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represents	the	majority	of	the	data.	A	0-size	gene	family	means	complete	loss	in	that	
species.	

Figure	4.12	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	primate	
phylogenetic	tree	for	release	67	of	the	primates	gene	family	data	using	a	fixed	lambda	
across	the	tree.	Blue	coloured	branches	depict	overall	contraction,	while	red	coloured	
branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	no	change.	
Branch	 thickness	 represents	 the	number	of	 gene	 copy	number	 changes	weighted	by	
the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	to	the	root	
node.	
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represents	the	majority	of	the	data.	A	0-size	gene	family	means	complete	loss	in	that	
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lambda	across	 the	 tree.	Blue	coloured	branches	depict	overall	 contraction,	while	 red	
coloured	branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	
no	 change.	 Branch	 thickness	 represents	 the	 number	 of	 gene	 copy	 number	 changes	
weighted	by	the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	
to	the	root	node.	

Figure	 4.15	 -	 Frequency	 distribution	 of	 significantly	 expanded	 or	 contracted	 gene	
family	 sizes	 in	 each	primate	 for	 release	67	of	 the	primates	 gene	 family	data	using	 a	
variable	 lambda	 for	 each	 gene	 family	 and	 across	 the	 tree.	 A	 cut-off	 of	 30	 used	 as	
maximum	on	the	x-axis	as	this	represents	the	majority	of	the	data.	A	0-size	gene	family	
means	complete	loss	in	that	species.	

Figure	4.16	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	primate	
phylogenetic	 tree	 for	 release	 67	 of	 the	 primates	 gene	 family	 data	 using	 a	 variable	
lambda	 for	 each	 gene	 family	 and	 across	 the	 tree.	 Blue	 coloured	 branches	 show	
contractions,	 while	 red	 coloured	 branches	 depict	 expansions.	 Branch	 thickness	 is	
weighted	by	time	since	the	ancestor	node	for	each	branch.	

Figure	 4.17	 -	 Bar	 chart	 showing	 a	 breakdown	 of	 the	 functional	 classifications	 of	
significantly	 expanded	 or	 contracted	 gene	 families	 for	 the	 release	 66	 primates	 gene	
family	data.	All	 species	data	are	pooled.	Annotations	 correspond	 to	values	above	an	
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Figure	 4.18	 -	 Bar	 chart	 showing	 a	 breakdown	 of	 the	 functional	 classifications	 of	
significantly	 expanded	 or	 contracted	 gene	 families	 for	 the	 release	 66	 primates	 gene	
family	 data.	 All	 species	 data	 are	 represented	 individually	 to	 highlight	 per	 species	
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Figure	 4.19	 -	 Bar	 chart	 showing	 a	 breakdown	 of	 the	 functional	 classifications	 of	
significantly	 expanded	 or	 contracted	 gene	 families	 for	 the	 release	 67	 primates	 gene	
family	data.	All	species	data	are	pooled.	
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Figure	 4.20	 -	 Bar	 chart	 showing	 a	 breakdown	 of	 the	 functional	 classifications	 of	
significantly	 expanded	 or	 contracted	 gene	 families	 for	 the	 release	 67	 primates	 gene	
family	 data.	 All	 species	 data	 are	 represented	 individually	 to	 highlight	 per	 species	
contributions.	
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Figure	5.7	–	Mean	intron	density	calculated	per	250Kb	window	across	chromosome	X.	

Figure	5.8	–	Mean	intron	density	calculated	per	250Kb	window	across	chromosome	Y.	

Supplementary	 Figure	 2.1	 -	 The	 Ensembl	 RESTful	 web	 service	 being	 used	 via	 the	
browser	to	return	a	gene	object	from	the	Ensembl	MySQL	core	database	for	the	BRCA2	
gene	in	the	YAML	format.	

Supplementary	Figure	2.2	-	A	Perl	example	script	that	retrieves	the	BRCA2	gene	using	
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Supplementary	Figure	4.1	-	Expansions	and	contractions	of	genes	along	the	branches	
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Supplementary	 Figure	 5.3	 –	 Inset	 of	 frequency	 distribution	 of	 intron	 count	 in	 all	 61	
species	 in	 Ensembl	 release	 70.	 Cut-off	 at	 12.5	 to	 emphasize	 mode	 count	 in	 the	
distribution.	

Supplementary	Figure	5.4	–	 Inset	of	frequency	distribution	of	 intron	density	 in	all	61	
species	 in	 Ensembl	 release	 70.	 Cut-off	 at	 0.01	 to	 emphasize	 mode	 density	 in	 the	
distribution.	 	 	

Supplementary	 Figure	 5.5	 –	 Inset	 of	 frequency	 distribution	 of	 intron	 size	 in	 all	 61	
species	 in	 Ensembl	 release	 70.	 Cut-off	 at	 750	 bp	 to	 emphasize	 mode	 size	 in	 the	
distribution.	
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HTTP	 	 HyperText	Transfer	Protocol	

IDE	 	 Integrated	Development	Environment	

Indel	 	 Insertion	or	Deletion	

JSON	 	 JavaScript	Object	Notation	

Kb	 	 Kilobase	

Kbps	 	 Kilobits	per	second	

KB	 	 Kilobyte	
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LUCA	 	 Last	Universal	Common	Ancestor	

Mb	 	 Megabase	

Mbp	 	 Megabits	per	second	

MB	 	 Megabyte	

MRCA	 	 Most	Recent	Common	Ancestor	

MVC	 	 Model-View-Controller	

N	 	 Population	Size	

Ne	 	 	 Effective	Population	Size	

NHEJ	 	 Nonhomologous	End	Joining	

Pbps	 	 Petabits	per	second	

PB	 	 Petabyte	

pg	 	 Picogram	

RAM	 	 Random	Access	Memory	

REST	 	 REpresentational	State	Transfer	

RNA	 	 Ribose	Nucleic	Acid	

RPC	 	 Remote	Procedure	Call	

SOAP	 	 Simple	Object	Access	Protocol	

SNP	 	 Single	Nucleotide	Polymorphism	

SQL	 	 Structured	Query	Language	

TSV	 	 Tab	Separated	Values	

URI	 	 Uniform	Resource	Identifier	

URL	 	 Uniform	Resource	Locator	

UTR	 	 UnTranslated	Region	

W3	 	 World	Wide	Web	

W3C	 	 World	Wide	Web	Consortium	

WWW		 World	Wide	Web	

WWWC	 World	Wide	Web	Consortium	

XML	 	 eXtensible	Markup	Language	

YAML	 	 YAML	Ain’t	Markup	Language	



CONSTANTS,	DEFINITIONS	AND	EQUATIONS	

picogram	to	bp	conversion	

Number	of	base	pairs	=	mass	in	pg	x	0.978	x	109	

1pg	=	978	Mb	

CAFE	lambda	definition	

CAFE	(De	Bie	et	al.,	2006)	defines	lambda	(λ)	as	the	probability	of	both	gene	gain	and	

loss	per	gene	per	unit	time	in	the	phylogeny	-	put	more	simply,	it	describes	the	rate	of	

change	as	the	probability	that	a	gene	family	either	expands	(via	gene	gain)	or	contracts	

(via	gene	loss)	per	gene	per	million	years.	

	



	

	

	

“It	 has	 often	 and	 confidently	 been	 asserted,	 that	 man's	 origin	 can	 never	 be	

known:	but	ignorance	more	frequently	begets	confidence	than	does	knowledge:	it	

is	those	who	know	little,	and	not	those	who	know	much,	who	so	positively	assert	

that	this	or	that	problem	will	never	be	solved	by	science.”	

―	Charles	Darwin,	The	Descent	of	Man,	1871.	

	

“The	most	 erroneous	 stories	 are	 those	we	 think	we	 know	 best	 -	 and	 therefore	

never	scrutinise	or	question.”	

―	Stephen	Jay	Gould,	Full	House,	1996.	

	

“Evolution	has	meant	that	our	prefrontal	lobes	are	too	small,	our	adrenal	glands	

are	 too	big,	 and	our	 reproductive	 organs	apparently	 designed	by	 committee;	 a	

recipe	 which,	 alone	 or	 in	 combination,	 is	 very	 certain	 to	 lead	 to	 some	

unhappiness	and	disorder.”	

―	Christopher	Hitchens,	God	is	Not	Great,	2007.	

	

"Increasingly,	 the	 real	 limit	 on	what	 computational	 scientists	 can	accomplish	 is	

how	quickly	and	reliably	they	can	translate	their	ideas	into	working	code."	

―	Greg	Wilson,	Where's	the	Real	Bottleneck	in	Scientific	Computing?,	2006.	

	



ABSTRACT	

The	 last	 four	 decades	 have	 seen	 the	 development	 of	 a	 number	 of	 experimental	

methods	 for	 the	 deduction	 of	 the	 whole	 genome	 sequences	 of	 an	 ever-increasing	

number	 of	 organisms.	 These	 sequences	 have	 in	 the	 first	 instance,	 allowed	 their	

investigators	the	opportunity	to	examine	the	molecular	primary	structure	of	areas	of	

scientific	 interest,	 but	 with	 the	 increased	 sampling	 of	 organisms	 across	 the	

phylogenetic	 tree	and	 the	 improved	quality	and	coverage	of	genome	sequences	and	

their	associated	annotations,	the	opportunity	to	undertake	detailed	comparisons	both	

within	and	between	taxonomic	groups	has	presented	itself.	The	work	described	in	this	

thesis	 details	 the	 application	 of	 comparative	 bioinformatics	 analyses	 on	 inter-	 and	

intra-genomic	 datasets,	 to	 elucidate	 those	 genomic	 changes,	 which	 may	 underlie	

organismal	 adaptations	 and	 contribute	 to	 changes	 in	 the	 complexity	 of	 genome	

content	and	structure	over	time.	The	results	contained	herein	demonstrate	the	power	

and	flexibility	of	the	comparative	approach,	utilising	whole	genome	data,	to	elucidate	

the	answers	to	some	of	the	most	pressing	questions	in	the	biological	sciences	today.	

As	the	volume	of	genomic	data	increases,	both	as	a	result	of	increased	sampling	

of	 the	 tree	 of	 life	 and	 due	 to	 an	 increase	 in	 the	 quality	 and	 throughput	 of	 the	

sequencing	methods,	 it	has	become	clear	 that	 there	 is	a	necessity	 for	computational	

analyses	 of	 these	 data.	 Manual	 analysis	 of	 this	 volume	 of	 data,	 which	 can	 extend	

beyond	 petabytes	 of	 storage	 space,	 is	 now	 impossible.	 Automated	 computational	

pipelines	 are	 therefore	 required	 to	 retrieve,	 categorise	 and	 analyse	 these	 data.	

Chapter	 two	 discusses	 the	 development	 of	 a	 computational	 pipeline	 named	 the	

Genome	Comparison	 and	Analysis	 Toolkit	 (GCAT).	 The	 pipeline	was	 developed	using	

the	 Perl	 programming	 language	 and	 is	 tightly	 integrated	 with	 the	 Ensembl	 Perl	 API	

allowing	 for	 the	 retrieval	 and	 analyses	 of	 their	 rich	 genomic	 resources.	 In	 the	 first	

instance	the	pipeline	was	tested	for	its	robustness	by	retrieving	and	describing	various	

components	 of	 genomic	 architecture	 across	 a	 number	 of	 taxonomic	 groups.	

Additionally,	the	need	for	programmatically	independent	means	of	accessing	data	and	

in	particular	the	need	for	Semantic	Web	based	protocols	and	tools	for	the	sharing	of	

genomics	resources	is	highlighted.	This	is	not	just	for	the	requirements	of	researchers,	

but	for	improved	communication	and	sharing	between	computational	infrastructure.	A	

prototype	 Ensembl	 REST	 web	 service	 was	 developed	 in	 collaboration	 with	 the	
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European	 Bioinformatics	 Institute	 (EBI)	 to	 provide	 a	 means	 of	 accessing	 Ensembl’s	

genomic	data	without	having	 to	 rely	on	 their	 Perl	API.	A	 comparison	of	 the	 runtime	

and	 memory	 usage	 of	 the	 Ensembl	 Perl	 API	 and	 prototype	 REST	 API	 were	 made	

relative	 to	 baseline	 raw	 SQL	 queries,	 which	 highlights	 the	 overheads	 inherent	 in	

building	 wrappers	 around	 the	 SQL	 queries.	 Differences	 in	 the	 efficiency	 of	 the	

approaches	were	highlighted,	and	the	importance	of	 investing	in	the	development	of	

Semantic	Web	technologies	as	a	tool	to	improve	access	to	data	for	the	wider	scientific	

community	are	discussed.	

Data	highlighted	in	chapter	two	led	to	the	identification	of	relative	differences	in	

the	 intron	 structure	 of	 a	 number	 of	 organisms	 including	 teleost	 fish.	 Chapter	 three	

encompasses	 a	 published,	 peer-reviewed	 study.	 Inter-genomic	 comparisons	 were	

undertaken	utilising	the	5	available	teleost	genome	sequences	in	order	to	examine	and	

describe	their	intron	content.	The	number	and	sizes	of	introns	were	compared	across	

these	 fish	and	a	 frequency	distribution	of	 intron	 size	was	produced	 that	 identified	a	

novel	expansion	in	the	Zebrafish	lineage	of	introns	in	the	size	range	of	approximately	

500-2,000	 bp.	 Further	 hypothesis	 driven	 analyses	 of	 the	 introns	 across	 the	 whole	

distribution	of	intron	sizes	identified	that	the	majority,	but	not	all	of	the	introns	were	

largely	 comprised	 of	 repetitive	 elements.	 It	 was	 concluded	 that	 the	 introns	 in	 the	

Zebrafish	 peak	were	 likely	 the	 result	 of	 an	 ancient	 expansion	 of	 repetitive	 elements	

that	 had	 since	 degraded	 beyond	 the	 ability	 of	 computational	 algorithms	 to	 identify	

them.	 Additional	 sampling	 throughout	 the	 teleost	 fish	 lineage	 will	 allow	 for	 more	

focused	phylogenetically	driven	analyses	to	be	undertaken	in	the	future.	

In	 chapter	 four	 phylogenetic	 comparative	 analyses	 of	 gene	 duplications	 were	

undertaken	 across	 primate	 and	 rodent	 taxonomic	 groups	 with	 the	 intention	 of	

identifying	significantly	expanded	or	contracted	gene	 families.	Changes	 in	 the	size	of	

gene	families	may	indicate	adaptive	evolution.	A	larger	number	of	expansions,	relative	

to	 time	 since	 common	 ancestor,	 were	 identified	 in	 the	 branch	 leading	 to	 modern	

humans	 than	 in	 any	other	 primate	 species.	Due	 to	 the	unique	nature	 of	 the	 human	

data	 in	 terms	 of	 quantity	 and	 quality	 of	 annotation,	 additional	 analyses	 were	

undertaken	 to	 determine	whether	 the	 expansions	were	methodological	 artefacts	 or	

real	biological	 changes.	Novel	 approaches	were	developed	 to	 test	 the	validity	of	 the	

data	including	comparisons	to	other	highly	annotated	genomes.	No	similar	expansion	
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was	 seen	 in	 mouse	 when	 comparing	 with	 rodent	 data,	 though,	 as	 assemblies	 and	

annotations	 were	 updated,	 there	 were	 differences	 in	 the	 number	 of	 significant	

changes,	 which	 brings	 into	 question	 the	 reliability	 of	 the	 underlying	 assembly	 and	

annotation	 data.	 This	 emphasises	 the	 importance	 of	 an	 understanding	 that	

computational	predictions,	in	the	absence	of	supporting	evidence,	may	be	unlikely	to	

represent	 the	 actual	 genomic	 structure,	 and	 instead	 be	 more	 an	 artefact	 of	 the	

software	parameter	space.	 In	particular,	significant	shortcomings	are	highlighted	due	

to	 the	 assumptions	 and	 parameters	 of	 the	 models	 used	 by	 the	 CAFE	 gene	 family	

analysis	software.	We	must	bear	in	mind	that	genome	assemblies	and	annotations	are	

hypotheses	that	themselves	need	to	be	questioned	and	subjected	to	robust	controls	to	

increase	the	confidence	in	any	conclusions	that	can	be	drawn	from	them.	

In	addition	functional	genomics	analyses	were	undertaken	to	identify	the	role	of	

significantly	changed	genes	and	gene	families	in	primates,	testing	against	a	hypothesis	

that	 would	 see	 the	 majority	 of	 changes	 involving	 immune,	 sensory	 or	 reproductive	

genes.	Gene	Ontology	(GO)	annotations	were	retrieved	for	these	data,	which	enabled	

highlighting	 the	 broad	 GO	 groupings	 and	 more	 specific	 functional	 classifications	 of	

these	data.	The	results	showed	that	the	majority	of	gene	expansions	were	in	families	

that	may	have	 arisen	due	 to	 adaptation,	 or	were	maintained	due	 to	 their	 necessary	

involvement	 in	developmental	 and	metabolic	 processes.	 Comparisons	were	made	 to	

previously	 published	 studies	 to	 determine	 whether	 the	 Ensembl	 functional	

annotations	were	supported	by	the	de-novo	analyses	undertaken	in	those	studies.	The	

majority	 were	 not,	 with	 only	 a	 small	 number	 of	 previously	 identified	 functional	

annotations	being	present	in	the	most	recent	Ensembl	releases.	

The	impact	of	gene	family	evolution	on	intron	evolution	was	explored	in	chapter	

five,	by	analysing	gene	family	data	and	intron	characteristics	across	the	genomes	of	61	

vertebrate	 species.	 General	 descriptive	 statistics	 and	 visualisations	 were	 produced,	

along	with	tests	 for	correlation	between	change	 in	gene	family	size	and	the	number,	

size	and	density	of	their	associated	introns.	There	was	shown	to	be	very	little	impact	of	

change	 in	 gene	 family	 size	 on	 the	 underlying	 intron	 evolution.	 Other,	 non-family	

effects	were	therefore	considered.	These	analyses	showed	that	introns	were	restricted	

to	 euchromatic	 regions,	 with	 heterochromatic	 regions	 such	 as	 the	 centromeres	 and	

telomeres	being	largely	devoid	of	any	such	features.	A	greater	involvement	of	spatial	
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mechanisms	such	as	recombination,	GC-bias	across	GC-rich	isochores	and	biased	gene	

conversion	was	 thus	 proposed	 to	 play	more	 of	 a	 role,	 though	 depending	 largely	 on	

population	 genetic	 and	 life	 history	 traits	 of	 the	 organisms	 involved.	 Additional	

population	 level	 sequencing	 and	 comparative	 analyses	 across	 a	 divergent	 group	 of	

species	 with	 available	 recombination	 maps	 and	 life	 history	 data	 would	 be	 a	 useful	

future	direction	in	understanding	the	processes	involved.	

	

	 	



Page	28	of	314	

	

	

[	This	page	is	left	intentionally	blank	]



Page	29	of	314	

CHAPTER	ONE:	INTRODUCTION	

The	need	for	automated	bioinformatics	pipelines	

The	 first	 free-living	 organism	 to	 have	 its	 genome	 sequenced	was	 the	Gram-negative	

coccobacilli	 bacterium	Haemophilus	 influenzae,	 an	 opportunistic	 pathogen	 known	 to	

cause	a	variety	of	diseases	in	humans	(Fleischmann	et	al.,	1995).	This	study	marked	the	

beginning	of	the	so	called	“genomics	era”,	with	the	genomes	of	numerous	organisms	

across	 the	 phylogenetic	 spectra	 being	 sequenced	 in	 increasing	 frequency	 over	 the	

subsequent	2	decades.	Prior	to	this	time	the	sequencing	and	analyses	of	the	chemical	

components	 of	 the	 cell	 (i.e.	 DNA,	 RNA,	 and	 proteins)	 was	 a	 long,	 expensive	 and	

arduous	 process,	 which	 was	 in	 dire	 need	 of	 improved	 computational	 methods.	 The	

software	available	 initially	 tended	to	 focus	more	on	complementing	manual	analyses	

of	 the	 data	 (e.g.	 Staden,	 1977;	 Staden,	 1978;	 Staden,	 1979),	 but	 the	 increasing	

production	 of	 genome	 scale	 data	 spurred	 the	 development	 of	 the	 bioinformatics	

discipline,	and	a	wide	variety	of	automated	tools	(Staden,	1996;	Piast	et	al.,	2007).	

Although	 computational	 infrastructure	 has	 developed	 in	 parallel	 to	 sequencing	

advances,	the	volume	of	data	produced	through	genome	sequencing	projects,	over	the	

past	 decade	 in	 particular,	 have	 posed	 a	 considerable	 challenge	 to	 their	 analyses	

(Mardis,	2011;	Pagani	et	al.,	2012).	 	 The	increase	in	numbers	of	genomes	sequenced	

doesn’t	 necessarily	 pose	 a	 problem	 on	 its	 own,	 in	 terms	 of	 individual	 analytical	

requirements	however;	 it	 is	the	increasing	quantities	of	genomic	data	and	associated	

metadata,	produced	as	a	result	of	 improvements	 in	sequencing	technologies,	as	well	

as	 redundancy	 due	 to	 inherent	 sequencing	 error	 (Bouck	 et	 al.,	 1998;	 Green,	 2007;	

Milinkovitch	 et	 al.,	 2010)	 that	 makes	 it	 impossible	 for	 manual	 analyses	 to	 be	

undertaken,	 and	 thus	 necessitating	 the	need	 for	 increasingly	 efficient	 bioinformatics	

algorithms	and	automated	computational	pipelines	(Lathe	et	al.,	2008).	

The	genome	of	H.	influenzae	is	1,830.14	Kb	in	size	(Fleischmann	et	al.,	1995).	For	

the	 computer	 systems	 available	 in	 1995;	 with	 a	 maximum	 hard	 disk	 capacity	 of	

approximately	1	GB,	processor	clock	speed	of	around	33	MHz	and	RAM	of	 roughly	8	

MB,	this	project	would	have	posed	a	considerable	problem,	as	it	was	much	larger	than	

the	 maximum	 5.4	 Kb	 (bacteriophage	 φX174)	 and	 48	 Kb	 (bacteriophage	 λ)	 DNA	

genomes	previously	sequenced	(Sanger	et	al.,	1977;	Sanger	et	al.,	1982).	It	is	useful	to	
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remember	here	that	the	size	of	a	genome	in	base	pairs	(bp)	doesn’t	equate	to	amount	

of	storage	in	bytes,	due	to	the	intricacies	of	computer	systems	architecture	design	and	

file	system	formats,	but	also	due	to	the	amount	of	metadata	produced	as	part	of	the	

sequencing	process.	The	redundant	reads	produced	are	just	one	source	of	this	surplus,	

which	 require	 vast	 computational	 resources	 alone,	 to	 be	 ultimately	 disposed	 of.	 In	

addition,	 the	 tools	 required	 for	 analyses	 (e.g.	 Staden,	 1996),	 which	 were	 novel	

algorithmic	methods	(and	therefore,	perhaps,	not	optimal)	in	the	early	days	of	genome	

analyses,	 had	 computational	 overheads	 of	 their	 own.	 In	 short,	 the	 development	 of	

robust	and	efficient	computational	protocols	was	a	necessity.	

The	impact	of	increasing	sequence	data	on	bioinformatics	analyses	

On	the	12th	September	2013,	the	number	of	genome	projects	 listed	in	the	Genomes	

OnLine	Database	(GOLD)	stood	at	30,377	(Pagani	et	al.,	2012).	This	number	is	in	stark	

contrast	 to	 the	 1	 published	 bacterial	 genome	 in	 1995,	 and	 has	 seen	 an	 exponential	

growth	 from	 then	 onwards.	 Although	 the	 number	 of	 genomes	 sequenced	 aren’t	 a	

direct	 computational	 problem,	 the	 different	 quantities	 and	 qualities	 of	 those	

sequenced	data	are.	The	differences	in	sizes	of	genomes,	even	just	in	animals,	is	widely	

variable	(Dufresne	and	Jeffery,	2011);	with	the	smallest	animal	genome	attributed	to	

the	plant-parasitic	 nematode	Pratylenchus	 coffeae,	 at	 approximately	 19.56	Mb	 (0.02	

pg)	 (Leroy	 et	 al.,	 2007),	 and	 the	 largest	 being	 the	 marbled	 lungfish	 Protopterus	

aethiopicus	 at	 approximately	 129.91	 Gb	 (132.83pg)	 (Pederson,	 1971).	 Sequence	

coverage	 and	 read	 length	 are	 even	 more	 variable	 between	 individual	 projects	 and	

sequencing	 technologies,	making	 for	 increasingly	 complex	 computational	 analyses	 in	

order	to	converge	on	the	most	likely	genome	model.	

The	increase	in	the	number	of	available	genomes,	coupled	with	improvements	in	

sequencing	 technologies	 has	 resulted	 in	 a	 massive	 increase	 in	 the	 volume	 of	 data	

stored	in	public	servers	at	continuously	decreasing	cost	(see	Figure	1.1).	Although	read	

lengths	 and	 coverage	 have	 increased,	 however,	 the	 objective	 quality	 of	 the	 data,	 in	

terms	of	the	confidence	in	individual	base	calls,	are	still	unclear	(Ye	et	al.,	2011;	Earl	et	

al.,	 2011;	 Bradnam	et	 al.,	 2013).	 In	 addition	 to	 the	 underlying	 sequencing	 and	 base	

calling,	 there	 are	problematic	 regions	within	 genomes	 that	 compound	 issues	 further	

including	gene	families	and	pseudogenes,	regions	of	high	GC	content,	known	structural	

variants,	repeat	sequences,	homopolymers,	and	compressions.	There	is	a	great	deal	of	
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variation	in	the	frequency	and	size	of	these	problematic	regions	within	the	genomes	of	

all	organisms,	though	there	is	some	bias	within	particular	clades,	which	are	largely	due	

to	population	genetic	factors	(Lynch	and	Conery,	2003;	Lynch	and	Katju,	2004;	Perry	et	

al.,	 2008).	 These	 problems	 with	 the	 sequence	 data,	 on	 top	 of	 the	 issues	 with	 the	

underlying	 sequence	 itself	make	 it	 very	difficult	 to	 converge	on	an	accurate	genome	

assembly.	 There	 has	 been	 a	 great	 deal	 of	 effort	 invested	 in	 producing	 effective	

bioinformatics	 algorithms	 for	 genome	 assembly	 (Miller	 et	 al.,	 2010;	 Finotello	 et	 al.,	

2011;	Zhang	et	al.,	2011;	Wajid	and	Serpedin,	2012),	but	in	the	absence	of	validation	

methods	and	metrics,	it	is	difficult	to	interpret	the	data	accurately.	

Lagging	computational	power	influences	algorithm	development	

Computational	 power,	 measured	 in	 terms	 of	 the	 density	 of	 transistors	 in	

microprocessor	units,	has	increased	at	a	rate	of	roughly	double	every	18	to	24	months	

since	 1971	 (see	 Figure	 1.2),	 a	 phenomenon	 known	 as	Moore’s	 Law	 (Moore,	 1965).	

Likewise,	the	storage	capacity	of	hard	drives	has	increased	at	a	similar	rate	(see	Figure	

1.3)	 and	 RAM	 capacity	 has	 increased	 exponentially	 by	 a	 factor	 of	 10	 every	 4	 years	

(Buttazzo,	 2000).	 The	 number	 of	 genomes	 and	 amount	 of	 data	 being	 produced	 by	

sequencing	 technologies	 however,	 is	 increasing	 even	 faster.	 This	 means	 that	 the	

computational	 resources	 necessary	 for	 processing	 these	 data	 are	 always	 lagging	

behind.	 As	 many	 problems	 in	 bioinformatics	 are	 hard	 in	 terms	 of	 computational	

complexity	 (Jones	 and	 Pevzner,	 2004;	 Chor	 and	 Tuller,	 2005;	 Roch,	 2006),	 this	 has	

resulted	 in	 most	 methods	 focusing	 on	 the	 development	 of	 approximate	 or	

parsimonious	algorithms,	which	apply	probabilistic	models	and	statistical	approaches	

in	order	to	reach	the	most	likely	outcome	(e.g.	Eddy,	1998;	Huelsenbeck	and	Ronquist,	

2001;	 Enright	 et	 al.,	 2002;	 Edgar,	 2004;	 Huang	 et	 al.,	 2005;	Wehe	 et	 al.,	 2008;	 Van	

Dongen,	2008).	The	focus	on	approximation	within	bioinformatics	algorithms	in	order	

to	 reduce	 the	 computational	 burden,	 results	 in	 changes	 to	 the	 sensitivity	 and	

specificity	 of	 the	 methods,	 which	 can	 have	 a	 big	 impact	 on	 the	 outputs.	 The	

assumptions	 that	 are	 made	 to	 allow	 for	 scaling	 with	 available	 computational	

infrastructure,	therefore	don’t	give	completely	reliable	results.	Genome	assembly	and	

annotation	 is	 just	 one	 of	 the	 areas	where	 these	 issues	 are	 inherent	 (Brenner,	 1999;	

Devos	 and	 Valencia,	 2001).	 The	 effect	 of	 different	 approaches	 to	 genome	 assembly	

algorithm	 development	 can	 be	 seen	 in	 the	 large	 discrepancies	 in	 the	 assemblies	
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produced	when	varying	individual	parameters,	even	within	the	same	software	(Earl	et	

al.,	2011;	Bradnam	et	al.,	2013).	
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Figure	1.1	-	Increase	in	the	number	of	genome	sequences	deposited	in	GenBank	since	1986	(top)	and	the	change	in	cost	of	sequencing	a	genome	since	2001	(bottom).	
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Figure	 1.2	 -	 Increase	 in	 microprocessor	 transistor	 count	 since	 advent	 of	Moore’s	 Law.	 Taken	 from	
http://en.wikipedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law_-_2011.svg	(CC	BY-SA	3.0).
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Figure	1.3	-	Increase	in	hard	drive	storage	capacity	over	time.	Taken	from	http://en.wikipedia.org/wiki/File:Hard_drive_capacity_over_time.png	(CC	BY-SA	3.0).	
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The	development	of	centralised	resources	to	overcome	data	management	

and	sharing	issues	

An	 approach	 that	 has	 been	widely	 adopted	 to	 deal	with	 the	 issues	 surrounding	 the	

storage	 and	 analyses	 of	 sequence	 data,	 is	 the	 development	 of	 centralised	 biological	

databases.	These	database	projects	bring	together	vast	resources,	not	least	in	terms	of	

funding,	to	integrate	the	sequencing	platforms,	and	computational	infrastructure	with	

the	processing	and	analytical	pipelines	necessary	to	make	sense	of	the	sequence	data.	

In	the	early	days	of	sequencing	this	involved	small	repositories	of	data	relevant	to	the	

sequencing	 of	 specific	 components	 or	 organisms	 that	 were	 often	 distributed	 on	

physical	media	 (Bernstein,	et	 al.,	 1977;	 Courteau,	 1991).	 This	 grew	 into	 central	 data	

repositories	 independent	 of	 sequencing	 centres	 (Bilofsky	 et	 al.,	 1986;	 Hamm	 and	

Cameron,	 1986)	 that	 provide	 tools	 for	 querying	 and	 mining	 the	 data	 (Altschul	 and	

Lipman,	 1990;	 Altschul	et	 al.,	 1990).	 This	 has	 scaled	with	 the	 increase	 in	 number	 of	

active	 genome	 projects	 however,	 to	 incorporate	 data	 on	 vast	 numbers	 of	 species	

including	Bacteria,	Fungi,	Metazoa,	Plants	and	Protists	alongside	complex	mining	and	

analytics	interfaces	(Kersey	et	al.,	2011;	Flicek	et	al.,	2012;	Meyer	et	al.,	2013).	

The	 development	 of	 these	 data	 resources	 has	 allowed	 for	 the	 increased	

automation	 of	 processes	 that	 were	 previously	 undertaken	manually	 (Curwen	 et	 al.,	

2004;	 Potter	 et	 al.,	 2004).	 The	 sequencing,	 assembly,	 annotation,	 comparison	 and	

analytics	of	these	genome	data	can	be	undertaken	within	relatively	self-contained	sites,	

or	integrated	via	the	Semantic	Web	(Berners-Lee	and	Hendler,	2001;	Berners-Lee	et	al.,	

2001)	 to	 distribute	 the	 computational	 burden	 across	 pooled	 computational	

infrastructure	(Brooksbank	et	al.,	2010;	Meyer	et	al.,	2012;	Flicek	et	al.,	2012).	These	

automated	 pipelines	 provide	 a	 wealth	 of	 metadata	 by	 integrating	 various	

computational	 tools,	 and	 linked	 data	 that	 can	 be	 used	 to	 highlight	 the	 underlying	

patterns	 in	 structure	and	content	of	 these	genomes,	 such	as	SNPs,	duplications,	and	

differing	levels	of	gene	expression	(Rios	et	al.,	2010;	Chen	et	al.,	2010;	McLaren	et	al.,	

2010;	 Vilella	 et	 al.,	 2009;	 Ballester	 et	 al.,	 2010).	 The	 most	 well-known	 of	 these	

resources	are	the	UCSC	genome	browser	(Meyer	et	al.,	2012)	and	the	EMBL-EBI	based	

Ensembl	genome	browser	(Flicek	et	al.,	2012).	The	infrastructure	alone	that	these	kind	

of	services	aggregate	 is	vast	 (Cuff	et	al.,	2004;	Schadt	et	al.,	2010;	Stein,	2010).	They	

provide	central	hubs	for	the	collation	and	dissemination	of	petabytes	(PB)	of	data	that	
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are	the	lifeblood	of	global	research	communities	(Brooksbank	et	al.,	2010;	Smith	et	al.,	

2013),	 however,	 there	 is	 still	more	 that	 can	be	done	 to	 utilise	 the	 Semantic	Web	 in	

integrating	the	various	sources	of	biological	data	(Stein,	2002;	Stein,	2008;	Stein,	2010).	

The	production	of	bioinformatics	tools	to	facilitate	access	to	biological	data	

The	 UCSC	 genome	 browser	 and	 the	 tools	 it	 provides	 are	 an	 excellent	 resource	 for	

researchers	(Kuhn	et	al.,	2012;	Meyer	et	al.,	2013;	Karolchik	et	al.,	2014),	however	 it	

could	be	argued	that	Ensembl	makes	it	much	easier	for	less	computationally	proficient	

scientists	 to	 undertake	 research	 using	 their	 data.	 The	 services	 they	 provide	 are	

numerous	 and	 more	 importantly	 user-friendly	 (Birney	 et	 al.,	 2004;	 Kasprzyk	 et	 al.,	

2004;	Stalker	et	al.,	2004;	Spudich	et	al.,	2007;	Spudich	and	Fernández-Suárez,	2010;	

Kinsella	 et	 al.,	 2011).	 Their	 Perl-based	 API	 in	 particular	 provides	 an	 excellent	

programmatic	 interface	 to	 their	 data	 (Stabenau	et	 al.,	 2004),	 albeit	 requiring	 some	

investment	 in	 learning	 (though	 see	 Hubbard	 et	 al.,	 2009	 and	 Flicek	 et	 al.,	 2009	 for	

details	on	outreach	and	training	activities).	These	sorts	of	programmatic	tools	can	be	

used	to	develop	 focused	solutions	 to	specific	biological	questions,	utilising	Ensembl’s	

genome	data.	This	allows	for	the	production	of	automated	and	reproducible	workflows	

that	 can	 retrieve	 and	 perform	 relevant	 munging	 of	 the	 data,	 execute	 analytical	

packages	and	algorithms	relevant	 to	hypothesis	 testing,	and	output	 information	 (e.g.	

descriptive	statistics,	inferential	models,	and	visualisations)	necessary	for	publication.	

Being	 able	 to	 reproduce	 ones	 analyses	 is	 of	 growing	 importance	 and	 it	 has	

become	mandatory	to	provide	both	code	and	data	as	part	of	the	publication	process	in	

many	cases	over	the	last	few	years	(The	EMBL	Data	Library	and	GenBank	staff,	1987;	

Kaye	et	al.,	2009).	This	not	online	benefits	the	research	community	and	public	(Birney	

et	 al.,	 2009;	Wicks	 et	 al.,	 2010;	 Sankoh	 and	 IJsselmuiden,	 2011),	 but	 has	 also	 been	

shown	 to	 improve	 the	 authors	 citation	 rate	 (Piwowar	et	 al.,	 2007),	 though	attitudes	

have	been	contradictory	and	much	is	still	to	be	done	(Ceci,	1988;	Schofield	et	al.,	2009;	

Savage	and	Vickers,	2009;	Nelson,	2009).	The	 focus	 in	 reproducibility	 is	beginning	 to	

change	 the	 way	 we	 approach	 bioinformatics	 projects	 however,	 by	 including	 more	

stringent	policies	on	research	related	code	and	data	(Stodden	et	al.,	2013;	Petre	and	

Wilson,	2013)	and	have	even	influenced	a	move	towards	the	integration	of	code	and	

data	with	publication	in	the	form	of	“active	papers”	(Hinsen,	2011).	
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Widening	access	to	biological	data	using	the	Cloud	and	the	Semantic	Web	

There	 is	 a	 real	 demand	 for	 widening	 access	 to	 biological	 data	 that	 extends	 beyond	

reproducibility	(Stein,	2002;	Stein,	2008;	Baker,	2012).	The	sharing	of	data	needn't	be	

an	 arduous	 and	 costly	 process,	 however.	 The	 development	 of	 protocols	 and	 the	

integration	of	computer	systems	for	the	purposes	of	sharing	scientific	data	has	been	in	

progress	since	the	founding	of	the	World	Wide	Web	(Berners-Lee	et	al.,	1996;	Fielding	

et	al.,	1999;	Berners-Lee	and	Hendler,	2001).	These	protocols	have	already	been	used	

extensively	for	the	dissemination	of	biological	data	(Dowell	et	al.,	2001;	Hendler	et	al.,	

2002;	 Stein,	 2003;	 Lord	et	 al.,	 2004),	 leading	 to	 a	 strong	 case	 for	moving	 towards	 a	

Cloud-based	model	for	both	data	storage	and	analyses	(Hoffa	et	al.,	2008;	Keahey	and	

Freeman,	2008;	Dudley	et	al.,	2010),	particularly	 in	genome	 informatics	 (Stein,	2010;	

Wall	et	al.,	 2010).	 The	Cloud	 (including	Amazon	Web	Services,	 and	Google	Compute	

Engine	 for	 example)	 is	 especially	 relevant	 given	 the	 excessive	 computational	

specification	 requirements	 of	many	 bioinformatics	 tools	 (Schatz	 et	 al.,	 2010),	 which	

may	 not	 be	 accessible	 to	 smaller-scale	 research	 laboratories.	 Smaller-scale,	 local	

computational	analyses	will	of	course	continue	to	be	necessary	and	the	development	

of	novel	 tools	will	be	 required	 regardless	of	 the	platforms	 they	will	be	used	on.	The	

Cloud	and	 the	Semantic	Web	provide	an	excellent	 framework	 for	 scaling	 these	 tools	

and	for	integrating	them	with	existing	data	resources	globally,	however.	Indeed,	many	

bioinformatics	resource	providers,	including	EMBL-EBI’s	Ensembl,	are	moving	to	public	

or	hybrid	Cloud	models	to	scale	with	the	growing	demands	(Bateman	and	Wood,	2009;	

Arrais	and	Oliveira,	2010;	Baker,	2010;	Flicek	et	al.,	2010;	Dai	et	al.,	2012).	

The	Semantic	Web	is	also	useful	for	the	development	of	bioinformatics	resources.	

An	 issue	 with	 programming	 language	 dependent	 tools	 is	 the	 investment	 in	 time	

required	to	learn	a	new	language	(either	in	addition	to	others	or	from	scratch),	a	new	

API,	 or	 a	 new	 development	 interface.	 There	 have	 been	 efforts	 to	 produce	 APIs	 to	

access	 Ensembl’s	 data	 for	 example;	 in	 Ruby	 (Strozzi	 and	Aerts,	 2011)	 and	 in	 Python	

(Knight	et	al.,	2007),	in	addition	to	the	native	Perl	API.	This	increases	the	coverage	for	

development	in	additional	programming	languages,	but	these	efforts	often	lag	in	their	

comprehensiveness	 in	 comparison	 to	 the	 Perl	 API.	 This	 is	 because	 Ensembl	 is	 a	 full-

time	managed	 project	with	 a	 large	 team	of	 developers,	whereas	 the	 other	 APIs	 are	

either	 community	 projects	 or	 the	 focus	 of	 short-term	 grants.	 A	 way	 of	 overcoming	
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these	problems	is	with	the	development	of	programming	 language	 independent	web	

services,	 such	as	 those	provided	by	 the	REST	architectural	 style	 (Fielding	and	Taylor,	

2000;	Fielding,	2000).	Ensembl	have	developed	their	own	REST	API	(Flicek	et	al.,	2012),	

which	allows	access	to	their	data	via	command-line	utilities,	internet	browsers,	or	any	

other	 tool	 capable	of	utilising	 the	HTTP	protocol.	Numerous	other	web	 services	also	

exist	 (Gilbert,	 2003;	 Stevens	et	al.,	 2003;	 Kasprzyk	et	al.,	 2004;	 Labarga	et	al.,	 2007;	

Kinsella	et	al.,	2011;	Kasprzyk,	2011)	that	widen	and	improve	access	to	biological	data.	

These	will	 become	 of	 increasing	 importance	 in	 the	 field	 of	 genome	 analyses	 as	 the	

data	 deluge	 continues,	 particularly	 for	 comparative	 studies	 (Stein,	 2010;	Wall	et	 al.,	

2010).	

Comparative	genomics	and	evolutionary	synthesis	

Though	 there	 are	 many	 challenges	 and	 considerations	 surrounding	 the	 analyses	 of	

genome	 sequence	data,	 the	 increasing	numbers	of	 sequenced	genomes	has	 allowed	

powerful	comparative	studies	to	come	to	the	forefront	of	scientific	investigation	over	

the	 last	 two	 decades.	 Genomes	 are	 ultimately	 the	 source	 of	 instruction	 for	 each	

organismal	 unit	 (i.e.	 virus,	 or	 cell)	 and	 allow	 us	 the	 opportunity	 to	 deduce	 both	

contemporary	 and	 evolutionary	 information	 about	 them,	 but	 the	 complexities	

involved	in	understanding	their	sequence	are	substantial	(Gregory,	2004;	Brown,	2006;	

Lynch,	2007).	With	the	sequencing	of	the	genomes	of	medically	 important	organisms	

such	as	Haemophilus	 influenzae	 (Fleischmann	et	al.,	1995);	model	organisms	such	as	

Drosophila	melanogaster	(Adams	et	al.,	2000);	various	primate	genomes	(Lander	et	al.,	

2001;	Venter	et	al.,	2001;	Mikkelsen	et	al.,	2005;	Locke	et	al.,	2011;	Scally	et	al.,	2012);	

and	now	several	sources	of	population	level	genomics	data	(Begun	et	al.,	2007;	Liti	et	

al.,	2009;	McVean	et	al.,	2012),	we	can	begin	to	ask	questions,	build	models	and	make	

predictions	based	on	comparisons	of	these	data,	that	have	not	before	been	possible.	

Additionally,	 comparative	 genomics	 provides	 a	 method	 of	 validating	 metadata	

between	different	species	and	is	now	integral	in	the	annotation	of	genomes	(Clamp	et	

al.,	2003;	Hillier	et	al.,	2004;	Vilella	et	al.,	2008;	Flicek	et	al.,	2012).	

Comparative	 genomics	 has	 assumed	 a	 central	 role	 in	 both	 the	 functional	

annotation	of	genome	features	and	in	our	understanding	of	the	nature	of	organismal	

divergence,	 adaptation,	 and	 genome	 evolution	 (Hardiso,	 2003;	 Miller	 et	 al.,	 2004;	

Drosophila	12	Genomes	Consortium,	2007;	Hahn	et	al.,	2005;	Hahn	et	al.,	2007;	Stajich	
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et	al.,	2007;	Moss	et	al.,	2011;	Prufer,	2012;	 Jones	et	al.,	2012;	Alföldi	and	Lindblad-

Toh,	 2013).	 Comparing	 whole	 genomes	 is	 an	 extremely	 powerful	 approach	 to	

understanding	the	forces	shaping	genome	structure	and	content	within	and	between	

groups	of	organisms.	There	has	been	a	 failure	however,	 to	merge	classical	molecular	

evolution	with	modern	large-scale	genome	informatics	that	is	only	just	being	realised	

(Rokas	and	Abbot,	2009;	Alföldi	and	Lindblad-Toh,	2013).	The	comparative	method	has	

been	central	to	biological	analyses	for	over	3	decades	(Kimura,	1980;	Felsenstein,	1985;	

Harvey	 and	 Pagel,	 1991)	 and	 provides	 a	 robust	 framework	 that	 has	 been	 adopted	

extensively	 in	 phylogenetic	 analyses	 (Pagel,	 1994;	Martins	 and	Hansen,	 1997;	 Pagel,	

1999;	Martins,	2000;	Blomberg	and	Garland,	2002;	Butler	and	King,	2004;	Hansen	et	al.,	

2008;	Eastman	et	al.,	2011),	yet	these	principles	are	often	forgotten	when	undertaking	

modern	large-scale	genomic	analyses.	For	example,	most	of	the	underlying	changes	in	

genome	structure	and	content	are	neutral	and	therefore	subject	to	population	genetic	

forces	(Lynch,	2007),	yet	are	often	incorrectly	attributed	to	adaptation	under	selection	

(Gregory,	2005).	

By	simply	comparing	genome	data	one	is	only	able	to	describe	the	number	and	

location	of	differences	(or	similarities)	that	occur	and	not	whether	they	are	biologically	

relevant	or	real.	The	challenges	facing	their	validation	are	extremely	complex	(Chain	et	

al.,	 2003;	 Jones	 and	 Pevzner,	 2004;	 Moore,	 2010),	 which	 are	 compounded	 by	 the	

underlying	issues	with	assemblies	and	annotations	(Brenner,	1999;	Devos	and	Valencia,	

2001).	It	is	necessary	to	utilise	our	existing	knowledge	of	molecular	evolution	alongside	

the	development	of	powerful	computational	methods	and	bioinformatics	algorithms	in	

our	 approach	 to	 understanding	 these	 data.	 There	 is	 much	 to	 be	 done,	 but	 steps	

towards	 improving	reliability	 (Howison	et	al.,	2013;	Ghodsi	et	al.,	2013;	Rahman	and	

Pachter,	2013;	Clark	et	al.,	2013;	MacManes	and	Eisen,	2013;	Le	et	al.,	2013;	Ilie	and	

Molnar,	2013)	and	analytical	methods	 in	 light	of	 the	error-prone	data	 (Hubisz	et	al.,	

2011;	Löytynoja	et	al.,	2012;	Han	et	al.,	2013)	are	being	made.	By	building	more	robust	

and	 comprehensive	 approaches	 to	 the	 analyses	 of	 genome	 data	 we	 will	 be	 able	 to	

more	accurately	 reflect	 the	 true	biological	 signal,	 and	 thus	be	more	confident	 in	 the	

information	we	are	able	to	extract	and	the	conclusions	we	are	able	to	draw	from	it.	
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Thesis	Overview,	Goals	and	Intentions	

The	 work	 described	 in	 this	 thesis	 will	 detail	 the	 application	 of	 novel	 comparative	

bioinformatics	 methods	 to	 inter-	 and	 intra-genomic	 datasets.	 I	 will	 describe	 the	

analyses	of	a	diverse	range	of	genomes	in	order	to	test	specific	hypotheses	relating	to	

the	molecular	evolution	of	 introns,	gene	duplications	and	 repetitive	elements,	which	

have	previously	been	determined	to	contribute	most	to	variation	in	genome	size	and	

complexity,	particularly	in	eukaryotes	(Lynch	and	Conery,	2003).	I	will	undertake	novel	

computational	analyses	 to	 increase	our	understanding	of	how	genome	structure	and	

content	evolves	across	a	wide	range	of	species.	In	addition	I	will	develop	new	tools	and	

methods	of	approaching	the	problems	inherent	with	genomic	analyses,	as	discussed	in	

this	thesis,	in	order	to	provide	a	framework	for	simplified	analytics	of	genomic	data	in	

future	research.	

In	Chapter	Two	I	discuss	the	production	of	a	computational	pipeline	named	the	

Genome	 Comparison	 and	 Analysis	 Toolkit	 (GCAT).	 The	 development	 of	 this	 pipeline	

was	 necessary	 to	 perform	 the	 data	 mining	 and	 analytics	 required	 throughout	 this	

thesis,	 but	 also	 provides	 an	 excellent	 resource	 for	 the	 wider	 research	 community.	

Several	 examples	 of	 the	 pipeline’s	 utility	 are	 provided,	 including	 analyses	 of	 the	

structure	and	content	of	genes	in	Mus	musculus;	characterisation	and	analyses	of	the	

repetitive	 landscape	 of	 the	 Great	 Apes;	 and	 a	 large-scale	 comparative	 analyses	 of	

intron	 structure	and	 content	across	all	 available	 species	 in	 the	Ensembl	database.	 In	

addition,	 chapter	 two	 approaches	 the	 topic	 of	 access	 to	 scientific	 data,	 which	 is	 a	

common	 issue	 facing	biological	 research	on	 the	whole.	A	 Semantic	Web	 resource	 in	

the	form	of	a	prototype	Ensembl	REST	API	is	described,	which	provides	programming	

language	 independent	 access	 to	 Ensembl’s	 genome	 data.	 A	 Python	 wrapper	 is	 also	

developed	 to	utilise	 the	REST	API.	Finally,	analyses	are	performed	 to	determine	how	

raw	MySQL	queries,	the	Ensembl	Perl	API	and	the	Ensembl	REST	API	compare	in	terms	

of	efficiency	and	efficacy.	

Chapter	Three	details	a	comparative	genomic	analyses	of	the	5	teleost	genomes	

available	 in	 the	 Ensembl	 databases,	 with	 a	 focus	 on	 understanding	 their	 intron	

structure	 and	 content.	 In	 addition	 to	 highlighting	 the	 descriptive	 statistics	 and	

distributions	 of	 the	 introns	 and	 their	 associated	 repetitive	 content	 across	 these	

genomes,	a	hypothesis	testing	approach	is	taken	to	determine	the	evolutionary	cause	
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of	a	novel	difference	 in	 the	 intron	 size	distribution	 in	 the	 zebrafish,	Danio	 rerio.	 The	

chapter	 concludes	 the	 difference	 in	 intron	 distribution	 was	 due	 to	 an	 ancient	

expansion	of	repetitive	elements	within	introns	of	the	size	class	500-2,000	bp,	though	

increased	phylogenetic	sampling,	particularly	including	an	outgroup	species,	will	allow	

more	 conclusive	 examination	 of	 this	 result.	 This	 study	 resulted	 in	 a	 peer-reviewed	

publication	 in	 the	 journal	 Genome	 Biology	 and	 Evolution	 entitled	 “Comparative	

Analysis	of	Teleost	Genome	Sequences	Reveals	an	Ancient	Intron	Size	Expansion	in	the	

Zebrafish	 Lineage”	 (Moss	 et	 al.,	 2011)	 that	 can	 be	 accessed	 via	

http://dx.doi.org/10.1093/gbe/evr090.	

Chapter	Four	explores	the	evolution	of	gene	families	in	terms	of	their	number	of	

members	 and	 functionality,	with	 a	 focus	 on	 determining	 significant	 changes	 in	 gene	

family	size	in	the	primates.	A	large	expansion	in	gene	family	sizes	is	highlighted	in	the	

branch	 leading	 to	 modern	 humans	 that	 is	 unexpected	 in	 terms	 of	 the	 amount	 of	

temporal	change	relative	to	other	branches	of	the	phylogenetic	tree.	The	expansion	in	

humans	 is	 followed	 up	 with	 rigorous	 testing	 to	 determine	 its	 validity,	 including	

comparison	with	the	available	rodent	genomes	in	Ensembl’s	databases.	The	expansion	

is	 thought	 to	be	an	artefact	of	 the	extensive	population	and	 tissue	 specific	 sampling	

undertaken	 in	 humans,	 but	 perhaps	 more	 concerning	 there	 also	 seems	 to	 be	 a	

significant	affect	of	the	assumptions	and	parameters	of	the	models	used	by	the	CAFE	

gene	 family	 analysis	 software.	 The	 significantly	 changed	 gene	 families	 are	 then	

examined	 in	 connection	with	 the	 functional	 classification	 of	 their	 gene	members	 to	

test	 whether	 they	 are	 the	 result	 of	 adaptive	 evolution.	 Ensembl’s	 comparative	

genomics	 annotations	 and	 associated	 Gene	 Ontology	 data	 are	 retrieved	 for	 the	

relevant	gene	members	in	order	to	determine	their	annotated	function.	A	hypothesis	

is	 developed	 that	 expects	 a	 bias	 in	 functions	 of	 a	 reproductive,	 immune	 or	

developmental	nature	and	the	data	largely	confirms	this.	Additionally	a	comparison	is	

made	with	 the	 findings	 of	 previous	 studies	 in	 order	 to	 provide	 additional	means	 of	

validation,	though	this	emphasises	the	problems	inherent	in	the	different	approaches	

to	genome	assembly	and	annotation.	

Chapter	Five	examines	the	impact	of	gene	family	size	on	the	evolution	of	introns.	

Data	are	retrieved	for	all	61	species	 in	 the	release	70	Ensembl	databases	 in	order	 to	

describe,	 visualise	 and	 test	 for	 correlations	 between	 gene	 family	 size	 and	 intron	
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characteristics	 (intron	 size,	 intron	 count,	 and	 intron	 density).	 The	 chapter	 also	

examines	the	spatial	distribution	of	 intron	characteristics	at	the	chromosome	level	 in	

humans	 only.	 These	 analyses	 are	 undertaken	 to	 determine	whether	 the	 position	 of	

introns	 in	 the	 genome	 influences	 their	 evolution.	 This	 is	 an	 important	 analyses	 as	 it	

allows	us	to	make	progress	towards	determining	whether	it	is	more	abstract	spatially-

relevant	molecular	processes	that	drive	the	evolution	of	 lower	 level	 features	such	as	

introns,	 or	whether	more	 traditional	 forces	 such	 as	 non-homologous	 recombination	

are	more	 involved.	 It	 is	 determined	 that	 gene	 family	 size	 has	 a	weak	 impact	 on	 the	

evolution	of	genomic	features	such	as	introns,	and	that	conversely	the	spatial	location	

within	 the	 chromosomes	 has	 a	 larger	 effect.	 A	 location	 specific	 effect	 highlights	 a	

potential	 role	 of	 GC-rich	 isochores	 and	 epigenetics	 on	 the	 underlying	 evolution	 of	

genomic	features.	The	most	striking	effect	is	seen	by	separating	intron	characteristics	

into	groups	of	autosomes	and	sex	chromosomes.	There	is	a	significant	 lower	number	

and	 size	 of	 introns	 across	 the	 Y	 chromosome	 in	 particular	 highlighting	 how	 lack	 of	

recombination	can	impact	on	the	intron	landscape.	
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CHAPTER	 TWO:	 THE	 DEVELOPMENT	 OF	 COMPUTATIONAL	 TOOLS	 FOR	

COMPARATIVE	BIOINFORMATICS	ANALYSES:	THE	GENOME	COMPARISON	

AND	 ANALYSIS	 TOOLKIT	 (GCAT)	 AND	 AN	 ENSEMBL	 RESTFUL	 WEB	

SERVICES	FRAMEWORK	

Literature	Review	

The	power	of	bioinformatics	software	pipelines	in	genomics	analyses	

It	 was	 obvious,	 even	 with	 the	 sequencing	 of	 the	 very	 first	 genome,	 that	 of	 the	

bacteriophage	 phi-X174	 at	 a	 size	 of	 5,386	 bp	 (Sanger	 et	 al.,	 1978)	 that	 automated	

computational	software	was	needed	to	make	sense	of	the	volumes	of	biological	data	

(for	example	Staden	et	al.,	1999).	The	application	of	computer	hardware	and	software	

wasn’t	just	limited	to	its	ability	to	aid	in	the	assembly	of	genomes	in	order	to	deduce	

their	 primary	 structure	 however,	 but	 extended	 to	 their	 annotation,	 such	 as	 the	

identification	 of	 genes,	 and	 to	more	 complex	modelling	 of	 change	 in	 their	 structure	

over	 time.	 Tasks	 such	 as	 assembly	 and	 annotation	 simply	 aren’t	 possible,	 or	 are	

intensely	time	consuming	to	undertake	manually.	

The	ability	to	assemble	and	annotate	genomes	is	an	essential	requirement	of	any	

genome	sequencing	project,	as	we	would	otherwise	be	left	with	a	random	assortment	

of	nucleotides	that	could	serve	no	further	purpose.	Being	able	to	perform	comparisons	

between	genomes	however	is	even	more	powerful,	as	it	allows	us	to	use	the	genome	

sequence	 and	 annotated	metadata	 to	 ask	 specific	 biological	 questions,	 such	 as	 how	

phenotypic	 traits,	 inter-specific	 relationships,	and	ultimately	 life	came	 into	being	and	

have	changed	over	time.	

As	 more	 divergent	 genomes	 were	 sequenced	 the	 ability	 to	 undertake	

comparisons	within	and	between	species	presented	itself	and	the	field	of	comparative	

genomics	 was	 born.	 Comparative	 analyses,	 by	 their	 very	 nature,	 require	 the	

consideration	of	the	underlying	relationships	between	species	in	order	to	account	for	

the	 phylogenetic	 signal	 inherent	 in	 their	 sequence.	 This	 has,	 in	 part,	 driven	 the	

sequencing	of	more	species	to	increase	the	sampling	across	all	areas	of	the	tree	of	life.	

Due	 to	 the	 differing	 sizes	 of	 these	 genomes	 and	 the	 complexity	 involved	 in	 their	
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assembly	and	annotation,	there	still	exists	a	bias	in	sampling	towards	smaller	genomes,	

particularly	of	bacterial	species	(Pagani	et	al.,	2012).	

The	 sequencing,	 analyses	 and	 storage	 requirements	 of	 genome	 sequencing	

initiatives	 has	 fuelled	 the	 development	 of	 database	 projects	 and	 large	 scale	 data	

warehouses	such	as	DDBJ	(Tateno	et	al.,	2002),	EMBL’s	ENA	(Leinonen	et	al.,	2010)	and	

GenBank	 (Benson	 et	 al.,	 2005).	 These	 kind	 of	 projects	 have	 matured	 into	 unified	

genome	service	providers	such	as	The	Ensembl	Database	Project	(Hubbard	et	al.,	2002)	

and	 The	 UCSC	 Genome	 Browser	 (Fujita	 et	 al.,	 2010),	 which	 provide	 assembly,	

annotation,	analyses,	storage,	and	sharing	of	data	all	built	on	powerful	bioinformatics	

software	pipelines.	

Existing	computational	software	and	the	need	for	a	broader	solution	

In	general	researchers	need	free	and	simple	access	to	genomic	data	from	their	chosen	

repositories.	Comparative	molecular	evolutionary	analyses	necessitates	the	retrieval	of	

homologous	 structures	 or	 features	 of	 a	 uniform	 type	 such	 as	 orthologous	 genes	 or	

introns.	There	is	a	need	to	analyse	these	both	quantitatively	and	by	the	extraction	of	

individual	 components	 for	 example	 UTRs	 (untranslated	 regions)	 or	 splice	 sites.	 The	

methodological	 approach	 should	 be	 generic	 and	 efficient	 across	 data	 sources	 and	

analyses	types	facilitating	the	extension	to	a	range	of	different	questions.	

Few	solutions	exist	that	are	designed	to	undertake	such	broad-scale	comparative	

analyses	of	whole	genomes	 (Knight	et	al.,	2007;	Yandell	et	al.,	2006).	Most	 software	

focuses	 on	 providing	 solutions	 to	 the	 precise	 requirements	 of	 individual	 projects;	

commonly	represented	by	a	collection	of	source	code	files,	which	require	some	degree	

of	 manual	 configuration	 and	 manipulation	 in	 order	 to	 be	 executed.	 Attempts	 have	

been	made	to	develop	Application	Program	Interfaces	 (APIs)	 that	provide	a	common	

framework	 for	 the	 bespoke	 development	 of	 scientific	 software	 (Kent	 et	 al.,	 2002;	

Stabenau	et	al.,	2004;	Strozzi	and	Aerts,	2011;	Marygold	et	al.,	2012),	but	again	these	

often	result	in	the	production	of	software	that	focuses	on	solving	the	specific	problems	

at	 hand.	 Generic,	 accessible	 and	 flexible	 comparative	 bioinformatics	 toolkits	 that	

provide	simple	means	of	access	to	genomic	resources	are	essential.	The	development	

of	the	Genome	Comparison	and	Analysis	Toolkit	(GCAT)	attempts	to	solve	this	problem.	

The	Ensembl	databases	(Flicek	et	al.,	2011;	Flicek	et	al.,	2012)	and	Ensembl	Perl	

API	(Stabenau	et	al.,	2004)	currently	provide	the	richest,	simplest	and	most	powerful	
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method	of	accessing	genomic	data	for	a	variety	of	taxa.	The	Ensembl	genome	database	

project	 was	 launched	 in	 2002	 (Hubbard	 et	 al.,	 2002)	 and	 required	 the	 design	 and	

implementation	of	both	the	underlying	 infrastructure,	and	software	pipelines	to	deal	

with	the	processing	(Cuff	et	al.,	2004;	Potter	et	al.,	2004),	as	well	as	a	programmatic	

means	of	sharing	and	accessing	that	data.	The	Ensembl	Perl	API	was	published	in	2004	

(Stabenau	 et	 al.,	 2004)	 to	 meet	 the	 broader	 access	 requirements	 of	 the	 scientific	

community.	 In	 October	 2012	 (release	 69)	 Ensembl	 housed	 61	 annotated	 genome	

assemblies	in	its	main	vertebrate	genomes	databases,	with	several	others	available	in	

preview	assembly	 format.	Additionally	 they	held	 data	 from	359	diverse	 invertebrate	

species	in	their	Ensembl	Genomes	databases	(Kersey	et	al.,	2011),	which	include	taxa	

from	 the	Metazoa,	 Protists,	 Bacteria,	 Plants,	 and	 Fungi.	 The	 UCSC	 genome	 browser	

(Fujita	et	al.,	2010)	also	houses	a	number	of	annotated	genomes	and	is	highly	regarded	

as	a	source	of	data	for	comparative	analyses,	however,	in	the	scope	of	this	study	the	

ease	 of	 access	 to	 Ensembl	 data,	 particularly	 in	 relation	 to	 their	 Perl	 API,	 was	 a	 key	

aspect	in	the	decision	to	design	the	GCAT	software	pipeline	around	Ensembl’s	existing	

architecture.	

The	 decision	 to	 develop	 a	 bespoke	 solution	 on	 top	 of	 Ensembl	was	 not	 taken	

lightly.	PyCogent	(Knight	et	al.,	2007)	is	a	powerful	comparative	genomics	toolkit	that	

would	 have	 been	 ideal	 for	 use	 in	 these	 studies,	 however	 its	 ability	 to	 connect	 to	

remote	 genomic	 data	 sources	 was	 limited.	 The	 PyCogent	 project	 didn’t	 have	 the	

dedicated	 resources	 to	 maintain	 development	 alongside	 the	 fast	 paced	 Ensembl	

release	schedule	for	example,	and	therefore	lagged	behind	in	its	support	for	some	of	

their	 cutting	 edge	 features.	 There	 was	 a	 clear	 need	 for	 a	 solution	 that	 could	

complement	 the	 Ensembl	 Perl	 API	 (Stabenau	 et	 al.,	 2004)	 and	 yet	 expand	 on	 it	 to	

provide	a	comprehensive	solution	to	comparative	genomic	analyses.	

Problems	with	access	to	biological	data	

It	is	possible	to	access	the	Ensembl	data	via	the	Ensembl	Genome	Browser	(Stalker	et	

al.,	2004),	via	EnsMart	 (Kasprzyk	et	al.,	2004),	BioMart	 (Kinsella	et	al.,	2011)	or	even	

directly	 via	 a	MySQL	 client,	 however	 there	 is	 a	 learning	 curve	 associated	with	 these	

methods	of	access	that	lends	towards	their	use	by	the	more	computationally	literature	

research	 scientists.	 There	 is,	 of	 course,	 an	 investment	 in	 time	 required	 to	 become	

familiar	with	any	methodological	technique,	however	complex	computational	skills	are	
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often	 required	 to	mine	 data	 effectively.	 This	 is	 one	 of	 the	 drawbacks	 of	 developing	

APIs	 and	 scriptable	 software	 pipelines,	 as	 they	may	 require	 the	 user	 to	 learn	 a	 new	

programming	 language,	 or	 even	 present	 a	 larger	 barrier	 to	 those	 that	 have	 never	

programmed	before.	 	

In	addition	to	the	issues	with	using	and	interacting	with	the	different	data	access	

methods,	there	are	other	problems	faced	by	research	scientists	when	analysing	data.	1)	

A	large	number	of	different	file	formats	exist;	some	can	be	plain	text	files	and	others	

proprietary	binary	 files,	more	 still	 are	minor	 variants	 causing	 a	 great	deal	 of	 trouble	

with	parsing	the	data	in	the	first	place.	2)	These	data	are	often	kept	using	a	variety	of	

different	storage	solutions	from	flat	files,	through	integration	with	various	flavours	of	

freely	available	SQL	databases,	 to	proprietary	commercial	 storage	solutions.	The	raw	

data,	 particularly	 in	 the	 case	 of	 flat	 files	 or	 SQL	 dumps,	may	 be	 accessible	 over	 the	

Internet	via	an	FTP	server,	or	other	file	serving	protocol,	or	it	may	not.	3)	If	APIs	exist	

for	 access	 to	 these	 data,	 which	 they	 rarely	 do,	 then	 they	 are	 often	 programming	

language	 dependent.	 The	 Ensembl	 APIs	 for	 example	 are	 developed	 using	 the	 Perl	

programming	 language,	 creating	 a	 hurdle	 for	 those	 people	 that	 aren’t	 familiar	 with	

that	 language.	 These	 issues	 decrease	 the	 likelihood	 of	 being	 able	 to	 reproduce	

experiments	 effectively.	 It	 has	 been	 suggested	 that	 open-source	 distributed	 web	

services	might	 be	 the	most	 appropriate	 solution	 to	 this	 (Stein,	 2002)	 since	 they	 use	

standardise	formats	for	data	exchange	(e.g.	FASTA	or	JSON),	they	abstract	away	from	

the	storage	layer	and	provide	easy	access	to	required	data,	and	they	are	programming	

language	 agnostic;	 providing	 simple	 URI	 endpoints	 for	 access	 to	 data	 that	 can	 be	

utilised	via	a	web	browser,	or	any	language	with	appropriate	HTTP	libraries.	

The	Semantic	Web	as	a	solution	to	data	access	and	sharing	

The	 Semantic	Web,	 a	 collaborative	 project	 led	 by	 the	 main	 international	 standards	

organisation	 for	 the	 World	 Wide	 Web	 (WWW),	 the	 World	 Wide	 Web	 Consortium	

(W3C);	aims	to	improved	access	to	data,	not	just	for	humans,	but	also	for	computers.	

Improving	the	way	that	computers	communicate	 increases	the	automated	sharing	of	

data	between	different	data	service	providers.	This	in	turn	allows	for	data	to	be	easily	

synchronised	 and	 updated,	 providing	 simplified	 access	 to	 the	 latest	 versions	 of	

datasets.	A	number	of	solutions	exist	that	allow	data	to	be	shared	between	providers	

(Jenkinson	et	al.,	2008;	Barsnes	et	al.,	2009;	Brooksbank	et	al.,	2010;	Gross,	2011)	and	
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projects	such	as	ELIXIR	(Croswell	and	Thornton,	2012)	are	pushing	to	increase	this	to	a	

global	scale.	

One	 of	 the	 simplest	 semantic	 web	 service	 protocols	 is	 REST.	 REST	 stands	 for	

Representational	State	Transfer	and	is	a	software	architectural	style	for	designing	and	

implementing	 distributed	 network	 applications	 (Fielding,	 2000).	 REST	 is	 used	 for	

designing	 distributed	 network	 applications,	 primarily	 on	 top	 of	 the	 HTTP	 protocol	

(Fielding	 et	 al.,	 1999).	 It	 provides	 a	 simple	 alternative	 to	 the	 other	 more	 complex	

mechanisms	such	as	CORBA,	RPC	or	SOAP.	All	that	is	needed	in	order	to	implement	a	

REST	interface	is	1)	knowledge	of	a	resource,	for	example	a	uniform	resource	identifier	

(URI),	2)	a	method,	for	example	the	HTTP	GET	method	(see	Appendix	2.1)	and	3)	a	data	

format,	for	example	JavaScript	Object	Notation	(JSON).	When	this	is	implemented	over	

HTTP,	it	is	known	as	a	RESTful	web	service.	

By	 utilising	 the	 Model-View-Controller	 (MVC)	 software	 architecture	 pattern	

(Reenskaug,	1979)	it	is	possible	to	integrate	existing	data	sources	with	a	REST	interface	

to	 provide	 programming	 language	 agnostic	 access	 to	 data.	 The	 model	 component	

allows	one	to	wrap	a	database	within	a	program	object	allowing	the	program	code	to	

interact	with	it	at	runtime.	The	controller	component	centralises	the	program	logic	and	

creates	 API	 calls	 that	 wrap	 SQL	 queries,	 simplifying	 the	 overall	 code.	 The	 view	

component	allows	data	 to	be	 returned	 in	a	particular	 format	depending	on	 the	user	

requirements.	 For	 example,	 if	 the	 user	 places	 a	 call	 with	 a	 Content-Type	 of	

application/json	 in	the	header,	then	the	data	will	be	returned	in	JSON	format.	

The	 integration	 of	 the	 Ensembl	 Perl	 API	with	 a	 REST	 software	 library	 (such	 as	 Perl’s	

Catalyst	API)	to	provide	an	Ensembl	RESTful	web	service	will	allow	access	to	Ensembl	

data	using	web	browsers,	command	line	tools,	a	variety	of	programming	languages,	or	

any	other	resource	that	is	capable	of	utilising	the	standard	HTTP	protocols.	

Aims	of	this	chapter	

In	 this	 chapter	 I	 develop	 a	 simple,	 flexible,	 and	 adaptable	 open-source	 software	

pipeline	called	GCAT,	which	allows	for	large-scale	comparative	analyses	of	the	genome	

data	 available	 in	 Ensembl’s	 MySQL	 databases.	 Although	 GCAT	 is	 flexible	 enough	 to	

undertake	comparisons	utilising	any	type	of	genome	data,	this	thesis	focuses	primarily	

on	analyses	of	vertebrate	genomic	data	taken	from	 introns,	 repetitive	elements,	and	

duplicate	genes.	 I	document	the	design,	 implementation	and	key	attributes	of	GCAT,	
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along	 with	 a	 demonstration	 of	 the	 power	 of	 its	 approach	 towards	 comparative	

genomics	analyses	of	a	number	of	datasets	 from	Ensembl.	 In	 this	 chapter	 I	 focus	on	

comparisons	 of	 gene	 structure	 in	Mus	 musculus,	 repetitive	 element	 content	 in	 the	

Great	Apes,	and	intron	sizes	across	52	divergent	vertebrate	genomes.	I	then	describe	

the	development	of	a	RESTful	web	services	framework	that	extends	the	Ensembl	Perl	

API,	 allowing	 for	 programming	 language	 independent	 access	 to	 Ensembl’s	 genome	

sequence	 data	 and	 annotations.	 I	 compare	 the	 efficiency	 of	 different	 methods	 of	

access	to	Ensembl’s	data	by	comparing	Ensembl’s	Perl	API	against	the	REST	API.	I	also	

review	 the	most	 appropriate	ways	 forward	 in	 relation	 to	 semantic	web	 services	 and	

genomic	data	analysis.	
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Implementation	

GCAT	

The	GCAT	pipeline	is	implemented	using	the	Perl	programming	language,	allowing	for	

efficient	 access	 to	 a	 large	 number	 of	 openly	 available	 community	 resources.	 The	

software	primarily	utilises	the	Ensembl	Core	Software	Libraries	(Stabenau	et	al.,	2004),	

a	 collection	 of	 Perl-based	 APIs	 allowing	 access	 to	 the	 Ensembl	 genome	 databases.	

BioPerl	is	also	heavily	utilised	(Stajich	et	al.,	2002)	as	is	R	(R	Core	Development	Team,	

2012)	 for	 statistical	 analyses	 via	 the	Statistics::R	 Comprehensive	 Perl	 Archive	

Network	 (CPAN)	 package.	 The	 use	 of	 the	BioPerl	 and	other	 open-source	 community	

libraries	 allows	 us	 to	 provide	 parsing	 routines	 for	 processing	 data	 in	 a	 variety	 of	

common	 bioinformatics	 formats,	 extending	 the	 application	 of	 the	 pipeline	 beyond	

Ensembl	alone.	

GCAT	 stores	 its	 output	 in	 Comma	 Separated	 Value	 (CSV)	 flat-files,	 whilst	 also	

working	with	local	copies	of	sequence	data	which	it	stores	 in	FASTA	format.	By	using	

these	 common	 file	 formats	 it	 makes	 creating	 downstream	 analysis	 scripts	 far	 more	

efficient.	GCAT	has	a	number	of	ready-made	plugin	scripts	implemented	for	processing	

CSV	and	FASTA	data	and	a	detailed	API	for	additional	development.	

In	order	to	reduce	network	 latency	 it	 is	recommended	to	 install	a	 local	copy	of	

the	Ensembl	MySQL	data,	 and	GCAT	provides	a	 support	 script	 to	 retrieve	and	 install	

data	 from	 the	 current	 release	 (see	

https://github.com/gawbul/gcat/blob/master/support_files/get_ensembl.py).	

Network	latency	can	be	a	problem	when	accessing	data	across	the	Internet,	especially	

at	peak	times,	or	from	poorer	quality	network	connections.	The	decrease	in	runtime	is	

often	 several-fold,	 even	 when	 using	 high-bandwidth	 connections,	 such	 as	 those	

available	 to	 universities.	 The	 difference	 between	 a	 gigabit	 local	 area	 network	

connection	for	data	transfer	and	the	limited	(<10	megabit)	connection	across	the	rest	

of	 Internet,	 is	 substantial	 enough	 to	 warrant	 this	 process,	 especially	 in	 larger-scale	

studies.	

GCAT	(see	Figure	2.1)	provides	a	front-end	script	named	gcat.pl	which	can	be	

invoked	 without	 any	 arguments	 to	 process	 the	 default	 workflow	 file,	 gcat-

pipeline.txt	or	instead,	by	giving	the	-f	input	flag,	a	custom	workflow	file	can	be	
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used.	 The	 processing	 position	 in	 the	 workflow	 file	 is	 tracked,	 allowing	 the	 user	 to	

restart	from	where	they	left	off	should	the	pipeline	be	stopped	for	any	reason.	The	-c	

input	 flag	 can	be	given	 to	execute	a	 shell	 environment	 that	 the	user	 can	use	 to	 run	

scripts	 manually.	 A	 number	 of	 built-in	 commands	 are	 available,	 which	 can	 be	

investigated	using	 the	help	 command.	Additional	 scripts	 can	be	developed	using	 the	

GCAT	APIs	and	placed	in	the	Scripts	folder,	which	then	allows	them	to	be	automatically	

identified	by	the	GCAT	pipeline.	We	provide	several	ready-made	scripts	that	have	been	

used	 in	 our	 previous	 studies,	 which	 can	 be	 listed	 using	 the	 scripts	 command.	

Detailed	documentation	and	example	code	 is	available	on	the	GitHub	repository	wiki	

at	https://github.com/gawbul/gcat/wiki.	
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Figure	2.1	-A	flowchart	detailing	the	design	and	internals	of	the	GCAT	pipeline.
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REST	

The	 Perl	 Programming	 Language	 was	 used	 along	 with	 several	 open-source	

Comprehensive	 Perl	 Archive	 Network	 (CPAN)	 modules.	 The	 main	 library	 was	 the	

Catalyst	 Framework,	 a	 set	 of	 modules	 that	 enables	 the	 Model-View-Controller	

(Reenskaug,	1979)	architectural	pattern	and	REST	(Fielding,	2000)	architectural	styles	

of	 distributed	 network	 application	 development	 in	 Perl.	 The	 Eclipse	 integrated	

development	environment	(IDE)	version	Classic	3.7	along	with	the	EPIC	plugin	version	

0.5.33	 was	 used	 for	 management	 of	 this	 project.	 Python	 version	 2.7.1	 and	 Ruby	

version	 1.8.7	 were	 used	 to	 implement	 examples.	 JSON	 was	 used	 for	 the	 view	

component	 in	the	programmatic	examples,	but	YAML	Ain’t	Markup	Language	(YAML)	

was	 the	 format	 returned	 via	 the	 browser	 window.	 Additional	 formats	 such	 as	

eXtensible	Markup	Language	(XML)	are	automatically	supported	and	are	accessible	via	

setting	the	Content-Type	HTTP	header.	

The	 Bio::EnsEMBL::Registry	 module	 was	 integrated	 into	 the	 model	

component	of	 the	 framework	and	extended	all	 the	Ensembl	Perl	API	 functionality.	A	

single	controller	was	implemented	with	the	base	path	part	termed	/get_adaptor/	

taking	 three	 arguments	 in	 the	 form	 /species/database/adaptor/.	 This	

retrieved	 the	 relevant	 adaptor	 object	 via	 the	 registry,	 for	 example	 the	 URI	

/get_adaptor/human/core/gene/	 would	 retrieve	 the	 gene	 adaptor	 to	 the	

Homo	sapiens	core	database.	Null-argument	methods	 could	be	called	on	an	adaptor	

using	 a	 single	 additional	 path	 part	 such	 as	 /list_stable_ids/	 to	 get	 all	 the	

human	gene	stable	 IDs	 from	the	database,	based	on	the	previous	example.	Methods	

that	took	single	arguments	could	be	called	by	supplying	two	additional	path	parts,	for	

example	 /fetch_by_stable_id/ENSG00000139618/	 to	 retrieve	 the	 BRCA2	

gene	 object.	 It	 is	 also	 possible	 to	 call	 methods	 on	 the	 retrieved	 object	 such	 as	

/description/	 to	 list	 the	 gene	 description,	 or	 methods	 that	 take	 additional	

arguments	such	as	/slice/name/	 to	get	the	name	of	the	corresponding	slice	(see	

Appendix	2.2	for	URI	examples).	

The	RESTful	web	services	framework	was	tested	under	Ubuntu	11.04	in	both	the	

Mozilla	Firefox	and	Google	Chrome	web	browsers.	Perl	version	5.10.1,	Python	version	

2.7.1	 and	 Ruby	 version	 1.8.7	 were	 used	 to	 run	 the	 example	 scripts	 from	 the	 Linux	

Terminal	 emulator.	 The	 Homo	 sapiens	 genome	 data	 were	 used	 in	 the	 examples	
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described	 in	 this	chapter,	however,	a	wide	variety	of	disparate	organisms	were	used	

during	the	testing	stage,	to	ensure	no	unexpected	behaviour.	

Comparison	of	the	different	methods	of	access	to	Ensembl	data	

In	 order	 to	 compare	 the	 different	methods	 of	 access	 to	 Ensembl	 data	 a	 number	 of	

benchmarking	 test	 scripts	 were	 implemented	 to	 determine	 the	 efficiency	 of	 each	

method.	 The	 time	 to	 execute	 the	 script	 (measured	 in	 UNIX	 wall	 clock	 time)	 and	

memory	usage	 (measured	 in	 total	allocated	bytes)	were	 recorded.	A	“simple	dataset	

query”	was	designed	to	retrieve	the	full	list	of	gene	IDs	for	Homo	sapiens	and	a	more	

“complex	dataset	query”	was	designed	to	retrieve	all	protein	coding	gene	sequences	in	

FASTA	 format	 for	 Saccharomyces	 cerevisiae.	 The	 comparisons	 consisted	 of	 testing	 a	

bash	script	executing	a	raw	MySQL	query;	a	Perl	script	using	the	Ensembl	BioMart	API,	

a	Perl	script	using	the	Ensembl	Perl	API,	a	bash	script	calling	the	alpha	Ensembl	REST	

API,	a	pyEnsemblRest	Python	script	calling	the	public	Ensembl	REST	API,	and	a	Python	

script	using	the	PyCogent	Ensembl	API.	The	code	for	these	benchmarks	is	available	in	

https://github.com/gawbul/gcat/support_files/ensembl_benchmark.	

pyEnsemblRest	

A	more	comprehensive	Python	wrapper	was	developed	around	the	public	beta	release	

version	of	 the	Ensembl	REST	API	built	by	Ensembl	 (Yates	et	al.,	2014),	which	 I	 called	

pyEnsemblRest.	This	software	was	developed	using	Python	version	2.7.5	and	is	freely	

available	under	 the	GNU	GPLv3	 license.	The	 source	code	 is	available	 to	download	at	

https://github.com/pyOpenSci/pyEnsemblRest.	
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Results	

GCAT	

GCAT	 is	 able	 to	wrap	any	part	of	 the	Ensembl	Perl	API	 and	 therefore	access	 the	 full	

extent	of	data	available	in	the	Ensembl	genome	databases.	I	developed	functionality	to	

retrieve	commonly	analysed	genomic	components	such	as	CDSs,	UTRs,	introns,	repeat	

types,	 and	 orthology	 groups.	 In	 addition	GCAT	 can	 provide	 information	 on	 the	 start	

and	 end	 positions	 and	 hence	 length,	 relative	 order	 and	 ordinal	 position	 of	 genomic	

features.	GCAT	can	also	return	information	on	nucleotide	bias,	relative	rate,	dN/dS	etc.	

via	 script	 plugins.	 I	 have	 a	 comprehensive	 range	 of	 plotting	 and	 summary	 statistics	

available	 due	 to	GCAT's	 easy	 integration	with	 R	 (including	 the	 plyr,	 dplyr,	 reshape2,	

and	 ggplot2	 packages).	 Together	 these	 functions	 give	 many	 diverse	 possibilities	 to	

biologists	carrying	out	comparative	genomics.	Example	workflows	of	only	a	few	of	the	

available	 features	 were	 implemented	 using	 the	 GCAT	 pipeline’s	 functionality.	 These	

involved	investigating	the	structure	of	genes	in	the	widely	used	model	organism	Mus	

musculus;	 analysing	 the	 repeat	content	 in	 the	Great	Ape	genomes,	and	 reporting	on	

the	 intron	 frequency	 distribution	 of	 all	 52	 genomes	 available	 in	 the	 Ensembl	 as	 of	

February	2011.	

Description	of	gene	features	in	Mus	musculus	

To	 demonstrate	 GCAT’s	 functionality,	 details	 of	 the	 gene	 structure	 for	 the	 house	

mouse,	Mus	musculus,	 were	 retrieved	 from	 Ensembl	 using	 a	 custom	workflow	 (see	

example-gene_structure-workflow.txt	 in	 the	 examples	 directory	 on	

GitHub).	We	identify	the	5’-	and	3’-UTR	lengths,	coding	region	length,	and	total	intron	

length	 for	19,327	genes.	GCAT	allows	extensive	data	 filtering,	allowing	us	 to	 retrieve	

only	 the	88.3%	 (19,327)	of	 the	annotated	protein	coding	genes	 in	 the	Mus	musculus	

genome	 annotated	 with	 both	 a	 3’-	 and	 5’-UTR.	 Similarly	 we	 could	 filter	 to	 exclude	

especially	 small	 or	 large	 CDS	 sizes	 or	 by	 other	 genome	 feature	 criteria.	 GCAT,	 by	

utilizing	R,	can	output	a	broad	range	of	descriptive	statistics	on	these	data,	such	as	the	

mode	sizes	of	each	group	(101	bp,	684	bp,	and	130	bp	for	the	5’-UTR,	coding	region	

and	3’-UTR	lengths	respectively)	and	additionally	creates	highly	customisable	plots	of	

the	different	regions	of	the	gene	(see	Figure	2.2).	
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Figure	2.2	-	Plots	showing	the	frequency	distribution	of	common	gene	structure	components	in	19,327	
protein	 coding	 genes	 of	 the	 house	mouse,	Mus	musculus.	 a)	 Frequency	 distribution	 plot	 of	 5’-UTR	
length.	b)	Frequency	distribution	plot	of	coding	region	length.	c)	Frequency	distribution	plot	of	3’-UTR	
length.	 d)	 Scatterplot	 of	 5’-UTR	 length	 vs	 3’-UTR	 length.	 e)	 Scatterplot	 of	 combined	UTR	 lengths	 vs	
intron	length.	
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Classification	of	repeats	in	the	Great	Apes	

A	 GCAT	 workflow	 (see	 example-repeats-workflow.txt in	 the	 examples	

directory	 on	 GitHub)	was	 used	 to	 identify	 between	 6,321,250	 and	 7,077,761	 repeat	

elements	in	Homo	sapiens	and	Pongo	abelii	respectively	(see	Table	2.1).	These	repeats	

account	 for	1,513,523,923	bp	 (Homo	sapiens)	 to	1,742,400,866	bp	 (Gorilla	gorilla)	of	

the	 overall	 genome	 sequence,	 or	 between	 47.85%	 and	 58.73%	 in	 Pongo	 abelii	 and	

Nomascus	leucogenys	respectively.	

GCAT	 can	 additionally	 break	 the	 sequences	 down	 into	 different	 classes	 of	

repetitive	element,	as	identified	by	the	RepeatMasker	(Smit	et	al.,	2010)	program,	by	

parsing	its	output	(see	Figure	2.3).	Ensembl	also	utilises	RepeatMasker,	so	it	is	possible	

to	use	GCAT	to	retrieve	these	data	directly	via	their	API	(Potter	et	al.,	2004),	though	by	

providing	 a	 wrapper	 around	 RepeatMasker	 one	 can	 also	 undertake	 their	 own	

replications	to	validate	their	data.	It	is	then	possible	for	us	to	use	GCAT’s	functionality	

to	 visualise	 the	 proportion	 of	 the	 genome	 that	 is	 contained	 within	 the	 respective	

classes	of	repetitive	elements	and	make	 inferences	on	the	processes	that	resulted	 in	

this	structure.	We	can	then	investigate	the	relationships	in	more	detail,	by	outputting	

these	data	in	CSV	output	and	utilising	GCAT’s	interface	with	the	R	statistical	language	

in	order	to	undertake	more	complex	statistical	analyses	to	test	our	hypotheses.	

Table	2.1	-	A	summary	of	the	repeat	elements	retrieved	using	our	example	repeat	elements	workflow	
for	the	five	available	Hominoidea	genomes.	

	 Homo	

sapiens	

Pan	

troglodytes	

Gorilla	 Pongo	

abelii	

Nomascus	

leucogenys	

Genome	Size	(Gbp)	 3.10	 3.30	 3.04	 3.44	 2.93	

Number	of	repeats	

(millions)	

6.32	 6.88	 6.71	 7.08	 6.49	

Total	genomic	repeat	

length	(Gbp)	

1.51	 1.72	 1.74	 1.65	 1.72	

Total	genomic	repeat	

percentage	(%)	

48.79	 51.99	 57.30	 47.85	 58.73	

52	genome	intron	frequency	

GCAT	allows	the	retrieval	and	analyses	of	data	in	a	large-scale	comparative	manner.	In	

this	case	I	was	able	to	retrieve	and	summarise	the	intron	sizes	across	all	52	genomes	

available	in	the	Ensembl	databases	as	of	February	2011	(see	Figure	2.4).	This	analyses	

highlighted	a	relatively	uniform	distribution	of	intron	sizes	in	most	eukaryote	species,	
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with	 the	exception	of	 the	unicellular	eukaryote	Saccharomyces	 cerevisiae,	which	has	

had	 its	 intron	content	widely	studied	(Wolfe	and	Shields,	1997;	Spingola	et	al.,	1999;	

Bon	et	al.,	2003;	Neuvéglise	et	al.,	2011;	Hooks	et	al.,	2014).	The	rest	of	 the	species	

have	a	mode	intron	size	of	60	to	120	bp,	with	the	majority	of	introns	being	<200	bp	in	

length.	The	 intron	distribution	 is	generally	unimodal	with	a	monotonically	decreasing	

slope	from	60	to	120	bp	onwards.	However,	in	the	sea	squirt	Ciona	intestinalis	and	the	

zebrafish	Danio	 rerio.	 There	 is	 also	 a	 second,	 less	pronounced	peak	of	 intron	 size	 at	

~150-450	bp	in	the	sea	quirt	and	500-2,000	bp	in	the	zebrafish.
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Figure	2.3	 -	 a)	Classes	of	 repetitive	element	by	 length	across	 the	genomes	of	 five	primate	 species.	b)	Classes	of	 repetitive	element	by	number	across	 the	genomes	of	 five	
primate	species.
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Figure	 2.4	 -	 Frequency	 distribution	 of	 intron	 sizes	 in	 the	 52	 genomes	 available	 in	 the	main	 Ensembl	 genome	 databases	 as	 of	 February	 2011.	 Interesting	 and	 unexpected	
differences	are	highlighted	in	the	Sea	Squirt	Ciona	intestinalis	and	the	Zebrafish	Danio	rerio.
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REST	

A	 fully	 working	 prototype	 of	 the	 Ensembl	 RESTful	 web	 service	 was	 implemented	

allowing	 for	 programmatically	 independent	 access	 to	 the	 main	 Ensembl	 Core	 API	

functionality.	 The	 Ensembl	 Compara	 (comparative	 genomics),	 Functional	 Genomics	

(transcriptional	regulation)	and	Variation	(polymorphisms	and	structural	variants)	APIs	

were	also	available	to	the	web	service,	but	their	functionality	wasn’t	extensively	tested.	

The	API	was	 tested	by	 retrieving	 the	 full	 human	gene	 list	 and	 the	BRCA2	gene	

object	 with	 endpoints	 accessed	 using	 the	Mozilla	 Firefox	 web	 browser.	 Output	 was	

returned	in	YAML	format.	Individual	scripts	were	also	created	in	Perl,	Python	and	Ruby	

that	 returned	 the	 BRCA2	 gene	 object	 in	 JSON	 format	 and	 also	 displayed	 a	 1,000	 bp	

segment	of	the	DNA	sequence	(see	examples	in	Appendix	2.3).	These	examples	show	

the	power,	flexibility,	and	simplicity	of	the	Ensembl	RESTful	web	service.	In	comparison	

to	the	Ensembl	Perl	API,	retrieving	a	list	of	human	genes	becomes	as	easy	as	calling	a	

single	URL	for	example,	as	opposed	to	several	lines	of	Perl	code	(see	Table	2.2)	
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Table	2.2	–	Comparison	of	the	different	methods	of	accessing	the	Ensembl	API.	a)	Example	code	in	the	
Perl	 programming	 language,	 using	 the	 Ensembl	 Perl	 API,	 to	 return	 a	 list	 of	 human	 gene	 IDs.	 b)	
Example	URL	endpoint	for	accessing	the	same	data	using	the	Ensembl	RESTful	web	service.	

a) Example	code	 in	 the	Perl	programming	 language,	using	 the	Ensembl	Perl	API,	 to	 return	a	 list	of	
human	gene	IDs	from	the	Ensembl	server	

 
#!/usr/bin/env perl 
 
use strict; 
use warnings; 
use Bio::EnsEMBL::Registry; 
 
# setup registry object and connect to Ensembl server 
my $registry = 'Bio::EnsEMBL::Registry'; 
$registry->load_registry_from_db( 
  -host => 'ensembldb.ensembl.org', 
  -user => 'anonymous', 
  -pass => undef, 
  -port => 5306 
); 
 
# setup gene adaptor object 
my $gene_adaptor = $registry->get_adaptor('Human', 'Core', 'Gene'); 
 
# retrieve list of stable gene IDs 
my @gene_ids = @{$gene_adaptor->list_stable_ids()}; 
 
# output gene IDs to the screen 
foreach my $gene_id (@gene_ids) { 
 print "$gene_id\n"; 
} 
	
b) Example	URL	endpoint	using	the	Ensembl	RESTful	web	service	to	return	a	list	of	human	gene	

IDs	from	the	Ensembl	server	
	
http://localhost:3000/get_adaptor/human/core/gene/list_stable_ids 
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Comparison	of	the	different	methods	of	access	to	Ensembl	data	

A	comparison	of	the	efficiency	(in	terms	of	memory	usage	and	time	to	retrieve	data)	of	

the	different	methods	of	access	to	Ensembl	data	was	undertaken	with	execution	time	

equal	 to	wall	 clock	 time	 in	 seconds	 and	memory	 usage	 in	 bytes	 (see	 Table	 2.3	 and	

Table	2.4).	In	both	cases	a)	“MySQL”	is	the	use	of	standard	SQL	syntax	to	retrieve	data	

directly	 from	the	Ensembl	databases,	b)	“BioMart”	 is	 the	use	of	 the	existing	BioMart	

Perl	API	 to	 retrieve	data	 from	the	Ensembl	databases,	 c)	 “Perl	API”	 is	 the	use	of	 the	

existing	Ensembl	Perl	API	to	retrieve	data	from	the	Ensembl	databases,	d)	“Alpha	REST	

API	(curl)”	is	the	use	of	a	novel	alpha	version	of	the	Ensembl	REST	API	to	retrieve	data	

from	 the	 Ensembl	 databases,	 e)	 “Public	 REST	 API	 (pyEnsemblRest)”	 is	 the	 use	 of	 a	

novel	wrapper	script	around	the	existing	public	Ensembl	REST	API	to	retrieve	data	from	

the	Ensembl	databases,	and	 f)	 “PyCogent”	 is	 the	use	of	 the	existing	PyCogent	API	 to	

retrieve	data	from	the	Ensembl	databases.	 	

Table	2.3	–	Simple	dataset	query	execution	time	and	memory	usage.	

	 Execution	time	(seconds)	 Memory	usage	(bytes)	

MySQL	 0.995	 5,768	

BioMart	 6.699	 550,300	

Perl	API	 23.353	 44,096	

Alpha	REST	API	(curl)	 2.120	 3,968	

Public	REST	API	(pyEnsemblRest)	 N/A	 N/A	

PyCogent	 1.275	 41,448	

	

Table	2.4	–	Complex	dataset	query	execution	time	and	memory	usage.	

	 Execution	time	(seconds)	 Memory	usage	(bytes)	

MySQL	 N/A	 N/A	

BioMart	 11.123	 552,012	

Perl	API	 562.205	 69,776	

Alpha	REST	API	(curl)	 4,237.392	 54,028	

Public	REST	API	(pyEnsemblRest)	 461.318	 74,528	

PyCogent	 809.871	 108,412	
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Discussion	

This	 chapter	 describes	 the	 development	 of	 open	 source	 bioinformatics	 pipelines	 for	

the	comparative	analysis	of	Ensembl	genome	data.	The	GCAT	software	can	utilise	the	

genomic	 features	 annotated	 by	 Ensembl	 and	 integrates	 powerfully	 with	 the	 R	

statistical	 language	 to	 implement	 a	 large	 range	 of	 biologically	 relevant	 analytical	

output	and	visualisations.	 Its	design	enables	users	to	easily	add	modules	for	bespoke	

features	 in	addition	 to	 those	provided	 in	 the	package	and	 together	permit	extensive	

comparative	analyses	of	genome	structure	and	content.	

GCAT	

GCAT	 is	 developed	 specifically	 to	 undertake	 large-scale	 comparative	 analyses	 of	

genome	data	available	from	the	Ensembl	genome	databases.	 It	provides	an	all-round	

solution	 for	 the	 retrieval,	 analysis,	 description	 and	 visualisation	 of	multiple	 genome	

annotations	 with	 a	 particular	 focus	 on	 understanding	 genome	 evolution.	 In	 this	

chapter	 I	 document	 the	 design,	 implementation	 and	 key	 attributes	 of	 GCAT,	 and	

additionally	demonstrate	a	few	of	 its	features	by	employing	the	pipeline	to	carry	out	

comparative	genomic	analyses	of	a	number	of	datasets	from	Ensembl.	These	analyses	

highlight	some	interesting	biological	trends	that	warrant	deeper	analyses.	

Description	of	gene	features	in	Mus	musculus	

GCAT	 can	 also	 be	 used	 to	 highlight	 errors	 in	 annotation	 that	 require	 further	

investigation.	 In	Figure	2.2	above;	 in	addition	to	detailing	the	genome-wide	structure	

of	the	genes	in	the	common	house	mouse,	I	highlight	annotated	UTR	regions	as	small	

as	a	single	nucleotide.	If	carrying	out	an	analysis	of	UTRs	one	might	wish	to	re-validate	

these	 UTRs	 before	 including	 them	 in	 a	 larger	 dataset	 of	 more	 typically	 sized	 UTRs.	

There	is	no	certainty	that	the	features	annotated	by	Ensembl	are	homogeneous	from	a	

single	biological	class,	and	further	investigation	of	this	idea	would	be	a	wise	first	step	

in	 any	 statistical	 analysis.	 For	 example,	 one	 might	 decide	 to	 test	 the	 nucleotide	

composition	 bias	 (GC:AT)	 of	 3’UTR	 regions.	 A	 bimodal	 distribution	 of	 these	 values	

could	 indicate	 that	 at	 least	 two	 different	 classes	 of	 3’UTR	 had	 been	 annotated	 the	

same	way,	and	different	analytical	designs	would	be	required	to	 investigate	 the	 true	

nature	of	their	variation.	GCAT	is	especially	powerful	at	accomplishing	these	types	of	

data	exploration	and	hypothesis	generating	analyses.	
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Classification	of	repeats	in	the	Great	Apes	

Ensembl	 automatically	 executes	 RepeatMasker	 (Smit	 et	 al.,	 2010)	 as	 part	 of	 its	

annotation	 pipeline	 (Curwen	 et	 al.,	 2004;	 Potter	 et	 al.,	 2004)	 to	 identify	 repetitive	

elements	within	the	genes	or	intergenic	regions	of	a	genome,	allowing	it	to	associate	

this	information	with	the	relevant	sequences	in	its	database.	GCAT	can	retrieve	these	

data,	 analyse	 them	 and	 produce	 high-quality	 visualisations	 by	 calling	 a	 simple	

workflow	script,	which	is	included	in	the	pipeline’s	example	documentation.	Using	this	

workflow	it	is	possible	to	retrieve	a	comprehensive	repeat	element	dataset	for	Homo	

sapiens,	 Pan	 troglodytes,	Gorilla	 gorilla,	 Pongo	 abeli	 and	Nomascus	 leucogenys;	 the	

five	apes	(superfamily	Hominoidea)	available	in	Ensembl.	

In	Table	2.1	a	descriptive	focus	is	taken	to	reporting	on	the	repetitive	content	of	

the	genomes	of	the	Great	Apes,	however	by	breaking	the	repeat	datasets	down	 into	

their	component	annotations	it	is	possible	to	produce	visualisations	that	highlight	the	

differences	 in	 the	datasets	more	easily	 (see	 Figure	2.3).	 This	 exploratory	 analyses	of	

repeat	content	was	able	to	highlight	similarities	in	Alu	content	between	the	genomes	

of	 these	 apes	 that	 had	 previously	 been	 dismissed	 (Locke	 et	 al.,	 2011).	 Locke	 et	 al	

identified	 approximately	 250	 lineage-specific	 Alu	 retroposition	 events	 in	 the	 Orang-

utan	 genome,	 which	 was	 much	 lower	 than	 that	 of	 the	 other	 sequenced	 primates,	

including	humans.	They	used	Allele-Specific	Alu	PCR	to	amplify	the	Alu	insertions	from	

novel	Orang-utan	genomic	DNA,	followed	by	BLASTZ	(an	independent	implementation	

of	 the	 Gapped	 BLAST	 algorithm	 designed	 for	 local	 alignment	 of	 two	 long	 genomic	

sequences)	 to	 identify	 the	repeat	types.	This	 is	 in	contrast	 to	the	method	used	here,	

which	 although	 is	 built	 upon	 the	 same	 genomic	 DNA	 sequence,	 has	 undergone	 re-

annotation	and	additional	validation	via	 the	Ensembl	annotation	pipeline	 (Curwen	et	

al.,	2004;	Potter	et	al.	2004).	My	method	also	uses	the	RepeatMasker	program	(which	

is	 based	 on	 BLASTZ)	 to	 identify	 repeats	 across	 the	 entire	 genomic	 DNA	 sequence,	

followed	by	mining	of	the	individual	elements	using	GCAT’s	integration	with	R.	

Although	further,	phylogenetically	controlled	analyses	are	required	to	determine	

the	validity	of	the	Orang-utan	Alu	conclusions,	they	corroborate	the	findings	of	other	

studies	 that	 highlight	 areas	 where	 the	 Orang-utan	 genome	 is	 more	 similar	 to	 the	

genome	 of	 Humans	 than	 are	 Chimpanzees	 (Hobolth	 et	 al.,	 2011)	 and	 also	 lend	 to	
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further	investigation	of	claims	of	ancient	lineage	specific	expansions	of	Alu	elements	in	

the	Orang-utan	genome	(Walker	et	al.,	2012).	

52	genome	intron	frequency	

Comparative	genomics	requires	more	than	reporting	simple	summary	statistics,	stating	

for	example	the	mean	and	mode	sizes	(Moss	et	al.,	2011).	GCAT	allows	the	exploration	

of	more	sophisticated	patterns	in	the	data	and	its	power	in	large-scale	whole-genome	

analyses	 is	 demonstrated	with	 the	 retrieval	 and	 visualization	 (see	 Figure	 2.4)	 of	 the	

entirety	 of	 the	 intron	 size	 classes	 in	 the	 52	 genomes	 available	 in	 Ensembl’s	 Core	

database	 as	 of	 February	 2011	 (release	 61).	 This	 analysis	 not	 only	 highlights	 key	

features	of	the	distribution	of	intron	sizes	across	a	divergent	range	of	species,	but	also	

pinpoints	 some	 meaningful	 differences	 in	 the	 distributions	 between	 the	 species,	 in	

addition	to	expected	outcomes.	 	

The	mode	 intron	peak	 is	clearly	visible	at	between	60	and	120	bp	 in	all	species	

with	the	majority	of	data	points	existing	in	this	region.	The	distribution	is	right	skewed	

however,	with	a	number	of	lower	frequency	data	points	towards	the	maximum	intron	

size	 classes	 for	each	 species.	 The	distributions	are,	 largely,	monotonically	decreasing	

from	tens	of	thousands	of	introns	at	the	mode,	too	often	only	1	or	2	in	the	larger	size	

classes.	Figure	2.4	has	a	cut-off	at	5,000	bp	as	an	upper	limit	on	its	x-axis,	however	it	

isn’t	uncommon	to	have	introns	ranging	to	hundreds	of	thousands	or	millions	of	base-

pairs	in	size.	The	biological	reason	behind	this	right	skewed	distribution	isn’t	clear,	but	

it	is	likely	that	the	metabolic	burden	of	removing	the	larger	introns	from	these	genes	

has	contributed	to	this	as	a	result	of	purifying	selection.	The	requirements	to	remove	

these	elements	in	terms	of	ATP	utilisation	by	the	cell	would	have	been	significant	and	

an	unnecessary	 demand	on	 the	 early	 eukaryote	 (Wagner,	 2005;	 Castillo-Davis	et	 al.,	

2002).	However,	 as	many	 of	 these	 species	 have	 relatively	 small	 effective	 population	

sizes	 and	 longer	 generation	 times,	 the	 ability	of	 selection	 to	 remove	 these	 from	 the	

population	is	greatly	reduced	(Lynch,	2002).	

Some	 interesting	 anomalies	 also	 present	 themselves	 in	 the	 form	 of	 a	 bimodal	

distribution	 in	 the	 Sea	 Squirt	 Ciona	 intestinalis	 and	 the	 Zebrafish	 Danio	 rerio.	 The	

reason	behind	this	requires	further	detailed	comparative	analyses.	As	of	February	2011	

only	 two	 Sea	 Squirt	 genomes	 existed,	 in	 contrast	 to	 five	 Teleost	 fish	 genomes.	 This	

analyses	is	taken	further	in	Chapter	3	(Moss	et	al.,	2011)	by	comparing	the	genomes	of	
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the	five	available	teleost	fish	in	order	to	understand	the	cause	of	these	differences	in	

greater	 detail.	 The	 outlier,	 and	 expected	 result	 in	 this	 case	 is	 the	 budding	 yeast	

Saccharomyces	cerevisiae,	which	exhibits	the	lowest	frequency	and	smallest	of	intron	

sizes,	 confirming	 previous	 findings	 (Spingola	 et	 al.,	 1999).	 S.	 cerevisiae	 has	 been	

extensively	studied,	but	annotation	error	still	likely	exists	here,	with	higher	frequency	

peaks	in	intron	size	being	seen	at	regular	intervals	along	the	x-axis.	These	may	well	be	

real	data,	but	would	require	strict	validation	before	further	analyses	were	undertaken.	

While	comparative	genomics	is	held	to	be	increasingly	important,	the	tools	for	its	

implementation	 are	 currently	 poorly	 adapted.	 The	 GCAT	 pipeline	 was	 designed	 to	

overcome	this	and	specifically	 to	exploit	 the	 rich	annotation	provided	by	Ensembl.	A	

large	number	of	tools	for	data	exploration,	visualisation	and	quantitative	analysis	are	

already	incorporated,	although	its	open	design	allows	the	addition	of	other	analytical	

modules	 without	 difficulty.	 The	 use	 of	 this	 library	 however,	 requires	 knowledge	 of	

programming	principles	and	in	particular	knowledge	of	the	Perl	programming	language.	

This	creates	a	barrier	the	usage	of	GCAT	 in	comparative	genomics	analyses	for	those	

scientists	 that	 lack	prior	programming	experience.	The	development	of	 the	Semantic	

Web	and	programmatically	independent	access	to	data	resources	has	been	discussed	

as	a	means	of	overcoming	these	 issues,	and	additionally	 in	 improving	the	 integration	

and	sharing	of	data	worldwide	(Stein,	2002;	Stein,	2008;	Stein,	2010).	

REST	

The	 development	 of	 programmatically	 independent	 data	 access	 is	 of	 the	 utmost	

importance,	not	just	in	the	scientific	arena,	but	for	any	organisations	dealing	with	large	

volumes	 of	 data.	 A	 uniform	 format	 or	 database	 schema	 for	 the	 distribution	 and	

storage	of	data	would	aid	the	realisation	of	this	greatly.	This	would,	however,	require	a	

great	deal	of	collaboration	and	additionally	a	considerable	change	in	the	organisation	

of	the	existing	data	assembly	and	annotation	pipelines,	not	to	mention	the	conversion	

of	existing	data.	By	building	an	abstract	layer	on	top	of	the	existing	infrastructure,	such	

as	those	provided	by	web	service	frameworks,	one	can	retrieve	these	data	with	limited	

additional	investment	in	time	and	resources.	

The	development	of	a	prototype	RESTful	web	service	framework,	built	using	the	

REST	 architecture	 standards,	 providing	 a	 simple,	 but	 powerful	 means	 of	 accessing	

Ensembl’s	genome	data,	provides	an	ideal	means	of	non-programmatic	data	access	for	
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the	wider	scientific	community.	Being	able	to	access	these	data	over	standard	HTTP	via	

a	 web	 browser,	 independent	 of	 any	 programming	 language,	makes	 the	 information	

much	more	accessible,	especially	to	those	researchers	with	limited	or	no	programming	

experience.	 This	 can,	 in	 some	 cases,	 alleviate	 the	 need	 for	 dedicated	 bioinformatics	

support,	in	smaller	scale	studies.	

The	 aim	 of	 developing	 a	 REST	 API	 was	 not	 to	 eliminate	 the	 need	 for	

bioinformatics	 support,	 but	 to	 complement	 them.	 By	 enabling	 wider,	 less	 stringent	

access	 to	 genomics	 data	 and	 their	 annotations,	 it	 can	 increase	 the	 throughput	 of	 a	

research	 project	 considerably.	 Rather	 than	 having	 to	 learn	 a	 complex	 API,	 one	 can	

simply	learn	the	different	path	parts	required	to	construct	a	URL	to	retrieve	the	data	

they	need.	As	 the	majority	of	 scientists	will	at	 least	have	a	basic	knowledge	of	using	

the	 World	 Wide	 Web,	 through	 an	 Internet	 browser,	 this	 would	 require	 very	 little	

training.	 Additionally,	 those	 that	 have	 a	 knowledge	 of	 one	 or	 more	 programming	

languages,	 will	 have	 a	 reduced	 overhead	 in	 learning	 how	 to	 access	 the	 data	 using	

standard	HTTP	libraries.	

One	 of	 the	 issues	 that	 was	 highlighted	 in	 the	 testing	 process,	 was	 memory	

management	 by	 the	 browser,	 when	 executing	 particularly	 large	 data	 queries.	 The	

browser	 would	 first	 download	 the	 data	 into	 memory,	 before	 rendering	 it	 to	 the	

browser	window.	When	the	data	received	exceeded	several	hundred	megabytes	and	

certainly	 above	 one	 gigabyte,	 this	 would	 cause	 considerable	 performance	 related	

issues.	In	some	cases	the	browser,	or	computer	would	become	unstable	and	require	a	

restart.	Being	able	to	cache	queries	to	reduce	this	overhead	would	be	preferable.	Of	

course,	most	users	wouldn’t	need	 to	execute	 large	queries	 via	 the	browser	 and	 it	 is	

likely,	 in	fact,	that	larger	queries	would	be	run	via	a	terminal	based	script,	 integrated	

into	an	analysis	pipeline.	However,	performance	and	efficiency	of	 the	web	 service	 is	

still	a	concern	and	would	require	some	investment	of	time	in	order	to	ensure	both	the	

user	and	the	server	don’t	experience	any	unnecessary	latency.	 	

Issues	such	as	these	were	highlighted	during	the	prototype	development	and	it	

was	clear	a	number	of	additional	steps	would	be	required	before	the	web	service	was	

functional	 enough	 for	 use	 by	 the	 wider	 public.	 These	 included	 caching	 of	 the	 data	

locally,	 implementation	 of	 separate	 base	 parts	 for	 the	 controller,	 adaptation	 of	 the	

Bio::Ensembl:Registry	 module	 to	 return	 an	 object	 rather	 than	 a	 hash	
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reference,	and	ensuring	optimal	security	considerations.	Registration	of	an	API	key	or	

standard	rate-limiting	steps	to	limit	the	number	of	queries	was	also	determined	to	be	

necessary,	 in	 order	 to	 ensure	 no	 inadvertent	 denial	 of	 service	 by	 particularly	 high-

throughput	 users.	 These	 considerations	 were	 addressed	 in	 the	 development	 of	 the	

public	Ensembl	REST	API	(Flicek	et	al.,	2012;	Yates	et	al.,	2014).	

Comparison	of	the	different	methods	of	access	to	Ensembl	data	

In	order	to	compare	the	different	methods	of	access	to	Ensembl	data,	particularly	from	

the	 perspective	 of	 efficiency	 of	 the	 web	 service	 implementations	 in	 relation	 to	

programmatic	 APIs,	 a	 number	 of	 scripts	 were	 developed	 (see	 Implementation).	 A	

baseline	raw	SQL	query	was	designed	to	retrieve	the	data	with	minimal	overheads	in	

each	 case.	 Comparisons	 were	 made	 using	 a	 simple	 and	 more	 complex	 query.	 The	

“simple	 query”	 involved	 retrieving	 all	 the	 gene	 stable	 IDs	 for	 Homo	 sapiens.	 The	

“complex	query”	was	to	retrieve	all	protein	coding	gene	sequences	for	Saccharomyces	

cerevisiae	in	FASTA	format.	

At	the	time	of	analysis	the	public	REST	API	didn’t	have	a	function	for	retrieving	

lists	 of	 gene	 stable	 IDs	 and	hence	 this	 benchmark	 could	 not	 be	 run.	 The	 complexity	

involved	 in	writing	 the	SQL	 for	 the	 complex	query	made	 it	 unfeasible	 to	 implement.	

This	 is	 because	 there	 is	 a	 great	 deal	 of	 normalisation	 of	 the	 Ensembl	 databases	 to	

reduce	redundancy	by	splitting	fields	across	multiple	tables	and	defining	a	number	of	

interwoven	 relationships.	 The	 sequences	 themselves	 are	 stored	 as	 unassembled	

contigs	 that	 require	 recursive	 functions	and	multiple	 selects	 to	 join	all	 the	 individual	

coordinates	together,	whilst	also	taking	into	account	the	orientation	of	the	strand,	 in	

order	 to	 compile	 the	 full	 gene	 sequence.	 This	 is	beyond	 the	 scope	of	 the	 structured	

query	language	(SQL).	

Simple	query	

It	 is	 clear	 from	 these	 comparisons	 (see	Table	2.3)	 that	 the	most	 efficient	method	of	

access	 to	 the	 Ensembl	 data	 is	 through	 the	 construction	 of	 raw	 SQL	 queries	 (0.995	

seconds).	 Surprisingly	 this	 is	 only	 marginally	 faster	 than	 the	 PyCogent	 Python	 API	

(1.275	seconds),	with	 the	alpha	REST	API	 taking	 twice	as	 long	again	 (2.120	seconds).	

The	BioMart	API	still	performed	relatively	well	(6.699	seconds),	with	the	Perl	API	taking	

the	longest	at	9.976	seconds.	The	Perl	API	taking	almost	10	times	longer	than	the	raw	

SQL	query	was	very	surprising.	Running	Devel::NYTProf	on	the	code	showed	that	
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this	 time	 was	 spent	 on	 displaying	 the	 gene	 IDs	 to	 STDOUT	 via	 the	

main::CORE::print	method	and	 in	 the	DBI::st::execute	method.	A	 total	

of	 197	 individual	 calls	 were	 made	 to	 the	 latter	 method,	 which	 is	 likely	 where	 SQL	

statements	 have	 been	 prepared	 and	 subsequently	 executed	 against	 the	 backend	

database.	The	overheads	involved	in	setting	up	the	connections	to	the	Ensembl	servers	

and	performing	initial	caching	to	populate	the	database	adaptor	objects	seem	to	take	

their	 toll	 for	 smaller	queries	 that	 can	be	executed	 in	a	 fraction	of	 the	 time	by	other	

methods.	The	benefit	of	caching	is	that	on	subsequent	runs	of	the	code,	this	runtime	

improved	by	nearly	50%.	

In	terms	of	memory	usage	the	most	optimal	strategy	for	retrieving	data	was	via	

the	alpha	REST	API.	The	small	memory	footprint	here	(~3.9Kb)	is	likely	due	to	the	use	

of	 the	curl	program	to	submit	the	GET	 request	to	the	REST	web	server.	curl	 is	a	

terminal	 based	 UNIX	 package	 developed	 in	 the	 C	 programming	 language	 and	 can	

therefore	 have	 greater	 memory	 control	 via	 lower	 level	 system	 calls.	 The	 memory	

footprint	of	the	REST	web	server	 is	 likely	to	be	much	greater,	as	this	does	all	 the	 leg	

work,	but	as	this	was	a	test	of	standalone	methods	for	retrieval	of	Ensembl	data,	those	

measurements	 weren’t	 taken	 into	 account.	 The	 worst	 performer	 here	 was	 the	 Perl	

script	utilising	the	BioMart	API,	which	used	~550Kb	of	memory.	This	was	determined	

to	 be	 due	 to	 the	 numerous	 caching	 steps	 undertaken	 on	 the	 first	 run	 of	 the	 script.	

Additional	 runs	of	 the	 script	 load	 the	 cached	data	 from	 locally	 stored	XML	 files	 into	

memory	to	improve	execution	and	retrieval	of	data.	This	has	the	benefit	of	improving	

the	runtime	over	the	Ensembl	Perl	API,	but	at	the	cost	of	extra	memory	utilisation.	

Complex	query	

The	 complex	 query	 involved	 retrieving	 all	 the	 protein	 coding	 gene	 sequences	 for	

Saccharomyces	cerevisiae.	Due	to	database	normalisation	it	wasn’t	possible	to	retrieve	

these	 data	 using	 a	 single	 SQL	 query.	 This	 is	 because	 Ensembl	 stores	 the	 raw	

unassembled	sequences	in	its	database,	and	assembles	the	appropriate	fragments	into	

the	contigs	that	form	the	relevant	gene	sequence	via	a	number	calls	to	the	Core	Perl	

API	that	abstracts	some	of	that	complexity	away	from	the	end-user.	It	is	expected	that	

this	would	have	been	a	relatively	fast	method	of	accessing	the	Ensembl	data,	with	low	

memory	consumption	 in	particular.	Due	to	the	overheads	 involved	 in	building	a	shell	

script	that	would	call	the	 individual	queries	 involved	in	assembling	the	sequences	via	
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the	MySQL	command	line	client,	however,	this	would	have	been	unfeasible	to	assess	

and	compare	in	the	same	manner	as	the	other	methods,	introducing	an	unfair	bias	to	

the	 benchmark.	 The	MySQL	 benchmark	was	 therefore	 not	 included	 for	 the	 complex	

query	(see	Table	2.4).	

In	 contrast	 to	 the	 simple	 query,	 the	 most	 efficient	 method	 of	 accessing	

Ensembl’s	 data	 when	 constructing	more	 complex	 queries	 was	 the	 Ensembl	 BioMart	

API	(Kinsella	et	al.,	2011)	clocking	in	at	11.124	seconds.	It	is	expected	that	raw	MySQL	

queries	would	have	performed	at	least	as	well	as	this,	though	due	to	the	caching	steps	

undertaken	by	the	BioMart	API,	additional	queries	would	 likely	have	performed	even	

better.	This	is	because	they	would	have	been	loaded	from	the	local	disk,	and	therefore	

not	be	subject	to	network	latency.	A	simple	method	of	reducing	network	latency	is	to	

install	a	local	copy	of	the	raw	data	in	a	local	MySQL	server	installation,	however,	there	

is	 still	 additional	 overhead	 involved	 in	 making	 a	 loopback	 network	 connection,	 in	

comparison	to	reading	from	disk.	These	kinds	of	differences	weren’t	assessed,	though	

it	 is	 expected	 that	 there	 would	 be	 only	 millisecond	 variations	 in	 the	 overheads	

involved.	This	can	add	up	considerably	over	10s	of	thousands	of	sequences,	however.	

The	 PyCogent	 API,	 which	 performed	 very	 well	 in	 the	 simple	 query,	 fell	 behind	 the	

other	methods	at	809.871	seconds	 in	 this	benchmark.	This	 is	 likely	due	to	 inefficient	

query	construction	and	a	lack	of	appropriate	caching	steps,	though	the	performance	of	

the	 Python	 SQLAlchemy	 library	 was	 also	 highlighted	 as	 a	 possible	 cause	 during	

profiling.	 The	 Perl	 API	 and	 Pubic	 REST	 API	 performed	 approximately	 the	 same,	with	

slightly	 better	 performance	 being	 seen	 via	 the	 Public	 REST	 API.	 The	 greater	

performance	 of	 the	 latter	 is	 no	 doubt	 due	 to	 caching	 steps	 and	 optimisations	

undertaken	server	side,	 including	 load	balancing	provisions.	The	worst	performing	at	

more	than	5X	slower	than	the	PyCogent	API,	was	the	alpha	REST	API.	This	discrepancy	

in	the	performance	of	the	alpha	REST	API	can	be	put	down	to	the	lack	of	local	caching	

and	server	side	optimisations.	

In	terms	of	memory	usage	there	isn’t	a	great	deal	of	difference	from	the	simple	

query.	 The	 increase	 in	 memory	 utilisation	 doesn’t	 appear	 to	 correlate	 with	 the	

increase	 in	 data	 returned,	 with	 64,785	 gene	 IDs	 with	 an	 average	 length	 of	 14	

characters	returned	via	the	simple	query,	and	6,692	DNA	sequences	with	an	average	

length	of	1,369	bp	returned	 in	 the	complex	query.	The	 largest	 increase	was	seen	via	
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the	alpha	REST	API	with	a	~13.5X	increase	in	memory	utilisation,	followed	by	a	~2.5X	

increase	with	 the	PyCogent	 code.	 The	 increase	 in	memory	utilisation	with	 the	 alpha	

REST	 API	 was	 unexpected,	 as	 the	 data	 retrieval	 was	 undertaken	 using	 the	 curl	

command	line	application,	which	is	particularly	 light	weight.	This	may	have	been	due	

to	buffering	of	data	before	being	written	to	disk,	or	oversights	 in	the	curl	program	

code	with	respect	to	the	proper	release	of	memory.	The	increase	in	memory	utilisation	

with	PyCogent	is	likely	due	to	the	latter.	The	Perl	API	and	BioMart	methods	were	about	

the	same	as	the	simple	query	approximately	70Kb	and	550Kb	usage	respectively.	This	

highlights	 that	memory	 utilisation	 is	 relatively	well	 optimised	 in	 these	 code,	 though	

there	is	still	some	room	for	improvement.	The	Public	REST	API	couldn’t	be	contrasted	

with	the	simple	query	usage,	though	it	performed	relatively	well	in	comparison	to	the	

other	methods	used	in	the	complex	query	execution.	

One	would	expect	 that	as	additional	software	 layers	are	added;	memory	usage	

and	 access	 times	 would	 increase.	 This	 is	 understandable,	 as	 method	 calls	 must	 be	

translated	 through	 the	 respective	 layers	 to	 the	 lowest	 level	 database	 queries,	 all	 of	

which	have	their	own	overheads	in	terms	of	use	of	time	and	memory.	This	isn’t	always	

the	case,	however,	as	we	see	with	the	implementation	of	caching	steps	in	some	of	the	

methods	 that	 instead	 retrieve	 some	 data	 from	 disk,	 or	 preload	 some	 objects	 into	

memory.	For	simple	queries	 the	differences	are	negligible,	but	 for	more	complicated	

queries,	 especially	 for	 those	 needed	 in	 larger-scale	 comparative	 genomics	 studies,	

these	allow	for	valuable	 improvement	 in	runtime	and	memory	utilisation.	 In	general,	

the	 most	 efficient	 method	 must	 be	 chosen,	 which	 will	 in	 most	 cases	 result	 in	 the	

decision	 to	 use	 the	 least	 time	 consuming	 approach,	 though	 this	 depends	 on	 the	

available	infrastructure.	One	might	find	that	a	workflow	can	be	parallelised	to	reduce	

runtime	by	distributing	across	multiple	machines	therefore	perhaps	favouring	optimal	

memory	usage,	though	there	should	always	be	a	focus	on	optimising	code	to	achieve	

maximum	performance	on	a	single	node	before	considering	distributing	across	many.	

Conclusions	

It	 is	 clear	 that	 there	 is	 a	 real	 need	 for	wider	 access	 to	 genomic	 sequence	 data.	 The	

creation	 of	 programming	 language	 independent	 APIs	 by	 large,	 data	 hungry	 web	

platforms	such	as	Twitter	in	order	that	users,	including	academics,	can	efficiently	mine	

their	data	reinforces	this	position	(Lin	and	Ryaboy,	2013).	Having	access	to	such	web	



Page	74	of	314	

service	 frameworks,	 in	 addition	 to	 the	 existing,	 powerful	methods	 of	 programmatic	

access	 provided	 by	 data	 providers,	 can	 only	 serve	 to	 strengthen	 the	 open-access	

nature	of	scientific	data.	If	designed	and	implemented	effectively,	with	the	lowest	level	

of	 abstraction	 possible;	 web	 service	 frameworks	 represent	 a	 significant	 solution	 to	

data	 access	 problems.	 These	 sort	 of	 services	 can	 be	 run	 both	 on	 a	 standalone	

computer,	 or	 scaled	 out	 across	 a	 server	 farm	 or	 significant	 Cloud-based	 platform,	

allowing	 for	even	greater	performance.	The	case	 for	 the	development	of	 this	kind	of	

bioinformatics	 infrastructure	 is	 already	well	 defined	 (Stein,	 2002;	 Stein,	 2008;	 Stein,	

2010).	 By	 allowing	 scientists	 from	 a	 broader	 range	 of	 backgrounds	 to	 be	 able	 to	

retrieve,	 analyse	 and	 make	 inferences	 from	 genomic	 data,	 it	 can	 only	 improve	 our	

understanding	of	genome	biology	and	aid	future	scientific	discovery.	

Of	course,	improving	code	standards	and	training	for	researchers	is	an	additional	

area	 that	must	 be	 focused	 on,	 and	 the	 push	 to	 improve	 computational	 literacy	 and	

knowledge	 of	 computer	 science	 en	 masse	 as	 part	 of	 government	 initiatives	 is	 a	

welcome	trend	(Berges	et	al.,	2013;	Golberg	et	al.,	2013).	In	general	more	time	needs	

to	 be	 invested	 and	 considerations	 given	 to	 the	 development	 of	 software	 in	 the	

sciences.	The	development	of	software	as	a	method	for	experimentation	must	be	held	

in	the	same	regard	as	wet	lab	experiments,	which	are	subject	to	much	scrutiny	through	

robust	 experimental	 design.	 Training	 in	 the	 development	 of	 software	 and	

understanding	of	computational	methods	for	data	analyses	should	be	as	important	as	

gaining	 a	 thorough	 understanding	 of	 the	 scientific	method	 and	 associated	 statistical	

methodologies	used	in	data	analyses.	There	are	a	number	of	different	groups	focusing	

on	 these	areas	already	 that	are	making	good	progress	 towards	ensuring	 that	code	 is	

produced	 to	a	high	 standard	 in	 the	 sciences	 (Dubois,	 2005;	Dudley	and	Butte,	 2009;	

Noble,	 2009;	Wilson	et	 al.,	 2012;	 Petre	 and	Wilson,	 2013;	 Crusoe	 and	Brown,	 2013;	

Wilson,	2014).	In	the	meantime,	tools	like	GCAT	and	the	development	of	RESTful	web	

service	 frameworks	 such	 as	 the	 Ensembl	 REST	 API	 will	 provide	much	 needed	wider	

access	to	Ensembl	data	in	particular	that	reduces	the	learning	curve	considerably.	 	
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CHAPTER	THREE:	COMPARATIVE	ANALYSIS	OF	TELEOST	GENOME	SEQUENCES	

REVEALS	AN	ANCIENT	INTRON	SIZE	EXPANSION	IN	THE	ZEBRAFISH	LINEAGE	

Introduction	

Introns	 are	 a	 major	 component	 of	 metazoan	 genomes,	 comprising	 ~24%	 of	 the	 human	

genome	 compared	 to	 only	 1.1%	 for	 exons	 (Venter	 et	 al.,	 2001).	 Even	 in	 species	 with	

genomes	 considerably	 smaller	 than	 humans,	 and	 representing	 taxonomically	 diverse	

lineages,	 introns	 can	 account	 for	 a	 substantial	 proportion	 of	 the	 genome.	 The	 nematode	

Caenorhabditis	briggsae,	for	example,	has	introns	containing	1.3	times	as	many	nucleotides	

as	do	exons,	which	together	account	for	~30%	of	the	entire	genome	sequence	(Stein	et	al.,	

2003).	Intron	sequence	in	general	evolves	at	a	high	rate,	close	to	that	of	fourfold	degenerate	

sites,	pseudogenes,	and	non-coding	regions	(Hughes	and	Yeager,	1997;	Chamary	and	Hurst,	

2004;	Gaffney	and	Keightley,	2006).	Despite	this,	 introns	may	also	contain	gene	regulatory	

elements	 (Majewski	 and	 Ott,	 2002;	 Gaffney	 and	 Keightley,	 2006),	 and	 their	 impact	 on	

translation,	via	alternative	splicing,	can	also	be	substantial	(Mironov	et	al.,	1999;	Kim	et	al.,	

2007).	 Even	 without	 the	 presence	 of	 regulatory	 elements	 within	 introns	 they	 may	 still	

contribute	 strongly	 to	 the	 deleterious	 mutation	 rate.	 Correct	 splicing	 requires	 the	

maintenance	 of	 specific	 splicing	 signals	 at	 the	 start	 and	 end	 of	 each	 intron,	 an	 interior	

branch	 point	 adenine,	 and	 a	 number	 of	 other	 sequences	 imperfectly	 conserved	 across	

eukaryotes	involved	in	the	recruitment	of	the	spliceosome	(Schwartz	et	al.,	2008).	Together	

these	sequences	increase	the	mutational	load	of	intron-containing	genes	since	mutations	in	

any	 of	 the	 required	 splicing	 signals	 can	 lead	 to	 non-functionalization	 of	 the	 locus.	 The	

several	 hundred	 thousand	 introns	 in	 a	 vertebrate	 genome	 are	 therefore	 a	 considerable	

mutational	 burden	 and	 it	 has	 been	 estimated	 that	 perhaps	 a	 third	 of	 all	 human	 genetic	

disorders	 involve	 mutations	 affecting	 splice-site	 recognition	 (López-Bigas	 et	 al.,	 2005;	

Frischmeyer	 and	 Dietz,	 1999).	 The	 study	 of	 introns	 can	 therefore	 greatly	 aid	 in	 our	

understanding	 of	 the	 genome’s	 mutational	 dynamics	 and	 in	 the	 selectively	 maintained	

regulation	of	surrounding	coding	regions.	

There	 are	 diverse	 mechanisms	 by	 which	 introns	 may	 be	 gained	 including	 reverse	

splicing,	 local	 duplications,	 transposable	elements,	 and	 transfer	 from	paralogs	by	unequal	
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crossing	 over	 (Roy	 and	 Gilbert,	 2006;	 Iwamoto	 et	 al.,	 1998;	 Rogers,	 1989;	 Sharp,	 1985;	

Hankeln	 et	 al.,	 1997).	 Subsequent	 to	 its	 origin,	 introns	 will	 change	 in	 size	 due	 to	 the	

accumulation	 of	 small	 insertions	 and	 deletions,	 non-homologous	 recombination	 and	 the	

action	 of	 transposable	 elements.	 Repetitive	 sequences	 such	 as	 transposable	 elements	

occupy	from	33%	to	52%	of	sequenced	vertebrate	genomes,	and	it	has	been	shown	that	20%	

to	60%	of	vertebrate	 introns	contain	 transposable	elements	 (Mills	et	al.,	2007;	Sela	et	al.,	

2010).	Intron	frequency	and	mean	intron	size	are	known	to	vary	considerably	across	animal	

taxa	 (Lynch	 and	 Conery,	 2003;	 Roy	 and	Gilbert,	 2006;	 Gazave	 et	 al.,	 2007;	 Yandell	et	 al.,	

2006;	Zhu	et	al.,	2009;	Deutsch	and	Long,	1999)	though	few	investigations	have	been	able	to	

compare	the	intron	composition	of	entire	genomes	within	and	between	closely	related	taxa.	

There	are	a	small	number	of	previous	whole	genome	studies	of	introns	although	these	have	

often	been	limited	to	one-to-one	comparisons	or	groups	of	phylogenetically	very	divergent	

organisms	(Coghlan	and	Wolfe,	2004;	Yandell	et	al.,	2006;	Gazave	et	al.,	2007;	Sharpton	et	

al.,	2008;	Stajich	et	al.,	2007;	Marais	et	al.,	2005;	Li	et	al.,	2009).	A	full	understanding	of	the	

processes	 shaping	 intron	 diversity	 and	 evolution	 will	 require	 a	 large-scale	 comparative	

genomic	approach	making	full	use	of	the	rapidly	increasing	number	and	diversity	of	whole	

genome	sequences.	Such	evolutionary	comparative	genomic	studies	however	are	slowed	by	

substantial	analytical	technical	challenges	presented	to	most	biologists	in	dealing	with	these	

huge	amounts	of	data.	In	this	study	we	present	a	bioinformatics	pipeline	that	can	be	used	to	

compare	the	size	distribution	and	content	of	introns	in	a	comparative	genomics	study.	We	

investigate	the	potential	of	such	a	genomic	approach	by	comparing	introns	in	the	genomes	

of	 five	 teleost	 fish	 available	 at	 Ensembl	 (Flicek	 et	 al.,	 2010)	 -	 the	 zebrafish	 (Danio	 rerio),	

three-spined	Stickleback	(Gasterosteus	aculeatus),	Medaka	(Oryzias	latipes),	Fugu	(Takifugu	

rubripes)	 and	 Tetraodon	 (Tetraodon	 nigroviridis).	 These	 fish	 have	 been	 used	 as	 model	

organisms	 in	 the	 laboratory	 for	 a	number	of	 years	 and	a	great	deal	of	 research	has	been	

undertaken	 focusing	 on	 their	 anatomical	 and	 physiological	 structure	 (Roest	 Crollius	 and	

Weissenbach,	2005;	Haffter	et	al.,	1996;	Kimura	et	al.,	2004;	Aparicio	et	al.,	2002;	Jaillon	et	

al.,	2004).	We	feel	the	information	that	can	be	elucidated	from	their	genomes	in	relation	to	

the	 biological	 processes	 driving	 or	 constraining	 their	 genomic	 evolution	 is	 therefore	 of	

particular	 interest.	 Our	 pipeline	 (GCAT:	 Genome	 Comparison	 and	 Analysis	 Toolkit)	 has	

allowed	 us	 to	 characterise,	 in	 detail,	 the	 composition	 and	 diversity	 of	 approximately	 1	
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million	 introns	 in	 these	 teleost	 genomes	 and	 provides	 a	 valuable	 open	 source	 extensible	

platform	for	comparative	genomics	of	introns	and	other	genomic	components.	
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Materials	and	Methods	

Sequences	used	

The	intron	data	were	retrieved	from	the	Ensembl	Core	online	database,	release	number	61.	

The	 individual	 fish	 database	 versions	 used	 were	 danio_rerio_core_61_9a,	

gasterosteus_aculeatus_core_61_1n,	 oryzias_latipes_core_61_1m,	

takifugu_rubripes_core_61_4o	 and	

tetraodon_nigroviridis_core_61_8f.	

Method	of	access	

The	data	were	accessed	using	a	novel	bioinformatics	pipeline,	built	using	the	Perl	Ensembl	

Core	Software	Libraries	(Stabenau	et	al.,	2004),	along	with	BioPerl	(Stajich	et	al.,	2002)	and	

several	 open-source	 Comprehensive	 Perl	 Archive	 Network	 (CPAN)	 libraries.	 Some	

information	 was	 verified	 manually	 using	 Ensembls’	 BioMart	 website	 and	 the	 Ensembl	

MySQL	databases.	The	pipeline	code	is	available	at	http://github.com/gawbul/gcat.	 	

The	 software	 pipeline	 used	 for	 this	 project	 was	 developed	 on	 an	 Intel	 Mac	 Pro	

machine	 running	Mac	OS	X	Snow	Leopard	version	10.6.7.	The	specifications	 included	dual	

2.8GHz	quad-core	Xeon	processors	and	8GB	RAM.	The	Perl	programming	language,	version	

5.12.3	was	used	for	development.	BioPerl	1.6.1	was	installed	using	the	CPAN	command	line	

client,	alongside	its	dependencies.	The	release	61	Ensembl	Core	Perl	API	was	retrieved	from	

the	 Ensembl	 website	 and	 installed	 from	 source	 following	 the	 site	 instructions.	 R	 version	

2.13.0	ERROR:	 requested	 citation	 index	out	of	 range	was	used	 for	 statistical	 analysis.	 The	

Ensembl	 Core	 MySQL	 databases	 were	 installed	 locally,	 to	 reduce	 network	 latency,	 using	

MySQL	 version	 5.5.11.	 The	 Python	 programming	 language	 version	 2.6.6	 was	 used	 for	

parsing	the	WindowMasker	results.	Run-time	for	all	analyses	performed	was	~8	hours.	

Intron	sequence	retrieval	

Intron	sequences	were	retrieved	using	the	canonical	transcript	for	each	gene,	as	defined	by	

the	Ensembl	Core	database.	The	database	and	application	programming	interface	(API)	are	

designed	 in	 such	a	way	 that	 the	 intron	 sequences	 can	only	be	 retrieved	automatically	 via	

their	associated	transcript,	but	because	there	can	be	multiple	transcripts	per	gene,	this	can	

result	 in	 redundant	 intron	 data.	 Introns	 aren’t	 explicitly	 defined	 in	 the	 database,	 and	 are	

instead	 implicitly	 defined	 from	 the	 exon	 coordinates	 by	 the	 Ensembl	 Perl	 API,	 and	 our	
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pipeline	 was	 used	 to	 automate	 the	 intron	 retrieval	 process.	 Since	 we	 anticipated	 that	

annotation	 of	 non-protein-coding	 genes	 would	 vary	 with	 genome	 annotation	 quality	 we	

restricted	 our	 analyses	 to	 introns	 in	 genes	 matching	 the	 biotype	 ‘protein_coding’,	

which	represented	greater	than	98%	of	all	introns	in	all	fish.	

Frequency	distributions	

The	 frequency	 distributions	were	 built	 for	 each	 of	 the	 five	 fish	 using	 our	 pipeline	 via	 the	

Statistics::Descriptive	CPAN	package	and	plotted	using	custom-made	R	scripts.	

The	 Comprehensive	 R	 Archive	 Network	 (CRAN)	 package	 gdata,	 was	 used	 to	 provide	

functionality	for	concatenating	multiple	columns	of	csv	data,	but	all	other	calculations	were	

made	using	novel	R	code,	built	on	top	of	the	core	R	functionality.	The	calculations	for	the	

sliding	window	means	and	confidence	intervals	were	calculated	from	a	subset	of	the	intron	

frequency	data,	 consisting	of	 successive	25	bp	windows	between	1	bp	and	5,000	bp.	This	

resulted	 in	200	points	being	plotted	and	reduced	any	noise	due	to	variation	 in	 intron	size	

frequency	within	each	window,	but	did	not	affect	the	overall	shape	of	the	distributions.	

Determining	repeat	element	content	and	unique	intron	size	

Ensembl	explicitly	defines	repeat	elements,	as	determined	by	the	RepeatMasker,	DUST	and	

TRF	software	(Smit	et	al.,	2004;	Morgulis	et	al.,	2006;	Benson,	1999),	as	annotation	features	

in	its	database,	and	these	were	retrieved	by	our	pipeline	for	the	canonical	transcript	of	each	

gene	matching	the	‘protein_coding’	biotype.	We	also	used	WindowMasker	(Morgulis	et	al.,	

2006)	 to	 check	 for	 repeats,	 as	 the	 quality	 and	 coverage	 of	 the	 RepBase	 repeat	 libraries	

(Jurka	et	 al.,	 2005)	 used	by	RepeatMasker	 has	 previously	 been	questioned	 (Bergman	and	

Quesneville,	 2007).	 A	 novel	 bioinformatics	 script	 (see	 count_wm_repeats.py	 in	 the	 git	

repository)	was	developed	to	parse	the	WindowMasker	results,	 in	order	to	determine	the	

unique	sequence	length	of	each	intron	by	removing	its	total	repeat	element	length.	

Intron	position	and	type	

Intron	 frequencies	 per	 gene	 region	 (5’-UTR,	 CDS,	 3’-UTR)	 were	 calculated	 according	 to	

Ensembl	 annotations.	 We	 corrected	 for	 size	 differences	 between	 regions	 by	 calculating	

introns	per	bond,	where	the	number	of	phosphodiester	bonds	in	each	region	is	equal	to	the	

nucleotide	count	for	the	UTRs,	and	the	nucleotide	count	minus	one	for	the	CDS,	since	UTRs	

are	defined	by	reference	to	the	CDS	coordinates	in	our	pipeline.	
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Additional	 to	 this	 we	 calculated	 the	 intron	 type	 based	 on	 explicit	 splice	 site	

nucleotides,	matching	 5’	GU-AG	3’	 and	5’	AU-AC	3’	 for	 the	U2	 and	U12	 intron	 categories	

respectively.	Any	introns	not	matching	these	definitions	were	placed	in	an	‘other’	category.	
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Results	

Intron	retrieval	and	characterization	

Table	 3.1	 presents	 intron	 size	 and	 frequency	 data	 as	 provided	 by	 Ensembl.	We	 retrieved	

between	185,494	 (O.	 latipes)	 and	221,589	 (D.	 rerio)	 introns	per	genome	 totalling	982,544	

introns	 between	 these	 five	 fish.	 The	 smallest	 total	 intron	 lengths	 were	 those	 of	 the	

pufferfish	T.	rubripes	and	T.	nigroviridis	at	90,447,562	bp	and	108,524,412	bp	respectively.	D.	

rerio	has	the	largest	at	622,476,590	bp	as	well	as	the	lowest	intron	density	of	all	the	teleost	

genomes	with	8.93	introns	per	gene	compared	with	9.80	to	10.51	introns	per	gene	for	the	

other	four	fish.	Despite	this,	at	622	Mb	of	 intronic	DNA,	D.	rerio	has	from	2.8	to	6.9	times	

more	intronic	sequence	than	the	other	fish.	

Table	3.1.	 The	 summary	 statistics	 for	 the	 five	 teleost	 fish.	We	 include	 total	 genome	size,	 total	number	of	
genes	and	total	number	of	transcripts,	but	our	study	focuses	on	the	introns	found	within	the	genes	matching	
Ensembl’s	‘protein_coding’	biotype.	

	 Danio	rerio	 Gasterosteus	
aculeatus	

Oryzias	
latipes	

Takifugu	
rubripes	

Tetraodon	
nigroviridis	

Genome	size	 1,412,464,843	 461,533,448	 868,983,502	 393,312,790	 358,618,246	
Number	of	genes	 32,312	 22,456	 20,422	 19,388	 20,562	
Number	of	
transcripts	 51,569	 29,245	 25,397	 48,706	 24,078	

Protein	coding	
genes	 24,803	 20,109	 18,920	 17,876	 18,872	

Canonical	
transcripts	 24,803	 20,109	 18,920	 17,876	 18,872	

Introns	per	gene	 8.93	 9.93	 9.80	 10.51	 9.96	
Number	of	
introns	 221,589	 199,624	 185,494	 187,962	 187,875	

Maximum	intron	
length	 378,145	 175,269	 295,125	 93,537	 631,227	

Total	intron	
length	 622,476,590	 151,619,269	 219,591,667	 108,524,412	 90,447,562	

Mean	length	 2,809	 760	 1,184	 577	 481	
Median	length	 984	 219	 252	 143	 118	
Mode	length	 84	 85	 77	 78	 76	
25th	Percentile	
length	 138	 104	 90	 84	 80	

75th	Percentile	
length	 2,563	 615	 1,026	 450	 350	

GC	Content	 50.58%	 50.48%	 47.10%	 40.39%	 49.21%	

Percentage	of	
genome	 44.07%	 32.85%	 25.27%	 27.59%	 25.22%	
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Frequency	distributions	of	teleost	intron	size	

Figure	 3.1a	 shows	 a	 frequency	 plot	 of	 intron	 size	 class	 in	 all	 five	 fish,	 with	 5%	 and	 95%	

confidence	 intervals.	 The	 ordinate	 is	 a	 log	 scaled	 count	 and	 the	 abscissa	 represents	 the	

mean	 of	 25	 bp	 sliding	windows	 of	 intron	 size.	We	 observe	 a	 change	 in	 the	 shape	 of	 the	

intron	distribution	in	D.	rerio	that	is	not	present	in	the	other	fish.	The	minimum,	mode,	and	

maximum	 intron	 sizes	 for	 each	 fish	 are	 given	 in	 Table	 3.1.	 Above	 the	 5,000	 bp	 cut-off	 in	

Figure	3.1a	the	number	of	instances	of	each	individual	size	class	is	very	low,	causing	a	great	

scatter	in	values,	although	the	trend	does	not	differ.	

Repeat	element	content	and	unique	intron	size	

The	 length	 of	 repeat	 elements	 determined	 by	 RepeatMasker	 (see	Methods)	 ranges	 from	

942,285	bp	(T.	nigroviridis)	to	13,406,652	bp	(D.	rerio)	comprising	between	0.66%	(O.	latipes)	

and	2.15%	 (D.	 rerio)	 of	 total	 intronic	 sequence	 (Table	3.2).	A	 summary	of	 the	 subsequent	

WindowMasker	analysis	 is	shown	in	Table	3.3,	giving	a	breakdown	of	the	repeat	elements	

and	the	unique	intron	sizes	calculated.	WindowMasker	calculated	between	20,313,082	bp	(T.	

nigroviridis)	and	291,676,913	bp	(D.	rerio)	with	from	2.71	to	20.69	repeats	per	intron.	This	

accounts	for	between	22.46%	(O.	 latipes)	and	46.86%	(D.	rerio)	of	total	 intronic	sequence.	

We	used	the	WindowMasker	results	to	re-plot	intron	size	frequency,	as	shown	in	Figure	3.1a,	

using	the	unique	intron	sequence	frequency	distributions	of	all	introns	after	repeat	element	

trimming	 (Figure	 3.1b).	 We	 also	 calculated	 the	 frequency	 of	 individual	 and	 cumulative	

repeat	element	sizes	within	introns	of	length	500	to	2,000	bp	and	plotted	the	mean	of	25	bp	

windows	 across	 the	 intron	 (Figure	 3.2a	 and	 3.2b	 respectively)	 in	 order	 to	 highlight	 the	

contribution	of	repetitive	elements	to	those	particular	intron	size	classes.	
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Table	 3.2.	 A	 summary	 of	 the	 intronic	 repeat	 element	 content	 of	 the	 five	 teleost	 fish	 genomes,	 using	 the	
Ensembl	RepeatMasker	annotations.	

	 Danio	rerio Gasterosteus	
aculeatus 

Oryzias	
latipes 

Takifugu	
rubripes 

Tetraodon	
nigroviridis 

Number	of	repeat	
elements 2,927,753 622,107 446,619 297,226 268,530 

Length	of	repeat	
elements 13,406,652 1,266,916 1,449,300 1,045,873 942,285 

Number	of	repeat	
elements	per	intron	 13.21	 6.35	 2.41	 1.58	 1.43	

Percentage	of	repeat	
elements 2.15% 0.84% 0.66% 0.96% 1.04% 

Length	of	unique	
introns 609,069,938 150,352,353 218,142,367 107,478,539 89,505,277 

	

	

	

Table	 3.3.	 A	 summary	 of	 repeat	 element	 content	 in	 the	 five	 teleost	 fish,	 determined	 using	 the	
WindowMasker	software.	

	 Danio	rerio	 Gasterosteus	
aculeatus	

Oryzias	
latipes	

Takifugu	
rubripes	

Tetraodon	
nigroviridis	

Number	of	repeat	
elements	 4,583,943	 891,753	 1,498,499	 591,789	 509,271	

Length	of	repeat	
elements	 291,676,913	 31,910,164	 74,289,913	 20,701,619	 20,313,082	

Number	of	repeat	
elements	per	intron	 20.69	 4.47	 8.08	 3.15	 2.71	

Percentage	of	intron	
length	 46.86%	 21.05%	 33.83%	 19.08%	 22.46%	

Length	of	unique	
introns	 330,799,677	 119,709,105	 145,301,754	 87,822,793	 70,134,480	
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Figure	3.1	a.	A	frequency	distribution	plot	of	intron	size	in	the	five	teleost	fish.	Each	point	represents	the	mean	of	intron	sizes	within	a	25	bp	sliding	window.	The	lower	
and	upper	dashed	lines	represent	the	5%	and	95%	confidence	intervals	respectively.	All	fish	present	an	initial	peak	of	~80	bp	and	then	decay	in	a	similar	pattern,	with	
the	exception	of	D.	rerio,	which	has	a	second	peak	between	~500	bp	and	2,000	bp	and	subsequently	decays	parallel	to	the	others.	B.	A	frequency	distribution	plot	of	
unique	intron	size	in	the	five	teleost	fish,	representing	the	intron	sizes	after	removal	of	repeat	sequences.	
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Figure	3.2	a.	A	frequency	distribution	of	individual	repeat	element	sizes	in	introns	between	500	bp	and	2,000	bp	in	size.	Each	point	represents	the	mean	of	intron	sizes	
within	a	25	bp	sliding	window.	B.	Frequency	distribution	of	cumulative	repeat	element	size	produced	by	pooling	all	repeat	elements	within	individual	introns.	
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Large	introns	

The	maximum	 intron	 size	 found	 in	 each	genome	 is	 presented	 in	 Table	3.1.	 These	are	not	

solitary	outliers	however,	with	1,228	(0.6%)	D.	rerio	 introns	greater	than	50,000	bp	 in	size	

(here	referred	to	as	‘large	introns’	after	Shepard	et	al	(2009).	There	are	between	16	and	221	

introns	in	the	other	fish	(Table	3.4)	accounting	for	between	0.9%	(T.	nigroviridis)	and	17%	(D.	

rerio)	of	 total	 intron	 length.	Our	 figure	 for	D.	 rerio	 large	 introns	 is	different	 from	 the	756	

reported	by	Shepard	et	al	(	2009),	perhaps	because	their	data	was	retrieved	from	a	custom	

database	 and	 represents	 an	 earlier	 version	 of	 the	D.	 rerio	 genome.	However,	 our	 teleost	

large	 intron	 values	 do	 fall	within	 the	 range	of	 7	 (Mosquito)	 to	 3,473	 (Human),	 previously	

reported	for	metazoan	(Shepard	et	al.,	2009).	 	

Table	3.4.	A	summary	of	large	introns	in	the	five	teleost	fish.	We	define	this	class	as	those	introns	of	greater	
than	50,000	bp	in	length.	

	 Danio	rerio	 Gasterosteus	
aculeatus	

Oryzias	
latipes	

Takifugu	
rubripes	

Tetraodon	
nigroviridis	

Large	intron	
number	 1,228	 63	 211	 16	 22	

Large	intron	
length	 107,485,505	 5,353,830	 18,210,315	 1,000,337	 3,568,282	

Large	intron	
percentage	 17.27%	 3.53%	 8.30%	 0.92%	 3.95%	

Small	Introns	

We	refer	to	 ‘small	 introns’	as	those	 less	than	80	bp,	which	approximates	the	mode	of	the	

pooled	 teleost	 dataset.	 These	 comprise	 from	 11,473	 (D.	 rerio)	 to	 44,755	 (T.	 nigroviridis)	

introns	accounting	for	between	0.12	and	2.97%	of	the	total	 intronic	sequence	respectively	

(Figure	3.3,	Table	3.5).	

Table	3.5:	A	summary	of	small	 introns	 in	the	five	teleost	 fish.	We	define	this	class	as	those	 introns	of	 less	
than	80	bp	in	length.	

	 Danio	
rerio	

Gasterosteus	
aculeatus	

Oryzias	
latipes	

Takifugu	
rubripes	

Tetraodon	
nigroviridis	

Small	intron	
number	 11,473	 16,415	 28,480	 35,589	 44,755	

Small	intron	length	 740,482	 906,853	 1,818,832	 2,283,344	 2,685,694	

Small	intron	
percentage	 0.12%	 0.60%	 0.83%	 2.10%	 2.97%	
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Figure	3.3.	Small	 intron	frequency	distribution	in	the	five	teleost	fish	showing	the	3bp	periodicity	of	peaks	
between	24	bp	and	57	bp.	
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Intron	location	

Within	protein	coding	transcripts	introns	may	occur	in	the	coding	region	(CDS),	or	either	of	

the	 terminal	un-translated	regions	 (5’-UTR	or	3’-UTR).	Of	 those	24,803	D.	 rerio	 transcripts	

containing	all	three	regions,	2.08%	of	introns	were	in	5’-UTR,	0.57%	in	3’-UTR,	and	97.35%	in	

the	 CDS.	 Similar	 percentages	were	 found	 in	 the	 other	 fish	 (Table	 3.6).	 Correcting	 for	 the	

sizes	for	these	three	regions	we	find	3.4	x10
-4
	introns	per	bond	in	the	CDS,	1.5	x10

-4
	introns	

per	bond	in	the	5’-UTR	and	0.6	x10
-4
	introns	per	bond	in	the	3’-UTR.	

Table	3.6.	A	summary	of	the	intron	locations	within	the	pre-mRNA	transcripts	of	the	five	teleost	fish.	Introns	
are	classified	as	either	5’-UTR	if	they	occur	before	the	first	nucleotide	of	the	CDS,	3’-UTR	if	they	occur	after	
the	last	nucleotide	of	the	CDS,	or	CDS	if	they	fall	within	this	range.	

	 Danio	rerio	 Gasterosteus	
aculeatus	

Oryzias	
latipes	

Takifugu	
rubripes	

Tetraodon	
nigroviridis	

5’-UTR	introns	
number	 4,611	 3,572	 2,830	 831	 1,000	

5’-UTR	introns	
length	 27,540,112	 6,252,772	 8,421,615	 1,016,292	 790,697	

5’-UTR	introns	
percentage	 2.08%	 1.79%	 1.53%	 0.44%	 0.53%	

CDS	introns	
number	 215,707	 195,370	 182,309	 187,085	 186,562	

CDS	introns	length	 588,484,433	 143,536,499	 209,376,669	 107,485,857	 89,208,382	

CDS	introns	
percentage	 97.35%	 97.87%	 98.28%	 99.68%	 99.30%	

3’-UTR	introns	
number	 1,270	 682	 355	 46	 313	

3’-UTR	introns	
length	 6,452,045	 1,829,998	 1,793,383	 22,263	 448,483	

3’-UTR	introns	
percentage	 0.57%	 0.34%	 0.19%	 0.03%	 0.17%	
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Splice	Signals	

This	 teleost	 introns	dataset	 contained	 introns	bounded	by	 the	 typical	GU-AG	 splice	 signal	

(U2-type),	 AU-AC	 splice	 signal	 (U12-type)	 and	 those	 employing	 other	 splice	 signals.	 T.	

nigroviridis,	at	82.51%,	has	the	lowest	percentage	of	typical	GU-AG	introns	and	D.	rerio,	at	

93.57%,	the	highest.	All	fish	have	a	similar	number	of	U12-type	introns,	with	some	variation	

in	“other”	introns	(Table	3.7).	

Table	3.7.	A	summary	of	the	different	types	of	 introns	 in	the	five	teleost	 fish,	as	determined	by	our	GCAT	
pipeline.	U2-type	introns	are	defined	using	the	classic	GU-AG	splice	signals	and	U12-type	by	the	AU-AC	splice	
signals.	All	other	splice	signals	are	placed	 in	 to	 the	 ‘other’	 category.	Although	this	may	 include	some	mis-
identified	introns,	the	error	is	likely	very	small.	
	 Danio	

rerio	
Gasterosteus	
aculeatus	

Oryzias	
latipes	

Takifugu	
rubripes	

Tetraodon	
nigroviridis	

U2-type	(major)	
introns	

207,336	 170,137	 156,282	 161,778	 155,012	

U2-type	percentage	 93.57%	 85.23%	 84.25%	 86.07%	 82.51%	

U12-type	(minor)	
introns	

184	 139	 161	 105	 103	

U12-type	
percentage	

0.08%	 0.07%	 0.09%	 0.06%	 0.05%	

Other	introns	 14,069	 29,348	 29,051	 26,079	 32,760	

Other	percentage	 6.35%	 14.70%	 15.16%	 13.87%	 17.44%	
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Discussion	

We	have	employed	a	novel	comparative	genomic	pipeline	to	perform	detailed	comparison	

of	 the	 intron	 characteristics	 of	 five	 teleost	 fish	 genomes.	 This	 allowed	 us	 to	 identify	 the	

diversity	 of	 intron	 content	 and	 characteristics	 across	 the	whole	 genome	 and	 to	 partition	

these	 data	 into	 biologically	 relevant	 categories.	 Previous	 approaches	 to	 such	

characterisation	 have	 typically	 either	 restricted	 themselves	 to	 single	 comparisons	 or	 else	

incorporated	 exceptionally	 divergent	 organisms	 (Coghlan	 and	Wolfe,	 2004;	 Yandell	 et	 al.,	

2006;	Gazave	et	al.,	2007;	Sharpton	et	al.,	2008;	Stajich	et	al.,	2007;	Marais	et	al.,	2005;	Li	et	

al.,	2009).	Since	our	bioinformatic	pipeline	has	been	designed	to	build	on	the	high	quality	

genome	 annotations	 present	 at	 Ensembl,	 and	 use	 open	 source	 software	 libraries	 such	 as	

BioPerl,	 this	 approach	 can	 be	 easily	 integrated	 into	more	 general	 studies	 in	 comparative	

genomics.	For	the	analysis	of	teleost	genome	data	presented	here	our	pipeline	has	proved	

itself	 to	 be	 highly	 automated,	 yet	 flexible,	 fast	 and	 to	 lend	 itself	 to	 evolutionary	 and	

statistical	approaches	to	comparative	genomics.	

Intron	Size	Distributions	

Our	characterisation	of	teleost	introns	shows	that	D.	rerio,	the	species	with	the	largest	total	

genome	 size,	 has	more	 and	 larger	 introns	 than	 any	 of	 the	 other	 fish	 genomes.	 Although	

simple	 summary	 statistics	 such	 as	 ‘average	 intron	 length’	 are	 commonly	 applied	 to	 the	

description	 of	 a	 genome’s	 intron	 content	 in	 the	 literature,	 these	 can	 be	 significantly	

influenced	by	outlier	values	and	miss	many	of	the	important	differences	between	taxa.	The	

mean	intron	length	for	D.	rerio	is	2,809	bp,	yet	50%	of	all	introns	are	found	below	985	bp	in	

length	with	the	modal	size	only	84	bp.	Figure	3.1a	also	shows	the	shape	of	intron	frequency	

for	each	fish	up	to	 intron	sizes	of	5,000	bp.	Oryzias	 latipes	has	more	than	twice	the	mean	

intron	size	of	T.	nigroviridis	and	T.	rubripes,	yet	the	distribution	of	intron	sizes	in	Figure	3.1a	

shows	them	to	be	remarkably	similar.	In	contrast	to	the	mean,	modal	intron	size	is	relatively	

tightly	 grouped	 among	 these	 five	 fish,	 in	 the	 range	 76	 bp	 to	 85	 bp,	 despite	 ~150	million	

years	divergence	(Benton	and	Donoghue,	2007)	(Table	3.1,	Figure	3.1a).	For	the	pooled	set	

of	teleost	introns	the	mean	size	is	1,214	bp	(range	481	to	2,809	bp)	yet	the	mode	intron	size	

is	a	mere	81	bp	with	up	to	37%	of	introns	within	20	bp	of	this	mode	value.	The	zebrafish	D.	

rerio	 has	 a	 modal	 intron	 size	 only	 1	 bp	 different	 from	 the	 stickleback	 G.	 aculeatus,	 yet	

contains	 4.1	 times	 as	much	 intronic	 DNA,	 an	 extra	 471	Mb.	Most	 introns	 across	 fish	 are	
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small	and	similar	in	length,	yet	introns	much	bigger	than	this	mode	size	vary	and	contribute	

extensively	to	the	differences	between	fish.	Although	50%	of	all	 introns	in	D.	rerio	are	less	

than	985	bp	these	account	for	only	4.8%	of	all	intronic	nucleotides.	 	

The	 comparisons	 of	 intron	 size	 frequency	 distributions	 generated	here	 highlight	 the	

unique	pattern	present	 in	 the	D.	 rerio	 genome.	The	multi-modal	distribution	we	 see	with	

zebrafish	contrasts	with	the	monotonically	decreasing	pattern	in	the	other	fish	(Figure	3.1a).	

The	 shape	 of	 this	 curve	 represents	 separate	 genomic	 processes	 generating	 an	 intron	 size	

distribution	with	a	broad	peak	of	~500	bp	to	2,000	bp	in	addition	to	the	usual	teleost	~80	bp	

mode	size.	

Our	analyses	emphasise	that	over-reliance	on	simple	summary	statistics,	such	as	mean	

or	 mode	 intron	 size,	 can	 obscure	 real	 biological	 trends	 and	 differences	 that	 would	 be	

revealed	with	much	more	detailed	investigation	of	the	distribution	of	the	data	as	a	whole.	

Repeat	element	content	as	an	explanation	of	intron	size	differences	

Zebrafish	 has	 both	 more	 and	 larger	 introns	 than	 the	 other	 fish	 (Figure	 3.1a,	 Table	 3.1),	

accounting	for	between	402	and	532	million	extra	nucleotides	compared	to	the	other	 fish	

genomes.	Repetitive	elements	are	known	 to	be	 the	major	 cause	of	genome	size	variation	

(Mills	et	al.,	2007;	Sela	et	al.,	2010)	and	we	were	interested	to	see	if	they	also	accounted	for	

the	 difference	 in	 intron	 size	 between	 these	 teleosts,	 in	 particular	 the	 increased	 intron	

content	of	D.	rerio.	We	took	two	different	approaches	to	determine	this.	The	first	relied	on	

the	annotations	available	at	Ensembl,	which	uses	the	RepeatMasker	software	and	compares	

data	against	a	curated	library	of	repeats	using	local	alignment	methods.	The	standard	repeat	

libraries	however	may	not	have	optimal	quality	and	coverage	for	some	taxa	(Bergman	and	

Quesneville,	 2007;	Morgulis	 et	 al.,	 2006).	 The	 second	 approach	 used	 the	WindowMasker	

program,	 which	 compares	 the	 genome	 against	 itself	 to	 identify	 repeats	 and	 is	 therefore	

independent	of	previous	repeat	curation	in	closely	related	taxa.	It	implements	the	DUST	and	

WinMask	algorithms	to	identify	 low-complexity	regions	and	global	repeats	respectively,	by	

identifying	and	scanning	for	repetitive	regions	within	the	genome	sequence.	

Using	the	Ensembl	annotations	we	detected	repeat	elements	accounting	for	from	0.66%	

to	 2.15%	of	 the	 total	 intronic	 length.	 A	much	 larger	 proportion	 of	 intronic	 sequence	was	

characterised	as	repetitive	using	WindowMasker	(Table	3.3)	with	D.	rerio	introns	containing	
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46.86%	repeat	sequences.	This	result	for	D.	rerio	agrees	with	the	values	obtained	by	Sela	et	

al	(2010).	WindowMasker	doesn’t	annotate	the	repeats	however,	thus	one	can’t	determine	

the	class	of	repetitive	elements	they	belong	to.	

The	 increased	 percentage	 of	 repeat	 elements	 within	 the	D.	 rerio	 intron	 sequences	

accounts	for	some	of	the	difference	in	its	frequency	distribution	(Figure	3.1b).	It	is	possible	

that	 the	 additional	 proportion	 of	 this	 sequence	 was	 formerly	 repetitive,	 and	 has	 since	

decayed	beyond	our	ability	to	recognize	it	as	such.	Since	repetitive	elements	are	likely	to	be	

the	 origins	 of	 the	 majority	 of	 all	 non-coding	 DNA	 (Lander	 et	 al.,	 2001;	 Smit,	 1999),	 we	

propose	that	the	Danio	lineage	experienced	an	early	burst	of	repeat	element	expansion	that	

has	 been	 decaying	 for	many	millions	 of	 years.	 Figures	 3.2a	 and	 3.2b	 show	 the	 frequency	

distribution	of	repeat	elements	within	the	major	class	of	introns	(500	bp	to	2,000	bp),	which	

includes	the	region	comprising	the	second	intron	size	peak	in	D.	rerio	(Figure	3.1a).	If	there	

had	been	a	recent	expansion	of	particular	repeat	elements	Figure	3.2a	would	be	expected	

to	show	peaks	in	the	frequency	of	specific	size	classes.	Contrary	to	this,	our	analysis	reveals	

a	 gradual	 decline	 in	 the	 repeat	 element	 size	 frequency	 distribution,	 indicating	 no	 recent	

large-scale	repeat	expansions.	Figures	3.2a	and	3.2b	also	show	that	the	frequencies	of	both	

individual	and	cumulative	repeat	element	sizes	are	greater	in	D.	rerio	within	the	size	range	

expected	 to	 contribute	 to	 the	 second	 zebrafish	 peak	 in	 Figure	 3.1a.	We	 consider	 it	 likely	

therefore	that	repeat	elements	have	contributed	importantly	to	the	second	D.	rerio	 intron	

size	peak,	but	that	this	striking	repeat	expansion	was	an	ancient	rather	than	recent	genomic	

change.	 	

The	 differences	 in	 the	 distributions	 may	 also	 represent	 a	 continuum	 that	 with	

increased	sampling	within	the	teleostei	infraclass,	particularly	of	those	species	intermediate	

to	those	presented	here,	would	fill	the	gap.	O.	latipes	exhibits	a	very	subtle	difference	in	its	

intron	 size	 class	distribution	and	 in	being	more	closely	 related	 to	D.	 rerio	 than	any	of	 the	

other	fish,	adds	some	weight	to	this	argument.	

Large	Introns	

Large	 introns	 can	 present	 several	 problems	 for	 organisms,	 including	 the	 expense	 of	

transcription	 and	 the	 difficulty	 of	 splicing	 large	 introns	 (Shepard	 et	 al.,	 2009).	 The	 1,228	

large	 introns	 in	D.	 rerio	 consist	 of	 107,485,505	 nucleotides,	which	 is	 17.3%	of	 all	D.	 rerio	

intronic	nucleotides	 and	7.6%	of	 the	entire	 genome	 sequence.	 Such	 large	 introns	may	be	
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very	costly	with	regard	to	both	the	time	and	energy	required	for	synthesis	(Wagner,	2005).	

Intronic	nucleotides	are	removed	from	the	mRNA	before	its	export	from	the	nucleus	and	the	

synthesis	and	subsequent	degradation	of	 introns	has	a	cost	approximately	proportional	 to	

the	 length	 of	 those	 introns	 multiplied	 by	 the	 frequency	 of	 transcription.	 Large	 introns	

account	for	15.8%	of	the	transcribed	section	of	the	genome	in	D.	rerio,	and	while	we	do	not	

know	the	transcription	rate	of	the	large	intron	containing	genes,	they	have	the	potential	to	

account	for	a	significant	metabolic	cost	to	the	cell.	

In	 addition	 to	 metabolic	 costs,	 splicing	 large	 introns	 may	 also	 introduce	

conformational	 problems.	 A	 key	 step	 of	 intron	 splicing	 is	 the	 formation	 of	 the	 loop-like	

“lariat”	structure	as	the	recently	cleaved	5’	end	of	the	intron	is	attached	to	the	branch	point	

sequence	 close	 to	 the	 3’	 intron	 junction.	 Since	 a	 100	 Kb	 intron	may	 extend	 out	 over	 30	

microns,	its	size	may	become	a	problem	for	the	~5	micron	cell	(Shepard	et	al.,	2009).	It	has	

been	 proposed	 that	 especially	 large	 introns	 require	 different	 splicing	 mechanisms	 than	

standard	 introns,	 and	 that	 these	 recursively	 splice	 the	 intron	 at	 a	 series	 of	 internal	

“ratcheting	 points”	 rather	 than	 in	 one	 piece	 (Shepard	 et	 al.,	 2009;	 Hatton	 et	 al.,	 1998;	

Burnette	et	 al.,	 2005).	 It	 is	 as	 yet	unclear	 to	what	 extent	 this	 large	 intron	 ratcheting	 also	

occurs	in	fish.	

Wagner	(2005)	discusses	the	cost	of	gene	duplication	in	yeast	in	terms	of	extra	energy	

expenditure	 from	 increased	 nucleotides	 transcribed	 and	 finds	 a	 significant	 cost	 to	

duplication	in	terms	of	extra	transcription.	We	can	therefore	infer	that	there	must	also	be	a	

significant	cost	to	large	introns.	It	is	possible	that	these	large	introns	are	recent	recipients	of	

extensive	 repetitive	 sequence	 expansions	 and	 selection	 has	 not	 had	 time	 to	 favour	 their	

reduction	in	size.	Our	analyses	support	this,	revealing	that	greater	than	70.61%	of	all	large	D.	

rerio	 intron	 sequence	 is	 repeat	 DNA,	 also	 reducing	 the	 number	 of	 introns	 greater	 than	

50,000	bp	to	426.	 It	 is	possible	that	these	remaining	426	 introns	also	contain	a	portion	of	

decayed	repeats	that	cannot	be	recognised	using	the	novel	identification	algorithms.	

Small	introns	as	a	proxy	for	annotation	quality	

The	minimum	intron	size	reported	in	a	previous	Ensembl	release	(version	59)	of	D.	rerio	was	

zero	nucleotides,	with	a	further	882	introns	less	than	5	bp.	The	existence	of	0	bp	introns	is	a	

result	of	the	way	the	Ensembl	API	 identifies	 introns	based	on	the	exon	coordinates.	Given	

that	 intron	splicing	 requires	a	minimum	of	5	nucleotides	 (GU-AG	plus	an	A	 for	 the	branch	
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point)	 these	 introns	 cannot	 be	 real	 and/or	 functional.	 In	 practice,	 both	 for	 steric	

requirements	 of	 intron	 bending	 during	 splicing,	 and	 due	 to	 the	 need	 for	 other	 signal	

sequences,	minimum	intron	sizes	are	likely	to	be	larger	(Schwartz	et	al.,	2008).	Certainly	in	

yeast	(Saccharomyces	cerevisiae),	there	 is	a	conserved	8	bp	branch	site	that	 is	typically	18	

bp	to	40	bp	upstream	of	the	3’	splice	site	(Zhuang	et	al.,	1989).	This	implied	30	bp	minimum	

size	 in	 yeast	 may	 well	 be	 different	 to	 vertebrates	 where	 branch	 site	 sequences	 are	 not	

conserved,	 but	 given	 that	 the	 branch	 point	 must	 still	 be	 displaced	 from	 the	 intron	

boundaries	and	a	3’	polypyrimidine	tract	 interacting	with	the	U2	snRNP	auxiliary	 factor	of	

the	spliceosome	is	common	(Zhuang	et	al.,	1989;	Adams	et	al.,	1996)	typical	introns	will	be	

considerably	larger.	For	all	these	reasons	we	do	not	consider	introns	of	1	to	5	nucleotides	to	

be	biologically	realistic.	In	D.	rerio	the	smallest	intron	for	either	U2	or	U12	is	11	bp,	whereas	

the	 “other”	 splice	 site	 category	 has	 412	 introns	 smaller	 than	 this.	We	 suggest	 that	 since	

these	introns	have	non-standard	splice	signals	and	a	different	size	range	to	standard	introns	

they	 should	be	 treated	with	 caution	until	 they	are	experimentally	 validated.	Although	we	

included	 all	 introns	 annotated	 by	 Ensembl	 in	 our	 analyses,	 “small	 introns”	 comprise	 less	

than	0.19%	of	all	introns	and	do	not	influence	our	conclusions.	

D.	 rerio	 is	 widely	 considered	 to	 be	 a	 reasonably	 high-quality	 genome	 annotation,	

though	 it	 undoubtedly	 contains	 intron	 annotation	 errors,	 as	 indeed	will	 all	 genomes.	We	

note	that	the	extreme	intron	size	outliers	in	the	D.	rerio	genome	have	changed	considerably	

with	releases	59	to	61	of	Ensembl.	Not	only	have	the	two	zero-size	 introns	been	removed	

but	also	an	~2	Mb	intron	that	was	previously	the	largest.	 It	 is	 likely	that	automated	intron	

annotation	 errors	 can	 particularly	 skew	 the	 extremes	 of	 the	 intron	 size	 distribution	 since	

these	have	relatively	 few	members.	As	an	example	of	an	additional	source	of	error	 in	 the	

annotation	of	genomic	introns	we	can	envisage	that	if	a	gene	was	annotated	by	comparison	

to	cDNA	from	a	paralog	containing	a	small	coding	indel,	or	to	a	transcript	that	had	spliced	

out	a	small	exon,	the	extra	sequence	present	in	the	genomic	copy	would	likely	be	identified	

as	intronic.	Since	these	coding	regions	must	necessarily	be	a	multiple	of	3	bp	they	will	lead	

to	 a	 3	 bp	 size	 periodicity	 of	 any	 coding	 region	 mis-annotated	 as	 intronic	 and	 we	 would	

expect	 introns	 present	 in	 the	 CDS	 but	 not	 5’-UTR,	 or	 3’-UTR	 to	 show	 such	 a	 periodicity.	

Figure	3.3	shows	exactly	this	3	bp	pattern	of	periodicity	 for	small	 introns	between	~11	bp	

and	60	bp.	This	pattern	was	present	in	CDS	introns	but	could	not	be	detected	in	5’-UTR	or	
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3’-UTR	 introns.	 This	 indicates	 that	 CDS	 introns	 smaller	 than	 ~60	 bp	 have	 a	 significant	

quantity	of	mis-annotated	coding	region.	

U2	and	U12	introns	

Given	the	difficulties	of	studying	the	interaction	of	the	spliceosomes	with	identified	introns,	

we	have	based	our	determination	of	U2	and	U12	introns	on	the	splicing	signals	they	contain.	

Although	 this	 may	 contain	 errors	 since	 the	 U12	 spliceosomes	 can	 interact	 with	 U2	 type	

splicing	signals	(Lin	et	al.,	2010)	this	is	not	the	normal	situation,	and	our	error	is	likely	to	be	

very	 small.	 The	 frequencies	 of	 intron	 type	 are	 shown	 in	 Table	 3.7	 and	 reveal	 that,	 as	

expected,	the	vast	majority	of	 introns	are	of	the	U2	type.	For	all	 fish	except	D.	rerio	 there	

are	 13.9	 to	 17.4%	 of	 introns	 that	 we	 classify	 as	 “other”,	 since	 they	 do	 not	 possess	 the	

classical	 splicing	 signals	 encountered	 with	 either	 U2	 or	 U12	 type	 introns.	 D.	 rerio,	 the	

highest	 quality	 genome,	 has	 considerably	 fewer	 of	 these	 “other”	 introns	 (6.4%)	 and	 a	

similarly	 higher	 percentage	 of	 the	 major	 U2	 type	 introns,	 suggesting	 that	 the	 “other”	

category	is	dominated	by	poorly	annotated	regions.	

Conclusions	

Understanding	 the	 diversity	 of	 genome	 variation	 using	 comparative	 genomics	 requires	 a	

bioinformatics	 approach	 that	 can	 be	 tailored	 and	 modified	 by	 the	 end	 user.	 We	 have	

developed	a	comparative	genomics	pipeline	based	on	the	well-tested	and	open-source	code	

of	the	Perl	Ensembl	Core	Software	Libraries	and	BioPerl	APIs	(Stabenau	et	al.,	2004;	Stajich	

et	al.,	2002).	Our	analysis	of	the	five	currently	available	fish	genomes	indicates	that	although	

the	 intron	 content	 of	 these	 genomes	 is	 very	 similar	 in	many	 respects,	 different	 genomic	

processes	appear	to	be	shaping	the	genomic	intron	content.	The	five	fish	differ	not	only	in	

scale	(number	and	total	amount	of	intronic	sequence)	but	also	the	frequency	distribution	of	

different	 intron	 size	 classes.	 The	 zebrafish	 Danio	 rerio	 in	 particular	 does	 not	 have	

monotonically	decreasing	intron	frequency	with	size	from	an	~80	bp	mode,	as	the	other	fish	

appear	 to	have,	but	 rather	has	a	second	peak	of	 introns	 in	 the	500	bp	to	2,000	bp	range.	

Repetitive	 DNA	 including	 transposable	 elements,	 satellites	 sequences	 and	 simple	 repeats	

are	known	to	be	largely	responsible	for	the	differences	in	genome	size	between	species	that	

do	not	 vary	 in	ploidy	 (Neafsey	and	Palumbi,	 2003;	Boulesteix	et	al.,	 2006;	Hawkins	et	al.,	

2006;	Bosco	et	al.,	2007)	and	it	is	likely	therefore	that	much	non-coding	DNA	will	have	this	

origin,	even	if	it	has	accumulated	so	many	mutations	that	its	previous	repetitive	nature	can	
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no	longer	be	recognised.	Our	diverse	approaches	to	characterising	repetitive	elements	in	D.	

rerio	 introns	 revealed	 that	 ~47%	 of	 intronic	 sequence	 could	 be	 identified	 as	 repetitive.	

Repeating	our	analyses	only	with	non-repetitive	intron	sequences	still	revealed	a	unique	size	

distribution	 for	 D.	 rerio	 introns,	 indicating	 that	 this	 has	 not	 been	 caused	 by	 a	 recent	

expansion	 of	 repetitive	 sequences,	 as	 these	 would	 have	 been	 readily	 recognisable	 as	

repetitive.	 Instead	we	 suggest	 that	 a	more	 ancient	 expansion	 of	 repeats	 has	 created	 this	

intronic	 pattern	 and	 little	 signal	 of	 their	 repetitive	 origins	 still	 remains.	 As	D.	 rerio	 is	 the	

outgroup	 in	 this	 case,	 a	 broader	 sampling	 of	 teleost	 genome	 sequences	 in	 a	 robust	

phylogenetic	design,	with	 species	 ancestral	 to	D.	 rerio	 and	 intermediate	between	D.	 rerio	

and	the	other	fish,	would	help	to	locate	such	an	event	and	better	clarify	the	origins	of	intron	

expansion	across	these	lineages.	
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CHAPTER	 FOUR:	 COMPARATIVE	 BIOINFORMATICS	 ANALYSES	 OF	 GENE	

FAMILY	SIZE	AND	FUNCTION	IN	PRIMATES	

Introduction	

The	impact	of	duplication	on	genome	structure	and	content	

Duplications	contribute	a	great	deal	towards	the	variety	 in	both	size	and	structure	of	

genomes	 within	 and	 between	 species	 (Lynch	 and	 Conery,	 2000;	 Lynch	 and	 Conery,	

2003a).	There	have	been	many	studies	that	focus	on	the	role	of	selection	in	producing	

differences	in	sequence	composition	and	phenotype	(Sella	et	al.,	2009;	Oleksyk	et	al.,	

2009;	Schluter	et	al.,	2010;	Simonson	et	al.,	2010;	Bigham	et	al.,	2010;	Arnold	et	al.,	

2012;	 Barsh	 and	Andersson,	 2013),	 however	 duplication	 is	 thought	 to	 contribute	 far	

more	to	changes	in	the	structure	and	function	of	genomic	features	over	evolutionary	

time	scales	(Ohno,	1970;	Zhang,	2003).	Past	research	suggests	that	there	is	much	more	

complexity	 in	 terms	 of	 variation	 between	 genomes	 due	 to	 duplications	 than	 due	 to	

sequence	substitutions	(Demuth	et	al.,	2006;	Zhang	et	al.,	2009;	Sudmant	et	al.,	2013).	

The	 difference	 between	 humans	 and	 chimps	 alone	 is	 approximately	 1.5%	 sequence	

divergence	between	orthologous	nucleotides	and	yet	at	least	6%	of	genes	have	species	

specific	in-paralogs	(Demuth	et	al.,	2006).	There	is	a	fair	amount	of	research	examining	

single	 nucleotide	 polymorphism	 (SNP)	 data,	 primarily	 in	 model	 species,	 in	 contrast	

with	 insertions	 or	 deletions.	 High	 Ru	 values	 -	 the	 ratio	 of	 unpaired	 nucleotides	

attributable	 to	 insertions	or	deletions	 (indels)	 to	 those	attributable	 to	substitutions	 -	

are	 seen	 in	 thale	cress	 (Arabidopsis	 thaliana),	purple	 sea	urchins	 (Strongylocentrotus	

purpuratus),	 common	 fruit	 flies	 (Drosophila	 melanogaster),	 and	 likely	 most	 other	

species,	including	bacteria	(Britten	et	al.,	2003;	Iafrate	et	al.,	2004;	Sebat	et	al.,	2004;	

Freeman	et	al.,	2007).	Research	examining	copy	number	variation	(CNV),	however,	has	

focused	primarily	on	humans	(Perry	et	al.,	2008),	with	 limited	data	available	for	non-

human	species	(Perry	et	al.,	2006;	Dopman	and	Hartl,	2007;	Egan	et	al.,	2007;	Graubert	

et	al.,	2007;	Guryev	et	al.,	2008;	Lee	et	al.,	2008),	meaning	that	within-species	CNVs	

and	 between-species	 copy	 number	 differences	 (CNDs)	 haven’t	 yet	 been	 fully	 	

examined	 (Locke	et	al.,	 2003;	Fortna	et	al.,	 2004;	Demuth	et	al.,	 2006;	Goidts	et	al.,	

2006;	Wilson	et	al.,	2006;	Dumas	et	al.,	2007).	
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In	 addition	 to	 genome	 structure,	 genome	 sizes	 are	 also	 greatly	 influenced	 by	

duplications.	 The	 amount	 of	 repetitive	 DNA	 in	 the	 genomes	 of	 organisms,	 whose	

characteristics	 promote	 the	proliferation	 and	 retention	of	 duplications,	 can	be	more	

than	50%	of	 the	 total	 amount	of	DNA.	The	amount	of	 repetitive	DNA	 in	humans	 for	

example	has	recently	been	estimated	at	2,234	Mb,	accounting	for	78.1%	of	the	total	

genome	size	(de	Koning	et	al.,	2011).	This	is	greater	than	the	generally	accepted	value	

of	~45-50%	of	the	total	DNA	content,	however	(Lander	et	al.,	2001).	Likewise,	441	Mb	

in	the	cotton	Gossypium	raimondii,	accounts	for	57%	of	total	genome	size	(Wang	et	al.,	

2012).	 In	 particular,	 these	 repetitive	 elements	 also	 tend	 to	 be	 located	 within	 non-

coding	DNA	(Moss	et	al.,	2011),	which	points	to	neutral	 forces	of	evolution	playing	a	

role	in	their	propagation,	particularly	genetic	drift.	

Duplication	as	a	population	genetic	and	life	history	process	

Gene	duplications	 are	 very	 frequent	 in	 all	 types	 of	 genome	 (Ophir	 and	Graur,	 1997;	

Petrov,	2002;	Witherspoon	and	Robertson,	2003;	Zhang	and	Gerstein,	2003;	Johnson,	

2004;	 Blumenstiel	 et	 al.,	 2012),	 though	 some	 more	 so	 than	 others.	 In	 plants	 for	

example,	 the	 number	 of	 duplications,	 especially	 whole-genome	 duplications	 are	 far	

greater	than	in	other	species	(Wendel,	2000;	The	Arabidopsis	Genome	Initiative,	2000;	

Cui	 et	 al.,	 2006;	 Paterson	 et	 al.,	 2010;	 Proost	 et	 al.,	 2011).	 As	with	most	molecular	

phenomena,	their	survival	are	subject	to	population	genetic	forces,	and	the	ability	of	

duplications	 to	 survive	within	 a	 lineage	 are	 therefore	 directly	 impacted	 by	 effective	

population	 size	 (Ne)	 and	 species	 life-history	 characteristics	 (e.g.	 generation	 time,	 or	

variation	in	number	of	offspring)	(Lynch,	2007;	Charlesworth,	2009;	Brougham,	2011).	

This	 is	 likely	 the	 reason	 why	 the	 observation	 of	 duplications	 occurs	 more	 often	 in	

species	 with	 longer	 generation	 times	 and	 smaller	 effective	 population	 sizes.	 In	

unicellular	 eukaryotes	 for	 example,	where	Ne	 can	 vary	between	10
7
	 and	10

8
	 in	 ideal	

conditions	 (Lynch	 and	 Conery,	 2003b;	 Shiu	 et	 al.,	 2005),	 duplications	 are	 constantly	

fighting	 against	 an	 ever	 changing	 genomic	 landscape.	 In	 these	 circumstances,	 the	

power	of	drift	is	reduced,	and	selection	will	be	more	effective,	resulting	in	a	reduction	

in	the	number	of	duplications	being	fixed	(Lynch	and	Conery,	2003a).	In	those	species	

at	 the	opposite	extreme,	however,	duplications	are	 likely	 to	persist	 far	 longer	within	

any	 individual,	 and	 because	 they	 face	 less	 competition	 are	 more	 likely	 to	 drift	 to	

fixation	within	a	population.	
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The	differences	in	gain	and	loss	of	duplications	between	taxa	at	the	extremes	of	

Ne	can	be	seen	when	we	compare	gene	birth	rates	(B)	that	are	relatively	stable	across	

extremely	divergent	species	groups,	with	death	rates	 (D)	 that	are	quite	variable.	D	 is	

much	 lower,	 and	 thus	 the	 birth/death	 ratio	 (B/D)	 is	much	 higher	 in	 plants,	 such	 as	

Arabidopsis	 thaliana	 where	B	 =	 0.0032,	D	 =	 0.033	 and	B/D	 =	 0.0970;	 in	 contrast	 to	

unicellular	species	such	as	Saccharomyces	cerevisiae	where	these	values	are	B	=	0.0025,	

D	=	0.324	and	B/D	=	0.0077	(Lynch	and	Conery,	2003a).	

The	functional	impact	of	gene	duplication	

In	addition	to	the	quantitative	 influence	that	duplications	exert	on	the	genome,	they	

also	have	a	qualitative	 impact.	Duplications	are	very	 important	for	a	 large	number	of	

functional	 reasons	 and	 they	 provide	 great	 power	 in	 understanding	 many	 facets	 of	

biology	(Korbel	et	al.,	2008;	Stapley	et	al.,	2010).	They	are	important	in	understanding	

health	and	disease	in	humans	(Conrad	and	Antonarakis,	2007)	and	other	species.	The	

evolution	 of	 pathogenicity	 in	 the	 Chytrid	 fungus	Batrachochytrium	 dendrobatidis	 for	

example,	which	 is	 linked	with	 a	worldwide	 decline	 in	 amphibian	 populations	 due	 to	

chytridiomycosis	 can	be	directly	 linked	 to	 chromosomal	 copy	number	 variation	 (Ruiz	

and	Rueda-Almonacid,	2008;	Fisher	et	al.,	2009;	Langhammer	et	al.,	2013;	Farrer	et	al.,	

2013;	Olson	et	 al.,	 2013).	 Differences	 in	 the	 expression	 and	 epigenetic	 landscape	 of	

duplicate	genes	is	thought	to	be	the	reason	behind	why	ants	and	other	social	 insects	

exhibit	 such	 a	 wide	 variety	 of	 morphologically	 different	 caste	 phenotypes	 from	 the	

same	genotype	(Gadagkar,	1997;	Weinstock	et	al.,	2006;	Bonasio	et	al.,	2010;	Wurm	et	

al.,	 2010;	 Schwander	et	 al.,	 2010;	Gadau	et	 al.,	 2012;	 Libbrecht	et	 al.,	 2013;	Lattorff	

and	Moritz,	2013).	Cichlid	fish	also	exhibit	extensive	phenotypic	variation,	albeit	from	

different	genotypes,	yet	gene	duplications	are	postulated	to	have	played	an	important	

role	 in	 cichlid	 adaptive	 radiations	 (Spady	 et	 al.,	 2006;	 Watanabe	 et	 al.,	 2007;	

Seehausen	et	al.,	 2008;	Hofmann	and	Carleton,	2009;	 Fan	et	al.,	 2011;	Weadick	and	

Chang,	2012).	

Adaptation	 to	 different	 environmental	 conditions	 are	 often	 due	 to	

neofunctionalization	 or	 subfunctionalization	 of	 duplicate	 genes.	 Genes	 that	 become	

duplicated,	 either	 as	 a	 result	 of	 speciation	 (orthologs)	 or	 duplication	 (paralogs),	 can	

become	fixed	into	families,	with	potentially	related	functions.	As	the	duplicate	copies	

are	often	under	less	selective	pressure	they	are	able	to	accumulate	mutations	without	



Page	102	of	314	

impacting	 the	 fitness	 of	 the	 host,	 and	 as	 a	 result	 can	 diverge	 to	 take	 on	 new	

functionality,	 or	 allow	 existing	 functionality	 to	 be	 shared	 across	 the	 duplicates	 with	

subtle	 differences	 in	 s.	 Indeed,	 we	 see	 examples	 where	 cold	 tolerant	 grasses	 have	

emerged	 due	 to	 the	 evolution	 of	 cold	 stress	 associated	 gene	 families	 through	 such	

processes	(Sandve	et	al.,	2008),	along	with	similar	adaptations	to	the	cold	in	Antarctic	

notothenioid	 fish	 (Chen	 et	 al.,	 2008).	Many	 species	 of	 plants	 and	 fish	 have	 evolved	

tolerance	to	high	levels	of	salinity	(Wu	et	al.,	2012;	Chao	et	al.,	2013;	Jiang	et	al.,	2013;	

Norman,	2013),	and	plants	have	proved	resilient	to	long	periods	of	drought	(Fischer	et	

al.,	 2011;	 Sheik	et	al.,	 2011)	 and	different	 soil	 types	 (Turner	et	al.,	 2010),	 as	well	 as	

various	 other	 extremes	 of	 environment	 (Oh	 et	 al.,	 2012)	 due	 to	 sub-	 or	 neo-

functionalization	 of	 gene	 copies.	 There	 are	 also	 examples	 from	 modern	 human	

evolutionary	 history,	with	 an	 increase	 in	 amylase	 copy	 number	 being	 seen,	which	 is	

postulated	 to	 be	 due	 to	 increased	 starch	 in	 our	 diets	 following	 the	 advent	 of	

agriculture	 (Pronk	et	 al.,	 1982;	 Perry	et	 al.,	 2007).	 The	 two	 tissue	 specific	 groups	 of	

amylase	(salivary	-	AMYIA,	AMYIB,	and	AMYIC;	and	pancreatic	-	AMY2A,	and	AMY2B)	

can	be	traced	back	to	a	single	copy	during	primate	evolution	(Samuelson	et	al.,	1990).	

In	addition	adaptations	surrounding	domestication	of	plants	and	animals	thought	to	be	

due	 to	 duplications	 are	 numerous	 (Liu	 et	 al.,	 2010;	 Swanson-Wagner	 et	 al.,	 2010;	

Campos	et	al.,	2011;	Nicholas	et	al.,	2011;	Sakudoh	et	al.,	2011;	Paudel	et	al.,	2013;	

Olsen	and	Wendel,	2013).	

Computational	complexities	relating	to	gene	duplications	

From	 a	 computational	 perspective;	 gene	 duplications,	 as	 with	 repetitive	 elements,	

make	 it	 extremely	 difficult	 for	 computational	 biologists	 to	 construct	 an	 accurate	

representation	 of	 the	 structure	 of	 the	 genome	 (Martin,	 1999;	 Bao	 and	 Eddy,	 2002;	

Bansal	and	Eulenstein,	2008;	Wehe	et	al.,	2010).	This	isn’t	in	the	least	because	of	CNV	

both	 within	 and	 between	 species,	 which	 can	 lead	 to	 bias	 in	 genome	 assembly	 and	

annotation	due	 to	 the	choice	of	 individual	 (Levy	et	al.,	2007;	Wang	et	al.,	2008;	The	

1000	Genomes	Project	Consortium,	2011),	but	because	duplications	can	be	so	similar	

in	 sequence	 composition,	 especially	 if	 they	 have	 only	 recently	 diverged	 that	 telling	

them	apart	in	the	first	place	becomes	a	real	challenge	(Bailey	et	al.,	2002;	Jiang	et	al.,	

2008;	Han	et	al.,	2009;	Ricker	et	al.,	2012).	This	similarity	may	mean	that	duplications	

are	either	collapsed	 into	a	single	 loci	by	bioinformatics	software,	 thus	resulting	 in	an	

under-representation	of	gene	 family	 size,	or	 in	contrast,	aren’t	 collapsed	sufficiently,	
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resulting	in	an	over-representation.	If	the	quality	of	the	underlying	sequencing	is	poor,	

resulting	 in	 incorrectly	 called	 bases,	 then	 this	 error	 may	 also	 result	 in	 over-

representation	due	to	an	artifactual	divergence	between	gene	copies.	Variable	single	

nucleotide	polymorphisms	 (SNPs)	within	 species,	whether	an	artefact	of	 sequencing,	

or	due	to	real	variability	between	populations	of	cells	confounds	this	and	requires	an	

appropriate	 level	 of	 sequence	 coverage	 to	 reach	 a	 reliable	 consensus.	 Projects	 that	

sequence	single	individuals,	or	individuals	that	may	not	accurately	reflect	the	wild-type	

genotype,	such	as	lab	or	zoo	kept	animals	(Lindblad-Toh	et	al.,	2005;	Liti	et	al.,	2008;	

Boyko,	 2011;	 Husby	et	 al.,	 2011;	 Chen	et	 al.,	 2013;	 Alföldi	 and	 Lindblad-Toh,	 2013),	

may	well	benefit	 from	population	 level	 re-sequencing	to	account	 for	variation	across	

the	 genome	 in	 terms	 of	 both	 substitutions	 and	 indels,	 however	 the	 quality	 and	

coverage	of	 such	 sequencing	needs	 to	be	 sufficient	not	 to	 introduce	additional	 copy	

number	variants	in	error.	

A	genome	and	its	associated	metadata	(annotations)	are	a	best	guess	prediction	

that	can	in	many	parts	be	confirmed	by	experimental	evidence,	but	often	still	subject	

to	 inference	errors.	Areas	of	genomes	are	often	highlighted	as	problematic	when,	as	

with	 computer	 source-code	 version	 control,	 “bugs”	 are	 raised	 due	 to	 additional	

research	 highlighting	 inaccuracies	 in	 the	 consensus	 sequence.	 Assemblies	 are	

therefore	updated	over	time	and	different	genome	assemblies	released	that	are	more	

likely	 to	 represent	 the	 true	genome	structure.	Projects	 like	Ensembl	 (Hubbard	et	al.,	

2002;	Flicek	et	al.,	2012)	take	these	updated	assemblies	and	aggregate	other	“fixes”,	

often	from	external	data	sources,	to	 incorporate	them	into	their	new	gene	build	and	

annotation	pipelines.	A	new	version	of	Ensembl,	with	updates	for	a	number	of	species,	

is	 released	 approximately	 every	 3	 months	 relegating	 preceding	 releases	 to	 their	

Archives	website	(see	http://www.ensembl.org/info/website/archives/index.html)	and	

thus	improving	the	accuracy	of	the	theoretical	genome	structures	over	time.	

Ensembl	uses	comparative	genomics	(Chinwalla	et	al.,	2002;	Clamp	et	al.,	2003;	

International	 Chicken	 Genome	 Sequencing	 Consortium,	 2004;	 Vilella	 et	 al.,	 2009)	 to	

improve	 the	 accuracy	 of	 genome	 assemblies	 and	 annotations	 by	 providing	 a	

phylogenetic	 context	 to	 underpin	 their	 construction.	 Increased	 sampling	 across	 the	

phylogenetic	 tree	aids	 in	 filling	 in	gaps	 in	 the	genome	sequence	between	many	 taxa	

where	the	divergence	is	too	great	to	provide	an	effective	sequence	alignment.	Indeed	
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many	 lower	 coverage	 sequencing	 projects	 have	 been	 undertaking	 to	 provide	

intermediate	 scaffolds	 between	 more	 divergent	 species	 to	 assist	 in	 their	 assembly,	

annotation	 and	 comparison.	 Comparisons	 can	 also	 be	 made	 between	 species	 to	

highlight	 areas	 of	 the	 genome	 that	 tend	 not	 to	 vary	 or	 remain	 static	 across	 vastly	

divergent	phylogenetic	distances.	 Identifying	portions	of	 the	genomes	 that	 vary	 very	

little	 between	 species	 provides	 some	 manner	 of	 quality	 control.	 There	 are	 tools	

available	that	attempt	to	determine	the	quality	and	coverage	of	genome	assemblies	in	

this	manner,	but	 the	number	of	variables	 to	consider	are	vast,	and	 these	checks	are	

often	 limited	 to	 identified	 coding	 genes	 and	 other	 functional	 areas	 of	 the	 genome,	

which	constitute	much	 less	 than	10%	of	 the	 total	 genome	content	 (Mikkelsen	et	al.,	

2005;	 Green	 et	 al.,	 2006;	 Noonan	 et	 al.,	 2006;	 Sea	 Urchin	 Genome	 Sequencing	

Consortium	et	al.,	2006;	Taft	et	al.,	2007;	Velasco	et	al.,	2007;	Jaillon	et	al.,	2007;	Gibbs	

et	al.,	2007;	Merchant	et	al.,	2007;	Organ	et	al.,	2007;	Dieterich	et	al.,	2008;	Thomas,	

2008;	Schmutz	et	al.,	2010).	

Without	 a	 template	 to	 compare	 to,	 the	 accuracy	 of	 the	 genome	 is	 largely	

unknown.	New	technologies	promise	to	provide	single	molecule	sequencing	essentially	

reading	the	linear	primary	sequence	of	strands	of	DNA	a	base	at	a	time	(Clarke	et	al.,	

2009;	 Eid	 et	 al.,	 2009;	 Pushkarev	 et	 al.,	 2009;	 Steinbock	 et	 al.,	 2012;	 Mason	 and	

Elemento,	 2012).	 This	may	 allow	 us	more	 certainty	 in	 determining	 the	 true	 primary	

structure	of	the	genome,	however	error	rates	are	still	high	(Wang	et	al.,	2012;	Simpson,	

2013),	 though	 at	 least	 better	 estimated	 (Carneiro	 et	 al.,	 2012;	 Roberts	 et	 al.,	 2013;	

Powers	et	al.,	2013).	There	are	a	number	of	programs	that	can	be	used	to	assemble	

the	 raw	 sequence	 reads	 into	 the	 contigs	 and	ultimately	 scaffolds	 that	 represent	 the	

linear	sequence	of	a	genome	(Warren	et	al.,	2006;	Zerbino	and	Birney,	2008;	Simpson	

et	al.,	2009;	Zerbino	et	al.,	2009;	Boisvert	et	al.,	2010;	Li	et	al.,	2010;	Boisvert	et	al.,	

2012;	 Leo	 et	 al.,	 2012),	 though	 varying	 the	 parameters	 used	 when	 executing	 these	

programs	 can	 have	 vastly	 different	 outcomes	 on	 the	 inferred	 assembly	 (Earl	 et	 al.,	

2011;	Zhang	et	al.,	2011;	Bradnam	et	al.,	2013).	There	are	attempts	at	 implementing	

software	 that	 utilises	 probability	 theory	 to	 build	models	 of	 the	 genome	 assemblies,	

estimating	 log-likelihood	 values	 in	 order	 to	 find	 the	 assembly	 that	 maximises	 the	

likelihood	 given	 the	 raw	 sequence	 reads	 (Medvedev	 and	 Brudno,	 2009;	 Clark	 et	 al.,	

2013;	Hunt	et	al.,	2013;	Ghodsi	et	al.,	2013),	however	this	is	still	an	immature	field	of	

research	and	the	algorithmic	considerations	are	so	complex	 that	 they	are	unlikely	 to	
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ever	be	solved	in	polynomial	time	(Cook,	1971;	Levin,	1973;	Jones	and	Pevzner,	2004).	

These	tools	can	be	useful	in	comparing	the	assemblies	from	varying	the	parameters	of	

the	 same	 genome	 assembly	 program,	 or	 from	 assemblies	 created	 using	 different	

programs,	 in	 order	 to	 highlight	 the	 most	 optimal,	 though	 this	 is	 extremely	 time	

consuming	 and	 computationally	 expensive,	 requiring	 specialist,	 high-specification	

hardware	to	run.	

As	 with	 genome	 assembly;	 genome	 annotation	 is	 also	 an	 extremely	 complex	

computational	task	(Schadt	et	al.,	2010;	Fernald	et	al.,	2011;	Mak,	2011;	Yandell	and	

Ence,	 2012;	Ward	 et	 al.,	 2013;	 Yip,	 2013)	 that	 is	 fraught	with	 error	 (Brenner,	 1999;	

Devos	 and	 Valencia,	 2001).	 The	 volumes	 of	 data	 required	 to	 be	 aggregated	 for	 the	

purposes	of	providing	a	relatively	accurate	picture	of	the	components	of	the	genome	

are	simply	not	feasible	to	undertake	manually	in	a	tractable	time	frame	(Searle	et	al.,	

2004;	Loveland,	2005;	Ashurst	et	al.,	2005;	Wilming	et	al.,	2007;	Amid	et	al.,	2009).	The	

infrastructure	required	to	undertake	automated	genome	annotation	is	vast	(Birney	et	

al.,	 2004;	 Cuff	 et	 al.,	 2004;	 Curwen	 et	 al.,	 2004;	 Potter	 et	 al.,	 2004),	 and	 as	 with	

automated	genome	assembly	 is	subject	to	error,	 though	steps	are	taken	to	minimise	

this	 by	 incorporating	 various	 sources	 of	 evidence	 (Curwen	 et	 al.,	 2004)	 along	 with	

manual	annotation	and	quality	control	 (Wilming	et	al.,	2007).	Any	errors	 in	assembly	

and	 annotation	 are	 likely	 to	 impact	 on	 downstream	 analyses,	 such	 as	 the	 correct	

identification	of	gene	family	members	(Ames	et	al.,	2012;	Han	et	al.,	2013).	

Computational	tools	for	identifying	gene	family	size	change	

The	 tools	developed	 to	 identify	 change	 in	gene	 family	 size	are	 limited	 (De	Bie	et	al.,	

2006;	Ames	et	al.,	 2012;	 Liu	et	al.,	 2011;	 Librado	et	al.,	 2011).	 The	most	 robust	 and	

widely	 used	 of	 these	 programs	 is	 CAFE,	 which	 has	 been	 applied	 extensively	 to	

determine	expansions	and	contractions	or	gene	families	across	many	taxa	(Hahn	et	al.,	

2007;	 Sharpton	 et	 al.,	 2009;	 Nygaard	 et	 al.,	 2011;	 Shapiro	 et	 al.,	 2013;	 Vogel	 and	

Moran,	 2013;	 Wu	 et	 al.,	 2013),	 however	 there	 has	 been	 some	 question	 over	 its	

accuracy	 in	 light	of	changing	parameters	and	model	assumptions	 (Ames	et	al.,	2012;	

Han	et	al.,	2013).	In	addition	to	making	numerous	assumptions	at	an	algorithmic	level	

(such	 as	 inferring	 a	 constant	 birth/death	 rate	 across	 the	 phylogenetic	 tree),	 these	

programs	also	make	the	assumption	that	 the	annotated	data	 they	are	provided	with	

are	correct.	Any	inaccuracies	resulting	from	the	assembly	or	annotation	will	impact	on	
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the	downstream	results,	as	previously	discussed,	meaning	that	the	output	from	these	

programs	needs	to	be	assessed	in	context.	

Previous	work	has	highlighted	 that	 gene	 family	 sizes	 approximate	a	power	 law	

distribution	(Huynen	and	van	Nimwegen,	1998;	Koonin	et	al.,	2002;	Karev	et	al.,	2003;	

Barabási	and	Oltvai,	2004),	where	one	quantity	varies	as	a	power	of	another.	Explicit	

probabilistic	 graph	 models	 of	 Birth-Death	 in	 gene	 families	 have	 been	 described	 as	

being	able	to	accurately	highlight	significant	changes	 in	gene	family	size	(Hahn	et	al.,	

2005;	 De	 Bie	 et	 al.,	 2006),	 though	 variations	 on	 these	 models	 that	 introduce	

parameters	 such	 as	 “innovation”	 are	 perhaps	 more	 robust	 as	 they	 don’t	 assume	

balanced	 birth	 and	 death	 rates	 remaining	 asymptotically	 closer	 to	 the	 estimated	

distribution	curve	(Karev	et	al.,	2003;	Karev	et	al.,	2004;	Karev	et	al.,	2005;	Novozhilov	

et	al.,	2006).	

By	 necessity,	 the	 determination	 of	 change	 in	 gene	 family	 size	 requires	

incorporating	the	phylogenetic	relatedness	of	the	species,	so	that	gene	family	sizes	at	

internal	 nodes	 can	be	 reconstructed	 and	 significance	 values	 estimated	based	on	 the	

likelihood	that	change	at	a	particular	node	varies	from	what	is	expected.	CAFE	takes	a	

maximum	 likelihood	 approach,	 though	 other	 programs	 provide	weighted	 parsimony	

(Ames	et	 al.,	 2012)	 and	Bayesian	 (Liu	et	 al.,	 2011)	 implementations	 that	 perform	 at	

least	equally	well.	It	is	clear	however	that	the	different	approaches	to	gene	family	size	

estimation,	along	with	variation	in	parameters	and	a	priori	assumptions	made	by	the	

programs	can	produce	different	results	(Ames	et	al.,	2012;	Liu	et	al.,	2011;	Vieira	and	

Rozas,	 2011;	Han	 et	 al.,	 2013).	 Undertaking	 comparisons	 between	 the	 different	

approaches	and	scrutinising	them	within	their	relevant	biological	context	is	paramount	

if	we	are	to	reach	robust	and	reproducible	conclusions.	

Functional	annotation	of	the	genome	sequence	

Just	as	a	collection	of	raw	sequence	reads	is	of	no	real	use	to	biologists	wanting	to	test	

specific	hypotheses,	an	unannotated	genome	assembly	is	likewise.	The	steps	towards	

annotating	 a	 genome	 are	 numerous	 (Karolchik	 et	 al.,	 2003;	 Curwen	 et	 al.,	

2004;	Yandell	and	Ence,	2012)	and	subject	to	different	agendas,	of	which	assigning	the	

function	 of	 their	 parts	 is	 only	 one.	 Initial	 stages	 of	 genome	 annotation	 focus	 on	

performing	de	 novo	 gene	 prediction;	 highlighting	 open-reading	 frames,	 transcription	

start	sites,	masking	repetitive	elements	and	generally	constructing	a	basic	structure	of	
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the	 genome	 on	 which	 to	 build	 further	 evidence	 (Potter	 et	 al.,	 2004).	 Ensembl,	 for	

example,	 calls	 this	 stage	 the	 “raw	 compute”,	 which	 is	 followed	 by	 the	 gene	 build	

proper	 and	 protein	 annotation	 stages	 (Curwen	 et	 al.,	 2004).	 Different	 genome	

annotation	pipelines	follow	similar	steps	(Kent	et	al.,	2002;	Karolchik	et	al.,	2003)	with	

the	 latter	 stages	bringing	 in	evidence	 from	known	protein,	 cDNA	and	EST	 sequences	

(Curwen	et	al.,	2004;	Potter	et	al.,	2004).	By	referencing	this	experimental	evidence,	or	

performing	 de	 novo	 homology	 searches	 it	 is	 possible	 to	 assign	 function	 to	 the	

annotated	components	of	 the	genome	automatically	 (Kent	et	al.,	 2002;	Diehn	et	al.,	

2003;	 Conesa	 et	 al.,	 2005;	Quevillon	 et	 al.,	 2005;	 Hinrichs	 et	 al.,	 2006;	 Flicek	 et	 al.,	

2007;	 Mulder	 et	 al.,	 2008;	 Schmid	 and	 Blaxter,	 2008;	 Falda	 et	 al.,	 2012).	 What	

constitutes	function	however,	has	been	subject	to	much	debate	(Bemstein	et	al.,	2012;	

Eddy,	2012;	Doolittle,	et	al.,	2013;	Eddy,	2013;	Graur	et	al.,	2013;	Niu	and	Jiang,	2013;	

Hurst,	 2013).	 In	 the	 context	 of	 this	 chapter,	 function	 refers	 to	 genes	 that	 are	

transcribed	 and	 translated,	 and	 that	 have	 the	 Ensembl	 bio_type	 classification	

protein_coding.	

The	 Ensembl	 pipeline	 annotates	 function	 by	 reference	 to	 external	 databases	

such	as	InterPro	(Apweiler	et	al.,	2001;	Hubbard	et	al.,	2002;	Hunter	et	al.,	2011)	and	

provides	a	dedicated	functional	genomics	database	and	API	to	its	users	as	of	release	47	

(Flicek	et	 al.,	 2007).	Different	methods	of	 assigning	 function	 can	 result	 in	 conflicting	

classifications	however	(Rison	et	al.,	2000).	As	with	many	other	areas	of	bioinformatics	

(Stevens	et	al.,	2000;	Stein,	2002;	Bodenreider	and	Stevens,	2006;	Smith	et	al.,	2007;	

Antezana	 et	 al.,	 2009),	 a	 standard	 for	 the	 classification	 of	 gene	 and	 gene	 products	

across	 species	 and	 databases	 was	 developed	 known	 as	 the	 Gene	 Ontology	 (GO)	

(Ashburner	et	al.,	2000;	Blake	and	Harris,	2002;	Ashburner	et	al.,	2005;	Plessis	et	al.,	

2011).	The	development	of	this	standardised	approach	has	largely	improved	matters,	

such	 as	 conflicting	 naming	 conventions,	 though	 it	 still	 requires	 improvement	 and	

conformity	from	researchers	(Rhee	et	al.,	2008;	Tirmizi	et	al.,	2011).	

It	is	interesting,	in	philosophical	terms,	to	know	the	function	of	the	components	

of	the	genome.	The	real	power	of	functional	annotation	comes	into	its	own	however,	

when	 used	 in	 the	 context	 of	 in	 silico	 hypothesis	 testing.	 By	 utilising	 functional	

annotations	 such	as	GO	 terms	 in	an	analyses	 to	determine	 significantly	expanded	or	

contracted	gene	 families,	 it	 is	possible	 to	make	 inferences	on	 the	evolution	of	 those	
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gene	 families	 from	 the	 perspective	 of	 adaptation	 (Demuth	et	 al.,	 2006;	 Hahn	et	 al.,	

2007a;	Hahn	et	al.,	2007b;	Clark	et	al.,	2007;	Sharpton	et	al.,	2009).	Previous	studies	

have	 discussed	 a	 bias	 towards	 functions	 of	 a	 reproductive,	 immunological	 and	

developmental	 nature	 (Hahn	 et	 al.,	 2005;	 Demuth	 et	 al.,	 2006;	 Hahn	 et	 al.,	 2007a;	

Dumas	 et	 al.,	 2007;	 Demuth	 and	 Hahn,	 2009),	 and	 this	makes	 sense	 from	 a	 logical	

standpoint.	 Genes	 of	 this	 nature	 will	 intrinsically	 be	 subject	 to	 strong	 positive	 or	

purifying	 selection	 due	 to	 environmental	 pressures,	 increasing	 the	 likelihood	 of	 the	

expansion	 or	 contraction	 of	 their	 constituent	 families	 within	 any	 given	 population.	

These	analyses	can	be	circular	however,	and	it	is	wise	to	interpret	them	in	context.	The	

birth	 and	 death	 of	 gene	 families	 is	 disjointed	 from	 natural	 selection.	 The	 ability	 of	

duplicate	genes	to	arise	and	be	maintained	within	a	population	is	subject	to	a	number	

of	 variables,	 with	 a	 clear	 distinction	 between	 the	 processes	 responsible	 for	 their	

establishment	 and	 subsequent	 modification	 by	 mutation	 and	 natural	 selection	 (see	

Chapter	One;	Lynch	and	Conery,	2000;	Lynch	and	Conery,	2003).	Making	inferences	on	

the	cause	of	an	expansion	or	contraction	ex	post	facto	must	be	subject	to	scrutiny	with	

a	number	of	sources	of	evidence	to	support	the	inferred	conclusions.	

Chapter	goals	

This	chapter	will	attempt	to	assess	the	power	of	current	bioinformatics	approaches	in	

accurately	 reflecting	 the	 duplication	 landscape	 within	 genomes	 as	 part	 of	

comprehensive	 comparative	 analyses.	 Analyses	 to	 identify	 duplications	 presents	 a	

substantial	challenge	to	bioinformaticians,	even	within	such	a	relatively	closely	related	

group	of	species	as	the	primates.	Difficulties	relating	to	the	underlying	assemblies	and	

annotations	 will	 be	 discussed,	 in	 addition	 to	 the	 complexities	 involved	 with	 the	

different	 methodological	 approaches	 to	 gene	 family	 size	 inference.	 A	 significant	

expansion	 of	 gene	 families	 within	 the	 branch	 of	 the	 phylogenetic	 tree	 leading	 to	

modern	 humans	 is	 identified	 and	 within	 this	 context	 is	 proposed	 as	 likely	 to	 be	 an	

artefact	 of	 the	 data,	 rather	 than	 a	 real	 biological	 change.	 In	 addition	 functional	

genomic	 analyses	 of	 significantly	 expanded	 and	 contracted	 duplications	 will	 be	

discussed	with	a	view	to	highlighting	the	role	of	the	member	genes,	and	to	understand	

why	 they	 have	 been	maintained	 in	 a	 population.	 An	 assumption	 is	made	 that	most	

genes	 with	 an	 increased	 rate	 of	 duplication	 will	 be	 involved	 in	 reproductive,	

immunological	or	development	 roles	and	 the	data	confirms	 this.	These	analyses	also	

confirm	 findings	 from	 previous	 studies,	 but	 reach	 largely	 different	 conclusions	 to	
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others.	This	highlights	the	need	for	detailed	scrutiny	of	any	results	obtained,	as	choice	

of	method	can	lead	to	widely	different	conclusions.	
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Materials	and	Methods	

Species	used	in	this	study	

Primates	

The	 primates	 used	 in	 this	 study	were	 the	 common	marmoset	Callithrix	 jacchus,	 the	

western	 lowland	 gorilla	Gorilla	 gorilla	 gorilla,	 the	 human	Homo	 sapiens,	 the	 rhesus	

macaque	Macaca	mulatta,	 the	 grey	mouse	 lemur	Microcebus	murinus,	 the	northern	

white-cheeked	 gibbon	Nomascus	 leucogenys,	 the	 northern	 greater	 galago	Otolemur	

garnettii,	 the	common	chimpanzee	Pan	 troglodytes,	 the	Sumatran	orang-utan	Pongo	

pygmaeus	 abelii,	 and	 the	 Philippine	 tarsier	Tarsius	 syrichta.	 The	 northern	 treeshrew	

Tupaia	belangeri	was	used	as	the	outgroup	species.	

Rodents	

The	rodents	used	in	this	study	were	the	guinea	pig	Cavia	porcellus,	the	Ord’s	kangaroo	

rat	Dipodomys	ordii,	the	thirteen-lined	ground	squirrel	Ictidomys	tridecemlineatus,	the	

house	 mouse	 Mus	 musculus,	 and	 the	 Norwegian	 brown	 rat	 Rattus	 norvegicus.	 The	

European	rabbit	Oryctolagus	cuniculus	was	used	as	the	outgroup	species.	

Primates	gene	families	analyses	

Data	retrieval	

Novel	 scripts	were	developed	 in	 the	Perl	programming	 language	using	 the	GCAT	API	

(see	Chapter	Two)	 to	 retrieve	data	on	primate	gene	 families	 from	 the	Ensembl	Core	

(Hubbard	et	al.,	2002;	Flicek	et	al.,	2011)	and	Compara	(Clamp	et	al.,	2003;	Vilella	et	al.,	

2009)	databases.	Two	approaches	were	taken	when	retrieving	the	data	to	ensure	that	

all	gene	families	were	retrieved.	Data	were	retrieved	from	both	release	66	and	release	

67	of	Ensembl.	

The	“gene	ids”	approach	first	retrieved	all	the	gene	IDs	for	each	species	from	the	

Ensembl	Core	database	and	 then	used	 the	pooled	gene	 IDs	 to	get	all	 the	associated	

gene	 families	 from	 the	 Ensembl	 Compara	 database.	 The	 “all	 families”	 approach	

retrieved	 data	 on	 all	 gene	 families	 from	 the	 Ensembl	 Compara	 database	 and	

subsequently	mined	those	 results	 for	 families	belonging	 to	 the	 required	species.	The	

former	method	was	much	quicker,	but	the	latter	more	robust.	
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Determining	expansions	and	contractions	

Appropriate	subroutines	were	developed	 to	call	external	programs	such	as	CAFE	 (De	

Bie	et	al.,	2006;	Hahn	et	al.,	2007),	BEGFE	(Liu	et	al.,	2011),	and	DupliPHY	(Ames	et	al.,	

2012)	 that	 are	 necessary	 for	 determining	 the	 significantly	 expanded	 or	 contracted	

gene	 families	 within	 an	 input	 dataset.	 Routines	 to	 convert	 between	 required	 input	

formats	and	to	parse	the	output	from	these	programs	were	also	developed.	Only	CAFE	

(version	2.2)	was	used	for	the	analyses	 in	this	study	as	this	was	the	most	extensively	

used	and	robust	program	for	determining	change	in	gene	family	size	at	the	time,	and	

integrated	well	with	Ensembl	data.	

CAFE	requires	a	Newick	 format	species	 tree,	and	a	 tabular	 format	 file	as	 input.	

The	 tabular	 format	 input	 file	 requires	 a	 DESCRIPTION	 column,	 an	 ID	 column,	 and	

columns	for	each	of	the	species	within	the	associated	species	tree.	The	DESCRIPTION	

column	 provides	 a	 description	 of	 the	 gene	 family,	 for	 example	 ALPHA	 AMYLASE	

PRECURSOR	 and	 the	 ID	 column	 provides	 the	 gene	 family	 ID,	 for	 example	

ENSFM00660001157182.	In	this	case	the	DESCRIPTION	and	ID	match	the	Ensembl	gene	

family	 description	 and	 ID	 as	 per	 the	 data	 retrieval	 step	 described	 previously.	 The	

additional	 columns	 require	 an	 integer	 value	 corresponding	 to	 the	 number	 of	 genes	

within	the	gene	family	for	that	particular	species.	CAFE	can	be	run	in	interactive	mode,	

where	 the	 commands	 and	 parameters	 are	 entered	 via	 a	 command	 line	 interface,	

however	it	can	also	be	called	as	a	shell	using	a	shell	script	to	pass	the	input	commands	

and	 parameters.	 The	 latter	 approach	 was	 more	 amenable	 to	 distributed	 and	

programmatic	analyses	using	GCAT	and	so	this	option	was	chosen.	

A	Newick	format	species	tree	with	branch	lengths	was	used,	which	was	produced	

by	Ensembl	as	part	of	their	genome	annotation	pipeline	(Potter	et	al.,	2004;	Vilella	et	

al.,	 2009).	 The	R	package	ape	was	used	 to	extract	 the	necessary	primates	 tree	 from	

within	the	Ensembl	species	tree	using	the	extract.clade()	function.	It	was	necessary	to	

adopt	the	program	r8s	(Sanderson,	2003)	and	the	ape	package	(Paradis	et	al.,	2003)	to	

perform	branch	 rate	 smoothing	 to	overcome	 issues	with	CAFE	where	 the	product	of	

lambda	(see	Chapter	One)	and	the	tree	depth	were	greater	than	1	(λ	*	t	<	1)	must	be	

true;	where	 	 is	the	time	from	the	tips	to	the	root).	The	chronopl()	and	is.ultrametric()	

ape	functions	were	used	for	this	purpose.	



Page	112	of	314	

The	 birth-death	 model	 of	 CAFE	 assumes	 at	 least	 one	 gene	 in	 the	 root	 of	 the	

species	tree.	Though	CAFE	allows	the	use	of	a	-filter	input	flag	when	running	the	load	

command,	a	helper	script	was	implemented	in	Python	(trim_cafe_families.py)	

to	prune	 all	 families	with	 0	 gene	members	 in	 the	outgroup	 from	 the	dataset.	 These	

scripts	 are	 available	 in	 the	 support_files	 directory	 of	 the	 GCAT	 source	 code	

repository.	

CAFE	allows	one	to	use	a	fixed	lambda	across	the	tree	or	to	estimate	lambda	for	

each	branch.	CAFE	was	run	with	both	a	 fixed	 lambda	value	 for	each	branch	and	also	

allowed	to	vary	with	different	values	for	each	branch	of	the	tree.	In	both	cases	lambda	

was	called	with	 the	 -s	 input	 flag,	which	uses	an	optimisation	algorithm	to	search	 for	

the	value(s)	of	 lambda	that	maximise	the	log	likelihood	of	the	data	for	all	families.	 In	

addition	CAFE	was	run	with	a	-e	flag	to	estimate	the	values	of	lambda	for	each	of	the	

gene	 families	 individually.	When	 running	 CAFE	 this	 way	 it	 isn’t	 possible	 to	 perform	

ancestral	state	reconstruction	for	all	families	combined	and	so	individual	runs	of	CAFE	

were	 performed	 to	 identify	 gene	 families	 that	 were	 significantly	 expanded	 or	

contracted.	 Novel	 Python	 and	 Perl	 GCAT	 helper	 scripts	 (get_significant.pl,	

get_sig_freqs.pl,	 and	merge_sig_files.py)	were	developed	 to	 integrate	

all	these	analyses	and	allow	for	downstream	processing	and	visualisation.	These	scripts	

are	available	in	the	support_files	directory	of	the	GCAT	source	code	repository.	

Data	processing	and	visualisation	

Novel	 R	 subroutines	 (see	 ppf_freqs.R,	 sig_freqs.R,	 and	

visualize_goterms.R)	were	developed	and	integrated	with	the	GCAT	API	using	

the	 Statistics::R	 package	 to	 automate	 the	 visualisation	 of	 gene	 families	

identified	 as	 being	 significantly	 expanded	 or	 contracted.	 R	 packages	 plyr	 (Wickham,	

2011),	 reshape2	 (Wickham,	 2007)	 and	 ggplot2	 (Wickham,	 2009)	 were	 used	 for	 this	

purpose.	

Rodents	gene	families	analyses	

Data	were	retrieved	and	analysed	for	the	rodents	using	the	same	protocol	developed	

for	retrieving	the	primates	gene	families.	See	primates	gene	families	analyses	above.	
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Assembly	and	annotation	information	

The	Ensembl	genome	browser	(Stalker	et	al.,	2004;	Spudich	et	al.,	2007;	Spudich	and	

Fernández-Suárez,	2010),	relevant	NCBI	Genome	resources	and	respective	sequencing	

consortium	websites	 (see	 Appendix	 4.1	 and	 4.2)	 were	 used	 to	 investigate	 assembly	

and	 annotation	 information	 for	 both	 the	 primates	 and	 rodents	 in	 an	 attempt	 to	

determine	 the	current	state	of	 the	genome	assemblies	and	 to	question	whether	any	

potential	error	associated	with	the	assemblies	and/or	annotations	may	exist.	

Functional	 classifications	 of	 significantly	 expanded	 or	 contracted	 primates	 gene	

families	

Data	retrieval	

Additional	 GCAT	 plugin	 scripts	 were	 developed	 to	 retrieve	 annotations	 from	 the	

Ensembl	 Compara	 database	 and	 the	 Gene	 Ontology	 Database	 (The	 Gene	 Ontology	

Consortium,	 2001)	 using	 Perl	 Ensembl	 Compara	 API’s	

Bio::EnsEMBL::Compara::FamilyAdaptor	 class	 and	 the	

Bio::EnsEMBL::DBSQL::GOTermAdaptor	 class	 respectively	 in	 order	 to	 determine	 the	

functional	classifications	of	these	data	(get_goterms.pl).	

Analytics	and	visualisation	

GCAT	 based	 R	 scripts	 (visualize_goterms.R	 and	 dumas_compare.R)	 were	

developed	to	undertake	data	analytics	and	visualisation.	Visualisation	modules	utilised	

the	ggplot2	library	(Wickham,	2009).	

Comparison	with	previously	identified	functional	classifications	

Data	 were	 mined	 using	 a	 custom	 R	 script	 (dumas_compare.R)	 to	 compare	 and	

contrast	the	findings	reported	here	with	those	of	a	previous	study	(Dumas	et	al.,	2007).	

These	scripts	are	available	in	the	support_files	directory	of	the	GCAT	source	code	

repository.	

Supplementary	 Table	 S5	 from	 the	 Dumas	 study	 was	 used	 to	 identify	 gene	

clusters	with	copy	number	changes	with	lineage	specific	(LS)	changes	in	humans.	A	list	

of	gene	names	corresponding	to	the	hg18	assembly	at	UCSC	(Kuhn	et	al.,	2007)	were	

retrieved.	 These	 gene	 names	were	matched	with	 their	 corresponding	 Ensembl	 gene	

IDs	by	using	R	(dumas_compare.R)	to	access	the	EnsMart	and	BioMart	web	service	

APIs	 (Kasprzyk	 et	 al.,	 2004;	 Kasprzyk,	 2011).	 This	 then	 allowed	 retrieval	 of	 their	
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respective	Ensembl	gene	family	IDs.	The	retrieved	gene	family	IDs	were	compared	with	

the	data	from	the	release	67	raw	gene	family	data	and	release	67	CAFE	fixed	lambda	

data	using	R	(dumas_compare.R)	to	check	for	any	matching	hits.	
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Results	

Primates	gene	families	

Data	retrieval	

The	 “gene	 ids”	 approach	 identified	 203,918	 protein	 coding	 gene	 IDs	 for	 which	 it	

subsequently	 retrieved	 gene	 family	 data.	 This	 resulted	 in	 9,166,908	 lines	 of	 output,	

corresponding	 to	 annotated	 gene	 families.	 The	 “all	 families”	 approach	 identified	

655,218	gene	families,	of	which	226,280	(204,060	unique)	gene	IDs	were	identified	as	

belonging	 to	primates.	The	differences	 in	 these	values	are	due	 to	 redundancy	 in	 the	

“all	families”	dataset.	Further	processing	yielded	very	similar	counts	for	gene	families	

in	 the	data	 (see	Table	4.1),	 though	the	“all	 families”	method	was	 the	most	 robust	 in	

retrieving	the	greatest	number	of	gene	families	and	all	 further	analyses	used	the	“all	

families”	data.	

Table	 4.1	 -	 Comparison	 of	 different	 data	 retrieval	 methods	 and	 the	 absolute	 numbers	 of	 data	
retrieved	for	the	primates	from	release	66	of	the	Ensembl	Core	and	Compara	database.	

	 “gene	ids”	method	 “all	families”	method	

Raw	data	count	 9,166,908	 655,218	

Raw	gene	family	count	 203,918	 226,280	

Primates	gene	family	count	 49,719	 49,737	

Gene	family	members	 226,254	 226,280	

Number	of	genes	 204,034	 204,060	

Number	of	species	 11	 11	

	

Following	 trimming	of	 the	data,	 to	meet	CAFE’s	 requirements	 for	 having	no	0-

sized	gene	families	 in	the	out-group,	this	resulted	 in	11,307	gene	families	 for	 further	

downstream	analyses.	

The	 sizes	of	 the	gene	 families	vary	between	species	with	a	minimum	size	of	0,	

meaning	complete	loss	in	that	species,	to	a	maximum	size	of	265	in	Homo	sapiens.	The	

mean,	median	and	mode	sizes	are	very	low	pointing	to	a	right	skew	in	the	data.	Indeed	

upon	calculating	the	value	for	skewness,	we	see	a	positive	skew	(see	Table	4.2).	
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Table	4.2	–	Primate	gene	family	(GF)	sizes	in	the	release	66	“all	families”	gene	family	data.	

Species	 Min	GF	

Size	

Max	GF	

Size	

Mean	GF	

Size	

Median	GF	

Size	

Mode	GF	

Size	

Skew	

Callithrix	jacchus	 0	 219	 1.38	 1	 1	 44.84	

Gorilla	gorilla	 0	 220	 1.30	 1	 1	 53.93	

Homo	sapiens	 0	 265	 1.37	 1	 1	 56.85	

Macaca	mulatta	 0	 256	 1.37	 1	 1	 56.85	

Microcebus	

murinus	

0	 125	 1.09	 1	 1	 35.44	

Nomascus	

leucogenys	

0	 211	 1.20	 1	 1	 64.58	

Otolemur	garnettii	 0	 120	 1.03	 1	 1	 34.75	

Pan	troglodytes	 0	 235	 1.27	 1	 1	 61.90	

Pongo	abelii	 0	 183	 1.23	 1	 1	 51.09	

Tarsius	syrichta	 0	 146	 0.91	 1	 1	 53.05	

Tupaia	belangeri	 1	 93	 1.37	 1	 1	 28.99	

	

By	visualising	the	data	we	are	able	to	get	a	graphical	representation	of	the	gene	

family	 sizes,	 allowing	 us	 to	 better	 understand	how	 the	 data	 are	 distributed.	We	 are	

able	to	view	a	frequency	distribution	of	all	gene	family	sizes	(see	Figure	4.1)	and	per	

species	gene	family	sizes	(see	Figure	4.2).	

Determining	expansions	and	contractions	

A	 total	 of	 11,307	 gene	 families	 were	 given	 as	 input	 to	 the	 CAFE	 software.	 CAFE	

identified	 538	 gene	 families	 as	 being	 significantly	 expanded	 or	 contracted.	 The	

minimum	and	maximum	gene	family	sizes	weren’t	changed.	The	frequency	distribution	

of	these	data	followed	a	similar	pattern	(see	Figure	4.3).	

In	 order	 to	 understand	 these	 data	 further,	 it	was	 necessary	 to	 view	 them	 in	 a	

phylogenetic	 context.	GCAT	was	 used	 to	 plot	 these	 data	 on	 their	 associated	 species	

tree	(see	Figure	4.4).	A	large	relative	expansion	in	genes	is	seen	in	the	branch	leading	

to	modern	humans.	
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Figure	 4.1	 -	 Frequency	 distribution	of	 pooled	 gene	 family	 sizes	 for	 release	 66	 of	 the	 primates	 gene	
family	data.	A	cut-off	of	50	is	used	as	the	maximum	on	the	x-axis	as	this	represents	the	majority	of	the	
data.	A	0-size	gene	family	means	complete	loss	in	that	species.	
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Figure	4.2	-	Frequency	distribution	of	gene	family	sizes	in	each	primate	for	release	66	of	the	primates	
gene	family	data.	A	cut-off	of	30	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	the	
data.	A	0-size	gene	family	means	complete	loss	in	that	species.	
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Figure	4.3	 -	Frequency	distribution	of	significantly	expanded	or	contracted	gene	 family	sizes	 in	each	
primate	for	release	66	of	the	primates	gene	family	data.	A	cut-off	of	30	used	as	maximum	on	the	x-
axis	 as	 this	 represents	 the	majority	 of	 the	 data.	 A	 0-size	 gene	 family	means	 complete	 loss	 in	 that	
species.	
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Figure	4.4	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	primate	phylogenetic	tree.	Blue	coloured	branches	depict	overall	contraction,	while	red	coloured	
branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	no	change.	Branch	thickness	represents	the	number	of	gene	copy	number	changes	weighted	by	
the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	to	the	root	node.	



Page	121	of	314	

Rodents’	gene	families	

Data	retrieval	

The	“all	families”	approach	identified	628,351	gene	families,	of	which	118,328	gene	IDs	

were	 identified	 as	 belonging	 to	 primates.	 Further	 processing	 yielded	 very	 similar	

counts	for	gene	families	in	the	data	(see	Table	4.3),	though	the	“all	families”	method	

was	the	most	robust	in	retrieving	the	greatest	number	of	gene	families	and	all	further	

analyses	used	the	“all	families”	data.	

Table	4.3	-	Absolute	numbers	of	data	retrieved	for	the	rodents	from	release	66	of	the	Ensembl	Core	
and	Compara	database	using	the	“all	families”	method.	

	 “all	families”	method	

Raw	data	count	 628,351	

Raw	gene	family	count	 124,999	

Rodents	gene	family	count	 25,610	

Gene	family	members	 124,999	

Number	of	genes	 118,328	

Number	of	species	 6	

	

Following	 trimming	of	 the	data,	 to	meet	CAFE’s	 requirements	 for	 having	no	0-

sized	gene	 families	 in	 the	outgroup,	 this	 resulted	 in	11,947	gene	 families	 for	 further	

downstream	analyses.	

The	 sizes	of	 the	gene	 families	vary	between	species	with	a	minimum	size	of	0,	

meaning	complete	loss	in	that	species,	to	a	maximum	size	of	285	in	Mus	musculus.	The	

mean,	median	and	mode	sizes	are	very	low	pointing	to	a	right	skew	in	the	data.	Indeed	

upon	calculating	the	value	for	skewness,	we	see	a	positive	skew	(see	Table	4.4).	
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Table	4.4	–	Rodent	gene	family	(GF)	sizes	in	the	release	66	“all	families”	gene	family	data	

Species	 Min	GF	Size	 Max	GF	

Size	

Mean	GF	

Size	

Median	GF	

Size	

Mode	GF	

Size	

Skew	

Cavia	porcellus	 0	 66	 1.40	 1	 1	 12.86	

Dipodomys	ordii	 0	 71	 1.16	 1	 1	 14.29	

Ictidomys	

tridecemlineatus	

0	 77	 1.43	 1	 1	 16.24	

Mus	musculus	 0	 285	 1.57	 1	 1	 38.86	

Rattus	

norvegicus	

0	 164	 1.59	 1	 1	 21.61	

Oryctolagus	

cuniculus	

1	 92	 1.62	 1	 1	 17.13	

	
By	visualising	the	data	we	are	able	to	get	a	graphical	representation	of	the	gene	

family	 sizes,	 allowing	 us	 to	 better	 understand	how	 the	 data	 are	 distributed.	We	 are	

able	to	view	a	frequency	distribution	of	all	gene	family	sizes	(see	Figure	4.5)	and	per	

species	gene	family	sizes	(see	Figure	4.6).	

Determining	expansions	and	contractions	

A	total	of	11,947	gene	families	were	given	as	input	to	the	CAFE	software	and	run	using	

a	 fixed	 lambda.	CAFE	 identified	414	gene	 families	 as	being	 significantly	 expanded	or	

contracted.	 The	 minimum	 and	 maximum	 gene	 family	 sizes	 weren’t	 changed.	 The	

frequency	distribution	of	these	data	followed	a	similar	pattern	(see	Figure	4.7).	

In	 order	 to	 understand	 these	 data	 further,	 it	was	 necessary	 to	 view	 them	 in	 a	

phylogenetic	 context.	GCAT	was	 used	 to	 plot	 these	 data	 on	 their	 associated	 species	

tree	(see	Figure	4.8).	A	large	relative	expansion	in	genes	is	seen	in	the	branch	leading	

to	modern	humans.	
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Figure	 4.5	 -	 Frequency	 distribution	 of	 pooled	 gene	 family	 sizes	 for	 release	 66	 of	 the	 rodents	 gene	
family	data.	A	cut-off	of	50	 is	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	the	
data.	A	0-size	gene	family	means	complete	loss	in	that	species.	
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Figure	4.6	-	Frequency	distribution	of	gene	family	sizes	in	each	primate	for	release	66	of	the	rodents	
gene	family	data.	A	cut-off	of	30	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	the	
data.	A	0-size	gene	family	means	complete	loss	in	that	species.	
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Figure	4.7	 -	Frequency	distribution	of	significantly	expanded	or	contracted	gene	 family	sizes	 in	each	
rodent	for	release	66	of	the	rodents	gene	family	data.	A	cut-off	of	30	used	as	maximum	on	the	x-axis	
as	this	represents	the	majority	of	the	data.	A	0-size	gene	family	means	complete	loss	in	that	species.	

	



Page	126	of	314	

	
Figure	4.8	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	rodent	phylogenetic	tree.	Blue	coloured	branches	depict	overall	contraction,	while	red	coloured	
branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	no	change.	Branch	thickness	represents	the	number	of	gene	copy	number	changes	weighted	by	
the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	to	the	root	node.
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Assembly	and	annotation	information	

Comparison	of	coverage	and	assembly	

Manual	 comparison	 of	 sequence	 coverage	 and	 determination	 of	 assembly	 quality	

based	on	the	chemistry	used,	original	assembly	release	date,	first	gene	build	and	date	

of	most	 recent	patch	 (see	Table	4.5	and	Table	4.6)	were	undertaken	using	resources	

available	from	Ensembl,	GenBank	and	the	respective	genome	consortium	website	(see	

Appendices	4.1	and	4.2).	

Release	67	data	

Data	retrieval	

To	 further	 determine	 the	 impact	 of	 annotation	 quality	 on	 the	 outcome	 of	 CAFE	

analyses	 an	 updated	 release	 67	 dataset	 was	 used	 to	 rerun	 the	 analyses.	 The	 “all	

families”	 method	 returned	 a	 total	 of	 628,351	 identified	 gene	 families,	 containing	 a	

total	of	41,159	primate	gene	 families	with	226,693	gene	members,	corresponding	to	

208,105	unique	gene	IDs	(see	Table	4.7).	

The	data	was	trimmed	for	0-size	gene	families	 in	the	outgroup,	as	per	previous	

protocol,	resulting	in	11,024	gene	families	for	further	downstream	analyses.	

The	maximum	sizes	of	 the	gene	 families	differed	 in	 the	 release	67	data	with	a	

new	maximum	of	271	in	Homo	sapiens.	The	mean,	median	and	mode	sizes	remained	

low	although	also	differed	from	the	release	67	data	(see	Table	4.8).	

The	 frequency	 distribution	 of	 pooled	 gene	 family	 sizes	 (see	 Figure	 4.9)	 and	

species	independent	gene	family	sizes	(see	Figure	4.10)	followed	a	similar	pattern.	

Determining	expansions	and	contractions	

A	 total	 of	 11,024	gene	 families	 from	 the	 release	67	data	were	 given	as	 input	 to	 the	

CAFE	software	and	separate	 runs	were	undertaken	with	a	 fixed	 lambda	value	across	

the	tree,	with	a	variable	lambda	value	across	the	tree,	and	with	a	variable	lambda	.	

CAFE	results	with	a	fixed	lambda	across	the	tree	

CAFE	 identified	626	gene	 families	as	being	 significantly	expanded	or	 contracted.	The	

minimum	and	maximum	gene	family	sizes	weren’t	changed.	The	frequency	distribution	

of	these	data	followed	a	similar	pattern	(see	Figure	4.11)	and	a	large	relative	expansion	

was	still	observed	in	the	branch	leading	to	modern	humans	(see	Figure	4.12).



Page	128	of	314	

	

	

	

	

Table	4.5	-	Genome	assembly	information	for	primates	species	used	in	this	study	taken	from	release	

66	of	the	Ensembl	genome	browser.	

Species	 Assembly	 Date	 Coverage	 Genebuild	

Released	

Genebuild	

Patched	

Callithrix	
jacchus	

Callithrix	jacchus-
3.2.1	

January	2010	 6X	 May	2010	 March	2011	

Gorilla	gorilla	 gorGor3.1	 December	
2009	

2.1X	+	35X	 March	2010	 July	2011	

Homo	sapiens	 GRCh37.p6	 February	
2009	

5.11X	+	
7.5X	

April	2011	 February	2012	

Macaca	
mulatta	

MMUL	1.0	 February	
2006	

5.1X	 August	2006	 May	2010	

Microcebus	
murinus	

micMur1	 June	2007	 1.93X	 March	2008	 May	2010	

Nomascus	
leucogenys	

Nleu1.0	 January	2010	 5.6X	 April	2011	 April	2011	

Otolemur	
garnettii	

OtoGar3	 March	2011	 137X	 December	
2011	

December	
2011	

Pan	troglodytes	 CHIMP2.1.4	 February	
2011	

6X	 December	
2011	

December	
2011	

Pongo	abelii	 PPYG2	 September	
2007	

6X	 March	2008	 May	2010	

Tarsius	syrichta	 tarSyr1	 July	2008	 1.82X	 February	2009	 May	2010	
Tupaia	
belangeri	

tupBel1	 June	2006	 2X	 February	2007	 May	2010	

	

Table	4.6	-	Genome	assembly	information	for	rodents	species	used	in	this	study	taken	from	release	66	

of	the	Ensembl	genome	browser.	

Species	 Assembly	 Date	 Coverage	 Genebuild	

Released	

Genebuild	

Patched	

Cavia	porcellus	 cavPor3	 March	2008	 6.79X	 September	2008	 May	2010	
Dipodomys	ordii	 dipOrd1	 July	2008	 1.85X	 February	2009	 May	2010	
Mus	musculus	 NCBIM37	 April	2007	 7X	 January	2011	 March	2012	
Oryctolagus	cuniculus	 oryCun2	 November	

2009	
7X	 March	2010	 December	2011	

Rattus	norvegicus	 RGSC	3.4	 December	
2004	

7X	 September	2009	 May	2010	

Ictidomys	
tridecemlineatus	

speTri1	 June	2006	 1.90X	 April	2007	 May	2010	
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Table	4.7	-	Absolute	numbers	of	data	retrieved	for	the	primates	from	release	67	of	the	Ensembl	Core	

and	Compara	database	using	the	“all	families”	method.	

	 “all	families”	method	

Raw	data	count	 628,351	

Raw	gene	family	count	 226,693	

Primates	gene	family	count	 41,159	

Gene	family	members	 226,693	

Number	of	genes	 208,105	

Number	of	species	 11	

	

Table	4.8	–	Primate	gene	family	(GF)	sizes	in	the	release	67	“all	families”	gene	family	data.	

Species	 Min	GF	

Size	

Max	GF	

Size	

Mean	GF	

Size	

Median	GF	

Size	

Mode	GF	

Size	

Skew	

Callithrix	jacchus	 0	 220	 1.48	 1	 1	 44.91	

Gorilla	gorilla	 0	 228	 1.40	 2	 1	 56.26	

Homo	sapiens	 0	 271	 1.51	 2	 1	 54.90	

Macaca	mulatta	 0	 262	 1.48	 2	 1	 57.60	

Microcebus	

murinus	

0	 125	 1.17	 1	 1	 36.27	

Nomascus	

leucogenys	

0	 214	 1.28	 2	 1	 66.04	

Otolemur	garnettii	 0	 212	 1.43	 2	 1	 42.25	

Pan	troglodytes	 0	 227	 1.29	 1	 1	 64.70	

Pongo	abelii	 0	 188	 1.32	 2	 1	 53.32	

Tarsius	syrichta	 0	 151	 0.98	 1	 1	 53.83	

Tupaia	belangeri	 1	 99	 1.40	 1	 1	 30.56	
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Figure	 4.9	 -	 Frequency	 distribution	of	 pooled	 gene	 family	 sizes	 for	 release	 67	 of	 the	 primates	 gene	

family	data.	A	cut-off	of	50	 is	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	the	

data.	A	0-size	gene	family	means	complete	loss	in	that	species.	
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Figure	4.10	-	Frequency	distribution	of	gene	family	sizes	in	each	primate	for	release	67	of	the	primates	

gene	family	data.	A	cut-off	of	30	is	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	

the	data.	A	0-size	gene	family	means	complete	loss	in	that	species.	

	

	

	

	

	

	

	



Page	132	of	314	

	

	

	

	

	
Figure	4.11	-	Frequency	distribution	of	significantly	expanded	or	contracted	gene	family	sizes	in	each	

primate	for	release	67	of	the	primates	gene	family	data	using	a	fixed	lambda	across	the	tree.	A	cut-off	

of	30	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	the	data.	A	0-size	gene	family	

means	complete	loss	in	that	species.	
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Figure	4.12	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	primate	phylogenetic	tree	for	release	67	of	the	primates	gene	family	data	using	a	fixed	lambda	
across	the	tree.	Blue	coloured	branches	depict	overall	contraction,	while	red	coloured	branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	no	change.	
Branch	thickness	represents	the	number	of	gene	copy	number	changes	weighted	by	the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	to	the	root	node.
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CAFE	results	with	a	varied	lambda	across	the	tree	

CAFE	 identified	309	gene	 families	as	being	 significantly	expanded	or	 contracted.	The	

minimum	and	maximum	gene	family	sizes	weren’t	changed.	The	frequency	distribution	

of	these	data	followed	a	similar	pattern	(see	Figure	4.13)	and	a	large	relative	expansion	

was	still	observed	in	the	branch	leading	to	modern	humans	(see	Figure	4.14).	

CAFE	results	with	a	varied	lambda	for	each	gene	family	and	across	the	tree	

CAFE	was	run	to	estimate	values	for	each	family	and	with	a	variable	lambda	across	the	

tree.	When	 using	 CAFE	 to	 estimate	 individual	 lambdas	 for	 each	 gene	 family,	 it	 isn’t	

possible	 to	 undertake	 ancestral	 state	 reconstruction	 or	 perform	 Monte	 Carlo	

simulations	 for	 all	 families	 combined.	 1,000	 iterations	were	performed	per	 family	 to	

estimate	the	 lambda	that	maximised	the	 log	 likelihood	value	and	a	consensus	of	 the	

lambda	values	were	output	 for	each	 family	 (see	Appendix	4.3).	 It	 is	 then	possible	 to	

analyse	each	family	independently,	requiring	CAFE	to	be	executed	11,024	times.	

The	 11,024	 individual	 CAFE	 runs	 identified	 163	 gene	 families	 as	 being	

significantly	 expanded	 or	 contracted.	 The	minimum	and	maximum	gene	 family	 sizes	

weren’t	changed.	The	frequency	distribution	of	these	data	followed	a	similar	pattern	

(see	Figure	4.15)	and	a	large	relative	expansion	was	still	observed	in	the	branch	leading	

to	modern	humans	(see	Figure	4.16).	
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Figure	4.13	-	Frequency	distribution	of	significantly	expanded	or	contracted	gene	family	sizes	in	each	
primate	for	release	67	of	the	primates	gene	family	data	using	a	variable	lambda	across	the	tree.	A	cut-
off	of	30	used	as	maximum	on	 the	x-axis	 as	 this	 represents	 the	majority	of	 the	data.	A	0-size	gene	
family	means	complete	loss	in	that	species.	
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Figure	4.14	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	primate	phylogenetic	tree	for	release	67	of	the	primates	gene	family	data	using	a	variable	lambda	
across	the	tree.	Blue	coloured	branches	depict	overall	contraction,	while	red	coloured	branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	no	change.	
Branch	thickness	represents	the	number	of	gene	copy	number	changes	weighted	by	the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	to	the	root	node.	
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Figure	4.15	-	Frequency	distribution	of	significantly	expanded	or	contracted	gene	family	sizes	in	each	
primate	for	release	67	of	the	primates	gene	family	data	using	a	variable	lambda	for	each	gene	family	
and	across	the	tree.	A	cut-off	of	30	used	as	maximum	on	the	x-axis	as	this	represents	the	majority	of	
the	data.	A	0-size	gene	family	means	complete	loss	in	that	species.	
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Figure	4.16	-	Expansions	and	contractions	of	genes	along	the	branches	of	the	primate	phylogenetic	tree	for	release	67	of	the	primates	gene	family	data	using	a	variable	lambda	
for	each	gene	family	and	across	the	tree.	Blue	coloured	branches	show	contractions,	while	red	coloured	branches	depict	expansions.	Branch	thickness	is	weighted	by	time	since	
the	ancestor	node	for	each	branch.
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Functional	 classifications	 of	 significantly	 expanded	 or	 contracted	 primates	 gene	

families	

Functional	 classifications	 of	 the	 significantly	 expanded	 or	 contracted	 gene	 families	

were	retrieved	via	the	Ensembl	Compara	API.	

Release	66	data	

The	 fixed	 lambda	 gene	 family	 CAFE	 data	 was	 used	 to	 retrieve	 information	 on	 the	

functional	nature	of	the	538	gene	families	identified	as	being	significantly	expanded	or	

contracted.	

This	 analyses	 retrieved	 150,440	 entries	 from	 the	 Ensembl	 Compara	 database	

relating	to	517	of	the	538	gene	families.	Functional	classifications	were	missing	for	21	

families.	 Out	 of	 the	 150,440	 raw	 entries,	 there	 were	 392	 unique	 descriptions	

annotated	 by	 the	 Ensembl	 Compara	 pipeline	 (see	 Appendix	 4.4).	 A	 total	 of	 15,979	

unique	 gene	 IDs	 existed	 within	 these	 data.	 These	 genes	 fell	 into	 two	 biotypes;	

protein_coding	and	IG_V_gene,	of	which	150,427	and	13	entries	belonged	to	

those	 classifications	 respectively.	 The	 genes	 were	 located	 in	 only	 4,039	 different	

locations,	corresponding	to	their	top	level	location	association	assigned	by	Ensembl.	

The	metadata	 that	 Ensembl	 assigns	 via	 external	 reference	 to	 the	GO	Database	

returned	 2,911	GO	 IDs	 and	 2,891	GO	definitions	 respectively,	 belonging	 to	 one	 of	 4	

different	GO	domains.	The	GO	domains	assigned	were	molecular_function	(MF),	

cellular_component	(CC),	biological_process	(BP)	and	NULL.	

The	 family	 description	 assignment	 from	 Ensembl	was	 used	 to	 plot	 the	 relative	

contribution	of	each	of	the	392	values	for	all	species	collectively	(see	Figure	4.17)	and	

for	each	species	individually	(see	Figure	4.18).	
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Figure	4.17	-	Bar	chart	showing	a	breakdown	of	the	functional	classifications	of	significantly	expanded	or	contracted	gene	families	for	the	release	66	primates	gene	family	data.	
All	 species	 data	 are	 pooled.	 Annotations	 correspond	 to	 values	 above	 an	 arbitrary	 cut-off	 of	 2,500	members.	 Annotations	 are:	 1)	 Epithelial	 Discoidin	 Domain	 Containing	
Receptor,	2)	and	3)	Olfactory	Receptor,	4)	Unknown,	5)	Zinc	finger	(truncated	at	6,000	–	actual	size	18,306).	See	Appendix	4.4	for	list	of	gene	family	descriptions.
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Figure	4.18	-	Bar	chart	showing	a	breakdown	of	the	functional	classifications	of	significantly	expanded	or	contracted	gene	families	for	the	release	66	primates	gene	family	data.	
All	species	data	are	represented	individually	to	highlight	per	species	contributions.	Annotations	correspond	to	values	above	an	arbitrary	cut-off	of	2,500	members.	Annotations	
are:	1)	Epithelial	Discoidin	Domain	Containing	Receptor,	2)	and	3)	Olfactory	Receptor,	4)	Unknown,	5)	Zinc	finger	(truncated	at	6,000	–	actual	size	18,306).	See	Appendix	4.4	for	
list	of	gene	family	descriptions.	
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Release	67	data	

The	variable	lamba	individual	gene	family	CAFE	data	was	used	to	retrieve	information	

on	 the	 functional	 nature	 of	 the	 163	 gene	 families	 identified	 as	 being	 significantly	

expanded	or	contracted.	

This	 analyses	 retrieved	 80,801	 entries	 from	 the	 Ensembl	 Compara	 database	

relating	to	162	of	the	163	gene	families.	Functional	classifications	were	missing	for	1	

family.	Out	of	the	80,801	raw	entries,	there	were	122	unique	descriptions	annotated	

by	 the	Ensembl	Compara	pipeline	 (see	Appendix	4.5).	A	 total	of	10,369	unique	gene	

IDs	existed	within	these	data.	These	genes	fell	into	four	biotypes;	protein_coding,	

IG_V_gene,	IG_C_gene,	and	TR_V_gene	of	which	80,616,	141,	32	and	12	entries	

belonged	 to	 those	 classifications	 respectively.	 The	 genes	were	 located	 in	 only	 2,358	

different	 locations,	 corresponding	 to	 their	 top	 level	 location	 association	 assigned	 by	

Ensembl.	

The	metadata	 that	 Ensembl	 assigns	 via	 external	 reference	 to	 the	GO	Database	

returned	 1,389	GO	 IDs	 and	 1,376	GO	definitions	 respectively,	 belonging	 to	 one	 of	 4	

different	GO	domains.	The	GO	domains	assigned	were	molecular_function	(MF),	

cellular_component	(CC),	biological_process	(BP)	and	NULL.	

The	 family	 description	 assignment	 from	 Ensembl	was	 used	 to	 plot	 the	 relative	

contribution	of	each	of	the	122	values	for	all	species	collectively	(see	Figure	4.19)	and	

for	each	species	individually	(see	Figure	4.20).	
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Figure	4.19	-	Bar	chart	showing	a	breakdown	of	the	functional	classifications	of	significantly	expanded	or	contracted	gene	families	for	the	release	67	primates	gene	family	data.	
All	 species	 data	 are	 pooled.	 Annotations	 correspond	 to	 values	 above	 an	 arbitrary	 cut-off	 of	 2,500	 members.	 Annotations	 are:	 1)	 Olfactory	 Receptor,	 2)	 Tripartite	Motif	
Containing	3)	Unknown,	5)	Zinc	finger	(truncated	at	6,000	–	actual	size	17,905).	See	Appendix	4.5	for	list	of	gene	family	descriptions.
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Figure	4.20	-	Bar	chart	showing	a	breakdown	of	the	functional	classifications	of	significantly	expanded	or	contracted	gene	families	for	the	release	67	primates	gene	family	data.	
All	species	data	are	represented	individually	to	highlight	per	species	contributions.	Annotations	correspond	to	values	above	an	arbitrary	cut-off	of	2,500	members.	Annotations	
are:	 1)	 Olfactory	 Receptor,	 2)	 Tripartite	 Motif	 Containing	 3)	 Unknown,	 5)	 Zinc	 finger	 (truncated	 at	 6,000	 –	 actual	 size	 17,905).	 See	 Appendix	 4.5	 for	 list	 of	 gene	 family	
descriptions.	
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Comparison	with	previously	identified	functional	classifications	

A	comparison	was	made	to	the	findings	of	a	previous	study	(Dumas	et	al.,	2007)	that	

focused	on	gene	copy	number	variation	across	60-million	years	of	primate	evolution.	

Dumas	et	al	 identified	a	 total	of	186	gene	names	 from	clusters	having	 copy	number	

changes	with	LS	changes	 in	humans.	Of	those	186	gene	names,	15	were	classified	as	

having	 noteworthy	 LS	 amplifications.	 These	 were	 queried	 against	 Ensembl	 and	 183	

Ensembl	gene	IDs	retrieved.	Of	those	183	gene	IDs,	107	Ensembl	gene	family	IDs	were	

retrieved	 for	 comparison.	All	 107	 family	 IDs	were	 found	within	 the	41,159	 raw	gene	

family	 IDs	 retrieved	 from	 release	67	of	 the	Ensembl	database.	Only	 77	matched	 the	

trimmed	dataset	of	11,024	family	 IDs	given	as	 input	to	CAFE.	A	total	of	25	family	 IDs	

were	recovered	as	being	significantly	expanded	or	contracted	by	comparison	with	the	

fixed	lambda	CAFE	run	(see	Appendix	4.6.	

Of	 the	 15	 noteworthy	 LS	 amplifications,	 12	 Ensembl	 gene	 IDs	 were	 identified	

belonging	 to	 10	 family	 IDs.	 All	 12	 of	 these	were	 found	within	 the	 41,159	 raw	 gene	

family	IDs	dataset,	with	11	in	the	trimmed	dataset	and	only	2	in	the	fixed	lambda	CAFE	

run.	 These	 2	 changes	 were	 in	 the	 same	 gene	 family	 with	 the	 ID	

ENSFM00250000000661	 having	 the	 DESCRIPTION	 GAMMA	

GLUTAMYLTRANSPEPTIDASE	PRECURSOR	GGT	(see	Appendix	4.7).	
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Discussion	

Analyses	of	gene	families	

The	analyses	to	identify	significantly	expanded	or	contracted	gene	families	in	primates	

produced	 some	 unexpected	 results,	 highlighting	 a	 large	 relative	 expansion	 in	 gene	

family	 sizes	 in	 the	 branch	 leading	 to	 modern	 humans	 (see	 Figure	 4.4),	 though	

confirming	the	findings	of	previous	studies	(Huynen	and	van	Nimwegen,	1998;	Koonin	

et	al.,	2002;	Karev	et	al.,	2002;	Barabási	and	Oltai,	2004),	which	state	that	gene	family	

sizes	approximate	a	power-law	distribution	(see	Figure	4.2).	Other	interesting	findings	

included	a	large	loss	in	gene	family	sizes	in	the	branch	leading	to	the	Philippine	tarsier	

(Tarsius	syrichta).	It	is	unclear	why	these	findings	have	not	been	previously	identified.	

Many	of	the	initial	genome	sequencing	projects	work	with	low	coverage	immature	raw	

sequence	 data	 that	 has	 yet	 to	 be	 comprehensively	 scrutinised	 and	 validated	 by	 the	

scientific	 community,	 although	 that	 is	 certainly	 not	 the	 case	 here	with	 humans.	 The	

tarsier	was	however	sequenced	as	part	of	the	Mammalian	Genome	Project	(Lindblad-

Toh	et	al.,	2011)	at	1.82X	coverage	in	order	to	provide	intermediate	scaffolds	between	

existing	mammalian	species	to	help	improve	their	annotation,	and	so	is	more	likely	to	

represent	 an	 incomplete	 assembly	 and	 annotation	 itself.	 In	 addition,	 the	 approach	

used	here	is	novel,	and	the	first	time	such	analysis	has	been	undertaken	in	this	way.	

Given	 the	 multiple	 possible	 sources	 of	 error	 that	 can	 exist	 in	 the	 process	 of	

sequencing,	assembling	and	annotating	a	genome	(Brenner,	1999;	Devos	and	Valencia,	

2001;	Alkan	et	al.,	2010),	the	outcome	of	any	analyses	needs	to	be	scrutinised	in	great	

detail.	There	could	be	multiple	confounding	factors	that	impact	on	the	findings	in	this	

chapter.	 Many	 of	 the	 primates	 have	 their	 sequences	 aligned	 and	 mapped	 back	 to	

humans	 for	 example,	 and	 as	 the	 human	 genome	 is	 the	most	 complete,	 a	 gene	 that	

exists	 in	 the	human	genome	yet	doesn’t	 in	another	due	 to	a	 low	coverage	assembly	

may	mistakenly	be	identified	as	a	loss	in	that	species.	Likewise,	this	could	also	result	in	

the	annotation	of	a	gain	in	copy	number	in	the	human	genome	when	it	is	really	down	

to	mapping	against	a	poor	assembly.	A	comparison	was	therefore	undertaken	with	the	

available	 rodent	 gene	 family	 data	 to	 determine	 if	 these	 findings	 were	 due	 to	 the	

nature	of	the	human	data,	an	artefact	of	the	approach	used	in	identifying	significantly	

changed	gene	families,	or	real	biological	change.	
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Understanding	the	data	

There	 has	 been	 an	 increasing	 medical	 investment	 in	 genomics	 (The	 1000	 Genomes	

Project	Consortium,	2011;	Gibson	and	Visscher,	2013;	Zhang	et	al.,	2013)	and	diversity	

panels	 (e.g.	 The	 1000	 Genomes	 Project	 Consortium,	 2011)	 have	 made	 the	 human	

genome	data	 rich	 in	 comparison	 to	 other	 species.	 The	 focus	 on	 population	 level	 re-

sequencing	 is	 limited	 to	 a	 small	 group	 of	model	 organisms	 as	well	 as	 domesticated,	

horticultural,	and	agricultural	species	 (Ellegren,	2014),	 though	the	medical	 interest	 in	

human	genomics	has	seen	projects	undertaking	sequencing	at	a	much	larger	scale	(The	

1000	 Genomes	 Project	 Consortium,	 2011;	 Hall	 et	 al.,	 2013).	 This	 likely	 makes	 the	

human	genome	the	most	well	annotated	and	understood	of	all	genomes.	If	the	human	

lineage	 specific	 expansion	of	 gene	 families	observed	 in	 this	 study	was	an	artefact	of	

being	 such	 a	 relatively	 well	 annotated	 genome,	 we	 should	 expect	 to	 see	 a	 similar	

expansion	on	the	branch	leading	to	Mus	musculus	relative	to	the	rodent	phylogeny.	In	

contrast	to	the	538	gene	families	identified	as	being	significantly	changed	in	primates	

(see	 Figure	 4.4),	 only	 414	 gene	 families	 were	 significantly	 changed	 in	 rodents.	 The	

expectation	 of	 an	 expansion	 in	 the	 branch	 leading	 to	Mus	 musculus	 was	 rejected	

following	visualisation	of	the	significant	gene	family	data,	where	we	instead	see	a	large	

relative	 expansion	 towards	 the	base	of	 the	 tree	 (see	 Figure	 4.8).	 Before	making	 any	

inferences	using	these	outcomes	however,	it	is	wise	to	try	and	understand	the	data	in	

more	detail.	

The	 sizes	 of	 the	 trimmed	 data	 (see	Materials	 and	Methods)	 used	 as	 input	 for	

CAFE	were	11,307	for	primates	and	11,947	for	rodents,	which	are	approximately	 the	

same,	 though	 they	 are	 taken	 from	 full	 data	 sets	 containing	 49,737	 and	25,610	 gene	

families	respectively	(see	Table	4.1	and	Table	4.3).	The	total	number	of	gene	families	is	

approximately	 double	 in	 primates	 compared	 to	 rodents.	 The	 reason	 behind	 this	 is	

unclear.	 It	 is	 possible	 that	 this	 could	 be	 an	 artefact	 of	 looking	 at	 only	 6	 primate	

genomes,	compared	to	the	11	primate	genomes.	Downsampling	the	primate	analyses	

may	be	helpful,	though	it	is	probable	that	population	size	has	an	effect	here.	Primates	

tend	 to	 have	 longer	 generation	 times	 and	 smaller	 population	 sizes.	 The	 shorter	

generation	times	and	larger	population	sizes	in	rodents	are	likely	therefore	to	impact	

the	 ability	 of	 duplicates	 to	 become	 fixed	within	 any	 population.	 This	 is	 because	 the	

duplicate	 landscape	 will	 change	 more	 frequently	 in	 such	 a	 population	 reducing	 the	

likelihood	that	any	one	duplicate	can	drift	to	fixation.	A	higher	duplicate	death	rate	(as	
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well	 as	 a	 lower	 birth	 rate)	 in	Mus	 musculus	 in	 comparison	 to	 Homo	 sapiens	 adds	

weight	 to	 this	argument	 (Lynch	and	Conery,	2003a).	The	 lower	number	of	significant	

changes	 in	 Mus	 musculus	 might	 therefore	 be	 expected,	 though	 conversely,	 the	

influence	of	these	population	variables	could	also	be	argued	as	resulting	in	higher	rates	

of	evolution	 (Martin	and	Palumbi,	1993;	Bromham,	2009;	Santos,	2012;	Steipera	and	

Seifferte,	2012),	meaning	we	might	have	expected	to	see	more	significant	changes	in	

the	rodents.	

The	differences	between	the	two	datasets	seems	negligible	in	terms	of	the	input	

numbers	 given	 to	 CAFE,	 however	 the	 maximum	 gene	 family	 sizes	 for	 each	 primate	

species	differs	 considerably	 from	 the	maximum	values	 seen	 in	 the	 rodents,	with	 the	

exception	 of	 Mus	 musculus	 (see	 Table	 4.2	 and	 Table	 4.4).	 When	 looking	 at	 the	

divergence	 times	 of	 these	 species	 (see	 Appendix	 Table	 4.8)	 we	 can	 see	 that	 the	

distance	 between	 the	 available	 rodents	 represents	 a	 more	 regularly	 sampled	 time	

gradient	in	primates,	with	the	five	members	of	the	Hominoidea	superfamily	diverging	

within	 the	 same	 period	 of	 time	 since	 the	 common	 ancestor	 of	Mus	 musculus	 and	

Rattus	 norvegicus.	When	 assembling	 and	 annotating	 the	 genomes	 of	 these	 species,	

sequence	 data	 is	 often	 necessary	 from	 relatively	 closely	 related	 species	 in	 order	 to	

build	 more	 comprehensive	 scaffolds,	 as	 a	 form	 of	 intermediate	 reference.	 If	 the	

divergence	times	are	too	great	then	elements	that	may	actually	be	conserved	between	

more	disparate	species	are	missed.	This	was	an	issue	for	early	genome	scientists	when	

the	available	genome	assemblies	were	hugely	deviating	(human,	mouse,	chicken),	and	

thus	intermediate	species	were	sequenced	to	assist	in	building	a	more	accurate	picture	

of	 these	 genomes	 from	a	 comparative	 evolutionary	 perspective	 (Lindblad-Toh	et	 al.,	

2011).	As	the	rodents	are	more	divergent,	it	is	likely	that	the	differences	between	the	

gene	family	data	are	influenced	by	factors	surrounding	their	assembly	and	annotation	

(see	 Appendix	 4	 –	 Table	 4.8	 and	 Table	 4.9),	 as	 well	 as	 their	 respective	 sequencing	

protocols.	

The	nature	of	the	data	

The	variability	in	the	quality	of	the	underlying	data	used	in	analyses	of	this	nature	are	

the	 most	 likely	 cause	 of	 inconsistencies	 in	 the	 results.	 Reaching	 robust	 conclusions	

from	the	results	of	error	prone	computational	experiments	is	extremely	difficult	and	it	

is	hard,	 if	not	 impossible	to	account	for	all	sources	of	error.	 It	 is	possible	to	consider	
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some	areas	that	might	introduce	bias	however,	and	in	analyses	of	this	type	incorrectly	

collapsed	duplicates	(ICD)	are	likely	to	have	a	big	influence	(Brenner,	1999;	Devos	and	

Valencia,	2001;	Khaja	et	al.,	2006).	ICDs	are	highly	variable	and	can	be	directly	linked	to	

sequencing	 coverage,	 sequencing	 quality,	 and	 assembly	 protocol.	 Indeed,	 the	

sequencing	 coverage,	 quality	 and	 protocols	 used	 in	 these	 species	 reflects	 this	 (see	

Table	4.5	and	Table	4.6).	Movement	towards	cheaper	and	more	accurate	sequencing,	

in	addition	to	maximum-likelihood	model	based	comparison	of	genome	assemblies	 is	

liable	 to	 improve	 things	moving	 forward	 (Medvedev	 and	 Brudno,	 2009;	 Clark	 et	 al.,	

2013;	Hunt	et	al.,	2013;	Ghodsi	et	al.,	2013).	 	

Ensembl	 pulls	 in	 data	 from	 external	 sources	 in	 order	 to	 provide	 experimental	

validation	of	 their	de	novo	gene	predictions	on	a	continual	basis.	This	occurs	roughly	

every	 three	months	 and	utilises	new	assemblies	 as	 they	become	available.	 The	data	

retrieved	from	external	sources	for	validation	of	the	human	annotations	however,	are	

more	extensive	than	any	of	the	other	genomes	in	Ensembl.	The	effect	of	the	fast	pace	

of	 experimentation	 involving	 human	 genome	 data	 is	 likely	 to	 compound	 this.	 How	

different	is	the	mouse	data	from	the	human	data,	however?	Both	of	these	projects	are	

extensively	 funded,	 have	 regularly	 updated	 assemblies	 and	 annotations,	 and	 benefit	

from	 additional	 manual	 annotation	 from	 the	 Wellcome	 Trust	 Sanger	 Institute’s	

HAVANA	 group.	 The	 additional	 sources	 of	 data	 for	 the	 human	 genome	 are	 likely	 to	

improve	 specific	 areas	 of	 the	 genome’s	 annotation,	 but	 conversely	 there	 is	 little	

change	 in	raw	counts	over	time	(see	Table	4.1	and	Table	4.7),	as	quality	of	assembly	

and	annotation	moves	closer	to	the	optimum,	however	the	number	of	significant	gene	

family	 changes	 actually	 increased	 from	 release	 66	 to	 release	 67	 (see	 Figure	 4.4	 and	

Figure	4.12).	

We	might	 consider	 CNV	 as	 accounting	 for	 differences	 in	 these	 data,	 with	 the	

multiple	 sources	 of	 data	 aggregated	 into	 the	 composite	 human	 genome	 resulting	 in	

overrepresentation	 of	 the	 duplicate	 landscape.	 Although	 this	 is	 plausible,	 genome	

assemblies	 are	 constantly	 updated	over	 time.	 Problematic	 areas	 are	 highlighted	 and	

issues	 such	 as	 over-	 or	 under-representation	 of	 duplicates	 at	 particular	 loci	 are	

addressed	 based	 on	 new	 experimental	 evidence.	 All	 these	 data	 are	 used	 to	 build	 a	

more	 accurate	 reference	 genome,	 with	 variation	 data	 being	 stored	 separately	 for	

additional	 analytical	 purposes	 (Chen	 et	 al.,	 2010;	 Rios	 et	 al.,	 2010).	 If	 CNV,	 due	 to	
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increased	 population	 level	 sequencing,	 were	 the	 cause	 of	 the	 apparent	 gene	 family	

changes	in	humans	we	might	expect	to	see	a	similar,	albeit	less	pronounced,	pattern	in	

the	 mouse	 genome.	 This	 would	 be	 dependent	 on	 similar	 levels	 of	 population	 re-

sequencing,	 however,	 and	 comparable	 levels	 of	 sequence	 divergence	 between	

individuals,	which	is	unlikely	due	to	the	much	greater	focus	on	human	population	level	

genomics	(The	1000	Genomes	Project	Consortium,	2011;	Hall	et	al.,	2013).	We	instead	

see	a	relatively	large	expansion	towards	the	base	of	the	rodent	phylogenetic	tree	(see	

Figure	4.8).	It	is	useful	to	remember	here	that	the	figure	weights	the	branch	thickness	

by	 branch	 length	 from	 node	 to	 the	 LCA	 for	 each	 branch	 of	 the	 tree.	 The	 relative	

numbers	of	changes	are	clear	however,	with	843	expansions	and	117	contractions	 in	

humans	 and	 only	 38	 expansions	 and	 23	 contractions	 in	 mouse	 (see	 Figure	 4.4	 and	

Figure	 4.8).	 Divergence	 time	 is	 a	median	 of	 6.1	Mya	 between	 human	 and	 chimp	 in	

comparison	to	22.0	Mya	between	mouse	and	rat	(see	Appendix	4.8	and	Appendix	4.9),	

so	more	 adequate	 sampling	 between	mouse	 and	 rat	may	 have	 an	 impact	 on	 these	

results.	Having	higher	sampling	within	a	clade	and	thus	more	closely	related	species	to	

compare	to,	can	assist	in	identifying	less	divergent	changes	and	pinpoint	elements	that	

are	 conserved	 between	 those	 species.	 With	 more	 divergent	 species	 the	 ability	 to	

identify	duplicates	may	thus	be	more	difficult	due	to	greater	sequence	divergence.	This	

effect	is	unlikely	to	be	large	in	placental	mammals,	but	certainly	more	profound	in	the	

rodent	genomes	used	here	than	in	the	primates.	

It	is	possible	to	exclude	species	from	the	analyses	to	test	for	the	introduction	of	

bias	 from	 a	 particular	 branch,	 or	 to	 introduce	 an	 artificially	 greater	 divergence	

between	certain	 species.	 If	 the	nature	of	 the	human	data	were	having	an	 impact	on	

the	results	across	the	tree,	we	would	expect	to	see	changes	when	removing	the	human	

data	 from	 the	 CAFE	 analyses.	 Doing	 so	 appears	 to	 have	 little	 effect	 on	 the	 results	

however	 (see	 Appendix	 4.10).	 It	 is	 likely,	 therefore,	 that	 the	 nature	 of	 the	 data	 in	

relation	to	the	underlying	sampling	and	its	impact	on	assembly	and	annotation	quality	

has	more	repercussions	for	the	results,	though	there	is	also	an	effect	seen	by	differing	

the	parameters	used	in	the	CAFE	analyses.	

Evaluation	of	the	approach	

CAFE	allows	a	number	of	different	inputs	when	estimating	the	probability	of	gene	gain	

and	 loss	 over	 time	 (lambda).	 In	 particular,	 it	 allows	 the	 user	 to	 give	 explicit	 lambda	
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values	 for	 each	 node	 of	 the	 tree	 or	 has	 the	 ability	 to	 search	 for	 the	 values	 that	

maximise	the	log-likelihood	across	the	tree	as	a	whole.	When	searching	the	parameter	

space	for	the	most	likely	lambda,	different	values	can	be	estimated	for	different	nodes	

and	likewise	some	nodes	can	be	fixed	with	static	values.	Additionally,	 it	 is	possible	to	

estimate	 lambda	 values	 for	 each	 gene	 family	 individually.	When	using	 the	 individual	

gene	family	approach,	it	isn’t	possible	to	estimate	values	for	all	families	combined,	and	

requires	manual	 aggregation	 of	 the	 data	 for	 comparison	 with	 results	 reached	 using	

different	parameters.	

Using	different	parameters	for	CAFE	allows	us	to	address	the	data	with	different	

assumptions	about	their	evolutionary	history.	Using	a	 fixed	 lambda	assumes	that	the	

probability	of	gain	and	 loss	 is	equal	across	 the	 tree,	 though	 this	 is	unlikely	 to	be	 the	

case;	both	in	terms	of	the	nature	of	the	data	and	different	the	different	evolutionary	

and	life	history	characteristics	of	the	species	in	question.	It	is	therefore	more	likely	that	

a	 variable	 lambda	 reflects	 the	 significant	 changes	 in	 the	 duplication	 landscape	more	

accurately.	A	fixed	lambda	is	separate	from	fixed	birth	(B)	and	death	(D)	parameters,	

which	are	considered	to	be	equal	in	CAFE,	thus	B	and	D	are	equally	as	likely	using	this	

model	 regardless	 of	 the	 probability	 of	 gain	 and	 loss	 along	 the	 branch.	 Previous	

research	has	shown	us	that	B	and	D	rates	differ	between	species	(Lynch	and	Conery,	

2003a),	 so	 this	 is	 also	 an	 unrealistic	 limitation	 of	 the	 model.	 Using	 an	 explicit	 or	

estimated	 lambda	 that	 varies	 at	 different	 nodes	 is	 likely	 to	 lead	 to	 a	more	 realistic	

representation	of	the	underlying	expansions	and	contractions	of	gene	families.	

By	 utilising	 a	 fixed	 and	 varied	 lambda	 with	 the	 release	 67	 data	 there	 is	 a	

difference	 in	 the	 estimated	 significantly	 changed	 gene	 families	 of	 626	 for	 fixed	 (see	

Figure	4.12)	and	309	 for	varied	 (see	Figure	4.14)	 respectively.	Although	there	 is	 little	

change	in	the	values	seen	for	primates,	there	is	a	big	change	in	the	outgroup	species	

Tupaia	belangeri,	which	exhibits	298	expansions	and	430	losses	 in	the	fixed	tree,	but	

only	3	gains	and	1	 loss	 in	 the	varied	 tree.	The	assembly	 information	 shows	 that	 this	

genome	is	subject	to	poor	coverage	(see	Table	4.5),	and	is	thus	likely	of	dubious	quality.	

With	this	being	a	divergent	outgroup	with	no	close	relatives	in	the	Ensembl	databases	

our	 confidence	 in	 the	 annotation	 of	 family	 sizes	 is	 reduced,	 but	 even	 still	 this	 is	 an	

unexpected	and	unlikely	result.	There	are	also	expansions	where	there	were	previously	

contractions	in	the	basal	branch	leading	to	the	common	ancestor	of	the	primates,	and	
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the	branch	leading	to	common	ancestor	of	Otolemur	garnettii	and	Microcebus	murinus.	

Microcebus	 murinus	 is,	 like	 Tupaia	 belangeri,	 a	 low	 coverage	 genome,	 however	

Otolemur	garnettii	 is	very	high	coverage,	which	may	be	the	reason	for	this	variability	

towards	the	root	of	the	tree	between	the	fixed	and	varied	runs.	

The	most	 likely	 scenario,	 from	 an	 evolutionary	 perspective,	 is	 variation	 in	 the	

probability	 of	 gain	 and	 loss	 in	 both	 individual	 taxa	 and	 individual	 gene	 families.	 By	

emulating	 these	 assumptions	 via	 the	 CAFE	 software	 we	 reach	 an	 outcome	 of	 163	

significantly	changed	gene	families	(see	Figure	4.16).	The	discrepancies	in	the	outgroup	

between	 the	 fixed	 and	 varied	 runs	 are	 restored,	 though	we	 instead	 see	 expansions	

along	the	branches	leading	to	the	common	ancestor	of	the	primates	and	the	common	

ancestor	 of	 the	 Haplorhini	 (prosimian	 tarsiers	 and	 the	 anthropoids).	 The	 change	 in	

humans	 is	 more	 modest	 at	 734	 expansions	 and	 16	 contractions,	 given	 the	 >	 1000	

expansions	and	~30	contractions	in	the	fixed	and	varied	runs.	As	this	method	reduces	

overall	 bias	 imposed	 by	 both	 individual	 gene	 family	 sizes	 and	 individual	 taxa,	 it	 is	

reasonable	 to	 suggest	 it	 represent	 the	 most	 likely	 state	 of	 significant	 gene	 family	

changes	 in	these	species.	 It	 is	clear	however	that,	as	with	many	other	bioinformatics	

algorithms,	varying	the	parameters	and	assumptions	made	by	these	models	can	have	

big	impacts	on	the	conclusions	that	we	draw	from	them.	

There	 are	 a	 number	 of	 other	 programs	 that	 take	 varying	 approaches	 to	 the	

identification	 of	 gene	 family	 data,	 as	 well	 as	 discussing	 the	 limitations	 of	 the	 CAFE	

software	in	both	terms	of	 its	underlying	model	and	flexibility	 in	parameters	(Ames	et	

al.,	2012;	Liu	et	al.,	2011;	Vieira	and	Rozas,	2011).	These	software	primarily	 focus	on	

parsimony	and	maximum	likelihood	models	(Ames	et	al.,	2012;	Vieira	and	Rozas,	2011),	

but	show	that	there	is	no	significant	impact	on	the	results,	given	species	that	diverged	

less	than	~100	Mya	(Ames	et	al.,	2012).	The	power	of	Bayesian	statistics	to	account	for	

more	 diversity	 in	 the	 underlying	 distributions	 makes	 it	 more	 powerful	 however	 in	

widely	 divergent	 species	 (Liu	et	 al.,	 2011;	 Rannala	 and	 Yang,	 2003;	 Yang	 and	 Yoder,	

2004;	Mayrose	et	 al.,	 2004;	Beerli,	 2006).	 CAFE	has	 certainly	 stood	 the	 test	 of	 time,	

being	an	 integral	tool	 in	a	numbers	of	studies	(Hahn	et	al.,	2005;	De	Bie	et	al.,	2006;	

Hahn	et	 al.,	 2007;	Han	et	 al.,	 2013).	 Its	 adoption	 by	 Ensembl	 (Flicek	et	 al.,	 2012)	 to	

include	 information	 on	 significant	 changes	 across	 the	 entire	 Ensembl	 species	 tree,	

emphasises	how	it	is	considered	as	the	most	robust	approach	to	this	problem.	Many	of	
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its	 limitations,	 as	 highlighted	 by	 alternate	 software	 (Ames	 et	 al.,	 2012),	 such	 as	 an	

inability	to	account	for	biases	in	the	underlying	sequence	quality	or	coverage	that	can	

often	impact	on	the	accuracy	of	the	genome	assembly	and	annotations	for	 individual	

species,	have	now	been	addressed	with	the	release	of	CAFE	3	(Han	et	al.,	2013).	Error	

models	have	now	been	incorporated	into	the	CAFE	algorithm	that	allow	weights	to	be	

applied	 to	 each	 gene	 family	 for	 each	 of	 the	 species.	 CAFE	 can	 then	 infer	models	 of	

gene	family	gain	and	loss,	and	change	in	gene	family	size	independently	for	individual	

gene	 families	 and	 species,	 in	 the	 presence	 of	 potential	 errors.	 This	 should	 greatly	

improve	the	inference	of	significant	gene	family	changes	across	the	phylogenetic	tree.	

Real	biological	change?	

The	 analyses	 here	 have	 considered	 and	 accounted	 for	 the	 effects	 of	 branch	 length,	

individual	 species	 bias	 and	 variance	 in	 gene	 family	 size	 across	 the	 tree	 as	 a	 whole.	

Previous	research	shows	that	these	have	little	impact	on	the	results	(Hahn	et	al.,	2007),	

though	 their	 approach	 groups	 often	 quite	 divergent	 species	 into	 the	 same	 lambda	

categories,	 assuming	 equal	 birth	 and	 death	 rates	 along	 those	 branches,	 and	 thus	

reducing	the	ability	to	highlight	such	effects.	The	data	presented	here	show	that	when	

estimating	different	lambdas	for	each	branch	of	the	tree,	the	impact	of	individual	gene	

family	size	is	more	prominent	(see	Figure	4.14	and	4.16).	This	approach	is	likely	to	be	

the	most	accurate	as	 it	 removes	 the	assumption	of	equal	change	across	all	branches	

and	in	individual	gene	families,	therefore	reducing	bias	in	the	results.	

To	support	this	we	can	consider	the	birth	and	death	rates	of	duplicate	genes	in	

humans	 (B=0.0049,	D=0.081),	which	 have	 been	 shown	 to	 be	 asymmetric	 (Lynch	 and	

Conery,	2003a;	Goodstadt	and	Ponting,	2006).	CAFE	assumes	an	equal	birth	and	death	

rate,	which	Hahn	et	al.	(2007)	determine	as	being	no	more	likely	to	result	in	rejection	

of	 the	 null	 hypothesis	 when	 compared	with	 results	 given	 a	much	 higher	 birth	 rate.	

Their	 conclusions	 assume	 that	 the	 human	 and	 chimp	 lineage	 have	 an	 equal	 rate	 of	

birth	and	death	(B,D=0.0039),	which	although	similar	to	the	previous	birth	estimates	in	

humans,	 varies	 considerably	 from	death	 rates	 (Hahn	et	al.,	 2007;	 Lynch	and	Conery,	

2003a).	 The	 difference	 in	 sequence	 divergence	 and	 copy	 number	 variation	 between	

these	species	doesn’t	seem	to	support	the	decision	to	apply	an	equal	rate	for	B	and	D	

to	 these	 species	 (Demuth	et	al.,	 2006;	Marques-Bonet	et	al.,	 2009).	 These	birth	 and	

death	rates	are	of	course	averages	and	so	applying	an	average	for	the	entirety	of	the	
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duplications	 across	 the	 tree	or	within	 a	 clade	 seems	 counter-intuitive.	 By	 estimating	

lambda	 for	each	branch	and	gene	 family	 individually,	we	 reduce	 this	 effect,	 and	 can	

achieve	 more	 accurate	 results	 (B,D=0.0068	 in	 humans,	 B,D=0.0056	 in	 chimps;	 see	

Appendix	 4.3).	 Changes	 in	 the	 CAFE	 software	 should	 improve	 the	 accuracy	 even	

further	and	 indeed	by	accounting	 for	error	 in	annotation	and	assembly	a	higher	 rate	

for	humans	is	seen	(B,D=0.0062)	that	is	closer	to	our	results,	though	this	still	assumes	

equality	in	the	probability	of	birth	and	death	of	duplicates	for	humans	and	chimps,	as	

well	as	an	equal	birth	and	death	rate	(Han	et	al.,	2013).	

Given	 the	 variability	 in	 the	 quality	 of	 data	 from	 the	 raw	 reads,	 the	 reference	

assembly	and	associated	annotation,	it	 is	difficult	to	reach	a	solid	conclusion	that	the	

expansion	 in	 the	 branch	 leading	 to	 modern	 humans	 is	 the	 result	 of	 real	 biological	

change	in	gene	family	size	over	the	last	6.1	million	years.	In	addition,	there	are	various	

sources	of	methodological	bias,	however	I	attempt	to	account	for	these	limitations	in	

this	study	and	believe	the	results	represent	a	more	accurate	picture	of	the	landscape	

of	significant	expansions	and	contractions	across	the	available	primate	genomes.	

Functional	 classifications	 of	 significantly	 expanded	 or	 contracted	 primates	 gene	

families	

In	order	to	understand	whether	adaptation	plays	a	role	 in	the	significant	gene	family	

changes	highlighted	here	we	can	examine	 the	 functional	 classification	of	 these	data.	

The	evolutionary	fate	of	duplicates	can	be	influenced	by	environmental	pressures,	and	

thus	 those	 genes	 that	 have	 an	 adaptive	 benefit	 are	more	 likely	 to	 be	 fixed	within	 a	

population	 (Lynch	 and	 Conery,	 2000;	 Lynch	 and	 Conery,	 2003a).	 By	 critiquing	 these	

annotations	 in	 relation	 to	 previous	 studies,	 we	 can	 provide	 additional	 weight	 to	

support	or	 reject	our	 finding	of	 large	significant	changes	along	 the	branch	 leading	 to	

modern	 humans.	 Adaptation	 to	 a	 changing	 environment	 is	 commonplace	 in	 nature	

(Sandve	et	al.,	2008;	Chen	et	al.,	2008;	Turner	et	al.,	2010;	Fischer	et	al.,	2011;	Sheik	et	

al.,	2011;	Oh	et	al.,	2012;	Wu	et	al.,	2012;	Chao	et	al.,	2013;	Jiang	et	al.,	2013;	Norman,	

2014)	 and	 there	 is	 a	 great	 deal	 of	 evidence	 to	 suggest	 its	 occurrence	 during	 human	

evolution	(Pronk	et	al.,	1982;	Perry	et	al.,	2007;	Zozulya	et	al.,	2001;	Young	et	al.,	2008).	

In	particular	previous	studies	have	highlighted	expansions	in	gene	families	involved	in	

reproductive,	immunological	and	development	roles	(Hahn	et	al.,	2005;	Demuth	et	al.,	
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2006),	 with	 various	 expansions	 in	 the	 great	 ape	 lineage	 (Mikkelsen	 et	 al.,	 2005;	

Marques-Bonet	et	al.,	2009).	

Making	 accurate	 inferences	 on	 the	 adaptive	 landscape	 of	 the	 significantly	

changed	 duplicates	 requires	 accurate	 data	 across	 all	 stages	 of	 the	 process.	 As	

previously	 discussed,	 errors	 in	 the	 underlying	 raw	 sequence	 data	 can	 propagate	

through	 higher	 level	 stages,	 resulting	 in	 flawed	 data	 for	 analyses.	 The	 different	

assumptions	made	by	analytical	programs	also	impacts	the	results	in	varying	degrees.	

The	release	66	fixed	(see	Figure	4.17)	and	release	67	varied	individual	(see	Figure	4.19)	

data	sets	agree	on	 the	 functional	classifications	of	a	number	of	 significantly	changed	

families,	 however	 conflict	 in	 raw	number	of	unique	descriptions	 (r66=392,	 r67=122),	

which	 emphasises	 how	 differing	 levels	 of	 annotation	 and	 the	 parameters	 and	

assumptions	made	in	the	analysis	can	impact	on	the	outcome	(Ames	et	al.,	2012;	Han	

et	al.,	2013).	

Values	 over	 a	 threshold	 frequency	of	 2,500	 are	 taken	 for	 further	 discussion	 as	

these	represent	the	most	abundant.	There	are	5	peaks	highlighted	above	this	cut-off	

(Epithelial	 Discoidin	 Domain	 Containing	 Receptor,	 2	 Olfactory	 Receptors,	 Unknown,	

and	 Zinc	 Finger).	 These	 families	 all	 fall	 within	 the	 broad	 classifications	 of	 having	

reproductive,	 immunological	 or	 developmental	 functions.	 Class	 II	 Histocompatibility	

Antigen	falls	within	the	broader	Major	Histocompatibility	Complex,	which	are	involved	

in	presenting	peptides	to	CD4+	lymphocytes	as	part	of	the	innate	immune	system.	This	

family	has	a	UniProt	(Apweiler	et	al.,	2004)	BP	annotation	of	“Immunity”,	however	GO	

lists	a	wider	range	of	BP	annotations	including	“T	cell	receptor	signalling	pathway”	and	

“antigen	processing	and	presentation	of	exogenous	peptide	antigen	via	MHC	class	II”.	

The	 Epithelial	 Discoidin	 Domain	 Containing	 Receptor	 is	 an	 epithelial	 cell	 membrane	

protein	 involved	 in	 developmental	 processes	 such	 as	 cell	 migration,	 differentiation,	

survival	 and	 cell	 proliferation.	 It	 has	 UniProtKB	 BP	 annotations	 of	 “Lactation”	 and	

“Pregnancy”	 however	 has	 a	 broad	 range	 of	 GO	 BP	 annotations	 including	 “ear	

development”,	 “embryo	 implantation”	 and	 “regulation	 of	 cell-matrix	 adhesion”.	 The	

Olfactory	Receptor	is	a	cell	membrane	protein	responsible	for	odour	reception.	It	has	

UniProtKB	 BP	 annotations	 of	 “Olfaction”	 and	 “Sensory	 transduction”	 and	 a	 GO	 BP	

annotation	of	“detection	of	chemical	stimulus	involved	in	sensory	perception	of	smell”.	

Zinc	 Finger	 is	 a	broad	 classification,	 likely	 encompassing	a	wider	 set	of	proteins	 that	
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contain	 this	 structural	motif.	 Previous	 studies	have	excluded	 this	 family	 to	 assess	 its	

impact	 on	 the	 results	 of	 their	 analyses	 (Hahn	et	 al.,	 2007),	 however	 it	was	 show	 to	

have	 little	 effect	 on	 the	 outcome	 and	 additionally	 the	 approach	 taken	with	 the	 r67	

variable	 lambda	 individual	gene	 family	dataset	here	doesn’t	bias	 the	 results	of	other	

families	 with	 its	 inclusion.	 The	 UniProtKB	 BP	 annotates	 these	 proteins	 as	 being	

involved	 in	 “Transcription”	 and	 “Transcription	 regulation”	 and	 GO	 BP	 annotations	

include	 “regulation	 of	 transcription”	 and	 “transcription,	 DNA-dependent”.	 These	

families	alone	confirm	the	findings	in	previous	studies	and	support	our	hypothesis	that	

these	 changes	 are	 likely	 adaptive.	 There	 are	 also	 other	 interesting	 findings	 (see	

Appendix	 4.4	 and	 Appendix	 4.5)	 that	 are	 supported	 by	 the	 literature,	 including	 a	

significant	expansion	in	humans	of	the	Alpha	Amylase	Precursor	EC_3.2.1.1	family.	This	

protein	 family	 has	 the	 HGNC	 (HUGO	 (Human	 Genome	 Organisation)	 Gene	

Nomenclature	Committee)	prefix	AMY1A,	which	is	a	salivary	amylase	and	is	thought	to	

be	expanded	due	to	adaptation	to	an	increased	amount	of	starch	in	the	diet	following	

the	advent	of	agriculture	(Pronk	et	al.,	1992;	Perry	et	al.,	2007).	

The	 functional	 analyses	 highlight	 a	 large	 number	 of	 “UNKNOWN”	 and	

“AMBIGUOUS”	annotations	in	these	data,	with	the	former	class	being	above	our	2,500	

frequency	cut-off.	There	could	be	a	number	of	reasons	behind	this.	When	focusing	on	

the	“UNKNOWN”	class,	the	most	obvious	reason	is	that	these	are	de	novo	predictions	

that	 have	 no	 evidence	 to	 support	 them.	 However,	 along	 with	 the	 “AMBIGUOUS”	

classification	 these	groupings	 could	also	be	 the	 result	 of	 error	 in	 the	underlying	 raw	

sequence	data	and	assembly.	 If	short	 low	quality	or	highly	repetitive	reads	that	form	

overlapping	 segments	 are	 incorrectly	 collapsed	 as	 duplicates	 (Brenner,	 1999;	 Devos	

and	 Valencia,	 2001),	 they	 may	 subsequently	 have	 no	 hits	 against	 known	 proteins	

(“UNKNOWN”	 class)	 or	 have	 low	 similarity	 hits	 against	 one	or	more	 known	proteins	

(“AMBIGUOUS”	class).	As	sequence	quality,	assembly	and	annotations	improve,	along	

with	 the	 development	 of	 more	 robust	 models	 that	 reduce	 or	 improve	 on	 the	

assumptions	made	(Han	et	al.,	2013),	 there	should	be	a	reduction	 in	 these	numbers,	

which	these	data	support	(r66	frequencies;	“UNKNOWN”=5833,	“AMBIGUOUS”=1456,	

r67	frequencies;	“UNKNOWN”=2637,	“AMBIGUOUS”=305).	 	

By	plotting	the	proportion	of	the	functional	data	that	is	influenced	by	individual	

species	(see	Figure	4.18	and	Figure	4.20)	it	is	possible	to	highlight	where	there	may	be	
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a	bias	in	particular	species	due	to	overrepresentation	in	the	underlying	data.	It	is	clear	

that	there	is	a	large	influence	from	humans	in	both	the	release	66	and	release	67	data.	

This	 inequality	 in	 the	 data	may	 be	 representative	 of	 the	 underlying	 patterns	 in	 the	

change	 in	 gene	 family	 sizes	 to	 a	 degree.	 Due	 to	 the	 difference	 in	 quality	 of	 these	

genome	 annotations	 however,	 with	 humans	 being	 by	 far	 being	 the	 most	 well	

annotated	 (due	 to	 being	 the	 most	 well	 studied),	 there	 is	 likely	 to	 be	 an	 unfair	

representation	of	the	true	values	of	the	non-human	genomes.	Those	species	that	are	

more	divergent	or	within	less	well	sampled	clades	are	likely	to	be	impacted	even	more	

so,	 as	 it	 is	 more	 difficult	 to	 build	 an	 accurate	 assembly	 for	 these	 species	 due	 to	

increased	 sequence	 divergence.	 If	 only	 a	 single	 individual	 is	 used	 to	 represent	 the	

species,	 then	 CNV	 may	 decrease	 our	 confidence	 in	 the	 outcome	 of	 gene	 family	

annotations.	Additionally,	 the	 lower	coverage	of	many	of	these	genomes	compounds	

this	 issue	as	the	resulting	quality	of	the	raw	data	and	assemblies	are	 likely	to	 lead	to	

increased	errors,	particularly	when	attempting	to	correctly	collapse	duplicates.	

By	comparing	 the	 functional	 classifications	 for	humans	determined	here	with	a	

previous	study	(Dumas	et	al.,	2007)	we	can	assess	the	effect	of	assembly,	annotation	

and	approach	even	 further.	The	 results	 reached	herein	vary	considerably	 from	those	

obtained	 by	 Dumas	 et	 al.	 The	 impact	 of	 varying	 the	 approach	 taken	 and	 the	

annotations	 used	 in	 this	 study	 alone	 emphasise	 these	 differences	 (release	 66=25	

matches,	release	67=2	matches).	We	must	also	consider	the	data	and	approach	taken	

by	Dumas	et	al.	Their	data	is	based	on	the	UCSC	hg18	annotations	(Kuhn	et	al.,	2007)	

built	on	top	of	the	NCBI36	assembly	from	2006.	Our	data	utilises	the	Ensembl	release	

67	 annotations	 from	May	 2012	 (Flicek	 et	 al.,	 2011),	 which	 is	 based	 on	 the	 GRCh37	

assembly,	in	particular	patch	7,	which	was	updated	in	January	2012.	The	last	release	of	

Ensembl	to	use	the	NCBI36	human	genome	assembly	was	release	54	from	May	2009	

(Hubbard	et	al.,	 2008).	 The	methods	used	 to	 identify	 gene	 copy	numbers	was	vastly	

different	 too.	Dumas	et	 al.	 used	 array	 comparative	 genomic	 hybridization	 (aCGH)	 of	

novel	biological	samples,	mapping	the	position	of	cDNA	clones	with	high	fluorescence	

ratios	to	the	UCSC	assembly	and	retrieving	annotations	accordingly.	They	additionally	

performed	BLAT	(Kent,	2002)	searches	using	the	GenBank	accessions	corresponding	to	

their	cDNA	clones,	to	determine	whether	lineage	specific	(LS)	changes	corresponded	to	

the	values	retrieved	via	analyses	of	their	aCGH	data.	
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The	 method	 used	 by	 Dumas	 et	 al.	 (2007)	 is	 considerably	 different	 from	 the	

predominantly	 automated	 computational	 identification	 of	 copy	 numbers	 used	 by	

Ensembl.	Although	Ensembl	utilise	sources	of	experimental	data	as	evidence	for	their	

annotations,	their	computational	annotation	procedure	is	biased	towards	introducing	

errors	(Brenner,	1999;	Devos	and	Valencia,	2001;	Alkan	et	al.,	2010)	that	are	less	likely	

when	manually	annotating	the	data	(though	see	Iliopoulos	et	al.,	2003;	Curwen	et	al.,	

2004;	Potter	et	al.,	2004).	Although	Dumas	et	al.	take	a	different	approach	and	reach	

widely	different	conclusions,	their	method	is	no	more	accurate	or	conclusive	than	my	

own.	 Studies	 based	 on	 their	 approach	 are	 known	 to	 suffer	 from	 the	 poor	 quality	 of	

cDNA	 libraries	 (Hubbard	 et	 al.,	 2002;	 Paszkiewicz	 and	 Studholme,	 2010).	 This	 is	

compounded	by	the	known	limitations	of	aCGH	(Weiss	et	al.,	1999;	Oostlander	et	al.,	

2004).	 More	 recent	 studies	 emphasize	 these	 effects	 even	 further	 and	 discuss	 the	

importance	of	considering	the	nature	of	 the	data	 in	addition	to	 its	biological	context	

when	making	 inferences	 based	 on	 the	 results	 (Gazave	 et	 al.,	 2011;	 Sudmant	 et	 al.,	

2013;	Han	et	al.,	2013).	

Sudmant	 et	 al.	 (2013)	 in	 particular	 use	 an	 approach	 that	 takes	 97	 sequenced	

genomes	of	multiple	 individuals	within	populations	 across	 the	Great	Ape	phylogeny.	

These	genomes	are	sequenced	to	high	coverage,	including	75	at	25X	coverage	on	the	

Illumina	 HiSeq	 2000	 platform	 as	 part	 of	 the	 Great	 Ape	 Genome	 Diversity	 Project	

(Prado-Martinez	 et	 al.,	 2013),	 and	 others	 from	 the	Orang-utan	Genome	 Project	 and	

Denisova	Genome	Project.	The	raw	reads	were	aligned	back	to	the	UCSC	hg18	NCBI36-

based	human	reference	genome	making	use	of	their	high	quality	genome	annotations	

(Kuhn	et	al.,	2007)	using	mrsFASTc	aligner	(Hach	et	al.	2010).	Read	depth	profiles	were	

constructed,	and	following	a	number	of	correction	and	validation	steps,	including	high	

GC	content	masking	and	aCGH,	were	used	to	determine	absolute	copy	number	of	a	loci	

across	the	populations	and	the	numbers	of	deletions	and	duplications	of	genes	across	

the	Great	Ape	phylogeny.	

As	with	Dumas	et	al.	(2007)	the	results	varied	considerably,	and	in	particular	the	

extent	 of	 human	 expansions	 and	 contractions	 identified	 in	 my	 analyses	 was	 not	

reflected.	A	total	of	407	lineage	specific	duplications,	and	340	deletions	were	identified.	

This	 is	 in	contrast	to	the	186	changes	 in	copy	number	 identified	by	Dumas	et	al.	and	

the	163	changes	identified	in	my	CAFE	analyses	using	a	variable	lambda	for	each	gene	
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family	 and	 across	 the	 tree	 (varied_indiv	 data).	 Of	 the	 747	 duplications	 and	

deletions	 identified	by	Sudmant	et	al.,	 this	 resolved	 to	11,503	copy	number	changes	

corresponding	to	a	total	of	4,831	unique	gene	names.	In	comparing	the	HGNC	symbol	

to	the	Ensembl	genome	database	using	Ensembl	BioMarts	(Kinsella	et	al.,	2011)	via	the	

Bioconductor	 package	 (Durinck	 et	 al.,	 2005;	 Durinck	 et	 al.,	 2009),	 a	 total	 of	 5,000	

Ensembl	gene	 IDs	were	 returned.	This	 is	 likely	due	 to	 the	existence	of	multiple	gene	

copies	 in	 the	Ensembl	database	 that	 corresponded	 to	 the	associated	HGNC	symbols.	

When	comparing	the	retrieve	Ensembl	gene	IDs	from	the	Sudmant	study	with	the	non-

significant	 varied_indiv	 data	 from	 my	 study,	 a	 total	 of	 3,586	 gene	 IDs	 were	

matched.	 When	 comparing	 with	 the	 significantly	 expanded	 or	 contracted	

varied_indiv	 data,	 88	 gene	 family	 IDs	 were	matched	 of	 which	 there	 were	 483	

copy	number	changes,	corresponding	to	a	total	of	474	unique	gene	IDs.	Although	the	

majority	 of	 the	 specific	 duplications	 and	 deletions	 discussed	 by	 Sudmant	 et	 al.	 (e.g.	

PRDM7,	C1QTNF,	AMACR,	and	BOLA2)	were	identified	within	the	larger	non-significant	

dataset,	 only	 the	 CYP2C18	 gene	 family	 identified	 as	 being	 deleted	 in	 Humans	 and	

Chimps	was	recovered	from	the	significant	varied_indiv	dataset.	

The	approach	taken	to	assembling	and	annotating	these	data	differs	considerably,	

even	in	relation	to	Dumas	et	al.;	though	where	the	latter	study	focuses	on	using	aCGH	

as	a	primary	means	of	copy	number	identification,	the	Sudmant	et	al.	study	uses	aCGH	

as	 a	 validation	 step	 to	 confirm	 the	 correct	mapping	 of	 raw	 reads	 to	 the	UCSC	 hg18	

(NCBI36-based)	reference	genome.	This	method	seems	to	work	well	 in	that	the	gene	

families	 identified	 as	 being	 expanded	 or	 contracted	 largely	 conform	 to	my	 findings,	

however,	 there	 are	 still	 a	 number	 of	 gene	 families	 that	 aren’t	 identified	 using	 their	

techniques.	 Only	 approximately	 50%	 of	 the	 gene	 families	 identified	 as	 being	

significantly	 expanded	or	 contracted	 in	 the	varied_indiv	 part	 of	my	 study	were	

identified	 by	 Sudmant	 et	 al’s	method.	 Of	 the	 total	 11,503	 copy	 number	 changes	 in	

total	 this	 equated	 to	 6,458	 genes	 in	 my	 non-significant	 dataset.	 As	 previously	

mentioned	the	approach	used	to	 identifying	copy	number	changes	 is	only	as	good	as	

the	underlying	assembly,	and	in	using	the	older	NCBI36	assembly	to	map	their	reads	to,	

Sudmant	et	al.	have	 fallen	short	of	 identifying	 the	 true	 repertoire	of	expansions	and	

contractions	 across	 the	 Great	 Ape	 phylogeny.	 The	 robustness	 of	 the	 underlying	

(GRCh37.p7)	 assembly,	 alongside	 Ensembl’s	 automated	 annotations,	 computational	

validation	 against	 the	 results	 of	 molecular	 experiments,	 and	 manual	 gene	 curation	



Page	160	of	314	

means	 their	 data	 is	more	 likely	 to	 report	 a	 comprehensive	 and	 correct	 detail	 of	 the	

deletion	 and	 duplication	 landscape	 across	 the	 entire	 primate	 phylogeny,	 albeit	 with	

some	bias	towards	more	well	studied	organisms.	This	situation	is	 likely	to	improve	as	

population	level	sequencing	and	experimentation	provides	additional	data	for	Ensembl	

to	validate	against.	

Conclusions	

The	ability	of	bioinformatics	algorithms	to	correctly	identify	the	duplication	landscape	

of	the	genome	are	limited,	and	an	ongoing	area	of	research	in	computational	biology.	

There	 is	 great	 bias	 in	 the	 choice	 of	 algorithm	 used	 to	 determine	 duplications,	 with	

those	 that	 make	 more	 or	 different	 assumptions,	 reaching	 variable	 conclusions.	 The	

complexity	in	the	identification	of	duplicates	are	confounded	by	numerous	sources	of	

error	that	stem	from	the	choice	of	individuals,	the	sequencing	technologies	used,	the	

assembly	software	chosen,	and	the	annotation	software	applied.	It	is	dubious,	whether	

we	 have	 the	 power	 to	 account	 for	 all	 possible	 sources	 of	 error.	 The	 algorithms	

available	 certainly	 make	 such	 a	 vast	 number	 of	 assumptions	 that	 it	 is	 difficult	 to	

consider	 their	 impact	 when	 making	 predictions	 based	 on	 those	 data.	 At	 best,	 our	

inference	 of	 the	 structure	 of	 the	 genome	 is	 a	 rough	 guess	 based	 on	 a	 static	

representation	of	something	that	constantly	changes	through	space	and	time.	

It	 is	 clear	 however	 that	 computational	 advances	 have	 greatly	 improved	 the	

assembly	 and	 annotation	 of	 genomes	 over	 the	 past	 3	 decades.	 Improvements	 have	

been	 made	 at	 all	 levels	 of	 genome	 sequencing	 projects;	 from	 sequencing,	 through	

assembly,	 to	 annotation.	 Robust	 computational	 protocols	 have	 been	 produced	 to	

allow	 for	what	 is	by	 its	nature	a	very	error	prone	process.	Manual	annotation	 is	 the	

gold-standard,	however	the	increasing	scale	of	the	data	involved	means	that	manually	

annotating,	 especially	 vertebrate	 genomes,	 is	 bound	 to	 become	 a	 dying	 art.	 New	

models	that	compute	likelihood	scores	of	genome	assemblies	allowing	for	comparison	

and	 determination	 of	 the	maximum	 likelihood	model	 of	 the	 genome	 are	 growing	 in	

popularity	and	will	likely	become	the	de	facto	standard	in	years	to	come.	Additionally,	

more	 comprehensive	 algorithms	 and	models	 are	 being	 continuously	 developed	 that	

can	utilise	 the	 advances	 in	 computing	 hardware	 to	 achieve	more	 accurate	 results	 in	

more	reasonable	runtimes.	The	more	we	are	able	to	account	for	hidden	assumptions	
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and	consider	 the	nature	of	 the	data	within	 its	biological	 context,	 the	more	powerful	

our	conclusions	will	be.	



Page	162	of	314	

	

	

[	This	page	is	left	intentionally	blank	]



Page	163	of	314	

CHAPTER	FIVE:	ANALYSES	OF	THE	INFLUENCE	OF	GENE	FAMILY	SIZE	AND	

GENOMIC	LOCATION	ON	THE	EVOLUTION	OF	INTRONS	

Introduction	

Mechanisms	of	gene	family	and	intron	evolution	

Gene	 families	 have	 a	 big	 impact	 on	 the	 coding	 portions	 of	 the	 genome	 through	

processes	 such	 as	 non-homologous	 recombination,	 retrotransposition,	 and	 relaxed	

selection	 due	 to	 redundancy	 (Zhang,	 2003).	 This	 makes	 them	 effective	 drivers	 of	

adaptive	 evolution	 in	 particular	 (Force,	 1999;	 Lynch	 and	 Force,	 2000;	 Lynch,	 2002;	

Zhang	et	al.,	2002;	Swanson,	2003;	Francino,	2005;	Wong	and	Wolfe,	2005;	Han	et	al.,	

2009;	Ames	et	al.,	2010;	Nygaard	et	al.,	2011;	Iskow	et	al.,	2012;	Lynch,	2012),	but	it	is	

currently	unclear	how	their	presence	and	particularly	number	of	gene	members,	might	

impact	 on	 the	 evolution	 of	 non-coding	 regions,	 such	 as	 introns.	 Introns	 are	 very	

important	as	they	contribute	a	large	proportion	of	nucleotides	towards	the	total	size	of	

vertebrate	 genomes,	often	 contributing	more	 to	overall	 gene	 length	 than	exons	and	

UTRs	 (untranslated	 regions)	 combined	 (Hong	 et	 al.,	 2006;	 Roy	 and	 Gilbert,	 2006;	

Yandell	et	al.,	2006;	Stajich	et	al.,	2007;	Gazave	et	al.,	2007;	Zhu	et	al.,	2009;	Jiang	and	

Goertzen,	2011;	Rogozin,	et	al.,	2012;	Zhang	and	Edwards,	2012).	They	are	also	very	

effective	in	highlighting	the	neutral	forces	of	molecular	evolution,	as	well	as	regulatory	

mechanisms	 underpinning	 splicing	 and	 gene	 expression	 (Yu	 et	 al.,	 2002;	 Yeo	 et	 al.,	

2005;	Will	 and	 Lührmann,	 2005;	 Hong	 et	 al.,	 2006;	 Farlow	 et	 al.,	 2012).	 In	 order	 to	

understand	 how	 gene	 family	 characteristics	 might	 impact	 on	 intron	 evolution,	 one	

needs	to	relate	the	underlying	molecular	mechanisms	of	gene	family	size	change	to	the	

gain	and	loss	of	introns	over	time.	Gene	families	can	change	size	in	a	number	of	ways;	

including	polyploidy,	aneuploidy,	replication	slippage,	non-homologous	recombination	

and	retrotransposition	(Zhang,	2003).	Introns	can	also	propagate	through	a	number	of	

mechanisms;	 including	 intron	 transposition,	 transposon	 insertion,	 tandem	 genomic	

duplication,	 intron	 transfer,	 intron	 gain	 during	 double-stranded	 break	 repair	 (DSBR),	

insertion	of	a	group	II	intron	and	intronization	(Crick,	1979;	Sharp,	1985;	Rogers,	1989;	

Hankeln	et	al.,	1997;	Irimia	et	al.,	2008;	Roy,	2009;	Li	et	al.,	2009;	Yenerall	and	Zhou,	

2012).	Their	loss	has	generally	been	limited	to	the	mechanisms	of	gene	conversion	or	

genomic	 deletion,	 however	 (Derr	 and	 Strathern,	 1993;	 Roy	 and	 Gilbert,	 2006).	 By	
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comparing	 and	 contrasting	 these	 mechanisms	 it	 is	 possible	 to	 highlight	 common	

processes	 involved	 in	 the	 evolution	 of	 both	 of	 these	 genomic	 features.	 Any	

correlations	between	 the	 two	 can	 then	be	 examined	 in	 further	 detail	 to	 understand	

how	these	processes	might	have	an	effect.	

Polyploidy	

At	 the	most	 abstract	 level,	 whole	 genome	 duplication	 (polyploidy),	which	 can	 occur	

due	to	nondisjunction	of	chromosomes	during	meiosis,	could	create	duplicate	copies	

of	all	regions	of	the	genome,	albeit	generally	followed	by	rapid	gene	loss	(McLysaght	et	

al.,	2002;	Schmutz	et	al.,	2010;	 Jiao	et	al.,	2011;	Wolfe,	2015).	This	would	result	 in	a	

symmetric	 increase	 in	 both	 orthologous	 genes,	 and	 orthologous	 introns	 in	 the	 first	

instance	however.	The	 longer	 term	 impact	on	 intron	characteristics	 is	 less	clear	with	

the	 survival	 of	 polyploidy	 depending	 on	 population	 genetic	 factors	 and	 mating	

compatibility.	Mating	between	individuals	with	even	copied	numbers	of	chromosomes	

generally	 produces	 viable	 offspring,	 in	 contrast	 to	 mating	 between	 even	 and	 odd	

ploidy	 individuals	 (Acquaah,	 2007).	 This	 is	 perhaps	 why	 we	 see	 a	 great	 number	 of	

tetraploid	 individuals	 in	 nature	 (Comai,	 2005).	 Species	with	 longer	 generation	 times	

and	 larger	 effective	 population	 sizes	 also	 tend	 to	 see	 a	 longer	 term	maintenance	 of	

polyploidy	due	to	slower	fixation	of	these	changes.	Polyploidy	may	not	necessarily	be	

fixed	 per	 se	 in	 these	 individuals,	 but	 merely	 reflect	 that	 they	 are	 a	 slower	 moving	

targets	for	effective	selection	towards	a	smaller	genome	size.	The	ability	for	any	alleles	

to	reach	high	enough	frequencies	in	a	population	is	drastically	reduced	however,	and	it	

is	these	changes	in	gametic	and	filial	frequencies	that	will	impact	on	genome	content	

and	 structure	 over	 time	 (Comai,	 2005).	 Sustained	 ploidy	 can	 be	 advantageous,	 as	 it	

provides	 the	 raw	 material	 for	 adaptation	 on	 a	 much	 larger	 scale	 than	 single	 gene	

duplications	(Comai,	2005),	which	is	thought	to	be	due	to	an	increased	recombination	

rate	 due	 to	 a	 greater	 likelihood	 of	 homologous	 and	 non-homologous	 recombination	

between	duplicated	regions	of	the	genome	(Lynch,	2002;	Wendel	et	al.,	2002;	Gaut	et	

al.,	2007;	Tiley	and	Burleigh,	2015).	This	is	particularly	true	in	plants,	which	see	some	

of	 the	 greatest	 ploidy	 numbers,	 largest	 genome	 sizes	 and	 most	 diverse	 genome	

content	(Otto	and	Whitton,	2000;	Bennett,	2004;	Parfrey	et	al.,	2008;	Kejnovsky	et	al.,	

2009;	Jaillon	et	al.,	2009;	Levasseur	and	Pontarotti,	2011;	Jia	et	al.,	2013;	Nystedt	et	al.	

2013),	 as	 well	 as	 many	 adaptations	 to	 environmental	 pressures	 due	 to	 neo-	 and	

subfunctionalization	of	duplicated	genes	(Lynch	and	Force,	2000;	He,	2005;	Rastogi	and	
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Liberles,	 2005;	 Chain	 and	 Evans,	 2006;	 Shiu	 et	 al.,	 2006;	 Proulx,	 2012;	 Assis	 and	

Bachtrog,	 2013).	 Though	 polyploidy	 events	 will	 create	 a	 great	 deal	 of	 variation	 for	

evolution	to	utilise,	it	is	clear	that	smaller	scale	mechanisms	will	have	more	influence	

on	intron	content	over	time.	

Aneuploidy	

In	contrast	to	polyploidy,	aneuploidy,	or	single	chromosome	duplication,	might	result	

in	 the	 expansion	 of	 gene	 families	 on	 a	 single	 chromosome	 only.	 In	 most	 cases	 the	

offspring	 of	 aneuploidy	 are	 not	 viable,	 particularly	 in	 mammals,	 resulting	 in	

spontaneous	abortion	during	pregnancy	(Carp	et	al.	2001;	Sullivan	et	al.,	2004;	Bianco	

et	al.,	2006).	Those	individuals	that	are	viable	generally	suffer	from	debilitating	genetic	

disorders	 related	to	gene	dosage	effects	and	therefore	 these	changes	are	unlikely	 to	

spread	 throughout	 a	 population.	 As	 aneuploidy	 is	 a	 less	 common	 occurrence,	 the	

power	 it	has	 in	 influencing	the	evolution	of	genome	content	and	structure	 is	 limited,	

but	 it	might	 influence	gametic	and	 filial	 frequencies	 in	 similar	ways	 to	polyploidy.	As	

the	fixation	of	any	changes	are	dependent	on	population	genetic	factors,	the	likelihood	

of	 any	 significant	 or	 lasting	 effect	 on	 genome	 content	 is	 dubious.	 The	 immediate	

impact	on	intron	characteristics	is	likely	to	be	similar	to	polyploidy,	though	longer	term,	

it	 is	 intuitive	to	suggest	that	smaller	scale	mechanisms	will	have	greater	control	over	

intron	evolution.	

Replication	slippage	

Replication	slippage	occurs	when	there	is	a	detachment	of	DNA	polymerase	from	the	

DNA	strand	during	the	replication	process	(Canceill	et	al.,	1999;	Michel,	2000;	Viguera	

et	al.,	2001).	This	happens	more	often	in	highly	repetitive	regions	of	the	genome.	DNA	

polymerase	encounters	a	direct	repeat	and	the	polymerase	complex	halts	replication	

and	 is	 released.	The	newly	 synthesised	strand	 then	detaches	and	binds	with	a	direct	

repeat	 upstream,	 before	 the	 DNA	 polymerase	 binds	 back	 to	 the	 template	 strand	 to	

resume	replication.	Rebinding	of	the	polymerase	complex	isn’t	always	precise	however,	

resulting	 in	the	duplication	of	di-	or	trinucleotides.	This	asymmetry	 in	repeat	content	

causes	an	inability	of	pairing	between	the	template	and	daughter	strands.	The	repair	of	

such	 changes	 results	 in	 the	 gain	 or	 loss	 of	 nucleotides,	with	 trinucleotide	 expansion	

occurring	most	frequently	so	as	not	to	impact	on	transcription.	Expansion	of	repeats	at	

this	scale	one	might	think	is	unlikely	to	impact	greatly	on	the	evolution	of	genomes.	If	
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these	 repeat	expansions	occur	 in	 coding	 regions	 they	can	have	profound	 impacts	on	

the	 individual,	 as	 seen	 in	Huntington’s	disease	 in	humans	 (Brown,	2002;	Yoon	et	al.,	

2003;	Chi	and	Lam,	2005).	If	the	changes	occur	in	non-coding	regions	however,	such	as	

within	 introns,	 it	 is	 plausible	 that	 they	 could	 impact	 on	 a	 change	 in	 intron	 size	 over	

time,	without	affecting	the	fitness	of	the	individual.	It	is	also	plausible	that	the	creation	

of	 trinucleotide	 repeats	 might	 impact	 on	 intron	 content	 via	 tandem	 genomic	

duplication	(Rogers,	1989;	Yenerall	and	Zhou,	2012)	though	intron	transposition	due	to	

partial	recombination	is	also	a	possibility	(Sharp,	1985;	Yenerall	and	Zhou,	2012).	

Non-homologous	recombination	

Non-homologous	 recombination	 can	 be	 seen	 as	 similar	 to	 replication	 slippage	 in	 its	

impact	on	intron	content,	however	the	regions	over	which	it	can	occur	may	be	much	

greater	 in	 size.	Non-homologous	 recombination	occurs	when	highly	 similar,	 yet	non-

homologous	regions	of	 the	genome	align	during	meiosis	 (Roth	et	al.,	1985;	Roth	and	

Wilson,	 1986;	 Weterings	 and	 van	 Gent,	 2004;	 Gong	 et	 al.,	 2011).	 This	 results	 in	

portions	 of	 the	 genome	 being	 either	 duplicated	 or	 removed	 depending	 on	 how	

chromosome	 pairs	 segregate	 in	 the	 gametes	 and	 survive	 in	 the	 progeny.	 As	 with	

replication	slippage	these	changes	occur	most	often	in	highly	repetitive	regions	of	the	

genome.	 This	 may	 result	 from	 smaller-scale	 segmental	 duplications	 or	 larger-scale	

tandem	duplications,	resulting	in	either	parts	of	genes	or	whole	genes	being	duplicated	

or	lost.	The	impact	on	intron	loss	is	clear,	with	non-homologous	recombination	being	a	

recognised	cause	of	intron	loss	due	to	gene	conversion	or	genomic	deletion	(Derr	and	

Strathern,	1993;	Roy	and	Gilbert,	2006).	The	impact	on	intron	gain	is	less	clear,	though	

through	the	duplication	of	parts	or	whole	copies	of	genes	containing	 introns	one	can	

see	how	tandem	genomic	duplication	will	likely	play	a	role	in	intron	gain	(Rogers,	1989;	

Yenerall	 and	 Zhou,	 2012).	 Additionally	 double-stranded	 break	 repair	 (DSBR)	 and	

nonhomologous	 end	 joining	 (NHEJ)	 have	been	highlighted	 as	 a	mechanism	of	 intron	

gain	(Li	et	al.,	2009)	as	has	intron	transposition	(Sharp,	1985;	Yenerall	and	Zhou,	2012).	

DSBR	 also	 plays	 a	 role	 in	 gene	 conversion,	which	 is	 a	 sort	 of	 intermediate	 between	

strand	 slippage	 and	 nonhomologous	 recombination,	 where	 regions	 of	 generally	

between	200	bp	to	1,500	bp	in	length	are	duplicated	and	then	one	allele	is	converted	

to	the	other	resulting	in	a	homogenisation	at	that	locus	(though	see	Chen	et	al.,	2007).	

Depending	on	the	content	of	the	regions	in	question	this	may	result	in	gain	or	loss	of	

introns,	or	a	change	in	the	size	of	those	introns.	A	bias	towards	higher	GC	content	 in	
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gene	conversion	has	been	observed	(Galtier	et	al.,	2001;	Duret	et	al.,	2006;	Duret	and	

Galtier,	2009)	along	with	a	bias	towards	 intron	gain	 in	more	GC	rich	regions	albeit	at	

shorter	 lengths	 (Wang	 and	 Yu,	 2011),	 so	 one	might	 expect	 an	 overall	 gain	 in	 intron	

number	in	duplicate	regions,	yet	a	decrease	in	intron	length.	

Retrotransposition	

How	introns	are	gained	or	lost	due	to	duplication	is	apparent	via	the	aforementioned	

mechanisms,	however	the	change	in	size	of	introns	with	respect	to	duplication	is	less	

clear.	 Retrotransposition	 is	 a	 mechanism	 by	 which	 we	 can	 make	 more	 robust	

predictions.	 As	 retrotransposition	 often	 results	 in	 the	 removal	 of	 introns	 from	 the	

duplicated	copy	of	a	gene,	we	can	be	confident	that	it	will	play	more	of	a	role	in	intron	

loss	(Derr	and	Strathern,	1993;	Yenerall	and	Zhou,	2012).	Retrotransposition	exhibits	a	

higher	 instance	 of	 pseudogenization	 of	 a	 particular	 locus	 due	 to	 loss	 of	 promoter	

sequences,	and	loss	of	splice	sites	due	to	introns	being	removed.	This	can	also	impact	

on	 intron	 size	 and	 density	 depending	 on	 whether	 the	 pseudogenes	 can	 still	 be	

processed.	 If	a	 transcript	 is	 inserted	within	an	existing	 intron	 then	 it	will	 result	 in	an	

increase	 in	 the	 size	 of	 that	 intron	 as	we	 see	with	 transposon	 insertion	 (Crick,	 1979;	

Yenerall	and	Zhou,	2012),	however	the	intron	number	may	also	increase	if	an	exon	is	

able	 to	 be	 processed	 in	 what	 we	 might	 call	 ‘exon	 transposition’	 (see	 intron	

transposition	in	Sharp,	1985),	though	this	would	require	modification	of	terminal	splice	

sites	and	is	perhaps	why	processed	pseudogenes	more	often	result	in	intron	loss	(Zhu	

and	Niu,	 2013).	 Conversely,	 a	 pseudogene	 could	 be	 inserted	within	 another	 gene	 in	

such	a	way	that	it	doesn’t	impact	on	the	fitness	of	the	organism	and	the	pseudogene	is	

processed	as	part	of	the	transcription	of	that	gene	resulting	in	an	increase	in	exon	size.	

This	would	result	in	a	decrease	in	intron	density	by	increasing	the	size	of	the	gene,	but	

not	affecting	the	number	of	 introns.	This	 is	unlikely	however	due	to	the	 likelihood	of	

this	 affecting	 the	 viability	 of	 the	 product	 of	 the	 gene	 transcripts	 translation.	 The	

increased	mutation	rate	in	pseudogenes	due	to	relaxed	selection	often	causes	them	to	

diverge	in	similarity	much	more	quickly	than	in	coding	regions	however.	This	makes	it	

more	 difficult	 to	 test	 their	 impact	 on	 intron	 loss.	 The	 mechanisms	 for	 identifying	

duplicate	loci	often	use	similarity	based	approaches	and	so	the	increased	divergence	of	

pseudogenes	impacts	much	more	on	our	ability	to	annotate	them	as	belonging	to	gene	

families.	
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Relaxed	selection	due	to	redundancy	

As	 with	 pseudogenes,	 functional	 duplicate	 copies	 of	 genes	 can	 see	 an	 increased	

mutation	 rate	 and	 thus	 greater	 divergence	 than	 singleton	 genes,	 sometimes	 even	

greater	than	the	pairwise	distance	between	species.	This	relaxed	selection	in	duplicate	

genes	allows	for	mutations	that	might	usually	impact	on	the	fitness	of	an	organism	in	

singletons	 to	 be	 masked	 by	 their	 duplicate	 copy.	 Both	 copies	 of	 the	 gene,	 through	

genetic	 drift,	 can	 come	 to	 share	 sub-functions	 of	 the	 original	 gene.	 This	 leads	 to	

fixation	of	both	copies,	as	deletion	of	a	copy	would	reduce	the	organism’s	fitness.	This	

is	known	as	the	duplication	degeneration	complementation	model	or	DDC	(Force	et	al.,	

1999).	 The	 majority	 of	 mutations	 aren’t	 beneficial	 however	 and	 any	 mutation	 in	 a	

single	gene	would	likely	be	under	strong	purifying	selection.	Likewise,	selection	should	

be	stronger	 in	 smaller	gene	 families,	where	 fewer	copies	of	a	gene	would	mean	 less	

ability	 to	 complement	 deleterious	 mutations	 in	 other	 copies.	 Larger	 gene	 families	

should	see	an	increased	ability	to	complement	mutations.	Sometimes	a	gene	copy	may	

accumulate	so	many	deleterious	mutations	that	 it	becomes	a	pseudogene,	though	 in	

others	 we	 might	 see	 multiple	 beneficial	 mutations	 give	 rise	 to	 multigene	 families	

whose	 members	 have	 a	 diversity	 in	 functionality	 through	 subfunctionalization	 and	

neofunctionalization	 (Lynch	 and	 Force,	 2000;	 He,	 2005;	 Rastogi	 and	 Liberles,	 2005;	

Chain	and	Evans,	2006;	Shiu	et	al.,	2006;	Proulx,	2012;	Assis	and	Bachtrog,	2013).	One	

might	predict	that	larger	gene	families	would	create	an	environment	where	we	see	a	

bias	towards	increase	in	intron	number	and	size	due	to	the	cumulative	effect	of	all	the	

mechanisms	discussed	here,	though	again	population	genetic	factors	such	as	effective	

population	 size	 have	 a	 strong	 role	 in	 the	 fixation	 of	 any	 such	 mutations.	 With	 the	

outcome	 of	 many	 duplication	 events	 resulting	 in	 pseudogenization,	 the	 ability	 to	

identify	 a	 correlation	 between	 gene	 family	 size	 and	 intron	 characteristics	 may	 be	

limited	in	its	power	however.	

Mechanisms	of	location	based	intron	evolution	

Understanding	how	duplication	impacts	on	the	evolution	of	regions	of	the	genome	is	

very	 important,	 not	 least	 in	 determining	 how	 organisms	 adapt	 to	 changes	 in	 their	

environment	or	in	describing	the	evolution	of	novel	gene	function.	The	amount	of	the	

genome	 that	 is	 contained	within	 gene	 families	 is	 relatively	 small	 however,	 with	 the	

portion	 of	 the	 genome	 attributed	 to	 protein	 coding	 widely	 acknowledge	 to	 be	

approximately	 1.5%	 of	 the	 total	 genome	 size	 in	 humans	 for	 example	 (Lander	 et	 al.,	
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2001;	Venter	et	al.,	2001;	International	Human	Genome	Sequencing	Consortium,	2004;	

Rands	et	al.,	2014).	It	is	important	therefore	to	gain	a	more	thorough	understanding	of	

the	 forces	 shaping	 the	 genome	 at	 a	 larger	 scale.	 There	 have	 been	 several	 studies	

(Galtier	et	al.,	2001;	Montoya-Burgos	et	al.,	2003;	Meunier	and	Duret,	2004;	Duret	and	

Galtier,	2009;	Marsolier-Kergoat	and	Yeramian,	2009;	Weber	et	al.,	2014)	that	focus	on	

chromosome	location	effects	on	the	evolution	of	 lower	 level	components	of	genome	

architecture	 such	 as	 gene	 density,	 in	 particular	 highlighting	 the	 impact	 of	 GC-rich	

isochores,	recombination,	and	gene	conversion	on	these	regions.	There	are	none	that	

take	 a	 comprehensive	 comparative	 genomics	 approach	 across	 multiple	 species,	

however.	Likewise,	there	have	been	some	studies	(Fullerton	et	al.,	2001;	Prachumwat	

et	al.	2004;	Haddrill	et	al.,	2005;	Zhe	et	al.,	2009;	Li	et	al.,	2009;	Maeso	et	al.,	2012;	

Zhang	and	Edwards,	2012)	that	look	at	the	evolution	of	introns	within	this	context,	but	

their	power	is	limited	as	they	fail	to	synthesise	all	relevant	information	(i.e.	the	subtle	

influences	 of	 GC-bias,	 recombination,	 and	 gene	 conversion)	 from	 other	 studies	 and	

thus	don’t	account	for	the	bigger	picture.	In	understanding	how	genome	structure	and	

content	 evolves	 over	 time	 one	 needs	 to	 consider	 both	 the	 lower	 level	 forces	 of	

evolution	 such	 as	 point	 mutations	 and	 the	 higher	 level	 constraints	 imposed	 at	 the	

chromosome	level.	

GC-rich	isochores	

A	number	of	studies	have	focused	on	the	existence	of	GC	rich	regions	of	the	genome,	

particularly	 in	 vertebrates,	 known	 as	 CpG	 islands	 over	 shorter	 distances	 of	 between	

300	to	3,000	bp	 (Gardiner-Garden	and	Frommer,	1987;	Saxonov	et	al.,	2006;	Deaton	

and	Bird,	2011)	and	isochores	over	regions	of	greater	than	300,000	bp	(Lander	et	al.,	

2001;	Oliver	et	al.,	2001;	Gao	and	Zhang,	2006).	Gene	density	has	been	shown	to	be	

much	higher	 in	 these	GC	 rich	 regions	of	 the	 genome	 (Galtier	et	 al.,	 2001;	Montoya-

Burgos	et	al.,	2003;	Bernardi,	2012).	Conversely	introns	have	been	shown	to	be	shorter	

(Galtier	et	al.,	2001)	and	under	greater	selective	pressure	in	GC	rich	regions	(Zhu	et	al.,	

2009;	Wang	and	Yu,	2011),	though	this	depends	 largely	on	their	position	 in	the	gene	

(Haddrill	et	al.,	2005;	Gazave	et	al.,	2007)	with	first	introns	seeing	a	greater	length	and	

increased	 GC	 content	 overall	 (Kalari	 et	 al.,	 2006;	 Wang	 and	 Yu,	 2011).	 In	 order	 to	

understand	 how	 GC	 isochores	 in	 particular	 influence	 the	 evolution	 on	 intron	

characteristics	we	must	first	understand	how	these	regions	of	the	genome	arise.	
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GC-rich	 isochores	 are	 a	 common	 occurrence	 in	 mammals	 (Bernardi,	 2000;	

Ellegren	 et	 al.,	 2003;	 Romiguier	 et	 al.,	 2010;	 Lartillot,	 2012;	 Nabiyounia	 et	 al.,	

2013),	though	 there	 is	 evidence	 to	 suggest	 changing	 patterns	 and	 a	 great	 deal	 of	

variation	in	content	(Duret	et	al.,	2002;	Belle	et	al.,	2004;	Fujita	et	al.,	2011).	Many	of	

these	 studies	 have	 largely	 focused	 on	 the	 impact	 of	 GC	 bias	 on	 the	 evolution	 of	

components	 of	 the	 genome	 without	 thoroughly	 exploring	 how	 these	 regions	 arise	

however.	 Several	 studies	 in	 bacteria	 document	 a	 replication	 related	 organization	 of	

their	 genomes	 (Lobry,	1996;	Eyre-Walker	and	Hurst,	2001;	Rocha,	2004;	 Flynn	et	al.,	

2010),	 which	 can	 be	 linked	 to	 the	 increased	 mutation	 rate	 of	 single-stranded	 DNA	

during	replication	and	a	bias	in	the	DNA	repair	mechanisms	(Wu	et	al.,	2005).	Indeed,	

using	 GC	 skew	 plots	 is	 a	 common	 bioinformatics	 method	 of	 identifying	 origins	 of	

replication	 (Grigoriev,	 1998;	 Eng	et	 al.,	 2009;	 Pevzner	 and	 Shamir,	 2011).	 Likewise	 a	

relationship	 between	 replication	 and	 isochores	 in	 eukaryotes	 has	 been	 highlighted	

with	 early	 replicating	 regions	 of	 the	 genome	 being	 GC	 rich	 and	 short	 and	 late	

replicating	 regions	 being	 GC	 poor	 and	 long	 (Oliver	 et	 al.,	 2001;	 Pacès	 et	 al.,	 2004;	

Schmegner	 et	 al.,	 2007;	 Costantini	 and	 Bernardi,	 2008;	 Watanabe	 et	 al.,	 2009;	

Costantini	et	al.,	2013).	Although	little	is	known	about	the	precise	mechanisms	behind	

this	 there	 is	 evidence	 highlighting	 a	 correlation	 between	 replication	 timing	 and	

chromosome	structure	(Hiratani	et	al.,	2009;	Hiratani	and	Gilbert,	2009;	Schwaiger	et	

al.,	2009;	Pope	et	al.,	2010;	Ryba	et	al.,	2010;	Farkash-Amar	and	Simon,	2010),	which	

indicates	a	possible	epigenetic	effect.	Chromatin	modifications	have	been	examined	in	

reference	to	replication,	showing	a	strong	correlation	between	epigenetic	marks	and	

replication	timing	(Ryba	et	al.,	2010;	Ryba	et	al.,	2011;	Appasani,	2012).	

Recombination	

A	positive	correlation	between	replication	timing	and	epigenetic	modifications,	and	a	

number	 of	 genomic	 features	 such	 as	 GC	 content,	 mutation	 rate,	 gene	 density	 and	

transcriptional	 activity	 have	 been	 emphasised	 above	 (Woodfine	 et	 al.,	 2004;	

Stamatoyannopoulos	et	al.,	 2009;	Appasani,	 2012).	 Epigenetic	modifications	 can’t	be	

directly	 associated	 with	 changes	 in	 intron	 characteristics	 as	 examined	 in	 this	 study	

however.	There	is	a	positive	correlation	between	recombination	rate	and	GC	content	

however	(Fullerton	et	al.,	2001;	McVean	et	al.,	2004;	Meunier	and	Duret,	2004),	which	

is	more	 likely	 to	 have	 a	 direct	 impact	 on	 the	 underlying	 sequence	 evolution.	 Biased	

mutation	 rates	 have	 been	 shown	 not	 to	 be	 solely	 responsible	 for	 changes	 in	 GC	
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content	 however	 (Lercher	 and	Hurst,	 2002),	with	 evidence	 suggesting	 that	mutation	

biases	 depend	 on	 the	 existing	 GC	 content	 of	 the	 region	 (Fryxell	 and	 Moon,	 2005),	

pointing	towards	effects	due	to	recombination	or	biased	gene	conversion.	The	impact	

of	 recombination	 rate	 on	 the	 number	 of	 genes	 has	 been	 explored	 and	 although	

mutation	 rates	 are	 higher	 in	 regions	 of	 higher	 recombination,	 there	 is	 no	 significant	

correlation	with	gene	density	(Hey	and	Kliman,	2002).	Non-homologous	recombination	

is	a	recognised	cause	of	intron	loss	due	to	gene	conversion	or	genomic	deletion	(Derr	

and	Strathern,	1993;	Roy	and	Gilbert,	2006)	and	conversely	intron	gain	(Li	et	al.,	2009)	

so	 it	 seems	 likely	 that	non-homologous	 recombination	and	gene	conversion	play	are	

larger	role	in	the	evolution	of	introns	at	least.	

Gene	conversion	

Mismatch	of	bases	following	DNA	strand	transfer	can	initiate	DNA	repair	mechanisms.	

DNA	 repair	 during	 homologous	 recombination	 can	 result	 in	 the	 conversion	 of	 one	

allele	 to	 another	 resulting	 in	 homozygosity	 at	 that	 the	 location	 involved.	 The	

replacement	of	a	gene	with	its	alternate	allele,	may	impact	on	the	number	of	introns	

present	in	the	gene	if	the	number	of	introns	are	polymorphic.	It	isn’t	clear	whether	this	

would	result	in	a	bias	towards	increase	or	decrease	in	intron	number	within	the	gene,	

though	 GC	 content	 has	 been	 shown	 to	 impact	 this;	 with	 GC-rich	 regions	 containing	

many	 genes	with	 short	 introns,	 and	GC-poor	 regions	 having	 virtually	 no	 genes	 at	 all	

(Galtier	 et	 al.,	 2001).	 As	 GC-bias	 can	 impact	 on	 the	 likelihood	 of	 gene	 conversion	

occurring	during	homologous	 recombination	 (Galtier	et	 al.,	 2001;	Duret	et	 al.,	 2006;	

Duret	 and	 Galtier,	 2009)	 and	 also	 on	 the	 number	 of	 genes	 and	 size	 of	 introns,	 one	

might	conclude	that	areas	of	higher	recombination,	as	we	find	in	isochores,	should	see	

an	 increased	 gene	 density	 and	 intron	 density,	 especially	 given	 the	 role	 of	 double	

stranded	break	repair	in	intron	gain	(Li	et	al.,	2009;	Wang	and	Yu,	2011).	This	doesn’t	

always	 appear	 to	 be	 the	 case	 however	 (Hey	 and	 Kliman,	 2002;	 Derr	 and	 Strathern,	

1993;	 Roy	 and	Gilbert,	 2006)	 though	 it	 is	wise	 to	 consider	 the	 distances	 over	which	

gene	conversion	can	occur.	Gene	conversion	typically	occurs	over	shorter	distances	of	

between	 200	 bp	 to	 1,500	 bp	 and	 requires	 a	 high	 level	 of	 similarity	 between	 copies	

(Gaultier,	 2003).	 Orthologous	 gene	 conversion	 between	 homologous	 regions	 (thus	

with	high	similarity)	of	the	chromosomes	during	meiosis	would	explain	the	correlation	

with	recombination	rate,	but	given	the	short	distances	may	only	result	in	exchange	of	

material	between	genes	therefore	not	affecting	gene	density,	though	these	would	be	
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under	strong	purifying	selection	(Kjeldbjerg	et	al.,	2008;	Petronella	and	Drouin,	2013;	

Zid	and	Drouin,	2013).	In	contrast	gene	conversion	can	also	occur	ectopically,	known	as	

non-allelic	 gene	 conversion,	 between	 paralogous	 copies	 of	 genes.	 Gene	 conversion	

here	 can	 result	 in	 the	 creation	 of	 novel	 gene	 content	 when	 material	 is	 rearranged	

within	genes	 (Willett,	2013)	 though	 it	can	also	result	 in	 increased	homogenisation	of	

paralogous	gene	copies	giving	rise	to	concerted	evolution	(Teshima	and	Innan,	2004).	

Gene	conversion	may	not	play	a	dominant	role	in	the	evolution	of	paralogues	however	

as	there	seems	to	be	no	GC	bias	between	paralogous	copies	of	duplicate	genes	(Assis	

and	Kondrashov,	2012).	 	

It	is	clear	that	there	are	many	influences	on	the	evolution	of	genes	and	introns	at	

a	 number	 of	 different	 levels.	 At	 the	 lowest	 levels	 point	mutations	 and	 indels	 create	

minor	 variations	 that	 can	 be	 acted	 upon	 by	 selection	 or	 allowed	 to	 drift	 within	 a	

population.	Intermediate	mechanisms	such	as	duplication	and	gene	conversion	play	a	

role	 in	 rearranging	 content	 at	 the	 gene	 level.	 Numerous	mechanisms	 of	 repair	with	

biases	towards	particular	outcomes	compound	matters.	In	the	context	of	this	study	it	

seems	 that	 larger	 scale	 mechanisms	 such	 as	 replication	 timing	 and	 epigenetic	

modifications	may	play	an	overarching	role	however.	Their	impact	on	gene	conversion	

results	in	an	increase	in	gene	density	due	to	greater	homogeneity	within	regions	of	the	

genome	 and	 therefore	 increased	 recombination	 rates.	 The	 effect	 of	 strand	 slippage,	

gene	 conversion	 and	 larger-scale	 recombination	 on	 gene	 density	 and	 intron	

characteristics	 are	 also	 widely	 discussed.	 The	 bias	 towards	 increased	 GC	 content	 in	

these	mechanisms	correlates	with	greater	gene	and	intron	density,	and	reduced	intron	

length.	Increase	in	intron	length	is	likely	predominantly	due	to	other	mechanisms	such	

as	transposon	insertion.	The	constraints	imposed	by	selection,	developmental	process	

or	population	specific	factors	make	for	a	landscape	that	is	ripe	with	contradiction	and	

noise,	making	it	difficult	to	pinpoint	the	precise	causes	behind	genome	evolution.	High	

quality	 sequence	 data	 and	 annotations	 utilised	 within	 multi-species	 comparative	

studies	 will	 allow	 an	 assessment	 of	 the	 diversity	 of	 influences	 at	 a	 broader	 scale	

however.	

Chapter	goals	

In	 this	 chapter	 I	 will	 attempt	 to	 tease	 apart	 the	 mechanisms	 described	 here	 by	

answering	the	following	questions;	1)	Is	intron	evolution	independent	in	different	gene	
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copies?	 2)	 Does	 size	 of	 a	 gene	 family	 influence	 intron	 evolution?	 3)	 Is	 there	

heterogeneity	 in	 intron	 evolution	 across	 chromosomes,	 and	 between	 sex	

chromosomes	 and	 autosomes?	 The	 first	 two	 questions	 will	 look	 at	 the	 impact	 of	

duplications,	and	 in	particular	attempt	to	understand	whether	change	 in	gene	family	

size	impacts	on	the	evolution	of	introns.	The	first	question	will	address	whether	introns	

evolve	independently	within	gene	families,	where	as	the	second	question	will	address	

whether	the	overall	size	of	the	gene	family	has	an	impact	on	the	gain	or	loss	of	introns	

through	time.	The	third	questions	will	examine	non-family	effects	on	intron	evolution.	I	

will	attempt	to	understand	whether	physical	location	in	the	genome	influences	intron	

properties,	 and	whether	 sex	 chromosomes	 and	 autosomes	 differ	 in	 their	 impact	 on	

intron	characteristics.	These	questions	will	be	addressed	 in	a	 large-scale	comparative	

genomics	 study	 allowing	 for	 the	 consideration	 of	 multiple	 life	 history	 traits	 and	

population	 genetic	 influences.	 By	 approaching	 these	 questions	 at	 such	 a	 large-scale	

and	 by	 utilising	 exploratory	 data	 analysis	 techniques,	 descriptive	 and	 inferential	

statistics,	and	data	visualisation	it	will	provide	a	great	deal	of	power	in	understanding	

how	 genome	 content	 and	 structure	 changes	 over	 time	 across	 vastly	 divergent	

distances,	therefore	highlighting	common	mechanisms	in	the	evolution	of	genomes	in	

all	species.
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Materials	and	Methods	

Species	used	in	this	study	

All	61	species	available	in	the	Ensembl	release	70	(January	2013)	databases	were	used.	

These	species	were	Ailuropoda	melanoleuca	(giant	panda),	Anolis	carolinensis	(Carolina	

anole	 lizard),	 Bos	 taurus	 (European	 cow),	 Caenorhabditis	 elegans	 (roundworm),	

Callithrix	jacchus	(common	marmoset),	Canis	familiaris	(domestic	dog),	Cavia	porcellus	

(guinea	pig),	Choloepus	hoffmanni	(Hoffmann's	two-toed	sloth),	Ciona	intestinalis	(sea	

squirt),	Ciona	savignyi	(Pacific	transparent	sea	squirt),	Danio	rerio	(zebrafish),	Dasypus	

novemcinctus	 (nine-banded	 armadillo),	 Dipodomys	 ordii	 (Ord's	 kangaroo	 rat),	

Drosophila	melanogaster	(common	fruit	fly),	Echinops	telfairi	(lesser	hedgehog	tenrec),	

Equus	 caballus	 (horse),	 Erinaceus	 europaeus	 (European	 hedgehog),	 Felis	 catus	

(domestic	cat),	Gadus	morhua	(Atlantic	cod),	Gallus	(chicken),	Gasterosteus	aculeatus	

(three-spined	 stickleback),	Gorilla	 (western	 lowland	 gorilla),	Homo	 sapiens	 (human),	

Ictidomys	 tridecemlineatus	 (thirteen-lined	 ground	 squirrel),	 Latimeria	 chalumnae	

(West	Indian	Ocean	coelacanth),	Loxodonta	africana	(African	bush	elephant),	Macaca	

mulatta	 (rhesus	macaque),	Macropus	eugenii	 (tammar	wallaby),	Meleagris	gallopavo	

(Wild	Turkey),	Microcebus	murinus	(gray	mouse	lemur),	Monodelphis	domestica	(gray	

short-tailed	 opossum),	Mus	musculus	 (house	mouse),	Mustela	 putorius	 furo	 (ferret),	

Myotis	 lucifugus	 (little	 brown	 bat),	 Nomascus	 leucogenys	 (northern	 white-cheeked	

gibbon),	 Ochotona	 princeps	 (American	 pika),	 Oreochromis	 niloticus	 (Nile	 tilapia),	

Ornithorhynchus	anatinus	(platypus),	Oryctolagus	cuniculus	(European	rabbit),	Oryzias	

latipes	 (medaka),	 Otolemur	 garnettii	 (Northern	 greater	 galago),	 Pan	 troglodytes	

(common	 chimpanzee),	 Pelodiscus	 sinensis	 (Chinese	 softshell	 turtle),	 Petromyzon	

marinus	 (sea	 lamprey),	 Pongo	 abelii	 (Sumatran	 orangutan),	 Procavia	 capensis	 (rock	

hyrax),	Pteropus	vampyrus	(large	flying	fox),	Rattus	norvegicus	(Norwegian	brown	rat),	

Saccharomyces	cerevisiae	(yeast),	Sarcophilus	harrisii	(Tasmanian	devil),	Sorex	araneus	

(common	shrew),	Sus	scrofa	(pig),	Taeniopygia	guttata	(Zebra	Finch),	Takifugu	rubripes	

(pufferfish),	Tarsius	syrichta	 (Philippine	tarsier),	Tetraodon	nigroviridis	 (green	spotted	

puffer),	Tupaia	belangeri	(northern	treeshrew),	Tursiops	truncatus	(Atlantic	bottlenose	

dolphin),	 Vicugna	 pacos	 (alpaca),	 Xenopus	 tropicalis	 (Western	 clawed	 frog),	 and	

Xiphophorus	maculatus	(southern	platyfish).	
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Gene	family	data	

The	GCAT	API	 and	 scripts	 developed	 as	 part	 of	 Chapter	 Two	 and	 Chapter	 Four	 (e.g.	

get_protfam_dist.pl)	were	used	to	retrieve	data	on	all	of	the	gene	families	for	

all	61	species	available	in	Ensembl’s	release	70	databases	(Flicek	et	al.,2012).	The	“all	

families”	 method	 was	 used	 to	 retrieve	 these	 data	 (see	 Materials	 and	 Methods	 in	

Chapter	 Four).	 GCAT	 helper	 scripts	 were	 developed	 using	 R	

(gene_family_distribution.R)	 to	 provide	 descriptive	 statistics	 and	

visualizations	of	these	data.	

Intron	data	 	

The	 GCAT	 API	 and	 scripts	 developed	 as	 part	 of	 Chapter	 Three	 (e.g.	

get_intron_counts.pl	and	get_introns.pl)	were	used	to	retrieve	data	on	

the	intron	counts	for	each	of	the	genes	in	all	of	the	61	species	available	in	Ensembl’s	

January	 2013	 release	 70	 databases	 (Flicek	 et	 al.,	 2012).	 All	 intron	 numbers	 were	

retrieved	 for	 all	 genes	 via	 the	 canonical	 transcript	 for	 those	 genes,	 but	 only	 those	

contained	 within	 genes	 that	 were	 members	 of	 gene	 families	 were	 considered	 for	

further	 analyses.	 GCAT	 helper	 scripts	 were	 developed	 using	 R	

(gene_family_introns.R)	 to	provide	descriptive	 statistics	 and	 visualizations	of	

these	 data.	 Intron	 sizes	 were	 retrieved	 for	 all	 species	 (using	 the	 GCAT	 plugin	 script	

get_intron_lengths.pl)	 to	use	when	 testing	 for	 relationships	between	 intron	

characteristics	and	spatial	location	of	those	introns	on	their	respective	chromosome.	

Gene	family	and	intron	data	correlations	

GCAT	 helper	 scripts	 were	 developed	 using	 R	 (gene_family_introns.R)	 to	

undertake	 munging	 (transformation,	 formatting	 and	 sub-setting)	 of	 the	 data	 as	

necessary.	Spearman	tests	were	performed	between	intron	number,	size	and	density,	

and	 gene	 family	 size	 to	 test	 for	 correlations.	 Intron	 density	 was	 calculated	 as	 the	

number	of	introns	per	bond	i.e.	intron	count	in	the	gene	divided	by	the	length	of	the	

transcript	minus	one	(see	Chapter	Three).	Only	genes	contained	within	gene	families	

were	considered.	The	Kruskal-Wallis	test	(the	nonparametric	equivalent	of	a	one-way	

ANOVA)	was	used	to	test	whether	intron	density,	and	gene	family	size	originated	from	

the	 same	 distribution,	 and	 thus	whether	 there	was	 a	 significant	 difference	 between	

the	data.	
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Chromosome	data	retrieval	

A	novel	GCAT	plugin	script	(get_chromosomes.pl)	was	developed	to	retrieve	data	

on	the	chromosomes	for	Homo	sapiens	only.	Only	coordinate	system	names	annotated	

as	 chromosome	 were	 considered	 for	 further	 analyses.	 This	 disregards	 any	

toplevel	 slices	 such	 as	 contigs	 or	 supercontigs	 that	 stem	 from	 incompletely	

assembled	 sequence	 data.	 Where	 the	 name	 and	 length	 of	 a	 slice	 annotated	 as	 a	

chromosome	 was	 inconsistent	 with	 the	 expected	 chromosome	 names,	 then	 those	

data	 were	 discarded	 from	 downstream	 analyses,	 as	 they	 would	 likely	 represent	

incompletely	assembled	raw	sequence	data.	GCAT	helper	scripts	were	developed	using	

R	 (gene_family_introns.R)	 to	 mung	 these	 data,	 to	 perform	 descriptive	 and	

inferential	statistics,	and	to	produce	visualizations	of	these	data.	

Intron	characteristics	by	location	on	the	chromosomes	

The	 GCAT	 API	 and	 scripts	 developed	 as	 part	 of	 Chapter	 Three	 (e.g.	

get_intron_counts.pl	and	get_introns.pl)	were	used	to	retrieve	data	on	

the	intron	counts	for	each	of	the	genes	in	the	Homo	sapiens	genome.	A	GCAT	helper	

script	 was	 developed	 using	 R	 (gene_family_introns.R)	 to	 mung	 the	 data	 as	

necessary.	 Only	 introns	 contained	 within	 protein	 coding	 genes	 were	 considered	 to	

examine	whether	 genomic	 location	 had	 a	 greater	 effect	 on	 the	 evolution	 of	 introns	

than	gene	family	membership.	Intron	density	was	calculated	on	a	sliding	window	basis	

with	 the	 density	 given	 per	 1Mb	 length	 of	 the	 chromosome.	 Sex	 chromosomes	 and	

autosomes	 were	 also	 compared	 to	 highlight	 the	 effects	 of	 recombination	 on	 intron	

evolution.	
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Results	

Gene	family	data	

A	 total	 of	 1,102,993	 records	 were	 retrieved	 corresponding	 to	 the	 total	 number	 of	

genes	 within	 gene	 families	 for	 all	 61	 species	 in	 the	 Ensembl	 release	 70	 databases.	

These	genes	were	contained	within	a	total	of	130,090	gene	families.	Gene	family	count	

(GF)	and	gene	count	(G)	vary	from	a	minimum	of	5,683	and	6,692	respectively	both	in	

Saccharomyces	 cerevisiae	 to	 a	 maximum	 of	 14,637	 and	 26,157	 respectively	 in	

Caenorhabditis	 elegans	 and	 Danio	 rerio.	 The	 gene/gene	 family	 ratio	 (G/GF)	 ranges	

from	0.489	in	Danio	rerio	to	0.854	in	Ciona	intestinalis.	Gene	family	size	ranges	from	a	

size	 of	 0,	 meaning	 complete	 loss	 in	 that	 species,	 to	 a	 maximum	 (Max	 GF)	 of	 656	

members	in	Equus	caballus	(see	Table	5.1).	The	mean,	median	and	mode	sizes	for	each	

group	were	 11,649.48,	 11,730,	 and	 12,611	 (GF);	 18,081.85,	 18,788,	 and	 19,343	 (G);	

0.656,	0.645,	and	0.705	(G/GF);	167.75,	121,	and	121	(Max	GF).	

Gene	 family	 sizes	were	 visualized	 and	 followed	 a	 power	 law	 distribution	 in	 all	

species	as	previously	reported	(see	Figure	5.1	and	Chapter	Four).	

Intron	data	

Intron	counts	and	densities	

A	 total	 of	 1,426,601	 records	 were	 retrieved	 corresponding	 to	 the	 total	 number	 of	

genes	 containing	 introns	 for	 all	 61	 species	 available	 in	 the	 Ensembl	 release	 70	

databases.	 This	 corresponded	 with	 a	 total	 of	 10,367,439	 individual	 introns.	 These	

intron	 data	 were	 trimmed	 to	 match	 the	 gene	 IDs	 identified	 as	 belonging	 to	 gene	

families,	resulting	in	1,102,993	records	containing	a	total	of	10,139,168	introns	across	

all	 61	 species.	 The	number	of	 genes	 containing	 at	 least	 1	 intron	was	1,007,633.	 The	

genes	 had	 a	minimum	 length	 of	 8	 bp	 (in	Homo	 sapiens)	 and	 a	maximum	 length	 of	

4,434,882	 bp	 (in	Mus	 musculus).	 Intron	 counts	 per	 gene	 ranged	 from	 0	 to	 378	 (in	

Choloepus	hoffmanni)	with	a	mean	intron	count	of	9.192	(see	Supplementary	Table	5.1	

and	 Supplementary	 Figure	 5.1).	 The	minimum	 transcript	 length	 was	 8	 bp	 (in	Homo	

sapiens	–	likely	not	real	as	not	a	multiple	of	3)	and	a	maximum	of	106,731	bp	(in	Equus	

caballus).	The	intron	density	(introns	per	bond	–	see	Lunt,	2013)	per	gene	ranged	from	

0	to	a	maximum	of	0.132	(in	Choloepus	hoffmanni)	with	a	mean	intron	density	of	0.005	

(see	Table	5.2	and	Figure	5.2).
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Table	 5.1	 -	 Breakdown	 of	 gene	 family	 information	 for	 all	 61	 species	 available	 in	 release	 70	 of	 the	
Ensembl	databases.	

Species	Name	 Gene	Family	 	 (GF)	

Count	

Gene	(G)	Count	 G/GF	Ratio	 Max	GF	Size	

ailuropoda_melanoleuca	 12,611	 19,343	 0.652	 113	

anolis_carolinensis	 11,006	 17,792	 0.619	 424	

bos_taurus	 12,344	 12,344	 0.617	 154	

caenorhabditis_elegans	 14,637	 20,517	 0.713	 55	

callithrix_jacchus	 13,052	 20,993	 0.622	 224	

canis_familiaris	 12,854	 19,856	 0.647	 150	

cavia_porcellus	 12,034	 18,673	 0.644	 73	

choloepus_hoffmanni	 9,208	 12,393	 0.743	 121	

ciona_intestinalis	 14,222	 16,658	 0.854	 38	

ciona_savignyi	 9,655	 11,604	 0.832	 43	

danio_rerio	 12,786	 26,157	 0.489	 509	

dasypus_novemcinctus	 10,573	 14,803	 0.714	 118	

dipodomys_ordii	 11,144	 15,798	 0.705	 57	

drosophila_melanogaster	 11,295	 13,937	 0.810	 34	

echinops_telfairi	 11,569	 16,562	 0.699	 117	

equus_caballus	 12,161	 20,449	 0.595	 656	

erinaceus_europaeus	 10,478	 14,588	 0.718	 54	

felis_catus	 12,497	 19,493	 0.641	 106	

gadus_morhua	 11,811	 20,095	 0.588	 129	

gallus_gallus	 11,878	 16,736	 0.710	 204	

gasterosteus_aculeatus	 11,730	 20,787	 0.564	 197	

gorilla_gorilla	 13,825	 20,962	 0.660	 201	

homo_sapiens	 13,881	 23,260	 0.597	 271	

ictidomys_tridecemlineatus	 11,899	 18,826	 0.632	 70	

latimeria_chalumnae	 11,563	 19,569	 0.591	 128	

loxodonta_africana	 12,052	 20,033	 0.602	 216	

macaca_mulatta	 13,842	 21,905	 0.632	 231	

macropus_eugenii	 10,528	 15,290	 0.689	 54	

meleagris_gallopavo	 9,785	 14,125	 0.693	 20	

microcebus_murinus	 11,553	 16,319	 0.708	 116	

monodelphis_domestica	 12,429	 21,327	 0.583	 492	

mus_musculus	 13,548	 22,783	 0.595	 283	

mustela_putorius_furo	 13,324	 19,910	 0.669	 130	

myotis_lucifugus	 11,735	 19,728	 0.595	 83	

nomascus_leucogenys	 12,769	 18,575	 0.687	 211	
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Table	5.1	continued.	

Species	Name	 Gene	Family	 	 (GF)	

Count	

Gene	(G)	Count	 G/GF	Ratio	 Max	GF	Size	

ochotona_princeps	 11,282	 15,993	 0.705	 70	

oreochromis_niloticus	 11,081	 21,437	 0.517	 209	

ornithorhynchus_anatinus	 13,722	 21,698	 0.632	 469	

oryctolagus_cuniculus	 11,711	 19,018	 0.616	 92	

oryzias_latipes	 11,417	 19,686	 0.580	 61	

otolemur_garnettii	 12,058	 19,506	 0.618	 206	

pan_troglodytes	 12,831	 18,759	 0.684	 212	

pelodiscus_sinensis	 11,224	 18,188	 0.617	 541	

petromyzon_marinus	 7,517	 10,402	 0.723	 42	

pongo_abelii	 13,907	 20,424	 0.681	 212	

procavia_capensis	 11,392	 16,044	 0.710	 83	

pteropus_vampyrus	 11,972	 16,990	 0.705	 98	

rattus_norvegicus	 13,076	 22,941	 0.570	 121	

saccharomyces_cerevisiae	 5,683	 6,692	 0.849	 82	

sarcophilus_harrisii	 12,110	 18,788	 0.645	 275	

sorex_araneus	 9,516	 13,187	 0.722	 80	

sus_scrofa	 12,334	 21,630	 0.570	 131	

taeniopygia_guttata	 10,823	 17,488	 0.619	 228	

takifugu_rubripes	 10,037	 18,523	 0.542	 75	

tarsius_syrichta	 10,046	 13,615	 0.738	 146	

tetraodon_nigroviridis	 10,744	 19,602	 0.548	 29	

tupaia_belangeri	 11,050	 15,458	 0.715	 87	

tursiops_truncatus	 11,720	 16,537	 0.709	 119	

vicugna_pacos	 8,978	 11,752	 0.764	 85	

xenopus_tropicalis	 10,514	 18,429	 0.571	 352	

xiphophorus_maculatus	 11,595	 20,366	 0.569	 46	
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Figure	5.1	-	Frequency	distribution	of	gene	family	size	in	all	61	species	available	as	of	the	January	2013	release	(70)	of	Ensembl.	A	cut-off	of	100	for	gene	family	size	is	used	as	
this	represents	the	majority	of	the	data.	The	maximum	gene	family	size	in	these	species	is	656.	
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Table	 5.2	 -	 Breakdown	 of	 intron	 density	 (introns/bond)	 information	 for	 all	 61	 species	 available	 in	
release	70	of	the	Ensembl	databases.	

Species	Name	 	 Min	 Max	 Mean	 Median	 Mode	

ailuropoda_melanoleuca	 0.00018	 0.02483	 0.00593	 0.00602	 0.00763	

anolis_carolinensis	 0.00019	 0.03106	 0.00591	 0.00608	 0.00477	

bos_taurus	 0.00015	 0.03636	 0.00464	 0.00451	 0.00578	

caenorhabditis_elegans	 0.00023	 0.03390	 0.00409	 0.00390	 0.00403	

callithrix_jacchus	 0.00013	 0.02857	 0.00463	 0.00427	 0.00472	

canis_familiaris	 0.00014	 0.03279	 0.00448	 0.00418	 0.00704	

cavia_porcellus	 0.00021	 0.03191	 0.00606	 0.00617	 0.00787	

choloepus_hoffmanni	 0.00027	 0.13208	 0.00812	 0.00748	 0.00676	

ciona_intestinalis	 0.00020	 0.02062	 0.00462	 0.00467	 0.00448	

ciona_savignyi	 0.00010	 0.01859	 0.00500	 0.00518	 0.00610	

danio_rerio	 0.00005	 0.03488	 0.00424	 0.00395	 0.00768	

dasypus_novemcinctus	 0.00032	 0.12500	 0.00851	 0.00766	 0.01079	

dipodomys_ordii	 0.00022	 0.13043	 0.00813	 0.00734	 0.00763	

drosophila_melanogaster	 0.00009	 0.01505	 0.00192	 0.00167	 0.00192	

echinops_telfairi	 0.00026	 0.10526	 0.01014	 0.00845	 0.01000	

equus_caballus	 0.00018	 0.03846	 0.00511	 0.00515	 0.00135	

erinaceus_europaeus	 0.00027	 0.11168	 0.00894	 0.00780	 0.00730	

felis_catus	 0.00012	 0.02296	 0.00481	 0.00462	 0.00493	

gadus_morhua	 0.00032	 0.06132	 0.00819	 0.00792	 0.00917	

gallus_gallus	 0.00018	 0.02857	 0.00501	 0.00496	 0.00541	

gasterosteus_aculeatus	 0.00017	 0.02326	 0.00548	 0.00559	 0.00295	

gorilla_gorilla	 0.00006	 0.09375	 0.00480	 0.00405	 0.00270	

homo_sapiens	 0.00006	 0.05000	 0.00334	 0.00279	 0.00389	

ictidomys_tridecemlineatus	 0.00012	 0.02410	 0.00535	 0.00543	 0.00735	

latimeria_chalumnae	 0.00013	 0.02273	 0.00465	 0.00405	 0.00515	

loxodonta_africana	 0.00021	 0.02363	 0.00594	 0.00611	 0.00107	

macaca_mulatta	 0.00015	 0.04348	 0.00479	 0.00448	 0.00435	

macropus_eugenii	 0.00031	 0.08911	 0.00815	 0.00768	 0.00787	

meleagris_gallopavo	 0.00025	 0.02247	 0.00591	 0.00591	 0.00637	

microcebus_murinus	 0.00027	 0.11429	 0.00864	 0.00755	 0.00847	

monodelphis_domestica	 0.00013	 0.02941	 0.00375	 0.00321	 0.00106	

mus_musculus	 0.00002	 0.04348	 0.00324	 0.00282	 0.00286	

mustela_putorius_furo	 0.00005	 0.02664	 0.00399	 0.00350	 0.00214	

myotis_lucifugus	 0.00014	 0.03448	 0.00571	 0.00579	 0.00283	

nomascus_leucogenys	 0.00010	 0.02146	 0.00381	 0.00338	 0.00478	

	



Page	182	of	314	

Table	5.2	continued.	

Species	Name	 	 Min	 Max	 Mean	 Median	 Mode	

ochotona_princeps	 0.00033	 0.13043	 0.00897	 0.00772	 0.01317	

oreochromis_niloticus	 0.00012	 0.02740	 0.00446	 0.00411	 0.00633	

ornithorhynchus_anatinus	 0.00013	 0.03349	 0.00477	 0.00433	 0.00676	

oryctolagus_cuniculus	 0.00025	 0.03165	 0.00569	 0.00578	 0.00581	

oryzias_latipes	 0.00030	 0.01930	 0.00575	 0.00588	 0.00685	

otolemur_garnettii	 0.00016	 0.02400	 0.00552	 0.00557	 0.00752	

pan_troglodytes	 0.00011	 0.05714	 0.00421	 0.00377	 0.00541	

pelodiscus_sinensis	 0.00014	 0.02206	 0.00413	 0.00367	 0.00062	

petromyzon_marinus	 0.00021	 0.03185	 0.00632	 0.00638	 0.00730	

pongo_abelii	 0.00010	 0.07241	 0.00473	 0.00388	 0.00293	

procavia_capensis	 0.00036	 0.10000	 0.00834	 0.00755	 0.00763	

pteropus_vampyrus	 0.00021	 0.11538	 0.00809	 0.00727	 0.00662	

rattus_norvegicus	 0.00010	 0.04255	 0.00435	 0.00409	 0.00296	

saccharomyces_cerevisiae	 0.00018	 0.01408	 0.00354	 0.00187	 0.00019	

sarcophilus_harrisii	 0.00014	 0.03141	 0.00484	 0.00461	 0.00662	

sorex_araneus	 0.00021	 0.07531	 0.00872	 0.00769	 0.00503	

sus_scrofa	 0.00013	 0.04255	 0.00439	 0.00403	 0.00485	

taeniopygia_guttata	 0.00029	 0.02243	 0.00573	 0.00576	 0.00588	

takifugu_rubripes	 0.00015	 0.02085	 0.00596	 0.00620	 0.00649	

tarsius_syrichta	 0.00029	 0.07368	 0.00804	 0.00737	 0.00862	

tetraodon_nigroviridis	 0.00032	 0.02353	 0.00605	 0.00614	 0.00769	

tupaia_belangeri	 0.00026	 0.08750	 0.00925	 0.00799	 0.00459	

tursiops_truncatus	 0.00027	 0.10526	 0.00801	 0.00723	 0.00093	

vicugna_pacos	 0.00027	 0.07547	 0.00806	 0.00748	 0.00259	

xenopus_tropicalis	 0.00013	 0.02101	 0.00522	 0.00507	 0.00380	

xiphophorus_maculatus	 0.00011	 0.02395	 0.00444	 0.00411	 0.00637	
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Figure	5.2-	Frequency	distribution	of	intron	density	in	all	61	species	in	Ensembl	release	70.	Intron	density	is	trimmed	to	0.05	on	the	x-axis,	which	represents	the	majority	of	the	
data.	This	figure	represents	the	right	skew	in	the	data,	with	the	mean,	median	and	mode	all	being	approximately	<=	0.005.	The	maximum	intron	density	in	these	species	is	
0.1320755.	See	Appendix	5.2	for	inset	of	0	to	0.001	intron	density.	
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Intron	sizes	

Intron	sizes	were	retrieved	for	the	1,102,993	gene	IDs	identified	as	belonging	to	gene	

families,	 for	all	 species	available	 in	 the	 release	70	version	of	Ensembl’s	databases.	A	

total	 of	 1,007,633	 gene	 IDs	were	 recovered,	which	 is	 less	 than	 the	number	 of	 input	

gene	IDs,	indicating	that	95,360	genes	had	no	introns	annotated.	A	total	of	10,139,168	

records	 were	 retrieved,	 which	 is	 the	 total	 number	 of	 introns	 annotated	 across	 all	

species.	The	total	number	of	 introns	ranged	from	358	in	Saccharomyces	cerevisiae	to	

235,593	in	Gadus	morhua.	The	total	length	of	introns	for	each	species	was	calculated,	

ranging	 from	 111,916	 bp	 (0.92%	 of	 the	 12,157,105	 bp	 genome)	 in	 Saccharomyces	

cerevisiae	 to	 1,142,973,003	 bp	 (31.70%	 of	 the	 3,605,631,728	 bp	 genome)	 in	

Monodelphis	 domestica.	 The	 minimum	 intron	 size	 annotated	 was	 1	 bp	 (which	 is	

certainly	 not	 a	 real	 intron)	 with	 a	maximum	 size	 of	 4,384,418	 bp	 in	Mus	musculus.	

Whilst	 there	 are	 some	 extreme	 values	 at	 the	minimum	and	maximum	of	 annotated	

introns	–	which	aren’t	explicitly	annotate	by	Ensembl	and	instead	are	classified	by	the	

space	between	exons,	regardless	of	whether	they	are	correctly	called	–	the	majority	of	

the	 data	 are	 the	 same	 across	 all	 species,	 covering	 a	 wide	 range	 of	 plausible	 intron	

sizes).	The	mean	of	all	 intron	sizes	 ranged	 from	307	bp	 in	Caenorhabditis	elegans	 to	

6,672	bp	 	 in	Monodelphis	domestica,	though	the	mode	of	all	species	was	86	bp,	which	

follows	the	pattern	of	intron	size	distribution	highlighted	in	Chapter	Two	and	Chapter	

Three	(Moss	et	al.,	2011)	(see	Table	5.3	and	Figure	5.3).	
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Table	 5.3	 -	 Breakdown	 of	 intron	 size	 information	 for	 all	 61	 species	 available	 in	 release	 70	 of	 the	
Ensembl	databases.	

Species	Name	 Number	 Length	 Max	 Mean	 Median	 Mode	

ailuropoda_melanoleuca	 170,381	 646,117,676	 199,282	 3,792.193	 1086	 88	

anolis_carolinensis	 151,837	 390,119,547	 223,783	 2,569.331	 1213	 84	

bos_taurus	 178,229	 734,909,925	 1,184,028	 4,123.403	 1163	 87	

caenorhabditis_elegans	 106,673	 32,694,553	 100,913	 306.493	 64	 47	

callithrix_jacchus	 188,974	 927,097,104	 1,014,144	 4,905.951	 1242	 84	

canis_familiaris	 171,762	 742,116,143	 265,212	 4,320.607	 1213	 89	

cavia_porcellus	 167,913	 585,117,916	 294,846	 3,484.649	 991	 83	

choloepus_hoffmanni	 141,059	 318,464,028	 120,973	 2,257.665	 828	 100	

ciona_intestinalis	 98,146	 46,968,103	 43,597	 478.553	 323	 57	

ciona_savignyi	 75,145	 50,111,385	 19,782	 666.863	 451	 56	

danio_rerio	 222,283	 624,323,314	 378,145	 2,808.687	 991	 86	

dasypus_novemcinctus	 173,790	 824,800,226	 412,727	 4,745.959	 697	 100	

dipodomys_ordii	 187,156	 512,470,546	 1,433,833	 2,738.200	 727	 100	

drosophila_melanogaster	 46,020	 54,471,673	 141,627	 1,183.652	 72	 58	

echinops_telfairi	 209,317	 791,550,321	 340,784	 3,781.586	 354	 100	

equus_caballus	 173,591	 706,712,927	 247,742	 4,071.138	 1129	 88	

erinaceus_europaeus	 177,889	 616,223,038	 431,914	 3,464.087	 652	 100	

felis_catus	 173,049	 661,763,228	 199,529	 3,824.138	 1144	 88	

gadus_morhua	 235,593	 277,037,249	 759,882	 1,175.915	 282	 100	

gallus_gallus	 146,217	 376,944,883	 488,850	 2,577.983	 801	 86	

gasterosteus_aculeatus	 199,624	 151,619,269	 175,269	 759.524	 219	 85	

gorilla_gorilla	 180,441	 881,519,672	 749,886	 4,885.362	 1304	 85	

homo_sapiens	 202,870	 1,132,066,118	 4,250,947	 5,580.254	 1437	 85	

ictidomys_tridecemlineatus	 163,915	 635,665,385	 321,457	 3,878.018	 1135	 86	

latimeria_chalumnae	 178,098	 733,614,509	 199,449	 4,119.162	 1759	 12	

loxodonta_africana	 167,993	 705,725,509	 334,004	 4,200.922	 1148	 87	

macaca_mulatta	 174,625	 896,959,214	 988,812	 5,136.488	 1306	 88	

macropus_eugenii	 193,533	 431,626,711	 135,339	 2,230.249	 514	 100	

meleagris_gallopavo	 139,721	 292,548,549	 284,326	 2,093.805	 713	 85	

microcebus_murinus	 188,440	 700,848,350	 697,784	 3,719.212	 717	 100	

monodelphis_domestica	 171,320	 1,142,973,003	 312,330	 6,671.568	 1679	 88	

mus_musculus	 184,137	 873,871,082	 4,384,418	 4,745.766	 1320	 88	

mustela_putorius_furo	 174,466	 802,941,219	 279,537	 4,602.279	 1249	 86	

myotis_lucifugus	 166,148	 473,340,990	 226,880	 2,848.912	 1041	 85	

nomascus_leucogenys	 171,353	 916,946,861	 416,468	 5,351.216	 1461	 85	
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Table	5.3	continued.	

Species	Name	 Number	 Length	 Max	 Mean	 Median	 Mode	

ochotona_princeps	 197,187	 718,307,265	 919,067	 3,642.772	 540	 100	

oreochromis_niloticus	 214,987	 307,960,522	 195,966	 1,432.461	 328	 85	

ornithorhynchus_anatinus	 146,825	 440,063,833	 390,999	 2,997.200	 1056	 91	

oryctolagus_cuniculus	 161,876	 676,971,002	 440,526	 4,182.034	 1189	 86	

oryzias_latipes	 185,494	 219,591,667	 295,125	 1,183.821	 252	 77	

otolemur_garnettii	 170,593	 684,625,122	 540,755	 4,013.208	 1269	 84	

pan_troglodytes	 170,795	 943,847,045	 1,086,464	 5,526.198	 1494	 85	

pelodiscus_sinensis	 151,921	 703,527,136	 220,299	 4,630.875	 1587	 90	

petromyzon_marinus	 81,132	 119,353,863	 172,894	 1,471.107	 764	 102	

pongo_abelii	 179,779	 947,900,833	 3,022,163	 5,272.589	 1308	 85	

procavia_capensis	 196,557	 568,713,224	 388,070	 2,893.376	 703	 100	

pteropus_vampyrus	 198,495	 587,449,131	 464,755	 2,959.516	 734	 100	

rattus_norvegicus	 181,135	 756,185,018	 898,102	 4,174.704	 1173	 86	

saccharomyces_cerevisiae	 358	 111,916	 2,483	 312.615	 123	 99	

sarcophilus_harrisii	 160,402	 643,446,829	 220,904	 4,011.464	 1279	 88	

sorex_araneus	 153,980	 553,862,343	 458,340	 3,596.976	 625	 100	

sus_scrofa	 167,069	 631,980,866	 512,204	 3,782.754	 1158	 102	

taeniopygia_guttata	 141,480	 364,683,662	 233,394	 2,577.634	 775	 86	

takifugu_rubripes	 187,962	 108,524,412	 93,537	 577.374	 143	 78	

tarsius_syrichta	 154,157	 441,679,163	 238,254	 2,865.126	 997	 100	

tetraodon_nigroviridis	 187,875	 90,447,562	 631,227	 481.424	 118	 76	

tupaia_belangeri	 189,131	 834,229,024	 809,294	 4,410.853	 632	 100	

tursiops_truncatus	 194,085	 719,988,521	 547,205	 3,709.656	 833	 100	

vicugna_pacos	 135,032	 626,204,310	 778,219	 4,637.451	 1001	 100	

xenopus_tropicalis	 176,758	 375,692,909	 218,827	 2,125.465	 830	 84	

xiphophorus_maculatus	 202,391	 263,410,565	 196,977	 1,301.493	 379	 83	
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Figure	5.3	-	Frequency	distribution	of	intron	size	in	all	61	species	in	Ensembl	release	70.	A	cut-off	of	5,000	bp	intron	size	was	used	on	the	x-axis,	though	the	data	progresses	up	
to	a	maximum	of	4,384,418	bp	at	a	frequency	of	approximately	<=	1.	Again	the	majority	of	the	data	are	comparable	as	seen	by	the	right	skew	in	the	distribution.	See	Appendix	
5.3	for	inset	of	0	to	750	intron	size.	
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Gene	family	and	intron	data	correlations	

Visualisations	were	plotted	depicting	 the	 relationship	between	gene	 family	 size,	 and	

intron	count,	density	and	size	using	a	pooled	dataset	of	all	the	intron	and	gene	family	

data	 from	 all	 61	 species	 (see	 Supplementary	 Figure	 5.2,	 Figure	 5.4	 and	 Figure	 5.5),	

showing	a	clear	downward	trend.	

Correlation	tests	were	performed	between	all	data	on	intron	count,	density	and	

size	against	gene	family	size	using	a	Spearman’s	rank	correlation	test	(see	Table	5.4),	

showing	a	subtle	positive	relationship	between	intron	count	and	gene	family	size,	and	

a	slight	negative	relationship	between	intron	density	and	size	against	gene	family	size.	

Table	5.4	 -	Table	 showing	Spearman’s	 rho	 for	 correlations	between	 intron	variable	and	gene	 family	
size	pairs	in	61	species.	

Variable	Pairs	 rho	
Intron	Count	~	GF	Size	 0.06139003	
Intron	Density	~	GF	Size	 -0.04813767	
Intron	Size	~	GF	Size	 -0.005180116	
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Figure	5.4	-	A	boxplot	displaying	the	relationship	between	gene	family	size	and	intron	density	for	the	pooled	intron	and	gene	family	data	of	all	61	species	used	in	this	study.	
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Figure	5.5	-	A	boxplot	displaying	the	relationship	between	gene	family	size	and	intron	size	for	the	pooled	intron	and	gene	family	data	of	all	61	species	used	in	this	study.
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Intron	characteristics	by	location	on	the	chromosome	

A	total	of	21,983	protein-coding	genes	were	retrieved,	of	which	19,850	were	identified	

as	 belonging	 to	 assembled	 chromosome	 sequences	 and	 thus	 considered	 for	 further	

analysis.	 The	 remaining	 2,133	 were	 part	 of	 unassembled	 contigs	 or	 non-standard	

chromosome	pairs	 and	 thus	 removed.	An	additional	 1,351	 genes	were	discarded	 for	

having	 no	 introns,	 leaving	 18,499	 genes	 for	 downstream	 analyses.	 Of	 these	 18,499	

genes,	 a	 total	 of	 186,650	 introns	 (from	 202,227	 introns	 matching	 the	 full	 21,983	

protein	 coding	 gene	 dataset)	 were	 identified	 for	 analyses.	 A	 further	 40	 of	 these	

(leaving	186,610	 introns)	were	 trimmed	for	being	 less	 than	5	bp	 in	 length	 (93	out	of	

the	 202,227	 intron	 dataset)	 as	 the	 absolute	 minimum	 requirement	 for	 a	 functional	

intron	(though	this	is	likely	to	be	greater	than	30	bp	in	reality	–	see	Moss	et	al.,	2011).	

Intron	count	ranges	from	a	minimum	of	1	intron	to	a	maximum	of	362	introns.	Intron	

density	 (introns	per	bond)	 ranges	 from	a	minimum	of	 0.00002969	 to	 a	maximum	of	

0.03571429.	Intron	length	ranges	from	a	minimum	of	5	bp	to	a	maximum	of	1,240,120	

bp.	 The	 mean	 intron	 density	 was	 calculated	 for	 windows	 of	 250	 Kb	 in	 size	 across	

chromosome	1	and	plotted	alongside	an	 ideogram	 for	Homo	sapiens	 chromosome	1	

(see	Figure	5.6).	

Sex	chromosomes	versus	autosomes	

Mean	 intron	 density	 was	 calculated	 per	 250Kb	 window	 across	 the	 X	 and	 Y	

chromosomes	(see	Figure	5.7	and	5.8	respectively).	

The	Kruskal-Wallis	Rank	Sum	Test	was	used	to	determine	whether	 the	samples	

for	 each	 intron	 characteristic	 came	 from	 the	 same	 distribution	 across	 groups	 of	

chromosomes.	 Intron	count,	density	and	size	were	tested	against	autosomes	and	sex	

chromosomes	 (defined	 by	 “Chromosome	 Name”)	 to	 see	 whether	 a	 significant	

difference	 existed	 (see	 Table	 5.6).	 A	 significant	 difference	 is	 highlighted	 for	 all	 but	

intron	count	and	size	in	the	sex	chromosomes.	 	

Table	5.6	-	Table	showing	Kruskal-Wallis	Rank	Sum	Test	statistics	for	test	of	difference	between	intron	
variables	and	chromosome	groups.	

Measures	and	Groups	 All	Chromosomes	 Autosomes	 Sex	Chromosomes	
Intron	Count	~	
Chromosome	Name	

χ2	=	225.6736	
p	<	2.2e-16	

χ2	=	200.4487	
p	<	2.2e-16	

χ2	=	0.3927	
p	=	0.5309	

Intron	Density	~	
Chromosome	Name	

χ2	=	142.7524	
p	<	2.2e-16	

χ2	=	85.3713	
p	=	1.002e-9	

χ2	=	50.819	
p	=	1.013e-12	

Intron	Size	~	Chromosome	
Name	

χ2	=	6506.65	
p	<	2.2e-16 

χ2	=	6509.875	
p	<	2.2e-16 

χ2	=	0.4285	
p	=	0.5127	
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Figure	5.6	–	Mean	intron	density	calculated	per	250Kb	window	across	chromosome	1.
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Figure	5.7	–	Mean	intron	density	calculated	per	250Kb	window	across	chromosome	X.
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Figure	5.8	–	Mean	intron	density	calculated	per	250Kb	window	across	chromosome	Y.
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Discussion	

This	 chapter	 attempts	 to	 understand	 whether	 gene	 duplication	 impacts	 on	 the	

evolution	 of	 introns,	 or	 whether	 there	 are	 other	 non-family	 effects	 that	 are	 more	

involved.	 There	 have	 been	 some	 attempts	 to	 understand	 the	main	 drivers	 of	 intron	

evolution	 in	 relation	 to	 gene	 duplication	 previously	 (Deutsch	 and	 Long,	 1999;	

Vinogradov,	1999;	McLysaght	et	al.,	2000;	Castillo-Davis	et	al.,	2004;	Lin	et	al.,	2006;	

Chatterji	and	Pachter,	2007;	Jabbari,	2013),	albeit	at	a	much	smaller	scale.	This	study	

takes	a	large-scale	comparative	genomics	approach	to	the	analyses	of	gene	family	size	

on	intron	evolution,	and	in	doing	so	demonstrates	that	these	data	can	be	collated	from	

a	 large	 number	 of	 species,	 allowing	 for	 comparisons	 across	 a	 diverse	 range	 of	

organisms	with	 a	 variety	 of	 population	 and	 life	 history	 parameters.	 Previous	 studies	

that	have	suggested	an	increased	rate	of	intron	gain	or	loss	have	been	limited	to	single	

organisms,	or	members	of	different	 subspecies	 (Castillo-Davis	et	al.,	 2004;	 Lin	et	al.,	

2006)	and	therefore	the	analyses	in	this	chapter	have	much	greater	power.	One	might	

be	 concerned	 that	 that	 variation	 in	 assembly	 and	 annotation	quality	 across	multiple	

genomes	might	impact	on	the	reliability	of	the	results,	as	described	by	Ames	et	al.	and	

Han	et	al.	 (2012;	2013).	However,	although	the	data	here	aren’t	controlled	for	these	

factors,	 the	 distributions	 are	 shown	 to	 be	 sensible	 and	 comparable	 throughout	 (see	

Figure	 5.1	 through	 Figure	 5.5).	 This	 gives	 us	 increased	 confidence	 that	we	 are	 likely	

working	with	 the	 same	classes	of	data,	 though	being	able	 to	control	 for	error	 in	 the	

models	would	be	preferable.	The	volume	and	extent	of	the	data	being	compared	here	

provides	 further	 proof	 of	 the	 power	 of	 comparative	 genomics	 in	 determining	 the	

forces	shaping	genome	structure	and	content.	

Introns	are	very	 important	as	 they	contribute	a	 large	proportion	of	nucleotides	

towards	 the	 total	 size	of	higher	eukaryote	genomes,	with	vertebrate	genomes	being	

the	primary	focus	of	this	study.	 Introns	often	contribute	more	to	overall	gene	 length	

than	exons	and	UTRs	(untranslated	regions)	combined	(Deutsch	and	Long,	1999;	Hong	

et	 al.,	 2006),	 and	 there	 is	 often	 a	 correlation	 between	 intron	 size	 and	 genome	 size	

(Deutsch	and	Long,	1999;	Vinogradov,	1999;	McLysaght	et	al.,	2000).	 Introns	are	also	

very	effective	at	highlighting	neutral	forces	of	molecular	evolution,	as	well	as	some	of	

the	regulatory	mechanisms	involved	in	gene	expression	and	splicing	(Patel	et	al.,	2002;	

Patel	 and	 Steitz,	 2003;	 Basu	et	 al.,	 2008;	 Rogozin	et	 al.,	 2012).	Mechanisms	 such	 as	
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replication	slippage,	and	non-homologous	recombination	that	are	common	in	the	gain	

and	loss	of	introns	(Roy	and	Gilbert,	2006;	Yenerall	and	Zhou,	2012)	are	also	involved	

in	 the	 duplication	 of	 genes	 (Zhang,	 2003).	 One	might	 expect,	 therefore,	 that	 larger	

gene	families	would	have	a	greater	density	of	introns	due	to	an	increased	intron	gain	

over	intron	loss,	and	there	seems	to	be	some	evidence	to	suggest	this	in	the	literature	

(Babenko	 et	 al.,	 2004),	 though	 change	 in	 size	 of	 introns,	 at	 least	 reduction	 in	 size,	

seems	to	be	more	linked	to	gene	expression	(Castillo-Davis	et	al.,	2002),	with	selection	

playing	 a	 role	 in	 maintaining	 smaller	 gene	 sizes	 (Zhang	 and	 Edwards,	 2012).	

Chromosomal	 translocations	 are	postulated	 to	 impact	more	on	 increased	 intron	 size	

(Jabbari,	 2013),	 though	 recent	 evidence	 has	 highlighted	 a	 correlation	 between	

conservation	 at	 the	 protein	 level	 and	 increased	 intron	 burden	 (Gorlova	et	 al.,	 2014)	

potentially	 due	 to	 the	 benefits	 of	 conserving	 the	 gene	 and	 its	 splice	 variants	

outweighing	the	metabolic	burden	of	maintaining	the	introns.	

This	chapter	 looks	at	a	number	of	factors	 in	relation	to	location	of	genes	in	the	

chromosome	 and	 intron	 evolution.	 Recombination	 rate	 is	 postulated	 to	 be	 an	

influential	factor	on	the	intron	distribution	(Comeron	and	Kreitman,	2000;	Duret,	2001;	

Prachumwat	 et	 al.,	 2004;	 Roy	 and	 Gilbert,	 2006;	 Li	 et	 al.,	 2009;	 Nam	 and	 Ellegren,	

2012).	I	show	a	strong	difference	between	the	sex	chromosomes	and	autosomes,	and	

it	is	likely	that	recombination	is	a	major	contributing	factor	to	this	difference,	which	is	

discussed	in	greater	detail	below.	The	literature	also	describes	a	relationship	between	

GC	 content,	 in	 particular	 larger	 scale	 GC	 rich	 isochores	 and	 the	 evolution	 of	 intron	

content	in	the	genome	(Zhu	et	al.,	2009;	Fujita	et	al.,	2011;	Chaurasia	et	al.,	2014;	Sun	

et	al.,	2015).	The	analyses	in	this	chapter	do	not	identify	a	clear	relationship	between	

GC	 content	 and	 intron	 characteristics	 and	 this	 agrees	with	 the	 literature	 that	 shows	

there	 is	 likely	 to	 be	 a	much	more	 complicated	 relationship	 as	 the	 discussion	 below	

highlights	 (Fullerton	et	al.,	 2001;	Prachumwat	et	al.,	 2004;	 Li	et	al.,	 2009;	Marsolier-

Kergoat	and	Yeramian,	2009;	Weber	et	al.,	2014).	This	chapter	also	investigates	other	

chromosome	location	specific	factors.	The	position	of	the	introns	at	the	chromosome	

level	 is	explored	 in	 relation	 to	whether	higher-level	 forces	 such	as	 replication	 timing	

and	epigenetic	modifications	might	play	more	of	a	role	in	the	evolution	of	introns.	We	

would	expect	to	see	a	stronger	relationship	between	chromosome	location	and	intron	

density	than	there	is	with	gene	duplication	in	this	case.	Several	studies	highlight	such	

non-family	 effects	 with	 larger	 introns	 being	 correlated	 with	 chromosomal	
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translocations	 (Jabbari,	 2013),	 genes	 with	 specific	 intron	 arrangements	 being	

conserved	 in	 given	 clusters	 of	 chromosomes	 (Salier,	 2000;	 Sánchez	et	 al.,	 2003)	 and	

significant	 differences	 in	 autosomal	 vs	 X-linked	 introns,	 specifically	 in	 relation	 to	GC	

isochores	 (Haddrill	 et	 al.,	 2005).	 The	 spatial	 impact	 on	 intron	 characteristics	 was	

addressed	here	using	data	from	Homo	sapiens	only	as	a	pooled	comparative	analysis	

wouldn’t	be	possible	due	to	non-homologous	chromosomes	pairs	across	species.	The	

use	of	the	high	quality	annotated	human	genome,	however,	allows	us	to	tease	apart	

the	 contrasting	 signals	 from	 the	 different	 evolutionary	 forces	 at	 work	 across	 the	

genome	 in	 a	 more	 focused	 manner.	 Autosomes	 and	 sex	 chromosomes	 were	 also	

compared,	allowing	us	a	proxy	for	determining	the	effects	of	recombination	on	intron	

evolution.	

Is	intron	evolution	independent	in	different	gene	copies?	

In	 understanding	 how	 gene	 duplication	 impacts	 on	 lower	 level	molecular	 evolution,	

the	gene	family	data	for	a	diverse	range	of	61	species	were	retrieved	and	analysed.	A	

total	 of	 1,102,993	 genes	 were	 fetched	 contained	within	 130,090	 gene	 families.	 The	

pattern	 of	 gene	 family	 sizes	 followed	 the	 same	 approximation	 of	 a	 power-law	

distribution	for	all	species,	as	previously	highlighted	in	Chapter	4.	Likewise	intron	data	

were	 retrieved	 for	all	 61	 species	accounting	 for	a	 total	of	10,139,168	 introns.	 Intron	

count,	 density	 and	 size	 varied	 with	 species,	 which	 likely	 indicates	 the	 effect	 of	

population	 genetic	 forces	 and	 life	 history	 traits	 such	 as	 effective	 population	 size,	

generation	time,	and	number	of	offspring	on	their	underlying	evolution.	Species	with	

larger	effective	population	sizes	are	less	susceptible	to	genetic	drift,	and	more	likely	to	

see	 an	 effect	 of	 natural	 selection.	 For	 example,	Monodelphis	 domestica,	 which	 can	

raise	a	 relatively	 large	number	of	offspring	 throughout	 their	 lifetime	(Macrini,	2004),	

and	 therefore	 may	 be	 more	 susceptible	 to	 selection	 against	 larger	 introns	 through	

natural	 selection,	 had	 the	 largest	 intron	 sizes	 and	 a	 relatively	 large	maximum	 gene	

family	size,	though	the	gene	to	gene	family	(G/GF)	ratio	was	approximately	50%.	This	

perhaps	 indicates	a	greater	 role	of	 retrotransposition	 in	 increasing	 intron	size	 in	 this	

species,	 which	 is	 feasible	 given	 the	 increased	 burden	 of	 transposable	 elements	 and	

other	interspersed	repeats	within	its	genome	(Mikkelsen	et	al.,	2007).	

The	data	shows	that	9.46%	(95,360)	of	genes	contain	no	introns.	Although	this	is	

a	 cumulative	 value	 across	 all	 61	 species,	 it	 indicates	 that	 retrotransposition	 or	 gene	
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conversion	is	a	relatively	common	occurrence	because	these	methods	can	result	in	the	

loss	 of	 introns,	 particularly	 in	 the	 case	 of	 retrotransposition	 where	 a	 processed	

transcript	 can	 be	 reinserted	 into	 the	 genome.	 Most	 retrotransposition	 events	 will	

result	in	pseudogenization	on	insertion	(Lynch	and	Richardson,	2002)	though	some	do	

get	 processed	 if	 they	 are	 inserted	 sufficiently	 close	 to	 downstream	 promoter	

sequences	 (Zhu	 and	 Niu,	 2013).	 Most	 genes,	 at	 least	 in	 more	 complex	 eukaryotic	

species	 (this	 thesis	 focuses	 primarily	 on	 vertebrates),	 have	 introns	 (Gilbert,	 1978;	

Lynch,	2005;	Lynch,	2007).	It	is	certainly	possible	that	novel	genes	could	arise	without	

introns,	though	this	is	likely	to	be	due	to	a	recent	retrotransposition	event	that	places	

a	 transcript	 close	 to	 a	 downstream	 promoter	 sequence,	 which	 doesn’t	 have	 a	 high	

probability	 of	 occurrence.	 It	 is	 more	 likely	 that	 these	 events	 will	 result	 in	

pseudoginisation	on	reinsertion,	however.	Pseudogenes	aren’t	explicitly	considered	in	

this	study	however,	so	 it	 is	more	 likely	that	gene	conversion	plays	the	dominant	role	

here.	Gene	conversion	results	in	the	homogenization	of	regions	of	200	to	1,500	bp	in	

length	between	orthologous	(allelic)	and	paralogous	(non-allelic	or	ectopic)	genes.	This	

has	been	shown	to	result	in	intron	loss	if	the	donor	sequence	contains	no	introns	and	

gain	 if	 it	 does	 (Roy	 and	Gilbert,	 2005).	 The	 bias	 towards	 higher	 GC	 content	 in	 gene	

conversion	predicts	 increased	gene	density	and	 smaller	 introns	 (Galtier	et	al.,	 2001),	

though	intron	loss	has	been	shown	to	result	from	ectopic	gene	conversion	(Morris	and	

Drouin,	 2011)	 particularly	 at	 the	 3’-end,	 which	 perhaps	 provides	 some	 additional	

considerations	for	why	first	introns	are	shown	to	be	longer	(Bradnam	and	Korf,	2008).	

Increased	 retrotransposition,	 non-homologous	 recombination,	 and	 gene	

conversion	 are	 just	 some	 of	 the	 mechanisms	 by	 which	 gene	 family	 expansion	 can	

impact	on	the	evolution	of	 introns	 (Crick,	1979;	Sharp,	1985;	Rogers,	1989;	Derr	and	

Strathern,	1993;	Hankeln	et	al.,	1997;	Roy	and	Gilbert,	2006;	 Irimia	et	al.,	2008;	Roy,	

2009;	Li	et	al.,	2009;	Yenerall	and	Zhou,	2012),	however	the	pattern	of	 intron	count,	

density	 and	 size	 seems	 to	 follow	 a	 similar	 distribution	 regardless	 of	 whether	 we	

consider	 only	 introns	within	 gene	 families	 or	 introns	 across	 the	 entire	 genome	 (see	

Chapter	 Two	 and	 Chapter	 Three;	Moss	et	 al.,	 2011).	One	would	 expect	 that	 if	 gene	

duplication	did	 impact	on	 intron	evolution	that	there	would	be	a	difference	 in	 intron	

characteristics	 that	 correlated	with	 change	 in	 gene	 family	 characteristics.	 This	 is	 not	

the	case	here,	and	instead	we	see	uniform	patterns	of	intron	evolution	across	different	

gene	copies,	highlighting	common	forces	involved	in	intron	evolution.	Singleton	genes	
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weren’t	assessed	 in	relation	to	 intron	content	here,	 though	would	be	a	useful	 future	

direction	 to	 understand	 how	 non-family	 effects	 impact	 on	 intron	 characteristics	

regardless	of	position	 in	the	chromosome.	Previous	studies	(Knowles	and	McLysaght,	

2009;	 Bornberg-Bauer	 et	 al.,	 2010)	 have	 highlighted	 that	 recent	 de	 novo	 singleton	

genes	tend	to	be	void	of	intronic	sequence	(however	see	Levine	et	al.,	2006	and	Yang	

and	Huang,	2011).	De	novo	singleton	genes	arise	 from	non-coding	DNA	and	gain	the	

capability	 of	 transcription	 and	 translation	 through	 mutation.	 This	 has	 been	 widely	

studied	in	yeast	(Cai	et	al.,	2008)	but	applies	to	de	novo	genes	without	introns	in	their	

coding	sequence.	Introns	can	be	gained	by	intronization	of	exonic	sequences	(Irimia	et	

al.,	 2008),	 but	 more	 often	 are	 linked	 to	 mechanisms	 such	 as	 intron	 transposition,	

transposon	insertion,	tandem	genomic	duplication,	 intron	transfer	between	paralogs,	

and	self-splicing	type	II	 intron	insertion	(Irimia	et	al.,	2008;	Roy	and	Irimia,	2009;	Zhu	

and	Niu,	2013).	 In	conclusions	the	analyses	here	point	to	a	uniform	process	of	 intron	

distribution	across	gene	copies,	and	 implies	the	forces	driving	this	are	not	specific	to	

genes	and	more	general	across	the	genome.	

Does	size	of	gene	family	influence	intron	evolution?	

Intron	 count,	 density	 and	 size	 follow	 a	 consistent	 pattern	 in	 all	 genomes	 with	 the	

observation	 of	 a	 unimodal,	 right-skewed	 distribution	 for	 all	 characteristics	 (see	

Supplementary	 Figure	 5.1,	 Figure	 5.2	 and	 Figure	 5.3),	 as	 previously	 described	 in	 the	

literature	 (Hong	 et	 al.,	 2006;	 Moss	 et	 al.,	 2011).	 This	 distribution	 represents	 the	

entirety	 of	 all	 individual	 intron	 data	 points	 pooled	 together,	 however;	 so	 all	 introns	

regardless	of	their	location	in	the	genome	or	the	size	of	the	gene	family	they	belong	to,	

are	represented	by	their	contribution	to	particular	size	classes.	In	order	to	understand	

how	gene	family	size	impacts	on	intron	evolution	however,	it	is	necessary	to	examine	

the	 contribution	 of	 intron	 sizes	 within	 each	 gene	 family	 size	 class.	 We	 can	 do	 this	

visually	using	a	simple	boxplot.	By	examining	the	relationship	between	gene	family	size	

and	 intron	 characteristics	both	 visually	 and	 statistically	 it	 is	 possible	 to	build	 a	more	

robust	 picture	of	 the	 impact	 of	 gene	 family	 size	 on	 intron	 evolution.	 Comparing	 the	

intron	 characteristics	 visually	 allows	 us	 to	 1)	 determine	 whether	 there	 is	 a	 loss	 of	

variation	due	to	the	decrease	in	number	of	observations	with	increase	in	gene	family	

size,	 and	 2)	 highlight	 any	 outliers	 in	 the	 distributions	 of	 intron	 sizes	 for	 each	 gene	

family	 size	 that	might	 point	 towards	 a	 correlation	 between	 gene	 family	 size	 change	

and	the	evolution	of	intron	characteristics.	
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The	results	show	(see	Supplementary	Figure	5.2,	Figure	5.4	and	Figure	5.5)	that	

there	are	a	lower	number	of	intron	data	points	seen	with	increase	in	gene	family	size.	

This	 might	 be	 expected,	 as	 the	 total	 number	 of	 genes	 contained	 within	 each	 gene	

family	 class	 follows	 an	 approximate	 power-law	 distribution	 (see	 Figure	 5.1)	 as	

previously	described	in	the	literature	(Huynen	and	Nimwegen,	1998;	Luscombe	et	al.,	

2002).	This	downward	trend	is	confirmed	by	the	Spearman’s	rank	correlation	test	(see	

Table	 5.4),	 which	 returns	 a	 negative	 relationship	 between	 intron	 density	 and	 intron	

size,	 against	 gene	 family	 size.	 Intron	 count,	 however,	 returns	 a	positive	 relationship,	

although	there	is	clearly	a	downward	trend	in	the	plot	(Supplementary	Figure	5.2).	This	

visual	 determination	 of	 a	 downward	 trend	 is	 likely	 due	 to	 the	 exceptionally	 large	

number	of	introns	contained	within	gene	family	size	classes	of	less	than	30	members,	

as	 the	 trend	 above	30	 shows	 a	positive	 correlation.	 In	 general,	 there	 seems	 to	be	 a	

distinct	difference	between	gene	families	with	less	than	30	members	and	gene	families	

with	more	than	30	members.	A	positive	correlation	between	recombination	rate	and	

average	 gene	 family	 size	 has	 previously	 been	 observed	 (Tiley	 and	 Burleigh,	 2015),	

which	 may	 partly	 explain	 the	 differences	 here,	 though	 why	 there	 would	 be	 a	

distinction	between	families	with	fewer	members	and	families	with	greater	members	

is	still	unclear.	It	is	possible	this	could	be	due	to	annotation	errors	in	larger	gene	family	

size	classes.	We	would	expect	to	see	more	introns	overall	within	those	size	classes	that	

exhibit	a	greater	cumulative	total	number	of	genes.	This	is	dependent	on	the	average	

number	of	 introns	within	the	genes	being	the	same	however,	which	seems	not	to	be	

the	case	in	all	species	(Koonin	et	al.,	2012).	Indeed,	if	the	number	of	introns	were	the	

same	in	all	genes	we	should	expect	to	see	a	pattern	of	intron	density	that	follows	the	

same	 power-law	 distribution	 as	 gene	 family	 size.	 Instead	 we	 see	 a	 unimodal	 right-

skewed	distribution	 (see	 Figure	 5.4	 and	 Figure	 5.5).	 This	 intron	pattern	 is	 consistent	

across	all	genes,	not	just	those	in	gene	families	(see	Chapter	Two	and	Chapter	Three;	

Moss	 et	 al.,	 2011).	 It	 is	 likely	 that	 the	 variation	 in	 age,	 selective	 pressure,	 and	

recombination	 frequency	 within	 individual	 gene	 families	 contributes	 to	 a	 deviation	

from	 the	neutral	 expectation	 (Roy	et	 al.,	 2002;	 Rogozin	et	 al.,	 2003;	 Babenko	et	 al.,	

2004;	Basu	et	al.,	2008;	Kordiš	and	Kokošar,	2012).	

We	can	plot	gene	family	size	against	intron	count,	density	and	size	along	with	a	

linear	model	 of	 the	 data	 to	 understand	 the	 relationship	 between	 these	 variables	 in	

greater	 detail.	 The	 overlap	 in	 confidence	 intervals	 seen	 in	 Figures	 5.5	 through	 5.7	
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demonstrates	 that	 intron	 count,	 density	 and	 size	 come	 from	 the	 same	 distribution	

regardless	 of	 their	 member	 gene	 family	 size.	 By	 performing	 a	 Spearman’s	 rank	

correlation	 test	 the	 relationship	 between	 the	 data	 can	 be	 described	 using	 a	 single	

statistic.	 The	 relationship	 seen	 for	 intron	density	and	 intron	 size	are	 closer	 to	0	 (see	

Table	5.5),	 though	exhibit	a	slight	negative	relationship,	meaning	that	as	gene	family	

size	 increases	 intron	density	and	 size	displays	a	 very	 slight	decrease.	 Intron	 count	 in	

contrast	 shows	 a	 slight	 positive	 relationship	 (see	 Table	 5.5),	 meaning	 that	 as	 gene	

family	size	increases,	intron	count	also	increases	slightly.	These	visualisations	and	tests	

tell	us	that	gene	family	size	has	a	weak	influence	at	best	on	the	underlying	evolution	of	

intron	characteristics.	

There	 is	 some	 evidence	 to	 suggest	 that	 intron	 density	 is	 greater	 within	 larger	

gene	families	(Babenko	et	al.,	2004),	though	we	see	the	opposite	of	that	here.	Intron	

gain	appears	to	be	limited	to	specific	types	of	gene	such	as	domesticated	genes	(Kordiš	

and	Kokošar,	2012)	and	plastid-derived	genes	(Basu	et	al.,	2008)	as	well	as	being	more	

prevalent	in	vertebrates	and	plants	(Rogozin	et	al.,	2003;	Babenko	et	al.,	2004;	Koonin	

et	al.,	2012).	The	weak	positive	relationship	between	intron	count	and	gene	family	size	

in	our	data	may	be	a	reflection	of	this,	with	the	larger	gene	families	(such	as	zinc-finger	

genes)	tending	to	have	adaptive	relevance	(Kordiš	and	Kokošar,	2012;	Brunner	et	al.,	

2014).	A	previous	study	in	rice	(Lin	et	al.,	2006)	identified	a	bias	towards	intron	loss	in	

duplicate	 genes,	 with	 cases	 of	 intron	 gain	 being	 due	 to	 transposon	 insertion	 or	

retrotransposition	 of	 pseudogenes.	 Conversely,	 an	 analyses	 of	 introns	 in	 duplicate	

genes	 in	human	and	mouse	malarial	parasites	 (Castillo-Davis	et	al.,	2004)	showed	an	

increased	 acceleration	 of	 both	 intron	 gain	 and	 loss	 due	 to	 relaxed	 selection	 and/or	

positive	selection	 in	duplicate	copies,	along	with	a	weak	correlation	between	protein	

divergence	and	intron	gain/loss	in	orthologs,	but	not	paralogs.	This	points	to	processes	

that	work	independently	of	duplication,	and	that	are	more	intrinsically	linked	with	the	

function	and	structure	of	genes.	

Is	 there	 heterogeneity	 in	 intron	 evolution	 across	 chromosomes,	 and	 between	 sex	

chromosomes	and	autosomes?	

If	 the	 size	 of	 the	 gene	 family	 that	 introns	 are	 contained	 within	 doesn’t	 impact	

significantly	on	the	evolution	of	their	count,	density	or	size,	then	there	must	be	other	

forces	 at	 play.	 One	 possibility	 is	 that	 there	 are	 localised	 effects	 that	 exert	 a	 bias	
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towards	 increase	 or	 decrease	 in	 intron	 characteristics,	with	mechanisms	 such	 as	GC	

bias	within	isochores	across	the	genome	(Zhu	et	al.,	2009;	Fujita	et	al.,	2011;	Chaurasia	

et	al.,	2014;	Sun	et	al.,	2015)	and	recombination	rate	(Comeron	and	Kreitman,	2000;	

Duret,	2001;	Prachumwat	et	al.,	2004;	Roy	and	Gilbert,	2006;	Li	et	al.,	2009;	Nam	and	

Ellegren,	 2012)	 being	 strong	 contenders.	 These	 mechanisms	 seem	 to	 have	

predominance	towards	smaller	intron	size	and	fewer	introns	per	gene	however,	which	

may	be	due	to	the	positive	correlation	seen	between	GC	bias	and	recombination	rate	

(Fullerton	et	al.,	2001;	Marsolier-Kergoat	and	Yeramian,	2009;	Weber	et	al.,	2014).	In	

contrast	 Caenorhabditis	 elegans	 demonstrates	 a	 positive	 correlation	 with	 intron	

number	 and	 recombination	 rate	 and	 also	 a	 positive	 correlation	 between	 introns	 of	

100-1,000	bp	 (Prachumwat	et	 al.,	 2004;	 Li	et	 al.,	 2009),	with	 the	 exception	of	 the	X	

chromosome	 that	 interestingly	 sees	 introns	of	>	1,000	bp	arranged	according	 to	 the	

recombination	 rate	across	 the	chromosome	 (Li	et	al.,	2009).	Generally	 the	 impact	of	

selection	and	recombination	rate	are	much	weaker	and	non-significant	in	introns	of	<	

100	bp	and	>	1,000	bp,	however.	

The	pooled	intron	data	for	Homo	sapiens	was	analysed	using	a	Kruskal-Wallis	test,	

the	non-parametric	equivalent	of	the	one-way	analysis	of	variance	(Kruskal	and	Wallis,	

1952),	to	test	whether	intron	counts,	intron	densities	and	intron	sizes	came	from	the	

same	 distribution	 across	 different	 chromosome	 groups.	 The	 Kruskal-Wallace	 test	

showed	that	when	analysing	all	chromosomes	together,	and	just	autosomes	that	these	

samples	originated	 from	the	 same	distributions	with	a	high	 significance	 (p=2.2x10-16,	

p=2.2x10-16,	p=2.2x10-16	and	p=2.2x10-16,	p=1.002x10-9,	p=2.2x10-16	 respectively	–	see	

Table	5.6).	When	comparing	sex	chromosomes,	however,	this	isn’t	that	case	and	there	

is	no	significant	result	for	intron	counts	and	intron	sizes	(p=0.5309	and	p=0.5127),	with	

the	exception	of	intron	densities	(p=1.013x10-12)	(Table	5.6).	The	difference	seen	with	

the	sex	chromosomes	 is	 likely	due	to	the	composition	of	the	Y	chromosome	skewing	

the	results.	The	Y	chromosome	has	experienced	massive	gene	decay	and	degeneration,	

due	mostly	 to	 reduction	or	 loss	of	 recombination	and	the	accumulation	of	 repetitive	

elements	(Charlesworth	and	Charlesworth,	2000;	Bachtrog,	2013).	The	Y	chromosome	

is	 an	 extreme	 case,	 however,	 demonstrating	 how	 increased	 mutation	 rate,	 and	

reduced	 effective	 population	 size	 and	 recombination	 rate	 can	 impact	 on	 underlying	

sequence	evolution	(Charlesworth	and	Charlesworth,	2000)	not	just	in	humans	(Cortez	

et	al.,	2014).	The	 increased	mutation	rate	can	 lead	to	 increased	divergence	between	
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sequences,	which	is	particularly	the	case	in	introns	that	are	more	subject	to	drift	than	

selection,	 with	 the	 exception	 of	 some	 MSY-specific	 gene	 families	 that	 see	 >	 98%	

nucleotide	identity	among	family	members	in	both	introns	and	exons	(Skaletsky	et	al.,	

2003).	Interestingly	there	was	still	a	significant	relationship	between	the	distribution	of	

intron	densities	across	the	X	and	the	Y-chromosomes.	This	is	likely	due	to	the	number	

of	 introns	per	bond,	 the	definition	of	 intron	density	used	here,	being	 similar	 in	both	

groups	due	to	the	decreased	size	of	genes	on	the	Y	chromosome,	though	the	overall	

count	and	size	of	those	introns	varies	considerably.	

To	 gain	 greater	 insight	 and	 understanding	 of	 the	 distribution	 of	 intron	

characteristics	 across	 the	 chromosomes,	 mean	 intron	 density	 was	 calculated	 per	

250Kb	 window	 across	 each	 chromosome,	 with	 a	 focus	 on	 chromosome	 1,	 the	 X	

chromosome	and	the	Y	chromosome	(see	Figures	5.8,	5.9	and	5.10).	The	mean	intron	

density	showed	a	spatial	pattern	that	seemed	to	fit	with	the	distribution	of	cytogenetic	

bands,	 with	 0	 intron	 density	 being	 seen	 in	 heterochromatic	 regions,	 particularly	

around	 the	 centromeres	 and	 telomeres	 (Figure	 5.6).	 The	non-existence	of	 introns	 in	

these	 regions	 is	 perhaps	 expected	 given	 the	 levels	 of	 variable	 and	 suppressed	

recombination	(Choo,	1998),	and	lack	of	genes	reported	in	a	number	of	species	(Sun	et	

al.,	1997;	Hosouchi	et	al.,	2002)	particularly	humans	(Schueler	et	al.,	2001).	However,	

it	is	wrong	to	assume	that	centromeres	never	experience	transfer	of	genetic	material,	

as	past	studies	have	 identified	active	genes	and	widespread	gene	conversion	(Nagaki	

et	al.,	2004;	Shi	et	al.,	2010)	including	the	existence	of	introns	in	these	regions	(Nagaki	

et	 al.,	 2004).	 This	 is	 in	 contrast	 to	 telomeres,	 which	 do	 experience	 homologous	

recombination,	but	are	devoid	of	genes	likely	due	to	their	variability	in	length	through	

incomplete	DNA	replication	as	part	of	their	involvement	in	genomic	stability	(Royle	et	

al.,	2009;	Basenko	et	al.,	2011).	 It	 is	 interesting	to	note,	however,	that	sub-telomeric	

regions	 have	 been	 shown	 to	 contain	 rapidly	 evolving	 gene	 families	 as	 a	 result	 of	

frequent	sub-telomeric	gene	conversion	(Riethman,	et	al.,	2001),	though	these	regions	

have	 been	 shown	 to	 be	 intron	 poor	 (Hunt	 et	 al.,	 2001).	 As	 with	 telomeres,	

centromeres	typically	consist	of	tandem	repeats	that	are	highly	homogenous	in	nature,	

though	 despite	 their	 conserved	 functionality	 they	 have	 been	 observed	 to	 evolve	

rapidly	(Malik	and	Henikoff,	2009).	The	propagation	of	mutations	in	these	regions	has	

been	proposed	to	be	the	result	of	gene	conversion	(Talbert	and	Henikoff,	2010),	and	

indeed	 centromeres	 have	 been	 shown	 to	 experience	 levels	 of	 gene	 conversion	 no	
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different	to	non-centromeric	regions	(Symington	and	Petes,	1988).	Gene	conversion	is	

typically	linked	with	intron	loss,	and	would	account	for	the	reduction	or	lack	of	introns	

in	these	regions	(Derr	and	Strathern,	1993;	Roy	and	Gilbert,	2006).	

The	variability	 in	the	existence	of	centromeric	genes	in	different	species	may	in	

part	be	down	to	the	difficulties	in	sequencing	these	regions,	with	long-read	sequencing	

highlighting	the	existence	of	genes	in	previous	assembly	gaps	(Aldrup-MacDonald	and	

Sullivan,	 2014),	 though	 there	 is	 unlikely	 to	 be	 excessive	 increases	 in	 the	 number	 of	

identified	genes.	That	being	said,	given	the	scarcity	of	introns	within	regions	of	lower	

recombination	 identified	 in	 this	 study,	 particularly	 on	 the	 Y	 chromosome,	 it	 seems	

likely	that	recombination	plays	a	key	role	in	their	maintenance	and	proliferation.	This	is	

in	contrast	with	previous	evidence	that	describes	more	and	longer	introns	in	regions	of	

lower	 recombination	 (Comeron	 and	 Kreitman,	 2000;	 Duret,	 2001;	 Lynch,	 2002;	

Prachumwat	 et	 al.,	 2004;	 Roy	 and	 Gilbert,	 2006;	 Li	 et	 al.,	 2009;	 Nam	 and	 Ellegren,	

2012),	with	the	exception	of	Caenorhabditis	elegans	(Prachumwat	et	al.,	2004;	Li	et	al.,	

2009).	Increased	recombination	may	see	increased	occurrence	of	gene	conversion	on	

the	basis	of	GC	content	(Galtier	et	al.,	2001;	Weber	et	al.,	2014),	and	 it	seems	 likely,	

therefore,	that	the	variability	in	GC	content	plays	a	big	role	in	the	fate	of	introns,	with	

greater	GC-content	 being	 shown	 to	 result	 in	 biased	 gene	 conversion	 and	 intron	 loss	

(Derr	 and	 Strathern,	 1993;	 Roy	 and	 Gilbert,	 2006).	 The	 process	 is	 complicated,	

however,	 and	 there	 is	 an	 intricate	 involvement	 of	 effective	 population	 size,	

recombination	 rate,	 and	 length	 of	 the	 heteroduplex	 in	 determining	 how	 effective	

biased	gene	conversion	can	be	(Galtier	et	al.,	2001).	This	seems	to	be	supported	by	low	

evidence	of	gene	conversion	(Katju	and	Bergthorsson,	2010)	alongside	a	low	(36%)	GC-

content	(The	C.	elegans	Sequencing	Consortium,	1998)	in	Caenorhabditis	elegans,	with	

variable	 effective	 population	 sizes	 often	 <	 104-105	 (Félix	 and	 Duveau,	 2012)	 and	

suppressed	 recombination	 in	 wild	 populations	 (Rockman	 and	 Kruglyak,	 2009).	 It	 is	

clear	that	there	are	numerous	influences	on	intron	evolution,	with	non-family	effects	

playing	a	predominant	role.	

Conclusions	

The	 objectives	 of	 this	 chapter	 were	 to	 address	 the	 following	 questions;	 1)	 Is	 intron	

evolution	independent	in	different	gene	copies?	2)	Does	size	of	gene	family	influence	

intron	 evolution?	 3)	 Are	 there	 other	 non-family	 effects,	 which	 influence	 intron	
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evolution?	 In	undertaking	 the	analyses	 to	answer	 these	questions	 I	have	 firstly	been	

able	 to	 show	 that	 the	 necessary	 data	 can	 be	 easily	 collated	 and	 is	 sensible	 and	

comparable	 across	 vertebrate	 species.	 The	 detailed	 analyses	 show	 that	 intron	

characteristic	 distributions	 are	 largely	 uniform	 across	 all	 species	 and	 follow	 similar	

patterns	 regardless	 of	 gene	 family	 membership,	 as	 described	 in	 previous	 studies	

(Fedorov	et	al.,	2002;	Zhu	et	al.,	2009;	Moss	et	al.,	2011).	There	is	a	weak	correlation	at	

best	between	gene	family	size	and	the	intron	characteristics	studied,	which	is	contrary	

to	what	one	might	think,	as	recombination	rate	and	gene	family	size	have	been	found	

to	be	positively	 correlated	 (Kong	et	 al.,	 2004).	 This	 indicates	 that	 other	mechanisms	

are	 more	 central	 in	 the	 evolution	 of	 introns,	 though	 are	 not	 necessarily	 entirely	

independent	 in	 different	 gene	 copies,	 due	 to	 the	 impact	 of	 similar	 evolutionary	

processes.	 The	 big	 difference	 between	 the	 sex	 chromosomes	 highlights	 the	 most	

extreme	 case	 of	 these	 processes	 at	 work,	 which	 ultimately	 refer	 to	 variations	 in	

population	genetic	parameters,	recombination	rate	and	GC-content.	 	

There	seems	to	be	a	strong	spatial	element	too	with	intron	characteristics	being	

impacted	by	chromosomal	translocations,	and	 location	within	specific	clusters	or	GC-

rich	areas	of	chromosomes	(Jabbari,	2013;	Salier,	2000;	Sánchez	et	al.,	2003;	Haddrill	

et	 al.,	 2005).	 Euchromatic	 sequences	 in	 particular	 display	 vastly	 different	 intron	

characteristics	in	comparison	with	heterchromatic	regions	(Sun	et	al.,	1997;	Hosouchi	

et	 al.,	 2002;	 Schueler	 et	 al.,	 2001;	 Nagaki	 et	 al.,	 2004).	 This	 highlights	 the	 potential	

involvement	of	epigenetic	 forces	at	a	higher	 level,	and	there	have	been	a	number	of	

studies	highlighting	the	involvement	of	epigenetic	processes	in	replication	timing,	and	

the	formation	of	GC-rich	isochores	(Oliver	et	al.,	2001;	Pacès	et	al.,	2004;	Schmegner	et	

al.,	2007;	Costantini	and	Bernardi,	2008;	Watanabe	et	al.,	2009;	Costantini	et	al.,	2013).	

The	 positive	 correlation	 between	 GC-content,	 and	 recombination	 rate	 and	 gene	

conversion	 as	 well	 as	 their	 impact	 on	 intron	 characteristics	 (Fullerton	 et	 al.,	 2001;	

Galtier	et	al.,	2001;	McVean	et	al.,	2004;	Meunier	and	Duret,	2004;	Duret	et	al.,	2006;	

Duret	 and	 Galtier,	 2009)	 demonstrates	 how	 epigenetics	 might	 impact	 at	 this	 level.	

However,	 more	 work	 needs	 to	 be	 done	 to	 understand	 the	 intricacies	 of	 these	

molecular	 processes	 in	 the	 evolution	 of	 introns.	 In	 particular	 an	 across	 and	 within	

species	 comparative	 analyses	 of	 the	 impact	 of	 GC-content,	 recombination	 rate,	 and	

effective	population	size	on	intron	evolution	would	be	a	helpful	step	forward	in	teasing	

these	signals	apart.	
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CHAPTER	SIX:	DISCUSSION	

This	thesis	has	discussed	the	development	and	application	of	computational	methods	

to	the	analyses	of	genomic	data	using	a	large-scale	comparative	approach.	The	power	

of	comparative	genomics	analyses	 is	highlighted	throughout,	with	comparisons	being	

made	 between	 groups	 of	 species	 diverging	 by	 millions	 of	 years.	 The	 importance	 of	

analysing	the	data	within	a	robust	evolutionary	framework	 is	emphasised	 in	order	to	

highlight	 the	 underlying	 biological	 signal	 in	 the	 vast	 volumes	 of	 genomic	 data.	 The	

work	here	shows	the	strength	of	comparative	genomic	analyses	in	identifying	changes	

in	 the	 structure	 and	 content	 of	 genomes	 over	 time;	 though	 it	 also	 demands	

consideration	of	the	assumptions	made	by	the	methods	and	algorithms	used	 in	their	

analyses.	In	addition	to	considering	methodological	bias,	the	nature	of	the	underlying	

data	 is	brought	 into	question.	The	need	 for	 validation	of	genome	assemblies	and	an	

allowance	 for	error	correction	 in	analyses	 is	a	welcome	step	 forward	 in	 recent	years	

(Medvedev	and	Brudno,	2009;	Medvedev,	2011;	Salzberg	et	al.,	2012;	Ilie	and	Molnar,	

2013),	though	much	is	still	to	be	done	to	insure	we	aren’t	building	our	conclusions	on	

top	of	artefacts	in	the	data.	

The	need	for	automated	genome	informatics	pipelines	

In	chapter	two	I	show	the	necessity	for	developing	comprehensive	software	pipelines	

that	 provide	 automated	 and	 reproducible	 approaches	 to	 comparative	 genomics	

analyses.	 Generic	 toolkits	 for	 this	 type	 of	 analyses	 are	 currently	 lacking,	 which	 has	

resulted	in	numerous	different	in-house	approaches	to	the	analyses	of	genomic	data.	

This	complicates	the	ability	to	reproduce	the	analytical	steps	of	previous	studies	(Tan	

et	al.,	2010;	Hothorn	and	Leisch,	2011).	In	many	instances	the	code	and	description	of	

methods	 used	 aren’t	 exhaustive,	 which	 necessitates	 a	 great	 deal	 of	 effort	 in	

understanding	how	the	data	has	been	manipulated	from	one	stage	of	 its	analyses	to	

the	 next.	 If	 this	 fails	 then	 contact	with	 the	 authors	 of	 the	 study	 is	 necessary,	which	

presents	 problems	 of	 its	 own.	 For	 example,	 if	 the	 data	 are	 old,	 then	 the	 individuals	

responsible	 for	 its	 analysis	 may	 be	 no	 longer	 available,	 or	 at	 least	 difficult	 to	 track	

down.	There	may	also	be	reluctance	to	share	approaches	due	to	fear	of	being	scooped	

or	 having	 flawed	 analyses	 identified.	 Additionally,	 requests	 for	 co-authorship	 in	

exchange	for	such	assistance	can	sour	collaborative	efforts.	



Page	208	of	314	

GCAT	 attempts	 to	 rectify	 these	 problems	 by	 providing	 a	 robust	 and	 dynamic	

framework	for	the	retrieval,	analysis	and	visualisation	of	genomic	data.	It	builds	on	top	

of	the	wealth	of	genomic	data	available	in	the	Ensembl	genome	databases	(Hubbard,	

2002;	 Kersey	 et	 al.,	 2010;	 Flicek	 et	 al.,	 2013),	 which	 are	 among	 the	 most	

comprehensive	in	the	world.	By	utilising	these	data	I	am	able	to	highlight	the	power	of	

GCATs	approach	to	broad-scale	genome	informatics	analyses.	It	is	important	to	utilise	

basic	file	formats,	simple	APIs,	and	automated	workflows	in	order	to	improve	both	the	

ability	to	reproduce	one’s	results	and	the	ease	of	use	of	such	tools	(Parker	et	al.,	2003;	

Goble	 et	 al.,	 2010;	 Prlic	 and	 Procter,	 2012).	 The	 investment	 in	 time	 required	 for	

learning	how	to	use	GCAT	is	reduced	by	taking	this	approach.	Many	common	functions	

(such	as	retrieving	all	the	introns	for	a	given	species)	that	can	be	relatively	complicated	

when	 using	 the	 Ensembl	 Perl	 API	 (Stabenau	 et	 al.,	 2004),	 are	 wrapped	 into	 single	

subroutine	 calls	 or	 compartmentalised	 scripts.	 The	 requirement	 for	 previous	

programming	experience	is	acknowledged	however.	

The	need	for	increased	adoption	and	acceptance	of	scientific	computing	

Producing	 user	 friendly,	 robust	 and	 comprehensive	 genome	 analysis	 toolkits	 is	

imperative,	 however	 there	 is	 quite	 often	 a	 lack	 of	 time	 or	 inclination	 to	 learn	 new	

methods	amongst	many	scientists	 (Ranganathan,	2005;	Kumar,	S.	&	Dudley,	 J.,	2007;	

Schneider	 et	 al.,	 2010).	 The	 diversity	 of	 computational	 knowledge	 and	 experience	

provides	 differing	 barriers	 to	 the	 adoption	 of	 new	 tools.	 Learning	 to	 program	 in	 an	

additional	 language	 is	 generally	 simpler	 than	 learning	 a	 language	 from	 scratch	 for	

example.	 Tools	 are	 often	 aggregated	 into	 classes	 according	 to	 the	 programming	

language	in	which	they	are	developed;	based	on	the	popularity	of	the	language,	how	

common	the	language	is	in	the	field,	or	personal	preference.	This	sort	of	approach	fails	

to	ask	what	might	be	the	best	language	for	the	job.	More	complex	algorithms	tend	to	

require	 programming	 in	 lower-level	 languages	 such	 as	 C,	 though	 the	 learning	 curve	

here	is	extremely	high.	As	many	scientists	are	self-taught	programmers	with	only	basic	

computing	skills,	learning	the	intricacies	of	C	may	not	be	feasible.	It	isn’t	clear	how	one	

can	improve	the	uptake	of	computer	programming	or	use	of	more	suitable	platforms	

(i.e.	UNIX-based	systems)	for	analyses	(though	see	Dudley	and	Butte,	2009;	Harold	et	

al.,	2011;	Wilson,	G.,	2013;	Petre	and	Wilson,	2013;	Wilson	et	al.,	2014),	but	one	way	
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of	alleviating	issues	with	learning	new	languages	is	to	increase	the	availability	of	web	

services	(Stein,	2002;	Stein,	2008;	Stein,	2010;	Lord	et	al.,	2004;	Ramirez	et	al.,	2011).	

The	 Semantic	 Web	 (Berners-Lee	 et	 al.,	 1999;	 Berners-Lee	 et	 al.,	 2001)	 is	 an	

initiative	 that	 seeks	 to	 promote	 common	 data	 formats	 and	 sharing	 of	 data,	

predominantly	 between	 computers.	 The	World	Wide	Web	 does	 an	 excellent	 job	 of	

distributing	knowledge	and	information	(Frystyk	et	al.,	1999;	Berners-Lee	et	al.,	2010),	

however	 the	 format	 for	 its	 dissemination	 is	 designed	 for	 reading	 by	 humans.	 By	

improving	 the	 integration	 of	 computer	 networks	 with	 the	 flow	 of	 information,	 in	 a	

machine	 readable	 as	 well	 as	 human	 readable	 format,	 it	 is	 possible	 to	 harness	 the	

power	 of	 the	 Internet	 to	 do	 much	 of	 the	 legwork	 when	 it	 comes	 to	 propagating	

biological	data	and	metadata	(Stein,	2002;	Stein,	2008;	Stein,	2010).	 In	chapter	two	I	

discuss	 how	 web	 services	 such	 as	 those	 provided	 via	 the	 REST	 architectural	 style	

(Fielding	and	Taylor,	2000;	Fielding,	2000a;	Fielding,	2000b)	are	likely	to	be	the	future	

when	it	comes	to	sharing	and	analysing	data.	These	services	provide	simple	interfaces	

for	data	 retrieval	 that,	particularly	 in	 the	case	of	REST,	can	be	accessed	using	simple	

HTTP	methods.	 This	 has	 the	benefit	 of	 allowing	 any	 tool	 that	 can	utilise	HTTP	 to	be	

used	for	the	retrieval	of	data,	whether	that	be	a	web	browser,	command	line	utility,	or	

programming	language.	This	moves	towards	overcoming	the	reliance	on	programming	

language	 dependent	 tools.	 I	 show	 the	 power	 and	 simplicity	 of	 web	 services	 in	 the	

retrieval	of	genomic	data,	though	there	is	much	work	to	be	done.	The	wider	adoption	

of	 cloud	 computing	 in	 bioinformatics	 has	 been	 requested	 for	 over	 a	 decade	 (Stein,	

2002;	Stein,	2008;	Stein,	2010).	 Its	slow	uptake	 is	perhaps	due	to	 lack	of	appropriate	

infrastructure	 for	 the	 transfer	 of	 petabytes	 of	 biological	 data.	 Networking	 hardware	

and	bandwidth	are	 improving	greatly	however	and	so	one	would	hope	we	will	 see	a	

change,	 though	 large	 investment	 is	 needed,	 which	 is	 questionable	 given	 current	

financial	 climates	 (though	 see	 Gross,	 2011;	 Crosswell	 and	 Thornton,	 2012).	 Most	

importantly	there	needs	to	be	acceptance	and	backing	by	biologists	in	order	to	change	

the	paradigm.	There	seems	to	be	a	very	disjointed	approach	towards	research	in	many	

cases	and	realisation	of	the	interdisciplinary	nature	of	data	analyses	is	paramount.	

Using	computational	approaches	to	understand	genome	evolution	

In	 chapter	 three	 I	 identify	 how	directed	 exploratory	 data	 analysis	 (EDA)	 followed	by	

focused	 hypothesis	 testing	 allows	 for	 the	 identification	 of	 patterns	 in	 genome	 scale	
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data	 that	 can	 then	 be	 subject	 to	 intense	 scientific	 rigour.	 This	 approach	 towards	

understanding	 the	 distribution	 and	 evolution	 of	 intron	 sizes	 in	 the	 genomes	 of	 five	

teleost	 fish	highlights	a	difference	 in	 the	distribution	of	 intron	 sizes	 in	 the	 zebrafish,	

Danio	 rerio	 (Moss	 et	 al.,	 2011).	 Exploratory	 data	 analysis	 is	 a	 powerful	 approach	

towards	understanding	data,	 especially	 given	 the	 growing	 volume	and	 complexity	of	

biological	data	sets.	It	is	important	to	ground	any	such	analyses	within	the	remit	of	the	

specific	 biological	 questions,	 however.	 Blindly	 searching	 for	 patterns	 in	 biological	

datasets	 will	 likely	 yield	 many	 results	 due	 to	 the	 probabilities	 of	 sequences	 being	

repeated,	 but	 these	 are	 likely	 to	 encompass	 an	 overwhelming	 amount	 of	 noise.	 By	

proposing	 specific	 questions	 and	 directing	 EDA	 towards	 understanding	 well	 defined	

subsets	of	the	whole	genome	data,	it	is	possible	to	examine	any	prominent	similarities	

or	 differences	 highlighted	 in	 the	 data	 using	 more	 stringent	 hypothesis	 testing	

approaches	(Lindenmayer	et	al.,	2012;	Michener	and	Jones,	2012).	

Due	to	the	volumes	of	genomic	data	now	available,	many	projects	focus	on	EDA	

in	the	first	instance,	followed	up	by	rigorous	hypothesis	testing.	This	has	the	benefit	of	

highlighting	 interesting	 patterns	 in	 the	 data	 that	 can	 then	 be	 the	 focus	 of	 more	

objective	 scientific	 scrutiny,	 thus	 removing	 a	 lot	 of	 the	 noise.	 This	 is	 a	 common	

approach	in	computer	science;	reducing	the	complexity	of	computational	analyses	by	

reducing	the	search	space	and	thereby	decreasing	the	computational	burden	(Hsiao	et	

al.,	2006;	Miller	et	al.,	2010;	McKenna	et	al.,	2010;	Ekanayake	et	al.,	2013).	EDA	within	

well-defined	 boundaries	 can	 be	 seen	 as	 a	 powerful	 means	 of	 directing	 genomic	

analyses.	 These	 methods	 have	 been	 met	 with	 conflicting	 responses	 from	 different	

groups	of	 scientists	however	 (Jones	et	al.,	2006;	 Lindenmayer	et	al.,	2012;	Michener	

and	Jones,	2012;	Hampton	et	al.,	2013).	There	are	those	that	believe	that	the	data	first	

approach	 undermines	 the	 traditional	 hypothesis	 testing	 scientific	 method	

(Lindenmayer	et	al.,	2012).	This	opinion	is	mostly	taken	by	individuals	that	work	with	

datasets	of	no	greater	than	a	few	gigabytes	in	size	and	that	have	assiduously	collected	

and	 refined	 them	over	 several	decades	of	 their	 careers.	Unfortunately	 this	 view	and	

approach	 is	 unrealistic	 given	 the	 fast-paced	 nature	 of	 genomics	 and	 particularly	 so	

when	considering	large-scale	inter-	and	intra-species	comparative	analyses.	Novel	and	

creative	approaches	need	to	be	developed	that	encompass	an	underlying	knowledge	

of	molecular	evolution	(Hsieh,	2002;	Petrov,	2002;	Koonin,	2011;	Lynch,	2011;	Paten	et	

al.,	2013;	Luo,	2014),	with	 robust	experience	of	 the	system’s	biology	and	ecology,	 in	



Page	211	of	314	

addition	 to	 a	 contemporary	 and	 forward	 thinking	 pursuit	 of	 the	 interpretation	 and	

analyses	of	these	data.	

Identifying	the	forces	shaping	genome	architecture	

In	 chapters	 four	 and	 five	 I	 show	how	 comparative	 genomics	 is	 a	 powerful	means	of	

identifying	 the	 forces	 shaping	 the	 evolution	 of	 genome	 architecture.	 Changes	 in	 the	

structure	 and	 content	 of	 genomes	 can	 be	 highlighted	 by	 comparing	 similarities	 and	

differences	within	and	between	species.	It	is	important	that	comparative	analyses	are	

also	 grounded	 by	 specific	 questions	 however.	 As	 previously	 discussed,	 blindly	

comparing	and	contrasting	the	genomic	data	will	inevitably	lead	to	the	identification	of	

patterns	that	 just	 represent	random	noise	due	to	the	 inherent	structure	of	 the	data.	

Understanding	 that	 similarity	 doesn’t	 equate	 to	 homology	 (Pearson,	 2013)	 and	

approaching	 interpretation	 of	 results	 with	 a	 strong	 understanding	 of	 the	 molecular	

mechanisms	driving	any	potential	patterns	 in	 the	data	 is	paramount.	When	properly	

used	 comparative	 genomics	 can	be	utilised	 to	 examine	how	genomes	have	 changed	

over	time	between	species	that	have	diverged	by	millions	of	years	or,	as	is	the	growing	

trend,	comparisons	at	the	whole	organism	or	single	cell	population	level.	

What	 approach	 one	 takes	 is	 dependent	 on	 the	 questions	 being	 asked.	 In	

understanding	how	duplications	have	 shaped	 the	evolution	of	 the	genome	 I	 take	an	

interspecies	comparative	approach.	If	I	wanted	to	determine	variation	in	copy	number	

within	a	species,	 I	would	need	to	examine	whole-organism	population	 level	data	and	

perhaps	use	 that	knowledge	 in	my	 interpretation	of	 the	previous	duplication	data.	 If	

my	 question	 concerned	 an	 understanding	 of	 the	 causes	 or	 susceptibilities	 to	 a	

particular	disease	then	 I	would	need	to	 look	at	whole-organism,	or	cell	 line	or	 tissue	

specific	population	data	as	part	of	a	controlled	studied.	It	is	important	to	consider	the	

bigger	picture	and	 focus	one’s	data	analyses	 towards	 that.	This	 is	one	of	 the	biggest	

criticisms	of	genome	wide	association	studies,	which	tend	to	search	for	variants	such	

as	SNPs	across	groups	of	 individuals	with	and	without	disease	and	 then	determine	a	

causative	 role	 for	 any	 changes	 in	 the	 diseased	 individuals	 based	 on	 correlations	

between	particular	 variants.	 This	 is	 of	 course	 a	 simplistic	 summary	of	 the	 approach,	

but	 emphasises	 the	 need	 to	 consider	 the	 data	 in	 its	 broader	 biological	 context	 to	

ensure	 robust	 conclusions	 are	 made.	 Genome	 wide	 association	 studies	 might	 be	

considered	as	a	useful	 form	of	EDA	however,	 identifying	 regions	of	 interest	 that	 can	
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then	be	subject	to	more	objective	scrutinisation	using	traditional	hypothesis	testing	in	

well-defined	 and	 controlled	 experimentation.	 An	 interesting	 outcome	 of	 changes	 to	

the	cost	of	genome	sequencing	that	incorporates	a	creative	approach	to	genomic	data	

analyses	 is	 the	 advent	 of	 personal	 genomics.	 Companies	 such	 as	 23andme	 can	

sequence	an	individual's	genome	(or	rather	differences	from	the	reference)	for	as	little	

as	$100	and	then	use	this	data	in	addition	to	family	and	medical	history	to	generate	a	

profile	 of	 susceptibility	 to	 disease,	 identify	 particular	 character	 traits,	 or	 assist	 in	

determining	 ancestry.	 It	 can	 be	 seen	 as	 a	 means	 of	 crowdsourcing	 genome	 wide	

association	studies.	The	greater	volume	of	genomes	sequenced,	the	more	population	

level	 data	 is	 made	 available	 and	 the	 more	 powerful	 the	 approach	 becomes,	 as	 a	

consensus	in	allele	frequency	for	particular	traits	are	identified.	

Comparative	approaches	that	focus	on	identifying	mutations	such	as	SNPs	have	

the	benefit	of	highlighting	how	shorter	term	changes	in	the	genomes	of	individual	cells	

or	 hereditary	 mutations	 can	 impact	 an	 organism	 (Zhang	 et	 al.,	 2009;	 Zöllner	 and	

Teslovich,	 2010;	 Teng	 et	 al.,	 2015).	 Of	 course,	 variation	 is	 the	 raw	 material	 for	

evolution	and	so	mutations	 that	have	become	fixed	over	 longer	 time	periods	can	be	

useful	 in	 highlighting	 how	 organisms	 have	 adapted	 to	 environmental	 pressures,	

undergone	 bottlenecks	 in	 population	 size	 or	 changed	 due	 to	 the	 random	 nature	 of	

evolutionary	processes	(Nielsen	et	al.,	2005;	Wright	and	Andolfatto,	2008;	Harris,	2008;	

Iskow	et	al.,	2012).	These	mutations	have	 little	effect	on	 the	overall	 structure	of	 the	

genome	 however,	 at	 least	 in	 less	 divergent	 species.	 Duplicates,	 repeats	 and	 introns	

have	been	shown	to	comprise	the	greatest	portions	of	the	genome	(Lynch,	2003;	Lynch,	

2007)	 and	much	 of	 this	 thesis	 focuses	 on	 the	 role	 they	 play	 in	 changes	 in	 genome	

complexity	over	time.	It	 is	the	forces	that	drive	the	propagation	of	these	elements	at	

the	molecular	 level	 that	must	be	 considered	when	 interpreting	 the	data	however.	 It	

seems	obvious	that	natural	selection	has	a	limited	ability	to	impact	on	the	evolution	of	

many	organisms.	 This	 is	 particularly	 relevant	 in	 so	 called	 “higher	 eukaryotes”	where	

the	 functional	 components	of	 genome	are	 relatively	 small	 in	 comparison	 to	bacteria	

for	example	(Pushker	et	al.,	2004;	Parfrey	et	al.,	2008;	Kejnovsky	et	al.,	2009;	Delihas,	

2011;	 Doolittle,	 2013;	 Niu	 and	 Jiang,	 2013;	 Graur	 et	 al.,	 2013).	 Population	 genetic	

forces	coupled	with	larger	scale	changes	at	the	molecular	level	such	as	recombination,	

duplication,	retrotransposition,	and	the	 impact	of	chromosomal	 location	through	GC-

rich	isochores	for	example,	have	much	greater	influence	on	how	the	genomes	change	
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over	 time	 (Charlesworth	 and	 Charlesworth,	 2000;	 Galtier	 et	 al.,	 2001;	 Lynch,	 2002;	

Kejnovsky	et	al.,	2009;	Melé	et	al.,	2012;	Weber	et	al.,	2014).	

In	 summary,	by	using	a	broad-scale	comparative	genomics	approach,	 I	 show	 in	

chapter	 three	 that	 the	 evolution	 and	 propagation	 of	 introns	 seems	 to	 be	 driven	 by	

nonhomologous	 recombination,	 and	 it	 is	 likely	 that	 they	 originate	 from	 the	

proliferation	of	repetitive	and	transposable	elements.	Duplications	seem	to	have	little	

impact	on	the	evolution	of	introns	however,	as	discussed	in	chapter	five.	The	fixation	

of	 duplications	 seems	 at	 least	 in	 part	 to	 be	 a	 result	 of	 selective	 pressures	 and	

adaptation	 to	 environmental	 triggers	 over	 time	 as	 shown	 in	 chapter	 four	 (and	 see	

Force	et	al.,	1999;	Lynch	and	Conery,	2000;	Lynch	et	al.,	2001;	Lynch	and	Conery,	2003;	

Lynch,	 2011;	 Lynch,	 2012).	 The	 shorter-term	 impact	of	 duplication	highlights	 a	 great	

deal	of	variation	 in	copy	number	 that	 is	 then	subject	 to	 the	 influences	of	population	

size	 and	 other	 life	 history	 traits,	 though	 the	 nature	 of	 the	 data	 in	 reaching	 reliable	

conclusions	 is	 addressed.	 The	 forces	 driving	 duplications	 are	 similar	 to	 those	

experienced	by	 introns,	particularly	non-homologous	recombination	(Castillo-Davis	et	

al.,	 2004;	 Lin	 et	 al.,	 2006;	 Iskow	 et	 al.,	 2012;	 Xu	 et	 al.,	 2012).	 As	 most	 duplicates	

contain	 introns,	 it	 is	 unlikely	 that	 retrotransposition	 of	 mRNA	 is	 a	 factor.	

Retrotransposition	can	often	result	in	the	creation	of	pseudogenes	(Esnault	et	al.,	2000;	

Mighell	 et	 al.,	 2000;	 Sen	 and	Ghosh,	 2013)	 however,	which	 aren’t	 consider	 in	 these	

analyses.	Finally	 in	chapter	 five	 I	show	that	 it	 is	chromosomal	 location	and	therefore	

biases	 exerted	 on	 particular	 regions	 of	 the	 genome,	 such	 as	 GC-rich	 isochores	 or	

epigenetic	modification	that	drive	changes	in	gene	density	and	intron	density	across	a	

divergent	group	of	 species.	 It	 is	 clear	 that	 the	evolution	of	 the	genome	 is	extremely	

complex	with	a	great	number	of	parameters	to	consider	in	determining	how	and	why	it	

has	 changed	 over	 evolutionary	 time	 scales.	 There	 is	 certainly	 an	 influence	 at	 lower	

levels	 from	 the	 standard	 molecular	 genetic	 forces	 of	 mutation,	 recombination,	

migration,	 selection,	and	 random	genetic	drift;	 though	 these	seem	to	be	directed	by	

larger-scale	 arrangements	 at	 the	 chromosome	 level	 but	 ultimately	 are	 limited	 by	

population	level	forces	and	life	history	traits	(Soltis	and	Soltis,	1999;	Charlesworth	and	

Wright,	2001;	Lynch	and	Conery,	2003;	Lynch,	2007).	The	extremes	can	be	seen	when	

we	 observe	 the	 huge	 differences	 between	 bacteria,	 which	 have	 much	 shorter	

generation	 times	 and	 larger	 effective	 population	 sizes,	 in	 contrast	 to	 plants,	 which	

have	vastly	longer	generation	times	and	smaller	population	sizes	overall.	
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Conclusions	

The	limited	power	of	algorithmic	and	statistical	methods	

Throughout	 this	 thesis	 the	 power	 of	 current	 algorithms	 and	 statistical	 methods	 is	

proven	to	be	limited	given	the	volumes	of	error	prone	biological	data	(Brenner,	1999;	

Devos	and	Valencia,	2001;	Hubisz	et	al.,	2011;	Han	et	al.,	2013).	Most	methods	take	an	

approach	 that	make	many	 assumptions	 or	 that	 otherwise	 reduce	 the	 complexity	 of	

computational	analysis	by	approximating	the	results	(Katoh	et	al.,	2002;	Stamatakis	et	

al.,	2005;	Hsiao	et	al.,	2006;	Price	et	al.,	2009;	Money	and	Whelan,	2011).	This	comes	

at	 the	detriment	 of	 reliable	 conclusions,	 especially	when	 considering	 the	 cumulative	

effect	of	all	processing	of	the	data.	The	current	state	of	computational	power	requires	

that	we	approach	 the	manipulation	and	analysis	of	 large,	 complex	datasets	 this	way	

however.	To	apply	an	accurate	algorithm	to	the	analyses	of	most	genome	data	would	

exceed	 the	 available	 CPU	 operations,	 memory	 capacity	 and	 other	 performance	

measures,	making	 for	 very	 inefficient	 use	 of	 computer	 time,	 if	 such	 an	 algorithm	 is	

even	 feasible	 (Wang	and	 Jiang,	 1994;	 Jones	and	Pevzner,	 2004;	Money	and	Whelan,	

2011;	Mahmoody	et	al.,	 2012).	This	 is	even	more	 relevant	 in	 comparative	genomics.	

The	 utilisation	 of	 cloud	 computing,	 including	 high-throughput	 and	 high-performance	

computing,	alongside	the	development	of	parallelized	approaches	to	these	problems	is	

a	way	of	mitigating	these	issues	(Rognes	and	Seeberg,	2000;	Zomaya,	2006;	Vera	et	al.,	

2008;	Luebke,	2008;	Manavski	and	Valle,	2008).	Parallelized	algorithms	allow	analyses	

to	 be	 run	 on	 distributed	 computer	 hardware	 with	 much	 greater	 specifications	 and	

capacity,	and	thus	greatly	 reduce	runtime	(Rognes	and	Seeberg,	2000;	Manavski	and	

Valle,	 2008;	 Vera	 et	 al.,	 2008).	 Not	 all	 problems	 are	 capable	 of	 being	 optimised	 for	

parallelization	however.	This	requires	approaching	things	from	a	different	perspective,	

including	 rethinking	 the	 underlying	 chemistry,	 computational	 models	 and	

infrastructure.	

Next	 generation	 sequencing	 technologies	 are	 improving	 greatly	 as	 there	 is	 a	

great	deal	of	competition	to	do	so	(Metzker,	2010;	Niedringhaus	et	al.,	2011;	Zhang	et	

al.,	2011;	Liu	et	al.,	2012).	The	push	for	longer	reads	and	higher	throughput	is	a	war	of	

numbers	however	that	often	occurs	when	corporate	entities	compete.	There	needs	to	

be	more	thought	given	to	the	purpose	of	the	sequencing	and	the	complexities	involved	

in	 its	 analysis.	 More	 data	 is	 of	 no	 use	 of	 it	 is	 error	 prone	 and	 requires	 greater	
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computational	 resources	 to	 process	 (Brenner,	 1999;	 Devos	 and	 Valencia,	 2001;	

Huttenhower	 and	Hofmann,	 2010;	Hubisz	 et	 al.,	 2011).	 Less	 data	of	 a	 higher	quality	

would	 greatly	 improve	 bottlenecks	 in	 analyses	 downstream.	 Ultimately,	 a	 focus	 on	

developing	 and	 improving	 single	 molecule	 DNA	 sequencing	 is	 likely	 to	 be	 the	most	

appropriate	 and	 productive	 approach	 towards	 overcoming	 these	 issues	 (Pettersson,	

2009;	Clarke	et	al.,	2009;	Pareek	et	al.,	2011;	Liu	et	al.,	2012;	Schneider	and	Dekker,	

2012;	McCoy	et	 al.,	 2014).	A	 focus	on	 the	hardware	 requirements	 is	 also	necessary.	

Chaining	together	computing	resources	into	vast	server	farms	allows	for	a	great	deal	of	

computational	power	to	be	harnessed	for	scientific	analyses	(Cuff	et	al.,	2004;	Bader	et	

al.,	 2005;	 Schatz	 et	 al.,	 2010;	 Fusaro,	 2011;	Niemenmaa	 et	 al.,	 2012;	 Krampis	 et	 al.,	

2012).	However,	the	financial	and	environmental	impacts	of	these	facilities	make	them	

unrealistic	for	use	in	the	longer	term	(Carroll	et	al.,	2011;	Honee	et	al.,	2012;	Doyle	and	

O'Mahony,	 2014;	 Seegolam	 and	 Usmani,	 2014).	 There	 needs	 to	 be	 a	 focus	 on	

developing	 more	 efficient,	 environmentally	 friendly	 and	 powerful	 hardware	 for	 the	

analyses	of	 tomorrow’s	data.	This	 includes	using	differing	architectures	such	as	ARM	

(Balakrishnan,	2012;	Rajovic	et	al.,	2013a;	Rajovic	et	al.,	2013b;	Rajovic	et	al.,	2014)	in	

the	 first	 instance,	 but	 there	 is	 also	 a	 focus	 on	 completely	 replacing	 semiconductor-

based	computing	with	natural	computation	via	DNA	computers	or	quantum	computers	

for	 example	 (Ezziane,	 2006;	 Castro,	 2007;	 Kari	 and	 Rozenberg,	 2008).	 Steps	 have	

already	been	taken	towards	storing	biological	data	using	DNA	(Goldman	et	al.,	2013).	

This	will	have	profound	 implications	on	how	we	process	and	analyse	biological	data,	

particularly	in	large-scale	comparative	genomics.	

Interdisciplinary	nature	of	genome	informatics	

The	amount	of	data	produced	by	genome	projects	 inevitably	 requires	a	multifaceted	

approach.	The	realisation	that	research	is	an	interdisciplinary	process	that	requires	the	

integration	of	a	 large	number	of	skilled	professionals,	not	 just	academics,	will	greatly	

improve	 the	 outcomes	 of	 scientific	 endeavours.	 It	 is	 imperative	 that	 different	

disciplines	integrate	and	work	together	to	develop	new	infrastructure,	procedures,	and	

protocols	 to	 ensure	 the	 efficient	 and	 reliable	 processing	 of	 scientific	 data.	 Scientists	

desperately	needs	to	see	the	bigger	picture,	collaborate	more	effectively	and	help	to	

progress	the	development	and	adoption	of	emerging	technologies	if	 it	 is	going	to	see	

sustained	growth.	This	 is	particularly	true	 in	comparative	genomics	as	the	amount	of	

data	we	see	being	produced	by	next	generation	sequencing	technologies	is	set	to	rise	
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to	over	4000%	by	2030	(Baker	et	al.,	2010).	The	challenges	facing	the	processing	and	

analyses	 of	 this	 volume	 of	 data	 will	 make	 the	 current	 “big	 data”	 climate	 seem	

insignificant	 in	 comparison	 (Huttenhower	 and	 Hofmann,	 2010;	 Schatz	 et	 al.,	 2010;	

Gross,	2011;	Crosswell	and	Thornton,	2012;	Michener	and	Jones,	2012;	Hampton	et	al.,	

2013).	This	synthesis	of	disciplines	needs	to	see	biotechnologists	and	chemists	working	

to	 improve	 the	 quality	 of	 sequencing;	 computer	 scientists	 writing	 more	 optimal	

algorithms	and	tools	for	analyses,	alongside	improving	the	distribution	of	raw	data	via	

the	 Semantic	Web;	 electronics	 engineers	 and	 physicists	working	 on	 producing	more	

efficient	and	effective	 computer	hardware;	 statisticians	and	mathematicians	working	

on	more	robust	means	of	highlighting	meaningful	 information	from	these	volumes	of	

data;	 and	of	 course	biologists	 to	 apply	 their	understanding	of	 the	biological	 systems	

throughout.	Most	importantly	there	needs	to	be	more	communication	and	interaction	

between	all	these	groups	(Hambrusch	et	al.,	2009).	

There	 also	 needs	 to	 be	 a	 change	 in	 the	 way	 that	 biology	 is	 taught	 from	 the	

ground	up	(Ranganathan,	2005;	Qin,	2009;	Schneider	et	al.,	2012).	Data	science,	as	a	

label	 for	 individuals	 that	 can	 apply	 expert	 knowledge	 of	 computer	 science,	

mathematics	 and	 statistics,	 and	 substantive	 domain	 specific	 expertise	 to	 the	

processing	 and	 analytics	 of	 “big	 data”,	 is	 a	 growing	 trend.	 There	 is	 disagreement	

between	the	disciplines	on	what	actually	constitutes	a	“data	scientist”,	but	regardless,	

what	it	represents	is	a	synthesis	of	disciplines	with	a	common	goal.	Various	courses	are	

appearing	 online	 and	 at	 academic	 institutions	 that	 are	 taking	 this	 multifaceted	

approach	 in	training	a	new	genre	of	“data	scientists”	to	tackle	the	 looming	problems	

(Christensen	 et	 al.,	 2013;	 Waldrop,	 2014).	 This	 needs	 to	 be	 the	 approach	 taken	 in	

biology	 too.	 A	 more	 interdisciplinary	 curriculum	 is	 required,	 with	 modules	 taught	

across	academic	disciplines	(Hambrusch	et	al.,	2009),	in	order	to	prepare	biologists	for	

future	data	analysis	requirements.	With	data	at	the	scale	of	exabytes	or	zettabytes	not	

being	uncommon	within	the	next	15	years,	this	change	cannot	come	too	soon.	
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APPENDICES	

Appendix	1	

Appendix	1.1	-	The	Reniform	Reflecting	Superposition	Compound	Eyes	of	Nephrops	

norvegicus:	Optics,	Susceptibility	to	Light-Induced	Damage,	Electrophysiology	and	a	

Ray	Tracing	Model	

Please	find	the	article	-	part	of	the	Advances	in	Marine	Biology	series	(Volume	64)	“The	

Ecology	and	Biology	of	Nephrops	norvegicus”	-	at	the	following	URL:	

http://www.sciencedirect.com/science/article/pii/B9780124104662000042	
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Appendix	2	

Appendix	2.1	-	HTTP	methods	

The	HTTP	POST,	GET,	PUT	and	DELETE	methods	 relate	 to	 the	 four	basic	 functions	of	

persistent	 storage;	 CREATE,	 READ,	 UPDATE	 and	 DELETE	 (CRUD)(Martin,	 1983).	 They	

allow	 for	 the	 creation	 of	 new	 data,	 the	 retrieval	 of	 existing	 data,	 the	 updating	 of	

existing	data,	or	removal	of	existing	data.	Without	a	persistent	storage	mechanism	the	

data	would	be	stored	temporarily	in	memory	and	lost	when	the	power	was	removed.	

Appendix	2.2	-	Format	of	URI	conventions	

Use	URI	conventions	in	the	following	format	via	the	GET	method:	

	
/get_adaptor/human/core/gene/fetch_by_stable_id/ENSG0000013
9618/description 
/get_adaptor/mouse/core/transcript/list_stable_ids 
/get_adaptor/gorilla/core/translation/list_dbIDs 
/get_adaptor/zebrafish/core/exon/fetch_by_dbID/235872 
	
The	 get_adaptor	 method	 takes	 three	 arguments	 (/species/group/adaptor/)	

and	can	call	null	ID	methods	such	as	/list_stable_ids,	single	ID	methods	such	as	

/fetch_by_stable_id/ENSG00000139618	 or	 a	method	on	 a	method	 id	 e.g.	

/fetch_by_stable_id/ENSG00000139618/description.	 This	 will	 return	

the	information	you	require	from	the	Ensembl	databases	in	a	format	depending	on	the	

requested	Content-Type	e.g.	application/json,	text/xml	or	text/html.	

	

You	can	use	the	POST	method	for	more	advanced	queries	that	may	require	an	array	of	

elements	or	objects	as	input	to	a	function,	using	JSON.	The	POST	method	only	accepts	

and	returns	JSON.	

	

You	should	use	the	following	URI	convention:	

	
/get_adaptor/multi/ontology/ontologyterm/fetch_all_by_dbID_
list 
	
Pass	the	JSON	data	(list	of	dbIDs)	in	using	the	following	format:	

	
{"args" : ["123", "234", "345", "456"]} 
	
Some	methods	take	objects	as	arguments.	Such	as:	
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/get_adaptor/human/core/sequence/fetch_by_Slice_start_end_s
trand 
/get_adaptor/human/core/assemblymapper/fetch_by_CoordSystem
s 
	
You	 can	use	 the	GET	method	 to	 retrieve	an	object	 and	 then	pass	 that	back	 in	using	

JSON	in	the	following	format	($json_object	represents	the	retrieved	object):	

	
# representation of the slice object 
my $json_object = "{"seq_region_name" : "20", "strand" : 1, 
"coord_system" : {"dbID" : "2", "top_level" : 0, "version" : 
"GRCh37", "name" : "chromosome", "default" : 1, 
"sequence_level" : 0, "rank" : "1", "seq_region_length" : 
"63025520", "end" : "63025520", "start" : 1}}"; 
	
# json query to be passed 
my $json_text = "{"args" : [$json_object, "1", "1000", "-
1"]}"; 
	
or:	

	
# pass the arguments in this format if using a REST browser 
plugin, command line 
# or other non-programmatic method 
{"args" : [{"seq_region_name" : "20", "strand" : 1, 
"coord_system" : {"dbID" : "2", "top_level" : 0, "version" : 
"GRCh37", "name" : "chromosome", "default" : 1, 
"sequence_level" : 0, "rank" : "1", "seq_region_length" : 
"63025520", "end" : "63025520", "start" : 1}}, "1", "1000", 
"-1"]} 
	
Because	 the	 GET	method	 converts	 the	 Ensembl	 object	 into	 a	 null	 type	 JSON	 object	

during	 serialization,	 the	 Ensembl	 RESTful	WSF	 retrieves	 a	 new	 object	 based	 on	 the	

JSON	data	during	the	POST	process	and	passes	that	for	processing	instead.	
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Appendix	2.3	–	Screenshots	highlighting	examples	of	the	Ensembl	RESTful	web	service	framework	

	
Supplementary	Figure	2.1	-	The	Ensembl	RESTful	web	service	being	used	via	the	browser	to	return	a	gene	object	from	the	Ensembl	MySQL	core	database	for	the	BRCA2	gene	in	
the	YAML	format.	
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Supplementary	Figure	2.2	-	A	Perl	example	script	that	retrieves	the	BRCA2	gene	using	the	HTTP	GET	method	and	the	HTTP	Content-Type	header	application/json.	The	slice	of	
the	gene	object	is	returned	to	the	Ensembl	RESTful	web	service	using	HTTP	POST	and	the	sequence	of	the	gene	from	1	to	1,000	bases	from	the	anti-sense	strand	is	returned
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Appendix	3	

Appendix	 3.1	 -	 Comparative	 Analysis	 Of	 Teleost	 Genome	 Sequences	 Reveals	 An	

Ancient	Intron	Size	Expansion	In	The	Zebrafish	Lineage	Supplementary	Information	

Please	find	the	article,	published	within	the	journal	Genome	Biology	and	Evolution,	at	

the	following	URL:	

http://gbe.oxfordjournals.org/content/3/1187.full	
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Appendix	4	

Appendix	4.1	–	Table	of	resources	used	in	assessing	assembly	and	annotation	quality	

in	primates	

Supplementary	 Table	 4.1	 -	 Resources	 used	 in	 assessing	 assembly	 and	 annotation	 quality	 of	 the	
primates.	

Species	 Ensembl	 GenBank	 Consortium	

Callithrix	jacchus	 Callithrix	jacchus-

3.2.1	

GCF_000004665.1	 The	Genome	Institute	at	Washington	

University	

Gorilla	gorilla	 gorGor3.1	 GCF_000151905.1	 Wellcome	Trust	Sanger	Institute	

Homo	sapiens	 GRCh37.p6	 GCA_000001405.7	 Genome	Reference	Consortium	

Macaca	mulatta	 MMUL	1.0	 GCF_000002255.2	 Macaque	Genome	Sequencing	

Consortium	

Microcebus	

murinus	

micMur1	 GCA_000165445.1	 Mammalian	Genome	Project	

Nomascus	

leucogenys	

Nleu1.0	 GCF_000146795.1	 Gibbon	Genome	Sequencing	

Consortium	

Otolemur	

garnettii	

OtoGar3	 GCF_000181295.1	 Broad	Institute	of	MIT	and	Harvard	

Pan	troglodytes	 CHIMP2.1.4	 GCF_000001515.5	 Chimpanzee	Sequencing	and	Analysis	

Consortium	

Pongo	abelii	 PPYG2	 GCF_000001545.4	 Orangutan	Genome	Sequencing	

Consortium	

Tarsius	syrichta	 tarSyr1	 GCA_000164805.1	 Mammalian	Genome	Project	

Tupaia	belangeri	 tupBel1	 GCA_000181375.1	 Mammalian	Genome	Project	
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Appendix	4.2	–	Table	of	resources	used	in	assessing	assembly	and	annotation	quality	

in	rodents	

Supplementary	 Table	 4.2	 -	 Resources	 used	 in	 assessing	 assembly	 and	 annotation	 quality	 of	 the	
rodents.	

Species	 	 Ensembl	 GenBank	 Consortium	

Cavia	porcellus	 cavPor3	 GCF_000151735.1	 Mammalian	Genome	

Project	

Dipodomys	ordii	 dipOrd1	 GCA_000151885.1	 Mammalian	Genome	

Project	

Mus	musculus	 NCBIM37	 GCF_000001635.18	 Genome	Reference	

Consortium	

Oryctolagus	cuniculus	 oryCun2	 GCF_000003625.2	 Mammalian	Genome	

Project	

Rattus	norvegicus	 RGSC	3.4	 GCF_000001895.3	 Rat	Genome	Project	

Ictidomys	

tridecemlineatus	

speTri1	 GCA_000181315.1	 Mammalian	Genome	

Project	

	

Appendix	4.3	-	CAFE	consensus	lambda	values	for	individual	gene	family	search		

See	 the	 primates_varied_indiv.lambda	 file	 available	 at	 the	 following	 web	

address	https://gist.github.com/gawbul/7119183.	

Appendix	4.4	–	Release	66	significant	gene	family	descriptions	

See	 the	 r66_unique_family_descriptions.csv	 file	 available	 at	 the	

following	web	address	https://gist.github.com/gawbul/3e0ddd8ef60507223055.	

Appendix	4.5	-	Release	67	significant	gene	family	descriptions	 	

See	 the	 r67_unique_family_descriptions.csv	 file	 available	 at	 the	

following	web	address	https://gist.github.com/gawbul/bd3c4b70fea477b224e8.	
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Appendix	4.6	–	Table	of	matching	gene	families	recovered	from	the	Dumas	analyses	

Supplementary	 Table	 4.3	 -	 Breakdown	 of	 Ensembl	 annotated	 function	 for	 the	 25	 gene	 family	 IDs	
recovered	as	part	of	the	Dumas	comparison	with	the	release	67	raw	gene	family	data.	

Ensembl	Family	ID	 	 Ensembl	Family	Description	

ENSFM00250000000002	 TELOMERIC	REPEAT	BINDING	FACTOR	1	TTAGGG	REPEAT	BINDING	FACTOR	1	

ENSFM00250000000099	 NUCLEAR	 ENVELOPE	 PORE	 MEMBRANE	 POM	 121	 NUCLEOPORIN	 NUP121	

PORE	MEMBRANE	OF	121	KDA	

ENSFM00250000000393	 PRAME	FAMILY	MEMBER	

ENSFM00250000000661	 ALPHA	 AMYLASE	 PRECURSOR	 EC_3.2.1.1	 1	 4	 ALPHA	 D	 GLUCAN	

GLUCANOHYDROLASE	

ENSFM00250000001212	 N	 LYSINE	 METHYLTRANSFERASE	 SETD8	 EC_2.1.1.-	 HISTONE	 LYSINE	 N	

METHYLTRANSFERASE	SETD8	EC_2.1.1.43	SET	DOMAIN	CONTAINING	8	

ENSFM00250000001425	 FRG1	

ENSFM00250000001738	 LIM	 AND	 SENESCENT	 CELL	 ANTIGEN	 	 CONTAINING	 DOMAIN	 2	

PARTICULARLY	INTERESTING	NEW	CYS	HIS	2	PINCH	2	

ENSFM00250000002195	 RANBP2	 	 AND	 GRIP	 DOMAIN	 CONTAINING	 RAN	 BINDING	 2	 	 RANBP2	 	

RANB	

ENSFM00250000002588	 CUTANEOUS	T	CELL	LYMPHOMA	ASSOCIATED	ANTIGEN	CTAGE	

ENSFM00250000002759	 TRIPARTITE	MOTIF	CONTAINING	16	

ENSFM00250000003039	 GENERAL	TRANSCRIPTION	FACTOR	IIH	SUBUNIT	2	GENERAL	TRANSCRIPTION	

FACTOR	IIH	POLYPEPTIDE	2	

ENSFM00250000004017	 KERATIN	TYPE	I	CYTOSKELETAL	CYTOKERATIN	CK	KERATIN	

ENSFM00250000004074	 RNA	 BINDING	 MOTIF	 PROTEIN	 X	 HETEROGENEOUS	 NUCLEAR	

RIBONUCLEOPROTEIN	 G	 [CONTAINS	 RNA	 BINDING	 MOTIF	 PROTEIN	 X	 N	

TERMINALLY	PROCESSED]	

ENSFM00250000004772	 CLASS	I	HISTOCOMPATIBILITY	ANTIGEN	ALPHA	CHAIN	PRECURSOR	

ENSFM00400000131757	 OLFACTORY	RECEPTOR	OLFACTORY	RECEPTOR	

ENSFM00500000269589	 NEUROGENIC	 LOCUS	 NOTCH	 HOMOLOG	 PRECURSOR	 NOTCH	 [CONTAINS	

NOTCH	EXTRACELLULAR	TRUNCATION;	NOTCH	INTRACELLULAR	

ENSFM00500000270385	 FARNESYL	PYROPHOSPHATE	SYNTHASE	FPP	SYNTHASE	FPS	EC_2.5.1.10	2E	6E	

FARNESYL	 DIPHOSPHATE	 SYNTHASE	 DIMETHYLALLYLTRANSTRANSFERASE	

EC_2.5.1.-	 1	 FARNESYL	 DIPHOSPHATE	 SYNTHASE	

GERANYLTRANSTRANSFERASE	

ENSFM00500000270422	 DELETED	IN	AZOOSPERMIA	 	 DAZ	

ENSFM00500000270455	 GAMMA	GLUTAMYLTRANSPEPTIDASE	PRECURSOR	GGT	EC_2.3.2.2	GAMMA	

GLUTAMYLTRANSFERASE	 GLUTATHIONE	 HYDROLASE	 EC_3.4.19.-	 13	

[CONTAINS	 GAMMA	 GLUTAMYLTRANSPEPTIDASE	 HEAVY	 CHAIN;	 GAMMA	

GLUTAMYLTRANSPEPTIDASE	LIGHT	CHAIN]	
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Supplementary	Table	4.3	continued	

Ensembl	Family	ID	 	 Ensembl	Family	Description	

ENSFM00560000771007	 PROLINE	 DEHYDROGENASE	 1	 MITOCHONDRIAL	 PRECURSOR	 EC_1.5.99.8	

PROLINE	OXIDASE	

ENSFM00560000771165	 ZINC	FINGER	

ENSFM00610000952844	 TBC1	DOMAIN	FAMILY	MEMBER	

ENSFM00650001140038	 COBW	 DOMAIN	 CONTAINING	 COBALAMIN	 SYNTHASE	 W	 DOMAIN	

CONTAINING	

ENSFM00660001157182	 SERINE/THREONINE	KINASE	SMG1	SMG	1	EC_2.7.11.1	

ENSFM00670001235658	 OLFACTORY	RECEPTOR	OLFACTORY	RECEPTOR	
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Appendix	 4.7	 –	 Table	 of	 noteworthy	 matching	 gene	 families	 recovered	 from	 the	

Dumas	analyses	

Supplementary	 Table	 4.4	 -	 Breakdown	 of	 Ensembl	 annotated	 function	 for	 the	 2	 gene	 family	 IDs	
recovered	as	part	of	the	Dumas	comparison	with	the	release	67	fixed	lambda	CAFE	data.	

Ensembl	Family	ID	 Ensembl	Family	Description	

ENSFM00250000000661	 GAMMA	GLUTAMYLTRANSPEPTIDASE	PRECURSOR	GGT	EC_2.3.2.2	GAMMA	

GLUTAMYLTRANSFERASE	 GLUTATHIONE	 HYDROLASE	 EC_3.4.19.-	 13	

[CONTAINS	 GAMMA	 GLUTAMYLTRANSPEPTIDASE	 HEAVY	 CHAIN;	 GAMMA	

GLUTAMYLTRANSPEPTIDASE	LIGHT	CHAIN]	

ENSFM00250000000661	 GAMMA	GLUTAMYLTRANSPEPTIDASE	PRECURSOR	GGT	EC_2.3.2.2	GAMMA	

GLUTAMYLTRANSFERASE	 GLUTATHIONE	 HYDROLASE	 EC_3.4.19.-	 13	

[CONTAINS	 GAMMA	 GLUTAMYLTRANSPEPTIDASE	 HEAVY	 CHAIN;	 GAMMA	

GLUTAMYLTRANSPEPTIDASE	LIGHT	CHAIN]	

	

Appendix	4.8	–	Divergence	times	in	primates	

Supplementary	Table	4.5	-	Median	divergence	times	(Mya)	for	species	in	the	primates	dataset	relative	
to	Homo	sapiens	taken	from	TimeTree.org	(Hedges	et	al.,	2006)	

Primates	 Divergence	Time	

Homo	sapiens	 -	

Pan	troglodytes	 6.1	

Gorilla	gorilla	gorilla	 8.0	

Pongo	abelii	 15.1	

Nomascus	leucogenys	 19.4	

Macaca	mulatta	 26.8	

Callithrix	jacchus	 40.1	

Tarsius	syrichta	 58.0	

Microcebus	murinus	 77.5	

Otolemur	garnettii	 77.5	

Tupaia	belangeri	 89.0	
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Appendix	4.9	–	Divergence	times	in	rodents	

Supplementary	Table	4.6	-	Median	divergence	times	(Mya)	for	species	in	the	rodents	dataset	relative	
to	Mus	musculus	taken	from	TimeTree.org	(Hedges	et	al.,	2006)	

Rodents	 Divergence	Time	

Mus	musculus	 -	

Rattus	norvegicus	 22.0	

Dipodomys	ordii	 73.0	

Ictidomys	tridecemlineatus	 74.3	

Cavia	porcellus	 77.0	

Oryctolagus	cuniculus	 86.1	
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Appendix	4.10	–	No	human	gene	family	expansions	and	contractions	tree	

	
Supplementary	 Figure	4.1	 -	 Expansions	and	 contractions	of	 genes	along	 the	branches	of	 the	primate	phylogenetic	 tree	with	human	data	 trimmed.	Blue	 coloured	branches	
depict	overall	contraction,	while	red	coloured	branches	depict	overall	expansion.	Black	branches	would	represent	equal	or	no	change.	Branch	thickness	represents	the	number	
of	gene	copy	number	changes	weighted	by	the	time	to	the	ancestral	node	for	each	branch	as	a	proportion	of	the	time	to	the	root	node.



Page	308	of	314	

Appendix	5	

Appendix	5.1	–	Breakdown	of	intron	count	information	for	all	61	species	available	in	

release	70	of	the	EnsEMBL	databases.	Intron	data	were	trimmed	so	all	genes	had	at	

least	1	intron	

Supplementary	 Table	 5.1	 -	 Breakdown	 of	 intron	 count	 information	 for	 all	 61	 species	 available	 in	
release	70	of	the	EnsEMBL	databases.	Intron	data	were	trimmed	so	all	genes	had	at	least	1	intron.	

Species	Name	 	 Max	 Mean	 Median	 Mode	

ailuropoda_melanoleuca	 314	 9.388855	 7	 1	

anolis_carolinensis	 151	 9.170396	 6	 1	

bos_taurus	 316	 9.665572	 7	 1	

caenorhabditis_elegans	 65	 5.238211	 4	 2	

callithrix_jacchus	 355	 8.904024	 6	 1	

canis_familiaris	 344	 9.544023	 7	 1	

cavia_porcellus	 147	 9.89385	 7	 2	

choloepus_hoffmanni	 378	 11.40097	 8	 4	

ciona_intestinalis	 131	 6.119172	 4	 1	

ciona_savignyi	 126	 6.674546	 5	 1	

danio_rerio	 229	 8.516419	 6	 1	

dasypus_novemcinctus	 368	 11.59302	 8	 3	

dipodomys_ordii	 331	 12.0776	 9	 5	

drosophila_melanogaster	 81	 3.864209	 3	 1	

echinops_telfairi	 278	 11.85999	 9	 3	

equus_caballus	 357	 8.859638	 6	 1	

erinaceus_europaeus	 261	 12.28845	 9	 3	

felis_catus	 315	 9.609164	 7	 1	

gadus_morhua	 254	 12.04534	 8	 2	

gallus_gallus	 144	 9.347318	 6	 1	

gasterosteus_aculeatus	 212	 9.904965	 7	 1	

gorilla_gorilla	 346	 8.903558	 6	 1	

homo_sapiens	 311	 6.343056	 3	 1	

ictidomys_tridecemlineatus	 154	 9.604691	 7	 1	

latimeria_chalumnae	 161	 9.842294	 7	 1	

loxodonta_africana	 283	 9.508163	 7	 1	

macaca_mulatta	 156	 8.28536	 5	 1	

macropus_eugenii	 367	 12.60975	 9	 4	

meleagris_gallopavo	 137	 10.29303	 7	 2	

microcebus_murinus	 232	 11.67309	 9	 3	
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Supplementary	Table	5.1	continued	

Species	Name	 	 Max	 Mean	 Median	 Mode	

monodelphis_domestica	 152	 9.227022	 6	 1	

mus_musculus	 311	 7.818095	 5	 1	

mustela_putorius_furo	 316	 9.553409	 7	 1	

myotis_lucifugus	 348	 8.913681	 6	 1	

nomascus_leucogenys	 151	 9.364024	 7	 1	

ochotona_princeps	 319	 12.37557	 9	 5	

oreochromis_niloticus	 147	 10.54295	 8	 3	

ornithorhynchus_anatinus	 152	 7.131029	 4	 1	

oryctolagus_cuniculus	 281	 9.382012	 7	 1	

oryzias_latipes	 218	 9.803657	 7	 1	

otolemur_garnettii	 150	 9.497065	 7	 1	

pan_troglodytes	 313	 9.572439	 7	 1	

pelodiscus_sinensis	 357	 9.390303	 7	 1	

petromyzon_marinus	 143	 8.19893	 6	 1	

pongo_abelii	 291	 9.567673	 7	 1	

procavia_capensis	 343	 12.31972	 9	 3	

pteropus_vampyrus	 369	 11.88527	 9	 5	

rattus_norvegicus	 117	 8.527337	 6	 1	

saccharomyces_cerevisiae	 7	 1.078283	 1	 1	

sarcophilus_harrisii	 299	 9.705794	 7	 1	

sorex_araneus	 251	 11.78891	 9	 3	

sus_scrofa	 117	 8.414934	 6	 1	

taeniopygia_guttata	 148	 8.679421	 6	 1	

takifugu_rubripes	 151	 10.43109	 8	 1	

tarsius_syrichta	 338	 11.37114	 8	 4	

tetraodon_nigroviridis	 159	 9.89281	 7	 3	

tupaia_belangeri	 271	 12.01076	 9	 1	

tursiops_truncatus	 364	 11.84556	 9	 3	

vicugna_pacos	 352	 11.59147	 8	 3	

xenopus_tropicalis	 294	 10.26406	 7	 1	

xiphophorus_maculatus	 157	 10.42504	 8	 3	
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Appendix	5.2	–	Frequency	distribution	of	intron	counts	in	all	61	species.	

	
Supplementary	Figure	5.1	 -	Frequency	distribution	of	 intron	counts	 in	all	61	species.	 Intron	count	 is	 trimmed	to	100,	which	represents	 the	majority	of	 the	data.	This	 figure	

represent	the	right	skew	in	the	data,	with	the	mean,	median	and	mode	all	being	approximately	<=	10.	The	maximum	intron	count	in	these	species	is	378.	See	Appendix	5.1	for	

inset	of	0	to	12.5	intron	count.
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Appendix	5.3	–	Boxplot	displaying	the	relationship	between	gene	family	size	and	intron	count.	

	
Supplementary	Figure	5.2	-	A	boxplot	displaying	the	relationship	between	gene	family	size	and	intron	count	for	the	pooled	intron	and	gene	family	data	of	all	61	species	used	in	

this	study.	
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Appendix	5.4	–	Inset	of	supplementary	figure	5.1	showing	frequency	distribution	of	intron	count	in	61	species	

	
Supplementary	Figure	5.3	–	Inset	of	frequency	distribution	of	intron	count	in	all	61	species	in	Ensembl	release	70.	Cut-off	at	12.5	to	emphasize	mode	count	in	the	distribution.	
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Appendix	5.5	–	Inset	of	figure	5.3	showing	frequency	distribution	of	intron	density	in	61	species	

	
Supplementary	Figure	5.4	–	Inset	of	frequency	distribution	of	intron	density	in	all	61	species	in	Ensembl	release	70.	Cut-off	at	0.01	to	emphasize	mode	density	in	the	

distribution.	
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Appendix	5.6	–	Inset	of	figure	5.4	showing	frequency	distribution	of	intron	size	in	61	species	

	
Supplementary	Figure	5.5	–	Inset	of	frequency	distribution	of	intron	size	in	all	61	species	in	Ensembl	release	70.	Cut-off	at	750	bp	to	emphasize	mode	size	in	the	distribution.	


