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AN EVALUATION OF SELECTED ESTIMATION METHODS FOR THE PROCESSING 

OF DIFFERENTIAL ABSORPTION LIDAR DATA 

This work examines the application of selected estimation methods 

to path integrated direct detection CO
2 

lidar data, with the objective 

of improving the precision in the estimates of the log power, and log 

power ratios. Particular emphasis is given to the optimal estimation 

techniques of Kalman filtering theory, and to the consequent require­

ments for system and measurement model identification. A dual wave­

length system was designed and constructed, employing two hybridised 

TEA lasers, a co-axial transceiver, and direct detection. 

Over a period of several months, a database of differential absorp­

tion measurements was accumulated, each consisting of 10,000 dual 

wavelength lidar returns. Various wavelength pairs were used, includ-

ing those recommended for the monitoring of H
2
0, CO

2
, NH3 and C

2
H

4
• A 

subset of this database is used to evaluate the above mentioned estimation 

methods. The results are compared with simulated data files in which it 

was possible to control precisely process models which are believed to 

form an approximation to the real processes latent in the actual lidar 

data. 
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CHAPTER 1.0 

INTRODUCTION 

1.1 LIDAR Systems 

The ilpplication of the optical counterpart to Radar, now generally 

referred to by its acronym LIDAR for "Light Detection and Ranging", has 

encompassed many of the developments in tunable laser sources. Trans-

mitted wavelengths range from the ultra-violet through visible to the 

infra-red, and have been used for a wide variety of measurements includ-

ing temperature, humidity, wind velocity, cloud base heights, dust and 

aerosol distributions, variations in the major constituents of the 

Earth's atmosphere and, of course, pollutant or trace gas concentrations 

[ 1-16]. 

In measuring trace gases, some of these systems use topographic 

targets or retro-ref1ectors and are therefore restricted to path inte-

grated measurements. Other systems, however, use the back-scattered 

radiation from one or more of the atmospheric constituents to provide 

the return signal. Both Raman and resonance scattering have been 

employed to indicate directly the presence and concentration of pol1u-

taPlt molecules. Alternatively, similar information can be obtained 

indirectly using the radiation scattered from naturally occurring aero-

sols. Inherent in the design of all atmospheric scattering systems is 

the ability to range reS01Vj the parameters outlined above. 

"Single ended" or "monostatic" systems confine all the necessary 

equipment to a single location, yet enable measurements to be made over 

an extended volume of air space, often with dimensions of cubic kilo-

metres. As such they offer an alternative to in-situ sensors which are 
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capable of measuring gas concentrations only at a single location. This 

is important in situations where measurements need to be made in places 

physically inaccessible or else hazardous to both equipment and operator. 

Advantages are also found in applications where the equipment must be 

portable; examples here include the various ground mobile and air-borne 

systems, and the LIDAR payloads originally intended for launch by the 

NASA Shuttle in the mid-1980's [17,18]. 

1.1.1 The Hull LIDAR System 

The LIDAR system developed at Hull University used the differen­

tial absorption of two CO
2 

laser pulses, transmitted almost simultaneously 

along the same optical path in the atmosphere, as the basis of a ratioing 

technique to determine the concentration of an absorbing molecule. The 

output from one laser is absorbed by the molecular species of interest 

whilst the other, tuned to a slightly different frequency, is subject to 

less absorption (ideally non at all). Acronyms classifying this type 

of system will therefore often include the component "Differential 

Absorption". For example, if atmospheric backscattering is employed 

to provide the return signal, then "DIAL' (Differential Absorption 

Lidar) is used. The term "Lidar", however, has come to be used as 

a generic description for any long propagation path system but, by 

definition,should be reserved for systems capable of range resolved 

measurements. 

A full description of the system configuration will follow in 

Chapter 2 but, for the purposes of the analysis conducted in this 

work, the radiation collected by the receiving telescope was detected 

directly rather than by the more sensitive, but significantly more 

complex method of coherent detection. 
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1.2 Pollution and Trace n~s ~hso~o':'~~ ~~~~s of Interest 

Table l.l gives a representative list of pollutants and trace gases 

currently of interest for meteorological reasons, for investigations in 

atmospheric science and transport studies, or for their relevance as 

possible detriments to the environment. Strictly speaking, water vapour 

and CO
2 

are not pollutants or trace gases but important atmospheric con­

stituents with concentrations which can vary both diurnally and with 

changes in geographical location. 

Ozone is also a naturally occurring atmospheric component but most of 

it is concentrated within a layer two or three miles thick, at some 15 - 20 

miles above the surface of the Earth. It is, however, toxic in concentra-

tions as low as 100 ppb causing respiratory and visual problems [19]. 

Atmospheric transport processes can cause this stratospheric ozone to 

descend to lower altitudes within the troposphere. Other natural sources 

at lower altitudes include lightning and volcanic eruptions. Man-made 

additions tend to originate in industrial waste gases, particularly hydro-

carbons and nitrous oxides (NO ) which react in the presence of sunlight 
x 

to form ozone. Typical sea-level concentrations range between 10 and 

30 ppb but levels as high as 500 ppb have also been observed [19]. 

Gases such as Sulphur Dioxide and Ammonia occur naturally in low 

background concentrations (~ 0.01 ppm) but near industrialised areas the 

concentrations can be much higher. Large numbers of deaths have been 

attributed indirectly to 802 in polluted areas in which the concentra­

I 
tions reached more than 1.0/ppm [19]. Accelerated ageing is also reputed 

to result from exposure to this gas [20]. Ammonia too is directly harmful 

to man but is under investigation because of its important role in the pro-

duct ion and destruction of the oxides of Nitrogen in the stratosphere and 

troposphere [19]. Such processes can be potentially damaging if they 
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reduce the concentration of ozone in the stratosphere since this layer 

acts as a shield, absorbing most of the harmful ultra-violet radiation 

from the sun. 

Numerous hydro-carbons exist as forms of pollutants in the atmos-

phere and are capable of interacting in a diverse number of ways with 

other atmospheric molecules. Candidates for investigation include 

ethylene (C
2

H
4

), again an industrial by-product, and also propane (C
3

H
S

) 

which can occur in background levels ranging from a few ppm to extreme 

concentrations of 40 ppm [1]. Similar interactions involving the v~rious 

types of Freon are also the subject of investigation [21]. 

Table 1.2 (extracted from [1]) gives the composition of "clean" 

dry air near sea level, including the background concentrations of a 

number of minor constituents described briefly above. 

1.3 The Application of CO2 Lasers 

1.3.1 Atmospheric Transmission 

An important criterion in selecting the transmitted wavelengths 

for a laser radar system is the atmospheric attenuation over the various 

wavelength ranges of interest (i.e. available within the current develop-

ments of laser technology). Energy dissipation from an optical beam 

propagating in the atmosphere can be attributed primarily to the follow-

ing loss mechanisms: 

(1) 
I 

Molecular absorption 

(2 ) Molecular scattering 

(3 ) Particulate scattering 

(4) Particulate absorption 

(5 ) Atmospheric turbulence. 
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(1) Molecular absorption (denoted, aM) is generally the result of the 

super-position of the absorption spectra of more than one mole-

cular species. Fig. 1.1 is a low-resolution representation of 

the absorption spectra of all the atmospheric gases, over a wave-

length range from '\.f').l - 100 \.IlIl, at two altitudes above the Earth's 

surface. The upper curve illustrates the attenuation of solar 

radiation reaching the surface whilst the lower curve is for the 

radiation reaching an altitude of 11 km. Contributions cille to the 

various gases listed in Tablel.2are also indicated. They clearly 

indicate the presence or absence of "windows" over various wave-

length regions from the ultra-violet to the infra-red with nearly 

complete absorption occurring beyond the limits of 0.2 and 20 \.IlIl. 

At short wavelengths this absorption is due to oxygen and ozone, 

and at longer wavelengths to water vapour. 

These curves are somewhat misleading, however, since higher 

resolution spectra would in fact reveal each absorption band and 

each "window" as consisting of thousands of separate absorption 

lines. Each region is therefore neither completely opaque or com-

pletely transparent. This is fortunate because some of the narrower 

windows happen to coincide, or partly overlap, with the emission 

spectra of various lasers. Determining the transparency of these 

windows at high resolution often requires empirically derived results. 

Of particular interest to the application of CO
2 

lasers is the 

window existing in th~ 9 - 11 urn region, not resolved in Fig. 1.1, 
I 

but partially represented in Fig. 1.2 complete with details of the 

fine spectra [22]. 

Transmittance values are calculated over a range of 10 km 

for a horizontal sea level path and, for the 10 - 9 urn region 
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illustrated, vary from negligible absorption to approximately 70%. 

The spectrum actually depicts a convolution of strong atmospheric 

absorption features with an almost constant background absorption 

known as the "water vapour continuum". This is thought to be due 

to water molecules forming themselves into more complicated basic 

units known as "dimers" and "trimers" [23]. 

Also evident in Fig. 1.2, appear to be the P and R branches 

of the absorption spectra of CO
2

• A comparison with Fig. 1.3, 

giving the emission spectra of CO
2 

alone, will reveal the spectral 

location of these features. As indicated in Table 1.2, CO
2 

occurs 

as a natural constituent of the Earth's atmosphere and some absorp-

tion can be expected. However, since the stimulated emission lines 

of a CO 2 laser do not involve transitions directly from the ground 

state, absorption by atmospheric CO
2 

will fortunately be limited. 

Strong absorption features due to other gases also exist, however, 

and specific CO
2 

lines will not always coincide with spectral inter-

vals of relatively high transmittance. 

(2) Molecular scattering is usually treated using the Rayleigh scattering 

theory for gas molecules which relates the extinction coefficient a 

to the number of scatters per unit volume (n ), the refractive index 
s 

of the gas (n) and the wavelength of the incident radiation via 

expressions of the form [1] 

3 2 4 
[8'JT (n -1,)/3n ). ](6 + 36)(6 - 70)] 

I s 
(1.1) 

where 6 is a depolarisation factor. -4 Important here is the ). 

dependence of QR on wavelength which is obviously advantageous if 

the laser wavelengths used are in the infra-red rather than visible 
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or ultra-violet. Fig. 1.4 compares values of a
R 

over the wavelength 

range 0.2 to 20 ~ [24). Differences of many orders of magnitude 

become apparent between the 9 -11 ~ range of CO
2 

lasers and wave­

length below 1 ~. 

(3) Treatments of particle scattering often include the general attenua­

tion due to both scattering and absorption of laser radiation by 

a diversity of air-borne particles. Although the early theoretical 

treatments were pioneered by Mie in 1908 [1) many subsequent treat­

ments exist [25) because of its significance in all investigations 

of atmospheric optics. "Mie scattering", as it is now known, is 

highly dependent on particle size, wavelength and particle distribu­

tion with no straightforward relationship existing between the Mie 

scattering coefficient aMrtnd wavelength (unlike Rayleigh scatter­

ing). The results of numerical computations arp. available (20] 

for various classifications of aerosol distribution but, in general, 

losses due to particle scattering have a tendency to decrease with 

increasing wavelength. 

(4) Particulate absorption manifests itself in a component term in the 

expression for particle scattering. Parameters are represented by 

complex variables, including a complex refractive index, and it is 

the imaginary terms which yield the contributions due to absorption. 

These various extinction parameters can be combined into a 

single atmospheric at~entuation coefficient, 

aM + a R + a
M1E 

(scattering, absorption) (1. 2) 

and are related to the intensity of the optical radiation propagat­

ing in the atmosphere via the differential expression 
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dI (v) (1. 3) 

which is known as either Bouguer's Law (or Beer's Law or Lambert's 

Law, or the Beer-Lambert Bouguer (BLB) Law). The direction of 

propagation is z and dI(v) is the change in intensity after the 

radiation has passed through a medium layer of depth dz. In inte-

gral form this becomes 

I(v) 

where I is the initial radiation intensity, or 
o 

I (v ) 

(1. 4) 

(1.5) 

if the medium is homogeneous. In Chapter 3.0 this relationship will 

be incorporated into a general expression for LIDAR systems, used to 

predict radiation intensities after two-way propagation paths 

between source and remote target. 

(5) Atmospheric turbulence effects redistribute the energy of optical 

beams and cannot be considered simply in terms of attenuating 

coefficients, but must be statistically interpreted in terms of the 

mean and variance of the resultant intensity distribution after a 

given propagation length in the turbulent medium. For example, the 

variance of the logarithm of intensity, assuming a point source 

and a point receiver, may be given by empirically derived expres­
I 

sions of the form [e.g. ref. 38], 

(1. 6) 
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where c2 is the atmospheric structure constant, or scintillation 
n 

2n 
index, characterising the strength of the turbulence, k E lr and 

L is the atmospheric path length. The relevance of turbulence 

will be discussed in more detail later in Chapter 4.0, but of 

significance here is the inverse relationship between wavelength 

and variance: again, advantages are incurred by operating at 

longer wavelengths. 

1.3.2 Coincidence of CO
2 

Emission Lines with Trace Gas and 

Pollutant Absorption Spectra 

Table 1.1 presents a list of specific gases of interest acces-

sible with CO
2 

wavelengths, together with the recommended measurement 

and reference lines to be used in comparing absorption. These, however, 

may not represent the optimum choice because interference from other 

atmospheric gases can modify the differential absorption coefficient, 

important in determining molecular concentrations and associated sensi-

tivities (discussed in Chapter 5.0). Included in Table 1.1 are certain 

pollutants which would seem to be best detected using different lasers 

such as HeNe, Carbon Monoxide or even isotopic CO
2 

lasers (only the 

measurement lines are shown). The majority, however, given the availa-

bility of all known discrete laser transitions, have sui~a~le 

absorption cross-sections coinciding with the line emissions of ordinary 

CO2 lasers. 
I 

CO
2 

lasers, therefbre, have obvious advantages but the problem 

of the discrete tuning nature of gas lasers at atmospheric pressures and 

below, means that coincidences between emission and absorption spectra 

are always fortuitous and seldom ideal. In some cases, for example 
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~ulphur dioxide, the match is not'as good, resulting in reduced sensi­

tivity. The advent of reliable, continuously tunable lasers may eventu­

ally optimise the situation but at the time of writing these are still 

under development [20,26,27,34,35,36,37]. 

1.4 Project Objectives 

The investigations planned at the outset of this project were 

directed at the ultimate objective of remote measurement of trace gases 

with accuracies approaching a few parts per billion (ppb). A primary 

requirement was the design and construction of a dual wavelength laser 

system capable of simultaneously generating two single-transverse-mode 

pulses of at least 100 mJ, and at relatively high pulse repetition rates. 

An existing telescopic transmitter and receiver configuration was used 

and integrated into a system which also included (a) the dual laser 

source, (b) the optics used to simultaneously couple the two output 

pulses into a single optical transmission path, and (c) the optical com­

ponents necessary for the dual direct detection of two signals received 

simultaneously or with a given time delay. 

To obtain differential absorption measuremen~it was necessary to 

completely re-configure the original single wavelength system, success­

fully used in demonstrating the application of coherent lidar to wind 

velocity measurement [28,31,32,33]. A more stable optical system was con­

structed in order to avoid the frequent and time-consuming alignment pro­

cedures found necessary wheh using the earlier system. The extra 

stability was also essential for the increase in optical system com­

plexity which accompanied the inclusion of a dual wavelength laser source. 
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Originally, attempts to solve the problem of how to improve 

measurement sensitivity tended to focus on "system hardware" innova-

tions which would increase the number of statistically independent 

return power samples obtained per unit time. Direct detection of hard 

target returns would permit only increased laser rep rates, augmented 

(where practical) with aperture averaging, but coherent detection of 

atmospheric returns made feasible more exotic techniques. Examples 

include the use of short duration laser pulses and spatial averaging 

within gated range cells, or "frequency diversity" in which a long 

cavity laser system could be used to increase the number of longitudinal 

modes transmitted and hence, in principle, increase the number coherently 

detected. 

In general, it tended to be implicitly assumed that the absorption 

(or backscatter) characteristics of the atmosphere remained approximately 

stationary during the course of the measurements so that each temporally 

sequential sample was independent and simple averaging techniques could 

be applied. Evidence was available, however, that these characteristics 

were, in general, not stationary and that a trend often existed which 

invalidated the simple averaging techniques (30). More sophisticated 

estimation techniques are therefore required which are capable, not only 

of· "tracking" the time dependent qualities of interest as accurately as 

possible, but also of providing an indication of the precision of the 

estimates. 

It is the objective of, this work to examine the application of alter­, 
native estimation methods to path integrated direct detection lidar data 

obtained with the Hull University lidar system, and particular attention 

will be paid to the optimal estimation techniques of Kalman filtering 
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theory. Over a period of several'months towards the end of 1984 a 

database of measurements was built up, with each measurement consisting 

of 10,000 dual wavelength lidar returns. Selected files will be used 

to evaluate these estimation methods and the results will be compared 

with simulated data files in which it was possible to control precisely 

process models which are believed to form an approximation to the real 
M 

processes latent actual lidar d~ta. 
A 
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Pollutants and Atmospheric Gases of interest in remote 
sensing applications. Laser lines are indicated which 
have been selected for their suitability in measuring 
the concentrations of the gases shown. In most cases, 
suitable reference lines are also included. (From [1] 
and [29]) 

Recommended Laser Lines 

Measure Reference 
Gas 

Line A (~m) 
a Line A (~m) 

a m m 
(atDi' em- l ) (atni'cm- l ) 

Ammonic. R8 10.333 25.8 R12 10.304 0.06 

Benzene P28 9.621 2.0 R20 9.272 0.05 

1,3-Butadiene P13 6.215 2.7 -
l-Butene P38 10.78B 1.3 -
Carbon Monoxide P20x 2 4.776 B.O -
Chloroprene R1B 10.261 9.15 P22 9.569 0.10 

1,2-Dichloro-ethane P20 10.591 0.52 R16 10.275 0.01 

Ethylene P14 10.533 32.14 P28 10.675 1. 27 

Freon-ll R22 9.261 29.2 P18 9.536 0.10 

Freon-12 P32 10.719 35.7 P12 10.514 0.08 

Freon-113 P26 9.604 7.7 -
Ethyl-Mercaptan R26 10.20B 0.56 P20 10.591 O.lB 

Methane - 3.391 6.0 -
Methyl Alcohol p34 9.676 8.9 -
Monochloro-ethane R16 10.275 3.3 P20 10.591 0.06 

Nitric Oxide PH 5.215 6.7 -
• 

Nitrogen Dioxide P14 6.229 26.8 -
Ozone P14 9.505 12.0 P24 9.586 0.60 

Perchloroethylene P34 10.742 4.9 R24 10.220 0.1 

Propane - 3.391 B.O -
Propylene P9 6.069 0.9 -
Sulphur Dioxide R26 9.240 0.105 P18 9.536 0.005 

Trichloro-ethylene P20 10.591 12.6 R20 10.247 0.04 

Vinyl-chloride P22 10.612 8.8 RIB 9.282 0.05 

Water Vapour R20 10.247 2 x 10-3 
RIG 10.275 < 2 x 10-3 
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TABLE 1.2 

Component Content Component Content 

[% by volume] [ppm] [% by volume] [ppm] 

Nitrogen 78.09 780900 Hydrogen 0.00005 0.5 

Oxygen 20.94 209400 Methane 0.00015 1.5 

Argon 0.93 9300 Nitrogen 0.0000001 0.001 

Carbon dioxide 0.0318 318 
dioxide 

Neon 0.0018 18 Ozone 0.000002 0.02 

Helium 0.00052 5.2 Sulphur 0.00000002 0.0002 

0.0001 1 
dioxide 

Krypton 

0.000008 0.08 
Carbon 0.00001 0.1 

Xenon monoxide 
Nitrous oxide 0.000025 0.25 Ammonia 0.000001 0.01 

. 
~: The concentrations of some of these gases may differ with time 
and place, and the data for some are open to question. Single values 
for concentrations, instead of ranges of concentrations, are given 
above to indicate order of magnitude, not specific and universally 
accepted concentrations. 

J 
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Fig. 1.1 Absorption spectra over a broad wavelength range, both at 
the Earth's surface and an altitude of 11 km (from [ll). 
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CHAPTER 2.0 

LIDAR SYSTEM HARDWARE 

A description of the Hull University 1idar system is presented 

below which gives details of the principal components and the hardware 

integration necessary for the purposes of the studies reported here. 

Certain items of equipment, such as the telescopic transceiver and 

various infra-red detectors were already available. They originally 

formed part of an earlier 1idar system, used to demonstrate heterodyne 

detection of atmospheric returns. Most of the hardware described, 

however, was acquired specifically for this project, and most of it was 

built within the University using the workshops of the Applied Physics 

Department. 

2.1 The Dual CO
2 

Laser System 

The single, transversely excited atmospheric (TEA) pressure CO
2 

laser which acted as the transmitted energy source for the heterodyne 

1idar work was considered inadequate for direct detection studies due to 

its low output energies, low pulse repetition frequency (prf) and unreli­

able power supply. It was apparent at the outset that two alternatives 

existed, in principal, for generating dual laser pulses, of differing 

line tunable wavelengths, and at intra pulse pair separations ranging 

from near simultaneous do~ to the order of a second: 

(1) The use of a single gain section, and the application of wavelength 

switching, accomplished via the mechanical displacement of a line 

tuning device (a diffraction grating for example), or 
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(2) Dual gain sections, and dual 'laser resonator optics, forming 

two complete laser systems. 

The first option was discarded primarily because of the lower limit to 

the pulse pair temporal separation achievable with a mechanical switch-

ing arrangement. Delays of no less than a few milliseconds probably 

represents the best that could be achieved with such devices. Since 

external sources had already indicated an atmospheric decorre1ation time 

of this same order (1), it was considered desirable to be able to produce 

intra pulse delays of at least an order of magnitude smaller to preserve 

the correlation in temporally adjacent measurement channels. The signi-

ficance of retaining high cross channel correlations will be discussed in 

Chapter 5. 

To simplify the task of generating near identical outputs in all 

respects other than wavelength, and with pulse pair separations down to 

a few tens of microseconds, it was decided that two new TEA gain sections 

should be constructed, both having identical specifications. An acknow-

ledged disadvantage of the dual laser system is the differing propagation 

path lengths that are automatically introduced between the two laser 

outputs and the optics of the transmitter telescope. Other considera-

tions which influenced this decision, however, derive from the potential 

flexibility of a system with dual gain sections. 

Both TEA gain sections could, in principle, be operated simultaneously 

and configured into a single laser system, or else as a laser-amplifier . 
arrangement. Such flexibility made feasible several alternative systems: 

(i) A single laser lidar system of increased transmitted energy. 

(ii) A long cavity laser system for increased frequency diversity 

in the longitudinal modes~ this application is specific to 
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heterodyne detection and would have the statistical advantage 

that each mode may be optically mixed with a local oscillator 

to produce as many independent samples as there are modes. 

(iii) A short pulse laser system. Optical ~witching would be used 

to extract a pulse section of short duration from the peak 

output of a laser based on one of the gain sections. This 

would subsequently be amplified by the remaining gain section. 

Short pulse techniques represent an alternative approach to the 

problem of increasing the number of independent samples col-

lected per pulse pair. This technique, however, is specific 

to atmospheric backscatter returns since the extra samples 

would derive from the relative spatial extent of the effective 

laser pulse length (see Chapter 3), and the required range 

resolution for a given precision in the gas concentration 

estimate. 

Although the last two are of relevance principally to lidar systems 

employing· heterodyne detection, early experiments were conducted to 

examine the feasibility of these techniques. However, since the primary 

objective of these lidar system investigations was gas concentration 

me~surement, these alternatives were passed over in favour of a system 

more directly applicable to this requirement. They remain, therefore, 

potentially exploitable methods for improving the number of independent 

samples collected, per puls~ pair, particularly for range resolved lidar 
i 

work. 

2.1.1 The TEA Discharge Gain Sections 

A schematic of the basic capacitor charging system used for 
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each gain section is provided in Figure 2.1(a). Although an RC circuit 

is not the most efficient method of capacitor charging, compared to 

ready built, commercially available constant power systems, it was 

relatively inexpensive. The power supply used was purchased from 

Universal Vo1tronics and was rated at 50 kV and 375 rnA, thus providing 

a maximum dc output power of 18.75 kW. Illustrated in Figure 2.l(b) 

is a cross section of the TEA gain sections showing the aluminium elect-

rodes (shaded), and the gas circulating fans enclosed in a glass barrel 

which is sealed at either end using 1" thick perspex discs. Dimensions 

are as indicated. Not illustrated is the ultra-violet pre-ionisation 

system (discussed later), and the copper water cooling tubes which are 

located directly behind the fans. 

The circuit element at the right hand extremity of Figure 2.1(a) is 

intended to depict both a physical and electrical cross-section of the 

TEA discharge region. The primary discharge plasma is confined to the 

space between the two opposing "0" shaped electrodes. These are sepa-

rated by a distance of 2.5 ern and are intended to define a uniform 

electrical field over a lateral extent of 3 ern. Figure 2.1(b) indicates 

that the active length of the electrodes is 50 ern. 

A pre-ionisation discharge is initiated at some position remote 

f~om the main discharge volume (approximately 10 ern): this is illust-

rated in Figure 2.l(a) as a pair of opposing pins, positioned either 

side of the main electrodes, and connected to the high voltage power 

supply via 270 pF capacitors. Each gain section possessed eleven pairs , 
of UV pre-ionisation pins, which were distributed along the length of 

the electrode with five on one side and six on the other (staggered 

rather than opposing each other). The pre-ioniser discharge serves as 

a source of strong UV photon radiation which propagates into the main 
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discharge volume and pre-ionises a fixed number of neutral laser gas 

molecules in this region. Electrons resulting from this pre-ionisation 

serve to condition, both spatially and temporally, the main discharge 

plasma. 

In operation, the 0.05 ~F energy storage capacitor C is charged 
e 

to a voltdge, V , close to the power supply voltages, V. A trigger 
c 0 

voltage is then supplied to the spark gap, which acts as a switch, thus 

completing the circuit which includes the capacitor C , pre-ioniser 
e 

capacitors C , the main discharge electrodes, a 50 ohm pulse shaping 
p 

resistor, and an inductance, L, representative of the electrical con-

nections between the gain section and the charging circuit. Figure 2.2 

illustrates alternative schematic views of the relative physical loca-

tions of the various components identified in Figure 2.1. By selecting 

appropriate values for the UV pre-ioniser capacitors, C , and by adjust­
p 

ing the pre-ioniser pin separations, it is possible to arrange that the 

main discharge is initiated after some fixed time delay, T
d

, with respect 

to pre-ioniser initiation. 

Td must, of course, fall within the rise time of the voltage across 

the main electrodes which was observed to be approximately 500 nsec. 

Apart from this restriction, however, discharge uniformity seemed rela-

tively insensitive to the selected value of T
d

• At low prfs it also 

appeared to be relatively immune to variations of approximately 50% in 

the number of UV pre-ioniser pins used. For the 11 pin configuration 

described here, 6% of the tptal discharge energy was used by the UV 

pre-ionisers. This percentage is somewhat higher than that reported 

for other UV pre-ionised laser systems [~ 1% for ref. 2] but was 

retained in the lasers described here as a precaution against possible 

arcing during lengthy periods when the lasers were to be fired at an 
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uninterrupted prf of 10 Hz. 

An analysis of the circuit of Figure 2.l(a) reveals that the 

instantaneous current into the main discharge plasma is given by [2] 

Ut) (V 
c 

V ) 
p 

sin w t 
o 

(2.1 ) 

where w 
o 

(LC)-~ and V is the plasma discharge sustaining voltage. 
p 

V is a function of the electrode separation, d, gas pressure, p, and 
p 

gas mixture. In general, the value of V Ipd or E/p should be constant 
p 

for quasi-steady-state operation of the plasma in the avalanche mode [2]. 

The peak value of the current and the time to reach maximum value 

are given by 

and 

i 
max 

t 
max 

(V 
c 

11 ILc 
2 

V ) 
p 

(2.2) 

(2.3) 

t was observed to be approximately 500 nsec for each of the gain 
max 

sections, so the induction L is equal to 2~H, and the resistance term 

f(C IL) has an approximate value of 0.16 ohms. The energy input to the 
e 

plasma, E , may be obtained by multiplying (2.1) by V and integrating 
~ p p 

over a time interval equivalent to twice the current rise time (2 x t ). 

When w t = 'II, the value of E becomes [2] 
o p 

E (11) 
p 

2 C (V - V )V 
e c l p p 

max 

(2.4 ) 

and the energy transfer efficiencln , defined as the ratio of E to the 
p p 

total energy stored in the capacitor, C (= ~ C V2 ) is then 
e e c 

(2.5) 
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This is plotted as a function of V IV in Figure 2.3 (after Judd and Wada, 1974). 
p c 

Complete transfer of energy into the plasma is obtained only if 

V IV 
p c 

0.5, which is equivalent to stating that impedance of the LC 

networK must be matched to that of the plasma. If it is assumed that the 

voltage across the energy storage capacitor C is the same as the power e 

supply voltage, V (= 40 kv) , then the maximum energy that can be trans-
0 

ferred to the plasma will be, from (2.4) , E (max) .. 40 Joules. This p 

energy is deposited into a plasma volume of 3 cm x 2.5 em x 50 em '"' 

0.375 L, giving an energy density of ~ 100 Joules/L. Electrical to 

optical energy conversion efficiency is dependent on the ratio of the 

optical mode volume to the discharge plasma volume but if it is assumed 

that, in the absence of any mode control, 10% of the plasma discharge 

energy is extracted as optical energy (a typical value for pulsed CO
2 

laser systems) then the maximum output of the laser will be ~ 4 JOUles. 

The 100 k ohm resistors of the RC charging circuit were selected 

on the basis of the required prf from each gain section and the output 

rating of the power supply. Since the instantaneous voltage across the 

energy st6rage capacitor is given by 

v (t) 
c 

-t/RCe 
= V (1 - e ) 

o 

th~ time for V to reach a given 
c 

[1 
V (t) 

- RC In c 
t 

e V 
0 

fraction 

1 

(2.6) 

of V becomes 
0 

(2.7) 

If V is to achieve 99~ of V , then t = 0.02 seconds, imposing an 
c 0 

upper limit of 50 Hz on the prf per gain section. At this frequency, 

the mean current drawn from the power supply will be 

(2.8) 
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and the power dissipated in the charging resistors is then 

(2.9) 

These values will, of course, be doubled for dual gain section opera-

tions, but are still well within the dc rating of the power supply. 

All of the charging components illustrated in Figure 2.1(a) were 

replicated for each gain section and the entire assembly immersed in an 

oil filled PVC tank measuring 42" x 24" x 24", situated underneath the 

gain sections (see Figure 2.2). In addition to providing electrical 

insulation, this large reservoir of oil provided a means of heat dissi-

pation for the resistor stacks, but at the 10 Hz prf employed for the 

lidar measurements, this was not a severe problem. 

2.1.2 Laser Design 

Practical guidance as to the selection of suitable design para-

meters was available via, for example, the published work of Andrews, 

Dyer and James [2) in which a simplified set of rate equations are 

developed, describing how resonator mirror reflectives and the molecular 

gas mixture ratio influences the laser power and energy. They obtain, as 

the useful laser power per unit mode volume, 

P 
o 

- hvq 
cT In R 
2L(T+A) (2.10) 

where hv is the photon energy of the laser transition, q is the photon 

. 
density in the laser cavityj c is the speed of light, L is the cavity 

length, and R, T and A are the output mirror reflection, transmission 

and absorption coefficients respectively. In deriving (2.10), the growth 

in the photon density is averaged over the entire laser cavity. Also, 

no account is taken of laser mode properties such as spatial variation in 
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the photon density transverse to the cavity axis, or axial mode 

beating [2]. 

LaEer output energy may be determined by integrating P over the 
o 

duration of the pulse 1 • p' 

E 
P 

1 

f P Po dt 
o 

(2.11) 

CO
2 

laser pulses consist of a high amplitude gain switched spike followed 

by a relatively low amplitude tail extending for several microseconds. 

Figure 2.4 illustrates a digitised record for the reference transmitted 

power, and the power received from a topographic target, monitored using 

an LTT detector. Details of the experimental arrangement used to obtain 

such figures will be discussed later in this and subsequent chapters but 

is referred to now because of the pulse shape information it contains. 

Sample numbers along the abscissa are multiples of 10 nsec so that the 

total pulse duration, including tail, is 4 ~sec. The gain switched 

spike, at "full width half maximum II (FWHM), however, has a duration of 

approximately 350 nsec. Therefore, if P (max) corresponds to the peak 
o 

power of the gain switched spike and T is its full width at half maximum, 
p 

then the energy contained in the spike may be approximated by forming the 

product, . 
E 

P 

Gas composition is characterised by the molecular gas ratio 

I 
w 

y = 
(x+w) 

(2.12) 

(2.13) 

where w is the CO2 partial pressure and x is the N2 partial pressure. 

A third gas, helium, tends to form the dominant component of the gas mix 

but, unlike CO2 and N2 , it is not directly involved in the energy transfer 
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processes. Its function is to depopulate one of the lower energy levels 

of CO
2 

to which non-radiative transitions occur. 

Assuming a gain length of 70 cm and a cavity length of 120 em, 

Andrews et al obtain results for two cases which may be summarised as: 

(a) (b) 

Y 0.5 Y 0.1 

R 0.7 R 0.9 

R'= 0.975 R'= 0.975 

A 0.01 A 0.01 

p (max) 11 kW 
-3 p (max) 2kW 

-3 em cm 
0 0 

The molecular gas ratio used in the dual gain section of the lidar 

system was y = 0.33 and both output mirrors had a reflectivity of 

R = O.S. Since these values lie midway between those pertaining in 

cases (a) and (b), an interpolated value for the photon density, q, may 

be obtained by substituting the listed parameters for (a) and (b) into 

equation (2.10) and solving for q. If this is done it is found that 

1. 276 x 10
16 

and 

8.433 x 1015 

so that q 

I 
The value of P (max) derived using this value of q in (2.10) is then 

o 

P (max) 
o 

3 
5.3 kW/em • 

An estimate for the integrated laser output power is now dependent 

on the dimension of the beam mode volume. Using the generally applicable 
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beam propagation equations presented later in this chapter, a computer 

generated estimate, illustrated in Figure 5.6(a), reveals a relatively 

constant intra-cavity beam diameter of approximately 1 cm for the TEMoo 

Mode (R
l 

= 0.8, R2 = 1.0 (a diffraction grating) and radius of curvature 

for R of 20 metres). Therefore, assuming that the beam mode volume may 

be approximated by a cylinder of radius 5 rnrn and length 2.4 metres, the 

peak pulse output power becomes 

p = 'II 
max 

2 r L P (max) ~ 1 MW 
o 

giving a gain switched pulse energy of 0.35 Joules, using (2.12). In 

practice the actual energies measured for each gain section, at low prfs, 

tended to fall in the range 100 mJ to 150 mJ but, unlike the cases con-

sidered by Andrews et aI, these values were obtained for cavities in 

which R' is a diffraction grating. The losses associated with this com-

ponent, which was included to provide a line tuning capability, will be 

significantly higher than for a mirror. Furthermore, at sustained prfs 

of 10 Hz, the output power was observed to decrease by as much as 50% 

over experimental runs totalling 10,000 shots. 

It will be shown in Chapters 3 and 4 that, for topographic target 

returnR. transmitted pulse power is more important than transmitted 

• pulse energy. This is in direct contrast to the situation for distributed 

(atmospheric) targets where the pulse energy is more significant. Varia-

tions in laser energy and peak power as a function of the molecular gas 

mixture ratio yare illustrrted in Figure 2.5 (after Andrews, Dyer and 

James [3]) for various output mirror reflectivities. Laser energy is 

denoted by the broken lines and laser power by full lines. It is apparent 

that a molecular gas ratio of 0.33 optimises the lasers for energy output 

rather than for power. 
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Other factors, however, became important in the selection of y. 

Foremost was the inhibition of arcing between the laser electrodes 

during experiments consisting of 10,000 shots. It was found that lower 

values of y enabled approximately twice as much data to be collected 

before arcing would commence. Frequent arcing was found to damage the 

electrodes since it tended to persist in those regions where it had 

started. This would necessitate a complete strip down of the resonator 

and gain section to permit re-polishing of the electrode surfaces; a 

very time-consuming operation which it became paramount to avoid. 

Higher energy outputs were also found to confer advantages during align-

ment of the system, since the response of carbon coated beam locators 

appeared to be energy dependent. 

Hybridisation 

Hybridisation refers to the technique of incorporating a low pressure 

CW cO
2 

gain section in the same resonator as the TEA gain section. As far 

as a direct detection lidar is concerned, its principal advantages are; 

(1) Amplification is forced to occur at those frequencies near to the 

centre of the atmospheric pressure gain curve. 

(2) Selection of a single axial mode. 

Figure 2.6 is a schematic cross-section of each hybridised laser showing 

both gain sections, their electrodes (cross hatched) the sodium chloride 

1 
Brewster windows used to seal both gain sections, the diffraction grating 

and the zinc selenide output coupler. The low pressure section has an 

active length of approximately 80 em. 

A TEA CO
2 

laser without hybridisation has an emission line width of 

approximately 3 GHz (at FWHM) but a low pressure gain section, operated 
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at 15 - 20 mbar has a line width of approximately 100 MHz (FWHM). 

Separation between adjacent lines is some 30 to 60 GHz, depending on 

wavelength. The laser resonator itself, however, possesses a charac-

teristic axial mode spacing which is dependent on the cavity length: 

6v . 1 aX1a 
c 
2L (2.14) 

For L = 2.4 metres, 6v . 1 = 60 MHz. Therefore, over a 3 GHz line aX1a 

width, lasing action may potentially occur over approximately 50 axial 

modes. This may be contrasted with the situation for the low pressure 

gain section where only one axial mode will be amplified sufficiently to 

overcome various loss mechanisms. By preferentially amplifying a single 

axial mode, therefore, all of the energy derived from the pulse gain 

section is confined to within ~ 100 MHz, thus guaranteeing the spectral 

purity of the lidar system probe wavelength. 

Figure 2.7(a) presents a plan view of the dual laser system with 

both sets of gain sections installed within a single resonator. The 

resonator was constructed using lengths of Oriel optical railing, the 

bores of which were filled with water to maximise the thermal inertia 

and to attenuate acoustic vibrations. Invar rods, 40 rnm in diameter 

and over 2 m long, were inserted inside the longest sections of this 

rail as a further aid to thermal stabilisation. These were clamped to 

the transverse rails at both ends of the resonator, but were permitted 

to expand through the water tight seals at the ends of the longest rails 

via a series of "0" rings. , Attached to the front of the resonator are 

extra sections of railing used to carry the components which couple both 

laser outputs into a single optical path. 

Optical components depicted in Figure 2.7(b) include, at one 

extremity of the resonator, the grating mounts and a pair of adjustable 
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irises used for transverse mode control. At the other extremity are 

a complementary set of irises, the output couplers, a mirror, a beam 

splitter, and two beam aligners used for both translational and rota-

tional adjustments to the beam path. Figure 2.B is a photograph taken 

at an early stage in the testing of the dual laser system showing the 

TEA and low pressure gain sections, mounted above the oil filled tank 

containing the charging circuits. Visible in the foreground are two 

40 mm diameter invar rods used to stabilise the resonator. 

2.1.3 Resonator Configuration and Beam Propagation [4,5,6,7] 

The properties of laser resonators tend to be characterised 

in terms of so-called "g" parameters which are defined to be 

(2.15) 

where Rl corresponds to the radius of curvature of the output mirror 

(coupler) and R2 to the radius of curvature of the opposite mirror which 

ideally, has a reflectivity of unity. Rl and R2 are defined to be posi-

tive if the mirrors are concave with respect to the resonator interior. 

A stability condition exists for resonators which is expressed as 

(2.16) 

Mirror combinations which lie outside this region tend to originate 

diverging wavefronts which effectively focus all energy away from the 
I 

mirror at the opposite end, resulting in high diffraction losses. 

For the dual resonator considered here, gl = O.BB and g2 = 1.0, 

which is tending towards one extremity of the stability limit. This is 

a consequence of the large radius of curvature (ROC) of the output mirror 
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(R
I 

- 20 m). Long radius mirror eonfigurations have the advantage of 

supporting propagation modes of almost constant beam diameters which 

can be matched to the "bore" dimensions of the discharge volume, thus 

maximising the energy extraction efficiency. They also produce beam 

diameters, exterior to the cavity, which exhibit relatively little diver-

gence over propagation paths of at least several metres. Figure 5.6(b) 

reveals that the computed beam diameter for the 20 m ROC cavity increases 

by only ~ 50% over a path length of ~ 5 metres. Such constancy is useful 

both in minimising the number of refractive components required between 

laser output and telescopic transmitter, and for maintaining some parity 

in the beam propagation losses between outputs from two lasers separated 

by approximately 1 m. 

Although diffraction losses increase as the stability limit is 

approached, for a 20 m radius of curvature, these losses were found to 

be small compared to those attributable to other factors (such as the 

salt flats sealing both high and low pressure gain sections). A parameter 

used to characterise these diffraction losses is the "Freznal Number", N, 

which for a circular mirror of radius, a, is given by 

N 
2 

a 
LA (2.17) 

wh~re A is the laser wavelength. Since an aperture of approximately 15 mm 

was imposed by the transverse mode control irises, the value of N is 

found to be 2.34. Diffraction losses vary inversely with the magnitude 

of N and are therefore minirised for large values. 

Mode Spacing 

The spatial distribution of energy both inside and outside (near 

field) a resonator is described by its TEMmnq mode number where m and n 



- 37 -

refer to transverse modes, and q is the axial mode index. m, nand q 

are measures of the number of half wavelengths along each mode axis. 

In general, the resonance frequency for any mode combination, mnq, is 

given by 

v mnq 
[q + (m+n+l) 

Cos 'IT~ -1 1 c 
'21l"t" 

(2.18) 

where n is the refractive index of the lasing medium. The mirror combi-

nation used for each of the lasers falls between two well defined reson-

ator types; the "plane parallel" and the "hemispherical" resonators. The 

former is perhaps more appropriate since the latter category applies 

where the mirror spacing, L, is slightly less than R
l

• However, for the 

plane resonator (2.18) reduces to 

v 
mnq 

and for the hemispherical resonator, 

v 
mnq 

c 
2nL 

(2.19) 

(2.20) 

If mode spacings are now considered, the separation between adjacent 

axial modes, for both resonator types, becomes 

v mn6q 
6v - 6v mn(q+1) mnq 

c 
2nL 

and between adjacent transverse modes is 

v 6mnq 
c 

2'ITnL 

(2.21) 

(2.22) 

Expression (2.21) has already been used in the justification of hybridi-

sation but it is of general interest to note here that the transverse 
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mode spacing for the dual laser system is approximately 7 MHz. This 

may be compared with the 60 MHz separation between axial modes. 

Finally, the bandwidth associated with each resonant mode v is 
mnq 

/:'v mnq 
c(aL - 1n/;) 

21Tn L (2.23) 

where T is the photon lifetime within the cavity, R is the reflectivity 
c: 

of the output mirror, and aL is the fractional loss in beam intensity per 

cavity pass. A precise value for aL was not determined for the lasers 

considered here but if it is assumed that aL has a maxmimum value of 0.1, 

then the bandwidth becomes approximately 4 MHz. Consequently, for the 

TEMooq mode, the output laser energy at any instant will actually be con-

fined to within this bandwidth but, between laser shots, the centre 

frequency will drift over the ~100 MHz frequency interval defined by the 

low pressure CW section. 

Gaussian Beam Propagation 

The role of the mode control irises, mentioned previously was to 

confine the laser output, for the purposes of these experiments, to the 

TEMooq mode in which the variations in amplitude across the beam wave-

fr~nt are described by the Gaussian distribution function. This mode 

has the principal advantage of minimising beam angular divergence. 

Briefly presented below are the various equations which define important 

Gaussian beam parameters, b~th inside and outside the laser resonator, 

and which were used in a computer program, LASERl.FOR, to predict beam 

propagation characteristics throughout the lidar system. 

The mean radius of the TEMooq mode is variously described as the 

beam radius or "spot size" but is generally denoted as w. It is defined 
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to correspond to the distance from the mode centre at which the 

electric field amplitude has fallen to lie of its mode centre value 

(e is the Naperian logarithmic base). The relationship of w to the 

physical parameters of the resonator was first derived for "confocal" 

resonators by Boyd and Gordon [8] and then generalised to other reson-

ators by Boyd and Kogelnik [9]. 

Beam diameters reach a minimum value known as the "beam waist", 

w , which is characteristic of the optical components between which the 
o 

beam is propagating. Inside a resonator this is given by 

w 
o 

and it is located at a distance 

- g2(1 - gl)L 

gl+g2 - 2919 2 

(2.24) 

(2.25 

fro~ the non-transmitting mirror. The spot size at this mirror is given 

by 

(2.26) 

but at the output mirror it becomes 

(2.27) 

I 
Outside the resonator, the beam radius at a distance, z, from the 

beam waist is 

w( z) w 
o (2.28) 
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where 

R 
(2.29) 

is referred to as the "Rayleigh Range". Another property of Gaussian 

beams is their spherical wavefronts, which have radii dependent on the 

propagation distance, z. This behaviour is described by 

(2.30) 

The Rayleigh Range, zR' is used to define two domains for the approximate 

solution of many optical propagation calculations. If z is the distance 

from the resonator beam waist such that 

z » Z R (2.31) 

then z is said to be in the "Far Field", but for values of z in the region 

Z < zR (2.32) 

the term "Near Field" is used. An immediate consequence of this defini-

tion is that the far field spot size, ordinarily given by (2.28), reduces 

to 

(2.33) 

Also, the half angle beam divergence (6), in the far field, becomes 

6 
1TW o 

I 
(2.34) 

Using expression (2.24) the beam waist calculated for the lasers con-

sidered here is approximately 4.5 mm. As a result, the Rayleigh Range 

is found to be 6.36 m and the beam divergence, a, is 0.7 mrads. 
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At the telescopic transmitter, focusing components are encountered 

of both the reflective and refractive type which may be approximated by 

positive thin lens formulae. The beam waist location for a focused 

laser beam is therefore 

(2.35) 

where f is the focal length of the "lens" and w
ol 

becomes the beam 

waist prior to this focusing component. If w
02 

is used to denote the 

beam waist after the propagating beam has encountered the lens, then 

1 
WT 

02 

1 
w2 

01 
(2.36) 

where zl and z2 are the separations between the lens and the beam waists, 

'1101 and ""'02 respectively. 

Lastly, of significance in determining energy losses throughout the 

lidar system, is an expression which relates the power P(a) transmitted 

through a circular aperture of radius, a, to the power, P., incident on 
1. 

the aperture: this is 

P(a) 2 2 P.ll - exp(-2a /w (z»] 
1. 

(2.37) 

where w(z) is the beam radius at the aperture. Figures 5.6(a) through 

to 5.6(d) present the results of applying the above relationships to the 

propagation paths occurrinJ in the lidar system. Beam diameters are 

plotted as a function of propagation distance out to the topographic 

target at 1.8 km. Energy losses are included at the locations of the 

appropriate aperturing components. These figures will be considered 

further in Chapters 4 and 5. 



- 42 -

2.2_0ptical System Integration 

Figure 2.9 provides a plan view of the lidar system revealing the 

relative locations of the dual hybridised laser system and the optical 

transr.eiver in two adjacent laboratories. A stair well separates the 

t.wo rooms but a 6" diameter plastic pipe was installed to admit the 

laser output into the "telescope room". Not illustrated is a third, 

adjacent laboratory, which housed the computer, some other signal pro-

cessing electronics and the front end unit of a laser trigger system. 

The co-axial telescope is shown offset slightly with respect to the 

laboratory to align its optical axis with a convenient topographic target. 

The optical propagation path may now be described with reference to 

Figures 2.9 and 2.7. After passing the laser output r.oupler each pro-

pagating wavefront encounters a beam aligner which is used to provide 

both translational and rotational adjustments to the beam path. These 

devices were a copy of a commercially available unit for aligning the 

outputs of HeNe lasers, but the dimensions were doubled in the versions 

described here to avoid beam truncation. The output from laser 2 is 

reflected along an optical rail and passes through a 5 em diameter beam 

splitter (germanium) to the first of a pair of irises used to define the 

be~m path once the system has been aligned. The output from laser 1 is 

then reflected by the beam splitter and is also directed towards this 

same iris (labelled Iris 1 in Figure 2.7). 

Two alternatives were available for coupling the outputs from both 

1 . . I ·'1 h Th fi d asers 1nto a s1ng e opt1ca pat. erst, an most energy efficient, 

method would have been to install an optical flat adjusted to the Brewster 

angle and rotate the plane of polarisation of one of the lasers so that 

each laser satisfied one of the polarisation requirements for transmit-

tance or reflectance by the Brewster plate. After some initial trials 
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with a germanium plate 75 mm in diameter and 5 mm thick, it became 

apparent that this approach would introduce significant extra complexity 

in the alignment procedure. A 50\ beam splitter was therefore selected 

instead, even though 50% of the beam energy is lost, because of the 

advantages it conferred in terms of alignment. The optical component 

removed from the beam path was, however, used to monitor the output 

power from the low pressure gain sections to ensure that CW laser action 

did not fall below 50% of its peak value ( ~l watt). 

After passing through the connecting tube, a 100% mirror is 

encountered which directs the outputs from both lasers through the 

second beam aligning iris. These two components are located in Figures 

2.7(b) and 2.7(c). The first figure presents a side view of the primary 

optical rail used in the telescope room to carryall of the optical com-

ponents required for direct detection. Figure 2.7(c) is a plan view of 

the same rail (below the telescope) coupled together with two shorter, 

parallel rails which were planned to carry CW local oscillators for 

future heterodyne detection studies. 

Beyond this second iris, the beams continue through a hole bored in 

the vertical section of optical rail, and are then reflected upwards by 

a 90% beam splitter towards the "transmitter (Tx) lens" which is used to 

cobple the laser energy into the transmitting telescope. A second 

germanium beam splitter is used here, rather than a 100% mirror, to 

permit 10% of the transmitted energy to be monitored by a mercury cadmium 

tellurioe(CMT) detector located further along the optical rail. This site 
I 

was selected for monitoring the transmitted power, in preference to the 

more obvious site at the 50% beam splitter used in the laser room, to 

minimise the electrical noise interference generated by the laser trigger 

and discharge pulses. 
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The Tx lens located above the flecond beam splitter was made of zinc 

selenide and had a focal length of 100 mm. Its transparency to both 

visible and I.R. radiation was a useful aid during the initial align-

ment stage since HeNe lasers could be used. In coupling the output 

power into the transmitter telescope, its primary function was to cause 

both beam wavefronts to converge to a point in the focal plane of the 

transmitter mirror. Both beam waists could then be co-located, by 

adjustment, with the target image. The beams diverge rapidly after the 

focal point, reaching lie diameters of approximately 17 em by the time 

they reach the transmitter mirror (see Figure 5.6(c». A second focal 

point is then predicted by the beam propagation equations and this occurs 

at an approximate distance of 900 m from the transmitter mirror (see 

Figure 5.6(d». By the time the beam reaches the target at 1800 m, the 

beam diameter has returned to its original value of 17 em. 

2.2.1 The Optical Transceiver 

An existing co-axial transceiver arrangement was employed which 

is illustrated in the schematic of Figure 2.10 [after Green, ref. 10). 

Details of the original design constraints are available in reference 

[10] but essentially it was intended to serve as the transceiver for 

sy~tems employing both direct and heterodyne detection. The transmitter 

telescope is intended to produce a spatially confined beam with a dimen-

sion at any range equal to the far field image of the detector active 

surface area, as imaged through the receiving telescope. A co-axial 

system has the advantages o~ simplifying system alignment and of isolat-

ing the detector from the transmitted pulse until after it has left the 

transceiver. No provision was made for steering the entire telescope 

assembly but adjusting screws were included in the mounting of each 

mirror for nlinor corrections to the imaged field of view. 
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The transmitter and receiver'mirrors have diameters of 15 em and 

30 cm respectively, with respective focal lengths of 120 em (f/8) and 

180 cm (f/6). Both are arranged in a Newtonian configuration. Located 

behind the transmitter mirror is a large, 15 em diameter Newtonian 

flat, which is used to direct the focused radiation, collected by the 

receiving mirror, out of the telescope casing and onto subsequent optics 

below. In front of the transmitter telescope is another Newton flat, 

2.5 em in diameter, used to reflect the diverging laser beams onto the 

transmitter mirror. Figure 2.11 is a view of the co-axial transceiver 

from outside the building showing both mirrors, the spider mount for the 

2.5 em flat, and the internal baffle surrounding the transmitter beam 

path to provide optical isolation between the two telescopes. Both the 

internal and external baffles were extended to a shuttered opening in 

the door of the laboratory. Discernible below the telescopes, and their 

supporting cross beams (attached to the roof), is the primary optical rail 

with the vertical section carrying the Tx lens visible in the foreground. 

2.2.2 Alignment of the Transmitter Telescope 

The lidar system target is illustrated in the photograph of 

Fisure 5.5. This is an advertising sign, painted on a corrugated 

surface which forms part of the superstructure of a building belonging 

to a paint manufacturer. It is 1.8 km distant from the lidar site, 

approximately 30 m from the ground, and is angled away from the beam axis. 

Figure 2.12 is a 
I 

reproduction of a section of an 0.5. map (1:25000, first 

series, sheet TA 03) showing the lidar beam paths between University 

complex and the paint works. It will be noticed that gasometers and 

other industrial structures lie in close proximity to the beam path. 
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The "0" in the word "Croda" proved to be a very convenient target 

for alignment purposes. The exact dimensions of this letter are unknown 

but it is estimated to be approximately 1 m in diameter. Using the thin 

lens formula for transverse magnification, 

S' 
S 

f 
s-f 

(2.38) 

where S' is the distance from the lens, or mirror, to the object, S is the 

distance to the image, and f is the focal length, the size of the target 

in the image plane of the transmitter telescope is found to be ~ 0.7 mm 

(f = 1.2 m, S = 1800 m). By placing a paper disc in the image plane, the 

target image could be located. Initially, the output from a HeNe laser 

was propagated through to the 90% beam splitter and Tx lens, until the 

beam axis was central to all components and the focused HeNe beam coin-

cided with the target image. This procedure was then repeated with each 

low pressure CO
2 

gain section operating in turn, but with the added com-

plexity of the 50% beam splitter installed. The location of the Tx lens 

was adjusted along the beam axis until a sharp "burn through" hole 

appeared within the imaged letter "0" of the target. 

In terms of geometric optics, the target and its image would form 

a set of conjugate focal points, but propagating Gaussian beams obey 

• 
different reciprocity relationships. These, however, affect only the 

relative locations of the beam waists and focal points, and not the posi-

tion where the optic axis intercepts the target. The above alignment 

procedure is therefore adeqpate for ensuring the correct locations of 
I 

the optical axis out to the target. Differing spot sizes are to be 

expected at the target, in any event, due to the differing propagation 

paths between laser 1, laser 2 and the Tx lens. 
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2.2.3 Receiver Alignments 

The essential requirement here is to focus the energy col-

lected by the receiver mirror onto the active area of a nitrogen cooled 

Lead Tin Tellud.-l! detector (LTT). This is illustrated schematically in 

Figure 2.10, and the siting of the components is depicted in Figures 

2.7(b) and 2.7(c). Using (2.38), the transverse dimension of the ~l m 

target in the image plane of the receiver is 1 mm since M
t 

(Receiver 

-3 Telescope) = 10 (f = 1.8 m and s c 1800 m). The size of the Airy disc 

in the image plane, due to the entrance pupil formed by the receiver 

mirror, is given by 

d 
RA 

2.44 0 (2.39) 

where R is the distance from the centre of the entrance pupil to the 

edge of the disc and 0 is the entrance pupil diameter. For the receiver 

mirror, therefore, d ~ 150 ~m which is comparable to the diameter of the 

active area of the detector (110 ~). 

However, to simplify the alignment of the target image with the 

detector element, a zinc selenide lens (f = 25 mm) was installed between 

the focal plane of the receiver telescope and the detector. The converg-

ing rays from the receiver mirror were allowed to pass through the focal 

point and diverge again before encountering the lens at a distance, S, 

of 50 mm from the focal point. Application of the simple lens formula 

, 
(2.40) 

gives the new image distance, S', from the "Rx lens", also as 50 mm 

(see Figure 2.13). This configuration gives an extra transverse magni-

fication of unity (using 2.38), so the image size remains the same. 
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It will be noticed from Figure 2.7(b) and 2.7(c) that the reflect­

ing surface used to turn the converging rays from the receiver Newtonian 

flat along the primary optical rail, is not a mirror but a 90% (germanium) 

beam splitter. By placing an iris at the focal point of the receiver 

mirror (see Figure 2.13), and allowing the CW output from one of the 

low pressure gain sections to propagate along the primary optical rail 

via both 90% beam splitters (see Figures 2.7(a) and 2.7(b», a point 

source of 10 ~ radiation is made available at the iris aperture, 

having a larger irradiance than the 10 ~m background. During the align­

ment procedure a chopper wheel was installed in the path of the CW beam 

to provide a low frequency ac signal at the detector. Detector align­

ment, along all three axes, was accomplished by maximising this signal. 
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Fig . 2 .8 
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Fig . 2 . 11 
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CHAPTER 3.0 

LIDAR SYSTEM PARAMETERS 

3.1 The Lidar Equation 

The Beer-Lambert-Bouger Law of expression (1.3) is reproduced here 

using the new notation, 

- ex ~(r) (3.1 ) 

and in this form relates the decay of the transmitted photon flux, d~(r), 

over a propagation path length, dr, to the instantaneous flux, value ~(r), 

and a constant, ex, characteristic of the attenuating medium. ex is, in 

fact, the total atmospheric extinction coefficient and since the flux, 

¢(r), is equivalent to power /hv, where h is Planck constant and v the 

optical frequency, (3.1) may be re-cast into the form 

dP(r) 

dr 
-ex P(r) 

in which power replaces flux. 

Integration of (3.2) yields 

P(r) 

(3.2) 

(3.3) 

where P(r) represents the power remaining at range rand P
T

, the original 

transmitted power. To obtain the power backscattered from a remote topo­

graphic target at range, r,/ certain assumptions must be made regarding 

the reflectivity of a non-cooperative target. The simplest assumption 

has the radiation scattered isotropically throughout 2~ steradians so 

that if the target reflectivity is, p', the power per unit solid angle 

scattered back to the transmitter site will be 
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pI (2r) 
-2ar e . (3.4) 

It is nearly always assumed, however, that topographic targets in 

general are not isotropic scatterers but possess Lambertian scattering 

properties in which the scattering parameter becomes pin instead of 

p'/2n so that (3.4) must be modified to [1,2), 

pI (2r) 
-2ar 

p e 
- ---r-n r 

(3. 5) 

If a receiving telescope of mirror area, A
R

, is also located at the 

site of the transmitter then the maximum power it will be capable of 

collecting is 

( 3.6) 

This expression can be further generalised to include a factor C, with a 

value between 0 and 1, which represents a measure of the optical effi-

ciency of the transceiver. Furthermore, the atmospheric extinction coef-

ficient, a, is usually regarded as being variable between the lidar site 

and target so that the argument to the exponential terms must be modified 

also. The final form of the lidar equation for Lambertian scattering from 

a topographic target is therefore, 

r 

exp [-2 L a{r)dr] (3.7 ) 

It is worth back tracking at this point to consider the power back 

scattered from the atmosphere itself. If the number of scattering 

particles per unit volume as n
S

' and each particle has a scattering 

Cross section of oS' then the total scattering CroSS section per unit 

volume of the atmosphere is nSoS' which has the dimension [L-
l

). In 

order to obtain the amount of radiation scattered out of the beam nSoS 

must be multiplied by Os which has the dimension [L) and is related to 
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the spatial extent of the laser output along the propagation path. The 

product nSOSps is clearly dimensionless (and increases the attenuation of 

the beam energy) so that, for the energy scattered from the beam path at 

range, r, (3.3) becomes, 

(3.8) 

A physical interpretation for the quantity, PS' may be obtained by 

first noting that, for a pulsed laser system, only a relatively small 

volume of the atmosphere along the beam axis will contribute to the 

scattered radiation at any instant in time. If the maximum range from 

which scattered radiation can be received is 

ct 
r =-

2 
(3.9) 

where t = 0 at the time of transmission of the pulse, then assuming the 

pulse itself is of duration t , the minimum range from which radiation is 
p 

received at time t is 

r' = c (t - t ) 
~ P 

Scattering centres 

r - r' = 

within 
ct 
.-2 

2 

(3.10) 

the range interval, 

(3.11 ) 

will therefore all contribute to the total radiation removed from the 

laser pulse (see Figure 3.1). 

Ps is therefore the "effective pulse length", or depth of the scat­

tering volume, and is only half the actual pulse length. Expression (3.8) 

therefore becomes 

ps(r) = P n cr 
r S S 

ct 
.-2 

2 
-ar 

e (3.12) 

Assuming this power to have been isotropically scattered into 4n stera-

dians, the power returning back over the range r, and collected by a 

receiver mirror of area A
R

, will be 



ct 
P 

2 
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-2ar 
e (3.13) 

where the argument of the exponential term has been doubled to account for 

the outgoing and return path length of2r between the scattering volume 

and the receiver. 

A further parameter, C, must be included in the above expression, 

having a value in the range 0 < C < 1, to allow for the fractional losses 

associated with real transceiver optics. Also, if the exponential term 

is generalised in recognition of the range and wavelength dependence of 

absorption then, with some re-grouping of terms, (3.13) becomes 

C [~ J (n::s 1 AR 
exp [-21 aIr, A) dr] P

R 
P

T 2 
r 

= P T C l c~p ] B 
AR [-2 r 

a (r, A) dr] exp f (3.14) 2 
r 0 

where B = (n 0 /4n) is the atmospheric backscatter coefficient. B is 
S S 

defined as the fractional amount of incident energy scattered, per unit 

solid angle, in the backward direction, per unit atmospheric length, and 

may vary both as a function of time and the target volume range. It is 

also dependent on wavelength and scattering particle size distributions. 

The lidar equation for atmopheric scattering is valid as long as the 

BLB law can be assumed to hold true and, in practice, this translates into 

an assumption that all of the scattered energy is permanently removed from 

the transmitted pulse. In reasonably transparent atmospheres, and for CO
2 

laser wavelengths, this is usually the case [2] but in cloud, fog or thick 

haze, optical scattering is much more enhanced and some of this multiply 

scattered radiation can actually re-enter the beam, necessitating a modifi-

cation of (3.14). 
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B0th lidar equations, (3.7) and (3.14) can now be used to give an 

approximate indication of the relative powers backscattered to the 

receiver from the two different types of target. By forming the ratio of 

the received powers: 

P
R 

(topographic target) 

P
R 

(atmospheric target) 
~ 
ct B1T 

P 

and assuming P = 0.1 (a conservative estimate), B 

(3.15) 

-7 -1-1 
10 sr m (a typical 

-7 
value at CO

2 
wavelengths) and a pulse duration of 5 x 10 seconds (true 

for the Hull Lidar System), it is found that 

P
R 

(solid target) 

P
R 

(atmospheric target) 

Variation of at least an order of magnitude can be expected either side of 

this value depending on the precise values of Band p. 

Clearly, however, received powers of at least two orders of magnitude 

greater than those due to atmospherically scattered radiation can be expec-

ted from any given range using a topographic target. 

Unless the transmitted energies used by direct detection CO
2 

lidar 

systems are at least of the order of several Joules, range resolved 

measurements tend to be impractical over any useful path length due to 

the background radiation limited performance of currently available infra-

red detectors operating near 10~. Beyond transmitted energies of 5-10 

Joules, eyesafe radiation levels become an important consideration, even 

though the cornea is opaque to optical radiation near 10 ~ and therefore 

tends to limit the potential for damage compared to systems using visible 

wavelengths. It is possible that developments in infra-red detection 
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techniques, such as the frequency up-conversion method proposed by Itabe 

and Bufton [1], may eventually improve the range resolved measurement 

capabilities of direct detection,for lOjJtTIwavelength systems restricted to 

transmitted energies of less than 5 Joules. 

3.2 Absorption Spectra 

The absorption term in the lidar equation (3.7) was first discussed 

in section 1.3.3 and was presented as consisting of four terms; 

A CX AM + CX Ap + CX SR + CX SM1E 
(1. 2) 

where ex and ex are the absorption components due to molecular absorp-
AM Ap 

tion and particle absorption respectively, and CX
SR 

and CX
SMIE 

are the 

scattering components due to the Rayleigh and Mie processes. All CX terms 

-1 
are of dimension L Although molecular absorption is of primary 

interest in this section, the remaining three terms on the right hand 

side of (1.2) are obviously important. Various pairs of CO
2 

emission 

lines have been recommended [3) to minimise the differential absorption 

components contributed by those terms and also by interfering molecular 

species which have absorption spectra overlapping absorption features of 

the molecular species of interest. Advantages of the differential absorp-

tion technique will be discussed in the next section but will be restric-

ted to the case where two probe wavelengths are used to form the power 

ratio estimator. This conforms to the experimental restrictions relevant 

to the data obtained and analysed later in this work. It is anticipated 

that future developments in lidar, which strive towards higher pollutant 

or trace gas concentration accuracies, may require the near simultaneous 

transmission of more than two wavelengths in order to resolve absorption 

components due only to the molecular species of interest. 
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Since many ga~ Molecules have a vibrational-rotational 

absorption band between 2 and 15 ~ [4], CO
2 

gas lasers with emission 

lines between 9 and 11 ~ appear to be particularly suited to the task 

of probing the concentrations of atmospheric pollutants. The pulsed 

transversely excited gain sections of the CO
2 

lasers used as the source 

of transmitted radiation in the Hull lidar system were operated at atmos-

phetic pressure and therefore have emission spectra which are often com-

parable in line widths with the line widths of foreign or naturally occur-

ring atmospheric constituents. 

At low pressures, typically below 100 mbar, Doppler shift is the 

dominant contribution to the line shape and results in a Gaussian distri-

bution for the absorption cross section per molecule of the form [5] 

K (V) 
m 

CXm 
(v) 

:1 
m 

2 S(ln 
t:.v 

D 

2)~ 
2 

2 1 [4(" -"0' In 
(3.16) exp 

(llv ) 2 
0 

where K (v) is 
m 

typically given in units of 
2 

v is the optical fre-em , 

-1 -1 
quency (em ), V is the line centre frequency (em ), 11 is the number 

o m 
-3 

of molecules of a particular species per unit volume (cm ), 

(2~41 MHz (3.17) 

-1 
is the full width at half maximum (cm ~M is the molecular weight [6] and 

SIT) 
SIT ) Q (T) Q (T) 

o v 0 r 0 

Q (T) Q (T) 
v r 

is the integrated line intensity (em) [7]. 

[
1.439 E" (T - T ) J 

exp T T 0 (3.18) 
o 

Q and Q are the vibra-
v r 

tional and rotational partition functions and T is usually taken to be 
o 

296 K. 
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Such a line shape is .convnl,7PQ with what would be, in the absence 

of D~ppler shift , the natural line width of a molecule due to the 

finite life time of the radiative transition. Beyond 100 mbar, the 

line width increases monotonically due to collisions between molecules 

of the same species (self broadening) or some other species, and even-

tually collisional broadening (or "pressure broadening") dominates over 

doppler broadening to produce a line shape referred to as a "Lorentzian". 

The governing relationship for the absorption cross section in this case 

is [6], 

ex (v) S I). \1
12 K (\I) 

m --= 
11 (\I - \I )2+ 1).\1 2 m n 

m o p 

where 

lI\I p lIvp 
0 

[:o]\tl 
is the line width at temperature, T, and pressure, P. 

296 K and P is usually equated to 1013 mbar [7]. 
o 

(3.19) 

(3.20) 

T is taken to be 
o 

Clearly the magnitude of the absorption cross section at any given 

wavelength is dependent on both temperature and pressure and must there-

fore be regarded as a potential source of error if, as is likely, the 

exact values of the temperature and pressure are unknown over the measure-

• ment path. 

When a large number of absorption lines, belonging to many different 

molecular species, contribute to the total absorption at any specific 

wavelength, the total abso~ption coefficient becomes 
i 

Cl (\I) = m
TOTAL 

L 
j 

L 
i '!f«\1 _ \I )2 

o 
+ ,,2 

P .. 
l.J 

(3.21) 

where n. is the molecular abundance of the jth molecular species, and i 
J 

denotes each line belonging to the jth species. 
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3.3 The Differential Absorption ~chnigue 

The path integrated lidar equation, (3.7), of Section 3.1 can be 

re-written as 

where 

C exp[-2A(A)] 

r 
f ex (r,A)dr 
o 

is referred to as the (one way) absorbance. 

(3.22a) 

(3.22b) 

There are two such expressions, however, for a dual wavelength lidar 

system: 

P
T

(A
2

) 
PI AR 

Cl exp[-2A(\») 
1T 2 

(3.23a) 
r 

P
T

(A
2

) 
P2 AR 

C
2 

exp[-2A(A
2
') 

1T 2 
(3.23b) 

r 

For the Hull lidar system PT(A
l

) and P
T

(A
2

) are transmitted with a 

small temporal separation, of the order of 50 microseconds, permitting 

the two received powers PR(A
l

) and P
R

(A
2

) to be resolved at a single 

. 
detector (see Chapter 4). 

The two target scattering coefficients, PI and P
2

, may be expected 

to vary on a shot to shot basis due to instabilities in the system align-

ment and scintillation effects which will cause different areas of the 

target to be illuminated. However, the optical transmission paths for the 

two wavelengths were carefully aligned prior to each measurement sequence 

(10,000 shots) and the aligpment checked by inserting a paper disc into 
! 

the focal plane of the transmitting telescope. A series of calibration 

pulses punctured the paper disc, thus making it possible to check that 

not only did both beam paths 
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Corne to a focus at the same point, but also that they were coincident 

with the centre of the target image. The alignment could therefore also 

be checked throughout the measurement sequence and, for the purposes of 

this section, it is consequently assumed that, on average, PI = P
2 

P. 

If Al corresponds to the "reference wavelength" (ideally, not 

absorbed by any atmospheric constituent) and A corresponds to the 
2 

"measurement of wavelength" (absorbed only by the molecular species of 

interest) then, forming the ratio of 3.23(a) and (b) gives, 

or 

PR(A
l

) P
T

(A
2

) C
2 

P
R

(A
2

) P
T
(\) C

l 

which yields 

A(A ) - A( A ) 
2 1 (3.24 ) 

Now the absorption coefficient ex for a particular molecular species, 
m 

m, is defined as 

ex = n K 
m m m 

(3.25) 

where n is the number of molecules of type m per unit volume (dimension, 
m 

-3 2 
L ) and K is the absorption cross section per molecule (dimension, L ). 

m 

Using expression (3.23), the absorption term can be re-defined as a path 

integrated quantity, 



A 
m f 

o 

r 
a dr 

m 
K 

m 

K N 
m m 

f 
o 
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r 

., (r)dr 
m 

(3.26) 

where N 
m 

-2 
(em ) is the number of molecules per unit area over a path 

length of r. Also, the path integrated differential absorption coef-

ficient becomes 

t:.A 
m 

N K (3.27) 
m 

for the molecular species, m, where K ; K
m

(A
2

)- Km(A l ). The concentra-

tion,y' ' of m type molecules is defined as the number of m type molecules 
m 

per unit volume (N ) divided by the total number of atmospheric molecules 
m 

per unit volume. n. so that 

r 

n 
m 

n 

and N ; n f dr; nr. 
o 

Substituting for 

1 

N 
m 

N 

1 
N 

/!,A 
m 

Krn 

A using (3.24) yields 
m 

2Krn log e 

PR(A
l

) PT(A
2

) C
2 

P
R

(A
2

) PT(A
l

) C
l 

1 
2Krn 

(3.28) 

(3.29) 

where PN denotes the normalised power, PR/P
T

• Clearly the second term on 

the right hand side represents an error term. 

Ideally Cl = C2 and this term would disappear. In practice however 

it is expected that Cl and C2 will be different for the Hull lidar system 

since two laser sources are used to provide the transmitted power PT(A
l

) 
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and P
T

(A
2

); different optical path lengths are therefore introduced 

resulting in slightly different beam waists throughout all aperturing 

components in the system. This type of systematic error may be over-

come, however, only if the ratio Cl /C
2 

can be identified or estimated. 

Published details of absorption coefficients are not always given 

in terms of the absorption cross-section per molecule, K. Typically, 
m 

a quantity such as a' will be quoted giving the absorption per atmosphere, 
m 

per em path length for the specific molecular species, m. The relation-

ship between the absorption coefficient per em, a , and a' is then 
m m 

a 
m 

r a' 
m m 

(3.30) 

Therefore, since, K = K
m

(A
2

) - Km(A l ), and using the relationship (3.25), 

the absorption cross-section per molecule can be re-written as, 

or Aa' 
m 

K 

=(~) [a~(A2) - a~(Al)J 
nm 

et~(A2) - a~(Al) 

n 

Kit (3.31) 

Replacing the product K~ in expression (3.29) with Aa' gives the alterna­
m 

tive form 

1 

211a'r 
m 

where the log term containing Cl and C
2 

has been dropped. 

(3.32) 
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CHAPTER 4.0 

SIGNAL PROCESSING 

4.1 Signal Processing Hardware 

A schematic of the signal processing electronics is presented in 

Figure 4.1. Electrical noise problems, originating with the laser 

trigger and discharge pulses, significantly influenced the design of 

the signal processing modules. This is particularly true of the optic 

fibre communication channel between the telescope room and an adjacent 

room housing the Biomation 8100 waveform recorder and the PDP 11/10 

computer. All components located in the telescope room, which were 

susceptible to interference from electrical noise were completely 

enclosed in solid copper enclosures. This included amplifiers, detec­

tors (except for a small aperture to admit the signal), and co-axial 

cables (copper piping was used here). Nickel cadmium batteries were 

used to power all of the electronics shielded by these enclosures. 

The signal from the LTT detector is amplified by a transresistance 

amplifier (labelled TC3) the output of which is connected to either an 

oscilloscope (used for detector alignment) or to the input unit of an 

analogue optic fibre link (Opto Tx). This unit transmits an optical 

pulse, linearly related in amplitude to the electrical input signal 

down a 20 m glass optic fibre to a receiver unit (Opto Rx) located in 

the "computer room". The optical pulse is then converted back into an 

electrical signal, again preserving the linearity between input and 

output pulse amplitudes, and digitised via the waveform recorder. 

Twelve microseconds prior to the LTT diode detecting a return signal 

from the topographic target (= 2 x 1800/e, see equation (3.9», an 
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amplified signal from the CMT detector is summed at the input to the 

Opto Tx unit. This earlier signal represents a measurement of the 

transmitted power and is later used to normalise the return signal 

from the remote target. It is also used to trigger the waveform 

recorder. 

A single "opto-e1ectrical" channel is therefore used to monitor 

both the transmitted and received powers. Dual wavelength transmission 

consequently depends on an intra pulse separation of at least 12 ~sec. 

An upper limit to the pulse pair separation is set by the sampling 

interval selected on the waveform recorder and the number of digital 

samples forming a complete record (up to 2048). The sampling interval 

must be sufficiently small to resolve the peak pulse amplitudes without 

excessive error. Components of the signal processing hardware are dis-

cussed in further detail below. 

4.1.1 LTT Detector Characteristics 

The responsivity of Lead Tin Telluride photovoltaic detectors 

to radiation of wavelength A is defined as 

neA 
hc 

-1 AW (4.1 ) 

where n is the quantum efficiency at wavelength, A, e is the electronic 

charge, h is Planck's constant and c is the velocity of light. For the 

particular Plessey LTT diode used in these studies, the responsivity 

-1 
at 10.05 ~ was given as 3.9 AW and this is independent of frequency 

over the range 0 - 60 MHz [1]. The detector element, with an active 

area approximately 110 ~ across, is mounted on a heat sink which is 

bonded to the inner wall of a liquid nitrogen dewar. This dewar has 

SUfficient capacity for several hours operation. The entire assembly 
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is housed in an aluminium cylinder of 76 mm diameter by 205 mm. 

Two sources of noise affect the performance of LTT diodes~ 

Johnson Noise and Shot Noise. Johnson noise in the detector, which 

originates in resistive elements, can be expressed as 

(4.2) 

where k is Boltzmann's constant, T is absolute temperature, ~f is the 

noise bandwidth, and R is the detector slope resistance at zero bias. 
o 

Shot noise is due to movement of discrete charge carriers across a poten-

tial barrier and is given by 

i 
sn 

(4.3) 

where e is the electronic charge and ip is the induced photocurrent due 

to an optical power, P. Since ip = RIP, (4.3) may be re-written as 

i 
sn 

(4.4) 

The incident power at which shot noise becomes equivalent to Johnson 

noise is therefore given by 

P 
2kT 

eR R 
I 0 

(4.5) 

which for a slope resistance, R , of approximately 2kn [1), becomes 
o 

~7 ~W. It will be shown later (Section 4.2.1) that the incident powers 

actually detected fall in ;he range 0 - 15 ~W, so that Johnson noise 
i 

and shot noise will have comparable values. 

4.1.2 The Transresistance Amplifier 

The amplifier used (labelled TC3 in Figure 4.1) was based on 
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a design included with the Plessey application notes and used an SL561 

video op-amp as the gain block [1). This basic design was modified by 

Dr. S. E. Taylor who used it for a remote sensing system employing 

tunable laser diodes (2). Circuit details and a frequency response 

diagram are available in reference (2) but, essentially, it exhibits a 

flat frequency response over the range 100 Hz to nearly 10 Mhz and has 

a transresistance gain, GTC3 of 5 x 104VA-l. 

For the purpose of the studies reported here, both the frequency 

response and linearity of the amplifier must be considered. Using the 

test circuit of Figure 4.2, the linearity was checked by applying a 

square wave signal of varying amplitude at the input denoted by V. , 
1n 

and measuring the output voltage, V , generated by TC3. The input out 

to the test circuit is terminated by a 47 Q resistor and the simulated 

signal into the amplifier is given by 

i 
s 

V. 
1n 

R 
s 

(4.6) 

where R is 50 kQ. The amplifier is assumed to have an input indepen-
s. 

dence of less than 1 kQ over the bandwidth indicated above (3). To 

provide a test signal representative of the frequency content of the 

real Signal, the input square wave actually consisted of a train of 

pulses, 350 nsec in width, with a separation of the order of mil1i-

seconds. The amplifier proved to be linear to within 5% over an input 

current range of 40 nA to 40 ~A. 

: 
I 

4.1.3 Optical Isolation Link 

Early lidar system tests used a 20 m length of co-axial 

cable, completely sealed inside solid copper tubing, to relay the 

signal from the output of the amplifier to the waveform recorder in 
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an adjacent room. Despite numerous attempts at earthing, significant 

electrical interference was found to be present which oorrupted the 

lidar returns and caused false triggering of the waveform recorder. 

Occasionally it would also cause the computer to "go down". As an 

answer to these problems an analogue optical communication channel 

was constructed which could transmit pulse height information from the 

transresistance amplifier to the waveform recorder. Considerable 

effort was expended to ensure that this channel was linear over the 

pulse height range of interest. 

Figure 4.3 illustrates, in block diagram form, the configuration 

used to examine the linearity of the combined transresistance ampli-

fier and optic fibre link. The total gain of this system is given by 

V' 
out 

V. 
l.n 

G G 
TC3 opto 

R 
(4.7) 

s 

The gain of the optical link was adjusted to unity, and since Rs = G
TC3 

the output voltage should be identical to the input voltage. Figure 

, 
4.4 is a.plot of the measured values of V

out 
as a function V

in
• As 

can be seen, although this system appears to be very linear, the actual 

value of G obtained is 1.9. This is assumed to be due to an 
TOTAL 

~pedance mis-match between the output of TC3 and the input of the 

optic fibre transmitter. A modified transresistance gain of G - 1.9 x 

5 x 10
4 = 9.5 x 104vA-l is therefore assumed for the TC3-opto link com-

bination. With the LTT detector replacing the test circuit the voltage . 
expected at the output of 'the optic fibre receiver will therefore be 

V' 
out 

= Gi = G 
p 

(4.8) 

Figure 4.5 is a circuit diagram of the optical transmitter and 
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receiver modules, both of which are designed around Plessey SL 541 

op amps. The input to the opto transmitter is terminated with a 

47 n resistor and is capacitively decoupled from the input to the op 

amp. An inverting amplifier configuration is used here having a gain 

defined by the resistors R3 and VR2. Transistor Ql (BC 327) provides 

the driving current through (03) and is biased to the on condition by 

the potential divider VRl. By adjusting VRl, and consequently the 

current through 03, the most linear r.egion of the photodiode optical 

responsivity curve was empirically determined. 

A pin diode is used as the input to the optical receiver and 

generates a voltage across Rl, which is capacitively coupled to the 

non-inverting input of the Plessey op amp. The gain for this configura-

tion is defined by VRl and R4. A BC 373 npn transistor, biased to its 

linear region, is used in the output stage which is designed to drive a 

50 n load. Both transmitter and receiver are powered by Nickel Cadmium 

batteries. 

4.1.4 CMT Detector Monitoring of the Transmitted Power 

From the lidar equation (3.7), derived in the previous 

chapter, it is apparent that a knowledge of the transmitted power, P , • T 

is required in order to determine the atmospheric absorption. It is an 

advantage of the differential absorption technique, however, that 

absolute values of the transmitted powers need not be measured. It 

will be demonstrated in chJpter 5 that, providing the component actually 

measured in the reference power channel is linearly related to the 

transmitted power, and that this linear relationship is identical for 

both wavelengths, then factors such as amplifier gain, attenuator and 

aperturing losses cancel out if additive measurement noise is assumed 
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t.o be negligible. 

The Mercury Cadmium Tellurid~ detector, (CWT), used for monitoring 

transmitted power was situated behind the 90% germanium beam splitter, 

as described in Chapter 2. Ten per cent of the output energy was 

therefore available for reference purposes. The important character­

istics of the CMT detector are as follows: 

Spectral Range 8 - 12 l.lJlI 

Active Area 1 mm x lmm 

Rise Time 2 nsec 

Responsivity 1 - 50 mV/W 

Maximum Signal 1 V 

Bias Current 100 rnA 

A 5 em (f/5) germanium lens was used to reduce the beam diameter to a 

dimension comparable with the detector active area and, to reduce the 

peak pulse power to below the damage threshold, polythene attenuators 

were inserted before the lens. The output from the CMT was coupled 

into the input of the optic fibre transmitter via a summing circuit, 

and was scaled so that the dynamic range of the reference power pulses 

matched that of the pulses detected by the LTT detector. A test was 

conducted to ensure the linearity of this arrangement by comparing the 

digitised peak pulse values monitored by the CMT detector, with an inte­

grated power recorded using a Joule meter and a chart recorder. The 

Joule meter used the energy discarded by the 50% beam splitter in the 

laser room. Relative variations in the laser output were monitored as 

the laser voltage was adjusted, and both were found to agree to within 

5%. 
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4.1.5 The Waveform Recorder 

A "Biomation 8100 Transient Digitiser" was used to perform 

all analogue to digital conversions. This device has a specification 

which includes: 

(i) Bandwidth 25 MHz 

(ii) Sampling Rate 100 MHz (max. ) 

(iii) Resolution 8 bits 

(iv) Record Length 2048 samples 

(v) Read Speed 
6 

10 Words/second 

At a sampling interval of 10 nsec, therefore, a complete record would 

have a duration of approximately 20 ~seconds. Lower sampling rates 

could be selected using decade adjustments over the range 0.01 ~sec 

to 10 seconds. Sampling rates between these increments were also avail-

able, but only in decade multiples of 1, 2 or 5. A parallel I/O port 

was incorporated into the 8100 which allowed full software control of 

all the functions selectable from the front panel, and transfers of the 

2048 word sample memory to the PDP 11 host computer. An interface had 

already been constructed for this purpose during earlier lidar studies 

[I'ee ref. 4]. 

4.1.6 Data Capture and Software Control 

The data acquisi~ion program was written in Fortran but used 
j 

an assembly language routine to read the 2048 samples from the transient 

digitiser into a Fortran array. Only four 8 bit words were required 

from each of these records: two bytes corresponding to the peak pulse 

heights of the two transmitted powers (measurement and reference wave-
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lengths) and two bytes corresponding to the subsequent received powers. 

To minimise the amount of computer processing required (between shots) 

~o identify these values, a windowing technique was used. Only those 

within an interval centred on the expected position of each pulse were 

examined. The width of this interval was approximately three times the 

FWHM of the pulse to allow for some jitter in the delay between laser 

shots. 

All of the data analysed in Chapter 7 was captured at a sample 

interval of 50 nsec to permit the use of an intra pulse pair delay of 

50 ~sec. It was observed that jitter became more of a problem at 

smaller delays, and would necessitate an increase in the width of the 

data processing windows, with a consequent decrease in the dual wave-

length prf. Sample intervals greater than 50 nsec would have unaccept-

ably degraded the peak pulse height information because fewer samples 

would be taken over the pulse duration. 

Figure 4.6 is a schematic of the software control and data acquisi-

tion system. It will be noticed that the interface to the PDP 11 also 

provides'a trigger control for the firing of the lasers. Prior to the 

issuing of this command, the 8100 is re-initialised: this can only 

occur once all 2048 samples of the previous record have been clocked out 

and all four pulse heights have been identified. To eliminate any pos-

sibility of laser generated electrical noise stopping, or even damaging 

the computer, a digital optic fibre system was used where practical. 

The laser fire control con~ists of a single optical pulse which is 
I 

intercepted by the laser controller. Intra pulse pair delays ranging 

from simultaneous to a few milliseconds can be set via the front panel 

of this device. Upon receipt of the command pulse, two optical pulses, 

with the pre-set delay, are transmitted to the Laser Trigger unit in 
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the laser room and are there converted into high voltage trigger pulses. 

4.2 Direct Detection 

4.2.1 Anticipated Signal Levels 

An estimate of the signal levels expected can be formed 

using the lidar equation 

-2ar 
e (3.7) 

If the mean output energy from each of the lasers is ~ 125 mJ and it 

is assumed that approximately one third of this is deposited in the 

gain switched spike, then the mean transmitted power would be 

125 x 10- 3 mJ 

3 x 350 nsec 

5 
1. 2 x 10 Watts 

An estimate of the transceiver efficiency, C, must include at least 

the following factors: 

x 0.5 due to the 50% beam splitter losses (Tx path) 

x 0.9 due to the 90% beam splitter losses (Tx path) 

x 0.6 due to aperturing losses (see Figure 5.6) 

x 0.9 due to the 90% beam splitter in the receiver path 

giving an overall efficiency of ~ 0.24. To allow for further, unknown 

losses, it will be assumed that C = 0.1 • . 
Since a non-co-operatli ve target was used, angled away from the 

beam path, it will be assumed that the Lambertian reflectivity, p, is 

also 0.1. 

C 

Grouping terms together, it is found that 

l ~ AR J = 2.8 x 10-10 

1T r2 
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Losses due to atmospheric absorption need to be estimated for at least 

two lines, corresponding to the reference and measurement wavelength 

for an absorbing species. Since H
2

0 is the most plentiful and 

absorbs at CO
2 

wavelengths, a pair of recommended lines will be con-

sidered here: these are the 10 ~ R branch transitions, R18 and R20, 

h ' b ' ff' , t (a') of 0.950 x 10-4Atm-lcm-l and av~ng a sorpt~on coe ~c~en s 

0.851 x 10-3Atm-l cm-l (see Table 7.1). 

If a relative humidity of 50% is assumed at a temperature of l5
0

C, 

-3 III~ 
then the concentration, y, of H

2
0 is B.4 x 10 yieldAexponential terms 

of 

-2ar 
e (for 10 RIB) 0.75 (2ar 0.287) 

and 

-2ar 
e (for 10 R20) 0.076 (2ar 2.573) 

The received powers at each wavelength are therefore estimated to be 

P
R 

(10 RIB) 

P
R 

(10 R20) 

25 lJW 

2.5 lJW 

Using (4.B), the voltages expected at the output of the optic fibre 

r~ceiver (into a son load - the waveform recorder output) are therefore 

V' (10 R18) 
out 

0.63 volts 

V' (10 R20) 
out 

0.063 volts 

The input voltage range actually selected for the waveform recorder was 

± 0.2 V. An offset of x - 0.9 was used to give a "full scale deflec-

tion" of 0 to 0.39 volts, and this was found adequate for recording 

the full dynamic range of the received signals with only very occasional 
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clipping «< 1 in 1000). 

4.2.2 Contributions to Signal Statistics 

Detector and Amplifier Noise 

In Section 4.1.1 it was shown that Johnson noise and shot noise 

have similar values over the detected power range stated above. Shot 

noise was calculated there, however, by assuming that only the inci-

dent signal power was present. If the contribution due to the thermal 

background is now considered, the background radiation power on the 

detector may be calculated using [51 

-hv/kT 
e (4.9) 

where A is the detector area, n is the solid angle subtended by the 

detector beyond the regions cooled to 77 K (= 60
0 

FOV), and 6v is 

determined from the FWHM of the detector responsivity curve [obtained 

from ref 1). This gives a value for P
b 

of 7.Q x 10-
7 

W. 

The various noise currents may now be determined using expres-

sions (4.2) and (4.4): 

1. 9.1 nA 
Jn 

isn (P 7.5 ~w) q,·7 nA 
s 

i (P
b 

0.8 ~W) 301 nA 
sn 

so that 

i = i. + i (P) + i ( P
b

) = 2 Z. nA 
total Jn sn s sn 

where the mean incident signal power is assumed to be 7.5 ~W, and a 
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bandwidth 6f = 10
7 

Hz is assumed to apply both the transresistance 

amplifier and the optic fibre link. Applying, once more, the gain 

relationship of (4.8), the noise voltage expected at the output of the 

fibre optic receiver is therefore ~2.~ mV. This is approximately two 

orders of magnitude less than the signal voltage generated by a mean 

incident power of 7.5 ~w. 

No attempt is made here to calculate amplifier noise but a noise 

measurement was obtained by adjusting the input voltage range of the 

waveform recorder down to ±0.05 V, where noise caused continuous trig-

gering. Observed peak to peak variations were confined to no more than 

± 10 mV and this would, of course, include both detector and amplifier 

noise in the absence of signal. 

Digitisation Noise 

Two forms of digitisation noise will affect the measured peak 

pulse voltages: 

(i) Quahtisation noise: 

This is a consequence of the finite number of digital levels 

allocated to a given voltage range. If V represents the full 

scale deflection and n is the number of binary digits used, 

the quantisation error may be expressed as 

2 = 
(6V)2 

Olin 12 
(4.10) 

where 

6V = V (4.11) 
2

n
-l 

[see, for example, ref. 6]. For the Biomation 8100, n • 8, so if 

V is assumed to be 0.2 V (~ fsd), the voltage error is 



°1 , (V) = 0.23 mV 
l.n 

(ii) Sampling noise: 
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This is a consequence of the finite number of samples taken over 

the pulse duration. 

sampling period, T , 
s 

during 

N 
s 

any interval, 

Tp 

T S 

For 

the 

T , 
p 

a pulse of duration T (FWHM) and a p 

average number of samples occurring 

will be 

(4.12) 

which has a value of 7 for the measuremenUconsidered here. Only 

50% of these on average will occur between the half maximum point, 

and the peak, on either side of the pulse. An approximate expres-

sion for the normalised voltage error in this case is given by 

t"V 
V 

1 
N 

s 
(4.13) 

which is equal to 0.14 or 14% for N = 7. In voltage terms this 
s 

corresponds to nearly 30 mV for V = 0.2 volts. Although this is 

relatively large, it will be shown below that speckle noise forms 

the dominant noise source. Sampling errors are, in any case, not 

a fundamental problem if the latest waveform recorders or digital 

oscilloscopes are used. 

Speckle 

The surface of the topographic target, in common with the vast 

majority of surfaces, is extremely rough on the scale of an optical 

wavelength. When illuminated by a Coherent light source, the optical 

field reflected from such a surface consists of contributions from many 
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independent scattering areas [6]." At a remote observation point, these 

various scattered components will have relative delays which may vary 

from several to many wavelengths, depending on the surface roughness 

and the propagation geometry. Their interference at the observation 

point results in the granular pattern known as speckle, consisting of 

"bright spots" where the interference has been highly constructive, dark 

region where it is highly destructive, and irradiance levels between 

these extremes. 

If the observation point is moved, the path length travelled by the 

scattered components changes and a new speckle pattern observed. Simi-

larly, if the position of the illuminated spot on the rough surface is 

moved a new, statistically independent speckle pattern is generated at 

the observation point providing the distance moved is at least ~/2. 

The contributions from elementary scatters may be described in terms 

of a phasor having real and imaginary components in the complex plane. 

The amplitude a
k 

and phase $k of the kth elementary phaser are stati­

stically independent of each other, and also of the amplitude and phases 

of all elementary phasors [61. 

Providing the number of these elementary contributions is large, 

their resultant in the complex plane has real and imaginary parts which 

are independent, zero mean, identically distributed Gaussian random 

variables, with a phasor angle $, which is uniformly distributed over 

the interval -n to +n (see Figure 4.7). At any given point (x,y,z) the 

field amplitude is found to: be Rayleigh distributed but the intensity 
; 

has an exponential distribution described by 

P(I) = It} exp [- t) (4.14) 

-where I is the mean or expected irradiance. A fundamental property of 
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this distribution is that its standard deviation precisely equals its 

mean. Goodman points out that the contrast of a polarised speckle 

pattern, as defined by 

C (4.15) 

is always unity; hence the subjective impression (for visible speckle) 

that the irradiance fluctuations are a significant fraction of the mean 

[6]. 

At the remote (far field) observation point (x,y,z), the approximate 

size, or lateral coherence distance, of a single speckle lobe is [6] 

d 
s 

AL 
D 

s 
(4.16) 

where D is the diameter of the illuminated spot, ~is the wavelength of 
s 

the radiation and L is the distance to the observation point (assumed 

perpendicular to the scattering plane). If an imaging system is employed, 

the speckle pattern is generated by the interference of light from two 

paints on the lens aperture, giving a lateral coherence distance of 

d (lens) 
s 

(4.17) 

where z is the distance from the lens to the image plane and DL is the . 
lens diameter. Consequently, for the lidar system considered here, 

(z = 1.8 m, DL 0.3 m), d (lens) = d (receiver mirror) = 60~. In 
s s 

other words, the width of each speckle is nearly half the dimension of 

the detector active area. 

The speckle pattern at a fixed point will change with time if the 

position of the spot on the target moves. If the scatterers on one side 

of the target spot move with respect to those on the opposite side by a 

distance of A/2, the addition of the scattered fields at the receiver 
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produces an entirely independent power sample. It is possible to show 

[5] that the characteristic time constant of these changes, T , 
S 

may then 

be expressed as 

T = 
s 20 V 

s 
(4.18) 

where V is the velocity of the spot across the target. Consequently, 

for the power 6,amples at the receiver to decorrelate over a period of 

~ 1 second, the velocity of the target spot needs to be only 

V 
A 

2~ 
s 

assuming that 0 
s 

-5 -1 
2.5 x 10 ms 

0.2 m. 

(4.19) 

This result is surprising since correlation in CO
2 

lidar data is 

usually observed over approximately this period of time, and is usually 

attributed to changes in the state of the atmospheric channel (see 

Chapter 5 and 7). Also the correlation coefficient between wavelength 

channels, for A1 = A2 was observed to the ~ 0.9 for the lidar system 

described here, suggesting near perfect alignment of the beam paths. A 

possible solution is that the target surface geometry actually possesses 

a degree of spatial coherence over distances much larger than A/2. 

Atmospheric turbulence, however, may be expected to increase the indepen-. 
dence of power samples since it will result in higher spatial frequencies 

in the distribution of energy at the target, both within and between 

laser pulses. 

The exponential power~istribution of (4.14) will apply whenever 

the lateral coherence distance of the imaged speckle pattern is greater 

than or equal to the detector dimension. For the receiver configuration 

considered here, however, the number of speckle lobes imaged at the 

detector surface will be approximately 3 or 4 (d = 60 ~, detector 
s 
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dimension = 110 ~). Another probability density function is therefore 

required to describe this more general situation. In Chapter 5, the 

Chi-square distribution function is introduced as an appropriate model, 

applicable when one or more speckles are imaged at the detector (see 

expression (5.19». A parameter, m, which may be identified with the 

average speckle count, is used to control the shape, mean and variance 

of the distribution. 

Of primary importance here is the ratio of the standard deviation 

to the mean, given by 1//;, which provides a direct indication of the 

magnitude of speckle induced noise. For m 1 (the exponential power 

distribution), speckle noise is at its worst since variations in the 

signal are comparable to its mean value. A speckle count of m = 4, as 

applies here, yields a normalised standard deviation of 0.5. Although 

less than for m = 1, speckle induced noise is still much larger than 

the other noise sources considered in previous sections. The data pro­

cessing techniques described in Chapter 6, and applied in Chapter 7, 

reflect the need to suppress the degrading influence of speckle. 
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CHAPTER 5.0 . 
MEASUREMENT SENSITIVITY 

The precision with which the concentration of a particular mo1e-

cu1ar species may be measured depends on the combined uncertainty 

associated with each of the parameters included in equation (3.29). 

It is possible to express this combined uncertainty as [1,7] 

2 
~) 

Ym 

2 2 
CJ (C ) 

+ ___ 1 + 
CJ (C ) 
----2 

- 2 - 2 
C

1 
C 

2 

2 COV[P
Nl

,C
1

] 2 covIPN2,C2] 

± - - ± --------

± 

P
Nl 

C
l 

P
N2 

C
2 

2 Cov[P
Nl

,C
2

] 

P
Nl 

C
2 

± 2 COY [ P N 2' C 1 ] 

P
N2 

C
l 

(5.1 ) 

where the target range, r, and the number density of molecules in the 

atmosphere, n, are assumed to be known precisely. P
N 

denotes the 

} 



- 102 -

normalised power ratio PR/P
T 

so that P
NI 

and P
N2 

correspond to the 

normalised power returns at wavelengths 1 and 2 respectively. The 

various terms identified above as contributing to inaccuracies will 

now be examined. 

5.1 Uncertainties in the Absorption Coefficient 

5.1.1 Uncertainties in a: Interfering Species 

The successful application of line tunable CO
2 

laser DIAL 

to pollutant and trace gas concentration measurements depends on a 

range of criteria being satisfied with respect to coincidences in the 

CO2 laser line emission spectra and the absorption spectra of the gas 

to be monitored. These may be summarised as follows: 

(1) A suitable line in the CO
2 

laser line emission spectra must over­

lap a suitable absorption feature in the spectra of the pollutant 

or trace gas. Since such overlaps are simply a matter of chance 

it is extremely unlikely that the line centre frequencies, v of the 
• 0 

emission and absorption lines will coincide. The absorption term 

due to this overlap will therefore result from the convolution of 

two lineshape functions with comparable line widths. 

(2) Having established a coincidence of the type defined above, a 

fUrther requirement in that no other absorption feature overlaps 

the selected CO2 laser line. This is equivalent to restricting 

the aggregate expressed in equation (3.21) to a single absorber 

and, in practice, is usually impossible to achieve using line 

tunable lasers. It has been suggested that if the background 

absorption is more than about 10% of the absorption due to the 
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gas species being monitored,-then an accurate determination of 

pollutant concentration is probably impossible (2J. 

Interference by other absorbing species will include the contri-

butions due to features such as the "water vapour continuum" and 

particles such as aerosols nucleated on solid matter (dust, soot, 

etc.) which exhibit a distribution of particle sizes depending on 

such factors as geographical location of the air mass, humidity 

and temperature (2). Aerosol absorption is likely to be very 

difficult to predict but other sources of interference, such as 

that due to naturally occurring CO2 , may be estimated more accu-

rately. 

(3) Having satisfied the requirements of (1) and (2) for the measure-

ment wavelength, a further requirement of the differential absorp-

tion technique is the selection of a suitable reference wavelength. 

A related set of constraints are imposed upon the selection of this 

wavelength: 

(a) It is important that it be attenuated far less by the 

molecular species being examined, than the measurement 

wavelength is i.tself.This is necessary to maximise the dif-

ferential absorption coefficient (DAC) since the magnitude 

of this quantity influences directly the fractional uncer-

tainty contributed to the final concentration measurement 

by any uncertain~y in the DAC (see expression 5.1). 
i 

(b) Any interfering species should ideally have identical 

absorption coefficients at both the measurement and 

reference wavelengths so that the measured differential 
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absorption is due solely to the molecule which is the 

subject of the measurement. This is clearly unlikely, 

since absorption features at atmospheric pressure usually 

have similar line widths and, any wavelength separation 

sufficient to generate a significant differential absorp-

tion term for one absorber, is likely to do the same for 

another. 

(c) Conflicting, to a certain extent, with the requirement to 

maximise the DAC, is the additional requirement to maintain 

relatively close frequency proximity between the measurement 

and reference wavelengths so that differential scattering 

terms do not contribute as differences in the return powers. 

This is likely to become significant only when the DAC of 

the target molecule is relatively small and the separation 

between measurements and reference lines relatively large. 

Many experiments have been conducted to determine the absorption 

coefficients of various atmospheric molecules and pollutants as a func-

tion of wavelength at various partial pressures and temperatures using 

a range of different radiation sources. Much of this information has 

b~en compiled into a database form and is available on magnetic tape 

ready for computer processing. An important example is the AFGL data-

base tapes (3) which list parameter values such as the line strength at 

a particular wavelength, tQe line width, and a series of values corres­
I 

ponding to the rotational and vibrational parameters, identified in 

equations (3.16) to (3.29), for a collection of 14 different molecules. 

Petheram has used this data, together with empirically derived 

models, for estimating both absorption due to the water vapour continuum, 



- 105 -

·nd the scattering and absorption due to various aerosol distributions, 

to analyse the suitability of various pairs of CO
2 

laser lines for DIAL 

applications (2). Many of these lines have been recommended before but 

often without reference to the various sources of absorption inter-

ferences which would degrade their performance. Petheram's report 

investigates their potential impact on DIAL accuracies as a function of 

the concentration of interfering species, particularly water vapour, 

and includes various observations on temperature dependencies. 

Species interference is therefore acknowledged as an important 

limitation to the ultimate performance of DIAL systems but is not pur-

sued here since separate investigations are currently addressing the 

problem [4,5,6,10]. This work is restricted to identifying optimum 

techniques for reducing the variance in the log power ratio terms of 

equation (3.29). 

5.1.2 Uncertainties in K(v) 

The differential absorption coefficient for a single molecular 

species was identified earlier as 

K(v) 

and will contribute an uncertainty term 

(5.2) 

where the subscript 1 indi~ates the reference wavelength, and subscript 

2, the measurement wavelength. To maximise the differential absorption 

coefficient v would have to be located away from the absorption peak 
1 

selected for the measurement and between other peaks in the absorption 
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spectra of the target molecule. Even in the absence of interference 

absorption spectra, the reference wavelength absorption is therefore 

likely to be non-zero. 

If (3.19) is re-written as, 

where tw = 

K (v) 
m 

v - v , the 
0 

identified by expanding 

ances so that, 

2 2 
cr (K cr (S) 

m 
E[K ]2 EIS]2 

m 

contributions to the 

the above expression 

2 
cr (t:.v ) 

(_1)2 + - p + 
EI6v ]2 

p 

(5.3) 

uncertainty of K can be 

to resolve component vari-

2 
0 (I ]) 

EI I ]]2 
(5.4) 

where [] denotes the terms collected in the square brackets of (5.3). 

Taking the expansion a stage further, 

2 2 2 
) o (K ) cr (S) cr (t:.v 

m + e + = --2 2 ... 
ElK ]2 EIS] Elt:.v ) 

(5.5) 
m p 

+ 

variances due to all the terms of (5.3) appear but, upon substitution 

of the expression (3.18) and (3.20), yet further expansion clearly 

becomes possible. 

However, it is not necessary to pursue further expansion here to 

realise that ultimately untertainties in temperature and pressure will 

contribute significantly to the overall uncertainty present in the dif-

ferential absorption coefficient. Although experimental errors may 

influence, for example, the form of the quoted line intensity partition 



- 107 -

function of (3.18), and quoted reference line widths, 6vp of (3.20), 
o 

these are potentially rectifiable via further calibration using labora-

tory samples. As such they will appear as systematic errors. 

Errors due to unknown temperatures and pressures, however, are 

likely to be more significant [7]. If temperature and pressure can be 

regarded as constant throughout the measurement (approximately 20 

minutes) they must be independently estimated for accurate concentration 

measurements, since averaging of pulse pairs will not reduce the measure-

ment error due to discrepancies between actual and assumed values [7]. 

On the other hand, significant temporal and spatial variations in the 

magnitude of temperature and pressure during the course of the measure-

ment may be encountered if, for example, the lidar beam intersects with 

several atmospheric convection cells. A certain degree of spatial and 

temporal averaging would result, but it would be extremely difficult to 

estimate accurately the effective mean and variance during the measure-

ment, except, perhaps, by resorting to yet another lidar system specifi-

cally designed for the purpose, or by including extra reference wave-

lengths in a single lidar system to assist in eliminating unknowns. 

5.1.2.1 Longitudinal Mode Energy Distribution 

Hardesty identifies, as a further source of absorp-

tion coefficient error, the inexact knowledge of the distribution of 

transmitted energy among the various possible longitudinal laser cavity 

modes [7]. He points out that the absorption coefficient K (v), is 
m 

actually a weighted average of the form 

K 
ave = 

••• + K (v ) £ 
m n n 

(5.6) 
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where E, is the energy deposited "into a longitudinal mode of frequency 
1 

V" K may therefore be expected to vary on a shot to shot basis as 
1 ave 

the energy is redistributed and each E, changes in magnitude. 
1 

The Hull lidar system uses a cavity length of approximately 2.4 

metres and since longitudinal cavity modes are spaced at frequency inter-

vals of C/2L, where C is the speed of light and L the cavity length, a 

separation of 60 MHz between longitudinal cavity modes can be expected. 

Each CO
2 

emission line has a width of approximately 3 GHz at atmospheric 

9 6 pressure and would therefore provide gain for up to 3 x 10 /60 x 10 = 

50 longitudinal laser modes overlapping with this line width interval. 

However, both CO
2 

laser cavities included not only a pulsed TEA 

gain section but also a low fressure cw section to provide preferential 

gain to only those modes corresponding in frequency location to the 

~lOO MHz linewidth characteristics of CW CO2 sections operating at a 

pressure of 15 torr. Therefore, a maximum of two longitudinal modes 

would have existed during these experiments and without knowledge of how 

the total pulse energy was distributed between these modes, an uncertainty 

in the aosorption coefficient, K (v), corresponding to an uncertainty of 
m 

~ ± 50 MHz in the value of v, must be assumed. 

5.1.2.2 Laser Stability 

Although the line centre frequency of both CO
2 

emission spectra and atmospheric molecular absorption spectra are fixed 

in frequency space, both t~e absolute frequency of longitudinal laser 

modes and their frequency separation will vary as the laser cavity 

length alters (due primarily to long term temperature trends within the 

laser cavity structure over the course of the measurement). Therefore, 
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not only does the fraction of the total transmitted pulse energy, E" 
1. 

deposited per mode alter with time, but so does the frequency location 

of each mode, v" relative to the line centre of emission and absorption 
1. 

spectra. 

5.2 Logarithmic Terms 

in expression 3.29, it is necessary to use a system of detectors and 

amplifiers to measure and normalise the return power with the result 

that the quantities actually ratioed are discrete voltage levels linearly 

related to the received powers. 

Signal processing components identified in the previous chapter are 

reproduced in the schematic of Figure 5.1. 

Speckle noise is regarded here as measurement noise and is multi-

plicative in nature since its variance changes linearly with changes in 

the mean of the return power. Therefore, if PR{k) is regarded as the 

integrated optical power incident on the detector at the kth shot and 

PR is the mean return power at the kth shot in the absence of speckle, 

then 

(5.7) 

where S(k) is the speckle noise. 

S(k) can be regarded essentially as a random variable with a mean 

of unity (S(k) = 1) such that, 

(5.8) 

Figure 5.2(a) is a histogram representation of the normalised return 
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power data for 10,000 shots which may be compared with a simulated 

data file (Figure 5.2(b)), also containing the equivalent of 10,000 

shots, for which a Chi-Square random sequence of order 3 was used to 

generate the speckle noise (see section 5.2.3). Depending upon the 

temporal separation of the laser returns, it may be necessary to com-

plicate this speckle noise model further by including temporal correla-

tion of the speckle noise sequence. 

The digitised voltage level corresponding to the peak power of the 

return pulse (see Chapter 4) is denoted by V
R 

and is related to the 

power incident on the detector by 

(5.9) 

where G is the cascaded gain (volts per watt) of all amplifying com­
R 

ponents prior to digitisation and NR represents the total of all noise 

sources including background radiation noise, amplifier noise and digi-

tisation noise in the received power channel. A similar expression 

exists for the reference component of the transmitted power 

(5.10) 

so that the quantity used to normalise the return power is 

(5.11) 

The pulse index, k, has been omitted from equations (5.9) to (5.11) 
i 

for reasons of clarity and will also be omitted from subsequent expres-

sions. 

If P
R 

is now replaced by expression (S.7),and P~ by PTF,where F 

represents that fraction of the transmitted power extracted for refer-
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PH·S.GR + NR 

PT·F.GT + NT 
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(5.12) 

For every pulse pair corresponding to the measurement and reference 

wavelengths, there exists a corresponding pair of values VN(A
l

) and 

VN(A2 ) which are used to form the log ratio estimator. 

5.2.1 Bias 

-_~ ( A 1 ) . S ( AI) . GR + NR ( AI) -

PT(Al)·F.GT + NT (AI) 
( 5.13) 

In principle, possible estimators for the log ratio can be 

formed by either 

(a) ratioing the powers and then forming the log of the ratio, or 

(b) logging the powers and then forming the differences of the logs. 

Estimators formed simply from the power ratios, which assume that the 

log operation is performed on the estimator, are not considered in 

this work because of the difficulties of estimating a quantity in the 

presence of multiplicative (speckle) noise. 

Both (a) and (b) would represent identical operations on a single 

pair of power values but, when forming an estimate from an ensemble of 

normalised power values, the use of either of these transformations 

will result in bias. If the quantity to be estimated is stationary 

CPR = a constant), a correction term can be applied, but not otherwise. 

In each case bias is attributable to [8): 
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(1) The non-linearity of the ratio operation; speckle noise in 

both the measurement and the reference channels causes 

normalised power returns to fluctuate between zero and some 

multiple of the mode of the distribution as indicated in 

Figure 5.2. Forming the ratio of two such statistically 

varying quantities is clearly a non-linear operation since a 

singularity is approached as denominator values approach zero. 

(ii) The non-linearity of the log operation; speckle noise is 

assumed to have a mean of unity but, regardless of the prob­

ability distribution assumed for the speckle sequence, the 

(iii) 

mean of such a series, under the log transformation, would 

only approach zero as the variance of the series approached 

7.ero. It is worth noting here that, as a consequence of this 

non-linearity, expression (5.1) is only an approximation. As 

the normalised power variance increases, high (even) order 

moments become important in the series expansion used to 

express the variance of the logarithm of a variable in terms 

of the variance of the variable itself II). 

The need to reject negative power data acquired in the pre­

sence of additive measurement noise; referring again to 

Figure 5.2. it is clear that speckle noise represents instant­

aneous fluctuations in the power falling on the detector and 

therefore cannot be less than zero. However, the additive 

noise terms in equation (5.13) can cause the voltage ratio 

in this expression to drop below zero and, since the loga­

rithms of negative values do not exist, these values must be 

discarded. 
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If the noise is entirely multiplicative (i.e. due to speckle only) 

and positive definite, the ratio estimator is biased 19,10). On the 

other hand the log ratio estimator is unbiased both in this limit and 

in the presence of additive noise when the ratio of the signal to addi-

t-.ive noise ratios (SNRs) in the two channels is unity. This may be 

expressed in the form 

Signal Voltage ] 

Noise Voltage (Non-Speckle) 
A=l 

p (5.14) 

signal Voltage .1 
Noise Voltage (NOn-Speckle~ A=2 

where p = 1. 

computed bias data is presented in Figure 5.3 for the case of 

analogue signals in uncorrelated Gaussian noise [10). This shows the 

fractional bias resulting from the use of ratio and log-ratio estimates 

i.n the presence of uncorrelated additive noise (no speckle) as a function . 
of the voltage SNR in the ratio numerator (abscissa) and the ratio of 

the voltage SNRs in the numerator and denominator (P). If the absorp-

tion fluctuates, the bias has to be weighted over the whole range of . 
ratio and SNR values encountered. 

~.2.2 Systematic Errors 

Figure 5.4(a) shows typical transmitted and received powers, 

in both channels, as recorded in digitised form by the transient wave-

form recorder (sample time is 5 a n sec and pulse widths are 35'0 n sec 
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FWHM). Between pulses, the noise levels are clearly very low compared 

to typical pulse levels. A similar comparison can be made over the 

duration of a typical measurement sequence using an estimate of the 

mean level of the received power. Examples obtained using a suboptimal 

recursive filter are presented in Figures 5.4(b) and 5.4(c) for the 

transmitted and received power respectively. Digital units along the 

ordinates of both figures correspond to the same power levels, and 

values along the abscissae correspond to laser shot numbers. Figure 

5.4(d) presents the estimate formed using the same filter, but this time 

applied to the sequences of values formed by ratioing the peak pulse 

received power to the peak pulse transmitted power for each pulse pair. 

Although signal to additive noise ratios are clearly important in cor-

recting for bias, the additive noise is generally small compared to 

multiplicative speckle noise. For this reason, the additive noise terms 

of (5.13) are ignored to simplify the subsequent analysis of potentially 

important systematic errors. With this modification the estimator of 

(5.13) becomes 

-where P
N 

log 
e 

= log 
e [

p (A ) 
N 1 

P (A ) 
N 2 

seA ) ] 

S«) i 
(5.15) 

Since P
N 

is the normalised power ratio uncorrupted by speckle, the 

lidar equation, (3.7), can be substituted into (5.15) so that 

-A 

[ V (~ )] 109 [°1 
C

l ~~ 1 + 1
09l s 

1 
] 

log N 1 ( 5.16) 
e V

N
(A

2
) i e D C e 2 i e S i 

2 2 2 

where D = pA /rrR2 
R 

and A .. 2 
r 

f ar dr. Further expansion yields 
0 
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-A 

log [~~~lJ log [:1] + log [::l + log [:-A;t · log [~L e V (A ) i e i e i e e 
N 2 2 2 

(5.17 ) 

log [::J + log [>J • 109. [::1 + 
e i e i i 

R2 

[A - A ] + log [~l (5.18) 
2 1 e i 

For a perfect lidar system, each of the log terms containing p, A
R

, 

C and S would be zero leaving the differential absorption term A
2

-A
l 

which, upon substitution into (3.29), would yield the correct value of 

the instantaneous concentration at measurement time i (assuming the 

absorption coefficient is known exactly and no interfering species are 

present) • 

5.2.2.1 Variations in Target Backscatter 

The topographic target we were constrained to using is 

illustrated in the photograph of Figure 5.5 The target itself is the 

"0" in the word "Croda" and is estimated to be between 0.5 and 1. 0 

metres in diameter. It is painted on a corrugated surface which is 

not perpendicular to the path of the laser beam. Consequently, any 
instantaneous 

variation in either (a) the~area of illumination, or (b) the position 

of the centre of the illumihation, is likely to result in variations 

in p. 

Variations of type (a) will occur on a pulse to pulse basis due to 

changes in the refractive state of t~e at'!\osphere. unleeos thp. atr.losphp.re 

can be con-
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side red to be frozen between transmission of the measurement and 

reference pulses, and both lasers are tuned to the same emission line. 

Pulse pair separation was maintained at 50 ~sec (± 5 ~seconds) during 

most of the experiments, which is a sufficiently small separation time 

to satisfy the frozen atmosphere requirement. However, a wavelength 

difference of only one line separation (the minimum achievable with a 

line tunable lidar system) is sufficient to decorre1ate the reference 

and measurement channel almost completely. Typical values of the cor­

relation coefficient estimated over 10,000 normalised power pulse pairs 

are approximately 0.9 where A1 = A2 and 0.1 where Al ~ A2 • Table 5.1 

lists various correlation coefficients for a range of data files. Wave­

length differences will be at least of the order of one CO
2 

emission 

line separation for differential absorption measurements, and it is 

therefore to be expected that the speckle pattern will alter signifi­

cantly between pulses in each pulse pair. 

Changes in p due to (b), however, are most likely to occur if the 

beam path becomes misaligned with the target during the course of the 

experiment. Possible causes of misalignment arise directly from the 

siting of the dual hybridised laser and the transceiver optics in dif­

ferent rooms. Because of the long path length between the dual laser 

Source and the transceiver (at least 4 metres) such an arrangement means 

the equipment will be particularly sensitive to relative motion between 

the two rooms. This motion may be due to: 

(i) Vibration, a possible contributor here is a lift shaft which 

operates directly beneath the laboratories, and/or 

(ii) Temperature effects both within the cavity and the optical rail 

system carrying the reflective optics, which would-contribute a 

longer term component to any beam motion. 
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Tn Section 3.4 it was assumed that pI ~ p2 = P since a paper 

aperture, placed at the common focal plane of the two laser outputs and 

the transmitting telescope, revealed no change in the position or size 

of the "burn-through" hole relative to the target image over the 

sequences of 10,000 pulse pairs. 

5.2.2.2 The Receiver Area 

For a co-axial bistatic lidar system employing a single 

transmitting telescope, the receiver aperture, A
R

, is clearly the same 

for both wavelengths. The loge term in (5.18) containing AR therefore 

disappears. 

5.2.2.3 Efficiency of the Transceiver Optics 

The output from the two hybridised pulsed laser sources 

must be optically combined so that both beams are co-axial at the trans-

ceiver optics. Differences in the path length thus introduced, the pre-

sence of refractive and reflective optics, and diffracting apertures will 

result not only in differing beam waists at all points within the system 

but also in beam waists which differ both at the target and also through-

ou~ the propagation path between lidar site and target. 

A computer program was produced to calculate the beam diameters 

throughout the system starting from the grating of each hybrid laser and 

propagating forward to the ~arget. Figures 5.6(a) to (d) plot these 
; 

diameters in four stages; from the grating to the output coupler, the 

output coupler to the transmitter input lens, then to the transmitter 

mirror, and finally out to the target. The locations of the important 



- 118 -

components are indicated, together with the fractional energy losses 

expected at each component assuming a simple circular obscuration of 

the beam Gaussian profile. These values are not intended as an accu-

rate guide to energy losses but were used as an aid in identifying the 

principal components at fault. Figure 5.6(c), for example, reveals that 

the largest proportion of the losses are associated with the transmitter 

telescope flat as the beam is expanding on its way to the transmitter 

mirror. The flat also removes a smaller percentage of energy from the 

beam as it finally exits the transmitter on its way to the target 

(Figure 5.6 (d) ) • 

Although the transmitted energy was monitored as close to the exit 

point in the system as was practical, the primary loss inducing component 

was obviously sited beyond this point (see Chapter 2.0). Providing each 

beam remained aligned throughout each experiment, a constant correction 

factor could probably be applied to remove any error in the normalised 

power. However, the vibration and temperature effects itemised in 

Section 5.2.2.1 would also shift the beam profiles by different amounts 

relative to the obscuring components and thereby induce unknown errors 

in the measured value of the transmitted energy. The magnitude and 

significance of these errors will be analysed in Chapter 7. 

5.2.3 Speckle 

Historically, conventional radar analysis was first to make 

use of the Chi-square dist~ibution for modelling the statistics of 

fluctuating radar cross-sections [11). This distribution has the general 

form 

m m-l 

( mx J (-mx ) x exp i ' x > 0 (5.19) P(x) (m-l)1 x 
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where x is the mean. According to standard statistical definitions, 

2m represents the number of degrees of freedom and is always integer, 

but when applied to target cross-section models, m can be any real 

positive number. Selecting m = I yields the exponential or Rayleigh 

power distribution but, as m increases, the median of the distribution 

parts from the ordinate axis and tends towards the normal or Gaussian 

distribution. It has been found that, in radar applications, these 

distributions may not always fit the observed data exactly but they are 

usually reasonable approximations and the same has been found to be true 

for speckle statistics. Speckle power-frequency histograms of the Hull 

lidar data often revealed distributions almost identical to the Chi-square 

form, having values of m approximately equal to 3 or 4 (see Figure 5.2). 

AS indicated earlier, via expressions (5.7) and (5.8), the speckle 

distribution is required to have a mean of unity. This is also necessary 

to satisfy the requirement that the signal standard deviation vary 

linearly with the mean optical power received at the detector so that the 

variance falls to zero as the signal mean decreases to zero: i.e., 

(5.20) 

Where cr
2 

denotes variance. The normalised variance of the speckle noise, 

2 
(] (5) 

---=2" 
S 

(5.21) 

should be constant for a given receiver area and a fixed target area. 

As the receiver area increases, the performance of direct detection 

systems improves due not only to the extra radiation imaged at the detec-

tor but also to the larger number of speckle lobes over which the 

optical energy is distributed. Shot to shot variations in the actual 

speckle count at the receiver become less significant because the addi-
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tion or subtraction of a single speckle contributes relatively less to 

the total integrated power at the detector. This is known as "aperture 

averaging" since the normalised speckle variance decreases with increas-

ing receiver area. Conversely, reductions in receiver area tend to the 

limit of a single speckle lobe and this corresponds to the situation for 

heterodyne detection where coherence requirements necessitate single mode 

local oscillator mixing with a single speckle (12). 

If the Chi-square distribution is accepted as an adequate model, the 

speckle log term in (5.18) represents the difference between two log-Chi 

square variances, each having a mean of zero only in the limit of zero 

variance. Typical normalised variances, however, were of the order of 

0.25 to 0.3 so bias will be present and this log ratio term will contri-

bute an error unless the variances of both speckle sequences are identical. 

Differing variances could arise from disparities in the mean speckle count 

averaged over the active surface error of the detector. 

5.2.4 Covariances 

The measurement sensitivity expression, (5.1), indicates that 

any positive correlation between channels, for any of the parameters 

appearing in the lidar equation, will actually decrease the sum of the 

variances in each channel for each of the parameters estimated. In other 

Words for every term, X, identified in (5.18) the error contribution in 

both channels will be, 

(5.22) 

Again, where log terms are involved, this expression is only accurate 

in the limit of the variance tending to zero. If, in addition to cross 
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channel correlation, "cross parameter" correlation also exists, then 

extra terms of the form + or - 2 Cov (X"Y,)/X,Y, must be included, 
l. J l. J 

where X and Y denote different parameters, and i,j = 1,2. These terms 

were included in (5.1) since the transceiver efficiencies, Cl , and C2 , 

are dependent on many optical components common to both channels. 

The system parameters, p and C, are assumed to possess time depen-

dent characteristics which have components with timescales both long 

and short compared to the duration of the experiments (15-20 minutes). 

In principle it would be desirable to have some time dependent estimate 

of their values, together with an indication of the variances and co-

variances involved. These values could then be introduced directly 

into (5.22) to provide a time dependent assessment of the contribution 

to measurement error. In practice it is difficult to provide even a 

simple average for these values, (formed over the duration of the experi-

ment) since all other system parameters would have to be defined, includ-

ing the 1.8 km atmospheric path and a non-ideal topographic target which 

is not owned by the University. 

The ~ormalised speckle variances, estimated to be of the order of 

0.25 to 0.3 in the previous section, were established using a method 

discussed in Chapter 7. This method uses a simple, sub-optimum estimate 

of" the time dependent means of the normalised return powers to recur-

sively estimate the percentage normalised standard deviation. In inter-

preting these values directly as speckle variance, it is implicitly 

assumed that the contributipg variances of other lidar equation para­
torI\f~ .. ~d j 

meters is negligibleAto that due to speckle. 

For both channels the combined normalised speckle variance will 

obviously be of the order 0.5 to 0.6 but this will clearly be reduced 

if any correlation exists between the channels. Table 5.1 indicates 
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that, where identical laser lineg have been selected, correlation coef-

ficients in the range 0.8 to 0.9 are typical, but fall to values in the 

range 0.5 to 0.2 approximately when different lines are used. Differen-

tial absorption measurements using line tunable laser sources will there-

fore benefit to some extent from some correlation between the two channels. 

The development of suitable continuously tunable laser sources, however, 

which permit minimum wavelength separations between the channels will 

reduce the impact of speckle variance considerably in future DIAL systems. 

The remaining terms in (5.18), yet to be considered, are the path 

integrated absorptions Al and A
2

• In an ideal situation in which there 

are no interfering species and no absorption feature overlapping with 

the reference channel emission line, the term Al disappears since, 

nl = O. The differential absorption (A
2

-A
l

) of (5.18) would then simply 

reduce to the path integrated absorption, A
2

, at the measurement wave-

length A2 • The time dependency of A2 would probably depend not only on 

the origin and distribution of the gas being monitored, but also on 

changes induced by atmospheric turbulence and wind. In other words there 

will exis~ a power spectrum characteristic of the time dependence of A
2

, 

and discrete samples of this path integrated absorption would form a 

"time series" (see next chapter) with wholly or partially random com-

pdnents and a set of statistical moments dependent on the dynamic state 

of the atmosphere. 

In reality, interfering species will be present, and two of the most 

important contributors wil~ be water vapour and carbon dioxide. Both . 
have absorption features at all line tunable wavelengths, but water 

vapour is particularly variable both in a temporal and spatial sense, 

espeCially near coastal regions (Hull lies on the River Hull and on the 

Humber Estuary!). It is therefore not unreasonable to expect spatial 
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variations over the 1.8 krn between lidar site and target, and temporal 

variations with time periods both long and short compared to the dura-

tions of the experiments. 

Other contributions to the absorption and/or differential absorp-

tion power spectrum will arise from locally generated industrial pollu-

tion and variations in temperature and pressure. 

In general, if the absorption A is composed of components, aI' a 2 , 

a 3 , ••• , an' where a
l 

denotes absorption due to the species under investi­

gation and, a to a , the absorption due to interfering species, then the 
2 n 

covariance between the path integrated absorption in each channel is 

given by 

(5.23) 

Since both channels may be considered spatially and temporally 

coincident, full correlation would be expected between channels where 

j = k (indicating that the same molecular species was involved) unless 

temperature and pressure changes effect different absorption features 

within the same species by different amounts. Temperature and pressure 

variations, however, may also result in partial correlations within and 

be~ween channels whenever j ~ k. 

In practice it would be impossible to determine the magnitude of 

these various covariance terms during the course of an experiment without 

simultaneously probing the rtmospheric channel for absorption due to . 
interfering species, and for temperature and pressure variations. This 

Would require a multi-wavelength system. 
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TABLE 5.1 

Wavelengths used 

Filename Gas 
Measurement Reference 

SIFTS. 024 System Test 10 R(l8) 10 R(18) 

SIFTS. 026 System Test 10 R(18) 10 R(18) 

SIFTS. 027 System Test 10 R(18) 10 R(18) 

SIFTS. 032 System Test 10 R(18) 10 R(22) 

SIFTS. 033 System Test 10 R(18) 10 R(14) 

SIFTS. 036 carbon Dioxide (CO2) 10 R(16) 10 R(8) 

SIFTS. 037 ADmonia (NH3) 10 R(8) 10 R(12) 

SIFTS.038 Ethylene (C2H4) 10 P(14) 10 P(28) 

SIFTS. 043 water (~O) 10 R(20) 10 R(18) 

SIFTS. 044 water (H2O) 10 R(20) 10 R(18) 

SIFTS. 045 water (~O) 10 R(20) 10 R(18) 

SIFTS. 046 water (~O) 10 R(20) 10 R(16) 

SIFTS. 048 System Test 10 R(16) 10 R(18) 

SIFTS.OSO System Test 10 R(22) 10 R(10) 
--- -_ ... -

Correlation Coefficients 

(Tx1, Tx2) (Rxl, Rx2) 
(Digital Values) (Digital Values) 

0.28 0.82 
0.61 0.91 
0.86 0.91 
0.68 0.24 

0.43 0.22 

0.52 0.09 

0.71 0.10 

0.34 0.07 

0.64 0.22 

0.49 0.12 
0.56 0.12 

0.52 0.23 
0.52 0.12 

0.89 0.29 

(Rx1 Rx2) 
Txl ' Tx2 

0.80 
0.90 
0.92 
0.22 
0.20 
0.08 
0.06 

0.08 
0.17 

0.12 

0.09 
0.22 
0.08 
0.14 

I 
I 

..... 
N 
U1 
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CHAPTER 6.0 

ESTIMATION TECHNIQUES 

Dial system accuracy is ultimately dependent upon the precision 

with which the log power ratio can be estimated. It is clearly impor­

tant, therefore, to exploit those techniques which offer the best oppor­

tunity to improve this precision. This chapter first considers various 

estimation techniques which may be regarded as precursors to the methods 

of "optimal estimation". Selected techniques, drawn from the subject 

domain of optimaL estimation, are then examined in an attempt to address 

the problem of obtaining the "best" estimate using, as criteria for 

determining optimality, the concepts of an unbiased, minimum variance 

and consistent estimator. An "unbiased" estimate is one whose expected 

value is the same as that of the quantity being estimated. An unbiased 

"minimum variance" estimate has the property that its error variance is 

less than or equal to that of any other unbiased estimate. A "consistent" 

estimate is one which converges to the true value of x as the number of 

measurements increases (2). 

6.1 Non-Recursive Estimators 

Several techniques are presented in this section which tradi­

tionally have been applied to time series type problems in general, but 

which have also found applications in the analysis of pulsed or sampled 

lidar data. Although these techniques are not in any series optimal, 

they are useful in providing an initial analysis of the data, including 

some estimate of the mean (if not the precision), and will help to 

reveal any trends which may exist. They are also relatively easy to 

implement. 
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6.1.1 The Batch Processor 

In its most basic form, the batch processor provides a 

simple average. If it is assumed that a sequence of measurements, {z}, 

can each be expressed as a linear combination of the system parameter, 

x, which it is necessary to estimate, plus a random additive measure-

ment error, then the model for the measurement process becomes 

z(i) ;: xCi) + v(il (6.1) 

where i (= I to k) is the sample index. The sequence {v} is assumed to 

have zero mean and variance, cr 2 
v 

An estimate, ~ of x can be made using the familiar averaging tech-

nique 

1 
k 

z(i) (6.2) 

This is equivalent to summing all values of z(i) with an equal 

weight of 11k. In general, however, the non-recursive filter with dif-

ferent weights, h(i), has the form 

k 

Jl h(il z(i) (6.3 ) 

If it is now assumed that x has a constant value and that some 

estimate of x is required from just one sample; in other words, 

z(i) 

"­then an error term x 

error", p; 

x + v( i) (6.4) 

x - x can be used to define the "mean square 



p 
",2 

E[x ] 
A 2 

E[ (x - x) ] 

2 
o 

v 
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(6.5) 

where E denotes the expectation operator. 

If, instead of a single sample, a batch of samples is now consi-

dered, then 

p 
A 2 

E[ (x - x) ] 

where 6.. (15.. = 1 for i 
1J 1J 

symbol. This meanS that 

k k 

j, 6 
ij 

1-
k

2 

1 

k
2 

k k 

L L 
i=l j =1 

k k 

x + j, veil) - xJ'} 
v( uJ 2} 

E(v(U,v(j)] 

L L 0 2 6 
ij i=lj=l v 

o for i ~ j) is the Kronecker delta 

L L 6 15 + 6 + °33 + ... + 6 
i=l j=l ij 11 22 kk 

k 

and that p = 02/k (6.6) 
v 

Therefore, providing x is a constant, the mean square error decreases 

as k increases. 
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6.1.2 Segmental Averaging 

This method divides the total number of samples, N, into 

M (= N/n) subsets of data, each containing n values. Each subset is 

then used to provide an estimate by forming a simple average over the 

n values so that 

x(U 

x(2) 

x( 3) 

X(M) 

n 
1 I z. n i=l ~ 

2n 
1 I z. n i=n+l ~ 

3n 
1 I z. 
n i=2n+l ~ 

N 
1 
n I. 

N-n+~ 

Z. 
~ 

(6.7) 

For a data sequence, x, in which trends exist, this method will, in 

general, provide a more reasonable estimate than that formed by a 

simple average over all N values, because it permits the statistical 

properties of z to vary over the M subsets of data. 

Killinger et al [1] used this as one of two estimation techniques 

for studying the relationship between variance and the number of samples 

averaged for various sequences of lidar data. In the absence of trends, 

this variance should decrease as lin. However, used as a simple esti-

mator, and providing changes in the value of x are negligible over n 

data samples, the variance of each estimate is approximately 

2 1 
n 

- 2 
0'1 L ( zi - z) (6.8) 

n 
i=l+I 

where I 0, n, 2n, 3n, ... , N-n and, using (6.7), z = x( 1 + l) • 
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6.1.3 Running Averages 

The second technique used by Killinger is similar in 

concept but results in a larger number of estimates than segmental 

averaging and hence produces a more smoothly varying estimator for any 

non-stationary x. This method divides the total number of samples, N, 

into M subsets of data, each containing n values, but this time, 

M = N-n+l, and the estimates thus formed are 

1 
n 

~(l) L z. n i=l ~ 

1 n+l 
~(2) L z. n 

i=2 ~ 

1 
n+2 

~(3) L z. n i=3 ~ 

N 
~(N-n+l) = 1 L z. 

n i=N-n+i ~ 
(6.9) 

Unlike segmental averaging, these estimates are not independent, but 

each has a variance given by (6.8) providing the same restrictions that 

apply to segmental averaging also apply here. 

6.1.4 Least Squares 

The method of least squares is most frequently applied 

in generating a curve to fit a sequence of data points whose trend might 

be linear, quadratic, or of some higher order, in such a way that it 

minimises the error of the fit at each of the data points. By analogy 

with the previous definition of Section 6.1.1, the "error" is the differ-
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ence between the estimate represented by the fitted polynomial and the 

actual (but unknown) quantity to be estimated. 

Gelb (2) presents the least squares technique using vector matrix 

notation by first assuming that the set of n measurements, ~, can be 

expressed as a linear combination of the m elements of a constant vector 

~ plus a random, additive measurement error, v. In other words, the 

measurement process is modelled as 

Hx + ~ (G.10) 

where ~ is an nxl vector, ~ is an mxl vector, H is an nxm matrix and y is 

an nxl vector. 

An estimate x of x is sought which minimises the sum of the squares 

A 

of each of the deviations, zi - zi. In vector-matrix terms this trans-

lates into the requirement that ~ minimises the sum of the squares of 

the elements of ~ - H~. Since the vector inner product generates the 

sum of the squares of the vector, a scalar "cost function", J, may be 

defined of the form 

J (~ - H,R) T (~ - Hi) (G.l!) 

Partial differentation of this scalar with respect to the vector! will 

yield the minimum when 

o for ~ 0 (6.12) 

Performing this differentiation and setting the result equal to zero 

yields 

TAT 
H Hx = H Z (6.13) 
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so that if HTH possesses an inverse, the least squares estimate becomes 

(6.14) 

Here, again, a batch processing scheme is required since all the 

available measurements are utilised together at one time. Furthermore, 

this technique does not supply an optimal estimator in terms of the 

criteria defined at the beginning of this chapter, since it is not neces-

sarily consistent, nor of minimum variance, unless the polynomial order 

can be selected to be as close as possible to that of the underlying 

system trend. 

6.1.5 Maximum Likelihood and Bayesian Estimation 

Least squares estimates of the form derived above are 

obtained using deterministic arguments only, and make no assumptions 

about the statistical properties of ~ (via e or ~) and~. An alterna-

tive approach, therefore, may be derived from the "maximum likelihood" 

philosophy which defines! as the value which maximises the probability 

of the measurements, ~, having actually occurred. A statistical model 

is assumed to exist for ~, but not for x. Using the measurement model 

defined in the previous section, a conditional probability density func-

tion, p(~I~), is obtained which relates the probability of obtaining a 

particular value, ~ to a given value of~. This is equivalent to the 

probability density function for ~ centred on H~ and has the form (2), 

(6.15) 

where ~ is assumed to be a zero mean gaussian random variable, having a 

covariance matrix, R, defined as 



R 
T 

Ery'y' 1 
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(6.16) 

Since the requirement is to maximise p(~I~), it is necessary to 

minimise the exponent in square brackets. This exponent is almost 

identical to the least squares cost function, except for the inverse 

of the covariance matrix, R, which has the effect of weighting the sum 

of the squares of the deviations instead of treating them all as of 

equal significance. In this case, the least squares result given above 

is modified and becomes 

T -1 -1 T -1 
(H R H) H R !. (6.17 ) 

A further alternative exists in the "Bayesian" estimation method 

where statistical models are assumed for both ~ and~. In contrast to 

the previous method, an "a posteriori" conditional density function of 

the form p(xlz) is sought which is related to the previous conditional 

probability function via Bayes' theorem: 

p(~I~) p(.!) 

p(~) 

where p(~) is the "a priori" probability density function of .! and 

(6.18) 

p(~) is the probability density function of the measurements. Solu-

tions for the estimate, !, can be obtained from p(.!I~) but their exact 

form depends on the criteria of optimality. If the requirement is to 

maximise the probability that i = .! then a solution is obtained by 

equating x to the mode of the distribution. For this particular example, 

if p(~) is assumed to be uniform (i.e. no mode at a unique value of x), 

~hen this estimate is equivalent to the maximum likelihood estimate [2]. 

Gelb presents the generalised minimum variance Bayes' estimate as 

A 

X (p-1 + T -1 -1 T -1 
H R H) H R !. (6.19) 
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where gaussian distributions are assumed for both ~ and y, and P is 
o 

the "a priori" covariance matrix of ~ defined as 

P 
o 

(6.20) 

In comparing these estimation methods, he notes that if there is 

little or no "a priori" information, p-
l 

becomes very small and the 
o 

above estimate reverts to the maximum likelihood result. Similarly, 

if all measurement errors are uncorrelated, so that R becomes a diagonal 

2 2 
matrix, and if all errors have equal variance so that R = cr I, where cr 

denotes the variance of v and I is the identity matrix, then the 

maximum likelihood result reduces to the least squares estimate. He 

thereby arrives at the important conclusion that the methods of least 

squares, maximum likelihood and Bayesian estimation produce identical 

results if gaussian random variables are assumed throughout and the 

other assumptions are the same in each case. 

Before moving on to consider recursive filters in general, the 

important topic of Kalman filtering in particular, and relationships 

that exist between recursive and non-recursive implementations, the 

optimum non-recursive estimator, the Wiener filter, must be considered. 

It is worth noting here that Kalman's important contribution (7), which 

makes use of both state space representations and pr.oba-

bility theory to solve the Wiener problem for gauss-markov sequences, 

also reduces to the estimators given above. 

6.1.6 Optimum Non-Recursive Estimator (The Wiener Filter) 

By way of introduction, this section returns to the 

linear batch processor, first identified in Section 6.1.1, having an 

estimator of the general form 



k 

L h(i) z(i) 
i=l 
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(6.3 ) 

In that earlier section all the coefficients, h(i), had equal weights 

and the estimator produced a simple average, but this section turns to 

the problem of selecting the coefficients in such a way that the mean 

square error 

p 
A 2 

E[(x - x) 1 (6.21) 

is minimised. " Here, again, x is used to denote the desired signal and x 

its estimate. Following Bozic [5], substituting (6.3) into (6.21) gives 

k 
p L h(i) (6.22) 

i=l 

The minimum mean square error is obtained by differentiating (6.22) 

with respect to each of the coefficients and setting the result equal to 

zero. 

k 

~~(j) = -2E [x - L h(i) Z(1)J z(j) .. 0 
i=l 

or 

k 

L h(i) E[z(i) z(j)] = E[xz(j)] 
i=l 

where j = 1, 2, 3, .•• , k. By defining 

P (i, j) 
z 

E[z(i) z(j)] 

as the autocorrelation function of z(i) and 

p (j) = E[xz(j)] 
xz 

(6.23 ) 

(6.24) 

(6.25 ) 

(6.26) 

as the cross correlation function of the random variables x and z(i), 

equation (6.24) can be re-written as 



k 

L 
i=1 

h(U p (i,j) 
z 

- 147 -

p (j) for j 
xz 

1,2, •.• ,k (6.27) 

This expression can be expanded over both i = 1, 2, ••• , k and 

j 1, 2, ... , k to yield a set of simultaneous equations, each with k 

terms. A more compact way of presenting these equations is to adopt 

matrix notation whereby (6.27) becomes 

(6.28) 

I.oIkerc P, is the kxk correlation matrix, and hand pare kxl column vectors. 
xz 

Solving (6.28) for!!. yields 

h 
-1 

Pz Pxz (6.29) 

and (6.3) can be written 

(6.30) 

where hand z are kxl column vectors, and hT (the transpose of h) is a 

row vector. 

Substituting (6.29) into (6.30) provides the estimate, 

T -1 
P P z 

xz z -

and the least mean square error, 

2 T T 
P a E[x ) - EXzPzExz 

(6.31) 

(6.32) 

It is noteworthy that, in common with the estimators discussed in 

previous sections, the dimensionality of any algorithm used to implement 

the filter grows with the number of samples to be processed and must 

include the inversion of a kxk matrix. Furthermore, the above expres-

sions represent only the scalar case in which a single signal is to be 
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estimated. A more general result would consider a vector signal (multi­

dimensional) and would be considerably more complex for a large number 

of samples. 

However, since no assumptions are made regarding how the signal, 

x, and noise, v, are combined (for example, they need not be additive 

as in (6.1», the above result is applicable to a wider range of problems 

than other filters discussed elsewhere in this chapter, and represents 

the best non-recursive linear filter operation that may be carried out 

on the samples in order to estimate x. 

6.2 Recursive Estimators 

Gelb defines a recursive estimator as one in which there is no need 

to store past measurements for the purpose of computing present estimates. 

Instead, measurements are utilised sequentially, as they become available. 

Recursive estimators in terms of this definition are therefore normally 

far preferable to non-recursive estimators of identical performance 

because they are so much more economical in terms of computational 

storage. 

Kalman and others [6-10] during the 1960s were responsible originally 

for advancing optimal recursive estimator techniques using "state space", 

time domain formulations. This approach, now generally referred to as 

Kalman filtering, has become the primary technique for analysing and 

optimising data mixing in modern multi-sensor systems, since it is 

ideally suited to digital computer implementation. 

Gelb identifies three basic types of estimation problem, depicted 

in Figure 6.1. According to his definition, the term "filtering" applies 

when the time at which an estimate is desired coincides with the last 

available measurement point, (a). If the desired estimate falls within 
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the span of available measurement data, the estimation problem is then 

referred to as "smoothing", (b), but if the time of interest occurs 

after the last available measurement then the estimated quantity 

becomes a prediction, (c). 

It is useful to append to the above definitions a distinction 

between "recursive" and "iterative" data processing introduced by Young 

[111. Figure 6.2 depicts recursive processing in which an estimate is 

obtained by working serially through the data, one sample at a time. 

Iterative data processing, on the other hand, refers to the sequential 

processing of a complete set of data in which, at each step, the data 

base remains the same at N samples and only some estimated variable is 

modified. Simple "en bloc" processing then becomes a special case in 

which a single iteration is considered. 

6.2.1 First Order Recursive Estimators 

Following the example provided by Gelb [21, a scalar non-random 

constant, x, which is unknown and has no defined statistical properties, 

and which is also corrupted by noise measurements of the form given by 

(6.l) may be estimated by averaging these measurements using (6.2). 

Reproducing these expressions, 

z(i) = x + v{ i) (6.1) 

1 
k 

jtk L z(i) 
k 

i=l 
(6.2) 

it is noted here that they define an estimator which is both unbiased 

and of minimum variance. 

When an additional measurement becomes available, the new estimate 

becomes 
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~ _1_ ky 
(6.33) xk+l z. k+l l. 

i=l 

and, after a simple rearrangement, 

[ 1 k 

ZiJ 
1 

xk+l -1L L + (6.34) 
k+l k k+l zk+l 

i=l 

k x
k 

1 

k+l 
+ k+l zk+l (6.35) 

[XkCktll - XkJ 1 (6.36) + k+l zk+l (k+l) 

[Xk - xk ] 1 
(6.37) + zk+l k+l k+l 

(6.38) 

In this form the need to store past measurement is eliminated since 

all previous information is embodied in the prior estimate. Each new 

estimate is given by the prior estimate plus an appropriately weighted 

difference between the new measurement and its expected value (the prior 

estimate). The quantity in parentheses is generally referred to as the 

"residual" and usually given the symbol,v. 

Expression (6.38) is a simple averaging filter and, in principle, 

it is identical in function to the averaging batch processor of Section 

6.1.1. In practice, however, (6.38) is far more economical in terms of 

variable storage when implemented as a computer alqorithm. The variance 

reduction equation, (6.6), is clearly still valid here for constant x, 

but a similar analysis to the above can again be applied to the problem 

of estimating the variance: a recursive algorithm of the form 

(6.39) 
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is obtained where e = Z - x
k

• 
k k 

If the weightin~ factor, l/(k+l), is replaced by b, then (6.38) 

becomes, 

(6.40) 

and further rearrangement will yield, 

(6.41) 

Both are general forms of the first order recursive filter in which b 

need not be a function of k, but is restricted to values in the range 

o < b < 1. Schematically, the filter algorithms, (6.40) and (6.41) may 

be represented as shown in Figure 6.3 where D denotes a single delay in 

the recursive procedure. 

Zrnic has demonstrated the application of first order recursive 

filters in estimating the mean power from smoothed square law detector 

outputs of stationary signals [3]. His signals are generated by radar 

echoes from solid objects or by the scatter cross-sections of randomly 

distributed point scatters. Their statistical characteris~ics are very 

similar to those generated by direct and heterodyne detection lidar. He 

states, however, that if an arbitrary value of b is selected and the 

square law detector samples, which are unbiased, are block averaged over 

N values, then the same variance reduction is obtained as for the recur-

sive estimator above, providing 

k N = (2-b)/b (6.42) 

If the number of samples available exceeds N (i.e. k > N), then presum-

ably the recursive estimator behaves as a "moving exponential window" 

(discussed later). 
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A discrepancy between the results obtained by Gelb and Zrnic 

becomes apparent if (6.42) is re-written in terms of k so that 

b 
2 

k+l 
(6.43) 

The general case of the first order recursive filter, (6.40), should 

become identical to the specific case of the simple recursive averager 

(6.38) or block averager, if k = N. The values of b, however, obtained 

in (6.40) and (6.42) differ by a factor of 2. 

Furthermore, Zrnic also states that the first order recursive 

filter, applied to square law detector outputs, produces an estimate 

k+l which is biased by an amount (I-b) • Again, for the case where k • N, 

this bias would become 

2 
k+l 

J k+l = 
[
k- 11 1<+1 
k+l 

(6.44) 

if (6.42) and (6.43) are correct, which tends to a value of 0.1353 in 

the limit of large k. Bias will still be present even if the alternative 

value of b is used, and if true would seem to imply that the averaging 

filter of (6.38) is biased! There are, however, differences in the 

assumptions applied to the statistics of the filter input sequences, z. 

Gelb assumes a constant mean, x, corrupted by an additive, zero mean 

white noise sequence, v. Zrnic, on the other hand, assumes that z has 

an exponential power distribution of the form 

P( z) exp(-z/P )/P 
o 0 

where P is the constant true mean power at the input of the square law o 

detect"or. 

Both Gelb's and Zrnic's interpretation of the first order filter 
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are intended for use with constant mean data. First order filters, in 

general, are biased for transients; bias, in fact, can only be avoided 

by resorting to a filter of an order equivalent to the highest differen-

tial existing within the transient. For example, to avoid the bias 

introduced into the estimate of a first order filter by a linear ramp 

transient, it is necessary to track the slope and this necessitates the 

application of a second order filter. To avoid bias due to quadratic 

transients, a third order filter is necessary, and so on. 

Before examining a particular second order filter in the next 

section, a brief return is made to a particular nomenclature used to 

describe certain first order recursive estimators - the "exponential 

weighting, smoothing, or windowing" filter. In common with the filters 

discussed above, the principle is to produce an estimate based on a 

weighted sum of all past observations, so that 

(6.45) 

where (c,) are the weights. More weight is given to the most recent 
~ 

observations and less to observations further in the past; in order that 

these weights sum to zero, a geometric series is selected of the form 

c, 
~ 

i 
a (l-a) , i 0, 1, 2, ••• , k-l 

o < a < 1 

Equation (6.45) then becomes, 

2 
aZk + a(l-a)zk_l + all-a) zk_2 

which, clearly, is identical to (6.41). 

(6.46) 

k-l 
+ ••• + all-a) zl 

(6.47) 
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An alternative form sets 

c, 
~ 

i 
(l-aJ , i 0, 1, 2, ..• , k-l 

o < a < 1 

to provide an estimate 

(6.48) 

(6.49) 

derived in exactly the same way as (6.47). Both weighting sequences, 

(6.46) and (6.49), exhibit a characteristic exponential decay as i 

increases from zero. 

6.2.2 A Second Order Recursive Estimator: The oS Tracker 

Historically, the as tracker has been applied most frequently 

in ranging type applications where it is necessary to have an estimate 

not only of the range and radial velocity of some object/target, but 

also a prediction of where the object might be at some future time beyond 

the current measurement. The as tracker is governed by the set of 

equations, 

Xk+l = p 
xk+l + aCzk+l - p 

xk+l ) (6.50) 

A 

+.! p 
Xk+l 

X
k ( zk+l - xk+l) T 

(6.51) 

A 

P Xk + T 
. 

xk+l = x
k (6.52) 

where xP is the predicted value of x, x is the current estimate of x, i 
denotes the current estimate of the rate of change of x, z is the noise 

contaminated measurement of x, T is the sample interval in seconds, and 
A 

a and S are fixed real constants. If x - 0 for all k then this set of 

equations reduces to the first order filter, (6.40). 
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Cadzow (12) presents an analysis of the aa tracker in terms of the 

system transfer functions, and considers the specific case where a 

critically damped system is required. This constraint yields a 

relationship between a and a of the form 

a = 2 IS - a (6.53) 

where a must be selected such that 0 < a < 4. Values of a close to one 

yield a fast responding system, but values close to zero produce a system 

which is very sluggish. 

If the as tracker is constrained further to operate on a noise con-

taminated signal of the form (6.1) then the algorithm will generate an 

unbiased consistent estimator with an output variance given by 

2 A 

(J (x) 

where, for a critically damped system, 

K 
.!.QL[ - l4S + SSfe 

(2 -;a)3 

(6.54) 

(6.55 ) 

This function decreases as a approaches zero, thus enhancing the 

variance reduction, but increases rapidly beyond B = 2 causing the 

tracker performance to deteriorate rapidly. 

In general, when selecting the values of a and S, a compromise 

exists between the conflicting requirements of good noise filtering 

(producing a sluggish system with a long time constant and narrow band-

width) and of good transient following capability (resulting in a fast 

system with a short time constant and wide bandwidth). Benedict and 

Bordner [13] advocate the construction of a filter which will give the 

"best compromise" between the two extremes. Their solution results in a 

slightly underdamped system for which 
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S 
2 a I( 2-a ) (6.56) 

They claim that by reducing the as tracker to a form in which a single 

parameter, a, must be selected using the relationship (6.56), -then the 

optimum estimates of both position and velocity are obtained simulta-

neously. 

Although the as tracker, in the optimised form presented above, 

results in the optimum linear fixed parameter tracker, for adaptive 

tracking it is suggested that a is allowed to vary with the observed 

P 
high frequency power fluctuations of the error signal, x

k 
- x

k 
[13J. 

A possible method for estimating a as a time dependent quantity could 

proceed by regarding the equation for x
k

+
l 

as forming a weighted average 

of the predicted value, x~+l,and the measured value zk+l: this becomes 

obvious if (6.50) is rearranged so that 

(6.S7) 

The minimum mean square estimate of this average is obtained if [ref. 2, 

p. 6J, 

a = (6.58) 

but the problem then is to know what Var(xP ) and Var(z) are. 

It has been suggested that a running average or first order 

recursive filter could be applied to update these qUantities, or some 

other windowing filter could be used having a relatively short memory to 

ensure that a changes fairly rapidly in response to any loss of tracking 

[14]. An alternative is to use the differential quantities Var(z - xP ), 

and VarIx - xP ) to determine a rather than Var(z) and Var(xP ) directly. 

However, if z and xP or ~ and xP , are partially correlated then 
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Var(z - xP ) ~ Var(z) + var(xP ) 

VarIx - xP ) ~ VarIx) + var(xP ) 

and the consequences of using the,se quantities would be unpredictable. 

6.2.3 Recursive Least Squares 

Young [9J provides a comprehensive treatment of recursive 

least squares analysis which commences with the relatively simple 

example for a single unknown parameter in a "regression relationship", 

and progresses through more complex cases which introduce probabilistic 

considerations and multi-parameter estimation. The technique of intro­

ducing extra information, of a probabilistic nature, has already been 

considered briefly in the discussion of Section 6.1.5 on Maximum Likeli­

hood and Bayesian Estimation. Other than these two examples, however, 

very little has been assumed concerning the statistical properties of 

the signal or measurement noise formulations of either the recursive or 

non-recursive estimators considered so far. This absence of "a priori" 

statistical information has led to such. estimators being r~ferred to as 

deterministic. 

The recursive least squares example quoted here represents an inter­

mediate state in the a priori knowledge, between the relatively primitive 

estimators discussed previously and the Kalman filter which is capable of 

incorporating complex system and measurement models. In Young's treat­

ment, the basic problem is the estimation of a set of unknown parameters 

a j : j = 1, 2, ••• , n, which appear in a linear "regression" relationship 

of the form 

(6.59) 
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where X,; j = 1, 2, •.• , n are exactly known, linearly independent 
] 

variables. In vector form (6.59) becomes 

X 
o 

T 
X a (6.60) 

(the vector inner product) where T denotes the vector/matrix transpose. 

In general, the observation, Z" of x in the presence of measure-
1. 0, 

ment noise, v" then becomes, 
1. 

Z, 
1. 

1, 2, ••• , k 

1. 

(6.61) 

Three basic assumptions are now made about the nature of the measurement 

noise, v. : 
1. 

(1) 

(2 ) 

(3 ) 

E[v, I 
1. 

E[v, 
1. 

E[x, 
-" 

0 

v,l 0
20 where 0 is the Kronecker delta symbol 

] ij 

v. I 0 for all i, j 
J 

These simply state that the measurement noise is white (sequentially/ 

temporally uncorrelated) of zero mean, and that all noise samples are 

uncorrelated with the independent variables, xi' which compose the 

vector ~j. 

Assumptions (1) and (3) are important in demonstratinq that the 

estimate a is unbiased. Assumption (2), however, is used to qenerate -k 

a "covariance matrix" of the estimation errors, P
k

, which has the form, 

"- "­
E[a a] 

n n 

(6.62) 
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where ~ = ak - ~ and E(~l = O. 

The recursive least squares algorithm derived by Young is reproduced 

here: 

.%.k a - [ A2 T r {~-l I -k-l P k-l.!.k 0 + .!.kPk-l.!.k - zk (6.63) 

or A A 
P

k {~-l -~kZkl ~k a -
~ -k-l 
0 

(6.64) 

and [A2 T ]-1 T 
P

k 
p - p x a + .!xPk-l.!.k .!xPk- l k-l k-l-k (6.65) 

The most significant difference between this and other estimators 

considered so far is the inclusion, in the algorithms above, of a recur-

sively updated estimate of the error covariance which is dependent on 

A2 
the variance estimate, 0, , of the measurement noise, v. This variance, 

A2 
o , will be an a priori estimate derived either from the data itself 

or from some alternative independent source. A variance estimator such 

as (6.39) could be used but this form is biased because it does not 

include a "degree of freedom" adjustment. Such an adjustment is, however, 

_provided by the simple en bloc solution, 

1 .. 
k-n 

T I ~ 
.Y. .y. .. k-n [. vi 

i=l 
(6.66) 

where the sum of the squares of the residuals is divided by k-n rather 

than just k, as in (6.39), and n is the dimension of the vector .!.. 

Expression (6.65) also demonstrates that the error covariance is a 

strictly decreasing function of sample size, so that the precision of 

the estimate increases as more data is utilised. This behaviour is one 

manifestation of the statistical property of consistency. 

As a final note on the least squares technique, in general, Young 

points out that this method of estimation can be interpreted from both 
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the maximum likelihood and Bayesian standpoints. For example, if it 

is further assumed that, in addition to its white noise properties, ~ 

has a gaussian amplitude distribution then it is also possible to assume 

"-that the estimation error a also has the same distribution. Since the 

statistical characterisation of the gaussian distribution are completely 

determined by the first two statistical moments (in this case, the mean 

i k and the error covariance Pk ), the recursive least squares algorithm 

can be regarded as a recursive maximum likelihood estimator (9). 

If it is assumed that a priori information on the mean and covari-

ance matrix is available in the form of the initial estimates a and P , 
-0 0 

then the algorithm can be considered as a Bayesian estimator. This 

apparently is a consequence of the application of the "Bayes Rule" 

linking a priori and a posteriori probability statements (9). 

6.3 Optimal Estimation 

This section examines first the linear, discrete form of the Kalman 

filter and considers, briefly, the corresponding equations for the con-

tinuous form. Gelb's treatment (2) is adhered to closely in the presenta-

tion of Section 6.3.1. Other topics then address the problem of identify-

ing parameters modelled into the filter, and specific implementations of 

the Kalman algorithm <selected from research literature) which are 

relevant to the processing of lidar data. Finally, methods for simulat-

ing lidar data are considered, together with comments on their relevance 

as an aid in evaluating filter performance. 

6.3.1 The Kalman Filter 

Although early work in control and estimation theory used 

frequency domain analysis, Kalman's results employ a time domain des-
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scription formulated in "state space" notation. This notation has the 

dual advantages of being both less unwieldy and closer to physical 

reality than frequency domain analysis, and is particularly useful in 

providing a statistical description of system behaviour. The dynamics 

of a linear system can be described using either continuous or discrete 

forms of this notation. 

In continuous form, such a system may be represented by the first 

order vector-matrix differential equation 

(6.67) 

where ~(t) is the system state vector, ~(t) is a random forcing function, 

~(t) is a deterministic control input, and F(t), G(t), L(t) are matrices 

arising in the formulation. In discrete notation, this linear differen-

tial equation becomes 

~+l (6.68) 

where t, r and A are also matrices, corresponding in function to the 

matrices F, G and Labove. 

Either notation may be used but the discrete form is preferred here 

since the lidar data to be analysed forms a sequence of sampled measure-

ments. An adequate system model is obtained if the deterministic control 

input term is dropped and the matrix rk is assumed to be identical to the 

identity matrix, I. Expression (6.68) then reduces to 

~k = ~A-l + ~-l (6.69) 

This represents a system whose state at time tk is denoted by ~(tk)' 

or simply x , where w is a zero mean white noise sequence having a =Jt , 

T 
covariance matrix, Q c E[w ~l. 

k -k '" 
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The measurement, as in the recursive least squares example, is 

assumed to be a linear combination of the system state variables and 

uncorrelated measurement noise, such that 

(6.70) 

where 

is a vector of t measurements, taken at time tk and ~ is a vector of 

random noise quantities all having a zero mean and a covariance matrix, 

T 
Rk = E[Yk ykl. The measurement matrix, Hk , describes the linear combina-

tion of state variables which comprise ~k in the absence of noise. 

Having defined the system and measurement models, a linear recur-

sive estimator is now required, having the general formi 

)( (+) 
-k K' x (-) + K z 

k -k k k (6.71) 

This expression states that each updated estimate, ~k(~)' is a linear 

combination of the previous estimate, ~(-), and the current m~asurement, 

~, weighted in significance according to the time varying matrices, Kk 
and Kk • 

If the relationship between the state estimate and the state error, 

'" ~ (+ or -I, is defined as 

A '" ~(+) ~ + ~(+) 

(6.72) 

~(-) = ~ + ~(-) 

(where (-) and (+) are used to denote terms immediately before and 

immediately after a discrete measurement) then, by substitutinq (6.72) 
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and (6.70), the following result may be obtained; 

'" [K' + K H - Ilx + K'~(-) + K~ k k k =it I\. I\. I\. 
(6.73 ) 

Since one of the properties required of an optimal estimator is that it 

be unbiased, it is therefore necessary that 

'" E[.!x(-) I o (6.74) 

Also, by definition, E[v I = 0, so in order to obtain the result (6.73), 
-k 

the following equivalence must be true; 

K' = 
k 

(6.75) 

The estimator of (6.71) then becomes 

(6.76) 

or, alternatively, 

(6.77) 

Error Covariance Update 

The form of the error covariance matrix was defined earlier in 

expression (6.62) but will be re-defined, here, using the current nota-

tion, such that 

['" _"'xTI E~ (6.78) 

In the recursive least squares algorithm, only oS single expression, (6.65), 

was required to update the error covariance upon receipt of the latest 

measurement. For the Kalman filter, however, the inclusion of oS system 

and measurement model necessitates the derivation of both an "error 
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covariance update" equation and an "error covariance propagation/ 

extrapolation" equation. If the former is considered first, the appro-

.priate form for (6.77) becomes 

(6.79) 

Using equations (6.70), (6.72) and (6.77) the estimation error immedi-

ate1y.after the receipt of a measurement may be expressed as 

'" x (+) 
-k 

Substitution of this result into (6.79) yields 

However, since by definition 

'" '" T Er~(-) ~(-) ] 

and 

p (-) 
k 

(6.80) 

(6.81) 

(6.82) 

(6.83) 

then, by incorporating the requirement that measurement errors be un cor-

related, 

'" T E[~ ~k(-) ] = 0 (6.84) 

the resultant form for the error covariance update becomes 

(6.85) 

The next step is to optimise the gain, K
k

, and this is accomplished 

by minimising the weighted scalar sum of the diagonal elements of the 
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error covariance matrix, P
k

(+). Using the same teechniques as employed 

in Section 6.1.4, a cost function of the form 

'\, T '\, 
E[~(+) ~(+) 1 (6.86) 

is obtained and its partial derivative with respect to Kk is set equal 

to zero. By substituting (6.85) into (6.86), the result obtained is 

o (6.87) 

or by solving for K
k

, 

which is referred to as the "Kalman Gain Matrix". If (6.88) is now sub-

stituted into (6.85) a new form for P
k

(+) is obtained; 

(6.89) 

which is the optimised value for the updated estimation error covariance 

matrix. 

State Transition Matrix Extrapolations 

A distinction is generally made between those quantities which are 

updated "across" a measurement, such as the error covariance of expres-

sion (6.89) above, and the extrapolation of these quantities "between" 

measurements. It is possible to demonstrate [2] that an extrapolated 

but unbiased estimate of the state variable, and a projected value for 

the error covariance matrix, may be obtained over the interval between 

measurements using the state transition matrix,~. The appropriate 

relationships are 
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<I> X (+) 
k-l -k-l 

<I> p (+) <I>T + Qk-l k-l k-l 

(6.90) 

(6.91) 

Expressions (6.69), (6.70), (6.77) and (6.89) through to (6.91) form 

the essential components of the Kalman filter algorithm. If ~k and ~k 

are both gaussian random variables, this algorithm represents the optimum 

linear filter - a non-linear filter cannot do any better. Figure 6.4 

illustrates the complete discrete system in a block diagram form which 

emphasises the functional separation between the mathematical abstraction 

of what the system and measurement processes are believed to be, and the 

filter itself. There is no feedback from the state equation, to those 

calculations at the covariance level, which ultimately serve to provide ~k 

The computer flow diagram of Figure 6.5 reflects this partitioning of 

the algorithm components. 

The Continuous Kalman Filter 

In continuous form, the system and measurement models corresponding 

£0 (6.69) and (6.70) are 

ic F(t)x(t) + G(t)~(t) (6.92) 

~ = H(t)~(t) + ~(t) (6.93) 

where ~ and ~ are zero mean white noise processes with spectral density 

matrices Q and R, respectively. Gelb demonstrates the transition from 

the discrete to the continuous formulation using the following equiva-

lences 
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(6.94) 

Without detailing the necessary steps in the transition between discrete 

and continuous systems, a summary of the important continuous Kalman 

filter equations is presented below. 

The state estimate becomes 

~Jt) F(t).!,Ct) + K(t)[~(t) - H(t).!,(t)] (6.95) 

and the error covariance propagation is 

• T T T 
pet) = FCt)P(t) + P(t)F (t) + G(t)Q(t)G (t) - K(t)R(t)K (t) 

(6.96) 

The Kalman Gain Matrix is then 

T -1 T 
K(t) = P(t)H (t)R (t) when E[~(t) ~ (T)] o (6.97) 

or 

K(t) (6.98) 

when T 
E[~(t) ~ (T)] C(t) O(t-T), where C(t) is an autocovariance 

function. 

EXpression (6.96) is known as the "matrix Riccati equation" and is 

a useful complement to the discrete filter algorithms for predicting 

steady state error covariances, (P = 0). Given the steady state error 

covariance, the steady state Kalman gain is then readily calculated 

using (6.97). 
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6.3.2 Model Identification (The Box-Jenkins Approach) 

Although Box and Jenkins were not the first to study time 

series models, their names are associated with the subject due princi-

pally to its popularisation via their book, "Time Series Analysis: 

Forecasting and Control" [15). A time series may be defined as a col-

lection of observations, ordered with respect to time, which are usually 

expected to be dependent [16). In general they represent an actual 

realisation of some underlying process, and the objective of time 

series analysis is to describe succinctly this theoretical process in 

the form of an observable model having similar properties to those of 

the process itself. 

In order to make meaningful estimates of the primary statistical 

characteristics of a time series (mean, variance and autocorrelation 

function), from a single realisation, it is necessary that such a series 

exhibits the property of "stationarity". Stationarity, as it is defined 

in the "narrow sense", implies not only the absence of any trend, but 

also a mean and variance which are both constant and finite. Applied in 

the "wide sense", stationarity means that all statistical moments are 

constant and finite. A further requirement is that the autocorrelation 

between values of the process at two time periods depends only on the 

separation between these two time points and not on the absolute value 

of the time period itself. If the time series is denoted by Zt' these 

requirements may be summarised as follows: 

and 

2 
C1 

2 
E[(z -~) ] 

t 

(6.99) 

(6.100) 

t > s (6.101) 
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2 
where ~, cr and p(z ,z ) are the mean, variance and autocorrelation 

t s 

respectively. 

Since many time series, derived from real life processes, are not 

stationary, various techniques are recommended for inducing stationarity 

so that methods of statistical analysis may be properly applied. For 

example, least squares techniques can be applied to fit a polynomial to 

the data with the intention of approximating the trend, thereby making 

it possible to remove it. However, in practice, it is extremely diffi-

cult to decide whether a change in the level of a series is of deter-

ministic or probabilistic origin. 

Box and Jenkins therefore advocate the use of an alternative method 

called "differencing" which involves subtracting the observation from one 

another in some prescribed time-dependent order. First order differenc-

ing, for example, is defined as the difference between the values of two 

adjacent observations, and second order differencing then consists of 

taking the differences of a differenced series etc. If the non-station-

arity is a property of the variance, other techniques exist for "stabilis-

ing" the variance~ for example, if the variance is propo~tiona1 to the 

mean level of a series, or changes at a constant percentage rate, then 

a logarithmic transformation may be employed. 

The following outline of the properties of "Autoregressive, Moving 

Average" models was derived from Vandaele [16J. 

Autoregressive Models 

A time series is said to be governed by a first order autoregressive 

(AR) process if the current value of the time series, Zt' can be expressed 

as a linear function of the previous value of the series, Zt-l' and a 

random shock, a. It may be written as 
t 
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(6.102) 

where ~1 describes the effect of a unit change in Zt_1 on Zt and at is 

a zero mean, white noise series of constant variance, 

E[atJ 0 

{:a if t = s 
E[a

t 
a J 

s 
if t "I s 

and E(at,zt_l J 9 

2 
C1 , 

a 
such that 

(6.103) 

(6.104) 

(6.105) 

If (6.102) is used to model a real data series, it will be necessary to 

estimate the value of the autoregressive parameter ~l. 

In general, the Zt'S are regarded as deviations from the mean, ~, 

so that (6.102) could also be presented as 

(6.106) 

or 

(6.107) 

where ~ is the mean of Y
t 

and Y
t 

represents the actual data. Such a pro-

cess is referred to as an autoregressive process of order 1, and denoted 

AR(l), where the order corresponds to the number of parameters, ~, that 

need to be estimated. 

Taking the expectation value of (6.102); 

(6.108) 
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However, since the Zt'S represent deviations from the mean, ~, of a 

stationary series then,- by definition, 

2 
E[ Z 1 

t 

2 
(J 

Z 

2 
E[ Zt_1 1 (6.109) 

Also, the second term on the right hand side disappears (using the exp-

ression (6.105 »), and the third term is simply t.he variance of at 

(according to (6.104» so that (6.108) becomes 

2 
(J 

Z 

2 
(J 

a 
--2 
1 - $ 

1 

2 

(6.110) 

For finite values of the variance, u
z

' $1 is, therefore, limited to 

values of 

(6.111) 

The autocorrelation function of an AR(l) process may be obtained by 

considering, first, the autocovariance of Zt at lag = 1, which is defined 

as 

(6.112) 

By substituting (6.102) into (6.112), it is found that 

(6.113) 

since era Z 1] 
t t-

o. This process may be repeated for lag = 2, again 

substituting for Z using (6.102), and the result obtained will be 
t 

(6.114) 

Proceeding in the same way for all k > 0, the general result obtained is 
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(6.115) 

so that the autocorrelation becomes 

k 
~l for k > 0 (6.116) 

Clearly, then, for values of I~ll < 1, the autocorrelations of an AR(l) 

process will appear to decay exponentially to zero at a rate governed by 

the magnitude of ~l. 

Higher order AR models exist, having more than one lagged variable, 

which may be written as 

(6.117) 

or simply denoted as an AR(p) process. They, of course, have much more 

complicated autocovariance functions than (6.115) and, in general, AR 

process models with p > 2 are rarely invoked because of their complexity. 

Moving Average Models 

Since the basic AR(l) model is obtained simply by summing a lagged 

value of z with a single noise variable, a, it is perhaps to be expected 

that another type of series may be generated by omitting the lagged 

variable, z, but including a lagged noise term, at_I. The resulting 

series, 

(6.118) 

is known as a first order "Moving Average" process, or MA(l). Again, 

in terms of the actual data, as opposed to deviations from the mean, ~, 

(6.118) becomes 
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or 

(6.119) 

It is possible to demonstrate that one advantage of the MA model is its 

ability to represent a process with an infinite number of autoregressive 

terms [16]. For example, the MA(l) process will generate the series 

(6.120) 

and is therefore an economical way of representing complicated models, 

even though the autoregressive parameters are just powers of the same 

basic coefficient, 6
1

, 

Using, again, the white noise conditions specified in. (6.103), 

(6.104) and (6.105), the MA(l) process has a variance derived as follows: 

E[z ) 
t 

2 
(1 

z 

'" 

E[ (at -

2 
E[ (at -

(l + 6
2

) 
1 

2 6
l

a
t

_
l

) ) 

2 2 
261at_lat + ela

t
_

l
) 

(12 ). 
a 0 

The covariance at lag 1 then becomes 

However, repeating the calculation for lag • 2, gives 

(6.121) 

(6.122) 

(6.123) 
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(6.124) 

due to the condition, (6.104). It can be similarly demonstrated that 

Ak = 0 for all k > 2. The autocorrelations therefore become 

(6.125) 

Moving average models of some higher order, 1, can be expressed as 

(6.126) 

or, simply as MA(q). 

ARMA and ARIMA Models 

An AR(l) and an MA(l) process may be combined into a single model 

referred to as an ARMA(l,l) which has the form 

It can be shown [16] that this model has a variance given by 

2 
C1 

z 
A 

o 

with an autocovariance at lag 

and for higher lags, 

1, of 

(6.127) 

(6.128) 

(6.129) 
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The autocorrelation terms then become 

A 
1 

X-
o 

(1 - 4> e )(4) _ e ) 
111 1 

(6.130) 

(6.131) 

Higher order ARMA models are represented by a series of the form 

- e a - ... - e a 
1 t-1 q t-q 

(6.132) 

which may be abbreviated to ARMA(p,q). 

The technique of differencing was presented earlier as the method 

recommended by Box and Jenkins for rendering a series stationary. If it 

is now assumed, for example, that some arbitrary series, Zt' is non-

stationary and that the first difference of the series generates the 

stationary series w
t

' where 

(6.133) 

then Zt and Z could be replaced in the ARMA(l,l) model of (6.127) to 
t-l 

produce 

(6.134) 

This differenced series is then of the ARMA(l,l) form but the process 

for Z is referred to as an "Autoregressive, Integrated Moving Average", 
t 

or an ARlMA(l,l,l) model. As a model of some arbitrary order, this 
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becomes an ARIMA(p,d,q) process where d indicates the degree of differenc-

ing. 

Model Identification Using Sampled Processes 

Each of the models discussed above and presented in order of increas-

ing complexity possess different autocorrelation functions (acfs), rep-

resentative examples of which are illustrated in Figure 7.9. These 

assist in the identification of suitable models which may be regarded 

as at least an approximation to those processes observed in real data 

samples. Many processes, however, possess very similar autocorrelation 

functions. Estimates of these autocorrelation functions obtained from 

real, and therefore finite, data sequences are known as "sample autocor-

relation functions" and are subject to estimation errors which further 

compound the difficulties of uniquely identifying a process. The sample 

autocorrelation functions, T.
k

, may be obtained simply by applying the 

formula 

where c
k is defined as 

I 
n-k 

c
k L ZtZt+k k ?- 0 n 

t=l 

and n is the total number of measurements, z, within a sample. 

Another statistic which may be employed, however, is the "partial 

autocorrelation function" (pacf). It can be shown that any ARIMA(p,d,q) 

model can always be expressed as a pure autoregressive model possessing 

an acf which, although it may decay quiCkly, could also stretch out to 

infinity [161. The partial autocorrelation function constitutes a 
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device for summarising all the information contained in the acf of an 

AR process in a small number of non-zero statistics. Unlike autocorrela­

tions, however, pacfs cannot be estimated using a simple formula but are 

calculated from a solution of a set of equations known as the "Yule­

Walker" equation system [16). 

In any AR model of order, k, successfully applied as a model for 

real data, the coefficient ~k represents a measure of the "excess" cor­

relation not accounted for by an AR model of order (k-l). This, highest 

order, autoregressive coefficient (in this case ~k) is defined as the 

partial autocorrelation at lag k and is denoted by ~kk. Therefore, as 

an example, if a time series process is actually an AR(k-l) process, 

then by successively calculating whether the parameters ~l' ~2' ••• , 

~k-l' ~k should be included in the model, it would be found that ~ll' 

~22' .•.• , ~k-l,k-l would all have values which are different from zero, 

but that the value of ~kk would be zero. 

Box and Jenkins outline a method for calculating both the acf and 

pacf of a time series by applying the techniques of "Univariate Stochastic 

Model Identification" (USIO). Details of this method, in a form intended 

for computer implementation, are appended to the main text of their book 

[ref. 15, part V, algorithm 1) and are to be applied in the data analysis 

of Chapter 7. 

6.3.3 Estimating system and Measurement Noise Parameters 

Application of the Kalman filter algorithm, presented in 

Section 6.3.1, to linear dynamic systems of the kind discussed in Section 

6.3.2 require an exact knowledge of the process noise covariance matrix, 

Q, and the measurement noise covariance matrix, R. Often, however, both 
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Q and R are either unknown or are known only approximately. The investi­

gation of methods for identifying Q and R forms a significant area of 

research in its own right, which is particularly active on the topic of 

"adaptive filtering". This refers to the real time estimation of para­

meters such as Q and R "on line", with consequent modifications to the 

error covariance and Kalman gain matrices, necessary to track the non­

stationarity inherent in many real signal and measurement noise processes. 

The technique discussed here and applied in the analysis of Chapter 

7 originated with R.K. Mehra in a paper entitled "On the Identification 

of Variances and Adaptive Kalman Filtering" (17). His analysis is limited 

to the case in which the statistical properties of Q and R must be 

regarded as stationary, but other techniques have since been published 

which are claimed to be capable of handling the more general time vary­

ing case (17), or are regarded as superior in some other respect [19,20). 

Not all provide estimates of Q and R; some estimate the optimised Kalman 

gain directly. Many of these, however, appear to have been stimulated 

by Mehra's original contribution. 

As an investigation into th~ relative merits of those different 

algorithms was considered beyond the scope of present work, Mehra's 

technique is used in the analysis of Chapter 7, since it generally pro­

duced satisfactory results. It is acknowledged, however, that some of the 

other algorithms may eventually prove to be superior for the purposes of 

processing lidar data. 

The Mehra Alqorithm for Estimatinq Q and R 

It is first assumed that the system under consideration is time 

invariant and that both the system and filter (optimal or sub-optimal) 
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have reached steady state conditions (the latter corres-

ponds to P o in (6.96». Both the system and filter equations are 

identical to those presented in Section 6.3.1 but Mehra uses K 
.s"'''Opl;;",AI 

identify the~steady state Kalman filter gain, 

where 

K 
a 

M 
a 

~[M 
a 

T T -1 T T 
- M H (HM H + R) HM)~ + rQ r 

a a a a a 

to 
o 

(6.135) 

(6.136) 

is the steady state solution to the error covariance equation of (6.85) 

and Qo and Ro denote initial estimates of Q and R. 

In an optimal Kalman filter, for which Q = Q and R = R, M is 
o 0 0 

the optimised error covariance. However, in the sub-optimal case, the 

error covariance estimate becomes [17) 

where 

(6.138) 

To check whether the Kalman filter constructed using some estimate of Q 

and R is close to the optimum or not, the statistical technique of 

"hypothesis testing" is used with the autocorrelation function of the 

innovation sequence. 

For an optimal filter, the innovation sequence, 

= Z. 
l. 

- Hi. (-) 
l. 

(6.139) 

of the filter equation (6.80) is a Gaussian white noise sequence. This 

becomes apparent if the error in the state estimate 
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(6.140) 

and the measurement equation (6.70) are substituted into (6.139). The 

result obtained is, 

V. z. - Hx( -) 
1 1 

Hx. + v. - Hx.(-) 
111 

H(x. - x.(-)) + V. 
111 

He. + v. ( 6 • 141 ) 
1 1 

and by forming the autocovariance function of vi' 

since v. 
1 

dent of 

E[V. v~J 
1 1 

T 
E [ (He. + v.) ( He. + v.) J 

1 1 J . J 

o for j ,J i 

is independent of both e j and v j' for i 

e. and V. I for i < j. Also, Mehra states 
1 1 

E[V
i v.J HMHT + R 

J 

(6.142) 

> j, and v. is indepen-
J 

that 

(6.143) 

for i j, and since v. is a linear sum of Gaussian random variables, it 
1 

is also Gaussian. 

It is further demonstrated by Mehra, that the autocorrelation func-

tion of vi does not depend on i, so that vi is a stationary Gaussian 

random sequence. If the autocovariance of the innovation sequence is now 

given the notation, 

then [17], 
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k-l T 
H[~(I - KB») ~[MH - KC ) 

o 

k o (6.144) 

k > 0 (6.145) 

Upon sUbstitution of the optimum choice of K (expression (6.88) with M 

replacing PI, C
k 

vanishes for all k > O. 

In order to test the innovation sequence, an estimate of Cx is 

required which is obtained using the relationship 

1 N 
N L 

i=k 
(6.146) 

Dividing by N instead of (N-x) yields a biased estimate but Mehra argues 

that (6.146) is preferable since it gives less mean square error than 

the unbiased form. Using approximate results, valid in the limit of 

large N, he also shows that for an innovation sequence consisting of 

white noise, 

= 
1 
N 

(6.147) 

Standard statistical procedures are then applied: having established that 

the 95% confidence limits for {P
k

}, x > 0, are ±(1.96/N~) the set of 

values {Ok} are examined and the number of times they lie outside the 

band ±(1.96/N~) is counted. If this number is less than 5' of the total, 

the sequence v. is said to be white. 
1 

For the analysis of Chapter 7, the set of autocorrelations {px} con­

tained 20 values (k a 1, 20). Since Mehra's whiteness test is ultimately 

derived from a simple statistical test based on confidence limits it is, 

of course, not really necessary to discriminate abruptly between white 

and non-white innovation sequences. Clearly, however, as the number of 

values falling outside the confidence limits decreases towards zero, 
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better filter performance can be expected. 

Estimating Q and R 

If the above test reveals that the filter is sub-optimal, better 

estimates of Q and R are required. These estimates are derived from the 

innovation sequence autocorrelation function and the method proceeds in 

three steps [171: 

(1) First an estimate of the matrix product, MHT is required which is 

obtained via the expression (6.145). If this relationship is expanded 

into its component terffiS such that, 

C 
n 

H<f>MHT - H<f>KC 
o 

where n is the state vector dimension, then it is possible to show that 

[ 17 1, 

C1 + HtKCo 

B* C
2 

+ H<f>KC
1 

+ Ht 2KC
o 

(6.148) 

C + HtKC 1 + ••• + HtnKe 
n n- 0 

where B* is the pseudo-inverse of matrix B which is defined as 
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.~ (6.149) 

By substituting estimated autocorrelation terms into (6.148), an 

. T 
est~mate of MH may be obtained; 

c + H~KC 
1 0 

(6.150) 

Mehra, however, gives an alternative form for this estimate, also derived 

directly from (6.145); 

where 

A 

K~ + A* 
o 

H~ 

H~(I - KH)~ 

(6.151) 

which, as a result of experimental observations, he has found preferable 

to use since matrix A is better conditioned than matrix B. 
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T 
(2) Having obtained the above estimate of MH , an estimate of R can 

noW be derived, simply by using (6.144): 

ft = e AAT 
- H(MH ) (6.152) 

o 

(3) Finally, an estimate of Q must be obtained. A complication arises 

here due to the fact that, in general, the state vector dimension, n, 

need not be identical to the dimension of the measurement vector, r 

(where ~ and ~ are used to denote the state vector and measurement 

vector respectively - see expressions (6.69) and (6.79». This means 

that although the steady state error covariance matrix, M, is square and 

of dimension nxn, the measurement matrix H has the dimensions rxn. Con­

sequently, the estimated quantity, MgT, above will have the dimensions, 

nxr, which means that only nxr linear relationships between the unknown 

elements of Q are available [17]. Therefore if the number of unknowns 

in Q is nxr or less, a solution can be obtained, but if the number of 

unknowns is larger than this, then a unique solution does not exist. 

Fortunately, for the scalar case examined in Chapter 7, n - r • 1, so a 

unique solution for Q = q can be obtained. 

If the expression for the sub-optimal error covariance estimate is 

represented in terms of the steady state error covariance (optimal or 

sub-optimal), then 

(6.153) 

which Mehra solves for the unknown elements of Q by re-writing as 

T T 
M = ~Mt + n + fQf (6.154) 

where 
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(6.155) 

substituting back for M on the right hand side of (6.154) yields 

M (6.156) 

then, by repeating the procedure n times, and separating the terms involv-

ing Q on the left hand side of the equation, Mehra obtains the result, 

k-l 
= M - tkM(tk)T - I tjg(tj)T (6.157) 

j=O 

for k 1,2, ••• ,n 

By pre-multiplying both sides of (6.157) by H and post-multiplying by 

the following result is obtained, 

k-l 
I = MA(~-k)THT _ HtkMAT 

j=O 
k-l 

-jIo 
(6.158) 

k=l, ••• ,n 

where estimated values have been substituted for the theoretical values, 

and where 

(6.159) 

The right hand side of (6.158) is completely determined by MAT and 

Co' but the set of equations this relationship generates is not linearly 

independent. For any particular, non-scalar, case it is necessary to 

choose a linearly independent subset of these equations. 

Mehra proceeds from this point to demonstrate how the optimal gain 
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may be estimated directly. Direct estimation of this gain has the 

advantage that even if the number of unknowns in Q is greater than nxr, 

a unique solution for the optimum gain, alone, may still be obtained. 

In the analysis of Chapter 7, however, estimates of Q and R are obtained 

in preference to the optimised gain, K , because of their relevance to op 

the a priori requirement of system and measurement model identification. 

6.3.4 Estimation of Sampled Data Containinq Sequentially 

Correlated Noise 

An important limitation of the basic linear, discrete Kalman 

filtering algorithm of Section 6.3.1 is that the measurement process of 

(6.70) is restricted to sequentially uncorrelated noise. Upon examina-

tion of the Hull lidar data, however, using the methods of Section 6.3.2, 

it becomes apparent that a correlated measurement noise process was prob-

ably making a significant contribution to the autocorrelation function 

of the data. Similar observations had been reported by at least one 

other research group involved in CO
2 

lidar [1). For the data examined 

in Chapter 7 this process appears, generally, to be restricted to 

approximately the first ten lags, implying the existence of correlation 

over periods of the order of 1 second, assuming a 10 Hz data capture 

rate. 

Sampling of the data at intervals equal to or exceeding 10 lags 

would presumably remove this correlation problem but the existence of 

correlation in the measurement noise implies that an upper limit exists 

to the rate at which independent data samples may be collected. The 

modification to the basic Kalman filtering algorithm presented here is 

attributable to Bryson and Hendrikson (21) and describes a technique 

Which is potentially capable of coping with temporally correlated 
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measurement noise. 

A concise statement of the problem may be made by re-presenting 

the system state and measurement equations using Bryson and Hendrikson's 

notation; 

State: xi +1 ~x. + w. 
~ ~ 

Measurement: z. Hx. + e:. (6.160) 
~ ~ ~ 

e: i +1 
ljIe:. + u. 

~ ~ 

where w. and u. are Gaussian random vector sequences with zero means 
~ ~ 

and covariances, Q and Q, respectively. The state equation remains 

unchanged, but the measurement has two components, one of which desc-

ribes the sequential correlation. 

In general, ~can be regarded as being time dependent, but for the 

application considered here, a constant coefficient system is assumed. 

A conventional approach to this problem involves "augmenting" the state 

vector so that the correlation parameter, ljI, is recursively estimated 

together with the system process, x. State vector augmentation, however, 

also entails augmentation of the system matrices so that, in general, 

the augmented system has matrix components of the form, 

a [-~:--l Ha 
[H : I) x. - -

~ 

(6.161) 

~ 
, 

0 Q 0 
~a I Qa - -

0 . 'I' 0 0 

The system description would then become 
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if> 0 
a x~ + xi +1 

-1- - - - -
l. 

0 'I' 

and the measurement is reduced to, 

Z. l. 
a a 

H x. 
1. 

t~;] (6.162) 

(6.163) 

-1 
so that the measurement noise matrix is zero (Rk = 0 and Rk does not 

exist). Whilst this presents no problem as far as the Kalman gain matrix 

is concerned (see expression (6.SI», both Gelb [2) and Bryson and 

Hendrikson, point out that, if Q is small and if> = I, then the error 

covariance update may become "ill-conditioned"; 

(6.164) 

Since both of these conditions pertain to the system model used in 

Chapter 7, an alternative to state vector augmentation is required. 

In Bryson and Hendrikson's alternative a linear combination of 

Zi+l and z. is used which does not contain £,; l. l. 

I;i zi+l - 'l'z. l. 

Hx. 1 + £i+l - 'l'HX i - 'I'£i l.+ 

Hx. 1 + '1'£ + u
i - 'fIHx '1'£ 

l.+ i i i 

H(if>x. + w.) + u. - 'l'Hx 
l. l. l. i 

(Hif> - 'fIH)x, 
l. 

+ Hw, 
l. 

+ u
i 

(6.165) 

The transformed measurement, 1;" now contains only the purely random 
1. 

sequence, Hw, + u, instead of the sequentially correlated sequence, £i. 
l. l. 

It is therefore convenient to re-state the problem as 
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1. 

measurement: ~i-l 
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r = H x, 1 + U, + Hw, 1 
1.- 1. 1.-

H~ - 'I'H 

Z, - 'I'z, 1 
1. 1.-

and u
i

_
l 

and w
i

_
1 

are independent. 

(O,Q) 

-
(O,Q) 

(6.166) 

By applying the results of basic estimation theory (as used in 

Section 6.3.1), formal "filtering", "prediction" and "smoothing" solu-

tions may be derived [211. However, Bryson and Hendrikson point out a 

distinction between these formal solutions and the actual solutions they 

obtain. Since ~i-1 is based on zi' the prediction of xi based on ~i-l' 

in fact, becomes the best estimate of xi based on zi' Consequently, the 

formal filtering and prediction solutions actually correspond to their 

single stage smoothing and filtering solutions, respectively. In order 

to distinguish between formal and actual estimates they adopt the follow-

ing notation; 

X,_/ = optimal estimate of x, given measurement up to and 
J./K 1. 

including zk' 

actual formal 

.. 
xiii xi 

.. .. 
Xi-Iii 

x
i

_
l 

where xi and X
i

_
l 

are the formal prediction and estimate based on ~i-l. 

Only the filtering solution is considered here (and used in Chapter 

7) and this is summarised as follows; 
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SR- l R T 
Q + HQH , S 

H~ - ~, ~, 1 = z, - ~z, 1 
l.- l. l.-

( I K H
r 

) M (I - K Hr ) T K R T - i-l i-l i-l + i-l Ki _l 

r r T T 
(~ - DH )P, l(~ - DH) + Q - ORO 

l.-

M, , 
l. P, 1/' l.- l. P, 1 l.-

(6.167) 

At least two successive measurements in the sequence {zi} must be avail­

able before the first estimate can be generated and, before the algorithm 

can be used at all, some estimate of the correlation parameter' is 

required. 

6.3.5 Simulating Lidar Data 

Lidar data in the form of normalised return powers, or the 

ratio of such quantities, may be regarded as a composite process with, 

essentially, two components: 

(1) The signal itself, which is representative of the dynamic, 

absorptive state of the atmosphere, integrated over a two-way 

path length between lidar site and topographic target. 

(2) Measurement noise, which corrupts the above signal, and which 

will have various sources of origin between the photo-detection 

stage and normalisation procedure. 

For a pulsed lidar system, the measurement consists of a sequence of 
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temporally discrete samples of this composite process. These samples 

may be identified with the measurement sequences, {zk}' discussed 

above, which form the inputs to the estimation algorithms. 

Speckle is regarded as the primary noise source and is multiplica­

tive in nature rather than additive. In Chapter 5, expression (5.7) was 

used to relate the normalised return power, PR(k) to the product of the 

signal component PR(k), and the speckle component S(k). Both PR(k) and 

S(k) are discrete processes. Therefore, assuming that additive measure­

ment noise terms are negligible compared to speckle, expression (5.7) 

can be used as a model for generating simulated lidar sequences repre­

sentative of either normalised power or power ratio data. If the simu­

lated data is to represent log transformed quantities, however, a simple 

additive relationship can be used instead. 

A Fortran program, SIM9.FOR, was written to generate simulated data 

files and provided a series of options for specifying both the signal 

and the measurement noise, and also the way in which they were combined. 

Various signal processes can be derived from the time series models of 

Section 6.3.2. The principal options provided in SIM9.FOR were: 

(1) A constant value 

(2 ) A first order autoregressive model 

(3 ) A first order moving average model 

(4) Two serially connected autoregressive processes 

(5 ) Two parallel autoregressive processes. 

Figure 6.6 illustrates, in block diagram form, the system models 

provided by options (2), (4) and (5). These are assumed here to be 

capable of generating more realistic approximations to the absorptive 

state of the atmosphere than either a constant value or the moving average 
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model. Each of the autoregressive components used in the last two 

examples are first order processes. In principle, model complexity 

may be increased either by taking a given time series to higher order 

or else by using lower order models as building blocks. Figure 6.6(a) 

illustrates both the discrete and the continuous forms for the first 

order autoregressive process. The continuous representation reveals 

that an AR(l) model is, in fact, equivalent to an integrating unit pro­

vided with feedback. In the absence of feedback, this model reduces to 

the simple random walk. 

Second order processes can be generated by feeding the output of 

one AR(l) unit into the input of another, but their use as system models 

means that, in general, estimates must be provided for both autoregres­

sive coefficients. One common solution to this problem is to assume that 

both coefficients are zero, which yields a process known as the "inte­

grated random walk". Another solution is to set just one of the coef­

ficients to zero, then the model reduces to another common form known 

as the "smoothed random walk". Such models are also capable of providing 

non-stationary time series which may be used where past information on the 

rate of change of x is to be used for a priori prediction (11). 

Figure 6.6(c) represents an alternative approach to model genera­

tion which may be appropriate where the signal process is expected to 

possess a complex frequency power spectrumo For example, one of the 

autoregressive components could be used for generating a random walk 

(i.e. ~l = 0) to provide the trend component, whilst the other contri­

butes an exponentially correlated random variable (0 < '2 < 1). Again, 

however, if used as a system model in the filtering algorithms, estimates 

may be required for both '1 and '20 Also, in general, the state variable 

for both 6.6(b) and 6.6(c) will be of the vector form rather than a 
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scalar, thus necessitating more complex implementations of the filter-

ing algorithms. 

Time series, representative of speckle measurement noise, may take 

two forms depending on whether the composite signal is to be generated 

using a product or a sum. The former will correspond to normalised power 

data and the latter to the logarithm of the normalised power data. In 

both cases the speckle sequence will be statistically independent of the 

signal but, to prevent bias, the first must have an expectation value of 

unity and the second, an expectation value of zero. In Chapter 5 the 

probability density function of speckle noise was identified as being 

closely approximated by the Chi-square function with the parameter, m, 

equal to 3 or 4 (see expression (5.19». 

Various algorithms have been recommended for generating random vari-

abIes with a Chi-square distribution [22, 23, and 241 and the version used 

in SIM9 is attributable to J. Von Neuman. Since the Chi-square sequence 

of order m has a mean of 2m and a variance of 4m, a speckle sequence 

based on this series must be modified to provide the required mean, and 

may also be further modified to match the speckle variances observed in 

real data. If {Sk} is the sequence generated by the Chi-square algorithm 

then the basic speckle sequence is obtained by transforming each Sk using 

a relationship of the form, 

S' 
k a(Sk - 2m) (6.168) 

which has a zero mean and a variance given by 

where a is a variable used to control the variance. In this form it may 

be added to one of the signal processes discussed above to produce an 
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additive composite signal. Alternatively the mean of the series {Sk} 

may be shifted to unity by adding 1.0 to every Sk and the resulting 

sequence multiplied by the signal process, using (5.19) to yield a 

multiplicative composite signal. 

If it is further required that the speckle noise sequence be 

sequentially correlated, the simplest method of providing this is to 

sUbstitute (6.168) for the noise term, at' in the autoregressive process 

of equation (6.102) to obtain the correlated series 

S" 
k 

This will have an autocorrelation function described by (6.116), 

~k for k > 0 

and a variance given by (6.110), 

(6.170) 

(6.171) 

As before, the speckle sequence (6.170) may be additively combined with 

a signal process or, by shifting the mean of this series to unity, each 

term can be used to form a product according to expression (5.19). 

Since the linear Kalman filter requires a linear measurement model, 

the simulations considered in Chapter 7 use additive composite signals 

to represent log transformed data directly. The alternative is to 

generate a multiplicative simulation and log transform this, but since 

the transformation is non-linear, the advantages of using time series 

with pre-defined statistical properties would be lost. 

Simulated data files in which the component processes are completely 

specified find immediate application in the testing of estimation algo-

rithms since the estimate is readily compared with the true signal. 
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This is particularly true for the Kalman filter where the noise covari-

ance matrices, Q and R, will be known in advance. Checks can be made 

on the filtering algorithms to ensure that the steady state values of 

the error covariance and Kalman gain matrices (P~ and K~) converge to 

their predicted values. 

is error free, estimates 

Having established that the algorithm coding 
may be obtained 

of Q and R, using the Mehra techniques for 
A 

instance and compared with the known values. Steady state values of p~ 

and K based on the estimates, Q and R, may then be compared with the 
~ 

values obtained using Q and R. Similar procedures may be employed with 

the Bryson and Hendrikson algorithm. 

It is apparent, in fact, that there are many ways of using simula-

tion to determine the sensitivity of an estimation algorithm to varia-

tions in any of the model parameters. If differences in model complexity 

are also introduced, between simulation and filter, the potential area 

for investigation rapidly expands. Chapter 7 includes a brief evalua-

tion of filter performances based on four simulated data files. Estimated 

values of Q, R, p~ and K~ are compared with their anticipated values, 

using the basic linear (discrete) Kalman filter, the Mehra algorithm, and 

the Bryson and Hendrikson filter for both white and correlated measure-

ment noise sequences. 
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CHAPTER 7.0 

DATA ANALYSIS 

Prior to any data analysis of multiple lidar returns, it was 

difficult to predict exactly how many pulse pair returns would be 

necessary for the subsequent application of various estimation methods. 

In fact, as described earlier in Chapter 6 and evidenced later in this 

chapter, the successful application of any estimation method tends to 

be an iterative process in which the most elementary methods are applied 

first in order to gain information which need not always be of a quanti-

tative nature. 

Typical normalised variances are dependent on the amount of aperture 

averaging affected by the optical receiver configuration of a particular 

lidar system but, in the heterodyne detection limit, they reach a maxi-

mum of unity (approximately) [1]. For this worst case variance, and 

assuming a constant signal, precisions of the order of 1% can be achieved 

by averaging 10,000 pulse pairs, since variance reduction for a constant 

signal is inversely proportional to the root of the number of samples 

used. 

A central assumption in this work, however, is that the signals to 

be estimated are not constant over the duration of the experiment and 

that simple averaging methods are not valid. Support for this assump-

tion was already available in the work by Killinger [4] in which he 

-~ demonstrates the departure from the N dependence using databases con-

sisting of the order of 20,000 pulse pairs. His method of analysis 

will be discussed later but database populations of this magnitude 

appear appropriate for his methods. 
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Clearly, however, if traditional estimation methods are to be 

applied in which averaging techniques are implicit, large sample quanti­

ties are necessary. This will be true regardless of whether a single 

value estimate, or a time dependent estimate is to be extracted from 

the measurement sequence. Optimal estimation methods will help minimise 

, the number of samples necessary to achieve a desired accuracy but sample 

records beyond this minimum will, in general, still be desirable for the 

analysis of the temporal evolution of the estimated parameter. 

The above considerations indicated that each measurement sequence 

consists of at least a few thousand shots. An upper limit of 10,000 

shots was, however, imposed by constraints of a practical nature. 

Although the dual laser system was capable of high rep rates for short 

durations, an optimum prf of approximately 10 Hz was used since this 

tended to maximise the number of firings before arcing occurred. Also, 

beyond a measurement duration of ~ 25 minutes, thermal instabilities 

tended to necessitate re-alignment and the cryogenic cooling of the LTT 

detector sometimes caused misting of its zinc selenide window. Therefore, 

to maximise the number of valid measurements, a standard measurement of 

10,000 samples was decided upon which required approximately 17 minutes 

to collect. 

Preparation of the lidar system prior to each experiment required a 

considerably longer period of time than the measurement duration. Between 

measurements it was necessary to: 

(i) perform some preliminary analysis on the data of the previous 

measurement: 

(ii) evacuate both low and high pressure gain sections: 

(iii) fill them with the appropriate laser gas mixture and check 

for correct lasing action in all four gain sections: 
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(iv) line tune each hybrid to the wavelength selected for the next 

experiment; 

(v) align both laser outputs into the transceiver; and finally 

(vi) check the correct operation of both signal processing electronics 

and the data capture software. Such a procedure tended to limit 

the number of measurements to a maximum of three per day but with 

an average nearer two per day. 

In order to ensure that no unrecorded modifications were made to the 

system between measurements a formal method of recording all system vari­

ables and ambient conditions was devised. Temperature, humidity, date, 

time, amplifier gains, laser lines ~e1ected, voltages used, output ener­

gies, waveform recorder sample interval, intra pulse pair delay, and data 

file names are typical examples of the information recorded. 

7.1 Selected Measurements 

The sequence of measurements performed can be partitioned into two 

phases. The first was essentially a fine tuning phase in which many 

measurements were made with each laser tuned to the same wavelength. 

Primary goals were the refinement of the transmitted pulse normalisation 

hardware and adjustment of the dynamic range to levels comparable with 

the return pulses, optimisation of the signal processing electronics, 

and refinement of the data capture software. 

Phase two formed the experimental period, proper, and three cate­

gories of experiment were planned: 

(i) Having refined the system as far as was possible within practical 

time constraints, an immediate requirement was to test the system 
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with both lasers tuned to the same wavelength. Under ideal 

conditions, of course, both channels should yield identical 

information about the absorption in each channel, but differences 

of systematic origin had been anticipated. Measurements of this 

sort would help quantify the magnitude of these errors, but 

would also be useful in assessing the estimation techniques 

applied later in this chapter since their performances on the 

data from each channel could be expected to be highly correlated. 

The wavelength selected for these measurements was the R18 transi-

tion at 10.2604 microns. This was chosen primarily because of its 

close proximity to other wavelengths (later to be used for absorp-

tion experiments) which tended to minimise the amount of 1aser/ 

transceiver telescope alignment necessary after each re-tune. 

Other influential factors, however, were its relatively high line 

strength and relatively low absorption by H20. 

(ii) . A principal target for any CO
2 

1idar system 1ntended for gas con-

centration measurements is H
2
0 (if within the tunable range of the 

lasers used), simply because of its abundance. It is also often 

the principal interfering species when measuring the concentration 

of other species. Laser lines selected for the monitoring of H
2

0 

were extracted from various authors' recommendations, together 

with their published values for the absorption coefficients 

[Table 1.1, References 2,3). The R20 transition at 10.2466 microns 

is usually recommended as the measurement wavelength, but either 

R18 at 10.2604 microns or R16 at 10.2744 microns appear to be 

reasonable choices for the reference wavelength. Measurements 

were made using all three wavelengths and the results based on 

these files will be presented in this chapter. 
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(iii) Of particular importance as atmospheric pollutants, however, 

are ammonia (NH
3

) and ethylene (C
2

H
4

), for reasons discussed in 

Chapter 1. Measurements of these gases were attempted, again 

using recommended lines and quoted absorption coefficients. For 

ammonia, the recommended laser transitions for the measurement 

at CO 2 wavelengths is often RS at 10.3337 microns with R12 at 

10.3035 microns as the reference. Ethylene monitoring requires 

the use of P branch transitions with P14 at 10.5321 microns as 

the measurement wavelength and P28 at 10.6746 as the reference 

wavelength. Results based on these measurements will also be pre­

sented in this chapter. 

Before proceeding, first to the application of sub-optimal methods 

to the above measurement data, it is worth stressing here that the 

achievement of high precision concentration measurements i, not a 

primary objective of this work. Uncertainties in the differential absorp­

tion coefficient due to species interference, the effect of pressure and 

temperature variations on these absorption coefficients (known or other­

Wise), and systematic errors were discussed in Chapter 5 and tend to pre­

clude accuracies better than a few per cent. 

Of fundamental importance, however, is the difficulty in corroborat­

ing gas concentration estimates based on an atmospheric path length of 

2 x 1.S km. A conventional 'hair based' hygrometer was used to monitor 

humidity at the lidar site and could therefore be used to compare relative 

humidity estimates resulting from the measurements. Discrepancies between 

these estimates and the hygrometer reading are difficult to interpret, 

however, since the latter instrument is limited in accuracy to a few per 

cent and the comparison would be between a point sensor and a path 

integrated measurement in close proximity to the open water of the Humber 
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estuary. For the ammonia and ethylene measurements, no means of cor­

roboration were available but ambient levels of both gases could have 

been greater than the global average due to the close proximity of 

various industries. 

Although there is a clear limit to the precision with which any 

• absolute concentration measurement can be stated under these circum­

stances it is still an important independent requirement to be able to 

estimate accurately normalised return powers, their ratio and of a more 

direct interest, the natural logarithms of both quantities. Where appro­

priate, therefore, estimations of these quantities are translated into, 

and presented as, concentration profiles (and relative humidity profile 

for H20) but their primary significance is as an indication of the 

temporal evolution of the absorptive state of the atmosphere over the 

duration of an experiment. 

Many of the graphs included in this chapter contain information in 

their titles relating to the version number of the program used to process 

the data, processing parameters used, and data file names. These have 

been preserved here to provide a reference should any subsequent use be 

made of these files. 

7.2 Preliminary Analysis 

7.2.1 The Estimation Problem 

Menyuk and Killinger appear to be the first to explicitly 

state a problem fundamental to lidar estimation, and in fact relevant 

to any other situation in which a parameter must be estimated from noisy 

data by taking many samples over a period of time during which that para­

meter may be expected to vary [4]. They used large measurement sequence,. 
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in excess of 20,000 normalised returns, to demonstrate the departure 

from the N-~ dependence often assumed to exist for the standard devia-

tion of an estimate based on an average of N samples. As indicated 

when establishing the relationship (6.6), this will only be true in 

certain cases (if, for example, the estimated parameter remains constant 

, whilst the samples are being collected). 

Figure 7.1 is a confirmation of their findings based on a measure-

ment sequence of 10,000 single channel normalised lidar returns. Their 

method of analysis was repeated for this measurement and the figure 

clearly illustrates how the standard deviation of the estimate shows 

significantly less improvement as the number of samples increases. 

Logarithmic transformations (base 10) of both axes have been applied to 

conform to the method of presentation adopted by Menyuk and Killinger. 

The curve, (b), was derived by applying the segmental averaging techniques 

of Section 6.1.2 in which the total number of samples, N, is divided into 

M (= N/k) subsets of data. Each k sample forms M independent averages 

and the standard deviation, ~~ is calculated using 

2 
o 

k 

Where I. = 
~ 

p 
i 

+ + 

- p 

p 

and P is the average formed using the entire data set (N values). 

(7.1) 

This result is a direct consequence of applying averaging techniques 

to data sequences having non-zero autocorrelation functions. It indicates 
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that successive samples are not independent, and that this lack of 

independence may be due to a non-stationary absorptive state of the 

atmosphere and/or temporal correlation in the measurement noise. Figure 

7.1 is typical of all the lidar data analysed in this way at Hull Uni-

versity and indicates the existence of a positive autocorrelation 

'function. It is worth noting here that, in a hypothetical situation 

in which the autocorrelation function at all lags were to collapse 

towards zero, curve (b) would then approach curve (a). It has been 

suggested that, if the autocorrelation function should become negative, 

then averaging techniques could actually provide an improvement over the 

theoretical N-~ dependence, and this situation is indicated in the hypo-

thetical curve, (c) [5]. 

Menyuk and Killinger's most important conclusion, however, is 

that, if the autocorrelation function, 

fi 
1 

N-j 

L I I k+ j 
(7.2 ) 

cr 2
(N_j) k=l k 

2 1 
N 

2 
where cr L I 

N 
k=l k 

is any monotonically decreasing, or constant function of delay time, 

then the variance reduction achievable by averaqing reaches the funda-

mental limit, 

(7.3 ) 

Expressed as a variance reduction ratio, thit limit becomes 

K (7.4) 



- 209 -

Therefore, "as long as the monotonically decreasing temporal cor­

relation coefficient, P
k

-
l

, has a finite value for a given time interval 

(lag), that value limits the improvement in the standard deviations that 

can be obtained by signal averaging regardless of the number of pulses 

averaged during that interval" [4]. 

It will be seen later that some of the measurements analysed 

exhibit finite autocorrelation functions as large as Pk>lO ~ 0.1 which 

would limit averaging techniques to a maximum useful sample of k ~ 10, 

yielding an accuracy no better than approximately 30%1 

7.2.2 Sub-optimal Estimation Techniques 

The sub-optimal methods applied in this chapter are restricted 

to just two techniques: the as tracker and the running average. Both can 

be made to produce very similar results and leave only one parameter for 

adjustment according to the user's discretion. Restricting the techniques 

applied here has the advantage of avoiding multiple plots of estimates 

which differ only slightly in consequence as well as appearance. 

The as tracker has already been used in Chapters 2 and 5 as a means 

of filtering data to reveal salient features of an estimated process. 

Examples presented in Figures 5.4(b) and (c) illustrated its application 

to the filtering of raw digital values corresponding to the transmitted 

reference and return powers, whilst Figure 5.4(d) is an example of its 

application to the normalised power values formed by ratioing these 

digital values prior to filtering. This filtering procedure was in fact 

repeated immediately after each measurement to provide an initial check 

on the data and to reveal the presence or absence of any trend. 

Figures 7.2(a), (b), (g) and (h) are four representations of the 

state of relatively raw, unfiltered data for a particular measurement 
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using the R20/R18 lines. The first two illustrate the normalised 

powers measured in each lidar channel, here denoted 'A' and 'B', but 

(g) and (h) respectively show their ratio and the logarithm of the 

ratio. Each of these plots illustrates 1000 points extracted by a 

graphics routine which samples every tenth value from the original 

data set. 

Figures 7.2(a) and (b) use identically scaled axes to permit 

direct comparison of graphs presented in sequential order, and this 

method of presentation will be adopted wherever appropriate throughout 

Chapter 7. Ordinate axes expressing normalised power, or functions 

thereof, refer to the dimensionless quantities formed by ratioing the 

digitised voltage corresponding to the received and transmitted powers 

per channel (details of the normalisation method are presented in Chapter 

2 and further discussed in Chapter 5). All graphs forming Figure 7.2 

are derived using the same measurement file (SIFT5.045). 

A significant difference in the "mean" signal level is immediately 

apparent between the two channels (7.2(&) and (b)) and this is directly 

attributable to the fact that this measurement was conducted using a 

pair of lines suitable for water vapour measurement: the R20 line corres­

ponds to channel B and has an H
2
0 absorption coefficient nearly an order 

of magnitude greater than that of the reference line, RIa corresponding 

to channel A (see Table 7.1). Figures 7.2(a) and (b) also clearly demon­

strate the multiplicative nature of speckle noise. When forming the 

ratio of the normalised returns in each channel, the resulting quantity 

can therefore be expected to exhibit a large dynamic range and this is, 

in fact, illustrated in Figure 7.2(g). Forming the log-ratio then com­

presses the dynamic range as shown in Figure 7.2(h). 
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By comparison, Figures 7.3(a) and (b) show the normalised power 

returns obtained using both lasers tuned to the same line (RIB) for 

the data file, SIFTS.026. Correlation coefficients obtained for data 

in this state (that is, after normalisation but prior to filtering) are 

typically close to 0.9 and, by superimposing both figures for the parti-

• cular example illustrated, it is possible to detect this correlation 

visually. 

7.2.2.1 Estimates of Normalised Power Data 

Figures 7.2(c) and (d) present the results of applying 

respectively, an as tracker (critically damped - see Section 6.2.2) and 

a running average to the normalised powers recorded in channels A and B 

corresponding to the water vapour measurement lines Rl8 and R20. In each 

case a single parameter is used to control the degree of filtering - alpha 

for the as tracker and n for the running average (equivalent to the number 

of samples averaged to form each estimate in the curve - see Section 6.1.3). 

The values of a and n used in Figures 7.2(c) and (d) were selected heuri-

stically by applying different values to various data files, specifically 

to channels for which relatively high returns were obtained, and attempt-

ing visually to achieve a balance between "over" and "under" filtering. 

In applying these subjective criteria, the primary goal was to assess 

the presence or absence of trend. 

-3 A single value of a(= 3.0 x 10 ) and n (- 200) has been used for 

each channel but, because the speckle induced variance is significantly 

different between channels, the degree of filtering which results also 

differs considerably. For the purposes of discerning trend on a time-

scale shorter than the duration of the experiment, the estimate for 
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channel A would seem sufficiently responsive, whereas the channel B 

estimate would appear more suitable for detecting changes in absorption 

occurring over a duration greater than that of the experiment. 

It is possible to select the values of a and n such that the 

variance reduction is identical for each method. This has not been 

attempted in Figures 7.2(c) and (d). Using the values of a and n indi-

cated above, running average, in fact, produces a "noisier" estimate 

than the as tracker. This difference is discernible from the figures, 

but less obvious i6 the lag which results from differences in the filter 

responsivity which, in turn, are dependent on the selected values of a 

and n. A low value of a, or n, produces a very responsive, but noisy, 

estimate and vice yersa. The as tracker, of course, also provides an 

estimate of this responsivity since the recursive algorithm (Section 

6.2.2) generates both zero and first order differentials of the estimated 

parameter. 

Other values of a and n could have been applied here but, without 

some quantitative guidance as to whether one value produced a "better" 

estimate than another, the only result would have been a multitude of 

graphs illustrating various degrees of filtering. It could be argued 

that some guidance is available, for instance, via the variance reduction 

ratio quoted for the as tracker in Section 6.2.2. Figure 7.4 is a plot 

of this reduction ratio (K) as a function of a. -3 
If a - 3.0 x 10 , the 

-3 corresponding value of K is approximately 2.0 x 10 which, for a nor-

ma1ised power variance of 25% (typical for the Hull 1idar system), would 

appear to offer an improvement in accuracy down to approximately ±2%. 

Figure 7.4, therefore, would seem to imply that further improvement 

can be obtained simply by going to even smaller values of a until, in the 

limit as a + 0, the estimate is entirely error free. This is true, 
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however, only for the special case in which the estimated parameter is 

actually a constant. For any parameter exhibiting time dependency there 

will be an optimum, finite, non-zero value of a dependent on the frequency­

power spectrum of the estimated parameter (or its statistical/stochastic 

properties, depending on the type of analysis applied). 

Application of filtering in excess of the optimum represents a 

degradation in precision in just the same way as under filtering: in the 

former case the excess noise manifests itself in an inability of the 

filter to track sudden changes in the parameter being estimated. Under 

filtering leaves an excess of noise, originating in the measurement pro­

cess, remaining in the estimated parameter. 

If the as tracker and running average are now applied to the data 

file for which both lasers were tuned to the same wavelength (SIFTS.026), 

the results obtained are as presented in Figure 7.3(c) and (d). Both 

methods used the values of a and n employ~d previously. Although highly 

correlated, as expected, both figures reveal a discrepancy between the 

absolute values of the estimates of up to, approximately, 10%. The exact 

magnitude of this discrepancy will obviously depend on the estimation 

method used but the presence of a systematic error is clearly indicated. 

Various possible sources of such errors were anticipated in Chapter 

5 but the consistency with which the estimate of channel B falls below 

that of channel A (for both filters) suggests a relatively constant dis­

parity in the percentage energy losses occurring in one or more of the 

following: 

(a) the transmitter optics, 

(b) the receiver optics, and/or 

(c) the reference beam optics. 
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The predicted energy losses, based on simple beam waist considera-

tions and presented in Figure 5.1, suggested a discrepancy of between 

5% and 10% due to the diameter of the flat used in transmitter telescope. 

Some variation in the apparent magnitude of this discrepancy, however, 

is also evident over the duration of the measurement, perhaps attributable 

to changes in the beam mode energy distribution superimposed upon a primary 

cause of disparity of the type indicated above. 

7.2.2.2 Estimates of the log of the Normalised Power 

Applying the logarithmic transformation (base e) to the data 

of Figures 7.2(a) and (b), before using the as tracker and running 

average, yields the estimates illustrated in FigUres 7.2(e) and (f). 

Here, again, the selected values of a and n are maintained at the same 

values as before for reasons of consistency. Perhaps the most salient 

feature of these two estimates is the extent to which the non-linearity 

of the log transformation has compensated for the different variances in 

the original data from channels A and B. This is attributable to the 

approximation [6], 

a[ln(x)] (7.5) 

Which states that the standard deviation in the log of a variable is 

approximately equal to the normalised standard deviation of the variable 

itself. Under this transformation, therefore, the estimates appear to 

have equivalent variances. In other respects, however, the same comments, 

applied to the as tracker and running average in the previous section, 

apply here also. 
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For the dual channel, single wavelength measurements, estimates of 

the log transformed data are shown in Figures 7.3(e) and (f). Further 

consideration will be given to this file in Sections 7.2.3 and 7.3. 

Figures 7.S(a) through to 7.S(h) illustrate running average esti­

mates of log-transformed, normalised power data for other files, most of 

• which will also be considered later in this chapter. A single value of 

n (= 200) was used to produce all of the estimates in these figures, with 

the exception of 7.S(g) for which n = 50. This example may be compared 

with the previous figure, 7.S(e), which presents the running average 

estimate (n = 200) for the same data file, SIFTS.044. Table 7.1 lists 

these file numbers, together with the laser lines used, their absorption 

and differential absorption coefficients for H
2
0, CO

2
, NH3 and C2H4 , and 

example values of the log ratios expected for typical concentrations of 

these gases. 

7.2.2.3 Estimates of the log of the the Ratio of the Normalised 

Powers 

Once again, the same values of a and n have been applied to 

generate the estimates presented in Figures 7.2(i) and (j). In forming 

the ratio, features characteristic of channel A data now dominate the 

estimate (c.f. with 7.2(c) and (d)) due to the higher mean signal level 

detected in this, the reference channel. 

Concentrations and relative humidity profiles could, obviously, now 

be derived from these two estimates. This final transformation of the 

data will, however, be deferred until some quantitative statement can be 

made regarding the precision of the estimate on which they are based 

(Section 7.3). Before proceeding to the application of techniques which 

will help identify characteristics of the signal relevant to the task of 
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building an optimal filter, the as tracker and running average are 

applied in a final qualitative evaluation, this time using simulated 

data. 

7.2.2.4 Simulated Data 

Techniques used in simulating data were discussed in Chapter 6 

but, in essence, they assume that two dominant processes contribute to 

the composite signal detected and recorded as lidar data. The first is 

the variation in the power, or power rati~attributable purely to random 

changes in atmospheric absorption, and the second is measurement noise 

which is produced when these pulsed powers are optically averaged and 

electronically detected. The latter is dominated by the phenomenon of 

speckle and is due to the partially coherent field of laser radiation 

collected by the receiver telescope which, when imaged at the active 

element of the detector, produces the time dependent granular pattern of 

illumination known as speckle. Although the mean power associated with 

this optical field may be constant, pulse to pulse variations in the 

power detected are significant due to changes in the imaged speckle pattern 

between shots. 

Figures 7.6(a) and (b) illustrate two simulated sequences of log 

power data, each of which assumes a constant value of -1.5 for the log 

of the normalised power in the absence of speckle. Both examples display 

an additive speckle sequence of constant normalised variance, generated 

using the Chi-square random variable with m = 3 (see Section 6.3.5). 

However, whereas in Figure 7.6(a) this sequence is temporally uncorrelated 

("white" speckle), in 7.6(b) the same sequence was processed to exhibit 

exponential correlation ("coloured" speckle) and has a correlation coef­

ficient which decays to 0.1 after 5 "shots". 
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If the as tracker is now applied to both sets of data, using the 

-2 
same value of a(= 3.0 x 10 ) as used before, the results obtained are 

as illustrated in Figures 7.6(c) and (d). Each of the samples forming 

the correlated speckle example are not completely independent, with the 

result that the effectiveness of any estimation technique applied to 

\ such data is actually diminished compared to an equivalent signal for 

which the speckle is uncorrelated. This difference appears in these 

two figures as discrepancy in the visually discernible variance of the 

estimates; the correlated speckle case exhibits a higher variance than 

the alternative with uncorrelated speckle. 

Figures 7.6(e) and (f) reproduce these results using the running 

average with n = 200. Since the running average estimator, with n = 200 

has a higher responsivity but lower variance reducing properties than the 

as tracker with a = 3.0 x 10-3 , the differences in variance reduction 

achieved is even more conspicuous in these two examples. 

A constant mean was used in the previous example to provide an uncom-

plicated demonstration of the significance of correlated measurement noise 

in limiting the number of samples which can be regarded as effectively 

independent. It is, however, an unrealistic model of the real absorption 

Signal. During a prolonged measurement, the absorption characteristics 

of the atmosphere, at any CO2 laser wavelength, over a two way path length 

of 3.6 km, are unlikely to remain constant in the presence of an absorbing 

species such as H
2

0 which has a non-uniform temporal and spatial distribu­

tion. In general, it can be expected to vary in some non-deterministic 

manner with statistical properties dependent on ambient conditions such 

as wind, turbulence and advection, manifesting changes over periods both 

long (equivalent to trend) and short compared with the duration of the 

measurement. 
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Methods for quantitatively identifying the statistical properties 

of discrete ~~asurements of the absorptive state of the atmosphere were 

discussed in Chapter 6 and will be applied later in this chapter. 

However, since complex signal model identification is not a primary 

objective of this work, a simple non-deterministic model is employed 

here which will be justified later and which is capable of providing an 

approximation to the randomly varying absorption characteristics of the 

atmosphere. This model is the "random walk" which, in discrete notation 

has the form 

(7.6) 

where w is a zero mean gaussian noise sequence having variance, q. The 

random walk has a power spectral density function which is uniform out to 

some maximum cut off frequency governed by the driving noise variance, q. 

It also forms a non-stationary time series, having a variance which 

increases as k and is therefore infinite for an infinite series. For 
q 

a finite sequence, however, the non-stationarity of the random walk is 

useful for modelling trend. 

Figure 7.7(a) illustrates a random walk signal initiated at x 
o 

-1.5 and having a driving noise variance of q = 10-5 • This value of q 

is somewhat arbitrary but produces a plausible representation of the way 

in which the logarithm of the return power (in the absence of speckle) 

may be expected to vary. The speckle sequences used in Figure 7.6(a) and 

7.6(b) for the constant signal case have been added to this random walk 

to produce the composite signab shown in Figures 7.7(b) and 7.7(c) 

(7.7(c) is the correlated version). 

-3 The as tracker estimates (a • 3.0 x 10 ) for both speckle versions 

are presented in Figures 7.7(d) and 7.7(e) where, once again, the larger 
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variance of the correlated speckle estimate, (e), is discernable. As 

before, the running average estimates (n = 200) are also presented here 

for both types of speckle (Figures 7.7(g) and (h)) and, in common with 

Figures 7.6(e) and (f), differences in the estimated variances between cor-

related (7.7(h)) and uncorrelated (7.7(g)) speckle are more pronounced. 

The speckle independent random walk signal of Figure 7.7(b) has been 

included in all figures, 7.7(d) to 7.7(h) (broken line) to facilitate 

these comparisons. 

Both of these simulated data files, for the random walk log power 

signal with correlated and uncorrelated speckle, will be used again in 

Section 7.3 when evaluating the optimal estimation method. 

7.2.3 Model Identification 

In applying the optimal estimation techniques of Kalman filter 

theory, a central requirement is to be able to specify the signal and 

measurement process according to the formal methods discussed in Section 

6.3.1. The discrete formulation of the signal process, in a generalised 

form, was presented there as 

~k+1 ~ x + r w + A~k 
~k k k 

(7.8) 

and for the measurement, 

(7.9) 

where x denotes the state vector, ~ is the state transition matrix, ~ 

and ~ are vectors of random processes, r is the noise covariance matrix, 

~ is a vector of deterministic (control) inputs, A, its associated matrix, 

and H is the observation matrix. 
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For the scalar, single channel processing requirements discussed 

here, the above relationships reduce to the scalar form, 

(7.10) 

(7.11) 

where the vector/matrix notation has been dropped because it is no longer 

required, and where the deterministic control input term has been omitted 

because it does not apply. In pursuing the Box-Jenkins approach, time 

series formulations of the Auto Regressive, Moving Average (ARMA) form 

were considered adequate models for approximating the random process, 

assumed to be governing the temporal dependence of the absorptive proper-

ties of the atmosphere. The general form of the ARMA (p,q) model was 

represented by 

- 6 w 
q k-q 

where the ~. are autoregressive parameters which describe the effect of 
~ 

unit changes in x
k

-
i 

on x
k

' and the 6
i 

are moving average parameters 

which describe the effect of past errors on x
k

• 

To be able to specify the signal process completely, using such a 

model, it is clearly necessary to be able to estimate the values ~i and 

6. for as many terms as are required to yield the desired accuracy. Many 
~ 

files examined using preliminary analysis techniques, such as the as tracker 

or running average, appeared to reveal signal processes which varied from 

stationary sequences (in the sense that little trend was evident) to those 
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which exhibited trend over periods both short and comparable to the 

duration of the measurement. The presence of significant temporal cor­

relation, however, was always evident in the sense that none of the 

estimates appeared to be converging to the single valued estimate, 

characteristic of a stationary, white noise sequence, when filters were 

, applied having characteristic time constants shorter than the duration 

of the measurement. 

Much of the validity, in fact, of applying techniques such as the 

as tracker and running average depend on selecting the responsivity such 

that, on the one hand, the responsivity is not too sluggish to reveal 

changes in absorption of a duration short compared with the measurement 

duration but, on the other hand, having a responsivity long compared to 

the temporal correlation expected of the measurement noise. Some guidance 

as the magnitude of the lower limit was available in the earlier work of 

Menyuk and Killinger [4]. For the running average, for example, 200 

samples were used to form every estimate: 100 of these were samples 

prior to the estimate point and 100 after the estimate point. Since the 

samples were collected at approximately 10 Hz, 200 samples corresponds 

to a characteristic time constant of approximately 20 seconds. This is 

clearly short compared to the duration of the measurement but long com­

pared to the atmospheric decorrelation time of 1 or 2 seconds, expected 

for speckle phenomena. 

The remainder of this section is devoted to the application of auto­

correlation techniques which are capable of providing some quantitative 

information on the composite signal, particularly with regard to its pos­

sible components. The "composite signal- is defined here to be that 

signal which results purely from variations in atmospheric absorption, 

combined with either multiplicative or additive measurement noise result-
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ing from speckle. Additive speckle measurement noise is only available 

once the data has been log transformed. The additive noise case, 

however, is dealt with exclusively from now on due to its suitability 

for applying the methods of optimal estimation. 

7.2.3.1 Log Power Data 

The analysis used throughout Section 7.2.3 applies the 

"Univariate Stochastic Model Identification" (USID) technique outlined 

by Box and Jenkins in "Time Series Analysis", part V, algorithm 1 [7) 

and discussed in Section 6.3.2. A single Fortran program, PUSID.FOR, 

encoded and developed by Dr. B. J. Rye of Hull University, Department of 

Applied Physics, incorporated all the algorithms discussed here. Provi­

sion for the processing of seasonal data was not included in the program 

since periodic components were not expected to be a feature of the data. 

This data is assumed to exist as normalised powers in two sequential 

access files, PA.IN and PB.IN, corresponding to the two wavelength 

channels. 

The program then provides the option of performing both an auto­

correlation and partial autocorrelation on the data in this basic state 

or after several transformation options. These options are: 

(1) PA.IN, PB.IN - no transformation 

(2) Ln(PA.IN), Ln(PB.IN) 

(3) Ln(PB.IN/PA.IN) 

If the log transformations are selected, then a further option 

exists for including a "transformation shift" to move the data sequence 

away from zero or negative numbers. 
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Having selected the type of transformation, the degree of non­

seasonal differencing may then be specified and finally, there is 4 

further option of "pre-filtering" the data. If required, either "block 

averaging" may be used which is equivalent to applying the segmental 

average of Section 6.1.2, or else the data sequence may be sampled at 

some specified interval. 

Figures 7.8(a) to 7.8(f) illustrate the results of applying PUSID 

to the two data files originally examined in Section 7.2.2. Each of the 

figures displays two curves; the solid line is the autocorrelation func­

tion (acf) of the log transformed normalised power data and the broken 

line is the corresponding partial autocorrelation function (pacf). Most 

figures are presented in pairs with channel A data uppermost and channel 

B data below (normalised powers are denoted PA and PB). Examining the 

data from file SIFTS.026 first, (Figures 7.8(a) and 7.8(b)), it is appa­

rent that both the acf and pacf for both channels are identical, as would 

be expected for a measurement conducted using the same wavelength in each 

channel. Non-seasonal differencing has not been applied in either of these 

two examples and the data has not been subjected to any pre-filtering. 

To facilitate model identification from plots such as these, a set 

of reference acf and pacf plots have been reproduced from Vandaele's book 

"Applied Time Series and Box Jenkins Models" [8], and are illustrated in 

Figure 7.9. The examples shown are based on the autoregressive model, 

AR(p), the moving average model, MA(q), and the synthesis of these two, 

the autoregressive moving average model, ARMA(p,q) for the cases p,q -

0,1,2 (see Section 6.3.2). Various values of the AR and MA parameters, 

~ and a, are used and the examples culminate in a table (Figure 7.9(t)) 

summarising the salient features of these processes. 
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Comparing Figures 7.8(a) and 7.8(b) with this information it is 

evident that, of the examples shown, the closest approximations are rep­

resented by Figures 7.9(d) and 7.9(q), corresponding to the AR (p = 2) 

and the ARMA (p = 1, q = 1) with ~l = 0.6 and ~2 = 0.2 in the former case, 

and ~l = 0.6, ~l = 0.2 in the latter. For the purposes of this comparison, 

the magnitude of these parameters is of less significance than their sign. 

Each of the three cases possess acfs which are of the same sign and 

exhibit relatively rapid decays over the first few lags. Clearly, extra 

information is necessary to resolve which of these candidate processes 

is closest to the real situation and it is here that the pacf becomes 

relevant. 

Pacfs summarise all the information contained in the acf of an AR 

process using a small number of non-zero statistics such that, for an AR(p) 

process, only p such statistics are necessary (8). The pacf, therefore, 

really shows the number and relative importance of the various AR terms 

incorporated into a model. Furthermore, any ARMA(p,q) process can always 

be expressed as pure autoregressive model [8]. Consequently it is useful 

to interpret any features characteristic of a potential ARMA process as 

equivalent to those of an AR process or higher order. Pacfs illustrated 

in Figures 7.8(a) and (b) indicate that an AR process with p ~ 5 would 

form a suitable model for the observed data. 

These two figures depart from Vandaele's examples, however, in one 

important respect and this is the significant acf values existing beyond 

approximately 20 lags after the initial rapid decay. It will be shown 

later that such features are characteristic of AR processes which approach 

the random walk limit (~ + 1) and become non-stationary. Figures 7.8(a) 

and (b) in fact represent an extreme example of this significant finite 

acf at high lags, but as will also be seen later, the same feature tends 
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to be present in all the other data files examined, although often to 

a lesser degree. As an example, Figure 7.8(c) and (d) illustrate the 

acfs and pacfs for data file SIFT5.045 (a water vapour measurement). 

Again, the characteristic rapid decay is followed by a small but finite 

acf which persists out to 40 or 50 lags for this particular file. The 

pacf plot, however, indicates an AR model with less than ten significant 

terms, as was the case for the previous data file, SIFT5.026. 

Menyuk and Killinger obtained similar plots to these for the data 

files they examined, although they did not apply the logarithm transfor­

mation to any of their data [4]. At an early stage in the analysis of 

Hull lidar data, the program PUSID was applied to single channel norma-

lised power data, ratioed data and the logarithm of both of these but 

very little difference was observed between the transformed data and non-

transformed data, despite the non-linearity of the log transformation 

operation. 

Menyuk and Killinger attempted to fit analytical expressions to the 

autocorrelation function they obtained and essentially partitioned these 

functions into two regions. The first, characterised by the rapid decay 

in the acf, they found to be adequately described by a function of the 

form, 

P. = exp(-ja) 
J 

(7.13) 

where P is the correlation coefficient, j denotes lag, and a is a constant 

characteristic of the decay rate. The second region characterised by a 

finite, almost constant acf out to greater lags was found to obey a loga-

rithmically decreasing expression of the form, 

P
j 

= A - B In(j) (7.14) 
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and it is to this component that they attribute the failure of the 

. . -~ d d var~ance to ach~eve an N epen ence. 

Autocorrelation and partial autocorrelation functions of the form 

discussed above can only be obtained for composite signal data (i.e. 

normalised power signal in the absence of speckle, combined with the 

speckle process) since, clearly, there is no way of separating the 

measurement noise from an underlying process in order to observe the auto-

correlations of each. In forming a signal model for optimal estimation 

purposes certain assumptions, therefore, had to be made regarding which 

features of the acfs were plausibly attributable to the signal component 

and which to the speckle dominated measurement noise. 

Menyuk and Killinger point out that "previous studies of the temporal 

correlation coefficients for backscattered CO
2 

laser radiation through the 

atmosphere from a hard target have indicated that the atmosphere is 

effectively frozen for the order of 1 - 5 msec, with a significant drop in 

correlation by 50 - 100 msec." Lidar systems operating at 10 Hz, therefore, 

(as was the case with both the Hull University lidar system and the system 

used by Menyuk and Killinger) would exhibit acfs characteristic only of the 

"tail end" of the full autocorrelation function, the remainder of which is 

assumed to exist for interpulse delays in the 1 - 100 msec range. Short 

term decorrelation (= 1 second), therefore, is attributable to changes in 

the state of the atmospheric channel between laser shots and, for diffrac-

tion limited systems, is due primarily to "turbulence caused by thermal 

fluctuations in the atmosphere" [4]. 

As pointed out earlier, speckle induced variance arises due to changes, 

between shots, in the speckle pattern imaged at the detector. The speckle 

pattern formed at any instant at the receiver is dependent both on random 

phase changes induced by the atmosphere itself and also by shifts in the 
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position of the laser beam across the surface of a non co-operative 

target. Both can, however, originate with changes in the refractive state 

of the atmospheric channel. Therefore, since speckle induced variance is 

far greater than that expected for any signal process, it does not seem 

unreasonable to attribute the initial rapid decay in the acf to speckle 

measurement noise decorre1ation. Beyond the 10 or 20 lags (= 1 or 2 

seconds) characteristic of this "atmospheric decorre1ation time" finite 

values of the autocorrelation function may then be assumed to be attribut-

able to changes in the absorptive state of the atmosphere. If, for 

example, this absorptive state were to remain stationary throughout a 

measurement, the acf would be expected to decay quickly to zero after 10 

or 20 lags. -~ The N dependency for the variance of an average based on N 

values, but separated by at least the speckle decorre1ation interval, 

would again be expected to hold. 

Returning to Figure 7.8, (e) and (f) present the acf and pacf of 

data for which first order differencing has been applied after the data 

has been log transformed. Implicit in the application of any differencing 

is the suspicion that the data may in fact be more complex than an ARMA 

process and may require modelling using the more general form of an ARlMA 

(p,d,q) or "Autoregressive Integrated Moving Average" process, where d 

denotes the degree of differencing necessary to reduce an ARlMA process 

to an ARMA process. A comparison of Figure 7.8(e) and (f) with the 

examples of Figure 7.9, reveals that the first order moving average 

(7.9(j» processes a very similar acf and pacf to those two figures. A 

question therefore arises as to which interpretation of the data is more 
~05. 

re1evant~ the acf and pacf for d = 0 (Figures 7.8(a) to 7.B(d», orAfor 

d = 1. 
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Box and Jenkins advocate the use of differencing to render a time 

series stationary, at least with respect to its first and second stati­

stical moments (mean and variance). First order differencing may be 

applied, for example, where it is assumed that the time series possess 

a linear trend. The advisability, however, of applying a particular 

degree of differencing depends not only on such factors as the polynomial 

order of any trend believed to be present, but also on the signal to 

measurement noise ratio. Although something of analytical significance 

may be gained by imposing stationarity on the signal component via dif­

ferencing, this same differencing operation is also unavoidably applied 

to the measurement noise. It may therefore result in further deqradation 

of the information content of the composite siqnal as the spectral energy 

density function of the measurement noise is shifted to hiqher frequencies 

and hiqher powers. 

Without exception, however, all of the lidar data analysed by apply­

inq first order differencinq, produced almost identical acf and pacf 

characteristics to those illustrated in Fiqures 7.8(e) and 7.8(f), irres­

pective of whether the data was in normalised power form, power ratio or 

loq transformations of these. Simulations will be used later (Section 

7.2.3.3) to demonstrate that this characteristic MA (1) process is easily 

qenerated usinq very simple composite siqnal models, emplyinq both white 

and coloured speckle sequences. 

The remainder of the fiqures identified as 7.8(q) to 7.8(r) present 

the acf and pacf results for log power data recorded in both channels for 

each of the data files considered here (listed in Table 7.1). None of 

these have been subjected to the differencinq operation. Varying rates 

of decay are evident in the initial ~ 10 laqs and this may be attributable 

to varyinq turbulence conditions durinq the measurement; the qreater the 
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strength of the turbulence, the more the decorrelation expected in the 

atmospheric channel between laser shots. Beyond this region of rela­

tively rapid decay, the autocorrelation function behaviour exhibits 

either very slow decay or appears to maintain some constant non-zero 

value over the remainder of the lag range indicated. Also, the pacf 

tends to indicate that approximately the same number of autoregressive 

terms are involved in each case, but with some differences in the rela­

tive strengths between these contributing terms. 

7.2.3.2 Log Ratio Data 

Having examined, separately, the autocorrelation charac­

teristics of the log power measured in each wavelength channel, Figure 

7.10(a) to 7.10(i) now present the acf and the pacf characteristics of 

the same files but this time using log ratio data. Each of the figures 

in 7.10 may be compared on a file by file basis with their equivalents, 

for log power data, in Figure 7.8. 

An indication of the significance of correlated speckle is provided 

by a comparison between the first example, Figure 7.10(a), and the earlier 

Figures 7.8(a) and (b). Both of the latter acf plots exhibit high auto­

correlation values above and below that transition region identified 

earlier where the rate of decay changes (most often near lag • 10 but 

sometimes out to lag = 20, as with SIFTS.026 for example). Their log 

ratio, however, presents a considerably reduced acf decay over this same 

initial lag region and virtually no correlation beyond 20 lags. 

For this file, therefore, samples based on the log ratio (or ratio) 

are nearly independent and are consequently of greater statistical sig­

nificance for variance reduction purposes in any estimation algorithm. 
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Menyuk and Killinger's data demonstrates identical behaviour for the 

ratio of normalised powers [4]. 

A valuable characteristic of autocorrelation functions, therefore, 

is the indications they provide of sample independence. Unless an estima­

tion algorithm is specifically designed to cope with temporally correlated 

data, it may be advisable to sample the data, or take measurements, at 

intervals beyond which the data is known to be significantly correlated. 

For the lidar data presented here, and particularly log-power data, a 

sample interval of approximately one in ten is often appropriate if suc­

cessive samples must be independent. Although the system was operating 

at 10 Hz when these files were collected, a requirement for complete sample 

independence would limit the sample rate to a maximum useful value of 1 Hz 

if similar measurements were to be conducted again. Fortunately, however, 

techniques exist in optimal estimation (discussed in Section 6.3) for 

modelling correlated measurement noise, which makes it possible to collect 

useful samples at much faster rates. These techniques are applied, and 

the results analysed, in Section 7.3. 

The next figure, 7.l0(b), presents the acf and pacf for a data file 

using water vapour measurement lines R20 and R18 (SIFT5.045). Since the 

data sequences are much less correlated for this file (correlation coef­

ficient ~ 0.1 as opposed to 0.9 for the previous file, SIFT5.026 - see 

Table 5.1), its log ratio acf values, in the lag region less than or 

equal to 10, are only slightly less than those illustrated in Figures 

7.8(c) and 7.8(d) for log power data from the same file. Beyond lag • 10, 

the acf is similar in magnitude and appears to decay very slowly. With 

first order differencing applied, the acf and pacf for file SIFT5.045 are &, 
illustrated in Figure 7.l0(c). As can be seen, these display characterist­

ics almost identical to those illustrated in Figures 7.8(e) and 7.8(f) for 
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log power data. Further comments on this type of autocorrelation 

result will be reserved until Section 7.2.3.3. 

Remaining figures, 7.l0(d) to 7.10(i), present the log ratio acf 

and pacf plots for the same collection of files as examined in previous 

sections, all of which used dissimilar wavelengths in the two lidar 

channels (wavelengths used are identified in Table 7.1), and for which 

no differencing has been applied. The use of dissimilar wavelengths 

results in correlation coefficients between channels not exceeding a 

maximum of 0.22 (for SIFT5.046 - see Table 5.1). Consequently, most of 

the log ratio correlation functions appear very similar to those illust­

rated in Figure 7.8, for the log powers from the same data file, as 

observed in either channel A, channel S,or both. 

7.2.3.3 Simulated Data 

The series of autocorrelation and partial autocorrelation 

plots discussed below are all based on the simulated data files presented 

earlier. In the first example, Figure 7.ll(a), the autocorrelation 

characteristics are presented for the simulated data file which addi­

tively combines a constant signal value of -l.S with a white (uncorre­

lated) Chi-square sequence (M m 3, variance • 0.25) representing speckle 

measurement noise. Soth the acf and pacf are coincident at a constant 

value of zero for all lags (allowing for noise in the autocorrelation 

function estimate), as expected for a sequence which is, essentially, 

jUst white noise. The result is, however, confirmed in Figure 7.9(a) 

and provides a check on the implementation of the algorithms used to pro­

cess the data. 

The following figure, 7.ll(b), is for the simulated data file which, 

again, used a constant signal (= -1.5) but is combined additively with 
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coloured (correlated) speckle measurement noise. As indicated earlier, 

the decorrelation parameter was specified to reduce the acf to 0.1 

after 5 lags (or every five "shots") and this figure demonstrates that 

this is the case. 

The pacf reveals the presence of a single autoregressive term, as 

expected, since a single decorrelation parameter was used, and both plots 

are in agreement with the examples of Figure 7.9(b). Although larger in 

magnitude, the acf decay over the first ten lags is of the same general 

form as that exhibited by those real data files considered earlier, in 

which temporal correlation was evident in this same lag region. It there­

fore will serve as a worst case example for suspected speckle correlation. 

Figure 7.ll(c) illustrates the acf and pacf for the first order dif­

ference of this simulated data file. Similarities between this simulated 

example and the equivalent plots for real data become apparent when this 

figure is compared with the previous Figures 7.8(e) and 7.8(f) for log 

power data and 7.l0(c) for log ratio data. If the simulated data file 

for the correlated speckle case is now considered, in which speckle was 

again superimposed on a constant signal of -1.5, the autocorrelation 

characteristics are as shown in Figure 7.ll(d). 

Although a similar dependence on lag is revealed, the magnitude of 

the autocorrelation terms at lower lag values « 10) are significantly 

less than those shown by the real data, and by the simulated example for 

white speckle. Furthermore the acf for the simulated data exhibits a 

gradual decay, characteristic of an ARMA process of order 1,1 or higher, 

in which each of the coefficients is of positive sign (cf with Vandaele's 

example, 7.9(p». By contrast, for all of the real data files examined 

using first order differencing, the presence of only a single significant 

term in the acf was revealed in each and every case, and this occurs at 
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lag = 1. Such a result, however, is not inconsistent with the proper-

ties of time series and their autocorrelation characteristics. As will 

be explained below, the observed results can be highly dependent on 

parameters such as the autoregressive coefficient, ~, even when rela-

tively simple models such as the AR(l) are considered. 

Modelling correlated speckle as a first order exponential decay is 

equivalent to stating that the process is an autoregressive process of 

order 1. This equivalence was indicated in Section 6.3 and is reproduced 

here for convenience. A first order exponentially correlated sequence 

takes the discrete form 

-a~t 
e S + a 

k-l k-l 
(7.1S) 

where a is the reciprocal of some time period characteristic of the decay 

rate, ~t represents the temporal lag interval, S denotes the speckle 

sequence, and a is zero mean gaussian white noise sequence. 

An AR(l) series takes the form, 

(7.16) 

which/for fixed values of a and 6t,is clearly identical to (a) and has 

an autocorrelation function defined by (see Section 6.3) 

(7.17) 

For the simplified case in which a speckle sequence is combined 

additively with a constant signal (- -1.5 for the simulated data file 

considered here), the application of differencing will only affect the 

speckle sequence since the first difference of a constant signal will be 

zero. Therefore, assuming the speckle sequence is of the generalised 

ARCl) form given above, performing a first order difference yields, 
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s - s 
k k-1 (7.18) 

or w =4> t.) +a -a 
k 1 k-1 k-1 k-2 

where W represents the differenced terms. 

This can be cast into the general form of an ARMA(l,l) model: 

(7.19) 

where 9 1 = 1. o. For a simulated whi te speckle sequence, 4> 1 - 0.0, 

since successive values must be statistically independent, and the 

model reduces to 

(7.20) 

which is the MA(l) process observed in the autocorrelation plots of 

Figure 7.ll(c), and is also characteristic of real data. 

In Section 6.3.2 the autocorrelations of an ARMA(l,l) model were 

shown to be given by 

P = 
1 

but since 91 = 1.0, this reduces to 

(7.21) 

(7.22) 

An MA(l) process (4)1 - 0, 61 - 1) therefore will have a single term 

PI = -0.5 at lag k = 1, but all other autocorre1ations for k ~ 2 will 
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be zero. This is clearly indicated in Figure 7.ll(c). 

If the simulated data file, which additively combines the constant 

signal with correlated speckle is now considered, the required value of 

~l can be derived from (7.17) since this sequence was specified to decay 

to a correlation coefficient of 0.1 after 5 lags. In other words, since 

5 
P = P = 0.1 = ~ 

k 5 1 

~l is then found to have a value of 0.63. After first order differencing 

has been applied, the sequence is described by the model (7.18) for which 

91 = 1.0, as before. The correlation coefficient at the first lag, found 

using (7.22) above, is 

PI = (0.63 - 1.0)/2 ~ -0.185 

with the correlation coefficient at subsequent lags (~ 2) decaying~s 

also shown by (7.22). This corresponds to the result in Figure 7.ll(d). 

A value of ~l = 0.63, as used in this simulated data file, yields 

an exaggerated acf decay when compared with most of the equivalent plots 

for real data (compare Figure 7.ll(b) with those of Figures 7.8 and 7.10). 

In general, as ~l decreases towards zero, (7.22) above indicates that PI' 

will approach -0.5 for the first order differences of data modelled on an 

AR(l) process, but that P
2 

and successive correlations will rapidly 

decrease to zero. Therefore, simulated data exhibiting lower acf terms 

over the first few lags can be expected to produce autocorrelation 

characteristics similar to those observed for real data, both in the 

absence of differencing and with first order differences applied. 

If real data is now considered then, taking as an example the log-

powers of channel A data from file SIFTs.045, Figure 7.S(c) gives 

PI = ~l ~ 0.28. Expression (7.22) yields, 
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for the differenced data, P
l 

= (0.28 - 1)/2 = -0.36 and P
2 

= -0.36 x 

0.28 = 0.1 (autocorrelation terms at higher lags will be negligible). 

If Figure 7.8(f) is now examined. the actual value obtained for PI is 

nearer to 0.43 and P2 is indistinguishable from the noise existing in 

these acf estimates. This noise, however, is equivalent to an error of 

approximately ±O.OS in each correlation term (as estimated from the 

figures). 

Consequently, even though some discrepancy exists between the values 

predicted assuming an AR(l) process, and those derived from real data, 

most of the discrepancy may in fact be due to errors in the acf estimate 

(and attributable to the finite extent of the data sequence). Further­

more, some component of the autocorrelation function over the first four 

lags is likely to be due to correlation in those absorptive processes, 

characteristic of the atmospheric state, which underlie speckle measure­

ment noise. The first order autoregressive process of equation (7.16) 

is therefore considered a reasonable model for approximating the various 

rates of decay observed in the autocorrelation functions of all real data 

files over, approximately, the first ten lags. 

So far, only two of the simulated data files, introduced in earlier 

sections of this chapter, have been considered here: both employed the 

artificially Simple assumption that the absorptive state of the atmos­

phere remained constant throughout an equivalent measurement sequence of 

\0,000 "shots". One version, however, was additively combined with uncor­

r.elated (white) speckle and the other with correlated (coloured) speckle. 

The other two simulated data files, also introduced earlier, replaced the 

constant signal with a single random walk process but additively combined 

this with the same two versions of the speckle sequence as used in the 

~onstant signal simulations. 
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A random walk is a special case of the AR(l) process for which 

~l = 1. It is a non-stationary time series which, for finite realisa-

tions, will possess statistical moments dependent on the length of the 

series, but in the limit in which the series becomes infinite these 

moments will, of course, also become infinite. For all values of I~ll 

less than unity, an AR(l) series is stationary in the sense that at least 

the first two statistical moments, (mean and variance) have constant 

finite values for all realisations of the series. As I~ll approaches 

unity, however, an AR(l) sequence becomes increasingly like a random walk 

and therefore develops the useful potential for modelling trend. 

For values of I~ll very close to unity (for example those existing 

in the interval ~l = ±1.0 ± 0.001) therefore, an AR(l) series is capable 

of modelling trend and ifl0
1

1 < 1 it will also possess constant, finite 

values of mean and variance. If the signal process is denoted by x then 

by representing the AR(l) series in form 

(7.23) 

where w is a zero mean gaussian noise sequence, the variance of such a 

series can be presented as (see section 6.3.2) 

2 
o 

x = 
0

2 
w 

(1 _ ~2 
1 

(7.24) 

Figure 7.7(a) illustrated the random walk sequence used as the 

signal in the above mentioned simulated data files. For this simulation 

2 -5 
the value of ~l used was, in fact, unity and the variance, Ow • 10 • 

Selecting values of ~l between 0.999 and 1.0 and using the same initial 

random number seeds will generate a family of plots, all with the same 

"shape" but compressed in the ordinate axis as '1 decreases. Different 

random number seeds produce signals of differing "shapes", each manifest-
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ing different extremes of trend. A value of '1 equal to unity was 

adopted in the simulated data files because the same value is assumed 

for the AR(l) signal model, later to be used when applying optimal esti-

mation techniques. 

The two Figures,7.ll(e) and 7.ll(f),present the acf and pacf results 

for a pure random walk sequence in the absence of speckle (no differencing 

applied). 2 
A value of cr 

w 
-5 5 x 10 was used to generate this particular 

sequence. As can be seen, the autocorrelation function displays a gradual 

decay from unity characteristic of a finite random walk. For an infinite 

series, the acf would presumably reveal a constant value of unity for all 

2 
lags at all finite, non-zero values of the driving noise variance cr. The 

w 

pacf plot illustrates the presence of a Single autoregressive term at 

lag = 1, as expected (the nearest example to this amongst Vandaele's 

figures is illustrated in Figure 7.9(b~. To complete the autocorrelation 

characteristics for the random walk sequence, plots for the first order 

differences have been included (Figures 7.l1(g) and 7.ll(h» which con-

firm the somewhat trivial result that the acf and pacf of the first order 

difference of a random walk are zero for all lags. 

An additive combination of the random walk and the white speckle 

noise sequence (previously illustrated in Figure 7.7(b» has an acf and 

pacf as presented in Figure 7.ll(i). Of immediate significance here, is 

the constant non-zero value of the autocorrelation function persisting 

over the entire lag range included in the figure. 
I 

Since, for many of the real data files examined using PUSID, per-

sistent non-zero, acf values of similar magnitude have been observed in 

the lag region beyond the initial rapid acf decay, the composite simula-

tion employing the random walk and white speckle appears to be manifest-

ing at least one of the required characteristics of real data. The pacf 
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on the other hand would seem to indicate the presence of a series of 

autoregressive terms which decay in significance as the order of each 

term increases. 

If the same random walk is now additively combined with correlated 

speckle noise (as illustrated previously in Figure 7.7(c» then the resul­

ting autocorrelation characteristics are as presented in Figure 7.ll(j). 

Here, the decaying acf in the initial lag region, due to the presence of 

correlated speckle, merges with the acf component beyond lag = 10 due to 

the random walk signal model. 

The effect of the random walk contribution is further emphasised by 

comparing Figure 7.ll(j) with 7.ll(b) which illustrated the results for 

correlated speckle with a constant signal. Both plots appear identical 

apart from the shift in the acf occurring at all lags due to the presence 

of the random walk component. Some extra noise, however, is also evident 

in each of these acf estimates due, presumably, to certain features common 

to both data files; the finite extent of the data set combined with signi­

ficant correlation between samples is a possible explanation. Both 

examples also possess almost identical partial autocorrelation functions, 

and in general are consistent with an AR(l) process dominated in different 

lag regions by either correlated speckle noise or the random walk signal 

model. 

Finally, by applying first order differencing to the simulated data 

which combines the random walk with correlated speckle, the autocorrela­

tion plots of Figures 7.ll(k) and 7.11(1) are obtained. These are almost 

identical to Figures 7.l1(c) and 7.ll(d), which correspond to the constant 

signal case with additive white speckle noise and coloured speckle noise 

respectively. This is expected since the first order differences of a 

random walk process will produce the zero mean gaussian noise sequence/w, 
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used to drive the random walk (see expression (7.23» and such a sequence 

contributes nothing to the autocorrelation or partial autocorrelation 

functions. Both are therefore entirely due to the simulated speckle 

sequences. 

In summary, therefore, the first order autoregressive series appears 

to be an adequate approximation for modelling those processes occurring 

in the real data, at least as far as their autocorrelation characteristics 

are concerned. Although more accurate models could probably be derived 

by pursuing, further, the Box-Jenkins approach to time series analysis 

or, alternatively, the methods advocated by Peter Young [9], these models 

will almost certainly be more complex. For the purposes of applying the 

methods of optimal estimation, relatively simple models were sought which 

would facilitate an initial implementation of those techniques of parti­

cular relevance to the processing of lidar data. These techniques and 

the success with which they were applied to AR(I) models, using the real 

and simulated data files analysed above, will form the subject of discus­

sion in the following section. 

7.3 The Application of Opt~al Estimation Methods 

Section 6.3 presented, in general terms, a selection of techniques 

collectively entitled "Optimal Estimation" of which Kalman filtering 

theory forms the topic of central importance for the analysis conducted 

here. However, because this subject area is so wide ranging in existing 

and potential applications, it is necessary to point out that the other 

topics included there form a suite of techniques selected in an attempt to 

"customise" the Kalman filter for the estimation ot lidar data. This 

section will consider specific implementations of these methods and their 

application to lidar data. Model identification has already been dealt 
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with in some detail above but, in practice, is generally recognised 

that the process of identification also includes repeated trial applica-

tions of candidate models in an iterative approach which seeks to opti-

mise the models, and hence the filter. In this sense, therefore, the 

following analysis represents a first iteration. 

7.3.1 Implementation of the Estimation Algorithms 

A summary of the discrete Kalman filter equations has already 

been presented in vector/matrix notation in Chapter 6, but they are 

reproduced here in scalar form to facilitate further consideration: 

System Model: 

Measurement Model: 

State Estimate 
Extrapolation: 

Error Covariance 
Extrapolation: 

State Estimate Update: 

Kalman Gain: 

(7.25) 

(7.26) 

(7.27) 

(7.28 ) 

(7.29) 

(7.30) 

(7.31) 

(7.32) 

Autocorrelation techniques applied in Section 7.2.3 revealed that 

the first order autoregressive model AR(l), of equation (7'.13) was a reason-

able approximation to the signal process for values of ~ close to unity. 

Reducing the discrete Kalman filter equations to the scalar form above 
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is, in fact, tending towards the assumption that an AR(1) process is 

an adequate signal model. The first order autoregressive process also 

appears to be a reasonable approximation for describing correlated 

speckle sequences. 

As ~ further note, therefore, on the significance of autocorrelation 

functions, relevant to both signal and measurement models, Ge1b points 

out that "as a practical fact, most often all we know about the charac­

terisation of a given random process is its autocorrelation function. 

But there always exists a gaussian random process possessing the same 

autocorrelation function; we therefore might as well assume that the 

given random process is itself gaussian. That is, the two processes 

are indistinguishable from the standpoint of the amount of knowledge 

postulated" [ref. 10, p. 105). 

The simulated data file examined in Section 7.2.3 used ~ • 1.0 but, 

as was pointed out, values of ~ confined to ±1.0 ± 0.001 will generate 

a family of time series, all exhibiting similar random trend features 

if the same random number seeds are used. For values of I~I < 1, the 

series (7.23) will also possess a mean of zero and a variance defined 

by (7.24). The system model of expression (7.25) denotes the autoreg­

ressive coefficient as a variable ~k' dependent on the recursive index, 

k. If ~k is to be regarded as a parameter to be estimated then at least 

two possible methods of deriving it seem to be available: 

(1) Individual autocorrelation terms in the acf and pacf plots 

discussed earlier can be examined, as was attempted in Section 

7.2.3.3. Estimates based on these will be subject to error in 

the acf/pacf estimates and will yield either a single value, 

~k = ~, based on the entire measurement sequence, or multiple 

values based on subsets of it. 
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(2) The state variable, x, can be augmented to a vector which also 

contains $ or $k as an additional term to be estimated. 

will also be subject to some estimation error. 

This 

However, any AR(l) system model employed within a Kalman filter 

algorithm to estimate data exhibiting trend, must have a value of ~ so 

close to unity that an attempt to estimate $ will be in error by at 

least 1 - 1$1. Without an in-depth analysis to identify methods for 

confining errors in the estimate of ~ to within this limit, therefore, it 

would seem a reasonable approximation to set 'k = ~ - 1. 

The system model adopted is therefore the random walk. To facili­

tate the implementation of techniques for deriving system and measurement 

noise variances, both q and the measurement noise variance, r, are assumed 

to remain constant throughout the measurement, so that qk - q and r k - r. 

In some future development of these algorithms, which is beyond the scope 

of the present work, adaptive filtering techniques could be investigated 

which would permit both q and r to be recursively estimated during the 

measurement. As indicated by the compact notation N(O,q) and N(O,r), 

used in expression (7.25) and (7.26), the two noise sequences, wand v, 

are also assumed to have normal (gaussian) distributions with zero means. 

As a further simplification, hk in the measurement model (7.26), can 

be set to a constant value of unity (h
k 

- h - 1) so that the measurement 

is modelled as a simple summation of the log transformed signal (denoted x, 

and which may apply to either log power or log ratio data) and the measure­

ment noise, v, which is assumed to be dominated by speckle. Expressions 

(7.25) through to (7.32) therefore become 

System Model: (7.33) 

Measurement Model: (7.34) 
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State Estimate 
~ (-) ~1e-1 (+) (7.35) = Extrapolation: Ie 

Error Covariance P (-) P
k

(+) + q (7.36) Extrapolation: k 

State Estimate Update: ~k(+) ~ (-) 
k + K[zk - ~k(-)l (7.37) 

Error Covariance 
P

k
(+) [1 - K

k
) P (-) (7.38) Update: 

,.. 
k 

Kalman Gain: K = P (-)/(p (-) 
k k k 

+ r) (7.39) 

If (7.37) is compared with equation (6.55) for the first order 

recursive filter, it is apparent that the two estimators are identical in 

form. However, the version derived using Kalman filter theory has a 

variable gain, K, which is adjusted as the filter index, k, increases 

according to expression (r), until the steady condition is reached in 

which p and K do not change with further increases in k. Steady state 

values of p and K can be obtained from the "matrix Riccati equation" 

which, in scalar form, becomes (see Section 6.3.1) 

• 2 2/ p = 2fp + g q - p r (7.40) 

and also from the continuous system model equation which, in a general-

ised scalar form is (see Section 6.3.1) 

x = fx(t) + gw(t) (7.41) 

where p and x denote the derivatives of p and x with respect to time. 

For the random walk, f c 0 and g - 1, so that (7.40) becomes 

. 2/ p = q - p r (7.42 ) 

but in the steady state condition, p - 0, so that 
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(7.43) 

where p. denotes the steady state error covariance. Also, since the gain 

matrix, K(t), for the continuous Kalman filter equations is, in general 

terms, given by (see Section 6.3.1), 

(7.44) 

then reducing to the scalar form and replacing pet) with the steady 

state error covariance, p , yields the steady state gain, co 

K 
co 

p /r 
co 

(7.45) 

Once q and r are determined, therefore, an estimate of the steady 

state error covariance, pco,becomes available which may then be used to 

quantify the error in the estimate of the state variable, x. 

The algorithm specified by the set of expressions (7.33) to (7.39) 

forms a first stage implementation of the Kalman filter. It is unable 

to cope, however, with correlated measurement noise since this is not 

built into the measurement model, (7.34). Data used with this algorithm 

must therefore be sampled from the original data set at a lag interval 

sufficient to guarantee that speckle correlation is negligible. For most 

of the data files discussed here, a sampling interval of 1 in 10 is suf-

ficient but there are at least two files for which sampling of 1 in 20 

must be considered. Guidance as to the correct sampling interval is, of 

Course, available from the autocorrelation functions previously estimated 

for each file. 

Built into this first stage Kalman filter is a version of Hehra's 

algorithm for estimating q and r (11). The essential elements of this 

algorithm were discussed in Section 6.3 and its application requires an 

iterative procedure which may be summarised as follows: 



- 246 -

(1) Sample the data set at an interval greater than or equal to 

the speckle decorrelation interval. This subset of the 

original data file forms the input to the first stage Kalman 

filter. 

(2) Form rough estimates of q and r using the sampled data. 

(3) Run the first stage filter on the sampled data and form the 

autocorrelation function (e() of the innovation sequence, 

v k = zk - xk_l ' 

(4) Estimate new values of q and r. 

(5) Perform optimisation (whiteness) test on the innovation 

sequence. 

(6) If the innovation sequence is coloured, use the new values 

of q and r, and re-filter the data. If the innovation 

sequence is white, proceed to the next stage. 

The autocorrelation function, f(, of the innovation sequence is 

estimated for 20 lags (~ = 1,2, •• 20) during each run of the Kalman filter. 

An optimisation test is then conducted by: 

(a) Counting the number of autocorrelation terms, Iacf, which are 

outside the 95% confidence limits, ±(1.96/N-~), defined by 

Mehra (see Section 6.3.3). Ideally, this number should be 

, 1 for the sequence to be white. 

(b) Counting the number of autocorrelation terms, Ineg, which 

are less than zero - this will reflect the amount of bias 

present in autocorrelation function and for optimum results 
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will be near 10. 

N is the number of innovation terms, v., over which the autocor-
1 

relation is estimated and is equivalent to the number of values in the 

sampled data set, less the first 10% during which the filter is allowed 

to reach the steady state. 

To estimate new values of q and r when the whiteness test fails, 

use is made of Mehra's equation (see Section 6.3.3), 

...... T 
MH K C + A* 

0 
C

1 
(7.46 ) 

C
2 

e 
n 

where A H~ 

H~(I-KH)~ 

(7.47) 

A is an estimate of the steady state error covariance matrix, and K is 

the sub-optimal gain matrix. Since n is the state vector dimension and 

is equal to unity for the scalar version of the filter, both the matrix 

A and its pseudo inverse A* also become unity because, 

A = H~ = h = 1 

This simplification reduces expression (7.41) to 

(7.48) 

An estimate of r is found using another of Mehra's equations 
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which, for the scalar case, reduces to 

r e - m 
o 

(7.49) 

(7.50) 

The system noise variance, q, can now be obtained by solving (6.157) 

and (6.158). In scalar form this expression reduces to the solution, 

A - n 2~ 
_ K2 e q = = 

0 

A 

+ e
l

) _ K2 A 

= 2K(K C C 
0 0 

K2 e + 2K C
l (7.51) 

0 

New estimates of q and r are repeatedly obtained by re-running the first 

stage Kalman filter with the previous values of q and r until the opti-

misation test indicates that the innovation sequence is white. 

The next stage in filtering employs a version of the Kalman filter 

algorithm developed by Bryson and Hendrikson (see Section 6.3), for 

estimating a signal in the presence of sequentially correlated noise 

[12]. This should permit all values in the original data set to be 

used in forming an estimate. The measurement noise variance, r, will 

remain the same regardless of any sampling used but the system noise, q, 

must be scaled down since the estimate derived above is based on a random 

walk model which is sampled at some multiple of the original sampling 

period used at the time of the measurement. Since the random walk pos-

sesses a variance which increases linearly with time, an appropriate 

scaling relationship is 
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(7.52) 

where q is the estimate, q, formed by sampling every nth value from the 
n 

original data set. 

Bryson and Hendrikson's algorithm was presented in Section 6.3 and 

is reproduced here in its scalar form for the random walk signal model 

(~ ~ ~ 1, H ~ h ~ 1). Using their notation, the system and measure-

ment models become: 

Xk+1 
= x

k 
+ w

k 
, W (O,ql) (7.53) 

zk x
k + Ek (7.54) 

where Ek +1 
If'e:

k 
+ uk , u = (O,Q1) C7. 55) 

and r;k = zk+1 - ~zk (7.56) 

is the transformed measurement. The filtering algorithm is then, 

- + HQHT 2 
R Q = ql + h q1 • q1 + q1 (7.58) 

D 
-1 

SR = q1/(q1 + q1 ) .. d (7.59) 

H
r 

H~ - If'H = h~ - If'h .. (1 -If) '" h
r 

(7.60) 

K
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_
1 

+ r] (7.61) 

Pk - l 
(1 - K hr)2 2 

k-l 
rn

k
_

1 
+ Kk - 1 r (7.62) 

r 2 2 
mk = (1 - dh) Pk-1 + q1 - d r (7.63) 
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Use of subscripting of the form Pk-l/k implies that the (k - lIth 

estimate of p is based on all samples up to, and including, the kth 

sample. The filter then becomes 

(7.64) 

The correlated measurement noise, €, is clearly of the AR(I) form 

discussed earlier. However, both the autoregressive coefficient, ~, 

and the variance, ql' of the white noise sequence, u, must be determined 

before this algorithm can be used. Providing a method for evaluating ~ 

can be found, ql may be obtained by comparing (7.55) with (7.23) and 

using expression (7.24) to give, 

(7.65) 

Usually, one of the first techniques to be considered when an unknown 

such as ~ must be estimated, is the auqmentation of the state vector. 

Gelb, however, demonstrates a fundamental problem with this approach 

which results in the measurement noise matrix, R, becoming singular for 

the continuous Kalman filter, or the covariance update possibly becoming 

"ill conditioned" (P
k

+l (-) = P
k

(+) for small Q and t2 I) in the discrete 

version of the filter [ref. 10, pages 133-136). 

The method employed here, therefore, makes use of the knowledge that 

expression (7.55) is a discrete representation of an exponentially cor-

related process having the alternative form, 

(7.66) 

and possessing an autocovariance function described by 
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(7.67) 

where 8 is a constant characteristic of the decay rate [ref. 10, pages 

81-821. Consequently, 

(7.68) 

By forming the logarithm of (7.67), a first order linear equation 

is obtained, 

(7.69) 

which can be used to perform a simple, linear, least squares fit on the 

empirically derived autocorrelation functions presented earlier. The 

required algorithm was implemented as a modification to PUSID and per-

formed the fit using the first ten autocorrelation values. B is given 

by [6], 

e = (7.70) 

where <> denotes an average and T is a multiple of the interval between 

successive measurements, Zk. Also, the standard deviation of e then 

becomes [6], 

cde) n an{ In[ ~dT)]} 
(7.71) 

2 2 Is {(n-2)[nI:T - (I:T) ]} 

where n = 10. Table 7.2 presents the values of e estimated in this way, 

together with their associated errors, for all the data files processed 

using PUSID. Values are included for the log powers in both channels, 

and the log ratios. 
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Both of the filter stages described above, including the Hehra 

algorithm and whiteness test, were incorporated into a single Fortran 

program, P1516.FOR, originally encoded by Dr. B. J. Rye. A subsequent 

version, PI516C.FOR, contained several modifications introduced during 

a series of test runs on both real and simulated data. This latter 

version was used to process the following data. 

7.3.2 Log Power Data 

Each run of PlSl6C generated a series of graphical outputs, 

characterising the performance of both filtering algorithms; the first 

example is illustrated in Figures 7.l2(a) to 7.l2(j) for the real data 

file, SIFTS.026. Both lidar channels were tuned to the same line (10 

RIB) for this particular measurement. Figures 7.l2(a) and 7.l2(b) com-

pare the estimates obtained using the first filter which is limited to 

proceSSing data with white measurement noise only (and will be referred 

to hereafter as "PIS"). This filter sampled one in every twenty values 

from the original data sequence to eliminate sequential correlation in 

the measurement noise (revealed by the earlier plot of its autocorrela-
. 

tion function). Since all original data files contain 10,000 values, 

sampling at this rate reduces the number of samples to 500. 

As with the results obtained using the sub-optimal methods of 

Section 7.2.2, both estimates are highly correlated, but not identical, 

revealing a small disparity in the absolute values of the estimates, sug-

gested earlier to be of systematic origin. A similar disparity is also 

evident in the estimate of Figures 7.l2(c) and 7.l2(d), generated by the 

Bryson and Hendrikson algorithm using all 10,000 values in the original 

data set. This filter is the version capable of accepting coloured 

measurement noise (and is referred to hereafter as "P16"). 
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An important indication of filter performance is provided by 

Figures 7.12(e) and 7.12(f) which display an estimate of the variance, 

p, produced by both PIS (solid line) and P16 (broken line) for each 

lidar channel. p, therefore, is the "estimate of the variance in the 

estimate" of the scalar state variable, x, which, in this case corres­

ponds to the log transformed (normalised) power received, in each lidar 

channel. A further log transformation (base 10) has had to be applied 

to the ordinate axis, in these and subsequent plots, to compress the 

range of variation in p occurring between filter initialisation and the 

steady state condition (beyond the first 2000 samples). However, values 

corresponding to the steady state square root of p (equivalent to the 

standard deviation in the state estimate) have also been included. 

For both filtering algorithms, PIS and Pl6, p is dependent on the 

system and measurement models adopted. The general form of this depen­

dency is apparent from the matrix-vector equations presented in Section 

6.3. When reduced to their specific scalar forms for the random walk 

signal model, this dependency is described by the error covariance extra­

polation and update equations, (7.36) and (7.38) for PIS, and correspond­

ing equations, (7.62) and (7.63), for P16. 

An equivalent set of relationships (7.39) and (7.61) govern the 

behaviour of the Kalman gain, K, examples of which are shown in Figures 

7.12(g) and 7.l2(b), for the two lidar channels, 'A' and 'B'. Once 

again, PIS and P16 outputs are depicted as solid and broken lines, 

respectively, and log (base 10) compression of the ordinate axis has had 

to be employed (but steady state values of K are also printed in these 

figures). 

Figures 7.l2(e) through to 7.l2(h) clearly demonstrate how the two 

estimates produced by PIS and P16 differ. For this particular example, 
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both the variance estimate, p, and the gain, K, are less for Pl6 than 

for PIS. Using the variance estimate as the principal criteria for 

evaluating filter performance, P16 would therefore appear to produce 

the better estimate. Furthermore, these estimates appear consistent 

between lidar channels employing the same wavelength; for example, the 

steady state value of IP in Figures 7.12(e) and 7.l2(f) are in agreement, 

if allowance is made for error in the estimate of p. Similar comments 

apply to the gains illustrated in Figures 7.l2(g) and 7.12(h). 

Both filters are optimised once the innovation sequence of PIS, 

(7.72) 

(see (7.37), and the innovation sequence of P16 

(7.73) 

(see (7.64» become white; in other words the presence of any temporal 

correlation indicates that there is still "information" left in v [ref. 

10, page 3171. Mehra's test for whiteness, introduced in Section 6.3.3 

and re-stated in Section 7.3.1, may now be applied to evaluate the 8igni-

ficance of any remaining correlation. 

Figures 7.l2(i) and 7.l2(j) present the autocorrelation functions 

of the innovation sequences of both PIS and P16 for channel A and channel 

B data respectively. The 9S% confidence limits for PIS are depicted by 

two solid horizontal lines (the upper line coincides with the figure 

boundary), and those for P16 by two broken lines. The difference in 

width of these confidence limits is due to, N, the number of data values 

used to form the autocorrelation functions (this particular application 

of PISl6C used N = 400 for PIS and N - 9000 for PI6). 

Table 7.3 summarises the important results for each application of 
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both filters, for log power and log ratio data (discussed in the next 

session). Ineg is the number of autocorrelation terms which are less 

than zero and ideally this should equal 10. According to the whiteness 

tests, therefore, Figures 7.l2(a) to 7.l2(j) represent a reasonably 

successful application of both filtering algorithms to the log power 

data of file SIFTS.026. 

Applying P1S16C to another real data file, SIFTS.036, obtained 

using a pair of laser lines recommended for CO
2 

concentration measure­

ments (10 R16 - measurement, 10 R8 - reference), the results obtained 

are as illustrated in Figures 7.13(a) to 7.13(1). For this, and all 

data files other than SIFTS.026, the first filtering algorithm, PIS, 

sampled one in every ten of the original data set instead of one in 

twenty (as used for SIFTS.026). 

Using the same method of presentation as adopted for Figure 7.12, 

plots (a) and (b) show the estimate generated by PIS for both lidar 

channels «a) corresponds to the measurement channel): plots (c) and 

(d) show the equivalent results for P16. Consistent positioning and 

scaling of both axes has been used, where possible, to permit compari­

sons between superimposed estimates of PIS and P16. Figures 7.l3(e) to 

7.l3(h) illustrate the state error covariance estimates and the Kalman 

gains for the log powers in each channel. Both sets of estimates reach 

their steady state values much sooner than those illustrated in Figure 

7.12 and these values are larger than those of the previous data file. 

As before, an indication of filter performance is provided by the 

innovation sequence autocorrelation functions of PIS and Pl6 for both 

channel A and channel B data (Figures 7.13(i) and 7.l3(j». The lacf 

and Ineg values are listed in Table 7.3. According to their lacf and 

lneg counts, PIS performs satisfactorily in both cases, but P16 deviates 
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from the whiteness ccndition by Iacf counts of 3 and 4 for the two 

respective channels. However, upon examination of the innovation acf 

plots, it becomes apparent that, apart from a single large deviation 

at lag = 1, these failures are marginal and are therefore not so 

significant. In fact, for both data files considered so far, and in 

all subsequent applications of P1516C where whiteness test failure 

occur, it will be observed that they tend to be marginal for most of 

the Iacf points counted as lying outside the 95% confidence limits. 

Comparing the innovation sequence acf for P16 with the example 

of Figure 7.9(j), it is apparent that the presence of a single, large 

acf term at lag 1 is characteristic of an MA(l) process. This would 

imply that each innovation sequence term, v
k

' may be interpreted as a 

linear combination of some current noise variable plus at least one 

other lagged term of the same noise sequence (see (6.117». However, 

this feature does not occur in any of the innovation sequences of P15, 

and is not present in the P16 results for simulated data (see Section 

7.3.4). It would therefore appear to be specific to P16 operating on 

real data only, and not a consequence of transforming the measurement 

according to expression (7.56). Although it does not detract from the 

significance of the whiteness test, it may be regarded as revealing the 

presence of some time series characteristic not accounted for in the 

approximation provided by first order autogressive models. 

The last two figures, 7.13(k) and 7.13(1), display the results 

obtained when the log-power estimates in each channel are differenced 

to provide a log ratio. Although this measurement was co~ducted using 

laser lines recommended for CO
2 

monitoring, Table 7.1 indicates that, 

for average humidity levels (50% at 15 C) considerable species inter­

ference can be expected from H
2

0 alone. As can be seen, some excursion 
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into negative log ratios is evident. This could be due to one of the 

following: 

(a) A displacement in the estimate of systematic origin, 

(b) Excessive variance remaining in the estimated signal, or 

(c) The presence of absorbers with negative differential absorption 

coefficients (a manifestation of this particular ratio inver­

sion for the channel A and channel B estimates). 

This measurement will be considered further in Section 7.3.3. 

One further example of log power estimation is provided here; 

Figures 7.l4(a) to 7.14(1) illustrate the results obtained for a water 

vapour measurement file, SIFTS.044. The presentation of the figures is 

identical to those of the previous example; plots (a) through to (d) 

show the estimates obtained for each channel using both PIS and P16. A 

notable feature of the error covariance plot, (e), is the close proximity 

of the variances estimated by PIS and P16. This would imply that both 

filters offered equivalent performance in terms of the precision of the 

estimates of the state variable. The estimate of the error covariance 

is, however, dependent on the accuracies in the estimates of q and r, 

and errors affecting the performances of both filters, particularly P16, 

will be discussed later. 

Values of Iacf and Ineg, listed in Table 7.3, indicate a relatively 

poor performance for P16 on the data of channel A but a reasonable result 

for the data of channel B. Once again, however, if the innovation acf 

plots (i) and (j) are examined, the Iacf counts appear to be marginal 

cases. Finally, Figure 7.l4(k) and 7.14(1) show the ratios obtained 

using the difference between the log power estimates in each channel. 

The initial excursion of the PIS estimates into negative log ratio values 
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is attributable to the filter adjusting its gain level prior to reach­

ing the steady state condition. 

7.3.3 Log ratio Data 

The identification of log transformed 1idar data with the 

state variable, x, instead of non-transformed data, was necessary to 

convert a multiplicative measurement noise process into an additive one, 

suitable for the implementation of the linear, discrete Kalman filter. 

A further advantage of this transformation, however, is that the state 

variable becomes linearly related to either the absorbance A, (expres­

sion (3.22(b» for log power data or the differential absorbance, 6A 

(expression (3.24» for log ratio data. Having, therefore, applied the 

random walk model to absorptive processes in the previous section, the 

same model is now applied to differential absorption, since both pro­

cesses can be expected to exhibit random trend behaviour. 

Some of the data files to be examined here have been analysed in 

previous sections. All are listed in Table 7.1 together with the wave­

lengths used, their absorption, and differential absorption coefficients. 

Seven of these data files can be interpreted as gas concentration 

measurements since they were obtained using recommended (2) measure­

ment/reference line pairs for the specific gas indicated. It must be 

pointed out, however, that although Petheram is used as a source for 

these recommended lines, he in fact discusses at length the considerable 

problems of species interference, particularly due to H
2
0, which limit 

the application of these and other recommended wavelengths, accessible 

using line tunable CO
2 

lasers. 

As before, the first application of P1S16C examined here is for 

file SIFTS.026 which was obtained with both channels tuned to the same 
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laser line (10 RlS). The log ratio estimates obtained using PIS and 

P16 are illustrated in Figures 7.1s(a) and 7.ls(b), respectively. 

Since the log ratio for both channels tuned to the same wavelength 

should obviously be zero, these estimates provide some indication of the 

magnitude of systematic error to be expected in subsequent estimates. 

As with previous examples, the estimate of PIS has a larger variance 

than the estimate of P16, but it is appqrent, from both estimates, that 

some disparity exists between the two channels which, for this parti­

cular measurement, results in an erroneous log ratio value of approxi­

mately 0.1. A similar value was obtained for another data file, 

SIFTs.024 (not illustrated), which again used the line (10 RIB) in both 

channels. A comparable log ratio error may therefore be expected in 

the estimates derived from other files. 

Figure 7.1s(c) illustrates the lowest steady state error covariances 

obtained for any of the data files analysed here using Pls16C. Although 

the error covariance estimate is, itself, subject to estimation error, 

the low values are attributable, partially at least, to speckle correla­

tion between the two channels. Expressions of the form given by (5.22) 

indicate that positive cross correlation between measurement processes, 

originating in separate channels, reduces the sum of their individual 

variance contributions when the measurements are combined as a ratio to 

form a single estimate. Negative correlation, on the other hand, will 

increase it. This is in direct contrast to the single channel situation 

for autocorrelation, discussed previously, where positive correlation 

reduces sample independence and thereby diminishes the effectiveness of 

any estimation algorithm operating serially on the data. 

The low error covariance estimates of Figure 7.l5(c) are therefore 

a consequence of the correlation reduced estimates of the speckle 
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measurement noise, r. Since the Kalman gains are inversely propor­

tional to this measurement noise they also achieve their lowest steady 

state values as revealed by Table 7.3 and illustrated in Figure 7.1S(d). 

The innovation acf of P1S (Figure 7.1S(e» yielded an lacf count 

of zero but a value of Ineg = 15, indicating the presence of some bias. 

For P16, however, a reasonable result was obtained with lac = 2 and 

Ineg = 10. 

The data file SIFTS.036 was examined previously by forming separate 

estimates of the log powers in each channel and then differencing these 

estimates to produce the Figures 7.l3(k) using P1S, and 7.13(1) using 

P16. In this section the log ratio is estimated directly and the results 

are as presented in Figures 7.l6(a) and (b). Both of these ratio 

estimates possess larger variances than their equivalents in Figure 

7.13 due, presumably, to the higher measurement noises associated with 

log ratio data. Values for the square root of r, listed in Table 7.3, 

have averages of 0.53 for log power data and 0.70 for log ratio data. 

In terms of the steady state error covariances alone, therefore, the log 

ratio estimates would appear to be inferior to the alternatives formed by 

differencing the estimates of the log powers. Other factors, however, 

such as the bias associated with each of the estimation and ratioing 

methods would also have to be taken into consideration. 

Figure 7.l6(c) confirms these relatively high variances but the 

gain histories illustrated in Figure 7.l6(d) have values falling midway 

between the two sets of gain estimates illustrated in Figures 7.13(g) 

and (h). In terms of filter performance P1S satisfies the requirements 

of the innovation sequence whiteness test (Iacf - 0, Ineg K 10) and, with 

the single exception of the deviation at lag - 1, P16 almost does as well 

(lacf = 1, Ineg = 10). The magnitude of the autocorrelation terms is 

illustrated in Figure 7.l6(e). 
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In addition to providing a reference for filenames, laser lines 

and absorption coefficients, Table 7.1 also lists example values of the 

log ratio expected for "typical" concentrations of the four gases con-

side red here: H
2
0, CO

2
, NH3 and C

2
H

4
• The typical value assumed for 

water vapour concentration corresponds to a relative humidity of 50% at 

lS·C. Ambient concentrations of CO
2 

and NH3 were extracted from refer­

ence [12), but the value selected for C
2

H
4 

was equated to that for NH3 

because no alternative estimates were available at the time of compiling 

the table. It is appreciated that an ethylene concentration of ~2 ppb 

is probably an over-estimate as a global ambient figure. However, these 

measurements were conducted in close proximity to various industrial sites 

so the local concentrations may have been higher. 

Using expression (3.32), the log ratio due to n interfering species 

is given by 

+ Y Aa' + '''1' Y 6a.· Jr 2 2 n n (7.74) 

Although the measurement data of file SIFTS.036 was obtained using 

laser lines recommended for CO
2 

monitoring, Table 7.1 reveals that con­

siderable interference can be expected from water vapour. In fact, for 

the water vapour concentration assumed in the table, both CO
2 

and H
2
0 

have comparable log ratios. No attempt is made, therefore, to convert 

the log ratio estimates into concentration estimates. However, summing 

the log ratio contribution from all four gases yields a value close to 

0.2. The estimates of Figures 7.16(a) and 7.16(b) appear to fluctuate 

around a mean value close to 0.2, occasionally descending into negative 

log ratio values. possible factors contributing to these excursions into 

the negative log ratio region were itemised in Section 7.3.2 but some 

component of the fluctuations observed in these estimates could well be 
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due to the irregular distribution of H20, or some other gas of indust-

rial origin, over the period of the measurement. The highly correlated 

results obtained for files such as SIFTS.026 and SIFTS.024, which used 

identical wavelengths in each channel, at least suggest that these 

fluctuations are not of systematic origin. 

Similar comments apply to the PlS16C results for the data files 

SIFTS.037 and SIFTS.038, illustrated respectively in the figure 

sequences 7.17 and 7.18. SIFTS.037 used laser lines recommended for the 

measurement of ammonia (NH
3

) concentration, log ratio estimates are 

presented in Figures 7.l7(a) and (b) and the filter performance charac-

teristics, P , K and innovation sequence acf) in Figures 7.l7(c) to 
~ ~ 

7.17(e). Once again, reasonable performance is observed for both filters. 

The first estimate, of filter PIS, shows a rapid descent into negative 

log ratio values followed by an equally rapid recovery as the filter 

gain settles down to its steady state value. 

If Table 7.1 is now examined for the data file SIFTS.037 it becomes 

apparent that the major contribution to the log ratio is due to H20, with 

CO2 providing the second largest contribution. The log ratio component 

due to NH3 is, in fact, negative and less than 10\ of that due to H20 

(for the concentration values assumed in the table). 

Log ratio estimates for the data file SIFTS.038 are illustrated in 

Figures 7.l8(a) and 7.18(b). Here, also, negative log ratio values occur, 

the magnitude of which depends on which estimate, PIS or P16, is consi-

dered. Clearly for these estimates, and those of SIFTS.036 (Figure 

7.l6(a) and (b», excessive noise remains, (particularly for PIS). As 

before, this is reflected in the error covariance estimates of Figures 

7.l8(c) which are somewhat larger than those observed in other log ratio 

estimates (see Table 7.3 - some of these have yet to be discussed). 
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Figure 7.l8(d) presents the Kalman gains for PIS and P16. Although 

the Iacf number for PI6 (Table 7.3) indicates that the innovation 

sequence was not as white as it could be, examination of Figure 7.18(e) 

reveals that the result is comparable to the performance of P16 for other 

data files. 

Example log ratio values listed in Table 7.1, once again, indicate 

that the contributions due to CO
2 

and H
2

0 can be expected to dominate. 

Forming the sum of these log ratios, due to each of the four gases, 

suggests that the estimates of Figures 7.l8(a) and (b) should have 

values of the order of ~0.2 and, allowing for fluctuations, this seems 

to be confirmed. 

Figure sequences 7.19, 7.20, 7.21 and 7.22 present the results of 

applying P15l6C to four water vapour measurement files, SIFT5.043, 044, 

045, and 046. The first three used the wavelength pairs 10 R20 (measure-

ment) and 10 R18 (reference) but, for SIFT5.046, the reference wavelength 

was shifted to 10 RIG. As can be seen from Table 7.1, relatively little 

species interference can be expected from the other three gases. Log 

ratio estimates for PIS and P16 are presented in plots (a) and (b) for 

each of these figures. 

In each case the "noisiness" of the state variable estimate is 

reflected in the error covariance estimates (p). Steady state values 

of p are listed in Table 7.3 for both filters but their complete histories 

during each filter run are illustrated in plots '(c)' for Figures 7.19 

to 7.22. A spread of steady state error covariances are represented with 

values of ~ ranging from 4.42 x 10-2 for SIFT5.043 to 0.1783 for 
~ 

SIFT5.046. It will be noticed that, as ~ decreases, both filters take 
~ 

relatively longer to settle into the steady state condition. In Figure 

7.22(c), for example, ~ appears to settle after approximately 500 
~ 
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samples but, for 7.19(c), the steady state condition is not reached 

until beyond a sample index of k = 3000. Similar observations apply 

to the Kalman gains illustrated in all plots '(d)' for Figures 7.19 

to 7.22. 

Filter performances were, in general, not completely optimised 

according to the whiteness test counts listed in Table 7.3 but the 

innovation sequence acfs (plots '(e)' in Figures 7.19 to 7.22) reveal 

only slight deviations from the 95% confidence limits. In one instance 

(SIFTS.046) the performance of P16 appears superior to that of P15 if 

the innovation sequence act, alone, is considered. 

Concentration estimates derived from P15 and P16 log ratio estimates 

are presented in plots (f) and (9) of Figures 7.19 through to 7.22. As 

with previous data files, estimates formed before the filter has reached 

its steady state may be ignored. These concentrations are further inter-

preted as relative humidity profiles in plots '(h)' and '(i)' of the same 

figures using the expression 

RH(\) 
. AP 

= Y SVP(T) 100 (7.75) 

where RH is relative humidity (expressed as a percentage), Y is the con-

centration of water vapour, AP is atmospheric pressure (- 0.101325 MPa 

for the International Civil Aviation Organisation standard atmosphere) 

o and SVP(T) is the saturated vapour pressure at temperature, T( C). 

A hair-based hygrometer was available at the lidar site (situated 

outside the lidar laboratory window), capable of monitoring both relative 

humidity and temperature using a recording drum set to rotate once in 24 

hours. Listed below are the relative humidities and temperatures 

recorded during each of the measurements indicated, together with the 

concentration and log ratio values they correspond to: 
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Measurement RH(%) T(oC) Log ratio file number y 

043 72 4 5.78 x 10-3 1.57 

044 68 5 5.85 x 10-3 1.59 

045 75 9.5 8.80 x 10-3 
2.39 

046 72 10 8.72 x 10-3 2.26 

As can be seen, although the filtered log ratios yield reasonable 

relative humidities, a significant difference exists between these 

estimates and the values recorded by the hygrometer (which was accurate 

to within a few per cent). 

It is possible that these differences are a consequence of attempt-

ing to compare the integrated absorption over a path length of 3.6 km 

with a point sensor positioned at one extremity of this absorption path. 

Systematic log ratio errors of ~ ±O.l, however, will also contribute a 

maximum error of ±10% in both the concentration and relative humidity 

estimates. Bias, resulting from the use of a 10~ ratio estimator, is 

another potential source of error. 

Fluctuations, apparent in each of the estimates, vary from measure-

ment to measurement but are closely related to the relative magnitudes 

of the steady state error covariances. If the minimum variance case is 

considered (SIFTS.043), it would appear that some non-stationarity is 

present which produces a variation in the relative humidity of approxi-

mately 10% during the latter half of the experiment. Some variation was 

also evident in the hygrometer reading over an equivalent period of time 

(~l%) but since this device appeared to have a characteristic time res-

ponse of at least 15 minutes (observed during the onset of heavy rain), 

it is difficult also to compare transient behaviour between the two types 

of measurement system. 
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7.3.4 Simulated Log Power Data 

When analysing real data, the system and measurement noise 

variances (q and r) are, of course, unknown so it is difficult to deter­

mine how accurate the Mehra estimates of these quantities are and, con-

sequently, the accuracy of the error covariance estimate, p~. Some 

insight, however, may be obtained from the use of simulated data in which 

system and measurement models are completely specified. 

The two simulated log power files used here have already been con­

sidered in the analysis of previous sections. Both use the same random 

walk signal model (illustrated in Figure 7.7(a) but one is additively 

combined with uncorrelated (white) speckle measurement noise and the other 

with correlated (coloured) speckle measurement noise. They will be 

referred to here, respectively, as SIM.OOl and SIM.002. The system noise 

model used a driving noise variance of q • 10-5 and the measurement noise 

sequence had a variance, r = 0.25 so that Iq - 3.16 x 10-
3 

and I; - 0.5. 

For the correlated noise version, the correlation coefficient was speci­

fied to decay to 0.1 after five "shots" so that, using expression (7.68), 

w = 0.631. 

P15 estimates of the two simulated files are illustrated in Figures 

7.23(a) and (b), with the latter corresponding to coloured measurement 

noise. The equivalent P16 estimates are available in the following plots 

7.23(c) and (d). As noted in Section 7.2.2, those plots for the corre-

lated measurement noise cases show a noisier estimate than the uncorre-

lated versions. The P16 estimates are re-plotted in Figures 7.23(e) and 

7.23(f) to compare the estimates (solid line) with the true signal 

(broken lines). 

Of primary importance, however, are the error covariance plots of 

Figures 7.23(g) (uncorrelated noise) and 7.23(h) (correlated noise). 
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For both P15 and P16, the steady state error covariances are worse for 

the case in which correlated measurement noise is present but are com-

parable to the values obtained for real data. It will be noticed from 

Table 7.3 that the Mehra estimates for /q are 4.75 x 10-3 for SIM.OCl 

-3 and 7.91 x 10 for SIM.002 (these P16 values have been scaled down 

from the P15 estimates using the relationship (7.52». The first value, 

obtained in the presence of uncorrelated measurement noise, is approxi-

mately 50% larger than the actual value of IQ used, whereas the value 

derived from the correlated measurement noise file is nearly 250\ 

larger! Autocorrelation values occurring over the first 10 lags for 

SIM.002 (Figure 7.ll(j» are, however, significantly higher than for 

many of the real log power estimates. 

These two extremes of error, therefore, may be used as some indica-

tion of the possible upper and lower limits in the sense that estimates 

of q generated by the Mehra algorithm tend, here, to be larger than the 

real values. As with real data, the smaller the estimate of q, the 

smaller the error covariance and the Kalman gains (Figures 7.23(i) and 

7.23(j», resulting in less noise in the estimates. 

Filter performance characteristics were slightly different from 

those obtained with real data: although P1S performed reasonably well 

for both files, the P16 estimates appear to possess biased innovation 

sequences for both the uncorrelated and correlated version. However, 

Whereas the lacf value for SIM.OOl is 0, that for SIM.002 is 3. The 

innovation sequence autocorrelation functions displayed in Figures 7.23 

(k) and 7.23(1), reveal that although the P1S results for both simulated 

files are very similar to those of the real data, the P16 acfs lack the 

large negative value at lag - 1. SIM.002 does, however, possess a small, 

positive acf delay over approximately the first four lags, characteristic 

of an autoregressive process. 
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The lasts two plots, (m) and (n), of Figure 7.23 compare the 

error in the estimate of P16 with the error covariance estimate IP 
for both files, SIM.001 and SIM.002. The quantity expressed by the 

ordinate axis is 

(7.76) 

where x
k 

is the state variable estimate and x
k 

is the true random walk 

signal. Despite differences in filter performance the actual estimate 

errors are very similar for both versions of the simulated data, and 

would also appear to have rms values approximately equivalent to the 

estimated error covariance. 

7.3.5 Concluding Remarks on the Optimum Estimation Techniques Used 

The Mehra algorithm used with P15 provides an estimate of the 

variances of both the system and measurement noise processes, q and r, 

which directly influence the magnitude of the error covariance, p. This 

error covariance is important because it provides an estimate of the 

error in the state variable (log power or log ratio) which can then be 

translated into an estimate of the precision of any gas concentration 

value derived from the state variable. 

It was observed in the previous section, 7.3.4, that errors in the 

Mehra estimates of q cause q, and the estimate' of both p~ and K~, to 

be larger than they should be for an optimised filter. Such errors 

result in excessive measurement noise remaining in the estimate of the 

state variable. The Hehra algorithm is intended to be used in an itera-

tive scheme in which the estimates of q and r asymptotically approach 
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their optimum values. In principle, to move along the asymptote, it is 

necessary to re-run the filter (in this case, P1s), each time using the 

latest recommendations for q and r, until the innovation sequence is 

white. 

Figures 7.24(a) and (b) present two examples of how the estimates 

of q improve with each iteration, obtained using two real data files. 

It was found that although these estimates did converge in general, they 

very rarely converged to a value which resulted in a white innovation 

sequence. In order to make the transition from the cpnvergence value 

to the "optimised" value it was necessary to manually tune the system by 

applying certain rules of thumb [5]. These, in essence, use the bias in 

the innovation sequence (Ineg) to indicate whether the system noise 

recommendation should be increased or decreased. Assuming the measure-

ment noise is approximately correct, negative bias in the innovation 

sequence means that q should be reduced (and vice versa). Optimised 

values of q obtained by such means are indicated in both figures by the 

dashed lines. 

Estimates of Jlin Table 7.3 vary by an order of magnitude: some of 

this variation will be attributable to errors in the estimate but the 

rest may be characteristic of variations in the system process itself. 

Mehra estimates of the values of r converge quickly and appear reasonably 

consistent, yielding approximate values of 0.5 for log power data, and 

0.7 for log ratio data. 

Using the expression (7.5), values of ~ can be interpreted directly 
CD 

as percentage errors in the "absorbance" A, or "differential absorbance", 

~A, of equations (3.22(b» and (3.24) since, 

IP = o(log power) = (7.77) 
CD 
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or ;p- = o(log ratio) 
00 

(7.78) 

where A and tA denote time dependent expectation values of the signal at 

any given instant. Therefore, using the P16 estimate of ;p- (Table 7.3), 
00 

these errors would appear to vary from nearly ±lS% for SIFTS.046 down to 

±3.6% for SIFTS.026 (due to the fact that, for this file, the measurement 

noise in both channels is highly correlated). 

Steady state values for p and R can be predicted for the linear 

Ralman filter using the matrix Riccati equation which, in scalar form, is 

given by expression (7.40). In Section 7.3.1 it was shown that, for the 

random walk system model, 

(7.43) 

A 

and that the scaling relationship between the estimate, q = q derived 
n 

from P1S, and the value ql used by P16, is 

qn 

n 
(7.52) 

where n is the sample interval used on the original data set by PlS. 

Bryson and Hendrikson do not consider the continuous filter case 

and therefore do not provide an expression for the continuous propaga-

tion of covariance. However, since the linear Ralman filter represents 

the optimum filter [ref. 10, p. 107], the Bryson and Hendrikson algorithm 

will not do better than the result, (7.43). Therefore, with P1S and P16 

both performing as optimum linear filters, the ratio between the two 

estimates of p will achieve a maximum value of 

P (P16) 
00 

Poo (P1S) tqr 
n 

which, for n = 10, is =0.32. For the purpose of comparing estimates 
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listed in Table 7.3, the square root of this ratio (= 0.56 for n = 10) 

is more useful. The results tabulated tend to confirm that P16 does, 

in fact, provide a better estimate than PIS since the error covariance 

estimates generated by P16 are consistently lower than those of PIS. 

With a single exception, however, ratios between these estimates do not 

achieve the theoretical maximum of ~0.S6. The one exception is provided 

by the simulated data file, SIM.OOl, for which the speckle sequence is 

uncorrelated. 

Sequential correlation in speckle measurement noise does, therefore, 

detract from the information content of each measurement event, z,' even 
1 

if specialised algorithms are used which are designed to cope with it. 

It is equally apparent, however, that such algorithms help minimise the 

influence of this noise imposed sample dependency and therefore permit 

useful sampling within the correlation time constant {= 1/8 - see expres-

sion (7.68». P16 is, however, subject to at least one more source of 

error'than P15 since estimates of 8 (the speckle decorrelation parameter) 

must be provided. These are listed in Table 7.2 together with their 

error estimates. In adopting the random walk model for both PIS and P16, 

the autoregressive parameter ~ in (7.25) is assumed to be unity. If, for 

any real data file, a better system model exists using a value of ~ ~ 1, 

then any errors arising from the use of the random walk model (~ = 1) 

will be common to both filters. 

It is worth noting here, however, that since the general autoregres-

sive model (7.43) with ~ < 1 has the equivalent continuous form 

-ax + w (7.79) 

for which a > 0 (this is derived from (7.41) with f = -a and g = 1), 

solving the matrix Riccati equation for the steady state condition yields 
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(7.80) 

Therefore, as this system model departs from the random walk condi-

tion (a = 0) and tends towards the white noise sequence, w (a = 1), the 

steady state error covariance decreases, thereby potentially improving 

the precision of the estimate. Figure 7.25 is a plot of the dependency 

of p~ as a function a for the valuesof q and r used in the random walk 

simulations. 

Finally, taking the expression (3.32) which relates the concentra-

tion of a gas species, m, to the log ratio, and applying a standard 

result for the component variances in a linear expression [61, the preci-

sion in the concentration measurement can be related to the steady state 

error covariance via 

(7.81) 

where ~a' is the differential absorption coefficient per em. 

This function is plotted in Figure 7.26 (as a standard deviation 

rather than a variance) for each of the four gases identified in Table 

-4 ,--7.1 (~a' = 7.56 x 10 for H
2
0) using values of ~p~ ranging between 1 and 

10-4 • A log transformation has once again been applied to the axes. 

Since the differential absorption coefficients for H20 and CO2 are nearly 

identical for the measurement wavelengths chosen, both plots appear coin-

cident. Shaded areas translate the upper and lower bounds for ;p- (P16), 
~ 

as listed in Table 7.3, into precision bounds for all four gases. These 

precision estimates assume, of course, that p~ completely defines all 

sources of error. 
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TABLE 7.1 

H20 C02 NH3 C H 
(y = 8.4 x 10-3 50% RH (y 0.000318) (y = 2 x 10-9 ) (y = 22x410-9 ) 

Laser Wavelength r---~~~~-----------+----------------------+---------------------4---------------------~ 
Lines: (microns) Absorp. 

File J Channel A Channel A Caeff. 
Numbe Channel B Channel B ( em-I) 

D.A.C. 
(em-I) 

Absorp. 
Log Icaeff. 

. -1 rabo (em ) 
D.A.C. 
(em-I) 

Absorp. Absorp. 
Log I Caeff. D.A.C. Log 

ratio (em-1 (em-I) ratio 
Caeff. D.A.C. Log 

(em-I) (em-I) ratio 

-4 I -3 I 036 ,10 Rl6 /10.2744 11.3lx10_ 2.8xlO-S 0.085 3.0SxlO_ 7.5 xlO-4 0.086 0.110 -23.09 -0.017 11 •09 
10 R8 10.3337 1.03xlO 4 2.30xlO 3 23.20 1.05 

0.04 2. 88x10-S 

-4 -3 0 30 
037 10 Rl2 10.3035 1.66x10 6.3xlO-5 0.191 2.87xlO 5.7x10-4 0.065. 2 -22.97 -0.016 1.96 0.95 6.84x10-4 

10 R8 10.3337 1.03x10-4 2.30xlO-3 23.2 1.05 I~ 
~ ~ -j l~ 

038 10 P14 10.5321 1.22x10 2.8x10-5 0.085 2•74x10 9.1xl0-4 0.104 0.870 0.510 3.67xl0-4 36.5 
10 P28 10.6746 0.94xlO-4 1.83xl0-3 0.360 1.34 

35.16 0.025 

043 10 R20 10.2466 8.SlxlO-
4 

7.S6xlO-4 2.289 2.87x10-
j 

-1.5xlO-4 0.172 0.050 -0.013 -9.36x10-6 1.16 0.46 3. 31X10-4-
10 Rl8 10.2604 0.9Sxl0-4 3.02x10-3 0.063 0.70 I 

044110 R20 10.2466 8.5lxlO-
4 

7.S6xl0-4 2.289 2.87xlO-~ -1.SxlO-4 0.172 0.050 -0.013 -9.36x10-6 1.16 0.46 3.31xlO-4 
10 Rl8 10.2604 0.9Sx10-4 3.02x10-3 0.063 10.70 

0451 10 R20 110.2466 I 8.5lxlO=4 7.56x10-4 2.28912.87x10=~ -1.5x10-4 0.172\0.050 -0.013 _9.36x10-6l.16 
10 Rl8 10.2604 0.95xlO 4 3.02x10 3 0.063 '0.70 

0.46 3.31x10-4 

0461 10 R20 110.2466 I 8.SlxlO=4 7.20xlO-4 2.17912.87X10=~ _1.ax10-4_0.021Io·0S0 -0.060 _4.32xlO-5 :1 . l6 

10 Rl6 10.2744 1.31x10 4 3.05x10 3 0.110 :1.09 
0.07 S.04x10- 5 

D.A.C. - Differential Absorption Coefficient (per em) 



Filename 

SIFT5.024 

SIFTS. 026 

SIFT5.036 

SIFT5.037 

SIFT5.038 

SIFT5.043 

SIFTS. 044 

SIFT5.045 

SIFTS. 046 
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TABLE 7.2 

t3 Estimates 

In(Pa) In(Pb) 

-0.30 ± 0.10 -0.26 ± 0.09 

-0.20 ± 0.07 -0.20 ± 0.07 

-0.25 ± 0.10 -0.27 ± 0.11 

-0.23 ± 0.09 -0.34 ± 0.14 

-0.22 ± 0.09 -0.26 ± 0.11 

-0.25 ± 0.10 -0.32 ± 0.12 

-0.21 ± 0.08 -0.24 ± 0.10 

-0.26 ± 0.09 -0.26 ± 0.10 

-0.21 ± 0.08 -0.25 ± 0.10 

In(ratio) 

-0.29 ± 0.11 

-0.27 ± 0.11 

-0.22 ± 0.10 

-0.26 ± 0.11 

-0.21 ± 0.10 

-0.35 ± 0.15 

-0.27 ± 0.11 

-0.29 ± 0.11 

-0.24 ± 0.09 



TABLE 7.3 

SUmmary of Filter Performance 

p1S 

Filename state Variable rq rr IP K lacf lneq rq 
co co 

SIFTS. 026 In(Pa) .Ox10-2 0.49 7.00x10-2 2.04x10-2 0 9<0 2.24x10-3 

In(Pb) ~.Ox10-2 0.46 6.82x10-2 2. 15xlO-2 0 9<0 2. 24x10-3 

SIFTS. 035 In(Pa) ~.63xlO-2 0.57 9.68xlO-2 2. 84x10-2 1 9<0 5. 17x10-3 

In(Pb) 3.95x10-2 0.56 0.1507 6.87xlO-2 0 11<0 1. 25x10-2 

SIFTS. 044 In(Pa) 1. 25x10-2 0.56 8.43xlO-2 2.20x10-2 1 12<0 3.95xlO-3 

In(Pb) 4.0x10-2 0.53 0.1485 7.25xlO-2 1 12<0 1.26xlO-2 

SIFTS. 026 log ratio 6.94x10-3 0.22 3.9lxlO-2 3. 15xlO-2 0 16<0 2.19x10-3 

SIFTS. 036 log ratio 3.30xlO-2 0.76 0.1604 4.23xlO-2 0 10<0 1.04x10-2 

SIFTS. 037 log ratio 1.0xlO-2 0.72 8. 49xlO-2 1. 39xlO-2 0 11<0 3.16xlO-3 

SIFTS. 038 log ratio 3.50x10-2 0.74 0.1626 4.63x10-2 0 10<0 1. 11x10-2 

SIFTS. 043 log ratio 4.0x10-3 0.65 5. 12xl0-2 6.13x10-3 1 9<0 1.26x10-3 

SIFTS. 044 log ratio 2.0x10-2 0.72 0.1204 2.76xlO-2 0 11<0 6.32xlO-3 

SIFTS. 045 log ratio 1. 14x10-2 0.70 8. 99xlO-2 1. 62xl0-2 0 9<0 3.60x10-3 

SIFTS. 046 log ratio 5.0xlO-2 0.72 0.1930 6.71x10-2 3 10<0 1. 58x10-2 

SIM.001 1n(power) 1.50x10-2 0.48 8.60xlO-2 3.06x10-2 1 10<0 4.75x10-3 

SIM.002 In(power) 2.S0xlO-2 0.49 0.1117 5.0lxlO-2 1 11<0 7.91x10-3 

-

P16 

yf" IP 
co 

0.49 5.79x10 -2 

0.46 5.70x10-2 

0.57 9.03x10-2 

0.56 0.1345 
0.56 8.25x10 -2 

0.53 0.1367 
0.22 3. 56xlO-2 

0.76 0.1533 
0.72 7.88x10-2 

0.72 0.1560 
0.65 4.42x10 -2 

0.72 0.1103 
0.70 8.14x10-2 

0.72 0.1783 
0.48 4.76x10 -2 

0.49 8. 2lx10-2 

K lacf co 

7.86x10-2 1 
8.40x10-2 1 
1. 43x10-2 3 
3. 33x10-2 4 
1.19x10-2 6 
3.70x10-2 2 
1. 53xlO-2 2 
2.24x10-2 1 
6.85x10-3 1 
2. 47x10-2 2 
2.72x10-2 2 
1. 35xlO-2 4 
7.70x10-3 3 
3. 43xlO-2 3 
9.67x10-3 0 
1. 87x10-2 3 

Ineg 

9<0 
9<0 

11<0 
9<0 
8<0 

11<0 
10<0 
10<0 

8<0 
10<0 

9<0 
9<0 

12<0 
10<0 
15<0 
14<0 

1 

I'V 
-..I 
-..I 
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FIGURE 7.9 
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FIGURE 7.9 
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FIGURE 7.9 
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FIGURE 7.9 
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CHAPTER 8.0 

CONCLUSION 

Various estimation techniques have been applied here in an attempt 

to evaluate their potential for ~he specific task of processing non­

stationary direct detection CO2 lidar signals corrupted by speckle 

noise. Two "sub-optimal" algorithms were considered first: the running 

average and the as tracker, principally as techniques for providing an 

initial cursory examination of the data; suitable for a qualitative 

comparison of the information in each lidar channel. The running 

average is a technique representative of the methods applied by Menyuk 

and Killinger which first alerted them to the presence of non-station­

arity in the signal. The as tracker is a more sophisticated technique, 

particularly in the slightly underdamped form used here (attributable 

to Benedict and Bordner), since the algorithm generates an estimate of 

both the signal and the signal derivative with respect to time. For 

deterministic signals it is also capable of providing an estimate of the 

precision of the estimate. Both the running average and as tracker 

are, of course, essentially deterministic in nature. 

Opti~al estimation methods require information not only on the 

statistical properties of the system and measurement noise processes, 

but also on terms included in the state propagation and observation 

matrices, $ and H. In an attempt to derive this information, specific 

methods of time series analysis were employed, based on the information 

content of autocorrelation and partial autocorrelation functions (the 

"Box-Jenkins" approach). This method proved to be reasonably successful, 

at least for the purposes of selecting relatively simple, first order 

autoregressive models as approximations to both the signal process and 
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sequential correlation in the additive speckle measurement noise 

(after the log transformation). 

Kalman filter applications, in general, may be broadly parti­

tioned into one of two problem-type categories. The first, and most 

widely relevant group would include those applications in which the 

system model tends to be either deterministic, or else has well known 

statistical properties, and therefore facilitates the estimation of 

large state vectors. The other application area is characterised by 

systems which are probabilistic rather than deterministic, having 

poorly defined stochastic properties and, as a partial consequence of 

this, state vectors which tend to be limited in dimension. Lidar 

signal estimation, as attempted here, currently falls into the latter 

category. 

Adopting first order autoregressive models in the Kalman filter 

implementations of Chapter 7 (PIS and P16), simplified an initial 

application of two complementary techniques which may be used as part 

of an iterative procedure for improving parameter definition within 

the models: 

(1) The first technique addresses the immediate requirement to 

evaluate the system and measurement noise covariance matrices, 

Q and R. Reducing the system and measurement models to scalar 

form makes this easier since only two scalar quantities, q and 

r, need to be determined. The method published by Mehra is a 

two stage process. Initially, crude estimates of q and rare 

used in a standard implementation of the Kalman filter (i.e. 

PIS) and the autocorrelation function of the innovation 

sequence is calculated. A statistical test is then used to 

determine whether or not the innovative sequence is white. 
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If it is not, the second step is to use Mehra's formulations 

for deriving new estimates of q and r. Those are then used in 

a re-run of the filter and the procedure repeated until the 

whiteness test is successful. 

(2) The basic, linear Kalman filter does not provide for the even­

tuality of correlated measurement noise; a significant limitation 

since measurements of real processes, in general, will be cor­

rupted by noise which must be band limited in some sense. Bryson 

and Hendrikson's algorithm is therefore a valuable extension to 

the linear Kalman filter but since at least one extra model 

parameter (~ or S) must be estimated, the implementation 

requirements become more complex and filter performance will be 

susceptible to at least one extra source of error. 

Other algorithms for estimating q and r, or K, have been published 

since Mehra's paper which may be capable of providing more accurate 

estimates of these parameters, and would therefore benefit from a com­

parative analysis based on both real and simulated lidar data. True 

adaptive filtering, in which q and r, and consequently P and K, are 

estimated "on line" could then be attempted using the best of these 

methods. 

Where, in future applications, more complex models become neces­

sary, the Box-Jenkins approach may be pursued further to identify the 

coefficients of a general ARMA process. Alternatively, if parameter 

instability is suspected, the "Instrumental Variable" methods advocated 

by Peter Young [1] may prove to be more appropriate. Certain topics 

which are generally relevant when applying the methods of optiMal 

estimation have not been discussed here because of the lengthy digres-
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sions that would have been involved. These include the subjects of 

smoothing, sensitivity analysis and word length errors. 

Smoothing, as defined at the beginning of Chapter 6, is a non­

real-time processing scheme that uses all of the measurements before 

and after each sample, Zk' to estimate the system state, instead of 

just those measurements up to and including Zk' as is the case with 

filtering. Had this been done, the steady state error covariances for 

the random walk system model could have been reduced by a factor of 2. 

However, once the filter is defined, it is relatively simple to imple­

ment the smoothing version of the algorithm. 

Sensitivity analysis examines state estimate sensitivity to 

changes in the model parameters, and usually refers to the situation 

in which the system and measurement processes are known precisely, but 

a simpler, approximate implementation is required to ease computational 

loading. In a general sense the term can also be applied to an analysis 

based, for example, only on the error covariance estimates. Ge1b [2), 

in fact, gives an example for a first order gauss-markov system model 

(AR(l) with $ < 1). In the limit in which this becomes a random walk 

sensitivity analysis, in the broad sense, would then reduce to the 

simple task of examining filter performance as a function of rand q. 

Word length errors are a consequence of using digitised computers 

in which numerical precision is a function of the number of bits used 

to represent a number. During a multiplication, for example, two 

numbers represented by n bits each may require 2n bits for their pro­

duct. In fixed word-length machines only n bits are available, however, 

so the precision represented by the last n bits must be discarded. 

There are two methods of doing this; symmetric rounding up or down, or 

truncation to the nearest lower integer. The latter technique results 
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in the largest accumulation of errors, particularly during the 

multiply-accumulate operations characteristic of recursive filtering. 

A check on the Fortran implementation of the filtering algorithms was 

conducted by converting all susceptible variables to double precision 

and repeating several filter runs on real and simulated data. No 

differences were observed due, presumably, to symmetric rounding tech­

niques used in the Fortran floating point library routines. 

In applying data processing techniques to the problem of speckle 

induced measurement noise the alternative approach, of improving the 

sampling capabilities of the instrumentation used to collect the data, 

has been neglected. As indicated in the discussion on speckle in 

Chapter 4, the instrumentational requirements translate into a need to 

reduce the ratio of the speckle induced standard deviation to the signal 

mean, given by l/~. In principle, uncorrelated speckle patterns can 

be obtained by means of time, space, frequency or polarisation diversity. 

For example, if the diameter of the receiver mirror is increased, 

equation (4.15) reveals that the size of the speckles in the image 

plane will be decreased. More speckles will therefore be averaged over 

a given detector dimension since m is increased; a teChnique which is 

referred to as an aperture averaging. Alternatively, for fixed 

receiver diameters, the location of the beam on the target may be deli­

berately altered between shots to decorrelate successive power samples. 

Advanced data processing techniques will, however, find applica­

tion where instrumental teChniques are either impractical or too costly 

to implement. CO2 lidar systems, in general, have yet to become the 

ubiquitous tool for atmospheric gas concentration measurements they 

originally promised to be. This is attributable, principally, to their 

long and expensive development phases which are often dependent on 



- 388 -

advances in laser technology. Digital filtering methods may therefore 

provide at least an intermediate solution, and are now capable of real 

time implementation via relatively inexpensive, VLSI based, pro gramm-

able digital signal processing systems. 
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