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AN EVALUATION OF SELECTED ESTIMATION METHODS FOR THE PROCESSING

OF DIFFERENTIAL ABSORPTION LIDAR DATA

This work examines the application of selected estimation methods
to path integrated direct detection CO2 lidar data, with the objective
of improving the precision in the estimates of the log power, and log
power ratios. Particular emphasis is given to the optimal estimation
techniques of Kalman filtering theory, and to the consequent require-
ments for system and measurement model identification. A dual wave-
length system was designed and constructed, employing two hybridised
TEA lasers, a co-axial transceiver, and direct detection.

Over a period of several months, a database of differential absorp-
tion measurements was accumulated, each consisting of 10,000 dual
wavelength lidar returns. Various wavelength pairs were used, includ-

ing those recommended for the monitoring of H_O, CO_, NH_, and C_H A

2 2 3 2°4°

subset of this database is used to evaluate the above mentioned estimation
methods. The results are compared with simulated data files in which it
was possible to control precisely process models which are believed to

form an approximation to the real processes latent in the actual lidar

data.
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CHAPTER 1.0

INTRODUCTION

1.1 LIDAR Systems

The application of the optical counterpart to Radar, now generally
referred to by its acronym LIDAR for "Light Detection and Ranging", has
encompassed many of the developments in tunable laser sources. Trans-
mitted wavelengths range from the ultra-violet through visible to the
infra-red, and have been used for a wide variety of measurements includ-
ing temperature, humidity, wind velocity, cloud base heights, dust and
aerosol distributions, variations in the major constituents of the
Earth's atmosphere and, of course, pollutant or trace gas concentrations
[1-16].

In measuring trace gases, some of these systems use topographic
targets or retro-reflectors and are therefore restricted to path inte-
grated measurements. Other systems, however, use the back-scattered
radiation from one or more of the atmospheric constituents to provide
the return signal. Both Raman and resonance scattering have been
employed to indicate directly the presence and concentration of pollu-
taht molecules. Alternatively, similar information can be obtained
indirectly using the radiation scattered from naturally occurring aero-
sols. Inherent in the design of all atmospheric scattering systems is
the ability to range resolv7 the parameters outlined above.

"Single ended” or "monostatic" systems confine all the necessary
equipment to a single location, yet enable measurements to be made over
an extended volume of air space, often with dimensions of cubic kilo-

metres. As such they offer an alternative to in-situ sensors which are



capable of measuring gas concentrations only at a single location. This
is important in situations where measurements need to be made in places
physically inaccessible or else hazardous to both equipment and operator.
Advantages are also found in applications where the equipment must be
portable; examples here include the various ground mobile and air-borne
systems, and the LIDAR payloads originally intended for launch by the

NASA Shuttle in the mid-1980's [17,18].

1.1.1 The Hull LIDAR System

The LIDAR system developed at Hull University used the differen-

tial absorption of two CO_, laser pulses, transmitted almost simultaneously

2
along the same optical path in the atmosphere, as the basis of a ratioing
technique to determine the concentration of an absorbing molecule. The
output from one laser is absorbed by the molecular species of interest
whilst the other, tuned to a slightly different frequency, is subject to
iess absorption (ideally non at all). Acronyms classifying this tyéé
of system will therefore often include the component "Differential
Absorption". For example, if atmospheric backscattering is employed
to provide the return signal, then"DIAD'(Differential Absorption
Lidar) is used. The term "Lidar", however, has come to be used as
a generic description for any long propagation path system but, by
definition,should be reserved for systems capable of range resolved
measurements.

A full description of the system configuration will follow in
Chapter 2 but, for the purposes of the analysis conducted in this
work, the radiation collected by the receiving telescope was detected

directly rather than by the more sensitive, but significantly more

complex method of coherent detection.
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1.2 Pollution and Trace G2s khsorn”‘n» Linegs of Interest

Table 1.1 gives a representative list of pollutants and trace gases
currently of interest for meteorological reasons, for investigations in
atmospheric science and transport studies, or for their relevance as
possible detriments to the environment. Strictly speaking, water vapour
and CO2 are not pollutants or trace gases but important atmospheric con-
stituents with concentrations which can vary both diurnally and with
changes in geographical location.

Ozone is also a naturally occurring atmospheric component but most of
it is concentrated within a layer two or three miles thick, at some 15 - 20
miles above the surface of the Earth. It is, however, toxic in concentra-
tions as low as 100 ppb causing respiratory and visual problems [19].
Atmospheric transport processes can cause this stratospheric ozone to
descend to lower altitudes within the troposphere. Other natural sources
at lower altitudes include lightning and volcanic eruptions. Man-made
additions tend to originate in industrial waste gases, particularly hydro-
carbons and nitrous oxides (Nox) which react in the presence of sunlight
to form ozone. Typical sea-level concentrations range between 10 and
30 ppb but levels as high as 500 ppb have also been observed [19].

Gases such as Sulphur Dioxide and Ammonia occur naturally in low
background concentrations (£ 0.0l ppm) but near industrialised areas the
concentrations can be much higher. Large numbers of deaths have been

attributed indirectly to SO, in polluted areas in which the concentra-

2
!

tions reached more than 1.0'’ppm [19]. Accelerated ageing is also reputed

to result from exposure to this gas [20]. Ammonia too is directly harmful

to man but is under investigation because of its important role in the pro-

duction and destruction of the oxides of Nitrogen in the stratosphere and

troposphere [19]. Such processes can be potentially damaging if they



reduce the concentration of ozone in the stratosphere since this layer
acts as a shield, absorbing most of the harmful ultra-violet radiation
from the sun.

Numerous hydro-carbons exist as forms of pollutants in the atmos-
phere and are capable of interacting in a diverse number of ways with
other atmospheric molecules. Candidates for investigation include
ethylene (C2H4), again an industrial by-product, and also propane (C3H8)
which can occur in background levels ranging from a few ppm to extreme
concentrations of 40 ppm [1]. Similar interactions involving the various
types of Freon are also the subject of investigation [21].

Table 1.2 (extracted from [1]) gives the composition of "clean"
dry air near sea level, including the background concentrations of a

number of minor constituents described briefly above.

1.3 The Application of CO2 Lasers

1.3.1 Atmospheric Transmission

An important criterion in selecting the transmitted wavelengths
for a laser radar system is the atmospheric attenuation over the various
wavelength ranges of interest (i.e. available within the current develop-
ments of laser technology). Energy dissipation from an optical beam

propagating in the atmosphere can be attributed primarily to the follow-

ing loss mechanisms:

f
(1) Molecular absorption

(2) Molecular scattering
(3) Particulate scattering
(4) Particulate absorption

(5) Atmospheric turbulence.



(1) Molecular absorption (denoted, uM) is generally the result of the
super-position of the absorption spectra of more than one mole-
cular species. Fig. 1.1 is a low-resolution representation of

the absorption spectra of all the atmospheric gases, over a wave-
length range from °0N.l - 100 um, at two altitudes above the Earth's
surface. The upper curve illustrates the attenuation of solar
radiation reaching the surface whilst the lower curve is for the
radiation reaching an altitude of 11 km. Contributions due to the
various gases listed in Tablel.2 are also indicated. They clearly
indicate the presence or absence of "windows" over various wave-
length regions from the ultra-violet to the infra-red with nearly
complete absorption occurring beyond the limits of 0.2 and 20 um.
At short wavelengths this absorption is due to oxygen and ozone,
and at longer wavelengths to water vapour.

These curves are somewhat misleading, however, since higher
resolution spectra would in fact reveal each absorption band and
each "window" as consisting of thousands of separate absorption
lines. Each region is therefore neither completely opaque or com-
pletely transparent. This is fortunate because some of the narrower
windows happen to coincide, or partly overlap, with the emission
spectra of various lasers. Determining the transparency of these
windows at high resolution often requires empirically derived results.

Of particular interest to the application of CO_, lasers is the

2
window existing in thq 9 - 11 um region, not resolved in Fig. 1.1,
/
but partially represented in Fig. 1.2 complete with details of the
fine spectra [22].

Transmittance values are calculated over a range of 10 km

for a horizontal sea level path and, for the 10 - 9 um region



illustrated, vary from negligible absorption to approximately 70%t.
The spectrum actually depicts a convolution of strong atmospheric
absorption features with an almost constant background absorption
known as the "water vapour continuum®. This is thought to be due
to water molecules forming themselves into more complicated basic
units known as "dimers" and "trimers” [23].

Also evident in Fig. 1.2, appear to be the P and R branches
of the absorption spectra of C02. A comparison with Fig. 1.3,
giving the emission spectra of Co2 alone, will reveal the spectral
location of these features. As indicated in Table 1.2, CO2 occurs
as a natural constituent of the Earth's atmosphere and some absorp-
tion can be expected. However, since the stimulated emission lines
of a CO, laser do not involve transitions directly from the ground

2

state, absorption by atmospheric CO, will fortunately be limited.

2
Strong absorption features due to other gases also exist, however,

and specific CO, lines will not always coincide with spectral inter-

2

vals of relatively high transmittance.

(2) Molecular scattering is usually treated using the Rayleigh scattering
theory for gas molecules which relates the extinction coefficient a
to the number of scatters per unit volume (ns), the refractive index
of the gas (n) and the wavelength of the incident radiation via

expressions of the form [1]

ag\) = [8n3(n2-1‘,)/3nsx41[<s + 38)(6 - 78)] (1.1)

where § is a depolarisation factor. Important here is the A-4

dependence of ap on wavelength which is obviously advantageous if

the laser wavelengths used are in the infra-red rather than visible



(3)

(4)

or ultra-violet. Fig. 1.4 cbmpares values of ap over the wavelength
range 0.2 to 20 um [24). Differences of many orders of magnitude
become apparent between the 9 -11 um range of CO2 lasers and wave-

length below 1 um.

Treatments of particle scattering often include the general attenua-
tion due to both scattering and absorption of laser radiation by

a diversity of air-borne particles. Although the early theoretical
treatments were pioneered by Mie in 1908 [1] many subsequent treat-
ments exist [25] because of its significance in all investigations
of atmospheric optics. "Mie scattering”, as it is now known, is
highly dependent on particle size, wavelength and particle distribu-
tion with no straightforward relationship existing between the Mie
scattering coefficient uMIEnd wavelength (unlike Rayleigh scatter-
ing). The results of numerical computations are available [20]

for various classifications of aerosol distribution but, in general,
losses due to particle scattering have a tendency to decrease with

increasing wavelength.

Particulate absorption manifests itself in a component term in the
expression for particle scattering. Parameters are represented by
complex variables, including a complex refractive index, and it is
the imaginary terms which yield the contributions due to absorption.
These various extinction parameters can be combined into a

single atmospheric atgentuation coefficient,

- + + . .
“A aM aR QMIE (scattering, absorption) (1.2)

and are related to the intensity of the optical radiation propagat-

ing in the atmosphere via the differential expression



(5)

di{v) = =~ 1(v) aA(v,z)di (1.3)

which is known as either Bouguer's Law (or Beer's Law or Lambert's
Law, or the Beer-Lambert Bouguer (BLB) Law). The direction of
propagation is z and dI(v) is the change in intensity after the
radiation has passed through a medium layer of depth dz. In inte=-
gral form this hecomes

z

I(v) = I (v) exp {-J aA(v,z)dz} (1.4)

where I° is the initial radiation intensity, or
I(v) = Io(v) exp [- aACU)z] (1.5)

if the medium is homogeneous. 1In Chapter 3.0 this relationship will
be incorporated into a general expression for LIDAR systems, used to
predict radiation intensities after two-way propagation paths

between source and remote target.

Atmospheric turbulence effects redistribute the energy of optical
beams and cannot be considered simply in terms of attenuating
coefficients, but must be statistically interpreted in terms of the
mean and variance of the resultant intensity distribution after a
given propagation length in the turbulent medium. For example, the
variance of the logarithm of intensity, assuming a point source

and a point receiver, may be given by empirically derived expres-

sions of the form [e.g. ref. 38},

7/6 11/6
/6, 11/6) (1.6

o = f[Cz, K



where Ci is the atmospheric structure constant, or scintillation
index, characterising the strength of the turbulence, k = %P and
L is the atmospheric path length. The relevance of turbulence
will be discussed in more detail later in Chapter 4.0, but of
significance here is the inverse relationship between wavelength
and variance; again, advantages are incurred by operating at

longer wavelengths.

1.3.2 Coincidence of CO2 Emission Lines with Trace Gas and

Pollutant Absorption Spectra

Table 1.1 presents a list of specific gases of interest acces-
sible with 002 wavelengths, together with the recommended measurement
and reference lines to be used in comparing absorption. These, however,
may not represent the optimum choice because interference from other
atmospheric gases can modify the differential absorption coefficient,
important in determining molecular concentrations and associated sensi-
tivities (discussed in Chapter 5.0). 1Included in Table 1.1 are certain
pollutants which would seem to be best detected using different lasers

such as HeNe, Carbon Monoxide or even isotopic CO, lasers (only the

2
measurement lines are shown). The majority, however, given the availa-
bility of all known discrete laser transitions, have suitahle
absorption cross-sections coinciding with the line emissions of ordinary
C02 lasers.

CO2 lasers, therefére, have obvious advantages but the problem
of the discrete tuning nature of gas lasers at atmospheric pressures and

below, means that coincidences between emission and absorption spectra

are always fortuitous and seldom ideal. 1In some cases, for example




sulphur dioxide, the match is not-as good, resulting in reduced sensi-
tivity. The advent of reliable, continuously tunable lasers may eventu-
ally optimise the situation but at the time of writing these are still

under development [20,26,27,34,35,36,37].

1.4 Project Objectives

The investigations planned at the outset of this project were
directed at the ultimate objective of remote measurement of trace gases
with accuracies approaching a few parts per billion (ppb). A primary
requirement was the design and construction of a dual wavelength laser
system capable of simultaneously generating two single-transverse-mode
pulses of at least 100 mJ, and at relatively high pulse repetition rates.
An existing telescopic transmitter and receiver configuration was used
and integrated into a system which also included (a) the dual laser
source, (b) the optics used to simultaneously couple the two output
pulses into a single optical transmission path, and (c) the optical com-
ponents necessary for the dual direct detection of two signals received
simultaneously or with a given time delay.

To obtain differential absorption measurements it was necessary to
completely re-configure the original single wavelength system, success-

.
fully used in demonstrating the application of coherent lidar to wind
velocity measurement [28,31,32,33). A more stable optical system was con-
structed in order to avoid the frequent and time-consuming alignment pro-
cedures found necessary wheh using the earlier system. The extra

stability was also essential for the increase in optical system com-

plexity which accompanied the inclusion of a dual wavelength laser source.



Originally, attempts to solvé the problem of how to improve
ﬁeasurement sensitivity tended to focus on "system hardware” innova-
tions which would increase the number of statistically independent
return power samples obtained per unit time. Direct detection of hard
target returns would permit only increased laser rep rates, augmented
(where practical) with aperture averaging, but coherent detection of
atmospheric returns made feasible more exotic techniques. Examples
include the use of short duration laser pulses and spatial averaging
within gated range cells, or "frequency diversity" in which a long
cavity laser system could be used to increase the number of longitudinal
modes transmitted and hence, in principle, increase the number coherently
detected.,

In general, it tended to be implicitly assumed that the absorption
{or backscatter) characteristics of the atmosphere remained approximately
stationary during the course of the measurements so that each temporally
sequential sample was independent and simple averaging techniques could
be applied. Evidence was available, however, that these characteristics
were, in general, not stationary and that a trend often existed which
invalidated the simple averaging techniques [30]). More sophisticated
estimation techniques are therefore required which are capable, not only
of "tracking” the time dependent qualities of interest as accurately as
possible, but also of providing an indication of the precision of the
estimates.

It is the objective of!this work to examine the application of alter-
native estimation methods fo path integrated direct detection lidar data
obtained with the Hull University lidar system, and particular attention

will be paid to the optimal estimation techniques of Kalman filtering
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theory. Over a period of several months towards the end of 1984 a
database of measurements was built up, with each measurement consisting
of 10,000 dual wavelength lidar returns. Selected files will be used
to evaluate these estimation methods and the results will be compared
with simulated data files in which it was possible to control precisely
process models wbich are believed to form an approximation to the real

"
processes 1atenthactua1 lidar data.
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TABLE 1.] Pollutants and Atmospheric Gases of interest in remote
sensing applications. Laser lines are indicated which
have been selected for their suitability in measuring
the concentrations of the gases shown. 1In most cases,
suitable reference lines are also included. (From [1]

and [29])
Recommended Laser Lines
Measure Reference
Laser Gas
Line A (um) ®m Line | A (um) *n
(atm”’cm™1) (atm’cm™1)

C02 Ammoniza R8 10,333 25.8 R12 10.304 0.06
CO2 Benzene P28 9.621 2.0 R20 9.272 0.05
Cco 1,3-Butadiene P13 6.215 2.7 -

o, 1-Butene P38 10.788 1.3 -

CO2 Carbon Monoxide P20x 2 4.776 8.0 -

CO2 Chloroprene R18 10.261 9.15 P22 9.569 0.10
CO2 1,2-Dichloro-ethane P20 10.591 0.52 R16 10.275 0.01
CO2 Ethylene P14 10.533 32.14 P28 10.675 1.27
CO2 Freon-11 R22 9.261 29.2 P18 9.536 0.10
CO2 Freon-12 P32 10.719 35.7 P12 10.514 0.08
CO2 Freon-113 P26 9.604 7.7 -

CO2 Ethyl-Mercaptan R26 10.208 0.56 P20 10.591 0.18
HeNe Methane - 3.391 6.0 -

CO2 Methyl Alcochol P34 9.676 8.9 -

C02 Monochloro-ethane R16 10.275 3.3 P20 10,591 0.06
co Nitric Oxide P11 5.215 6.7 -

co Nitgggen Dioxide Pl4 6.229 26.8 -

C02 Ozone P14 9.505 12.0 P24 9.586 0.60
C02 Perchloroethylene P34 10.742 4.9 R24 10.220 0.1
HeNe Propane - 3.391 8.0 -

co Propylene P9 ] 6.069 0.9 -

co, Sulphur Dioxide R26 9.240 0.105 P18 9.536 0.005
co, Trichloro-ethylene P20 10.591 12.6 R20 10.247 0.04
co, Vinyl-chloride P22 10.612 8.8 R18 9,282 0.05
€O, | Water Vapour R20 10.247 | 2x107° R16 | 10.275 | < 2x1073
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TABLE 1.2
Component Content Component Content
{% by volume] [ppm] [$ by volume] [ppm]
Nitrogen 78.09 780900 Hydrogen 0.00005 0.5
Oxygen 20.94 209400 Methane 0.00015 1.5
Argon 0.93 9300 Nitrogen 0.0000001 0.001
Carbon dioxide 0.0318 318 dioxide
Neon 0.0018 18 Ozone 0.000002 0.02
Helium 0.00052 5.2 Sulphur 0.00000002 0.0002
Krypton 0.0001 1 dioxide
Xenon 0.000008 0.08 Ca;::gxi ge 000001 0.1
Nitrous oxide 0.000025 0.25 Ammonia 0.000001 0.01

»
Note: The concentrations of some of these gases may differ with time

and place, and the data for some are open to question.

Single values

for concentrations, instead of ranges of concentrations, are given
above to indicate order of magnitude, not specific and universally
accepted concentrations.
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Fig. 1.1 Absorption spectra over a broad wavelength range, both at
the Earth's surface and an altitude of 11 km (from [1]).
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CHAPTER 2.0

LIDAR SYSTEM HARDWARE

A description of the Hull University lidar system is presented
below which gives details of the principal components and the hardware
integration necessary for the purposes of the studies reported here.
Certain items of equipment, such as the telescopic transceiver and
various infra-red detectors were already available. They originally
formed part of an earlier lidar system, used to demonstrate heterodyne
detection of atmospheric returns. Most of the hardware described,
however, was acquired specifically for this project, and most of it was
built within the University using the workshops of the Applied Physics

Department.

2.1 The Dual CO2 Laser System

The single, transversely excited atmospheric (TEA) pressure CO2
laser which acted as the transmitted energy source for the heterodyne
lidar work was considered inadequate for direct detection studies due to
its low output energies, low pulse repetition frequency (prf) and unreli-
agle power supply. It was apparent at the outset that two alternatives
existed, in principal, for generating dual laser pulses, of differing

line tunable wavelengths, and at intra pulse pair separations ranging

from near simultaneous dowq to the order of a second:

(1) The use of a single gain section, and the application of wavelength
switching, accomplished via the mechanical displacement of a line

tuning device (a diffraction grating for example), or



(2) Dual gain sections, and dual 'laser resonator optics, forming

two complete laser systems.

The first option was discarded primarily because of the lower limit to
the pulse pair temporal separation achievable with a mechanical switch-
ing arrangement. Delays of no less than a few milliseconds probably
represents the best that could be achieved with such devices. Since
external sources had already indicated an atmospheric decorrelation time
of this same order [1l], it was considered desirable to be able to produce
intra pulse delays of at least an order of magnitude smaller to preserve
the correlation in temporally adjacent measurement channels. The signi-
ficance of retaining high cross channel correlations will be discussed in
Chapter 5.

To simplify the task of generating near identical outputs in all
respects other than wavelength, and with pulse pair separations down to
a few tens of microseconds, it was decided that two new TEA gain sections
should be constructed, both having identical specifications. An acknow-
ledged disadvantage of the dual laser system is the differing propagation
path lengths that are automatically introduced between the two laser
outputs and the optics of the transmitter telescope. Other considera-
tions which influenced this decision, however, derive from the potential
flexibility of a system with dual gain sections.

Both TEA gain sections could, in principle, be operated simultaneously
and confiqgured into a single laser system, or else as a laser-amplifier

arrangement. Such flexibility made feasible several alternative systems:

(i) A single laser lidar system of increased transmitted energy.

(ii) A long cavity laser system for increased frequency diversity

in the longitudinal modes; this application is specific to



heterodyne detection and would have the statistical advantage
that each mode may be optically mixed with a local oscillator

to produce as many independent samples as there are modes.

(iii) A short pulse laser system. Optical switching would be used
to extract a pulse section of short duration from the peak
output of a laser based on one of the gain sections. This
would subsequently be amplified by the remaining gain section.
Short pulse techniques represent an alternative approach to the
problem of increasing the number of independent samples col-
lected per pulse pair. This technique, however, is specific
to atmospheric backscatter returns since the extra samples
would derive from the relative spatial extent of the effective
laser pulse length (see Chapter 3), and the required range
resolution for a given precision in the gas concentration

estimate.

Although the last two are of relevance principally to lidar systems
employing®heterodyne detection, early experiments were conducted to
examine the feasibility of these techniques. However, since the primary
objective of these lidar system investigations was gas concentration
melsurement, these alternatives were passed over in favour of a system
more directly applicable to this requirement. They remain, therefore,
potentially exploitable methods for improving the number of independent
samples collected, per puls? pair, particularly for range resolved lidar

{

work.

2.1.1 The TEA Discharge Gain Sections

A schematic of the basic capacitor charging system used for



each gain section is provided in Figure 2.1(a). Although an RC circuit
is not the most efficient method of capacitor charging, compared to
ready built, commercially available constant power systems, it was
relatively inexpensive. The power supply used was purchased from
Universal Voltronics and was rated at 50 kV and 375 mA, thus providing
a maximum dc output power of 18.75 kW. Illustrated in Figure 2.1(b)
is a cross section of the TEA gain sections showing the aluminium elect-
rodes (shaded), and the gas circulating fans enclosed in a glass barrel
which is sealed at either end using 1" thick perspex discs. Dimensions
are as indicated. Not illustrated is the ultra-violet pre-ionisation
system {(discussed later), and the copper water cooling tubes which are
located directly behind the fans.

The circuit element at the right hand extremity of Figure 2.1l(a) is
intended to depict both a physical and electrical cross-section of the
TEA discharge region. The primary discharge plasma is confined to the
space between the two opposing "D" shaped electrodes. These are sepa-
rated by a distance of 2.5 cm and are intended to define a uniform
electrical field over a lateral extent of 3 cm. Figure 2.1(b) indicates
that the active length of the electrodes is 50 om.

A pre-ionisation discharge is initiated at some position remote
from the main discharge volume (approximately 10 cm); this is illust-
rated in Figure 2.l1(a) as a pair of opposing pins, positioned either
side of the main electrodes, and connected to the high voltage power
supply via 270 pF capacitors. Each gain section possessed eleven pairs
of UV pre-ionisation pins,lwhich were distributed along the length of
the electrode with five on one side and six on the other (staggered
rather than opposing each other). The pre-ioniser discharge serves as

a source of strong UV photon radiation which propagates into the main

Library
Hull




discharge volume and pre-ionises a fixed number of neutral laser gas
molecules in this region. Electrons resulting from this pre-ionisation
serve to condition, both spatially and temporally, the main discharge
plasma.

In operation, the 0.05 uF energy storage capacitor Ce is charged
to a voltage, Vc, close to the power supply voltages, Vo. A trigger
voltage is then supplied to the spark gap, which acts as a switch, thus
completing the circuit which includes the capacitor Ce, pre-ioniser
capacitors Cp, the main discharge electrodes, a 50 ohm pulse shaping
resistor, and an inductance, L, representative of the electrical con-
nections between the gain section and the charging circuit. Figure 2.2
illustrates alternative schematic views of the relative physical loca-
tions of the various components identified in Figure 2.1. By selecting
appropriate values for the UV pre-ioniser capacitors, Cp, and by adjust-
ing the pre-ioniser pin separations, it is possible to arrange that the

main discharge is initiated after some fixed time delay, T with respect

dl
to pre-ioniser initiation.

Td must, of course, fall within the rise time of the voltage across
the main electrodes which was observed to be approximately 500 nsec.
Apart from this restriction, however, discharge uniformity seemed rela-

.

tively insensitive to the selected value of 1 At low prfs it also

a
appeared to be relatively immune to variations of approximately 50% in
the number of UV pre-ioniser pins used. For the 11 pin configuration
described here, 6% of the ;ptal discharge energy was used by the UV
pre-ionisers. This percentage is somewhat higher than that reported
for other UV pre-ionised laser systems [ 1% for ref. 2] but was

retained in the lasers described here as a precaution against possible

arcing during lengthy periods when the lasers were to be fired at an
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uninterrupted prf of 10 Hz.
An analysis of the circuit of Figure 2.1(a) reveals that the

instantaneous current into the main discharge plasma is given by [2])

C
. _ _ _e ;
i(t) = (Vc Vp) / L sin wot (2.1)

k

where wo = (LC) * and Vp is the plasma discharge sustaining voltage.

Vp is a function of the electrode separation, d, gas pressure, p, and
gas mixture. In general, the value of Vp/pd or E/p should be constant
for quasi-steady-state operation of the plasma in the avalanche mode [2].

The peak value of the current and the time to reach maximum value

are given by

(9}

-
n

max (VC - Vp) T (2.2)

and

n
tmax=-2— LC (2.3)

tmax was observed to be approximately 500 nsec for each of the gain
sections, so the induction L is equal to 2pH, and the resistance term
/TE;7ET has an approximate value of 0.16 ohms. The energy input to the
plgsma, Ep, may be obtained by multiplying (2.1) by Vp and integrating
over a time interval equivalent to twice the current rise time (2 x tmax).
When wo t = m, the value of Ep becomes [2]

E (M) =2C (V_ -V )V .
o eVe 7 p) p (2.4)

and the energy transfer efficienqynp, defined as the ratio of Ep to the
total energy stored in the capacitor, Ce (=3 Cevz) is then

n

M
p -4y 1V (2.5)
c (o}



This is plotted as a function of Vp/vc in Figure 2.3 (after Judd and Wada, 1974).
Complete transfer of energy into the plasma is obtained only if

vp/VC = 0.5, which is equivalent to stating that impedance of the LC

network must be matched to that of the plasma. 1If it is assumed that the

voltage across the energy storage capacitor Ce is the same as the power

supply voltage, Vo (= 40 kv), then the maximum energy that can be trans-

ferred to the plasma will be, from (2.4}, Ep(max) = 40 Joules. This

energy is deposited into a plasma volume of 3 cm x 2.5 cm x 50 cm =

0.375 L, giving an energy density of v 100 Joules/L. Electrical to

optical energy conversion efficiency is dependent on the ratio of the

optical mode volume to the discharge plasma volume but if it is assumed

that, in the absence of any mode control, 10% of the plasma discharge

energy is extracted as optical energy (a typical value for pulsed CO2

laser systems) then the maximum output of the laser will be v 4 Joules.
The 100 k ohm resistors of the RC charging circuit were selected

on the basis of the required prf from each gain section and the output

rating of the power supply. Since the instantaneous voltage across the

energy stédrage capacitor is given by

-t/RCg
VIit)=VI(l -e ) (2.6)
(o] o

thd time for Vc to reach a given fraction of Vo becomes

vV (t)

(2.7)
o]

If vC is to achieve 99% of vo' then t = 0.02 seconds, imposing an
upper limit of 50 Hz on the prf per gain section. At this frequency,

the mean current drawn from the power supply will be

i = -d—Q = =
i= S8 = pre.v.,Cc_ = 100 ma (2.8)



and the power dissipated in the charging resistors is then
, 2
P =i R =1 kW (2.9)

These values will, of course, be doubled for dual gain section opera-
tions, but are still well within the dc rating of the power supply.

All of the charging components illustrated in Figure 2.1l(a) were
replicated for each gain section and the entire assembly immersed in an
0il filled PVC tank measuring 42" x 24" x 24", situated underneath the
gain sections (see Figure 2.2). In addition to providing electrical
insulation, this large reservoir of oil provided a means of heat dissi-
pation for the resistor stacks, but at the 10 Hz prf employed for the

lidar measurements, this was not a severe problem.

2.1.2 Laser Design

Practical guidance as to the selection of suitable design para-
meters was available via, for example, the published work of Andrews,
Dyer and James [2] in which a simplified set of rate equations are
developed, describing how resonator mirror reflectives and the molecular
gas mixture ratio influences the laser power and energy. They obtain, as

the useful laser power per unit mode volume,

-

cT 1n R

- hvg o (2.10)

P =
o]

where hy is the photon energy of the laser transition, q is the photon
density in the laser cavityf c is the speed of light, L is the cavity
length, and R, T and A are the output mirror reflection, transmission
and absorption coefficients respectively. In deriving (2.10), the growth
in the photon density is averaged over the entire laser cavity. Also,

no account is taken of laser mode properties such as spatial variation in
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the photon density transverse to the cavity axis, or axial mode
beating [2].

Lacer output energy may be determined by integrating Po over the
duration of the pulse Tp;

T

p
E = P dt (2.11)
el %

CO2 laser pulses consist of a high amplitude gain switched spike followed
by a relatively low amplitude tail extending for several microseconds.
Figure 2.4 illustrates a digitised record for the reference transmitted
power, and the power received from a topographic target, monitored using
an LTT detector. Details of the experimental arrangement used to obtain
such fiqures will be discussed later in this and subsequent chapters but
is referred to now because of the pulse shape information it contains.
Sample numbers along the abscissa are multiples of 10 nsec so that the
total pulse duration, including tail, is 4 usec. The gain switched
spike, at "full width half maximum " (FWHM), however, has a duration of
approximately 350 nsec. Therefore, if Po (max) corresponds to the peak
power of the gain switched spike and TP is its full width at half maximum,

then the energy contained in the spike may be approximated by forming the

product,
E = F (“\ax) T (2-12)
p > P

Gas composition is characterised by the molecular gas ratio
/
w

(x+w)

(2.13)

where w is the CO2 partial pressure and x is the N2 partial pressure.
A third gas, helium, tends to form the dominant component of the gas mix

but, unlike Coz and N2, it is not directly involved in the enerqgy transfer
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processes. Its function is to debopulate one of the lower energy levels
of CO2 to which non-radiative transitions occur.
Assuming a gain length of 70 cm and a cavity length of 120 cm,

Andrews et al obtain results for two cases which may be summarised as;

(a) (b)
y = 0.5 y = 0.1
R = 0.7 R = 0.9
R'= 0.975 R'= 0.975
A = 0.01 A = 0.01
-3 -3
Po(max) = 11 kW cm Po(max) = 2kW cm

The molecular gas ratio used in the dual gain section of the lidar
system was y = 0.33 and both output mirrors had a reflectivity of

R = 0.8. Since these values lie midway between those pertaining in
cases (a) and (b), an interpolated value for the photon density, q, may
be obtained by substituting the listed parameters for (a) and (b) into

equation (2.10) and solving for q. If this is done it is found that

1.276 x 1016

is}
]

8.433 x 1015

so that q-= anqb = 1.0 x 1016
/

The value of Po(max) derived using this value of q in (2.10) is then
Po(max) = 5.3 kW/cm3.

An estimate for the integrated laser output power is now dependent

on the dimension of the beam mode volume. Using the generally applicable
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beam propagation equations presented later in this chapter, a computer
generated estimate, illustrated in Figure 5.6(a), reveals a relatively
constant intra-cavity beam diameter of approximately 1 cm for the TEMoo

Mode (Rl = 0.8, R, = 1.0 (a diffraction grating) and radius of curvature

2
for R of 20 metres). Therefore, assuming that the beam mode volume may
be approximated by a cylinder of radius 5 mm and length 2.4 metres, the

peak pulse output power becomes

P =T r2 L P (max) = 1 MW
max o

giving a gain switched pulse energy of 0.35 Joules, using (2.12). 1In
practice the actual energies measured for each gain section, at low prfs,
tended to fall in the range 100 mJ to 150 mJ but, unlike the cases con-
sidered by Andrews et al, these values were obtained for cavities in
which R' is a diffraction grating. The losses associated with this com-
ponent, which was included to provide a line tuning capability, will be
significantly higher than for a mirror. Furthermore, at sustained prfs
of 10 Hz, the output power was observed to decrease by as much as 50%
over experimental runs totalling 10,000 shots.

It will be shown in Chapters 3 and 4 that, for topographic target
returns, : transmitted pulse power is more important than transmitted
puise energy. This is in direct contrast to the situation for distributed
(atmospheric) targets where the pulse energy is more significant. Varia-
tions in laser energy and peak power as a function of the molecular gas
mixture ratio y are illustrPted in Fiqure 2.5 (after Andrews, Dyer and
James [3]) for various output mirror reflectivities. Laser energy is
denoted by the broken lines and laser power by full lines. It is apparent
that a molecular gas ratio of 0.33 optimises the lasers for energy output

rather than for power,



Other factors, however, became important in the selection of vy.

Foremost was the inhibition of arcing between the laser electrodes
during experiments consisting of 10,000 shots. It was found that lower
values of y enabled approximately twice as much data to be collected
before arcing would commence. Frequent arcing was found to damage the
electrodes since it tended to persist in those regions where it had
started. This would necessitate a complete strip down of the resonator
and gain section to permit re-polishing of the electrode surfaces; a
very time-consuming operation which it became paramount to avoid.
Higher energy outputs were also found to confer advantages during align-
ment of the system, since the response of carbon coated beam locators

appeared to be energy dependent.

Hybridisation

Hybridisation refers to the technique of incorporating a low pressure
Cw C02 gain section in the same resonator as the TEA gain section. As far

as a direct detection lidar is concerned, its principal advantages are;

(1) Amplification is forced to occur at those frequencies near to the

centre of the atmospheric pressure gain curve.

3

(2) Selection of a single axial mode.

Figure 2.6 is a schematic cross-section of each hybridised laser showing
both gain sections, their electrodes (cross hatched) the sodium chloride
Brewster windows used to seal both gain sections, the diffraction grating
and the zinc selenide ouéput coupler. The low pressure section has an
active length of approximately 80 cm.

A TEA CO_ laser without hybridisation has an emission line width of

2
approximately 3 GHz (at FWHM) but a low pressure gain section, operated



at 15 - 20 mbar has a line width of approximately 100 MHz (FWHM).
Separation between adjacent lines is some 30 to 60 GHz, depending on
wavelength. The laser resonator itself, however, possesses a charac-

teristic axial mode spacing which is dependent on the cavity length;

c
Avaxial =L (2.14)

For L = 2.4 metres, Avaxial = 60 MHz. Therefore, over a 3 GHz line
width, lasing action may potentially occur over approximately 50 axial
modes. This may be contrasted with the situation for the low pressure
gain section where only one axial mode will be amplified sufficiently to
overcome various loss mechanisms. By preferentially amplifying a single
axial mode, therefore, all of the energy derived from the pulse gain
section is confined to within ~ 100 MHz, thus guaranteeing the spectral
purity of the lidar system probe wavelength.

Figure 2.7(a) presents a plan view of the dual laser system witb
both sets of gain sections installed within a single resonator. The
resonator was constructed using lengths of Oriel optical railing, the
bores of which were filled with water to maximise the thermal inertia
and to attenuate acoustic vibrations. Invar rods, 40 mm in diameter
and over 2 m long, were inserted inside the longest sections of this
rall as a further aid to thermal stabilisation. These were clamped to
the transverse rails at both ends of the resonator, but were permitted
to expand through the water tight seals at the ends of the longest rails
via a series of "O" rings. [ Attached to the front of the resonator are
extra sections of railing used to carry the components which couple both
laser outputs into a single optical path.

Optical components depicted in Figure 2.7(b) include, at one

extremity of the resonator, the grating mounts and a pair of adjustable
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irises used for transverse mode control. At the other extremity are

a complementary set of irises, the output couplers, a mirror, a beam
splitter, and two beam aligners used for both translational and rota-
tional adjustments to the beam path. Figqure 2.8 is a photograph taken
at an early stage in the testing of the dual laser system showing the
TEA and low pressure gain sections, mounted above the o0il filled tank
containing the charging circuits. Visible in the foreground are two

40 mm diameter invar rods used to stabilise the resonator.

2.1.3 Resonator Configuration and Beam Propagation {4,5,6,7]

The properties of laser resonators tend to be characterised

in terms of so-called "g" parameters which are defined to be

g, =1 - L and g_ =1 -~ L (2.15)
1 R 2 R

1 2

where Rl corresponds to the radius of curvature of the output mirror

(coupler) and R, to the radius of curvature of the opposite mirror which

2

ideally, has a reflectivity of unity. Rl and R2 are defined to be posi-
tive if the mirrors are concave with respect to the resonator interior.

A stability condition exists for resonators which is expressed as

0 < 9,9, < 1 (2.16)

Mirror combinations which lie outside this region tend to originate
diverging wavefronts which effectively focus all energy away from the
mirror at the opposite end; resulting in high diffraction losses.

For the dual resonator considered here, 9, = 0.88 and 9, = l.0,
which is tending towards one extremity of the stability limit. This is

a consequence of the large radius of curvature (ROC) of the output mirror



(Rl = 20 m). Long radius mirror ¢tonfigurations have the advantage of
supporting propagation modes of almost constant beam diameters which

can be matched to the "bore" dimensions of the discharge volume, thus
maximising the energy extraction efficiency. They also produce beam
diameters, exterior to the cavity, which exhibit relatively little diver-
gence over propagation paths of at least several metres. Figure 5.6(b)
reveals that the computed beam diameter for the 20 m ROC cavity increases
by only v 50% over a path length of v 5 metres. Such constancy is useful
both in minimising the number of refractive components required between
laser output and telescopic transmitter, and for maintaining some parity
in the beam propagation losses between outputs from two lasers separated
by approximately 1 m.

Although diffraction losses increase as the stability limit is
approached, for a 20 m radius of curvature, these losses were found to
be small compared to those attributable to other factors (such as the
salt flats sealing both high and low pressure gain sections). A parameter
used to characterise these diffraction losses is the "Freznal Number", N,

which for a circular mirror of radius, a, is given by
N = & (2.17)

whére ) is the laser wavelength. Since an aperture of approximately 15 mm
was imposed by the transverse mode control irises, the value of N is
found to be 2.34. Diffraction losses vary inversely with the magnitude

of N and are therefore minirised for large values.

Mode Spacing

The spatial distribution of energy both inside and outside (near

field) a resonator is described by its TEMmng mode number where m and n
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refer to transverse modes, and q is the axial mode index. m, n and g
are measures of the number of half wavelengths along each mode axis.
In general, the resonance frequency for any mode combination, mng, is

given by

Cos 1/g192
= + +n+l ———
Vmng g + (m+n+l) T

C

—RT (2.18)

where n is the refractive index of the lasing medium. The mirror combi-

nation used for each of the lasers falls between two well defined reson-

ator types; the "plane parallel" and the "hemispherical" resonators. The
former is perhaps more appropriate since the latter category applies

where the mirror spacing, L, is slightly less than R,. However, for the

1
plane resonator (2.18) reduces to
q
c
v = ——
g onL (2.19)
and for the hemispherical resonator,
(m+n+1) c
v = + — T .
mng [q 2 ] 2nL (2.20)

If mode spacings are now considered, the separation between adjacent

axial modes, for both resonator types, becomes

-
C

Vmnag = Ymnig+1) T ¥mng T 2nL (2.21)

and between adjacent transverse modes is

L /
- / C
Vamng [C°s g192) 27nL (2.22)

Expression (2.21) has already been used in the justification of hybridi-

sation but it is of general interest to note here that the transverse



mode spacing for the dual laser system is approximately 7 MHz. This
may be compared with the 60 MHz separation between axial modes.
Finally, the bandwidth associated with each resonant mode vmnq is

c(oL - 1n’R)
Av = = S 2]

mng = oM, T aTa L (2.23)

where Tc is the photon lifetime within the cavity, R is the reflectivity
of the output mirror, and alL is the fractional loss in beam intensity per
cavity pass. A precise value for alL was not determined for the lasers
considered here but if it is assumed that aL has a maxmimum value of 0.1,
then the bandwidth becomes approximately 4 MHz. Consequently, for the
TEMooq mode, the output laser energy at any instant will actually be con-
fined to within this bandwidth but, between laser shots, the centre
frequency will drift over the A100 MHz frequency interval defined by the

low pressure CW section.

Gaussian Beam Propagation

The role of the mode control irises, mentioned previously was to
confine the laser output, for the purposes of these experiments, to the
TEMooq mode in which the variations in amplitude across the beam wave-
front are described by the Gaussian distribution function. This mode
has the principal advantage of minimising beam angular divergence.
Briefly presented below are the various equations which define important
Gaussian beam parameters, b?th inside and outside the laser resonator,
and which were used in a coﬁputer program, LASER1.FOR, to predict beam
propagation characteristics throughout the lidar system.

The mean radius of the TEMooq mode is variously described as the

beam radius or "spot size" but is generally denoted as w. It is defined
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to correspond to the distance from the mode centre at which the
electric field amplitude has fallen to 1l/e of its mode centre value
(e is the Naperian logarithmic base). The relationship of w to the
physical parameters of the resonator was first derived for "confocal"
resonators by Boyd and Gordon [8] and then generalised to other reson-
ators by Boyd and Kogelnik [9].

Beam diameters reach a minimum value known as the "beam waist",
wor which is characteristic of the optical components between which the

beam is propagating. Inside a resonator this is given by

AL X [9192(1 - 9192)]
wo = ——TT i (2.24)
(9,%9, - 29;9,)
and it is located at a distance
- g,(1 - g, )L
z, = 2 1 (2.25

1 R
9,%9, ~ 29,9,

from the non-transmitting mirror. The spot size at this mirror is given

by
X g 5
AL 2
w, = [";] 1 (2.26)
g9,(1 - g9,9,)
but at the output mirror it becomes
i g X
AL 1
w, = [”‘;] T——— (2.27)
9, 9,9,)
/

Outside the resonator, the beam radius at a distance, z, from the

beam waist is

wiz) = w_/1 [ A2 ] L /1 f-i (2.28)
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where

own

Tw
”,R = T (2-29)

is referred to as the "Rayleigh Range". Another property of Gaussian
beams is their spherical wavefronts, which have radii dependent on the

propagation distance, z. This behaviour is described by

2
2\ 2 z
R(z) = z |1 + f_q =z 11 + [-ZB)J (2.30)
Az

The Rayleigh Range, Zp! is used to define two domains for the approximate
solution of many optical propagation calculations. If z is the distance

from the resonator beam waist such that
z >> zR (2.31)
then z is said to be in the "Far Field", but for values of 2z in the region
z < 2 (2.32)

the term "Near Field" is used. An immediate consequence of this defini-
tion is that the far field spot size, ordinarily given by (2.28), reduces

to

z2

™
o]

wFF(z) = (2.33)

Also, the half angle beam divergence (8), in the far field, becomes

0 = A ' (2.34)

Using expression (2.24) the beam waist calculated for the lasers con-
sidered here is approximately 4.5 mm. As a result, the Rayleigh Range

is found to be 6.36 m and the beam divergence, ©, is 0.7 mrads.
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At the telescopic transmitter, focusing components are encountered
of both the reflective and refractive type which may be approximated by
positive thin lens formulae. The beam waist location for a focused

laser beam is therefore

(z, - £)£2
22 = f + (2.35)
2 -nw2 2
(z, - £)7 + ol
1 X

where f is the focal length of the "lens" and Wol becomes the beam

waist prior to this focusing component. If W°2 is used to denote the

beam waist after the propagating beam has encountered the lens, then

1 1 [ 2 ]2 1 ﬂw01]2
2= w2z |Y-fF |t
T w2 £ £2 Y (2.36)

where z1 and z, are the separations between the lens and the beam waists,

. v ively.
qu and ”02 respectively

Lastly, of significance in determining energy losses throughout the
lidar system, is an expression which relates the power P(a) transmitted

through a circular aperture of radius, a, to the power, Pi' incident on

the aperture; this is

Pla) = Pi[1 - exp(-2a2/w2(z))] (2.37)

where w(z) is the beam radius at the aperture. Figures 5.6(a) through
to 5.6(d) present the results of applying the above relationships to the
propagation paths occurrind’in the lidar system. Beam diameters are
plotted as a function of propagation distance out to the topographic
target at 1.8 km. Energy losses are included at the locations of the
appropriate aperturing components. These figures will be considered

further in Chapters 4 and 5.



2.2 Optical System Integration

Figure 2.9 provides a plan view of the lidar system revealing the
relative locations of the dual hybridised laser system and the optical
transceiver in two adjacent laboratories, A stair well separates the
two rooms but a 6" diameter plastic pipe was installed to admit the
laser output into the "telescope room". Not illustrated is a third,
adjacent laboratory, which housed the computer, some other signal pro-
cessing electronics and the front end unit of a laser trigger system.

The co-axial telescope is shown offset slightly with respect to the
laboratory to align its optical axis with a convenient topographic target.

The optical propagation path may now be described with reference to
Figures 2.9 and 2.7. After passing the laser output coupler each pro-
pagating wavefront encounters a beam aligner which is used to provide
both translational and rotational adjustments to the beam path. These
devices were a copy of a commercially available unit for aligning the
outputs of HeNe lasers, but the dimensions were doubled in the versions
described here to avoid beam truncation. The output from laser 2 is
reflected along an optical rail and passes through a 5 cm diameter beam
splitter (germanium) to the first of a pair of irises used to define the
beam path once the system has been aligned. The output from laser 1 is
then reflected by the beam splitter and is also directed towards this
same iris {(labelled Iris 1 in Figure 2.7).

Two alternatives were available for coupling the outputs from both
lasers into a single opticg& path. The first, and most energy efficient,
method would have been to install an optical flat adjusted to the Brewster
angle and rotate the plane of polarisation of one of the lasers so that

each laser satisfied one of the polarisation requirements for transmit-

tance or reflectance by the Brewster plate. After some initial trials
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with a germanium plate 75 mm in diameter and 5 mm thick, it became
apparent that this approach would introduce significant extra complexity
in the alignment procedure. A 50% beam splitter was therefore selected
instead, even though 50% of the beam energy is lost, because of the
advantages it conferred in terms of alignment. The optical component
removed from the beam path was, however, used to monitor the output
power from the low pressure gain sections to ensure that CW laser action
did not fall below 50% of its peak value ( "1 watt).

After passing through the connecting tube, a 100% mirror is
encountered which directs the outputs from both lasers through the
second beam aligning iris. These two components are located in Figures
2.7(b) and 2.7(c). The first figure presents a side view of the primary
optical rail used in the telescope room to carry all of the optical com-
ponents required for direct detection. Figure 2.7(c) is a plan view of
the same rail (below the telescope) coupled together with two shorter,
parallel rails which were planned to carry CW local oscillators for
future heterodyne detection studies.

Beyond this second iris, the beams continue through a hole bored in
the vertical section of optical rail, and are then reflected upwards by
a 90% beam splitter towards the "transmitter (Tx) lens" which is used to
couple the laser energy into the transmitting telescope. A second
germanium beam splitter is used here, rather than a 100% mirror, to
permit 10% of the transmitted energy to be monitored by a mercury cadmium
telluride (CMT) detector 1007ted further along the optical rail. This site
was selected for monitoring the transmitted power, in preference to the
more obvious site at the 50% beam splitter used in the laser room, to
minimise the electrical noise interference generated by the laser trigger

and discharge pulses.
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The Tx lens located above the fiecond beam splitter was made of zinc
selenide and had a focal length of 100 mm. Its transparency to both
visible and I.R. radiation was a useful aid during the initial align-
ment stage since HeNe lasers could be used. In coupling the output
power into the transmitter telescope, its primary function was to cause
both beam wavefronts to converge to a point in the focal plane of the
transmitter mirror. Both beam waists could then be co-located, by
adjustment, with the target image. The beams diverge rapidly after the
focal point, reaching l/e diameters of approximately 17 cm by the time
they reach the transmitter mirror (see Figure 5.6(c)). A second focal
point is then predicted by the beam propagation equations and this occurs
at an approximate distance of 900 m from the transmitter mirror (see
Figure 5.6(d)). By the time the beam reaches the target at 1800 m, the

beam diameter has returned to its original value of 17 cm.

2.2.1 The Optical Transceiver

An existing co-axial transceiver arrangement was employed which
is illustrated in the schematic of Figure 2.10 [after Green, ref. 10].
Details of the original design constraints are available in reference
[10] but essentially it was intended to serve as the transceiver for
systems employing both direct and heterodyne detection. The transmitter
telescope is intended to produce a spatially confined beam with a dimen-
sion at any range equal to the far field image of the detector active
surface area, as imaged through the receiving telescope. A co-axial
system has the advantages oé simplifying system alignment and of isolat-
ing the detector from the transmitted pulse until after it has left the
transceiver. No provision was made for steering the entire telescope
assembly but adjusting screws were included in the mounting of each

mirror for minor corrections to the imaged field of view.
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The transmitter and receiver mirrors have diameters of 15 cm and
30 cm respectively, with respective focal lengths of 120 cm (£/8) and
180 cm (£f/6). Both are arranged in a Newtonian configuration. Located
behind the transmitter mirror is a large, 15 cm diameter Newtonian
flat, which is used to direct the focused radiation, collected by the
receiving mirror, out of the telescope casing and onto subsequent optics
below. In front of the transmitter telescope is another Newton flat,
2.5 cm in diameter, used to reflect the diverging laser beams onto the
transmitter mirror. Figure 2.11 is a view of the co-axial transceiver
from outside the building showing both mirrors, the spider mount for the
2.5 cm flat, and the internal baffle surrounding the transmitter beam
path to provide optical isolation between the two telescopes. Both the
internal and external baffles were extended to a shuttered opening in
the door of the laboratory. Discernible below the telescopes, and their
supporting cross beams (attached to the roof), is the primary optical rail

with the vertical section carrying the Tx lens visible in the foreground.

2.2.2 Alignment of the Transmitter Telescope

The lidar system target is illustrated in the photograph of
Figure 5.5. This is an advertising sign, painted on a corrugated
surface which forms part of the superstructure of a building belonging
to a paint manufacturer. It is 1.8 km distant from the lidar site,
approximately 30 m from the ground, and is angled away from the beam axis.
Figure 2.12 is a reproducti%n of a section of an 0.S. map (1:25000, first
series, sheet TA 03) showing the lidar beam paths between University
complex and the paint works. It will be noticed that gasometers and

other industrial structures lie in close proximity to the beam path.
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The "o" in the word "Croda" proved to be a very convenient target
for alignment purposes. The exact dimensions of this letter are unknown
but it is estimated to be approximately 1 m in diameter. Using the thin

lens formula for transverse magnification,

- L (2.38)

where S' is the distance from the lens, or mirror, to the object, S is the
distance to the image, and f is the focal length, the size of the target
in the image plane of the transmitter telescope is found to be v 0.7 mm

(f = 1.2 m, S = 1800 m). By placing a paper disc in the image plane, the
target image could be located. Initially, the output from a HeNe laser
was propagated through to the 90% beam splitter and Tx lens, until the
beam axis was central to all components and the focused HeNe beam coin-
cided with the target image. This procedure was then repeated with each

low pressure CO_ gain section operating in turn, but with the added com-

2
plexity of the 50% beam splitter installed. The location of the Tx lens
was adjusted along the beam axis until a sharp "burn through” hole
appeared within the imaged letter "o" of the target.

In terms of geometric optics, the target and its image would form
a set of conjugate focal points, but propagating Gaussian beams obey
di}ferent reciprocity relationships. These, however, affect only the
relative locations of the beam waists and focal points, and not the posi-
tion where the optic axis intercepts the target. The above alignment
procedure is therefore adeqpate for ensuring the correct locations of
the optical axis out to the target. Differing spot sizes are to be

expected at the target, in any event, due to the differing propagation

paths between laser 1, laser 2 and the Tx lens.
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2.2.3 Receiver Alignments

The essential requirement here is to focus the energy col-
lected by the receiver mirror onto the active area of a nitrogen cooled
Lead Tin Telluri® detector (LTT). This is illustrated schematically in
Figure 2.10, and the siting of the components is depicted in Figures
2.7(b) and 2.7(c). Using (2.38), the transverse dimension of the V1l m
target in the image plane of the receiver is 1 mm since Mt (Receiver
Telescope) = 10—3 (f =1.8 mand s = 1800 m). The size of the Airy disc

in the image plane, due to the entrance pupil formed by the receiver

mirror, is given by
(2.39)

where R is the distance from the centre of the entrance pupil to the
edge of the disc and D is the entrance pupil diameter. For the receiver
mirror, therefore, d £ 150 um which is comparable to the diameter of the
active area of the detector (110 um).

However, to simplify the alignment of the target image with the
detector element, a zinc selenide lens (f = 25 mm) was installed between
the focal plane of the receiver telescope and the detector. The converg-
ing rays from the receiver mirror were allowed to pass through the focal
point and diverge again before encountering the lens at a distance, S,

of 50 mm from the focal point. Application of the simple lens formula

=

i1 !
=5t 5 (2.40)

gives the new image distance, S', from the "Rx lens", also as 50 mm
(see Figure 2.13). This configuration gives an extra transverse magni-

fication of unity (using 2.38), so the image size remains the same.
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It will be noticed from Figure 2.7(b) and 2.7(c) that the reflect-
ing surface used to turn the converging rays from the receiver Newtonian
flat along the primary optical rail, is not a mirror but a 90% (germanium)
beam splitter. By placing an iris at the focal point of the receiver
mirror (see Figure 2.13), and allowing the CW output from one of the
low pressure gain sections to propagate along the primary optical rail
via both 90% beam splitters (see Figures 2.7(a) and 2.7(b)), a point
source of 10 um radiation is made available at the iris aperture,
having a larger irradiance than the 10 um background. During the align-
ment procedure a chopper wheel was installed in the path of the CW beam
to provide a low frequency ac signal at the detector. Detector align-

ment, along all three axes, was accomplished by maximising this signal.
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CHAPTER 3.0

LIDAR SYSTEM PARAMETERS

3.1 The Lidar Equation

The Beer-Lambert-Bouger Law of expression (1.3) is reproduced here

using the new notation,

& &f’ = -a &r) (3.1)

and in this form relates the decay of the transmitted photon flux, d¢(r),
over a propagation path length, dr, to the instantaneous flux, value ¢(r),
and a constant, a, characteristic of the attenuating medium. a is, in
fact, the total atmospheric extinction coefficient and since the flux,
¢(r), is equivalent to power /hy, where h is Planck constant and v the

optical frequency, (3.1) may be re-cast into the form

dr(r)
dr

= -q P(r) (3.2)

.

in which power replaces flux.

Integration of (3.2) yields

. P(r) = pTe'ar (3.3)

where P(r) represents the power remaining at range r and PT, the original
transmitted power. To obtain the power backscattered from a remote topo-
graphic target at range, r,/ certain assumptions must be made regarding
the reflectivity of a non-cooperative target. The simplest assumption
ﬁag the radiation scattered isotropically throughout 27 steradians so
that if the target reflectivity is, p', the power per unit solid angle

scattered back to the transmitter site will be
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pr(2r) = p B %O (3.4)

T 2":2

It is nearly always assumed, however, that topographic targets in
general are not isotropic scatterers but possess Lambertian scattering
properties in which the scattering parameter becomes p/m instead of
p'/2m so that (3.4) must be modified to [1,2],

e-2ar
P'(2r) = p_ 2 E&5— (3.5)
T ™ 5

If a receiving telescope of mirror area, AR, is also located at the

site of the transmitter then the maximum power it will be capable of

collecting is

(3.6)

This expression can be further generalised to include a factor C, with a
value between 0 and 1, which represents a measure of the optical effi-

ciency of the transceiver. Furthermore, the atmospheric extinction coef-
ficient, a, is usually regarded as being variable between the lidar site

and target so that the argument to the exponential terms must be modified

also. The final form of the lidar equation for Lambertian scattering from

a topographic target is therefore,

A

r
. _ p _R _
P (r)=p C > = exp[ 2 E‘; a(r)dr] (3.7)

It is worth back tracking at this point to consider the power back
scattered from the atmosphere itself. If the number of scattering

particles per unit volume is n_, and each particle has a scattering

S

cross section of Ogr then the total scattering cross section per unit

6.» which has the dimension [L_ll. In

volume of the atmosphere is ngog

order to obtain the amount of radiation scattered out of the beam nsos

must be multiplied by pS which has the dimension [L] and is related to
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the spatial extent of the laser output along the propagation path. The

product n_go is clearly dimensionless (and increases the attenuation of

s%sPs

the beam energy) so that, for the energy scattered from the beam path at
range, r, (3.3) becomes,

-ar

Ps(r) =P n e (3.8)

t"s%sPs

A physical interpretation for the quantity, , may be obtained by

s
first noting that, for a pulsed laser system, only a relatively small
volume of the atmosphere along the beam axis will contribute to the
scattered radiation at any instant in time. If the maximum range from
which scattered radiation can be received is
ct

r =" (3.9)
where t = 0 at the time of transmission of the pulse, then assuming the
pulse itself is of duration tp, the minimum range from which radiation is
received at time t is

r' = (t -t ) (3.10)
P

c
2
Scattering centres within the range interval,

ct

r-r'-= —B

5 Pe (3.11)

will therefore all contribute to the total radiation removed from the
laser pulse (see Figure 3.1).

g is therefore the "effective pulse length", or depth of the scat-
tering volume, and is only half the actual pulse length. Expression (3.8)
therefore becomes

= \ B
Ps(r) Prrscs 5 e (3.12)

Assuming this power to have been isotropically scattered into 4m stera-
dians, the power returning back over the range r, and collected by a

receiver mirror of area AR, will be



ct A

R -
PR(Zr) = P no p e 2or

"% 2 z;;z (3.13)

where the argument of the exponential term has been doubled to account for
the outgoing and return path length of 2r between the scattering volume
and the receiver.

A further parameter, C, must be included in the above expression,
having a value in the range 0 < C < 1, to allow for the fractional losses
associated with real transceiver optics. Also, if the exponential term
is generalised in recognition of the range and wavelength dependence of

absorption then, with some re-grouping of terms, (3.13) becomes

ct ngOg Ap [ g
= ~—= exp |-2]alr, N dr]

r

A r
-p ["_t.e_]g 2 exp [-2 [ alz,) dr] (3.14)
T
(o]

where f = (nscs/4ﬂ) is the atmospheric backscatter coefficient. B is
defined as the fractional amount of incident energy scattered, per unit
solid angle, in the backward direction, per unit atmospheric length, and
may vary both as a function of time and the target volume range. It is
also dependent on wavelength and scattering particle size distributions.
The lidar equation for atmopheric scattering is valid as long as the
BLB law can be assumed to hold true and, in practice, this translates into
an assumption that all of the scattered energy is permanently removed from
the transmitted pulse. In reasonably transparent atmospheres, and for CO2
laser wavelengths, this is usually the case [2] but in cloud, fog or thick
haze, optical scattering is much more enhanced and some of this multiply
scattered radiation can actually re-enter the beam, necessitating a modifi-

cation of (3.14).
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Eoth lidar equations, (3.7) and (3.14) can now be used to give an
approximate indication of the relative powers backscattered to the
receiver from the two different types of target. By forming the ratio of

the received powers;

P_ (topographic target)

R 2
= 't—‘%; (3.15)
P, (atmospheric target) “*p
. : . -7 -1-1 \
and assuming p = 0.1 (a conservative estimate), B = 10 'sr "m (a typical

value at 002 wavelengths) and a pulse duration of 5 x 10'7 seconds (true

for the Hull Lidar System), it is found that

P_ (solid target)
R ® 4 x 103
P_ (atmospheric target)

Variation of at least an order of magnitude can be expected either side of
this value depending on the precise values of B and 0.

Clearly, however, received powers of at least two orders of magnitude
greater than those due to atmospherically scattered radiation can be expec-
ted from any given range using a topographic target.

Unless the transmitted energies used by direct detection CO2 lidar
systems are at least of the order of several Joules, range resolved
measurements tend to be impractical over any useful path length due to
the background radiation limited performance of currently available infra-
red detectors operating near 10 um. Beyond transmitted energies of 5-10
Joules, eyesafe radiation levels become an important consideration, even
though the cornea is opaque to optical radiation near 10 um and therefore

tends to limit the potential for damage compared to systems using visible

wavelengths. It is possible that developments in infra-red detection
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techniques, such as the frequency up-conversion method proposed by Itabe
and Bufton [1], may eventually improve the range resolved measurement
capabilities of direct detection,for lOpnwavelength systems restricted to

transmitted energies of less than 5 Joules.

3.2 Absorption Spectra

The absorption term in the lidar equation (3.7) was first discussed

in section 1.3.3 and was presented as consisting of four terms;

=qa +a +a (1.2)

+ 0
A AM Ap SR SMIE

where Oaym and a,, are the absorption components due to molecular absorp-

tion and particle absorption respectively, and QSR and GSMIE are the
scattering components due to the Rayleigh and Mie processes. All a terms
are of dimension L-l. Although molecular absorption is of primary
interest in this section, the remaining three terms on the right hand
side of (1.2) are obviously important. Various pairs of 002 emission
lines have been recommended [3] to minimise the differential absorption
components contributed by those terms and also by interfering molecular
species which have absorption spectra overlapping absorption features of
the molecular species of interest. Advantages of the differential absorp-
tion technique will be discussed in the next section but will be restric-
ted to the case where two probe wavelengths are used to form the power
ratio estimator. This conforms to the experimental restrictions relevant
to the data obtained and analysed later in this work. It is anticipated
that future developments in lidar, which strive towards higher pollutant
or trace gas concentration accuracies, may require the near simultaneous

transmission of more than two wavelengths in order to resolve absorption

components due only to the molecular species of interest.



Since many gas molecules have a vibrational-rotational

absorption band between 2 and 15 um {4], CO_, gas lasers with emission

2
lines between 9 and 11 um appear to be particularly suited to the task
of probing the concentrations of atmospheric pollutants. The pulsed
transversely excited gain sections of the CO2 lasers used as the source
of transmitted radiation in the Hull lidar system were operated at atmos-
phetic pressure and therefore have emission spectra which are often com-
parable in line widths with the line widths of foreign or naturally occur-
ring atmospheric constituents.

At low pressures, typically below 100 mbar, Coppler shift is the
dominant contribution to the line shape and results in a Gaussian distri-

bution for the absorption cross section per molecule of the form [5]

2
- V -V

on™) 2 s(1n 2)® 41 o) 1n 2
K (V) = = Ay exp > (3.16)
m Tm D (AVD)

2 . .
where Km(v) is typically given in units of ocm , v is the optical fre-
- -1 .
quency (cm l), Vo is the line centre frequency (cm ), a, is the number

. . -3
of molecules of a particular species per unit volume (cm 7),

L

214 T
vy = (B4 ()7 e (317

is the full width at half maximum (cm_le is the molecular weight [6] and

S{(T)Q (T )@ (T) 1.439 E" (T - T )
[¢] v [o] r O exp[ o] (3-18)

. TT
Qv (T) Qr (T) o)

s(T) =

is the integrated line intensity (cm) {7]. Qv and Qr are the vibra-
tional and rotational partition functions and To is usually taken to be

296 K.
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Such a line shape is convolved with what would be, in the absence
of poppler shift , the natural line width of a molecule due to the
finite life time of the radiative transition. Beyond 100 mbar, the
line width increases monotonically due to collisions between molecules
of the same species (self broadening) or some other species, and even-
tually collisional broadening (or "pressure broadening”) dominates over
doppler broadening to produce a line shape referred to as a "Lorentzian".
The governing relationship for the absorption cross section in this case
is {6],

o (v) S Av
m -—

P
= > (3.19)

K {v)
m n iy -~ v°)2+ Ay,

where

) (3.20)
o = o, [

is the line width at temperature, T, and pressure, P. To is taken to be
296 K and Po is usually equated to 1013 mbar [7].

Clearly the magnitude of the absorption cross section at any given
wavelengﬁh is dependent on both temperature and pressure and must there-
fore be regarded as a potential source of error if, as is likely, the
exact values of the temperature and pressure are unknown over the measure-
mént path.

When a large number of absorption lines, belonging to many different
molecular species, contribute to the total absorption at any specific
wavelength, the total absorption coefficient becomes

/

Sij Apij

a (v) = § E TN R n (3.21)
o + P, .
ij

where nj is the molecular abundance of the jth molecular species, and i

denotes each line belonging to the jth species.
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3.3 The Differential Absorption Technique

The path integrated lidar equation, (3.7), of Section 3.1 can be

re-written as

A
o] R
= by - - A .
PR PT pm r2 C expl[-2A(A)] (3.22a)
where
r
A(X) = [a(r,A)dr (3.22b)
o

is referred to as the (one way) absorbance.

There are two such expressions, however, for a dual wavelength lidar

system;
91 AR
= - - A
PR(Al) PT(AZ) - ;3 Cl expl[-2A( 1)] (3.23a)
02 A
= y — == -
PR(Az) PT(Az, p r2 C2 expl 2A(Az)] (3.23b)

For the Hull lidar system PT(Al) and PT(Xz) are transmitted with a
small temporal separation, of the order of 50 microseconds, permitting
the two received powers PR(AI) and PR(Az) to be resolved at a single
detector (see Chapter 4).

The two target scattering coefficients, pl and 02. may be expected
to vary on a shot to shot basis due to instabilities in the system align-
me;t and scintillation effects which will cause different areas of the
target to be illuminated. However, the optical transmission paths for the
two wavelengths were carefully aligned prior to each measurement sequence
(10,000 shots) and the aligpment checked by inserting a paper disc into
the focal plane of the transmitting telescope. A series of calibration

pulses punctured the paper disc, thus making it possible to check that

not only did both beam paths
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come to a focus at the same point, but also that they were coincident

with the centre of the target image. The alignment could therefore also

be checked throughout the measurement sequence and, for the purposes of

this section, it is consequently assumed that, on average, Dl = 92 = p.
If A, corresponds to the "reference wavelength" (ideally, not

1

absorbed by any atmospheric constituent) and A, corresponds to the

2

"measurement of wavelength" (absorbed only by the molecular species of

interest) then, forming the ratio of 3.23(a) and (b) gives,

1
Y _ A -
exp { 2[A( 1) A(Az)]}
or

A
pR(Al) PT( 2) c2

= exp {-2[A(A ) - Ay )1}
by 1 2
PR(AZ) PT( 1) Cl

which yields

1
Ap = A - Ay ==
A =Aa(,) - A(A)) =7 log, (3.24)
Now the absorption coefficient Gm for a particular molecular species,

m, is defined as
@ =n K (3.25)

where . is the number of molecules of type m per unit volume (dimension,
-3

L ") and Km is the absorption cross section per molecule (dimension, L2).
Using expression (3.23), the absorption term can be re-defined as a path

integrated quantity,



(3.26)

L]

=
=]

2

where Nm (cm-z) is the number of molecules per unit area over a path

length of r. Also, the path integrated differential absorption coef-

ficient becomes

]

AAm = Am()‘z) - Am(xl) Nm(xm(xz) - Km(Al))

N K (3.27)
m

for the molecular species, m, where K = Km(Az)- Km(kl). The concentra-
tion,yh, of m type molecules is defined as the number of m type molecules
per unit volume (Nm) divided by the total number of atmospheric molecules

per unit volume . n. so that

n Nm AAm 1 AAm
m .
Yn" 5 "N "% ° n Ken (3.28)
r
and N = n f dr = nr.
)

Substituting for Am using (3.24) yields

A A
1 P (X)) Pr(A)) €

. = 2
Ym = 2Krn 109,

PR(Az) PT(XI) <

P_(A) C
1 N 1 2

= — ( log [ ] + log [——1 (3.29)
2Krn e PN(XZ) e |

where PN denotes the normalised power, PR/PT. Clearly the second term on

the right hand side represents an error term.

Ideally c1 = c2 and this term would disappear. In practice however

it is expected that C1 and C2 will be different for the Hull lidar system

since two laser sources are used to provide the transmitted power PT(Xl)
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and PT(Az); different optical path lengths are therefore introduced

resulting in slightly different beam waists throughout all aperturing

components in the system. This type of systematic error may be over-

come, however, only if the ratio Cl/C2 can be identified or estimated.
Published details of absorption coefficients are not always given

in terms of the absorption cross-section per molecule, Km. Typically,

a quantity such as a% will be quoted giving the absorption per atmosphere,

per cm path length for the specific molecular species, m. The relation-

ship between the absorption coefficient per cm, am, and a% is then
a =y a (3.30)

Therefore, since, K = Km(kz) - Km(kl), and using the relationship (3.25),
the absorption cross-section per molecule can be re-written as,

am(kz) - am(Al)

K =
n
m

=y o) - al(h))] /n,

n
- [} - ’
_(n ) [am(lz) am(kl)]

n,

aé(kz) - um(ll)

n

or Aal;l = al;‘(xz) - (!!;‘(A,) = Kn (3.31)

Replacing the product Kn in expression (3.29) with Aaé gives the alterna-

tive form

P _(A)

Y = =i 1og |2
m 2Aa$r e PN(kz)

(3.32)

where the log term containing C1 and C2 has been dropped.



- 75 -

REFERENCES

HINCKLEY, E.D. (Ed.). (1976). Laser Monitoring of the Atmosphere.
Springer Verlag.

BYER, R.L. and GARBUNY, M. (1973). Applied Optics 12(7), pp. 1496-
1505.

PETHERAM, J.C. (1981). 'A comparison between continuously tunable

and line tunable CO2 laser systems for the remote sensing of

atmospheric trace gases'. Report prepared at Hull University,
Department of Applied Physics, England for the National Physical
Laboratory, Teddington, England.

HERZBERG, G. (1950). Molecular Spectra and Molecular Structure,
Vols. 1 and 2. D. Van Nostrand Co., New York.

RAO, K.N. (1972). Molecular Spectroscopy: Modern Research.
Academic Press, New York, p. 346.

PENNER, S.S. (1959). Quantative Molecular Spectroscopy and Gas

Emissivities. Addison Wesley, Reading, Mass., U.S.A,

PETHERAM, J.C. (1981). Applied Optics 20(22), pp. 3941-3946.




|

- 76 -

= 2r/c
= ct/2
= 2r'/c
> -
£—
=c(t - t )/2
p

Fig. 3.1
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CHAPTER 4.0

SIGNAL PROCESSING

4.1 Signal Processing Hardware

A schematic of the signal processing electronics is presented in
Figure 4.1. Electrical noise problems, originating with the laser
trigger and discharge pulses, significantly influenced the design of
the signal processing modules. This is particularly true of the optic
fibre communication channel between the telescope room and an adjacent
room housing the Biomation 8100 waveform recorder and the PDP 11/10
computer. All components located in the telescope room, which were
susceptible to interference from electrical noise were completely
enclosed in solid copper enclosures. This included amplifiers, detec-
tors (except for a small aperture to admit the signal), and co-axial
cables (copper piping was used here). Nickel cadmium batteries were
used to power all of the electronics shielded by these enclosures.

The signal from the LTT detector is amplified by a transresistance
amplifier (labelled TC3) the output of which is connected to either an
oscilloscope (used for detector alignment) or to the input unit of an
analogue optic fibre link (Opto Tx). This unit transmits an optical
pulse, linearly related in amplitude to the electrical input signal
down a 20 m glass optic fibre to a receiver unit (Opto Rx) located in
the "computer room". The optical pulse is then converted back into an
electrical signal, again preserving the linearity between input and
output pulse amplitudes, and digitised via the waveform recorder.
Twelve microseconds prior to the LTT diode detecting a return signal

from the topographic target (= 2 x 1800/c, see equation (3.9)), an
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amplified signal from the CMT detector is summed at the input to the
Opto Tx unit. This earlier signal represents a measurement of the
transmitted power and is later used to normalise the return signal
from the remote target. It is also used to trigger the waveform
recorder.

A single "opto-electrical" channel is therefore used to monitor
both the transmitted and received powers. Dual wavelength transmission
consequently depends on an intra pulse separation of at least 12 usec.
An upper limit to the pulse pair separation is set by the sampling
interval selected on the waveform recorder and the number of digital
samples forming a complete record (up to 2048). The sampling interval
must be sufficiently small to resolve the peak pulse amplitudes without
excessive error. Components of the signal processing hardware are dis-

cussed in further detail below.

4.1.1 LTT Detector Characteristics

The responsivity of Lead Tin Telluride photovoltaic detectors

to radiation of wavelength ) is defined as

R, = iLZ—" aw L (4.1)

where n is the quantum efficiency at wavelength, )\, e is the electronic
charge, h is Planck's constant and ¢ is the velocity of light. For the
particular Plessey LTT diode used in these studies, the responsivity
at 10.05 ym was given as 3.9 Aw-l and this is independent of frequency
over the range 0 - 60 MHz [l]. The detector element, with an active
area approximately 110 um across, is mounted on a heat sink which is
bonded to the inner wall of a liquid nitrogen dewar. This dewar has

sufficient capacity for several hours operation. The entire assembly
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is housed in an aluminium cylindér of 76 mm diameter by 205 mm.
Two sources of noise affect the performance of LTT diodes:
Johnson Noise and Shot Noise. Johnson noise in the detector, which

originates in resistive elements, can be expressed as

]
i.0=2 [1-‘—:—[! (4.2)
J o

where k is Boltzmann's constant, T is absolute temperature, Af is the
noise bandwidth, and Ro is the detector slope resistance at zero bias.
Shot noise is due to movement of discrete charge carriers across a poten-

tial barrier and is given by

i = (2ei Af)% (4.3)
sn P

where e is the electronic charge and iP is the induced photocurrent due

to an optical power, P. Since ip = RIP, (4.3) may be re-written as
i = (2eR PAf)% (4.4)
sn I

The incident power at which shot noise becomes equivalent to Johnson

noise is therefore given by

= —2kT (4.5)

R_R
1%

which for a slope resistance, Ro' of approximately 2k [1], becomes
V7 uW. It will be shown later (Section 4.2.1) that the incident powers
actually detected fall in the range O - 15 uW, so that Johnson noise

i
and shot noise will have comparable values.

4.1.2 The Transresistance Amplifier

The amplifier used (labelled TC3 in Figure 4.1) was based on
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a design included with the Plessey application notes and used an SL561
video op-amp as the gain block [1]. This basic design was modified by
Dr. S. E. Taylor who used it for a remote sensing system employing
tunable laser diodes [2). Circuit details and a frequency response
diagram are available in reference [2} but, essentially, it exhibits a
flat frequency response over the range 100 Hz to nearly 10 Mhz and has
a transresistance gain, GTC3 of 5 x 104VA-1.

For the purpose of the studies reported here, both the frequency
response and linearity of the amplifier must be considered. Using the
test circuit of Fiqure 4.2, the linearity was checked by applying a
square wave signal of varying amplitude at the input denoted by vin'

and measuring the output voltage, V generated by TC3. The input

out’
to the test circuit is terminated by a 47 Q resistor and the simulated

signal into the amplifier is given by

(4.6)

where RS is 50 k1. The amplifier is assumed to have an input indepen-
dence of less than 1 k over the bandwidth indicated above [3]. To
provide a test signal representative of the frequency content of the
real signal, the input square wave actually consisted of a train of

.

pulses, 350 nsec in width, with a separation of the order of milli-
seconds. The amplifier proved to be linear to within 5% over an input
current range of 40 nA to 40 uA.

!
]

4.1.3 Optical Isolation Link

Early lidar system tests used a 20 m length of co-axial
cable, completely sealed inside solid copper tubing, to relay the

signal from the output of the amplifier to the waveform recorder in
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an adjacent room. Despite numerous attempts at earthing, significant
electrical interference was found to be present which ocorrupted the
lidar returns and caused false triggering of the waveform recorder.
Occasionally it would also cause the computer to "go down". As an
answer to these problems an analogue optical communication channel
was constructed which could transmit pulse height information from the
transresistance amplifier to the waveform recorder. Considerable
effort was expended to ensure that this channel was linear over the
pulse height range of interest.

Figure 4.3 illustrates, in block diagram form, the configquration
used to examine the linearity of the combined transresistance ampli-

fier and optic fibre link. The total gain of this system is given by

' G
Vout GTC3 opto
G = = (4.7)
TOTAL V. R
in s

The gain of the optical link was adjusted to unity, and since Rs = GTC3

the output voltage should be identical to the input voltage. Figure

4
4.4 is a,plot of the measured values of Vo

as a function V, . As
ut in

can be seen, although this system appears to be very linear, the actual

val i i .9. This d d
ue of GTOTAL obtained is 1.9 is is assumed to be due to an

impedance mis-match between the output of TC3 and the input of the

optic fibre transmitter. A modified transresistance gain of G = 1.9 x

5 x 104 = 9,5 x 104VA-1 is therefore assumed for the TC3-opto link com-

bination. With the LTT detector replacing the test circuit the voltage

expected at the output of 'the optic fibre receiver will therefore be

. P
v! ¢ =Gi =G ;’ (4.8)
ou P I

Figure 4.5 is a circuit diagram of the optical transmitter and
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receiver modules, both of which are designed around Plessey SL 541

op amps. The input to the opto transmitter is terminated with a

47 Q resistor and is capacitively decoupled from the input to the op

amp. An inverting amplifier configuration is used here having a gain
defined by the resistors R3 and VR2. Transistor Q1 (BC 327) provides
the driving current through (D3) and is biased to the on condition by
the potential divider VRI1. By adjusting VR1l, and consequently the

current through D3, the most linear region of the photodiode optical

responsivity curve was empirically determined.

A pin diode is used as the input to the optical receiver and
generates a voltage across Rl, which is capacitively coupled to the
non-inverting input of the Plessey op amp. The gain for this configqura-
tion is defined by VRl and R4. A BC 373 npn transistor, biased to its
linear region, is used in the output stage which is designed to drive a
50 Q load. Both transmitter and receiver are powered by Nickel Cadmium

batteries.

4.1.4 CMT Detector Monitoring of the Transmitted Power

From the lidar equation (3.7), derived in the previous
chapter, it is apparent that a knowledge of the transmitted power, P
is required in order to determine the atmospheric absorption. It is an
advantage of the differential absorption technique, however, that
absolute values of the transmitted powers need not be measured. It
will be demonstrated in Ch;pter 5 that, providing the component actually
measured in the reference power channel is linearly related to the
transmitted power, and that this linear relationship is identical for
both wavelengths, then factors such as amplifier gain, attenuator and

aperturing losses cancel out if additive measurement noise is assumed
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to be negligible.

The Mercury Cadmium Telluride detector, (CWT), used for monitoring
transmitted power was situated behind the 90% germanium beam splitter,
as described in Chapter 2. Ten per cent of the output energy was
therefore available for reference purposes. The important character-

istics of the CMT detector are as follows:

Spectral Range - 8 - 12 um
Active Area - 1 mm x 1 mm
Rise Time - 2 nsec
Responsivity - 1- 50 mv/wW
Maximum Signal - 1V

Bias Current - 100 mA

A5 cm (£/5) germanium lens was used to reduce the beam diameter to a
dimension comparable with the detector active area and, to reduce the
peak pulse power to below the damage threshold, polythene attenuators
were inserted before the lens. The output from the CMT was coupled
into the.input of the optic fibre transmitter via a summing circuit,
and was scaled so that the dynamic range of the reference power pulses
matched that of the pulses detected by the LTT detector. A test was
cBnducted to ensure the linearity of this arrangement by comparing the
digitised peak pulse values monitored by the CMT detector, with an inte-
grated power recorded using a Joule meter and a chart recorder. The
Joule meter used the energy discarded by the 50% beam splitter in the
laser room. Relative variations in the laser output were monitored as

the laser voltage was adjusted, and both were found to agree to within

5%.
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4.1.5 The Waveform Recorder

A "Biomation 8100 Transient Digitiser" was used to perform
all analogue to digital conversions. This device has a specification

which includes:

(i) Bandwidth - 25 MHz
(ii) sampling Rate - 100 MHz (max.)
(iii) Resolution - 8 bits

(iv) Record Length 2048 samples

(v) Read Speed - 106 Words/second

At a sampling interval of 10 nsec, therefore, a complete record would
have a duration of approximately 20 useconds. Lower sampling rates
could be selected using decade adjustments over the range 0.0l usec

to 10 seconds. Sampling rates between these increments were also avail-
able, but only in decade multiples of 1, 2 or 5. A parallel I/0 port
was incorporated into the 8100 which allowed full software control of
all the functions selectable from the front panel, and transfers of the
2048 word sample memory to the PDP 11 host computer. An interface had
already been constructed for this purpose during earlier lidar studies

[see ref. 4}.

4.1.6 Data Capture and Software Control

The data acquisi}ion program was written in Fortran but used
an assembly language routine to read the 2048 samples from the transient
digitiser into a Fortran array. Only four 8 bit words were required
from each of these records; two bytes corresponding to the peak pulse

heights of the two transmitted powers (measurement and reference wave-
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lengths) and two bytes corresponding to the subsequent received powers.
To minimise the amount of computer processing required (between shots)
to identify these values, a windowing technique was used. Only those
within an interval centred on the expected position of each pulse were
examined. The width of this interval was approximately three times the
FWHM of the pulse to allow for some jitter in the delay between laser
shots.

All of the data analysed in Chapter 7 was captured at a sample
interval of 50 nsec to permit the use of an intra pulse pair delay of
50 usec. It was observed that jitter became more of a problem at
smaller delays, and would necessitate an increase in the width of the
data processing windows, with a consequent decrease in the dual wave-
length prf. Sample intervals greater than 50 nsec would have unaccept-
ably degraded the peak pulse height information because fewer samples
would be taken over the pulse duration.

Figure 4.6 is a schematic of the software control and data acquisi-
tion system. It will be noticed that the interface to the PDP 11 also
provides a trigger control for the firing of the lasers. Prior to the
issuing of this command, the 8100 is re-initialised; this can only
occur once all 2048 samples of the previous record have been clocked out
and all four pulse heights have been identified. To eliminate any pos-
sibility of laser generated electrical noise stopping, or even damaging
the computer, a digital optic fibre system was used where practical.
The laser fire control confists of a single optical pulse which is
intercepted by the laser controller. Intra pulse pair delays ranging
from simultaneous to a few milliseconds can be set via the front panel
of this device. Upon receipt of the command pulse, two optical pulses,

with the pre-set delay, are transmitted to the Laser Trigger unit in
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the laser room and are there converted into high voltage trigger pulses.

4.2 Direct Detection

4.2.1 Anticipated Signal Levels

An estimate of the signal levels expected can be formed

using the lidar equation

R e-2ar (3.7)

If the mean output energy from each of the lasers is Vv 125 mJ and it
is assumed that approximately one third of this is deposited in the
gain switched spike, then the mean transmitted power would be

-3
p =2125%x10 mI _ 4 5 o 105 watts

T 3 x 350 nsec

An estimate of the transceiver efficiency, C, must include at least

the following factors:

x 0.5 due to the 50% beam splitter losses (Tx path)
x 0.9 due to the 90% beam splitter losses (Tx path)
x 0.6 due to aperturing losses (see Figure 5.6)

x 0.9 due to the 90% beam splitter in the receiver path

giving an overall efficiency of ~ 0.24. To allow for further, unknown
losses, it will be assumed that C = 0.1.
Since a non-co-operafive target was used, angled away from the

beam path, it will be assumed that the Lambertian reflectivity, p, is

also 0.1. Grouping terms together, it is found that

C[Q-
™

3>

10

N |

]=2.8x10'

H
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Losses due to atmospheric absorption need to be estimated for at least
two lines, corresponding to the reference and measurement wavelength
for an absorbing species. Since H20 is the most plentiful and

absorbs at CO2 wavelengths, a pair of recommended lines will be con-

sidered here: these are the 10 um R branch transitions, R18 and R20,

1<:m_l and

having absorption coefficients (a') of 0.950 x 10-4Atm_
-3 -1 -1
0.851 x 10 "Atm “cm (see Table 7.1).

If a relative humidity of 50% is assumed at a temperature of 15°C,
n

then the concentration, y, of H20 is 8.4 x 10_3 yield‘exponential terms
of

e 22T (for 10 R18) = 0.75 (2ar = 0.287)
and

e %% (for 10 R20)

]

0.076 (2ar = 2.573)
The received powers at each wavelength are therefore estimated to be

PR (10 R18)

PR (10 R20)

25 uw

2.5 uwW

Using (4.8), the voltages expected at the output of the optic fibre

réceiver (into a 50 load - the waveform recorder output) are therefore

]

v (10 R18) 0.63 volts

out

V! (10 R20)
out

0.063 volts

i
The input voltage range actually selected for the waveform recorder was

+ 0.2 V. BAn offset of x - 0.9 was used to give a "full scale deflec-
tion" of 0 to 0.39 volts, and this was found adequate for recording

the full dynamic range of the received signals with only very occasional
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clipping (<< 1 in 1000).

4.2.2 Contributions to Signal Statistics

Detector and Amplifier Noise

In Section 4.1.1 it was shown that Johnson noise and shot noise
have similar values over the detected power range stated above. Shot
noise was calculated there, however, by assuming that only the inci-
dent signal power was present. If the contribution due to the thermal
background is now considered, the background radiation power on the

detector may be calculated using [5]

3
- T
p = ag 2w 4V -hv/k (4.9)
b o2

where A is the detector area, { is the solid angle subtended by the
detector beyond the regions cooled to 77 K (= 60° FOV), and Av is
determined from the FWHM of the detector responsivity curve [obtained
from ref 1}. This gives a value for Pb of 7.9 x 10”7 W.

The various noise currents may now be determined using expres-

sions (4.2) and (4.4):

i, = 9,1 nA

jn
ign (P_ = 7.5 W) = 9.7 nA
i (P, = 0.8 uW) = 3.1 nA
sn b .

i

i

so that

i = i + i P ) + i P = 22 nA
1total ljn lsn( s lsn( b)

where the mean incident signal power is assumed to be 7.5 uW, and a
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bandwidth Af = 107 Hz is assumed to apply both the transresistance
amplifier and the optic fibre link. Applying, once more, the gain
relationship of (4.8), the noise voltage expected at the output of the
fibre optic receiver is therefore ~2.¢6 mV. This is approximately two
orders of magnitude less than the signal voltage generated by a mean
incident power of 7.5 uW.

No attempt is made here to calculate amplifier noise but a noise
measurement was obtained by adjusting the input voltage range of the
waveform recorder down to +0.05 V, where noise caused continuous trig-
gering. Observed peak to peak variations were confined to no more than
+ 10 mV and this would, of course, include both detector and amplifier

noise in the absence of signal.

Digitisation Noise

Two forms of digitisation noise will affect the measured peak

pulse voltages:

(i) Quahtisation noise:
This is a consequence of the finite number of digital levels
allocated to a given voltage range. If V represents the full
. scale deflection and n is the number of binary digits used,

the quantisation error may be expressed as

2
2 _ (av)
lin - 13 (4.10)
where
AV = VY (4.11)
2"-1

[see, for example, ref. 6]. For the Biomation 8100, n = 8, so if

V is assumed to be 0.2 V (% fsd), the voltage error is
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.. (V) = 0.23 mv
lin

(ii) Sampling noise:

This is a consequence of the finite number of samples taken over
the pulse duration. For a pulse of duration Tp (FWHM) and a
sampling period, Ts' the average number of samples occurring

during any interval, Tp' will be
= P
N = _Z% (4.12)

which has a value of 7 for the measurements considered here. Only
50% of these on average will occur between the half maximum point,
and the peak, on either side of the pulse. An approximate expres-

sion for the normalised voltage error in this case is given by

>
<|<

= 1
= 3 (4.13)
s

which is equal to 0.14 or 14% for Ns = 7. 1In voltage terms this
corresponds to nearly 30 mV for V = 0.2 volts. Although this is
relatively large, it will be shown below that speckle noise forms
the dominant noise source. Sampling errors are, in any case, not
* a fundamental problem if the latest waveform recorders or digital

oscilloscopes are used.

Speckle

The surface of the topographic target, in common with the vast
majority of surfaces, is extremely rough on the scale of an optical
wavelength. When illuminated by a coherent light source, the optical

field reflected from such a surface consists of contributions from many
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independent scattering areas [6]. At a remote observation point, these
various scattered components will have relative delays which may vary
from several to many wavelengths, depending on the surface roughness

and the propagation geometry. Their interference at the observation
point results in the granular pattern known as speckle, consisting of
"bright spots"™ where the interference has been highly constructive, dark
region where it is highly destructive, and irradiance levels between
these extremes.

If the observation point is moved, the path length travelled by the
scattered components changes and a new speckle pattern observed. Simi-
larly, if the position of the illuminated spot on the rough surface is
moved a new, statistically independent speckle pattern is generated at
the observation point providing the distance moved is at least A/2.

The contributions from elementary scatters may be described in terms

of a phaser having real and imaginary components in the complex plane.
The amplitude ak and phase ¢k of the kth elementary phaser are stati-
stically independent of each other, and also of the amplitude and phases
of all elementary phasors [6].

Providing the number of these elementary contributions is large,
their resultant in the complex plane has real and imaginary parts which
are independent, zero mean, identically distributed Gaussian random
variables, with a phasor angle ¢, which is uniformly distributed over
the interval -m to +m (see Figure 4.7). At any given point (x,y,2) the
field amplitude is found to;be Rayleigh distributed but the intensity

has an exponential distribution described by

P(I) = {=| exp -

- -I-] (4.14)

where I is the mean or expected irradiance. A fundamental property of
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this distribution is that its standard deviation precisely equals its
mean. Goodman points out that the contrast of a polarised speckle

pattern, as defined by
C = oI/} (4.15)

is always unity; hence the subjective impression (for visible speckle)
that the irradiance fluctuations are a significant fraction of the mean
(e].

At the remote (far field) observation point (x,y,z), the approximate

size, or lateral coherence distance, of a single speckle lobe is [6]

AL
= —= 4.16
d D ( )

where Ds is the diameter of the illuminated spot, A is the wavelength of
the radiation and L is the distance to the observation point (assumed
perpendicular to the scattering plane). If an imaging system is employed,
the speckle pattern is generated by the interference of light from two

points on the lens aperture, giving a lateral coherence distance of

>
N

ds(lens) = (4.17)

o]
=l

where z is the distance from the lens to the image plane and DL is the
le;s diameter. Consequently, for the lidar system considered here,
(z =1.8 m, DL = 0.3 m), ds(lens) = ds(receiver mirror) = 60 ym. 1In
other words, the width of each speckle is nearly half the dimension of
the detector active area. ;

The speckle pattern at a fixed point will change with time if the
position of the spot on the target moves. If the scatterers on one side

of the target spot move with respect to those on the opposite side by a

distance of A/2, the addition of the scattered fields at the receiver
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produces an entirely independent bower sample. It is possible to show
[5] that the characteristic time constant of these changes, Ts, may then

be expressed as

r = = (4.18)

where V is the velocity of the spot across the target. Consequently,
for the power samples at the receiver to decorrelate over a period of

v 1 second, the velocity of the target spot needs to be only

A 1

2Dt

vV = = 2.5 x 10 °ms_ (4.19)

assuming that Ds 0.2 m.

This result is surprising since correlation in CO2 lidar data is
usually observed over approximately this period of time, and is usually
attributed to changes in the state of the atmospheric channel (see
Chapter 5 and 7). Also the correlation coefficient between wavelength
channels, for Al = Az was observed to the “ 0.9 for the lidar system

described here, suggesting near perfect alignment of the beam paths. A
possible solution is that the target surface geometry actually possesses
a degree of spatial coherence over distances much larger than A/2.
Atyospheric turbulence, however, may be expected to increase the indepen-
dence of power samples since it will result in higher spatial frequencies
in the distribution of energy at the target, both within and between
laser pulses.

The exponential power.histribution of (4.14) will apply whenever
the lateral coherence distance of the imaged speckle pattern is greater
than or equal to the detector dimension. For the receiver configuration

considered here, however, the number of speckle lobes imaged at the

detector surface will be approximately 3 or 4 (d8 = 60 um, detector
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dimension = 110 um). Another proﬁability density function is therefore
required to describe this more general situation. 1In Chapter 5, the
Chi-square distribution function is introduced as an appropriate model,
applicable when one or more speckles are imaged at the detector (see
expression (5.19)). A parameter, m, which may be identified with the
average speckle count, is used to control the shape, mean and variance
of the distribution.

Of primary importance here is the ratio of the standard deviation
to the mean, given by 1/Ym, which provides a direct indication of the
magnitude of speckle induced noise. For m = 1 (the exponential power
distribution), speckle noise is at its worst since variations in the
signal are comparable to its mean value. A speckle count of m = 4, as
applies here, yields a normalised standard deviation of 0.5. Although
less than for m = 1, speckle induced noise is still much larger than
the other noise sources considered in previous sections. The data pro-
cessing techniques described in Chapter 6, and applied in Chapter 7,

reflect the need to suppress the degrading influence of speckle.
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CHAPTER 5.0

MEASUREMENT SENSITIVITY

The precision with which the concentration of a particular mole-
cular species may be measured depends on the combined uncertainty
associated with each of the parameters included in equation (3.29).

It is possible to express this combined uncertainty as [1,7]

2 2
g (P 2 Cov[P P_.1]
QEL%) oi(k) , 2 o ;PNl) . N2) N1’ P2
=7 =7 222 = =2 -
Yo K 4K°r“n Py, Py, Pyy Pro

2 2
o (c
\ ( 1)+ o (c2) i 2 Cov[Cl,Cgl

- 2 -2 - -
c1 c2 cl c,
f
2 cov[le,cll 2 cov PNZ'C2]
+ +
Par &1 Pn2 ¢,

2 c°v{pN1,c2] , 2 CbVIPN2,C11

1+

ST —
N1 ©2 Pn2 €1

oo (5.1)

where the target range, r, and the number density of molecules in the

atmosphere, n, are assumed to be known precisely. PN denotes the
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(3 ] . p
normalised power ratio PR/PT so that PNl and N2 correspond to the
normalised power returns at wavelengths 1 and 2 respectively. The
various terms identified above as contributing to inaccuracies will

now be examined.

5.1 Uncertainties in the Absorption Coefficient

5.1.1 Uncertainties in a: Interfering Species

The successful application of line tunable CO2 laser DIAL
to pollutant and trace gas concentration measurements depends on a
range of criteria being satisfied with respect to coincidences in the

CO2 laser line emission spectra and the absorption spectra of the gas

to be monitored. These may be summarised as follows:

(1) A suitable line in the CO2 laser line emission spectra must over-
lap a suitable absorption feature in the spectra of the pollutant

or trace gas. Since such overlaps are simply a matter of chance

it is extremely unlikely that the line centre frequencies, vo of the

emission and absorption lines will coincide. The absorption term
due to this overlap will therefore result from the convolution of

two lineshape functions with comparable line widths.

(2) Having established a coincidence of the type defined above, a
further requirement in that no other absorption feature overlaps
the selected C02 lasef line. This is equivalent to restricting
the aggregate expressed in equation (3.21) to a single absorber
and, in practice, is usually impossible to achieve using line

tunable lasers. It has been suggested that if the background

absorption is more than about 10% of the absorption due to the
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gas species being monitored, then an accurate determination of
pollutant concentration is probably impossible [2].

Interference by other absorbing species will include the contri-
butions due to features such as the "water vapour continuum” and
particles such as aerosols nucleated on solid matter (dust, soot,
etc.) which exhibit a distribution of particle sizes depending on
such factors as geographical location of the air mass, humidity
and temperature [2]. Aerosol absorption is likely to be very
difficult to predict but other sources of interference, such as

that due to naturally occurring C02, may be estimated more accu-

rately.

Having satisfied the requirements of (1) and (2) for the measure-
ment wavelength, a further requirement of the differential absorp-
tion technique is the selection of a suitable reference wavelength.

A related set of constraints are imposed upon the selection of this

wavelength:

(a) "It is important that it be attenuated far less by the
molecular species being examined, than the measurement
wavelength is itself.This is necessary to maximise the dif-
ferential absorption coefficient (DAC) since the magnitude
of this quantity influences directly the fractional uncer-
tainty contributed to the final concentration measurement

by any uncertainty in the DAC (see expression 5.1).

(b) BAny interfering species should ideally have identical
absorption coefficients at both the measurement and

reference wavelengths so that the measured differential
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absorption is due solely to the molecule which is the
subject of the measurement. This is clearly unlikely,
since absorption features at atmospheric pressure usually
have similar line widths and, any wavelength separation
sufficient to generate a significant differential absorp-
tion term for one absorber, is likely to do the same for

another.

(c) Conflicting, to a certain extent, with the requirement to
maximise the DAC, is the additional requirement to maintain
relatively close frequency proximity between the measurement
and reference wavelengths so that differential scattering
terms do not contribute as differences in the return powers.
This is likely to become significant only when the DAC of
the target molecule is relatively small and the separation

between measurements and reference lines relatively large.

Many experiments have been conducted to determine the absorption
coefficients of various atmospheric molecules and pollutants as a func-
tion of wavelength at various partial pressures and temperatures using
a range of different radiation sources. Much of this information has
béen compiled into a database form and is available on magnetic tape
ready for computer processing. An important example is the AFGL data-
base tapes [3] which list parameter values such as the line strength at
a particular wavelength, the line width, and a series of values corres-

1
ponding to the rotational and vibrational parameters, identified in
equations (3.16) to (3.29), for a collection of 14 different molecules.

Petheram has used this data, together with empirically derived

models, for estimating both absorption due to the water vapour continuum,
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'nd the scattering and absorption due to various aerosol distributions,
to analyse the suitability of various pairs of CO2 laser lines for DIAL
applications [2]. Many of these lines have been recommended before but
often without reference to the various sources of absorption inter-
ferences which would degrade their performance. Petheram's report
investigates their potential impact on DIAL accuracies as a function of
the concentration of interfering species, particularly water vapour,
and includes various observations on temperature dependencies.

Species interference is therefore acknowledged as an important
limitation to the ultimate performance of DIAL systems but is not pur-
sued here since separate investigations are currently addressing the
problem [4,5,6,10]. This work is restricted to identifying optimum

techniques for reducing the variance in the log power ratio terms of

equation (3.29).

5.1.2 Uncertainties in K(v)

The differential absorption coefficient for a single molecular

species was identified earlier as

K(v) = Km(vl) - Km(VZ)

and will contribute an uncertainty term
02(K) = 02(K (v.)) + 02(K_(v.)) (5.2)
m 2 m 1

where the subscript 1 indicates the reference wavelength, and subscript
2, the measurement wavelength. To maximise the differential absorption
coefficient v, would have to be located away from the absorption peak

1
selected for the measurement and between other peaks in the absorption
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spectra of the target molecule. &£ven in the absence of interference
absorption spectra, the reference wavelength absorption is therefore
likely to be non-zero.

If (3.19) is re-written as,

S Awv
K (v) = P (5.3)
m [wsz + 5;7]

where Av = v - v , the contributions to the uncertainty of K can be
o
identified by expanding the above expression to resolve component vari-

ances so that,

2
o2k ) o(s) o2(av ) , ot
—m5 = 5 * pz + (-1) 3 (5.4)
E[Km] E[S] E[Avp] E[[]]

where [] denotes the terms collected in the square brackets of (5.3).

Taking the expansion a stage further,

02(K ) cz(s) 02(Av )
T = + S
2 L]
ElK 12 E[S) E[Av ] (5.5)
m [
2, 2 2 2
’ + 4 . [‘" [0%(v) +07(vo)] | 0" (Av )]
E(mav? + v, ] E[Av])?2 E[Avp]2

variances due to all the terms of (5.3) appear but, upon substitution
of the expression (3.18) and (3.20), yet further expansion clearly
becomes possible.

However, it is not necessary to pursue further expansion here to
realise that ultimately un¢ertainties in temperature and pressure will
contribute significantly to the overall uncertainty present in the dif-

ferential absorption coefficient. Although experimental errors may

influence, for example, the form of the quoted line intensity partition
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function of (3.18), and quoted reference line widths, Avpo of (3.20),
these are potentially rectifiable via further calibration using labora-
tory samples. As such they will appear as systematic errors.

Errors due to unknown temperatures and pressures, however, are
likely to be more significant [7). 1If temperature and pressure can be
regarded as constant throughout the measurement (approximately 20
minutes) they must be independently estimated for accurate concentration
measurements, since averaging of pulse pairs will not reduce the measure-
ment error due to discrepancies between actual and assumed values [7].
On the other hand, significant temporal and spatial variations in the
magnitude of temperature and pressure during the course of the measure-
ment may be encountered if, for example, the lidar beam intersects with
several atmospheric convection cells, A certain degree of spatial and
temporal averaging would result, but it would be extremely difficult to
estimate accurately the effective mean and variance during the measure-
ment, except, perhaps, by resorting to yet another lidar system specifi-
cally designed for the purpose, or by including extra reference wave-

lengths in a single lidar system to assist in eliminating unknowns.

5.1.2.1 Longitudinal Mode Enerqgy Distribution

Hardesty identifies, as a further source of absorp-
tion coefficient error, the inexact knowledge of the distribution of
transmitted energy among the various possible longitudinal laser cavity
modes [7]. He points out that the absorption coefficient Km(v), is

actually a weighted average of the form

RK(v,)e, + K(v )e_ + ... +KI(v)e
2
kK Bl 1 = 2 m_a o (5.6)
ave




- 108 -

where Ei is the energy deposited 'into a longitudinal modé of frequency
vi. Kave may therefore be expected to vary on a shot to shot basis as
the energy is redistributed and each ei changes in magnitude.

The Hull lidar system uses a cavity length of approximately 2.4
metres and since longitudinal cavity modes are spaced at frequency inter-
vals of C/2L, where C is the speed of light and L the cavity length, a
separation of 60 MHz between longitudinal cavity modes can be expected.
Each CO2 emission line has a width of approximately 3 GHz at atmospheric
pressure and would therefore provide gain for up to 3 x 109/60 x 106 =
50 longitudinal laser modes overlapping with this line width interval.

However, both CO2 laser cavities included not only a pulsed TEA
gain section but also a low pressure CW section to provide preferential
gain to only those modes corresponding in frequency location to the

100 MHz linewidth characteristics of CW CO, sections operating at a

2
pressure of 15 torr. Therefore, a maximum of two longitudinal modes

would have existed during these experiments and without knowledge of how
the total pulse energy was distributed between these modes, an uncertainty

in the absorption coefficient, Km(v), corresponding to an uncertainty of

v * 50 MHz in the value of Vv, must be assumed.

5.1.2.2 Laser Stability

Although the line centre frequency of both 002
emission spectra and atmospheric molecular absorption spectra are fixed
in frequency space, both tﬂe absolute frequency of longitudinal laser
modes and their frequency separation will vary as the laser cavity

length alters (due primarily to long term temperature trends within the

laser cavity structure over the course of the measurement). Therefore,
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not only does the fraction of the total transmitted pulse energy, Ei'
deposited per mode alter with time, but so does the frequency location
of each mode, vi, relative to the line centre of emission and absorption

spectra.

5.2 Logarithmic Terms

In order to form an estimate of 1oge (PN(AI)/PN(Az)), as required
in expression 3.29, it is necessary to use a system of detectors and
amplifiers to measure and normalise the return power with the result
that the quantities actually ratioed are discrete voltage levels linearly
related to the received powers.

Signal processing components identified in the previous chapter are
reproduced in the schematic of Figure 5.1.

Speckle noise is regarded here as measurement noise and is multi-
plicative in nature since its variance changes linearly with changes in
the mean of the return power. Therefore, if PR(k) is regarded as the
integrated optical power incident on the detector at the kth shot and

PR is the mean return power at the kth shot in the absence of speckle,

then

PR(k) = PR(k) S(k) (5.7)

where S(k) is the speckle noise.
S(k) can be regarded essentially as a random variable with a mean

of unity (S(k) = 1) such that,
E[PR(k)] = PR(k) (5.8)

Figure 5.2(a) is a histogram representation of the normalised return
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power data for 10,000 shots which may be compared with a simulated
data file (Figure 5.2(b)), also containing the equivalent of 10,000
shots, for which a Chi-Square random sequence of order 3 was used to
generate the speckle noise (see section 5.2.3). Depending upon the
temporal separation of the laser returns, it may be necessary to com-
plicate this speckle noise model further by including temporal correla-
tion of the speckle noise sequence.

The digitised voltage level corresponding to the peak power of the
return pulse (see Chapter 4) is denoted by VR and is related to the

power incident on the detector by
V., =P_G_  + N (5.9)

where GR is the cascaded gain (volts per watt) of all amplifying com-

ponents prior to digitisation and N_ represents the total of all noise

R
sources including background radiation noise, amplifier noise and digi-

tisation noise in the received power channel. A similar expression

exists for the reference component of the transmitted power

V =P G_+ N (5.10)

»

v = 2R __R (5.11)
P G + N

The pulse index, k, has been omitted from equations (5.9) to (5.11)
for reasons of clarity and will also be omitted from subsequent expres-

sions.

v by PTF.where F

If P is now replaced by expression (5.7),and P

represents that fraction of the transmitted power extracted for refer-
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ence purposes, then
P .S5.G_ + N
v, - R R R (5.12)
PT.F.GT + N

T

For every pulse pair corresponding to the measurement and reference
wavelengths, there exists a corresponding pair of values VN(XI) and
VN(Az) which are used to form the log ratio estimator.

’gR(Xl).S(Xl).GR + NR({l)—

log, V_N(il_) = log, 4 L) PO Ny A ] Y (5.13)
v (A,) B (A,).800,).6, + No(A) 7
[Pp(Ay) F-Gy + Ny(h)) ]
- P

5.2.1 Bias

In principle, possible estimators for the log ratio can be

formed by either

(a) ratioing the powers and then forming the log of the ratio, or

(b) logging the powers and then forming the differences of the logs.

Estimators formed simply from the power ratios, which assume that the
log operation is performed on the estimator, are not considered in
this work because of the difficulties of estimating a quantity in the
presence of multiplicative (speckle) noise.

Both (a) and (b) would represent identical operations on a single
pair of power values but, when forming an estimate from an ensemble of
normalised power values, the use of either of these transformations
will result in bias. If the quantity to be estimated is stationary

(PR = a constant), a correction term can be applied, but not otherwise.

In each case bias is attributable to [8]:



(1)

(ii)

(iii)
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The non-linearity of the ratio operation; speckle noise in
both the measurement and the reference channels causes
normalised power returns to fluctuate between zero and some
multiple of the mode of the distribution as indicated in
Figure 5.2. Forming the ratio of two such statistically
varying quantities is clearly a non-linear operation since a

singularity is approached as denominator values approach zero.

The non-linearity of the log operation; speckle noise is
assumed to have a mean of unity but, regardless of the prob-
ability distribution assumed for the speckle sequence, the
mean of such a series, under the log transformation, would
only approach zero as the variance of the series approached
zero. It is worth noting here that, as a consequence of this
non-linearity, expression (5.1) is only an approximation. As
the normalised power variance increases, high (even) order
moments become important in the series expansion used to
express the variance of the logarithm of a variable in terms

of the variance of the variable itself [1l].

The need to reject negative power data acquired in the pre-
sence of additive measurement noise; referring again to
Figure 5.2. it is clear that speckle noise represents instant-
aneous fluctuations in the power falling on the detector and
therefore cannot be less than zero. However, the additive
noise terms in equation (5.13) can cause the voltage ratio

in this expression to drop below zero and, since the loga-
rithms of negative values do not exist, these values must be

discarded.
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If the noise is entirely multiplicative (i.e. due to speckle only)
and positive definite, the ratio estimator is biased [9,)0]. On the
other hand the log ratio estimator is unbiased both in this limit and
in the presence of additive noise when the ratio of the signal to addi-

tive noise ratios (SNRs) in the two channels is unity. This may be

expressed in the form

{ Signal Voltage

Additive Noise Voltage (Non-Speckle) N
_ d x=1

=p (5.14)

Signal Voltage

Additive Noise Voltage (Non-Speckle

A=2

)
-

where p = 1.

Computed bias data is presented in Figure 5.3 for the case of
analogue signals in uncorrelated Gaussian noise [10). This shows the
fractional bias resulting from the use of ratio and log-ratio estimates
in the presence of uncorrelated additive noise (no speckle) as a function
of the voltage SNR in the ratio numerator (abscissa) and the ratio of
the voltage SNRs in the numerator and denominator (P). If the absorp-
tﬁpn fluctuates, the bias has to be weighted over the whole range of

ratio and SNR values encountered.

5.2.2 Systematic Errors

Figure 5.4(a) shows typical transmitted and received powers,

in both channels, as recorded in digitised form by the transient wave-

form recorder (sample time is 50 n sec and pulse widths are 350 n sec
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FWHM). Between pulses, the noise levels are clearly very low compared
to typical pulse levels. A similar comparison can be made over the
duration of a typical measurement sequence using an estimate of the
mean level of the received power. Examples obtained using a suboptimal
recursive filter are presented in Figures 5.4(b) and 5.4(c) for the
transmitted and received power respectively. Digital units along the
ordinates of both figures correspond to the same power levels, and
values along the abscissae correspond to laser shot numbers. Figure
5.4(d) presents the estimate formed using the same filter, but this time
applied to the sequences of values formed by ratioing the peak pulse
received power to the peak pulse transmitted power for each pulse pair.
Although signal to additive noise ratios are clearly important in cor-
recting for bias, the additive noise is generally small compared to
multiplicative speckle noise. For this reason, the additive noise terms
of (5.13) are ignored to simplify the subsequent analysis of potentially

important systematic errors. With this modification the estimator of

(5.13) becomes

. V(X)) P_(A) S(A))
log —L-l-T = log_ | A= 1 (5.15)
. A n
vN(Az)Jl Po(A,) s(lz) i
h P =P
where PN PR/PT.

Since EN is the normalised power ratio uncorrupted by speckle, the

lidar equation,(3.7), can be substituted into (5.15) so that

V(A ) i b C e s,
log —-'11-—1'—- = loge —~—— '—l- ~:K£ + loge —_— (5.16)
i D. C i s i
VN(AZ) 2 2 e 2

r
where D = pAR/nR2 and A = 2 I ar dr. Further expansion yields
o
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-A
V (A ) D, ~ c, e ! s,
log_ A1 = log, |5 +1eg, || +log |TA)| + log |-
\" i D i (o4 i i i
N(Az) i > i 2 e i 52
(5.17)
A
o] Rl C1
= log [-L + log | — + log, |—= +
e , ,
02 i AR i C2 1
2
S
[A2 - Al] + log 1 (5.18)
e s,] 1

For a perfect lidar system, each of the log terms containing p, AR'
C and S would be zero leaving the differential absorption term Az—Al
which, upon substitution into (3.29), would yield the correct value of
the instantaneous concentration at measurement time i (assuming the
absorption coefficient is known exactly and no interfering species are

present).

5.2.2.1 Variations in Target Backscatter

The topographic target we were constrained to using is

illustrated in the photograph of Figure 5.5 The target itself is the
"o" in the word "Croda" and is estimated to be between 0.5 and 1.0
metres in diameter. It is painted on a corrugated surface which is
not perpendicular to the path of the laser beam. Consequently, any
instantaneous
variation in either (a) the‘area of illumination, or (b) the position
of the centre of the illumihation, is likely to result in variations
in p.

Variations of type (a) will occur on a pulse to pulse basis due to

changes in the refractive state of the atmosphere. unless the atnnsphere

can he con-
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sidered to be frozen between transmission of the measurement and
reference pulses, and both lasers are tuned to the same emission line.
Pulse pair separation was maintained at 50 usec (* 5 useconds) during
most of the experiments, which is a sufficiently small separation time
to satisfy the frozen atmosphere requirement. However, a wavelength
difference of only one line separation (the minimum achievable with a
line tunable lidar system) is sufficient to decorrelate the reference
and measurement channel almost completely. Typical values of the cor-
relation coefficient estimated over 10,000 normalised power pulse pairs

are approximately 0.9 where A, = A2 and 0.1 where Al # AZ. Table 5.1

1
lists various correlation coefficients for a range of data files. Wave-
length differences will be at least of the order of one CO2 emission
line separation for differential absorption measurements, and it is
therefore to be expected that the speckle pattern will alter signifi-
cantly between pulses in each pulse pair.

Changes in p due to (b), however, are most likely to occur if the
beam path becomes misaligned with the target during the course of the
experiment. Possible causes of misalignment arise directly from the
siting of the dual hybridised laser and the transceiver optics in dif-
ferent rooms. Because of the long path length between the dual laser
source and the transceiver (at least 4 metres) such an arrangement means

the equipment will be particularly sensitive to relative motion between

the two rooms. This motion may be due to:

(i) vibration, a possible contributor here is a lift shaft which

operates directly beneath the laboratories, and/or

(ii) Temperature effects both within the cavity and the optical rail
system carrying the reflective optics, which would contribute a

longer term component to any beam motion.
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In Section 3.4 it was assumed that pl = p2 = p since a paper
aperture, placed at the common focal plane of the two laser outputs and
the transmitting telescope, revealed no change in the position or size
of the "burn-through" hole relative to the target image over the

sequences of 10,000 pulse pairs.

5.2.2.2 The Receiver Area

For a co-axial bistatic lidar system employing a single
transmitting telescope, the receiver aperture, AR, is clearly the same
for both wavelengths. The loge term in (5.18) containing AR therefore

disappears.

5.2.2.3 Efficiency of the Transceiver Optics

The output from the two hybridised pulsed laser sources
must be optically combined so that both beams are co-axial at the trans-
ceiver optics. Differences in the path length thus introduced, the pre-
sence of refractive and reflective optics, and diffracting apertures will
result not only in differing beam waists at all points within the system
but also in beam waists which differ both at the target and also through-
out the propagation path between lidar site and target.

A computer program was produced to calculate the beam diameters
throughout the system starting from the grating of each hybrid laser and
pPropagating forward to the rarget. Figures 5.6(a) to (d) plot these

i
diameters in four stages; from the grating to the output coupler, the
output coupler to the transmitter input lens, then to the transmitter

mirror, and finally out to the target. The locations of the important



- 118 -

components are indicated, together with the fractional energy losses
expected at each component assuming a simple circular obscuration of

the beam Gaussian profile. These values are not intended as an accu-
rate guide to energy losses but were used as an aid in identifying the
principal components at fault. Figure 5.6(c), for example, reveals that
the largest proportion of the losses are associated with the transmitter
telescope flat as the beam is expanding on its way to the transmitter
mirror. The flat also removes a smaller percentage of energy from the
beam as it finally exits the transmitter on its way to the target
(Figure 5.6(4)).

Although the transmitted energy was monitored as close to the exit
point in the system as was practical, the primary loss inducing component
was obviously sited beyond this point (see Chapter 2.0). Providing each
beam remained aligned throughout each experiment, a constant correction
factor could probably be applied to remove any error in the normalised
power. However, the vibration and temperature effects itemised in
Section 5.2,2.1 would also shift the beam profiles by different amounts
relative to the obscuring components and thereby induce unknown errors
in the measured value of the transmitted energy. The magnitude and
significance of these errors will be analysed in Chapter 7.

»

5.2.3 Speckle

Historically, conventional radar analysis was first to make
use of the Chi-square distribution for modelling the statistics of
fluctuating radar cross-sections [11]). This distribution has the general

form

m m mx
e e nx =1 , > .19
px) (m-1)! % [ x J exp [ X ] x>0 (3 )

H]
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where x is the mean. According to standard statistical definitions,
2m represents the number of degrees of freedom and is always integer,
but when applied to target cross-section models, m can be any real
positive number. Selecting m = 1 yields the exponential or Rayleigh
power distribution but, as m increases, the median of the distribution
parts from the ordinate axis and tends towards the normal or Gaussian
distribution. It has been found that, in radar applications, these
distributions may not always fit the observed data exactly but they are
usually reasonable approximations and the same has been found to be true
for speckle statistics. Speckle power-frequency histograms of the Hull
lidar data often revealed distributions almost identical to the Chi-square
form, having values of m approximately equal to 3 or 4 (see Figure 5.2).
As indicated earlier, via expressions (5.7) and (5.8), the speckle
distribution is required to have a mean of unity. This is also necessary
to satisfy the requirement that the signal standard deviation vary
linearly with the mean optical power received at the detector so that the

variance falls to zero as the signal mean decreases to zero: i.e.,

2 2
0%(py) = B 02 (5.20)

2 . . .
where ¢ denotes variance. The normalised variance of the speckle noise,

.

ol(s) = T8 - ;2s) (5.21)
S

should be constant for a given receiver area and a fixed target area.

As the receiver area increases, the performance of direct detection
Systems improves due not only to the extra radiation imaged at the detec-
tor but also to the larger number of speckle lobes over which the
optical energy is distributed. Shot to shot variations in the actual

speckle count at the receiver become less significant because the addi-
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tion or subtraction of a single speckle contributes relatively less to
the total integrated power at the detector. This is known as "aperture
averaging" since the normalised speckle variance decreases with increas-
ing receiver area. Conversely, reductions in receiver area tend to the
limit of a single speckle lobe and this corresponds to the situation for
heterodyne detection where coherence requirements necessitate single mode
local oscillator mixing with a single speckle [12].

If the Chi-square distribution is accepted as an adequate model, the
speckle log term in (5.18) represents the difference between two log-Chi
Square variances, each having a mean of zero only in the limit of zero
variance. Typical normalised variances, however, were of the order of
0.25 to 0.3 so bias will be present and this log ratio term will contri-
bute an error unless the variances of both speckle sequences are identical.
Differing variances could arise from disparities in the mean speckle count

averaged over the active surface error of the detector.

5.2.4 Covariances

The measurement sensitivity expression, (5.1), indicates that
any positive correlation between channels, for any of the parameters
aPPearing in the lidar equation, will actually decrease the sum of the
variances in each channel for each of the parameters estimated. In other
words for every term, X, identified in (5.18) the error contribution in

both channels will be,

2
oz(xl) 0*(x,) 2 Cov(X ,X,)
1, 2. T2 (5.22)
x_ 2 X %, X
1 2 1’72

Again, where log terms are involved, this expression is only accurate

in the limit of the variance tending to zero. 1If, in addition to cross
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channel correlation, "cross parameter" correlation also exists, then
extra terms of the form + or - 2 Cov (Xi,Yj)/xiYj must be included,
where X and Y denote different parameters, and i,j = 1,2. These terms
were included in (5.1) since the transceiver efficiencies, Cl’ and C2,
are dependent on many optical components common to both channels.

The system parameters, p and C, are assumed to possess time depen-
dent characteristics which have components with timescales both long
and short compared to the duration of the experiments (15-20 minutes).
In principle it would be desirable to have some time dependent estimate
of their values, together with an indication of the variances and co-
variances involved. These values could then be introduced directly
into (5.22) to provide a time dependent assessment of the contribution
to measurement error. In practice it is difficult to provide even a
simple average for these values, (formed over the duration of the experi-
ment) since all other system parameters would have to be defined, includ-
ing the 1.8 km atmospheric path and a non-ideal topographic target which
is not owned by the University.

The normalised speckle variances, estimated to be of the order of
0.25 to 0.3 in the previous section, were established using a method
discussed in Chapter 7. This method uses a simple, sub-optimum estimate
of the time dependent means of the normalised return powers to recur-
sively estimate the percentage normalised standard deviation. In inter-
Preting these values directly as speckle variance, it is implicitly
assumed that the contributipg variances of other lidar equation para-

compored’

meters is negligible‘to that due to speckle.

For both channels the combined normalised speckle variance will

obviously be of the order 0.5 to 0.6 but this will clearly be reduced

if any correlation exists between the channels. Table 5.1 indicates
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that, where identical laser lines have been selected, correlation coef-
ficients in the range 0.8 to 0.9 are typical, but fall to values in the
range 0.5 to 0.2 approximately when different lines are used. Differen-
tial absorption measurements using line tunable laser sources will there-
fore benefit to some extent from some correlation between the two channels.
The development of suitable continuously tunable laser sources, however,
which permit minimum wavelength separations between the channels will
reduce the impact of speckle variance considerably in future DIAL systems.
The remaining terms in (5.18), yet to be considered, are the path

integrated absorptions Al and A2. In an ideal situation in which there

are no interfering species and no absorption feature overlapping with
the reference channel emission line, the term Al disappears since,

al = 0. The differential absorption (Az-Al) of (5.18) would then simply
reduce to the path integrated absorption, Az, at the measurement wave-
length Az. The time dependency of A2 would probably depend not only on
the origin and distribution of the gas being monitored, but also on
changes induced by atmospheric turbulence and wind. In other words there
will exist a power spectrum characteristic of the time dependence of A2,
and discrete samples of this path integrated absorption would form a
"time series" (see next chapter) with wholly or partially random com-
pdnents and a set of statistical moments dependent on the dynamic state
of the atmosphere.

In reality, interfering species will be present, and two of the most
important contributors will be water vapour and carbon dioxide. Both
have absorption features a; all line tunable wavelengths, but water
vapour is particularly variable both in a temporal and spatial sense,

especially near coastal regions (Hull lies on the River Hull and on the

Humber Estuary!). It is therefore not unreasonable to expect spatial
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variations over the 1.8 km between lidar site and target, and temporal
variations with time periods both long and short compared to the dura-
tions of the experiments.

Other contributions to the absorption and/or differential absorp-
tion power spectrum will arise from locally generated industrial pollu-
tion and variations in temperature and pressure.

In general, if the absorption A is composed of components, al, 82'
a3, seer @y where a, denotes absorption due to the species under investi-

gation and, a, to an, the absorption due to interfering species, then the

2
Covariance between the path integrated absorption in each channel is

given by

N N
Cov(Al,Az) = Cov [(.X a rdle ) azpk)] (5.23)
j=1 k=1

Since both channels may be considered spatially and temporally
. coincident, full correlation would be expected between channels where
j = k (indicating that the same molecular species was involved) unless
temperatute and pressure changes effect different absorption features
within the same species by different amounts. Temperature and pressure
variations, however, may also result in partial correlations within and
be'tween channels whenever j # k.

In practice it would be impossible to determine the magnitude of
these various covariance terms during the course of an experiment without
simultaneously probing the thospheric channel for absorption due to

interfering species, and for temperature and pressure variations. This

would require a multi-wavelength system.
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TABLE 5.1

Wavelengths Used Correlation Coefficients
Filename Gas (Txl, Tx2) (Rxl, Rx2) Rx1 RxZ‘
Measurement | Reference (Digital Vvalues) (Digital Values) 1 '
SIFT5.024 | System Test 10 R(18) 10 R(18) 0.28 0.82 0.80
SIFTS.026 | System Test 10 R(18) 10 R(18) 0.81 0.91 0.90
SIFTS.027 | System Test 10 R(18) 10 R(18) 0.86 0.91 0.92
SIFT5.032 | System Test 10 R(18) 10 r(22) 0.68 0.24 0.22
SIFTS.033 | System Test 10 RrR(18) 10 R(14) 0.43 0.22 0.20
SIFTS5.036 | Carbon Dioxide (COZ) 10 R(16) 10 R(8) 0.52 0.09 0.08
SIFTS5.037 | Ammonia (Nﬂ3) 10 R(8) 10 R(12) 0.71 0.10 0.06
SIFTS.038 | Ethylene (C284) 10 P(14) 10 p(28) 0.34 0.07 0.08
SIFTS.043 | wWater (nzo) 10 R(20) 10 rR(18) 0.64 0.22 0.17
SIFTS.044 | Water (H,0) 10 R(20) 10 R(18) 0.49 0.12 0.12
SIFTS.045 | Water (H,0) 10 RrR{20) 10 R(18) 0.56 0.12 0.09
SIFT5.046 | Water (H,0) 10 R(20) 10 R(16) 0.52 0.23 0.22
SIFTS.048 | System Test 10 R(16) 10 R(18) 0.52 0.12 0.08
SIFTS.050 | System Test 10 R(22) 10 Rr(10) 0.89 0.29 0.14

- 821 -
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CHAPTER 6.0

ESTIMATION TECHNIQUES

Dial system accuracy is ultimately dependent upon the precision
with which the log power ratio can be estimated. It is clearly impor-
tant, therefore, to exploit those techniques which offer the best oppor-
tunity to improve this precision. This chapter first considers various
estimation techniques which may be regarded as precursors to the methods
of "optimal estimation". Selected techniques, drawn from the subject
domain of optimal estimation, are then examined in an attempt to address
the problem of obtaining the "best"” estimate using, as criteria for
determining optimality, the concepts of an unbiased, minimum variance
and consistent estimator. An "unbiased" estimate is one whose expected
value is the same as that of the quantity being estimated. An unbiased
"minimum variance" estimate has the property that its error variance is
less than or equal to that of any other unbiased estimate. A "consistent"
estimate is one which converges to the true value of x as the number of

measurements increases [2].

6.1 Non-Recursive Estimators

Several techniques are presented in this section which tradi-
tionally have been applied to time series type problems in general, but
which have also found applications in the analysis of pulsed or sampled
lidar data. Although these techniques are not in any series optimal,
they are useful in providing an initial analysis of the data, including
some estimate of the mean (if not the precision), and will help to

reveal any trends which may exist. They are also relatively easy to

implement.
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6.1.1 The Batch Processor

In its most basic form, the batch processor provides a
simple average. If ﬁt is assumed that a sequence of measurements, {z},
can each be expressed as a linear combination of the system parameter,
X, which it is necessary to estimate, plus a random additive measure-

ment error, then the model for the measurement process becomes
z(i) = x(i) + v(i) (6.1)

where i (= 1 to k) is the sample index. The sequence {v} is assumed to

, 2
have zero mean and variance, Uv

An estimate, x of x can be made using the familiar averaging tech-

nique

e~ =

z(i) (6.2)

o>
[}
Ol

1

This is equivalent to summing all values of z(i) with an equal
weight of 1/k. 1In general, however, the non-recursive filter with dif-
ferent weights, h(i), has the form

k

k= igl h(i) z(i) . (6.3)

If it is now assumed that x has a constant value and that some

estimate of x is required from just one sample; in other words,

& = z(i) x + v(i) (6.4)

A - .
then an error term x = x - x can be used to define the "mean square

error", p;
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p = E[&zl = E[(§ - x)2] = E{(x + v(i) - x)2]
= E[v2(i)]

= 02 (6.5)

where E denotes the expectation operator.
If, instead of a single sample, a batch of samples is now consi-

dered, then

p = E[¥’]

B[ (x - x)2] = E[

i=1
E% (izl x + 121 v(i)) - f]é}

, Kk k
== ¥ J Elvii),v(j)

k? 11 4=1

1 E E 2
= g4 &
k? i=1j=1Vv 1iJ

where 6, (8§, =1 fori= j, §,, 0 for i ¥ j) is the Kronecker delta
ij ij 1]

symbol. This means that

ko ok
- S 48+ ... 48
izl jzl %57 %1 % %2 * %33 " “xk
= k
2
and that p = 02/k (6.6)

Therefore, providing x is a constant, the mean square error decreases

as k increases.



- 140 -

6.1.2 Segmental Averaging

This method divides the total number of samples, N, into
M (= N/n) subsets of data, each containing n values. Each subset is
- then used to provide an estimate by forming a simple average over the

n values so that

1 n
x(1) == ) 2z
n . 1
i=1
2n
%(2) == ¥ 2,
i=n+l
3n
x(3) = oz,
i=2n+1
1 N
x(M) == 7 z, (6.7)
" Nen+i T

For a data sequence, ¥, in which trends exist, this method will, in
general, provide a more reasonable estimate than that formed by a
simple average over all N values, because it permits the statistical
properties of z to vary over the M subsets of data.

Killinger et al [1] used this as one of two estimation techniques
for studying the relationship between variance and the number of samples
averaged for various sequences of lidér data. 1In the absence of trends,
this variance should decrease as 1/n. However, used as a simple esti-
mator, and providing changes in the value of x are negligible over n

data samples, the variance of each estimate is approximately

n
-2
oi = % ) (z, - 2) (6.8)
i=1+1
where I = 0, n, 2n, 3n, ..., N-n and, using (6.7), z = &(I + 1).
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6.1.3 Running Averages

The second technique used by Killinger is similar in
concept but results in a larger number of estimates than segmental
averaging and hence produces a more smoothly varying estimator for any
non-stationary x. This method divides the total number of samples, N,
into M subsets of data, each containing n values, but this time,

M = N-n+l, and the estimates thus formed are

n
21y == T 4
n . 1
i=1
n+l
g(2) =% 7 2
n , 1
i=2
n+2
23) =+ 7 ,
n . 1
i=3
1 N
%(N-n+1) = = ) z, (6.9)
i=N-n+i

Unlike segmental averaging, these estimates are not independent, but

each has a variance given by (6.8) providing the same restrictions that

apply to segmental averaging also apply here.

6.1.4 Least Squares

The method of least squares is most frequently applied
in generating a curve to fit a sequence of data points whose trend might
be linear, quadratic, or of some higher order, in such a way that it
minimises the error of the fit at each of the data points. By analogy

with the previous definition of Section 6.1.1, the "error" is the differ-
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ence between the estimate represented by the fitted polynomial and the
actual (but unknown) quantity to be estimated.

Gelb [2] presents the least squares technique using vector matrix
notation by first assuming that the set of n measurements, z, can be
expressed as a linear combination of the m elements of a constant vector
X plus a random, additive measurement error, v. In other words, the

measurement process is modelled as
3. = H-}_(_ + y_ (6.10)

where z is an nxl vector, x is an mxl vector, H is an nxm matrix and y is
an nxl vector.

An estimate g of x is sought which minimises the sum of the squares
of each of the deviations, zi - Ei’ In vector-matrix terms this trans-
lates into the requirement that % minimises the sum of the squares of
the elements of z - Hx. Since the vector inner product generates the
sum of the squares of the vector, a scalar "cost function", J, may be

defined of the form
AT A
J = (_Z_ - Hi‘.) (—z_ - H—’E) he (6.11)
Partial differentation of this scalar with respect to the vector x will
Yield the minimum when

2
3
Ak = 0 for 2—2 >0 . (6.12)

ax>

%>

Performing this differentiation and setting the result equal to zero

yields

HTH& H?E (6.13)
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. T . :
so that if H H possesses an inverse, the least squares estimate becomes

2= m e, (6.14)

Here, again, a batch processing scheme is required since all the
available measurements are utilised together at one time. Furthermore,
this technique does not supply an optimal estimator in terms of the
criteria defined at the beginning of this chapter, since it is not neces-
sarily consistent, nor of minimum variance, unless the polynomial order
can be selected to be as close as possible to that of the underlying

system trend.

6.1.5 Maximum Likelihood and Bayesian Estimation

Least squares estimates of the form derived above are
.obtained using deterministic arguments only, and make no assumptions
about the statistical properties of z (via e or v) and x. An alterna-
tive approach, therefore, may be derived from the "maximum likelihood"
philosophy which defines & as the value which maximises the probability
of the measurements, z, having actually occurred. A statistical model
is assumed to exist for v, but not for x. Using the measurement model
defined in the previous section, a conditional probability density func-
tion, p(z|x), is obtained which relates the probability of obtaining a
particular value, z to a given value of x. This is equivalent to the

pProbability density function for v centred on Hx and has the form [2],

1

p(zlx) =
(2w)n/2IRIH

expl-%(z - ﬂi)T R-l(i - Hx)] (6.15)

where Vv is assumed to be a zero mean gaussian random variable, having a

Covariance matrix, R, defined as
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R =Elv v (6.16)

Since the requirement i; to maximise p(g'g). it is necessary to
minimise the exponent in square brackets. This exponent is almost
identical to the least squares cost function, except for the inverse
of the covariance matrix, R, which has the effect of weighting the sum
of the squares of the deviations instead of treating them all as of
equal significance. In this case, the least squares result given above

is modified and becomes

2 = (1R 'R (6.17)

A further alternative exists in the ”Bayesian"estimation method
where statistical models are assumed for both x and z. 1In contrast to
the previous method, an "a posteriori" conditional density function of
the form p(x'z) is sought which is related to the previous conditional

probability function via Bayes' theorem:

p(x|z) = P{zX) p(X) (6.18)

plz)

where p(x) is the "a priori" probability density function of x and

pP(z) is the probability density function of the measurements. Solu-
tions for the estimate, %, can be obtained from p(x|z) but their exact
form depends on the criteria of optimality. If the requirement is to
maximise the probability that X = x then a solution is obtained by
equating g to the mode of the distribution. For this particular example,
if p(x) is assumed to be uniform (i.e. no mode at a unique value of x),
then this estimate is equivalent to the maximum likelihood estimate [2].

Gelb presents the generalised minimum variance Bayes' estimate as

X = (p_l + HTR_IH)_IHTR-IE (6.19)
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where gaussian distributions are assumed for both x and v, and Po is

the "a priori" covariance matrix of x defined as

P = E[{x xT] (6.20)
o =2 2

In comparing these estimation methods, he notes that if there is
little or no "a priori" information, P;l becomes very small and the
above estimate reverts to the maximum likelihood result. Similarly,
if all heasurement errors are uncorrelated, so that R becomes a diagonal
matrix, and if all errors have equal variance so that R = 021, where ¢
denotes the variance of v and I is the identity matrix, then the
maximum likelihood result reduces to the least squares estimate. He
thereby arrives at the important conclusion that the methods of least
squares, maximum likelihood and Bayesian estimation produce identical
results if gaussian random variables are assumed throughout and the
other assumptidns are the same in each case.

Before‘moving on to consider recursive filters in general, the
important topic of Kalman filtering in particular, and relationships
that exist between recursive and non-recursive implementations, the
optimum non-recursive estimator, the Wiener filter, must be considered.
It is worth noting here that Kalman's important contribution [7]), which
makes use of both state space representations and proba-

bility theory to solve the Wiener problem for gauss—markov sequences,

also reduces to the estimators given above.

6.1.6 Optimum Non-Recursive Estimator (The Wiener Filter)

By way of introduction, this section returns to the
linear batch processor, first identified in Section 6.1.1, having an

estimator of the general form
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k
% = ] h(i) z(i) (6.3)
k A

i=1

In that earlier section all the coefficients, h(i), had equal weights
and the estimator produced a simple average, but this section turns to
the problem of selecting the coefficients in such a way that the mean

square error

p = E[e’] = E[(x - %)°1 (6.21)

is minimised. Here, again, x is used to denote the desired signal and x
its estimate. Following Bozic [5], substituting (6.3) into (6.21) gives
k 2
p=E [[x - ¥ i) z(1)] ] (6.22)
i=1
The minimum mean square error is obtained by differentiating 16.22)

with respect to each of the coefficients and setting the result equal to

zZero.
% _ ; |
an(37 = 2B [x - 2 h(i) z(l)] z(j) = 0 (6.23)
i=1
or
k - .
I n(i) Blz(i) 2(3)] = Elxz(§)] (6.24)

i=1

where j =1, 2, 3, ..., k. By defining

pz(i,j) = E[z(i) z(3j)] (6.25)
as the autocorrelation function of z(i) and

pxz(j) = E[xz(3)] (6.26)

as the cross correlation function of the random variables x and z(i),

.equation (6.24) can be re-written as
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It %

h(i) pz(i,j) = pxz(j) for =1, 2, ..., k (6.27)

i=1

This expression can be expanded over both i =1, 2, ..., k and
j=1, 2, ..., k to yield a set of simultaneous equations, each with k
terms. A more compact way of presenting these equations is to adopt

matrix notation whereby (6.27) becomes

(6.28)

is the kxk correlation matrix, and h and p,, are kxl column vectors.

Solving (6.28) for h yields

h=p1p (6.29)
and (6.3) can be written
% =h'z (6.30)

where h and 2z are kxl column vectors, and QT (the transpose of h) is a

row vector.

Substituting (6.29) into (6.30) provides the estimate,

-1
% =plp 2z (6.31)
and the least mean square error,

2 T _T
p = E[x"] - Exzsz'xz (6.32)

It is noteworthy that, in common with the estimators discussed in
Previous sections, the dimensionality of any algorithm used to implement
the filter grows with the number of samples to be processed and must
include the inversion of a kxk matrix. Furthermore, the above expres-

sions represent only the scalar case in which a single signal is to be
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estimated. A more general result would consider a vector signal (multi-

dimensional) and would be considerably more complex for a large number

of samples.

However, since no assumptions are made regarding how the signal,
X, and noise, v, are combined (for example, they need not be additive
as in (6.1)), the above result is applicable to a wider range of problems
than other filters discussed elsewhere in this chapter, and represents

the best non-recursive linear filter operation that may be carried out

on the samples in order to estimate x.

6.2 Recursive Estimators

Gelb defines a recursive estimator as one in which there is no need
to store past measurements for the purpose of computing present estimates.
Instead, measurements are utilised sequentially, as they become available.
Recursive estimators in terms of this definition are therefore normally
far preferable to non-recursive estimators of identical performance
because they are so much more economical in terms of computational
storage. -

Kalman and others [6-10] during the 1960s were responsible originally
for advancing optimal recursive estimator techniques using "state space"”,
time domain formulations. This approach, now generally referred to as
Kalman filtering, has become the primary technique for analysing and
optimising data mixing in modern multi-sensor systems, since it is
ideally suited to digital computer implementation.

Gelb identifies three basic types of estimation problem, depicted
in Figure 6.1. According to his definition, the term "filtering" applies
when the time at which an estimate is desired coincides with the last

available measurement point, (a). If the desired estimate falls within
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the span of available measurement data, the estimation problem is then
referred to as "smoothing", (b), but if the time of interest occurs
after the last available measurement then the estimated quantity
becomes a prediction, (c).

It is useful to append to the above definitions a distinction
between "recursive" and "iterative" data processing introduced by Young
[11]. Figure 6.2 depicts recursive processing in which an estimate is
obtained by working serially through the data, one sample at a time.
Iterative data processing, on the other hand, refers to the sequential
processing of a complete set of data in which, at each step, the data
base remains the same at N samples and only some estimated variable is

modified. Simple "en bloc" processing then becomes a special case in

which a single iteration is considered.

6.2.1 First Order Recursive Estimators

Following the example provided by Gelb (2], a scalar non-random
constant, x, which is unknown and has no defined statistical properties,
and which is also corrupted by noise measurements of the form given by
(6.1) may be estimated by averaging these measurements using (6.2).

Reproducing these expressions,

z{i) = x + v(i) (6.1)
1 K

& =3 1 zd) (6.2)
i=1

it is noted here that they define an estimator which is both unbiased

and of minimum variance.

When an additional measurement becomes available, the new estimate

becomes



- 150 -

, k+
X = = f' z (6.33)

¥r+1 k+1 | i
i=1

and, after a simple rearrangement,

X
- - k 1 1
X+l %+ T [ o) zi] YAl %+l (6-34)
i=1
1
I . S (6.35)

™A ~
x (k+1l) - x
k' - k 1
= o) + T zk+1 (6.36)
(%, - %
k k 1
- | el } * T Zxel (6.37)
=k o+ (z - %) (6.38)
k  k+1 @ k+l k

In this form the need to store past measurement is eliminated since
all previous information is embodied in the prior estimate. Each new
estimate is given by the prior estimate plus an appropriately weighted
difference between the new measurement and its expected value (the prior
estimate). The quaﬂtity in parentheses is generally referred to as the
"residual” and usually given the symbol,v.

Expression (6.38) is a simple averaging filter and, in principle,
it is identical in function to the averaging batch processor of Section
6.1.1. 1In practice, however, (6.38) is far more economical in terms of
variable storage when implemented as a computer algorithm. The variance
reduction equation, (6.6), is clearly still valid here for constant x,
but a similar analysis to the above can again be applied to the problem

of estimating the variance; a recursive algorithm of the form

.A_.[az - &2 ] (6.39)
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i j -z - %.
s obtained where ek zk xk
If the weightingd factor, 1/(k+l), is replaced by b, then (6.38)

becomes,

X1 T X Y R(z 7 x) (6.40)

and further rearrangement will yield,

xk+l = (l—b)xk + b Zi41 (6.41)

Both are general forms of the first order recursive filter in which b
need not be a function of k, but is restricted to values in the range

0 < b <1, Schematically, the filter algorithms, {(6.40) and (6.41) may
be represented as shown in Figure 6.3 where D denotes a single delay in
the recursive procedure.

Zrnic has demonstrated the application of first order recursive
filters in estimating the mean power from smoothed square law detector
outputs of stationary signals [3]. His signals are generated by radar
echoes from solid objects or by the scatter cross-sections of randomly
distributed point scatters. Their statistical characteristics are very
similar to those generated by direct and Eeterodyne detection lidar. He
states, however, that if an arbitrary value of b is selected and the
square law detector samples, which are unbiased, are block averaged over
N values, then the same variance reduction is obtained as for the recur-

sive estimator above, providing
k = N = (2-b)/b (6.42)

If the number of samples available exceeds N (i.e. k > N), then presum-
ably the recursive estimator behaves as a "moving exponential window"

(discussed later).
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A discrepancy between the results obtained by Gelb and Zrnic

becomes apparent if (6.42) is re-written in terms of k so that

2 (6.43)

The general case of the first order recursive filter, (6.40), should
become identical to the specific case of the simple recursive averager
(6.38) or block averager, if k = N. The values of b, however, obtained
in (6.40) and (6.42) differ by a factor of 2.

Furthermore, Zrnic also states that the first order recursive
filter, applied to square law detector outputs, produces an estimate

. . + .
which is biased by an amount (l—b)k 1. Again, for the case where k = N,

this bias would become -

(6.44)

if (6.42) and (6.43) are correct, which tends to a value of 0.1353 in

the limit of large k. Bias will still be present even if the alternative
value of b is used, and if true would seem to imply that the averaging
filter of (6.38) is bgased! There are, however, differences in the
assumptions applied to the statistics of the filter input sequences, z.
Gelb assumes a constant mean, x, corrupted by an additive, zero mean
white noise sequence, v. Z2rnic, on the other hand, assumes that z has

an exponential power distribution of the form
P(z) = exp(-z/Po)/P°

where P° is the constant true mean power at the input of the square law

detector.

Both Gelb's and 2rnic's interpretation of the first order filter
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are intended for use with constant mean data. First order filters, in
general, are biased for transientsi bias, in fact, can only be avoided
by resorting to a filter of an order equivalent to the highest differen-
tial existing within the transient. For example, to avoid the bias
introduced into the estimate of a first order filter by a linear ramp
transient, it is necessary to track the slope and this necessitates the
application of a second order filter. To avoid bias due to quadratic
transients, a third order filter is necessary, and so on.

Before examining a particular second order filter in the next
section, a brief return is made to a particular nomenclature used to
describe certain first order recursive estimators - the "exponential
weighting, smoothing, or windowing"” filter. 1In common with the filters
discussed above, the principle is to produce an estimate based on a

weighted sum of all past observations, so that
R, = + ...+ .
b4 cz +oc,z + c,c ¢ 121 (6‘45)

where (ci) are the weights. More weight is given to the most recent
observations and less to observations further in the past; in order that

these weights sum to zero, a geometric series is selected of the form

c, = all-a)®, i =0, 1, 2, «v., k-1 (6.46)

0<a <1l

Equation (6.45) then becomes,

2 k-1
&k =az + a(l-a)z, , + all-a) 2, b oeee t a(l-a) z,
= (1-a)laz, . + all-a) + v al1-a)¥7% )
= azk + - lla k-1 ali=a zk_2 cee all-a 1
=az + (lalx, (6.47)

which, clearly, is identical to (6.41).
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An alternative form sets
e, = (1-a3%, i =0, 1, 2, ..., k-1 (6.48)
0<a <1

to provide an estimate

xk =2, + (l-a)xk_l (6.49)

derived in exactly the same way as (6.47). Both weighting sequences,
(6.46) and (6.49), exhibit a characteristic exponential decay as i

increases from zero.

6.2.2 A Second Order Recursive Estimator: The aB Tracker

Historically, the aB trackér has been applied most frequently
in ranging type applications where it is necessary to have an estimate
not only of the range and radial velocity of some object/target, but
also a prediction of where the object might be at some future time beyond
the current measurement. The aBf tracker is governed by the set of

equations,

& = P P
I R alz, xk+1) (6.50)
ko= k o+ Lz - P ) (6.51)
k+1 k T k+1 k+1l )
X =% +Tk (6.52)
k+1 k k
where xP is the predicted value of x, X is the current estimate of x, x

denotes the current estimate of the rate of change of x, z is the noise
contaminated measurement of x, T is the sample interval in seconds, and
@ and B are fixed real constants. If X = O for all k then this set of

equations reduces to the first order filter, (6.40).
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Cadzow [12] presents an analysis of the @B tracker in terms of the
system transfer functions, and considers the specific case where a
critically damped system is required. This constraint yields a

relationship between @ and B of the form
a=27B -8 (6.53)

where B must be selected such that 0 < B < 4. Values of B close to one
yield a fast responding system, but values close to zero produce a system
which is very sluggish.

If the aB tracker is constrained further to operate on a noise con-
taminated signal of the form (6.1) then the algorithm will generate an

unbiased consistent estimator with an output variance given by
2 A
o%(%) = k o2(2) (6.54)

where, for a critically damped system,

10/8 - 148 + SBYE (6.55)
(2 -/p)°

K =

This function decreases as B approaches zero, thus enhancing the
variance reduction, but increases rapidly beyond B = 2 causing the
tracker performance to deteriorate rapidly.

In general, when selecting the values of a and B, a compromise
exists between the conflicting requirements of good noise filtering
(producing a sluggish system with a long time constant and narrow band-
width) and of good transient following capability (resulting in a fast
system with a short time constant and wide bandwidth). Benedict and
Bordner [13] advocate the construction of a filter which will give the

"best compromise" between the two extremes. Their solution results in a

slightly underdamped system for which



~ 156 -

g = az/(Z-u) (6.56)

They claim that by reducing the aB tracker to a form in which a single
parameter, ¢, must be selected using the relationship (6.56), then the
optimum estimates of both position and velocity are obtained simulta-
neously.

Although the aB tracker, in the optimised form presented above,
results in the optimum linear fixed parameter tracker, for adaptive
tracking it is suggested that & is allowed to vary with the observed
high frequency power fluctuations of the error signal, xk - xi [13].

A possible method for estimating @ as a time dependent quantity could
proceed by regarding the equation for §k+1 as forming a weighted average

and the measured value z ; this beéomes

. P
£
of the predicted value, Xe+1d k+1’

obvious if (6.50) is rearranged so that

~ P
xk+l = (1-a) X1 + azk+l (6.57)

The minimum mean square estimate of this average is obtained if [ref. 2,

p. 6],

p
Var(x")
a = (6.58)

Var(xp) + var(z)

but the problem then is to know what var(xP) and var(z) are.

It has been suggested that a running average or first order
recursive filter could be applied to update these quantities, or some
other windowing filter could be used having a relatively short memory to
ensure that o changes fairly rapidly in response to any loss of tracking
[14]. An alternative is to use the differential quantities Var(z - xp),

and Var(% - xP) to determine a rather than Var(z) and Var(xF) directly.

However, if z and xp or & and xp, are partially correlated then
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P)

var(z - xp) ¢ Var(z) + Var(x

var(k - xP) ¢ var(%) + var(xP)

and the consequences of using these quantities would be unpredictable.

6.2.3 Recursive Least Squares

Young [9] provides a comprehensive treatment of recursive
least squares analysis which commences with the relatively simple
example for a single unknown parameter in a "regression relationship”,

and progresses through more complex cases which introduce probabilistic

considerations and multi-parameter estimation. The technique of intro-

ducing extra information, of a probabilistic nature, has already been

considered briefly in the discussion of Section 6.1.5 on Maximum Likeli-

hood and Bayesian Estimation. Other than these two examples, however,

very little has been assumed concerning the statistical properties of

the signal or measurement noise formulations of either the recursive or

non-recursive estimators considered so far. This absence of "a priori"

statistical information has led to such.estimators being referred to as

deterministic.

The recursive least squares example quoted here represents an inter-
mediate state in the a priori knowledge, between the relatively primitive

estimators discussed previously and the Kalman filter which is capable of

incorporating complex system and measurement models. In Young's treat-

ment, the basic problem is the estimation of a set of unknown parameters

a.; J=1, 2, ..., n, which appear in a linear "regression” relationship

2 7

J

of the form

X = ax, + a x, + ... + a x (6.59)
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where xj; j=1, 2, ..., n are exactly known, linearly independent

variables. 1In vector form (6.59) becomes

x = xTa (6.60)
° Xxa

(the vector inner product) where T denotes the vector/matrix transpose.

In general, the observation, zi . of xo in the presence of measure-
i
ment noise, v,, then becomes,
i

z, = X8+ v i=1,2, ..., k {6.61)

Three basic assumptions are now made about the nature of the measurement

noise, vi;

(1) E{v,] =0
i

(2) E[vi vj] = czdij where § is the Kronecker delta symbol

(3) E[x. v.] 0 for all i,3
=i

J

These simply state that the measurement noise is white (sequentially/
temporally uncorrelated) of zero mean, and that all noise samples are
uncorrelated with the independent variables, X4 which compose the

vector éj.
Assumptions (1) and (3) are important in demonstrating that the
estimate ék is unbiased. Assumption (2), however, is used to generate

a "covariance matrix" of the estimation errors, Pk' which has the form,

P = E[X %] = E[¥ ], EI¥ 221, ceer z[&l 3n1

x = El&
Ao A A A
E[a2 all, E[azl, ey E[a2 an]
(6.62)

E[:n 211, Ela_ a1, Ela a ]
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where E_= Sk - a and E[&] = O.

The recursive least squares algorithm derived by Young is reproduced

here:
A =3 p 52 + x'p I (6.63)
S T A T k1% P x-1%x X1 T % '
or i =3 P T3 - x 2z (6.64)
T 31 T 37 (B3R T A .
and P. =P P 52 4 TP x o Tp (6.65)
k © Tk-1  “x-1% A x-1%k XePx-1 .

The most significant difference between this and other estimators
considered so far is the inclusion, in the algorithms above, of a recur-
sively updated estimate of the error covariance which is dependent on
the variance estimate, 3?, of the measurement noise, v. This variance,
82, will be an a priori estimate derived either from the data itself
or from some alternative independent source. A variance estimator such
as (6.39) could be used but this form is biased because it does not
include a "degree of freedom" adjustment. Such an adjustment is, however,
provided by the simple en bloc solution,

2 1 T 1 X
6" =T vuv= o izlvi (6.66)

where the sum of the squares of the residuals is divided by k-n rather
than just k, as in (6.39), and n is the dimension of the vector x.
Expression (6.65) also demonstrates that the error covariance is a
strictly decreasing function of sample size, so that the precision of
the estimate increases as more data is utilised. This behaviour is one
manifestation of the statistical property of consistency.
As a final note on the least squares technique, in general, Young

points out that this method of estimation can be interpreted from both
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the maximum likelihood and Bayesian standpoints. For example, if it
is further assumed that, in addition to its white noise properties, v
has a gaussian amplitude distribution then it is also possible to assume
that the estimation error g also has the same distribution. Since the
statistical characterisation of the gaussian distribution are completely
determined by the first two statistical moments (in this case, the mean
ék and the error covariance Pk)’ the recursive least squares algorithm
can be regarded as a recursive maximum likelihood estimator [9].

If it is assumed that a priori information on the mean and covari-
ance matrix is available in the form of the initial estimates én and P_,
then the algorithm can be considered as a Bayesian estimator. This
apparently is a consequence of the application of the "Bayes Rule"

linking a priori and a posteriori probability statements [9].

6.3 Optimal Estimation

This section examines first the linear, discrete form of the Kalman
filter and considers, briefly, the corresponding equations for the con-
tinuous form. Gelb's treatment [2] is adhered to closely in the presenta-
tion of Section 6.3.1. Other topics then address the problem of identify-
ing parameters modelled into the filter, and specific implementations of
the Kalman algorithm (selected from research literature) which are
relevant to the processing of lidar data. Finally, methods for simulat-

ing lidar data are considered, together with comments on their relevance

as an aid in evaluating filter performance.

6.3.1 The Kalman Filter

Although early work in control and estimation theory used

frequency domain analysis, Kalman's results employ a time domain des-
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scription formulated in "state space" notation. This notation has the
dual advantages of being both less unwieldy and closer to physical
reality than frequency domain analysis, and is particularly useful in
providing a statistical description of system behaviour. The dynamics
of a linear system can be described using either continuous or discrete
forms of this notation.

In continuous form, such a system may be represented by the first

order vector-matrix differential equation
X(t) = F(t)x(t) + G(t)w(t) + Li{t)ult) (6.67)

where x(t) is the system state vector, w(t) is a random forcing function,
u(t) is a deterministic control input, and F(t), G(t), L(t) are matrices
arising in the formulation. In discrete notation, this linear differen-

tial equation becomes

Kol = Q5 t T W AkEk (6.68)

where &, ' and A are also matrices, corresponding in function to the
matrices F, G and L above.

Either notation may be used but the discrete form is preferred here
since the lidar data to be analysed forms a sequence of sampled measure-
ments. An adequate system model is obtained if the deterministic control
input term is dropped and the matrix Ty is assumed to be identical to the

identity matrix, I. Expression (6.68) then reduces to

R =0x tW (6.69)

This represents a system whose state at time tk is denoted bY.i(tk)'

or simply x, , where Ek is a zero mean white noise sequence having a

—_k
l ]
W -

covariance matrix, o = l‘J[_‘fz_k
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The measurement, as in the recursive least squares example, is
assumed to be a linear combination of the system state variables and

uncorrelated measurement noise, such that

= H + v (6.70)

where

= [z, z ceer 2

Zx 1’ % L

is a vector of | measurements, taken at time tk and v, is a vector of
random noise quantities all having a zero mean and a covariance matrix,

T ; . .
Rk = E[_Y_k gk]. The measurement matrix, Hk' describes the linear combina-
tion of state variables which comprise z, in the absence of noise.

Having defined the system and measurement models, a linear recur-

sive estimator is now required, having the general form;

x (+) = K! 5k(—) + Koz (6.71)

This expression states that each updated estimate, gk(+). is a linear
combination of the previous estimate, gk(-), and the current measurement,

zk, weighted in significance according to the time varying matrices, Ki

a .
nd Kk

If the relationship between the state estimate and the state error,

A
X (+ or -), is defined as

- "
zk(+) =X + 5k(+)

(6.72)

zk(-)
(where (-) and (+) are used to denote terms immediately before and

immediately after a discrete measurement) then, by substituting (6.72)
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and (6.70), the following result may be obtained;

a "
pu— L - . - + .
xl(+) = [K' + KkH Ilx, + K xl( ) K]v (6.73)

Since one of the properties required of an optimal estimator is that it

be unbiased, it is therefore necessary that
E[X, (-)] = 0 (6.74)

Also, by definition, E[gk] = 0, so in order to obtain the result (6.73),

the following equivalence must be true;

‘= I - (6.75)
Kk I Kka

The estimator of (6.71) then becomes
X = - X .7
ﬁk(+) (I Kka) ék(+) + Kklk (6.76)

or, alternatively,

zk(+) = §k(-) + K[g_k - Hkgk(-)] (6.77)

Error Covariance Update

The form of the error covariance matrix was defined earlier in
expression (6.62) but will be re-defined, here, using the current nota-

tion, such that

P, = EIX X'] (6.78)

%
—.]<
In the recursive least squares algorithm, only a single expression, (6.65),
was required to update the error covariance upon receipt of the latest

measurement. For the Kalman filter, however, the inclusion of a system

and measurement model necessitates the derivation of both an "“error
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covariance update” equation and an "error covariance propagation/
extrapolation" equation. If the former is considered first, the appro-

.priate form for (6.77) becomes
4" N T
P (+) = Elx, (+) 5k(+) ] (6.79)

Using equations (6.70), (6.72) and (6.77) the estimation error immedi-

ately. after the receipt of a measurement may be expressed as

N n, -
5k(+) = (I - Kka) x(-) + K v, (6.80)
Substitution of this result into (6.79) yields
_ N ‘ 4" T T 7T
P (+) = E{(1 - K H) X (<)% (=)(I -~ KH) + vK]
i T T T
+ Ky [x (-)(I - KH )"+ _\Lkl(k]} (6.81)
However, since by definition
A " T
Elgk(-) Ek(-) ] = Pk(-) (6.82)
and
E[ Ty (6.83)
Y %l =Ry ’

then, by incorporating the requirement that measurement errors be uncor-

related,

4

E(x (<) vi] = Ely, x,(=)] =0 (6.84)
AR e '
the resultant form for the error covariance update becomes
P (+) = KH )P (-)I-KH)T + KRK (6.85)
k{*) = (1 - KH) P Kk Kk k ¥

The next step is to optimise the gain, Kk' and this is accomplished

by minimising the weighted scalar sum of the diagonal elements of the
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error covariance matrix, Pk(+). Using the same teechniques as employed

in Section 6.1.4, a cost function of the form

I = E[§}+)T z(+)] = trace[P, (+)] (6.86)

is obtained and its partial derivative with respect to Kk is set equal

to zero. By substituting (6.85) into (6.86), the result obtained is

T
- 2(1 - Kka) Pk(-) Hk + 2KkRk 5'0 (6.87)

or by solving for Kk,

N T _y T -1
Kk = Pk( ) Hk[HkPk( ) Hk + Rk] (6.88)

which is referred to as the "Kalman Gain Matrix". If (6.88) is now sub-

stituted into (6.85) a new form for Pk(+) is obtained;
+) = - - .
P (+) = 1[I -KHI]P () (6.89)
which is the optimised value for the updated estimation error covariance

matrix.

State Transition Matrix Extrapolations

A distinction is generally made between those quantities which are
updated "across" a measurement, such as the error covariance of expres-
sion (6.89) above, and the extrapolation of these quantities "between"
measurements. It is possible to demonstrate [2] that an extrapolated
but unbiased estimate of the state variable, and a projected value for
the error covariance matrix, may be obtained over the interval between

measurements using the state transition matrix, ¢®. The appropriate

relationships are
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X (-) =0 (+) (6.90)

(+) o7 + g (6.91)

P(-) =29 -1

k k-lpk—l

Expressions (6.69), (6.70), (6.77) and (6.89) through to (6.91) form
the essential components of the Kalman filter algorithm. If w and Y
are both gaussian random variables, this algorithm represents the optimum
linear filter - a non-linear filter cannot do any better. Figure 6.4
illustrates the complete discrete system in a block diagram form which
emphasises the functional separation between the mathematical abstraction
of what the system and measurement processes are believed to be, and the
filter itself. There is no feedback from the state equation, to those
calculations at the covariance level, which ultimately serve to provide kk

The computer flow diagram of Fiqure 6.5 reflects this partitioning of

the algorithm components.

The Continuous Kalman Filter

In continuous form, the system and measurement models corresponding

to (6.69) and (6.70) are

F(t)x(t) + G(t)w(t) (6.92)

X

z = H(t)x(t) + v(t) (6.93)

where w and v are zero mean white noise processes with spectral density
matrices Q and R, respectively. Gelb demonstrates the transition from
the discrete to the continuous formulation using the following equiva-

lences
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¢ > A
X I + FAt
- .
Qk + GQG At (6.94)
R, =+ R/At

k

Without detailing the necessary steps in the transition between discrete

and continuous systems, a summary of the important continuous Kalman
filter equations is presented below.

The state estimate becomes
X(£) = F(£)R(t) + K(t)[z(t) - H(t)x(t)] (6.95)
and the error covariance propagation is

B(t) = F(£)P(t) + P(E)P (t) + G(£)Q(E)G (£) - K(t)R(L)K (t)

(6.96) .
The Kalman Gain Matrix is then
T -1 T
K(t) = P(t)H (t)R " (t) when E[w(t) !1(1)] =0 (6.97)
or .
T -1
K(t) = [P(t)H (t) + G(t)C(t)]IT “(¢t) (6.98)
when E[w(t) X?(T)] = C(t) 8(t-1), where C(t) is an autocovariance

function.

Expression (6.96) is known as the "matrix Riccati equation" and is
a useful complement to the discrete filter algorithms for predicting
steady state error covariances, (P = 0). Given the steady state error

covariance, the steady state Kalman gain is then readily calculated

using (6.97).
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6.3.2 Model Identification (The Box-Jenkins Approach)

Although Box and Jenkins were not the first to study time
series models, their names are associated with theisubject due princi-
pally to its popularisation via their book, "Time Series Analysis:
Forecasting and Control" [15]. A time series may be defined as a col-
lection of observations, ordered with respect to time, which are usually
expected to be dependent [16]. 1In general they represent an actual
realisation of some underlying process, and the objective of time
series analysis is to describe succinctly this theoretical process in
the form of an observable model having similar properties to thosé.of
the process itself.

In ofder to make meaningful estimates of the primary statistical
characteristics of a time series (mean, variance and autocorrelation
function), from a single realisation, it is necessary that such a series
exhibits the property of "stationarity". Stationarity, as it is defined
in the "narrow sense", implies not only the absence of any trend, but
also a mean and variance which are both constant and finite. Applied in
the "wide sense", stationarity means that all statistical moments are
constant and finite. A further requirement is that the autocorrelation
between values of the process at two time periods depends only on the
separation between these two time points and not on the absolute value

of the time period itself. If the time series is denoted by zt, these

requirements may be summarised as follows:
w = E(z_] (6.99)
2
o2 = Bl(z - w°] (6.100)

and

p(zt,zs) = E[(zt - u)(zS - u)]/oz t>s (6.101)
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where yu, 02 and p(zt,zs) are the mean, variance and autocorrelation
respectively.

Since many time series, derived from real life processes, are not
stationary, various techniques are recommended for inducing stationarity
so that methods of statistical analysis may be properly applied. For
example, least squares techniques can be applied to fit a polynomial to
the data with the intention of approximating the trend, thereby making
it possible to remove it. However, in practice, it is extremely diffi-
cult to decide whether a change in the level of a series is of deter-
ministic or probabilistic origin.

Box and Jenkins therefore advocate the use of an alternative method
called "differencing” which involves subtracting the observation from one
another in some prescribed time-dependent order. First order differenc-
ing, for example, is defined as the difference between the values of two
adjacent observations, and second order differencing then consists of
taking the differences of a differenced series etc. If the non-station-
arity is a property of the variance, other techniques exist for "stabilis-
ing" the variance; for example, if the variance is proportional to the
mean level of a series, or changes at a.constant percentage rate, then
a logarithmic transformation may be employed.

The following outline of the properties of "Autoregressive, Moving

Average" models was derived from Vandaele {16].

Autoregressive Models

A time series is said to be governed by a first order autoregressive

(AR) process if the current value of the time series, z . can be expressed

as a linear function of the previous value of the series, z , and a

t-1

random shock, a, . It may be written as
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z, = ¢1zt—1 + a, (6.102)

where ¢l describes the effect of a unit change in zt_1 on zt and at is

. 2
a zero mean, white noise series of constant variance, ¢_, such that
a

E[at] =0 (6.103)
oa if t = s
E[at al = (6.104)
s 0 if t # s
and = .
n E[at'zt—1] 9 (6.105)

If (6.102) is used to model a real data series, it will be necessary to
estimate the value of the autoregressive parameter ¢l.
In general, the zt's are regarded as deviations from the mean, u,

so that (6.102) could also be presented as

(yt - p) = ¢1(yt—l - u) o+ a, (6.106)

or

Yo = (1 ¢+ by, +a (6.107)

t t

where p is the mean of yt and yt represents the actual data. Such a pro-
cess is referred to as an autoregressive process of order 1, and denoted
AR(1l), where the order corresponds to the number of parameters, ¢, that
need to be estimated.

Taking the expectation value of (6.102);

It

2 2
E{z ] = E[(¢,2,_, +a. )]

2 2
E[(¢,z ;)" + 2¢lzt_lat +all

2 2
¢1E[zt_1] + 20E[z,_, a ]+ Ela] (6.108)
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However, since the zt's represent deviations from the mean, p, of a

stationary series then, by definition,

2 2 2
Elz ] = 0, = Elz__,] (6.109)

Also, the second term on the right hand side disappears (using the exp-
ression (6.105”, and the third term is simply the variance of at

(according to (6.104)) so that (6.108) becomes

a (6.110)

2
For finite values of the variance, Oz, ¢l is, therefore, limited to

values of

2 i
¢l <1 or I¢l| <1 (6.111)

The autocorrelation function of an AR(1l) process may be obtained by
considering, first, the autocovariance of zt at lag = 1, which is defined

as

A, = Cov(z £-1) (6.112)

1 A t'zt—l) = E[zt z

By substituting (6.102) into (6.112), it is found that

2
Al = ¢1 E[zt_ll + E[at zt—ll
= == (o] .
¢1lo ¢1 (6.113)
since e[at zt—l] = 0. This process may be repeated for lag = 2, again

substituting for z, using (6.102), and the result obtained will be

2
A, =¢.2 (6.114)

Proceeding in the same way for all k > 0, the general result obtained is
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A = A ‘ (6.115)

so that the autocorrelation becomes

»l >
A

= ¢: for k > 0 (6.116)

]

Clearly, then, for values of I¢1| < 1, the autocorrelations of an AR(1l)
process will appear to decay exponentially to zero at a rate governed by
the magnitude of ¢l.

Higher order AR models exist, having more than one lagged variable,

which may be written as

+ ...+ ¢ + a (6.117)

= +
Ze T 01%q 9% pZt-p t

or simply denoted as an AR(p) process. They, of course, have much more
complicated autocovariance functions than (6.115) and, in general, AR

process models with p > 2 are rarely invoked because of their complexity.

Moving Average Models

Since the basic AR(1l) model is obtained simply by summing a lagged
value of z with a single noise variable, a, it is perhaps_to be expected
that another type of series may be generated by omitting the lagged
variable, z, but including a lagged noise term, at-l' The resulting

series,

zt = at - elat-l (6.118)

is known as a first order "Moving Average" process, or MA(l). Again,

in terms of the actual data, as opposed to deviations from the mean, u,

(6.118) becomes
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or

Y, = H + a - elat_l (6.119)

It is possible to demonstrate that one advantage of the MA model is its

ability to represent a process with an infinite number of autoregressive

terms [16]. For example, the MA(l) process will generate the series
2 3
= - - - e + 6.120
“t 01%c-1 7 %1%-1 T P1%e-3 %t ( )

and is therefore an economical way of representing complicated models,
even though the autoregressive parameters are just powers of the same
basic coefficient, Sl.

Using, again, the white noise conditions specified in. (6.103),

(6.104) and (6.105), the MA(l) process has a variance derived as follows;

E[z ] = E(a_ - 6,2, _,] =Ela ] -8, Ela_,] =0 (6.121)
2 2
o, = El(a_ - 6,a _,)"]
2 6 2 2
= Ella, - 202, 13, * 8)a )]
2 2
= g% = A .
(1 + 91) a ° (6.122)

The covariance at lag = 1 then becomes

Cov(zt,z ) = E[(at - 6. a )(a - 0.a )]

-1 t2e-1'(2y T 02,
_ _ 2
= E[- 6,2, ,])
=-0. q° (6.123)
1l "a

However, repeating the calculation for lag = 2, gives
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=0 (6.124)

due to the condition, (6.104). It can be similarly demonstrated that

Ak = 0 for all k > 2. The autocorrelations therefore become
= - 0./(1+ 8%
Py 1 1
(6.125)
pk =0, k 32

Moving average models of some higher order, i, can be expressed as

z =a - 0_.a - 8._.a - «.. - 0 a (6.126)

or, simply as MA(q).

ARMA and ARIMA Models

An AR{1l) and an MA(l) process may be combined into a single model

referred to as an ARMA(1l,1l) which has the form

z, = ¢lzt-l ta - elat-l - (6.127)

It can be shown [16] that this model has a variance given by

2
1 +el 261¢l

o = = o2 (6.128)
2 o 1 - ¢2 a
1
with an autocovariance at lag = 1, of
(1 - ¢.6.)(¢, — 6.)
171 1 1 2
Al = oa (6.129)

2
l- ¢l

and for higher lags,
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o= e = efTh ‘ (6.130)

The autocorrelation terms then become

A - 0 ¢ _ 06
o M (1 ¢1 RIS R
T
1 11
(6.131)
A
k
pk"Ao =¢lpk_llk>/2

Higher order ARMA models are represented by a series of the form

Zp =012y Y87, Y

(6.132)

which may be abbreviated to ARMA(p,q).
The technique of differencing was presented earlier as the method

recommended by Box and Jenkins for rendering a series stationary. 1If it

is now assumed, for example, that some arbitrary series, zt, is non-

stationary and that the first difference of the series generates the

stationary series W, s where

(6.133)

then z, and z, 4 could be replaced in the ARMA(1l,1l) model of (6.127) to

produce

= e -
W, ¢1wt—l +a, _%a, (6.134)

This differenced series is then of the ARMA(1l,1) form but the process
for zt is referred to as an "Autoregressive, Integrated Moving Average",

Or an ARIMA(1l,1,1) model. As a model of some arbitrary order, this
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becomes an ARIMA(p,d,q) process where d indicates the degree of differenc-

ing.

Model Identification Using Sampled Processes

Each of the models discussed above and presented in order of increas-
ing complexity possess different autocorrelation functions (acfs), rep-
resentative examples of which are illustrated in Figure 7.9. These
assist in the identification of suitable models which may be regarded
as at least an approximation to those processes observed in real data
samples. Many processes, however, possess very similar autocorrelation
functions. Estimates of these autocorrelation functions obtained from
real, and therefore finite, data sequences are known as "sample autocor-
relation functions" and are subject to estimation errors which further
compound the difficulties of uniquely identifying a process. The sample

autocorrelation functions, Tyt may be obtained simply by applying the

formula

where ck is defined as

0
It
=]

n-k
tzl “thevk
and n is the total number of measurements, z, within a sample.

Another statistic which may be employed, however, is the "partial
autocorrelation function " (pacf). It can be shown that any ARIMA(p,d,q)
model can always be expressed as a pure autoregressive model possessing
an acf which, although it may decay quickly, could also stretch out to

infinity [16]. The partial autocorrelation function constitutes a
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device for summarising éll the information contained in the acf of an

AR process in a small number of non-zero statistics. Unlike autocorrela-
tions, however, pacfs cannot be estimated using a simple formula but are
calculated from a solution of a set of equations known as the "Yule-
Walker" equation system [16].

In any AR model of order, k, successfully applied as a model for
real data, the coefficient ¢k represents a measure of the "excess" cor-
relation not accounted for by an AR model of order (k-1). This, highest
order, autoregressive coefficient (in this case ¢k) is defined as the
partial autocorrelation at lag k and is denoted by ¢kk' Therefore, as
an example, if a time series process is actually an AR(k-1) process,
then by successively calculating whether the parameters ¢1, ¢2, cees
¢k should be included in the model, it would be found that ¢11,

d)k--l'

¢22.'..., ¢k—l,k-l would all have values which are different from zero,

but that the value of ¢kk would be zero.

Box and Jenkins outline a method for calculating both the acf and
pacf of a time series by applying the techniques of "Univariate Stochastic
Model Identification" (USID). Details of this method, in a form intended
for computer implementation, are appended to the main text of their book

[ref. 15, part V, algorithm 1) and are to be applied in the data analysis

of Chapter 7.

6.3.3 Estimating System and Measurement Noise Parameters

Application of the Kalman filter algorithm, presented in
Section 6.3.1, to linear dynamic systems of the kind discussed in Section
6.3.2 require an exact knowledge of the process noise covariance matrix,

Q. and the measurement noise covariance matrix, R. Often, however, both
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Q and R are either unknown or are known only approximately. The investi-
gation of methods for identifying Q and R forms a significant area of
research in its own right, which is particularly active on the topic of
"adaptive filtering". This refers to the real time estimation of para-
meters such as Q and R "on line", with consequent modifications to the
error covariance and Kalman gain matrices, necessary to track the non-
stationarity inherent in many real signal and measurement noise processes.

The technique discussed here and applied in the analysis of Chapter
7 originated with R.K. Mehra in a paper entitled "On the Identification
of Variances and Adaptive Kalman Filtering” [17]). His analysis is limited
to the case in which the statistical properties of Q and R must be
regarded as stationary, but other techniques have since been published
which are claimed to be capable of handling the more general time vary-
ing case [17], or are regarded as superior in some other respect [19,20].
Not all provide estimates of Q and R; some estimate the optimised Kalman
gain directly. Many of these, however, appear to have been stimulated
by Mehra's original contribution.

As an investigation into the relative merits of those different
algorithms was ‘considered beyond the scope of present work, Mehra's
technique is used in the analysis of Chapter 7, since it generally pro-
duced satisfactory results. It is acknowledged, however, that some of the

other algorithms may eventually prove to be superior for the purposes of

processing lidar data.

The Mehra Algorithm for Estimating Q and R

It is first assumed that the system under consideration is time

invariant and that both the system and filter (optimal or sub-optimal)
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have reached steady state conditions (the latter corres-
ponds to P =0 in (6.96)). Both the system and filter equations are
identical to those presented in Section 6.3.1 but Mehra uses Ko to

suboptimal
identify thefsteady state Kalman filter gain,

-1 (6.135)

=
1]

M H(HM HY + R )
[ o) o
where

oM - M H(HM HT + R ) ‘M 1T + rQ T (6.136)
o o (o] [o] o] (o}

<4
]

is the steady state solution to the error covariance equation of (6.85)
and Qo and Ro denote initial estimates of Q and R.

In an optimal Kalman filter, for which Q° = Q and Ro = R, M° is
the optimised error covariance. However, in the sub-optimal case, the

error covariance estimate becomes [17]

T T T, T T
Ml = ¢[Ml KOHMl MlH xo + KO(HMlH + R)Kolo + TQr (6.137)

where

Ml = E[(xi - xi(-))(xi - xi(-))] (6.138)

To check whether the Kalman filter constructed using some estimate of Q
and R is close to the optimum or not, the statistical technique of
"hypothesis testing® is used with the autocorrelation function of the
innovation sequence.

For an optimal filter, the innovation sequence,

v, = 2z, - HX,(-) (6.139)
1 -1 1

of the filter equation (6.80) is a Gaussian white noise sequence. This

becomes apparent if the error in the state estimate
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e, = x, - x,(-) (6.140)
1 1 1
and the measurement equation (6.70) are substituted into (6.139). The

result obtained is,

<
]

z. - Hx(-)
1

Hx, + v, - Hx, (=)
i i i
= H(x, - x.(-)) + v,
i i i

He., + v, (6.141)
i i

and by forming the autocovariance function of Vi

E[vi v1]

El(He, + v )(He. + v.)7) (6.142)
i i i i 3

0 for j # i

since vy is independent of both ej and v, for i > j, and vj is indepen-

3
dent of e, and vi,for i < j. Also, Mehra states that

1

E[vi vj] = HMH + R (6.143)

for i = j, and since vy is a linear sum of Gaussian random variables, it

is also Gaussian.
It is further demonstrated by Mehra, that the autocorrelation func-
tion of v, does not depend on i, so that vy is a stationary Gaussian

random sequence. If the autocovariance of the innovation sequence is now

given the notation,

T
C, = E[lv, v ]
1

k i-k

then (17],
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(6.144)

it
o

HMH + R k

0
n

HIO(I - kD) 1X Yo[mMuT - KC_] k>0 (6.145)

Upon substitution of the optimum choice of K (expression (6.88) with M
replacing P), ck vanishes for all k > 0.

In order to test the innovation sequence, an estimate of Ck is

required which is obtained using the relationship

N
RR (6.146)

Dividing by N instead of (N-k) yields a biased estimate but Mehra argues
that (6.146) is preferable since it gives less mean square error than
the unbiased form. Using approximate results, valid in the limit of
large N, he also shows that for an innovation sequence consisting of

white noise,

ék 1
0.1 = = = = 6.147
Var[pk] Var Co N ( )

Standard statistical procedures are then applied; having established that

k

the 95% confidence limits for {Bk}, k > 0, are +{1.96/N‘) the set of

values {Sk} are examined and the number of times they lie outside the

l’) is counted. If this number is less than 5% of the total,

band *(1.96/N
the sequence v, is said to be white.

For the analysis of Chapter 7, the set of autocorrelations {5k} con-
tained 20 values (k = 1, 20). Since Mehra's whiteness test is ultimately
derived from a simple statistical test based on confidence limits it is,
of course, not really necessary to discriminate abruptly between white

and non-white innovation sequences. Clearly, however, as the number of

values falling outside the confidence limits decreases towards zero,
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better filter performance can be expected.

Estimating Q@ and R

If the above test reveals that the filter is sub-optimal, better
estimates of Q and R are required. These estimates are derived from the
innovation sequence autocorrelation function and the method proceeds in

three steps [17]:

. T , . . .
(1) First an estimate of the matrix product, MH is required which is
obtained via the expression (6.145). If this relationship is expanded

into its component terms such that,

T
C, = HOMH - HOKC_
C. = HOZMHT - HOKC. - HO2KC
2 1 le]
C = HO"MHT - HOKC . - ... - HO"KC
n n-1 )

where n is the state vector dimension, then it is possible to show that

(171,

-

C1 + Hd?KCo

MHT = B* C. + HOKC_k + H02KC (6.148)
2 1 o

C  + HOKC + ... + HO"KC
n n-1 [

. -

where B* is the pseudo-inverse of matrix B which is defined as
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B =|. .0 - (6.149)

and B* = (B'B) 'BT.

By substituting estimated autocorrelation terms into (6.148), an

. T .
estimate of MH may be obtained;

- -
¢. + HOKC
1 o

fAT = |2+ HOKE. + HOZKE (6.150)
2 1 o

&+ HOK® + ... + HO"kE
n n-—

Mehra, however, gives an alternative form for this estimate, also derived

directly from (6.145);

é1
AaT ~
MH™ = KC_ + A* ! (6.151)
i -
i
where
— -
H®
H®(I - KH)®

Hio(r - ki) 1™ Yo

which, as a result of experimental observations, he has found preferable

to use since matrix A is better conditioned than matrix B.
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* s T
(2) Having obtained the above estimate of MH , an estimate of R can

now be derived, simply by using (6.144);

~aaT
f = eo - H(MH™) {6.152)

(3) Finally, an estimate of Q must be obtained. A complication arises
here due to the fact that, in general, the state vector dimension, n,
need not be identical to the dimension of the measurement vector, r
(where x and z are used to denote the state vector and measurement
vector respectively - see expressions (6.69) and (6.79)). This means
that although the steady state error covariance matrix, M, is square and
of dimension nxn, the measurement matrix H has the dimensions rxn. Con-
anT
sequently, the estimated quantity, Mﬁ , above will have the dimensions,
nxr, which means that only nxr linear relationships between the unknown
elements of Q are available [17]). Therefore if the number of unknowns
in Q is nxr or less, a solution can be obtained, but if the number of

unknowns is larger than this, then a unique solution does not exist.

Fortunately, for the scalar case examined in Chapter 7, n = r = 1, so a

unique solution for Q = q can be obtained. .

If the expression for the sub-optimal error covariance estimate is

represented in terms of the steady state error covariance (optimal or

sub—optimal ) [ then

TT
M = o(I - KEIM(I - KH) 70" + OKRK™®™ + ror” (6.153)
which Mehra solves for the unknown elements of Q by re-writing as

T T
M= 0Md + Q + IQl (6.154)

where
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Q = o[ - KHM - MHTKT + xcoxT]¢T (6.155)

Substituting back for M on the right hand side of (6.154) yields
T T T
M= 02m(02)T + one” + @ +orQr e’ + rort (6.156)

then, by repeating the procedure n times, and separating the terms involv-

ing Q on the left hand side of the equation, Mehra obtains the result,

k-1

kzl

oirorTehHT = m - *me®)T - T edpced)T (6.157)

0 j=0

I o~

for k=1, 2, .ee, n

By pre-multiplying both sides of (6.157) by H and post-multiplying by

(67 %)T §T

the following result is obtained,

k=1 e -
) #eIrarT (637 ThT = Ao *)TaT - no*AaT
e k-1 k,T.T
-7 melae?™ s (6.158)
j=0
k=1, «cc, n .

where estimated values have been substituted for the theoretical values,

and where
! = o[- KAR - ATk + KcoxT]oT (6.159)

The right hand side of (6.158) is completely determined by AAT ana
éo' but the set of equations this relationship generates is not linearly
independent. For any particular, non-scalar, case it is necessary to
choose a linearly independent subset of these equations.

Mehra proceeds from this point to demonstrate how the optimal gain
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may be estimated directly. Direct estimation of this gain has the
advantage that even if the number of unknowns in Q is greater than nxr,
a unique solution for the optimum gain, alone, may still be obtained.

In the analysis of Chapter 7, however, estimates of Q and R are obtained
in preference to the optimised gain, Kop, because of their relevance to

the a priori requirement of system and measurement model identification.

6.3.4 Estimation of Sampled Data Containing Sequentially

Correlated Noise

An important limitation of the basic linear, discrete Kalman
filtering algorithm of Section 6.3.1 is that the measurement process of
(6.70) is restricted to sequentially uncorrelated noise. Upon examina-
tion of the Hull lidar data, however, using the methods of Section 6.3.2,
it becomes apparent that a correlated measurement noise process was prob-
ably making a significant contribution to the autocorrelation function
of the data. Similar observations had been reported by at least one
other research group involved in CO2 lidar [1]). For the data examined
in Chapter 7 this process appears, generally, to be restricted to
approximately the first ten lags, implying the existence of correlation
over periods of the order of 1 second, assuming a 10 Hz data capture
rate.

Sampling of the data at intervals equal to or exceeding 10 lags
would presumably remove this correlation problem but the existence of
correlation in the measurement noise implies that an upper limit exists
to the rate at which independent data samples may be collected. The
modification to the basic Kalman filtering algorithm presented here is

attributable to Bryson and Hendrikson [21] and describes a technique

which is potentially capable of coping with temporally correlated
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measurement noise.
A concise statement of the problem may be made by re-presenting

the system state and measurement equations using Bryson and Hendrikson's

notation;
State: x, = bx, + w,
i+l i i
Measurement: z, = Hx, + Ei (6.160)
€, = V¥e, + u,
i+l i i

where wi and ui are Gaussian random vector sequences with zgro means
and covariances, Q and Q, respectively. The state equation remains
unchanged, but the measurement has two components, one of which desc-
ribes the sequential correlation.

In general, ¥,can be regarded as being time dependent, but for the
application considered here, a constant coefficient system is assumed.
A conventional approach to this problem involves "augmenting"” the state
vector so that the correlation parameter, ¥, is recursively estimated
together with the system process, x. State vector augmentation, however,
also entails augmentation of the system matrices so that, in general,

the augmented system has matrix components of the form,

N RSt HY = [H} 1]
i
\ : (6.161)
93 = -f_:.o-_- Q® = Q2.0
o.VY o ' 0

The system description would then become
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1
1
a ® ! ° a wi
= —-— =y - e - - + s -
X1 : xi ui (6.162)
0 ' ¥
]
and the measurement is reduced to,
z, = Bx° (6.163)
i i
. -1
so that the measurement noise matrix is zero (Rk = 0 and Rk does not

exist). Whilst this presents no problem as far as the Kalman gain matrix
is concerned (see expression (6.8%)), both Gelb [2] and Bryson and
Hendrikson, point out that, if Q is small and ¢ = I, then the error

covariance update may become "ill-conditioned";

Pk+1(_) = Pk(+) (6.164)

Since both of these conditions pertain to the system model used in
Chapter 7, an alternative to state vector augmentation is required.

In Bryson and Hendrikson's alternative a linear combination of

z, and z, is used which does not contain ¢,
i+l i i
, =z, - Yz,
Cl z1+1 z1
= + ~- ¥H - Y,
Hxiv1 ¥ Cin x; ~ ¥y

= + ¥ - -
Hxi+l Ei + ui \l’Hxi “’Ei

= H(0x, + w.,) 4+ u, - ¥YHx
i i i i

= (H}) - YH)x, + Hw, + u (6.165)
i i i

The transformed measurement, Ci. now contains only the purely random
sequence, Hwi + ui instead of the sequentially correlated sequence, ei.

It is therefore convenient to re-state the problem as
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state: x, =0x, , tw, Poow, g s (0,0)

r -
. = + + o Py
measurement: Ci—l H xi-l u, Hwi_l : ui—l (0,Q)

r (6.166)
where H = H$ - ¥YH

Cl‘l = z1 - Wzl_l
and u, . and w, are independent.

i-1 i-1

By applying the results of basic estimation theory (as used in
Section 6.3.1), formal "filtering", "prediction" and "smoothing” solu-
tions may be derived [21]. However, Bryson and Hendrikson point out a
distinction between these formal solutions and the actual solutions they

obtain. Since Ci— is based on z, . the prediction of X, based on ‘1-1'

1

in fact, becomes the best estimate of xi based on L Consequently, the
formal filtering and prediction solutions actually correspond to their
single stage smoothing and filtering solutions, respectively. 1In order

to distinguish between formal and actual estimates they adopt the follow-

ing notation;

X, = optimal estimate of x, given measurement up to and
i/ i
including z, -
P = covariance of x = E((x, -~ x Y x, - x )T]
im ifx i T T Tk
actual formal
*i/i 1
*i-1/i *i-1

where ii and ﬁi- are the formal prediction and estimate based on ‘1-1

1
Only the filtering solution is considered here (and used in Chapter

7) and this is summarised as follows;
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~ - r ra
X; 0 = 0%,y * D+ (@ - DHOK, ML, ) - Hx )
where D=sSR Y R=0+HQH, § = QHT (6.167)
r
H =Ho - ¥, ¢ 1 z; - Wzi_l
rT, r rT -1
R, | =M, _H (HM_H +R)
P =(I-K B M, _(1-K .H)T + K .REK
i-1 i-1 i-1 i-1 i-1° Ni-1
r r T T
M. = - - -
;= (@ - DH)P,_ (¢ -~ DH")" + Q - DRD

P = =
i/i Mi' Pi—l/i Pi—l

At least two successive measurements in the sequence {zi} must be avail-
able before the first estimate can be generated and, before the algorithm
can be used at all, some estimate of the correlation parameter Y is

required.

6.3.5 Simulating Lidar Data

Lidar data in the form of normalised return powers, or the
ratio of such quantities, may be regarded as a composite process with,

essentially, two components;

(1) The signal itself, which is representative of the dynamic,
absorptive state of the atmosphere, integrated over a two-way

path length between lidar site and topographic target.

(2) Measurement noise, which corrupts the above signal, and which

will have various sources of origin between the photo-detection

stage and normalisation procedure.

For a pulsed lidar system, the measurement consists of a sequence of
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temporally discrete samples of this composite process. These samples
may be identified with the measurement sequences, {zk}, discussed
above, which form the inputs to the estimation algorithms.

Speckle is regarded as the primary noise source and is multiplica-
tive in nature rather than additive. In Chapter 5, expression (5.7) was
used to relate the normalised return power, PR(k) to the product of the
signal component ER(k), and the speckle component S(k). Both §R(k) and
S(k) are discrete processes. Therefore, assuming that additive measure-
ment noise terms are negligible compared to speckle, expression (5.7)
can be used as a model for generating simulated lidar sequences repre-
sentative of either normalised power or power ratio data. If the simu-
lated data is to represent log transformed quantities, however, a simple
additive relationship can be used instead.

A Fortran program, SIM9.FOR, was written to generate simulated data
files and provided a series of options for specifying both the signal
and the measurement noise, and also the way in which they were combined.
Various signal processes can be derived from the time series models of

Section 6.3.2. The principal options provided in SIM9.FOR were:

(1) A constant value

(2) A first order autoregressive model

(3) A first order moving average model

{(4) Two serially connected autoregressive processes

(5) Two parallel autoregressive processes.

Figure 6.6 illustrates, in block diagram form, the system models
Provided by options (2), (4) and (5). These are assumed here to be
capable of generating more realistic approximations to the absorptive

state of the atmosphere than either a constant value or the moving average
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model. Each of the autoregressive components used in the last two
examples are first order processes. In principle, model complexity

may be increased either by taking a given time series to higher order
or else by using lower order models as building blocks. Figure 6.6(a)
illustrates both the discrete and the continuous forms for the first
order autoregressive process. The continuous representation reveals
that an AR(1l) model is, in fact, equivalent to an integrating unit pro-
vided with feedback. In the absence of feedback, this model reduces to
the simple random walk.

Second order processes can be generated by feeding the output of
one AR(1l) unit into the input of another, but their use as system models
means that, in general, estimates must be provided for both autoregres-
sive coefficients. One common solution to this problem is to assume that
both coefficients are zero, which yields a process known as the "inte-
grated random walk". Another solution is to set just one of the coef-
ficients to zero, then the model reduces to another common form known
as the "smoothed random walk". Such models are also capable of providing
non~stationary time series which may be used where past information on the
rate of change of x is to be used for a priori prediction [1l1].

Figure 6.6(c) represents an alternative approach to model genera-
tion which may be appropriate where the signal process is expected to
possess a complex frequency power spectrum. For example, one of the
autoregressive components could be used for generating a random walk
{i.e. ¢1 = 0) to provide the trend component, whilst the other contri-
butes an exponentially correlated random variable (0 < ¢2 < 1). Again,
however, if used as a system model in the filtering algorithms, estimates
may be required for both ¢1 and ¢2. Also, in general, the state variable

for both 6.6(b) and 6.6(c) will be of the vector form rather than a
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scalar, thus necessitating more complex implementations of the filter-
ing algorithms.

Time series, representative of speckle measurement noise, may take
two forms depending on whether the composite signal is to be generated
using a product or a sum. The former will correspond to normalised power
data and the latter to the logarithm of the normalised power data. In
both cases the speckle sequence will be statistically independent of the
signal but, to prevent bias, the first must have an expectation value of
unity and the second, an expectation value of zero. In Chapter 5 the
probability density function of speckle noise was identified as being
closely approximated by the Chi-square function with the parameter, m,
equal to 3 or 4 (see expression (5.19)).

Various algorithms have been recommended for generating random vari-
ables with a Chi-square distribution [22, 23, and 24] and the version used
in SIM9 is attributable to J. Von Neuman. Since the Chi-square sequence
of order m has a mean of 2m and a variance of 4m, a speckle sequence
based on this series must be modified to provide the required mean, and
may alsoc be further modified to match the speckle variances observed in
real data. 1If {sk} is the sequence generated by-the Chi-square algorithm

then the basic speckle sequence is obtained by transforming each sk using

a relationship of the form,

s]'( = a(sk - 2m) (6.168)

which has a zero mean and a variance given by

o2~ a’(am)’ (6.169)

where a is a variable used to control the variance. In this form it may

be added to one of the signal processes discussed above to produce an
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additive composite signal. Alternatively the mean of the series {Sk}
may be shifted to unity by adding 1.0 to every Sk and the resulting
sequence multiplied by the signal process, using (5.19) to yield a
multiplicative composite signal.

If it is further required that the speckle noise sequence be
sequentially correlated, the simplest method of providing this is to
substitute (6.168) for the noise term, a,, in the autoregressive process

t

of equation (6.102) to obtain the correlated series

" = L L} ll
s Sy |+ Sy g (6.170)

This will have an autocorrelation function described by (6.116),

pk = ¢ for k > O

and a variance given by (6.110),

o2 ,= /1 - 8% = a%tam?/a - 6% (6.171)

As before, the speckle sequence (6.170) may be additively combined with
a signal process or, by shifting the mean of this-series to unity, each
term can be used to form a product according to expression (5.19).

Since the linear Kalman filter requires a linear measurement model,
the simulations considered in Chapter 7 use additive composite signals
to represent log transformed data directly. The alternative is to
generate a multiplicative simulation and log transform this, but since
the transformation i§ non-linear, the advantages of using time series
with pre-defined statistical properties would be lost.

Simulated data files in which the component processes are completely
specifijed find immediate application in the testing of estimation algo-

rithms since the estimate is readily compared with the true signal.
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This is particularly true for the Kalman filter where the noise covari-
ance matrices, Q and R, will be known in advance. Checks can be made
on the filtering algorithms to ensure that the steady state values of
the error covariance and Kalman gain matrices (Pw and Km) converge to
their predicted values. Having established that the algorithm coding
may be obtained
is error free, estimates of Q and 3( using the Mehra techniques for
instance and compared with the known values. Steady state values of P_
and K°° based on the estimates, 6 and ﬁ, may then be compared with the
values obtained using Q and R. Similar procedures may be employed with
the Bryson and Hendrikson algorithm.

It is apparent, in fact, that there are many ways of using simula-
tion to determine the sensitivity of an estimation algorithm to varia-
tions in any of the model parameters. If differences in model complexity
are also introduced, between simulation and filter, the potential area
for investigation rapidly expands. Chapter 7 includes a brief evalua-
tion of filter performances based on four simulated data files. Estimated
values of Q, R, P_ and K_are compared with their anticipated values,
using the basic linear (discrete) Kalman filter, Fhe Mehra algorithm, and

the Bryson and Hendrikson filter for both white and correlated measure-

ment noise sequences.
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CHAPTER 7.0

DATA ANALYSIS

Prior to any data analysis of multiple lidar returns, it was
difficult to predict exactly how many pulse pair returns would be
necessary for the subsequent application of various estimation methods.
In fact, as described earlier in Chapter 6 and evidenced later in this
chapter, the successful application of any estimation method tends to
be an iterative process in which the most elementary methods are applied
first in order to gain information which need not always be of a quanti-
tative nature.

Typical normalised variances are dependent on the amount of aperture
averaging affected by the optical receiver configuration of a particular
lidar system but, in the heterodyne detection limit, they reach a maxi-
mum of unity (approximately) [l]. For this worst case variance, and
assuming a constant signal, precisions of the order of 1% can be achieved
by averaging 10,000 pulse pairs, since variance reduction for a constant
signal is inversely proportional to the root of the number of samples
. used.

A central assumption in this work, however, is that the signals to
be estimated are not constant over the duration of the experiment and
that simple averaging methods are not valid. Support for this assump-
tion was already available in the work by Killinger [4] in which he

)

demonstrates the departure from the N dependence using databases con-
sisting of the order of 20,000 pulse pairs. His method of analysis
Will be discussed later but database populations of this magnitude

appear appropriate for his methods.
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Clearly, however, if traditional estimation methods are to be
applied in which averaging techniques are implicit, large sample quanti-
ties are necessary. This will be true regardless of whether a single
value estimate, or a time dependent estimate is to be extracted from
the measurement sequence. Optimal estimation methods will help minimise
the number of samples necessary to achieve a desired accuracy but sample
records beyond this minimum will, in general, still be desirable for the
analysis of the temporal evolution of the estimated parameter.

The above considerations indicated that each measurement sequence
consists of at least a few thousand shots. An upper limit of 10,000
shots was, however, imposed by constraints of a practical nature.
Although the dual laser system was capable of high rep rates for short
durations, an optimum prf of approximately 10 Hz was used since this
tended to maximise the number of firings before arcing occurred. Also,
beyond a measurement duration of < 25 minutes, thermal instabilities
tended to necessitate re-alignment and the cryogenic cooling of the LTT
detector sometimes caused misting of its zinc selenide window. Therefore,
to maximise the number of valid measurements, a standard measurement of
10,000 samples was decided upon which required approximately 17 minutes
to collect.

Preparation of the lidar system prior to each experiment required a
considerably longer period of time than the measurement duration. Between

measurements it was necessary to:
(i) perform some preliminary analysis on the data of the previous
measurement;
(ii) evacuate both low and high pressure gain sections;

(iii) £ill them with the appropriate laser gas mixture and check

for correct lasing action in all four gain sections;
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(iv) line tune each hybrid to the wavelength selected for the next

experiment;
(v) align both laser outputs into the transceiver; and finally

(vi) check the correct operation of both signal processing electronics
and the data capture software. Such a procedure tended to limit
the number of measurements to a maximum of three per day but with

an average nearer two per day.

In order to ensure that no unrecorded modifications were made to the
system between measurements a formal method of recording all system vari-
ables and ambient conditions was devised. Temperature, humidity, date,
time, amplifier gains, laser lines selected, voltages used, output ener-
gies, waveform recorder sample interval, intra pulse pair delay, and data

file names are typical examples of the information recorded.

7.1 Selected Measurements

The sequence of measurements performed can be partitioned into two
phases. The first was essentially a fine tuning phase in which many
measurements were made with each laser tuned to the same wavelength.
Primary goals were the refinement of the transmitted pulse normalisation
hardware and adjustment of the dynamic range to levels comparable with
the return pulses, optimisation of the signal processing electronics,
and refinement of the data capture software.

Phase two formed the experimental period, proper, and three cate-

gories of experiment were planned:

(i) Having refined the system as far as was possible within practical

time constraints, an immediate requirement was to test the system
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with both lasers tuned to the same wavelength. Under ideal
conditions, of course, both channels should yield identical
information about the absorption in each channel, but differences
of systematic origin had been anticipated. Measurements of this
sort would help quantify the magnitude of these errors, but

would also be useful in assessing the estimation techniques
applied later in this chapter since their performances on the

data from each channel could be expected to be highly correlated.
The wavelength selected for these measurements was the R18 transi-
tion at 10.2604 microns. This was chosen primarily because of its
close proximity to other wavelengths (later to be used for absorp-
tion experiments) which tended to minimise the amount of laser/
transceiver telescope alignment necessary after each re-tune.
Other influential factors, however, were its relatively high line

strength and relatively low absorption by H20.

A principal target for any CO_ lidar system intended for gas con-

2

centration measurements is Hzo (if within the tunable range of the

lasers used), simply because of its abundanFe. It is also often
the principal interfering species when measuring the concentration
of other species. Laser lines selected for the monitoring of H20
were extracted from various authors' recommendations, together

with their published values for the absorption coefficients

(Table 1.1, References 2,3]. The R20 transition at 10.2466 microns
is usually recommended as the measurement wavelength, but either
R18 at 10.2604 microns or R16 at 10.2744 microns appear to be
reasonable choices for the reference wavelength. Measurements

were made using all three wavelengths and the results based on

these files will be presented in this chapter.
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(iii)} Of particular importance as atmospheric pollutants, however,

are ammonia (NH3) and ethylene (C2H4), for reasons discussed in
Chapter 1. Measurements of these gases were attempted, again
using recommended lines and quoted absorption coefficients. For
ammonia, the recommended laser transitions for the measurement
at CO2 wavelengths is often R8 at 10.3337 microns with R12 at
10.3035 microns as the reference. Ethylene monitoring requires
the use of P branch transitions with P14 at 10.532]1 microns as
the measurement wavelength and P28 at 10.6746 as the reference

wavelength. Results based on these measurements will also be pre-

sented in this chapter.

Before proceeding, first to the application of sub-optimal methods
to the above measurement data, it is worth stressing here that the
achievement of high precision concentration measurements is not a
primary objective of this work. Uncertainties in the differential absorp-
tion coefficient due to species interference, the effect of pressure and
temperature variations on these absorption coefficients (known or other-
wise), and systematic errors were discussed in Chapter 5 and tend to pre-
clude accuracies better than a few per cent.

Of fundamental importance, however, is the difficulty in corroborat-
ing gas concentration estimates based on an atmospheric path length of
2 x 1.8 km. A conventional 'hair based' hygrometer was used to monitor
humidity at the lidar site and could therefore be used to compare relative
humidity estimates resulting from the measurements. Discrepancies between
these estimates and the hygrometer reading are difficult to interpret,
however, since the latter instrument is limited in accuracy to a few per
cent and the comparison would be between a point sensor and a path

integrated measurement in close proximity to the open water of the Humber
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estuary. For the ammonia and ethylene measurements, no means of cor-
roboration were available but ambient levels of both gases could have
been greater than the global average due to the close proximity of
various industries.

Although there is a clear limit to the precision with which any
absolute concentration measurement can be stated under these circum-
stances it is still an important independent requirement to be able to
estimate accurately normalised return powers, their ratio and of a more
direct interest, the natural logarithms of both quantities. Where appro-
priate, therefore, estimations of these quantities are translated into,
and presented as, concentration profiles (and relative humidity profile
for H20) but their primary significance is as an indication of the
temporal evolution of the absorptive state of the atmosphere over the
duration of an experiment.

Many of the graphs included in this chapter contain information in
their titles relating to the version number of the program used to process
the data, processing parameters used, and data file names. These have
been preserved here to provide a reference should any subsequent use be

made of these files.

7.2 Preliminary Analysis

7.2.1 The Estimation Problem

Menyuk and Killinger appear to be the first to explicitly
state a problem fundamental to lidar estimation, and in fact relevant
to any other situation in which a parameter must be estimated from noisy
data by taking many samples over a period of time during which that para-

meter may be expected to vary (4]. They used large measurement sequences,
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in excess of 20,000 normalised returns, to demonstrate the departure
from the N-% dependence often assumed to exist for the standard devia-
tion of an estimate based on an average of N samples. As indicated

when establishing the relationship (6.6), this will only be true in
certain cases (if, for example, the estimated parameter remains constant
whilst the samples are being collected).

Figure 7.1 is a confirmation of their findings based on a measure-
ment sequence of 10,000 single channel normalised lidar returns. Their
method of analysis was repeated for this measurement and the figure
clearly illustrates how the standard deviation of the estimate shows
significantly less improvement as the number of samples increases.
Logarithmic transformations (base 10) of both axes have been applied to
conform to the method of presentation adopted by Menyuk and Killinger,
The curve, (b), was derived by applying the segmental averaging techniques
of Section 6.1.2 in which the total number of samples, N, is divided into
M (= N/k) subsets of data. Each k sample forms M independent averages

2
and the standard deviation,ﬁ:J, is calculated using

I +1 + +1 2 I + +I 2 I I 2

2 1 2 k+1 2k N-k+1 N
g, == + + +

k M k k k

(7.1)
P - P
where 1, = ~* =
N P

and P is the average formed using the entire data set (N values).
This result is a direct consequence of applying averaging techniques

to data sequences having non-zero autocorrelation functions. It indicates
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that successive samples are not independent, and that this lack of
independence may be due to a non-stationary absorptive state of the
atmosphere and/or temporal correlation in the measurement noise. Figure
7.1 is typical of all the lidar data analysed in this way at Hull Uni-
versity and indicates the existence of a positive autocorrelation
function. It is worth noting here that, in a hypothetical situation
in which the autocorrelation function at all lags were to collapse
towards zero, curve (b) would then approach curve (a). It has been
suggested that, if the autocorrelation function should become negative,
then averaging techniques could actually provide an improvement over the
theoretical N_% dependence, and this situation is indicated in the hypo-
thetical curve, (c) [S].

Menyuk and Killinger's most important conclusion, however, is

that, if the autocorrelation function,

N-j

(Di = -2-—17_“ LT Ty (7.2)
o (N-7) k=1 J
N
2
where 0% - % ) I
k=1 -

is any monotonically decreasing, or constant function of delay time,
then the variance reduction achievable by averaging reaches the funda-

mental limit,

2 2
o .
. K209 0y (7.3)

Expressed as a variance reduction ratio, this limit becomes

2

Q

k
K = K. - (7.4)
2 7 Pxa1

Q
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Therefore, "as long as the monotonically decreasing temporal cor-

relation coefficient, , has a finite value for a given time interval

Px-1
(lag), that value limits the improvement in the standard deviations that
can be obtained by signal averaging regardless of the number of pulses
averaged during that interval® [4].

It will be seen later that some of the measurements analysed
exhibit finite autocorrelation functions as large as pk>10 = 0.1 which

would limit averaging techniques to a maximum useful sample of k ¢ 10,

yvielding an accuracy no better than approximately 30%!

7.2.2 Sub-optimal Estimation Techniques

The sub-optimal methods applied in this chapter are restricted
to just two techniques: the aB tracker and the running average. Both can
be made to produce very similar results and leave only one parameter for
adjustment according to the user's discretion. Restricting the techniques
applied here has the advantage of avoiding multiple plots of estimates
which differ only slightly in consequence as well as appearance.

The aB tracker has already been used in Chapters 2 and S as a means
of filtering data to reveal salient features of an estimated process.
Examples presented in Figures 5.4(b) and (c) illustrated its application
to the filtering of raw digital values corresponding to the transmitted
reference and return powers, whilst Figure 5.4(d) is an example of its
application to the normalised power values formed by ratioing these
digital values prior to filtering. This filtering procedure was in fact
repeated immediately after each measurement to provide an initial check
on the data and to reveal the presence or absence of any trend.

Figures 7.2(a), (b), (g) and (h) are four representations of the

state of relatively raw, unfiltered data for a particular measurement
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using the R20/R18 lines. The first two illustrate the normalised
powers measured in each lidar channel, here denoted 'A' and 'B', but
{g) and (h) respectively show their ratio and the logarithm of the
ratio. Each of these plots illustrates 1000 points extracted by a
graphics routine which samples every tenth value from the original
data set.

Figures 7.2(a) and (b) use identically scaled axes to permit
direct comparison of graphs presented in sequential order, and this
method of presentation will be adopted wherever appropriate throughout
Chapter 7. Ordinate axes expressing normalised power, or functions
thereof, refer to the dimensionless quantities formed by ratioing the
digitised voltage corresponding to the received and transmitted powers
per channel (details of the normalisation method are presented in Chapter
2 and further discussed in Chapter 5). All graphs forming Figure 7.2
are derived using the same measurement file (SIFT5.045).

A significant difference in the "mean" signal level is immediately
apparent between the two channels (7.2(a) and (b)) and this is directly
attributable to the fact that this measurement was conducted using a
pair of lines suitable for water vapour measurement; the R20 line corres-

ponds to channel B and has an H_O absorption coefficient nearly an order

2
of magnitude greater than that of the reference line, R18 corresponding
to channel A (see Table 7.1). Figures 7.2(a) and (b) also clearly demon-
strate the multiplicative nature of speckle noise. When forming the
ratio of the normalised returns in each channel, the resulting quantity
can therefore be expected to exhibit a large dynamic range and this is,

in fact, illustrated in Figure 7.2(g). Forming the log-ratioc then com-

Presses the dynamic range as shown in Figure 7.2(h).
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By comparison, Figures 7.3(a) and (b) show the normalised power
returns obtained using both lasers tuned to the same line (R18) for
the data file, SIFT5.026. Correlation coefficients obtained for data
in this state (that is, after normalisation but prior to filtering) are
typically close to 0.9 and, by superimposing both figures for the parti-
cular example illustrated, it is possible to detect this correlatiocon

visually.

7.2.2.1 Estimates of Normalised Power Data

Figures 7.2(c) and (d) present the results of applying
respectively, an aB tracker (critically damped - see Section 6.2.2) and
a running average to the normalised powers recorded in channels A and B
corresponding to the water vapour measurement lines R18 and R20. 1In each
case a single parameter is used to control the degree of filtering - alpha
for the aB tracker and n for the running average (equivalent to the number
of samples averaged to form each estimate in the curve - see Section 6.1.3).
The values of a and n used in Figures 7.2(c) and (d) were selected heuri-
stically by applying different values to various data files, specifically
to channels for which relatively high returns were obtained, and attempt-
ing visually to achieve a balance between "over" and "under" filtering.
In applying these subjective criteria, the primary goal was to assess
the presence or absence of trend.

A single value of a(= 3.0 x 10-3) and n (= 200) has been used for
each channel but, because the speckle induced variance is significantly
different between channels, the degree of filtering which results also
differs considerably. For the purposes of discerning trend on a time-

scale shorter than the duration of the experiment, the estimate for
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channel A would seem sufficiently responsive, whereas the channel B
estimate would appear more suitable for detecting changes in absorption
occurring over a duration greater than that of the experiment.

It is possible to select the values of a and n such that the
variance reduction is identical for each method. This has not been
attempted in Pigures 7.2(c) and (d). Using the values of a and n indi-
cated above, running average, in fact, produces a "noisier" estimate
than the of tracker. This difference is discernible from the figures,
but less obvious i the lag which results from differences in the filter
responsivity which, in turn, are dependent on the selected values of a
and n. A low value of a, or n, produces a very responsive, but noisy,
estimate and vice versa. The af tracker, of course, also provides an
estimate of this responsivity since the recursive algorithm (Section
6.2.2) generates both zero and first order differentials of the estimated
parameter.

Other values of a and n could have been applied here but, without
some quantitative guidance as to whether one value produced a "better"
estimate than another, the only result would have been a multitude of
graphs illustrating various degrees of filtering. It could be argqued
that some guidance is available, for instance, via the variance reduction
ratio quoted for the aB tracker in Section 6.2.2. Figure 7.4 is a plot

of this reduction ratio (K) as a function of a. If a = 3.0 x 10_3, the

corresponding value of K is approximately 2.0 x 10-3 which, for a nor-

malised power variance of 25% (typical for the Hull lidar system), would

appear to offer an improvement in accuracy down to approximately *2%.
Figure 7.4, therefore, would seem to imply that further improvement

can be obtained simply by going to even smaller values of a until, in the

limit as ¢ + 0, the estimate is entirely error free. This is true,
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however, only for the special case in which the estimated parameter is
actually a constant. For any parameter exhibiting time dependency there
will be an optimum, finite, non-zero value of a dependent on the frequency-
power spectrum of the estimated parameter (or its statistical/stochastic
properties, depending on the type of analysis applied).

Application of filtering in excess of the optimum represents a
degradation in precision in just the same way as under filtering:; in the
former case the excess noise manifests itself in an inability of the
filter to track sudden changes in the parameter being estimated. Under
filtering leaves an excess of noise, originating in the measurement pro-
cess, remaining in the estimated parameter.

If the aB tracker and running average are now applied to the data
file for which both lasers were tuned to the same wavelength (SIFT5.026),
the results obtained are as presented in Figure 7.3(c) and (d). Both
methods used the values of a and n employgd previously. Although highly
correlated, as expected, both figures reveal a discrepancy between the
absolute values of the estimates of up to, approximately, 10%. The exact
magnitude of this discrepancy will obviously depen§ on the estimation
method used but the presence of a systematic error is clearly indicated.

Various possible sources of such errors were anticipated in Chapter
5 but the consistency with which the estimate of channel B falls below
that of channel A (for both filters) suggests a relatively constant dis-
parity in the percentage energy losses occurring in one or mcore of the

following:

(a) the transmitter optics,
(b} the receiver optics, and/or

(c) the reference beam optics.
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The predicted energy losses, based on simple beam waist considera-
tions and presented in Figure 5.1, suggested a discrepancy of between
5% and 10% due to the diameter of the flat used in transmitter telescope.
Some variation in the apparent magnitude of this discrepancy, however,
is also evident over the duration of the measurement, perhaps attributable
to changes in the beam mode energy distribution superimposed upon a primary

cause of disparity of the type indicated above.

7.2.2.2 Estimates of the log of the Normalised Power

Applying the logarithmic transformation (base e) to the data
of Fiqures 7.2(a) and (b), before using the aB tracker and running
average, yields the estimates illustrated in Figures 7.2(e) and (f).
Here, again, the selected values of a and n are maintained at the same
values as before for reasons of consistency. Perhaps the most salient
feature of these two estimates is the extent to which the non-linearity
of the log transformation has compensated for the different variances in
the original data from channels A and B. This is attributable to the

approximation [61],

olln(x)] = & (7.5)

which states that the standard deviation in the log of a variable is
approximately equal to the normalised standard deviation of the variable
itself. Under this transformation, therefore, the estimates appear to
have equivalent variances. In other respects, however, the same comments,
applied to the aB tracker and running average in the previous section,

apply here also.
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For the dual channel, single wavelength measurements, estimates of
the log transformed data are shown in Figures 7.3(e) and (f). Further
consideration will be given to this file in Sections 7.2.3 and 7.3.

Figures 7.5(a) through to 7.5(h) illustrate running average esti-
mates of log-transformed, normalised power data for other files, most of
which will also be considered later in this chapter. A single value of
n (= 200) was used to produce all of the estimates in these figures, with
the exception of 7.5(g) for which n = 50. This example may be compared
with the previous figqure, 7.5(e), which presents the running average
estimate (n = 200) for the same data file, SIFTS5.044. Table 7.1 lists
these file numbers, together with the laser lines used, their absorption
and differential absorption coefficients for H20, COz, NH3 and C2H4, and
example values of the log ratios expected for typical concentrations of

these gases.

7.2.2.3 Estimates of the log of the the Ratio of the Normalised

Powers

Once again, the same values of a and n h?ve been applied to
generate the estimates presented in Figures 7.2(i) and (j). 1In forming
the ratio, features characteristic of channel A data now dominate the
estimate (c.f. with 7.2(c) and (d)) due to the higher mean signal level
detected in this, the reference channel.

Concentrations and relative humidity profiles could, obviously, now
be derived from these two estimates. This final transformation of the
data will, however, be deferred until some quantitative statement can be
made regarding the precision of the estimate on which they are based
(Section 7.3). Before proceeding to the application of techniques which

will help identify characteristics of the signal relevant to the task of
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building an optimal filter, the aB tracker and running average are
applied in a final qualitative evaluation, this time using simulated

data.

7.2.2.4 Simulated Data

Techniques used in simulating data were discussed in Chapter 6
but, in essence, they assume that two dominant processes contribute to
the composite signal detected and recorded as lidar data. The first is
the variation in the power, or power ratio, attributable purely to random
changes in atmospheric absorption, and the second is measurement noise
which is produced when these pulsed powers are optically averaged and
electronically detected. The latter is dominated by the phenomenon of
speckle and is due to the partially coherent field of laser radiation
collected by the receiver telescope which, when imaged at the active
element of the detector, produces the time dependent granular pattern of
illumination known as speckle. Although the mean power associated with
this optical field may be constant, pulse to pulse variations in the
power detected are significant due to changes in the imaged speckle pattern
between shots.

Figures 7.6(a) and (b) illustrate two simulated sequences of log
power data, each of which assumes a constant value of -1.5 for the log
of the normalised power in the absence of speckle. Both examples display
an additive speckle sequence of constant normalised variance, generated
using the Chi-square random variable with m = 3 (see Section 6.3.5).
However, whereas in Figure 7.6(a) this sequence is temporally uncorrelated
("white" speckle), in 7.6(b) the same sequence was processed to exhibit

exponential correlation ("coloured" speckle) and has a correlation coef-

ficient which decays to 0.1 after 5 "shots".
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If the qp tracker is now applied to both sets of data, using the
same value of g(= 3.0 x 10—2) as used before, the results obtained are
as illustrated in Figures 7.6{(c) and (d). Each of the samples forming
the correlated speckle example are not completely independent, with the
result that the effectiveness of any estimation technique applied to
such data is actually diminished compared to an equivalent signal for
which the speckle is uncorrelated. This difference appears in these
two figures as discrepancy in the visually discernible variance of the
estimates; the correlated speckle case exhibits a higher variance than
the alternative with uncorrelated speckle.

Figures 7.6(e) and (f) reproduce these results using the running
average with n = 200. Since the running average estimator, with n = 200
has a higher responsivity but lower variance reducing properties than the
aB tracker with ¢ = 3.0 x 10-3, the differences in variance reduction
achieved is eveﬁ more conspicuous in these two examples.

A constant mean was used in the previous example to provide an uncom-
plicated demonstration of the significance of correlated measurement noise
in limiting the number of samples which can be regarded as effectively
independent. It is, however, an unrealistic modelvof the real absorption
signal. During a prolonged measurement, the absorption characteristics

of the atmosphere, at any CO_, laser wavelength, over a two way path length

2
of 3.6 km, are unlikely to remain constant in the presence of an absorbing
Species such as HZO which has a non-uniform temporal and spatial distribu-~
tion. 1In general, it can be expected to vary in some non-deterministic
manner with statistical properties dependent on ambient conditions such

as wind, turbulence and advection, manifesting changes over periods both

long (equivalent to trend) and short compared with the duration of the

measurement.
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Methods for quantitatively identifying the statistical properties
of discrete measurements of the absorptive state of the atmosphere were
discussed in Chapter 6 and will be applied later in this chapter.
However, since complex signal model identification is not a primary
objective of this work, a simple non-deterministic model is employed
here which will be justified later and which is capable of providing an
approximation to the randomly varying absorption characteristics of the

atmosphere. This model is the "random walk" which, in discrete notation

has the form

(7.6)

where w is a zero mean gaussian noise sequence having variance, g. The
random walk has a power spectral density function which is uniform out to
some maximum cut off frequenc’ governed by the driving noise variance, q.
It also forms a non-stationary time series, having a variance which
increases as kq and is therefore infinite for an infinite series. For

a finite sequence, however, the non-stationarity of the random walk is
useful for modelling trend.

Figure 7.7(a) illustrates a random walk signal initiated at X, =
-1.5 and having a driving noise variance of q = 10_5. This value of g
is somewhat arbitrary but produces a plausible representation of the way
in which the logarithm of the return power (in the absence of speckle)
may be expected to vary. The speckle sequences used in Figure 7.6(a) and
7.6(b) for the constant signal case have been added to this random walk
to produce the composite signals shown in Figures 7.7(b) and 7.7(c)
(7.7(c) is the correlated version).

The aB tracker estimates (a = 3.0 x 10-3) for both speckle versions

are presented in Figures 7.7(d) and 7.7(e) where, once again, the larger
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variance of the correlated speckle estimate, (e), is discernable. As
before, the running average estimates (n = 200) are also presented here
for both types of speckle (Fiqures 7.7(g) and (h)) and, in common with
Figures 7.6(e) and (f), differences in the estimated variances between cor-
related (7.7(h)) and uncorrelated (7.7(g)) speckle are more pronounced.
The speckle independent random walk signal of Figure 7.7(b) has been
included in all figures, 7.7(d) to 7.7(h) (broken line) to facilitate
these comparisons.

Both of these simulated data files, for the random walk log power
signal with correlated and uncorrelated speckle, will be used again in

Section 7.3 when evaluating the optimal estimation method.

7.2.3 Model Identification

In applying the optimal estimation techniques of Kalman filter
theory, a central requirement is to be able to specify the signal and
measurement process according to the formal methods discussed in Section
6.3.1. The discrete formulation of the signal process, in a generalised

form, was presented there as

_ s r A u (7.8)
Kol T ¥kt Mk T TRk
and for the measurement,
- & - (7.9)

where x denotes the state vector, ¢ is the state transition matrix, w
and v are vectors of random processes, I' is the noise covariance matrix,
1 is a vector of deterministic (control) inputs, A, its associated matrix,

and H is the observation matrix.
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For the scalar, single channel processing requirements discussed

here, the above relationships reduce to the scalar form,

X =¢ x (7.10)

k1 - okSk T Mk
z, = h x + v (7.11)

where the vector/matrix notation has been dropped because it is no longer
required, and where the deterministic control input term has been omitted
because it does not apply. In pursuing the Box-Jenkins approach, time
series formulations of the Auto Regressive, Moving Average (ARMA) form
were considered adequate models for approximating the random process,
assumed to be governing the temporal dependence of the absorptive proper-
ties of the atmosphere. The general form of the ARMA (p,q) model was

represented by

X T 01Xy YKy p e H B X Wy - 8w,y = e (7.12)

q k-q

where the ¢i are autoregressive parameters which describe the effect of

unit changes in xk-i on xk, and the ei are moving average parameters

which describe the effect of past errors on Xy
To be able to specify the signal process completely, using such a

model, it is clearly necessary to be able to estimate the values °i and

ei for as many terms as are required to yield the desired accuracy. Many

files examined using preliminary analysis techniques, such as the af tracker

Or running average, appeared to reveal signal processes which varied from

stationary sequences (in the sense that little trend was evident) to those
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which exhibited trend over periods both short and comparable to the
duration of the measurement. The presence of significant temporal cor-
relation, however, was always evident in the sense that none of the
estimates appeared to be converging to the single valued estimate,
characteristic of a stationary, white noise sequence, when filters were
applied having characteristic time constants shorter than the duration
of the measurement.

Much of the validity, in fact, of applying techniques such as the
aB tracker and running average depend on selecting the responsivity such
that, on the one hand, the responsivity is not too sluggish to reveal
changes in absorption of a duration short compared with the measurement
duration but, on the other hand, having a responsivity long compared to
the temporal correlation expected of the measurement noise. Some guidance
as the magnitude of the lower limit was available in the earlier work of
Menyuk and Killinger [4]. For the running average, for example, 200
samples were used to form every estimate; 100 of these were samples
Prior to the estimate point and 100 after the estimate point. Since the
samples were collected at approximately 10 Hz, 200 samples corresponds
to a characteristic time constant of approximately 20 seconds. This is
clearly short compared to the duration of the measurement but long com-
pared to the atmospheric decorrelation time of 1 or 2 seconds, expected
for speckle phenomena.

The remainder of this section is devoted to the application of auto-
correlation techniques which are capable of providing some quantitative
information on the composite signal, particularly with regard to its pos-
sible components. The "composite signal® is defined here to be that
signal yhich results purely from variations in atmospheric absorption,

combined with either multiplicative or additive measurement noise result-
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ing from speckle. Additive speckle measurement noise is only available
once the data has been log transformed. The additive noise case,
however, is dealt with exclusively from now on due to its suitability

for applying the methods of optimal estimation.

7.2.3.1 Log Power Data

The analysis used throughout Section 7.2.3 applies the

"Univariate Stochastic Model Identification” (USID) technique outlined
by Box and Jenkins in "Time Series Analysis", part V, algorithm 1 [7]
and discussed in Section 6.3.2. A single Fortran program, PUSID.FOR,
encoded and developed by Dr. B. J. Rye of Hull University, Department of
Applied Physics, incorporated all the algorithms discussed here. Provi-
sion for the processing of seasonal data was not included in the program
since periodic components were not expected to be a feature of the data.
This data is assumed to exist as normalised powers in two sequential
access files, PA.IN and PB.IN, corresponding to the two wavelength
channels.

The program then provides the option of performing both an auto-
correlation and partial autocorrelation on the data in this basic state

or after several transformation options. These options are:

(1) PA.IN, PB.IN - no transformation
(2) Ln(PA.IN), Ln(PB.IN)

(3) Ln(PB.IN/PA.IN)

If the log transformations are selected, then a further option
exists for including a "transformation shift" to move the data sequence

away from zero or negative numbers.
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Having selected the type of transformation, the degree of non-
seasonal differencing may then be specified and finally, there is a
further option of "pre-filtering" the data. If required, either "block
averaging" may be used which is equivalent to applying the segmental
average of Section 6.1.2, or else the data sequence may be sampled at
some specified interval.

Figures 7.8(a) to 7.8(f) illustrate the results of applying PUSID
to the two data files originally examined in Section 7.2.2. Each of the
figures displays two curves; the solid line is the autocorrelation func-
tion (acf) of the log transformed normalised power data and the broken
line is the corresponding partial autocorrelation function (pacf). Most
figures are presented in pairs with channel A data uppermost and channel
B data below (normalised powers are denoted PA and PB). Examining the
data from file SIFTS5.026 first, (Figures 7.8(a) and 7.8(b)), it is appa-
rent that both the acf and pacf for both channels are identical, as would
be expected for a measurement conducted using the same wavelength in each
channel. Non-seasonal differencing has not been applied in either of these
two examples and the data has not been subjected to any pre-filtering.

To facilitate model identification from plots such as these, a set
of reference acf and pacf plots have been reproduced from Vandaele's book
"Applied Time Series and Box Jenkins Models" [8], and are illustrated in
Figure 7.9. The examples shown are based on the autoregressive model,
AR(p), the moving average model, MA(g), and the synthesis of these two,
the autoregressive moving average model, ARMA{p,q) for the cases p,q =
0,1,2 (see Section 6.3.2). Various values of the AR and MA parameters,
¢ and g, are used and the examples culminate in a table (Figure 7.9(t))

Ssummarising the salient features of these processes.
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Comparing Fiqgures 7.8(a) and 7.8(b) with this information it is
evident that, of the examples shown, the closest approximations are rep-
resented by Figures 7.9(d) and 7.9(q), corresponding to the AR (p = 2)
and the ARMA (p = 1, q = 1) with ¢, = 0.6 and ¢, = 0.2 in the former case,
and ¢1 = 0.6, Oi = 0.2 in the latter. For the purposes of this comparison,
the magnitude of these parameters is of less significance than their sign.
Each of the three cases possess acfs which are of the same sign and
exhibit relatively rapid decays over the first few lags. Clearly, extra
information is necessary to resolve which of these candidate processes
is closest to the real situation and it is here that the pacf becomes
relevant.

Pacfs summarise all the information contained in the acf of an AR
process using a small number of non-zero statistics such that, for an AR(p)
process, only p such statistics are necessary [8]. The pacf, therefore,
really shows the number and relative importance of the various AR terms
incorporated into a model. Furthermore, any ARMA(p,q) process can always
be expressed as pure autoregressive model [8]. Consequently it is useful
to interpret any features characteristic of a potential ARMA process as
equivalent to those of an AR process or higher order. Pacfs illustrated
in Figures 7.8(a) and (b) indicate that an AR process with p = 5 would
form a suitable model for the observed data.

These two figures depart from Vandaele's examples, however, in one
important respect and this is the significant acf values existing beyond
approximately 20 lags after the initial rapid decay. It will be shown
later that such features are characteristic of AR processes which approach
the random walk limit (¢ + 1) and become non-stationary. Figures 7.8(a)
and (b) in fact represent an extreme example of this significant finite

acf at high lags, but as will also be seen later, the same feature tends
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to be present in all the other data files examined, although often to

a lesser deqgree. As an example, Figure 7.8(c) and (d) illustrate the
acfs and pacfs for data file SIFT5.045 (a water vapour measurement).
Again, the characteristic rapid decay is followed by a small but finite
acf which persists out to 40 or 50 lags for this particular file. The
pacf plot, however, indicates an AR model with less than ten significant
terms, as was the case for the previous data file, SIFT5.026.

Menyuk and Killinger obtained similar plots to these for the data
files they examined, although they did not apply the logarithm transfor-
mation to any of their data [4]. At an early stage in the analysis of
Hull lidar data, the program PUSID was applied to single channel norma-
lised power data, ratioed data and the logarithm of both of these but
very little difference was observed between the transformed data and non-
transformed data, despite the non-linearity of the log transformaticn
operation.

Menyuk and Killinger attempted to fit analytical expressions to the
autocorrelation function they obtained and essentially partitioned these
functions into two regions. The first, characterised by the rapid decay
in the acf, they found to be adequately described by a function of the

form,

p. = exp(-ja) (7.13)

where p is the correlation coefficient, j denotes lag, and & is a constant
characteristic of the decay rate. The second region characterised by a
finite, almost constant acf out to greater lags was found to obey a loga-

rithmically decreasing expression of the form,

py = A= Bln(j) (7.14)
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and it is to this component that they attribute the failure of the
variance to achieve an N“!i dependence.

Autocorrelation and partial autocorrelation functions of the form
discussed above can only be obtained for composite signal data (i.e.
normalised power signal in the absence of speckle, combined with the
speckle process) since, clearly, there is no way of separating the
measurement noise from an underlying process in order to observe the auto-
Correlations of each. 1In forming a signal model for optimal estimation
purposes certain assumptions, therefore, had to be made regarding which
features of the acfs were plausibly attributable to the signal component
and which to the speckle dominated measurement noise.

Menyuk and Killinger point out that "previous studies of the temporal
correlation coefficients for backscattered Co2 laser radiation through the
atmosphere from a hard target have indicated that the atmosphere is
effectively frozen for the order of 1 - 5 msec, with a significant drop in
correlation by 50 - 100 msec.” Lidar systems operating at 10 Hz, therefore,
(as was the case with both the Hull University lidar system and the system
used by Menyuk and Killinger) would exhibit acfs characteristic only of the
"tail end" of the full autocorrelation function, the remainder of which is
assumed to exist for interpulse delays in the 1 - 100 msec range. Short
term decorrelation (= 1 second), therefore, is attributable to changes in
the state of the atmospheric channel between laser shots and, for diffrac-
tion limited systems, is due primarily to "turbulence caused by thermal
fluctuations in the atmosphere” [4].

As pointed out earlier, speckle induced variance arises due to changes,
between shots, in the speckle pattern imaged at the detector. The speckle
Pattern formed at any instant at the receiver is dependent bhoth on random

Phase changes induced by the atmosphere itself and alsc by shifts in the
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position of the laser beam across the surface of a non co-operative
target. Both can, however, originate with changes in the refractive state
of the atmospheric channel. Therefore, since speckle induced variance is
far greater than that expected for any signal process, it does not seem
unreasonable to attribute the initial rapid decay in the acf to speckle
measurement noise decorrelation. Beyond the 10 or 20 lags (= 1 or 2
seconds) characteristic of this "atmospheric decorrelation time" finite
values of the autocorrelation function may then be assumed to be attribut-
able to changes in the absorptive state of the atmosphere. If, for
example, this absorptive state were to remain stationary throughout a
measurement, the acf would be expected to decay quickly to zero after 10
or 20 lags. The N_’5 dependency for the variance of an average based on N
values, but separated by at least the speckle decorrelation interval,
would again be expected to hold.

Returning to Figure 7.8, (e) and (f) present the acf and pacf of
data for which first order differencing has been applied after the data
has been log transformed. Implicit in the application of any differencing
is the suspicion that the data may in fact be more complex than an ARMA
pProcess and may require modelling using the more general form of an ARIMA
{(p/d,q) or "Autoregressive Integrated Moving Average" process, where d
denotes the degree of differencing necessary to reduce an ARIMA process
to an ARMA process. A comparison of Figure 7.8(e) and (f) with the
examples of Figure 7.9, reveals that the first order moving average
(7.9(3)) processes a very similar acf and pacf to those two figures. A
question therefore arises as to which interpretation of the data is more

those
relevant; the acf and pacf for d = 0 (Figures 7.8(a) to 7.8(d)), oq‘for

d=1.
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Box and Jenkins advocate the use of differencing to render a time
series stationary, at least with respect to its first and second stati-
stical moments (mean and variance). First order differencing may be
applied, for example, where it is assumed that the time series possess
a linear trend. The advisability, however, of applying a particular
degree of differencing depends not only on such factors as the polynomial
order of any trend believed to be present, but also on the signal to
measurement noise ratio. Although something of analytical significance
may be gained by imposing stationarity on the signal component via dif-
ferencing, this same differencing operation is also unavoidably applied
to the measurement noise. It may therefore result in further degradation
of the information content of the composite signal as the spectral energy
density function of the measurement noise is shifted to higher frequencies
and higher powers.

Without exception, however, all of the lidar data analysed by apply-
ing first order differencing, produced almost identical acf and pacf
characteristics to those illustrated in Figures 7.8(e) and 7.8(f), irres-
pective of whether the data was in normalised power form, power ratio or
log transformations of these. Simulations will be used later (Section
7.2.3.3) to demonstrate that this characteristic MA (1) process is easily
generated using very simple composite signal models, emplying both white
and coloured speckle sequences.

The remainder of the figures identified as 7.8(g) to 7.8(r) present
the acf and pacf results for log power data recorded in both channels for
each of the data files considered here (listed in Table 7.1). None of
these have been subjected to the differencing operation. Varying rates
of decay are evident in the initial ~ 10 lags and this may be attributable

to varying turbulence conditions during the measurement, the greater the
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strength of the turbulence, the more the decorrelation expected in the
atmospheric channel between laser shots. Beyond this region of rela-
tively rapid decay, the autocorrelation function behaviour exhibits
either very slow decay or appears to maintain some constant non-zero
value over the remainder of the lag range indicated. Also, the pacf
tends to indicate that approximately the same number of autoregressive
terms are involved in each case, but with some differences in the rela-

tive strengths between these contributing terms.

7.2.3.2 Log Ratio Data

Having examined, separately, the autocorrelation charac-
teristics of the log power measured in each wavelength channel, Figure
7.10(a) to 7.10(i) now present the acf and the pacf characteristics of
the same files but this time using log ratio data. Each of the figures
in 7.10 may be compared on a file by file basis with their equivalents,
for log power data, in Figure 7.8.

An indication of the significance of correlated speckle is provided
by a comparison between the first example, Figure 7.10(a), and the earlier
Figures 7.8(a) and (b). Both of the latter acf plots exhibit high auto-
correlation values above and below that transition region identified
earlier where the rate of decay changes (most often near lag = 10 but
sometimes out to lag = 20, as with SIFT5.026 for example). Their log
ratio, however, presents a considerably reduced acf decay over this same
initial lag region and virtually no correlation beyond 20 lags.

For this file, therefore, samples based on the log ratio (or ratio)
are nearly independent and are consequently of greater statistical sig-

nificance for variance reduction purposes in any estimation algorithm.
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Menyuk and Killinger's data demonstrates identical behaviour for the
ratio of normalised powers [4].

A valuable characteristic of autocorrelation functions, therefore,
is the indications they provide of sample independence. Unless an estima-
tion algorithm is specifically designed to cope with temporally correlated
data, it may be advisable to sample the data, or take measurements, at
intervals beyond which the data is known to be significantly correlated.
For the lidar data presented here, and particularly log-power data, a
sample interval of approximately one in ten is often appropriate if suc-
cessive samples must be independent. Although the system was operating
at 10 Hz when these files were collected, a requirement for complete sample
independence would limit the sample rate to a maximum useful value of 1 Hz
if similar measurements were to be conducted again. Fortunately, however,
techniques exist in optimal estimation (discussed in Section 6.3) for
modelling correlated measurement noise, which makes it possible to collect
useful samples at much faster rates. These techniques are applied, and
the results analysed, in Section 7.3.

The next figure, 7.10(b), presents the acf and pacf for a data file
using water vapour measurement lines R20 and R18 (SIFT5.045). Since the
data sequences are much less correlated for this file (correlation coef-
ficient ~ 0.1 as opposed to 0.9 for the previous file, SIFT5.026 - see
Table 5.1), its log ratio acf values, in the lag region less than or
equal to 10, are only slightly less than those illustrated in Figures
7.8(c) and 7.8(d) for log power data from the same file. Beyond lag = 10,
the acf is similar in magnitude and appears to decay very slowly. With
first order differencing applied, the acf and pacf for file SIFTS.045 are as$
illustrated in Figure 7.10(c). As can be seen, these display characterist-

ics almost identical to those illustrated in Figures 7.8(e) and 7.8(f) for
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log power data. Further comments on this type of autocorrelation
result will be reserved until Section 7.2.3.3.

Remaining figures, 7.10(d) to 7.10(i), present the log ratio acf
and pacf plots for the same collection of files as examined in previous
sections, all of which used dissimilar wavelengths in the two lidar
channels (wavelengths used are identified in Table 7.1), and for which
no differencing has been applied. The use of dissimilar wavelengths
results in correlation coefficients between channels not exceeding a
maximum of 0.22 (for SIFT5.046 - see Table 5.1). Consequently, most of
the log ratio correlation functions appear very similar to those illust-
rated in Figure 7.8, for the log powers from the same data file, as

observed in either channel A, channel B,or both.

7.2.3.3 Simulated Data

The series of autocorrelation and partial autocorrelation
pPlots discussed below are all based on the simulated data files presented
earlier. 1In the first example, Figure 7.11(a), the autocorrelation
characteristics are presented for the simulated data file which addi-
tively combines a constant signal value of -1.5 with a white (uncorre-
lated) Chi-square sequence (M = 3, variance = 0.25) representing speckle
measurement noise. Both the acf and pacf are coincident at a constant
value of zero for all lags (allowing for noise in the autocorrelation
function estimate), as expected for a sequence which is, essentially,
just white noise. The result is, however, confirmed in Figure 7.9(a)
and provides a check on the implementation of the algorithms used to pro-
cess the data.

The following figure, 7.11(b), is for the simulated data file which,

again, used a constant signal (= -1.5) but is combined additively with
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coloured (correlated) speckle measurement noise. As indicated earlier,
the decorrelation parameter was specified to reduce the acf to 0.1
after 5 lags (or every five "shots") and this figure demonstrates that
this is the case.

The pacf reveals the presence of a single autoregressive term, as
expected, since a single decorrelation parameter was used, and both plots
are in agreement with the examples of Figure 7.9(b). Although larger in
magnitude, the acf decay over the first ten lags is of the same general
form as that exhibited by those real data files considered earlier, in
vwhich temporal correlation was evident in this same lag region. It there-
fore will serve as a worst case example for suspected speckle correlation.

Figure 7.11(c) illustrates the acf and pacf for the first order dif-
ference of this simulated data file. Similarities between this simulated
example and the equivalent plots for real data become apparent when this
figure is compared with the previous Figqures 7.8(e) and 7.8(f) for log
power data and 7.10(c) for log ratio data. If the simulated data file
for the correlated speckle case is now considered,in which speckle was
again superimposed on a constant signal of -1.5, the autocorrelation
characteristics are as shown in Figure 7.11(d).

Although a similar dependence on lag is revealed, the magnitude of
the autocorrelation terms at lower lag values (< 10) are significantly
less than those shown by the real data, and by the simulated example for
white speckle. Furthermore the acf for the simulated data exhibits a
gradual decay, characteristic of an ARMA process of order 1,1 or higher,
in which each of the coefficients is of positive sign (¢f with Vandaele's
example, 7.9(p)). By contrast, for all of the real data files examined
using first order differencing, the presence of only a single significant

term in the acf was revealed in each and every case, and this occurs at
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lag = 1. Such a result, however, is not inconsistent with the proper-
ties of time series and their autocorrelation characteristics. As will
be explained below, the observed results can be highly dependent on
parameters such as the autoregressive coefficient, ¢, even when rela-
tively simple models such as the AR(l) are considered.

Modelling correlated speckle as a first order exponential decay is
equivalent to stating that the process is an autoregressive process of
order 1. This equivalence was indicated in Section 6.3 and is reproduced
here for convenience. A first order exponentially correlated sequence

takes the discrete form

-BAt
s, = 7.
X e Sk-l + ak-l (7.15)

where B is the reciprocal of some time period characteristic of the decay
rate, At represents the temporal lag interval, S denotes the speckle
sequence, and a is zero mean gaussian white noise sequence.

An AR(l) series takes the form,

s =¢_ 8 + a (7.16)

which,for fixed values of B and At,is clearly identical to (a) and has

an autocorrelation function defined by (see Section 6.3)
p. = ¢ (7.17)

For the simplified case in which a speckle sequence is combined
additively with a constant signal (= -1.5 for the simulated data file
considered here), the application of differencing will only affect the
speckle sequence since the first difference of a constant signal will be
zero. Therefore, assuming the speckle sequence is of the generalised

AR(1) form given above, performing a first order difference yields,
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) + a - a (7.18)

or W = ¢ w + a - a

where W represents the differenced terms.

This can be cast into the general form of an ARMA(1l,1) model;

w =¢ w + a - 6. a (7.19)

where 91 = 1.0. For a simulated white speckle sequence, ¢1 = 0.0,
since successive values must be statistically independent, and the

model reduces to

w =a - a (7.20)

which is the MA(1l) process observed in the autocorrelation plots of
Figure 7.11(c), and is also characteristic of real data.
In Section 6.3.2 the autocorrelations of an ARMA(1l,l) model were
shown to be given by
1 - -
( ¢lel)(¢1 8.)

o, = 2 1 (7.21)
65 - 20
1+6 =285,

Dk=¢1 pk-l' k3 2

but since 91 = 1.0, this reduces to

(¢. - 1)
p. = ---]-—_2 (7.22)

= , 2
P =80 . k)

An MA(1l) process (¢l =0, 61 = 1) therefore will have a single term

Dl = -0.5 at lag k = 1, but all other autocorrelations for k ) 2 will
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be zero. This is clearly indicated in Figure 7.11(c).

If the simulated data file, which additively combines the constant
signal with correlated speckle is now considered, the required value of
¢l can be derived from (7.17) since this sequence was specified to decay

to a correlation coefficient of 0.1 after 5 lags. In other words, since

¢l is then found to have a value of 0.63. After first order differencing
has been applied, the sequence is described by the model (7.18) for which

91 = 1.0, as before. The correlation coefficient at the first lag, found

using (7.22) above, is

Dl = (0.63 - 1.0)/2 = -0.185

with the correlation coefficient at subsequent lags (3} 2) decayingas
also shown by (7.22). This corresponds to the result in Figure 7.11(d).

A value of ¢l = 0.63, as used in this simulated data file, yields
an exaggerated acf decay when compared with most of the equivalent plots
for real data (compare Figure 7.1l(b) with those of Figures 7.8 and 7.10).
In general, as ¢l decreases towards zero, (7.22) above indicates that pl,
will approach -0.5 for the first order differences of data modelled on an
AR(l) process, but that 02 and successive correlations will rapidly
decrease to zero. Therefore, simulated data exhibiting lower acf terms
over the first few lags can be expected to produce autocorrelation
characteristics similar to those observed for real data, both in the
absence of differencihg and with first order differences applied.

If real data is now considered then, taking as an example the log-

powers of channel A data from file SIFT5.045, Figure 7.8(c) gives

Pl = ¢1 = 0.28. Expression (7.22) yields,
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for the differenced data, Py = (0.28 ~ 1)/2 = -0.36 and Py = -0.36 x
0.28 = 0.1 (autocorrelation terms at higher lags will be negligible).
If Figure 7.8(f) is now examined, the actual value obtained for pl is
nearer to 0.43 and oy is indistinguishable from the noise existing in
these acf estimates. This noise, however, is equivalent to an error of
approximately +0.05 in each correlation term (as estimated from the
figures).

Consequently, even though some discrepancy exists between the values
predicted assuming an AR(1l) process, and those derived from real data,
most of the discrepancy may in fact be due to errors in the acf estimate
(and attributable to the finite extent of the data sequence). Further-
more, some component of the autocorrelation function over the first four
lags is likely to be due to correlation in those absorptive processes,
characteristic of the atmospheric state, which underlie speckle measure-
ment noise. The first order autoregressive process of equation (7.16)
is therefore considered a reasonable model for approximating the various
rates of decay observed in the autocorrelation functions of all real data
files over, approximately, the first ten lags.

So far, only two of the simulated data files, introduced in earlier
sections of this chapter, have been considered here; both employed the
artificially simple assumption that the absorptive state of the atmos-
Phere remained constant throughout an equivalent measurement sequence of
10,000 "shots”. One version, however, was additively combined with uncor-
related (white) speckle and the other with correlated (coloured) speckle.
The other two simulated data files, also introduced earlier, replaced the
constant signal with a single random walk process but additively combined
this with the same two versions of the speckle sequence as used in the

constant signal simulations.
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A random walk is a special case of the AR(1l) process for which
¢l = 1. It is a non-stationary time series which, for finite realisa-
tions, will possess statistical moments dependent on the length of the
series, but in the limit in which the series becomes infinite these
moments will, of course, also become infinite. For all values of I¢1|
less than unity, an AR(1l) series is stationary in the sense that at least
the first two statistical moments, (mean and variance) have constant
finite values for all realisations of the series. As |¢1| approaches
unity, however, an AR(1l) sequence becomes increasingly like a random walk
and therefore develops the useful potential for modelling trend.

For values of |¢l| very close to unity (for example those existing
in the interval ¢; = ¢1.0 2 0.001) therefore, an AR(l) series is capable

of modelling trend and if|¢ < 1 it will also possess constant, finite

1

values of mean and variance. If the signal process is denoted by x then

by representing the AR(1) series in form

X =6 X v W (7.23)

where w is a zero mean gaussian noise sequence, the variance of such a

series can be presented as (see section 6.3.2)

2
2 g

(o] =
(1L - ¢

(7.24)
)

w
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1
Figure 7.7(a) illustrated the random walk sequence used as the

signal in the above mentioned simulated data files. For this simulation

2 -
the value of ¢1 used was, in fact, unity and the variance, g = 10 5.

w
Selecting values of ¢1 between 0.999 and 1.0 and using the same initial
random number seeds will generate a family of plots, all with the same

"shape" but compressed in the ordinate axis as L decreases. Different

random number seeds produce signals of differing "shapes”, each manifest-
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ing different extremes of trend. A value of ¢1 equal to unity was
adopted in the simulated data files because the same value is assumed
for the AR(1l) signal model, later to be used when applying optimal esti-
mation techniques.

The two Figures,7.1ll(e) and 7.11(f), present the acf and pacf results
for a pure random walk sequence in the absence of speckle (no differencing
applied). A value of o: =5 x 10—5 was used to generate this particular
sequence. As can be seen, the autocorrelation function displays a gradual
decay from unity characteristic of a finite random walk. For an infinite
series, the acf would presumably reveal a constant value of unity for all
lags at all finite, non-zero values of the driving noise variance o:. The
pacf plot illustrates the presence of a single autoregressive term at
lag = 1, as expected (the nearest example to this amongst Vandaele's
figures is illustrated in Figure 7.9(bv. To complete the autocorrelation
characteristics for the random walk sequence, plots for the first order
differences have been included (Figures 7.11(g) and 7.11(h)) which con-
firm the somewhat trivial result that the acf and pacf of the first order
difference of a random walk are zero for all lags.

An additive combination of the random walk and the white speckle
noise sequence (previously illustrated in Figure 7.7(b)) has an acf and
pacf as presented in Figure 7.11(i). Of immediate significance here, is
the constant non-zero value of the autocorrelation function persisting
over the entire lag range included in the figure.

Since, for many of the real data files examined using PUSID, per-
sistent non-zero, acf values of similar magnitude have been observed in
the lag region beyond the initial rapid acf decay, the composite simula-
tion employing the random walk and white speckle appears to be manifest-

ing at least one of the required characteristics of real data. The pacf
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on the other hand would seem to indicate the presence of a series of
autoregressive terms which decay in significance as the order of each
term increases.

If the same random walk is now additively combined with correlated
speckle noise (as illustrated previously in Figure 7.7(c)) then the resul-
ting autocorrelation characteristics are as presented in Figure 7.11(j3).
Here, the decaying acf in the initial lag region, due to the presence of
correlated speckle, merges with the acf component beyond lag = 10 due to
the random walk signal model.

The effect of the random walk contribution is further emphasised by
comparing Figure 7.11(3j) with 7.11(b) which illustrated the results for
correlated speckle with a constant signal. Both plots appear identical
apart from the shift in the acf occurring at all lags due to the presence
of the random walk component. Some extra noise, however, is also evident
in each of these acf estimates due, presumably, to certain features common
to both data files; the finite extent of the data set combined with signi-
ficant correlation between samples is a possible explanation. Both
examples also possess almost identical partial autocorrelation functions,
and in general are consistent with an AR(1l) process dominated in different
lag regions by either correlated speckle noise or the random walk signal
model.

Finally, by applying first order differencing to the simulated data
which combines the random walk with correlated speckle, the autocorrela-
tion plots of Figures 7.11(k) and 7.11(1) are obtained. These are almost
identical to Figures 7.1l(c) and 7.11(d), which correspond to the constant
signal case with additive white speckle noise and coloured speckle noise
respectively. This is expected since the first order differences of a

random walk process will produce the zero mean gaussian noise sequence,w,
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used to drive the random walk (see expression (7.23)) and such a sequence
contributes nothing to the autocorrelation or partial autocorrelation
functions. Both are therefore entirely due to the simulated speckle
sequences.

In summary, therefore, the first order autoregressive series appears
to be an adequate approximation for modelling those processes occurring
in the real data, at least as far as their autocorrelation characteristics
are concerned. Although more accurate models could probably be derived
by pursuing, further, the Box-Jenkins approach to time series analysis
or, alternatively, the methods advocated by Peter Young (9], these models
will almost certainly be more complex. For the purposes of applying the
methods of optimal estimation, relatively simple models were sought which
would facilitate an initial implementation of those techniques of parti-
cular relevance to the processing of lidar data. These techniques and
the success with which they were applied to AR(1l) models, using the real
and simulated data files analysed above, will form the subject of discus-

sion in the following section.

7.3 The Application of Optimal Estimation Methods

Section 6.3 presented, in general terms, a selection of techniques
collectively entitled "Optimal Estimation” of which Kalman filtering
theory forms the topic of central importance for the analysis conducted
here. However, because this subject area is so wide ranging in existing
and potential applications, it is necessary to point out that the other
topics included there form a suite of techniques selected in an attempt to
"customise” the Kalman filter for the estimation of lidar data. This
section will consider specific implementations of these methods and their

application to lidar data. Model identification has already been dealt
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with in some detail above but, in practice, is generally recognised

that the process of identification also includes repeated trial applica-
tions of candidate models in an iterative approach which seeks to opti-
mise the models, and hence the filter. 1In this sense, therefore, the

following analysis represents a first iteration.

7.3.1 Implementation of the Estimation Algorithms

A summary of the discrete Kalman filter equations has already
been presented in vector/matrix notation in Chapter 6, but they are

reproduced here in scalar form to facilitate further consideration:

S : = . -
ystem Model: X, ¢kxk—1 + Wiy vy N(O.qk) (7.25)
M : = , = ]
easurement Model: z, hkxk + v, PV N(O,rk) (7.26)
E[wkvj] = 0 for all j,k (7.27)
State Estimate s
Extrapolation: X (2) =4 1% ) (7.28)
Error Covariance 2
Extrapolation: P l=) = ) P () Y a (7.29)
St i . = - - & (=
ate Estimate Update: ﬁk(+) ﬁk( ) + Kk[zk h, &, ( )] (7.30)
E i o = - -
rror Covariance Update: pk(+) (1 Kkhk] pk( ) (7.31)
Kalman Gain: K =p (-} h (h2 p (=) +«r 1—1 (7.32)
k k k k "k k

Autocorrelation techniques applied in Section 7.2.3 revealed that
the first order autoregressive model AR(l), of equation(7a3) was a reason-
able approximation to the signal process for values of ¢ close to unity.

Réducing the discrete Kalman filter equations to the scalar form above
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is, in fact, tending towards the assumption that an AR(1l) process is
an adequate signal model. The first order autoregqressive process also
appears to be a reasonable approximation for describing correlated
speckle sequences.

As a further note, therefore, on the significance of autocorrelation
functions, relevant to both signal and measurement models, Gelb points
out that "as a practical fact, most often all we know about the charac-
terisation of a given random process is its autocorrelation function.
But there always exists a gauSSian random process possessing the same
autocorrelation function; we therefore might as well assume that the
given random process is itself gaussian. That is, the two processes
are indistinguishable from the standpoint of the amount of knowledge
postulated" (ref. 10, p. 105].

The simulated data file examined in Section 7.2.3 used ¢ = 1.0 but,
as‘was pointed out, values of ¢ confined to 1.0 + 0.001 will generate
a family of time series, all exhibiting similar random trend features
if the same random number seeds are used. For values of l¢! < 1, the
series (7.23) will also possess a mean of zerc and a variance defined
by (7.24). The system model of expression (7.25) denotes the autoreg-
ressive coefficient as a variable Oy dependent on the recursive index,
k. If ¢k is to be regarded as a parameter to be estimated then at least

two possible methods of deriving it seem to be available:

(1) 1Individual autocorrelation terms in the acf and pacf plots
discussed earlier can be examined, as was attempted in Section
7.2.3.3. Estimates based on these will be subject to error in
the acf/pacf estimates and will yield either a single value,

¢k = ¢, based on the entire measurement sequence, or multiple

values based on subsets of it.
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(2) The state variable, x, can be augmented to a vector which also
contains ¢ or ¢k as an additional term to be estimated. This

will also be subject to some estimation error.

However, any AR(1l) system model employed within a Kalman filter
algorithm to estimate data exhibiting trend, must have a value of ¢ so
close to unity that an attempt to estimate ¢ will be in error by at
least 1 - |¢l. Without an in-depth analysis to identify methods for
confining errors in the estimate of ¢ to within this limit, therefore, it
would seem a reasonable approximation to set ¢k = ¢ = 1.

The system model adopted is therefore the random walk. To facili-
tate the implementation of techniques for deriving system and measurement
noise variances, both g and the measurement noise variance, r, are assumed
to remain constant throughout the measurement, so that qk = g and rk = r,
In some future development of these algorithms, which is beyond the scope
of the present work, adaptive filtering techniques could be investigated
which would permit both q and r to be recursively estimated during the
measurement. As indicated by the compact notation N(O,q) and N(O,r),
used in expression (7.25) and (7.26), the two noise sequences, w and v,
are also assumed to have normal (gaussian) distributions with zero means.

As a further simplification, hk in the measurement model (7.26), can
be set to a constant value of unity (hk = h = 1) so that the measurement
is modelled as a simple summation of the log transformed signal (denoted x,
and which may apply to either log power or log ratio data) and the measure-

ment noise, v, which is assumed to be dominated by speckle. Expressions

(7.25) through to (7.32) therefore become
System Model: X, =X +w (7.33)

Measurement Model: z, = xk + v (7.34)
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State Estimate

Extrapolation: ﬁk(—) = gk-l(+) (7.35)
e omrianee () s
State Estimate Update: R (+) = & (=) + Kz, - & (-)] (7.37)
g;g::efovariance pk(+) = [1 - Kk] pk(-) (7.38)
Kalman Gain: K, = pk(-)/(pk(-) +r) (7.39)

If (7.37) is compared with equation (6.55) for the first order
recursive filter, it is apparent that the two estimators are identical in
form. However, the version derived using Kalman filter theory has a
variable gain, K, which is adjusted as the filter index, k, increases
according to exp?ession (r), until the steady condition is reached in
which p and K do not change with further increases in k. Steady state
values of p and K can be obtained from the "matrix Riccati equation”

which, in scalar form, becomes (see Section 6.3.1)

p = 26p + g°q - p/r (7.40)

and also from the continuous system model equation which, in a general-

ised scalar form is (see Section 6.3.1)
x = fx(t) + gw(t) (7.41)

where p and % denote the derivatives of p and x with respect to time.

For the random walk, £ = 0 and g = 1, so that (7.40) becomes
. 2
p=q-p/r (7.42)

but in the steady state condition, p = 0, so that
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p_ = Yqr (7.43)

where B, denotes the steady state error covariance. Also, since the gain
matrix, K(t), for the continuous Kalman filter equations is, in general

terms, given by (see Section 6.3.1),
K(t) = P(£) BT R (¢) (7.44)

then reducing to the scalar form and replacing P(t) with the steady

state error covariance, p , yields the steady state gain,
-]

=
]

p“/r = vY(q/r) (7.45)

Once q and r are determined, therefore, an estimate of the steady
state error covariance, pw,becomes available which may then be used to
quantify the error in the estimate of the state variable, x.

The algorithm specified by the set of expressions (7.33) to (7.39)
forms a first stage implementation of the Kalman filter. It is unable
to cope, however, with correlated measurement noise since this is not
built into the measurement model, (7.34). Data used with this algorithm
must therefore be sampled from the original data set at a lag interval
sufficient to guarantee that speckle correlation is negligible. For most
of the data files discussed here, a sampling interval of 1 in 10 is suf-
ficient but there are at least two files for which sampling of 1 in 20
must be considered. Guidance as to the correct sampling interval is, of
course, available from the autocorrelation functions previously estimated
for each file.

Built into this first stage Kalman filter is a version of Mehra's
algorithm for estimating q and r [11]. The essential elements of this
algorithm were discussed in Section 6.3 and its application requires an

iterative procedure which may be summarised as follows:
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(3)

(4)

(5)

(6)
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Sample the data set at an interval greater than or equal to
the speckle decorrelation interval. This subset of the

original data file forms the input to the first stage Kalman

filter.
Form rough estimates of g and r using the sampled data.

Run the first stage filter on the sampled data and form the

autocorrelation function (e{) of the innovation sequence,

Estimate new values of q and r.

Perform optimisation (whiteness) test on the innovation

sequence.

If the innovation sequence is coloured, use the new values
of q and r, and re-filter the data. If the innovation

sequence is white, proceed to the next stage.

The autocorrelation function, é(, of the innovation sequence is

estimated for 20 lags ({ = 1,2,.. 20) during each run of the Kalman filter.

An optimisation test is then conducted by:

(a)

(b)

Counting the number of autocorrelation terms, Iacf, which are

k), defined by

outside the 95% confidence limits, +(1.96/N
Mehra (see Section 6.3.3). Ideally, this number should be

€ 1 for the sequence to be white.

Counting the number of autocorrelation terms, Ineg, which

are less than zero -~ this will reflect the amount of bias

present in autocorrelation function and for optimum results
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will be near 10.

N is the number of innovation terms, Vir over which the autocor-
relation is estimated and is equivalent to the number of values in the
sampled data set, less the first 10% during which the filter is allowed
to reach the steady state.

To estimate new values of q and r when the whiteness test fails,

use is made of Mehra's equation (see Section 6.3.3),

f8T = Kk & + a* ,'“' (7.46)
o 1
é
2
[Cn)
- .
where A= H¢

H® (I - KH) ¢
(7.47)

H[®(1 - xH)]™ 1o ]

b

Ml is an estimate of the steady state error covariance matrix, and K is
the sub-optimal gain matrix. Since n is the state vector dimension and
is equal to unity for the scalar version of the filter, both the matrix

A and its pseudo inverse A* also become unity because,
A=H=h =1
This simplification reduces expression (7.41) to
m = xc‘:o+él (7.48)

An estimate of r is found using another of Mehra's equations
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R=-e_ - a(naT) (7.49)

which, for the scalar case, reduces to

>
LI}

(4
1

EH

¢ (1-K) -2¢8 (7.50)
[} 1

The system noise variance, q, can now be obtained by solving (6.157)

and (6.158). In scalar form this expression reduces to the solution,

§=-9= 2k - ¢,

2K(K & + &) - K2 &
o 1

]

o

K2 eo + 2K C) (7.51)
New estimates of g and r are repeatedly obtained by re-running the first
stage Kalman filter with the previous values of g and r until the opti-
misation test indicates that the innovation sequence is white.

The next stage in filtering employs a version of the Kalman filter
algorithm developed by Bryson and Hendrikson (see Section 6.3), for
estimating a signal in the presence of sequentially correlated noise
{12]. This should permit all values in the original data set to be
used in forming an estimate. The measurement noise variance, r, will
remain the same regardless of any sampling used but the system noise, q,
must be scaled down since the estimate derived above is based on a random
walk model which is sampled at some multiple of the original sampling
period used at the time of the measurement. Since the random walk pos-
sesses a variance which increases linearly with time, an appropriate

scaling relationship is
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:1’-.0
-]

q = (7.52)

where qn is the estimate, &, formed by sampling every nth value from the
original data set.

Bryson and Hendrikson's algorithm was presented in Section 6.3 and
is reproduced here in its scalar form for the random walk signal model
(6 =¢ =1, H=h = 1). Using their notation, the system and measure-

ment models become:

Xeo1 = % W w = (0,q1) (7.53)
z, =X te (7.54)
where €rel = ?ek + u . u = (0.&1) (7.55)
and S sz (7.56)

is the transformed measurement. The filtering algorithm is then,

S =0QH = qlh =q (7.57)
- T - 2 -
R=0 + HQH = q, + h q =q +aq (7.58)
_l -
D = SR = ql/(ql + ql) = 4 (7.59)
r r
H' = HO - YH = h¢ - Yh = (1 -¥) = h (7.60)
K . = W/t 2 m .+ r) (7.61)
k-1 =~ k-1 k-1 :
r.2 2
Poy=(=-K _ h)'m  +K (7.62)
m = (-a5)2p . +gq -a’ (7.63)
k k-1 1 |

h = =
where p e = ™ 204 Py % Py,
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Use of subscripting of the form pk-l/k implies that the (k - 1l)th
estimate of p is based on all samples up to, and including, the kth

sample. The filter then becomes

r

+[d+ (1-an%) K -h )

*/k T X*k-1/k-1 k-1 (%=1 Xk-1/k-1

(7.64)

The correlated measurement noise, €, is clearly of the AR(1l) form
discussed earlier. However, both the autoregressive coefficient, v,
and the variance, 51' of the white noise sequence, u, must be determined
before this algorithm can be used. Providing a method for evaluating V¥
can be found, &l may be obtained by comparing (7.55) with (7.23) and

using expression (7.24) to give,

2

2o v2) o2 (7.65)

q =0 c
Usually, one of the first techniques to be considered when an unknown

such as | must be estimated, is the augmentation of the state vector.

Gelb, however, demonstrates a fundamental problem with this approach

which results in the measurement noise matrix, R, becoming singular for

the continuous Kalman filter, or the covariance update possibly becoming

"ill conditioned" ) = Pk(+) for small Q and ¢ =1I) in the discrete

Py =
version of the filter [ref. 10, pages 133-136].
The method employed here, therefore, makes use of the knowledge that

expression (7.55) is a discrete representation of an exponentially cor-

related process having the alternative form,

=eBltl o Ly (7.66)

Ek+1 €x k

and possessing an autocovariance function described by
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A (1) = o e BT (7.67)

where B is a constant characteristic of the decay rate [ref. 10, pages

81-82]1. Consequently,

vz e BITI (7.68)

By forming the logarithm of (7.67), a first order linear equation

is obtained,
In[A_(1)] = - BIT] + 1n(o2) (7.69)

which can be used to perform a simple, linear, least squares fit on the
empirically derived autocorrelation functions presented earlier. The
required algorithm was implemented as a modification to PUSID and per-
formed the fit using the first ten autocorrelation values. B is given

by [6],

8 = <T 1n[R§(T)]> -2<1><1n[Ag(T)]> ] (7.70)
KT > - <1>

where <> denotes an average and T is a multiple of the interval between

Successive measurements, Zk. Also, the standard deviation of B then

becomes (6],

n an{lnglg(r)]}z . (7.71)
{(n-2)(nZt? - (z0)?)}

o(B) =

where n = 10. Table 7.2 presents the values of B estimated in this way,
together with their associated errors, for all the data files processed

using PUSID. Values are included for the log powers in both channels,

and the log ratios.
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Both of the filter stages described above, including the Mehra
algorithm and whiteness test, were incorporated into a single Fortran
program, P1516.FOR, originally encoded by Dr. B. J. Rye. A subsequent
version, P1516C.FOR, contained several modifications introduced during
a series of test runs on both real and simulated data. This latter

version was used to process the following data.

7.3.2 lLog Power Data

Each run of P1516C generated a series of graphical outputs,
characterising the performance of both filtering algorithms; the first
example is illustrated in Figures 7.12(a) to 7.12(j) for the real data
file, SIFT5.026. Both lidar channels were tuned to the same line (10
R18) for this particular measurement. Figures 7.12(a) and 7.12(b) com-
pare the estimates obtained using the first filter which is limited to
processing data with white measurement noise only (and will be referred
to hereafter as "P15"). This filter sampled one in every twenty values
from the original data sequence to eliminate sequential correlation in
the measurement noise (revealed by the earlier plot of its autocorrela-
tion function). Since all original data files contain 10,000 value;,
sampling at this rate reduces the number of samples to 500.

As with the results obtained using the sub-optimal methods of
Section 7.2.2, both estimates are highly correlated, but not identical,
revealing a small disparity in the absolute values of the estimates, sug-
gested earlier to be of systematic origin. A similar disparity is also
evident in the estimate of Figures 7.12(c) and 7.12(d), generated by the
Bryson and Hendrikson algorithm using all 10,000 values in the original
data set. This filter is the version capable of accepting coloured

measurement noise (and is referred to hereafter as "“Pl6").
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An important indication of filter performance is provided by
Figures 7.12(e) and 7.12(f) which display an estimate of the variance,
p, produced by both P15 (solid line) and P16 (broken line) for each
lidar channel. p, therefore, is the "estimate of the variance in the
estimate" of the scalar state variable, x, which, in this case corres-
ponds to the log transformed (normalised) power received, in each lidar
channel. A further log transformation (base 10) has had to be applied
to the ordinate axis, in these and subsequent plots, to compress the
range of variation in p occurring between filter initialisation and the
steady state condition (beyond the first 2000 samples). However, values
corresponding to the steady state square root of p (equivalent to the
standard deviation in the state estimate) have also been included.

For both filtering algorithms, P15 and P16, p is dependent on the
system and measurement models adopted. The general form of this depen-
dency is apparent from the matrix-vector equations presented in Section
6.3. When reduced to their specific scalar forms for the random walk
signal model, this dependency is described by the error covariance extra-
polation and update equations, (7.36) and (7.38) for P15, and correspond-
ing equations, (7.62) and (7.63), for Plé.

An equivalent set of relationships (7.39) and (7.61) govern the
behaviour of the Kalman gain, K, examples of which are shown in Figures
7.12(g) and 7.12(b), for the two lidar channels, 'A' and 'B'. Once
again, P15 and P16 outputs are depicted as solid and broken lines,
respectively, and log (base 10) compression of the ordinate axis has had
to be employed (but steady state values of K are also printed in these
figures).

Figures 7.12(e) through to 7.12(h) clearly demonstrate how the two

estimates produced by P15 and P16 differ. For this particular example,
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both the variance estimate, p, and the gain, K, are less for P16 than

for P15. Using the variance estimate as the principal criteria for
evaluating filter performance, Pl6é would therefore appear to produce

the better estimate. Furthermore, these estimates appear consistent
between lidar channels employing the same wavelength; for example, the
steady state value of /5 in Fiqures 7.12(e) and 7.12(f) are in agreement,
if allowance is made for error in the estimate of p. Similar comments
apply to the gains illustrated in Figures 7.12(g) and 7.12(h).

Both filters are optimised once the innovation sequence of P15,

v =z, - & (4 (7.72)

(see (7.37), and the innovation sequence of Plé

r
Ve = Ly TR R () (7.73)

(see (7.64)) become white; in other words the presence of any temporal
correlation indicates that there is still "information" left in v [ref.
10, page 317]. Mehra's test for whiteness, introduced in Section 6.3.3
and re-stated in Section 7.3.1, may now be applied to evaluate the signi-
ficance of any remaining correlation.

Figures 7.12(i) and 7.12(j) present the autocorrelation functions
of the innovation sequences of both P15 and P16 for channel A and channel
B data respectively. The 95% confidence limits for Pl5 are depicted by
two solid horizontal lines (the upper line coincides with the figure
boundary), and those for P16 by two broken lines. The difference in
width of these confidence limits is due to, N, the number of data values
used to form the autocorrelation functions (this particular application
of P1516C used N = 400 for P15 and N = 9000 for Plé6).

Table 7.3 summarises the important results for each application of
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both filters, for log power and log ratio data (discussed in the next
session). 1Ineg is the number of autocorrelation terms which are less
than zero and ideally this should equal 10. According to the whiteness
tests, therefore, Figures 7.12(a) to 7.12(j) represent a reasonably
successful application of both filtering algorithms to the log power
data of file SIFTS5.026.

Applying P1516C to another real data file, SIFT5.036, obtained
using a pair of laser lines recommended for CO2 concentration measure-
ments (10 R16 - measurement, 10 R8 - reference), the results obtained
are as illustrated in Figures 7.13(a) to 7.13(l1). For this, and all
data files other than SIFT5.026, the first filtering algorithm, P15,
sampled one in every ten of the original data set instead of one in
twenty (as used for SIFT5.026).

Using the same method of presentation as adopted for Figure 7.12,
plots (a) and (b) show the estimate generated by P15 for both lidar
channels ((a) corresponds to the measurement channel); plots (c) and
(d) show the equivalent results for Pl6. Consistent positioning and
scaling of both axes has been used, where possible, to permit compari-
sons between superimposed estimates of Pl5 and Pl6. Figures 7.13(e) to
7.13(h) illustrate the state error covariance estimates and the Kalman
gains for the log powers in each channel. Both sets of estimates reach
their steady state values much sooner than those illustrated in Figure
7.12 and these values are larger than those of the previous data file.

As before, an indication of filter performance is provided by the
innovation sequence autocorrelation functions of P15 and P16 for both
channel A and channel B data (Figures 7.13(i) and 7.13(j)). The lacf
and Ineqg values are listed in Table 7.3. According to their Iacf and

Ineg counts, P15 performs satisfactorily in both cases, but P16 deviates
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from the whiteness ccndition by Iacf counts of 3 and 4 for the two
respective channels. However, upon examination of the innovation acf
plots, it becomes apparent that, apart from a single large deviation
at lag = 1, these failures are marginal and are therefore not so
significant. In fact, for both data files considered so far, and in
all subsequent applications of P1516C where whiteness test failure
occur, it will be observed that they tend to be marginal for most of
the Iacf points counted as lying outside the 95% confidence limits.
Comparing the innovation sequence acf for P16 with the example
of Figure 7.9(j), it is apparent that the presence of a single, large
acf term at lag = 1 is characteristic of an MA(l) process. This would

imply that each innovation sequence term, v , may be interpreted as a

k
linear combination of some current noise variable plus at least one
other lagged term of the same noise sequence (see (6.117)). However,
this feature does not occur in any of the innovation sequences of P15,
and is not present in the P16 results for simulated data (see Section
7.3.4). It would therefore appear to be specific to P16 operating on
real data only, and not a consequence of transforming the measurement
according to expression (7.56). Although it does not detract from the
significance of the whiteness test, it may be regarded as revealing the
presence of some time series characteristic not accounted for in the
approximation provided by first order autogressive models.

The last two figures, 7.13(k) and 7.13(1), display the results
obtained when the log-power estimates in each channel are differenced
to provide a log ratio. Although this measurement was conducted using

laser lines recommended for CO_ monitoring, Table 7.1 indicates that,

2
for average humidity levels (50% at 15 C) considerable species inter-

ference can be expected from HZO alone. As can be seen, some excursion



- 257 -

into negative log ratios is evident. This could be due to one of the

following:

{a) A displacement in the estimate of systematic origin,
{b) Excessive variance remaining in the estimated signal, or

(c) The presence of absorbers with negative differential absorption
coefficients (a manifestation of this particular ratio inver-

sion for the channel A and channel B estimates).

This measurement will be considered further in Section 7.3.3.

One further example of log power estimation is provided here;
Figures 7.14(a) to 7.14(1) illustrate the results obtained for a water
vapour measurement file, SIFT5.044. The presentation of the figures is
identical to those of the previous example; plots (a) through to (4)
show the estimates obtained for each channel using both P15 and Pl16. A
notable feature of the error covariance plot, (e), is the close proximity
of the variances estimated by P15 and P16. This would imply that both
filters offered equivalent performance in terms of the precision of the
estimates of the state variable. The estimate of the error covariance
is, however, dependent on the accuracies in the estimates of q and r,
and errors affecting the performances of both filters, particularly Plé,
will be discussed later.

Values of Iacf and Ineg, listed in Table 7.3, indicate a relatively
poor performance for P16 on the data of channel A but a reasonable result
for the data of channel B. Once again, however, if the innovation acf
plots (i) and (j) are examined, the Iacf counts appear to be marginal
cases. Finally, Figure 7.14(k) and 7.14(1) show the ratios obtained
using the difference between the log power estimates in each channel.

The initial excursion of the P15 estimates into negative log ratio values



- 258 -

is attributable to the filter adjusting its gain level prior to reach-

ing the steady state condition.

7.3.3 Log ratio Data

The identification of log transformed lidar data with the
state variable, x, instead of non-transformed data, was necessary to
convert a multiplicative measurement noise process into an additive one,
suitable for the implementation of the linear, discrete Kalman filter.
A further advantage of this transformation, however, is that the state
variable becomes linearly related to either the absorbance A, (expres-
sion (3.22(b)) for log power data or the differential absorbance, AA
(expression (3.24)) for log ratio data. Having, therefore, applied the
random walk model to absorptive processes in the previous section, the
same model is now applied to differential absorption, since both pro-
cesses can be expected to exhibit random trend behaviour.

Some of the data files to be examined here have been analysed in
previous sections. All are listed in Table 7.1 together with the wave-
lengths used, their absorption, and differential absorption coefficients.
Seven of these data files can be interpreted as gas concentration
measurements since they were obtained using recommended [2] measure-
ment/reference line pairs for the specific gas indicated. It must be
pointed out, however, that although Petheram is used as a source for
these recommended lines, he in fact discusses at length the considerable
problems of species interference, particularly due to HZO' which limit
the application of these and other recommended wavelengths, accessible
using line tunable CO2 lasers.

As before, the first application of P1516C examined here is for

file SIFT5.026 which was obtained with both channels tuned to the same
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laser line (10 R18). The log ratio estimates obtained using Pl5 and
P16 are illustrated in Figures 7.15(a) and 7.15(b), respectively.

Since the log ratio for both channels tuned to the same wavelength
should obviously be zero, these estimates provide some indication of the
magnitude of systematic error to be expected in subsequent estimates.
As with previous examples, the estimate of P15 has a larger variance
than the estimate of P16, but it is apparent, from both estimates, that
some disparity exists between the two channels which, for this parti-
cular measurement, results in an erroneous log ratio value of approxi-
mately 0.1. A similar value was obtained for another data file,
SIFTS5.024 (not illustrated), which again used the line (10 R18) in both
channels. A comparable log ratio error may therefore be expected in
the estimates derived from other files.

Figure 7.15(c) illustrates the lowest steady state error covariances
obtained for any of the data files analysed here using P1516C. Although
the error covariance estimate is, itself, subject to estimation error,
the low values are attributable, partially at least, to speckle correla-
tion between the two channels. Expressions of the form given by (5.22)
indicate that positive cross correlation between measurement processes,
originating in separate channels, reduces the sum of their individual
variance contributions when the measurements are combined as a ratio to
form a single estimate. Negative correlation, on the other hand, will
increase it. This is in direct contrast to the single channel situation
for autocorrelation, discussed previously, where positive correlation
reduces sample independence and thereby diminishes the effectiveness of
any estimation algorithm operating serially on the data.

The low error covariance estimates of Figure 7.15(c) are therefore

a consequence of the correlation reduced estimates of the speckle
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measurement noise, r. Since the Kalman gains are inversely propor-
tional to this measurement noise they also achieve their lowest steady
state values a§ revealed by Table 7.3 and illustrated in Figure 7.15(d).

The innovation acf of P15 (Figure 7.15(e)) yielded an Iacf count
of zero but a value of Ineg = 15, indicating the presence of some bias.
For P16, however, a reasonable result was obtained with Iac = 2 and
Ineg = 10.

The data file SIFT5.036 was examined previously by forming separate
estimates of the log powers in each channel and then differencing these
estimates to produce the Figures 7.13(k) using P15, and 7.13(1) using
Pl16. 1In this section the log ratio is estimated directly and the results
are as presented in Figures 7.16(a) and (b). Both of these ratio
estimates possess larger variances than their equivalents in Figure
7.13 due, presumably, to the higher measurement noises associated with
log ratio data. Values for the square root of r, listed in Table 7.3,
have averages of 0.53 for log power data and 0.70 for log ratio data.

In terms of the steady state error covariances alone, therefore, the log
ratio estimates would appear to be inferior to the alternatives formed by
differencing the estimates of the log powers. Other factors, however,
such as the bias associated with each of the estimation and ratioing
methods would also have to be taken into consideration.

Figure 7.16(c) confirms these relatively high variances but the
gain histories illustrated in Figure 7.16(d) have values falling midway
between the two sets of gain estimates illustrated in Figures 7.13(g)
and (h). 1In terms of filter performance P15 satisfies the requirements
of the innovation sequence whiteness test (Iacf = 0, Ineg = 10) and, with
the single exception of the deviation at lag = 1, P16 almost does as well

(Iacf = 1, Ineg = 10). The magnitude of the autocorrelation terms is

illustrated in Figure 7.16(e).
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In addition to providing a reference for filenames, laser lines
and absorption coefficients, Table 7.1 also lists example values of the
log ratio expected for “"typical" concentrations of the four gases con-

sidered here: H_0O, CO_, NH, and C_H The typical value assumed for

2 2 3 274"
water vapour concentration corresponds to a relative humidity of 50% at
15°C. Ambient concentrations of CO2 and NH3 were extracted from refer-

ence [12], but the value selected for C2H4 was equated to that for NH3
because no alternative estimates were available at the time of compiling
the table. It is appreciated that an ethylene concentration of %2 ppb

is probably an over-estimate as a global ambient figure. However, these
measurements were conducted in close proximity to various industrial sites
so the local concentrations may have been higher.

Using expression (3.32), the log ratio due to n interfering species

is given by

log ratio = 2[Y1Aa'

1 ¥ Ypha, +ooa ¥, day Ir (7.74)

2

Although the measurement data of file SIFT5.036 was obtained using

laser lines recommended for CO_, monitoring, Table 7.1 reveals that con-

2
giderable interference can be expected from water vapour. In fact, for
the water vapour concentration assumed in the table, both Co2 and H20
have comparable log ratios. No attempt is made, therefore, to convert
the log ratio estimates into concentration estimates. However, summing
the log ratio contribution from all four gases yields a value close to
0.2. The estimates of Figures 7.16(a) and 7.16(b) appear to fluctuate
around a mean value close to 0.2, occasionally descending into negative
log ratio values. Possible factors contributing to these excursions into

the negative log ratio region were itemised in Section 7.3.2 but some

component of the fluctuations observed in these estimates could well be
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due to the irregular distribution of H O, or some other gas of indust-

2
rial origin, over the period of the measurement. The highly correlated
results obtained for files such as SIFT5.026 and SIFT5.024, which used
identical wavelengths in each channel, at least suggest that these
fluctuations are not of systematic origin.

Similar comments apply to the P1516C results for the data files
SIFTS5.037 and SIFT5.038, illustrated respectively in the figure
sequences 7.17 and 7.18. SIFT5.037 used laser lines recommended for the
measurement of ammonia (NH3) concentration; log ratio estimates are
presented in Figures 7.17(a) and (b) and the filter performance charac-
teristics, Pw, K°° and innovation sequence acf) in Fiqgures 7.17(c) to
7.17(e). Once again, reasonable performance is observed for both filters.
The first estimate, of filter P15, shows a rapid descent into negative
log ratio values followed by an equally rapid recovery as the filter
gain settles down to its steady state value.

If Table 7.1 is now examined for the data file SIFT5.037 it becomes
apparent that the major contribution to the log ratio is due to Hzo, with
Co2 providing the second largest contribution. The log ratio component
due to NH3 is, in fact, negative and less than 10% of that due to H20
{for the concentration values assumed in the table).

Log ratio estimates for the data file SIFT5.038 are illustrated in
Figqures 7.18(a) and 7.18(b). Here, also, negative log ratio values occur,
the magnitude of which depends on which estimate, Pl5 or P16, is consi-
dered. Clearly for these estimates, and those of SIFT5.036 (Figure
7.16(a) and (b)), excessive noise remains, (particularly for P15). As
before, this is reflected in the error covariance estimates of Figures

7.18(c) which are somewhat larger than those observed in other log ratio

estimates (see Table 7.3 - some of these have vet to be discussed).
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Figure 7.18(d) presents the Kalman gains for P15 and Pl6. Although

the Iacf number for P16 (Table 7.3) indicates that the innovation
sequence was not as white as it could be, examination of Figure 7.18(e)
reveals that the result is comparable to the performance of P16 for other
data files.

Example log ratio values listed in Table 7.1, once again, indicate
that the contributions due to CO2 and 520 can be expected to dominate.
Forming the sum of these log ratios, due to each of the four gases,
suggests that the estimates of Figures 7.18(a) and (b) should have
values of the order of 0.2 and, allowing for fluctuations, this seems
to be confirmed.

Figure sequences 7.19, 7.20, 7.21 and 7.22 present the results of
applying P1516C to four water vapour measurement files, SIFT5.043, 044,
045, and 046. The first three used the wavelength pairs 10 R20 (measure-
ment) and 10 R18 (reference) but, for SIFT5.046, the reference wavelength
was shifted to 10 R16. As can be seen from Table 7.1, relatively little
species interference can be expected from the other three gases. Log
ratio estimates for P15 and P16 are presented in plots (a) and (b) for
each of these figures.

In each case the "noisiness”™ of the state variable estimate is
reflected in the error covariance estimates (p). Steady state values
of p are listed in Table 7.3 for both filters but their complete histories
during each filter run are illustrated in plots '(c)' for Figures 7.19
to 7.22. A spread of steady state error covariances are represented with
values of /E;'ranging from 4.42 x 10-2 for SIFTS5.043 to 0.1783 for
SIFT5.046. It will be noticed that, as /;: decreases, both filters take

relatively longer to settle into the steady state condition. 1In Figure

7.22(c), for example, Jpw appears to settle after approximately 500
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samples but, for 7.19(c), the steady state condition is not reached
until beyond a sample index of k = 3000. Similar observations apply
to the Kalman gains illustrated in all plots '(d)' for Figures 7.19
to 7.22,.

Filter performances were, in general, not completely optimised
according to the whiteness test counts listed in Table 7.3 but the
innovation sequence acfs (plots '(e)' in Figures 7.19 to 7.22) reveal
only slight deviations from the 95%_confidence limits. 1In one instance
(SIFT5.046) the performance of P16 appears superior to that of Pl5 if
the innovation sequence acf, alone, is considered.

Concentration estimates derived from P15 and Pl6é log ratio estimates
are presented in plots (f) and (g) of Figures 7.19 through to 7.22. As
with previous data files, estimates formed before the filter has reached

its steady state may be ignored. These concentrations are further inter-

preted as relative humidity profiles in plots '(h)' and '(i)' of the same

figures using the expression

. AP
= yBE __ 2.9
RH(%) Y SVD(T) 100 ( 5)

where RH is relative humidity (expressed as a percentage), Y is the con-
centration of water vapour, AP is atmospheric pressure (= 0.101325 MPa
for the International Civil Aviation Organisation standard atmosphere)
and SVP(T) is the saturated vapour pressure at temperature, r(°c).

A hair-based hygrometer was available at the lidar site (situated
outside the lidar laboratory window), capable of monitoring both relative
humidity and temperature using a recording drum set to rotate once in 24
hours. Listed below are the relative humidities and temperatures
recorded during each of the measurements indicated, together with the

concentration and log ratio values they correspond to:
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:lfi:u:iﬁ::z RH(%) 7(°c) Y Log ratio
043 72 4 5.78 x 10 ° 1.57
044 68 5 5.85 x 10 > 1.59
045 75 9.5 8.80 x 107> 2.39
046 72 10 8.72 x 1073 2.26

As can be seen, although the filtered log ratios yield reasonable
relative humidities, a significant difference exists between these
estimates and the values recorded by the hygrometer (which was accurate
to within a few per cent).

It is possible that these differences are a consequence of attempt-
ing to compare the integrated absorption over a path length of 3.6 km
with a point sensor positioned at one extremity of this absorption path.
Systematic log ratio errors of A £0.1, however, will also contribute a
maximum error of +10% in both the concentration and relative humidity
estimates. Bias, resulting from the use of a log ratio estimator, is
another potential source of error.

Fluctuations, apparent in each of the estimates, vary from measure-
ment to measurement but are closely related to the relative magnitudes
of the steady state error covariances. If the minimum variance case is
considered (SIFTS.043), it would appear that some non-stationarity is
present which produces a variation in the relative humidity of approxi-
mately 10% during the latter half of the experiment. Some variation was
also evident in the hygrometer reading over an equivalent period of time
{=1%) but since this device appeared to have a characteristic time res-
ponse of at least 15 minutes (observed during the onset of heavy rain),

it is difficult also to compare transient behaviour between the two types

of measurement system.
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7.3.4 Simulated Log Power Data

When analysing real data, the system and measurement noise
variances (q and r) are, of course, unknown so it is difficult to deter-
mine how accurate the Mehra estimates of these quantities are and, con-
sequently, the accuracy of the error covariance estimate, B, Some
insight, however, may be obtained from the use of simulated data in which
system and measurement models are completely specified.

The two simulated log power files used here have already been con-
sidered in the analysis of previous sections. Both use the same random
walk signal model (illustrated in Figure 7.7(a)) but one is additively
combined with uncorrelated (white) speckle measurement noise and the other
with correlated (coloured) speckle measurement noise. They will be
referred to here, respectively, as SIM.00l and SIM.002. The system noise
model used a driving noise variance of q = 10-5 and the measurement noise
sequence had a variance, r = 0.25 so that /; = 3,16 x ].0-3 and /; = 0.5.
For the correlated noise version, the correlation coefficient was speci~
fied to decay to 0.1 after five "shots" so that, using expression (7.68),
¢ = 0.631.

Pl5 estimates of the two simulated files are illustrated in Figures
7.23(a) and (b), with the latter corresponding to coloured measurement
noise. The equivalent P16 estimates are available in the following plots
7.23(c) and (d). As noted in Section 7.2.2, those plots for the corre-
lated measurement noise cases show a noisier estimate than the uncorre-
lated versions. The P16 estimates are re-plotted in Figures 7.23(e) and
7.23(f) to compare the estimates (solid line) with the true signal
(broken lines).

Of primary importance, however, are the error covariance plots of

Figures 7.23(g) (uncorrelated noise) and 7.23(h) (correlated noise).
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For both P15 and P16, the steady state error covariances are worse for
the case in which correlated measurement noise is present but are com-
parable to the values obtained for real data. It will be noticed from
Table 7.3 that the Mehra estimates for /E are 4.75 x 10_3 for SIM.QC1
and 7.91 x 10-3 for SIM.002 (these P16 values have been scaled down
from the P15 estimates using the relationship (7.52)). The first value,
obtained in the presence of uncorrelated measurement noise, is approxi-
mately 50% larger than the actual value of /E used, whereas the value
derived from the correlated measurement noise file is nearly 250%
larger! Autocorrelation values occurring over the first 10 lags for
SIM.002 (Figure 7.11(j)) are, however, significantly higher than for
many of the real log power estimates.

These two extremes of error, therefore, may be used as some indica-
tion of the possible upper and lower limits in the sense that estimates
of q generated by the Mehra algorithm tend, here, to be larger than the
real values. As with real data, the smaller the estimate of q, the
smaller the error covariance and the Kalman gains (Figures 7.23(i) and
7.23(j)), resulting in less noise in the estimates.

Filter performance characteristics were slightly different from
those obtained with real data; although P15 performed reasonably well
for both files, the P16 estimates appear to possess biased innovation
sequences for both the uncorrelated and correlated version. However,
whereas the Iacf value for SIM.00l is 0O, that for SIM.002 is 3. The
innovation sequence autocorrelation functions displayed in Figures 7.23
(k) and 7.23(1), reveal that although the P15 results for both simulated
files are very similar to those of the real data, the P16 acfs lack the
large negative value at lag = 1. SIM.002 does, however, possess a small,

positive acf delay over approximately the first four lags, characteristic

of an autoregressive process.
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The lasts two plots, (m) and (n), of Figure 7.23 compare the
error in the estimate of P16 with the error covariance estimate /;

for both files, SIM.00l1 and SIM.002. The quantity expressed by the

ordinate axis is

X ___k (7.76)

where ﬁk is the state variable estimate and X, is the true random walk
signal. Despite differences in filter performance the actual estimate
errors are very similar for both versions of the simulated data, and

would also appear to have rms values approximately equivalent to the

estimated error covariance.

7.3.5 Concluding Remarks on the Optimum Estimation Techniques Used

The Mehra algorithm used with P15 provides an estimate of the
variances of both the system and measurement noise processes, q and r,
which directly influence the magnitude of the error covariance, p. This
error covariance is important because it provides an estimate of the
error in the state variable (log power or log ratio) which can then be
translated into an estimate of the precision of any gas concentration
value derived from the state variable.

It was observed in the previous section, 7.3.4, that errors in the
Mehra estimates of q cause §, and the estimates of both p_ and K_, to
be larger than they should be for an optimised filter. Such errors
result in excessive measurement noise remaining in the estimate of the
state variable. The Mehra algorithm is intended to be used in an itera-

tive scheme in which the estimates of q and r asymptotically approach
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their optimum values. In principle, to move along the asymptote, it is
hecessary to re-run the filter (in this case, Pl15), each time using the
latest recommendations for q and r, until the innovation sequence is
white.

Figures 7.24(a) and (b) present two examples of how the estimates
of g improve with each iteration, obtained using two real data files.

It was found that although these estimates did converge in general, they
very rarely converged to a value which resulted in a white innovation
sequence. In order to make the transition from the convergence value

to the "optimised" value it was necessary to manually tune the system by
applying certain rules of thumb [5]. These, in essence, use the bias in
the innovation sequence (Ineg) to indicate whether the system noise
recommendation should be increased or decreased. Assuming the measure-
ment noise is approximately correct, negative bias in the innovation
sequence means that q@ should be reduced (and vice versa). Optimised
values of q obtained by such means are indicated in both figures by the
dashed lines.

Estimates of £rin Table 7.3 vary by an order of magnitude; some of
this variation will be attributable to errors in the estimate but the
rest may be characteristic of variations in the system process itself.
Mehra estimates of the values of r converge quickly and appear reasonably
consistent, yielding approximate values of 0.5 for log power data, and
0.7 for log ratio data.

Using the expression (7.5), values of /S: can be interpreted directly
as percentage errors in the "absorbance" A, or "differential absorbance",

AA, of equations (3.22(b)) and (3.24) since,

(4]
/p_ = ollog power) = éA) (7.77)
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or /E: = ¢(log ratio) = oéAA) (7.78)

where A and AA denote time dependent expectation values of the signal at
any given instant. Therefore, using the P16 estimate of /5: (Table 7.3),
these errors would appear to vary from nearly *18% for SIFT5.046 down to
+3.6% for SIFT5.026 (due to the fact that, for this file, the measurement
noise in both channels is highly correlated).

Steady state values for p and K can be predicted for the linear
Kalman filter using the matrix Riccati equation which, in scalar form, is

given by expression (7.40). 1In Section 7.3.1 it was shown that, for the

random walk system model,
p, = Yar (7.43)

and that the scaling relationship between the estimate, q = q, derived

from P15, and the value ql used by Ple, is

(7.52)

o] jﬁ-ﬂ

ql=

where n is the sample interval used on the original data set by P1l5.
Bryson and Hendrikson do not consider the continuous filter case

and therefore do not provide an expression for the continuous propaga-

tion of covariance. However, since the linear Kalman filter represents

the optimum filter [ref. 10, p. 107], the Bryson and Hendrikson algorithm

will not do better than the result, (7.43). Therefore, with P15 and Plé

both performing as optimum linear filters, the ratio between the two

estimates of p will achieve a maximum value of

q r
o JET
pe (P15) /o /n

which, for n = 10, is =0.32. For the purpose of comparing estimates
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listed in Table 7.3, the square root of this ratio (= 0.56 for n = 10)
is more useful. The results tabulated tend to confirm that P16 does,

in fact, provide a better estimate than Pl§ since the error covariance
estimates generated by P16 are consistently lower than those of Pl5.
With a single exception, however, ratios between these estimates do not
achieve the theoretical maximum of V0.56. The one exception is provided
by the simulated data file, SIM.00l, for which the speckle sequence is
uncorrelated.

Sequential correlation in speckle measurement noise does, therefore,
detract from the information content of each measurement event, z,, even
if specialised algorithms are used which are designed to cope with it.

It is equally apparent, however, that such algorithms help minimise the
influence of this noise imposed sample dependency and therefore permit
useful sampling within the correlation time constant (= 1/ - see expres-
sion (7.68)). Plé is, however, subject to at least one more source of
error than P15 since estimates of B (the speckle decorrelation parameter)
must be provided. These are listed in Table 7.2 together with their

error estimates. In adopting the random walk model for both P15 and Pl6,
the autoregressive parameter ¢ in (7.25) is assumed to be unity. If, for
any real data file, a better system model exists using a value of ¢ ¥ 1,

then any errors arising from the use of the random walk model (¢ = 1)

will be common to both filters.

It is worth noting here, however, that since the general autoregres-

sive model (7.43) with ¢ < 1 has the equivalent continuous form

X = -ax + w (7.79)

for which ¢ > 0 (this is derived from (7.41) with £ = -¢ and g = 1),

solving the matrix Riccati equation for the steady state condition yields
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22 (7.80)

Therefore, as this system model departs from the random walk condi-
tion (a = 0) and tends towards the white noise sequence, w (¢ = 1), the
steady state error covariance decreases, thereby potentially improving
the precision of the estimate. Figure 7.25 is a plot of the dependency
of p as a function o for the valuesof q and r used in the random walk
simulations.

Finally, taking the expression (3.32) which relates the concentra-
tion of a gas species, m, to the log ratio, and applying a standard
result for the component variances in a linear expression [6], the preci-

sion in the concentration measurement can be related to the steady state

error covariance via

2
o’ )= (7.81)

where Aa' is the differential absorption coefficient per cm.
This function is plotted in Figure 7.26 (as a standard deviation
rather than a variance) for each of the four gases identified in Table

7.1 (Aa' = 7.56 % 10—4 for Hzo) using values of pr ranging between 1 and

10-4. A log transformation has once again been applied to the axes.

Since the differential absorption coefficients for HZO and Co2 are nearly
identical for the measurement wavelengths chosen, both plots appear coin-
cident. Shaded areas translate the upper and lower bounds for /;: (Ple),
a; listed in Table 7.3, into precision bounds for all four gases. These

precision estimates assume, of course, that P, completely defines all

sources of error.
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TABLE 7.1

Hy0

COy NH
(Y = 8.4 x 1073 S0% RH (Y = 0.000318) (v =2 x310"9) (v = <2:2§410'9)
Laser Wavelength 815 C)
) Lines: (microns) |Absorp. Absorp. Absorp. Absorp.
File | Channel A|Channel A Coeff. D.A.i:. Log Coef{. D.A.tf. Log ([Coeff. D.A.C. Log Coeff. D.A.C. Log
Number Channel B|Channel B |(cm™l)  (cwl)  ratio|(cw ')  (cm*)  ratio{(am ™ (eml) ratio  [(em ™)) (em™}) ratio
-4 -3
036 [0 K6 |10.2744 13110 5 107> 0.085{3-9%%10 0 7.5 x107% 0.086| %110 23,09 0017 | o0.06 2.88x1070
10 B8 10.3337 _ |1.03x10 2.30x10 23.20 1.05
=z 3
037 [10 R12  |10.3035  11.66x10 g 34107% 0.102f2-8720 J 5 70107 0.065|0-230 22,97 0016 (1% 0.95 6.8ax107t]
10 R8 10.3337 | 1.03x10 2.30x10 23.2 1.05 o
. =3 a
03g[10 P14 [10.5321 | 1.22K10" 5 gg5 095 2-74<107 915107 0.104|%-870 o510 3.6m074(36-5  35.16 0.025 |1
10 P28 [10.6746 | 0.94x10 1.83x10 0.360 1.34
—4 =3 -
043[10 R20  110.2466 | 8.51x10 5 561074 3. 289) 2-87X10 | 3 55107 0.172[%-%%0 _9.013 -9.36x2076|1-16  0.46  3.30x1074
10 R18  |10.2604 | 0.95x10 3.02x10 0.063 0.70
-4 -3
04|10 R0 [10.2466 | B.5Lxl0 9 5641074 3,289} 2-87K10 1 5x107* 0.172)°-9%0 _0.023 -9.36x1078 116 0.4 3.31x207*
10 R18 |10.2604 | 0.95x10 3.02x10 0.063 0.70
04510 R20 | 10.2466 | 8.51x10 g 5641074 3 29| 2-87X10 | g 5y1074 0,172/ %050 0,013 —9.36x107 126 046 3.31x107*
10 R18 10.2604 0.95x10 3.02x10 0.063 0.70
| =3 '
04610 F20 | 10.2466 | B.5Lx10 g 5049074 3 1479| 2-8710 0 g gx107%-0.021| %50 9,060 -4.32x2075 126 0.07 5.041%°
10 R16 10.2744 1.31x10 3.05x10 0.110 11.09

D.A.C. = Differential Absorption

Coefficient (per cm)



Filename

SIFT5.024
SIFT5.026
SIFT5.036
SIFT5,037
SIFT5.038
SIFTS5.043
SIFT5.044
SIFT5.045
SIFT5.046

- 276 -

TABLE 7.2

B Estimates
1n(Pa) 1n(Pb)
-0.30 + 0.10 -0.26 + 0.09
-0.20 + 0.07 -0.20 + 0.07
-0.25 + 0.10 -0.27 + 0.11
-0.23 + 0.09 -0.34 + 0.14
-0.22 + 0.09 -0.26 + 0.11
-0.25 + 0.10 -0.32 + 0.12
-0.21 + 0.08 -0.24 + 0.10
-0.26 + 0.09 -0.26 + 0.10
-0.21 + 0.08 -0.25 + 0.10

In(ratio)

-0.29 +
-0.27 %
-0.22

14

-0.26 +
-0021

“+

-0.35 +

-0.27

=+

-0.29

+

-0.24 +

0.11
0.11
0.10
0.11
0.10
0.15
0.11
0.11
0.09



TABLE 7.3

Summary of Filter Performance

P15 P16
Filename |State Variable| /g /r P K_ act| Ineq q | Ve, K_ acE 1 neg
SIFTS.026|1n(Pa) 1.0x10~2 | 0.49 | 7.00x1072 | 2.04x1072 | 0 | 9¢0 |2.24x1073| 0.49 | 5.79x107% | 7.86x1072| 1 | 9«0
1n(Pb) 1.0x1072 [ 0.46 | 6.82x1072 | 2.15x10™2 | 0 | 9<0 [2.24x1073| 0.46 | 5.70x1072 | 8.40x1072| 1 | 9<0
SIFTS.035|1n(Pa) 1.63x1072 | 0.57 | 9.68x1072 [ 2.84x1072 | 1 | 9<0 |5.17x1073 | 0.57 [ 9.03x1072 | 1.43x1072 | 3 | 11<0
1n(Pb) 3.95%1072 | 0.56 | 0.1507 | 6.87x1072 | 0 [11<0 |1.25x1072| 0.56 | 0.1345 | 3.33x1072| 4 | 9<0
SIFTS.044|1n(Pa) 1.25%1072 | 0.56 | 8.43x1072 | 2.20x1072 | 1 120 |3.95x1073 | 0.56 | 8.25x1072| 1.19x1072| 6 | 8«0
1n(Pb) 4.0x1072 |0.53]0.1485 |7.25x1072 | 1 |12<0 |1.26x1072|0.53 |0.1367 | 3.70x2072| 2 | 11<0
SIFT5.026|1log ratio  |6.94x1073 | 0.22 | 3.91x1072 | 3.15x1072 | 0 {16<0 |2.19x1073| 0.22 [3.56x107%| 1.53x1072| 2 | 10<0
SIFT5.036|1log ratio  [3.30x1072 [ 0.76 | 0.1604 |4.23x1072 | 0 [10<0 [1.04x1072|0.76 [ 0.1533 | 2.24x1072| 1 | 10<0
SIFT5.037|log ratio  [|1.0x1072 |0.72|8.49x1072 | 1.39x1072 | o0 |11<0 [3.16x1073|0.72 [7.88x1072| 6.85x1073| 1 | 8<o0
SIFTS.038|1og ratio  {3.50x1072|0.74]0.1626 | 4.63x1072 | 0 |10<0 |1.11x1072| 0.72|0.1560 | 2.47x1072| 2 | 10<0
SIFT5.043|log ratio  [4.0x10™> |0.65 5.12x1072 | 6.13x1073 | 1 | 9<0 |1.26x1073| 0.65 | 4.42x1072| 2.72x1072 [ 2 | 9<0
SIFTS.044|1og ratio  [2.0x10™2 |0.72|0.1204 |[2.76x1072 | o |11<0 |6.32x0073{0.72|0.1203 | 1.35x2072| 4 | 9<0
SIFTS.045|1og ratio  |1.14x1072|0.70 | 8.99x1072 | 1.62x10™2 | 0 | 9<0 [3.60x1073] 0.70 | 8.14x1072| 7.70x2073 | 3 | 12<0
SIFTS.046|1og ratio  |5.0x1072 |0.72]0.1930 |6.71x1072 | 3 |10<0 |1.58x1072| 0.72]|0.1783 | 3.43x1072| 3 | 10<0
s1M.001 | 1In(power) [1.50x1072|0.48|8.60x1072|3.06x1072 | 1 |120<0 |4.75x1073| 0.48 | 4.76x1072| 9.67x1073 | 0 | 15¢0
SIM.002 | 1In(power) [2.50x1072|0.49{0.1117 |s5.01x1072 [ 1 |11<0 |7.91x1073| 0.49 | 8.21x1072| 1.87x107% | 3 | 14<0

- LLT -
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FIGURE 7.3 (e)
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VARTIANCE REDUCTION RATIO AS FUNCTION OF ALPHA FIGURE 7.4
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FIGURE 7.6 (e)
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FIGURE 7.9
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A and Pagf of Moving Average Models.
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Figure 7.19 (c)
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CHAPTER 8.0

CONCLUSION

Various estimation techniques have been applied here in an attempt
to evaluate their potential for “the specific task of processing non-

stationary direct detection CO_ lidar signals corrupted by speckle

2
noise. Two "sub-optimal" algorithms were considered first; the running
average and the aB tracker, principally as techniques for providing an
initial cursory examination of the data; suitable for a qualitative
comparison of the information in each lidar channel. The running
average is a technique representative of the methods applied by Menyuk
and Killinger which first alerted them to the presence of non-station-
arity in the signal. The af tracker is a more sophisticated technique,
particularly in the slightly underdamped form used here (attributable

to Benedict and Bordner), since the algorithm generates an estimate of
both the signal and the signal derivative with respect to time. For
deterministic signals it is also capable of providing an estimate of the
precision of the estimate. Both the running average and aB tracker

are, of course, essentially deterministic in nature.

Optimal estimation methods require information not only on the
statistical properties of the system and measurement noise processes,
but also on terms included in the state propagation and observation
matrices, ¢ and H. In an attempt to derive this inférmation, specific
methods of time series analysis were employed, based on the information
content of autocorrelation and partial autocorrelation functions (the
"Box-Jenkins" approach). This method proved to be reasonably successful,

at least for the purposes of selecting relatively simple, first order

autoregressive models as approximations to both the signal process and
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sequential correlation in the additive speckle measurement noise
(after the log transformation).

Kalman filter applications, in general, may be broadly parti-
tioned into one of two problem-type categories. The first, and most
widely relevant group would include those applications in which the
system model tends to be either determinisfic, or else has well known
statistical properties, and therefore facilitates the estimation of
large state vectors. The other application area is characterised by
systems which are probabilistic rather than deterministic, having
poorly defined stochastic properties and, as a partial consequence of
this, state vectors which tend to be limited in dimension. Lidar
signal estimation, as attempted here, currently falls into the latter
category.

Adopting first order autoregressive models in the Kalman filter
implementations of Chapter 7 (P15 and P16), simplified an initijal
application of two complementary techniques which may be used as part
of an iterative procedure for improving parameter definition within

the models:

(1) The first technique addresses the immediate requirement to

evaluate the system and measurement néise covariance matrices,
Q0 and R. Reducing the system and measurement models to scalar
form makes this easier since only two scalar quantities, q and
r, need to be determined. The method published by Mehra is a
two stage process. Initially, crude estimates of q and r are
used in a standard implementation of the Kalman filter (i.e.
P15) and the autocorrelation function of the innovation
sequence is calculated. A statistical test is then used to

determine whether or not the innovative sequence is white.
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If it is not, the second step is to use Mehra's formulations
for deriving new estimates of q and r. Those are then used in
a re-run of the filter and the procedure repeated until the

whiteness test is successful.

(2) The basic, linear Kalman filter does not provide for the even-
tuality of correlated measurement noise; a significant limitation
since measurements of real processes, in general, will be cor-
rupted by noise which must be band limited in some sense. Bryson
and Hendrikson's algorithm is therefore a valuable extension to
the linear Kalman filter but since at least one extra model
parameter (Y or B) must be estimated, the implementation
requirements become more complex and filter performance will be

susceptible to at least one extra source of error.

Other algorithms for estimating q and r, or K, have been published
since Mehra's paper which may be capable of providing more accurate
estimates of these parameters, and would therefore benefit from a com-
parative analysis based on both real and simulated lidar data. True
adaptive filtering, in which q and r, and consequently P and K, are
estimated "on line” could then be attempted using the best of these

methods.

Where, in future applications, more complex models become neces-
sary, the Box-Jenkins approach may be pursued further to identify the
coefficients of a general ARMA process. Alternatively, if parameter
instability is suspected, the "Instrumental Variable" methods advocated
by Peter Young [1l] may prove to be more appropriate. Certain topics
which are generally relevant when applying the methods of optimal

estimation have not been discussed here because of the lengthy digres-
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sions that would have been involved. These include the subjects of
smoothing, sensitivity analysis and word length errors.

Smoocthing, as defined at the beginning of Chapter 6, is a non-
real-time processing scheme that uses all of the measurements before

and after each sample, 2 , to estimate the system state, instead of

k

just those measurements up to and including 2, , as is the case with

k
filtering. Had this been done, the steady state error covariances for
the random walk system model could have been reduced by a factor of 2.
However, once the filter is defined, it is relatively simple to imple-
ment the smoothing version of the algorithm.
Sensitivity analysis examines state estimate sensitivity to
changes in the model parameters, and usually refers to the situation
in which the system and measurement processes are known precisely, but
a simpler, approximate implementation is required to ease computational
loading. In a general sense the term can also be applied to an analysis
based, for example, only on the error covariance estimates. Gelb [2],
in fact, gives an example for a first order gauss-markov system model
(AR(1) with ¢ < 1). 1In the limit in which this becomes a random walk
sensitivity analysis, in the broad sense, would then reduce to the
simple task of examining filter performance as a function of r and q.
Word length errors are a consequence of using digitised computers
in which numerical precision is a function of the number of bits used
to represent a number. During a multiplication, for example, two
numbers represented by n bits each may require 2n bits for their pro-
duct. In fixed word-length machines only n bits are available, however,
so the precision represented by the last n bits must be discarded.

There are two methods of doing this; symmetric rounding up or down, or

truncation to the nearest lower integer. The latter technique results
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in the largest accumulation of errors, particularly during the
multiply-accumulate operations characteristic of recursive filtering.
A check on the Fortran implementation of the filtering algorithms was
conducted by converting all susceptible variables to double precision
and repeating several filter runs on real and simulated data. No
differences were observed due, presumably, to symmetric rounding tech-
niques used in the Fortran floating point library routines.

In applying data processing techniques to the problem of speckle
induced measurement noise the alternative approach, of improving the
sampling capabilities of the instrumentation used to collect the data,
has been neglected. As indicated in the discussion on speckle in
Chapter 4, the instrumentational requirements translate into a need to
reduce the ratio of the speckle induced standard deviation to the signal
mean, given by 1/ﬁ;. In principle, uncorrelated speckle patterns can
be obtained by means of time, space, frequency or polarisation diversity.
For example, if the diameter of the receiver mirror is increased,
equation (4.15) reveals that the size of the speckles in the image
plane will be decreased. More speckles will therefore be averaged over
a given detector dimension since m is increased; a technique which is
referred to as an aperture averaging. Alternatively, for fixed
receiver diameters, the location of the beam on the target may be deli-
berately altered between shots to decorrelate successive power samples.

Advanced data processing techniques will, however, find applica-
tion where instrumental techniques are either impractical or too costly
to implement. CO2 lidar systems, in general, have yet to become the
ubiquitous tool for atmospheric gas concentration measurements they
originally promised to be. This is attributable, principally, to their

long and expensive development phases which are often dependent on
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advances in laser technology. Digital filtering methods may therefore
provide at least an intermediate solution, and are now capable of real
time implementation via relatively inexpensive, VLSI based, programm-

able digital signal processing systems.
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