n n n n n n n n y 
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Table B-2. The human evaluation on first subclass of Wolfram’s second class on twenty pattern-

matching rules in terms of musicality, and rhythmic structures. 

 

 

In tables B-1 through C-6, the third column (PM1) through to twenty-second 

(PM20) columns show the pattern-matching rules investigated. The last two columns 

show the opinion of a human subject on the LPM musical outputs in terms of melody, 

and rhythm. All the melodies have been considered to be rhythmic, due to the sound 

synthesizer changes in each CA time step. Yellow cells show constant audio tone, dark 

blue oscillatory, and red disordered audio fluctuations. ‘y’ (yes), and ‘n’ (no) indicate the 

musicality or non-musicality of the audio. ‘l’ stands for low level of musicality.   

Class Rule 

Pattern Metric (Frequency)- for each  
Human 
evaluation 

P
M

1 

P
M

2 

P
M

3 

P
M

4 

P
M

5 

P
M

6 

P
M

7 

P
M

8 

P
M

9 

P
M

10
 

P
M

11
 

P
M

12
 

P
M

13
 

P
M

14
 

P
M

15
 

P
M

16
 

P
M

17
 

P
M

18
 

P
M

19
 

P
M

20
 

M
e

lo
d

ic
 

R
h

yt
h

m
ic

 

C
la

ss
 2

 

Fi
xe

d
 P

o
in

t 

2 n n n n n n n n n n n n n n n n n n n n n y 

4 n n n n n n n n n n n n n n n n n n n n n y 

10 n n n n n n n n n n n n n n n n n n n n n y 

12 n n n n n n n n n n n n n n n n n n n n n y 

13 n n n n n n n n n n n n n n n n n n n n n y 

24 n n n n n n n n n n n n n n n n n n n n n y 

34 n n n n n n n n n n n n n n n n n n n n n y 

36 n n n n n n n n n n n n n n n n n n n n n y 

42 n n n n n n n n n n n n n n n n n n n n n y 

44 n n n n n n n n n n n n n n n n n n n n n y 

46 n n n n n n n n n n n n n n n n n n n n n y 

56 n n n n n n n n n n n n n n n n n n n n n y 

57 n n n n n n n n n n n n n n n n n n n n n y 

58 n n n n n n n n n n n n n n n n n n n n n y 

72 n n n n n n n n n n n n n n n n n n n n n y 

76 n n n n n n n n n n n n n n n n n n n n n y 

77 n n n n n n n n n n n n n n n n n n n n n y 

78 n n n n n n n n n n n n n n n n n n n n n y 

104 n n n n n n n n n n n n n n n n n n n n n y 

130 n n n n n n n n n n n n n n n n n n n n n y 

132 n n n n n n n n n n n n n n n n n n n n n y 

138 n n n n n n n n n n n n n n n n n n n n n y 

140 n n n n n n n n n n n n n n n n n n n n n y 

152 n n n n n n n n n n n n n n n n n n n n n y 

162 n n n n n n n n n n n n n n n n n n n n n y 

164 n n n n n n n n n n n n n n n n n n n n n y 

170 n n n n n n n n n n n n n n n n n n n n n y 

172 n n n n n n n n n n n n n n n n n n n n n y 

184 n n n n n n n n n n n n n n n n n n n n n y 

200 n n n n n n n n n n n n n n n n n n n n n y 

204 n n n n n n n n n n n n n n n n n n n n n y 

232 n n n n n n n n n n n n n n n n n n n n n y 
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Table B-3.The human evaluation on second subclass of Wolfram’s second class on twenty 

pattern-matching rules in terms of musicality, and rhythmic structures. 

 

  

Class Rule 

Pattern Metric (Frequency) 
Human 
evaluation 

P
M

1 

P
M

2 

P
M

3 

P
M

4 

P
M

5 

P
M

6 

P
M

7 

P
M

8 

P
M

9 

P
M

10
 

P
M

11
 

P
M

12
 

P
M

13
 

P
M

14
 

P
M

15
 

P
M

16
 

P
M

17
 

P
M

18
 

P
M

19
 

P
M

20
 

M
e

lo
d

ic
 

R
h

yt
h

m
ic

 

C
la

ss
 2

 

P
er

io
d

ic
 

1 n n n n n n n n n n n n n n n n n n n n l y 

3 n n n n n n n n n n n n n n n n n n n n l y 

5 n n n n n n n n n n n n n n n n n n n n l y 

6 n n n n n n n n n n n n n n n n n n n n l y 

7 n n n n n n n n n n n n n n n n n n n n l y 

9 n n n n n n n n n n n n n n n n n n n n l y 

11 n n n n n n n n y y y y y y y y y y y y l y 

14 y y y y y y y y y y y y y y y y y y y y l y 

15 n n n n n n n n n n n n n n n n n n n n l y 

19 n n n n n n n n n n n n n n n n n n n n l y 

23 n n n n n n n n n n n n n n n n n n n n l y 

25 n n n n n n n n n n n n n n n n n n n n l y 

27 n y n y n y n y y y y y y y y y y y y y l y 

28 y y y y y y y y y y y y y y y y y y y y l y 

29 n n n n n n n n n n n n n n n n n n n n l y 

33 y y y y y y y y y y y y y y y y y y y y l y 

35 y y y y y n y y y y n y y y y n n n n n l y 

37 y y y y y y y y y y y y y y y y y y y y l y 

38 y y y y y y y y n n n n n n n n n n n n l y 

41 y n y n y y n n y y y y y y y y y y y y l y 

43 n n n n n n n n n n n n n n n n n n n n l y 

50 y y y y y y y y y y y y y y y n y y y y l y 

51 n n n n n n n n n n n n n n n n n y y y l y 

62 y y y y y y y y y y y y n n n n y y y y l y 

74 y y y y y y y y y y y y y y y y y y y y l y 

94 n y n y n n n y n n n n n n n n n n n n l y 

108 n n n n n n n n n n n n n n n n n n n n l y 

134 n n n n n n n n y n n n y n n n n n n n l y 

142 n n n n n n n n n n n n n n n n n n n n l y 

156 n n n n y n n n y n n n y n n n n n n n l y 

178 n n n n n n n n n n n n n n n n n n n n l y 
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Table B-4.The human evaluation on third subclass of Wolfram’s second class on twenty 

pattern-matching rules in terms of musicality, and rhythmic structures. 

 

Table B-5.The human evaluation on Wolfram’s third class on twenty pattern-matching rules in 

terms of musicality, and rhythmic structures. 

 

Table B-6. The human evaluation on Wolfram’s fourth class on twenty pattern-matching rules in 

terms of musicality, and rhythmic structures. 

 
 

  

  

Class Rule 

Pattern Metric (Frequency) 
Human 
evaluation 
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P
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P
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P
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P
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m
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ca
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C
h
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ti
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26 n n n n n n n n n n n n n n n n n n n n l y 

73 n n n n n n n n n n n n n n n n n n n n l y 

154 n n n n n n n n n n n n n n n n n n n n l y 
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Pattern Metric (Frequency) 
Human 
evaluation 
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3 
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5 
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P
M
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P
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9 

P
M
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P
M

11
 

P
M
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P
M
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P
M

14
 

P
M

15
 

P
M
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P
M

17
 

P
M
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P
M

19
 

P
M

20
 

M
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d
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R
h
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h

m
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Class 3: Globally 
Chaotic 

18 n n n n n n n n n n n n n n n n n n n n y y 

22 y y y y y y y y y y y y y y y y y y y y y y 

30 n n n n n n n n n n n n n n n n n n n n l y 

45 y y y y y y y y y y y y y y y y y y y y y y 

60 y y y n n n n y y n n y y y y y y y y y y y 

90 y y y y y y y y y y y y y y y y y y y y y y 

105 y y y y y y y y y y y y y y y y y y y y y y 

106 y y y y y y y y y y y y y y y y y y y y y y 

122 n y n y n y n y y y y y y y y y y y y y y y 

126 n y n y n y n y y y y y y y y y y y y y y y 

146 y y y y y y y y y y y y y y y y y y y y y y 

150 n n n n n n n n n n n n n n n n n y y y l y 

Class Rule 

Pattern Metric (Frequency) 
Human 
evaluation 

P
M
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P
M

3 

P
M

4 

P
M

5 

P
M

6 

P
M

7 

P
M

8 

P
M
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P
M
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P
M
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P
M
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P
M

13
 

P
M

14
 

P
M

15
 

P
M

16
 

P
M

17
 

P
M
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P
M

19
 

P
M

20
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h

m
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Class 4: 
Complex 

54 n n n n n n n n n n n n n n n n n n n n n y 

110 n n n n n n n n n n n n n n n n n n n n n y 
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Table B-7. List of Equivalent CA rule numbers 

The left most column shows the 88 fundamental CA rules. Column 2 the 

equivalent rule due to conjugation (of cell order in rules). Column 3 

shows the equivalent rule due to reflection. Column 4 equivalent rules due 

to both conjugation and reflection (as explained in Chapter 3). The rules 

are grouped vertically (and colour coded) according to the extended 

Wolfram classes (Class 1, Class2.1, Class 2.2, Class 2.3, Class 3, Class 4). 

Rule Conjugate Reflection C & R 

0 255 0 255 

8 239 64 253 

32 251 32 251 

40 235 96 249 

128 254 128 254 

136 238 192 252 

160 250 160 250 

168 234 224 248 

2 191 16 247 

4 223 4 223 

10 175 80 245 

12 207 68 221 

13 79 69 93 

24 231 66 189 

34 187 48 243 

36 219 36 219 

42 171 112 241 

44 203 1 217 

46 75 101 89 

56 227 98 185 

57 99 99 57 

58 163 114 177 

72 237 72 237 

76 205 76 205 

77 77 77 77 

78 141 92 197 

104 233 104 233 

130 190 144 246 

132 222 132 222 

138 174 208 244 

140 206 196 220 

152 230 194 188 

162 186 176 242 

164 218 164 218 

170 170 240 240 

172 202 228 216 

184 226 226 184 

200 236 200 236 

204 204 204 204 

232 232 232 232 

1 127 1 127 

3 63 17 119 

5 95 5 95 
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 6 159 20 215 

7 31 21 87 

9 111 65 125 

11 47 81 117 

14 143 84 213 

15 15 85 85 

19 55 19 55 

23 23 23 23 

25 103 67 61 

27 39 83 53 

28 199 70 157 

29 71 71 29 

33 123 33 123 

35 59 49 115 

37 91 37 91 

38 155 52 211 

41 107 97 121 

43 43 113 113 

50 179 50 179 

51 51 51 51 

62 131 118 145 

74 173 88 229 

94 133 94 133 

108 201 108 201 

134 158 148 214 

142 142 212 212 

156 198 198 156 

178 178 178 178 

26 167 82 181 

73 109 73 109 

154 166 210 180 

18 183 18 183 

22 151 22 151 

30 135 86 149 

45 75 101 89 

60 195 102 153 

90 165 90 165 

105 105 105 105 

106 169 120 225 

54 147 54 147 

110 137 124 193 
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Appendix C.  Examples of LPM Musical Outputs, and 

their Zipfian Distribution 

In this appendix, some examples are presented for illustrating the behaviours of 

pattern-matching rule outputs and their related Zipfian slopes. Figures C-1, C-3, C-5, 

C-7, C-9, C-11, C-13, C-15, C-17, and C-19 illustrate examples of pattern-matching 

rules outputs behaviours for CA rule numbers 168, 184, 11, 27, 38, 51, 73, 22, 146, and 

110, respectively. The values of 20 pattern-matching rules for the CA rules over 10000 

iterations were extracted. The initial seeds for CA were selected randomly. The 

horizontal coordinates show CA iterations, the vertical coordinate stand for pattern-

matching outputs.  

The graphs suggest that for some CA rules, there are oscillations occurring at the 

beginning of the CA progression before the CA reach a stable state. Converging to 

stable states requires more iteration in some of the graphs (e.g. CA rule 110, pattern-

matching 5) while this happens very quickly for other rules (e.g. CA rule 11, pattern-

matching 2). The behaviour of CA were studied after a certain number of progressions. 

After becoming stable, the CA progressions for various rules show different 

behaviours. Some stay on the same value while others start fluctuating between 

different values. In the cases where CA progressions converge to a value, the result 

would be a monotonous audio. The oscillation ranges from two values to more than 

thirty in some cases. In the auditory tests, these phenomena show themselves as 

oscillations between two or more pitches. 

In this section, Zipfian metrics are employed as an aesthetical measurement to 

study LPM outputs. The values achieved from the pattern-matching rules for the CA 
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rules were applied for investigating the behaviour of LPM in terms of Zipfian 

distribution. The pattern-matching rules outputs for each of the CA rules were ranked 

in compliance with their redundancy (a stage in the procedure for obtaining Zipfian 

slopes). Linear regression was applied on the rank and frequency of occurrence of the 

pattern-matching rule values. The obtained slopes and R-squared measurements 

characterize the Zipfian distribution and the precision of the linear regression fit 

respectively, (the procedure for determining Zipfian slopes are described in chapter 2).  

The values of the twenty pattern-matching rules were extracted from 10000 

iterations of CA progression. The Zipfian distribution characteristics of LPM outputs 

were studied from the five-hundredth to ten-thousandth CA iterations. This time delay 

is to let the CA progressions to reach stability after the initial state. Figures C-2, C-4, 

C-6, C-8, C-10, C-12, C-14, C-16, C-18, C-20 illustrate the linear regression lines fitted 

to Zipfian data distribution of LPM outputs for CA rules 168, 184, 11, 27, 38, 51, 73, 

22, 146, and 110, respectively. The horizontal coordinates show the logarithm rank, the 

vertical coordinate stand for logarithm frequency of occurrence of the pattern-matching 

outputs.  

It should be emphasized that in this appendix, only 1 out of 2100 possible initial 

CA configurations was selected. The initial seed for the CA progressions was selected 

randomly and was employed for all the CA rules. Other initial configurations would 

result in different emerging patterns, therefore the Zipfian slopes would change 

accordingly. The author of this thesis examined further initial seeds and studied the 

pattern-matching outputs through visual investigation. The result on the three grouping 

behaviours persisted for those cases as well. 
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Figure C-1. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 168 (class 1).   

 

Figure C-2. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 168 (class 1). 
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Figure C-3. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 184 (class 2, category 1).  

 

Figure C-4. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 184 (class 2, category 1). 
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Figure C-5. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 11 (class 2, category 2).  

 

Figure C-6. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 11 (class 2, category 2). 
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Figure C-7. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 27 (class 2, category 2).  

 

Figure C-8. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 27 (class 2, category 2). 
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Figure C-9. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 38 (class 2, category 2).  

 

Figure C-10. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 38 (class 2, category 2). 
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Figure C-11. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 51 (class 2, category 2).  

 

Figure C-12. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 51 (class 2, category 2). 
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Figure C-13. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 73 (class 2, category 3).  

 

Figure C-14. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 73 (class 2, category 3). 
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Figure C-15. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 22 (class 3).  

 

Figure C-16. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 22 (class 3). 
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Figure C-17. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 146 (class 3).  

 

Figure C-18. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 146 (class 3). 
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Figure C-19. The twenty pattern-matching rule values over 10000 generation of CA 

progression for rule 110 (class 4).  

 

Figure C-20. Rank-frequency distribution of twenty different pattern-matching rules for CA 

rule 110 (class 4). 
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Appendix D.  Zipfian Slopes for 88 Rules on 20 Pattern-

matching Rule Values 

Zipf’s law slopes for 88 CA rules on 20 pattern-matching rule values are presented 

in table D-1. The orange cells indicate the conditions where the distribution follows Zipf’s 

law. The rusty orange cells show the cases (LPM outputs) where the distribution follows 

Zipf’s law (slopes between -0.6 and -2.1), and the auditory tests and studies on the LPM 

output graphs demonstrated musical LPM outputs for these cases. The yellow cells show 

the distributions with minus infinity slopes. The cells coloured in dark green colour 

illustrate other monotonous outputs. The light green cells demonstrate the situations in 

which the author would expect Zipfian ideal parameters, despite of the obtained 

parameters that are far away from ideal cases. The light blue cells depict the cases in 

which the parameters have nearly ideal Zipfian distribution; however, the graphs show 

the contrary. In this case, the Zipf’s distribution is not sufficient for showing the 

musicality of the data distribution, due to the limited diversity of events occurred. The 

remaining cells coloured with dark purple colour show slopes near to zero, although the 

graphs suggest tedious outputs, which are categorized in dark green group. 

Table D-1.Zipf’s law slopes for 88 rules on twenty pattern-matching rule values.  
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-

2.1

532

810

219

993

3 

-

2.4

612

886

402

052

8 

-

1.8

228

737

846

716

8 

-

1.3

120

932

353

448

2 

-

1.3

120

932

353

448

2 

-

1.31

209

323

534

482 

150 

-

3.26

243

048

221

058 

-

3.23

182

151

945

605 

-

3.27

185

798

475

379 

-

2.9

401

883

385

893

2 

-

2.8

980

923

196

106

9 

-

2.6

592

255

201

002

2 

-

3.12

684

405

546

412 

-

3.2

765

346

211

008

7 

-

1.80

665

918

853

615 

-

2.3

172

697

231

248

8 

-

2.41

857

944

428

260 

-

2.5

898

245

634

876

9 

-

1.8

066

591

885

361

5 

-

2.11

354

314

203

007 

-

2.6

420

919

588

105

5 

-

2.7

237

995

113

641

8 

-

1.6

767

915

874

011

0 

-

1.1

312

557

424

346

2 

-

1.1

312

557

424

346

2 

-

1.13

125

574

243

462 

110 

-

0.00

030

369

330

517

115

2 

-

0.00

030

369

330

517

115

2 

-

0.00

030

369

330

517

115

2 

-

0.0

003

036

933

051

711

52 

-Inf -Inf -Inf -Inf 

-

0.00

030

369

330

517

115

2 

-

0.0

003

036

933

051

711

52 

-

0.00

030

369

330

517

115

2 

-Inf 

-

0.0

003

036

933

051

711

52 

-

0.00

030

369

330

517

115

2 

-Inf -Inf -Inf -Inf -Inf -Inf 

* -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf -Inf 

 

In the above table the asterisk in the last row represent CA rule numbers: 0, 8, 32, 

2, 4, 10, 12, 13, 24, 34, 36, 42, 44, 46, 56, 57, 58, 72, 76, 77, 78, 130, 132,138,  140, 152, 

162, 164, 170, 172, 204, 1, 3, 5, 23, 25, 154, 18, 54, 43. 
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Appendix E.  Standardizing the Musical Parameters 

This appendix presents the required information for standardizing the Persian music 

pitch frequencies achieved in chapter 5 by the application of auto-correlation algorithm. 

This appendix also provides further standardization ranges for LPM sequences, while 

preparing the training datasets for the machine learning fitness function. The auto-

correlation algorithm may achieve slightly different results for the note pitches as they 

occur in the musical piece. However, obtaining Zipfian metrics for musical events 

requires the calculation of the number of occurrence of those events. Therefore, further 

refinements on the achieved pitch values were required. On this account, the concept of 

pitch bins was introduced for justifying the pitch values. The midpoints of the pitch bins 

were selected to be the standard pitches of nine-bridged Persian Santur with their various 

tunings for performance in different Dastgāh. A table of the 27 Santur strings and their 

pitches (44 notes or pitches in different Dastgāh tunings) are provided here in table E-1. 

Table E-1. Different tunings for Santur musical instrument in different Dastgāh.  

This table is applied for standardizing different tone frequencies during 

the musical information retrieval from Persian music.  

Note 

Number 

Notes in the 

bass 

Position  

Pitch Note 

Number 

Notes in the 

Middle 

Position 

Pitch Note 

Number 

Notes in 

the Treble 

range  

Pitch 

1 E3  158 10 E4  292 19 E5  584 

1 E3  164 10 E4 310 19 E5 624 

2 F3 174 11 F4 348 20 F5 696 

3 G3 197 12 G4 393 21 G5 787 

4 A3  214 13 A4  428 22 A5  835 

4 A3 220 13 A4 440 22 A5 880 

5 B3  233 14 B4  466 23 B5  936 

5 B3 246 14 B4  493 23 B5 987 

6 C4 262 15 C5 523 24 C6 1046 

7 D4  284 16 D5  570 25 D6  1076 

7 D4 293 16 D5 587 25 D6 1121 

8 E4  311 17 E5  622 26 E6  1175 

8 E4  319 17 E5 659 26 E6 1318 

8 E4 329 18 F5 697 27 F6 1396 

9 F4 349       

9 F4# 370       
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In the remainder of this appendix, there would be a look towards how the LPM 

sequences dataset were prepared. The LPM sequences consist of a consecutive 

arrangement of voices. Each of the voices can have 11 governing dimensions mentioned 

in the end of section 4.2 in chapter 4, and the production of databases can continue to 11 

dimensions. Table E-2 shows the Lower/Upper ranges values of the musical dimensions 

for the interested reader. The Attack, Decay, Sustain, Release, Loop filter, and loop gain 

value ranges are selected in a way that would contribute to the stability of the synthesizer 

filters. The normalization of the data in each of the dimensions is an important step and 

is performed in accordance with the synthesizer stability and the feasibility of the 

produced audio from musical aspects. The synthesizers are often based on a series of 

digital filters that accept a set of parameters. Certain configurations of the filters may 

make the filter unstable. This condition is often heard as burst of noise of fluffy sounds 

from the designed filter. Therefore, the thresholds in table F-2 have been suggested; some 

of which have been discovered through trial and error in relation to each other and in the 

application.  

Table E-2.The Normalization value ranges for the musical dimensions in LPM sequences 

This table shows all the governing dimensions of LPM sequences and 

their Lower/Upper ranges value. In this thesis, The LPM sequences are 

evolved based on their pitch frequency, note durations, and note onset 

times.  

Musical Dimension Metric Lower Range Upper Range 

Pitch Frequency Hz 100 3000 

Duration Seconds 1/16 2 

Onset Seconds 1/16 2 

Attack  Seconds 0.001 0.5 

Decay  Seconds 0.001 4 

Sustain  Seconds 0 4 

Release  Seconds 0.5 0.9 

Loop Filter  Coefficient 0.01 0.05 

Loop Gain  Coefficient 0.01  0.05 

Interval  Musical Tones -20 20 

Music Speed  Coefficient 1 20 
 

The evolution of melodic structures of LPM sequences is the focus of the research 
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in the first place. Therefore, the pitch, duration, and onset times are taken into account as 

3 dimensions out of the 11 dimensions; the other 8 musical dimensions are left for further 

research. Evolving the audio sequences based on the remaining dimensions is subject for 

future investigations and are out of the scope of the thesis.  
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Appendix F.  Attribute Selection from Dastgāh Music, 

and LPM Sequences 

 This appendix shows how the attribute selection is performed on the cleaned 

databases consisting of Persian music, and LPM sequences in chapter 5. After performing 

the initial data cleaning, the second phase would be the attribute selection phase. The 

attributes are evaluated in Weka by different algorithms such as ReliefF, Gain Ratio, 

InfoGain, and Symmetrical Uncertainty by the application of Ranker search method 

(Kononenko & Kukar, 2007). The attributes are ranked in descending order by Weka and 

are assigned scores between zero and one. The given values assist in the detection of 

competent features. The underlying attribute selection process starts with marking the 

attributes with evaluation values below 0.1 as undesirable ones. The attributes are sorted 

by their attribute numbers by the help of Excel custom sort. This would arrange different 

evaluators’ value for each attribute in one row, so that the evaluations can be compared 

with each other. Colour coding assisted throughout the attribute selection procedure. 

Those attributes, which have not been marked as undesirable in any of the evaluators’ 

categories, have won the selection process and will enter the final phase of cleaning before 

the training is performed. 10 attributes remain which have the evaluation values greater 

than 0.1 among all the rankers. Table F-1 shows the complete attribute selection criteria 

(yellow coded attributes retained).  
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Table F-1. The complete table of the attribute Selection procedure. Values less than 0.1 are 

colour coded. Attributes coded yellow have values greater than 0.1 for all metrics. 

   Attribute name ReliefF Gain Ratio InfoGain 

Symmetrical 

Uncertainty 

1 Pitches 0.0638 0.0862 0.1304 0.1038 

2 Chromatic 0.0854 0.1504 0.2489 0.1875 

3 Pitch_Distance1 0.0581 0.2671 0.5951 0.3687 

4 Contour_Melody_Pitch 0.1122 0.2683 0.5462 0.3599 

5 Melodic_Bigrams 0.0232 0.0524 0.0474 0.0498 

6 Melodic_Trigrams 0.0205 0.0984 0.1373 0.1146 

7 Melodic_4grams 0.0211 0.1193 0.1864 0.1455 

8 Contour_Melody_Pitch_d1 0.194 0.3681 0.7087 0.4845 

9 Contour_Melody_Duration_d1 0.1309 0.2843 0.6016 0.3862 

10 Melodic_Bigram_d1 0.0298 0.1456 0.2104 0.1721 

11 Chromatic_DataSet_d2 0.1428 0.3007 0.5296 0.3836 

12 Pitch_Distance1_d2 0.0585 0.346 0.6392 0.449 

13 Contour_Melody_Pitch_d2 0.0677 0.2372 0.4624 0.3136 

14 Contour_Melody_Duration_d2 0.0311 0.0955 0.1797 0.1247 

15 Chromatic_DataSet_d3 0.0425 0.1201 0.19 0.1472 

16 Pitch_Distance1_d3 0.0365 0.1833 0.3586 0.2426 

17 Contour_Melody_Pitch_d3 0.0584 0.1817 0.3993 0.2498 

18 Contour_Melody_Duration_d3 0.0613 0.1684 0.3724 0.2319 

19 Chromatic_DataSet_d4 0.1394 0.2269 0.4473 0.301 

20 Pitch_Distance1_d4 0.0719 0.3735 0.6729 0.4803 

21 Contour_Melody_Pitch_d4 0.0739 0.1731 0.391 0.2399 

22 Contour_Melody_Duration_d4 0.0535 0.1507 0.3001 0.2007 

23 pitches_LV 0.0405 0.0502 0.0446 0.0473 

24 Combined_Pitch_Duration_LV 0.0513 0.1957 0.5037 0.2818 

25 Contour_Melody_Pitch_LV 0.0389 0.1356 0.2403 0.1734 

26 Contour_Melody_Duration_LV 0.1242 0.2161 0.4945 0.3008 

27 Melodic_Interval_LV 0.1235 0.2762 0.4584 0.3447 

28 Melodic_Bigram_LV 0.0368 0.039 0.0379 0.0384 

29 Melodic_Trigrams_LV 0.0374 0.0419 0.0362 0.0389 

30 Melodic_4grams_LV 0.0317 0.0287 0.0354 0.0317 

31 Rests_LV 0.0378 0.1532 0.2156 0.1791 

32 pitches_d1_LV 0.0244 0.0396 0.0626 0.0485 

33 Chromatic_DataSet_d1_LV 0.1653 0.2829 0.5545 0.3747 

34 Pitch_Distance1_d1_LV 0.0509 0.0958 0.1856 0.1264 

35 Contour_Melody_Pitch_d1_LV 0.0886 0.2367 0.4754 0.316 

36 Contour_Melody_Duration_d1_LV 0.1644 0.3564 0.7508 0.4833 

37 Melodic_Bigram_d1_LV 0.0254 0.0528 0.0877 0.0659 

38 Melodic_Trigrams_d1_LV 0.0241 0.052 0.0883 0.0654 

39 Melodic_4grams_d1_LV 0.0224 0.0545 0.0903 0.0679 
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40 Rests_d1_LV 0.0888 0.1801 0.3937 0.2472 

41 pitches_d2_LV 0.0709 0.1597 0.2901 0.206 

42 Chromatic_DataSet_d2_LV 0.1838 0.4275 0.7631 0.548 

43 Pitch_Distance1_d2_LV 0.0525 0.0517 0.0766 0.0617 

44 Contour_Melody_Pitch_d2_LV 0.0306 0.0156 0.0148 0.0152 

45 Contour_Melody_Duration_d2_LV 0.0639 0.1 0.1757 0.1275 

46 Melodic_Bigram_d2_LV 0.0668 0.1478 0.2774 0.1929 

47 Melodic_Trigrams_d2_LV 0.0657 0.1422 0.2697 0.1862 

48 Melodic_4grams_d2_LV 0.0586 0.1618 0.2441 0.1946 

49 Rests_d2_LV 0.0447 0.0439 0.0385 0.041 
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Table F-2 shows the performance of various machine learning tools trained with 

different number of attributes in various stages of data cleaning, and attribute selection. 

The number of features are 248, 49, 10, and 8 in the experiment. The result provided in 

the table witnesses that the classifiers are still able to perform outstandingly after the 

dramatic shrinkage of the initial attribute sets.  

Table F-2. Classification performance for different subsets of selected attributes  

Classifiers SVM, JRip, Ridor,Decision Table,J48, Logistic, RBF, and 

NaiveBayes for different subsets of selected attributes for 1532 instances 

in the training data.  

  
Number of 

Features 

Correctly 

Classified  
Sensitivity Specificity PPV NPV 

SVM 248 100 100 100 100 100 

rules.JRip 248 100 97.91 98.17 98.17 97.92 

rules.Ridor 248 99.93 100 99.87 99.87 100 

rules.DecisionTable 248 99.93 100 99.87 99.87 100 

trees.J48 248 100 99.086  98.56  98.57  99.08  

Logistic 248 100 100 100 100 100 

RBF 248 100 99.48 100 100 99.48  

bayes.NaiveBayes 248 100 99.61 100 100 99.61 

SVM 49 100 100 100 100 100 

rules.JRip 49 98.04 97.91  98.17  98.17 97.92 

rules.Ridor 49 98.30 98.43  98.17  98.18 98.43 

rules.DecisionTable 49 96.93 97.65  96.21  96.27 97.62 

trees.J48 49 98.82 99.09 98.56  98.57  99.08  

Logistic 49 99.86 99.87 99.87 99.87 99.87 

RBF 49 99.73 99.48 100 100 99.48  

bayes.NaiveBayes 49 99.80 99.61 100 100 99.61 

SVM 10 99.67 99.35 100 100 99.35  

rules.JRip 10 98.62 98.43  98.83 98.82  98.44 

rules.Ridor 10 98.49 98.43  98.83 98.82  98.44 

rules.DecisionTable 10 97.78 98.17  97.39 97.41 98.16 

trees.J48 10 98.95 99.22 98.69  98.70  99.21  

Logistic 10 99.73 99.61 99.87 99.87 99.61 

RBF 10 93.53 99.61 99.87 99.87 99.61 

bayes.NaiveBayes 10 99.80 99.61 100 100 99.611 

SVM 8 99.73 99.48 100 100 99.48  

rules.JRip 8 98.10 97.78  98.43  98.42  97.79  

rules.Ridor 8 99.80 99.74 99.87 99.87 99.74 

rules.DecisionTable 8 97.78 98.17  97.39 97.41 98.16 

trees.J48 8 98.95 99.22 98.69  98.70  99.21  

Logistic 8 99.80 99.79 99.87 99.87 99.74 

RBF 8 99.86 99.87 99.87 99.87 99.87 

bayes.NaiveBayes 8 97.78 99.61 99.87 99.87 99.61 
 

This experiment is performed in Weka, with the abundant choices of rules, decision 
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trees, functions, and Bayes methods that it provides. The first section of the table shows 

the results of SVM, JRip, Ridor, Decision Table, J48, Logistic, RBF, and Naïve-Bayes 

algorithm on the original dataset with 248 features. The second section of the table shows 

the results of the classifiers with 49 features which are left after performing the attribute 

cleaning phase (The attributes with redundant values, so many Nan or minus infinite, or 

zero values have been removed. In this phase, the non-overlapping attributes for the two 

Persian music and LPM pieces were eliminated.) The third phase of attribute selection 

leaves us with ten features (ReliefF, Gain Ratio, Symmetrical uncertainty, and 

Information gain methods have been used for performing attribute selection). The last 

phase of attribute selection after performing CfSSubset evaluation leaves us with 8 

features. Although the attributes have been shrinked by a significant amount, the different 

classifiers maintain their performance. Working with a small number of attributes saves 

processing time in the computations of the evolutionary algorithm. 
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Appendix G.  First Survey Design and Results 

In this appendix, various components in the design of the first auditory survey are 

presented. The design of the surveys is the subject of seventh chapter. Figure G-1 shows 

the introductory text appearing at the beginning of the survey. 

  

Figure G-1.The introduction appearing on the first public survey page.  

This text consists of a brief introduction of the research at hand and its purpose. 

It guides the audience to listen to a short sample of Persian Dastgāh music for 

those people who are not familiar with traditional Persian music. It also invites 

them to leave the survey if they do not want to commit to completing the survey. 

The audience are also suggested to contact the creators of the survey for further 

questions, assistance and the final results. The information provided on the 

welcoming page are in consistence with the ethical rules agreed apon with the 

University of Hull before conducting the survey. 
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Figure G-2 shows a sample question for evaluating an audio piece as they appear 

in the first public survey. This question is repeated for all the nine audio pieces present in 

the auditory survey. In the first LPM survey, nine audio clips are assessed according to 

their musicality, Persian Dastgāh-likeness, and whether the respondents liked the audio 

piece. 

 

Figure G-2. A sample question for evaluating an audio piece as they appear in the first public 

survey. 

In the first LPM survey nineaudio clips are evaluated against their musicality, 

Persian Dastgāh like-ness, and whether the respondents liked the audio piece. 
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Table G-1 demonstrates the result of the ratings of the audio clips for the first public 

survey. The left most column shows the evaluation criteria based on musicality, Persian-

likeness, and the preferences of the participants. The ratings ranges between Totally 

disagree to strongly agree.  

Table G-1.The result of the ratings of the audio clips for the first public survey. 

The left most column presents the evaluation criteria on the basis of 

musicality, Persian-likeness, and the preferences of the participants. The 

ratings ranges between Totally disagree to strongly agree. The ratings are 

presented for nine audio pieces as appears in the remaining columns of the 

table. For each of the evaluation criteria, the total number of collected 

answeres together with the weighted average are presented. 

  Audio Pieces 

Question Ratings Piece 1 Piece 2 Piece 3 Piece 4 Piece 5 Piece 6 Piece 7 Piece 8 Piece 9 

1-How 
musical 
do you 
think 
the 
piece 
is? 

Very Low (%) 42.42 32.35 23.53 31.43 23.53 29.41 11.76 31.43 22.86 

Low(%) 30.30 17.65 26.47 42.86 32.35 32.35 29.41 28.57 28.57 

Moderate(%) 18.18 38.24 38.24 14.29 26.47 26.47 38.24 25.71 31.43 

High(%) 6.06 8.82 8.82 8.57 11.76 8.82 17.65 11.43 14.29 

Very High(%) 3.03 2.94 2.94 2.86 5.88 2.94 2.94 2.86 2086 

Total Answers 33/35 34/35 34/35 35/35 34/35 34/35 34/35 35/35 35/35 

Weighted 
Average 

1.97 2.32 2.41 2.09 2.44 2.24 2.71 2.26 2.46 

 

2-How 
do you 
like this 
piece? 

Very Low(%) 54.55 35.29 35.29 42.86 32.35 41.18 23.53 42.86 25.71 

Low(%) 27.27 26.47 23.53 37.14 38.24 29.41 32.35 31.43 34.29 

Moderate(%) 12.12 35.29 32.35 17.14 20.59 26.47 32.35 22.86 34.29 

High(%) 6.06 2.94 8.82 2.86 5.88 2.94 11.76 2.86 5.71 

Very High(%) 0.00 0.00 0.00 0.00 2.94 0.00 0.00 0.00 0.00 

Total Answers 33/35 34/35 34/35 35/35 34/35 34/35 34/35 35/35 35/35 

Weighted 
Average 

1.70 2.06 2.15 1.80 2.09 1.91 2.32 1.86 2.20 

 

3-How 
do you 
like this 
piece in 
terms 
of 
Persian 
likenes
s? 

Very Low(%) 24.24 20.59 20.59 28.57 29.41 32.35 12.12 22.86 17.14 

Low(%) 33.33 35.29 29.41 42.86 38.24 32.35 30.30 37.14 28.57 

Moderate(%) 30.30 35.29 38.24 22.86 23.53 29.41 45.45 31.43 45.71 

High(%) 12.12 8.82 11.76 5.71 5.88 5.88 12.12 8.57 8.57 

Very High(%) 0.00 0.00 0.00 0.00 2.94 0.00 0.00 0.00 0.00 

Total Answers 33/35 34/35 34/35 35/35 34/35 34/35 33/35 35/35 35/35 

Weighted 
Average 

2.30 2.32 2.41 2.06 2.15 2.09 2.58 2.26 2.46 

 

  



 

268 

 

Table G-2 shows the participants’ comments in the first public survey. 

Table G-2. The respondent’s feedback in the first public conducted evaluation. 

1 

There is lack of fluency in the musical pieces. To be honest none of them are bad, but it reminds 
of sounds produced by a child who just started learning an instrument. For example, song n.2 (s6) 
starts with a weird set of accelerated notes and then suddenly drops the tempo. Maybe if you 
could set some limits to the highest frequency between notes. 

2 Good quality recording. Musicality not to my ear. 

3 
Sounded very amateur, like a child let loose on a piano. Didn't find any of it at all musical at least 
not in the sense I appreciate. 

4 

Real music has more repetition of notes and themes which seems lacking here. Don't be afraid of 
repetition! The tonal qualities are mostly good but some of the lower notes are warped and sound 
wrong, like a badly tuned instrument. Also, don't be afraid to leave more space between 
notes/themes. Your produced sound needs to 'think in phrases' more. Most of these do sound 
santoor-like, but are lacking the musical structure a little. Well done for getting this far! 

5 I did not like my music, I am sorry if it is a rude comment.  

6 

It all sounds terrible. I've got a degree in Music and I've heard Persian music a number of times. I 
don't know what I've just heard in those samples - if your goal is to develop an algorithmic 
representation of Persian-like music in order to generate simulated audio (that sounds like it), 
then there must be other fields of research in computer science/audio that would be more 
interesting. 

7 

The audio visuals have no rhythm to follow. All of them are rather dull but soothing to a certain 
extent. If there are rhythms, I think I would enjoy it. Now most of the audio visuals sound like a 
ghost movie background! Creepy. 

8 I have absolutely no idea what Persian music sounds like 

9 
I don't think any of these pieces are in tune, but this could be due to my lack of knowledge in 
Persian music. 

10 
Ears struggled with music not at 440hz. I must confess I'm not familiar with Persian music - my 
judgement should be tempered. 

11 
would have been nice to mix in some nice Persian music, this started off OKish but got worse. Not 
a good advert for Persian music, but also meant I couldn't compare or contrast the music 

12 I didn't like any of the sounds and I'm not very sure what Persian music actually sounds like. 

13 

I have never really heard Persian music before, but I have to say it might as well rank as one of 
the worst music I have ever listened too. The music sounds so random and their doesn't seem to 
be a focus in the music 

14 I prefer 25 Band!!! Particularly Hamishe Ba Hamim :) 
15 N/A 

16 

I have very little knowledge of this particular type of music, and based upon what I heard I can say 
I can get excited for it. However like any music I appreciate the talent and work that goes into the 
making. 

17 
I have very little idea of what 'Persian' music sounds like, so I wouldn't necessarily take my answers 
as scientific. 

18 
The production of the fragments is good, but it would be helpful to provide examples of what it 
meant by Persian likeness. 

19 Moderate audio is the best. 

20 
It sounds like someones got a broken guitar AND has no idea how to play it anyway i think tje 
persians need to select some new riddems may i suggest "in the whip" by casual 

21 

I don't understand what music this was - I could not work out what instrument was being used? 
It was difficult because there were no chords, and I could not understand the key. 
I have played with musicians from other places, and I have not had this problem before. 
If your music is your way of communicating, or your way of praying, then I apologise for my 
ignorance. I hope that you will continue with your music. Perhaps you can sing also? 
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Appendix H.  Second Survey Design and Results 

In this appendix, the various components in the design of the second auditory survey 

are presented. The design of the survey is the subject of seventh chapter. Figure H-1 

depicts the welcoming introduction appearing on the public survey page. The text consists 

of a brief introduction of the research at hand and its purpose. It guides the audience to 

listen to a short sample of Persian Dastgāh music. The information provided on the 

introduction page is in accordance with the ethical rules agreed upon with the University 

of Hull before conducting the survey.  

 

Figure H-1. The welcomming text appearing at the begginning of the second public survey.  

This text consists of a brief introduction of the research at hand and its purpose. 

It guides the audience to listen to a short sample of Persian Dastgāh music for 

those people who are not familiar with traditional Persian music. It also invites 

them to leave the survey if they don’t want to commit to completing the survey. 

The audience are suggested to contact the creators of the survey for further 

questions, assistance and the final results.  
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Figure H-2 shows the question appearing at the beginning of the survey (both 

second and third surveys) to identify the possible biases about computational creativity, 

and computers improvising Dastgāh music. The list of bias inquiries are listed in table 

H-1. 

 

Figure H-2.The first question appearing in the survey is to identify the possible biases about 

computational creativity, and computers being able to improvise Dastgāh music.   
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Table H-2 depicts public responses to the second survey questions regarding the 

bias criteria. The rows are related to the queries as they appear in Table H-1. The value 

percentages under each column shows the people’s ratings. The ranges of ratings vary 

between Totally Agree, Disagree, Neutral, Moderate, Agree, and Strongly Agree. These 

ratings have correspondingly weighted as: -2,-1, 0,1,2,3 in the order of their appearance. 

These weights are utilized for calculating the weighted average represented in the last 

column  (These weights are different from the weights obtained for calculating Ritchie’s 

evaluation criteria. The weights in Ritchie’s criteria are obtained from the extrapolations 

of survey results). 

Table H-1.The possible bias criteria which asked about in the first question in the second and 

third surveys. 

a Computers can produce creative outputs. 

b Computers can occasionally or randomly be creative. 

c 
Computers cannot be creative because they merely reflect the creativity of 
programmer 

d The idea of computers being creative disturbs me. 

e Computers might be or can be creative in the future but currently are not creative. 

f Computers will never be creative. 

g Computers can not generate Persian music. 

h Dastgāh Persian music should not be a subject for computational creativity. 

i I like the idea of computers being creative. 

j I do not like the idea of computers generating Dastgāh-like music. 
 

Table H-2.The public responses to the first survey questions regarding the bias criteria. 

The rows are associated to the subquestions as they appear in Table H-1. 

The value percentages under each column shows the proportion of people 

‘s ratings.  

 Totally 
Disagree 
(-2) 

Disagree 
(-1) 

Neutral 
(0) 

Moderate 
(1) 

Agree 
(2) 

Strongly 
Agree 
(3) 

Total Weighted 
Average 

a 5.66% 7.55% 20.75% 20.75% 24.53% 20.75% 53 1.13 

b 7.55% 9.43% 20.75% 26.42% 16.98% 18.87% 53 0.92 

c 7.55% 32.08% 7.55% 16.98% 24.53% 11.32% 53 0.53 

d 13.21% 32.08% 26.42% 13.21% 7.55% 7.55% 53 -0.08 

e 11.32% 18.87% 30.19% 22.64% 15.09% 1.89% 53 0.17 

f 38.46% 32.69% 17.31% 3.85% 3.85% 3.85% 52 -0.87 

g 28.30% 33.96% 24.53% 7.55% 1.89% 3.77% 53 -0.68 

h 26.42% 41.51% 18.87% 5.66% 5.66% 1.89% 53 -0.072 

i 11.32% 7.55% 20.75% 13.21% 28.30% 18.87% 53 0.96 

j 28.30% 33.96% 26.42% 1.89% 1.89% 7.55% 53 -0.62 
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Figure H-3 shows a sample question for evaluating an audio piece as they 

appear in the second public survey. This question is repeated for all the 7 audio pieces 

present in the auditory survey. In the second LPM survey, audio clips are assessed 

according to criteria presented in table H-4. 

 

Figure H-3.The evaluation criteria for each of the audio pieces in the second public survey. 

The subquestions a-h appear for each of the audio clips. There are 7 audio clips 

presented in this survey. The format of question two in the survey is replicated 

for all the questions up to the ninth question. 
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Table H-3 shows the ratings for the seven audio pieces according to the evaluation 

criteria in the second public survey.  

Table H-3.The result of the ratings of the audio clips for the second public survey. 

The left most column presents the evaluation criteria. The ratings ranges 

between Totally disagree to strongly agree. The ratings are presented for 

seven audio pieces as appears in the remaining columns of the table. For 

each of the evaluation criteria a-h, the total number of collected answeres 

together with the weighted average are presented. 

Questions Ratings Piece 
1 

Piece 
2 

Piece 
3 

Piece 
4 

Piece 
5 

Piece 
6 

Piece 
7 

1- Is the audio 
music-like 

Totally Disagree (%) 5.88 7.84 
 

7.84 
 

9.80 
 

7.84 
 

9.80 
 

11.76 
 

Disagree (%) 17.65 9.80 7.84 19.61 11.76 17.65 19.61 

Neutral (%) 11.76 13.73 11.76 15.69 15.69 11.76 7.84 

Moderate (%) 33.33 19.61 29.41 29.41 33.33 29.41 27.45 

Agree (%) 21.57 39.22 33.33 21.57 25.49 25.49 27.45 

Strongly Agree (%) 9.80 9.80 9.80 3.92 5.88 5.88 5.88 

Total Answers 51 51 51 51 51 51 51 

Weighted Average 0.76 1.02 1.02 0.45 0.75 0.61 0.57 

 

2- Is the audio 
an example of 
a musical 
improvisation
? 

Totally Disagree (%) 5.77 5.77 3.85 11.54 5.77 9.62 7.69 

Disagree (%) 11.54 19.23 9.62 15.38 17.31 17.31 26.92 

Neutral (%) 23.08 23.08 26.92 25.00 23.08 25.00 17.31 

Moderate (%) 28.85 21.15 26.92 21.15 30.77 28.85 17.31 

Agree (%) 25.00 26.92 26.92 23.08 19.23 15.38 26.92 

Strongly Agree (%) 5.77 3.85 
 

5.77 
 

3.85 
 

3.85 
 

3.85 
 

3.85 

Total Answers 52 52 52 52 52 52 52 

Weighted Average 0.73 0.56 0.81 0.40 0.52 0.35 0.40 

 

3- Is the audio 
a good musical 
improvisation
? 

Totally Disagree (%) 9.62 
 

13.46 
 

15.38 
 

15.38 
 

13.46 
 

17.65 
 

19.23 
 

Disagree (%) 44.23 28.85 21.15 34.62 21.15 33.33 23.08 

Neutral (%) 21.15 25.00 26.92 19.23 32.69 21.57 28.85 

Moderate (%) 11.54 19.23 17.31 19.23 25.00 17.65 19.23 

Agree (%) 7.69 9.62 13.46 9.62 3.85 5.88 5.77 

Strongly Agree (%) 5.77 3.85 5.77 1.92 3.85 3.92 3.85 

Total Answers 52 52 52 52 52 51 52 

Weighted Average -0.19 -0.06 0.10 -0.21 -0.04 -0.27 -0.19 

 

4- Is the audio 
Dastgāh-like? 

Totally Disagree (%) 1.92 13.46 7.69 7.69 7.69 7.69 9.62 

Disagree (%) 11.54 42.31 7.69 26.92 13.46 23.08 23.08 

Neutral (%) 34.62 38.46 34.62 32.69 38.46 28.85 34.62 

Moderate (%) 32.69 3.85 19.23 23.08 21.15 25.00 17.31 

Agree (%) 15.38 1.92 23.08 7.69 15.38 13.46 13.46 

Strongly Agree (%) 3.85 0.00 7.69 1.92 3.85 1.92 1.92 
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Total Answers 52 52 52 52 52 52 52 

Weighted Average 0.60 -0.62 0.65 0.02 0.35 0.19 0.08 

 

5- Is a Persian 
musical 
instrument 
being played? 

Totally Disagree (%) 9.62 
 

21.15 
 

7.69 
 

11.54 
 

11.54 
 

15.38 
 

9.62 
 

Disagree (%) 15.38 38.46 11.54 21.15 13.46 13.46 26.92 

Neutral (%) 23.08 30.77 17.31 26.92 32.69 30.77 28.85 

Moderate (%) 11.54 5.77 30.77 17.31 25.00 25.00 19.23 

Agree (%) 32.69 3.85 25.00 21.15 13.46 11.54 13.46 

Strongly Agree (%) 7.69 0.00 7.69 1.92 3.85 3.85 1.92 
 

Total Answers 52 52 52 52 52 52 52 

Weighted Average -0.65 -0.67 0.77 0.21 0.27 0.15 0.06 

 

6- Is the piece 
a result of a 
creative 
process? 

Totally Disagree (%) 3.85 
 

7.69 
 

3.85 
 

7.69 
 

5.88 
 

7.69 
 

9.62 
 

Disagree (%) 17.31 13.46 7.69 15.38 13.73 13.46 13.46 

Neutral (%) 26.92 34.62 28.85 30.77 31.37 30.77 25.00 

Moderate (%) 25.00 23.08 23.08 19.23 23.53 32.69 28.85 

Agree (%) 21.15 15.38 30.77 23.08 21.57 11.54 19.23 

Strongly Agree (%) 5.77 
 

5.77 
 

5.77 
 

3.85 
 

3.92 
 

3.85 
 

3.85 
 

Total Answers 52 52 52 52 51 52 52 

Weighted Average 0.60 0.42 0.87 0.46 0.53 0.38 0.46 

 

7- Did you like 
this audio 
piece? 

Totally Disagree (%) 20.00 
 

28.85 
 

11.76 
 

32.69 
 

26.92 
 

21.15 
 

21.15 
 

Disagree (%) 44.00 21.15 33.33 28.85 25.00 36.54 40.38 

Neutral (%) 8.00 19.23 13.73 5.77 19.23 13.46 11.54 

Moderate (%) 14.00 15.38 23.53 15.38 13.46 13.46 17.31 

Agree (%) 10.00 7.69 11.76 13.46 7.69 11.54 5.77 

Strongly Agree (%) 4.00 7.69 5.88 3.85 7.69 3.85 3.85 

Total Answers 50 52 51 52 52 52 52 

Weighted Average -0.38 -0.25 0.08 -0.40 -0.27 -0.31 -0.42 

 

8- How 
confident 
were you in 
answering 
these 
questions? 

Totally Disagree (%) 0.00 0.00 1.92 1.92 3.85 3.85 3.85 

Disagree (%) 11.54 15.38 9.62 7.69 9.62 7.69 9.62 

Neutral (%) 19.23 17.31 21.15 17.31 17.31 17.31 17.31 

Moderate (%) 19.23 17.31 25.00 21.15 26.92 26.92 25.00 

Agree (%) 25.00 21.15 21.15 25.00 21.15 19.23 19.23 

Strongly Agree (%) 25.00 28.85 21.15 
 

26.92 
 

21.15 
 

25.00 
 

25.00 
 

Total Answers 52 52 52 52 52 52 52 

Weighted Average 1.33 1.31 1.17 1.40 1.15 1.25 1.21 
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Table H-5 illustrates the the scorings associated to all the seven audio pieces over 

the evaluation criteria in the second public survey presented in table H-4.  

Table H-4. The queries asked about the generated audio in the second auditory survey. 

 

 

 

 

 

Table H-5.The ratings for all the seven audio pieces over the evaluation criteria in the second 

public survey. 

The percentages are recalculated according to the responses for all the 

seven audio clips rather than individually as they were presented in table 

H-4.  

 Totally 
Disagree 

Disagree Neutral Moderat
e 

Agree Strongly 
Agree 

Total Weighted 
Average 

a 8.683% 14.84% 12.60% 28.85% 27.73% 7.28% 357 73.94 

b 7.14% 16.75% 23.35% 25% 23.35% 4.39% 364 53.84 

c 6.61% 29.47% 25.06% 18.45% 7.98% 4.13% 363 4.13 

d 7.96% 21.15% 34.61% 20.87% 12.91% 3.02% 364 18.68 

e 12.36% 20.05% 27.19% 19.23% 17.30% 3.84% 364 20.60 

f 6.61% 13.49% 29.75% 25.06% 20.38% 4.68% 363 53.16 

g 23.26% 32.68% 13.01% 16.06% 9.69% 5.26% 361 -27.97 

h 2.19% 10.16% 18.13% 23.07% 21.7% 24.45 364 12.52 

 

  

a Is the audio music-like? 

b Is the audio an example of a musical improvisation? 

c Is the audio a good musical improvisation? 

d Is the audio Dastgāh-like? 

e Is a Persian musical instrument being played? 

f Is the piece a result of a creative process? 

g Did you like this audio piece? 

h How much confident were you in answering these questions? 



 

276 

 

Figure H-4 shows question nine as it appears in the survey. Its purpose is to 

investigate the familiarity of the respondents with music, Persian music, computer 

programming, and the participants background in the related area.  

 

Figure H-4.Question nine in the second public survey. 

This question asks for the background and familiarity of respondents about 

music and computer science.  
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Table H-6 illustrates the sub queries presented in the ninth question of the second 

public survey. The collected rating for the sub queries in question nine are presented in 

table H-7.    

Table H-6. The subqueries presented in the ninth question of the second public survey. 

a I spend as much time as I can listening to music. 

b I consider myself a Musician. 

c I consider myself as a Computer Scientist/ Computer Programmer. 

d I play at least one musical instrument. 

e I am familiar with Persian music. 

f I am familiar with Dastgāh Persian music. 

g I can identify the genres of music relatively easy. 

h I have/had formal training on music theory. 

 Table H-7. The results of the queries about the familiarity of respondents with music and 

computer science. 

 Very 
Low 

Low Moderate High Very 
High 

N/A Total Weighted 
Average 

a 3.77% 13.21% 24.53% 26.42% 32.08% 0.00% 53 1.53 

b 33.96% 22.64% 18.87% 3.77% 16.98% 3.77% 53 -0.14 

c 43.40% 18.87% 11.32% 11.32% 11.32% 3.77% 53 -0.39 

d 22.64% 20.75% 11.32% 13.21% 30.19% 1.89% 53 0.63 

e 33.96% 20.75% 20.75% 11.32% 11.32% 1.89% 53 -0.12 

f 41.51% 28.30% 16.98% 7.55% 3.77% 1.89% 53 -0.69 

g 5.66% 18.87% 41.51% 22.64% 11.32% 0.00% 53 0.91 

h 33.96% 24.53% 7.55% 11.32% 16.98% 5.66% 53 -0.12 
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Figure H-5 shows the tenth question as it appears in the second survey. The 

participants’ comments are presented in table H-8. 

 

 Figure H-5. The last question in the second public survey was dedicated to collecting 

comments from audience. 

Table H-8. The respondent’s feedbacks in the second public survey conducted. 

1 

All the audio had the same thing in common- it didn't have a set time-signature, which made 
it uncomfortable to listen to and very different from almost all other types of music. Even 
the randomness of the notes might have been interesting if there was some semblance of 
rhythm. I'm not sure of some of these are computer generated and some done on real 
instruments- I didn't listen carefully enough- if that had been explicitly asked, I think I could 
have told the difference. 

2 

I didn't feel I could comment on whether or not the musical process was creative with little 
background on what process was being used. If it was totally random code then I would have 
said no, but if the computer was programmed to make a choice based on a preference then 
I would have agreed it was creative. 

3 

Much of the material very much felt computer generated. What I mean by that is it lacked 
the microscopic blemishes (in terms of time, pitch, attack etc.) you'd expect from any human 
performer. With the one exception being the track on prepared piano, I was unable to 
determine whether this was computer generated or actually performed. Good luck with the 
research! 

4 the audio from later part are horrible. I don't think they can be categorised as music 

5 
Very interesting audio clips, I enjoyed the thought process of thinking through what is 'music' 
and what can be classed as a genre. I must admit that I go to the Youtube clip a few times to 
orient myself. 

6 

Very interesting experience to listen to. I think the timbres were often quite convincing but 
it definitely lacked a sense of mode in both repetitive shaping (formulas) and chromatic 
shading (microtones). I think you might consider using a word other than improvisation - it 
isn't possible to tell if something is improvised by listening to it! you need further -
Information and a definition of what you mean by improvisation (this is part of my phd topic, 
sorry!) 

7 

I was very surprised with the rhythms because I find them surprisingly credible and nice. I 
immediately imagined Bossa Nova songs with such rhythms. There is something strange to 
my ears, though... there are very rich rhythms and the notes variations generally as well... I 
asked myself is there any way of extracting the rhythms and some notes and building on top 
of them with other genres? (on a poetical note, I would comment with this song 
https://www.youtube.com/watch?v=tCMhuN3053o) (on the musical spirit I felt on the 
rhythms, I would go with something like this: 
https://www.youtube.com/watch?v=XjJYeCYO-hA) 

8 

The audios do sound music-like but in a very computerised way. If I heard the audios with no 
context then I would still come to the conclusion that they were computer generated. In my 
opinion 'creativity' is subjective; therefore, what I may deem to be creative for a computer 
may not be what I would consider to be creative for a person. 
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9 
The improvised nature of it meant that it lacked rhythm and melody and therefore failed to 
be convincingly ‘musical’. 

10 
sorry, I did not understand the audio as music, probably due to my ignorance regarding 
Persian / Dastgāh Persian music. To me it sounded like random playing of the same 3-4 notes 
(with one dominant one), without musicality to my ears 

11 
I enjoyed the process. Identifying non-Western musical sounds takes a while to become 
accustomed to, so I feel that my answers where impacted as the survey developed for me. 

12 
You have done your best and is appreciated and you have lot of jobs to do,and you are not 
far from the final result. I wish you all the best. 

13 I admire your perservance and creativity. 

14 In my opinion all of the audios are very creative and unique. 

15 Well done ???? 

16 

After listening to the first Youtube clip provided, which I really enjoyed listening to, moving 
to these clips seemed coming from a computer generated sound (an electronic version of 
the instrument). Being a musician I was very aware of the difference in sound, which is why 
I was a little hesitant at the question on whether a Persian instrument was played in the 
questionnaire clips. At times this was better than others though. Also, I am aware computers 
are able to generate sounds "in the style of" a certain music genre or composer, however 
the human creative process will still lack in these. This was a thought when listening to those 
clips, although some were better than others. 

17 This was quite painful to listen to. There wasn't even one piece that I liked. 

18 
Some of them were very nice to listen to and although they weren't very familiar to me, but 
I think they were very creative and I even played them twice. 

19 None 

20 

It all sounded like very basic computer generated music. It lacked a sense of cohesion, and 
was too messy to pick up on a melody. I felt there was too much dissonance and 
uncoordinated dissonance. It felt as if the notes were randomly selected by a computer. 
Could do with an algorithm to match up notes across different instruments, enabling more 
harmonic control. 

21 
https://www.youtube.com/watch?v=SacogDL_4JU 
https://www.youtube.com/watch?v=uiJAy1jDIQ0 
https://www.youtube.com/watch?v=nA3YOFUCn4U 

22 This kind of music is not my favourite. However, I'm Persian. Good luck Sahar 

23 A lot of it sounded like when young children first play about keyboards 

24 

It is clearly produced using some form of digitised production technique. If we are studying 
the compositional process of intelligence it may be worthwhile to transfer these across to 
the real instruments. This would increase our ability to determine an opinion based solely on 
the composition. The production of the audio is therefore too unreflective of the acoustic 
sound of such zither instrumentation that it automatically adds connotations to our listening 
perceptions. The timing of the zither parts seems random, almost like it is electrical signals 
literally transferred into zither sound. This is unreflective if the inmates rhythmic tendencies 
of Persian and Dastgāh music, which tend to allay beats using subtle changes of stresses, but 
still retain the sense of tempo. The music also is not reflective of the realistic pitched range 
of the ‘instrument’ used. This could be a point of development for random computer 
generated music to be specified and limited by human intuition and/or musical expertise. 

25 

I am ignorant of Dastgāh Persian music. I have listened to the beautiful piece given in the link 
prior to the survey and I was captivated by the sense of musical narrative I felt whilst 
listening. About the samples, I have felt that it sounded like it, but because the samples 
where short, I didn't feel the sensorial story/narrative that I have felt with the Dastgāh 
player. Maybe I would need a full piece to get it. I also ask myself if a computer could play 
such narratives "ad eternum"? (instead of limited to one musical piece?). In some of the 
samples, I have also had a feeling of hearing fast and varied Jazz rhythms. 
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26 

Having listened to the initial sample from the YouTube clip, I found the audio to sound like it 
had been created using a computer rather than a 'real life' sound od a Persian Instrument. 
The youtube clip was much more enjoyable to listen to that the audio clips in the survey - 
they didn't seem to have any structure or flow to them. I also didn't understand question 'a' 
in the survey which is why I didn't answer. 

27 Some parts of the audio seemed unnatural and more randomised than created patterns 

28 
I focused too much on what I perceived as discontinuities in the music so I was convinced all 
samples were created artificially. I am not a musician so my appreciation is limited. 

29 
It seems that there is a far way to go for computers being creative. I'm happy to hear from 
this type of research and wish you a progressive results. Good luck 

30 
Not very experienced with Persian music or Dastgāh music but most of the samples sounded 
plausibly realistic, well done ! 

31 Not really my cup of tea ;) 

32 
I felt that all of the tracks sounded tinny and were not to my liking. In my opinion all of them 
sounded like a computer rather than an instrument. Sorry! 
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Appendix I.  Third Survey Design and Results 

In this appendix the associated various components in the design of the third 

auditory survey are presented. The design of the surveys are the subject of seventh 

chapter. Figure I-1 depicts the welcomming introduction appearing on the public survey 

page. The text consists of a brief introduction of the research at hand and its purpose. The 

information provided on the introduction page are in accordance with the ethical rules 

agreed apon with the University of Hull before conducting the survey. 

 

Figure I-1.The introduction appearing on the survey page for professionals.  

This text consists of a brief introduction of the research at hand and its purpose. 

It lets the respondents to leave the survey if they do’nt want to commit to 

completing the survey. The audience are suggested to contact the creators of the 

survey for further questions, assistance and asking about the final results. The 

information provided on the welcoming page are in consistence with the ethical 

rules agreed apon with the University of Hull before conducting the survey. 
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Table I-2 depicts the professional responses to the third survey sub queries 

regarding the bias criteria. The rows are related to the queries as they appear in Table I-1. 

The value percentages under each column show the people’s ratings. The ranges of ratings 

vary between Totally Agree, Disagree, Neutral, Moderate, Agree, and strongly Agree. 

These ratings have correspondingly weighted as -2,-1, 0, 1, 2, 3 in the order of their 

appearance. These weights are utilized for calculating the weighted average represented 

in the last column.   

Table I-1. The possible bias criteria which asked about in the first question in the third survey. 

a Computers can produce creative outputs. 

b Computers can occasionally or randomly be creative. 

c 
Computers cannot be creative because they merely reflect the creativity of 
programmer 

d The idea of computers being creative disturbs me. 

e Computers might be or can be creative in the future but currently are not creative. 

f Computers will never be creative. 

g Computers can not generate Persian music. 

h Dastgāh Persian music should not be a subject for computational creativity. 

i I like the idea of computers being creative. 

j I do not like the idea of computers generating Dastgāh-like music. 
 

Table I-2. The professional responses to the first question regarding the bias criteria. 

The rows are associated to the subquestions as they appear in Table I-1. 

The value percentages under each column shows the proportion of people 

‘s ratings. The ranges of ratings vary between Totally Agree, Disagree, 

Neutral, Moderate, Agree, and strongly Agree.  

 

 Totally 
Disagree 
(-2) 

Disagree 
(-1) 

Neutral 
(0) 

Moderate 
(1) 

Agree 
(2) 

Strongly 
Agree 
(3) 

Total Weighted 
Average 

a 28.57% 28.57% 0.00% 42.86% 0.00% 0.00% 7 -0.43 

b 42.86% 28.57% 0.00% 28.57% 0.00% 0.00% 7 -0.86 

c 14.29% 28.57% 0.00% 0.00% 14.29% 42.86% 7 1.00 

d 42.86% 28.57% 14.29% 0.00% 0.00% 14.29% 7 -0.71 

e 28.57% 0.00% 0.00% 42.86% 28.57% 0.00% 7 0.43 

f 14.29% 42.86% 14.29% 0.00% 14.29% 14.29% 7 0.00 

g 0.00% 57.14% 0.00% 14.29% 14.29% 14.29% 7 0.29 

h 28.57% 57.14% 0.00% 0.00% 0.00% 14.29% 7 -0.71 

i 14.29% 28.57% 14.29% 28.57% 14.29% 0.00% 7 0.00 

j 14.29% 71.43% 0.00% 0.00% 0.00% 14.29% 7 -0.57 
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Figure I-2. The evaluation criteria for each of the audio pieces in the third survey. 

The subquestions a-i appear for each of the audio clips. There are eight audio 

clips presented in this survey. The format of question two in the survey is 

replicated for all the auditory questions. 
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This question is repeated for all the 8 audio pieces presented in the auditory survey. 

Table I-3 shows the ratings for the eight audio pieces. 

Table I-3. The result of the ratings of the audio clips for the survey from professionals. 

The left most column presents the evaluation criteria. The ratings ranges 

between Totally disagree to strongly agree. The ratings are presented for 

eight audio pieces as appears in the remaining columns of the table. For 

each of the evaluation criteria a-i, the total number of collected answeres 

together with the weighted average are presented. 

Question Ratings Piece 
1 

Piece 
2 

Piece 
3 

Piece 
4 

Piece 
5 

Piece 
6 

Piece 
7 

Piece 
8 

a)Is the 
audio 
music-
like? 

Totally Disagree (%) 14.29 0.00 28.57 28.57 57.14 57.14 57.14 71.43 

Disagree (%) 57.14 0.00 28.57 71.43 14.29 28.57 28.57 28.57 

Neutral (%) 0.00 28.57 28.57 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 28.57 57.14 14.29 0.00 14.29 14.29 14.29 0.00 

Agree (%) 0.00 14.29 0.00 0.00 14.29 0.00 0.00 0.00 

Strongly Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average -0.57 0.86 -0.71 -1.29 -0.86 -1.29 -1.29 -1.71 

 

b) Would 
you 
agree 
that this 
is an 
example 
of 
musical 
improvis
ation? 

Totally Disagree (%) 57.14 28.57 42.86 71.43 85.71 57.14 57.14 85.71 

Disagree (%) 14.29 57.14 28.57 28.57 14.29 42.86 42.86 14.29 

Neutral (%) 14.29 0.00 28.57 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 14.29 14.29 0.00 0.00 0.00 0.00 0.00 0.00 

Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Strongly Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average -1.14 -1 -1.14 -1.71 -1.86 -1.57 -1.57 -1.86 

 

c) Would 
you 
agree 
that this 
is a good 
musical 
improvis
ation? 

Totally Disagree (%) 85.71 57.14 57.14 57.14 85.71 71.43 85.71 85.71 

Disagree (%) 0.00 28.57 28.57 28.57 0.00 14.29 0.00 0.00 

Neutral (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Strongly Agree (%) 14.29 14.29 14.29 14.29 14.29 14.29 14.29 14.29 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average -1.29 -1 -1 -1 -1.29 -1.14 -1.29 -1.29 

 

d) To 
what 
extent is 
the 
generate
d audio 
an 
example 

Totally Disagree (%) 85.71 71.43 42.86 71.43 100.0
0 

85.71 85.71 100.0
0 

Disagree (%) 0.00 28.57 57.14 28.57 0.00 14.29 14.29 0.00 

Neutral (%) 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Strongly Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 
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of the 
Dastgāh 
Persian 
music 
genre? 

Weighted Average -1.71 -1.71 -1.43 -1.71 -2 -1.86 -1.86 -2 

 

e) To 
what 
extent is 
the 
produce
d audio a 
high 
quality 
example 
of 
Dastgāh? 

Totally Disagree (%) 71.43 85.71 71.43 71.43 100.0
0 

100 85.71 85.71 

Disagree (%) 14.29 14.29 28.57 28.57 0.00 0.00 14.29 14.29 

Neutral (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Strongly Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average -1.43 -1.86 -1.71 -1.71 -2 -2 -1.86 -1.86 

 

f) Do you 
like this 
audio 
piece? 

Totally Disagree (%) 57.14 42.86 57.14 85.71 71.43 57.14 100.0
0 

85.71 

Disagree (%) 42.86 28.57 28.57 14.29 14.29 28.57 0.00 14.29 

Neutral (%) 0.00 28.57 14.29 0.00 14.29 14.29 0.00 0.00 

Moderate (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Strongly Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average -1.57 -1.14 -1.43 -1.86 -1.57 -1.43 -2 -1.86 

 

g) To 
what 
extent 
would 
you 
agree the 
piece 
was a 
result of 
a 
creative 
process? 

Totally Disagree (%) 28.57 42.86 28.57 42.86 57.14 71.43 71.43 71.43 

Disagree (%) 42.86 42.86 57.14 28.57 28.57 14.29 14.29 14.29 

Neutral (%) 14.29 0.00 0.00 14.29 0.00 0.00 0.00 0.00 

Moderate (%) 14.29 14.29 0.00 14.29 14.29 14.29 0.00 14.29 

Agree (%) 0.00 0.00 14.29 0.00 0.00 0.00 14.29 0.00 

Strongly Agree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average -0.86 -1.14 -0.86 -1 -1.29 -1.43 -1.29 -1.43 

 

h) Does 
the audio 
sound as 
if a 
Persian 
musical 
instrume
nt is 
being 
played? 

Totally Disagree (%) 0.00 57.14 0.00 14.29 14.29 14.29 57.14 42.86 

Disagree (%) 42.86 28.57 28.57 71.43 57.14 57.14 28.57 42.86 

Neutral (%) 0.00 14.29 14.29 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 42.86 0.00 28.57 0.00 14.29 14.29 14.29 14.29 

Agree (%) 14.29 0.00 14.29 14.29 14.29 14.29 0.00 0.00 

Strongly Agree (%) 0.00 0.00 14.29 0.00 0.00 0.00 0.00 0.00 

Total Answers 7 7 7 7 7 7 7 7 

Weighted Average 0.29 -1.43 0.71 -0.71 -0.43 -0.43 -1.29 -1.14 

 

i) How 
much 

Totally Disagree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Disagree (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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confiden
t were 
you in 
answerin
g these 
question
s? 

Neutral (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Moderate (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Agree (%) 100 71.43 57.14 57.14 66.67 71.43 42.86 42.86 

Strongly Agree (%) 0.00 28.57 42.86 42.86 33.33 28.57 57.14 57.14 

Total Answers 7 7 7 7 6 7 7 7 

Weighted Average 2 2.29 2.43 2.43 2.33 2.29 2.57 2.57 
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Table I-5 illustrates the scorings associated to all the 8 audio pieces over the 

evaluation criteria in the third survey (presented in table I-4).  

Table I-4. The queries asked about the generated audio in the third survey. 

a Is the audio music-like? 

b Would you agree that this is an example of musical improvisation? 

c Would you agree that this is a good musical improvisation? 

d To what extent is the generated audio an example of the Dastgāh Persian music genre? 

e To what extent is the produced audio a high quality example of Dastgāh? 

f Do you like this audio piece? 

g To what extent would you agree the piece was a result of a creative process? 

h Does the audio sound as if a Persian musical instrument is being played? 

i How much confident were you in answering these questions? 
  

Table I-5. The ratings for all the seven audio pieces over the evaluation criteria in the third 

survey. 

The percentages are recalculated according to the responses for all the 

eight audio clips rather than individually as they were presented in table 

I-4. 

 Totally 
Disagree 

Disagree Neutral Moderate Agree Strongly 
Agree 

Total Weighted 
Average 

a 39.28% 32.14% 7.14% 16.07% 3.57% 0% 56 -0.87 

b 60.71% 30.35% 5.35% 3.57% 0% 0% 56 -1.48 

c 73.21% 12.5% 0% 0% 0% 14.28% 56 -1.16 

d 80.35% 17.85% 1.78% 0% 0% 0% 56 -1.78 

E 83.92% 10.71% 1.78% 1.78% 0% 0% 56 -1.76 

f 69.64% 21.42% 8.92% 0% 0% 0% 56 -1.60 

g 51.78% 30.35% 3.57% 10.71% 3.67% 0% 56 -1.16 

h 25% 44.64% 3.57% 16.07% 8.92% 1.78% 56 -0.55 

i 0% 0% 0% 0% 63.63% 36.36% 55 2.36 
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The participants’ comments are presented in table I-6. 

Table I-6. The comments provided by the participants in the third survey. 

1 

Hello and I am grateful from you. Many of these pieces seem to be the result of a random 
process, rather than innovative improvisation. (I wish you would have explained more about the 
creative process and its difference with a random process especially for the case of 
improvisation of traditional music) For me the thing that imposed gaps between the generated 
pieces and Persian Iranian music was the lack of modes and melodies based on the Dastgāh and 
vocal models of Persian music. The generated audio enlivened more of Persian Santur's tuning 
space. Of course in some of the cases the tonality quality represented the sound of Persian 
Santur. However, the lack of the formation of musical modes did not guide me through the space 
of improvisation of traditional music. In the end, I wish to thank you for your hard work. Please 
accept my apologies if you find this comment disturbing. I felt my truthful opinion will be more 
helpful in the process of your research. Thank you very much 

2 Research in any field for music is worthy of praise appreciable. Good luck with your research 

3 

In the discussion of improvisation in Persian music, the mere performance of a random melody 
cannot be taken into account as an improvisation. Improvisation has its own coordinates and is 
based on a very strong infrastructure, including the full range of complete Iranian Radif, and 
Dastgāh musical pieces including all the folk songs and vocals. 

4 

Creativity in the music is nascent from human brain. Creativity is not acquired. What is acquired 
is experience that becomes a tool for manifesting creativity and flourishes the creativity itself. 
Similarly, it can be concluded that the transfer of creativity to the machine is not possible. At 
least not at the moment. You can work on the quality of the sounds at the moment to be better 
propagated. Work on music sounds to have better quality. Also, work on the composition of 
instruments. Especially in the performance of monotone Santur tones a sound of a second 
instrument could be heard which was not pleasant. All in all, it was an interesting research work 
and has the potential for further work. Good luck 

5 
Thanks to you, starting of any new work and paths requires long journeys in order to achieve 
the desired results, and certainly with effort and perseverance in the work you will achieve 
better results. 
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Appendix J.  Evaluation of the Ritchie’s Criteria for 

the Second Survey  

The typicality and value questions in the second survey are: 

• Is the audio an example of a musical improvisation (Typicality)?  

• Is the audio a good musical improvisation (Value)? 

The guidelines for implementing Ritchie’s evaluation criteria are taken from 

(Jordanous, 2012b; Pereira et al., 2001; Ritchie, 2007). Jordanous provided a 

comprehensive manual for applying various evaluation methodologies. The author of this 

thesis found the evaluation examples in (Jordanous, 2012b) quite helpful to follow. In the 

following, the symbols for the Ritchie’s criteria formulations and the choices of 

parameters for the second survey are presented: 

• 𝑅: stands for the result set or outputs of the system. 

• 𝐼: stands for the inspiration set and refers to the items, which were presented 

originally to the system. For instance, the items in 𝐼 set are the items in the training 

set. The inspiring set in the case of this project are the Persian music Dastgāh dataset 

that were formerly introduced in chapter 5. None of the members of 𝑅 are members 

of the inspiring set. Therefore, we have 𝑅 − 𝐼 =  𝑅, and 𝑅 ∩ 𝐼 = 𝑅. 

• typ (Typicality): The audio pieces were evaluated according to their typicality 

(whether they are examples of musical improvisation). The weights in the likert are 

normalized between 0.2 and 1. The Ritchie’s suggestion for the evaluation weights 

were in the range of 0-1. This leaves the weights as: strongly disagree (0.2), disagree 

(0.36), neutral (0.52), moderate (0.68), agree (0.84), and strongly agree (1). 
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• val (Value): The value ratings were obtained for each of the audio samples in the 

survey. The weights in the likert were selected similar to the case of typ.  

• 𝑇𝛼,𝛽(𝑅) stands for the subset of R which meets the suitability levels of typicality. 

Suitable ranges of typicality were given to items that were rated as moderate, agree, 

and strongly agree. The items that were rated higher than neutral were considered to 

have reached acceptable levels of typicality. The neutral weight in this case is 0.52.  

 𝑇𝛼,1(𝑅),𝛼 = 0.52 the mean typicality of audio samples are compared 

with 𝛼. If the mean typicality of an audio sample is greater than 𝛼, it is said 

that it has reached the ranges of suitable typicality. The audio samples that 

meet this specification are tagged with T label in the table. 

𝑇0,𝛽(𝑅),𝛽 = 0.52 the mean typicality of audio samples were 

compared with 𝛽. If the mean typicality of an audio sample is less than 𝛽, it 

is said that it reached the ranges of suitable atypicality. The audio samples 

that meet this specification are tagged with A label in table J-1. 

• 𝑉𝛼,𝛽(𝑅) stands for the subset of R which meets the suitable levels of value. 

Acceptable ranges of value were assigned to items that were rated as moderate, 

agree, and strongly agree. The items that were rated higher than neutral are 

considered to have reached acceptable levels of value. The neutral weight in this 

case is 0.52.  

 𝑉𝛾,1(𝑅),𝛾 = 0.52 the mean value of audio samples are compared with 

𝛾. If the mean value of an audio sample is greater than 𝛾, it is said that it has 

reached the ranges of acceptable value. The audio samples that meet this 

specification are tagged with V label in table J-1. 
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• 𝐴𝑉(𝐹, 𝐴): This notion obtains the mean value of function 𝐹 over the set defined in 

𝐴. (Please note this is different from Atypical label which is abbreviated as A) 

• 𝑟𝑎𝑡𝑖𝑜(𝐴, 𝐵) The number of items in set 𝐴 were divided by the number of items in set 

𝐵. 

• 𝜃 : is the threshold value for each of the criteria. In this application, a unique 𝜃 value 

is applied for all the evaluation criteria. 𝜃 was selected to be 0.5 in this application. 

Table J-1. The typ and val measurements for the seven audio pieces in the second public survey.  

The typicality ratings indicate whether the audio samples are examples of 

musical improvisation. The value rating shows whether an audio sample is 

a good quality musical improvisation. The T symbol in the table stands for 

the ‘typical’ cases where the typ meaurement satisfies 𝑇0.52,1. The V 

symbol stands for ‘valuable’ cases in which the val measurement satisfies 

𝑉0.52,1. The number of typical cases are seven and the number of 

valueable cases are two. There are no atypical cases in this table. The 

atypical cases are those which the typ measurement satisfies 𝑇0,0.52. 

Ratings Piece 1 Piece 2 Piece 3 Piece 4 Piece 5 Piece 6 Piece 7 

Is the audio an example of a musical improvisation? 
(Typicality) 

Mean 
Typicality 

0.64  
T 

0.61  
T 

0.65  
T 

0.58 
 T 

0.60 
 T 

0.58  
T 

0.58  
T 

Is the audio a good musical improvisation? 
(Value) 

Mean 
Value 

0.64  
V 

0.51 
 

0.54 
 V 

0.49 
 

0.51 
 

0.47 
 

0.49 
 

 

The mean typicality, and mean value are obtained in table J-1. The implementation 

of Ritchie’s criteria for the second survey is in the following: 

(1) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑦𝑝, 𝑅) > 𝜃 
 
→  

0.64 + 0.61 + 0.65 + 0.58 + 0.6 + 0.58 + 0.58

7
 = 0.61

> 0.5 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 1 𝑖𝑠 𝑇𝑅𝑈𝐸 

(2) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅), 𝑅) > 𝜃
 
→ 

7

7
= 1 > 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 𝑖𝑠 𝑇𝑅𝑈𝐸 

(3) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑎𝑙, 𝑅) > 𝜃 
 
→  
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0.64+0.51+0.54+0.49+0.51+0.47+0.49

7
= 0.5214 > 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 𝑖𝑠 𝑇𝑅𝑈𝐸  

(4) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅), 𝑅) > 𝜃 
 
→ 

2

7
= 0.29 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(5) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇𝛼,1(𝑅), 𝑇𝛼,1(𝑅)) > 𝜃 
 
→  

2

7
= 0.29 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 5 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(6) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑅) > 𝜃 
 
→ 

 
0

7
= 0 < 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(7) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑇0,𝛽(𝑅)) > 𝜃 
 
→ 

0

0
= 𝑢𝑛𝑑𝑖𝑓𝑖𝑛𝑒𝑑 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 7 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

(8) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑉𝛾,1(𝑅)) > 𝜃 
 
→ 

0

2
= 0 < 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 8 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸  

(9) 𝑅𝑎𝑡𝑖𝑜(𝐼 ∩ 𝑅, 𝐼) > 𝜃 
 
→  

0

0
= 𝑢𝑛𝑑𝑖𝑓𝑖𝑛𝑒𝑑 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 9 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

(10) (1 − 𝑅𝑎𝑡𝑖𝑜(𝐼 ∩ 𝑅, 𝑅)) > 𝜃 
 
→  

1 −
0

7
= 1 > 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 10 𝑖𝑠 𝑇𝑅𝑈𝐸 

(11) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑦𝑝, (𝑅 − 𝐼)) > 𝜃 
 
→ 

 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 1 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 11 𝑖𝑠 𝑇𝑅𝑈𝐸 

(12) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑎𝑙, (𝑅 − 𝐼)) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 12 𝑖𝑠 𝑇𝑅𝑈𝐸 

(13) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅 − 𝐼), 𝑅) > 𝜃 
 
→ 
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𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 13 𝑖𝑠 𝑇𝑅𝑈𝐸 

(14) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼), 𝑅) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 14 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(15) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅 − 𝐼), 𝑅 − 𝐼) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2,13 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 15 𝑖𝑠 𝑇𝑅𝑈𝐸 

(16) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼), 𝑅 − 𝐼) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4,14 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 16 𝑖𝑠 𝑇𝑅𝑈𝐸 

(17) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼) ∩ 𝑇𝛼,1(𝑅 − 𝐼), (𝑅 − 𝐼)) > 𝜃 
 
→ 

2

7
= 0.29 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 17 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(18) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼) ∩ 𝑇0,𝛽(𝑅 − 𝐼), (𝑅 − 𝐼)) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 18 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

 

 



 

294 

 

Appendix K.  Evaluation of the Ritchie’s Criteria for 

the Third Survey  

K.1 Evaluating Ritchie’s Criteria: Musical Improvisations  

The first set of typicality, and value questions in the third survey are: 

• Is the audio an example of a musical improvisation?  

• Is the audio a good musical improvisation? 

The symbols for the Ritchie’s criteria formulations and the choices of parameters 

for the third survey are similar to the second survey discussed in the previous appendix. 

Table K-1. The typ and val measurements for the seven audio pieces in the survey for 

professionals.  

The typicality ratings indicate whether the audio samples are examples of 

musical improvisation. The value rating shows whether an audio sample is 

a good quality musical improvisation. The A symbol in the table stands for 

the ‘atypical’ cases where the typ meaurement satisfy 𝑇0,0.52. The V 

symbol stands for ‘valuable’ cases in which the val measurement satisfies 

𝑉0.52,1. The number of atypical cases are seven and there are no valuable 

or typical cases in this table. 

Ratings Piece 
1 

Piece 
2 

Piece 
3 

Piece 
4 

Piece 
5 

Piece 
6 

Piece 
7 

Piece 
8 

Would you agree that this is an example of musical improvisation? 
(Typicality) 

Mean 
typicality 

0.48  
A 

0.50 
A 

0.43  
A 

0.34  
A 

0.32 
 A 

0.37 
A 

0.37  
A 

0.32 
 A 

Would you agree that this is a good musical improvisation? 
(Value) 

Mean 
value 0.41 0.46 0.46 0.46 0.41 0.43 0.41 0.41 

 

The mean typicality, and mean value are obtained in table Table K-1. The typ and 

val measurements for the seven audio pieces in the survey for professionals. The 

implementation of Ritchie’s criteria for the third survey is presented in the following: 

(1) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑦𝑝, 𝑅) > 𝜃 
 
→  
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0.48 + 0.5 + 0.43 + 0.34 + 0.32 + 0.37 + 0.37 + 0.32

8
 = 0.39

< 0.5 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 1 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(2) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅), 𝑅) > 𝜃
 
→ 

0

8
= 0 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(3) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑎𝑙, 𝑅) > 𝜃 
 
→  

 
0.41+0.46+0.46+0.46+0.41+0.43+0.41+0.41

8
= 0.43 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸  

(4) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅), 𝑅) > 𝜃 
 
→ 

0

8
= 0 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(5) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇𝛼,1(𝑅), 𝑇𝛼,1(𝑅)) > 𝜃 
 
→  

0

8
= 0 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 5 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(6) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑅) > 𝜃 
 
→ 

 
0

8
= 0 < 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(7) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑇0,𝛽(𝑅)) > 𝜃 
 
→ 

0

8
= 0 < 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 7 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(8) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑉𝛾,1(𝑅)) > 𝜃 
 
→ 

0

0
= 𝑢𝑛𝑑𝑖𝑓𝑖𝑛𝑒𝑑 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 8 𝑖𝑠 𝑢𝑛𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒  

(9) 𝑅𝑎𝑡𝑖𝑜(𝐼 ∩ 𝑅, 𝐼) > 𝜃 
 
→  

0

0
= 𝑢𝑛𝑑𝑖𝑓𝑖𝑛𝑒𝑑 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 9 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

(10) (1 − 𝑅𝑎𝑡𝑖𝑜(𝐼 ∩ 𝑅, 𝑅)) > 𝜃 
 
→  

1 −
0

8
= 1 > 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 10 𝑖𝑠 𝑇𝑅𝑈𝐸 

(11) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑦𝑝, (𝑅 − 𝐼)) > 𝜃 
 
→ 
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 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 1 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 11 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(12) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑎𝑙, (𝑅 − 𝐼)) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 12 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(13) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅 − 𝐼), 𝑅) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 13 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(14) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼), 𝑅) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 14 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(15) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅 − 𝐼), 𝑅 − 𝐼) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2,13 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 15 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(16) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼), 𝑅 − 𝐼) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4,14 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 16 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(17) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼) ∩ 𝑇𝛼,1(𝑅 − 𝐼), (𝑅 − 𝐼)) > 𝜃 
 
→ 

0

8
= 0 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 17 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(18) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼) ∩ 𝑇0,𝛽(𝑅 − 𝐼), (𝑅 − 𝐼)) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 18 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

 

  



 

297 

 

K.2  Evaluating Ritchie’s Criteria: Dastgāh-likeness 

The second set of typicality, and value questions in the third survey are: 

• To what extent is the generated audio an example of the Dastgāh Persian 

music genre?  

• To what extent is the produced audio a high quality example of Dastgāh? 

The symbols for the Ritchie’s criteria formulations and the choices of parameters 

for the third survey are similar to the second survey discussed in the previous appendix. 

Table K-2. The typ and val measurements for the seven audio pieces in the survey for 

professionals.  

The typicality ratings indicate whether the audio samples are examples of 

Dastgāh music. The value rating shows whether an audio sample is a 

quality example of Dastgāh music. The A symbol in the table stands for 

the ‘atypical’ cases where the typ meaurement does not satisfiy 𝑇0.52,1. 
The V symbol stands for ‘valuable’ cases in which the val measurement 

satisfies 𝑉0.52,1. The number of atypical cases are seven and there is only 

one valuable case. There are no typical cases in this table. 

Ratings Piece 
1 

Piece 
2 

Piece 
3 

Piece 
4 

Piece 
5 

Piece 
6 

Piece 
7 

Piece 
8 

To what extent is the generated audio an example of the Dastgāh Persian music 
genre? 
(Typicality) 

Mean 
typicality 

0.34  
A 

0.34  
A 

0.39  
A 

0.34  
A 

0.30  
A 

0.32  
A 

0.32 
A 

0.30  
A 

To what extent is the produced audio a high quality example of Dastgāh? 
(Value) 

Mean 
value 

0.55  
V 

0.48  
 

0.50 
 

0.50 
 

0.46 
 

0.46 
 

0.48 
 

0.48 
 

 

 

The mean typicality, and mean value are obtained in table K-2. The implementation 

of Ritchie’s criteria for the third survey is presented in the following: 

(1) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑦𝑝, 𝑅) > 𝜃 
 
→  

0.34 + 0.34 + 0.39 + 0.34 + 0.3 + 0.3 + 0.32 + 0.32 + 0.3

8
 = 0.37

< 0.5 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 1 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 
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(2) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅), 𝑅) > 𝜃
 
→ 

0

8
= 0 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(3) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑎𝑙, 𝑅) > 𝜃 
 
→  

 
0.55+0.48+0.5+0.5=0.46+0.46+0.48+0.48

8
= 0.49 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸  

(4) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅), 𝑅) > 𝜃 
 
→ 

1

8
= 0.125 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(5) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇𝛼,1(𝑅), 𝑇𝛼,1(𝑅)) > 𝜃 
 
→  

0

0
= 𝑢𝑛𝑑𝑒𝑑𝑖𝑛𝑒𝑑 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 5 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

(6) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑅) > 𝜃 
 
→ 

 
1

8
= 0.125 < 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(7) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑇0,𝛽(𝑅)) > 𝜃 
 
→ 

1

8
= 0.125 < 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 7 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(8) 𝑅𝑎𝑡𝑖𝑜 (𝑉𝛾,1(𝑅) ∩ 𝑇0,𝛽(𝑅), 𝑉𝛾,1(𝑅)) > 𝜃 
 
→ 

1

1
= 1 > 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 8 𝑖𝑠 𝑇𝑅𝑈𝐸  

(9) 𝑅𝑎𝑡𝑖𝑜(𝐼 ∩ 𝑅, 𝐼) > 𝜃 
 
→  

0

0
= 𝑢𝑛𝑑𝑖𝑓𝑖𝑛𝑒𝑑 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 9 𝑛𝑜𝑡 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 

(10) (1 − 𝑅𝑎𝑡𝑖𝑜(𝐼 ∩ 𝑅, 𝑅)) > 𝜃 
 
→  

1 −
0

8
= 1 > 0.5 

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 10 𝑖𝑠 𝑇𝑅𝑈𝐸 

(11) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑡𝑦𝑝, (𝑅 − 𝐼)) > 𝜃 
 
→ 

 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 1 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 11 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(12) 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑣𝑎𝑙, (𝑅 − 𝐼)) > 𝜃 
 
→ 
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𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 3 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 12 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(13) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅 − 𝐼), 𝑅) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 13 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(14) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼), 𝑅) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 14 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(15) 𝑅𝑎𝑡𝑖𝑜(𝑇𝛼,1(𝑅 − 𝐼), 𝑅 − 𝐼) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 2,13 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 15 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(16) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼), 𝑅 − 𝐼) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 4,14 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 16 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(17) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼) ∩ 𝑇𝛼,1(𝑅 − 𝐼), (𝑅 − 𝐼)) > 𝜃 
 
→ 

0

8
= 0 < 0.5

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 17 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 

(18) 𝑅𝑎𝑡𝑖𝑜(𝑉𝛾,1(𝑅 − 𝐼) ∩ 𝑇0,𝛽(𝑅 − 𝐼), (𝑅 − 𝐼)) > 𝜃 
 
→ 

𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 6 
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎 18 𝑖𝑠 𝐹𝐴𝐿𝑆𝐸 
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Appendix L.  Liquid Persian Music Manual 

 LPM is the latest version of LBM released. It explores the concept of artificial life systems to 

control the generation and synthesis of audio. In this version, sounds are produced by synthesis toolkit 

stringed instruments class and OpenAL. Pattern-matching rules classify output from the CA and 

update the parameters of the synthesizer. Users can manually alter the pattern-matching rules to 

control the way the synthesizers’ parameters change. 

 

Figure L-1. LPM user interface.  

L.1 Software Specifications  

❖ Individual voice parameter controllers.  
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❖ Four concurrent instrument voices.  

❖ Sound synthesizer parameter controllers including: Note frequency, ADSR 

envelopes, Loop gain. 

❖ Twenty pattern-matching rules to control synthesizer parameters arbitrarily.  

❖ Global parameters controllers as well as: number of polyphony, and the seeding. 

L.2 Software Parts Description 

1) Active voices depict the number of voices that are currently working 

2) Cellular automata rule number for the selected voice. 

3) Time space evolution of CA for the current voice number. 

4) Local parameter display menu lists the selected parameters of the current selected 

voice and their selected pattern-matching rule relevant values, 

5) Global parameter display menu: a controller for changing the polyphony and seed 

values. The user can determine the number of concurrent voices by changing the 

number of polyphony; each of the voices can have different controllable sets of 

parameters. 

6) Parameter -Information panel: gives a brief explanation about the selected 

parameter in the controller menu. 

7) About panel: indicates the developers, version and release year of the software. 

L.3 User’s Manual 

• Navigating between local and global menu items: Up and Down cursor keys 

enable the users to navigate between menu items. 

• Changing the pattern-matching rules for a parameter: right and Left cursor keys 

gives the ability to navigate between different pattern-matching rules. If the 
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manual menu is selected from the pattern-matching rules, then the user can adjust 

the data parameters by “O”/ “K” keys for increasing/decreasing the parameter 

values.  

• Changing the CA rules: To change the CA rule e for the current voice, the “Page 

Up” /“Page Down” keys are applied. This range varies from 0 to 256 for a one 

dimensional CA with two possible states. 

• Reseeding CA: pressing “R” key generates a row of random states in CA which 

will be evolved in the next iterations. 

• Voice selection: to navigate and adjust the parameter of different voices the “1-8” 

keys are used. 

• Muting a voice: “M” key, alternates the state of a voice between muted/ unmuted. 

Save/Load keys: The “S” key saves all the voices parameters to a database. The Load menu 

item gives the user the opportunity to first select the saved item from the database by choosing the 

row number and then load it by pressing the “L” bottom. 

 


