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Abstract

Complex systemsare a rapidly increasing areaof research coveringnumerousdis-

ciplines including economics and even cancer research, as such the optimisation of

the simulations of these systems is important. This thesis will look specifically at two

cellular automata based growthmodels the Eden growthmodel and the Invasion Per-

colationmodel. Thesemodels tend tobe simulated storing the clusterwithin a simple

array. This work demonstrates that for models which are highly sparse this method

has drawbacks in both thememory consumed and the overall runtime of the system.

It demonstrates thatmoremoderndata structures such as theHSH tree canoffer con-

siderable benefits to these models.

Next, instead of optimising the software simulation of the Eden growth model,

we detail a memristive-based cellular automata architecture that is capable of simu-

lating the Eden growth model called the MEden model. It is demonstrated that not

only is this method faster, up to 12, 704 times faster than the software simulation,

it also allows for the same system to be used for the simulation of both EdenB and

EdenC clusters without the need to be reconfigured; this is achieved through the use

of two different parameters present in the model Pmax and Pchance. Giving the model

a broader range of possible clusters which can aid with Monte-Carlo simulations of

the model.

Finally, two methods were developed to be able to identify a difference between

fractally identical clusters; connected component labelling and convolution neural

networks are the methods used to achieve this. It is demonstrated that both of these

methods allow for the identification of individual Eden clusters able to classify them

as either an EdenA, EdenB, or EdenC cluster, a highly nontrivial matter with current

methods. It is also able to tell when a cluster was not an Eden cluster even though it

fell in the fractal range of an Eden cluster. These features mean that the verification

of a newmethod for the simulation of the Edenmodel could now be automated.
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There are neither beginnings nor

endings to the turning of The

Wheel of Time. But it was a

beginning.

Robert Jordan,

The Eye of the World,

Book 1 of The Wheel of Time

CHAPTER 1

Introduction

OPTIMIZING both the runtime and memory consumption of complex

systems simulations is a fast-moving and highly impactful area of

computer science especially when the simulation itself is run in a

Monte Carlo fashion. Running these type of models in this fashion

requires that a large number of runs of the simulation to be performed and as such

can take a very long time andmassive amounts ofmemory to compute. In this thesis,

the focuswill be on theoptimisation andnewmethods of analysis of growthmodels, a

subset of cellular automata that areused inmanyphysical sciences, includingphysics

with the simulation of alloy cooling and dendrite formation. The models which will

be focused on here will be that of the Eden growth model, and the Invasion Percola-

tion model. Both of these models are used in the simulation of cancer, and as such

their optimisation could aid in the expansion of our current knowledge of cancer by

speedingup the rate atwhich it canbe simulated. TheEdenmodel is used for the sim-

ulation of the growth of a tumour whereas the Invasion Percolationmodel is used for

2
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the growth of the blood vessels that a tumour grows when it goes through angiogen-

esis (a process which causes the formation of new blood vessels). Though these are

not the only uses of thesemodels, and as such optimisations to themwould also offer

benefits where ever they are used. It is also hoped that the results of the experiments

discussed in Chapter 5 could help informwhere these different structures could offer

benefits outside of these specific models.

Thisworkwill not only investigatemethods in software through the applicationof

more modern data structures such as an AVL tree as opposed to the commonly used

character array for the storage of these growth model clusters, which will be referred

to as the Latticemethod. It will also investigate a hardware-based implementation of

the Eden growthmodel thatmakes use of amemristive agent based cellular automata

where a memristor is used for the storage of the state of the cell. It is a commonly

known fact that hardware implementations are often considerably faster than their

software counterparts, most of the time by thousands of times. Some reasons for this

are that 100% of the computational power available is put into the calculation of the

simulation also pathways for communication between parts of the system can be op-

timised for the required communication; this can also reduce the amount of energy

that the system requires to perform a calculation or in this case simulation.

Whilst analysing the results of the hardware-based version of the Eden model,

seen in Chapter 7 it very quickly became apparent that the use of the fractal dimen-

sion, a commonly usedmethod for the validation of a newmethod for the simulation

of the Edenmodel, was not able to classify individual clusters and instead could only

beused to show that anewmethodproduced the clusterwithin the same fractal range

as the old method. This becomes an issue as just because a cluster has a similar frac-

tal dimension does not mean that it is an Eden cluster, it also becomes an issue if

the fractal range produced by the newmethod differs meaning it could be producing

two types of Eden cluster or none at all. Therefore, this thesis also presents two new

methods for the classification of Eden clusters; these classification methods can be
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performed with a single cluster and not a range of clusters. The two methods that

have been developedmake use of an element of Graph theory specifically Connected

Component Labelling and a Convolution Neural Network to help classify the cluster

and validate a newmethod.

1.1 Hypothesis

The main research questions that this thesis attempts to answer is whether the cur-

rentmethod for the storage of Cellular automata based growthmodel within the sim-

ulation is the most effective or whether the use of more modernmethods could offer

speed or memory benefits. It also looks at if a memristive hardware-based imple-

mentation of the Eden growth model could not only be faster but could also offer

additional benefits over the restrictive software implementations of the model.

An additional question arose during this work that is also investigated; this being

whether the currentmethods for the analyses of thesemodels are an effectivemethod

and if not what other methods could be developed to solve this issue.

These questions have been summarised into threemain hypotheses; these are as

follows:

H1) Modern data structures which are more sparse can offer bothmemory and

runtime benefits to growthmodels.

H2) A hardware implementation of the Edenmodel using memristors can sim-

ulate the Eden growth model faster than the software-based version, and

the same architecture can simulate different versions of the model.

H3) The use of connected component labelling and convolutional neural net-

work improves that ability to analyse and classify individual clusters of the

Eden growth model into the three main classes more accurately than the

fractal dimension.
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1.2 Objectives

In order to prove the different hypotheses for this work a set of objectives were devel-

oped to help in their testing:

H1 O1) Investigate the amount of the computational domain that the cluster

fills for the Eden and Invasion Percolation models as the size of the

cluster increases.

O2) Develop anoptimalmethod for the implementationof eachof thedata

structures for the Eden and Invasion Percolationmodel.

O3) Investigate the effect on the runtimewhenmakinguseof differentdata

structures.

O4) Investigate the effect on the memory consumption when making use

of different data structures.

H2 O5) Propose a design for amemristive based agent for use in a cellular au-

tomaton for the simulation of the Edenmodel.

O6) Analysis of the fractal dimension of the Standard Eden growth model

and compare to that produced by the memristive based Eden growth

model.

H3 O7) Designconnectedcomponent labelling for theanalysisof theEdengrowth

model.

O8) Test the validity of the connected component labelling for the analysis

of the Eden growthmodel.

O9) Designconvolutionalneuralnetwork for theanalysisof theEdengrowth

model.

O10) Test the validity of the convolutional neural network for the analysis
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of the Eden growthmodel.

1.3 Contributions

This section lists and details the specific novel contributions contained within the

pages of this thesis, these novel contributions are as follows:

Investigation into the possible benefits of modern data structures in the simu-

lation of the Eden and Invasion Percolation growthmodels this is discussed

in Chapters 4 and 5. This is an investigation into the use of more modern data

structure in growth models specifically the Eden growth model and the Inva-

sion Percolation model and the effect that they have in the total run time and

the memory consumption of the simulation. This work uses a range of differ-

entmodels to show that there is a small set of variables for certainmodelswhere

the currently usedmethod (an array that stores all the cell within the domain at

once including cells that donot contain an infected cell) is not themost optimal

method that can be used for the running of these model.

Design ofamemristivebasedhardware implementationof theEdengrowthmodel

this is discussed Chapters 6 and 7. This is involves the design of both a possi-

ble architecture for a hardware implementation of the Eden growthmodel that

makes use of a memristor the fourth fundamental circuit element to store the

state of each cell/agent, in addition to the development of a simulation de-

signed to simulate the architecture and allow for experiments into its validity

to be performed. The simulationwas needed as it was not possible to obtain an

adequate number of memristors to fabricate this system.

Analysis of thefill densityofEdenand InvasionPercolationgrowthmodelsbased

on the change in L size this is discussed in Section 3.4. In order to be able to

understand the effects of the size of thedomainon themodels andhow thismay
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affect the runtimeof themodels the percentage fill of the domain for each of the

models that have been used in the investigation allowing for a more detailed

understanding of how these model work.

Component Labelling forgrowthmodelanalysis andclassification this is discussed

in Section 7.2. With the limitations of the current method used to test the va-

lidity of new methods for the simulation of growth models, namely the fractal

dimension where in cases such as the EdenB and EdenCmodel where they are

highly fractally similar it becomes near impossible to be able to distinguish be-

tween these twomodel with this method. This contribution involves the use of

connected component labelling in a state assigned cluster for analysis of Eden

clusters to remove this limitation and to allow for the classification of individual

clusters even in a case where the cluster presented are fractally identical.

Image Classification forgrowthmodel classification this is discussed inSection7.3.

Aswith theprevious contribution, this is amethod for theclassificationof growth

models when othermethods, such as the fractal dimension, are unable to do so

based off of a single cluster, because of the large overlap in the possible ranges

produced by this method. This method makes used of convolutional neural

networks to perform image classification on Eden clusters.

Previous to thiswork the standardmethod for the storageof thesemodelswas that

of a dense lattice array in this work we demonstrate that for specific cases this is not

the ideal method to use and the different more sparse data structures offer benefits.

These benefits could aid the simulation of the model allowing for a version of the

model to be run in the sameamount of time andmemory space on a computer. These

results can be found in Chapter 5.

The thesis also demonstrates that significant benefits to the run time of the Eden

model, specifically the EdenB and EdenC varients, are able to be gained through the

use of anovelmemristive architecture. An additional benefit canbeobtained through

the use of this system, this being the ability to tailor the type of cluster produced
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through the manipulation of two variable that controls the operation of the model.

This is discussed in more detail within Chapter 6.

Previously to thiswork themethod thatwas used for the analysis of a newmethod

for the simulationof a growthmodelwas to check that the fractal dimensionof the two

clusters was similar and that the clusters were visually similar too. Here we demon-

strate two new novel methods that allow for a more detailed analysis of a different

method for the simulation of a growth model. Additionally, this method allows for a

better method for the classification of a single cluster, here this allows for the identi-

fication of a EdenA, EdenB, or EdenC cluster which would not have always been pos-

sible through the use of the fractal dimension analysis. These methods are discussed

in Chapter 7.

1.4 Thesis Structure

This section will go into the structure of this thesis and will discuss what each of the

different chapters will contain. Chapters 2 and 3 of this thesis after this introductory

chapterwill beginwith adiscussiononcomplexity and complex systems thiswill then

be followed by an introduction to the models that are used in this work. This chap-

ter will discuss in detail each of the models used, the algorithms that describe them,

and the implementation of the growth sites list used for each which will be key in the

selection of the next site to be infected. The final part of this chapter will discuss the

effect of domain size on the cluster specifically how much of the domain is filled by

the cluster taking into account the models specific stopping conditions.

Chapters 4 and 5 of this work will then go into the software-based experiments

for the simulation of the models where alternative data structures have been tested

for their suitability in their simulation. Chapter 4 will begin with an explanation of

the different data structures; this will include a discussion on the frequent uses of the

structures as well as a description of how they function. Chapter 5 will begin with
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the results for the effects on the runtime of the model that the data structures have;

this will be split into two different sections the first of thesewill concern itself with the

construction time of the structures, and the second part will discuss the total runtime

of the models both across a range of domain sizes. All models will be run until they

reach their model-specific stopping condition which is defined in Chapter 3.

Chapters 6 and 7 in this thesis will focus on the design and testing of the mem-

ristive based Eden growthmodel systemwhich has been named theMEdenmethod.

Chapter 6 will beginwith a discussion on the history of thememristor as well as some

uses that it is currently being put to, this will then be followed by a discussion on the

implementation of the software used to simulate the memristor and its responses to

voltage including the equation that describes this behaviour. Nextwill be adiscussion

on the design of the agent, along with the algorithm that governs the model. Chap-

ter 7 will begin by comparing the fractal dimension of the EdenA, EdenB and EdenC

models against the MEdenmodel in order to demonstrate that this method can pro-

duce fractally similar clusters. This will then go into the demonstration of the Con-

nected Component Labelling method as well as the Convolutional Neural Network

method showing that these methods can give a better understanding of the clusters

that are being produced and can be used to classify individual clusters into one of the

three main Eden varients. In the case of the connected component labelling, it will

be shown that it can give a quantifiable difference between thesemodels which is not

possible with the fractal dimension method.

Finally, in Chapter 8 this thesis will end with the conclusion, this will summarise

the contents of the thesis and identifying where within the work each of the objec-

tives is demonstrated to have been completed, and as such showing that the different

hypothesis has been proven or disproven. Following this will be a discussion on the

planned futurework thatwill be carriedout. In addition to themainbodyofwork, this

thesis also contains threeAppendiceswhich contain the results of the statical analysis

performed on the data that makes up the basis of Chapter 5, Appendix A will briefly



1.4. Thesis Structure 10

explain the different statical methods that are used and explain what these methods

show. AppendixBwill look at the timingdata, andAppendixCwill look at thememory

data.



Progress is Man’s ability to

complicate simplicity

Thor Heyerdahl
CHAPTER 2

Complexity and Complex Systems

COMPLEX systemsareanhighly interestingareaof researchwhichpresent

many problems across a vast range fields such as the growth of do-

mainswithincoolingalloys (Hawick, 1991), GeneticAlgorithms (Mitchell,

1998), the spreadof anepidemicor violencewithinanurbanarea(Burke

et al., 2006, Epstein, 2002), and even economic systems such as Bitcoin (Dos Santos,

2017) more example of topics can be seen in Figure 2.1. The most famous of these

topics is probably Chaos theory, which studies complex systems that are highly sen-

sitive to changes in the environments of the system or its initial starting conditions,

this is often called the butterfly effect.

There are many misconceptions held about chaos theory the most common of

these is that it is the study of disorder, this is not true. Chaos theory is the study of

order from seemingly chaotic systems (Katherine, 1990). In a situation where a com-

plex system exhibits chaotic behaviours, it would be more accurate to describe the

system as a chaotic complex system, as chaos is not a necessity within the system for

11
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Figure 2.1: Diagram complex system broken down into seven different areas this is not an
exhaustive list (Sayama, 2015) but it does give an idea at the range of disciplines that are
involved in researching complex systems and complexity. The main areas in which this
thesis will focus itself with would fall under the umbrella of Non-linear dynamics and

Evolution and Adaptation.

it to be complex.

The study of these various systems falls under the umbrella of Complexity The-

ory which is a greatly interdisciplinary theory which originates from systems theory.

Because of the vast number of disciplines that have an interest in and are affected

by complex systems in one way or another the definition of these systems is a highly

non-trivial matter, this chapter will attempt to give an overview of what features a

complex system exhibits.

2.1 What is Complexity

One of themost common complex systems that we are all in constant contact with is

that of the human body. It is made up of a collection of organs each, in turn, is made
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up of billions of cells which perform various functions. Each of these cells is its self-

made up of numerous parts. From looking at the macro scale that of the body its self

it is a highly non-trivial matter to determine what is happening on the cellular level,

this is due to the nesting of complex systems involved, it took hundreds of thousands

of years of experimentation and analysis to begin to understand what is happening

within the human body. The brain alone is now considered in many circles to be a

complex system(Telesford et al., 2011) that may operate on a quantum level.

As this thesis is in the area of computer science and due to the topics discussed

referencing the computational complexity of various data structures. It is essential

to understand that complexity in the sense that it is discussed in this chapter does

not relate to the computational complexity of an algorithm which classes problems

according to their inherent difficulty to compute. There is no one concise definition

ofwhat constitutes a complex system(Magee and deWeck, 2004); this is in part due to

the vast range of types of complex systems and the diversity of disciplines that study

them. Because of this, it is a highly non-trivial task to explain to a personwhat exactly

is meant when the term complex is used; this has lead to a large body of definitions

that attempt to solve this problemwhich seem to enduphavingmore not in common

than actually in common with each other. A number of these alternative definitions

can be found in an article called What is a Complex System (Ladyman et al., 2012)

some of which are listed in Figure 2.2.

This makes clear the difficulty of defining complexity as each of these definitions

whereas they may be correct for the specific type of complexity that the author was

referring to they either require more information to complete the definition, or they

rely on other just as poorly defined terms to back them up the definitions never seem

to stand on their own or are uselessly vague. The definition of complexity itself is as

complex as the systems that the theory attempts to summarise and as such this work

does not attempt to give a definitive definition of complexity. It willmerely give a brief

description of some aspects on which the majority of definitions agree.



2.1. What is Complexity 14

“To us, complexity means that we have structure with variations.” (Goldenfeld,

1999)

“Complexity in natural landform patterns is a manifestation of two key

characteristics. Natural patterns form from processes that are non-linear,

those that modify the properties of the environment in which they operate

or that are strongly coupled; and natural patterns form in systems that

are open, driven from equilibrium by the exchange of energy, momentum,

material, or information across their boundaries.” (Werner, 1999)

“Complexity starts when causality breaks down” (Editorial, 2009)

“In recent years the scientific community has coined the rubric ‘complex

system’ to describe phenomena, structure, aggregates, organisms, or

problems that share some common theme: (i) They are inherently

complicated or intricate; (ii) they are rarely completely deterministic; (iii)

mathematical models of the system are usually complex and involve

non-linear, ill-posed, or chaotic behaviour; (iv) the systems are

predisposed to unexpected outcomes (so-called emergent

behaviour).” (Foote, 2007)

Figure 2.2: A selected of different definitions given to the term Complexity from a variety of
different academic fields
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For this thesis, a system may be considered to be complex if it consists of many

interacting agents (an agent is a a discrete object within the simulation that takes in

informationandact basedona specific set of internal rules), whoseproperties cannot

bewholly understoodmerely by examining the behaviour of each singular agent; this

is due to the emergent properties that these systems often display. This description

though can lead to a variety of false conclusions that end up not holding true the first

of these is that just because a system contains many interacting parts; it is inherently

complex this, however, is not the case. Just because a system is made up of many

interacting parts on themicroscopic scale that does not mean that it is impossible to

sum these interactions up into a much more straightforward system through global

quantities on themacroscopic level. It is notnecessary to simulate every air particle in

a room tounderstand the system it can easily be significantly simplified and therefore

is not complex in nature(Charbonneau, 2017).

In this thesis themodels that are tobedealtwith couldbeconsidered tobeNatural

Complexmodel in the way that Charbonneau (Charbonneau, 2017) defines the term,

this definition being idealisations of naturally occurring phenomena that whilst the

general pattern on the macroscopic scale they are not controlled from this level but

instead are the result of smaller individual agents interacting dynamically. A unifying

theory of complexity could have vast benefits to our understanding of the universe

aiding in the identificationand implicationofdifferingcomplex systems (Playne, 2011)

by giving a more concise and specific definition of complexity, as opposed to the

somewhat erratic and confusing theory that is currently used, where it could be ar-

gued that intuition is as important as part of identifying a complex system as any

other.

Below is a detailed description of various aspects that complex systems may ex-

hibit, this is by no means a definitive list more it is to give the reader an idea of some

features that make these systems such interesting an unpredictable. These aspects

are as follows:
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Decentralized Collective is the most common feature in these systems and means

that the system could also be considered a leaderless collective wherein the

decision-making is distributed out to each member of the collective, making

independent decisions based off of an internal rule set instead of following the

orders of a leader (Ladyman et al., 2012). The most widely known and encoun-

ters example of a decentralised collective would be that of an ant colony, which

is capable of incredibly complex global behaviour based upon nothing put sim-

ple local interactions. It is such a powerful example that the colony is often dis-

cussed as a single entity in and of itself instead of a collection of ants.

Non-Linear Relationships means that even a small change within the system could

have a sizeable disproportional response in the system or it is possible that it

will have no at all (Lea, 2015). This differs from a linear system where the effect

is always proportional to the change. When plotted on a graph, a non-linear

relationship is one which does not form a straight line in the positive or neg-

ative direction. This can make it very difficult if not impossible to predict the

outcome without actually running the system.

Emergent Behaviour which is often merely called Emergence, is when many en-

tities interact in an environment causing the formation of more complex and

somewhat unpredictable behaviours, in other words, the whole is greater than

the sum of its parts. The entities can vary widely from water freezing into a

snowflakeorpeople goingabout thebusinessmoving inacrowd. G.H.Lewes (Lewes,

1875) first defined emergence. The base level mechanisms that cause these

emergent behaviours remains unknown.

Feedback can be a significant and useful aspect of a complex system. An entity re-

ceives feedback when the way its neighbours interact with it in the future de-

pends on the past interaction with the agent (Ladyman et al., 2012)it can come

inbothnegative andpositive forms,whichwouldhave adampeningor amplify-

ing effect respectively on the system. Examples of feedback are Craig Reynolds
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boid system (Reynolds, 1987) wherein the speed and direction of a boid de-

pends on that of its neighbouring boids. The movement of that particular boid

will, in turn, affect the other boids in future iterations.

Spontaneous Order is theunforcedemergenceoforder fromwhat is seemingly com-

plete chaos; it is also sometimes referred to as self-organisation. It can be seen

innumerousplaces from, the internet to even thevery evolutionof life itself (Dar-

win, 1909).

Hierarchical Organization is the idea that every entity in the system is subordinate

to that of a single other entity except for one, this is the same way that modern

businesses command structures are organised. Where the undertaking of the

task is performedby andunder the control of the individual, but the assignment

of tasks is governed by a manager.

Nesting a complex system could also be nested thismeans that there are smallermi-

cro complex systems contained within the larger macro system and that these

smaller systems will have an effect on themore extensive system though not all

the smaller system need to have the same level of influence as each other over

the more extensive system.

An additional interesting aspect of complexity comes inwhen you look at the sys-

tems that are considered to be complex and the fact that they are only able to be con-

sidered to be complex when the system has been run for a long time (Bennett, 1985,

1988, 1995, 2003). Regarding an ABM1 which will be defined later on in this chapter,

this means many iterations or time steps have been performed. This again raises an-

other question how long of a history is required. For this reason, it can be necessary

to run these types of model for in some cases days and on as large a scale as possible

as in some cases certain features may only make themselves apparent in the result of

the systemwhen it is simulated over a certain size, this adds an element of scalability

to the behaviour that they can display.
1Agent Based Model
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Figure 2.3: Game of Life example showing the model at intervals of 100 time steps from left
to right. The first image on the left is the initial starting condition for the simulation, and in
the final image on the right, the simulation has stabilised meaning that once reach the

model will remain identical for a consecutive iteration.

2.2 Agent-based Modelling and Cellular Automata

ABMs and CA2s are potent forms of computational modelling (Bonabeau, Macal and

North, 2006) and in the field of complexity science can be an invaluable tool in the

simulation of these systems. They give the ability to not only visualise the system but

allow for a more natural way to grasp the effect of changes to the systems. They also

give a way in which to analyse a system, which in reality is either infeasible or impos-

sible to measure. Take for instance in the case of an epidemic, in order to work out

the best way to help restrict the spread of the illness, it would require the process-

ing of massive amount of data regarding previous cases, which would require both

the data and computational power to be able to process what would be thousands of

terabytes of data. However, with ABM’s, it is possible to just run a few thousand simu-

lations of the epidemic each with different initial conditions and parameters that the

model may have and to see the results of any intervention. It should be noted that

the results from the simulation will only ever be as accurate as the simulation itself

and so the validation of these model is an essential aspect of a model and due to the

stochastic nature of these simulations will require many runs to get an idea of the

average behaviour of the system.

Both CA’s and ABM’s can be traced back to the VonNeumannCA (VonNeumann,

1966) which was a theoretical idea of a robot that could build copies of its self. This
2Cellular Automata
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idea was later developed by Stanislaw Ulam who suggested that the Von Neumann

machine could be built on paper with the use of a collection of cells in a grid similar

to that of a chess board, this later became the first CA. One of the next advances in the

field was the zero-player game named Life or as it is more commonly known as Con-

way’s Game of Life (Gardner, 1970) an example of this can be seen in Figure 2.3. Four

straightforward rules govern the game of life. From these, a high level of complexity

emerges on the macroscopic level; these rules are as follows:

1. Any live cell with fewer than two live neighbours dies as if caused by under pop-

ulation.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by re-

production.

The Game of Life emerged from Conway’s keen interest in Von Neumann’s idea

of a self-replicating machine, but he found that the system Von Neumann designed

was very complicated with numerous possible states. Conway wanted to see if he

could simplify the idea, and from that desire emerged the Game of Life. This was

different fromtheVonNeumannMachine in thatwhereas theVonNeumannMachine

consisted of a possible 29 states, the agents in the Game of Life could be in only be in

one of two possible states, dead or alive, and had straightforward rules to govern the

switching between these states. When this model was first devised Conway lacked

access to a computer with the ability to visualise it. Because of this, the Game of Life

wasfirst simulatedonawéiqí board a gamemore commonly knownasGo in themore

western parts of the world.

One of the first simulations to be noted as an actual ABM was thought up by

Schelling in his 1971 paper Dynamic models of segregation (Schelling, 1971). The

model involved the simulation of the dynamics in racially mixed neighbourhoods.
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Figure 2.4: The Schelling Segregation Model on lattice with a 30% threshold for neighbour
preference and 10% of the grid being empty to give the agents space to move in. The image
show the first four iterations, an iteration is considered as each agent making the decision as
the move or not. This already show the formation of spinodal like features in the simulation
similar to those shown in the Cahn-Hilliard-CookModel (Hawick, 1991, Playne, 2011), which

is used to show domain growth with a quenched alloy.

The results of the simulation showed that even a low level of preference for neigh-

bours could lead to a high level of segregation. The model is defined by a simple rule

“If Neighbour count is higher than thresholdmove to random location otherwise stay

still". The model can be simulated both in a lattice and in a Euclidean space. An ex-

ample of the Schelling model in a grid-based environment can be seen in Figure 2.4.

Schelling’s model exemplified the idea of ABM be a collection of autonomous

agents interacting with one another in an environment within which they can move.

With the use of this model, Schelling showed that a small preference for your neigh-

bours to be similar to you in someway, in the case of themodel the same colour could

if given enough time lead to total non-violent self-segregation. Later on, in 1980 a

Prisoners Dilemma tournament was held by a political scientist named Robert Axel-

rod to find the most effective strategy for the game. The prisoner dilemma is an in-

teresting piece of game theory where two people Mr A andMr B get arrested, each of

them is held in solitary confinement andoffered adeal giving them theopportunity to

either betray the other by testifying against him or to remaining silent(Mitchell, 1995,

Wooldridge, 2002) and refuse to testify in any way. The results of what will happen

in each of the possible outcomes can be seen in Table 2.1. The goal for each of the

agents is to attempt to minimise its loss; this is where the game theory aspect of the

model comes in to play, in attempting to figure out if it is worth the risk to stay silent.

In order to attempt to figure out the best way to minimise total prison sentence
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Mr. A
Mr. B Silent Betray

Silent -1
-1

-3
0

Betray 0
-3

-2
-2

Table 2.1: Prisoners dilemma scoring showing the punishment received for each agent
when each combination of Silent and Betray are made. This show how there is no chance of

reward only to minimize loss.

over multiple occurrences of this dilemma, Schelling collected strategies from re-

searchers all over the world and pitted them against one another in a 2D spatial grid

to find the most effective strategy. One of the strategies that presented itself to be

highly effective also happened to be one of the simplest the tit-for-tat strategy (Ax-

elrod and Hamilton, 2008, Szilagyi, 2012) which Axelrod noted was an evolutionarily

stable strategy (Smith and Price, 1973). This strategy means that the agent remem-

bers what the other agent did last time they interacted and does that to them. In

otherwords, if the last time the two agents interactedMr.BbetrayedMr.A,Mr.Awould

now betray Mr.B. Like complex systems, ABM’s are utilised across numerous disci-

plines like the social sciences (Axelrod, 1997, Epstein, 2002, Epstein and Axtell, 1996,

Fukuyama, 1998).

After the work done with the Schelling model and the Game of Life, there was a

Cambrian-like explosion of models. More people realised how they could be benefi-

cial to them in their different areas of research. Due to the multi-disciplinary nature

of ABMs, it has become critical that highly intuitive, rapid, and simple ways to de-

velop thesemodels where created, as not everyone can program to the level required

to allow them the quickly produce these simulations. To this end frameworks which

make use of aDomain Specific Language (DSL) such asNetLogo (Tisue andWilensky,

2004a,b) andmore recently Java Agent Development Framework (JADE) (Bellifemine

and Poggi, 2000, Bellifemine et al., 1999) and Multi-Agent Simulator Of Neighbour-

hoods (MASON) (Luke, 2005, Luke et al., 2004) have beenmade which further lead to

the rise in use and number of ABMs.
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Figure 2.5: An Example of a simple reflex agent showing the sensors taking in information
about the environment the agent the builds a view of the worlds applies its if-then rules and

then decides on an action which causes the actuators to act on the environment.

The section has discussed many different ABMs but what exactly is an ABM. To

define what precisely an ABM it is first necessary to define what an agent in and of

itself is. This is by no means as convoluted a definition as with that of complexity,

in its purest form an agent is an autonomous entity which observes its environment

through sensors and acts upon that same environment with actuators (Franklin and

Graesser, 1997). These agents are often called a SRA3. A diagram of the working of an

SRA can be seen in Figure 2.5, they contain no knowledge ormemory of any kind, the

most commonexample of this typeof agent is a thermostat, it’s sensors reads the tem-

perature of the environment, then the actuators turn on or off the heating. There are

other forms of agent such as utility-based agents, Goal-Based Agents, and Learning

Agents but all of these agents have the same basic set-up as the SRAwith sensors and

actuators in one form or another the difference between them is the internal work-

ings of the agents, where or not they learn, havememory, interact with other systems

just to name a few.

CA and ABM’s are similar and are often confused though they do have differences

that make them different from one another. Both of them involve the use of individ-
3Simple Reflex Agent
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ual agents interacting with one another and or the environment, with the agent each

having an internal state that is often represented as a finite state machine. The most

significant difference between the two systems is in a CA the agent’s location is fixed

meaning that the agents’ neighbours will never change throughout the simulation

hence a simulation such as the Game of Life is a CA whereas as the Schelling model

where the agents move is classed as an ABM.

ABM’s are also very similar to MAS4. The main difference between them is their

focus (Niazi andHussain, 2011). MASs focuson theagentdesignwith theagentsbeing

more intelligent but there being less of them, however, in an ABM the focus is put on

the interactionbetween agentswhich are less intelligent, but there is a vast number of

them. The difference between the two is very blurred with both havingmany aspects

in common making it often difficult to distinguish between the two, though for this

work these differences are not significant.

2.3 NeighbourhoodMasks

With both ABMs andCAs actions having possible effects on their environment aswell

as beingbasedon the current state of the environment thereneeds tobeamechanism

for the agent to view its environment. In order to limit the amount of information that

the agent is reacting too as would occur in a real system, this area is referred to as the

agents neighbourhood. There are different forms that this neighbourhood can take,

this depends on the type of mask that is applied to the agent. There are two main

variants of domain grids, regular and asymmetric these can be seen in Figure 2.6.

Ona regular Lattice, twomasks are themost commononeusedwhen implement-

ing both CAs and ABMs (Hawick, 2013, Hawick et al., 2016b, Kehoe, 2015, Niazi and

Hussain, 2011). These are the Von Neumann and Moore Neighbourhoods, The Von

Neumann Neighbourhood is often called the nearest neighbour (NN) method and
4Multi-agent System
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Figure 2.6: Regular (left) and asymmetric (right) mesh/lattice computational domain.

(a) Von Neumann (b)Moore

Figure 2.7: Neighbourhood examples in 2D for the Von Neumann and the Moore
Neighbourhoods with a view radius of one. Somemodels make use these neighbourhoods
with an increase view distance, such as the Civil Violence model (Epstein, 2002), but these

are the most common versions of these two neighbourhoods.

can be seen in Figure 2.7a this is the neighbourhood style used in the Game of life

which was discussed earlier on with this chapter and is also the neighbourhood that

is implemented in the models used for this work. The cell only looks at the cells di-

rectly above, below, to the left, and to the right of the cell in question in 3D, this adds

the cell in front and behind the cell making for a total of 6 neighbouring cells. Fi-

nally, the Moore neighbourhood adds in the diagonal cells forming a square around

the cell, and this can be seen in Figure 2.7b in question in 3D this square becomes a

cube surrounding the cell.

With asymmetric computational domains such as the one seen in Figure 2.6 it can

become challenging to predict how themesh will look compared as so a simplemask

is not applicable. In the regular mesh, it is straightforward to predict the neighbour

count as shown in Figure 2.6 it will always be 4, if we consider themesh to wrap, if not

only the edges and corners with have less, with three and two respectively, whereas in
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an asymmetric mesh the number of neighbours can vary greatly. For example in the

cluster highlighted in Figures 2.6 the total neighbour count is 5 and the position of

each neighbour is much less predictable. This would need to be taken into account

when designing the structure used with this type of mesh. The use of a graph sys-

tem would be the most applicable in the case of an asymmetric domain allowing for

straightforward neighbour communication. The models within this thesis make use

exclusively of the regular grid with a neighbourhood style of Von Neumann/Nearest

Neighbour.

2.4 Initial Conditions

With both ABMs and CA the initial conditions of the model can drastically affect the

end state of the model and as such could be considered to be just as important if

not more than each of the time steps. For example, in the case of Conway’s Game of

Life, some initial configurations will lead to an empty environment. Somewill lead to

a completely stable unchanging environment, but it will still contain some cells that

exist within the alive state. Finally, there are even initial conditions that can lead to an

eternal Game of life that will never stop iterating with each time step being different

in some way from the previous one.

These initial conditions can consist of a number of things that include the posi-

tions and state of the agents within domain, the size of the domain, as well as an vari-

able use to tailor the behaviour of the agents within the model, and even the seeding

value for the random number generator that is used for stochastic selections within

the model. The storage of these initial condition enables a model to be re-run with-

out the need to store each of the specific steps. Also, but excluding the seeding value

from the stored initial is allows for the level of variance in themodel tobe calculated in

the case of stochastic growthmodels such as those discussed within this work. These

conditions can be either random such as with the Schelling Segregation model, or



2.4. Initial Conditions 26

Figure 2.8: The first Garden of Eden for Conway’s Game of Life. Which was found in 1971 by
Roger Banks (Gardner, 1983).

they can be more predetermined as with the models that are discussed in Chapter 3.

An interesting aspect about initial conditions comes in with the study of con-

ditions that are unable to be produced from any previous time step given the rules

of the model. This means that this specific set up can only exist as an initial condi-

tion (Ceccherini-Silberstein and Coornaert, 2017, Gardner, 1983), this is called a Gar-

den of Eden. A Garden of Eden consists of the whole of the domain that the model is

runningwithin and is not just a small subset of the domain, however for every garden

of Eden within that specific garden can be found a finite number of what are called

orphans, these also have no previous state within themodel. An example of a Garden

of Eden for the Game of Life is shown in Figure 2.8.

Gardens of Eden are not only possible in 2D CAs they are also possible within

higherdimensions, but thediscoveryof thembecomes increasinglydifficultwitheach

increasing dimension. The Garden of Eden theorem of Moore and Myhill states that

any CA based on a square grid of N dimension has a Garden of Eden if and only if it

has twins. Which are two finite patterns that have the same successors whenever one

is substituted for the other one. These configurations not only exist in a grid-based

system but the can also exist of different network styles (Machi and Mignosl, 1992).

As mentioned earlier the cells within CA do not move this differs from ABMs, for this

reason, it is much less likely that a garden can exist within an ABM.

The search for these patterns is a non-trivial matter especially for CAs with more

than one dimension such as the Game of Life and Schelling’s segregation model for

one dimensional CA it is possible to find the garden of Eden for the model with a
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polynomial algorithm but for model with 3 or more dimensions there is no guaran-

teed algorithm that will terminate having found a Garden of Eden, but even so there

have been successful searches.

2.5 Boundary Conditions

When simulating these models the domain that the model exists in must at some

point have an end because even with methods that will be discussed here on the

growth of the domain the will reach a point where the computer that the simulation

is being run on is unable to store any more data. So in addition to the rules of the

model and the initial conditions, there must be rules that govern the boundaries of

the model. With models that can be classified under the umbrella of site exchange

models wherein the agents in the system can exchange states with one another.

Themost commonly used boundary condition is that of a periodic boundary this

allows for the approximation of an infinite domain, this is achieved by wrapping the

boundary in all directions as seen in Figure 2.9c in one dimension this would mean

the array [A,B,C,D] would hit A again when it attempts to step past D this is very

easy to do with the application of the modulo function. By taking the modulo of the

index against the size of the dimension, this will wrap the index around the domain.

In a domain with size 128 if attempting to index cell 129 the modulo function will

wrap this around to 1 (129 % 128 = 1). One of the issues that can arise in the use

of the type of structure is with the self-interaction of the models this can lead to the

destruction of the patterns that can be formed within the model meaning that it no

longer represents accurately the system that attempted to be simulated. The easiest

way to deal with this is to increase the size of the domain to reduce the effect of this

self-interaction.

Thenext typeof boundary condition is anon-periodic boundary condition; this is

when there is no wrappingmaking a limited domain. There aremany ways to handle
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(a) Reflective Boundary in 1D on the left
and 2D on the right where the red cells
show the cell that is access when it is

index outside of its bounds.

(b)Non interacting Boundary in 1D on
the left and 2D on the right where the red
cells show the cell that is access when it is

index outside of its bounds.

(c) Periodic Boundary in 1D on the left
and 2D on the right where the red cells
show the cell that is access when it is

index outside of its bounds.

(d) 2D Hybrid Boundary combining the
periodic on the top and bottom and
Non-interacting on the left and right
where the red cells show the cell that is
accessible when it is index outside of its

bounds.

Figure 2.9: These show an example of how the boundary differs for different conditions in
both 1D and 2D when a Von-Neumann neighbourhood is the one that is being used.

this two of which will be discussed here these being a reflective and non-interaction.

The first of these, the reflective boundary is used when the system being simulated

also has a boundary as this can imitate bouncing off of this boundary such as with

water in a jar, an example of this can be seen in Figure 2.9a. This can also be imple-

mented reasonably easily bymerely checking that the index is higher than the bound-

ary of the domain and take the difference away from the index.

The final boundary condition is that of a non-interacting boundary method, in

this case, it is as if the model exists within a void and if it attempts to step outside

of this void nothing happens. It also is called an absorbing boundary as if an entity

crosses this boundary the boundary absorbs it and as such no longer exists for inter-

action within the domain. This condition can also be used in conjunction with the

stopping condition so that if themodelmeets the edge of the domain, the simulation

stops.
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Each of these different boundary conditions that have been discussed in this sec-

tion can be used together to form a hybrid boundary, an example of this can be seen

in Figure 2.9d. Where the top and bottom of the domain using a periodic-boundary

and the left and right using an absorbing-boundary.

2.6 Summary

This Chapter has discussed complex systems which are a rapidly growingmultidisci-

plinary area of research; it also identifies aspects that a complex system would have,

though because of the vast area it doesn’t attempt to give one definitive definition but

describes how it is used here. This was done because of the variety of definitions that

exist within the different domains that study these systems. It also contains a detailed

history of ABM as well as CA both of which are tools that are used in the simulation of

complex systems. They are tools that have many similarities between them, though

are distinct. The history included a few examples of some key CAs and ABMs such as

the Game of Life and Schelling Segregation model.

This is followed by a discussion on the way in which agents within these simula-

tions interact with one another this includes the neighbourhood masks, or topology

of the agents be this a four neighbour Von Neumann or an eight neighbour Moore

neighbourhood. Finally, the last part of this chapter discussed the boundary con-

ditions for a model and the importance and effect of these conditions which define

what type of interaction occurs at the edge of the domain if any.

Complex systems continue to inspire research interest all over the world with

more and more researchers coming to see the benefit of studying these systems, as

well and making use of the tools used to simulate them such as CA and ABMs. With

this increase in interest, it becomes increasingly important to ensure that themodels

being run are doing so in the most time and memory effective methods possible as

this can lead to a significant increase in the speed at which this type of research that
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can be performed. It may not be possible to optimise for both memory and timing,

and as such, it is possible that a smaller memory footprint might have to be traded

for a faster runtime or vice versa, this all depends on the limitations that the person

running the model might face.

Growthmodels are a form of CA that are being used in a variety of different fields

the main one of concern for this work being cancer research with the application of

models such as theEdenGrowthmodel and the InvasionPercolationmodel for things

such as tumour growth and when a tumour goes through angiogenesis and becomes

vascularized (this is when a tumour forms new blood vessels from already existing

ones, this is a critical step that transitions a tumour from being benign to being ma-

lignant). The following chapter will discuss these models in detail, focusing on some

specific applications of thesemodels aswell as themethods that can be used for there

simulations including the handling of background data that is required.



Those who cannot learn from

history are doomed to repeat it.

George Santayana
CHAPTER 3

Growth Models

IN various scientific disciplines the study of growth in non-equilibrium sys-

tems is a highly interesting and active research area withmany impact areas.

One of the most useful tools for this type of research is that of growth mod-

els. Hayes (Hayes, 1979) in an article on different growth models starts off

by quoting Douglas Adams Hitch-hikers Guide to the Galaxy “We have it on good au-

thority that the earth is a gigantic computer, built to calculate the answer to some

ultimate question (or vice versa)”. He then goes on to state that as you look around

the world, the idea seems a more andmore plausible.

In the purest sense, there are two types of growthmodels the first is a model with

a purely stochastic mechanism behind themwhich will be the class of model that are

of concern within this thesis. The second class of growth model is ones with a more

energetic base such as temperature (Herrmann, 1986). This includes models such as

the Potts model which is a being a generalisation of the Ising model and used in the

study of ferromagnetism as well as in computational biology to model the collective
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behaviour of cellular structures (Szabó andMerks, 2013).

Growthmodels canbea somewhatbroad termthatmay require somemoredefin-

ing in order for it to be fully understood. Many fields make use of the term growth

model, the largest area in which it is used is in economics. In this field, they are used

to try to simulate and predict changes in the economy. In this thesis, the term growth

model will not refer to this type ofmodel but insteadwill refer tomodels that are used

for the simulation of biological systems such as tumours, the roots of a plant, or other

similar systems. Many of these models have found numerous application across a

wide range of field separate from their intended purpose.

There where a large number of different models that could have been selected

for use in these test the reason for the selection of these two in particular other then

their use in the fields of cancer research. Comes down to the similarity between then

for all intents and purposes these models can be handled nearly identically with the

difference being how to handle to growth sites list in the adding to a removing from.

This means that the effect of change the storage of the cluster can be handled in the

same way between all of the different models with only a couple of differences such

as the use of an additional state as in the case of the EdenA model (this is discussed

in more detail later on within this chapter).

This chapter will start off with a discussion of the history of each model, along

with how they are currently being used in different fields. After which there will be

a description of the rules of each of the models along with the algorithm describing

the running of the model. The Eden and IP models ,both of which are asyncronous

in there infection steps, were selected because of their similarities; this meant that

the same types of data structure could be made to work with both of them with only

a little change to allow them to run as efficiently as possible. This will allow for the

identification of whether a particular data structure is better suited for a variety of

growthmodels or if it is just for one specific model that it stands out. Growthmodels

can have exciting features such as their asymmetries which can change as the model



3.1. Eden and Screened Eden GrowthModels 33

Figure 3.1: Eden growth model in 3D on a lattice with an L size of 128 at time steps 100,
200, 000, 400, 000, and 600, 000.

grows (Hawick, 2016).

3.1 Eden and Screened Eden GrowthModels

The Eden growthmodel was first conceived of in 1961 (Eden, 1961); its intended pur-

pose was to simulate the growth of organic substances specifically bacteria within

a culture medium with adequate food for the cluster to grow. It differs from other

growthmodels suchasDiffusionLimitedAggregation (Witten andL.M., 1981) and the

Ballistic ParticleDeposition (Hayes, 1979). In that, whereas thesemodels fireparticles

into the domain and thus would be considered closer to an ABM with each particle

being a single agent. In the Eden growthmodel, however, the cells within the domain

are themselves agents and exists within one of two stateswithoutmoving through the

systemmaking Eden more of a CA than an ABM, and instead of adding agents the to

the domain the already existing agents instead switch their states.

Another feature of the model is the fact that the surface of the cluster exhibits

fractal-like properties (Jullien and Botet, 1985) making it interesting to various fields

within the physical sciences. One application of the model currently is in the simu-

lation of large-scale cancer like clusters (Hawick and Scogings, 2009). An interesting

piece of work done on this subject was published in Nature in 2015 (Waclaw et al.,

2015) wherein a large scale Eden GrowthModel was developed. This model included

the way in which tumours can disperse within a short range, as well as including the
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(a) EdenA (b) EdenB (c) EdenC

Figure 3.2: Example of the probability distribution in the EdenA, EdenB, and EdenC show
the different probability distribution for each of the variant with the same cluster. These
different version of the Edenmodel where selected so give an understanding of how

significant the handling of the growth site is.

chance for the cell to mutate in different ways. Allowing for the researches to simu-

late the death of tumours with the chance that some of the cells would be immune to

the treatment; this allowed for the simulation of how tumours can become resistant

to treatments such as chemotherapy and radiotherapy as well as how the cluster may

grow after such treatments. The use of these simulations allowed them to conclude

that the restriction of cellular migrations in tumours could lead to improvements in

the battle against cancer significantly reducing the growth rate of tumours.

Another adaptationof themodel (WangandBassingthwaighte, 1997) as thedevel-

opmentof anoff-lattice versionof themodel. This simulated thegrowthof aEuclidean-

based (not limited to a grid instead it has freemovementwithin afloating-point based

euclidean space) Edenmodel on the surface of a sphere. This wouldmake it possible

to simulate the way that tumoursmight grow on a curved surface such as the ball of a

joint or a person’s’ skull. It was also an attempt to dealwith the inherent non-isotropic

nature of the model. Due to that fact that the model tends to live on a regular mesh

even with its stochastic nature, it tends to grow along the axis of the grid (Thompson,

1942) biassing the possible antisymmetry of the model.

TheEdenmodel ismost commonly representedonanM-site 3Dmatrix or Lattice

whereM = Lx × Ly × Lz and L represent the size of a specific dimension; with the

dimension being shown by the subscript by either the letter x, y, or z. The cells can be
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in one of two possible states infected or empty within amore advanced version of the

simulation the infected sites couldhave the chanceof havingmultiple possible values

depending on the type of infection present in the cell (Waclaw et al., 2015). There are

three main types of Eden models each with different ways of selecting which growth

site will be the next one to be infected by assigning a different probability to the cells

based on themethod. Thisworkwillmake use of three different standard Edenmodel

rule sets, the Eden A, B, and C rule sets.

The EdenA is the simplest of all three of the variants. In this version, each of the

neighbouring cells to the cluster has an equal chance of being selected for infection.

EdenB has it such that each of the edges of the cluster has the same chance of spawn-

ing a cell, meaning that if one uninfected cell has three infected neighbours, it will

have three times the chance to become infected as compared to a cell with only one

infected neighbour. The third and final variant of the Eden growthmodel that is used

within the set of Standard rules is the EdenCmodel, this version of the model can be

the most difficult to implement. In this version, one of the edge cells is randomly se-

lected, and one of its uninfected cells is then in turn randomly selected and set to be

infected. Examples of the probability distribution of each of these variants on iden-

tical clusters can be seen in Figure 3.2 and a 2D visualisation of the style of clusters

these rules produce can be seen in Figure3.3.

For allmodels that have beenwritten for this workwhenever a randomnumber is

discussed this is obtained through the built-in randmethod in the standard template

library of C++, this may not the best of the pseudo-random number generators that

are available, but it can generate a highly uniform distribution and is very commonly

used, hence its use here.

Themain three variants of the Eden growthmodel the EdenA, EdenB, and EdenC

each produce quantifiably different clusters which can be seen in Figure 3.3 where

one of each of the cluster is shown in a 2D form. Each of these clusters where gen-

erated from the same initial infection seed (a single infected cell in the centre of the
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(a) EdenA (b) EdenB (c) EdenC

Figure 3.3: Examples clusters grown with the different rules sets for the Eden growth model
in the EdenAmodel, EdenB, and EdenC. All the clusters were grown with the same initial

conditions including the seeded value to the random number generator. The only difference
being the handling of the selection for the next site to be infected. The colours in this model
represent the time step at which each cell was infected with the colours starting with red this
shows the colours with nine different colours changes, with the colour change ever 500 steps.

showgrid)with identical seeding values fro the randomnumber generator used, Each

of the cluster where run to 2000 iterations and coloured to show the effect growth rate

with the cluster changing colour about every 335 iteration’s.

The EdenA rule set produces a cluster with the lowest density of the three the

change of the colour in this image shows the flow of time within the model with the

colours changing from Red to Green to Blue to Yellow to Cyan to Magenta and then

back around to Green as the simulation runs. This shows how some cells can remain

uninfected at the centre of the cluster for a considerably long time before eventually

becoming infected this is what leads to the lower density, with the clusters shown the

EdenA cluster having 58 uninfected internal cells compared to the EdenB’s 10 and

the EdenC’s 2. As the cluster moves through the rules from A to C the clusters that

are grown become increasingly dense with EdenC only having very minimal mixing

of the colour bands in the model showing that it grows much more uniformly than

the other two clusters especially the EdenA.

The Eden Growth Model follows a straightforward set of rule first an initial cell

within the computational domain is set as infected, this is placed in the centre of the

domain to give the maximum possible space for the cluster to grow within. The list

of possible growth sites is then built from uninfected cells with the neighbourhood
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Algorithm 1 Eden GrowthModel
1: plant seed cell in the centre of anM matrix
2: check seed add its empty neighbour sites to growth sites listG
3: while current time-step < max time-step do
4: generate random integerR [0, size ofG)
5: setR cell inG to infected
6: deleteR cell fromG
7: check neighbours of last infected cell and add empty cells toG
8: end while

range of infected ones. One of these sites is then selected and set as infected. The

process then repeats until some pre-set stopping condition is met. A pseudo-code

representation of the algorithm used for this work can be found in Algorithm 1.

An interesting feature of the Eden growth model is the surface of the model the

centre the model tends to be a solid especially in the case of the EdenC whereas as

stated earlier the surface of the models exhibits fractal-like properties(Freche et al.,

1985, Meakin et al., 1985, Wang and Bassingthwaighte, 1997); this means that as with

a dendritic or tree-like structure, such as the Invasion PercolationModel which is dis-

cussed in the following section of this chapter, it will exhibit self similarity(Sauer and

Schroer, 1987). This can be measured through the use of the calculating its fractal

dimension; this will be discussed in more detail ion Chapter 6.

Oneof the issues that can arisewith theuse of the square lattice-based grid for the

computational domain, this can cause the model to exhibit anisotropy meaning that

the model tries to growth along the axis of the domain (Freche et al., 1985, Meakin,

1988); this leads to themodel itself being skewed in shape. Through the use of a noise

reduction algorithm it is possible to make this more evident (Meakin, 1988) this can

be seen in Figure 3.4. Even though this anisotropy affects the shape of the cluster

that is grown this does not mean that it is pointless to use and is still a widely used

domain for this style of model, so long as this issue is considered whenmaking use of

the model its effect can be compensated for.

Aside from the three already discussed versions of the Eden growth model, there

is one additional version thatwill be included as it shows highly interesting behaviour
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Figure 3.4: Eden growthmodel run with the use of a noise reduction algorithm to emphasize
the anisotropy of the model. The picture shown above are obtained through the use of a

method discussed in (Meakin, 1988). this methodmakes use of a smoothing variable (m) the
picture above make use of different smoothing values from left to right of 0, 10, 100, 1000. All
the images where obtained by running the model to the same number of infected cells and
on the same size grid with the same initial seed value for each of the runs. The colours in the

images of the cluster represent different time steps the cells where infected on.

depending on the screening factor that is applied to it, it is this screening factor that

gives themodel its name theScreenedEdengrowthmodel. TheEdengrowthmodel as

shown in Figure 3.1 tends to generate very similar clusterswith relatively low variance

within the model. There have been many different methods for the screening of the

model in order to allow for a higher level of variance to the model have been thought

up over the years.

One of these methods involved the number of free paths to the edge of a do-

main (Jiang and Gang, 1989). In this method, the growth sites are considered to be

all sites that are the nearest neighbour to an infected cell and can be connected to the

edge of the domain with a straight line without obstruction from any infected cells.

Cells are then grouped by the number of these paths that they contain and then are

selected based off of the probability value for each cell. Themethod used here differ-

ent in that the growth probability is based on the distance a cell it from the centre of

mass of the cluster (Hawick, 2016, Hawick et al., 2016b, Xie et al., 2011); this is done

with Equations 3.1 and 3.2. This is an interesting version of the model as the clusters

that it is capable of generating can exhibit a wide range of different behaviours based

upon the specific beta value that is applied to it. The effect of different beta values

can be seen in Figure 3.5.

As this variant is so different from that of the Standard version of the EdenModel
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(a) β = 0.1 (b) β = 0.3 (c) β = 0.7 (d) β = 0.9

Figure 3.5: Screened Eden GrowthModel grown on a (64× 64× 64) grid with different β
values 0.1, 0.3, 0.7, and 0.9 from left to right respectively. Shown at the point when the cluster
first touches the edge of the domain. β represents the screening value for the model which
decides howmuch of an influence the radius of gyration has on the growth of the model

p = (rqmax + 1− rq)−β (3.1)

where:
p is the growth probability for the cell
rqmax is the distance of the further cell from the centre of mass
rq is the distance of the current cell from the centre of mass
β is the screening value for the model in the range [0, 1)

rcm =
1

N

N∑
i=1

ri (3.2)

where:
rcm represents the centre of mass
N is the number of cells within the cluster
ri is the 3D coordinate for the ith cell
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Algorithm 2 Screened Eden GrowthModel
1: plant seed cell in the centre of anM matrix
2: check seed add its empty neighbour sites to growth sites listG
3: while stopping condition not met do
4: calculate distances rq of Q sites to the centre of mass
5: randomly select cell i from Q with rq chance
6: set site i as infected
7: update growth sites list
8: recalculate the centre of mass
9: check neighbours of last infected cell and add empty cells toG
10: end while

1 void update_cm(const int index) {
2 vec3 pos = fromK(index);
3 for (int i = 0; i < N_dims; ++i) {
4 r_cm[i] *= N;
5 r_cm[i] += pos.v[i];
6 r_cm[i] /= N + 1;
7 }
8 N++;
9 }

Figure 3.6: This shows the code used for the calculation of the centre of mass of the infected
cluster this is only used for the Screened Eden growth model. TheD variable seen in the

code is equal to the number of dimensions, 3 for a 3D world 2 for 2D worlds. This means that
the same code can be used for an N-dimensional cluster. This code was specifically

extracted from the Lattice version of the Screened Edenmodel though it same algorithm is
used for all the different version of the model.

the algorithmused for its generation ismore complicated, this algorithm can be seen

in Algorithm 2. The initial steps are mostly the same here as for the other 3 Eden

methods where this version is different is in the addition of the calculation of the

probabilities for each of the cells within the growth sites list and the section of the

next cell based off of these probabilities because of this the Screened Eden model is

much slower to calculate.

Themost computationally expensive part of the Screened Edenmodel is the cal-

culation of the centre of mass of the clusters. The naive method would be to iterate

through all the items within the data structures each iteration and add together the

3D coordinates of the model and then divide each of the three values by the number

of infected cells that there are within the domain. The issuewith thismethod is that it
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Figure 3.7: Standard IP model with the percolation threshold randomly assigned in 3D on a
lattice with an L size of 128 at time-steps 100, 10, 000, 20, 000, and 30, 000.

is very slow, especiallywith larger domains. Instead, themethod thatwill beusedhere

will be to keep track of the centre ofmass and thenwhen a new cell has been infected

the code in Figure 3.6. This works by first converting the k-index of the cell into its 3D

coordinate, this is discussed in detail in Chapter 4 after this each of the 3 coordinates

of the centre ofmass the x, y, and z aremultiplied by the number of infected cells from

the previous iteration the respective coordinate from the newly infected cell is then

added to it and then the centre of masses value will be divided by the actual number

of infected cells. The final step of this method is to increment the number of infected

cells ready for the next iteration.

3.2 Invasion Percolation

IPmodel (Wilkinson andWillemsen, 1983) which can be seen in Figure 3.7was devel-

oped to simulate the flow of immiscible fluid through a porous medium such as dirt,

stone, or sponge among other such media (Hawick, 2014, 2011), it is capable of sim-

ulatingmultiple different fluids at once. It was an advancement on a previousmodel,

RP1 which has many connections to the Ising Model (J., 2016) as well as other Potts

models (Potts, 1952). The original method for this simulation was for that of static

mediums whereas IP explicitly took into account the transport process taking place

during the process of the event attempting to be simulated.

There are many applications that the IP model has been used for. One exam-
1Random Percolation
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Figure 3.8: Invasion percolation probability distribution with the invaded cells represented
in red and the probabilities for the neighbouring sites to become invaded shown. The green

cell indicates the next to be invaded.

ple application for the IP model is for the simulation of fracking (Norris et al., 2014),

which is the process of injecting liquid at high pressure into different mediums, for

example, subterranean rocks and boreholes. It is used for the extraction of oil and

to open fissures. Another interesting use of the IP model is that of the modelling of

coastal erosions (Hawick, 2014); this was done by combining the IP model with that

of the Kawasaki model for site exchange (Hawick et al., 2016a, Kawasaki, 1966). This

effect can have a significant impact on different environmental issues, and it can be

challenging to simulate with other methods. It can be expressed with a simple set of

rules; this makes it ideal for the use of CAs due to the simplicity and relatively com-

putationally inexpensive calculations that are required.

Another and more recent application of the IP model is in the same area as the

Eden Growth model that being cancer research. Unlike with the Eden growth model

though instead of simulating the growth of a tumour, the IP model is used for the

simulation of when a tumour goes through a process known as angiogenesis or vas-

cularisation (Baish and Jain, 2000, Dobrescu and Ichim, 2009) this is when new blood

vessels are formed frompre-existing blood vessels; this is a hazardous thingwith can-

cer as thismeans that a tumour has a food source and can now spread throughout the

bodywithmuch greater ease. By being able to simulate this is is possible to figure out

ways to be able to slow down or even stop this process.



3.2. Invasion Percolation 43

The IP model has two main variations that being TIP2 and NTIP3. The type that

has been implemented here is that of the NTIP. Regarding the IP, model trapping

means that while the simulation is run if at any point the invader encircles a section

of the defender this encircled an area of defenders becomes a forbidden zone to the

invader (Ebrahimi, 2010). TIP is a more complicated version of the model with it re-

quiring an additional check to identify if any part of the defender has become encir-

cled. This can be done on the Lattice with algorithms such as the Hoshen-Kopelman

(Al-futaisi and Patzek, 2003, Hoshen, 1997).

The difference in themodels allows for the simulation of compressible defenders

in the case of NTIP and incompressible in the case of TIP. The inclusion of trapping

on IP can have a significant effect on the structure of the model when it is run in 2D

as it can significantly alter the long-range scaling and even the local structure of the

mode. However, this is not true for higher dimensions when the effect of trapping

becomes increasingly short range as such the experiment here. This version IPmodel

will not take intoaccount trappingas ina3Ddomain the chanceof trappingoccurring

is very low and only likely in small sections and as such only serves to slow down the

simulation due to the additional computation need to check for trapped cells.

The IP model like the Eden model has a straightforward set of rules. On each

iteration of the model, the cell with the highest probability that is a neighbour to a

currently invaded cell is set to be invaded. An example of an IP neighbourhood can

be seen in Figure 3.8. By changing how this probability is assigned throughout the

system, the shape and size of the cluster formed can be drastically altered allowing

for the simulation to mimics different mediums and fluids.

Algorithm 3 shows the method used for the simulation of the IP model the only

difference between the different IPmodels discussed here is the equation used to get

the percolation threshold value for a cell. With this algorithm, the domain is first gen-

erated, and then the seed is added to the domain this seed can consist of multiple
2Invasion Percolation With Trapping
3Invasion Percolation Without Trapping
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infected sites. After this, the growth sites list is then updated, the method for adding

to the growth sites list for the IP model is discussed in detail later on in this Chapter.

The simulation then iterates through each time step until the desired stopping con-

dition is met. A single time step involves a few operations the first of these is to select

the cell in the growth sites list with the highest probability and then set this cell to be

invaded, after this the nearest neighbours to the newly invaded are checked to see if

they are empty, if so they are then added to the growth sites list. The growth proba-

bility for the cells is assigned to the cell just before it is added to the growth sites list;

this means the cells that are never added to this list do not have an assigned growth

probability reducing the computationneeded to compute the cluster speedingup the

overall simulation.

Algorithm 3 Invasion Percolation
1: plant infected seed S in the centre top ofM matrix
2: check S empty neighbour sites generate growth probability and add to growth
site listG

3: while stopping condition not met do
4: pick the highest probability cell C fromG and set as infected
5: delete C fromG
6: checkC empty neighbour sites generate growth probability and add to growth

site listG
7: end while

The Initial conditions for the IP model can be one of two different styles the first

of them is with a single invaded cell at the top of the domain which will be the one

that is used here. The second condition that is often used is that of a blanketing of one

side of the domain with a small amount of randomness to it; this randomnessmeans

that there will be peaks to the seed and not just a uniform sheet of invaded cells. With

this version, every cell on that sidewould be iterated through a columnof the invaded

cell would be placed herewithin a range of 0 andN,whereN is themaximumnumber

of cells. The different starting conditions can have a drastic effect on the shape of the

cluster that is produced as the second method will have a large selection of initial

growth sites at the start allowing it to formmultiple dendrites possibly.

One of themost critical aspects of the IPmodel is that of the invasion probability;
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(a) g = −0.01 (b) g = −0.001 (c) g = −0.0001 (d) g = 0.0

Figure 3.9: The Invasion Percolation model with the Meakin method this shows the model
run until the stopping condition of touching the bottom of the domain is met. This also

shows how when a beta value of 0.0 is used the Meakin model produces a Random Invasion
Percolation cluster.

(a) β = 0.15 (b) β = 0.30 (c) β = 0.60 (d) β = 0.90

Figure 3.10: The Invasion Percolation model with the Hawick method for the distribution of
growth probabilities for the cells. Showing the model run to till to stopping condition of
touching the bottom of the domain is met with the beta values 0.15, 0.30, 0.60, and 0.90

starting off in the top left and ending in the bottom right. It should be not that is all cases for
this version the domain is filled above the golden surface. This part of the simulation was
not shown as this allow for the roughness of the surface formed to be more easily seen. β
here as with Screened Edenmodel is the bias values for the model and is in the same range

as for the Screened Edenmodel

this can have a significant effect on the structure of the model as such there as three

methods for the calculation of this value that have been used within this work in or-

der to give a broader understanding of the effects that these different data structures

have on this model. The different methods are first Randomwherein each cells bond

threshold is randomly assignedwithin the range of [0, 1] tomake the IPR4 an example

of the cluster type of cluster produced by this method can be seen in Figure 3.7.

The secondmethodusedwill be referred to as theMeakinModel orMIP5smethod

for bond threshold and comes from a paper on the Invasion Percolation model in a
4Random Invasion Percolation
5Meakin Invasion Percolation Model
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Pi = Ui + g · hi (3.3)

where:
Pi is the percolation threshold for the cell
Ui is a random number in the range of (0, 1)
yi is the current height coordinate
g represents the gravitational gradient within the simulation

Pi = Ui × β − (1− β)
Ly − yi
yi

(3.4)

where:
Pi is the percolation threshold for the cell
Ui is a random number in the range of (0, 1)
β is the erosion coefficient in the range (0, 1)
Ly is the total height of the domain
yi is the y coordinate of the current cell

destabilising gradient (Meakin et al., 1992). This can be seen in Equation 3.3, the spe-

cific effect of different g values can be seen in Figure 3.9 this forms theMIP. When the

MeakinModel is supplied with a g value of zero, it will produce standard Random In-

vasion Percolation clusters as when g = 0 the hi value is cancelled out leaving behind

only the random value Ui, this can be seen in Figure 3.9 where the clusters increase

in size as g decreases.

The third and final method that will be used will be referred to as the Hawick

method the equation for this can be seen in Equation 3.4. This specific formula was

derived from one presented in a paper on flood incursion and coastal erosion (Haw-

ick, 2014). It should be noted that the coordinate system used in this implemented is

such that the top front left-handcorner is considered tobe theoriginof the simulation

at the coordinates (0, 0, 0). The effect of various p values can be seen in Figure 3.10

this forms the final version of the IP model the HIP6.
6Hawick Invasion Peroclation Model
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3.3 Growth Sites

The growth sites list is a crucial aspect of the growth models discussed within this

work. The list is how the simulation stores all of the cells that are neighbouring to the

infected/invaded cells. The most brute force way in which this list can be handled is

for it to be rebuilt every iterationwhich is a highly computationally expensivemethod

with a computational complexity ofO(N) as it would have to look at every single cell

within thedomain. Because of thismore optimalmethodshave insteadbeen selected

for use here where a persistent list will be updated by adding and removing cells as

needed.

The first of the methods that will be discussed is that of the simple growth sites

list. In the case of the Eden growth sites model the simple growth sites list consists of

a dynamic array thatwill store the k-index of the required cells, for thework discussed

here the dynamic array that will be used will be that of the C++’s Standard Template

Library Vector (Cppreference, 2017). New cells are then just added to the end of the

list. When taking a cell from the list in order to obtain the next cell that is going to

be infected a random integer in the range of [0, N) where N is the number of cells

containedwithin the list; is generated this is thenused to index the list for the required

index. After this, the cell is removed from within the list.

3.3.1 Eden Growth Sites Handling

The three main variants of the Eden growth model the EdenA, EdenB, and EdenC

models each require a slightly different method for the handling of their growth sites

this is due to the different infection probabilities that must be made use of to be able

to simulate each of them.

The EdenA variant is the fastest of the threemodels that have been implemented;

this is due to a few optimisations that the model can make use of. The first of these
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is with the model being able to make use of an additional cell state giving a total of

three states for this model. These states represent Empty (an empty cell), Neighbour

(a cell that has already been added to the growth site list), and Infected (a cell that has

been infected). The addition of the Neighbour state allows for a fast way to identify

cells that have already been added to the growth sites list, this way it can be ensured

that every cell within the growth sites list is unique, an example of this can be seen in

Figure 3.11. This is handled through a differentmethod for each of the data structures

that are used; this is discussed in more detail later on in Chapter 4 for each of the

different structures. This additional state is also applied to the Screened Eden growth

model as the growth probabilities are not based on the number of neighbouring cells

but instead are based on the position of the growth site relative to the clusters centre

of mass.

Because of this additional state guaranteeing that a cell can only exist within the

growth sites list once it is easy to optimise the removal process from this list. A graph-

ical representation of this process can be seen in figure 3.2. When getting the next

index to be infected the first step is to randomly select a cell from within the growth

sites list and store the value of the cell. Next step is to set this cell’s value to that of the

value of the last cell in the list and delete the last cell from the list. Thismethodmakes

use of the design of the C++ vector dynamic list and a feature that it has specifically

the pop_back functionwhich is a fastmethod for the removal of the last cell in the list;

this functionworks bymerely decrementing an iterator in the structure that indicates

the end of the list.

With the EdenB model, the optimal method for handling the growth sites is dif-

ferent from that of the EdenA variant. In the EdenA model there is the application of

an additional state to show that a cell has already been added to the growth sites list,

this additional state cannot be used in the case of the EdenB model; this is because

the addition of a single site multiple times allows for the chance of a cell being se-

lected from the growth list with chance proportional to the number of infected cells
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Figure 3.11: Example of a cluster grown with an additional state 0 shows empty cell state
two show an infected cell and state 1 shows a neighbour cell. The addition of the additional
state is used to avoid adding a cell to the growth sites list more than once. When a cell is

added to the list, its state is updated to 1 and then when infecting to 2. This method is used
in the EdenAmodel, The Screened Eden GrowthModel and the Invasion Percolation Model.

that surround it as shown in Figure 3.2. Thismeans that when removing a growth site

from this list unlike the EdenA model, there is a chance that it will be necessary to

remove more than one value. It is possible that there might be six entries in the list

that are in need of being removed as such the removal for a site is similar to that of

the EdenA, but it iterates through the list and checks if the current cell matches the

index of the cell that has been infected. If so it performs the removal process shown

in Figure 3.12 and discussed above. This iteration over the listmeans that the removal

process from the EdenB model is considerably slower than the EdenA version with a

computational complexity ofO(N).

There is anothermethod that couldhavebeenusedwhich is similar to themethod

used for the Screened Eden model, which is discussed in more detail later on within

this section. Briefly, the way this method would work is with the addition of an extra

variablewhich canbe called ewithin the growth sites list cell which stores thenumber

of times this cell that has been added to the list. So instead of adding another version

of a cell that already exists within the list, this number would be increased this in

combination of the sum of this additional variable which can be call E can allow for

the correct probability distribution within the list. When selecting a cell and random
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(a)Update (b) Add

Figure 3.12: The growth sites handling methods for the Eden a and the Screened Eden
models. The Update function is used to obtain the next site to be infected and the Add

function is to add a new possible growth site to the list.

number between 0 and E is generated and then you iterate through the list taking

each cells e values away from the generated value until it got below zero. Thismethod

would also make use of the growth sites cell state, so it is apparent without always

having to search through the list that a cell has been added or not. This method was

not used in this work because it ended up being slower than the method that was

selected as it required not only a full search of the list when adding a new item but

also an iteration over this list when selecting the right cell.

The EdenC model is the slowest of the three unlike with the other two versions

wherein the growth site listwould store the cells that are thenearest neighbours to the

cluster in this version the list stores that cells that are on the edge of the cluster. Hence

for this method, the growth sites list will be referenced to as an edge list. When a new

cell is infected, it is then added to this edge list, and the list is then updated to check

that the cells containedwithinare still on theedgeof the cluster. The selectionprocess

for the next cell to be infected is a bit more involved in this case than in the cases of

the EdenA and EdenB model. First, a random cell is selected from the edge list, then

the neighbour cells are checked to see if they are empty, and from this selection of

empty cells, a random cell is then selected to be infected.

The Screened Eden model makes use of the same additional cell state that the

EdenA model uses and as such the same removal process from the list. The only dif-

ference here is the selection of the growth site instead of it being randomly selected
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based on the number of cells in the list the random number U that is generated for

the selection is in the range of [0, P ] whereP is the sum of all the cells within this lists

probability. Once this number is gained the list is then iterated through with each of

the cells with the lists own probability being added to a checker variable, and the se-

lected cell is the first cell that causes the checker variable to become greater than or

equal to that of U .

3.3.2 Invasion Percolation Growth Sites Handling

In the case of the IPmodel the list is commonly stored sorted low tohighby the growth

probability value that each cell, as the IPmodel always infects the cell with thehighest

probability it is a waste of memory to store a cell within the growth sites list multiple

timesas such IPmakesuseof the same3 state systemaswith theEdenAmodel and the

Screened Eden Models. In the conventional method, a cell will be added to the end

of the growth site list and then sorted into its correct position within the list with the

cell with the highest probability at the bottom or top of the list depending on which

is the easiest to remove from. Thismethod can be very slow as it is possible that a cell

will have to be compared against all other cells within the list to be sorted. Because

of this there is another method that can be used, this method was first thought up by

Masson (Masson, 2016, Masson and Pride, 2014) in this paper he makes use of a list

structure which is treated in a way similar to that of a binary search tree. This tree has

two functions that it can perform these are the Addition and Update functions.

The first of these functions to be discussed is Addition. This function allows for

a new cell to be added to the list. Once a cell is added to the list it is then sorted

comparing the current cell to its parent node and if its percolation threshold is higher

than that of the parent the two are swapped this process is then repeated until either

the cells becomes the root node in the list, or it meets a parent node whose growth

probability is greater than or equal to its own. A cell is considered to be the parent of

another cell based on a simple rule. If the current cell is N , then it has a left child at
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position 2N within the list, and right child at a position of 2N+1within the list and its

parent is at b(N/2)c. This addition process can be seen in an example in Figure 3.13a.

The second function is theUpdate function, this function allows for the obtaining

of the index of the next cell to be invaded and removes the cell from the list. The

inner working of the Update function is a little more complicated than the Addition

function. As the tree is sorted based on the percolation threshold of the cell, the cell

with the highest probability always ends up being the first node in the list. So the

first step in this process is to store the value of the root element and remove it from

the list, next is to this space must be filled and so its children nodes are checked to

make use of the method mentioned before and the one with the highest chance is

placed in its new position. Then continue down the tree comparing parent to child

until it reaches a node with no child. At this point, the final cell in the list is then

placed into the final empty slot within the tree. This cell must then be sorted into its

correct positionwithin the structure and so is comparedwith its parent and swapping

if need continuing up the list is the samemanner aswith the additional function until

it is correctly positioned. This process can be seen in Figure 3.13b.

In this tree the left child is found in the 2N cell where index is the index of the

parent node, and the right node is found in the cell 2N+1because of theway inwhich

Fortran indexes its array, that being arrays start at one and not 0 as with languages

such as C++, when indexing these cells within the list it is necessary to minus one

from this index butwhenperforming the testwith the length of the array to determine

whether your current nodehas a childnode youhave tomakeuseof the original index

value as would have been used in the Fortran version of the function.

3.4 Fill Density

When testing the effectiveness of the different data structures with thesemodels, it is

essential to understand how these models are commonly run and to what extent the
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(a) Add

(b)Update (left to right)

Figure 3.13: IP Add Branch and Update Procedures procedure (Masson and Pride, 2014).
This method is only used for the Invasion Percolation model.

cluster will fill the computational domain, as this could help in explaining the differ-

ent results that are obtained in Chapter 5. With these models the likelihood that they

will be run to total grid completion is very low, in most cases, they have a stopping

condition that is not necessarily concerning the number of iterations for which the

model runs. For example with the Eden growth model, the most common stopping

condition is when the cluster reaches the edge of the computational domain; this is

because if it was allowed to continue to grow after this point, the cluster could begin

to interact with its opposite side causing a possible distorting of the result or with a

non-periodic boundary it would flatten out the cluster; this will be the stopping con-

dition that is used here for all the variants of the Eden model including the Screened

Eden model. The IP model has two common stopping conditions though one that is

used depends on the initial condition of the simulation if the initial condition has the

centre cell being infected then the IP model has the same stopping condition as the

Eden model, but this is not a common way to use this model in 3D. Instead, because

the initial condition that is used here where the first cell to be infected will be in the
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Figure 3.14: This shows the 5PL curve of best fit for the Eden growth model with the line
extended to the 2048 dimension size for all three versions of the model this shows an issue
with the predicted data due to the A-line overtaking that of the B and C this goes to show that

the 4PL data is underestimating the B and C fill levels.

top centre of the domain the stopping condition will be when the cluster has reached

the bottomof the domain, themodel will also have a non-periodic domain boundary

on all sides of the domain.

This section will start with a discussion of the Eden Growth Model and its three

variants followed by the Screened Eden growthmodel. After with it will thenmove on

to discussing the IP model with the three growth probability methods the have been

discussed earlier on in this chapter these being the Random, Hawick, and theMeakin

variants of the IP model.

The Eden growthmodel shows an increase in the percentage fill of the domain as

the size of the domain increases, this effect can be seen in Figure 3.14. The clusters

that are grown on these larger grids also have a greater chance of becoming more

spherical thanona smaller grid. Due to the time required to run theEdenBandEdenC

model, there is a limit to the amount of data that can be discussed here as such the

dotted line that can be seen in Figure 3.14 represents the predicted curve past the

point of the measured data.

The Screened EdenGrowthmodels fill density has amuchmore interesting range
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Figure 3.15: Screened Eden GrowthModel fill density graph. This shows the fill for a range
of beta values from 0.1 to 0.9 in increments of 0.1. A beta value of 0 has not been used as this

would must produce an EdenA cluster.

of variance to it then the unscreened versions of the Eden growthmodel. At the small-

est tested L size of 16, the screened Eden growth model closely relates to that of the

EdenA model of the growth sites. In these tests we ran the test for beta values from

0.1 to 0.9 in increments of 0.1, the reason for not testing a beta value of 0.0 is because

this would produce the same results as that of the EdenAmodel this is due to the way

in which the growth sites are handled. The results for the fill experiments showing

the median for the range produced can be seen in Figure 3.15 where two graphs as

seen the top graph shows the fill density for different beta values plotted against the

domain size and the graph on the bottom shows the fill density for different domain

sizes plotted against the beta values.
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In order to compute these clusters in a manner that allowed for large enough

batches a HPC7, which is commonly called a Supercomputer, named VIPER which

is located at the University of Hull was utilised in order to compute the clusters in a

practical time frame but due to restrictions on the runtime of a program on this sys-

tem it was not possible to obtain a full range of fill data for the Screened Edenmodel

as with the EdenB and EdenC so the only thing that can be done is to make some as-

sumption on how these curve may act, but this will not be used in the actual analysis

as this could very easily mislead and lead to a highly incorrect conclusion.

The Screened Edenmodel is a fascinating model when looking at the domain fill

as with lower values of beta it starts off like the Eden model where they increase in

the size of the domain in fact when a beta value of 0 is used the model acts precisely

like that of an EdenA model only with much more computation going on within the

model slowing it down considerably. However, as soon as the beta value increases

from zero even to a value as low as 0.1 the change in themodel is very apparent when

looking at the fill. At an L size of 256 the EdenAmodel takes up amedian of 35.03% of

the domain, and the Screened Eden model takes up only 26.45% of the domain, and

this decrease in the fill of the domain continues as the beta value increases which can

easily be seen when looking at the bottom graph shown in Figure 3.15.

The Screened Eden model exhibits interesting behaviour for beta value in the

range on 0.2 to 0.5 wherein as the L size increases, though the fill first starts of in-

creasing eventually it begins to rapidly drop off in some instances such that by the

time the L size reaches 1024, meaning a domain of (1024× 1024× 1024), the fill per-

centage for the beta values that there is data for have already reached well below 1%.

Though from 0.6 and up it doesn’t have this initial increase in the fill. For the smaller

beta values of 0.1 to 0.3, it was only possible to obtain fill values for up to an L size of

256 due to the runtime of the model at this point. However, it can be assumed that

the 0.2 and 0.3 values would follow a similar pattern as the higher beta values slowly

decreasing past this point as the L size increases. Unfortunately, it is not possible to
7High Percomance Computer
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Figure 3.16: Graph showing the fill density for the Invasion Percolation model where the
percolation threshold is set by the randommethod.

gain to an understanding of how the 0.1 beta value will progress as the domain size

increases; it could very likely follow the general trend that the standard Eden model

does or at some point it could begin to decrease like with the higher beta values for

this model.

From here on the second model type, the IP model will be discussed, with each

of its different version discussed in the order of Random, Meakin, and finally Haw-

ick. The Random version and the Meakin model are the two that are most closely re-

lated to one another with the Meakin model able of reproducing the random model

by feeding it a beta value of 0. Unlike the Eden growth mode; as the L size increases

the fill percentage of the Random IP model decreases. At the smallest L size of size,

these versions of the IP model take up more of the domain then any of the different

versions of the Eden growth model. This model very quickly tends towards having a

fill percentage of less than 1%.

TheMeakin version of the IPmodels was testingwith the beta values−0.1,−0.01,

−0.001,−0.0001,−0.00001, and−0.000001. The fill density of each of the beta values

increases as the value tends to 0. This model gives the lowest of the fill values out of

all of the different models, and as such it will be interesting to see if this effect which

of the different data structures will be the best suited in this case
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Figure 3.17: Graph showing the fill density for the Invasion Percolation model where the
percolation threshold is set by the Meakin method. With the top graph showing the effect of
the g values of -0.1, -0.01, -0.001, -0.0001, -0.00001, and -0.000001. The bottom graph show

the effect of the change in domain size (L size shown in the ke

The Hawick method for the IP model is the final version that will be discussed

this version of the model acts much differently than all the other growth models that

have been discussed. This method was first used to simulate coastal erosion on a 2D

simulation. Thismeans that themodel wants to fill asmuch of the domain as it can as

itmakes its way to the edge of the domainmuchmore than the other version of the IP

model. The fill density for different beta values in the range of 0.1 to 0.9 can be seen

in Figure 3.18. This model gives the largest fill density of any other model discussed

within this thesis with amaximum fill density at an L size of 1024with a beta value of

0.1 where themean density is 95.7%with aminimumof 95.5% and amaximumvalue
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Figure 3.18: Graph showing the fill density for the Invasion Percolation model where the
percolation threshold is set by the Hawick method. With the top graph showing the effect of
the β values in the range of 0.1 to 0.9 in increments of 0.1. The bottom graph show the effect

of the change in domain size (L size shown in the key)

of 95.9%. Though there is a broad range in the fill percentages for this model with a

beta value of 0.9 giving a mean value of 44.3% at a dim size of 1024 which is only 1%

more than the EdenA growth model.

The results in these experiments will be useful in the analysis of the various run

times of thesemodels with the different data structures as it will allow for a prediction

on whether a different type of model that is not discussed here stands a chance of

benefiting from one of the methods discussed. The results here show that amount of

the domain that is filled but the cluster as the domain grows in size is considerably
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different for each of the model, whereas some increase as the domain grow as with

the Edenmodels, others decrease such as theMeakinmodel and in other cases more

interesting behaviour is exhibited as with the Screened Edenmodel.

3.5 Summary

This chapter has gone into the History of the different types of Eden growth model

and IP model that will be used for testing the effects of different data structures. It

also discussed how these models have been used in different fields including cancer

research where the Eden growth model is used for the simulation of a tumour its self

and the InvasionPercolationmodel is used for the simulation ofwhen a tumour gores

through angiogenesis and starts to grow blood vessels.

This chapter then also discussed the different methods that have been imple-

mented for thehandlingof thegrowth sitesof thedifferentmodels includingamethod

that will be referred to as the Masson method (named after the person that invented

it (Masson, 2016, Masson and Pride, 2014)) for the simulation of the Invasion Perco-

lation model which involves the use of a binary tree inspired method for the storage

sorting and selection of the next cell that will be infected in the domain, this is the

method that is used for all the different variants of the Invasion Percolation model

that this work will concern itself with.

The final part of this chapter went into the effect that the domain size has on the

sparsity of the different models. This information is an essential part of the investi-

gation into the application of the different data structures as it will allow for a better

understanding of why a particular structure may be the best in one situation but not

in another. This will mean that the data here can be applied to a broader range of

models that are not discussed here if the model domain fill is known it could give a

good idea of which data structure might be the best to use.



When human judgement and big

data intersect there are some

funny things that happen.

Nate Silver

CHAPTER 4

Data Structures

DATA structures are an abstract method for the storage of data in an

organisedmanner so that it can be used efficiently by the program.

Data structuresmakeuse of a variety of different abstract data types

depending on the type of structure in addition to the purpose for

which it will be used. These data types specify themultitude of operations that can be

performed on the data structure in addition to the computational complexity of the

structure, which is describedwith the aid of a formof notation call BigOnotation. Big

O describes the number of actions performs in the worst case scenario of a specific

algorithmbasedoffof the scaling of thedata supplied to the algorithm. The effect that

different Big O values have on the runtime of an algorithm can be seen in Figure 4.1.

O(1) describes an algorithm that will always be executed at the same time re-

gardless of the size of the data that is input such as accessing a specific value from

an array. The notation means that the algorithm has a fixed complexity where only

one operation is needed to complete the task, though the 1 can be substituted for a

61
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Figure 4.1: Graph showing the effect that increases units of input on the number of
operations an algorithm has to perform for different Big O values. Big O notation is used to
describe the complexity of an algorithm as the size of the data input into it grows in size.

number, in this case, this would mean an increased number of fixed operations are

required. O(N) describes an algorithm where the grows linearly in fashion with the

growth in the size of the input data, such as checking an array to see if it contains a

specific value. There is a wide range of different computational complexities such as

logarithmic and exponential.

One of the main areas of study within computational complexity concerns itself

with the problem of P vs NP which is a currently unsolved problem. It asks whether

every singleproblemwhichcanbecheckedwithinpolynomial timecanalsobe solved

within polynomial time (is it P = NP or P 6= NP ). An answer to this problem could

have a wide-reaching impact on the whole of society. If it was found that P = NP

this would have both beneficial and detrimental impacts on the world. One negative

drawback would be to encryption which relies on the fact that it is very complicated

to crack an efficient solutionwouldmakemost of the currently existing cryptography

useless and wouldmean that the field would have to look into alternate solutions if it

was even possible to perform encryption anymore.

Different data structures are most aptly suited to various types of applications.

The specialisation of the data structure is highly dependent on the structure itself
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some are very highly specialised with very few other uses, and some are very gener-

alised. For instance, hash tables are a type of data structurewhich is very useful in the

field of compiler implementation for the lookup of identifiers but can be generalised

to many other tasks, such as is done here.

They provide a optimal means to store and organize data such as with databases

which can use numerous structures such as an SQL based databased which makes

use of the relationalmodel, organizing the data into one ormore tables with a unique

key identifying each row, rows represent instances while columns represent values

attributed to that entry. Another example would be a graph-based system such as

the one used but packages such as Neo4j which uses a property graph model, this is

a model in which the graph contains a collection of connected entities called nodes

which can hold any number of attributes and are represented in the system as key-

value-pairs these values are then connected to each other through the use edges to

demonstrate a relationship between the nodes which is determined by the label on

the edge.

Manydata structures are designed to allow the system to access and store thedata

fromanywherewithin thememory of the computer; this allows for the structure to be

made dynamic allowing it to grow and shrink in size as needed. This is often achieved

through the use of pointers which are an object whose value refers to the location of

another value, obtaining the value from the pointer is known as dereferencing the

pointer. There are a large variety of languages that support the use of pointers such

as C++ and Java, which are two of the most widely used programming languages to

date. The creation of all data structures requires the writing of a set of algorithms

to allow for them to be instantiated and manipulated through a set of functions that

govern adding to, removing from, and searching the data structure. The efficiency of a

specific data structure is intrinsically linked to these functions and as such the speed

of the structure is limited by these functions as well as the format of the structure.

There would have been a different path to the speed up of these simulations but
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Figure 4.2: Example of k-indexing from a 2D grid with an L size of 3 in both the x and y
dimensions over to a 1D array which shows the resulting k indexed values for each of the

coordinates. This method can be used for the flattening any N-dimensional array so long as
the size of each of the dimensions of the domain are known.

it would have come with what was felt to be a significant issue that of parallelization.

AGPU1 based implementation of the system could have offered significant speed ups

over themethods investigated here. However there has already beenwork done in the

parallelization of this model (Machta and Greenlaw, 1994) but due the asynchronous

nature of the model moving to the GPU for speed up can significantly effect the re-

sulting structures even if the a fractally similar (this is discussed in Chapter) 7.

Even the highly specialised data structures which seem only to be fit for a sin-

gular purpose are sometimes able to be used in other situations and can even offer

great benefits such as a reducedmemory consumption or a faster search time. This is

where the interest for the work done here comes in as if simulations can be sped up

through the application of these alternate data structures it could be of great benefit

to researches who make sure of these models, by allowing them to perform experi-

ments muchmore rapidly then before.
1Graphics Processing Unit
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4.1 Lattice

The Lattice structure consists of a simple character-based array and is the standard

data structure that is used for the simulation of growth models. It involves the use

of either an N dimension array or one vast array that is indexed in such a way to act

as an N-dimensional array. This can be done through the use of k-indexing, which

can take an N-dimensional, in this case a 3D coordinate, within the computational

domain and flatten it into a single dimension for indexing as well as take a k-indexed

value and convert it back into an N-dimensional coordinate which is useful in edge

detection in themodels, a visualization of this method can be seen in Figure 4.2. The

equation for the flattening of an array fromN dimensions to a k-index can be seen in

Figure 4.1 and the code that is used for reverting this flattened value from a k-index

to an N-dimensional coordinate can be seen in Figure 4.3, This method is also used

for all the other structures apart from the Octree the reason for this will be discussed

in Section 4.3.

k(x, y, z) = x+ (Lx × y) + ((Lx × Ly)× z) (4.1)

where

x, y, z represent the 3D coordinates for the specific cell whose probabil-

ity is being generated

Lx is the length of the x dimension

Ly is the length of the y dimension

There are many benefits to the use of this method as opposed to the use of a 3-

dimensional vector storing the x, y, and z. The main benefit of this method is that it

does notmatter howmany dimensions there are to the grid; this will work just as well

with a 2D grid as it will with a 7D grid. An additional benefit is that in that case where

the index itself needs to be stored as with the AVL2 tree (discussed in the following
2Adelson-Velsky and Landis Tree
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1 const int N_dims = 3;
2
3 int * fromK(const int k, const int * L){
4 int *x = new int[N_dims];
5
6 int lp = L[0];
7 for(int i = 1; i < N_dims; i++) lp*=L[i];
8
9 for (int i = N_dims - 1; i >= 0; --i) {
10 lp /= L;
11 x[i] = (k / lp);
12 k %= lp;
13 }
14
15 return x;
16 }

Figure 4.3: The code used in the experiments to convert a k-index values into an N
dimension coordinate, where N_dim is the number of dimensions. In the case of these

models this is 3.

chapter) thismethod allows for the coordinate to be storedwith a single value instead

of the multiple that would otherwise be needed reducing the memory consumption

for each new cell with the system.

The computational complexity of the search of a single neighbouring cell for each

of the data structures varies quite a lot. In the case of the lattice structure due to the

ability to index the array with 3D coordinate or a flattened version of these coordi-

nates into a single k value it has the lowest computation complexity being that ofO(1)

thismeans that it only evermakesonecheckevery time it needs to see if a cell is empty.

But this doesn’t mean that it will always be the fastest as it is possible for the grid and

the growth sites list to be of such a size that it may not all be contained within the

RAM of the system and so must be loaded back on to the RAM from virtual memory

before it can be checked which is a relatively slow process and could drastically slow

down the searching of the grid depending on how often this has to be done.
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4.2 Balanced Binary Search Tree

For the first of the tree based structures that we have implemented for this work, we

have made use of the Binary Search Tree (BST) (Knuth, 1998c, Leiserson et al., 2009)

seen in Figure 4.4 specifically a balanced binary search tree. In a BST each node con-

tains the nodes value and two pointers to other nodes; these are often called the left

and right child nodes. The left node will point to a node whose value is less than the

current nodes value and the right node with a point to a node whose value is higher

than the value of the current node. An example of the logical structure of a binary

search tree can be seen in Figure 4.4.

The binary search tree is probably one of the most widely used data structures

in computing and tends to be one of the first about which a computer scientist will

learn. Awidespread use of BSTs thatmost people benefit from is within a router; here

they are used for the storage of the routing table which stores the different routes to

particular network destinations as well as values that can be of benefit such as the

distance. They are also used in a computers heap for the implementation of priority

queues (García et al., 1999) which advise the scheduling process within an operating

system. The final method that will be brought up here is that of Binary Space Parti-

tioning (Naylor, 1998) which is a method that is used in 3D rendering algorithms; it

was used in Games such as Doom and Quake. This method involves the division of

spacewithin the environment in half based off of the position of thewalls; this is then

stored in a binary tree structure. Thismethod allowed for an efficientmethod to avoid

overdrawing in a scene allowing for the rendering of more advanced graphics.

Figure 4.4 is an example of a balanced BST, meaning that no one side of the tree

being significantly large then the other. This balancing is a significant aspect of the

tree which can lead to an enormous impact in the performance of the tree when both

inserting into the tree and searching the tree for a value, in the worst cases this can

lead to the BST taking the form of a singularly linked list instead of a BST.
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Figure 4.4: An example of a simple binary search tree with 10 nodes and a height of 3.

A balanced BST has a computational complexity ofO(logN) for both the search-

ing of the structure and the insertion into the structure. Whereas a singularly linked

list has a computational complexity ofO(N) this can show the level of effect that this

can have on the performance of the tree if it is filled in an unbalanced manner. Due

to the way in which these clusters can grow this can mean that a standard binary

search tree can very quickly become unbalanced and thus lead to inflated insertion

and search times. This means that a balancing algorithm should be used in order

to ensure that the tree remains balanced and gives an optimal insertion and search

time, especially in the case that presents itself here where the cells that will be added

to the treewill have unpredictable values. When a balancingmethod has been imple-

mented the name of the tree changes the two most common are the Adelson-Velskii

and Landis (AVL) tree (Adelson-Velskii and Landis, 1962, Knuth, 1998a) and the Red-

Black tree (Knuth, 1998b, Leiserson et al., 2009).

Each of these two versions of a balancing BST takes a different approach. The

first of them the AVL treemakes use of the tree height to keep balance within the tree.

In an AVL tree, the height of the two child subtrees can differ by at most one. If at

any point this rule is not met the tree will begin to rebalance itself. This rebalancing

is done through the use of tree rotations; this can be done with single rotations or

double rotations. There is a simple set of rules for the AVL tree to help decide which

type of rotation should be performed. The algorithm that performs the sorting can
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Algorithm 4 This describes how the AVL is rebalanced so that it maintains its
O(logN) search time.
if tree is left heavy then
if trees left sub-tree is right heavy then
Do a double rotation

else
Do a single rotation

end if
else if tree is right heavy then
if trees right sub-tree is right heavy then
Do a double rotation

else
Do a single rotation

end if
end if

be seen in Algorithm 4.

A Red-Black tree is similar to an AVL tree in the way that it fixes an unbalanced

tree through the use of single and double rotations. The way in which these trees dif-

fer is in how they decide whether the tree is unbalanced Red-Black tree makes use

of a colouring mechanic with two colours, Red and Black which is where it gets its

name from. Each node can be one of these two colours; there are a few conditions

that are needed for a red-black tree to work correctly. The first is that the root node is

set to black (though this rule is sometimes omitted), all the nodes that do not contain

a value a set to black. The next condition is that if a node is black, then both of its chil-

dren are red. The rule that decides if the tree needs to be rebalanced states that every

path from a particular node (N) to a descendant leaf must have the same number of

black nodes not including the N node.

Both of the trees have their benefits and drawbacks. For example because an AVL

ismore rigid in the way that it manages the tree it is possible for it to offer faster look-

ups over a Red-Black tree this makes it a better choice for systems that are search

heavy, whereas the slightly more lax rules of the Red-Black tree make them more of

a benefit in insertion heavy situations. There is also the space difference between an

AVL tree and a Red-Black treewith the AVL tree it is needed to store the specific height
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1 inline int Masked_AVL::MASK(int x) {
2 return (x < 0 ? -x : x);
3 }

Figure 4.5: AVLMask which is used to help in the handling of the additional state which is
stored as a negative value. This allows for this storage without increasing that memory

consumption of the data structure.

data of the node mean a significant increase in the amount of stored data. However,

with a red-black tree, there is a useful trick that can be used to avoid having to store

extra data to determine the colour of the node. If the data that is being stored in the

tree is always guaranteed to be higher than one the state of the node can be stored in

the sign bit of the value, this wouldmean for example a black node could be denoted

by a negative number and a red by a positive number or vice versa. In this case, the

AVL tree was selected as the growthmodels used here will bemore search heavy then

they will be insertion heavy.

For the EdenA and the IP models, there is the requirement that a cell upon being

added to the growth sites list in order to ensure that each cell has only been added

to the growth sites list once this fact must be represented in the structure that stores

the cluster. In order to do this with an AVL, the state of the cell is stored within the

sign bit of the index value for the node. If a cell is negative, the cell is considered to

be an empty neighbour cell whereas if positive it is considered to be a filled infect-

ed/invaded cell. To make the correct comparison between the values in the tree, the

value must be positive this ensures that the node is inserted into the correct location

within the tree so that when it becomes infected and is set to a positive value, it does

not cause a significant change to the tree which could be a time-consuming process.

To this end the absolute of the value must be used in the comparison, a few different

methods for calculating this where tested, these included the std built in abs function

as well as bit shifting, But the fastest method that was tested ended up being a sim-

ple inline function that contained a ternary operator that checks if the value is less

than 0 and if so returns the positive else it just return the original value fed into it, this

function can be seen in Figure 4.5.
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There is one issue that arises from this use of the sign bit to store the state of the

cell (neighbouringor infected). This issueoccurs if thenumber 0 is added to the struc-

ture as a neighbouring value; this is because it is not possible to store a negative 0

value in C++. The solution to this that has been implemented is a straightforward

one when adding a value to the structure it is incremented by one, and then if the

cell is a neighbouring cell it is set to the negative value after the correct position with

the tree has been found. However, this must be taken into account when searching

through the tree for a value, and this is done through the use of the same mask used

in the insertion.

Except for the initial seed and in the case of the EdenC model, every cell will be

added to the structure first as a neighbouring cell this allows for the code to be further

simplified foruse in that the state of the cell neednotbepassed to the structure. When

inserting a cell if a null node is reached when searching for the values position the

negative of that value is added else if the negative of the value is found it is merely set

to be the positive version of itself.

4.3 Octree

Octrees (Meagher, 1980, 1982) are an example of a spatial data structure, similar to

that of kd-trees (Duncan et al., 2001, Husselmann, 2014) or R-trees (Guttman, 1984).

The Octree is the 3D equivalent of a quadtree which subdivides a 2D plan into four

quadrants recursively until the desired resolution is reached. In the case of theOctree,

a 3D space is subdivided into eight octant’s recursively until the desired resolution is

reached an example of this recursive storage with increasing resolution the further

down the tree it goes can be seen in Figure 4.6, the further down the tree a node is

smaller the amount of space it refers to. Each node refers to a specific 3D point which

is the centre of the octant. The octree was first discussed in 1980 (Meagher, 1980).

Since its conception octrees have become a common spatial structure used in many
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different areas.

In simulations such as flocking an example of which is the boids model (Hus-

selmann, 2014, Husselmann andHawick, 2011, Reynolds, 1995) or other n-body style

simulations (Bédorf et al., 2012) they can be used to reduce the number agents within

the environment that need to be iterated through to calculate values such as the co-

hesion vector in the case of a boid simulation. This is be done by assuming that

agents who are outside of the same octant as the current agent are too far away to

have any significant effect on the current agent, this can be a considerable optimiza-

tion to these types of simulations allowing for thousands of individual agents to be

easily simulated in real time andwith the addition of themassive levels of paralleliza-

tion that GPUs can supply this can becomemillions of agents. This same idea is also

used in video games to reduce the number of objects that the games have to calculate

collision detection with (Jime et al., 2001).

Another powerful use for octrees is in the rendering of 3D objects through the use

of ray-tracing (Laine, 2011). Ray tracing is a rendering technique that generates an

image by tracing the rays of light as pixels in an image it can produce very detailed

render with a high level of realism. But it is a very computationally costly method,

meaning that it can be challenging to use effectively in a real-time sense and tends

to be used for pre-rendered scenes such as with Disney films where they make use

of their Hyperion software as in the case of the film Big Hero 6 which required the

use of a compute-cluster without which the filmwould have been an impossibility to

render in a timeframe that would havemade it feasible tomake. Octrees can improve

the performance of this making it possible to render large volumetric data sets that

can consist of millions of voxels; a voxel is to 3D space what a pixel is in a 2D bitmap,

such as with the work in by Nvidia on GigaVoxels (Crassin et al., 2009). It is because

of things like this that octree is very popular in the field of volume rendering (Knoll,

2006) and 3D space carving (Kutulakos and Seitz, 2000).

As an Octrees is filled up, it is possible to be able to delete all child nodes from an
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Figure 4.6: An example of an octree in both a cubic grid based representation and a tree
based structure (Wikipedia, 2018). This shows how the further down the tree a node is the

higher the resolution of the node.

octant that is wholly filled allowing for a sizeable possible reduction in the amount

of memory consumed. The search time of the structure, as well as its memory usage,

differs from a lot of other structures because of this as is doesn’t grow consistently as

cells are added to the structure. For example, with the AVL the more prolonged the

simulation runs for and the more cells that are infected, the larger the tree becomes

increasing search time as well as memory usage. With an Octree, this memory con-

sumption and search time will reach a sort of critical mass where once this happens

the number of nodes within the structure will start to reduce as a culling of the data

points from the structurewill begin until the entire domain is filledwherein the struc-

ture will consist of a single node.

Both the search and insert functions just like the with binary trees are recursive

functions. The search and insertion functions in the octree functions very similarly to

the AVL with one significant difference. This difference is in how the next child node

to visit is selected; this is done bymaking use of the function shown in Figure 4.7 this

allows for a quick and easy way to figure out which of the child octant’s contains or

would contain the cell being searched for. The function will fall down the structure

until it hits a null node meaning that the cell is not in the tree and in the case of the

insert function should be added as an infected node meaning the index is within the

tree. After a cell has been added to the octree it must go through what can be consid-
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1 int Octree::get_octant(const vec3 &pos, const vec3 &pos2){
2 int oct = 0;
3 if (pos.v[0] > pos2.v[0]) oct |= 4;
4 if (pos.v[1] > pos2.v[1]) oct |= 2;
5 if (pos.v[2] > pos2.v[2]) oct |= 1;
6 return oct;
7 }

Figure 4.7: The method used for the selection of the correct child octant the searched for
point lays in the case of the search function in or should lay in the case of the insert function.

1 void Octree::calcualte_depth(cosnt int dim){
2 int temp = 2, max_depth = 0;
3 while (temp != dim){
4 temp = 2;
5 max_depth++;
6 for (int i = 0; i < max_depth - 1; ++i) temp *= 2;
7 }
8 max_depth++;
9 }

Figure 4.8: Code used for the calculation of the max depth for the octree. This code requires
that the L size of the domain be not on the same on all sides but also that it is a power of 2

number such as 16 which is 24 or 128 which is 27.

ered and cleanupphasewhere, as the recursive function start to go back up thenodes

each nod will check all of its child nodes, and if each of these nodes are infected then

the child nodes are deleted, and the current node is set to be infected.

When inserting a variable into the octree, this method keeps count of the current

depth of the tree and will only allow the cell to be added to the structure when the

depth has matched the max depth. This max depth variable is to ensure that when a

cell is initialised, it is at a point with the structure of the octree where that cell only

takes up one single cell. The calculation for themax depth is dependant on the L size

of the domain and can be seen in Figure 4.8. At an L size of 128would give a depth of

8 and an L size of 1024 would give a depth of 11.

The additional state cannot be stored in the same way as with the AVL tree where

the negative of the index means that a cell is just a neighbouring cell. In the octree,

the cells centre point is stored in the formof a vector3, which is a structure containing

three values storing the x,y, and z coordinates of these centre point for the cell. Be-
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cause of this, an additional value has been used to store this information, in this case,

a char has been selected to define the state. A boolean value could have also been

used instead as they both take up the same amount of space within the memory of

the system and the read-write times are no different. The only reason that a char was

selected over a boolean value was just down to simple preference.

4.4 Hash Table and Hash Set

Hash Table andHash Sets are examples of a class of data structure that are commonly

used and only subtly different from one another. They work through the implemen-

tation of what is called an associative array; this structure maps keys to values within

itself. The hash table gets its name from the hash function that is used to work out

the index of the value within the structuremaking the decisionwhich bucket to place

the value into. A bucket can be thought of as a collection of values whose hashes are

the same. If the hash function that is used were perfect every value within the table

with a different key value would be stored into separate buckets. However, the im-

perfection of these functions is why these collisions occur within the table causing

multiple items to be stored within the same bucket. An example of this can be seen

in Figure 4.9. The simpler the type of key that is used the easy it is to avoid collisions.

An analogy for the Hash Table that can make it easier to be able to visualise how

it works mentally is that of a filing cabinet. Think of the draws in the cabinet as the

buckets in the hash table, each of these draws can contain numerous files within it,

however, the more files that a draw contains, the harder it is to find the specific file

for which is being searched. The system for deciding which draw the files go in, be

that numerical or alphabetical is analogous for the hashing function. The Hash Set

is very similar only in their case the container cannot have duplicate keys which are

excellent for the use case here as this is not wanted in the first place. In a hash set, the

value of the element is its key instead of it being a key, value pair system.
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Figure 4.9: Visualization of the abstract structure of a hash table, showing how the key is
placed in a bucket and then into a linked list within the bucket. This shows what happens if
the hashing algorithm cases a collision andmultiple items end up stored in the same bucket

this can be seen with items B and C.

To implement these structures in themodels C++’s standard template library was

used. For the Hashtable the unordered map has been used in for models such as the

Eden-A and IP models when the state of the cells exist in three states instead of two

those three states being infected, uninfected, and neighbour, as it works through the

storage of a key pair value in the case< int, bool >, the integer is used in storing the

indexof the cell, and theboolean isused to tell if the cell is aneighbouror infected if an

index is not found within the structure then it is considered to be in the non-infected

non-neighbouring state. This means that neighbouring cells can be ignored when

adding to the growth site to keep the correct probably in the growth sites structure.

The second type that has been used is that of an unordered set though this is used

for theHashSet. The set is used formodels suchas theEdenBwhere theneighbouring

cells are being added to the growth sites structure multiple times, or in cases like the

Eden-Cwhere the neighbouring cells are not added to the growth sites list instead the

edge cells to infected cells are, this means that there would not bemultiple additions

of the same value because a cell can only be infected a single a time.

The selection of the hash function can have a massive impact on the efficiency

of the structure. There are a wide variety of hash functions that have been thought
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1 struct KeyHash{
2 unsigned long operator()(const int& key) const {
3 return reinterpret_cast<unsigned long>(key) % TABLE_SIZE;
4 }
5 };

Figure 4.10: An example of a possible hash function that can be used when the key in that
table or set is in the form of an integer as in the case that is discussed in this work.

up especially in the field of cryptography, but the functions used by Hashtables and

Hashsets are very different to these. The main reason for this is that the speed of the

function is critical and even in the case of some of the fastest cryptographic hashing

function these are very sluggish in comparison to the types used in hash tables the

reason for this is that the security of the data is not the focus.

In the case of the unordered map and set in C++’s standard template library the

hash function is decided on based on the type of key that is used. These functions

are different because as in the case of the key if it is a string, this would have to be

converted to a numerical value so that it can be used as the index. However, in this

case, the key value that is being used is already a numerical value with it being the

k-index of the cell in question, and as such, the hash function can be, and the index

value itself can be used without much if any processing. For example in the case of

a < string, string > unordered map the default hash function turns the string “Lee

Odiam" into the integer key value of 5, 280, 821, 831, 415, 455, 054, whereas in the case

of an < int, bool > the hash function only performs a modulo operation on the key

passed to it an example of the type of hash function that can be used to achieve this

can be seen in Figure 4.10.

A critical statistic with a hash table is that of the load factor the equation for this

can be seen in Equation 4.2. The load factor for a hash table can inform as to the

speed of the hash table, if the load factor is over one it means that there are buckets

contained within the table that contain multiple values and below that as the load

factor tends to zero themore empty buckets that are containedwithin the hash table.

It is ideal to use a hashing function that keeps the load factor as close to 1 without
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Lf =
E

B
(4.2)

where:
Lf is the load factor
E the number of entries
B the number of buckets

V =
Bf

E
(4.3)

where:
V is the variance
Bf is the number of filled buckets in the hash table
E is the number of entries in the hash table

ever going over it as possible, as when the load factor is over one this means that it is

certain that more the one entry is in a single bucket at some point in the table and if

the load factor is very low thismeans that the table is consuming a lot of unnecessary

data. One issue with the use of the load factor is that if it has a value of less then

one this might lead you to think that the hashing function is perfect and each filled

bucket has only one item in it, but this is not that case this is where the variance of

the hashtable comes into play.

Variance helps give a better understanding of the structure of the table as it can

identify situations suchaswhere the tablehas 100 entrieswithin it aswell as 100buck-

ets this would mean a load factor of one which would give the impression that it is

perfectly balanced, but it is possible that all of those entries are contained within a

single bucketmeaning that the hash table is now just a linked list andwould function

incredibly slowly. In this case, it would tell you that the hashing function that is being

used is not fit for purpose. Variance is calculated in a very similar way to the load fac-

tor, and this can be seen in Equation 4.3. In this case, a variance of one is ideal as this

wouldmean that every entry is in its own bucket and as such this would offer the best

possible search and insertion time. A variance of less than one says that collisions are

going on within the structure. If the variance of the structure is very low, it infers that
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(a) Load Factor (b) Variance

Figure 4.11: Graphs showing the load factor and variance for the Invasion percolation
model as it is run for one million iterations. The load factor graph tells that each time the

hash table is resized the size that it is resized by increases

the hashing function currently in use is not ideal for the situation. Though it is not

always possible for the variance to be 1.0, this is however ideal.

A hash table can be thought of as having a O(1) insertion and search time, but

because it is needed to run a hashing function, this can still be slower the insertion

and time of an array. This O(1) search and insertion time can quickly change if the

hashing function that is used starts to assign the same index to different keys which is

possible this can be seen in Figure 4.9 where B andC are assigned to the same bucket,

this is oftendonewith a linked list, in this case, all the entriesmust be iterated through

in order to find if the searched for entries exists or to add the new entry in the needed

position. It is easy to avoid this when the data that will be entered or the range of data

that will be entered is known as with the case being looked at here. In this case, it is

possible to make use of what is known about the data to allow for a perfect hashing

function.

In order to test whether the default hash function used by the unordered map

and set was perfect, it was essential to analyse the load factor and variance of the

structures when being used for this method. The results of the tests can be seen in

Figure 4.11. The Load factor of the table and set fluctuated when the structure ap-

proached a load factor of around 0.99 the structurewould be resized reducing its load

factor to around 0.5. The highest the load factor ever reached was 0.99915, and the

lowest the load factor ever reachedwas 0.492581 this shows that the number of empty
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cells within the structure is kept in balance with the time it would take to resize the

structure. The Variance for these implementations is a critical graph, and it can be

seen in Figure 4.11 it stayed perfectly flat meaning that each cell within the structure

will only ever contain one value. This data was gathered from 100 different runs of

different models, and the results had a standard deviation of 0 showing that this was

the case for all the models with which the structure is used.

4.5 Domain Resizing

One way in which to deal with the additional memory usage caused from having

empty cells when using of the Lattice structure is to make use of Domain Resizing;

this means that the structure would only start off small and would increase in size

when the cluster reaches the edge of one of the boundaries. This would mean that in

the case of a model such as the IPmodel with theMeakinmethod used for the calcu-

lation of the percolation threshold when the beta value become more lower and the

cluster stops coming close to the edge of the domain a large amount of space could

be saved. This section will discuss the twomethods that have been developed for the

domain resizing, symmetrical and asymmetrical, as well as the type of data structure

that has been decided on for this and why it was selected.

Thefirst of these twomethods thathavebeendeveloped is that of the symmetrical

domain resizing this is the method that is used for all of the Eden model variants (A,

B, C, and Screened). In this method when the cluster within the domain touches one

of the edges each of the sides of the domain have the same number of cells added to

them making the domain grow symmetrically; this means that the domain keeps its

cube shape. In order to achieve this the L sizes that describe the length of each of the

x, y, and z dimensions of the domain are doubled or in other words newL = oldL × 2

the structure that contained the cluster is the resized to this new size.

After the resizing of the structure is done it is necessary to recentre the cluster by
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repositioning all the cells within the domain to their new positions in order to avoid

over rewriting an already infected cell with an uninfected value and destroying the

cluster that has been formed it is best to start at the end of the structure and decre-

ment the index value for each cell until the beginning of the structure is reached. Be-

cause all the new instantiated cells are initialised with a zero value, it is only needed

that the infected cells go through this repositioning process and are then set to a zero

value. The code that is used to find the new position for a cell within the domain can

be seen in Figure 4.14. In this method the first step that must be performed it to ob-

tain the 3D coordinate of the cell within the domain before it had been resized; this

is why the initialL value is passed through to the fromKmethod show in Figure 4.14.

After this, an offset value must be calculated this is easy to obtain in the case of the

symmetrical resizing as it is merely initialL
2

The second type of resizing used is that of asymmetrical meaning that the result-

ing domain does not have to be a perfect cube and instead would be described as a

cuboid. This method is the one used in the case of the IP model for all of its variants,

Random, Hawick, andMeakin.

Unlikewith the Symmetrical domain growth the calculation of the change to each

side it a more complicated process. The first step is to identify which side of the do-

main the cell is touching; this is then placed into an offset array which can be seen

in Figure 4.12. In this code depending on which side of the domain is being touched

the offset can be set to a negative or positive number the reason for this so that the

direction of the domain that needs to be altered can be easily identified; this aspect

of the codemakesmore sense when the positioning code that is seen in Figure 4.15 is

taken into account. Though in the case of the asymmetric resizing itmust be ensured

that the domain does not grow too far in one direction as this can affect the clus-

ters grown, that is the purpose of the increase and max_increase arrays seen which

make sure that the domain is limited in each direction. This limit is not needed for

the bottom of the domain as the stopping condition of the model will make sure that



4.5. Domain Resizing 82

1 bool IP_RES::touch_edge(const int x, const int y, const int z){
2 // Reset resizer so that the return function will work
3 for (int i = 0; i < 3; ++i) {
4 resizer[i] = 0;
5 }
6
7 // Touching the left or right
8 if (increases[LEFT] <= max_increases[LEFT] && x >= L_x - 1){
9 resizer[0] = increases[LEFT];
10 increases[LEFT] *= 2;
11 }
12 else if (increases[RIGHT] <= max_increases[RIGHT] && x <= 0){
13 resizer[0] = -increases[RIGHT];
14 increases[RIGHT] *= 2;
15 }
16
17 // Touching the bottom - stoping condition takes care of
18 // domain over resizing -> (L_y == max_L && y == max_L - 1)
19 if (y >= L_y - 1){
20 resizer[1] = increases[BOTTOM];
21 increases[BOTTOM] *= 2;
22 }
23 // No touching top as IP shouldnt grow up in this case
24
25 // Touching front or back
26 if (increases[FRONT] <= max_increases[FRONT] && z >= L_z - 1){
27 resizer[2] = increases[FRONT];
28 increases[FRONT] += increases[FRONT];
29 }
30 else if (increases[BACK] <= max_increases[BACK] && z <= 0){
31 resizer[2] = -increases[BACK];
32 increases[BACK] *= 2;
33 }
34
35 // returns true if the domain needs resizing
36 return(resizer[0] != 0 || resizer[1] != 0 || resizer[2] != 0);
37 }

Figure 4.12: Offset calculation for asymmetrical domain resizing. The negative values are
used to indicate the diferect of growth of the domain this is then combined with the code in
Figure 4.15 to reposition the cell with the newly sized domain. The negative numbers are
used to tell which side of the domain needs to be adjusted. This code only needs to be run

once per resize. The increase size, and maximum increase values are calculated in
Figure 4.13.
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1 void IP_RES::set_resize_limit(int dim){
2 int d = (dim / 2) - resize_val;
3 int counter = 0, val = resize_val;
4
5 while (d > 0){
6 d -= val;
7 val += val;
8 counter += resize_val;
9 }
10
11 for (int i = 0; i < 6; ++i){
12 increases[i] = resize_val;
13 max_increases[i] = counter;
14 }
15
16 /// This is because the IP models domain does not grow up
17 increases[BOTTOM] *= 2;
18 }

Figure 4.13: This calculates the values for the increase andmaximum increase array to stop
the domain becoming lopsided and growing too much in one direction as this would mean
that the seed location would no longer be in the centre of the domain top. This code is

designed in such a way that the minimum domain size if 16 and that all domain must be a
power of two which is how these models will be tested.

1 void EdenA_RES::update_kindex(int &i, const int initial_L){
2 vec3 pos = fromK(i, initial_L);
3 pos.v[0] += offset;
4 pos.v[1] += offset;
5 pos.v[2] += offset;
6 i = flatten(pos.v[0], pos.v[1], pos.v[2]);
7 }

Figure 4.14: Code to calculate the new position in the domain for an infected cell after the
domain has been resized. In this case, the offset will be equal to half the resize value this is to
keep the cluster centred as both sided have grown by half the amount of the resize value.

1 int IP_RES::get_newk(const int index){
2 vec3 pos = fromK(index, initial_L);
3 pos.v[0] += (resizer[0] < 0 ? -resizer[0] : 0);
4 pos.v[1] += (resizer[1] < 0 ? -resizer[1] : 0);
5 pos.v[2] += (resizer[2] < 0 ? -resizer[2] : 0);
6 return flatten(pos[0], pos[1], pos[2], dims);
7 }

Figure 4.15: This code is used in the case of the asymmetrical domain resizing to obtain the
new k index for the cell after the domain has been resized it works together with the code
shown in Figure 4.12. This code will be run for each of the cells within the domain that are

not set to zero/empty.
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it cannot overgrow in this direction.

The final step in the resizing of the domain process for both the symmetrical and

asymmetrical method is to reposition all the cells that are within the growth sites list,

as they currently store the indexes that they would have had in the smaller domain. It

is a merely amatter of iterating through the list and applying the same functions that

are used to reposition the cells that are within the domain. Other than the resizing

process used the different resizing versions will act identically to the standard Lattice

model in how it stores the state of the cells within the domain.

The resizing method is only needed for the Lattice version of the model as the

other data structure are inherently capable of handling the resizing by just setting

them to have amassive domain size from the start, even if this is not the full size of the

domainbeingused. Theonly limiting factorwouldbe thememoryof thecomputer, as

through the use different variables for the storage of the state such as a unsigned long

long it would be possible to store amaximum index of 18, 446, 744, 073, 709, 551, 615.

4.6 Summary

This chapter has detailed the different data structures that will be tested. It has dis-

cussed some of the common uses for the structures such as how binary search trees

are commonly used in scheduling within a computer or even in some games for a

method to reduce the amount of work done in rendering a 3D world. It has also dis-

cussed the algorithms that will be used and how they have been designed to take ad-

vantage of the knowledgeof the specificdomain, such as thehashing algorithm that is

used in the hash table and set. The final part of this chapter discussed the implemen-

tation for the domain resizing method that is used discussing both the symmetrical

method and the asymmetrical method for this along with in whichmodel each of the

different methods will be used.
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In the following chapter, Chapter 5 the results from the experiments that have

been runwill be discussed. The Chapter will go into the effect that the different struc-

tures have on the model and will aim to show points at which specific structures can

offer benefits through a comparison of thememory consumption and the runtime of

the models.



It is a capital mistake to theorize

before one has data.

Arthur Conan Doyle
CHAPTER 5

Data Structure Results

BEFORE it can be stated whether a newly developed method is superior

or inferior to a previous method, whether that be regarding the run-

time of themethod or in thememory consumption of thismethod it is

essential to performmuch testing on the method. This involves gath-

ering data frommultiple runs of the system to be able to identify general trends in the

effect of the newmethod; this is especially important with models such as those that

are used here which have a high level of randomness which can have a significant

impact on the runtime of the system. This chapter will demonstrate that in certain

situations there is a benefit in the application of alternate data structures to the stan-

dard Lattice method that is most commonly employed for the simulation of growth

model clusters.

With compilers becomingmore andmore intelligent such that they are now able

to attempt tominimise the computation timeby taking advantage of language or pro-

cessor specific features and tweaking the code that has been passed into them. As

86
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Node Name CPU RAM MPI Version

Computing Node 2 x 14 Broadwell
E5-2680v4 (2.4–3.3 GHz) 128 GB DDR4 (OpenRTE) 1.8.8

Table 5.1: The specification for the nodes on the University of Hull’s Viper HPC in the gather
of the data discussed within this chapter.

some of these features are highly processor dependent, the results that have been

gathered and that will be discussed in this chapter have been done with all compiler

optimisations turned off; this has been done in order to give a level a playing field

as possible making the results more generalisable allowing for the results to be as

broadly applicable as possible hopefully.

In order to obtain the results shown in this chapter in a decent time frame, a high-

performance computerwas explicitly utilised, theUniversity ofHull’s ViperHPC. This

system has been used in conjunction with OpenMPI, which is an open source mes-

sagepassing interface that allows for these experiments to be run inparallel in an easy

to develop and efficient manner. The system distributes instances of the program to

different CPU’s, withmultiple slave processes running the experiments and themas-

ter process collecting and outputting all the data. The specification of the HPC node

thatwasused canbe seen inTable 5.1. One issuedid arisewith anupdate to theVIPER

system the effect of this limited the range of L sizes that could be tested.

There will be some shorthandmade use of for the representation of the different

data structures. LATwill be used to represent the array Lattice structure, AVLwill rep-

resent the AVL tree, HSH1 will be used for the Hashtable and the hash set the models

where each of these will be used is discussed in Section 4.4, OCT2 will be used for

the octree, and finally RES will be used for the resizing domain system discussed in

Section 4.5 and will be used for both the symmetrical and asymmetrical.

In Section 3.4 the fill density of the variousmodels at increasing domain sizes has

discussed. This aspect of the models will be key in the understanding of the results
1Hash Table
2Octree
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discussed here. The aim of this chapter is to investigate two points whether or not

for a specific growth model as the size of the domain increases does the type of data

structure that is best suited for the storage of the cluster in terms of memory con-

sumption and/or run time also change. Also to investigate whether or not the Lattice

method for the storage of the cluster is the best method to use in the storage of these

sparse clusters

The reason for theuse of thedifferentmodels is due to two reason thefirst of these

is that in terms of the programming of the algorithms the only difference between the

models is the handling of the growth sites and the selection of the next infected cell

this different in the selection of the cells leads to different fill densities as shown in

Section 3.4.

Thesemoremodern data structures discussed in the previous chapter such as the

AVLhave thebenefit of only having to store the cells thatmakeup the cluster itself and

not all of the empty cells in the domain. This theoretically offers the possibility for a

significant reduction in the maximum amount of memory that the simulation con-

sumes. Additionally, the aim is to show that as the fill percentage of the domain de-

creases even though thesemoremoderndata structures possibly have a slower search

and insertion time the lack of need to initialize all of the cells in the domain as with

the Lattice model means that they can still offer significant benefits in both memory

consumption as well as run time.

There are three main expected outcomes from this chapter these are as follows:

E1 It is expected that for models with a sparse domain fill such as the MIPs model

the LAT structure will become more and more of a hindrance to the run time

and memory consumption of the model whereas with mode the end up filling

more of the domain such as the HIP model the LAT remains the best choice.

E2 It is also expected that for models such as the HIPs model where the percentage

of the domain that is filled by the cluster it very high that the LAT structure will
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remain to be the best structure to use for the storage of the cluster whilst simu-

lating its growth.

E3 It is expected that the beneficial effect of the alternative modern data structure

should become increasingly pronounced especially formodels such as theMIP

model where, as the size of the domain increases the percentage of the do-

main that ends up infected decreasesmeaning an increase in the sparsity of the

model increasing the beneficial effect of the more modern sparse data struc-

tures

These expectations will be refered to by their key (E1, E2, E3) in the summary of

this chapter.

The structure of this chapter will be start off the with a section discussing the ef-

fects on the total run time of the cluster that the data structure has; this section will

begin with the construction time for each of the data structure and will subsequently

be followed by a discussion of the overall runtime of the model in relation to the size

of thedomain. The secondpart of the chapterwill focus on thememory consumption

of the different data structures for the models and will be a compared to the timing

results to see where any possible speed increases offered by any of the structures also

give memory consumptions or come at the cost of using additional memory.

5.1 Timing Data

In this section, the timing results for the various data structures discussed in the pre-

vious chapter for all of the different models that have been discussed in Chapter 3

will be detailed. This section will discuss two main aspects involved in the runtime

of thesemodels the first of these things that will be looked at is the construction time

of the individual structures for a range of domain sizes. The second aspect will be the

complete runtime of themodels with the different data structures for the same range
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Figure 5.1: This graph shows the median of the construction time for the different data
structures each of the pointers are gathered from one thousand runs of the construction.
The line representing the construction time for the AVL tree lies underneath the orange line
for the Hash Table and due to the draw order is not visible. The Hashtable and hash set are

both represented with a single line as they both had the same construction time. The
floating box in the centre of each of the graph shows a zoomed in area sharing the same

units as the main graph for both the x and y axis

of domain sizes as in the construction time. In this work the domain sizes that will be

looked at will all be (L = 16), (L = 32), (L = 64), (L = 128), (L = 256), (L = 512),

and finally (L = 1024) and all of the data will be gathered from 100 runs of the sim-

ulation. It should be noted that there will be cases that due to the time it took to run

themodels or thememory consumption of these larger domain sizes being so high it

became infeasible to run the experiments and some points may be predicted values.

All predicted values that are used will be represented by a dashed line in all graphs

instead of a solid line in order to avoid any confusion about computed and predicted

values. These predicted values will be obtained through the use of the interp1d func-

tion that is built into SciPy and is an interpolation function used to perform a curve

of best fit.
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5.1.1 Construction Time

The construction times for the various data structures can be a critical part of the

total runtime of a model especially as methods used get faster, and it can become

a limiting factor. In some cases, it is possible for this part of the program to be the

most time-consuming aspect of the whole model. This section will discuss in detail

the construction time for the different data structures. A set of simple experiments

where run where the specific data structure was constructed 1,000 times in order to

gain an accurate measure of the range of the time it takes to construct each of the

data structures, in the case of the LAT structure this also requires an iteration over

the structure to zero out all the cells contained within it to ensure that there is no

conflicting data. The medians for each of the structures across a range of L sizes can

be seen in Figure 5.1.

As the size of the domain increases, it is evident that the size of the domain has

the most significant impact on the LAT model out of all the structures. This makes

perfect sense as when the LAT model has initialised it is necessary to mark out an

array vast enough to contain all the cells and also zero out each of these cells in order

to ensure that whatever memory is contained within doesn’t affect the growth of the

cluster; this gives the construction of the LATmethod a computational complexity of

O(N). The LAT structure differs from the others in that they only have to deal with a

much smaller amount of memory, in the beginning, this is due to that way that the

structures grow as the simulation runs. There is only one of the other structures that

are also affected by the size of the domain, the OCT structure, this is not because it is

marking out additionalmemory as with the LAT but is instead due to that calculation

of the max depth for the tree, the method used for this is discussed in Chapter 4.

The AVL tree and the Resizing Domains methods both have the same median

construction time, however they do have completely different distribution popula-

tions which can be demonstrated through the use of a number of different statistical

test the Mann-Whitney U (Mann and Whitney, 1946) test the Kolmogorov–Smirnov
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test (Dodge, 2008) and theVargha-Delane effect size (Vargha andDelaney, 2000)mea-

sure or A measure the results of these test can be seen in Appendix B in Tables B.3

along with a comparison for all the other structures and an explanation of the algo-

rithms can be found in Appendix A. In this case, they both have the same minimum

construction time of 1µs this could be due to a limitation in the timing library that

was used (Standard Template Library chrono). The difference between these two is

that the AVL tree has amaximum of 3.6µs, and the Resizing has amaximum of 4.6µs.

When this is taken into account along with the statistical tests to show that the dis-

tributions of the two are from different populations it is possible to assume that the

AVL tree is the better of the two in terms of construction time, this is also an excellent

example of how the medians of a distribution is not the be all and end all in terms of

analysing the difference between two distributions.

5.1.2 Standard Eden GrowthModel

The focus in this section will be on the threemain versions of the Eden growthmodel

the EdenA, EdenB, and EdenCmodels, and they will be discussed in that same order.

The Screened Edenmodel has been excluded from this section and will be discussed

within its own section due to the number of different variables within the system and

the vastly different results that themodel can exhibit and possible exciting behaviour

depending on the β value and the structure used.

The runtimes for the five different data structure methods tested for the EdenA

model can be seen in Figure 5.2a, these results show shows that the LAT version of

the system is the fastest of the five different structures; this is true for all the tested L

sizes. The slowest data structure that was tested by a large margin was the AVL tree

with it being nearly 250 times slower than the LAT structure. The LAT model has a

median runtime of about 208 seconds for when the domain reaches an L size of 1024

with amedian construction timeof around 2 seconds at this size for this structure this

shows that most of the runtime for this model is spent in the actual simulation of the



5.1. Timing Data 93

(a) EdenA

(b) EdenB

(c) EdenC

Figure 5.2: Graphs showing the run times for the three main types of Edenmodel the
EdenA, EdenB, and EdenCmodel. This model is inclusive of the construction time of the
data structure. The floating box in the centre of each of the graphs shows a zoomed in area

sharing the same units as the main graph for both the x and y axis
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Figure 5.3: EdenB L=256 Runtime box plots. These show that there may not be any
difference between each of the 5 different methods for the EdenBmodel.

Figure 5.4: EdenC L=512 Runtime boxplots for the LAT and RESmethods. This shows that
there is significant overlap between these twomethods though it is apparent that benefits in
the total runtime can be obtained through the use of the RES method over the LATmethod.
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cluster with the construction time taking less than 1% of the total runtime.

However, the median run time for the domain resizing method is very close to

that of the standard LATwith a runtime of approximately 255 seconds though there is

veryminimal overlap between the two structures with only extreme values in the LAT

reaching high enough to match the resizing domain method and the results of stati-

cally test which can be seen in Tables B.4 and B.8 shows that the difference between

the Resizing at the LAT methods is statistically significant. This difference in speed

means if the aim of a run was to grow a cluster of a specific size instead of calculating

the specific size of the domain that would be needed the resizing method could be

used to ensure that the cluster is not affected by the edge of the domain while only

causing minimal effect on the runtime of the model.

The second of the three Eden model that will be discussed is the EdenB model.

The graph showing the runtime of this model can be seen in Figure 5.2b. The EdenB

model is an interesting example of the use of different data structures for the simula-

tion of growthmodels. When looking at Figure 5.2b it would be easy to conclude that

the Resizing method is the best, but this is not the case. As can be seen in the non-

zoomed-in section of the graph these run times are very similar to one another with it

beingdifficult to identify thedifferencebetween themonly by zooming into the graph

the difference can be easily seen. The big question is whether these differences in the

medians is a significant difference or not.

In order to be able to answer this question, a few things will have to be looked at.

The first of these is the boxplot of the different data structure run times after this two

different statistical tools will be put to use the first is theMann-Whitney U test which

is a non-parametric test that can be used to calculate the chance that two samples

are drawn from the same populations with the same median the results for this can

be seen in Table B.8 in Appendix B. The second of themethods that will be used is the

A measure which is a measure of the scientific significance what this allows for the

testing of whether the difference between two distributions with similar medians is
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significant. The results for this can be seen in Table B.7 in Appendix B.

When the box plots that are seen in Figure 5.3 are taken into account, a different

story from what the graph tells becomes evident. Whereas there is a slight difference

in the medians of the different data structures runtimes when the full range of the

data is taken into account this begins to look less significant and with the results of

the statistical analysis which is seen in Tables B.7 and B.8 becomes highly apparent

that it is not possible to state that a statistically significant difference exists between

any of the various the data structures in the case of the EdenBmodel. Thismeans that

in the case of the EdenBmodel it does notmatter which of the different structures are

used when looking at the at the EdenBmodel in terms of the runtime of the model.

The third and final version of the standard Eden growth model the EdenC will

now be discussed the result of the runtime experiments can be seen in Figure 5.2c.

The EdenC ismore like the EdenAmodel than it is the EdenBmodel and it is possible

to drawamore specific conclusion from the data thatwas obtained than in the case of

the EdenBmodel. In this case, the RESmethod is the fastest of the five differentmeth-

ods that have been tested; this is closely followed by the LATmodel with a difference

of 7.67 minutes for the median run times for an L size of 512. Even though this result

may seem like a good result when the full range of the data is taken into account and

statistically analysed it is shown that the difference between these tomethods is only

small, this can be seen in Table B.10. What thismeans is thatwhereas the RESmethod

can run in a shorter amount of time with a lowermedian when the results are plotted

on a box and whisker system which can be seen in Figure 5.4, the high whisker of the

RES model does reach slightly passed that of the LATmodel.

This doesn’t mean that the RESmethod is pointless even though the RESmethod

does only offer a small positive effect over the LAT version there is a positive effect

meaning that this method is a better method and will save time even if only a small

amount, when running the simulation of themodel for the number of times that will

beneeded toget aunderstandof thebehaviourof themodel in theuse case even small
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savings in timing can eventually add to be a significant saving. For example, with this

work, the model was run 100 times if these methods where run serially it would have

taken a total of 89.72 days to run with the LATmodel whereas with the RESmethod it

would have taken only 88.7 days. Though it is true that it is unlikely that these type of

models would be run serially, it is possible, this does go to show that the RESmethod

does offer a significant speed-up over the LATmethod overmany runs and this saving

will only increase the more times it is run.

5.1.3 Screened Eden GrowthModel

The Screened Eden growthmodel is the most interesting of the Edenmodels that are

discussed here due to the possible behaviours that it is capable of displaying through

the tweaking of the beta value. This is the first of the model to be discussed that will

make use of a range of beta values in order to be able to give a good understanding

of the effect that this variable has on the runtime of the model and to see if different

setting have different optimal data structures, these values are β = 0.2, β = 0.5, and

β = 0.9 (defined in Chapter 3).

With Screened Edenmodel the higher the beta value used, the smaller the cluster

that can fit in the domain as it increases the clusters bias to grow along the radius of

gyration. Unfortunately due to an issuewith the experiments timing out due to a time

limit that VIPER imposes on all jobs it was not possible to get a full range of data for

the 0.1 version of the Screened Eden growthmodel at the L size of 256 and so instead

the 0.2 was used instead.

The runtimes for the Screened Edenmodel with a beta value of 0.2 can be seen in

Figure 5.5a this cluster is the one that is the closest to that of the EdenAmodel out of

all the different beta values that are discussed. For this model, the order from fastest

to slowest of the data structures somewhat reflect that of the EdenA model, with the

LAT and RES methods being the two fastest with very minimal significance between
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(a) β = 0.2

(b) β = 0.5

(c) β = 0.9

Figure 5.5: The run time for the Screened Edenmodel with a range of β values these being
0.2, 0.5, and 0.9. These can be seen in this order from top to bottom respectively. The

floating box in the centre of each of the graphs shows a zoomed in area sharing the same
units as the main graph for both the x and y axis
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the two distributions meaning there is a high chance that they come from the same

population. TheHSHmethod is next in the lineup, and this structure only has a small

level of significancewhen compared to the AVL tree, all of the statistical tests showing

the significance of the result compared to each other can be seen in Tables B.13, B.14,

and C.12. Though the level of significance of these results is low, it was only possible

to get a result for up to an L size of 256, and it is like that the spread of these results will

increase with high L sizesmaking the data structure decisionmore andmore critical.

The runtimes for the 0.5 setting for the Screened Eden model can be seen in Fig-

ure 5.5b and this value does have a fascinating effect of the runtime of the model. At

this setting, the AVL version of themodel appears to be the fastest of the five different

structures, followed closely by the RES and the LAT version at an L size of 512. How-

ever, it is essential to be able to tell whether this difference in the medians is actually

significant or not; this is where the data shown in Tables B.16, B.17, and C.15 comes

it. If this is taken into account it becomes apparent that the difference between the

LAT, RES, AVL, HSH is not very significant at all, even though the AVL has the lowest

of the medians; this means that is this case it will come down to the memory con-

sumption of the different structures to help decide which of the different structure

is the best suited here. As it is not possible to get the full population for these runs,

it is not an accurate measure to say that one of these methods would have a benefit

over the others for the larger domain sizes based on the distribution of data that is

here. The slowest of the structures was the OCTmethod which considering the extra

amount of organisation that goes into the storage of a value within the structure and

the extremely long runtime that is being dealt with here with the AVLmethod having

a median of approximately 3.3e4 seconds or 9.3 hours this was to be expected.

The final beta value to be discussed will be 0.9, the results of the experiments

for this setup can be seen in Figure 5.5c. Unlike with the previous settings the RES

and LAT methods alone are in this case clearly the fastest of the different structure,

with there being no real significance between these two differentmethods and a high
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chance that they come from the same population; this can be seen in Tables B.19,

B.20, and C.18, this means that in this case, it would be possible tomake use of either

of these methods and gain a very similar runtime for the growth of the cluster. The

AVLmethod is now slower than the RES and LATmethod, and there is a small level of

significancemeaning that unlike with the 0.5 it would be a slower option even if only

slightly. The order of the two slowestmethods is the same as before with the OCT and

HSHmethods being the slowest with and a small amount of significance between the

AVL and the HSH method. Though runtime is not always the focus and there could

be significant memory saving to be made here due to the small size of the clusters

produced.

TheScreenedEdenmodel is an excellent example of amodelwhere thebeta value

has a significant impact on the best structure regarding the runtime of the system.

With the lower beta values, there is very little difference between the AVL, HSH, LAT,

and RES methods will offer benefits in the runtime of the model, meaning that there

are many choices here. However, as the beta values increase the AVL tree and the

HSH tree start to become slower, then that of the LAT and RES and in the 0.9 version,

they are the fastest of the structure. However, this speed could come at the cost of

significant memory consumption whichmight not be worth the trade off in runtime.

5.1.4 Random Invasion Percolation

The Random version of the IP model will be the first one to be discussed out of the

three IP models with which this thesis concerns itself. The graph showing the results

of the experiments for the runtime of this model can be seen in Figure 5.6. The IPR

model at an L size of 1024has a very similar pttern to that of the EdenAmodel in terms

of the median runtime, with the fastest structure being the LAT; this had a median

runtimeof 20.12 seconds atL = 1024. The slowest of the clustered resultswas theAVL

with amedian runtime of 170.61 seconds atL = 1024which is amuch less significant

increase than in the EdenA model with it only being 8.5 times slower though this is
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Figure 5.6: The Run times for the Random Invasion Percolation Model.The floating box in
the centre of each of the graph shows a zoomed in area sharing the same units as the main

graph for both the x and y axis

still not an acceptable difference. As with the EdenA model the RES method is only

slightly slower than the LAT one, with amedian runtime of 21.72 seconds atL = 1024

thoughwhen the results the statistical tests are taken into account, seen inTables B.22

and B.23, and B.24), this difference is only with a small effect with an A-measure of

between 0.524 and 0.66 for the all the different L sizes tested as such it is not possible

to reject the hypothesis that the distributions of these two samples are the same. This

means that it is not possible for an accurate claim whether one of these methods is

better than the other, as statistically speaking with the results obtained here they are

identical; this is unlike the EdenAmodel where it was entirely possible to identify that

the LAT would be the fastest.

5.1.5 Hawick Invasion Percolation

The Hawick method is probably the least common of the methods out of all these

discussedhere. It was usedhere due to the highpercentage of the domain that is filled

to improve the fill percentage coverage that is shown in this work. The results for the

HIP model with three different β values, 0.1, 0.5, and 0.9, can be seen in Figure 5.7.

Due to the memory consumption of the AVL, OCT, and HSH, it was not possible to
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(a) β = 0.1

(b) β = 0.5

(c) β = 0.9

Figure 5.7: The Run times for the Hawick Invasion Percolation Model with a β values of 0.1,
0.5, and 0.9 from top to bottom respectively.The floating box in the centre of each of the

graphs shows a zoomed in area sharing the same units as themain graph for both the x and y
axis
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obtain a full range of data. The OCT version was only able to be run up to the L size

of 256 and the HSH, and AVL tree could only be run up to the 512 domain size. At the

larger domain sizes, these methods would run for a long time only to crash.

This model is the only one with a variable that can be changed to tailor the be-

haviour that doesn’t change which is the fastest of the version of the model between

different values given to it. Thismeans thatwith a value of 0.1or 0.9 the LAT version of

themodel is the fastest of the different structures with the resizingmethod coming in

second. However unlike in other models where the different in the runtime between

the LAT and the RES method was minimal such as in the case of the EdenA model,

in this case with the fastest of the models the 0.9 version there is a time difference of

3.3 minutes and in the slowest case a time difference of 4.9 minutes which when the

time for the LAT version of the model is taken into account which is a 16.16 minute

run time for the 0.9 is a very significant result.

The significance of this can be seen in the result of the A-measure test which can

be seen in Tables B.34, B.37, and B.40. When these are taken into account, it is shown

that this difference has a substantial effect between the LAT and the RES versions as

well as with all the other different data structures. This means that it is easy in the

case of the HIP model to state that the LAT version of the model would be the best

structure to use as it is considerably faster especially compared to the AVL tree which

has a median runtime of 37.2 minutes which is more than double the median of the

LATmodel.

This shows that in the case of models such as the HIPs model which are highly

filled the optimal choice for the storage in terms of runtime would be that of the LAT

structure and considering the fact that it was not possible to get timings for the larger

domains for the other structures this shows that this would also be the case in terms

of thememory that themodel would consume, though this will be discussed inmore

detail in Section 5.2.
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5.1.6 Meakin Invasion Percolation

TheMeakinmethod for the calculation of the percolation threshold can give themost

sparely filled domain out of all methods used and discussed for both the Eden and IP

model that are detailed within this thesis. The MIP model has been tested for three

different g values; these being g = −0.01, g = −0.001, and finally g = −0.0001, these

will be discussed in this order. As shown in Section 3.4 as the gravitational coefficient

used in the calculation of the percolation threshold tend to zero the fill of the domain

increases at with a g value of 0 the model being identical to that of the Random IP

model.

TheMIPmethod produces some of the most interesting graphs out of all the dif-

ferent models that are investigated here. This is the model where the construction

time of the data structure used has themost significant impact on the runtime of the

model, more than that of the search and insert times. The reason for this is due to just

how sparsely filled the domain is filled, with the fill density for all the gravitational

coordinate tested having a fill of less than 1%when the L size reaches 1024 as seen in

Section 3.4.

The g = −0.01 version of the MIPs model displays a behaviour that is highly sig-

nificant, this being the runtime of the LATmethod. Unlike with the othermodels that

were studied in this case the LAT method took significantly longer to run with a me-

dian run time of 3.12 seconds this is 17 times slower than the next fastest method

which is the RES method when the domain reaches an L size of 1024. The reason

for this is that the construction time of this data structure at this domain size is 2.37

seconds, which is considerably longer the total runtime of the other methods at this

L size. This leads to the conclusion that a high number of successful runs would be

able to finish before the LATmethod has even initialised its data structure.

In this case the fastest method of the remaining three is that of the HSHmethod

this is followed by the OCT and AVL methods which overlap considerably on this
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(a) g = −0.01. The AVL line is overlapping with the OCT line making it difficult to identify

(b) g = −0.001

(c) g = −0.0001

Figure 5.8: The Run time for the Meakin Invasion Percolation Model with β values of 0.01,
0.001, and 0.0001, sorted from top to bottom respectively. The floating box in the centre of
each of the graphs shows a zoomed in area sharing the same units as the main graph for

both the x and y axis
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graph making it hard to see the AVL method; this is because there is a difference in

themedians of only 1.9e−4 seconds, though before the L size of 1024 the AVL tree was

actually the faster of the two by a considerable margin. There is no crossover in the

runtime between theHSHand these two differentmethods thismeans that the speed

up offered by the HSH method is highly significant even when compared to the sec-

ond fastedmethods for this gravitational coefficient; this is also demonstrated by the

statistical tests seen in Table B.25.

Even though the LAT method is the slowest, by a significant margin at an L size

of 1024, this is not the case for the lower L sizes that were tested. The first L size test

where the LAT model became the slowest of the five data structures was when an L

size of 256 is reached; This goes to so how significant in this case the construction

time of the data structure is on the total run time of the simulation. Though it might

not be evident in Figure 5.8 it is interesting to note that the OCT and HSH methods

both increase in runtime in a manner that could be considered to be linear though

more testing would need to be done on larger domain sizes in order to confirm this.

The next gravitation coefficient setting that was tested was that of g = −0.001,

and this is very similar to the previous setting that was discussed. However, it takes

up to an L size of 512 before the LATmodel becomes the slowest of the different data

structures; this again goes to show how significant the domain size can be in the sim-

ulation of these models. The general order of slowest to fastest at an L size of 1024 is

very similar to that previous g value discussed above, with the HSH being the fastest

and this being followed by the OCT, the AVL, and finally the RESmethod. Unlike with

the previous setting, in this case, the AVL tree data points are not hidden behind the

OCTmethod in this case the AVL tree is noticeably slower than the OCTmethod, and

it becomes this way from an L size of 32.

The (g = −0.0001) version of theMeakinmodel continues the trend between the

previous two g values that have been used in that as this value decreases the runtime

of the LATmethodmergesmore andmore into the range of the othermethods. In this
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case, the LAT method is only the second slowest at and L size of 1024 with a median

runtime of 3.74 seconds. The slowest of the method, in this case, is the AVL which

has a runtime of 4.03 seconds at the same L size. However, it is quite apparent that if

it was possible for the simulation to be run on a data structure that was larger than

the 1024 max size that was tested that the LATmodel would very quickly become the

slowest of the different structures from the trend of the data that is shown.

As with the previous data g values that were tested the HSHmethod is the fastest

of the different method at the L size of 1024 with a median run time of 1.78 seconds,

which is 2.10 times faster than the LATmethod and 2.26 times faster than the slowest

method in this case which is the AVL. The HSH method only became the faster of

the methods for the 1024 L size the previous test L size of 512 had it in third place

behind the LAT which is the fastest and the RES method. As with the LAT method,

it is quite apparent that the RES method would very quickly after the range of L size

tested become slower than the AVL method and that the timing graph, if tested with

large enough L sizes, begin to look more like the previous two g values tested.

As has been shown here as the L size increases with the Meakin method the LAT

and RES methods very quickly become the slowest of the five different methods that

are tested; this is due to the domain fill that this model exhibits which can be seen in

Section 3.4. With the model very quickly approaching less than 1% domain fill, and

due to theuse of theMasson tree that is used for thehandling of the growth sites being

so efficient, in this case, the construction time of the specific data structure hasmuch

more of a significant impact on the total runtime of the model then the search and

insertion into the data structure. Though eventually with a small enough g-value,

this model would begin to act in the same manner as the random version of the IP

model. This does demonstrate that there are considerable benefits to the runtime

of the model to be gained from the use of more modern data structures for specific

growth models, especially with larger domain sizes.
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5.2 Memory Usage Data

One crucial aspect of any data structure is the maximum amount of memory that it

can consume, as this canmean that somedata structures are not possible tomakeuse

of due to out of memory exceptions. Unlike in the timing section, the data shown in

the graphherewill not be themedianvalue andwill insteadbe themaximummemory

consumptionof the systemover the100 runs. The reason for this is that is doesn’tmat-

ter if a data structure can use a minimal amount of memory if there is a high chance

that it could slip into a run that consumes so much memory that it causes the simu-

lation to crash. This section will look into the memory consumptions of the different

data structures, calculating the maximum memory consumption of these model is

not always a simple matter of keeping track of the number of cells that have been

added to the data structure and multiplying them by the node size. In the case of a

structure such as the Octree with its ability to cull nodes from its structure as it be-

comes increasingly filled is it possible for the number of nodeswithin the structure to

decrease between iterations. Also when a node is added to the Octreemultiple nodes

can end up having to be created to allow for the value to be stored in the correct po-

sition within the structure.

With the domain resizingmethod the number of cells within the domain changes

each time the structure resizes itself; this also affects the amount of memory con-

sumedbetween iterationsbutdependingon themodel inquestion the structure could

end up being the same size as the Lattice version which would generate the full do-

main even though it is possible for a large portion of this never to be used. Because of

these issues along with the stochastic nature of the models themselves, it was neces-

sary to run many experiments to calculate a possible maximummemory consump-

tion of each of the structures; this will give an idea of any significant drawbacks.

The Hashtable might seem like it poses a bit of difficulty because the fact that

a single cell can hold a number values within it, this would mean that it would be

necessary to iterate through each bucket and work out its memory usage and add
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these together. However, in this use case it has been proven that each of the buckets

will only contain a single value, hence it is possible to merely multiply the bucket

count by the size of a size_t variable for the key and a void pointer for the value in the

bucket which works out to be about 16 bytes. The void pointer is a commonly used

estimate in the calculation ofmemory for the C++ std hash table the unordered_map.

The memory consumption discussed here is inclusive of the memory consump-

tion of the growth sites list and not just the size of the data structure as this is a critical

aspect of the simulation of thesemodels and can itself end up consuming a consider-

able amount of memory. Unfortunately, due to a change in the way that VIPER han-

dles virtual memory it was not possible to be able to generate a cluster with an L size

of 1024 for the memory consumption experiments for some of the models for which

runtime data was able to be gathered. As such there are no 1024 data points for the

EdenA, HIP, and the IPRmethods.

The structure of this section will be the same as the previous section with it first

discussing the three standard Edenmethods followed by the Screened Edenmethod.

Then with be the three IP model in the order of IPR, HIP, and finally MIP method.

There will be references made the to runtime of the model within this section of the

chapter especially in cases where the fastest of themethod consumes themostmem-

ory; this will be done in order to keep the data in the proper context. The data shown

herewillmake use of the samedomain sizes as the timing section and eachdata point

will be gathered from 100 runs of the simulation.

5.2.1 Standard Eden GrowthModel

The Eden model has two different types of growth site lists that are utilised for the

EdenA, and EdenC models the growth sites list that is used will only ever contain an

entry once due to the additional state labelling that is used. The EdenB model, how-

ever, doesn’tmakeuseof this labelling systemashaving a single cell in the listmultiple
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(a) EdenA

(b) EdenB

(c) EdenC

Figure 5.9:MaximumMemory Consumption for the 3 standard Edenmodels in MegaBytes.
The floating box in the centre of each of the graphs shows a zoomed in area sharing the same

units as the main graph for both the x and y axis
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times is theeasiestway toensure that eachcell has the correctprobability forbeing se-

lected. Because of this, theMemory difference between the EdenA and EdenCmodel

is very minimal with the EdenC model consuming the most memory, which is to be

expected because it has a high fill percentage which can be seen in Section 3.4. The

EdenBmodel is different, though acrounding to the fill percentage the memory con-

sumtion of this model should be similar to that of the EdenAmodel it is signigicantly

larger, this is to be expected however when themethod for the handling of the growth

sites is taken into account.

The general trend is the same for all three of the different Eden models with the

RESandLATversionof themodels consuming the least amount, and identical amounts

of memory for all three versions of the model. The reason for this is that they both

make use of the same variable for the storage of a value, the char, which is the small-

est of the data type used. The filled percentage of themodel alsomeant that the stor-

age of the empty cells was not as big of an impact in caparision to increasedmemory

consumption for a single infected cell of the other structure making them the least

memory hungry implementations of the model. The reason that the LAT and RES

use the same amount of memory is that of the stopping condition and the resizing

method that was used making the Resizing domain method eventually generate the

same number of cells as the Lattice version by the end. When the timing is taken into

account this means that for the Edenmodel there is no benefit is the selection of any

other data structure especially the OCT as this at an L size of 512 in the case of the

EdenA model consumes 4 times the amount of memory with only a decrease in the

total run time.

5.2.2 Screened Eden GrowthModel

This section will discuss the memory consumption for the Screened Eden growth

model for the beta values 0.2, 0.5, and 0.9 for a maximum L size of 256, 512, and 1024

respectively due to the runtime of thismodel it was not possible to get up to the L size
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(a) β = 0.2

(b) β = 0.5

(c) β = 0.9

Figure 5.10:MaximumMemory Consumption for the Screened Edenmodel in MB. for beta
values 0.2, 0.5, and 0.9. The floating box in the centre of each of the graphs shows a zoomed

in area sharing the same units as the main graph for both the x and y axis
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of 1024 for the lower beta value models.

The max memory consumption for the Screened Eden model with a beta value

of 0.2 can be seen in Figure 5.10a and as stated earlier this value is the closest to that

of the EdenA model and the memory consumption of this model demonstrates this

with the two least memory hungry method being the LAT and RES which due to the

RES method used here with them consuming the same amount of memory. Though

this is not always the case as the beta value used in the simulation increases.

Thememory consumption for the 0.5 setting of the Screened Edenmodel can be

seen in the Figure 5.10b. In the case of runtime, this setting has the RES, LAT, and

AVL methods being highly tied regarding which one of the methods was the fastest;

this means that in this case, the memory consumption of the model could be a big

decisionmaker in the selection of the appropriatemethod. The twomodels that con-

sumed the least amount of memory where the HSH and the AVL methods with the

RES and LAT versions consuming only slightly less memory than the largest method

which in this case is theOCTmethod. What thismeans is that because there is very lit-

tle difference between the HSH and the AVLmethod, it is possible that either of these

methods would be a good choice for the simulation of the model if only the memory

consumptionwere taken into account until the data in Tables C.13, C.14, andC.15 are

looked at. Here it can be seen that there is a small amount of significance for the AVL

over the HSH this would mean that even though it would be only slight, there would

be a benefit to the usage of the AVL method in this case and when the timing is also

considered this shows that the AVL tree is the best choice for minimising the both of

these aspects.

The memory consumption for the Screened Eden model with a beta value of 0.9

can be seen in Figure 5.10c. As the beta value increases the amount of memory con-

sumedbut themoremoderndata structure slowly decreases until it reaches this point

where all of the structures consume considerably less memory then the LAT and RES

methods at an L size of 1024 this shows the benefit of the use of these structures on
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Figure 5.11:MaximumMemory Consumption for the Random Invasion Percolation model
in MB. The floating box in the centre of each of the graph shows a zoomed in area sharing

the same units as the main graph for both the x and y axis

a sparsely filled model. In this case the method that consumes the least amount of

memory is that of the AVLmethod and considering that fact that in terms of runtime

the AVL method is only slightly slower than the RES and LAT method the use of this

method could be a large benefit as it could allow for considerably more runs of the

model to be performed simultaneously on the same computer with only a slight in-

crease in the median runtime of each of the separate runs of the model. The results

of the statistical tests run on this data can be seen in Tables C.16, C.17, and C.18.

5.2.3 Random Invasion Percolation

The IP model is a useful model to show the possible memory benefits that can be

gained by utilising one of the alternative methods for the storage of the cluster that

are discussed within this work. Figure 5.11 shows the maximummemory consump-

tion for the IPR model for an increasing L size. In this system, it quickly becomes

apparent that the use of the OCTmethod for the storage of the IPR cluster would be a

highly ineffectivemethod because thememory that themethod consumes ismassive

in comparison to theothers. Though theremight still be a specific situationwhere this

additionalmemory consumptionwould be an acceptable hit, such as in the casewere
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Figure 5.12: Random Invasion Percolation Memory Consumption Boxplot for the LAT and
RESmethods shown the benefit of the RES method in the max memory usage of the system.

only a single cluster is being grown for rendering and amethod such as ray-tracing is

the desiredmethod toperform this rendering. However, if the aim is to run asmanyof

these models as possible in series or parallel, especially in parallel, the results shown

here would suggest that the use of the OCT method would be a highly inadvisable

one, especially when the runtime of this model is taken into account as can be seen

in Figure 5.6.

The difference between thememory consumption of the LAT and the RESmodel

is quite an informing difference in the growth of the cluster in the domain, this shows

that even in the case of an IPRmodel the domain doesn’t actually require the full do-

main as the RESmethod doesn’t reach a full (1024× 1024× 1024) domain size which

is obvious considering that the only difference between the LAT and the RES is the ac-

tual resizing of the domain and thememory consumption of a single cell is identical.

The difference in thememory consumption between these twomethods can be seen

in Figure 5.12. The statistical test showing that this is a significant difference and that

these boxplots are from different distributions can be seen in Tables C.19, C.20, and

C.21.

The method that consumes the least amount of memory in the case of the IPR

model turns out to be the AVL tree which is the slowest of the five different struc-
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tures; this is an excellent example of how when attempting to optimise a program

sometimes a trade-off between the runtime of the simulation and its memory con-

sumption must be made. It would be possible in specific situations for the saving in

memory, to be able to compensate for the increase in runtime by allowing for more

runs of themodel to be simulated at the same time on a computer, however, it would

require thousands of runs to be able to compensate for the massive increase in run-

time especially if the aim was to run a simulation with an L size of more than that of

1024.

5.2.4 Hawick Invasion Percolation

TheHIPs versionof the InvasionPercolationmodel out of all the differentmodels that

have been used here is the one that fills the domain the most and could in no way be

considered to be a sparsemodel and therefore it is expected thatmethods such as the

AVL and HSH will consume considerably more memory in comparison to the LAT or

RES method, the maximummemory consumption for the model with beta values of

0.1, 0.5, and 0.9 can be seen in Figure 5.13. The method which consumes the most

amount of memory, in this case, is that of the OCT. It was only possible to be able

to obtain the maximummemory consumption of this method up to an L size of 256

because of an out of memory exception.

The fact that the only two of the five structure consumed a small enough amount

of memory that they were able to be run to an L size of 1024, the LAT and the RES,

shows the efficiency of thesemethods. They also happen to consume the samemaxi-

mummemory which because of how themodel blankets the domain before it begins

to move down is to be expected. When the runtime is taken into account, this shows

that in the case of this model there would be no reason to make use of the other data

structures for its simulation.

As the beta value increased the number of runs that encountered out of memory
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(a) β = 0.1

(b) β = 0.5

(c) β = 0.9

Figure 5.13:MaximumMemory Consumption for the Hawick Invasion Percolationmodel in
MB. for beta values 0.1, 0.5, and 0.9. The floating box in the centre of each of the graphs
shows a zoomed in area sharing the same units as the main graph for both the x and y axis
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exception increased. The reason for this is somewhat counterintuitive when the fact

that the higher betas value are more sparsely filled is taken into account. However,

it is a straightforward matter to explain and boils down to the fact that in order to be

able to ensure that a cell is not added to the growth sites listmore thanonce it is added

to the structure in a neighbouring state, not an infected state. This along the much

higher surface areas of the 0.9 version means that the number of cells that are stored

inboth the growth sites list and the cluster structurewouldbemuchhigher and signif-

icantly affect the memory consumption of the model. This increased memory usage

is enough to cause program crashes at these larger domain sizes especially with the

OCT structure which consumes themostmemory for a single out of all the structures

tested here. This is an exciting feature and shows how the different methods used in

the handling of certain features of a model can have unexpected and odd results.

5.2.5 Meakin Invasion Percolation

TheMIPs model in the runtime section was one of the models where the more mod-

ern data structure was faster. In the case of this model, this is also the case for the

memory consumption where some more modern data structure that was tested this

can be seen in Figure 5.14. In this model, the OCT, AVL, and HSHmethods consume

considerably less memory than the RES and LAT structures. The model that con-

sumes the least memory in the AVL method up to the point that (g = −0.0001) at

this point the structure that is the most efficient in term of the memory consumed

becomes the HSHmethod.

With a g value of−0.01, the LAT model consumes 617 times more memory than

the AVL tree at an L size of 1024 which consumes the least amount of memory. The

next best option in the HSH function, however, this may have an only slightly higher

median the spread of the memory is considerably larger and the data in Table C.22

shows the AVLmethod is at an L size of 1024 highly significantly better than the HSH

method in terms of the memory consumption. As the g value tends towards zero the
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(a) g = −0.01

(b) g = −0.001

(c) g = −0.0001

Figure 5.14:MaximumMemory Consumption for theMeakin Invasion Percolationmodel in
MB. for beta values−0.01,−0.001, and−0.0001. The floating box in the centre of each of the
graphs shows a zoomed in area sharing the same units as themain graph for both the x and y

axis
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spread between the AVL and theHSHmemory consumption increases function caus-

ing the AVLmethod to be more andmore effective until when (g = 0) and the model

become the IPRmodel and the spread between the twomethods is at its maximum.

TheMIPsmethod is a clear example of howhighly sparsemodels (with a fill of less

than1% for all the g values tested) cangain significant benefits from the applicationof

more modern methods. When the timing data is also taken into account, this shows

that for this model the worst method that could be used is that of the LAT method

which is the current method that is used. Moreover, the two fastest of the methods

being the HSH and the OCT method which are in turn the methods that used the

least and the 3rd least amount ofmemory showing considerable benefits andwith the

Octreesbenefits in ray tracing this could veryquicklybeahighlypowerful application.

5.3 Summary

At the start of this chapter three expected outcomes where listed E1, E2, and E3. this

summary will refer back to the outcomes and will point out an example of where the

expectation can be found within this chapter to aid in the searching of the chapter.

It has demonstrated that in certain situations such as with the MIPs model with

the HSH structure and the Screened Edenmodel with the RES at specific beta values

where fill of the domain is very low, the standard method used for the simulation of

growth models the LAT method is not the best option, and more modern data struc-

tures are able to offer benefits in both the cases of the runtime of the model and or

thememory consumption of themodel. This was listed as expected outcome E1 and

example of this can be seen in Figure 5.8

When themodel in question is highly sparse, and the domain size it is being sim-

ulated within is unusually large, possible savings both in terms of the memory that

is consumed and the run times of the model are able to be obtained through the use
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of a more modern data structure, this can be due to the considerably large construc-

tion time of the different structures. However, this very quickly stops being the case

as the cluster fills more andmore of the domain, which can be seen in the case of the

Standard Edenmodels and theHIPsmodel, this was an expected result andwas listed

as E2 one example of where this can be seen is in Figure 5.7 where the LAT and RES

method are consitantly significantly faster the the otehr structures tested.

Expected outcomeE3was to dowith the increase in the effectiveness of themod-

ern data strcutres as the sparsity of themodel increases due to the increase in the do-

main size this is demonstrate and in most easily visable in the timing graphs for the

Screened Eden Growth model, which can be seen in Figure 5.5. This shows that it is

the sparsity of the domain that is the critical aspect for the decision between structres

and not the size of the cluster itself.

The Screened Edenmodel is an excellent example of how sometimes the runtime

of these systems is not as crucial to the selection of the structure as thememory con-

sumption is, with the AVL and RES methods having a very similar runtime to that of

the LATmethod, however the AVLmethod has a significant memory saving. Another

structure that offers a considerably memory saving in this case is that of the HSH

method even though it was a slower structure. This shows it is not simple matter to

decide whether one structure is the best for a particular model as it can depend on a

number of factors and in a case such as here where themodelmakes use of screening

values the ideal structure can change along with the screening value.

Additionally the Screened Edenmodel has also shown the need for a RESmethod

that is able to resize multiple edges simultaneously without having to resize of all the

sides based offof the position of the cell that is the reason that the domainneeds to be

resized. The reason for this is that it could allow for a method that behaves more like

that of the one used for the MIPs model, this could allow for great saving in memory

and in turn improve the runtime of the model.

So far this thesis has only considered possible optimisations that can be gained
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through the software-basedversionof growthmodels. However, it is commonlyknown

thathardware-based implementationsof a simulationcanoftenoffer substantial ben-

efits to the runtime of the simulation. In the following chapters of this thesis discuss

a possible implementation of the Eden growth model that makes use of memristor’s,

the fourth fundamental circuit element, for the storage of the state of the cells. Ad-

ditionally new additional methods for the analysis of these models to confirm the

effectiveness of the memristive system that has been designed will be investigated.
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CHAPTER 6

Memristors for Growth Models

THE memristor was first discussed in 1971 by Chua (Chua, 1971, 2011,

2014). In his first paper (Chua, 1971), Chua talked about a gap in the

then-trio of fundamental circuit elements and how a relationship be-

tween the magnetic flux and the charge passing through a device was

missing. He stated that a circuit element could close this gap that henamed themem-

ristor which would be the fourth fundamental circuit element alongside the Capac-

itor (discovered in 1745), the Resistor (discovered in 1827), and finally the inductor

(discovered in 1831). Its resistance unlike a resistor is based on the history of the cur-

rent that had flowed through it and would be fixed when a current was not flowing

through it (Chua, 2011, Kavehei et al., 2009, Trefzer, 2017); this was later generalised

in 1976 (Chua and Kang, 1976).

Eachof thedifferent fundamental circuit elements hasdifferent specificuses. The

first of these the Inductor is responsible for the storage of energy within a magnetic

field. Capacitors store energy within an electrical field and resistors dissipate electri-

123
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Figure 6.1: The four fundamental circuit elements (Trefzer, 2017).

cal energy. The memristor completes the conceptual symmetry of the fundamental

elements a diagram of this can be seen in Figure 6.1.

There has been a fair bit of discussion over whether the memristors made by

people such as the researchers at HP Labs are actually a real memristor (Meuffels

and Soni, 2012, Stanley Williams, 2008, Vongehr and Meng, 2015). One of the argu-

ments against this being a genuine memristor states that what has really been made

is a chemical capacitor, and it will only be functionally correct until the chemical in-

homogeneity in the TiO2 is balanced out (Meuffels and Soni, 2012). Another argu-

ment (StanleyWilliams, 2008) boils down to therehavingbeen two specificmisunder-

standingsmadebyHPLabs. Thefirst being that theyhaveoverlooked the extra design

space that arises when working with non-linear circuit elements and the second one

she states is "more profound" this being that they misunderstand the mathematical

definition of the memristor. This work here will not answer this question and will act

as though the devices are real memristors. The simulation used here is to simulate

devices such as though made by HP labs and so it does not matter if the device does
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Figure 6.2: A pinched hysteresis loop. This is the iconic aspect of the memristor which
occurs when you plot the voltage against current with sinusoidal voltage wave.

not wholly fit the original definition of the memristor which Chua himself argued for

a change to in 2011 (Chua, 2011).

Chua famously can be often quoted saying, “If it’s pinched it’s a memristor” this

was also the title (Chua, 2014) of one of his papers which focused on the iconic aspect

of thememristor, thehysteric loop. This iswhat is formedwhena sinusoidal voltage is

applied to a memristor and the subsequent current against the voltage. A hysteretic

loop looks somewhat like a slanted infinity symbol, an example of this can be seen

in Figure 6.2. Exven before Chua’s paper, there are a considerable number of papers

talking about anomalous loops on IV graphs (Dearnaley et al., 1970); this couldmean

that for years people were accidentally making a circuit with memristive properties

within them but were unable to identify them.

An important question that should be answered is why the memristor has been

selected for use here. The reason for this is that memristors offer highly interesting

behaviour that where as is not currently taken advantage here in future work could

lead to a more generalisable agent architecture for the simulation of growth models

and that is their non-linear behaviour (Wang et al., 2015) as seen in the iconic pinched

hysteresis loop which is discussed later on within this chapter. Even though is this

specific application the memristor is used more like a counter this inclusion of this

device offer substantial room for increasing the complexity of the models simulated.

The structure of this chapter will be as follows; first, there will be a discussion

on how the memristor works explaining how it is possible for the device not only the



6.1. How doMemristors work 126

change it resistance but also to be non-volatile with this change. This will then be

followed with a discussion on some current uses of memristors in a few different ar-

eas including neuromorphic computing in order to give an idea of the wide-reaching

benefits that this device can offer. This will then be followed by a discussion on the

implementation of thememristor simulation including the differential equation that

wasused to simulatewhathappens toamemristorwhenavoltagepositiveornegative

is applied to the device. The final part of this chapters will involve a description of the

hardware agent that has been designed for the simulation of the Eden growth model

as well as how the simulation works and the different variables that are used within

the simulation that allows for different behaviour to be gain from themodel. In order

to be able to distinguish between the standard software implementation of the Eden

model and this memristive based hardware implementation, the hardware method

will be referred to a the MEdenmodel which stands for Memristive Edenmodel.

6.1 How doMemristors work

The memristor can be written in terms of voltage and current without the need for

magnetic flux; this can be seen in Equations 6.1 and 6.2. This is a highly unusual as-

pect of memristor and shows that the change in the resistance of the device is not

due to magnetic flux. The change is instead an electrochemical process that affects

the actual structure of the material used in the device (in the case of HP Lab’s mem-

ristor that would be TiO2(Strukov et al., 2008)) which is only possible due to the size.
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v = R(w)i (6.1)

dw

dt
= f(i) (6.2)

where:

R represents the generalized resistance

w represents the state variable of the memristor

i represent the current

v represents that voltage

dt represents the change in time

The easiest way of thinking of how the memristor works is to think of a pipe with

water flowing through it (Trefzer, 2017). If the water flows in one direction through

the pipe the diameter its increases which in turn reduces the resistance in the flow

of water through the pipe, however, if the water flows in the opposite direction the

pipe decreases in diameter which increases the resistance against the flow of water.

So long as there is nowater flowing through the pipe, its diameterwill remain fixed. In

this analogy, the memristor is represented by the pipe and the water flowing through

the pipe is representative the flow of charge through thememristor and the diameter

of the pipe in analogous of the resistance of the memristor changing based on the

direction of flow and staying fixed when there is no flow.

The first time that a memristor was intentionally created was in 2008 by HP labs

(Strukovet al., 2008). Thismemristor consistedofbetween3nmand30nmof titanium

oxide which can be considered to be a wide band gap semiconductor which is auto

doped; this is sandwichedbetween twoplatinumwires. Whenacurrentflows through

thememristors it alters the chemical composition of the titaniumoxide spreading the

dopedportionwhich is nowTiO2−xwherex = 0.05 thismeans that about 0.5% of the

oxygen is nowmissing causing there to be bubbles of oxygen vacancies to be present

in one side of the memristor this is referred to as the doped side of the memristor.
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Figure 6.3: Visualization of how to oxygen deficiencies flow through a memristor based on
the direction of the flow of current. (Tetzla, 2013, Trefzer, 2017).

The other side of the titanium is considered the undoped side of the switchwhich

is the standard "perfect" titanium oxide or TiO2 this can be thought of as the insulat-

ing side. When a current flows from the doped side of the memristor to the undoped

side the oxygen vacancies within the memristor are spread further into the memris-

tor this, in turn, lowers the resistance of thememristor. When it flows in the opposite

direction the oxygen deficiencies move back and the resistance of the memristor in-

creases; this works because these bubbles within the TiO2−x carry a positive charge.

Just like with the water pipe analogy when the flow stops so does the movement of

the oxygen giving the device its non-volatile nature as an input of energy is required

for the vacancies to be moved. A graphical example of this can be seen in Figure 6.3.

The scale of these switches goes a long way in explaining why it took so long for

the memristor to be found and purposely fabricated as they need to be made in the

nanometre scale to be efficient enough to be practical. This is because the effects of

memristance follow that of an inverse square law, meaning that as the component

gets smaller the more significant the effect of memristance with it becoming almost

wholly unobservable in themillimetre scale as Stanley states (StanleyWilliams, 2008)

"memristance is a million times as important at the nanometre scale as it is at the

micrometre scale, and its essentially unobservable at themillimetre scale and larger".
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6.2 Current Uses of Memristors

Memristors are a relatively newdevice but even still there is an extensive body ofwork

that makes use of them these include areas such as Cybersecurity, Big data, and they

have even been used in order to create reconfigurable logic circuits (Mazumder et al.,

2012). This section will go into a brief amount of detail on some of the areas in which

memristors are currently being used, this will be by nomeans an exhaustive list but is

intended to give an ideaof the range areas inwhichmemristors are finding a foothold.

The first of these is that of ReRAM, sometimes referred to as RRAM. This stands

for resistive random access memory which is a non-volatile form of memory and is

the area that will be discussed here that could have thewidest reaching positive effect

to theworldwith it offering benefits to all computingwith is small size lowenergy cost

and non-volatile nature. It shares many similarities to phase change memory (PCM)

in that they both have a level of non-volatility, and it is possible for them to be ar-

ranged in similar architectures such as the crossbar (El-Hassan et al., 2016, Hamdioui

et al., 2015, Vontobel et al., 2009, Yu et al., 2017) and it is not yet sure which of these

two technologies will take over the market.

There has beenmuch discussion about whether RRAM could be the replacement

for flash memory which currently dominates the semiconductor memory market or

DRAM which is the current method for the handling of random access memory in

computers. Flash memory functions through the use of an array of memory cells for

the storage of data; these cells are made up of large numbers of floating-gate transis-

tors. Each is capable of storing one bit of data can require three different connection

to function, these connections being a bit line, a word line and ground. This makes

the amount of space required larger than that of the memristor the reason for this is

the architecture that the memristor would use, the crossbar which will be discussed

later on within this section. The way in which these gates function is by applying ei-

ther a large positive or negative voltage to the gate. The large voltage means that the
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Figure 6.4: HPmemristor in a crossbar architecture. image obtained through the use of an
atomic force microscope. A total of 17 memristors are shown in this image.

transistors in thememory have a relatively short life with them only being capable of

100,000 P/E cycles before wear and tear being to deteriorate the storage device mak-

ing it increasingly inconsistent and unreliable. This is where memristors come in to

save the day so to speak. The most common architectures that are used for the de-

sign of RRAM systems is that of a simple crossbar system. This system consists of a

matrix of connected memristors which can be quickly indexed even in parallel de-

pending on the implementation. This design also allows for the stacking of layers for

a 3D crossbar which allows for a very high level of data destiny within the device. An

example of the crossbar can be seen in Figure 6.4. By used memristors to store this

data instead of capacitors as in DRAM is it no longer necessary to have to refresh the

memory continually so that it does not lose the stored data significantly decreasing

the energy consumption as they memristors only required energy to be read from or

written to and from. This memristive memory could also be used to replace flash

memory as it is much more data-dense meaning that more data can be stored in the

same size drive.

There is awide rangeof different terms that areusedbydifferentmanufacturers of
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Non-volatile RAMsystems (Trefzer, 2017) these includeRRAM,CBRAM, PRAM. There

is also Intel’s Optanewhichmakes use of a 3D crossbar systemwhich they have called

crosspoint. Optane is capable of read speeds of up to 1,450MB/s and write speeds of

up to 640MB/s. They have not as of the time of writing this stated what the system

is they have only said that it is not a phase-change memory which means it could

very well be the first example of a memristive based memory on the market that is

available to the public.

The second area is the one in which memristors have gained much traction, and

this is in the field of Neuromorphic computing which makes use of analogue circuits

in an attempt to mimic biological architectures such as the human brain. It was first

conceived of by Carver Mead in the 1980s. Since the discovery of the memristor, the

neuromorphic computing community has developed many systems making use of

this element (Kvatinsky et al., 2014a, Uppala, 2015, Yakopcic et al., 2011). The main

reason that these circuit elements are used in these types of systems is that of their

ability to easily store floating-point values in a non-volatile manner. A lot of the neu-

romorphic systems are used to implement neural nets (Bala et al., 2016, Trefzer, 2017,

Yu et al., 2017) for a number of purposes including image recognition andnatural lan-

guage processing. The non-volatile nature of the systemmeans that when not in use

the network remains trained acting as its own storage system.

An additional reason that memristors are used in systems such as neural nets is

that they are capable of performing logic operations they can be also be implemented

in such a way that makes then reconfigurable (Borghetti et al., 2010, Hamdioui et al.,

2017, Lehtonen and Laiho, 2009) allowing storage to become compute. It has been

shown that it is possible to use them for the implementationof full logic gates (Kvatin-

sky et al., 2014b) and even a complete adder system (Gale, 2015).

Finally, themain application that thememristor has beenput to that is of concern

within this thesis, and the final one that will be discussed is how they are used in the

simulation of cellular automata. There has already been a substantial volume of work
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undertaken toutilisememristorswithin agents of a cellular automaton for the storage

of the state of the cell. One being a minimalistic excitable cellular automaton that

works within a 2D environment (Adamatzky and Chua, 2011). In themodel, each cell

can exist in one of three states resting, excited, and refractory. Each cell in the model

will update itself depending on the state of the neighbouring cells that it is connected

to, the connections between the cells can be altered to change the behaviour of the

model. This is not the only example of memristors being used for cellular automata;

there is a wide range of different currentmodels that used this type of approach (Itoh

and Chua, 2009, Wang et al., 2015).

One example of a different implementation of a CA to solve a specific problem

using memristors is a shortest path solver (Pershin and Di Ventra, 2011, Stathis et al.,

2014, Ye et al., 2013), with these CAs a memristive network is used for the solving of

a shortest path algorithm such as what a Dijkstra’s or A-star algorithm does. One of

these pieces of work, in particular, was one of the key inspirations in the creation

of the MEden model that is the work done by Stathis et.al (Stathis et al., 2014). This

inspiration can be seen in the similarities in the design of the two agents, the agent

designed for the MEdenmodel can be seen Figure 6.9.

6.3 Simulation of Memristors

Due to the high cost and the low yield of memristors currently, it was necessary to

build a simulation of a memristor in code in order to test the possible effectiveness

of this method for the simulation of Eden-like clusters. To this end, a bespoke C++

program was created that simulates the effects of a memristive network made up of

agents like the one shown in Figure 6.9, the design of this agent will be discussed in

more detail in Section 6.4. There where other method that could have been used for

the simulation of the model be the C++ simulation was selected as it allowed for an

easier method to control the output of the system allowing it to easily write out the
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clusters that are produced by the model. The first step in the development of this

simulation was to wirte a code based simulation of amemristor in that acts as closely

as possible to a real memristor. One thing that will not be within the scope of the

simulation is to simulated any possible flaws that a real memristor amy have and as

such the memristor that will be simulated will be a perfect memristor.

In order to achieve this, it is essential to understand the mathematical equations

that describe the processes going on within thememristor (Gomaa et al., 2016) these

where first proposed by Strukov et al. (Karamani et al., 2017, Strukov et al., 2008). The

first equation that is required to gain an understanding of the memristor is that of

Ohm’s law, this will allow for the calculation of the current that passes through the

memristor, based off of the devices current resistance and the voltage that is being

supplied. This can be seen in Equation 6.3 and is probably the most recognisable

equation in electronics.

Unlike with a standard resistor where the resistance is fixed, with the memristor,

the resistance of the component will continuously be changing as the current passes

through it. To this end, it is necessary to be able to calculate this change in resistance.

In order to be able to do this the first step is to understandwhat caused this change in

resistancewhich as stated earlier is themovement of theoxygen vacancies. Therefore,

the specific resistance of the memristor at a given time is proportional to the spread

of the oxygen ions throughout the memristor; Equation 6.4 describes this process.

The next step is to understand how the x in Equation 6.4 will change over time;

this value represents the rate of spread of the doped section of the memristor. This

is calculated through the use of Equation 6.5. This rate will depend on two different

things, the first being the dopantmobility and the secondbeing the amount of charge

that is flowing through the memristor. Dopant mobility characterises the speed at

which the dopant, in this case, the oxygen vacancies move through thematerial. The

Dopant mobility is described with the unitsm2s−1V −1. In this case its value is

10−15m2s−1V −1 which will be a constant applied in Equation 6.5.



6.3. Simulation of Memristors 134

V (t) = M(x)I(T ) (6.3)

where:
V is the voltage
M is the internal resistance of the memristor
I is the current

M(x) = RONx+ROFF (1− x) (6.4)

where:
x = w

D
∈ (0, 1)

w is the width of the dopant spread in the memristor
D is the total length of the memristor
RON is the minimum possible resistance
ROFF is the maximum possible resistance

dx

dt
=
µvRon

D2
i(x)f(x) (6.5)

where:
f(x) represents the window function
µv = 10−15m2s−1V −1 this is the average dopant mobility

f(x) = 1− (2x− 1)2p (6.6)

where:
x =

w

D
∈ (0, 1)

p is a positive integer

f(x) = 1− (x− stp(−i))2p (6.7)

stp(i) =

{
1, i ≥ 0

0, i < 0
(6.8)

where:
x =

w

D
∈ (0, 1)

p is a positive integer
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Figure 6.5: Results for the window functions Biolek on the left and Joglekar on the right
where the x axis show the state variable in the range of 0 and 1 and the y axis represent the
return value from the window function. The Biolek model displays the value for positive and
negative I values for each of the p-values. The p-values that are shown are p = 2, p = 4,

p = 6, p = 8, and p = 10. These functions can be seen in Equation 6.7 for the Biolek function
and Equation 6.6 for the Joglekar function. The y axis has no units as this value is just a

constant.

Equation 6.5makementionof awindow function, the jobof thiswindow function

is to simulate the non-linear nature of the dopant drift. Two window functions are

commonly used for this purpose both of which were tested. The first of these is the

Joglekar function (Joglekar and Wolf, 2008) which can be seen in Equation 6.6. This

method does have one major issue though this is known as a boundary lock; this is

where no external force can change the resistance of thememristive device when the

boundary is reaches meaning that with the Joglekar function once RON or ROFF is

reached the memristor would be fixed at the resistance and just become a resistor.

That is where the second equation comes in the Biolek function which can be seen in

Equation 6.7.

This equation was created by Biolek(Biolek et al., 2009); it was found that it was

better as instead of only relying on a single value that is the state value or x the func-

tionmakes use of a second value to describe the flow. So he added a dependencywith

the current i. By depending on the current, this solves the boundary lock issue by al-

lowing the currents’ direction to pull the device out of this state. The results of both

of these equations for a variety of p-values can be seen in Figure 6.5.

In order to test that the bespoke memristor simulation which was written in C++
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and based on the Equations 6.7, 6.3, 6.4, 6.7, and finally 6.5 that has been devel-

oped functions correctly, it had to be tested against other accepted results for the

behaviour of this circuit element. To this end a SPICE1 simulation (Batas and Fiedler,

2011, Vourkas and Sirakoulis, 2015)waswritten that allowed for confirmation that the

mathematical simulation in the C++ code was acting correctly. SPICE is known to be

able to handle the simulation of circuits with a high level precision and is widely used

in the world of electronics. SPICE is an open-source analogue circuit simulator, it al-

lows for the construction of a circuit on a computer with a schematic capture system,

the results of which can be seen in Figure 6.6a.

The SPICE model that has been used is a simplified version of a sub-circuit writ-

ten by Ykaopcic et al. (Yakopcic et al., 2011, Yakopic et al., 2012) and Biolek (Biolek

et al., 2009) this can be seen in Figure 6.6b and the circuit diagram can be seen in Fig-

ure 6.6a. Themain difference between this version of the code and the one presented

in thepaper is simply the summationof (uv∗Ron/pow(D, 2))with the variableK and

the removal of someadditional calculationswhichwerenot needed suchas the calcu-

lation of the flux. The variables that are used to define the memristor are the same in

both theC++ code and the SPICEmodel these being;RON = 100Ω,ROFF = 16, 000Ω,

D = 10 nm, µv = 1−14m2 s−1 V−1, and p = 7.

The results for the SPICE version of thememristor simulation can be seen in Fig-

ure 6.7. The voltage was a pure 1Hz sine wavemeasuring a 1-volt peak the simulation

was run for a total of 3 seconds. It gave a high peak amperage of 129.17µA, and a low

peak of−129µA, the wave has a slight slant forward it is this slant that is responsible

for the pinched hysteresis loop that is shown at the top of Figure 6.7. The resistance

fluctuated smoothly between 10.99KΩ and around 4.48KΩ after the first sine wave

it never wholly reached the initial starting resistance again but came very close. With

these results, it is possible to check whether the memristor in the C++ program is ac-

curate enough to give a realistic response when used in the MEdenmodel.
1Simulation Program with Integrated Circuit Emphasis
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(a) The circuit diagram for the circuit that is being tested with the memristor represented by
the pinched hysteresis loop on the right and the voltage source on the left.

1 .SUBCKT memristor Plus Minus PARAMS:
2 + Ron=100 Roff=16K Rinit=11k D=10N uv=10F p=7
3 +K=(uv * Ron / pow(D,2))
4 Gx 0 x value={I(Emem) * K * f(V(x),I(Emem),p)}
5 Cx x 0 1 IC={(Roff - Rinit) / (Roff - Ron)}
6 Emem plus aux value={-I(Emem) * V(x) * (Roff - Ron)}
7 Roff aux minus {Roff}
8 .func f(x,i,p)={1 - pow(x - stp(-i), 2 * p)}
9 .ENDS memristor

(b) SPICE sub-circuit used for the simulation of a memristor within SPICE (Biolek et al.,
2009). This version of the memristor makes use of the Biolek window function. This code is

based on that shown in a paper (Yakopic et al., 2012)

Figure 6.6: The custom SPICE code and the SPICE circuit diagram for the simulation of the
memristor used to gather effects of a sinusoidal voltage that is applied to a memristor so the

C++ code version of the memristor can be tested.

When the resultsC++ implementationof thememristor is compared to the results

of the SPICE implementation, it can be seen that when they have the same sine wave

voltage applied to it in the simulations, that the SPICE simulationproduces the results

this can be seen in Figure 6.8. The C++ version calculates the current to fluctuate in

the samemanner as the SPICE version but between 129.47µA and−129.35µA and it

calculates the resistance to move between 11KΩ and 4.46KΩ. This means that the

C++ code is off from the SPICE code by 0.47µA on the high peak current and−0.35µA

on the low peak. The resistance is only slightly off as well with the high peak being

0.01KΩ off and the low peak being 0.02KΩ off. Having said that the general trend
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Figure 6.7: Data from the SPICE simulation of the memristor the top graph shows the IV
graph showing the pinched hysteresis loop the second graph with the red line show the

change in the resistance of the memristor over time and the final graph show the voltage in
green and the current in blues over time.
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Figure 6.8: Graphs show the Current and the Resistance of the C++ simulated memristor as
a 1Hz wave voltage with a peak of 1 volt flows through it.
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between the two is the same with the same patterns being from and the differences

are only minimal; this means is that the C++method can be used for this purpose.

6.4 MEden Agent

The most important aspect of the MEdenmodel simulation is the actual agent itself,

this section will discuss the final MEden agent that is used for the majority of the ex-

periments which can be seen in Figure 6.9 as well as a previous design for the model

that was found to be unfit. This final design of the MEden agent can be seen in Fig-

ure 6.9, it has a single memristor within the state machine of the agent. This state

machine is responsible for storing the state of the agent and determiningwhether the

agent is infected and as such should be attempting to infect its neighbouring agents.

The memristor is set up with a RON value of 100Ω and a ROFF of 16, 000Ω. The

agent is connected to its four neighbouring agents (north, east, south, and west) as

it is the 2D version of the MEden model that will be focused on here, it is possible

to make use of this same agent design for 3D by adding additional connections to

the front and back agents, however. Each of these neighbouring connections has its

own randomly pulsing voltage output, one for each of the neighbours. When the re-

sistance of memristor drops below the activation threshold, the state machine closes

the switches connecting the pulse generators to its neighbouring cells completing the

circuit allowing the agent to infect its neighbouring agents.

The first design for the MEden agent was set-up with all the memristors within

the network at the same initial resistance, and the pulse generators would be fixed

and pulsing constantly. The issue with this version of the MEden model was that in-

stead of resulting in the rough clusters it would generate clusters similar to that of a

noise-reduced Eden growth model. As shown in Figure 6.9 each of the neighbouring

cells is attached to a different pulse generator this was not initially the case in the ini-

tial design of the agent there was only one pulse generator. This change was made



6.4. MEden Agent 141

Figure 6.9: Diagram of the 2Dmemristor based cellular automata agent that is used in the
MEden simulation. The initial resistance for each memristor is set within a random range
based on the Pmax of the run and the Random Pulse Generators will pulse the neighbouring
cells with a change between (0, Pchance]. After the internal resistance of the state machine

reaches the activation threshold the switches connecting the random pulse generators to the
neighbouring cells are closed.

for two reasons, this first of these reasons was to ensure that when a pulse is sent

the same amount of voltage is supplied to each cell whereas if there was only one

generator connected to all four of the cells more the voltage would be split between

the four neighbouring cells in proportion to the internal resistance of the memristor.

Thiswouldmean that an agentwith a lower resistancewould receive a higher share of

the total voltage and as such, it would have its internal resistance lowered at a much

higher rate cuasing a biasing to the growth of the cluster. This could be used to allow

for a possible screening effect to be included in future work. The second reason has

to do with the Pulse Chance that is assigned to each of the generators, having four

generators means that when one of the generators pulses its neighbour, it is possible

for the other neighbour cell not to be sent a pulse, this increased the stochastic nature

of the model.

Two variables can be tuned, in the MEden model allowing for the type of clus-

ter that is produced to be more specifically selected to meet the user’s requirements.
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P = Xa − (θ × Pmax) (6.9)

P = Xa − [θ(U × Pmax)] (6.10)

where:
P is the initial starting setting for the memristor at point (x, y)
Xa is the activation threshold for the memristor in the range [0,1]
U is a random value in the range [0,1]
Pmax is the maximum pulse count to activate the memristor
θ it the normalized quantity of resistance that a memristor will alter by
form a single pulse

C = Pchance (6.11)

C = U × Pchance (6.12)

where:
C pulse chance for the pulse generator (x, y)
U is a random value in the range [0,1]
Pchance is the maximum chance a pulse generator has to send a pulse

The first of these variables Pchance relates to the random pulse generators that send

the voltage pulse to the neighbouring agents. This variable governs the maximum

chance that each generator has to send a pulse to one of the neighbours. There are

two different equations that will be tested to generate the pulse chance for each of the

random pulse generators; these can be seen in Equations 6.11 and 6.12. A version of

the MEden model that makes use of Equation 6.12 is denoted with the prefix RC and

in the case of when Equation 6.11 is being used it is denoted with the prefix FC.

The second of these two variablesPmax concerns itself more with the initial resis-

tance of each of the memristor within the domain. Initially, the cell is set up with a

randommemristance which is found through the use of one of two simple equations

which can be seen in Equations 6.9 and 6.10. Equation 6.10 has a random factor in-

cluded in it thismeans that the number of pulses required to activate eachmemristor

can vary between 1 and Pmax adding a level of randomness to the simulation. A ver-

sion of the MEden model that makes use of Equation 6.10 is denoted with the prefix

RM and in the case of when Equation 6.9 is being used it is denoted with the prefix
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Name Acronym Equations
Random Pmax and Random Pchance RMRC 6.10 and 6.12

Fixed Pmax and Fixed Pchance FMFC 6.9 and 6.11
Random Pmax and Fixed Pchance RMFC 6.10 and 6.11
Fixed Pmax and Random Pchance FMRC 6.9 and 6.12

Table 6.1: The name of the four MEdenmodels and the equations configurations that each
of them uses

FM.

The combination of these four equationsmeans that there are four possible com-

binations ofMEden that with be investigated in Chapter 7. These versions are FMFC2

whichwillmakeuseofEquation6.9 for initial resistancecalculationandEquation6.11

for the individual pulse generators chances, FMRC3 will use Equations 6.9 and 6.10,

RMFC4 will use Equations 6.10 and 6.9, and finally RMRC5 will use Equations 6.10

and 6.10. All of these are also described in Table 6.1.

Algorithm 5 describes the simulation that has been written to test the MEden

model. The simulation will begin by initializing all the agents within the system’s

pulse generators and their initial resistance based on one of the set of equation in

Equations 6.11, 6.12, 6.9, and 6.10. Once all the cells have been initialised a seed is

“planted"meaning it is set as infected which closes the connections to its neighbour-

ing cells. In this case, the seed cell is the centre most cell in the domain, though it is

entirely possible for this seed cell to be any of the cells and for them to even be more

than one. The system is designed in such a manner that it can handle any seeding

that it is set up with, even in the case of multiple clusters that will end up interacting

with one another.

After the seed has been set it will begin to pulse the neighbouring cells, this is

where the main body of the simulation begins and where the software implemen-

tation it differs the most from the theoretical hardware based implementation. The
2Fixed Pmax Fixed Pchance MEdenModel
3Fixed Pmax Random Pchance MEdenModel
4Random Pmax Fixed Pchance MEdenModel
5Random Pmax Random Pchance MEdenModel



6.4. MEden Agent 144

Algorithm 5 Eden Growth model pseudo code for the memristor simulation
initialise the grid of memristors
set the initial memristance for the memristors
assign the random pulse chance in the range (1,MAX] to each of the pulse genera-
tors
set seed cluster memristor to on
while current time step is < max time step do
for all cells do
if cell is on then
pulse neighbouring cells

end if
end for
for all cells do
test memristance and update cell state to either on or off

end for
end while

cluster growth portion of the simulation can be split up into two phases the pulse

phase and the state update phase. The software implementation of the pulse phase

as a simplification, each cell is iterated over and checked for whether it is infected. If

it is then the agent will send a pulse to each of it connected neighbours this will con-

tinue until all the cells within the domain have gone through this process. Once this is

done the state update phasewill begin, this phasewill also iterate over all the cell, and

if they are not infected it will test the resistance of thememristor, and if it is below the

activation threshold it will set it to infected which will mean in the next pulse phase

that cell will begin to pulse its neighbouring cells attempting to infect them.

A theoretical hardware implementationwouldbedesigned so that the initial steps

of the process would be identical to that of the software simulation; the difference is

in the growth portion. In the simulation, this portion of the model is done serially in

order to simplify the codeand to allow for asmanyversionsof themodel tobe run side

by side on an HPC. Whereas in the hardware simulation all the cells will pulse their

neighbouring cells simultaneously and then enter the state check phase and perform

this test at the same time as well.



6.5. Summary 145

6.5 Summary

This chapter started off with a brief history of the initial conception of thememristor

in 1971 and its fabrication in 2008. The memristor is a relatively new circuit element

and as such is a thriving area of research in both industrial and academic realms. This

new element could lead to countless benefits in the realm of computing and beyond.

This was followed by a discussion of some of the current uses for memristors in

several areas including neuromorphic computing where they are being used in an

attempt to simulate how the human brain functions for the computation of neural

networks. Also, the shortest path solving systemwhere amemristor-based CA is sim-

ulated for the computation of the shortest path within a maze with both a single and

multiple exit points.

In order to be able to simulate the memristor, it is essential to understand the

mathematical equations thatdescribe the functionof thisuniquecircuit element these

equations are discussed in detail in Section 6.3. This section also goes into the SPICE

simulation which is a commonly accepted one and compares it to the ke C++ code

that was used for the simulation of the MEden agent and the SPICE model showing

that what differences there are between them are minimal and the purpose was to

copy the general behaviour, not the exact resistance drops.

The final section within this chapter was a discussion of the design of theMEden

agent focusing on where the inspiration for this agent came from and the changes

that have beenmade tomake sure that this agent functions in the desiredmanner for

the running of the model. This section also goes into the design a previous version

of the MEden agent a discusses why it was unfit for the purpose it was intended for.

This is then followed by a description of both the algorithm for the running of the

simulation and how the actual hardware would function if fabricated.

It is all well and gooddiscussing the creation, anduse ofmemristive-based agents

for the simulation of growth models and the clusters that are produced may to the
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naked eye even look similar to the actual cluster. However, growth models exhibit a

variety of complex physical characteristics that can be hard to identify by eye. As such

the following chapterwill analyse the four different versions of theMEdenmodelwith

both themost commonly usedmethod, the fractal dimension, and two newmethods

for analysis; components labelling and convolutional neural networks.



All you have to decide is what to

do with the time that is given to

you.

J.R.R. Tolkien,

The Fellowship of the Ring

CHAPTER 7

MEden Results and New Analytical Methods

WHEN attempting to develop a new algorithm or as in this case

a hardware-based implementation for the simulation of a cel-

lular automaton based growth model it is essential to compare

thebehaviour and results of the simulation against the currently

used methods, in order to make sure that any differences can be quantified and un-

derstood. It is important to avoid the trap of just because they look the same to as-

sume that they are the same.

Theremay be certain situationswhere this approach is good enough, for example

if attempting to simulate the flight of birds for a film and the twomethods are visually

similar but the new method is much faster and easier to work with. However, as in

the case here where thesemodels are studied for particular behaviours that theymay

exhibit it is essential that the new method acts as closely to the original as possible

and all differences are understood.

147
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Figure 7.1: Examples of the cluster generated by the MEdenmodel specifically the RMRC
version of the MEdenmodel where the stochastic processes are applied to both the Pmax
and Pchance. These images have been gather from the images that are fed into the image

processing method disucssed in Section 7.3

This chapter will attempt to show that the MEden method for the simulation of

Eden like clusters, if it was to be fabricated it would be theoretically able to simulate

Eden clusters at not only a much faster rate then the current computational simula-

tions used, but also that it is possible for this method to move between the different

classes of the Eden model. This Chapter will also aim to find any limitations of this

method such as in the types of clusters that can be produced, seeing if it can consis-

tently produce EdenA, EdenB, and EdenC cluster or if it is only capable of producing

one or two of these cluster types.

This chapterwill discuss theexperiments thathavebeen run toclassify theMEden

growth model and compare it to the Eden growth model. It will begin with what can

be considered the common method used to show that a new method is producing

mathematically similar clusters, that being the fractal dimension. This section will

begin with an explanation of the fractal dimension along with how it is actually com-

puted. This will then go into the results obtained for both the standard Edenmethods

in addition to the MEden methods. Summing up the section will be a discussion on

the limitation of this method showing the reason for the two alternate methods that

have been developed for this task. Finally, there will be a discussion of the two pro-

posed methods, these being the component labelling and the image classification.

These sections will follow a similar structure to that of the fractal dimensions section

beginning with an explanation of the implementation of the method followed by a

discussion of results harvested from the different methods.
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The MEden model can produce clusters that are very visually similar to that of

other methods for the simulation of Eden clusters. Some examples of the clusters

produced canbe seen in Figure 7.1. But the question that is attempted to be answered

here is whether these clusters are representative of pre-existing Eden clusters and if

so how can we quantify this as well as any differences between them. This chapter

will have a very specific macro structure to it as it attempts to do two things. First

show that at least one of the four different MEden methods is capable of producing

Eden like clusters as well as demonstrate that two proposed analytical methods work

for the identification of Eden cluster from a single cluster. As such the four versions

of the MEden model (RMRC, FMFC, RMFC, and FMRC the difinitions for these can

be found in Table 6.1) will all start off being compared when a version of themodel is

considered to be inadequate it will then be discarded and will not flow into the next

sections of the chapter.

7.1 Fractal Dimension

In order to classify these types of models, a measure known as the fractal dimension

of the object is often used (Ivanenko et al., 1999, Lahiri et al., 2015, Sauer and Schroer,

1987). This measure tends only to be used to classify algorithms for the simulation

of Eden models as Eden-Like but not to distinguish between the three version of the

Eden model. The term fractal itself often has some misconception surrounding it;

commonly it is thought that a fractal must be perfectly self-similar. This wouldmean

that the object can be subdivided into smaller parts that are the same as the whole

for example if you take the Sierpinski triangle and split it into three smaller Sierpinski

triangles each one of these is identical to the original and even to each other. This

could be considered to be aperfect fractal. However, this self-similarity is also present

in shapes that are not fractals such as a cube which can be subdivided into 8 smaller

identical looking cubes. This is where the fractal dimension of the cluster comes into

playwith it an object can be thought of to be a fractal by themanner inwhich it scales
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Figure 7.2: Four successive steps of the first part of the box counting method for the
calculation of the fractal dimension of a cluster. Where the grey boxes in the images

represent the boxes that are classed as having an infected cell within it when the domain it
iterated over checking areas of increasing size and the red cell are representative of cluster

that is being analysed (Charbonneau, 2017).

and the fractal dimension of the object is the measure of this.

What is the fractal dimension and what does it tell us, this can be a somewhat

abstract concept and is as such difficult to explain. One method to explain this is to

think of a square, if you were to scale the size of the square by a factor of k then the

width and height of the square would each scale by a factor of k which would mean

that the area of the square would scale by a factor of k2. If we took a 3D cubes and

again scaled this by a factor of k its height, width, and depth would all be scaled by a

factor of k each, and the volume of the cube would scale by a factor of k3. For regular

shapes such as the square and the cube, it is straightforward to work out the surface

area or volume as each scale by their dimension to the power of k or kD. This is not

always the case though, if we take a 2D representation of the UK for example if we

were to scale the UK by a factor of k how would the area of the UK change this is a

muchmore complicated question as the width and height of the UK are not uniform

and as such scale differently.

This is the problem that the fractal dimension aims to answer, for complex shapes

such as theUKwhen they are scaledwhatD is. Interestingly for theUKD ≈ 1.21, this

means thatwhen a 2D image of theUK is scaledby a factor of k its areawill increase by

a factor of k1.21. Therefore, the fractal dimension of an object can give an idea to the

effect that scaling may have on that object as well as the roughness of the object. It is

for this reason that the fractal dimension is used in the comparison of growthmodels
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such as the Eden growth model as it can show that the roughness and scalability of

the clusters are similar.

The method that has been used to calculate the fractal dimension of the Eden

clusters comes from Natural Complexity (Charbonneau, 2017). The method is called

box-counting and has been developed for use on a grid-based system; it is based on

the mass-radius method. The method can be split up into two different main parts,

the first of these parts can be thought of as the counting section this is where the

method gets its name from. This involves placing squares of increasing size across the

domain in anon-overlappingmanner and if the box contains an infected cell inside of

it then the method increments the box count by one a graphical example of the box-

countingmethod can be seen in Figure 7.2where the grey blocks represent boxes that

where found to have at least one infected cell within it. Once all the different sized

boxes have been checked its then time for the second part of the method.

The second part of this method is to calculate the slope of the line of best fit for

the point of M or the radius of the box which in this case will be treated as the height

and width of the box against the box count for each of theM sizes on a log-log graph.

Though if the data was to be put on a log-log graph, it would give a negative slope the

easiest way to fix this is instead of just calculating the log of the box size, to calculate

the log of the inverse or log( 1
scale

). This slope value is the fractal dimension for the

cluster. The code used to obtain the fractal dimension can be seen in Figure 7.3.

7.1.1 Results

The first thing that must be looked at when analysing the fractal dimension of the

MEdenmodel to see if it canproduce fractally similar clusters to andof the threemain

version of the Eden growth model, that is the fractal dimension for the Eden Growth

models themselves. In order to get this information the EdenA, EdenB, and EdenC

model where each run for 500, 000 times for 5000 iterations and the fractal dimension
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1 void fractal_calculator::calculate(const int *crossbar, const
↪→ int d, double *frac_dim){

2 int L = d, n_scales = 1;
3 while (pow(2, n_scales) < L){
4 n_scales++;
5 }
6
7 double *scale = new double[n_scales];
8 double *n_box = new double[n_scales];
9
10 for (int iscale = 0; iscale < n_scales; ++iscale){
11 n_box[iscale] = 0;
12 cosnt int blocksize = (int)pow(2, iscale + 1);
13 const int n_block = L / blocksize;
14 for (int i = 0; i < n_block; ++i){
15 int i1 = blocksize * i;
16 int i2 = blocksize * (i + 1);
17 for (int j = 0; j < n_block; ++j){
18 int j1 = blocksize * j;
19 int j2 = blocksize * (j + 1);
20 if (contains_cell(crossbar, i1, i2, j1, j2))
21 n_box[iscale]++;
22 }
23 }
24 scale[iscale] = blocksize;
25 }
26
27 for (int i = 0; i < n_scales; ++i){
28 scale[i] = log(1 / scale[i]);
29 n_box[i] = log(n_box[i]);
30 }
31
32 double sumx=0.0,sumx2=0.0,sumxy=0.0,sumy=0.0,sumy2=0.0;
33 for (int i = 0; i < n; i++){
34 sumx += x[i];
35 sumx2 += pow(x[i], 2);
36 sumxy += x[i] * y[i];
37 sumy += y[i];
38 sumy2 += pow(y[i], 2);
39 }
40 frac_dim = (n*sumxy-sumx*sumy)/(n*sumx2-pow(sumx,2));
41
42 delete[] scale; delete[] n_box;
43 }

Figure 7.3: This is the C++ code that is used in this work for the calculation of the fractal
dimension of both the MEden and the Eden clusters this code is adapted from code
presented in Natural Complexity (Charbonneau, 2017) and is specifically designed for

calculating the fractal dimension for growth models that have been grown upon a square
lattice grid.
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Figure 7.4: Box-plots showing the range for the fractal dimension produced by all the Eden
andMEdenmodels. The MEdenmodels show the data from a range of different Pmax in the
range of 1 to 50 in increments of 1 and Pchance in the range of 1 to 100 in increments of 1.
Each plot is a collection of 500,000 data points meaning that each of the mean graphs has

100 runs for each of the variables.

was calculated at the end of these iterations for each of the models. 500, 000 may

seem like a vast number of runs, and this quantity of data is a lot over what may have

been needed to obtain an accurate understanding of the range of the models. The

reason that itwas run somany timeswas tobe able tomake a fair comparisonwith the

MEdenmodel. TheMEdenmodelhas twodifferent variables that canbemanipulated

in order to give different results the Pchance and the Pmax when testing the MEden

model the variables would be used in the range of 1 to 100 for the Pchance and 1 to 50

for thePmax each for 100 times to allow for a distribution to beobtained as such itwas

only fair to run the three different standard versions Eden models the same number

of times.

The range of the fractal dimension for the EdenA, EdenB, and EdenCmodels can

be seen in a box-plot diagram inFigure 7.4 on the right-hand side of the red line, some

additional data that gives amore detailed understanding of these plots can be seen in

Table 7.1. This shows that the EdenB and EdenCmodels have a large overlap in their

possible fractal dimension ranges with all the EdenC points being contained within

the range of the EdenB this would make categorising a single cluster from either of
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Model Type lower IQR upper IQR mean median skew
EdenA 1.706 1.710 1.708 1.708 -0.201
EdenB 1.681 1.684 1.683 1.683 -0.412
EdenC 1.679 1.681 1.680 1.680 -0.323
FMFC 1.671 1.675 1.672 1.672 -1.233
FMRC 1.675 1.677 1.676 1.687 0.311
RMFCn 1.677 1.679 1.678 1.678 0.675
RMRC 1.679 1.682 1.681 1.681 0.019

Table 7.1: the data for the fractal dimension for the three Eden variants (Eden A, Eden B, and
Eden C) and theMEden growth for Pmax from 1 to 50 in increments of 1 and Pchance from 1%

to 100% in increments of 1%. All have been done in 2D for the data shown here.

these methods based solely on this method next to impossible. However, in the case

of the EdenA model, this is not the case, with it have a significantly higher fractal di-

mension than the other twomethods and very minimal overlap.

Now that we know the possible ranges for the three versions of the Eden model

the next step is to run the same test for the four versions of theMEdenmodel (FMFC,

FMRC, RMFC, RMRC) and see if their range of fractal dimension overlap in any way

with the EdenA, EdenB, and EdenC model. This will show that the MEden model is

not only able to produce clusters that are visually similar to that of the Eden growth

model but that these clusters are also fractally similar to the Edenmodels and as such

can be considered to be producing Eden-Like clusters. As stated earlier the MEden

model will be run for a range of variables and the results from the run can be seen in

Figure 7.4 and as with the Eden models there is more data to help describe the box-

plots in Table 7.1.

The first thing that is noticeable when looking at the fractal range for the four

MEdenmodels and the threeEdenmodels inFigure 7.4 is that noneof the fourMEden

models come even close to being able to match that of the EdenA model. What this

means is that thesemethodswill likely not be able to produce EdenA like clusters, this

will be a useful fact when attempting to clarify the results in the following sections.

However, this is not the case with the EdenB and EdenC models with there being a

decent amount of overlap between thesemodels and the fourMEdenmodels though

it is clear that two of these models are a better representation than the others.
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Figure 7.5: KDE graphs showing the range for the fractal dimension produced by all the
Eden andMEdenmodels. The MEdenmodels show the data from a range of different Pmax
in the range of 1 to 50 in increments of 1 and Pchance in the range of 1 to 100 in increments of
1. Each plot is a collection of 500,000 data points meaning that each of the mean graphs has
100 runs for each of the variables. The EdenAmodel has been removed as it didn’t overlap
with any of the MEdenmodels. This shows which of the models are able reproduced the

EdenB and EdenCmodels more consistently. The versions that are the RMRC and the FMRC.
These KDE plots where made using matplotlib with default settings.

The easiest way to compare theMEdenmodels to the Edenmodels and seewhich

versions can represent the EdenB and EdenCmodels more accurately is through the

use of a KDE1which is similar to a histogram this can be seen in Figure 7.5. This graph

makes identifying which of the MEden model are more consistent than the others

more accessible; it also shows that all of the methods can produce Eden like cluster

though not all as well as each other

Up until now all the MEden models data has been summed up for all the differ-

ent variables though this does give a decent understanding of the full range of the

model it doesn’t however give an understanding of at what specific Pchance and Pmax

settings the model generates a cluster with a certain fractal dimension. Figures 7.6

and 7.7 show all the data points generated by the simulation and the median fractal

dimension at that specific variable set-up respectively. The different colours of the

points represent which cluster they are most like Blue means that it falls below the
1Kernel Density Estimation
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EdenB and C’s fractal dimension. Green is representative of the fact that the point

falls in the IQR2 of the EdenC clusters fractal dimension, red is used to represent that

same for EdenB. Finally, Grey is used for EdenA though no point reached this high, no

point reaches past the brown section of the colour-bar which is used to show points

in-between the whiskers of the EdenA and EdenB models. The same colouring has

been used for both Figures 7.6 and 7.7.

Figures 7.6 and7.7 give further informationon the applicability of the four version

of the model. The FMFC version of the model is the most different from that of the

others, even when looking at all the data point that where generated it becomes clear

that this method is too limited in production Eden-Like clusters. It often produces

clusters that would be too smooth for anything other than the lower end of the EdenB

and C clusters and below except for extreme case with a very low Pmax with clusters

that fall even lower on the fractal dimension being produced at high Pchance settings.

The median clusters that are produced by this method are not able to reach into the

EdenC IQR except at a single point with a Pchance of 100 and a Pmax of 1.

The remaining three versions of the MEden model are much less limited in the

production of Eden like clusters with the RMRC and the RMFC being the best of the

four this becomes very clear when looking at the data shown in Figure 7.7 with the

average fractal dimension produced. This shows that whereas the FMRC can pro-

duce clusters with a high fractal dimension similar to that of the IQR of the EdenB

and EdenC it is much more likely to produce clusters that have a fractal dimension

less than that of the EdenC IQR. However, the RMRC and the RMFC are consider-

ably more effective in the generation of the EdenB and EdenC like clusters, with the

RMRC never dropping lower than the EdenC cluster fractal dimension. This means

that both of the RMRC and the RMFC can be considered to be the most effective of

the four methods both of them have benefits over the other. For example, the RMRC

can give a better fractal representation of two of the Eden model and the RMFC be-

ing faster as such these will be the two version of the model that will be discussed in
2Interquartile Range
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Figure 7.6: These graphs show all the data points for the fractal dimension of four version of
the MEdenmodel at each of the different Pchance and Pmax values tested.

Figure 7.7: These graphs show the average fractal dimension for the four version of the
MEdenmodel at each of the differen Pchance and Pmax values tested. Each point is an

average of 100 runs of the simulation. This graph shows that the FCFC!a and FMRCmodels
where as it is possible for them to produce Eden C like clusters it would be highly

inconsistent making them unreliable.

aFCFC!
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Figure 7.8: The clusters shown here demonstrate one of the issues with purely trusting the
fractal dimension of a geometrical object to show that any possible new algorithm produces
similar clusters. Both of these clusters have a fractal dimension of approximately 1.6792.
However, it is obvious that the cluster on the left is not an example of an Eden like cluster

whereas the one on the right it to be precise the cluster on the right is generated through the
use of the Eden Cmethod.

the following section. The FMRC and the FMFCwill not be discussed in the following

section as the results here show that their fractal range is too limited to be considered

a possible replacement simulation for the Eden growth model.

7.1.2 Issues with the Fractal Dimension

This section will go into a few of the reasons that lead to the creation of an additional

method for the analysis of a growthmodel. The fractal dimensionof anobject is a use-

ful tool that can allow for a detailed understanding of an object and is of great benefit

in the classification and analysis of an alternatemethod for the simulationof a growth

model. However, it does have some drawbacks, the first of these is that is it not a scal-

ablemethod especially in the analysis of amethod such as theMEden growthmodel.

In the MEden growth model, two main variables can be tailored to produce different

styles of clusters. The issue comes in when it is needed to verify whether the clus-

ters produced conform to what would be produced by a more commonly accepted

method for the simulation of these models.

Through the use of the FMFCmethod, it is possible to produce clusters that have

a fractal dimension that falls within the range of the EdenB and EdenC models even

though is not comparable to an Eden cluster. The growth clusters that are produced
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have a fractal dimension of approximately 1.6792. Which lies at the lower end of the

interquartile range for the EdenC model but instead of looking like an Eden model

witha rough, jaggedperimeterwitha roundedshape, it instead formsaperfecthexagon;

this can be seen in Figure 7.8. In order for this to be identified it wouldmean that the

cluster would have to be visualised and then manually identified by a human for the

range of possible variable this could be a very time-consuming thing to do. It would

mean that it would be impossible to automate this process in order tomake sure that

the clusters that are produced are accurately representative of an Eden cluster.

The second problemwith thismethod comes into play with the range of the frac-

tal dimension produced by the EdenB and EdenC models. The range of the fractal

dimension for both of the models has an A measure of 0.856 which was gained with

the use Vargha-Delaney’s method and a p-value of 6.8e−15 which was gain with the

Mann-Whitney U test. What this means is that there is a large significant difference

between the two distributions which might lead one to think that it would be easy

to identify which of the two models are being used to generate a cluster. However,

due to the overlapping between the two models which can be seen in Figure 7.4 and

Table 7.1, in order to be able to distinguish between the two models it would require

multiple runs of themodel so that amethod such as the Vargha-Dellany or theMann-

Whitney U test can be used to determine the chance that one or the other has been

produced and itwould only be able to tell if the newmethodproduces the same range

of clusters. All of this means that whereas the fractal dimension is a very useful tool

and does have the ability to classify how close the results of the new method is to

the original it is useless in the classification of individual clusters when twomethods

have a significant overlap such as is presentedhere or if amethodproduces adifferent

range of clusters.

Because of this, two newmethods have been developed for the analysis and clas-

sification of clusters the following two sections of this chapter will go into these two

methods. The first of these methods can identify a quantifiable difference between
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the EdenB and EdenC clusters. The other method that will be discussed whereas it

does not come up with a quantifiable difference it still able to tell the difference be-

tween the Eden B and C methods of the clusters. The hope for these methods is that

they will aid in the classification of not just Edenmodel but growthmodels in general

in order to show how these methods would work the MEden model will be used as a

case study to demonstrate the methods.

7.2 Connected Component Labelling

The first of the two new methods that will be discussed makes use of CCL3 an often

used method in the field of graph theory for understanding the structure of complex

graphs. The reasonmaking use of thismethod here for this is that by labelling the cell

in-order as they are infected and then using this method, it would be possible to gain

a better understanding of how the cluster grows as the way that the cell fits together.

Thismethodwas designed as a better way to distinguish between clusters such as the

EdenB and EdenC as where with the fractal dimension there would need to be mul-

tiple runs of the model run into to tell which it would be and then it would only be

with a high probability if a cluster that falls outside of the range of the EdenCwas pro-

duced indicating that it was an EdenB method meaning that it would be classifying

the method, not the clusters. With this method, it is possible to categorise individual

clusters.

CCLaims tofindsubsetsof connectedcomponents, these components areuniquely

labelled and are based on a given heuristic. One common area other than that of

graph theory in which this class of algorithm is used is in computer vision (Davies,

2012, Dillencourt et al., 1992). In combination with image filters, it can allow a com-

puter to be able to pick out individual parts of an image and depending on the filter

that is used the type of object that will be picked out will change. This means that a
3Connected Component Labeling
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program attempting to find red doors could use a filter to turn all pixels with a red

value over a certain level white and all over pixels black, allowing for a much simpler

image to be processed. Then the individual components can be labelled and subse-

quently be checked for a match to a door with the use of a convolutional neural net

or other such methods.

Algorithm 6 Two Pass Component Labelling
1: equivalences, labeledGrid, nextLabel=1
2: for x: row ∈ grid do
3: for y: columns ∈ grid do
4: if grid[x,y] is infected then
5: Neighbours = cells within mask whose state match current cells state
6: if Neighbours is empty then
7: equivalences[nextLabel]= set(nextLabel)
8: labeledGrid[x,y] = nextLabel++
9: else if tree is right heavy then
10: s = smallest label ∈Neighbours
11: for L ∈Neighbours do
12: equivalences[L] = union linked[L] and L
13: end for
14: end if
15: end if
16: end for
17: end for
18: for x: row ∈ grid do
19: for y: columns ∈ grid do
20: if grid[x,y] is Infected then
21: labeledGrid[x,y] = find(labeledGrid[x,y])
22: end if
23: end for
24: end for
25: return labeledGrid

There are a large range of methods that can be used for CCL, a lot of the work on

these algorithms as of late has been to make use of the massive amounts of parallel

power that can be gained from the use of a GPU through the application of languages

suchasCUDAandOpenCL (Hawick et al., 2010,Kalentev et al., 2011, PlayneandHaw-

ick, 2018, Wu et al., 2005, 2009). For this work however the algorithms used all ran on

the CPU and in serial as it was not necessary that the component labelling be per-

formed in real time. Three main methods are commonly used for the computation

of CCL the one component at a time method, the two-pass method, and finally the
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Figure 7.9: Two pass component labelling image A shows the grid before the first pass image
B shows the state of the grid after the first pass and image C shows the state of the grid after
the second and final pass. The final image, image D shows a coloured version of the finished

grid to more easily identify the different components.

one-pass method. Whereas the one component at a time method is a very easy to

implement and understand variant of CCL it is very slow in processing the data as it

requires numerous passed through the data. Considering the size of the grid that is

being dealt computation speed is still somewhat relevant to be able to average out

as many results as possible in a reasonable time frame. The other two methods the

two-pass and the one-pass are both considerably faster especially in a case like the

one here where multiple different states can be touching each other that should be

classed as different components.

The two-pass method was the one that was selected for use with this work, this

was selected because even though the one pass method can run faster than the two

pass when an image consists of a high number of small components the speed in-

crease with the one pass method is negligible in comparison to the implementation

complexity of the algorithm for this specific use case. The first pass of the algorithm

assigns temporary labels and records the equivalences of these labels; this is done

through the use of a union-find type structure. On the second pass, each label is re-

placed with the smallest label within the table of equivalences. An example of the

steps of the component labelling can be seen in Figure 7.9, where image A represents

the initial state of the grid image B is the image after the first pass, image C is the

grid after the second pass, and the final image, image D is a coloured version of the

components tomake it easier to see the different components. Algorithm6 shows the

algorithm for the two pass CCL that has been used in this work.
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Masks are an important aspect of the CCL algorithm as they let the algorithms

knowwhich of the neighbouring cell should be looked at for a specific cell when look-

ing for component labels to assign. There are two main types of masks use, one for

theMoore neighbourhood and one for themore common VonNeumann neighbour-

hoodon a 2Dgrid; these are often called 8-connection and 4-connection respectively.

As the Edenmodel itselfmakes use of a VonNeumannneighbourhoodwhen it grows,

that is themask style that will be used. Thismask looks at the cell north of the current

cell as well as the cell west of it in the 3D version it also looks at the cell behind the

current cell; the Moore version also takes into account the cells at the north-east and

north-west of the current cell. A graphical representation of the Von Neumann and

Moores mask can be seen in Figure 7.10.

s =

⌊
is

( t
S

)
+ 1

⌋
(7.1)

where:

s is the state of the cell

is is the infection step of the cell

t is the total cells in the cluster

S is the number of states desired

In order to run the component labelling algorithm, the cells in the cluster must

be split into different groups with each group having a distinct state. The cells state

will be set equal to the time step that it was infected on in the case of the Edenmodel

and with the number of cells in the cluster at the time of infection in the case of the

MEden model. The issue arises here that if left untouched each cell would have a

different state and therefore would be labelled as having a component count equal to

thenumberof cells in thedomainwhichwouldbeentirelyuninformative. Theanswer

to this can be seen in Equation 7.1, the total cells within the cluster are divided by the

total number of states to give a step value. If the state of the cell is greater than zero

it is then divided by this step value and has one added to it; this would mean that in
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Figure 7.10: This diagram is representative of the Von-Neumann neighbourhoodmask used
for the component labelling on the left and the Moore neighbourhoodmask on the right.
Because of the type of neighbourhood used with the Edenmodel the mask that will be used

for this work will be the Von-Neumannmask on the left.

a cluster of 1,000 cells with 5 states would have a step value of 200 and the ending

state of a cell that was infected on time step 300 would be given a state of 2 because

b300
200

+1c = b2.5c = 2. The flooring of the value is dealt with by storing it as an integer

value, which will truncate the float causing it to be floored. The plus one is included

in the equation to deal with cells that were infected in a time step that is less than

the step value making sure that the minimum state value is one otherwise it would

become an uninfected cell.

One issue does arise with the labelling of the states of the cells in the MEden

model, and this is because of theway that the update state system iterates through all

the cells in order. This means that if two or more cells are infected on the same time

step (which happens very often) a cell with a larger k index would always be consid-

ered to be infected after cells that precede it in the domain; this would mean that

it would not be a fair comparison to the software Eden models and would alter the

results of the component labelling. To deal with this issue whenmultiple cells are in-

fected on the same time step at the end of the update function, all the cells that where

infectedwould have been stored in a list, and each of the stateswould be shuffled and

randomly assigned to each of the cells. This means that it would be possible for cells

further on within the domain to have a smaller infection step then cells preceding it.
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Figure 7.11: Boxplots showing the component count range for the EdenA EdenB, and EdenC
models for state count in the range of 1 to 10. Th state count defines the nunbe of distinct

states the the celles are divided into based on the timestep the where infect on, the equation
used for setting this state is defined in Equation 7.1

7.2.1 Results

The first step of testing is to get the component count for the three standard versions

of the Eden model for a range of different maximum states and to see if there is a

point at which the ranges of the component produced do not overlap so that it will be

possible to identify one cluster from another. This is a critical part of themethod as if

it is not possible to get a distinct group for each of themodels it will not be possible to

use thismethod to identify a single cluster and as such, it would be no better than the

fractal dimension is the analysis of clusters. The first decision to make is the range of

the state used. If the cluster was labelled with a single state then it would always have

a component count of 1, which is not useful so the experiment was run with a state

count from 2 to 10 and performing the component labelling on the model with this

range to see if the separation point between the component count can be found the

results for theEdenA, EdenB, andEdenCstandardmethods canbe seen inFigure 7.11.

As the number of states within the cluster increase the EdenB and EdenC com-

ponent count ranges slowly start to separate until it reaches 7 states at which point
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Figure 7.12: KDE graphs for the component count of the EdenA (blue), EdenB (orange), and
EdenC(green) for state rangeing from 2 to 10. This graphs show that for a cluster of 5000

cluster it is possible to identify distinct section for the EdenB and EdenC cluster past 7 states.
KDE graphs were made using matplotlib pyplot with default settings.
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Figure 7.13: RMFC components counts for Pchance in the range of 1 to 100 and Pmax in the
range of 1 to 50 showing all the data points gathered for cluster with 7, 8, 9, and 10 state
counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour

represents the whiskers.

Figure 7.14: RMFC components counts for Pchance in the range of 1 to 100 and Pmax in the
range of 1 to 50 showing the median for each point for cluster with 7, 8, 9, and 10 state

counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour

represents the whiskers.
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Figure 7.15: RMRC components counts for Pchance in the range of 1 to 100 and Pmax in the
range of 1 to 50 showing all the data points gathered for cluster with 7, 8, 9, and 10 state
counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour

represents the whiskers.

Figure 7.16: RMRC components counts for Pchance in the range of 1 to 100 and Pmax in the
range of 1 to 50 showing the median for each point for cluster with 7, 8, 9, and 10 state

counts. The colours represent the boxplot for the EdenC (red), EdenB (green), and EdenA
(blues) where the darker colour represents the interquartile range and the lighter colour

represents the whiskers.
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two distinct sections emerge one for each of the clusters with only tiny cross over one

the extremes of the tails, points that exist outside of a 99% confidence interval. As

the number of states continues past this point to increase the separation continues

to increase. The EdenA cluster from the point of 2 states onwards was always dis-

tinctly separate from the other two versions making it very easily identifiable with

this method. A KDE showing the spread of the component counts for 7 states can be

seen in Figure 7.12 along with the graphs for from 2 to 10. This shows that is it pos-

sible to make use of component labelling for the classification of individual clusters

without the need for multiple runs. This means that if the distribution of the frac-

tal dimension of a new method doesn’t match that of the current methods, it would

be possible to see what type of clusters it can produce and classify the algorithm in

addition to single clusters.

The RMRC and the RMFC version of the MEden model were the two that most

closely matched the range of the fractal dimension of the standard Eden model, and

as such, they will be the two versions of theMEdenmodel that will be discussed here.

The first of these two that will be discussed will be the RMFC Figure 7.13 shows a

3D scatter plot with all the data points gathered for state counts 7, 8, 9, and 10 in

the run the model for the same Pchance and Pmax values that where used in the fractal

dimension test this being 1-100 and1-50 respectivelywith 100 runs for eachpoint and

Figure 7.14 shows the median of these 100 runs for each point. The colours that are

used on the graphs are to represent the boxplot of the three different Eden models

component counts with the darker colour representing the interquartile range and

the light colour the whiskers of the boxplot these boxplots are shown in Figure 7.11.

The red is for the EdenC, green is for the EdenB, and finally blue is for the EdenA.

The RMFC version of theMEdenmodel whereas in the fractal dimension test ap-

peared to be producing clusters that are very close to that of the EdenB and Cmodel,

when the component labelling data is looked at this is not the case there is only a very

small range of variables that are able to produce something close to what could be
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considered to be an Edenmodel what thismeans is that the way inwhich the clusters

that grow are not similar to that of the Edenmodel, and they grow too uniformly to be

classed as EdenModels. This would have been a very time-consuming task to be able

to identify without the use of this method and might not have even been possible.

The RMRC version, however, is a different story.

Figures 7.15 and 7.16 show the same data as Figure 7.13 and 7.14 do but for the

RMRC version of the MEden model instead, with all the colouring representing the

same things. The RMRC version of the MEden model is much more able to recre-

ate the same component ranges of the Eden model with even in some case it being

able to generate clusters that could even be considered to be on the upper end of the

EdenB and lower even of the EdenA this can be seen in Figure 7.15 represented with

the yellow data points that pop upwhen thePchance andPmax are set close to 1. Unlike

with the RMFC version of theMEdenmodel as these two variables increase it ismuch

more able to produce EdenC clusters.

7.3 Image Classification

Thefinalmethod for the classificationof thesemodelwill bediscussed is that of image

classification or image recognition. There is a range of applications that use this type

of image classification, they are used to different levels of specificity, for example, it

is now possible for these methods to be used to generate a sentence that describes

what is going on within an image (Karpathy and Fei-Fei, 2017). Though the method

that will be used here is much simpler than this and will involve the classification of

growth clusters into one of three categories EdenA, EdenB, and finally EdenCnot into

sentences.

There are a number of different methods within topic image classification (Nath

et al., 2014) that are used, the specific one that has been selected for use here is called
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a CNN4 which is an example of a SIANN5. CNN’s have managed to prove themselves

to be a highly effective solution for this problem (Alpaydin, 2016, Krizhevsky et al.,

2012, Simard et al., 2003). A CNN is an example of what is called a deep feed-forward

neural network this means that the connections with the network do not form any

cycles, they also fall under the umbrella of Deep Learning (Bengio, 2012, Lecun et al.,

2015).

Deep learning is a class of machine learning that has become highly popular in

recent years, it is used to do things including but not limited to automated driving,

medical research (detection of cancer cells (Sirinukunwattana et al., 2016) and even

in drug discovery (Chen et al., 2018)), and even in the speech recognition such as

that used by devices such as the Amazon Echo and the Google Home. The deep in

deep learning refers to the number of hidden layers in the network, in deep learning,

it is common for a network to have as many as 100 layers as opposed to 2 or three

which is more common in traditional neural networks. As such deep learning not

only requires a large amount of data for it to be trained on, but it also requires a large

amount of computing power which is why it has only gathered so much traction in

recent years. Additionally, becauseof tools such asTensorFlow (Abadi et al., 2015) and

PyTorch (Paszke et al., 2017), it is now straightforward for people to write and make

use of these complex systems.

CNN’swere selected specifically for the imageclassificationheredue to there abil-

ity to classify complex images such as being able to identify shop fronts in images of

cities with ease, this is due to the fact that a CNN can learn specific patterns that cer-

tain class of images have and learn filters that can identify these patterns this allows

the network to generalize from the past set of images that the network saw during the

training process of the network, this allows the network to identify images that is has

never before seen. Additionally, there is the minimal amount of preprocessing that

the method requires. This section will begin with a brief description of what a CNN
4Convolutional Neural Network
5Space Invariant Artificial Neural Network
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is and how it is structured, in addition to how they function this will then be followed

with a discussion on the tools used to implement the CNN along with the code for

the specific CNN used. CNN’s are a form of machine learning which is a potent tool

as Alypaydin says:

“we use machine learning whe we believe that there is a relationship between

observations of interest, but we do not know exactly what” (Alpaydin, 2016)

This is exactly the situation that presents itself here with three classes of Eden

clusters which we can identify as being different even though they have a high level

of visual similarity. Without a decent level of experience with these models which

can take years to obtain, it can be difficult to tell the difference between an EdenB

or C cluster even when they are side-by-side and nearly impossible when they are

shown individually. However, it is possible to train a neural network to make expert

level decision in a fraction of the time a humanmight need to learn.

The first step in understanding what a CNN is in the gain an understanding of

what an NN or neural network is. A neural network often referred to as an artificial

neural network is amachine learning technique that is inspired by the biological net-

work with a brain and how it can change in order to learn and adapt these systems

are used to solve problems in the same way that the human brain would. A NN is

made up of a collection of nodes commonly referred to as a neuron, these neurons

are arranged into sets of layers with connections between them that allow one neu-

ron to communicate to another these connections are often referred to as synapses a

diagram describing this can be seen in Figure 7.17.

The main part of the neural networks functioning goes on within what is called

the hidden layers; this can be seen represented by the purple node in Figure 7.17. The

purpose of these hidden layers is to receive a piece of data most commonly this is in

the form of a real number then performs some form of calculation on all the values



7.3. Image Classification 173

Figure 7.17: This diagram shows an example of a neural network with 3 input neurons, two
hidden layers each containing four neurons, and finally a single output. This is an example

of a multilayer perceptron.

that are fed into it, and then an activation function is applied to be that through the

use of some non-linear. The product of this calculation the continues to flow through

the network until it finally ends up at the output layer which will perform the final

calculation and output a result. The number of output neurons would not be a fixed

value for example if you had a neural network whose job was to identify numbers in

the range 1 to 9 that have been handwritten and fed into the network. There could be

nine output neurons, and each neuron would spit out the chance that the input was

that specific value and the one with the highest probability would be the network’s

selection.

The name hidden layer comes from the fact that the output of these neurons is

unknown. This is because it is connected to the input of a consecutive hidden neu-

ron or to the output neuron which itself will perform some calculation that obscures

the initial input. Now this is not to say that it is impossible to find out what is going

on with the network, if the program that is running the neural network is bespoke

code all handwritten from scratch it is easily possible to insert logging layers into the

network so that the values passed between neurons in these hidden layers can be ob-

tained. However, due to the amount of time and effort that this would take to code

it all from scratch most researchers and developers are opting to use API tools such

as Keras (Keras, 2018), as we have here, to allow them to build a neural network as
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quickly as possible. It becomes a highly difficult task to looking into these hidden

layers, as API like Keras act somewhat like a black box.

The API used for the implementation of the CNN used here was Keras. It is able

to have one of three different backends; these are TensorFlow, Theano, and CNTK.

For this work TensorFlow was selected as it appeared to be the most commonly used

one of the three and as such have the widest range of information that was easily

accessible, making the implementation a much faster process. Though using Keras

does greatly reduce the amount of code needed to be written for the implementation

of the CNN this is at the sacrifice of the ability to fine tune all parameters offer by

Tensorflow.

CNN’s are very similar to the standard NN in that they take an input, in this case,

an image and pass this throughmultiple hidden layers until it finally reaches the out-

put layer and a result is spat out. Though they differ from NN’s with the addition

of one key aspect, convolutional layers. These layers within exist the hidden layers

section of the network and are where CNN’s get there name from. It is these convo-

lutional layers within the network that gives the CNN its advanced pattern detection

capabilities, which make them perfect for image classification.

The convolutional layers act in a very similar way to the previously described hid-

den neurons, with them receiving an input transforming it and then outputting the

transformed data the difference is in what type of transformation goes on with the

neurons of the layer. Convolution layers get their names from this different type of

transformation that goes on within them, a convolution. When the data is passed to

the convolutional layer, each node within this layer will run a different filter over this

image to transform it in somemanner. The purpose of these filters is to identify spe-

cific features within the data, each of these filters will be looking for different features

such as edges, squares, or circles to name just a few. As the data descends deeper into

the network and the amount of data has been greatly reduced it is possible for filters

to be able to identify more complex aspects of the data, in the case of a picture of a
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relu(x) =

{
x, i ≥ 0

0, i < 0
(7.2)

leakyrelu(x) =

{
x, i ≥ 0

(α× x), i < 0
(7.3)

human this could be an ear for example. With CNN’s one image becomes many fil-

tered images equal to the number of nodes in the layer making them very memory

intensive, this gives an idea of why they have only become commonplace in recent

years.

In order to understand the CNN that is used here, there are four features in addi-

tion to the convolutional layers that should be discussed, these are activation layers,

pooling layers, dropout layers, and fully connect layers. The first of these is the Fully

connected layers. These are the simplest of the features to understand as these are

standard neural network layers where every layer where every neuron connect to one

in the consecutive layers.

Next feature that will be discussed is the activation layer; they layer applies an

activation function to the data that is past to itwhich in this case is theReLU6 function

or Rectified Linear Units function. An activation function is a form of normalization

and is used here for a straightforward purpose, to stop themaths going on within the

network from exploding. Only non-linear activation functions can allow the network

to compute complex nontrivial problems with minimal numbers of nodes, example

of other activation functions are TanH, Logistic Sigmoid, and Softmax (which is used

at the end of the network to extract the selection of the network) through the most

common one in use is the ReLU function. ReLU works by setting all values less the

zero to be zero this helps speed up the training of the CNN. It is similar to the stp

function discussed in the previous chapter and can be seen in a more mathematical
6Rectified Linear Unit
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form in Equation 7.2.

ReLU does have one problem that has been called the dying ReLU problem this

is when the output of the ReLU function is 0 which happens when the function has a

large negative bias; this means that the gradient will always be 0 and this will cancel

out the error value that is back-propagated. What this means is that earlier layers in

the network can’t work out the error; this has been attempted to be fixed by amethod

called the Leaky ReLU (Xu et al., 2015). In Leaky ReLU a small gradient allowed for the

values that previously would have a zero gradient, this can be seen in Equation 7.3.

Theα value is very commonly set as0.01 though it is possible for this value tobediffer-

ent and even to be trainable by the network when this is the case it is often referred to

a Parametrized ReLU or Trainable Parametrized ReLU respectively. This issue wasn’t

encountered here and as such the Leaky ReLUmethod was not needed.

Thirdly, a dropout layer is use inorder tohelpdealwithoverfitting andonly comes

into effect while training the network. Overfitting is when a function is fit too close

to the training datamaking so even though in training the network has high accuracy

when the network is presented with unseen data is it unable to achieve comparable

accuracy at classifying it. There is also such a thing as underfitting, but this is dis-

cussedmuch less frequently then overfitting as underfitting is where the network gets

a very low accuracy with the training data, and this means that the design of the net-

work ismost likely inappropriate for the job it is being used for. Dropout functions aid

in the reduction of overfitting by randomly selecting a fraction of the input units as

setting them to 0 each update during the training of the network. This stops the next

learning a specific feature of your training set too closely forcing it to look at different

aspects of the image in order to classify it making the network more general within

the domain.

Finally, there is Pooling; this is a significant aspect of CNN’s as it is how the net-

work can deal the vast amounts of data that can be generated from the output of con-

volutional layers aswell as tohelp stop thenetworkbecomingoverfit. The functioning



7.3. Image Classification 177

of these layers is as such, if you have images with 128x128 as is the case here, if 500

features have been learned over 5x5 inputs each convolution results in an output size

of (128−5+1)2 = 15376 andwith the 500 features thismean 1242×500 = 7, 688, 000

which can lead to a number of issues. This is where pooling comes in, pooling works

by taking a window of a certain size and scanning over the image, this scanning is

based on a stride value which should never be greater than any of the dimensions of

the window to ensure that nothing is missed.

There are twomain forms of poolingmeanpooling (sumpooling can also be used

with a very similar effect to the mean pooling) and max pooling, in mean pooling all

the values in the window are averaged, this new value is used to represent all the cells

in that area so with a 3 × 3 window 9 values would become 1. Max pooling is very

similar only instead of taking the average the method extracts the maximum value

within the window. Max pooling is better suited to the extraction of more features

such as edges but does end up discarding a large portion of the data whereas with

average pooling all the data within the window is taken into account and it produces

a smoother representation, one is not better than the other they just better suited to

specific situations.

7.3.1 Network Design

The network that was implemented to perform the experiments here can be seen in

Figure 7.18 and a summary of the model including a parameter brake down can be

seen in Figure 7.19. The network consists of 3 main sections where a convolutional

layer making use of the ReLU function is followed by a pooling layer making use of

the max pooling method; this is finally followed by a dropout layer with a dropout

percentage of 25. There are three of these stacks the first containing 32 filters and

the second and third having 64 filters each. The final part of this network is a single

fully connected layer with 64 neurons within it, the dropout level used in this final

part of the network is 50%. The softmax function was used in the final layer for the
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1 model = Sequential()
2 #===============================================================
3 model.add(Conv2D(filters=32, kernel_size=(3, 3), input_shape=

↪→ input_shape, padding=’same’, activation=’relu’))
4 model.add(MaxPooling2D(pool_size=(2, 2)))
5 model.add(Dropout(0.25))
6 #===============================================================
7 model.add(Conv2D(64, (3, 3), padding=’same’, activation=’relu’))
8 model.add(MaxPooling2D(pool_size=(2, 2)))
9 model.add(Dropout(0.25))
10 #===============================================================
11 model.add(Conv2D(64, (3, 3), padding=’same’, activation=’relu’))
12 model.add(MaxPooling2D(pool_size=(2, 2)))
13 model.add(Dropout(0.25))
14 #===============================================================
15 model.add(Flatten())
16 model.add(Dense(64, activation=’relu’))
17 model.add(Dropout(0.5))
18 model.add(Dense(numClasses, activation=’softmax’))

Figure 7.18: This is the keras code that was used to build the Convolutional Neural Network
that was used for the classification of the Eden andMEden clusters.

Layer (type) Output Shape Param Count
conv2d1 (Conv2D) (None, 128, 128, 32) 896

maxpooling2d1 (MaxPooling2D) (None, 64, 64, 32) 0
dropout1 (Dropout) (None, 64, 64, 32) 0
conv2d2 (Conv2D) (None, 64, 64, 64) 18496

maxpooling2d2 (MaxPooling2D) (None, 32, 32, 64) 0
dropout2 (Dropout) (None, 32, 32, 64) 0
conv2d3 (Conv2D) (None, 32, 32, 64) 36928

maxpooling2d3 (MaxPooling2D) (None, 16, 16, 64) 0
dropout3 (Dropout) (None, 16, 16, 64) 0
flatten1 (Flatten) (None, 16384) 0
dense1 (Dense) (None, 64) 1048640

dropout4 (Dropout) (None, 32) 0
dense2 (Dense) (None, 3) 195

Total params 1,105,155
Trainable params 1,105,155

Non-trainable params 0

Figure 7.19: This is the results of the summary function built into keras this shows the
number of parameters in the network as well as the structure of the network its self. The

None value appearers often throughout the list this value this is to represent the batch size of
used in the network but this is set to None as this means that the batch size is not fixed and

makes the training of the model simpler.
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(a) Eden-A (b) Eden-B (c) Eden-C

Figure 7.20: Examples of the images used in the training, validation, and testing of the
convolutional neural network used for the classification of Eden clusters. The cluster a one
solid colour as this means that the CNN doesnt have the infection step infection. The idea

behind this is to see if the shape of the clusters themselves are distinct enough to be
identified via a CNN. As can be seen in these images the difference between these clusters is
minimal especially in the case of the EdenB and the EdenCmodel where it can be difficult
for even the human eye to be able to tell the difference between them even when they are

correctly labelled as they are here.

classification. This thesis does not claim that this is the optimal design of a network

for this task the purpose here is to prove that CNN can be used in a highly effective

manner for this purpose.

Training is an integral part of the process this requires three things a training set, a

validation set, and a test set. The training set and validation set is used in the training

process the training set it what the neural net is trained against, the validation set is

used to attempt to test how generalisable the network is and help in the avoidance of

overfitting. After training is completed, it is a good idea to test the network against a

test set which will be a collection of data that the neural network has never seen to

ensure that it is still effective at identifying these images as has not become overfit,

this will show in the network has become overfit to the training and validation data.

If the network has a high accuracy on the test data as well as in training, then it can

be assumed that the network is effective. The training set used here contained 30, 000

imageswith 10, 000 images per class and then 9, 000 images for the validation set with

3, 000 images per class.

Examples of the data used in the training validation and testing of theCNNcanbe

seen in Figure 7.20. These examples of the Eden clusters also go to show how difficult
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it can be for even for a human to classify them without reference to other clusters

at hand. Unlike with previous 2D Eden cluster shown these clusters consist of one

colour, this was done to minimize the number of features that the network would

have to tell the difference, as it has already been demonstrated that it is possible to

be able to identify Eden clusters with the additional state information with methods

such as component labelling.

7.3.2 Results

The first step in the testing of the neural network was to make sure that it hadn’t be-

come overfit during the training. Most of the timewhen dealingwith neural networks

themost difficult part of thewhole process is the obtaining of the data for training val-

idation and for testing, because of this it’s very common to see that people will take

all of their data and split it into three for training, validation, and testing. A common

split is a 6/2/2 split meaning, 60% of the data be used for training, 20% be used for

validation with the final 20% being held in reserve for testing the network. However,

as the data used here was computationally generated, this split was not needed as it

was possible to generate more data as and when it was needed. The validation set

used was just under a third of the size of the training set. For the final testing 150, 000

where used to give the best possible idea of the network’s effectiveness with 50, 000

images coming from each of the three different versions of the Eden growth model.

In order to represent the effectiveness of the network, a useful tool is a confusion

matrix, the confusion matrix for the trained network used here can be seen in Ta-

ble 7.2. This matrix shows that the network is highly capable of identifying the differ-

ence between the three different clusters with it being best at identifying EdenA like

clusters, this makes sense as the EdenA cluster is very different from the other two

clusters with a significant difference especially when looking at it fractally. When it

doesmake amistake on this, however, it is only classified as an EdenB this alsomakes

sense as when the fractal dimension of the clusters was tested there was a small level
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n = 150,000 Predicted: EdenA Predicted: EdenB Predicted: EdenC

Actual: EdenA 49999 1 0

Actual: EdenB 0 49185 815

Actual: EdenC 0 23 49977

Overall Acurracy = 99.44%

Table 7.2: Confusion matrix for the CNN used for the classification of the Eden A, B, and C
model. This shows the nerual network tested against 150,000 completely unseen EdenA,
EdenB, and EdenC images with the being 50,000 images for each of the classes. This show
that a highly effective network but has more trouble with the classification of EdenB cluster

then it does with the EdenA and EdenC clusters.

(a) EdenA guesses (b) EdenB guesses (c) EdenC guesses

Figure 7.21: Graphs showing the percentage of clusters formed by the RMRCmodel that are
classified as EdenA, EdenB, and EdenC for a range of different Pmax in the range 1 to 50 and

Pchance in the range of 1 to 100, both in increments of one.

of overlap. The network has the most trouble with the identification of EdenB clus-

ters, but this still gives a 98.3%. This means that for every decision that the network

makes there is a 99.44% chance that it is the right choice which is a 66.11% better

chance then if it was guessing at random, this also give a Cohen Kappa of 0.992 with

a 95% interval of 0.991 to 0.992. This shows that the network is highly effective in the

classification of Eden-like clusters and confirms that there is a significant visual dif-

ference between the three types of clusters. This also shows that this network can be

effectively used in the classification of the clusters generated through the use of the

MEdenmethod.

Now that the network itself has been tested and shown tobehighly effective in the

classification of unseen data it is possible to use it to classify cluster the where gener-
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ated by the MEden method of Eden simulation. Just as with the previous sections in

the chapter theMEdenmodel will be run for aPchance from 1 to 100 and aPmax from 1

to 50 both of whichwill increment in step of 1, this will allow for a surface analysis the

results of the model. Each of the variable settings was run 100 times, and the results

of the runs classified by the neural net. Figure 7.21 shows the percentage of each of

the runs that resulted in either an A, B, or C classification these graphs are the results

for the RMRC variant of theMEdenmodel. These graphs conform to the general pat-

tern produced by both the analysis of the fractal dimension and the analysis of the

component labelling. This shows that as both or either of thePmax orPchance increase

in values the closer towards the EdenC the system tends towards to. With a Pmax of

1 the system will produce clusters that the network would classify as EdenB, up until

the point that Pchance gets too large. This method doesn’t tell whether a cluster is on

the lower end of the EdenB model it is only able to tell that it fits in the range of the

EdenB cluster.

7.4 Timing

Timing is not the focus of this work, as it is commonly known that a hardware-based

implementation will be inherently faster than a software-based approach. However,

it is essential to discuss the run time of the model as if the speedup could be consid-

ered negligible then it might not be worth going to the expense of fabricating such a

system. This section, therefore, aims to demonstrate that this particularmethod does

grant a substantial speed up making it worthwhile. There will be two different forms

of timing that will be discussed here, that of the theoretical runtime for themodel if it

were to be fabricatedwhichwill be referred to as the hardware runtime. The second is

the run time for the simulationused for testing theMEdenmodel and its architecture;

this will be referred to as the software timing.

As in the other sections in this chapter, the first step is to gather the data for
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Figure 7.22: Graph showing the results for the run time of the standard software
implementation of the EdenA, EdenB, and EdenCmodels.

the runtime of the three standard Eden growth models so that this can be compared

against the MEden method. The results of these experiments can be seen in Fig-

ure 7.22, here you can see that the EdenA is the fastest with a full range of between

4.61× 10−4 and 7.68× 10−4 seconds but this iswith a very considerable positive skew

and a median of 4.47× 10−4 giving a skew of 1.298, this means that it is much more

likely that a run of the Edenmodel of fall in the lower end of this runtime. The EdenB

model is the slowest of the three models with a minimum run time of 1.903× 10−3

and a maximum runtime of 2.85× 10−3, but it too has positive skew with a median

of 2.321× 10−3 meaning a skew of 1.18. EdenC is the final of the three models and

is the second fastest of the three models with a range of 1.55× 10−3 and 2.17× 10−3

seconds and a median of 1.67× 10−3. The focus here will be on the EdenB and C

model as it has been demonstrated in the previous sections of this chapter these are

the only two versions of the Eden model that the MEden method can replicate con-

sistently with it only being able to get the lowest of the EdenA cluster with a very low

Pmax and Pchance very rarely.

The first set of timings concerning the RMRC model to be discussed will be the

software timing. It is not important that this is slower than the software version of

the standard Edenmodel as it is the timing for a software simulation of the hardware-



7.4. Timing 184

Figure 7.23: These graphs show the full range of the simulation run time for the MEden
model. The left graph shows all the 100 runs for each of the data points and the graph on the

right shows Median run for each of the data point.

Figure 7.24: These graphs show all the data points of the software simulation MEdenmodel
where the theoretical runtime is less than 7µs this is based on the number of iterations that
are required to grow the model in the simulation. The left graph shows all the 100 runs for
each of the data points, and the graph on the right shows Median run for each of the data

points.

based system and as such is expected to be slower. The results for this can be seen in

Figure 7.23 where the full range of data is shown and Figure 7.24 where all the points

whose theoretical timing is less the 7× 10−6 seconds. This ranges from a maximum

runtime of 0.977 seconds to aminimumof 0.0267 seconds; this is considerably slower

than even the slowest of the standard software Eden model which took 2.85× 10−3

seconds. This shows the general effect that the different Pmax and Pchance setting can

have on the runtime of the simulation with it increase as the Pmax and increases and

the Pchance decreases, which is to be expected.
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Next is thehardware timingof theRMRCmodel, thiswill be compared to theEden

models timings to give an idea of the possible theoretical speed up that this method

could offer. The first step is to understand how long it takes the model to perform a

single update; there are two different states that the MEden model can exist within.

These are called the Pulse and Update states both of them are designed to follow one

another repeating until the stopping condition has been met, this could be one of

many things such as touching the sides of the domain or infecting a certain number

of cells as with the standard Edenmodel. Both the Pulse and theUpdate states last for

1 nanosecond; this time will allow for the updating of the cells to be performed easily

as it is based on timings used for RRAM (Sakib et al., 2016). This means that a sin-

gle time step of the MEdenmodel should take around two nanoseconds to complete

theoretically.

Figure 7.25 showing the results for the full range of variable test and Figure 7.26

showing the run that have a runtime of less than 7× 10−6 seconds. The was done

because most of the points on the graph fall under this boundary 79.86% to be ac-

curate and it can be difficult to tell if there is any difference between these points in

Figure 7.25 with most of them being the dark blue points. Interestingly enough it is

possible to the RMRCmodel to produce both EdenB andCmodel within the less than

7× 10−6 seconds range.

With the full range of data, the slowest run took a total of 6.998× 10−6 seconds

this was with (Pmax = 50) and (Pchance = 1), the cluster that was produced could

be classified as an EdenC cluster. This works out to be approximately 221 times faster

than the fastest run of the EdenCmodel as shown in Figure 7.22. The fastest run of the

RMRCmodel also produced an EdenC like cluster and took only 1.22× 10−7 seconds

which is amassive12, 704 times faster the fastest of the softwareEdenCmodels. These

are even faster than the runtime for the fastest of the Eden models the EdenA which

has a fastest run time of 4.61× 10−4, the slowest of the RMRCmodel is approximately

66 times faster, and the fastest is approximately 3, 779 times faster than this EdenA
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Figure 7.25: These graphs show the full range of the theoretical hardware run time for the
MEdenmodel based on the number of iterations that are required to grow the model in the
simulation. The left graph shows all the 100 runs for each of the data points and the graph

on the right shows Median run for each of the data points.

Figure 7.26: These graphs show all the data points of the theoretical hardware MEden
model where the runtime is less than 7µs this is based on the number of iterations that are
required to grow the model in the simulation. The left graph shows all the 100 runs for each
of the data points, and the graph on the right shows Median run for each of the data points.

run.

As shown in the previous sections of this chapter it is possible to produce EdenB

like cluster with the RMRC mode with a Pmax of 1 and Pchance of %. This would pro-

duce the highest end of the EdenB model and would be the slowest settings to pro-

duce this cluster. At this specific variable set-up run times range from a maximum

time of 9.554× 10−6 seconds to aminimum time of 7.718× 10−6 seconds with ame-

dian run time of 8.415× 10−6 seconds. This means that even with the slowest run

this method for the simulation of the EdenBmodel is nearly 200 times faster than the
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Figure 7.27: These graphs show the component range for the 7 state RMRCmodel for all the
run that took less than 7× 10−6 seconds. This show that is it possible to get the full range of
possible cluster produced by this method with a massive speed increase between 221 times
and 12704 times faster than the software version of the EdenB and EdenCmodels. The

image on the right shows a top-down view where the black cells are the cells that have a run
time greater than 7000ns.

fastest version of the software EdenBmodel as shown in Figure 7.22.

With 79.86% of the runs taking less than 7× 10−6 seconds and with its ability to

produce the full range of theMEdenmodels cluster type productionwithin this range

which can be seen in Figure 7.22. This shows that there would be no need the step

outside of this region in order to obtain the full possibilities from the MEden model

this would lead to a minimum increase in speed from the fastest of the EdenCmodel

by 221 times and for the EdenB model of 271 times faster. This method would make

the running of the EdenB and EdenCmodel considerably faster than even that of the

EdenAmodel which as a minimum run time of 4.47× 10−4.

7.5 Summary

This chapter has demonstrated that not only is theMEdenmodel capable of produc-

ing Eden like clusters that are comparable to the EdenB and EdenC clusters in a frac-

tion of the time that the standard software-based approach is able to do. But is it also

able to allow for a more fine-grained selection of the cluster produced through the

manipulation of the Pchance and Pmax variables within the system.

It has also demonstrated that whereas the fractal dimension is a useful tool in the
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analysis and classification of these types of clusters, it is not able to identify clusters

with theprecision thatwouldbenecessary especially in a situation that is presenthere

where the range of the fractal dimensions overlap one another so heavily. To this end,

two additional tools for the analysis and classification of growth model clusters have

beenpresented anddemonstrated to be effective in the classification of these clusters

even with the high level of fractal similarity. These methods being the use of a graph

theory tool component labelling and the use of Convolutional Neural Networks.

The final section of the work looked at the possible speed increase (an expected

occurrence when implementing a software-based algorithm in hardware) that this

model could theoretically offer to the system, as it would be pointless to develop this

type of system only for it to end up being slower. With a maximum increase of ap-

proximately 12,704 times for the EdenC and amaximum runtime of 7× 10−6 seconds

for both the EdenC and EdenB models. It has also been demonstrated that the full

range of clusters producible by the method can be obtained with this limitation of a

maximum runtime of 7× 10−6 this means a theoretical speedup of between 221 and

12, 704 which even on the lower end is a considerable speed-up.
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CHAPTER 8

Conclusion

GROWTHmodels are a highly useful and widely used form of simula-

tion that offers many benefits to humanity as they enable the sim-

ulation of highly unpredictable systems such as cancer which can

lead to a better understanding of them. The work in this thesis has

explicitly focused on two growth models, the Eden Growth Model and the Invasion

Percolation Model, which are used in the simulation of cancer as well as for other

purposes. Here they are the primary models studied to investigate methods for the

optimisation of the runtime and memory consumption of a software-based imple-

mentation of these models through the use of alternate data structures. It also inves-

tigates a hardware-based implementation of the Eden growthmodelwhich is capable

of simulating both the EdenB andEdenC variantswith amaximumpossible speed re-

duction of 12, 704 times. Whilst testing the validity of the hardware implementation

of the Eden model it became apparent that the current method for the analysis and

classificationof growthmodel clusterswasnot enough toaccuratelydefine thecluster

189



8.1. Summary of Thesis 190

that was produced by the hardware implementation, as such two additionalmethods

where developed which leveraged techniques from two different areas graph theory

and image classification too help with this issue.

This chapter is the conclusion of thework that has been discussed in the previous

chapters. The first section of this chapter will be a summary of the work contained

here, whichwill be broken down into the individual objectives described in Chapter 1

and will mention when in the thesis they can be found. This will then be followed by

a discussed on the contributions of this work and then a discussion of some possible

future work which could lead on from this thesis.

8.1 Summary of Thesis

The section will discuss the different hypotheses of this thesis and will go into where

theywere proven or disproven alongwith details of the evidence that is supplied. The

three different Hypotheses which were first mentioned in Section 1.1, are as follows:

H1) Modern data structures such as the AVL and Hash Table can offer both

memory and runtime benefits to growth models.

H2) A hardware implementation of the Eden model using memristors can

simulate the Eden growth model faster than the software-based version,

and the same architecture can simulate different versions of the model.

H3) Theuse of connected component labelling and convolutional neural net-

work improves that ability to analyse and classify individual clusters of

the Eden growthmodel into the three main classes more accurately than

the fractal dimension.

In order to test the validity of these hypotheses, they were broken down into a set

of different objectives which could help in guiding the would and give manageable

milestones to achieve along the was. These objectives are first shown in Section 1.2,
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but the will also be listed here before a discussion on them.

8.1.1 H1

The objectives of this hypothesis are as follows:

O1) Investigate the domain fill for the variousmodels as the size of the cluster

increases.

O2) Develop an optimal method for the implementation of each of the data

structures for the model in clusters the handling of the growth sites.

O3) Investigate the effect on the runtime when making use of different data

structures.

O4) Investigate the effect on the memory consumption when making use of

different data structures.

This set of objectives were aimed at testing the validity of Hypothesis 1. Objective 1

was fulfilled in Section 3.4, this showed that the effects of the domain size on these

models could have a variety of effects including in some cases such as with the MIP

model increasing the sparsity of themodel as a whole. which could lead to a possible

significant saving in the memory consumption or runtime.

The fulfilment of Objective 2 can be seen in Chapter 4, the developed algorithms

for the data structure are discussed and in Chapter 3 where the methods for the han-

dling of the growth sites list is discussed. Model-specific changes that were made in

order to ensure that each of the models were running in a structure tailor-made for

it as also discussed one such example of this would be the negative mask for the AVL

tree in the case of the EdenA model in order to stop a cell being added to the growth

sites list more than once.

Objectives 3 and 4 are discussed within Chapter 5, this showed that the answer

for the best data structure is not a simple one. For models such as the MIP where the
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runtime is relatively short, with the slowest cases the median result is approximately

4 seconds, and the domain fill is very low, that a structure such as the hash table or

the AVL tree not only offer benefits to the runtime of the system, but they also offer

benefits to the memory consumption of the simulation especially at larger domain

sizes.

However, when the runtimeof the simulation increases such aswith the Screened

Edenmodel the difference in the runtime for higher betas values of the AVL tree does

not significantly differ from the Lattice and the Resizing method but the amount of

memory consumptionof theAVLmethod is considerable showing that itwouldbe the

better choice. This is not always the case as the amount of the domain that is filled

by the cluster increases, as is the case in the standard Eden and HIP models which

have between approximately 40% and 96% fill, the Lattice method is still the fastest

and consumes the least amount of memory. This demonstrates that there are bene-

fits that are available to both the runtime andmemory consumption of highly sparse

growth models, especially with larger domain sizes and that these difference can be

significant especially in the case of the amount of memory that can be conserved.

8.1.2 H2

The objectives of this hypothesis are as follows:

O5) Propose a design for a memristive based agent for use in a cellular au-

tomaton for the simulation of the Edenmodel.

O6) Analyse the fractal dimension of the Standard Eden growth model and

compare to that produced by the memristive based Eden growth model.

This set of objectiveswere aimedat testing the validity ofHypothesis 2. The fulfilment

of Objective 5 can be seen in Chapter 6. This Chapter detailed what a memristor is,

along with the specific implementation that was used for the simulation of themem-
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ristive architecture that was developed. This chapter compares the C++ implementa-

tion to a SPICE implementation showing that the C++ memristor can reproduce the

effect of amemristor effectively even if not 100% perfectly. Also within this chapter is

contained a discussion on the design of the agent that was developed as well as the

equations that can be used for the tailoring of the clusters that can be produced by

the model.

Objective 6was tomakeuse of the currentmethod for the testing of anewmethod

for the simulation of the Eden growthmodel, that being the fractal dimension and to

see if it was possible for the MEdenmethod of the simulation of the Edenmodel was

able to produce fractally similar cluster the that of the standard Eden varients. Chap-

ter 7 shows that the range of the fractal dimension that is produced by the RMRC and

the RMFC versions of theMEdenmodel can produce clusters that are fractally similar

to that of theEdenBandEdenCmethods; they arehowever not able toproduceEdenA

clusters; which is a limitation of this particular method. This demonstrated that this

method was able to produce clusters that by the current method would be classed as

Eden clusters and that itwas able, through themanipulationof the two variablesPmax

and Pchance, to tailor the specific type of cluster that was produced from the high end

of the EdenB model to the bottom end of the EdenC model giving flexibility to the

system that is not present in the current algorithms, widening the styles of clusters

that can be produced by a single system.

Unfortunately due to a lack of access to physical memristors the testing of this

method had to be done in silico. Thoughwithin Section 7.4 it was possible to demon-

strate that the theoretical speedup that couldbeobtained from theuseof thismethod

ranged from221 to12, 704 times faster than the simulatedversionsof theEden, growth

model. This speed-up is only theoretical and in order to be able to state for sure that

this is the range of speed increase that canbeobtained through theuse of thismethod

this architecture would have to be fabricated. Though this shows that there is a size-

able possible benefit in the simulation of Eden clusters through thismethod and that
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the fabrication of this system could be a worthwhile endeavour.

8.1.3 H3

The objectives of this hypothesis are as follows:

O7) Design connected component labelling for the analysis of the Eden

growth model.

O8) Test the validity of the connected component labelling for the analysis of

the Eden growth model.

O9) Design convolutional neural network for the analysis of the Eden growth

model.

O10) Test the validity of the convolutional neural network for the analysis of

the Eden growth model.

This set of objectives were aimed at testing the validity of Hypothesis 3. They are dis-

cussed in Chapter 7. Objective 7 was to develop a CCL algorithm that would work

with the Eden growth model, setting the state of the cell based on the infection step;

this is discussed in Section 7.2. The first step of Objective 8 was to get the compo-

nent count for the three standard Eden growth models for a range of different state

counts in order to see if it was possible for them to separated, so it was possible to

identify individual clusters within these ranges. It was found that from a state count

of 7 and up the ranges of the component counts for the EdenB and EdenCwhere dis-

tinct. This meant that is possible to identify individual clusters produced by these

methods. This was then compared to the component counts of the RMRC and RMFC

version of theMEdenmodel showing that the clusters produced by the RMRCversion

of the MEden model where able to match this component count range however not

the RMFC showing that just because they are fractally similar doesn’t mean they are

the same.
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The first step in Objectives 9 and 10 was to develop a CNN that was able to distin-

guishbetweenadifferent cluster of theEdenmodel thatwasproducedby the software

method Section 7.3 shows that the CNN developed was able to do this with an accu-

racy of 99.44%; this showed that thismethodwas highly useful in the identification of

these clusters even on an individual level unlike that of the fractal dimension. When

this method was used to test the clusters produced by the MEden method it showed

that the same trend that was present in the connected component labelling was also

present here with the lower Pmax and Pchance values producing more EdenB cluster

and with the higher Pmax and Pchance producing more EdenC like clusters.

8.2 Future Work

The work in this thesis is not the end of the work that can be performed in the ar-

eas discussed; many possible projects can emerge from the work that is shown here.

The first of these pieces of future work is to develop an asymmetric domain resizing

method for the Screened Eden model as it could offer significant benefits to runs of

the model especially those that make use of larger beta values. It would then be pos-

sible to develop amethod that can switch between the two different resizingmethods

depending on the beta value that is input into the simulation allowing for the mem-

ory consumed by the system to be minimised as well of the runtime of the system.

This would allow for a single computer to be able to run more instances of a single

model in parallel making better use of the resources that are available and speeding

up future research that makes use of models such as this.

Next is the development of a hybrid data structure management system that can

allow for in the case of a model such as the MIPs method to start off making use of a

data structure such as the AVL or HSHmethod which is considerably quicker to con-

struct, while generating the lattice structure in the background. Once the lattice is

constructed and while the simulation is running the system would copy all the data
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from one to the other and then switch to using the lattice or whichever structure was

decided to be best at that point. It is possible that a method such as this could be de-

veloped in such a way that it could balance out memory consumption with runtime

minimising any signification impact one may have on the other. This method could

have significantbenefits to theScreenedEdengrowthmodel especially in caseswhere

the beta value used is high as the amount of the domain filled by the cluster in these

cases is very low and this wouldmean a significant reduction in the amount of mem-

ory that would be needed as well as possibly improving the runtime of themodel but

before this type of claim can be made this would be needed to develop and test the

method.

The next set of future works revolves around the MEden method. The first and

most evident of these is to fabricate the architecture. Unfortunately, due to budget

constraints, it was not possible to do this for this work, and so the simulation dis-

cussed in Chapter 6 was developed to test the hypothesis that this system could sim-

ulate the Eden model. In order to take this forward, it would be needed first to be

able to gain access to enough memristors to be able to build the system on a small

scale, for example, on a 4x4 grid and then compare the result of this smaller grid to

the simulation and identify any differences between the two. This can then be used to

improve the simulation to give a better idea of the effectiveness of this method with-

out the need for a massive monetary investment. The development of this system as

shown here could offer significant benefits to the simulation of the Edenmodel both

in terms of the runtime of the simulation but also in terms of the versatility of the

model with a single system being able to produce a broader range of clusters than a

single algorithmwhich in the case of aMonte-Carlo style runallows for the simulation

to cover more ground.

Next is to investigate whether theMedenmodel with its current design is capable

of being used for the generation of 3D Eden clusters and if it differs in the type of

clusters that are produced by this method from when it is used to produce 2D Eden
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clusters. It is possible that the RMRC version of the MEden model which is the best

of the four for the simulation of Eden models in 2D would not be the best for the 3D

MEden model. It would also be interesting to investigate the effect that this scaling

has on the runtime of the system, as it is feasible that this increase in the dimension

count would speed up the simulation unlike with the 3D software version in which

it slows down considerably due to the increase in searches; this would be due to the

inherent parallelism of this system.

The final set of plans revolves around the analytical tools that have been devel-

oped and tested within Chapter 7 for the analysis of the Edenmodel. This first would

be to test the connected component labelling and the convolutional neural network

methods with a broader range of models such as the Invasion Percolation model or

the models such as the Kawasaki model as there might be limitations to the types of

models that these methods can be used for, and it would be essential to find rules

that can aid in the decision as to which method to use and when. This would allow

for a better understanding of the different methods that are used for the simulation

of these systems and allow for them to bemore consistent and predictable and could

even lead to the identification of different classes of current models thereby expand-

ing our knowledge of these complex systems.
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APPENDIX A

Statistical Tests Explained

Statistical test are very useful tools in the analysis of large quantities of data to gain

an understanding of the data especially in cases when a sample of data is drawn from

a population and used as a representation of the population. These test allow use to

be able to identify whether the sample is a good representation of the original popu-

lation as well as whether any changes to the population have an effect that could be

considered to be positive or negative to the overall population.

A.1 Non-parametric tests

There are three different statistical tests that are used in this thesis help inform on

the results shown in Chapter 5 these being theMann-Whitney U test which is used to

calculate the probability that two samples are drawn frompopulations with the same

median. TheKolmogorov-Smirnoff test which is used to calculate the probability that
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two different sample are from populations with the same distributions. Finally, there

is the “A” measure which is used to measure the importance of scientific significance

or importance. Both theMann-WhitneyUand theKolmogorov-Smirnoff test arenon-

parametric tests whichmeans that the tests make no assumptions on the form of the

distribution. This means that these tests work as well for non-normally distributed

data as they do for normally distributed data .

The Mann-Whitney U test makes use of a null hypothesis that can be rejected

with a confidence level of 95% when the returned result of the test is less then 0.05,

however just because the result is greater then 0.05 that is not a confirmation of the

hypothesis. The hypothesis for this test can be seen below:

H_0 : samples X and Y have the samemedians

TheKolmogorov-Smirnoff testmakes use of a null hypothesis that can be rejected

with a confidence level of 95% when the result of the test returns a value of less than

0.05 and as with the Mann-Whitney U test just because the result is greater then 0.05

that is not a confirmation of the hypothesis. The hypothesis for this test can be seen

below:

H_0 : samples X and Y have the same distributions

The “A” measure returns a values between 0.5 and 1, the higher the value return

the higher the level of significance of the result. The boundary for the level of signifi-

cance can be seen below:

a == 0.50 means no effect (distributions have the samemedians)

a >= 0.56 means a small effect

a >= 0.64 means a medium effect

a >= 0.71 means a large effect

Both the Mann-Whitney U and Kolmogorov-Smirnoff tests and very easy to im-
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plement with statistics library’s such as SciPy, a library for python, have built in func-

tions for the computation of these test. In the case of pyplot these functions are

mannwhitneyu and ks2samp. However, this is not the case for the “A” measure and

as such this method had to implemented specifically and the code used to calculates

the the “A” measure can be seen in Figure A.1.

1 def A_measure(X, Y):
2 equal = 0.0
3 greater = 0.0
4
5 for x in X:
6 for y in Y:
7 if x == y:
8 equal += 1
9 elif x > y:
10 greater += 1
11 nm = len(X) * len(Y)
12
13 data = (greater / nm) + ((0.5 * equal) / nm)
14
15 if(data < 0.5):
16 return (1.0 - data)
17 else:
18 return data

Figure A.1: Code for the calculation of the “A” measure for two different distributions, X and
Y. A test used for the calculation of scientific significances. This implementation of the “A”
measure is able to deal with distribution of different sizes though all distributions in this

work are of the same size.

A.2 Boxplot

Figure A.2 shows an example of a boxplot which is a useful graphing tool that is used

through this work there are a number of features of this plot the show be explained

in order to full understand what and boxplots shown in the main body of this work

mean.

The first is this tomention are the two lines running through the box. The orange

line shows the median for the distribution and the green line shows the mean for the

distribution. It is helpful to be able to see both as this can be a good indication of the
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Figure A.2: Example boxplot use to help explain the different features of this type of diagram

skew of the data the close they are too one another themore normally distributed the

data will be.

The Notch in the box is another important aspect of the diagram this show the

confidence range for the median of the distribution as being in this work all of the

data will be a sample from a population and the the whole population it is possible

for there to be some error on the median. The narrower this notch is the better.

Themainparts of the boxplot plot are the box and thewhiskers. Thebox is used to

represent the Interquartile Range (IQR) this shows where the data that falls between

the 75th commonly called Q3and the 25th percentiles commonly called Q1 lies the

range between these is the IQR. The whiskers of the diagram are calculate withQ1−

(1.5 × IQR) for the lower and Q3 − (1.5 × IQR) for the upper. The outliers these

are shown through the use a hollow circles and these are all the points that fall out of
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the the range of the whiskers of the diagram. All of these feature are labelled in on the

graph in Figure A.2.



APPENDIX B

Statistical Test Results for Timing
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