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Abstract 
A reliable multivariable model of a process is a fundamental prerequisite for the design 
of an efficient control strategy. Though, such a model is often very hard to obtain via a 
first-principles approach. The development of two fuzzy model-based multivariable 
nonlinear predictive control schemes and their implementation on a copolymerization 
process are described in this paper. Multi-input/single-output models are developed 
using fuzzy logic and combined to form a parallel system model for simulation and on-
line prediction. The behavior of the outlined controllers were compared to the dynamic 
matrix control (DMC) and to a typical nonlinear model-based predictive control 
(NMPC) for regulatory problem and the obtained results showed the effectiveness of the 
proposed structures. 
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1. Introduction 
Control of copolymerization processes is characterized by the existence of operational 
constraints due to economic or safety concerns as well as restrictions related to 
equipment size/capacity/design. In addition, such systems present strong interactions 
among variables and they are intrinsically multivariable and nonlinear, by making the 
performance of conventional controllers to be poor or to require considerable efforts in 
controller tuning (Lima et al., 2009a). To cope with this fact, model-based predictive 
control (MPC) has been the most successful advanced control technique applied to the 
chemical process industry. This formulation basically handles time-delays, 
multivariable interactions and constraints, where the dynamical model is directly 
implemented in the control structure (Manenti et al., 2009; Manenti and Rovaglio, 
2008). 
However, it is very difficult to build up a sufficiently detailed physical model (white 
box model) able to take into account the main phenomena taking place within the 
process. Difficulties are related to the large amount of differential and algebraic 
equations and the solution of these models could take a relevant mathematical effort, 
sometimes requiring simplifications which create uncertainties about the solution 
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accuracy obtained. Moreover, such models have to be integrated in a relatively short 
period of time (Lima et al., 2009b) to ensure the on-line feasibility of control and 
optimization procedures. Thus, accurate nonlinear models based on input-output data 
(black box models) using soft computing techniques are increasingly being used in 
model-based control. 
This work presents the development of two multivariable nonlinear predictive 
controllers based on linear and exponential fuzzy models (in the following, LFMPC and 
NFMPC, respectively) for a copolymerization process. So, internal models for the 
controllers are developed through the fuzzy logic, accounting for both process 
restrictions and nonlinearities. Such an approach takes the great benefit of not requiring 
a deep process acquaintance and understanding, which makes it widely applicable in the 
case of complex systems. The copolymer solution of methyl metacrylate and vinyl 
acetate was considered to check the performance of the proposed control structures. 
Specifically, the copolymerization process consists of a jacketed continuous stirred tank 
reactor, a separator, and a recycle loop. The behavior of the control strategies here 
proposed was compared to the well-established methodologies of optimal control 
(Dynamic Matrix Control, DMC, and Nonlinear Model Predictive Control, NMPC) for 
regulatory problems. The comparison highlighted the significant robustness as well as 
the easy implementation of both the proposed LFMPC and NFMPC approaches by 
enhancing their effectiveness in matching quality and production specifications of 
nonlinear systems such as polymer processes. The first-principles nonlinear system 
developed for the comparison consists of 53 differential and algebraic equations and it 
is implemented in Fortran 90/95 to simulate the plant and to setup the NMPC. The 
numerical solution is performed by using IMSL library. 

2. Identification of Fuzzy Dynamical Models 
A fuzzy implication is defined by expressions like: IF premise (antecedent), THEN 
conclusion (consequent). This logical structure is commonly referred to as the IF-THEN 
rule-based form. Thus, according to Lima et al. (2007), the first point to be considered 
in the fuzzy modeling is the definition of the fuzzy model structure that composes the 
rules base of system. Many structures have been already proposed in the literature and, 
among them, Takagi and Sugeno (1985) proposed a design and analysis scheme for 
overall fuzzy systems, where the qualitative knowledge of a process was first 
represented by a set of local Takagi-Sugeno fuzzy model. This approach involves fuzzy 
sets for the premise portion and a linear equation of input variables for the conclusion. 
A complex, large-scale nonlinear modeling problem is decomposed into a set of simpler 
linear models valid within certain operating regimes defined by fuzzy boundaries. Fuzzy 
inference is hence used to interpolate the outputs of the local models in a smooth 
fashion to get a global model (Mahfouf et al., 2000). Takagi-Sugeno structure is used 
for the linear fuzzy model and it is made exponential for the nonlinear fuzzy model of 
the system under study in this paper. The subtractive clustering method is employed for 
determination of the amount of rules and parameters of Gaussian membership functions 
(Chiu, 1996). Consequent function parameters are obtained by solving a least square 
optimization problem (Passino and Yurkovich, 1998). The next step is the data 
generation for the identification of the models. At first, the training data set is generated 
and the models parameters are evaluated. These models are then validated through the 
test data observing the average quadratic error between the predicted outputs and the 
real outputs (differential and algebraic mathematical model). 
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3. Fuzzy Model-Based Predictive Controllers 
Predictive controls generate a set of manipulated variable profiles by means of the 
minimization of some performance indexes over the time. A feedback loop is 
incorporated in the control structure since the measurements are used to update the 
optimization problem for the next time step. The method is aimed at calculating a set of 
CH (Control Horizon) future input moves such that the sum of the squared deviations 
between the output projections, over a PH (Prediction Horizon) future time intervals, 
and the desired values is minimized, using a moving horizon methodology. Thus, future 
outputs are driven close to the reference trajectory. The basic idea of the multivariable 
predictive algorithm is to: 
I. Calculate the reference trajectory for each output variable Io ( d

Ioy ); 
II. Estimate the closed-loop output predictions ( CLpred

Ioŷ ) using the process prediction 
models. In this paper, these models are formulated in the form of linear and exponential 
functional fuzzy models for the linear and nonlinear model-based predictive controllers, 
respectively; 
III. Compute the errors between predicted and reference trajectories; 
IV. Estimate the sequence of future controls (movements) of each manipulated variable 
Ii (u ) through the minimization of the objective function J, expressed by Eq. (1): 

( ) ( )
2 2

, , ,
1 1 1 1

ˆ
NOV PH NIV CH newd CLpred

Io Io n Io n Ii Ii k
Io n Ii k
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= = = =
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where NOV = number of output variables; NIV = number of input variables; 
1−−=∆ kkk uuu ; f = suppression factor to the movements of the manipulated variables; 

and w = weight. In this study, the reference trajectory is calculated by a first order filter: 

( ), , 1 , 11d actual SET
Io n Io n Io ny y yα α− −= ⋅ + − ⋅  (2) 

where actual
nIoy 1, −

 = vector of current measured value of the controlled variable Io at the 

sampling time n-1; SET
nIoy 1, −  = vector of setpoint of the controlled variable Io at the 

sampling time n–1; and α  = reference trajectory parameter, with 10 ≤≤ α . 

4. Case Study 
Figure 1 reports a flow-sheet of the copolymerization reactor with a recycle loop 
(Congalidis et al., 1989; Maner and Doyle III, 1997): monomer A is methyl 
methacrylate (MMA); monomer B is vinyl acetate (VAc); the solvent is benzene; the 
initiator is azobisisobutyronitrile (AIBN); and the chain transfer agent is acetaldehyde. 
The monomer stream may also contain inhibitors such as m-dinitrobenzene (m-DNB). 
Monomers A and B are continuously added with initiator, solvent, and chain transfer 
agent. In addition, an inhibitor may enter the fresh feeds as impurity. These feed streams 
(stream 1) are mixed to the recycle stream (stream 2) and fed to the reactor (stream 3), 
which is assumed to be a jacketed, perfectly-mixed tank. A coolant is fed to the jacket to 
remove the heat of reaction. Polymer, solvent, unreacted monomers, initiator, and chain 
transfer agent exit the reactor and reach the separator (stream 4) where polymer, 
residual initiator, and chain transfer agent are all removed (stream 5). Unreacted 
monomers and solvent (stream 6) are sent to a purge line for venting (stream 7). After 
the purge, monomers and solvent (stream 8) are both stored in the recycle hold tank 
operating as a surge capacity to smooth out variations in the recycle flow and 



  N. M. N. Lima et al. 

composition. The effluent recycle (stream 2) is then added to the fresh feeds. The 
separator and the hold tank are both modeled as first-order lags with constant level and 
residence time equal to the reactor residence time. Relevant output variables to match 
the product quality are: copolymer production rate (Gpi), mole fraction of monomer A in 
the copolymer (Yap), weighted average molecular weight (Mpw), and reactor temperature 
(Tr). Steady-state operating conditions are summarized in Table 1. 
 

 
Figure 1. Process layout. 

 

The presence of the recycle stream introduces disturbances in the reactor feed and a 
feedforward controller was implemented to compensate for them by manipulating fresh 
feeds in order to preserve feed composition and flowrate to the reactor. Feedforward 
control of the recycle stream allows the designer to separate reactor control from the rest 
of the process. Details on the feedforward control are given in Congalidis et al. (1989). 
4.1. Selection of control loop 
Lima et al. (2007) developed a factorial planning to discriminate the variables with 
higher impact on the process performance. The selected control loop resulting from this 
analysis is shown in Table 2. 

Table 1. Steady-state operating conditions. 
Inputs Outputs 

MMA feed rate (Gaf) = 18 kg/h Gpi = 23.4 kg/h 
VAc feed rate (Gbf) = 90 kg/h Yap = 0.558 

AIBN feed rate (Gif) = 0.18 kg/h Mpw = 34,900 kg/kmol 
Benzene feed rate (Gsf) = 36 kg/h Tr = 353.18 K 

Acetaldehyde feed rate (Gtf) = 2.7 kg/h  
m-DNB feed rate (Gzf) = 0 kg/h  

Reactor jacket temperature (Tj) = 336.15 K  
Reactor feed temperature (Trf) = 353.15 K  

Purge ratio (ξ) = 0.05  
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Table 2. Control scheme. 
Manipulated Variables Controlled Variables 

Gbf Gpi 
Gif Tr 
Tj  

 
4.2. Results 
The closed-loop performance of fuzzy model-based multivariable nonlinear predictive 
controllers was analyzed for the rejection of unmeasured disturbances (regulatory 
problem). The disturbance considered was the presence of an inhibitor in the fresh feed. 
This disturbance inhibits polymerization reaction. Also, as the reaction is exothermic, 
less polymerization results in less heat being generated and the reactor temperature 
decreases as well. Here, an inhibitor disturbance of 4 parts per 1,000 (mole basis) in the 
fresh feed was applied. In order to assess the performance of fuzzy model-based 
controllers, a comparative study with NMPC and DMC was carried out. The NMPC 
algorithm utilizes in Eq. (1) a prediction model in the form of nonlinear differential 
equations and the DMC methodology uses a linear step response prediction model. The 
controllers were tuned by IAE (Integral of the Absolute value of the Error) criterion. 
Figure 2 illustrates the closed-loop performance comparison of the four control 
strategies about the two controlled variables subject to the selected disturbance. Control 
system parameters and IAE errors are summarized in Table 3. Computation times of 24, 
25, 48, and 23 s were obtained for LFMPC, NFMPC, NMPC, and DMC, respectively. 
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Figure 2. Closed-loop and open-loop simulations under inhibitor feed disturbance. 

Table 3. Tuning parameters and IAE errors for predictive control structures. 
Parameters LFMPC NFMPC NMPC DMC 

PH 12 6 3 9 
CH 1 1 2 2 

f (Gbf; Gif; Tj) (0.0; 0.3; 0.1) (0.1; 0.3; 0.1) (1.0; 0.1; 1.0) (0.9; 0.9; 0.9) 
α (Gpi; Tr) (0.6, 0.1) (0.4, 0.1) (0.0, 0.1) (0.1, 0.1) 

Weight (Gpi; Tr) (2.0; 2.8) (2.0; 2.8) (2.5; 2.5) (1.0; 1.0) 
IAE 

(Gpi [kg/h]; Tr [K]) 
(12.0; 4.99) (7.9; 4.89) (14.0; 14.63) (17.4; 1.58)  
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4.3. Discussion 
As can be observed in Figure 2 and Table 3, NFMPC and LFMPC perform better than 
NMPC and DMC, with a lower IAE value and a smaller overshoot for Gpi. About Tr, the 
value of the IAE for DMC control is smallest, with similar outcomes for NFMPC and 
LFMPC, which can be explained by the fact that Tr linearly depends on Tj. 

5. Conclusions 
The problem of nonlinear model-based multivariable predictive control for complex 
processes was tackled. Specifically, two predictive controllers based on linear and 
exponential fuzzy models were developed for a copolymerization process. The 
copolymer rate and reactor temperature were analyzed for regulatory problem and 
compared for load effects against NMPC and DMC controllers. The simulation results 
showed good performance for the proposed structures and confirm potentialities and 
robustness of these techniques to reduce off-specifications due to disturbances in 
nonlinear systems. 
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