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ABSTRACT 

In this dissertation the technical efficiency in gold mining is investigated. To the best 

available knowledge, this is the first such study on gold mining, whether on a localised 

(one country) or for a cross-section of countries. Since the work by Farrell (1957), much 

work has been done using nonparametric methods such as DEA. Although extensions in 

DEA technique, such as bootstrapping have been available for some time, their use has 

been limited in comparison with the number of overall DEA studies carried out. In this 

dissertation both DEA and bootstrap DEA are applied to two gold mining cross 

sectional samples, one on Zimbabwe consisting of thirty-four mines, and the an 

international one which also included some Zimbabwean mines which comprise fifty

nine observations. 

The main reason for carrying out the study is an interest in gold mining in general and 

its importance to Zimbabwe in particular. As will be noted in Chapter 2, the economic 

development of Zimbabwe has been linked, to a varying extent over the ages, to its 

growth of the gold mining sector. 

The results of the dissertation provide some useful insights into the relative 

performances of gold mines and also some characteristics of the Zimbabwean gold 

mining sector. The main results indicate that gold mining is characterised mainly by 

technical efficiency dominating scale efficiency. This is particular relevant when the 

Zimbabwean mines are compared with their international counterparts. Zimbabwean 

mines are found to be relatively technically efficient but less so when overall efficiency 
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is considered. In fact they have the lowest overall efficiency scores in the international 

sample. The results also indicate that mines from the so-called developed mining 

economies, Australia, Canada, the US and South Africa are the benchmarks in terms of 

optimal operations. It is mines from these countries which define the overall efficiency 

frontier. 

The results of both the samples highlight potential shortcomings in applying DEA and 

bootstrap extension to gold mining, both for single country and for cross-country cases. 

Additionally, there are possibilities, with adequate data, of relating country-specific 

characteristics to differences in overall efficiency among countries. 

Finally there are indications that including mineralogical factors such as the recovery 

rate in the production technology has an effect on technical efficiency. Mines with low 

recovery rates tend to exhibit comparatively higher technical efficiency. The study does 

have some limitations, mainly because of lack of data. In particular, there were 

problems in coming with attributing the contribution of capital selVices to efficiency 

with the result that a different measure for the flow of capital selVices is used for each 

sample. In addition, the two samples are for different time periods. This limits 

comparative analysis. 
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CHAPTER t: INTRODUCTION AND BACKGROUND TO THE STUDY 

1.1 Introduction 

The history of mining and that of Zimbabwe are inseparably linked. It was the lure of 

gold fuelled by the amazing tales of King Solomon's mines that attracted British settlers 

to Zimbabwe in the last part of the 19th century. Well before then, however, mining was 

already playing an important part in Zimbabwe cementing its interaction with the 

outside world. Ancient workings, some of which have been dated to as far back as the 

2nd century (Jourdan, 1990), are scattered across the Zimbabwean landscape-- in fact in 

21 st century Zimbabwe, well over half of the major towns started off either as mining 

settlements or their development into urban centres largely depended on mining. The 

most important mining activity has been gold mining. 

1.2 The Research Question and its Importance 

This dissertation is primarily motivated by the developments in the literature on 

productive efficiency particularly the use of frontier methods of efficiency estimation 

and the lack of application of these developments to gold mining, a subject of 

considerable importance to the Zimbabwean economy. As Chapter 3 makes clear, the 

behavioural assumptions of an eternally optimising enterprise have not been backed by 

any supporting evidence in empirical studies. Given this situation where there are 

divergences between the stated objectives and outcomes of the productive enterprises, 

there are some important questions to consider. How are the objectives measured and 
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deviations from achieving them assessed? How far from the optimum are the observed 

enterprises? What measures can be taken to achieve or approach this optimum and to 

address any identified performance shortcomings? 

As Chapter 2 will reveal, gold mining is a vital cog in the wheel that is the Zimbabwean 

economy and has been for a long time. It is fully integrated into the global economy, 

with the final market of its product mainly being the London Metal Exchange (LME). It 

is also integrated from the inputs side in that a large proportion of its inputs, such as 

capital and chemicals are purchased from outside Zimbabwe. Mining is also a central 

plank in the transfer and adoption of new technology, either through new skills and 

training or acquisition of new equipment. Hence, when new plant and equipment is 

imported, technical skill are transferred through training at various levels in the 

maintenance and operation of the machinery. Gold mining is also a key export industry 

which has played and continues to playa large part in the generation of foreign 

currency, an important function in developing countries which heavily depend on 

external sources for capital and intermediate goods. Mining has increasingly come 

under scrutiny, particularly with respect to environmental impact. Given that 

compliance with increasingly stricter regulations will imply higher costs, improved 

performance and efficiency will increasingly become very important. l 

I Even in countries with weak regulatory parameters, multinational companies such as Rio Tinto, Anglo 

American etc. impose conditions prevailing in their home countries. 
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There are two primary objectives in carrying out this study, both of which are relevant 

to the mining of gold in Zimbabwe. The tirst is to estimate and analyse the productive 

efficiency of gold mining in Zimbabwe. The second is to analyse the same perfonnance 

but this time in the context of a global sample. The first part of the study looks at a 

sample of Zimbabwean mines. The aim of the second approach is to compare the 

performance of Zimbabwean gold mines to gold mines from other countries. Both these 

analyses are carried out using non-parametric methods. 

There are therefore two contexts to this study. The first uses a sample of anonymous 

gold mines from Zimbabwe from a data set extracted from the Zimbabwean Census of 

Production. The second is an international sample which also includes some mines from 

Zimbabwe. This sample is extracted from a commercially available database covering 

all facets of international mining, of which gold is only a part. 

1.3 Methodology 

Given the importance of gold to Zimbabwe, there are grounds for asking several 

questions regarding the perfonnance and characteristics of the gold mining sector. How 

do gold mines in Zimbabwe compare with those in other countries? Are there any 

significant differences in perfonnances in comparison to countries with similar 

geology? Are there any differences with countries at same stage of economic 

development and which have experienced similar political and economic shocks? 
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There are many ways of answering these questions which range from partial measures 

such as labour productivity, see for example Tilton (2001) and total measures such the 

Malmquist productivity index or other total factor productivity measures. Recently, 

estimates of efficiency have increasingly been used to compare the perfonnance of 

productive enterprises. Efficiency estimates have also been used to estimate a frontier of 

maximum attainable output for a given vector of inputs or a vector of minimum feasible 

inputs for a given output. In addition, efficiency estimates have also been used to 

identify best-practice finns which may then used as references by the inefficient ones. 

As a basis for measuring efficiency and benchmarking the perfonnance of gold mines, 

the non-parametric method of data envelopment analysis (DEA) will be employed. The 

adoption of this approach is motivated by two primary reasons. The first is the type of 

data available which dictates that DEA is used. DEA allows the estimation of a 

perfonnance frontier and not the strictly conventional models, that is, non-frontier 

production models. The second is the novel application of the bootstrap in the 

estimation of operational efficiency. Despite its obvious appeal, there has been some 

reticence in its use in applied work. Some of this may possibly be a result of the 

computer resources required to implement the technique. However, this is less 

problematic given the significant falls in computing costs over the last twenty years. 

Another reason may be that some researchers are still to be convinced about the merits 

of the bootstrap (Cooper et aI, 2000). Finally, there have been some controversial 

exchanges among researchers on how properly to implement the bootstrap. These will 

be discussed in Chapter 3. 
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Notwithstanding, the relatively slow up-take in the use of the bootstrap, there have been 

some innovative studies which will form the basis for this study. These are the works by 

Forsund et al (2006), Boame (2004) and Simar & Wilson (1998) for example. 

The key methodological contribution of the bootstrap is the ability to correct for 

identified shortcomings in nonparametric analysis. This allows the approximation of 

statistical properties of what have hitherto been classified as deterministic results. In this 

study, there is also an attempt at looking at the applicability and problems associated 

with applying the bootstrap DEA to gold mining. 

1.4 Structure of the Study 

This study is divided into six chapters. After this introductory chapter, the study is 

arranged as follows: Chapter 2, consisting of two parts, gives a background to gold 

mining. The first part is a general description of gold mining to place the subsequent 

empirical work in context. The second traces the historical development of mining in 

Zimbabwe and highlights the major events that have taken place in making Zimbabwe a 

major gold producer. The problems faced and successes achieved are justify a study into 

the performance of the gold mining sector is analysed. 

Chapter 3 examines the theory behind the study. An investigation of the both parametric 

and nonparametric estimation of efficiency is done. More attention is paid to the 

nonparametric framework which is applied here. In addition, the nonparametric 

enhancement though the bootstrap will be outlined and the context in which it has 
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hitherto been used is also investigated. Finally, a review of some previous 

nonparametric studies of efficiency is carried out. The focus will be on those studies 

which focus on DEA and mining and those that have applied the bootstrap and bias

correction to DEA. These studies will help address some data measurement and 

methodological problems encountered in this study. 

In Chapter 4, an analysis of productive efficiency in Zimbabwean gold mining is done. 

The results allow the construction of a production frontier for a sample of Zimbabwean 

gold mines. Technical efficiency is also decomposed into its main components, these 

being technical efficiency and scale efficiency. The importance of each in explaining 

the efficiency of each mine is then analysed and general conclusions on the 

characteristics of the Zimbabwean gold mining industry are inferred such as the scope 

for scale adjustment and input savings. Finally, a test of whether the obsetved 

differences in point estimates are statistically significant is then done. 

In Chapter 5, an analysis of the perfonnance of a world-wide sample of gold mines is 

carried out with a view to establishing the place of Zimbabwean mines in a global 

context. Of interest will be which countries provide reference mines (the most efficient 

mines which are used in the construction of an estimated efficiency frontier). As in 

Chapter 4, a test of whether the obsetved differences in point estimates are significant is 

also done. 
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Finally in Chapter 6, some conclusions are made. Policy recommendations and 

directions for further research, based on perceived weaknesses in the current study, are 

identitied. 

1.5 Gold: A Brief History 

Gold mining is probably the most global of all mining activities, with a history 

stretching to ancient times and spanning across the world. Today gold metal itself is one 

of the most important commodities traded. Its physical (malleable and ductile) and 

chemical (extremely stable and resistant to most acid attacks) properties give it very 

diverse range ofuses. These extend from the fiduciary-it is the commodity of choice 

for storing wealth in many societies, both advanced and less advanced- to the 

industrial where its physical and chemical properties are important in microelectronics 

and medical applications. It is the best conductor of electricity and heat and is an 

excellent reflector of colour. Visually, the lustrous yellow colour is rather pleasing to 

the eye which is an added attraction. As a result of some of these characteristics, gold 

has been the basis of trade since the early Egyptian and Mesopotamian civilisations and 

has served as a store of wealth and value for a long time. Gold has also been the source 

of much conflict among nations, and the basis upon which many nations, such as large 

parts of Africa, Latin America and the Western parts of the United States of America 

were forged. 

In terms of historical output, the World Gold Council estimates that 125000 metric 

tonnes of gold have been mined over the last six thousand years, 90% of them after 
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1848 after the Californian gold rush (World Gold Council, 2006). The earliest recorded 

mining took place in ancient in Egypt around 2000 B.C. At that time, the total world 

output rate was nothing more than one tonne per annum. However, from about the 

beginning of the 15th century, West African gold (mostly Ghana, Guinea and Mali) rose 

to prominence adding between five and eight tonnes annually to world output. South 

and Central American production was added in the 16th century. The exploitation of 

Russian gold and the results of the American gold rush in the 18th and 19th centuries 

were the quantum leaps, with world output rising to a rate of about one hundred tonnes 

per year. By the middle of the 19th century, this had surged to about 300 tonnes per year 

(World Gold Council, 2006). Australia and South African production in the late 19th 

century and early 20th century gave total output a further boost (World Gold Council, 

2006). 

The last dramatic change came in the 1980s when global output rose to an all-time peak 

of about 950 tonnes per annum, mainly triggered by prices of over US$8oo per ounce 

(World Gold Council, 2006). New technologies in exploration, mining and mineral 

processing added to the boom as many old and abandoned workings and other 

occurrences, which had hitherto been regarded as uneconomic or physically difficult to 

access, began to be exploited. 

Today gold trading is conducted in a fiercely competitive market with a diverse range of 

participants from gold mines, central banks, private financial institutions, other 

investors and private individuals. Therefore, gold mines need to adopt clear strategies to 
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improve efficiency and performance in the face of these challenges. The importance of 

adopting these strategies can best be illustrated by looking at the effect of two notable 

events in Europe, the fall of the Soviet Union and the fonnation of the European 

Monetary Union (EMU). The fonner was followed by sudden, large-scale flows of gold 

onto the world market. In addition as result of the latter, European central banks, most 

of them seeking to comply with the provisions of European Monetary Union or simply 

wishing to change the composition of their portfolio of reserves, were selling significant 

amounts of their gold reserves. The effect was as sudden as it was dramatic; the price of 

gold was forced so far down, from about US$330 to fluctuate about US$200 in a period 

of six months, a level at which it stayed for about two years (Mining Journal, 1988: 

1994). As a consequence, a significant number of gold mining operations worldwide 

found themselves to be economically unviable. By the early to mid-1990s, most were 

put on "care and maintenance" or simply shut down. To maintain competitiveness gold 

miners were forced to adopt a variety of measures which included cost cutting and more 

efficient use of resources and these with varying degrees of success (Mining Annual 

Review, 1996). 

1.6 The Geology of Gold 

Gold is abundantly available in the earth's crust but not always in sufficiently great 

concentrations, the average is 15milligrammes/tonne, for feasible extraction. However, 

there are occurrences of rich concentrations throughout the world which support 

economic exploitation. The formation of these concentrations, also called deposits, 
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mainly took place over long periods of time, typically millions of years. The gold which 

is close to the surface and, therefore, amenable to mining was formed from complex 

ions in molten salts which are saturated in gold, sulphur, iron, silicon etc. These molten 

salts migrated from huge depths through fissures and cracks in rocks, cooling and 

crystallising as it entered the earth's crust. Most of the cooling took place in quartz and 

in other complex rock formations containing sulphur, lead, zinc, platinum etc. Hence a 

proportion of gold mining is often associated with these other minerals. The mineralogy 

of gold, i.e. physical association of gold with other minerals is, therefore, quite often 

complex as it often occurs in a wide variety of forms and associated with many other 

minerals most of which are deleterious in the process of processing and purification of 

gold. 

The commonest types of gold deposits occur in quartz-containing rocks. Gold ore can 

be found as disseminated and irregular particle scales, plates, veinlets or large 

reticulated and spongy masses. Although crystalline in nature, it rarely occurs as 

crystals (which are easier to process) as these require special conditions to fonn. There 

are two main types of gold deposits, vein and reef, and placer and alluvial. 

Vein and reef gold occurs in granites ( a type of quartz), such as those found in the 

United States, Canada, Australia and Southern Africa, and in volcanic rocks, such as 

those found in the rest of East and West Africa, South America and South-East Asia. 

Reef deposits are nonnally deep-seated and are extracted through sophisticated mining 

methods. Placer and alluvial deposits resulted mainly from chemical weathering and 
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suhsequent erosion and exposure of the gold-containing rocks. This process caused the 

heavy gold to become embedded in streambeds and the soils in any physical depression. 

Alluvial and placer deposits were the major reason for the gold rushes in the western 

part of the United States, South Africa and Australia. Alluvial gold, by virtue of being 

on the surface or just a few metres below it, was the most easily exploitable with most 

of it consisting of nuggets of almost pure gold. Earlier methods of extraction included 

panning or other gravimetric separation techniques with very little use of chemicals to 

separate gold from waste or gangue minerals. 

1.7 The Gold Production Process 

There are three main stages involved in the physical production of gold. These are (a) 

exploration to locate economically-exploitable concentrations of gold, (b) mining where 

the ore is extracted from the host rock through various means such as drilling and 

blasting, and (c) mineral processing where the gold metal is separated from other 

gangue and waste materials with which it is naturally associated. The latter two stages 

are the relevant ones for the purposes of this study and are examined in some detail 

here. 

Gold deposits and concentrations are found by a variety of exploration methods, from 

eagle-eyed prospectors (even today) and sophisticated geophysical and geochemical 

methods using satellite imaging etc. Once an anomalous concentration of gold is 

detected, core-drilling of rocks and soils and assaying of the drilled cores are the main 

methods of establishing the dimensions and quality of the occurrences. Once a 
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sufficiently rich deposit is delineated, construction of the mine infrastructure follows 

and access to the ore is by two main methods, open pit for shallow deposit or shafts for 

deep-seated ones. The mining of gold takes place by finding the most economic and 

easily accessible routes to the ore and these largely depend on the type of deposit. 

Sometimes a combination of the two is used, especially where the deposit starts from 

shallow levels and continues to greater depths. 

Shallow-lying deposits are mainly mined by open-pit and often are heavily mechanised 

operations. Here the ore is exposed by removing the top "overburden" and waste layer 

of rock and soil. Another method, usually used in sandy deposits which are on the 

surface, is to use high-pressure water to free the gold from the sand or soils in which it 

is trapped. Deep-lying deposits, on the other hand, are usually accessed by sinking 

vertical or inclined shafts, normally to levels below the first layer of the ore and 

"driving" into the deposit. Underground mining requires more sophisticated technology 

to reach and extract the ore as many physical hazards such rock fall are encountered. 

Some of the shafts are exclusively used for ventilation, for transporting men and 

supplies or for transporting ore to the surface. The capacity of the mine is measured by 

the mass of rock material mined and moved to the surface for processing and is 

normally indicated by tonnes per year of ore. This capacity is determined by various 

factors, such as the rock strength, which affect the height and width of the horizontal 

accesses and also how easily ventilated the mines can be. All these variables are 

factored in when the mine is modelled and planned. In terms of getting the ore, the main 

method is by breaking up the host rock by drilling and embedding explosives into the 
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drilled holes. The inputs used in this process are labour (of which there are different 

types), trucks, earth-moving equipment and drilling machines and explosives. In terms 

of labour, blasting and the supervision of drilling the holes into which the explosives are 

inserted is only carried out by a blasting licence holder while the actual mining is only 

done under the supervision of someone with a formal mining engineering background. 

The broken ore is raised to the surface where is sorted according to its grade. Low grade 

ore is normally roughly broken up and placed on lined pads. A dilute cyanide solution is 

poured over the surface of the broken ore. The slowly dissipating fluid dissolves the 

gold as it percolates down to the pads at the bottom. The pregnant (in gold) solution is 

then collected and taken for further processing. 

High grade ore is separated into oxide, which is easier to process, and sulphide and 

carbonate ores (also known as refractory ore) from which it is relatively more difficult 

to remove the gold. The ores are then separately ground to micro-fineness. The main 

equipment used here are crushers and mills and these, more than anything on the mine, 

provide the physical constraint on how much gold ore is processed into gOld2
• Hence a 

mine cannot physically process what the mill is unable process. Oxide are is directly 

sent to a "leach plant", where, again, a weak cyanide solution percolates through the 

heaped ore trapping the gold. The carbonate and sulphide ores are fed into a furnace and 

2 In some mines, the primary crushing is carried out underground. This however requires significant 

investment in ventilation infrastructure which, in some cases, may outweigh that of environmental 

remediation on the surface. 
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roasted, driving out the carbon and sulphur as gaseous oxides and then onto the leach 

pad. 

The gold-containing complex solution is collected and sent to a cyanide leach plant. In 

here, the cyanide solution is passed though a chemical called activated carbon which 

traps the gold and lets the cyanide through. The free cyanide is then collected and 

recycled for re-use. The activated carbon, now laden with gold is then chemically 

separated from the gold, either by chemical substitution or electrolytically. As with the 

cyanide, the activated carbon is collected after this for re-use. Finally, the almost-pure 

gold is melted into bars, known as "dore bars". These bars are finally sent to a refinery, 

where they are refined to 99.99 per cent purity which is what is traded on the market. 

There is some trade in dore gold which also takes place but it is a rather insignificant 

segment of the market. 

The preceding discussion outlined the history, basic geology and production techniques 

of gold. It can be seen that the main inputs in gold mining are capital equipment, such as 

earthmovers, hoists, drills, crushers and mills, labour, energy and explosives. Also 

included is labour, both skilled (geologists and mining and metallurgical engineers) and 

general, such as plant operators. In mineral processing, ore, energy and chemical 

reagents are the main inputs. The quality of the ore, as measured by the grade of gold 

(normally grammes per tonne of ore) is also an important consideration in whether or 

not exploitation takes place. The amount of materials, that is, the reagents used depends 

on the grade and the mineralogical quality of the ore, the refractory ores requiring more 
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of the resources. The capital equipment, by extension, the physical amount of ore which 

can be handled by the mills and concentrators is nonnally fixed in the short tenn, 

constraining the amount of ore which can be raised to the surface. 
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CHAPTER 2 GOLD MINING AND ZIMBABWE3 

2.0 Introduction 

This chapter has one major purpose. It will outline and emphasise the importance of 

gold to the economy of Zimbabwe and motivate the need to investigate the performance 

of this vital economic sector, first on its own and then in relation to other gold mines in 

the rest of the world. To put gold mining in its proper economic perspective, a historical 

account of the development of gold mining and its importance to the Zimbabwean 

economy is given. The main thread running through the whole study, therefore, is an 

analysis of the performance of Zimbabwean gold mining. 

This chapter is divided as follows; after this introduction, Section 2.1 gives a general 

introduction to the gold mining in Zimbabwe. Section 2.2 deals with the pre-1923 

period when the British South Africa Company (the 'Company') ran the colony. Section 

2.3 deals with the period from 1923 when British government took over administration 

from the Company and gave Rhodesia4 limited home rule, though in practice this was 

more like self-government. This period lasted until 1965. This was when, in a bid to 

:1 Viewing et al (1987) wrote the definitive history of mining in Zimbabwe and hence is repeatedly cited 

in this Chapter. 

4 Up until 1980, Zimbabwe was known as Rhodesia, derived from the name of the man given the royal 

charter by Queen Victoria to colonise it. 
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thwart the granting of political and economic concessions to black Rhodesians, the 

government made a Unilateral Declaration of Independence (UDI) from Britain. This 

UDI period, which lasted until Britain finally granted independence to Zimbabwe in 

1980, is dealt with in Section 2.4. Section 2.5 covers the post-independence (i.e. after 

1980) Zimbabwe. Finally Section 2.6 briefly discusses the post-independence mining 

policy. 

2.1 Gold Mining in Zimbabwe 

This section describes the developments in the Zimbabwean gold mining industry and 

highlights the major milestones. The objective is to explore the development of gold 

mining in Zimbabwe and highlight the importance which gold has played in making 

Zimbabwe what it is now. The period covered is from the 1890s when fully commercial 

mining started until the present day. This period can be roughly divided into four stages, 

each corresponding roughly to a political or economic epoch. 

Most of the modem mines in Zimbabwe are not the result of sophisticated and modem 

geological investigations. On the contrary, they are mostly located on the sites of the 

many ancient workings which are scattered across the landscape of Zimbabwe. 

Archaeological investigations have shown that by the end of the 19th century, there were 

more than four thousand old mine workings which also included some workings of iron 

and copper (Viewing et ai, 1987). Early European explorers, such as David Livingstone, 

reported a large number of abandoned ancient gold workings in what is now Zimbabwe. 

The abundance of these mines is a reflection of the both the widespread nature of the 
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mining activity and also the limited mining technology then possessed by the natives. 

The biggest technological constraints being the lack of water pumping facilities and 

underground roof support. There also were problems associated with processing the 

material, as exemplified by the abandonment of mines after the 'easy-to-process' oxide 

layers had been exhausted leaving behind significant quantities of refractory gold ore. 

Most of the mines which have become major sources of the country's wealth have 

developed from these ancient workings. 

Evidence of mining in Zimbabwe can be traced to the beginning of the last millennium. 

By the 11th century Arab traders, operating between Africa and India, were purchasing 

gold from Zimbabwe. In the 16th century, the Munhumutapa, a feudal Shona kingdom, 

granted mining concessions to the Portuguese in northern Zimbabwe and parts of 

Mozambique, which was also part of the empire (Jourdan, 1990). This led to a trading 

association that lasted until the Munhumutapa kingdom split into two at the end of the 

17th century, mainly as a result of repeated Portuguese military interventions. 

The Portuguese then installed their own puppet emperor in the north of present day 

Zimbabwe5 while in the south another kingdom known as the Changamire was set up. 

This uneasy coexistence only lasted for a short period, however. The Changamire 

invaded and routed the Portuguese and their puppets and installed their own subservient 

fiefdom. Their reign lasted until 1840s when other invaders, mostly the Ndebele, fleeing 

firstly the Zulus and, later, the Boer expansion (both of who were under pressure from 

5 Rhodesia, the former name, and Zimbabwe are going to be interchangeably used here. 
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the British further to the south) overran the Changamire kingdom. The Ndebele then set 

up their own empire with its capital at present-day Bulawayo in the west of Zimbabwe 

(Jourdan, 1990). 

In the 1880s, the potential for a huge gold find, particularly the perceived presence of a 

major reef similar to the Witwatersrand6
, the 'Rand', led the British mining magnate, 

Cecil John Rhodes, to seek and obtain mineral concession from the Ndebele King, 

Lobengula (Parsons, 1983). In 1890, the British themselves arrived in Zimbabwe. 

Despite possessing nothing comparable to a second Rand, the mining industry in 

Zimbabwe has developed to become one of the most diversified in Africa, with over 

forty minerals currently being extracted. It is particularly the combination of agriCUlture 

and mining that has been the engine of Zimbabwe's economic development for the best 

part of the last century. At the centre of all this has been gold mining, the most common 

of all mining activities. In crises, Zimbabwe has mainly paid its way out of trouble 

using gold. As Figure 2.1 illustrates, gold mining takes palace throughout Zimbabwe. 

6 Witwatersrand, literally white waters' reef, from which South Africa got the name of its currency the 

'Rand', is a geological complex surrounding Johannesburg. It is the location of the largest gold mines in 

the world and has been the source of most of South Africa's gold riches. 
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The location of the present-day towns has also been largely detennined by the presence 

of mining settlements. Harare, the capital city, has the Arcturus and Mazowe gold 

mining belts around it, see Figure 1. These mines, in tum are in the middle of one of the 

largest agricultural zones in Zimbabwe, to the north and east of Harare. Further, to the 

north of Harare lies another major town, Bindura. This town was largely founded on 

gold mines, the most famous one being Kimberley. Today the largest gold mine in 

Zimbabwe, Freda-Rebecca is located in Bindura town, again on the site of an ancient 

working. 

In addition to gold mining, nickel mining and refining at Trojan mine, just outside 

Bindura, is the other pillar upon which the town rests. Just to the east of Bindura lies 

another gold mining centre, Shamva. Both Shamva and Bindura are also major 

agricultural centres, again highlighting the significant linkages between mining and 

other productive sectors such agriCUlture. The situation is similar for Bulawayo, the 

second city, which is surrounded by significant gold belts. In the centre of the country, 

in the Midlands province, the Kwekwe gold belt has been the source of most of the gold 

produced in the country since the 19th century. During crises, Zimbabwe has mainly 

paid its way out of trouble using gold. All this illustrates the lasting impact that mining, 

particularly of gold, has left on the economic landscape of Zimbabwe. 

2.2 Zimbabwean Gold Mining 1890 to 1923: The Charter Company Years 

In 1890, Cecil John Rhodes' British South Africa Company (BSAC), also known as the 

'Company', sent settlers into Zimbabwe. A Royal Charter, raised capital from the 
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London Stock Exchange (LSE) and a special concession, mentioned earlier, by 

Lobengula 7, were the legal basis for this venture. This group of settlers was also known 

as the 'pioneer column'. Having heard stories of the fabulous riches of King Solomon's 

mines, they were in no doubt of the existence of a second Rand and they intended to 

secure it for themselves and for the crown (Jourdan, 1990). 

Initially, the settlers carefully avoided settlements inhabited by the more war-like 

Ndebele populations, setting up settlements only where the more peaceful Shona lived. 

They took over huge swathes of land, driving the natives away in the process. When 

nothing remotely approaching a second Rand materialised, the settlers then started 

encroaching on and eventually laying claims to the Ndebele part ofthe country as well. 

The expropriation of land provoked bitter resentment among both Shona and Ndebele. 

In 1896, for the first time, these two erstwhile enemies joined hands and rebelled 

against the settlers, almost wiping them out, such was the unexpected nature and 

ferocity of the uprising. The rebellion was ruthlessly put down in 1897 with some help 

from South Africa and with it the colonisation of Zimbabwe was completed (Jourdan, 

1990). 

In anticipation of huge gold finds and mindful of the large amounts of London Stock 

Exchange (LSE) money it had spent in getting to Zimbabwe, the Company had 

7 This was known as the Rudd Concession after the man who led the negotiations with Lobengula. 
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stipulated a 50 per cent free-carried equity in all minings. This was a fonn of state 

participation since the Company was not only the administrative authority but owned all 

the mineral rights as well. Prospecting work was made open except in areas that were 

already developed such as fanns and other settlements. 

To encourage more prospecting activity, from 1903 small-scale mining operations 

(those raising less than 750 tonnes of ore per month) were allowed to be run completely 

privately. The Company would, instead, recoup its money from royalties on profits, 

using a sliding scale. For the larger mines, the free-carried equity was reduced to 30 per 

cent (Viewing et ai, 1987). These changes were reinforced by further amendments to the 

regulations allowing most of the mines to pay a royalty on the gold produced (rather 

than the amount of ore raised). Again this was on a graduated scale with the small-scale 

mines (those producing up to £100 worth of gold per month) paying nothing at all while 

those producing up to £3 000 per month paid a royalty of 21/2 per cent. Richer mines, 

grading about 32 grammes per tonne (g/t) paid a royalty of 7 1/2 per cent (Viewing et ai, 

1987). 

The second Rand remained elusive, however. As an illustration of the huge disparity 

between what they had found in Zimbabwe and what was happening in South Africa, in 

1907 the 11 most profitable mines around Johannesburg had gross revenues of £7 

8 The company thus owned 50 per cent of the mine, without having invested any money into the 

operations. 
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million9
. In contrast the 11 largest mines in Zimbabwe only grossed £614 000 (Arrighi, 

1973). By the early part of the 20th century, the Company had finally given up hope of 

discovering a second Rand. In fact, 1903 has been identified as the year when the 

speCUlative bubble in Rhodesian mining finally burst, with the primary consideration 

being put to the profitability of the mines rather than simply working them. In 1906, the 

Company started advancing loans to prospective miners. The success of this action 

resulted in it being made policy in 1912 (Viewing et aI, 1987). This loan facility was an 

important feature in the development of mining during this period as it made working 

capital available to good prospects, especially for the purchase of consumables and the 

payment of wages. 

By the end of 1908, there were around 250 gold mines, admittedly 175 of which were 

only small workings (Viewing et aI, 1987.). More importantly, the emphasis was no 

longer on gold mining alone but other minerals as well. In 1904, Wankie Colliery was 

set up to exploit the vast coal reserves in the north-west tip of Zimbabwe (see Hwange 

on the map). In 1916, asbestos and chromite mining started in the Midlands province 

(Viewing, et aI., 1987). The two towns ofZvishavane and Shurugwi are examples of 

cases where mining was the main factor in the development of centres of economic 

activity. Both owe their existence to these two minerals; asbestos and a large number of 

small and medium gold deposits for the former and chrome ore for the latter. The 

9 Until 1971, the Rhodesian pound, later the dollar was on parity with sterling. Thereafter it was managed 

by the Reserve Bank according to a basket of currencies. 
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expansion of mining had a multiplier effect on the economy stimulating the agricultural 

sector as most of the food was obtained from there. 

Gradually mining became more formalised with support services being established. In 

1910, the Geological Survey (GS) was set up to provide free geological services to 

miners. The GS also started a systematic geological mapping exercise, resulting in the 

production of geological maps (such as Figure 2.1) and reports. The introduction of 

mining and safety regulations followed soon after. 

Until the 1940s, gold mining was the most important economic activity in Zimbabwe. 

This was reflected in the priority given to mining discoveries over all other activities, a 

priority that continues to the present day. Hence, even in a prime farming area, once a 

mineral discovery was made, land had to be set aside to accommodate the development 

of the mine (with appropriate compensation being paid for the disruptions). 

2.3 Zimbabwean Gold Mining 1923 to 1965: The Self-government Years 

In 1923, the Company's charter expired. The country became a Crown Colony again, 

although the mineral rights and most of the land still belonged to the Company. In 

reality, however, the country was a self-governing colony. This is a crucial point in that 

this status allowed Zimbabwe to develop in a manner different from other African 

colonies such as Zambia, Zaire and Kenya. Hence rather than just being a source of raw 

materials (and a market for processed ones) for the colonising country, the 
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developmental path was primarily geared towards the improvement of life for the local 

settlers. 

The Rhodesia government pursued 'middle of the road' policies which allowed it to 

halance the protectionist demands of the settlers with the need to attract capital, from 

mostly foreign sources. The main desires of the settlers were the regulation oflabour 

supplies and agricultural markets, and preference in government expenditure, especially 

in the provision of infrastructure. The government itself was more in favour of liberal 

laissez-faire policies (Barber, 1961). It was, however, with respect to infrastructural 

development that the intervention of the government was most keenly felt. In 1936, the 

Loan fund was used to set up an electricity link between towns in the east, the gold 

mining settlement of Penhalonga and the main city of Mutare, and two key towns in the 

Midlands, Gweru and Shurugwi (see Figure 2.1). In addition, in a bid to boost 

recoveries of gold from refractory ores, in 1938 a facility known as The Roasting Plant 

was built just outside Kwekwe. The processing of these ores was on toll basis. Finally a 

company, the Electrical Supply Commission (ESC) was set up to invest in the 

generation and distribution of electricity (Barber, 1961). 

With respect to mining, the government's interventions also resulted in the 

establishment of major institutions to promote mining (Barber, 1961). A metallurgical 

testing facility, the Department of Metallurgy (MetLab) was set up in 1928. This 

comprised pilot plant scale testing, laboratory and assaying facilities, all these services 

being freely offered. Regional metallurgists were appointed to co-ordinate the regional 
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centres of the MetLab that were being introduced. The aim was to assist in raising 

recoveries of existing mines and help address the mineral processing challenges 

resulting from ever-deeper mines. Finally, a division of the Chief Government Mining 

Engineer was also set up to enforce mining safety and health regulations. 

In 1933, the government bought out the mineral rights of the Company. In a bid to boost 

actual mining operations and diversify from gold, the exploration and production of 

other minerals was actively encouraged. Facilities for the hiring of plant and equipment 

were introduced the following year. This was in addition to the loan scheme that was 

still operating. To overcome shortages of skilled labour, in 1935 the government 

brought in Cornish miners, at the state's expense. Cash prizes were also offered to 

prospectors who made discoveries of new deposits (Viewing et ai, 1987). 

At a political level, the government took a conscious decision to divide the country into 

two non-competing racial groups through the legislative process. This was a huge 

concession to the settlers, especially those living in the rural areas who competed with 

natives for land and markets. This was achieved through a panoply of legislative and 

regulatory measures. Of these, the most effective was the Land Apportionment Act of 

1933. This Act put a limit on the land available to black Rhodesians by not only 

enforcing a more permanent culture of cultivation but also restricting their access to 

more fertile land which also happened to be located in the major gold belts. This led to 

almost total exclusion of blacks from mining, except as sources of labour (Arrighi, 

1973). 
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Some writers have associated with this Act the basis for declining productivity of land 

under cultivation by blacks and increased labour supplies to the fonnal sectors such as 

white agriCUlture, manufacturing and, particularly, mining, (Arrighi, 1973; Jourdan, 

1991). To ensure that nothing was left to chance, a Native Registration Act and various 

'pass laws' were enacted to limit the movements of blacks into the urban areas. This 

had the effect of enforcing a strict wage structure where the rural commercialised 

sectors, mainly white fanning and mining, consistently paid wages that were lower than 

those obtaining in the urban areas. Further, to keep and maintain this pressure on wages 

there was a policy of active recruitment outside Zimbabwe (Arrighi, 1973). 

The war in 1939 brought about an enonnous transfonnation in the economic landscape 

in Rhodesia. There was a shortage of once-imported goods as the traditional sources 

switched to a war footing. This gave an impetus to a policy of import-substitution and 

with it a rapid industrialisation of the country. For the mining industry in particular, this 

resulted in further processing of many of the major minerals, such as asbestos and 

chrome. Agriculture also assumed a more commercial orientation and became more 

diversified, with a notable shift towards cash crops such as tobacco and cotton. Still 

gold retained its primacy and allowed for the payment of some war effort (Barber, 

1961). 

Between 1935 and 1956, structural changes in the size distribution and composition 

(types of minerals mined) of mines took place. For example, in 1931 there were one 

thousand seven hundred and fifty mines of varying sizes, while by 1956 there were only 
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three hundred mines of which only twelve contributed 70 per cent of output. (Viewing, 

1987) 

Comparatively in 1935 being over 60 per cent of the total mining output was produced 

hy the large numher of small scale mines (Barber, 1961). To a large extent this decline 

in the importance of the small gold worker retlected rising costs of production as depths 

of mines increased (the same problems which had seen off the early native miners) and 

deterioration in ore quality, leading to the closures/sales of most of the small and 

marginal gold workings as well as contiguous deposits being amalgamated into several 

shafts of one mine. Added to this was the increased "dollarisation" of the global 

economy which caused static gold prices and, consequently, increasingly lower returns 

from gold mining 10 • 

The major consequence of the structural shift in the economy was that in 1952, asbestos 

temporarily overtook gold as the major mineral produced. Figure 2.2 illustrates this 

development. 

10 The price of gold was fixed at US$ 21 per ounce, a level at which it had been since the previous 

century. 
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Figure 2.2 Mineral Production in Rhodesia (1925-1959) 

Of interest in Figure 2.2 is the increased divergence, after 1948, between gold and total 

mineral production, this caused by the continued diversification of the mining sector. In 

addition, the contribution of mining to national income fell from 25 per cent in 1938 to 

about 5 per cent in 1960, a level around which it has ever since fluctuated. Over and 

above the changes that were taking place within mining itself, there were also some 

important economy-wide implications from the growth in size and sophistication in 

manufacturing and agriculture. Gold had already been overllauled by tobacco as the 

major earner of foreign currency. However, mining was increasingly being undertaken 
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by companies that could invest in deep-mining methods, in order to get at the deeper 

ores, and the technology to process the increasingly complex ores that were being 

mined as a result. 

There was also increased political agitation by organised black workers and those who, 

despite their education, found their prospects of further advancement being hampered 

by the presence of a racial "glass ceiling". In a move to forestall political activism by 

black politicians, the government started to rethink its policy of preventing inter-racial 

competition. In 1954, a bill was introduced to recognise black trade unions. There were 

even pledges to repeal certain of the contentious sections of the Land Apportionment 

Act. In addition, the state marketing boards, the major buyers of agricultural output, 

were to pay the same price for similar quality produce from blacks and whites (Barber, 

1961). 

Unfortunately, these proposed reforms were too much for the rural whites and in 1962 

the reformist government was defeated in the elections. Britain, on the other hand, 

refused to grant independence to Rhodesia until political accommodation of the blacks 

had been worked out. In 1965, in an election which was basically a referendum on 

whether to give further concession to blacks as demanded by Britain, the right-wing 

Rhodesia Front (RF) won the elections. The RF victory removed any chance of reforms 

that would have allowed blacks to have any modicum of political influence. The RF 

made a Unilateral Declaration of Independence (UDI) from Britain (Arrighi, 1973: 

Jourdan, 1990). 
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2.4 Zimbabwean Mining 1965 to 1980: UOI and Import Substitution 

After the RF government adopted UDI, London immediately declared this move to be 

illegal. At Britain's behest, the United Nations imposed sanctions on Rhodesia which 

was especially vulnerable to sanctions, as it derived 35 to 40 per cent of its total GDP 

from exports (Barnekov, 1969). For a while, however, sanctions were only half

heartedly applied. In 1968, 19.6 per cent of exports and 13.9 per cent of imports were 

from countries not enforcing sanctions such South Africa and Portugal (and its African 

provinces), compared to the 12.9 per cent of exports and 19.1 per cent of imports, which 

came from countries partly enforcing the sanctions. The balance, 40.9 per cent of 

exports and 28.8 of imports, came from those countries which imposed a virtual boycott 

(Barnekov, 1969). In addition, it was landlocked and had no domestic sources of oil. 

The British government was seemingly hoping for a significant multiplier effect and the 

expectations were that Rhodesia would soon be on her knees economically and 

therefore more amenable to reason (Arrighi, 1973: Bamekov, 1969). In 1968, 

Commonwealth pressure led to the UN making the sanctions against Rhodesia 

mandatory. However, the timing of the imposition of sanctions was tardy and as a result 

the effectiveness was blunted, at least initially. Therefore, by the time the sanctions 

were applied, the UDI government had put in place measures to lessen the impact of the 

sanctions. Most of the foreign exchange reserves had been moved out of London. Some 

research on markets had also been done in readiness for the switch from traditional ones 
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such as Britain. A freeze by Britain on repatriating factor income to Rhodesia actually 

worked in the latter's favour as there had hitherto been more of it going the other way. 

Almost simultaneous with the declaration of independence, the black movements which 

had been agitating for political change launched a guerrilla war campaign to force, at 

the very least, concession from the RF government but with a much broader aim of 

completely supplanting the white minority political and economic power structures with 

majority back participation. 

From the outset, therefore, the RF government faced conflicts on several fronts. For the 

next 15 years, until Britain finally granted independence to the modem state of 

Zimbabwe, the RF government defied this civil war, Britain and the international 

community and set the country on a course of economic development which put 

emphasis on import substitution industrialisation. This situation allowed the mining 

sector to become very important once more in the economy as will be illustrated below. 

Gold mining was crucial to this process as it was one of the major sources of foreign 

earnings through which the importation of capital and intermediate inputs was possible 

(Jourdan, 1990). 

By the end of 1975 however, it was obvious that the economy had exhausted all the 

easier forms of import substitution. Shortages of capital and restricted access to 

technology took its toll on mining and gold production stagnated. The period 1975 to 

1979 saw overall investment in the economy declining with the biggest drop recorded 

by the mining and metals sub-sectors, which fell by 16.4 per cent (Mlambo, 1993). 
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Over and beyond this, there was the strain of the civil war and the OPEC induced 

energy crisis that resulted in a global recession. Defence spending as a proportion of 

total government spending had risen from just over 28 per cent in 1969 to 34 per cent in 

1975. It was to rise even further to 46 per cent by 1979. At the same time, the deficit 

financing which had fallen from 8 per cent in 1970, to 3 per cent in 1971 had risen to 30 

per cent by 1979 (Government of Rhodesia, 1979). This was at a time when gross 

investment was declining, even in nominal terms, from $468 million in 1975 to $382 

million by 1979 (Reserve Bank of Zimbabwe, 1980). Finally, the other side effects of 

sanctions were beginning to take their toll, in particular in the price which Rhodesia had 

to pay for evading sanctions. To make matters worse, Portugal had become a part of the 

democratic community in Europe and had given independence to Mozambique, to the 

east of Zimbabwe firmly closing the easiest access to the sea, through the port of Beira. 

Consequently the RF government and its minority white constituency gradually began 

to realise that negotiations with the black majority were unavoidable. After a few false 

starts, characterised by an internal settlement in 1978 that was not recognised by the 

main black movements, the RF finally gave in to majority rule at the Lancaster House 

talks in 1979 brokered by Britain. In 1980, Rhodesia became Zimbabwe with a 

democratically elected government. 

2.5 Zimbabwean Gold Mining After 1980 

The ending of the civil war and with it the lifting of sanctions brought in a new 

optimism about Zimbabwe. The economy inherited by the new government, although 

34 



well-diversitied, had been under immense strain for a considerable period of time. In 

later years, sanctions had also taken their toll on investment in new plant and equipment 

with most of the productive sector surviving on antiquated machinery and production 

techniques. The war had also left an indelible mark in that most of the mining activities 

had been taking place in the remote parts of the country and had at one stage or another 

heen isolated from the main metropolitan centres (Mlambo, 1993). 

In mining, low investments meant technological stagnation and poor recoveries. The 

new government although professedly Marxist did not embark on wide-scale 

nationalisation as had been feared by the private sector or, indeed, had happened in 

Zambia, Mozambique and Tanzania. Instead, it tried to improve the economic 

conditions of its majority black constituency through the economic growth which 

depended on very little or no disruption to the prevailing economic systems, while at the 

same time promoting the 'free-market' based economy (Mlambo, 19983). 

Following independence, access to international markets and capital was once again 

allowed. In addition, resources could now be diverted from the war to production of real 

goods and services. An additional boost was the removal of the "sanctions-busting" 

premium for critical imports (Jourdan, 1990: Mlambo, 1993), In short, the government 

had it in its power to take advantage of the various factors that included international 

goodwill to embark on a bold economic strategy to move forward. Sadly, this did not 

happen. The economic policies did not change. The import licensing and foreign 

currency allocations that were more suited to the siege economy remained, although 
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rules were relaxed for the importation of capital and intennediate goods (Mlambo, 

1993). 

From the point of view of the mining sector, however, there was no specific policy 

announcement to try and address their concerns, which related to access to investment 

and technology. Hence, although the majority of them were exporters and were 

therefore crucial to the new dispensation by generating the scarce foreign currency that 

was crucial for the retooling that the economy was undertaking, mining companies 

continued to queue, along with others for foreign currency and import licences. 

2.6 Post Independence Mining Policy 

All mining comes under the Mines and Minerals Act. In addition, gold mining is also 

regulated by the Gold Trade Act which, among other things, confers a monopoly on 

buying and selling of gold to the central bank, the Reserve Bank of Zimbabwe (RBZ). 

Exploration is carried out under a three-year licence, known as exclusive prospecting 

order (EPO) which gives the holder the right to search for specified minerals in a 

specified geographic location. This licence is renewable for one year at a time after 

expiry of the initial three years. There are various other government departments whose 

portfolios impinge on or are affected by the operations of mines. Water quality is 

monitored by the Ministry of Water Development under the Water Act, environmental 

impact is the responsibility of the Ministry of Environment and Tourism and the 

Ministry of Health is responsible for air quality under the Atmospheric Pollution 
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Prevention Act (United States Geological Survey 11, 1998). All these activities are 

coordinated by a Mining Affairs Board which is chaired by a senior civil servant, 

nominally the permanent secretary, and also comprise representatives of both business 

and trade unions. 

The new government had an immediate task at hand. Expectations among the black 

community had been raised by the new political dispensation. To address the racial 

inequalities of the past, the government launched an economic programme designed to 

increase equity while at the same time promoting economic growth. First was a repeal 

of the Land Apportionment Act. 

The broad economic objectives were outlined in an economic programme, appropriately 

called "Growth with Equity" which, although couched in lofty socialist rhetoric, was 

clearly aimed at the minimising disruptions to the structure of the economy while at the 

same time trying to generate enough growth to address the expectations of its black 

constituency. This was especially so with respect to the ownership of the 'means of 

production' which remained largely in foreign hands. However, minimum wage 

regulations and other legislation to protect jobs reinforced the array of regulations 

inherited from the previous regime (Government of Zimbabwe, 1980). 

Despite its obvious importance, there was very little explicit focus on mining per se 

with most government economic policy towards mining tending to be made in 

II Hereafter USGS 
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conjunction with other exporting sectors or as part of labour legislation. Since 

independence the Zimbabwean government has come up with four major economic 

policy statements and a number of minor ones. The first, already mentioned above, was 

issued in 1980 and entitled Growth with Equity (Government of Zimbabwe, 1980). This 

was a statement of intent to encourage economic growth while redressing the legacy of 

the previous race-based economic system. Central to this was the need not to disrupt the 

relatively sophisticated economic structure. Redistribution was to be achieved through 

price regulation and minimum wage and other labour legislation which made firing of 

workers difficult (Government of Zimbabwe, 1980). 

The government also aimed to enhance the efficiency of the private sector, which 

included mining. The economy had for so long been starved of capital and new 

technology so it was only right that the main focus for re-igniting growth would be on 

encouraging investment in the productive sectors. However, the exchange and import 

controls remained as major constraints. The productive sectors remained starved of 

desperately needed investment. 

There was an initial growth spurt, caused by the lifting of sanctions and an above 

average agricultural season. Economic growth averaged more than 14 per cent in the 

1980/81 period. After that, though, the economy show signs of stagnation. The 

government failed to take advantage of these favourable conditions to undertake 

necessary reforms which would have allowed access to new investment and injection of 

new technology. Although the necessity for reforms seemed to have officially been 
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recognised, as evinced by the objectives stated in Growth with Equity, in reality none of 

this was followed up (Mlambo, 1993). 

For the economy in general, the crucial point was to generate as much exports as 

possible. To replace the almost obsolete equipment and machinery, massive imports 

were required. The main problem that the new government had faced since 

independence was the failure to match plans with deeds on the ground. The clearest 

example of this can be found in the large fiscal deficit, which had been hovering above 

10 per cent over the decade to 1989 (Mlambo, 1993). Throughout the 1980s, by way 

Budget Statements, the government had correctly identified this huge imbalance as a 

primary cause of low private sector investment and high domestic inflation. Each year 

the government planned a gradual reduction of the deficit to more manageable levels. 

Yet with each new budget, the deficit stubbornly remained high. 

The negative cycle of inflation and devaluation was fully played out, with prices rising 

over 200 per cent in the 1980s. Most of this was imported inflation (Jourdan, 1990). 

For mining this period can also be described as a period of missed opportunities. Apart 

from Rio Tinto's $8 million12 investment in the opening up of the Renco mine, there 

were no other significant investments. Yet, during this time, the gold price had surged to 

almost US$800 per ounce (World Gold Council, 2006). This high price had triggered an 

explosion in exploration activities (and investment) in countries that had similar gold 

12 The total investment was £6 million sterling. 
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helts, such as South Africa, Canada and Australia. Canadian production, for example, 

rose from fifty-two tonnes in 1980 to one hundred and seventy-five tonnes in 1991, with 

the most significant discovery being the HernIa fields where production started in 1985 

and from which three mines now produce about 35 tonnes per annum (World Gold 

Council, 2006). Sadly Zimbabwe did not benefit very much from this boom. Gold 

production never quite matched the developments in countries with similar Archaean 

schistbelts (Jourdan, 1990). 

The government clearly realised the value of foreign investment, yet it seemingly made 

no tangible effort to encourage this investment. Despite the realisation that foreign 

investment was crucial Zimbabwe procrastinated over the signing up to the 

Washington-based Multilateral Investment Guarantee Agency (MIGA) 13, which 

guaranteed protection from forcible expropriation. The government was forced to come 

up with policy adjustments, this time Foreign Investment Policy Guidelines and 

Procedures. This was meant to reassure the rather sceptical foreign investors. No 

significant investment inflows followed however and the government was forced into 

making further policy changes. 

The government followed Growth with Equity with Transitional National Development 

Plan, a plan which targeted overall economic growth of 8 per cent in the two years from 

1982/83 to 1984/85 (Government of Zimbabwe, 1981). The main aim was the 

13 Most foreign investors in large projects insisted on acceding to the MIGA protocol as a pre-requisite. 

The government only signed up in 1991. 
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encouragement and promotion of labour-intensive technologies, encourage 

"economically efficient" import substitution in key areas such as heavy industry, energy 

etc. In addition, there were also the beginnings of explicit government participation in 

the economy. To this end, the government set up, through Acts of Parliament, the 

Zimbabwe Mining Development Corporation (ZMDC) to undertake exploration and 

mining on behalf of the government, and the Mineral Marketing Corporation of 

Zimbabwe (MMCZ) for monitoring the sales of all non-gold mineral products. 

However, the problem of access to foreign currency remained a problem and the state 

failed to move away from the rationing of it or from import controls which were 

enforced through import licences. Hence it was no surprise when the economy 

registered economic growth of -2 percent in 1982/83 and -3 percent for 1984/85. Non

attainment was mostly blamed on the drought which had severely affected agricultural 

production (Mlambo, 1993). 

Realising that the initial plans had not borne fruit, a fact acknowledged in its policy 

statement as it launched yet another plan, this time The First 5 Year National 

Development which covered the period 1986-90. The plan called for more state 

participation in the economy and emphasised re-distribution of land and wealth 

(Government of Zimbabwe, 1985). Importantly, though, the government made no effort 

to increase exports and ignored calls from exporters for export incentives and the 

reduction of the government deficit which was inexorably rising. In 1987, however, the 

government allowed exporters to retain 5 to 7.5 per cent of their foreign currency 
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earnings for the procurement of essential spares and parts (Reserve Bank of Zimbabwe, 

1988). 

In 1988, the state set up a gold refinery with capacity of 90 tonnes per year, partly in the 

expectation of increasing gold production but mainly to rid itself of dependence on 

South Africa. Generally, investment in gold mining was patchy and mostly for ongoing 

production rather than new projects. The exceptions were the US$5 million that Cluff 

spent in 1988 in the opening up of Freda-Rebecca near Bindura, and the already 

mentioned Rio Tinto investment at Renco (Jourdan, 1990). Freda-Rebecca was a 

significant event, however, because for the first time, a low-grade gold deposit had been 

developed into a mine in Zimbabwe. This was achieved using a new technology, called 

'heap leaching' which avoided the high costs of crushing the are. 

By the end of the 1980s, however, it was obvious that there were deep-seated structural 

problems in the economy which had to be addressed and this would require radical 

policies. Lack of investment was hampering competitiveness and putting pressure on 

the exchange rate. This in tum had an impact on the balance of payments position, 

particularly as equipment, spares and intermediate goods were the major components of 

imports. The government was forced to go to the International Monetary Fund (IMF) 

and World Bank (WB) for assistance. The two Bretton Woods institutions, in tum, 

proposed a major structural adjustment programme, Economic Structural Adjustment 

Programme (ESAP) to ensure sustainability (Reserve Bank of Zimbabwe, 1991). The 
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main focus of this programme was put on opening the economy to external competition 

and the removal of controls on prices (to include interest rates), wages and imports. 

The Economic Structural Adjustment Programme for 1991 to 2000 was going to run in 

two phases but targeted a real average growth rate of 5 per cent per annum through 

export-led economic expansion (Government of Zimbabwe, 1990). The market was to 

eliminate inefficient enterprises through competition, both external and internal. To 

achieve this, quantitative restrictions on imports were to be replaced with trade 

liberalisation. State-owned enterprises were first to be put on a commercial footing and 

then privatised. Finally in order to reduce inflationary pressures, the government deficit 

was to be reduced from 9 per cent in 1990 to 5 per cent by 1995. Part of this reduction 

was to be achieved by getting rid of subsidies to the parastatals a number of which were 

some mining companies. 

Initially, the results were mixed. A drought hit Southern Africa in 1992 and caused a 

contraction in agriCUlture, and with it the plan was suffered some reversals. The 

government deficit rose to 10.4 per cent as a result of drought relief spending. However 

by 1995, the government deficit fell to 7.9 per cent with inflation falling from 42 per 

cent to 25 per cent during the same period (Reserve Bank of Zimbabwe, 1994). The 

main export sectors, manufacturing-- though hard hit by external competition--, mining 

and tourism in particular registered positive growth. Privatisation of loss-making state

owned enterprises however did not move according to plan and by 1995 many remained 
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in state hands, loss-making and a drain on fiscal resources (Zimbabwe Ministry of 

Mines, 1995) 

As part of ESAP, in 1991, the government relaxed some of the strict controls on the 

economy. In particular, exporters, of which gold mines were a significant majority, were 

allowed to retain up to 50 per cent of their receipts (Government of Zimbabwe, 1990). 

This freeing of exchange rates was a welcome move, as exporting became viable once 

more. The ability to retain most of the foreign currency earnings also encouraged 

investors into the country and at last encouraged the inflow of technology. 

The effect on mining investment was immediate. At the beginning of the 1990s, 

Zimasco, a former Union Carbide (a major US multinational) subsidiary opened 

Mimosa mine (platinum), initially on a trial basis. It then gradually expanded to full 

production. In 1994 BHP, a major Australian mining multinational, opened, Hartley, a 

platinum mine. BHP invested almost US$250 million in the development of this mine 

and ancillary metallurgical facilities (Ministry of Mines, 1995: Reserve Bank of 

Zimbabwe, 1995). This was the largest single investment project in Zimbabwe's 

history. The climate was also such that Anglo American, a major South African mining 

conglomerate, also began to look at the feasibility of its own platinum properties. 

Exploration activities in gold, diamonds and other strategic minerals such as tantalum 

increased. There were a few reversals, too. In 1996, two years after it had opened 

Hartley, BHP announced that it had failed to achieve the targeted production rates at the 

mine. As a result it could not sustain the operational losses and closed down. Its junior 
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partner in the joint venture, Delta Gold, a joint Australian-Zimbabwean operation 

remained in Zimbabwe and acquired their joint assets, in particular the state d'art 

metallurgical complex (Reserve Bank of Zimbabwe, 2000). 

Encouraged by the first positive signs, government, IMF and WB embarked on a second 

stage, called Zimbabwe Programme for Economic and Social Transformation (dubbed 

ZimPrest), for the period 1996-2000. Apart from harnessing the positive aspects of 

ESAP, this stage was also meant to put more focus on export-led growth and the 

creation of export processing zones. The target real annual growth rate was set at 6 per 

cent per (Government of Zimbabwe, 1995). 

There was an element of tardiness in the implementation of this second programme, 

however, with the parastatals remaining in state hands and consequently still being a 

major drain on resources on state resources. For example, since 1992, the ZMDC, the 

main government investment vehicle in mining, had been set to be privatised. but was 

still in state hand in 1998. Of major concern, though, were squabbles with the two 

Bretton Woods institutions, especially with the IMF and particularly on land refonn. 

This eventually led to a major row in 1998. The IMF withheld support for the rest of the 

programme when the government insisted on taking over commercially exploited land 

without the compensation to the previous owners. The withdrawal of the IMF support 

led to a return to shortages of foreign currency and with it shortages on crucial inputs 

such as fuel and spares parts. In 1999 a fuel crisis ensued as Zimbabwe failed to procure 
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enough fuel and large parts of the productive sectors found themselves under stress 

(Reserve Bank of Zimbabwe, 2000). 

In 1999, the government instigated land invasions by veterans of the 1970s guerrilla 

war. Ostensibly this was to satisfy land hunger by landless peasants. The impression 

was left, however, that this was the last throw of the dice for an increasingly 

beleaguered regime which was facing increasingly strident calls for political reforms 

and unprecedented unity among its political foes. This view was reinforced by the fact 

that commercial farmers were perceived, rightly or wrongly, as the major sources of 

funding for a very well-organised opposition movement which comprised trade unions 

and employers' organisations. The IMF and WB withdrew from Zimbabwe and they 

were followed then or soon after by major bilateral donors. The Zimbabwean economy 

went into the [now] well-documented crisis. 

Before the aforementioned crisis, there was evidence that the economy had started to 

improve. The opening up of the economy resulted in stiff competition among suppliers 

to the mining industry. They (suppliers) were forced into management restructuring and 

adoption of new technologies and better production methods with improved use of 

resources (Zhou, 2000). 

For gold mining in particular, there was for the first time signs of new investment. Gold 

mines, along with other exporters, were now being allowed to retain 60 per cent of their 

earnings in foreign currency. This gave them unprecedented access to foreign currency 

and the results were not long in coming. Significant investments were made in gold 

46 



mines, particularly by Australian and Canadian junior mining companies . Figure 2.2 

shows the gradual increase in output as new mines came on stream and existing ones 

started benefiting from investment. For example, in 1987, Freda Rebecca mine was 

opened producing about 1.5 tonnes. By 1995, expansion and investment had raised this 

to almost 3 tonnes (USGS , 1996) . Many new and existing mining companies were 

feeling sufficiently reassured to start bringing major investment projects on stream. An 

example of the new investment flowing into the sector was the Eureka mine 

commissioned at a cost of US$ 25 million in 1999 (USGS, 1996). 
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Figure 2.3: Zimbabwe Gold Production (1990-2000) 
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In 1990, there were about five hundred registered gold workings about ninety of which 

produced more than lOkgs of gold per year (Zimbabwe Ministry of Mines, 1991: 

USGS, 1998). These relatively "large" mines produced over 90 per cent of total! output. 

By 1995 the number of these large mines had risen to one hundred and twenty as old 

small mines were upgraded and completely new ones were brought on line. Most of the 

upgrading comprised the application of new technology to existing old operations 

(USGS, 1998). There were also new mines commissioned as a result of the more 

relaxed economic climate. 

Figure 2.2 shows a pattern of steady growth until 1993, a surge up until 1999 and a 

decline which started in 2000. The beginning of this decline coincided with the onset of 

the economic crisis. This window (1990-2000) of opportunity has however shown the 

potential for gold mining in Zimbabwe which would benefit from the inevitable 

political and economic reforms. 

While the crisis has bitten the economy hard, there is evidence that gold exports, legal 

or otherwise, have been the saviour of the economy. 

The above discussion has highlighted the importance of gold mining to Zimbabwe, the 

evolution of its statehood and to its continued economic development particularly in 

times of severe economic and political pressure. This is the primary reason why it is 

important to investigate the performance and efficiency of gold mining in Zimbabwe 

and the world at large. The discussion has necessarily included historical and political 

issues which indirectly concerned gold. It is no exaggeration, however, to claim that 
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gold has consistently paid Zimbabwe out of trouble during period of strife and 

instabil ity. Currently, Zimbabwe is in the middle of a self-made crisis which, by most 

reasonable calculation ought to have resulted in a major collapse. The one reason why 

this has not yet happened is because gold exports ( a large fraction of which are illegal) 

have managed to pay for enough of the essential imports required to keep the economy 

running albeit, at lower rates of output (Reserve Bank of Zimbabwe, 2005: Zimbabwe 

Ministry of Mines, 2005). 
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CHAPTER 3 THEORETICAL FOUNDATIONS 

3.0 Introduction 

Since the time of classical economists, there has been much interest in measuring and 

comparing the performances of productive entities. David Ricardo's seminal work on 

comparative advantage makes use of differences in relative efficiencies, perhaps in a 

less specific sense than the term is now used, as a basis for trade (Hollander, 1979). 

Adam Smith's equally famous treatise on "The Wealth of Nations", although mainly 

about increasing output from a given set of resources through specialisation and 

division of labour, has efficiency at its centre (Heilbroner & Malone, 1986). In fact, 

efficiency and continual improvement in firms' performances, mainly brought about by 

technical progress and mechanisation, was the central theme in Karl Marx's allusions to 

the inevitable destruction of capitalism14 (OIlman, 1975). 

Most of the work on efficiency has taken place in the recent era with Farrell (1957), in 

particular, being credited with laying the foundations of the analysis and measurement 

of efficiency and productivity. A large volume of literature on the topic was stimulated, 

both theoretical and empirical (Simar & Wilson, 2007). This chapter outlines the tenets 

of the theory of production and the measurement of efficiency. 

14 Rapid efficiency gains, through extensive mechanisation of the production, would inexorably increase 

the slice of national income accruing to capitalists, reducing both the number of people employed and the 

their share of national income, ultimately, thus leading to discontent among the workers and peasants and, 

ultimately, a socialist revolution. 

50 



There will also be an analysis and discussion of relevant empirical work l5
• Special 

attention will be paid to the non-parametric mathematical programming methods which 

will be adopted in this study. 

This chapter is subdivided into four main sections. Following this introduction, Section 

3.2 deals with the theory of production and the main issues that are important in 

assessing and comparing performances of productive organisations. The concept of 

distance functions, which is useful when dealing with production frontiers and 

efficiency, particularly in multi-dimensional settings, is introduced. In Section 3.3, 

special attention is paid to the idea of technical efficiency, its treatment and 

measurement. This idea of efficiency follows from the distance function approach 

which will be also be explored. 

There are two main methods of estimating efficiency in practice: the parametric 

methods such as stochastic frontier analysis (SFA) and non-parametric such as data 

envelopment analysis (DEA). These will be outlined and analysed. In measuring 

efficiency, what is being done is evaluating the distance of an observation from a 

technologically efficient frontier, whether observed or not. The relative merits of the 

DEA method over the SFA which largely depend on the context, particularly the 

availability of data, are put forward. In Section 3.4, the bootstrap, a resampling 

15 The literature on DEA is truly vast as a search on "Web of Knowledge" 

hllp://www.webolknowledge.com/ and "Google Scholar" http://scholar.google.com/ ,among many, will 

indicate. Here the coverage will be restricted to published work on DEA in mining and the bootstrap 

DEA. In addition, a review of Banker's work on hypothesis testing will also be done as this gives insight 

onto some nonparametric used the tests in this dissertation. 
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technique which has been proposed in order to address some of the concerns with the 

DEA is introduced. The bootstrap enables the approximation of the distribution of the 

estimated efficiency scores and for the correction of sample bias, and also allows the 

drawing of statistical inferences and the testing of hypotheses. Finally, in Section 3.5 a 

review of relevant previous studies is carried out with the principal intention of 

informing the estimation work in Chapters 4 and 5. 

3.1 The Production Technology 

A production process involves the transfonnation of one or more inputs to produce at 

least one output. For example, gold mining involves the combination of labour, capital 

services, energy, material inputs and other services to extract and process gold ore, 

whose final value is expected to be greater than that of the inputs combined. The basis 

of production theory is the premise that, in attempting to attain certain objectives, firms 

always attempt to optimise the use of resources at their disposal given technology and 

other environmental constraints. The problem in empirical studies as noted by Fare et al 

(1994), is the need to make a distinction between the constraints and the failure to 

optimise. Hence firms will strive to produce more output from the same inputs or the 

same output from fewer inputs. To this end, one of the most common assumptions about 

producer behaviour is that the finn chooses an input vector that minimises the costs of 

producing a given vector of outputs. One could equally assume output maximisation at 

given prices for a given input vector. The approach taken in analysing producer 

behaviour depends on the context in which the firms are operating, on what can be 

observed and on what is plausible. There is a wide range of models from which to 

choose such as production frontier, cost frontier, profit frontier. In the measurement of 

52 



perfonnance the choice of the model is usually dictated by the data available (Hire & 

Primont, 1995). The key point, though, is that finns could attain optimum either by 

using the least amount of resources for a given output or by maximising outputs for 

given inputs to achieve their stated objectives, within the constraints of the available 

technology and scarcity of resources. 

The empirical application of the theory of production has developed rapidly in recent 

years as researchers have strived to accommodate situations where operation does not 

always mean attainment of objectives. The major point of departure, in applied studies, 

was the realisation that achieving objectives was by no means guaranteed. Deviations 

from the optimal, therefore, were no longer assumed (as hitherto had been the case) a 

mere result of random noise or chance. Therefore, some producers, for a variety of 

reasons, tend to be more successful than others. This observation was backed by, 

initially, anecdotal evidence-- be it casual inspection of company annual reports or 

commentaries in the business press that the optimistic view of finn behaviour where 

objectives are always met fell somewhat short of satisfactorily explaining what 

happened in the real world (Kumbhakar & Lovell, 2000). This has led to continuous 

refinements of the empirical techniques and the conclusion that, although the producers' 

objective may be to maximise or minimise, they do not always succeed. Specifically, 

failure to optimise is acknowledged to be due to more than mere random shocks 

(Kumbhakar & Lovell, 2000). Estimation of efficiency therefore is a means of 

identifying how far producers are from the frontier defined by the technology. 

Once the notion of non-attainment of the optimum became widely accepted, attention 

turned to measuring how far the individual, observed producers were from the optimum 
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frontier. The production frontier in this case is then defined as the maximum feasibly 

achievable output given the input vector and technology. Efficiency in achieving the 

objectives is associated with being located on the frontier and inefficiency with being 

located some distance from it. The distance from the frontier represents inefficiency. 

Other authors (Edvardsen & F0rsund, 2003) have called the study of efficiency 

"benchmarking", comparing actual performance against a reference performance, 

known or as is mostly the case unknown. The most cited work in this area is Farrell's 

1957 paper on productive efficiency. Other key theoretical works in this regard were on 

distance functions by Malmquist (1953) and Shephard (1953, 1970). On the basis of 

these theoretical approaches, a large body of applied research has developed over the 

last fifty years. 

Performance measures based on the frontier are directly derived from the definition of 

the production function. The underlying assumption is of a productive organisation or 

firm- the decision making unit (DMU) - capable of making optimal choices of inputs 

(outputs) to attain an objective, within the constraints imposed by the technology and 

available resources. The frontier is the limit, prescribed by prevailing technology, at 

which DMUs operate. The technology constraint is important, as it defines the limit of 

feasibility as it were, of the transformation of inputs to outputs. The only possibility of 

going beyond the frontier is through technical progress which is reflected in the position 

of the frontier shifting. 
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3.2 Nature ofthe Frontier 

The starting point in modelling any production process is the relationship between 

inputs and outputs. Underlying this relationship is an assumption of a feasible 

technology which makes it possible to combine inputs to produce outputs. The 

production technology which transforms the inputs to outputs can be represented by *a 

feasible set of physically attainable activities, which is denoted by \jI, or what is 

equivalent, a set of feasible production plans (x,y), where x is a vector of p inputs and y 

is a vector of q outputs such that x E 91 P , Y E 91! . More compactly, this can be written 
+ 

as \jI={ (x,y): x E 'J1 P , Y E 'J1!, x can produce y} 
+ 

(3.1) 

\jI represents the technology in terms of the feasible input-output transfonnations and, in 

addition, implied input and output substitutions. (3.1) states that, to produce the output 

vector Y E 91! ' a vector x E 'J1 f of inputs is required, where both x and yare vectors of 

dimensions p and q respectively. A further condition, grounded in the basic concept of 

optimising the use of scarce resources, known as "weak essentiality", is that the 

production of one output requires at least one input since to produce a positive output 

requires positive inputs 16. A rational producer will therefore be assumed to seek to 

minimise the level of inputs, x, used in producing a certain y. 

16 This is in contrast to strong essentiality where all the inputs are essential in the production process. 
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There are two other alternative representations of \II, through the input requirement set 

X(y) and the output correspondence set Y(x). 

(3.2) 

(3.3) 

The input requirement set X(y), consist of all the input vectors which can produce a 

given output vector y with the current technology. It represents the technology from an 

input substitution perspective. In the same vein, the output correspondence set Y(x) 

portrays all output vectors y that input vector x can produce and describes the [same] 

technology as X(y), this time from the output substitution perspective. In fact, X(y) and 

Y(x) are inverse of each other, such that y E Y(x) if and only ifx E X(y) . In short, (3.1), 

(3.2) and (3.3) are three ways of compactly characterising the same feasible technology 

which transforms x to produce y. 

Given the definition of the input requirement set, X(y), from (3.2), the estimation of 

efficiency is based on finding the optimal input vector x in the production of y. How 

efficiently an observed DMU is utilising its inputs can then be estimated, by comparing 

observed and potential output vectors, or, for a given output vector, comparing observed 

and potential input vectors. One way of applying the ideas of efficiency is through the 

concept of distance functions due mainly to Malmquist and Shephard (see Coelli et ai, 

2(05). A distance function defines the [radial] distance between an observed output 

vector, yO when approached from the output orientation or the observed input vector XO 

when observing from the input orientation, and the production frontier. Hence there are 
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two orientations of the distance function in the literature, the input and output 

orientation. The divergence between an observed activity and a potentially achievable 

one is what gave rise to the notion of a distance function. 

In this study, the issue of data availability and the context in which the DMUs are 

operating necessitates approaching the issue of efficiency from the input orientation and 

therefore only the input distance function will be explored here l7
. The phenomenon, 

performance in relation to the frontier defined by the technology, is the same, whether 

one approaches from an input or output perspective, however. According to Coelli et al 

(2005), "the input distance function involves the scaling of the input vector" and is 

derived from the input requirement set. The input distance function is defined, on the 

input requirement set, X(y), as 

D, (x,y) = {max y:( ~ ) E X(Y)}VY E ~~ 
y~l (3.4). 

The properties of distance functions are derived from the assumptions underlying the 

input requirement and output correspondence sets 18. In particular, Dj (x , y) is non-

decreasing in x and non-increasing in y. When XE X(y) , then Dj(x , y)2:1 and is actually 

17 (fthe technology is characterised by global CRTS, then the input and output distance functions are 

reciprocals. The logic used and issues being analysed are essentially the same. 

18 The basic assumptions include convexity of X(y) and free disposability of x. This assumption, in this 

case, known as weak disposability, states that if x can produce y, then x can also produce any fraction of 

y. 
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equal to 1 when DMU is exactly on the lower bound of the input requirement set; that 

is, when the observed DMU lies on the frontier. The capacity to model multiple outputs 

and inputs, without the need to qualify the model with the behavioural assumptions of 

profit maximisation or cost minimisation, is one of the main advantages of approaching 

production technology through the distance function approach. 

In Figure 3.1, X(y) is represented by the area above the isoquant, with the isoquant 

being the lower bound and, implicitly representing the production frontier. 

The distance function, in this case, is illustrated using a constant returns to scale 

(eRTS), two-input, one-output case but can generalise to a mult-input and multi-output 

case and also where returns to scale vary. 
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Figure 3.1 Input Distance Function 

DMU A is observed to use input vector XO =( X~ ,X~) to produce a single unit of output 

yO, the [ single] output of DMU A 19. The distance function Di(yO, xo) > 1 (also y in 

Equation 3.4) for observation A, is given by the ratio OA . In this case the DMU 
DB 

observed at B lies on the lower bound of X(y) and is regarded as being on the frontier, 

i.e. Di(l, xo) = 1. The ratio OA reflects the extent by which A can improve its 
DB 

performance by reducing its input vector while maintaining rate the output rate yO. That 

19 We follow the normal convention of using bold face to denote vectors and matrices and italics for 

scalars. 
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is, what DMU A needs to do, in order to be efficient, is in effect to move along the ray 

OA towards the point B, on the technologically determined frontier and that is 

achievable by reducing XO while leaving yO unchanged. Free disposability of inputs 

along the ray from the origin through A and B is assumed. 

Distance functions have a number of uses in economics, from the construction of 

productivity index numbers and in the estimation and analysis of technical efficiency 

through the use of both the econometric and mathematical programming methods 

(Coelli et ai, 2005). In practice the fully efficient isoquant in Figure 3.1 is unknown but 

can be estimated using a sample of observed DMUs using a variety of methods, 

including SFA and DEA. 

3.3 Efficiency 

There are two main methods of evaluating the distance function, Dj(Yo, XO); the 

econometric and mathematical programming methods (parametric and nonparametric 

methods mentioned earlier). In this section, the practical issues involved in measuring 

the distance function and efficiency are explored and discussed. The emphasis will be 

on DEA and SFA methods. In addition, a review of a selection of empirical studies 

using DEA and a summary of their main findings is undertaken (see footnote 2). In 

section 3.2, a framework through which an input -oriented measure of technical 

efficiency is defined was introduced. Thus described, efficiency is best viewed in terms 

of the distance from an observed DMU to the technologically defined frontier. For each 

inefficient DMU, that is, DMUs not on the frontier, there are efficient DMUs which lie 
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on the frontier which can be used to identify its reference point on the frontier. These 

efficient DMUs are known as peers. An inefficient DMU can reference a single peer or 

a linear combination of peers to achieve best-practice and move onto the frontier. 

The distance function in (3.4) allows the formulation of an input-oriented measure of 

technical efficiency. This measure of technical efficiency can be represented as TE 

where TE = ----
D ( ll ll) 

i X ,Y 

This concept of efficiency as defined is also commonly known as the Farrell input-

oriented technical efficiency score, after Farrell (1957) and is illustrated in Figure 3.2 

for a DMU using two inputs (denoted Xl and X2, in this case) to produce a fixed output 

yO 20. Since Di(yO, XO) 2: I, it follows that 0 :S TE :S I. A DMU is deemed efficient if it is 

on the frontier, a case where TE = 1 and Di(yO, XO) = 1. An intuitive derivation of the 

relationship between Di(yO, XO) and TE is given using Figure 3.2. For a more formal 

treatment and proof, see Hire & Primont (1995). 

20 The main difference between Figures 3.1 and 3.2 is that in the fonner frontier is smoothly convex and 

everywhere differentiable (theoretical) and the latter (more readily found in empirical studies) is a convex 

piece-wise linear frontier. 
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x 

Xl 

Figure 3.2 Input Efficiency 

In Figure 3.2, the distance OA is also defined from the input vector, xc, of the 

observed DMU, A. For A, TE is then reformulated as OB, such that 
OA 

OB = XO • Since TE = OB and OA = XO ,this means that the input-oriented 
Dj(y" ,XC) OA 

measure of technical efficiency can also be given by 

[ 
XO J 

D.(yO,xO) 1 
1 • Hence, TE = , that is, technical efficiency is the 

XO D.(yO,xO
) 

I 

reciprocal of the distance function, Di(yO, XU). To reiterate, what has already been 

1 
stated, when TE = = 1 , the observed DMU is efficient and lies 

Dj(y() ,XO) 
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exactly on the frontier. This means that the DMU located at point B is input efficient. 

1 
If, instead, < 1, then the DMU is input-inefficient and lies above the 

Di(Yo ,XO) 

piecewise isoquant such as point A. The implication is that there is an opportunity to 

1 
reduce inputs while maintaining the rate of output. A case of > 1 

Dj(yO ,XO) 

signifies a super-efficient DMU, located beyond the frontier technology. Were this to 

occur, then technology must have progressed beyond the currently defined 

technology, making \fI old technology which cannot occur if analysis is conducted 

accurately. As currently defined, \fI, represents the most advanced technology 

available, and this case is discounted by assumption. 

In estimating input -oriented efficiency, interest focuses on the difference between 

estimated TE and full efficiency, that is TE = 1, in tenns of distance of the observed 

DMU from the frontier. There are various models and methods which have been 

developed for calculating the value of the distance function and hence the estimated 

efficiency of a DMU. 

3.3.1 Measuring Efficiency: Econometric and Data Envelopment Analysis 

A number of issues detennine the efficiency of a production unit. Lovell (1993) lists 

three important questions that are generally asked when measuring efficiency and 

analysing perfonnance. These are, (i) how many and which inputs and outputs ought 

to be included in the analysis (ii), how are they to be weighted in the aggregation 

process (in cases where the production technology is characterised by multiple inputs 
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and outputs) and (iii) how is the finn's maximum potential output measured? The 

last question is important because estimated efficiency is always relative to a 

benchmark or maximal level. These questions have given rise to different means of 

measuring efficiency, each of which has its own weaknesses and strengths. In 

applied work, there are two main methods for computing technical efficiency. These 

are the econometric, often tenned parametric analyses of which the commonest is 

SFA, and the mathematical programming approaches which are typically non

parametric analyses, of which the dominant method is DEA21. 

The econometric and mathematical programming approaches, of which DEA is an 

example of mathematical programming approaches, primarily differ on two grounds: 

first how to take into account (or not, as the case may be) random noise and, second, 

the flexibility of the specified structure oftechnology (Lovell, 1993). In 

econometrics, the presence of noise is generally assumed since it cannot be 

ascertained that the model is always fully and correctly specified. The econometric 

method is generally based on a pre-specified underlying functional fonn representing 

the production technology. What Aigner, Lovell & Schmidt (1977) call "favourable 

as well as unfavourable external events such as luck, climate, topography and 

uncontrollable machine perfonnance", are nonnally cited as the main sources of 

statistical noise. In addition, there cannot be any certainty that the data do not suffer 

21 There are some parametric approaches in the mathematical programming framework, most notably due 

to Aigner and Chu (1968) and derivatives thereof, which use linear programming and corrected least 

squares to estimate the parameters. See Coelli et al (2005). In addition, not all nonparametric methods 

lead to mathematical programming. 
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from errors, either of sampling or of measurement. One could add to such a list of 

"favourable or unfavourable" external events, the political climate as characterised 

by both economic policies and country political risk in a particular country such as 

Zimbabwe and, additionally, global economic cycles which have seen the price of 

gold range from US$35 to over US$800 over the period since the gold price was 

freed in 1971. 

The most common econometric method is SFA, which is based on the composed 

error model. The term composed error comes from the fact the specified residual 

term consists of more than one distinct component (in this case, two). The first 

component which captures noise, is random error, with a mean of zero and an 

assumed constant variance. The second term represents an estimate of efficiency and 

is expressed by one of several distributional forms; half-normal, truncated normal, 

exponential or two-parameter gamma among others (Lovell, 1993). Consequently, 

the assumptions made concerning the nature of the distribution of the inefficiency 

may result in different efficiency estimates, although the relative rankings, an 

important feature of efficiency measurement, of the DMUs will normally remain the 

same. A model of this type is generally specified by the relationship 

(v. -u.) 
y.=f(x.:p)e 1 1 

1 1 
(3.5) 

where i, ..... , n indexes the firms,y represent the single output, x a vector of inputs, 

p a vector of the technology parameters and the error terms are u and v. In 

empirical work, a specific functional form is specified, the most common being a 
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transcendental logarithmic (translog) specification but here (3.5) is used for 

expository purposes 

In this case, technical efficiency of DMU i, TEj , relative to the stochastic production 

frontier, is defined as 

(3.6) 

(3.6) allows output-oriented TEj to be inferred from an estimate ofuj. The estimation 

involves the compound residual approach, where the residual consists of Uj and Vj. 

The computational challenge in using this approach lies in decomposing the 

(v. -u.) 
compound residual e I I into its individual components, Vj and Uj.1t can be 

noted that the expected value ofv (random noise) is zero, i.e. E(v) =0 implying that 

on average E(v- u) =E(u). The problem is that, although this condition holds on 

average (over the sample), it does not apply for each individual observation for 

which an efficiency score, hence decomposition, is necessary. Aigner, Lovell & 

Schmidt (1977), Battese & Cora (1977) and Meussen & van den Broeck (1977) 

provided methods for estimating (3.5) but the difficulty in partitioning the compound 

error term remained. 

10ndrow, Lovell, Materov & Schmidt (1982) proposed a method for decomposing 

the compound error term, using conditional probability density theory (Bayesian 

analysis) to estimate Uj from the compound error term, (Vj-Uj) In this approach, 
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inferences are made on the likely values of Uj, conditional on (Vj-Uj). The mean or 

mode of this distribution is then used to ohtain point estimates of efficiency for 

individual DMUs. Inserting this point estimate into (3.6) provides an estimate of 

DMU-specific technical efficiency, rEj. 

This hrief outline of the econometric method shows its main characteristics. Its main 

strength is in explicitly accounting for noise. Through this one is able to distinguish 

inefficiency from noise. However, by having a pre-specified parametric, functional 

form there is a danger of specification error if the model is not correctly specified, 

with this specification error appearing as either noise or inefficiency. It must also be 

pointed out that SFA is based on a single output model. 

Attention is now turned to DEA, which starts from the simple premise that the 

general form of the production technology is unknown. By not assuming any prior 

parametric form, DEA avoids combining potential specification-error and 

inefficiency. The data are instead "allowed to speak" (F0rsund et aI, 2(06). This 

convenience comes at a cost, though, as legitimate errors of measurement and 

random noise are ignored. Therefore, if any noise exists, this method simply 

combines it with inefficiency (Schmidt, 1986). 

DEA was developed by Chames, Cooper & Rhodes (1978) and evolved directly from 

the work of Farrell (1957). Basic to the concept, DEA allows the estimation of 

efficiency relative to an estimate of a technologically determined frontier. This 

frontier is assumed to be the convex hull of the (x,y) observations and is constructed 

from the sample of observed DMUs. In its simplest form, DEA involves identifying 
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optimal solutions to a constrained optimisation problem for each DMU using 

mathematical programming. 

The logic behind DEA is that in a multiple input and output setting, an estimate of 

efficiency is derived from the following productivity ratio, 

Efficiency 
weighted sum of outputs 

weighted sum of inputs 

which, for DMU i, can also be written as 

p 

LVrXsi 
s=1 

where Ur is the weight of the rth output (r = 1 , 2 ,... , q) 

Vs is the weight of the sth input (s=1,2, ... ,p) 

(3.6) 

Yri is the amount of the rh output for DMU i, (i =l ,2, ... ,0) 

Xsi is the amount of the sth input for DMU i, (i =1 ,2, ... ,0) 

There is an obvious problem with the above formulation. What are the appropriate 

weights to each assigned input and output in aggregation? One solution could be to 

use arbitrary weights for each input and output. This, however, is unsatisfactory as it 

introduces an element of subjectivity into the choice of weights. DEA addresses this 

problem of weights by computing virtual inputs and outputs measures for each 

DMU. Each input and output is then assigned a weight which is the most favourable 
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for the subject OMU in maximising the efficiency ratio of that OMU. This 

favourable weighting system is subject to constraint that the efficiency measure 

cannot be greater than 1. 

Using mathematical programming, the OEA efficiency score for unit i, the OMU 

under observation, is then estimated by a fractional programme (FP), which is 

obtained by maximising the ratio of weighted outputs to the ratio of weighted inputs 

subject to the feasibility constraint imposed by technology. 

(3.7) 

i =l, .... ,n. for , Ur Vs ~o 22. These constraints must hold for all the OM Us in the 

sample. 

(3.7) is due to Chames, Cooper & Rhodes (1978). The numerator of the objective 

function is the virtual output while the denominator is the virtual input. (3.7) is then 

solved for each OMU. The solution to each objective function is found by finding 

values u and v which maximise the value of each OMU's efficiency score, subject to 

22To impose weak essentiality, Ur ,Vs ~E is imposed where E is a small positive number. 
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the constraint this efficiency cannot be greater than 1. Note that there are n 

constraints, one for reach DMU. 

What DEA essentially does is to treat the inputs and outputs as fixed while varying 

the input and output weights to maximise the ratio, in (3.7), for each DMU. A score 

of less than 1 ( < 1) reflects relative inefficiency where potential output is more than 

observed output or the potential input vector is less than that observed. The problem 

with (3.6) is that the solutions are non-unique, resulting in an infinite number of 

possible solutions for each DMU. 

The non-uniqueness problem is easily addressed by converting the FP to a linear 

programme (LP). The set ofFP in (3.7), are directly convertible, by linearisation, 

into tractable LP problems with unique solutions for each DMU. The simplest 

conversion is accomplished by setting the denominator of (3.7) equal to one. The LP 

for each DMU now becomes 

q 

Maximise IUiYir 
r=1 

p q p 

subject to I Vi Xis =1, IUiYir < LViXis , 
s=1 r=1 s=1 

where i = 1 , .... ,n 

Ul, U2, ....... , Uq2:0 
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One of the attractions of the LP is the existence of a dual to the primal problem in 

(3.8), known as the Dual Linear Programme (DLP) 23 which can be formulated as 

Minimise Sj 

Subject to 

n 
S.x. - L x. A.. ~Ofor s =1 , .... ,p, 

I IS . 1 IS I 
1= 

n I y ri A. i ~ Y ri for r = 1 , .... ,q and 
i~1 

(3.9) 

The dual is constructed by assigning a [dual] variable for each constraint in the 

primal programme. Here Min Sj (the dual objective function) is assigned to the first 

P q p 

constraint I VjXjs = 1 and ~ is assigned to " I U;Y;,. :5 I V;X;s "(Emrouznejad, A , 
.1'=1 ,.=\ s=1 

1995-2001). 

This dual is known as the CCR model, after Chames, Cooper & Rhodes (1978). 

Model (3.9) has p +q + 1 constraints while model (3.8) has n + 1 constraints. 

Since the number of DMUs in a sample, n, is generally [considerably] larger than the 

sum of number of inputs and outputs, p +q, the dual formulation has an added 

attractiveness in that there are fewer constraints than in the primal programme. The 

23 This is the most commonly used DEA program and known as the "envelopment programme" while the 

primal-- Equation (3.7)-- is known as the "multiplier programme." 

71 



computational efficiency of some LP methods such as the simplex has been known to 

fall as the size of the constraint set increases (Ganley & Cubbin, 1992). For this 

reason the primal (multiplier programme) has, until the recent widespread 

availability of cheap computing power, rarely been used in applied work. However, 

given that the primal offers much more information and the cost of computing is no 

longer a consideration, both methods are used. For expository purposes, the dual is 

illustrated in Figure 3.3 but the problem being analysed remains essentially the same. 

o 

~ ____ ....... I:/ • A 

, -, --' .. 

-8 
o 

Figure 3.3 DEA Frontier: Dual Technology 

G 

In Figure 3.3, there are six DMUs, A, B, D, E, F and G which produce a single 

output at rate, Y, using two inputs, Xl and X2• Also, note that although the rate of 

output is the same, the rate of inputs usage is different for each DMU. DMUs G, F 
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and E are efficient as they are lying on the efficient convex piece-wise linear frontier. 

Hence, no other DMU or linear combination of the efficient DMUs G, F and E can 

perform better than them. DMUs A, Band D are inefficient relative to the efficient 

frontier, as, for the same level of output, a linear combination of the efficient DMUs, 

which lie on the same rays through the origin, are able to use less inputs for the same 

output. In particular, F produces Y with less of each of XI and Xl than B. 

The efficiency of each DMU is found, first by obtaining a reference point (recall the 

peers) on the frontier. Hence for DMU B, this reference point is given by F, derived 

by linearly combining the best practice observations i.e. those observations which lie 

on the frontier and E, which lies close to F. The DMU, under observation is defined 

as being efficient if, and only if, its efficiency score, OJ" = 1. Reference points and 

peers will be discussed further below with reference to Figure 3.4 

One drawback with the CCR programme is that it is based on the assumption of 

constant returns to scale everywhere on the frontier. Returns to scale are a property 

of the technology and may vary with firm size and, therefore, ought to be tested for 

rather than imposed. In fact given market imperfections, constraints on access to 

finance and technology. government health and safety regulations, many DMUs may 

never operate at the optimal scale. Assuming CRS when undertaking the DEA may 

confound technical inefficiency with the scale inefficiency, that is, inefficiency 

which is caused by operating at the wrong scale. This means that technical 

inefficiency may not entirely be eliminated by radially reducing inputs while 

maintaining output. It makes sense, therefore, to adopt a more general programme 

which incorporates various returns to scale and then determine the type of returns of 
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scale from the results. Such a general DEA, the variable returns to scale DEA (VRS 

DEA), was put forward by Banker, Charnes & Cooper (1984)24. 

Following from (3.9), the dual form of the VRS DEA programme is formulated as 

Minimise OJ 

subject to 

11 

L Y ri Ai = Y ri for r = 1 , ........ ,q, 
i=! 

n 
B.x . - L x .,.1,. = 0 for s =1 , ......... ,p, 

1 SI . 1 SI 1 
1= 

II LA; = 1 and Aj 2:0 
;=1 

(3. 10) 

As can be seen the critical difference between the BeC and the eCR is the addition 

1/ 

of the VRS [convexity] constraint, that is LA; = 1, in the former. This constraint 
;=1 

allows the frontier to be composed of increasing, constant and decreasing returns to 

scale segments. It allows a DMU to be benchmarked against DMUs of similar size 

(Coelli et aI, 2005). This ensures that the frontier is composed of mUltiple convex 

combinations of best practice (Ganley & Cubbin, 1992). In Figure 3.4, the imposition 

1/ 

of LA; = 1 ensures that the infeasible part of the CRS ray, where the extension of 
;=1 

24 Also known as the Bee programme. 
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scale efficiency is no longer possible, is excluded. This VRS technology is best 

illustrated in Figure 3.4 simplified to a one-input, one-output model. 

Output. 
y 

+ 

:+ 

+ 

CRS Frontier 

P /-l'------VRS 

+ Frontier 

+ 

+ 

0"-------'---------------+ Input. 
P, X 

Figure 3.4 Variable Returns to Scale DEA Technology 

The movement from Figure 3.3 to Figure 3.4 involves switching orientation from fixed 

output-variable inputs to variable output-one input. This change is for expository 

purposes and does not fundamentally alter the points being discussed. The diagram 

shows two technology frontiers, VRS and CRS frontier. The sign, +, denotes obselVed 

DMUs which are enveloped by the VRS frontier. For DMU, P, DEA efficiency is first 

defined by finding a reference point PREF, that is input minimisation without altering 

the output, which is obtained by using a linear programme such as (3.9). By finding 

solutions to the programme for all the DMU's, a [VRS] convex piece-wise frontier is 

obtained, which envelops all the observations as tightly as possible. The reference point 
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for P, as mentioned earlier, is a linear combination of estimated best practice DMUs 

which lie on the frontier. In using the variable output-one input orientation, a second 

possible optimum is identified with point A where output is maximised for the input 

vector at P. 

The theory of linear programming, asserts that in the values of the dual programmes 

(3.9) and (3.10), that is, the weights,~, are the shadow prices which correspond to the 

constraints limiting the efficiency of each DMU to be less than 1. Theses are identical to 

shadow prices in the primal programme (Chiang, 1986). Hence, ~ corresponds to 

q p 

Lll;Y;r ~ L ,,;x;s . 
r=1 s=1 

~ >0 indicates a binding constraint. Specifically, a binding constraint means a strictly 

positive weight corresponding to and identifying a peer for each inefficient DMU, i.e., 

for each observed unit} there is a composite DMU with an output of 

n n 
'IYriAi (r=l, .... ,q)and an input of I Xis Ai (s=I, .... ,p) as given in model (3.10) which 

i=1 i=1 

is more efficient than observationj (Coelli et ai, 2005). Ifj is efficient, the constraint is 

non-binding and ~ will be equal to O. This means there will be no composite DMU. 8j , 

the estimated efficiency of DMU j, represents the proportion of the input levels of j that 

the [efficient] composite unit would require to produce at least the output levels of j 

(Emrouznejad,1995-2001). 

There is another important aspect of efficiency which arises from the solutions to the 

dual LP in (3.9) and (3.10). This is the concept of scale efficiency. The question 

answered by estimating scale efficiency is whether or not each DMU is operating at its 

76 



optimal scale. To this end, CRS technical efficiency (also known as overall efficiency) 

is decomposable into two components, technical efficiency and scale efficiency. Using 

figure 3.4, this is best illustrated by using the point pOPT, which is where the VRS and 

CRS frontiers coincide; in general this coincidence may not be a unique point but a 

segment. The DMU located at this point is exhibiting CRS. This is known as 

"technically optimal scale" (F0rsund et aI, 2006). In practice this means the DMU is 

maximising productivity, Y . Scale inefficiency, therefore, measures loss of output 
X 

because of not operating at the optimal scale. 

The idea of the technically optimal scale can be explained using the concept of 

productivity, again easily explained from the one output-one input orientation of Figure 

3.4. Using the basic microeconomic concept of average productivity, the scale 

efficiency of DMU P is represented by the ratio of the average productivity at P to the 

average productivity at pOPT. There is, however, no guarantee that p OPT is a feasible 

production plan. Rather, pOPT merely illustrates a benchmark for comparing average 

productivity (or total output) which is feasible and the maximum attainable average 

productivity at any point on the frontier (F0rsund et aI, 2006). The concept of scale 

efficiency is similarly defined. Scale efficiency is the ratio of a DMU's efficiency score 

under a CRS assumption to its score under a VRS constraint. In terms of Figure 3.4, 

this means projecting the DMU onto the frontier, and comparing its efficiency to that 

obtained at pOPT. Since there are two possible optima, there are also two possible 

measures of scale efficiency, one in the input direction and the other in the output 

orientation. 
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Another way of looking at it is in overall efficiency terms where [input-oriented] 

technical efficiency is given by the ratio p ~:F while overall efficiency is given by 

p~RS • The ratio of overall to technical efficiency is equal to the scale efficiency of a 

CRS 

given DMU. In Figure 3.4 for DMU P, this is given by the ratio ;REF . The three 

efficiency measures are all bounded between 0 and 1. Finally in terms of the algebra of 

(3.9) and (3.10), scale efficiency is the ratio of the sum of~ in model (3.10) to the sum 

n n 

of ~ in model (3.9), recalling that L Ai = 1 in model (3 .lO) while L A; is 
;=\ 

II 

unconstrained inn model (3.9). Hence at pOPT
, L Ai ,in both models is equal to 1. 

i=\ 

However, the measurement of scale efficiency indicates only how far the DMU is from 

the CRS frontier. In effect, it captures the difference (not in mathematical sense) 

between overall efficiency and technical efficiency. It does not identify the nature of the 

returns to scale, that is, there is no distinction between DMUs with increasing or 

decreasing returns to scale. 

The nature of returns to scale helps highlight another contribution by Farrell (1957). 

This was to identify four production possibility sets, each reflecting the nature of returns 

to scale under which a DMU is operating. From Figure 3.4, the area bounded by the 

input axis, the origin 0 and the entire CRS frontier (or ray in 2 dimensions) is the CRS 

production possibility set. The area bounded by the input axis up to the point Px, the 

folded piece-wise locus with comers at Py , pOPT
, Pw is the VRS production possibility 
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frontier. The area bounded by input axis up to 0, the piecewise locus with comers at 0 

pOPT and Pw is the NIRS production possibility set. The NDRS production possibility 

frontier is that defined by the area bounded by the input axis up to Pw , the piecewise 

linear locus with points at PxPv and pOPT. It can be seen that the four sets have zones 

where they coincide. More fundamentally, it can be seen that of the four sets, the 

frontier identified by the VRS production possibility set more tightly envelops the 

observations than the alternatives. This is one of the reasons why the VRS programme 

is the most widely used in DEA. 

It can also be seen that there are five different combinations of production possibility 

sets. These are (a) those where all the DMUs have non decreasing returns to scale, (b) a 

mixture ofDMUs with increasing and constant returns to scale, (c) all DMU have 

constant returns to scale, (d) a mixture ofDMUs with constant and decreasing returns to 

scale and (e) all DMUs exhibiting decreasing returns to scale. These classifications will 

be of use when distinguishing the nature of returns to scale. Given that there are 

possible overlaps, the nature of returns to scale be assessed by running another DEA 

n 
programme with non-increasing returns to scale (NIRS) imposed, that is, L Ai ~1. A 

i=1 

n 
L AieRS 

ratio ....:.i_=.=...I ___ is obtained. This ratio is, by construction, bounded by 1 below and 
n 
L Ai N1RS 

i=1 

unconstrained above 1 (LOthgren & Tambour, 1999). To determine where the DMU is 

operating, the following conditions are the basis for the decision criteria. When 
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11 

LAiCRS 

-".i_=-=-l __ = 1 and when the NIRS and CRS efficiency scores are equal to 1, the DMU 
11 

LAiNJRS 
i=1 

is operating under constant returns to scale. When the ratio is equal to 1 but the NIRS 

and CRS scores are less than 1, then the DMU is operating under increasing returns to 

scale. Finally, when the ratio is greater than 1, the DMU is operating under decreasing 

returns to scale. What the criteria also illustrate are the five different combinations of 

the production possibility sets outlined above. 

Finally, a discussion on the relative merits ofthe SFA and DEA is warranted. There has 

been much discussion about which technique to use, SFA or DEA. The comparisons 

have been based on the empirical results and specific contexts. A number of studies 

show that they substantially agree on the important issue, i.e. the estimated average 

efficiency (Ganley & Cubbin, 1992). These were the finding by, for example, Lovell & 

Wood (1992) and Ferrier & Lovell (1990). However, Ferrier & Lovell (1990) found that 

the rank correlations between the estimates from the two methods were poor at around 

0.02 which was not significantly different from zero. Resti (1997), on the other hand, 

found a high rank-correlation coefficient of between 0.79 and 0.83, particularly with the 

CCR programmes. Murillo-Zamorano & Vega-Cervera (2001) also carried out a 

comparative study of parametric and non-parametric methods and concluded by calling 

for more work on hybrid methods which made joint use of both techniques to improve 

accuracy of the estimates. One cannot argue conclusively the merits of one over the 

other. The choice between SFA and DEA is often determined by the availability and 

80 



type of data and accuracy or lack of it is a relative point as each is accurate in it own 

tenus. 

3.4 The Bootstrap and DEA 

In applied research, DEA has for a long time been regarded as detenninistic and the 

efficiency scores so calculated are treated as detenninistic values. In fact, Simar & 

Wilson (1998,2000) have shown that this is an erroneous premise. They argue that the 

efficiency scores ought to be regarded as estimates of true but unobselVed efficiencies, 

measured relative to an estimator of a true, but unknown, efficiency. Since the estimated 

production frontier is obtained from a finite sample the frontier is susceptible to 

sampling variations, as are the measures of efficiency. These will affect the 

characteristics of the estimated frontier such as it shape and position. The statistical 

properties of the frontier become important25
. It follows that estimates have 

distributional properties which can be estimated. In addition, it is important to 

remember that the convex piece-wise linear frontier is based on outliers. There is the 

25 An exception may be when the observations comprise a population. Hence, when we are looking at a 

data set of primary schools in the United Kingdom which contains all the primary schools, the resulting 

frontier is the true frontier (see Coelli et ai, 2005). An alternative viewpoint on this, which primarily 

asserts that the Coelli et al (2005) statement as it stands above is inaccurate. Hammond (in private 

conversation) thinks this point is arguably wrong, unless the assumption is made that all one is interested 

in is UK primary schools. If however, the interest is on UK educational primary educational technology, 

then the UK primary schools as a whole are still only a sample from the population when inference is 

considered, i.e. each primary school has selected its position, given the technology, but these choices need 

not fully represent the technology. 
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probability, therefore, that there may be other aspects of the technology which are not 

being captured by these outliers. In particular sampling errors find their way into the 

data and must be accounted for. In order to obtain these statistical properties and to 

address some of the weaknesses inherent in the DEA estimates, Simar& Wilson (1998, 

2000) have proposed the use of the bootstrap26. 

The bootstrap is a re-sampling method, first advanced by Efron (1979) which allows the 

estimation of the standard deviation of the estimator obtained from [nonparametric 

method] methods. What the bootstrap does is mimic the data generating process (DGP) 

giving rise to the observed sample and allows the approximation of the unknown 

distribution of the phenomenon being estimated from the characteristics of the sample. 

The idea behind such resampling is that, in the absence of specific infonnation about a 

population from which sample data are drawn, particularly the distributional properties, 

a process of resampling from that sample may be used to assess, with a reasonable 

degree of objectivity, the sampling variations which affect the data (Young, 1994). In 

the bootstrap, a resampling of the sample data is used as a guide to what would happen 

if the population were resampled. 

Another way of justifying the bootstrap is to imagine a bootstrap world and the real 

world (of which little or nothing is known). One can then make inferences about the real 

but unknown world by observing what is happening in the bootstrap world. Although 

there may not be exact correspondences, such as the actual magnitudes of the variables 

26 Simar & Wilson (1998) have shown that the DEA estimate is this bias is non-negative in that the 

unknown frontier is less than or equal to the estimated DEA frontier. 
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being measured, it is expected that they move in parallel directions and magnitudes. In 

the case of DEA, the bootstrap allows inferences to be drawn about the reliability of 

efficiency estimates and the construction of confidence intervals for such estimates. The 

bootstrap method has been widely used in medical and environmental studies, saving on 

costly sampling and assaying. It has also recently been adopted in economics and 

management science, both in parametric and non-parametric analysis. See for example, 

F0rsund et al (2006) and Gonzalez & Miles (2002) for non-parametric analysis. More 

will be reviewed later. For parametric applications, see Levich & Thomas(III) (1993), 

Horowitz (2003) Dalla & Hidalgo (2005) among others. 

The bootstrap can be motivated by the following example. Suppose one has an 

independent and identically distributed random sample X =(X 1, X2, .. , Xn), such as 

observations of firms or decision making units (DMU), from an unknown probability 

distribution, F, such that Xi -iid F . Consider the case of an efficiency score 

parameter, being a random variable, e, which depends on X and possibly F. Neither the 

true value nor the sampling properties of e are known. The sampling distribution of e 

can only be "guessed at" based on information provided by the observed data on X. The 

bootstrap is a useful tool in constructing evidence of the distribution e. Bootstrapping 

involves resampling the observed data with replacement and re-estimating the parameter 

of interest, e, each time resampling takes place. From this re-sampling procedure, an 

empirical estimator of F, denoted by f ,can be constructed. From the distribution of f , 

inferences on the distribution of F can be made. The calculated distribution of the 

estimatorB, based on f , therefore approximates to the true distribution of e if F = f . 

The key point made by Efron (1979) is that, in the absence of any prior restrictions on 
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" 
the fonn of F, any nonparametric estimator (such as e obtained by DEA), which relies 

on f to mimic F, must be a reasonable approximation since" f is a central point 

among the class of likely Fs". The bootstrap distribution f becomes the basis for 

calculating and estimating the biases, standard errors and the resulting confidence 

intervals of the estimates of non-parametric analysis. 

There is a problem with the above procedure as it stands. Non-parametric estimation, 

particularly of bounded domains such as the DEA (the efficiency score is bounded 

between 0 and 1), has been shown to be inconsistent. It has been proved that the 

efficiency estimator (at the upper bound) for a naIve bootstrap (unsmoothed) is 

inconsistent (Efron & Tibshirani, 1993). This is because ofthe one-side nature of the 

residuals, since as the sample size increases the bias does not decrease. This case can be 

compared with the maximum likelihood estimator in parametric estimation, which while 

also biased has a bias which asymptotically falls away with an increasing sample size. 

This bias, as noted by Simar & Wilson (1998) and Effron & Tibshirani (1993) is not 

inversely related to the sample size and will therefore not disappear as the sample 

approaches the population but is strictly positive27
• Hence their bootstrapped empirical 

27 Simar & Wilson (1998) define the probability of selecting a DMU as (l-n- 1 t. Therefore the 

probability that the pseudo-sample will include the DMU-- which is the same as the probability that the 

bootstrap value will equal the original estimate- is Pr (0· = 0) = 1-(1-n-1) n. lim 1- (1- n -I r = 
n4<X> 

1- e- 1 
:::: 0.632 and not o. 
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density function (EDF) still had a mass of observations at the upper bound28
. Therefore, 

the EDF bootstrap estimates, as described above, are inconsistent. In the case of DEA, 

this inconsistency mainly arises near the upper bound of the distribution where a large 

number of DMUs are seemingly efficient. To address this problem, Simar & Wilson 

(1998) proposed smoothing the bootstrap DEA by replacing the EDF with a kernel 

density estimate (KDE). The Simar & Wilson (1998) proposal for smoothing is based 

on a Gaussian KDE represented as 

(3.11) 

where h (a choice variable for the researcher) is the smoothing parameter and ¢ is the 

density of the standard normal variate. The smoothing parameter, h, is also known as 

the bandwidth of the kernel density estimator, F" (t) . The value ofh must be chosen 

with care, a high value tends to over-smooth while smaller values lead to multi-modal 

distributions and at any rate tend to place too much weight near the upper limit 1. 

Silverman (1986), in some detail, discusses methods for determining the parameter h 

under various conditions and leaves the choice to the researcher to decide depending on 

the pUlpose to which the KDE is to be put. A simple (it is automatically related to the 

statistics of the sample) and effective method he proposed is the "automatic robust rule" 

28 The empirical density function is a non-parametric estimate of the underlying density function of the 

random variable. 
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for selecting bandwidth, given by 

1 . ( '2 RI3) II =0.9 ,mIn (Yli'--
-V n 1.34 

(3.12) 

where R 13 and al~ respectively denote the inter-quartile range and the variance of the 

empirical distribution,Bj • 

A number of bootstrap algorithms, for the DEA, have been proposed in the literature29
• 

In the present study, the Simar & Wilson (1998) bootstrap algorithm is adopted. The 

practical implemented is as follows . 

. 
Estimate DEA efficiency scores, Bj for the sample i = 1, ....... ,n. Transfonn the original 

input and output vectors using the estimated DEA score, Bj • This produces a pseudo-

frontier (xf ,y~) = (Xi' OJ ,y) for which x~ is an estimated efficient input vector to 

produce the out put vector, Yi. 

Smoothed re-sampled pseudo efficiencies denoted by OJ" are obtained. In obtaining x~ 

A 

in Step 1, there still remains a problem with 0, (I) in that it does not integrate to 1 i.e. 

the boundary condition that t <1 is sometimes violated and ~, (t) is still biased and 

inconsisteneo. This problem is addressed in two steps. First, a reflection method 

29 Ferrier & Hirschbeger (1997), Simar & Wilson (1998) and Uithgren & Tambour (1999). 

30 This problem is the source of controversy in some empirical studies as will be noted later in this 

Chapter, particularly in the review of studies by Ferrier & Hirschberg (1997) and Uithgren & Tambour 

(1999). 
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proposed by S ilvennan (1986) overcomes the problem of violating the bounded nature 

of the efficiency score. 

, "* 
Hence for each point B,* :::; 1 , there is a symmetric reflection given by 2 - OJ > 1, i = 

1, .... , n. The reflection method generates a new sequence of efficiency estimates given 

by 
B~ = le; + hPi* if e; + hPi* < 1) 

I , * 
2 - ()i - hPi* otherwise (3.13) 

where p: is a random nonnal deviate drawn from a standard nonnal distribution (Simar 

& Wilson, 1998). 

, * - * . * 
* * 

Therefore, if 0 j + h Pi > 1, 0 i is set equal to the symmetric image of 0 i + h Pi 

(which is a reflected on the boundary). 

Second, a correction ofthe re-sampled estimated efficiencies, denoted by 

-. -. 
• B-' (B; - B; ). -. "* A2' • 0, ~ , + l + h 2 IS generated where e, ~ LA and.,.o IS the sample vanance of 

A2 
(Y. 

B 

the original, i.e. non-corrected DEA efficiency scores. The correction is based on the 

use of the KDE in (3.10) rather than the empirical density function (EDF), which 

generates fi;*. This correction guarantees that B;* has the same first two moments as the 

A 

original efficiency estimates,B; (Simar & Wilson, 1998). 
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Af 

The bootstrap pseudo-data is now given by (x ~ ,y ~) = (x ~ ,y i) . 
B; 

Bootstrap efficiencies, using the pseudo-data in step 3, are estimated using the linear 

programmes (3.8) and (3.9) to generate 

Steps 2-4 are repeated B times (where B is normally 1000) to generate B DMU specific 

efficiency estimates. 

Simar & Wilson (1998) have indicated that DEA estimators, in common with other 

nonparametric estimators, are biased in small samples and they proposed a method for 

correcting this bias. An estimate of the bias of the efficiency score is denoted by 

* 1 B Ab A 
bias = - I Bi - Bi ,that is the difference between the mean of the smoothed 

B b-1 

bootstrap scores and the original unsmoothed DEA scores. To correct for the bias ofthe 

smoothed bootstrap DEA, the sequence of B bootstrap DEA scores is ordered in terms 

IB"*ba 2 b' * o"*b(1-a) 2 b' * J of size. Bias-correction takes the form ~ iB - • las 'iB -. las 

"*b 
where BiB a is the ath percentile of the estimated distribution F , that is by shifting the 

bounds in the intervals by the factor 2bias* (Simar & Wilson, 1998). 

The statistical properties of nonparametric efficiency estimates can now be 

approximated, "correcting" the common misconception that methods such as DEA, are 
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detenninistic. With the bias-corrected estimated efficiency scores hypothesis tests, such 

as testing the difference between means or point estimates, can be carried out. 

Using data for a sample of Illinois power stations analysed by Hire et al (1989), Simar 

& Wilson (1998) illustrated an implementation of the above smoothed bootstrap and 

obtained smoothed efficiency estimates. Their work, although more illustrative than 

anything else, is particularly important in showing how smoothed estimated DEA 

efficiencies can be obtained in practice. Their methodology is the one which is largely 

followed in the next two chapters for two samples gold mines. 

The relationship between the true unobserved frontier, the bias-corrected DEA frontier 

and the pseudo-frontier described by the bootstrap algorithm above, is illustrated in 

Figure 3.5. 
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Figure 3.5 Variable Returns to Scale DEA Technology31 

The main points illustrated in Figure 3.5 are that the bias-corrected frontier can lie both 

above and below the true frontier while the pseudo-frontier always lies below both 

which is why the bold +are never above the pseudo- frontier. A point on the true 

frontier is obtained by shifting the pseudo-frontier by twice the bias estimate (Fersund 

et aI, 2(06). 

31 This diagram is adopted from Fersund et al (2006). 
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One of the major uses of the bootstrap results is the realisation of statistical estimates of 

parameter such statistics as the standard deviation. With the bias-corrected efficiency 

estimates calculated, there are some statistical tests which can be performed. Banker 

(1993) and Banker & Natarajan (2004) proposed some useful statistical tests of DEA 

results. In the context of this dissertation, the most relevant are the hypothesis tests 

which compare two groups of DMUs, particularly whether the differences in 

efficiencies between them are statistically significant or not. The two tests discussed 

below depend on certain assumed distributional properties. 

The first test involves dividing the sample into two sub-samples, one of size m! and the 

other m2, and assuming an exponential distribution for the inefficiencies of each. The 

test statistic, is assumed to be asymptotically the ratio of two i variates 

divided by their sub-sample sizes. The null hypothesis to be tested is formally stated as 

This is the F-test familiar from intermediate statistics. The test statistics has an F-

distribution with (2m!, 2m2) degrees of freedom. 

If the inefficiency results are assumed to follow a half-nonnal distribution32 with 

. . '(1-8) . . . m ( )2 standard deviations o! and 02, then ~ mj I ,1=4,2, IS a i with mj degrees of 

32 There are no negative efficiency estimates so the negative part of the nonnal distribution falls away. 
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freedom. Hence the test can be conducted based on the statistic which 

obeys the F-distribution with (m" m2) degrees of freedom. 

Finally, an important point which seems to be misunderstood by a number of 

researchers, needs to be re-emphasised. The bootstrap addresses sample variability but 

not noise arising from mis-specification or errors in measurement. The bootstrap, in the 

words of Coelli et al (2005) provides "and indication of the degree to which the 

efficiency estimates are likely to vary when a different sample is randomly selected 

from the population" 

3.5 Review of Selected Literature 

Following Efron's (1979) article, there has been considerable interest in the use ofthe 

bootstrap. Most of this interest has centred on theoretical discussion on the feasibility 

and relevance of the procedure. Initially there was much scepticism, as the discussions 

following DiCiccio & Efron (1996) in the same issue of Statistical Science indicate. 

Hence, until recently, examples of practical implementation of the bootstrap in 

economics were conspicuous by their rarity. 

As noted earlier, the bulk of the implementation of the bootstrap has been in medicine 

and environmental analysis, where assaying and measurement are notoriously difficult 

and expensive, and simulation and extrapolation methods find ready acceptance. 

Although, there is widespread acceptance of the bootstrap, there still have not been 

many studies which have applied the bootstrap to DEA; most of the work has been from 
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a theoretical perspective. In this review, focus will be centred on two types of studies; 

DEA studies done on mining and some bootstrap DEA studies. 

In a study of banking efficiency, Ferrier & Hirschberg (1997), used the bootstrap DEA 

to obtain the statistical properties of the efficiency scores of Italian banks for the year 

1986. Their data set consisted of ninety-four DMUs, using five inputs and four outputs. 

Using a modification of the conventional bootstrap-- sampling with replacement in a 

sub-sample of n-l observation (i.e. an observation was deleted) -they obtained a 

bootstrapped empirical distribution of efficiency estimates. The main weakness of the 

above approach, highlighted by Simar & Wilson (1999), was that they did not address 

the biased nature of DEA in constructing the empirical distribution of score. A curious 

part of their results was the presence of negative biases, so that that bias-correction may, 

in principle result in efficiency scores higher than 1 (although it did not). 

LOthgren & Tambour (1999) considered and estimated VRS DEA scale efficiencies of 

Swedish eye hospitals. Their main objective was to test firm-specific scale efficiency, 

that is, test the hypothesis whether the scale efficiencies were significantly different 

from 1. Their data came from twenty-nine public ophthalmology departments operating 

in 1993, which represented 85 per cent of the total number of ophthalmology 

departments in Sweden. The production technology was defined over three inputs and 

four output variables. Two categories of labour, corresponding to two types of 

physicians and the number of available beds (representing maximum capacity) as a 

proxy for capital were the inputs. Output was represented by three types of 

ophthalmologic procedures and the number of visits to the eye clinics. An important 

methodological proposition was the calculation of the bootstrap scale efficiencies. To 
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obtain these, they computed bootstrap CRS and VRS efficiency scores and, for each 

iterative computation, calculated the bootstrap scale efficiency which is significant 

difference from what has been done in the present study as described in equations (3.11) 

- (313) above. The mean scale efficiency for each DMU, the standard deviation and 

other statistics were then calculated over these replications. 

The main findings were that the DEA identified a third of the DMUs as scale efficient. 

Of the remaining, eight were operating under increasing returns to scale and eleven 

decreasing returns. In the context of their study, they noted that neither large nor small 

eye clinics were scale efficient; rather it was among the medium-sized units which were 

scale efficient. They noted that five clinics at large hospitals operated in a region of 

decreasing returns to scale while all departments at other hospitals operated in a region 

of increasing returns to scale which is contrary to conventional neo-classical 

expectations. 

Using the bootstrap DEA results, they could not reject the hypothesis that the eye clinics 

were "scale inefficient" and in fact were exhibiting decreasing returns to scale for 

eleven units. This confinned the DEA results. However, only seven were deemed scale 

efficient, compared with ten in the DEA. Five eye clinics were deemed to be operating 

under increasing returns to scale compared to eight in the DEA. Of the remaining six, 

no decision on the nature of returns to scale could be made, even though the DEA had 

categorised them as scale-inefficient. The overall conclusion that they made was that 

that bootstrap altered one third of the initial DEA results, changing them from scale 

inefficient to scale efficient. A drawback with their work was that they used the naIve 

bootstrap, neither correcting for bias nor smoothing to remove inconsistency of results 
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at the upper bound (Simar & Wilson, 1998). They did acknowledge that their procedure 

differed from Simar & Wilson (1998) and hence expected different results. 

Gonzalez & Miles (2002) carried out a study of efficiency in the Spanish public sector. 

The objective of their study was to investigate how DEA efficiency scores and 

conclusions drawn from them are affected by bootstrapping and correcting for bias. 

They applied the bootstrap to two data sets, one for the high courts and the other for fire 

services. They applied two different algorithms, one by wthgren & Tambour (1999) 

and the other due to Simar & Wilson (1998) to each data set. Their main conclusion was 

that bootstrap DEA scores gave greater scope for improved performances as they tended 

to be lower than ordinary DEA scores. 

Pedraja-Chaparro & Salinas-Jimenez (1996) applied the DEA to twenty-one high courts 

circuits in Spain for the year 1991. The DEA scores were then bias-corrected and 

confidence intervals constructed. Testing the hypothesis of difference in efficiency 

score between different production units, they could not reject the null hypothesis of no 

significant differences, in efficiency, in the majority of cases. This was because of the 

overlapping intervals. 

Hawdon (2003) made a study of efficiency and regulation of the gas industries in thirty

three countries for a two year-period (1998-1999) using a DEA model specified for two 

outputs and two inputs. The primary objective of his study was to measure the relative 

performances of the gas suppliers and to assess how far reforms such as deregulation, 

particularly in the United Kingdom, had affected the efficiency of the gas suppliers. For 

the second part of his study he employed a nesting of DEA models by progressively 
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removing variables and testing the effects of the removal of those variables. That part of 

the analysis will not be reviewed here. However, there is enough work done on the 

application of the bootstrap which justifies the inclusion of this study here. 

The two inputs were labour and capital, with the head count of employees representing 

labour and the length of pipelines representing capital. The two outputs were gas 

consumption (measured in sales) and the number customers served by the gas supplier. 

The results of the analysis are divided into DEA and smoothed bootstrap DEA. The 

smoothing procedure was based on the smoothed kernel density function following 

Simar & Wilson (1998). Hawdon (2003) found that, although the bias between DEA 

and bootstrap DEA was mainly positive, indicating that DEA over-estimates efficiency, 

there are cases of negative bias. He concluded from this that bias is not stable, 

particularly when calculating over a number of years. Hawdon (2003) was also able to 

identify the best-perfonning countries using bias-corrected DEA. He also noted that 

using bias-correction reduced the variability of the efficiencies, in that the differences 

among the various countries became much smaller than in DEA. Finally, he noted that 

confidence intervals overlapped therefore making it difficult to establish the statistical 

significance of the differences between countries. 

Boame (2004) carried out a study of the detenninants of efficiency in the Canadian 

urban transit system with the objective of estimating efficiency. His study involved two

stage analysis where the second stage was an application of Tobit regression using the 

results of DEA and bootstrap DEA as the dependent variable. The second part of the 

analysis will not be reviewed here. Instead the focus will be put on the DEA and the 
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application of the bootstrap. The bootstrap DEA was based on the Simar &Wilson 

(1998) algorithm for smoothing the bias-corrected DEA. The sample consisted of 30 

transit system covering the period 1990-98. He specified a VRS production technology 

with three inputs and one output using annual data. The inputs were fleet size (to 

capture capital flows), fuel (both diesel and petrol) and labour measured in paid 

employee hours for each year. The output variable was represented by revenue 

kilometres (the total distance for total fare passengers carried). 

There were two sets of results for the first stage; the DEA and bias-corrected DEA. The 

DEA results reflected high efficiency scores with two transit system achieving full 

efficiency over the whole study period. Over the whole sample, the mean efficiency was 

0.8609, implying potential savings of inputs of over 13 per cent without any reduction 

in output. He, however, observed dramatic reductions in efficiencies once he had 

corrected for bias with the sample mean dropping to 0.7844. This implies that the 

potential input savings has actually risen to just under 22 per cent, suggesting that the 

use of the bootstrap in efficiency analysis is justified. 

Boame (2004) also constructed confidence intervals for each estimated of the efficiency 

score. He noted that the 95 per cent confidence intervals for the bias-corrected scores 

contained the bootstrap DEA scores from which he concluded that, given the confidence 

intervals, 95 per cent of the time these intervals will contain the true technical efficiency 

estimates. 

Finally, he observed that most transit systems (56 per cent) experienced increasing 

returns to scale which he took to imply the case for providing subsidies to urban transit 
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systems. The main benefit derived from this study is the improvement in tenns of 

accuracy of bias-corrected efficiency estimates over DEA. 

In a study of Chinese rural credit cooperatives (RCC), Dong & Featherstone (2006) 

applied the bootstrap on a sample of one hundred and forty-five observations over a five 

year period (1991-1995). The objective was to estimate the efficiencies of and identify 

the technology of providing rural credit. In addition, they also wanted to decompose 

overall efficiency into technical efficiency and scale efficiency and identify the primary 

cause of overall inefficiency. 

The main findings were that the DEA estimated efficiencies of the different RCC were 

quite close to each other, indicating the effect of central mandates. There were also 

some dynamic effects which were identified by the varying nature of returns to scale 

over the five year period. Still, they were able to identify one clear best-practice RCC 

after bias-correction. 

H'lrsund et al (2006) carried out a study of the efficiency and productivity development 

of local Norwegian tax offices. The analysis had two main parts, one concerned with 

efficiency using DEA and the other on productivity using the Malmquist productivity 

indices. This review will concentrate on the DEA section of the work. The objectives of 

the study were to provide explanations of the differences in perfonnance among ninety

eight Norwegian tax offices over a three-year period (2002 to 2004). From these 

explanations, the tax authorities would then implement reforms to reduce in efficiencies. 

F0rsund et al (2006) specified a technology with six outputs, all justified by the types of 

activities in which the tax offices were involved which is processing tax returns. The six 

98 



outputs were (i) the number of people who have moved locations, (ii) number of false 

registrations detected by internal control activities, (iii) number tax returns from 

employees and pensioners, (iv) number of complaints on tax assessment, (v) number of 

returns from non-incorporated businesses and (vi) number of corporate tax returns. Only 

one input, the total operational expenditure of each office, was specified. It is quite 

clear that outputs and inputs are defined by the context of the study and in particular, the 

type of industry being investigated. The multiple outputs were the major reason why 

DEA rather than SFA was adopted. 

The efficiency analysis used the bootstrap to improve the quality of the policy 

recommendations. In particular, they identified the inherent bias as a key problem with 

DEA results. The methodology applied, the DEA and bootstrap algorithm, were based 

on Simar & Wilson (1998). There were two key but general results. The first was that 

the large tax offices (measured by one of the output dimensions) tended to be located in 

the middle of the distribution. On the other hand, the smaller and medium offices were 

mostly located in the right side of the distribution, implying that they (the latter) tended 

to be more efficient than the large ones. The second key result was the rejection of CRS 

on favour of VRS in terms of being better suited to explain scale efficiency scores. 

There were further profound results from bias-corrected efficiency estimates in that they 

were able to characterise a best-practice tax office in relation to the sample mean. The 

first observation was that the average best-practice unit used 46 per cent more of the 

input than the sample average. It also produced 75 per cent more registration of 

relocated people, 69 per cent more tax returns from employees and 62 per cent more tax 

returns from firms. Of the remaining outputs it would register 28 per cent more 
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registration of non-incorporated businesses, handle 10 per cent more the number of 

complaints and detected 5 per cent less false registrations. 

Another observation stemmed from the confidence intervals constructed from the bias

corrected scores and using the statistics generated by the bootstrap. They noted that the 

confidence intervals tended to be wider for those DMUs with an original DEA score of 

or close to 1, that is, the efficient units. With a smoothed bootstrap correction, these 

intervals became markedly narrower but still wider than for the least efficient DMUs. 

They also noted that the left-hand part of the [ranked) distribution, containing the least 

efficient units, was almost exclusively populated by the smallest tax offices, with the 

large units located in the middle of the distribution. The right-hand part, containing the 

most efficient units, interestingly also contained small-sized units and medium sized 

units. The final observation was that the [smoothed) bias-correction had a systematic 

downward effect on the efficiency estimates, confirming the conventional view that 

DEA scores have a positive bias and that DEA, on its own, seems to provide an overly 

optimistic picture of efficiency. This is profound result which justifies the use of the 

bootstrap approach in DEA efficiency estimation. 

The above reviews focussed on the application of the bootstrap to DEA. The next set 

look at the application of DEA to mining. There have been very few studies applying 

DEA to mining-most have been concerned with agriculture and finance. There are 

three studies, all on coal which are reviewed here. None of them applied bootstrap 

DEA. Their main relevance is in setting the context such as the specification of mining 

technology and how certain inputs are defined 
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Byrnes, Fare & Grosskopf (1984) carried out a study of the efficiency of fifteen Illinois 

coal mines by applying DEA. The bootstrap was not applied; rather the results of the 

nonparametric results-- they did not call their procedure DEA but attributed their model 

to Cooper, Chames & Rhodes (1978)-- were reported as they were. They specified one 

output, the total tonnage of the coal produced and eight inputs. The eight inputs 

included labour, as measured by miner days. The other inputs were three capital 

variables and four geological inputs. The three capital variables were represented by the 

sizes (in cubic feet terms) of three types of capital equipment, shovels, draglines and 

excavators. The geological variables, non traditional inputs in the sense of the 

production function in that they are not paid for, were justified by the fact they 

distinguished the different qualities of ore across the observations, an important 

consideration when comparing mining operations. This incorporation of geological 

information was repeated in a latter study by Byrnes & Hire (1987) and is an example 

of how the production technology can be defined by the context of the study. This is 

pertinent for the purposes of this dissertation which is similarly based on defining a 

mining technology. 

The main finding from their study was that inefficiency mainly was a result of mines 

deviating from the optimal scale rather than from technical inefficiency, with six mines 

out of fifteen being scale inefficient. Output could have increased by 36 per cent had the 

operations been scale efficient. All were technical efficient with only one was exhibiting 

congestion inefficiency. They also observed that both the larger and smaller mines 

(defined inn terms of output) were all scale efficient. They also attempted to distinguish 

some mine characteristics based on their inputs and output. In this regard, they noted 
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that efficient mines generally had low labour-output ratios, a point which will be 

relevant for this study. Finally, they noted that, contrary to their and maybe 

conventional expectations, the mines with increasing returns to scale were not the small 

ones but medium sized ones. Again, this would be an interesting characteristic to 

explore for in this dissertation. 

B ymes & Hire ( 1987) estimated the efficiencies of US interior coal mines33
. The study 

was motivated by official concern at low and declining productivity among US coal 

mines. The main objective of the study was to estimate the relative efficiency of a cross 

section of US coal mines. The secondary objective was to decompose overall efficiency 

into technical, scale and congestion components. They subdivided the mines into five 

different categories; by location, age, union status, the amount of the captive coal 

produced34 and ratio of area reclaimed to area stripped. 

The sample consisted of one hundred and eighty-six mines with a wide range of sizes, 

in tenns of output, from two thousand and thirty to over six million short tonnes of coal 

for the year 1978. They specified nine input variables, a labour input, six types of 

capital and two variables to represent the geological characteristics of the mines. 

33 Arkansas, Illinois, Indiana, Iowa, Kansas, Kentucky, Missouri, Oklahoma and Texas. 

34 The captive coal category distinguishes between mines which sell all their output on the open market 

and those which do not. 
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The data were confidential so the results for individual mines were not reported. All the 

mines were categorised according to geological characteristics. In addition, the relative 

efficiencies were in relation to all the other mines, that is one technology was assumed. 

The results indicated that efficiency was difficult to achieve with only fourteen mines 

(7 .5per cent of total sample) having a score of 1. In terms of the components of overall 

efficiency, about 80 per cent purely technical efficient, while 25 per cent exhibited 

congestion (efficiency could be increased by reducing usage of some inputs). This 

indicated a departure from free disposability assumption. Only fifteen mines were scale 

efficient. The rest were scale inefficient, one hundred and sixty four operating under 

increasing returns to scale and seven exhibiting decreasing returns. There were some 

cross state variations in efficient mines, with 88 per cent of the observations for Texas 

being efficient. There were other results which were correlated to the categories 

outlined above. 

For the purposes of this study, the most interesting point is how the production 

technology was specified. In particular the incorporation ofthe geological 

characteristics as represented by seam thickness and inverses of overburden extracted 

would justify the choice to be made in Chapter 5 to include grade of ore as an input. 

Additionally, when representing capital, Byrnes & Fare (1987) used the value of annual 

services, as in repairing and maintaining equipment, (in thousands of 1981 U5$) to 

represent two of the capital categories. This method ofproxying for capital will be used 

in Chapter 4, where the annual cost of servicing capital services is used as proxy for 

capital services. 
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Finally, one practical implementation of the hypothesis tests, which were first suggested 

in Banker (1993)' was carried out in Banker et al (2004). The objective of the study was 

to analyse the trend of hoth technical aUocative efficiency in Texas public schools over 

the period 1993-99 and test for the presence of allocative efficiency. This was a panel 

data sample, containing three thousand five hundred and ten observations for five 

hundred and eighty-five districts. Hence the efficiencies were being estimated for each 

district. Again, as with the Byrnes et al (1984) study, there was no implementation of 

the bootstrap. What is of relevance to this study is the application of the statistical tests 

proposed in Banker (1993). The Banker (1993) tests were used to test the whether any 

observed differences among the districts, now divided into three regions, were 

statistically significant. The results of the statistical analysis showed the presence of 

significant inefficiencies over time. The differences among the regions were also found 

to be significant and, hence, were able to report which, among them, was the most 

allocatively inefficient region. 

The challenges which other researchers have encountered and how they addressed them 

will be useful in the analyses which follows in the next two chapters. In particular, the 

way some have approached the problem of accounting for capital services is informative 

as this is an awkward variable to capture. The other important lesson is the possibility of 

modification of the specification of the mining production technology to take into 

account of "non-paid for" but important variables which represent the different qualities 

of the different mines. 

Finally, the practical implementation of the Banker (1993) tests is of taken up in the 

hypothesis testing in the following chapters. 
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CHAPTER 4 DEA AND BOOTSTRAP DEA ON ZIMBABWEAN GOLD MINES 

4.0 Introduction 

In Chapter 2 the importance of gold to the Zimbabwean economy was discussed. Also 

highlighted was its capacity to earn foreign currency, its being the basis for 

infrastructure such as electricity generation, and of gold mines as sites for most of the 

modem industrial cities. The problems that the gold mining sector has faced and 

continues to face. since 1965, were also discussed. These included particularly the 

tendency of successive political regimes, for one reason or another, to regard gold 

mining as a "cash cow" seemingly to be continually exploited, while being offered little 

support through, for example, the promotion of investment, access to foreign currency 

and adoption of new technology. These points, the economic importance of gold mining 

and political neglect, highlight the need for a well-performing gold mining sector, with 

its own internally-driven initiatives. An important exercise in pursuing this need is to 

analyse the performance of gold mines in Zimbabwe with a view to measuring the 

efficiency of individual gold mines. This estimated efficiency can then be used, in 

conjunction with other variables, to characterise efficiency in gold mining as in Byrnes 

et al (1984). 

There are two primary objectives in carrying out this study. The first is to estimate 

empirically the relative technical efficiency of individual gold mines in Zimbabwe. This 

will reveal, within the local Zimbabwean context, the performance pattern of gold 

mining through the measurement of efficiency scores. The estimated technical 

efficiency scores are also decomposed into technical and scale efficiencies in order to 
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distinguish the nature of the inefficiency identified. The decomposition of overall 

efficiency technical and scale efficiency allows the primary causes of inefficiency in the 

sample to be properly attributed. Byrnes et al (1984) observed that the relationship 

between nature of returns to scale and size does not always correspond to expectations. 

Hence the smaller mines do not necessarily exhibit increasing returns to scale, for 

example. As Cooper et al (2000) ask, is inefficiency "caused by the inefficient operation 

of the DMU itself or by the disadvantageous conditions under which the DMU is 

operating'?" This dissertation will attempt to investigate whether the first part of this 

question is true. A secondary objective to the estimation of efficiency, linked to the 

notion of scale efficiency, is to investigate whether any link exists between mine size 

and efficiency score. The conventional wisdom would seem to suggest that for capital 

intensive projects, such as those found in mining, economies of scale are best captured 

by investing in large operations. An analysis of a possible relationship between size and 

efficiency is carried out and a hypothesis that size and efficiency are positively 

correlated is tested. In addition, using some of the techniques proposed by Byrnes et al 

(1984), this study will also use the input-output properties of individual mines to 

characterise the mines, such as whether inefficient mines have high labour-output ratios 

etc. 

The second objective is to estimate the statistical properties of the efficiency estimates, 

using bootstrap DEA. From these, estimated properties, such as bias of the DEA, 

corrections are made to the point estimates of the efficiency. To this end, KDE-based 

efficiency scores are then derived. The KDE-based scores are then used to check 

whether the differences in efficiencies, represented by the point estimates, between the 
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different mines are statistically significant. From the bootstrap, confidence intervals of 

the efficiency scores are constructed and the resultant distribution for each mine 

estimated. The main question heing asked in these tests of significance is whether the 

identified differences in efficiency are statistically significant, particularly between the 

least efficient and the most efficient. 

To achieve these objectives, the chapter proceeds as follows. The data used in this study 

are discussed in Section 4.1. The DEA estimates of efficiency are reported and then 

analysed in Section 4.2.1. In addition, the separation of technical efficiency into scale 

and technical efficiency is performed. In Section 4.2.2, the estimation of the statistical 

properties using the bootstrap is undertaken. Confidence intervals are then constructed 

from these statistical estimates and an analysis of the main differences between DEA 

and bias-corrected DEA is conducted using the confidence intervals and also the Banker 

( 1993) statistics. The main results and conclusions drawn from them are discussed in 

Section 4.3. 

Finally, it must be emphasised that the efficiency scores are to be estimated from the 

input orientation. A key characteristic of a mine is that mine capacity and therefore 

maximum output is fixed at the design stage and can only change, and then only 

gradually, in the long term. Hence, output maximisation strategies can only occur when 

the mine is assumed to be operating below capacity. Even more importantly, the mine 

faces an externally determined output in that the price of its product is determined by 

the laws of world supply and demand through the trading which takes place at the 

London Metal Exchange (LME), New York Mercantile Exchange (NyMEx), the 

Chicago Board of Trade (CBOT) among many others. The one ever-present pressure in 
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the global mining industry is the necessity of keeping costs under tight control (Smith, 

2004). The logical objective for mine management would seem to be to minimise costs 

for a given output. It therefore seems reasonable given the conditions of Zimbabwean 

gold mines that cost-cutting strategies are a more plausible objective than output 

maximisation. At any rate, it may be easier for management to alter the input mix in 

order to change performance than adjust the scale of the operation.35 

The key results of ordinary DEA are that Zimbabwean mines suffer primarily from 

technical inefficiency as opposed to scale inefficiency. In addition, there is evidence that 

small mines generally exhibit increasing or constant returns to scale as opposed to 

relatively larger mines which tend to operate under decreasing returns to scale. When 

using bias-corrected results, however, the predominant component is scale inefficiency. 

The results also challenge the use of DEA whether ordinary or bias-corrected without 

correcting for context-specific issues such as the geology and, in Zimbabwe's case, the 

socio-political climate. 

4.1 Data 

All gold produced in Zimbabwe is sold to the central bank, the Reserve Bank of 

Zimbabwe (RBZ), which maintains and operates the country's sole gold refinery. It has 

already been mentioned that the price at which the gold is sold to RBZ is externally 

determined. Therefore, the mines face a single, internationally determined output price. 

35 Under constant returns to scale, input minimisation and output maximisation based efficiency measures 

coincide and produce the same efficiency estimates even though the adjustment path is different. This was 

one of the observations of Farrell (1957). 
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This allows the use of revenue as the output variable rather actually physical output. 

The data for this study were obtained from the Central Statistical Office of Zimbabwe 

for the year 1995, the only year for which a sufficiently large sample was available for 

the required variables. The data after 1995 were not deemed reliable, as political 

instability affected data surveys. An assumption is made here that the performance of 

mines in 1995 captures their peIiormance prior to that date and before the disruption 

caused by the political problems beginning in 1998and subsequently until the present 

time. These data, which are collected in connection with the Census of Production. are 

unpublished and confidential. To maintain the confidentiality of the mines, the mines 

were made anonymous and some observations whose identities could be inferred from 

the sizes of some of the variables, such as the labour force and output, were removed. 

The data set comprises observations of thirty-four gold mines each employing over ten 

employees. The reason for imposing this minimum number of employees is that the 

operations are expected to be broadly similar for mines with over ten employees, but 

less so when those with fewer than ten are included, as most of the small operations 

involve little more than gold panning. Despite differences in scale, all the mines in the 

sample have a mill for crushing the ore and a mineral processing plant for gold 

extraction. They also operate some type of earth-moving equipment for transporting the 

ore from the rock-face to the mills and processing plants on the surface. Together the 

thirty-four gold mines account for about 75 per cent of Zimbabwe's total gold output for 

the year 199536
. 

36 The initial data set, comprised ninety mines but some of them had missing data for one or more 

relevant variables. Also excluded from the ninety are those that had less than 10 employees. 
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Given these characteristics, a production technology relating five inputs and one output 

is specified. The inputs are labour, electricity, fuel (petrol and diesel), materials and 

service charges on capital equipment. These five inputs represent the relevant resources 

necessary to produce the gold output. The single output is represented by value of at

mine output given the price prevailing at the LME. 

Labour is represented by the number of full-time employees, comprising specialist staff 

such as mining and mineral process engineers and geologists, and non-mining specific 

ones such as plant fitters, plant operators and office workers including administrators 

and bookkeepers. In economic theory, the number of man-hours per time period is "a 

more accurate and preferred measure of labour input" as this takes into account the 

contribution of part-time employees as well (Coelli et aI, 2005). However, in the 

absence of data on man-hours, using a head count of full-time employees to represent 

labour has been a common practice in efficiency studies; see for example, Hawdon 

(2003), Ferrier & Hirschberg (1997) and Murillo-Zamorano (2001). 

The other four inputs are all measured in expenditure form. The use of value variables is 

based on an assumption that the mines face the same prices for these inputs, in which 

case the expenditures reflect the actual amounts committed to the production process. 

This is not an unreasonable assumption to make, as will soon become clear. 

Energy is divided into two components, expenditures on electricity and on oil-based 

fuels such as diesel and petrol. The two are treated as distinct inputs mainly because 

they tend serve different purposes. Electricity is used to power heavy fixed plant and 

equipment such as mills and concentrators while diesel and petrol power motorised 
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plant and equipment and light vehicles. Electricity is supplied by a state-owned utility, 

the Zimbabwe Electricity Supply Authority (ZESA)- in fact, the renamed ESC 

mentioned in Chapter 2. ZESA is responsible for all the generation and distribution of 

electricity in Zimbabwe. The prices charged by ZESA are regulated by the state through 

an energy regulator so the mines face regulated prices for electricity and are assumed to 

pay the same unit price. Petroleum fuels are imported by another state-owned 

monopoly, National Oil Company of Zimbabwe (NOCZIM). Although NOCZIM is 

only responsible for the importation of fuel, the retail prices which the end consumers 

eventually pay are also regulated and capped by an administrative unit under the 

Ministry of Energy which also includes representatives of the petroleum retailers. Hence 

the assumption of a single price is a reasonable one to make. 

Materials inputs are represented by expenditure on chemicals, explosives and other 

consumables which are mainly used in the transformation from gold ore to gold metal. 

Although the manufacturing and selling of these are carried out by a large number of 

companies, the assumption of a single price for each appears to be reasonable as 

Zimbabwe is a relatively small market for the global and multinational business of 

mining supplies. 

The last input is capital services, the measurement of which has been the source of 

much difficulty in empirical analysis. The main reason for this difficulty is that capital 

is a durable input, paid for in one period but its services are not. Instead they used over 

several subsequent production periods (unlike labour services and materials which are 

consumed in the production process during the period for which they are paid). There 

are many approaches to measuring capital and they essentially depend on the context 
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and data availahility. Where data on depreciation and current investment are available, 

the perpetual inventory method has been used to derive an estimate of the capital stock, 

although what ought to be measured is the flow of "capital services" rather than the 

physical stock. Often what is used is the capital stock, to infer capital services, 

measured in a variety of ways. 

Maximum capacity, measured orproxied in various ways, has been the most commonly 

used measure of capital stock. Fried et al (2000), for example, in a study of nursing 

homes used the bed capacity of each home as a proxy. LOthgren & Tambour (1999), in 

their study of efficiency of Swedish eye clinics, also used the bed capacity of the eye 

hospitals as a proxy for the capital stock of each clinic studied. Simar & Wilson (1998) 

used the maximum capacity of the power stations in their study as a proxy for capital. 

Unfortunately for this study, figures for maximum capacity were not available and 

therefore an alternative measure is implemented. 

In this study, a different approach is adopted. Instead of capacity, the expenditure on 

repairing and servicing plant and equipment is used. This measure captures the costs of 

maintenance of plant and equipment and other fixed structures. The justification for this 

measure is that the level of expenditure on repair and maintenance is roughly 

proportional to capital stock and therefore broadly reflects the size of the stock. In 

addition, servicing also depends on capacity utilisation and this also reflects the flow of 

capital services. 

The use of capital service costs, that is, repair and maintenance, as a proxy for the flow 

of capital services has been employed before. For example, in two studies of mining 
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efficiency, B ymes et al ( 1984) and B ymes & Hire (1987) used the cost of annually 

servicing the capital equipment (in dollars) as a proxy for one measure, among many 

other measures of capital services flows. These two studies are also much closer in 

context to this dissertation than the others mentioned above, as they involve mining. 

Caution is advised though, as the cost of service could reflect the vintage as well size of 

the capital stock. Hence older machinery will need more regular servicing than that 

which is newer. This is a potential distortion of the measure. This measurement of 

capital, at least, suffices in at least capturing the expenditure on capital equipment, 

whether that expenditure reflects vintage or usage. Those mines with older and, 

therefore, costly-to-maintain capital stock would find themselves facing high servicing 

charges. 

Having discussed the variables and the production technology, the next step is to 

illustrate the main characteristics of the sample. These are summarised by the 

descriptive statistics shown in Table 4.1 while the full raw data set is presented in 

appendix A. 

Table 4.1: Descriptive Statistics of the Data Set 

StatistiC Labour Materials Electricity Services Fuel Output 

Mean 476 6432569 1010305 1036598 312511 18462684 

Standard Del/latlon 625 17634051 1970171 2406494 465810 37100756 

Coefficient of VanaMn 1.31 2.74 1.95 2.32 1.49 2.00 

Minimum 12 13388 600 2200 1887 56819 

1st Quartile 74 95150 19615 16828 17502 609845 

Median 269 2636965 485198 691556 91520 9215733 

3rd Quartile 729 6005415 1392904 1122162 508845 23060077 

Maximum 3348 103405000 11326000 14187000 2228000 214695000 
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The key impression conveyed by Table 4.1 is of a relatively heterogeneous data set, 

characterised hy large lOR and standard deviations. The relatively large standard 

deviations, which are larger than the means, are indications of wide dispersion of the 

data, with a large number of observations located "far" from the mean. The substantial 

variability in the data is also indicated by the coefficients of variation- all are greater 

than 1-- with materials having the greatest degree of dispersion. 

4.2 Results and Analysis 

Efficiency estimates were derived using CRS and VRS DEA and the data described in 

Section 4.1, using the DEA programme routines written by Zhu (2002). The DEA 

efficiency scores are presented in Section 4.2.1. The second estimation procedure 

employed the bootstrap, bias-correction and smoothing of the DEA. The results of this 

are presented and discussed in Section 4.2.2. 

4.2.1 D EA Estimates 

The full individual results are detailed in Table 4.2 and the summary ofthe results of the 

DEA are presented in Tables 4.3. 

In Table 4.2, Column 1 presents the overall efficiency estimate (CRS), Column 2 the 

technical efficiency (VRS). Column 3 presents scale efficiency for comparison purposes 

since it can be deduced from the ratio of CRS to VRS efficiency scores, and Column 4 
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the output variable, an indicator of mine size, which is one of the most common 

. .. . 17 
methods of measunng sIze In economIcs' . 

Table 4.2: Ordinary DEA and Scale Efficiency Scores 

(1) (2) (3) (4) 
OMU CRSOEA VRSOEA Scale Efficiency Output (Proxy for Size) 

10000 10000 10000 214695000 

05765 05837 0.9877 35040000 

3 0.7642 07982 0.9574 33385946 

4 10000 1.0000 1.0000 39112673 

5 0.5866 0.5872 0.9990 23658000 

6 0.4723 0.5018 0.9412 21266308 

7 0.7528 0.7533 0.9993 33870309 

8 10000 1.0000 1.0000 29323000 

9 07768 07776 0.9990 31564000 

10 1.0000 1.0000 1.0000 18221000 

11 1.0000 1.0000 1.0000 37385000 

12 0.4110 04121 0.9973 14825000 

13 05425 0.5450 0.9954 15231000 

14 0.8295 0.8687 0.9549 17353684 

15 09977 1.0000 0.9977 11974146 

16 0.8931 0.9036 0.9884 9922572 

17 0.8495 08538 0.9950 7823101 

18 0.7034 0.7413 0.9489 1608697 

19 0.8528 08542 0.9984 11831478 

20 1.0000 10000 10000 799277 

21 06965 0.7211 0.9659 1446963 

37 Other measures would be some dimension of inputs such the size of the labour force. F0rsund et al 

(2006), for example, used the single input as a measure of size. Previous studies on mining, such as 

Byrnes & Hire (1987) used output and this is the convention followed here, although a potential weakness 

is that it may reflect the level of capacity utilisation. 
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(1) (2) (3) (4) 
DMU eRS DEA VRS DEA Scale Efficiency Ou1pu1 (Proxy for Size) 

22 10000 10000 1.0000 1430838 

23 10000 1.0000 1.0000 5007668 

24 10000 1.0000 1.0000 8508894 

25 09902 10000 0.9902 561431 

26 08568 0.8799 09737 305556 

27 07941 1.0000 0.7941 276000 

28 03606 0.9020 03998 82908 

29 06238 10000 0.6238 89267 

30 09881 09957 0.9924 755085 

31 1 0000 10000 10000 163660 

32 05576 0.9851 0.5660 69887 

33 03192 10000 0.3192 56819 

34 1.0000 1.0000 1.0000 86076 

Table 4.3 shows the descriptive statistics (over the sample) of the results of the two 

DEA programmes. 

Table 4.3 Descriptive Statistics of DEA Efficiency Scores 

(1) 
CRS DEA Esllmates (2) 

VRS DEA Estimates 

Mean 07999 0.8725 

Std. Dev. 0.2151 0.1724 

Median 0.8512 0.9904 

Minimum 0.3192 0.4121 

MaXimum 1.0000 1.0000 

(3) 
SCALE Efficiency 
Estimates 

0.9231 

0.1747 

0.9964 

03192 

1.0000 

A comparison of the two sets of DEA efficiency scores shows that they identify 

different "least-efficient" mines. Hence, the most inefficient mine using the overall 
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inefficiency measure is not necessarily the one identified as least technically efficient 

these being mine 33 when CRS is imposed and mine 12 under VRS. This difference can 

be explained by noting, from Chapter 3 and also Ganley & Cubbin (1992), that overall 

efficiency, which is obtained assuming CRS, is decomposable into technical efficiency 

and scale efficiency38. Hence, the reasons for overall inefficiency can be traced to either 

a non-optimal input or simply a poorly run operation, operating at a disadvantageous 

scale or a mixture of both. 

From Table 4.3, the mean efficiencies indicate that the average potential saving as 

measured by overall inefficiency is 20 per cent. The corresponding figure for adjusting 

the input mix (as measured by technical efficiency) is 12.75 per cent. Adjusting the 

scale of operations will potentially realise an improvement of 7.69 per cent in scale 

efficiency. An observation made by Simar & Wilson (1998) was that DEA (as with 

other nonparametric estimation methods) tends to place a large mass of ostensibly 

efficient DMUs at the upper bound of the distribution. 

As mentioned earlier, the overall efficiency score can be decomposed into two sub

categories, technical efficiency and scale efficiency. The next step is to separate the two 

components which make up overall efficiency and identify the characteristics of the 

estimated inefficiency, that is, if it is primarily due to scale or technical inefficiency. 

38 Ganley and Cubbin (1992) note that, with more appropriate information such as prices etc., overall 

productive efficiency (as opposed to just overall technical efficiency) can be decomposed into its 

allocative, technical, scale and congestion components. This is a suggestion worth pursuing were a more 

comprehensive data set to become available. 
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A DMU is judged to be primarily experiencing technical inefficiency, if the technical 

efficiency score is greater than the scale efficiency score. Of the sixteen mines identified 

as technical~v efficient, the estimates imply that five of them could increase their overall 

efficiency by adjusting the scale of their operations. However, of the rest of the mines 

which are identified as having technical inefficiency, that is are technically inefficient, 

eight suffer more from technical inefficiency than from scale inefficiency. The other ten 

are characterised by scale inefficiency. Hence, slightly more of the inefficient mines 

suffer more scale inefficiency than from technical inefficiency. 

An important observation from table 4.3, again with respect to the sample as a whole, is 

that mean scale efficiency, at 0.9231, is higher than mean technical efficiency at 

0.0.8725. This implies that, in general, when considering performance, the gold mines 

in the sample tend to suffer more from technical inefficiency than scale inefficiency. 

It must be noted that scale adjustments normally can generally made in the longer term, 

when investment in capacity augmentation can be done. At any rate, scale adjustments 

tend to be more difficult to implement as mine sizes take time to adjust, especially 

upwards and as such that they can only be implemented in the long run. In addition, 

there is also the issue of whether the deposit of ore can support the expanded capacity. 

Hence a [feasible] strategy of improving efficiency would involve identifying and 

addressing the causes of technical inefficiency in the short term. 

A number of previous studies-- Byrnes et al (1984,1987) and Fm-sund et al (2006) 

using nonparametric estimation, and Lundvall & Battese (2000), Mlambo (1993), Zhou 

(2000) using parametric methods -- have investigated the association between efficiency 
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and DMU size. Given their findings, it would also be of interest to investigate the 

relationship between efficiency score and mine size. This investigation is also justified 

by the results of visual analysis which indicates that both DMU 1, the largest mine, and 

DMU 33. the smallest one, are both technically efficient. In terms of overall efficiency, 

however, the largest mine is among the most efficient and the smallest is least efficient. 

A nonparametric statistic, the Spearman rank correlation coefficient between two mine 

characteristics, mine size and labour-output ratio, and the three estimates of efficiency is 

reported in Table 4.4. 

Table 4.4: Spearman Correlation: 

(Mine Characteristics and DEA Efficiency) 

(1) (2) 
OUTPUT LABOUR-OUPUT RATIO 

SCALE-OUTPUT 0.2129 -0.48715 

CRS-OUTPUT -0.0431 -D.40243 

VRS-OUTPUT -0.7421 -0.55062 

The null hypothesis to be tested is that there is no correlation between the estimated 

efficiency and the size of the mine. The critical [absolute] value for the degrees of 

freedom (32) at the 5 per cent level of significance is 0.43. From Table 4.4, the decision 

then is to not reject the null hypothesis that there is a no statistical relationship between 

the overall and scale measures of efficiency and output. The null hypothesis is rejected 

for the case of technical efficiency, however. In addition, the relationship between 

technical efficiency and output is observed to be negative. This infers that the smaller 

mines have higher technical efficiency than the larger mines. This result mirrors, to a 
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great extent, the findings of Hnsund et al (2006), where smaller DMUs were generally 

found to he more efficient than the larger ones. A possible explanation may be higher 

rates of capacity utilisation, although this can not be confinned in the present study 

owing to lack of additional infonnation. 

Column 2 of Table 4.4 reports the relationship with respect to the labour output ratio, 

again a min-level characteristic. The purpose of this test is to check whether high labour 

intensive mines are less efficient than those that have relatively lower ratios. This 

follows the method used by Byrnes et al (1984) and is presented here for comparative 

purposes with this study. This time, the null hypothesis is not rejcted only for overall 

efficiency. Hence there is no statistically significant relationship between the estimated 

overall efficiency and the labour-output ratio. The null hypothesis is, however, rejected 

for technical and scale efficiency. This implies that there are statistically significant 

relationships between both technical and the labour-output ratio. This relationship is 

negative, meaning that those gold mines with a low labour-output ratio are expected to 

be more efficient than those with high labour-output ratios. This result ought to be read 

with some caution as the labour-output ratio completely masks the role of capital and 

the capital-labour substitutability possibilities. 

A further test folJowing on from Byrnes et al (1984) is to group the mines into those that 

are overall efficient and those that are not. A common characteristic which can be 

detennined from the data set is the labour-output ratio. An analysis of the labour-output 

ratio shows that the labour output ratio of the inefficient mines is almost twice that of 

the efficient mines (1.85). Hence the locally inefficient mines are generally associated 

with a high labour-output ratio. 
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4.2.2 Bootstrap Analysis 

Having estimated the relative efficiencies of the gold mines, a reasonable question to 

ask is whether the differences in efficiency discussed in Section 4.2.1 are statistically 

significantly different from each other. This question is motivated in great part by the 

large number of technically mines. It has already been noted in Chapter 3 that the DEA 

estimators, in common with other nonparametric estimators, are biased (upwards). The 

estimated efficiencies, therefore, are expected to be biased, generally upwards39
, and 

any conclusions drawn from them must be tempered with this knowledge. It has also 

been noted in Section 4.2.1 that the main inefficiency is technical rather than scale 

inefficiency. An interesting and worthwhile exercise, after correcting for bias, is to 

check whether this preponderance of technical inefficiency still holds. 

The investigation of bias and differences in efficiencies observed, require knowledge of 

the statistical properties of the estimates. It has already been noted that the statistical 

properties of the results obtained by DEA are unknown and as a result no inferences can 

be made on the significance of any differences between or among the estimated 

efficiencies. Estimates of the statistical properties can however be made and the 

bootstrap is one way to approximate the distribution and estimate the statistical 

properties of the indices obtained from a seemingly deterministic analysis. As 

mentioned in the literature review, the use of the bootstrap is fraught with difficulties 

and potential controversies, so again most conclusions must be used with caution. A 

W See Ferrier & Hirschberg (1997), Gonzalez & Miles (2002) and Hawdon (2003) for examples where 

some observations have negative biases. 
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reflection of these difficulties is the very slow rate at which the bootstrap has been 

implemented in relation to the amount of DEA work done. 

The bootstrap and smoothing routines used in this study were implemented using a set 

of Visual Basic macros40
. To test the sensitivity of the smoothed bootstrap method, the 

automatic bandwidth selection method proposed by Silverman (1986) was employed. 

Tables 4.5 and 4.6 report the results for individual mines and summary statistics of the 

both the original and the bootstrap efficiencies. 

Table 4.5: DEA and Bias-corrected DEA Efficiency Scores 

DMU 

2 

3 

4 

5 

6 

8 

9 

10 

11 

12 

13 

(1) 
CRS DEA 
Estimate 

1.0600 

0.5765 

0.7642 

1.0000 

0.5866 

0,4723 

0.7528 

1.0000 

07768 

10000 

1.0000 

0.4110 

0.5425 

(2) 
BC<41_ 
CRS 

0.7837 

0.5288 

0.7049 

0.7326 

0.5374 

04449 

0.6675 

0.6693 

0.7145 

0.8879 

0.7758 

0.3809 

04986 

(:i) 
CRS 
Bias 

0.2163 

0.0477 

00593 

0.2674 

0.0492 

0.0274 

0.0853 

0.3307 

0.0623 

0.1121 

02242 

0.0301 

00439 

(4) (5) 
VRS DEA BC-VRS 
Estimate 

1.0000 

0.5837 0.5540 

07982 0.7593 

1.0000 0.7826 

0.5872 0.5582 

0.5018 0,4885 

0.7533 0.7149 

1.0000 0.7967 

0.7776 0.7389 

1.0000 0.9293 

1.0000 0.8143 

0.4121 0.3911 

05450 05198 

[6F 
VRS 
Bias 

0.0297 

0.0389 

0.2174 

0.0290 

0.0133 

0.0384 

0.2033 

0.0387 

0.0707 

0.1857 

0.0210 

0.0252 

(7) BC
Scale 
Estimate 

0.9211 

0.9255 

0.7459 

0.9222 

0.9439 

0.8899 

0.6980 

0.9254 

0.8942 

0.7957 

0.9310 

0.9219 

40 The macros were written by Christopher Hammond of the Business School, University of Hull, United 

Kingdom. 

41 BC- bias-corrected. 
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II) (2) (3) (4) (5) (6) -(7) BC-

CRS DEA BC"- CRS VRSDEA BC-VRS VRS Scale 
DMU Estimate CRS Bias Estimate Bias Estimate 

14 08295 08007 6-0288 08687 a.85M ()0183 - - [9523 

15 0.9977 09257 0.0720 1.0000 0.9604 0.0396 09304 

16 08931 07915 01016 0.9036 0.8558 0.0478 0.8861 

17 08495 0.8013 0.0482 0.8538 0.8270 0.0268 0.9488 

18 07034 0.6555 0.0479 07413 0.7132 0.0281 09239 

19 08528 0.8113 0.0415 0.8542 0.8226 0.0316 0.9512 

20 10000 07342 0.2658 1.0000 0.8085 01915 0.7575 

21 06965 06721 0.0244 0.7211 0.7017 0.0194 0.9518 

22 1.0000 0.8412 0.1588 1.0000 0.8531 0.1469 0.8344 

23 1.0000 0.8858 0.1142 1.0000 0.9033 0.0967 0.9010 

24 10000 0.8900 0.1100 1.0000 0.9021 0.0979 0.9013 

25 09902 0.8813 0.1089 1.0000 0.9104 0.0896 0.8966 

26 0.8568 0.7772 0.0796 0.8799 0.8182 0.0617 0.9009 

27 0.7941 07392 0.0549 1.0000 09050 0.0950 0.7810 

28 0.3606 0.3395 00211 0.9020 0.8530 00490 0.4034 

29 0.6238 0.5773 0.0465 1.0000 0.7828 0.2172 0.5797 

30 0.9881 09383 0.0498 0.9957 0.9451 0.0506 0.9476 

31 1.0000 0.7715 0.2285 1.0000 0.8262 0.1738 0.7977 

32 0.5576 0.5183 0.0393 0.9851 0.9260 0.0591 0.5763 

33 0.3192 0.2995 00197 1.0000 0.8474 0.1526 0.3010 

34 1.0000 0.6906 0.3094 1.0000 0.7675 0.2325 0.7205 

The most obvious observations in Table 4.5, compared to Table 4.2, are the reductions 

in efficiency scores for all the efficient mines, with some dramatic changes in some 

cases where mines which once were fully efficient are now less efficient than mines 

which were not. 

Given these apparent changes in efficiency scores after bias-correction, a good starting 

point is to test whether the bias in the DEA is statistically significant or not. Following 
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the work by Boame (2001), the statistical significance of these changes can be analysed 

by testing the difference between the mean of the DEA estimates, denoted SDEA below, 

and the mean of the bias-corrected bootstrap DEA scores, denoted eBC • 

Fonnally, this test is stated as follows:-

Ho: SDEA - eBC = 0 

HI: eDEA - eBC -t 0 

a =0.05,2 tailed test. 

The critical value of the t statistic is 2.042 at the 5 per cent level of significance. With a 

calculated t-value of2.4159, the null hypothesis that the means are the same is rejected. 

Hence, the conclusion is that the bias, on average across the sample, is significant and 

the bias-corrected DEA efficiency score are statistically different from the DEA 

estimates. 

Another point which requires attention, given the changes caused by bias-correction, is 

whether the ranking of the DMUs, in tenns of efficiencies, is maintained between DEA 

and bias-corrected DEA. F0rsund et al (2006), for example, observed that bias

correction resulted in some significant changes in rankings, this change resulting from 

the different biases of the scores for each DMU which tended to be higher for some of 

the efficient DMUs. To this end, this study will check the correlation between the 

rankings ofthe two sets of results, that is, the DEA and bias-corrected DEA. A rank 

correlation coefficient (the Speannan coefficient) and a scatter plot are employed to 

investigate this. Figure 4.1 shows a plot of DEA against bias-corrected DEA. 
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Figure 4.1: Scatter Plot of Bias-corrected DEA against DEA (CRS). 

The Spearman rank correlation coefficient is 0.9338 and indicates a strong and positive 

relationship between the two sets of results. This positive relationship is significant at 

the 5 per cent level (critical value of 0.43 for 32 degrees of freedom). 

From Figure 4.1, it is obvious that most of the misalignment of the ranks occurs at the 

upper bound of the distribution, confirming the assertion by Simar & Wilson (1998) that 

it is at the upper bound that the bias (and inconsistency) of DEA occurs. In particular, 

the relationship can be split into two, with a strongly correlated part and a sub-sample at 

the upper bound where the relationship breaks down. F0rsund et al (2006) did not 

measure the degree of correlation between the DEA and the bias-corrected DEA but did 

note these large changes at the upper bound. 
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The next point to consider is how the rankings compare when VRS is imposed. After 

all, VRS results in even more fully efficient DMUs than CRS. The Speannan rank 

coefficient is now 0.8982, which indicates a positive but slightly weaker relationship. 

This again is a statistically significant at the 5 per cent level. Figure 4.2 shows the 

relationship between the initial DEA scores and the bias-corrected ones when VRS is 

imposed. 
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100 0.5000 0 
CJ 

rJl 0.4000 « 
~ 0.3000 
Q 
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0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 

Bias-corrected DEA (VRS) 

Figure 4.2: Scatter Plot of DE A against Bias-corrected DEA (VRS) 

Under VRS, ranking the mines by their bias-corrected efficiencies also results in similar 

distributional changes at the upper end. Elsewhere, particularly at the lower end of the 

distributions, that is, for the relatively more inefficient DMUs the rankings are 

maintained. Again, as with CRS, the large number of efficient units in the initial DEA 

run causes the breakdown of the linear relationship between the two sets of results. As a 
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result of bias-correction, some mines are ranked higher than mines which were earlier 

ranked higher than them. 

Another observation from Figure 4.2 which is worth mentioning, especially when 

compared to Figure 4.1, is that the observations are grouped relatively more closely 

together in Figure 4.2. This means that the VRS distribution of results is less widely 

dispersed than the CRS. This is to be expected as the VRS technology also more tightly 

envelops the observations than CRS. 

One of the important uses of bootstrapping DEA scores and bias-correction is the 

estimation of the statistical properties of DEA. These properties are important when 

carrying out further statistical tests and for making inferential analysis. With the 

relevant information, confidence intervals can be estimated. In appendix B, the 95 

confidence intervals of both CRS and VRS scores centered on the bias-corrected point 

estimate are reported. The 90 per cent confidence interval is shown in appendix C. 

The first point to note is that the confidence intervals are generally wider the higher 

estimated efficiency scores, that is, the relatively efficient mines tend to have wide 

confidence intervals with the reverse being true for the lower the efficiency scores. In 

fact the upper bound for some of them is greater than 1. Similar value confidence 

intervals for efficient DMUs were observed by Simar & Wilson (1998) in their 

application of the bootstrap to a sample of Illinois power stations. 

Ferrier & Hirschberg (1997) observed some negative biases in the results after the bias

correction, indicating the potential for the upper bounds of the confidence intervals 

being greater than 1 for efficient DMUs. The widths of the confidence intervals have 
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implications for statistical precision. Wider confidence interval imply lower statistical 

precision and, conversely, narrower ones higher precision. 

In terms of hypothesis testing, there have been some difficulties in past studies in 

making clear inferences about the efficiency estimates where some of the observations 

have such wide intervals. This is particularly so when the intervals of more than one 

DMU overlap; in which case the hypothesis that the point estimates of two or more 

different DMUs are statistically the same cannot be rejected. For example, in the study 

of tax offices in Norway, F0rsund et al (2006) could only reject a null hypothesis of "no 

differences between the DMUs" when comparing the lowest quarter and the highest 

quarter of the efficiency scores. This meant that for the other half of the sample, the null 

hypothesis could not be rejected because of the overlapping intervals. A similar finding 

was made by Gonzalez & Miles (2002) in a study of Spanish public services. They 

found that since confidence intervals of most observation overlapped, the null 

hypothesis could not be rejected, despite having statistically significantly different bias

corrected point estimates 

An explanation of the confidence interval has already been given in Chapter 3 but it 

may help to refresh this in the light of appendix B. The 95 per cent confidence interval 

for the point estimate of DMU 27, with a bias-corrected point VRS estimated score of 

0.9050, is given by [0.8113,1.2224]. This means that in repeated sampling, we are 95 

per cent confident that this interval will contain the point true estimate. 

A hypothesis that there is no difference in performance between, for example, DMU 27, 

and DMU 15 with a bias-corrected local technical efficiency score of 0.9604, cannot be 
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rejected. This is because their intervals overlap (0.8113, 1.2224) and (0.9161, 1.1285); 

that is, the lower end of the interval for DMU 15 falls in the interval of DMU 27. 

In the literature, some researchers have, as noted above, extended the analysis of 

confidence intervals by inspecting and taking note of which mines can be considered 

significantly less efficient than the VRS best-performing mine, in this case DMU 15. 

That is, which mines do not have confidence intervals which overlap with that of DMU 

15? Using this method, the seven worst-performing mines can be regarded as 

significantly less efficient than the DMU 15. In addition, DMU 14 which lies somewhat 

in the middle of the distribution can also be considered among those that are performing 

significantly worse than DMU 15. Out ofa sample of thirty-four mines,just under 21 

per cent can be inferred to be statistically less efficient than the best-performing mine. 

The rest cannot be regarded as statistically less efficient than mine 15, using the 

confidence intervals for inference, however. 

With the results ranked in ascending order of the bias-corrected VRS score, another 

observation is that the confidence intervals are much wider for the middle part of the 

distribution and much narrower for the lower end (the least efficient mines) of the 

distribution. The likelihood of committing inferential errors, both type I and type II are 

highest in this middle band of results. The upper part in turn contains markedly 

narrower confidence intervals than the middle part of the distribution although not as 

narrow as the lower part. The mines which have DEA efficiency scores equal to 1 

(VRS), which are mostly located in the middle of the distribution, also have the widest 

confidence intervals. For example, DMU 1 has an interval of (0.5689, 1.9110). This is 

in comparison to the least efficient DMU, DMU 12, which has an interval of (0.3707, 
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0.4540) or the best perfonning DMU, DMU 15, which has an interval of (0.9223, 

1.1262). Similar distributional characteristics and confidence interval widths were 

observed by Forsund et al (2006) in the tax offices study. 

The next point to consider and discuss is scale efficiency. As noted, this is obtained as 

ratio of overall to technical efficiency and by construction cannot be greater than 1. 

Table 4.6 shows a decomposition of the bias-corrected DEA scores into pure and scale 

efficiencies. In Column 4 output is reported. Table 4.7 reports the summary statistics of 

the results in Table 4.6 

Table 4.6: Decomposing Technical of Efficiency 

(1) (3) 
-- ------ -----

(2) (4) 

DMU BC-CRS DEA BC-VRS DEA BC-SCALE OUTPUT 

0.8854 
- - -------- --------

0.7837 0.8433 214695000 

0.5288 0.5540 0.9211 35040000 

3 07049 0.7593 0.9255 33385946 

4 07326 07826 0.7459 39112673 

5 0.5374 0.5582 0.9222 23658000 

6 04449 0.4885 0.9439 21266308 

06675 0.7149 0.8899 33870309 

8 06693 0.7967 0.6980 29323000 

9 07145 0.7389 0.9254 31564000 

10 0.8879 0.9293 0.8942 18221000 

11 07758 0.8143 0.7957 37385000 

12 0.3809 0.3911 0.9310 14825000 

13 0.4986 0.5198 0.9219 15231000 

14 0.8007 0.8504 0.9523 17353684 

15 0.9257 0.9604 0.9304 11974146 

16 0.7915 0.8558 0.8861 9922572 

17 0.8013 0.8270 09488 7823101 
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~ ~ 

(11 121 (3) (4) 

DMU BC-CRS DEA BC-VRS DEA BC-SCALE OUTPUT 

18 0.6555 0.7132 0.9239 1608697 

19 08113 08226 09512 11831478 

20 07342 08085 0.7575 799277 

21 06721 07017 0.9518 1446963 

22 08412 08531 0.8344 1430838 

23 0.8858 09033 09010 5007668 

24 08900 0.9021 0.9013 8508894 

25 08813 0.9104 0.8966 561431 

26 07772 0.8182 0.9009 305556 

27 07392 09050 07810 276000 

28 0.3395 0.8530 0.4034 82908 

29 05773 0.7828 05797 89267 

30 09383 09451 09476 755085 

31 0.7715 08262 0.7977 163660 

32 0.5183 09260 0.5763 69887 

33 02995 0.8474 0.3010 56819 

34 0.6906 0.7675 0.7205 86076 

--- . --- --- - -.------~. 

Table 4.7 Descriptive Statistics of the Bias-Corrected DEA Estimates 

8las-corrected Blas-corrected Bias-corrected Scale 
eRS VRS 

Mean 0.6961 0.7857 0.8295 

Std. Dey. 0.1689 01385 0.1580 

Median 0.7334 0.8204 0.8988 

Minimum 0.2995 0.3911 0.3010 

Maximum 0.9383 09604 0~9523 

The mean ofthe bias-corrected bootstrap technical efficiency score is 0.7857 while the 

median is 0.8204. All the results are lower after correcting for bias. Bias-correction has 
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changed the estimates so much that one can infer higher potential savings on input 

usage than using DEA. 

From tahle 4.6, it is observed that with bias-correction, just as was observed with the 

results reported in Table 2.5, the observed maximum scale efficiency score is reduced 

from 1 to 0.9383 and 0.9604 for overall and technical efficiency respectively. The 

minimum efficiency score shows marginal declines, from 0.3192 in Table 4.2 to 0.3010 

in Table 4.7. 

Whereas, with ordinary DEA, efficient mines with an estimated efficiency score of 1 

were identified, with bias-correction, there no longer are any fully efficient mines. 

Consequently, instead of being technically efficient units, they will now be referred to 

as best-performing units (F0rsund et aI, 2006). 

The initial observation is that the mean of bias-corrected technical efficiency is higher 

(0.9604) than that of the bias-corrected scale efficiency (0.9525). This implies that, in 

terms of performance, the primary cause of low technical efficiency is operating at the 

"wrong scale", a change from DEA where the implication was that the primary reason 

for low overall efficiency was technical inefficiency. 

The result of correction for bias also some causes significant individual changes. Out of 

the thirty-four mines, sixteen now have individual technical efficiency scores which are 

greater than the corresponding scale efficiency scores, implying that individually for 

most mines, scale inefficiency is still the primary cause of overall inefficiency. It must 

be recalled that the corresponding figure was five mines in Section 4.2.1. However, for 
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the remaining eighteen mines, local technical inefficiency is now the primary cause of 

technical inefficiency compared to only one in the initial DEA run. 

Another characteristic of the productive DMU worth analysing is the relationship 

between mine size and estimated efficiency score. The justification for investigating the 

relationship between efficiency DMU size is that if a statistically significant relationship 

between the size of an operation and its efficiency exists, larger units are probably 

expected to be more efficient than smaller units. This would seem to be a logical 

outcome for operations taking place at depths and necessitating movements of large 

amounts of rock. Although caution needs to be taken when making unqualified 

comparisons between the nonparametric results of different samples, it is a commonly 

observed feature of VRS DEA that correcting for bias tends to result in the relatively 

smaller DMU being regarded as better performing than larger ones, as has been reported 

by Forsund et al (2006) and Veiderpass (1993), among others. 

Table 4.8 shows the Spearman rank correlation coefficients of the efficiency estimates. 

In addition to the size characteristic, the relationship between efficiency estimates and 

the labour-output ratio is also measured and tested. 

Table 4.8: Spearman Correlation: 

(Mine Characteristics and Bias-corrected Efficiency) 

SCALE-OUTPUT 

CRS-OUTPUT 

VRS-OUTPUT 

OUTPUT 

0.0503 

-0.3622 

-0.7736 

LABOUR-OUTPUT 

-0.3470 

0.0828 

0.0553 
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The results are somewhat different from those reported in Table 4.4. At the 5 per cent 

level of significance, the null hypothesis of the Speannan coefficients being statistically 

equal to zero is not rejected, except for that between technical efficiency and output. 

This confinns the results reported in F0rsund et al (2006) and Veiderpass (1993), 

although they did not report the Speannan coefficients but indicated there was a 

correlation between output and technical efficiency. There is no significant correlation 

between any of the three efficiency scores and the labour-output ratio, again, a 

significant departure from findings reported in Table 4.4. Therefore, the inference to be 

drawn is that the smaller mines are more likely to have higher technical efficiency than 

large ones. 

Following F0rsund et al (2006), a sub-sample of the best-practice mines is selected. The 

characteristics, in this instance the mean technical effcieincies, of this sub-sample are 

then compared to the sample characteristics. F0rsund et al (2006) selected the upper 

decile of VRS bias-corrected estimates but also suggested an alternative of selecting the 

upper third. Given the sample size in this study compared to that in F0rsund et al (2006) 

study (thirty four as opposed to ninety-eight), the upper third (eleven mines) is selected 

as the best-practice sub-sample. 

Using the bias-corrected VRS scores, it is observed that the best practice mine, on 

average, uses 2 per cent more labour than the sample average. It also spends 42 per cent 

more on materials and 13 per cent less on fuel. However, it spends 21 per cent less on 

electricity and 40 per cent less capital services. At the same time it produces 25 per cent 

more output. Given the grouped nature ofthe results as illustrated in Figure 4.2, an 
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obvious question to ask is whether the differences between these two groups is 

statistically significant. 

Using the Banker (1993) test, the F-statistics for the difference between the estimated 

bias-corrected technical efficiency scores between the two groups of mines is 

calculated. The test is based on the assumption of a half-nonnal distribution, i.e. it 

considers the positive half of the nonnal distribution, the so-called sum of squares ratio 

test (Banker et ai, 2004). The motivation for this assumption is that by using the 

bootstrap which re-samples a thousand times, the size of the sample increasingly gets 

large enough to justify the approximation to a nonnal distribution. The critical value at 

5 per cent and (34,11) degrees of freedom is 2.16. The calculated F-statistic is 2.7617. 

Hence the null hypothesis that variance of the estimated efficiency of the best -practice 

sub-sample is not significantly different from the whole sample is rejected. The 

alternative that the mean efficiency score of the best-practice sub-sample is higher than 

that of the whole sample is accepted. The corresponding F-statistics is 2.1975 for 

overall efficiency (CRS) which is also significant at the 5 per cent level. Hence there is 

a statistically significant difference in estimated efficiency between the upper third of 

the distribution of results and the whole sample. 

Another test, this time based on the nature of returns to scale is tested. Table 4.9 reports 

the results of testing the null hypothesis that there is no difference between the two 

groups as identified by the nature of returns to scale against the alternative that they are 

different. 
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Table 4.9 Hypothesis Testing: Nature of Returns to Scale 

BeCRS BC-VRS 

CRS-IRS 11 1 141 114504 50750 

CRS-DRS (11.91 100287 20.8466 

IRS-DRS (14.91 08758 41077 

The null hypothesis is denoted by the order of the relationship in the first column, with 

the degrees of freedom in parenthesis. Hence, for CRS-IRS tests, the test is stated thus:-

HI: (JCRS = (JIRS 

a = 0.05 

The null hypothesis is rejected for all the cases except for the difference between IRS 

and DRS when CRS is imposed. Hence, CRS technology has allowed the distinction 

between constant and non-constant returns to scale. It has not been able to differentiate 

between increasing and decreasing returns to scale, regarding the efficiency scores as 

not statistically different. 

It has already been mentioned that the fundamental contribution of the bootstrap is the 

ability to correct for the bias in results that are inherent in nonparametric methods and 

the estimation of statistics such as standard deviations. The standard deviation and the 

point estimates can be used to test for difference between means. With the bias having 

been corrected, a pertinent question may now be are there any significant differences 

between the best-performing DMUs and others, at the lower end, the middle and upper 
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end of the distribution? The relevant standard deviations have already been reported in 

table 4.5. This study implements a set of alternative tests of hypothesised differences in 

efficiency. 

DMUs I and 31 are mines which were judged efficient in the initial DEA run with VRS 

imposed but whose estimated technical efficiencies significantly reduced from 1.000 to 

0.8505 and 0.8944, respectively. The test here is to check whether this reduction is 

statistically significant by comparing their post bias-correction efficiencies to that of the 

best-performing DMU, mine 15. Using VRS results, the test was conducted for 

differences in the point estimates of a number of mines in relation to mine 15, the best-

performing mine in terms of bias-corrected score. 

Formally, this test, for mine 1, is as follows. 

a = 0.05,2 tailed test, 10.05 =1.96 

815 = 0.9604, 81 =0.8854. 

The calculated 1- statistic is 6.9489. The null hypothesis is thus rejected in favour of the 

alternative. Hence mine 15 is statistically more efficient than mine 1, despite the two 

having been identified as similarly efficient in the initial DEA run. 

Following the same scheme of hypothesis testing, the test is repeated for four more 

DMUs each with different characteristics. Mine 12 is the poorest performing mine with 

a technical efficiency score of 0.3809, while mines 28,30 and 32 have a DEA 
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efficiency score less than 1, but relatively high at 0.9020, 0.9957 and 0.9851 

respectively. It must be noted that using the confidence intervals in Table 4, almost all 

the DMUs would have been deemed as well-perfonning as mine 14. The corresponding 

t- statistics are listed in Table 4.10. 

Table 4. to: Testing Hypothesis 

(Comparing VRS Efficiency of Best Performing Mine with Others) 

DMU Bias-corrected DEA t-statistic 
EffiCiency Score 

12 0.3809 286.2844 

28 0.9020 37.1129 

30 0.9957 5.8153 

32 0.9851 9.0617 

The main observation is that, at the 5 per cent level of significance, the estimated 

efficiency score of mine 15 is statistically different from the mines listed. Hence, mine 

15 is significantly more efficient than all the other mines listed in Table 4.10. 

Finally, a comparison of the eleven best practice mines is also made. Specifically, the 

aim is to find how many of the best practice units in sub-sample chosen above are not 

peers in the DEA, that is have a DEA score of 1. Using VRS, three out ofthe eleven are 

not peers. These are mines 3,5 and 11. As Fersund et al (2006) noted, the 

implementation of bias-correction identifies a different set of DMUs which ought to be 

role models. 
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A final question to consider, given that scale efficiencies have been computed and their 

impact on the overall efficiency discussed, is whether it is possible to identify the nature 

of returns to scale? It has already been shown, for example, that sixteen mines (after 

bias correction) are primarily scale inefficient. What is unknown, at this stage, is the 

nature of the returns to scale. In other words where on Figure 3.4, for example, the 

individual mines are likely to be located, or in the context of the four production 

possibility sets, in which does each individual DMU appear? 

In Table 4.11 the nature of returns to scale is reported in column 4. As discussed in 

Chapter 3, the nature of returns to scale is inferred from the CRS DEA programme. 

Recall that when CRS is imposed, the ~ constraint is non-binding. It only becomes 

binding under variable returns to scale (VRS), non-increasing returns to scale (NIRTS) 

and non-decreasing return to scale (NDRTS). 

Table 4.11: Nature of Returns to Scale 

- ---- - -- - - -- ------~ 

(3) -~- ------(4) -----~---- -

(1) (2) (4) 
HICRS HINIRS LA,CRS RETURNS TO OUTPUT 

SCALE 

OMU 
L.A,NIRS 

0.084(f 0.0840-
----~-----.--------- ----

56819 33 1.0000 IRTS 

32 04165 0.4 165 1.0000 IRTS 69887 

28 0.0644 0.0644 1.0000 IRTS 82908 

34 10000 1.0000 1.0000 CRTS 86076 

29 0.0024 0.0024 1.0000 IRTS 89267 

31 1.0000 10000 1.0000 CRTS 163660 

27 0.0702 0.0702 1.0000 IRTS 276000 

26 1.2601 1.0000 1.2601 ORTS 305556 

25 0.1323 0.1323 1.0000 IRTS 561431 

30 0.9474 0.9474 1.0000 IRTS 755085 

20 1.0000 1.0000 1,0000 CRTS 799277 
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(1) (2) (:3) (4) (4) 
HI CRS HI NIRS ~).,CRS RETURNS TO OUTPUT 

SCALE 

DMU 
~ ).,VIRS 

22 1 0000 10000 1.0000 CRTS 1436838 

21 00379 0.0379 10000 IRTS 1446963 

18 00430 00430 1.0000 IRTS 1608697 

23 1.0000 10000 1.0000 CRTS 5007668 

17 02044 0.2044 1.0000 IRTS 7823101 

24 1 0000 10000 1.0000 eRTS 8508894 

16 03220 0.3220 1.0000 IRTS 9922572 

19 0.9114 0.9114 1.0000 IRTS 11831478 

15 03104 03104 1.0000 IRTS 11974146 

12 1.0228 1.0000 1.0228 DRTS 14825000 

13 04209 0.4209 1.0000 IRTS 15231000 

14 1.8784 1.0000 1.8784 DRTS 17353684 

10 10000 1.0000 1.0000 CRTS 18221000 

6 2.1367 1.0000 2.1367 DRTS 21266308 

5 06538 0.6538 1.0000 IRTS 23658000 

8 10000 10000 1.0000 CRTS 29323000 

9 09076 0.9076 1.0000 IRTS 31564000 

3 1.0490 10000 1.0490 DRTS 33385946 

13243 1.0000 1.3243 DRTS 33870309 

2 7.7929 1.0000 7.7929 DRTS 35040000 

11 10000 1.0000 1.0000 CRTS 37385000 

4 1.0000 1.0000 1.0000 eRTS 39112673 

1.0000 1.0000 1.0000 eRTS 214695000 

It can be see that from Table 4.11, that the number of mines operating under constant 

returns to scale is eleven. Of the remaining twenty-three mines which are not operating 

under constant returns to scale, seven are under decreasing returns to scale and sixteen 

are under increasing returns to scale. 
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Now that the nature of the returns to scale has been identified for each mine, a useful 

exercise is to check if there is a pattern to the characteristics of the individual mine and 

the nature of returns to scale. Specifically, this involves the investigating whether, as 

Byrnes et al (1984) found, there is a relationship between the nature of the returns to 

scale and the size of the mine. 

From Table 4.11, it is can be observed that the smaller mines are generally operating 

under increasing or constant returns to scale. The smallest mine, DMU 33, is under 

increasing returns to scale. Of the next eight smallest, five are operating under IRTS and 

three CRTS. There is one relatively small DMU, mine 26, which exhibits decreasing 

returns to scale. This is different from the results obtained by Byrnes & Hire (1987) 

where it was the middle-sized mines rather than the "low output" ones which were 

experiencing increasing returns to scale. The larger mines tend to exhibit either constant 

or decreasing returns to scale, although of there are three relatively large mines which 

are operating under increasing returns to scale. The largest mine, DMU 1, is identified 

as operating under decreasing returns to scale. 

The bootstrap is not only useful for enabling the calculation of bias-corrected efficiency 

scores. The issue of statistical precision has already been briefly commented on. It has 

been noted that there are too many overlapping intervals to reject a null hypothesis of 

"no difference" in efficiency scores between a large number of mines. Two other 

reviewed studies, Gonzalez & Miles (2004) and F0rsund et al (2006) commented on this 

result and inferred that where the confidence intervals overlap, the null hypothesis of no 

statistical difference in efficiency between the two DMUs could not be rejected. 
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4.3 Concluding Remarks 

Two sets of conclusions can be drawn from these results. The first set arises from the 

initial DEA run and the second from bias-corrected DEA. 

First, having estimated the efficiencies using DEA, it can be seen that there is a wide 

range of inefficiency in gold mining in Zimbabwe, with a minimum overall efficiency 

estimate of 0.3192 and a corresponding value of 0.4121 for technical efficiency. Both 

DEA programmes identify a number of fully efficient mines, 32 per cent are deemed 

fully efficient by CRS and 47 per cent by technical efficiency measure. The mean 

values 0.7799 for overall and 0.8725 for technical efficiency indicate potential input 

savings of 22 per cent and 12.75 per cent respectively. In terms of the components of 

overall efficiency, the scale efficiency estimates are generally higher than the technical 

efficiency estimates, implying that a typical Zimbabwean gold mine principally suffers 

from technical inefficiency. 

Second, although it has been suggested above that, using DEA, overall the mines tend to 

suffer primarily from technical inefficiency, both sources (technical and scale) of 

inefficiency are present. There is therefore a case for gradual adjustments in the 

operations of gold mining to achieve efficiency, first by addressing technical 

inefficiency in the short run and scale inefficiency in the longer term. 

Third, it has been noted that there is some evidence of a negative relationship between 

the scale of operations, as measured by output, and the estimated technical efficiency 

scores. There is no statistically significant correlation with respect to overall or scale 

efficiency. This negative relationship between mine size and technical efficiency 
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implies, therefore, that many small mines are judged as more efficient or better

performing than larger ones. It needs qualifying that output is but one way of measuring 

the size of an operation. In fact, output may be misleading as there may exist short-tenn 

problems in achieving maximum capacity. A plausible extension of the analysis would 

he to gather more information about the geological and, possibly, regional 

characteristics of the mines. This would help identify whether there are any mine

specific factors which help determine overall efficiency. In particular, how has the 

political problems in Zimbabwe, as described in Chapter 2, impacted on management 

decisions and choices. Clearly more data would need to collected to answer this 

question but it is a valid question nevertheless. 

It must be noted in passing that Byrnes et al (1984) also used the labour-output ratio to 

represent a mine-specific characteristic and declared that high labour-output mines had 

low efficiencies. There are potential pitfalls with using this approach. Recall that the 

objective is to measure efficiency which is as mUlti-input concept. The labour-output 

ratio is a partial measure of a firm's performance and as such only gives a partial, and 

probably not very accurate, insight. Hence, while the labour-output ratio was analysed 

in Tables 4.4 and 4.8, mostly as comparative analysis to Byrnes et al (1984), the limited 

usefulness of the approach means that for the purposes of this dissertation, this will not 

be pursued and no inferences will be made on the basis of the results thereof. 

A common policy pursuit by the authorities in Zimbabwe, although only perfunctorily 

mentioned in the policy strategies referred to in Chapter 2, is to encourage the existing 

gold mines to expand their existing operations to compete (in size) with those in South 

Africa and elsewhere in Africa. The results from this study imply that, in fact, what the 
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authorities and the industry may need to do is adopt a mix of policies. In particular, 

given that it is the smaller mines which are generally more efficient than larger ones, the 

solution to improving performance may lie elsewhere. There may be mine-specific 

characteristics such as the geology, which may favour smaller operations in Zimbabwe. 

In this case, the focus of mining policy may be to encourage investment in technology 

which is suitable for smaller scale mining, relatively to other mining economies. 

There are those mines, however, which primarily suffer from scale inefficiency. 

Measures will have to be adopted to adjust the scale of operations. In many cases, this 

may require investment in capital if the adjustment is to expand the scale and this can 

only be down in the medium to long term. In some cases, particularly where there are 

contiguous mining operations, the merging or combining of operations could equally be 

effective. In this case, it has been observed that most of the small mines are operating 

under increasing returns to scale. This implies that the scope for improving scale 

efficiency lies in increasing the scale of operation for small mines and reducing them for 

the larger ones. Again, there are some exceptions to the rule, as reported in table 4.9. 

The second set of observations is drawn from the bootstrap and bias-corrected 

estimates. First, it is interesting to note that, although there no longer are efficient mines 

when bias-correction takes place, there still remain best-practice mines of which mine 

15 is the most efficient. This point was noted by F0rsund et al (2006) who noted that the 

concept of the peer is uniquely defined in the original DEA. Rather, the bias-corrected 

DEA routinely identifies best-performing units rather than peers. 
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Second, given a best -perfonning unit, the bootstrap allows the testing of whether the 

mines identified as least efficient are significantly less efficient than the best-perfonning 

mine. Two methods have been used in previous studies, the confidence intervals method 

(Forsund et ai, 2006; Gonzalez & Miles, 2002) and the hypothesis test method (Banker, 

1993). Using the confidence intervals method, it can be concluded that given the 

individual 95 per cent confidence intervals, only thirteen mines can conclusively be 

deemed less efficient than the best perfonning mine when using the overall efficiency 

measure (CRS). This number falls to eight mines when the criterion is technical 

efficiency (VRS). All the other mines have intervals which overlap the interval of DMU 

15 so can not conclusively be judged to be less efficient than the best-perfonning mine. 

This method suggests caution in the way that DEA estimated efficiencies are to be used 

and what inferences can be drawn from them. 

Third, if the width of the confidence interval is to be used as a measure of the precision 

of the point estimates, the precision of the efficiency scores of the least efficient mines 

is higher than of the efficient ones. High efficiency scores are associated with wide 

intervals. This observation was also made by Gonzalez & Miles (2004) and F0rsund et 

al (2006). Gonzalez & Miles (2004) indicate in their discussion that increasing the 

sample size does somewhat increase the number of units which are statistically 

significantly different from each other. 

When the DMUs can be grouped into different categories, however, according to 

identifiable characteristics, it is possible to test the differences in estimated efficiency. 

Using statistics derived from methods suggested by Banker (1993), a different 

conclusion is reached which is that a best-perfonning sub-sample can be identified. The 
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mean efficiency of this best-perfonning sub-group is significantly higher than the total 

sample. 

Comparing DEA results to hias-corrected DEA reveals, as shown from previous studies, 

marked changes in the estimates, with bias-correction lowering the efficiency scores for 

all individual mines42
. Since the bias-corrected estimates point to significantly lower 

efficiencies, the potential for resource-savings identified by these (bias-corrected) 

estimates is much higher than suggested by the DEA. The fundamental result from bias

correction is that the potential savings identified by using this estimate are much higher 

than those implied by DEA. This has important policy implications, particularly over 

the question of which DEA method to use43
. Policy recommendations based on DEA 

tend, therefore, to under-estimate the scope for efficiency improvements by generally 

over-stating the number of fully efficient mines. As a reSUlt, the unknown technology 

frontier can more plausibly be inferred from the bias-corrected results. 

Finally, it can be seen that scale inefficiency is the predominant inefficiency when bias

corrected DEA is used. This set of conclusions is different from those obtained under 

DEA. Hence, again, bias-corrected DEA results in different policy implications. 

Using bias-corrected results, the question to be asked is why scale inefficiency is 

predominant over technical efficiency. Also, given that Zimbabwe has been a gold 

42 In some studies, Ferrier & Hirshberger (1997) and Gonzalez & Miles (2002), negative biases were 

observed. Manly (1997) also described negative biases for a zoological study on jackals. 

43 A large number of studies still use and draw conclusions based on the DEA without correcting for bias. 
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mining country for a considerable time now, are there other causes for the scale 

inefficiency which have afflicted its gold mines, in particular give that most of them are 

on the increasing returns to scale part of the VRS frontier? Could the political 

environment, for example be a reason why the scale efficiency is rather low? Or are 

there other features, geological or otherwise which contribute to low scale efficiencies? 

Question such as these require further data and investigation and would be interesting to 

follow after this dissertation. 

There are weaknesses to this analysis, however. One concerns the variables which have 

been used. In particular, the proxy for capital services can and may contain distortions 

as a result of the age of the capital stock rather than the reflecting the actual size of the 

capital stock. 

The other weaknesses which arise from this study are in comparison to other studies 

which have implemented DEA and bootstrap DEA. First of all, comparing the results 

here with those obtained in DEA study of mining shows that there are peculiarities in 

mining which need to be taken into account. The first is that mining can only take place 

where mineral deposits occur. This differentiates an efficiency study into gold mining 

from that into banking and finance, for example, where the latter economic activity 

could quite conceivable in any country. 

Byrnes & Hire (1987) and Byrnes et al (1984) attempted to account for these mining

specific peculiarities by introducing mine-specific variables. Their non-discretionary 

variables included the degree of unionisation, the degree of labour intensity and 

geological characteristic such as thickness of the coal seams. While the labour intensity 
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issue is included, its weakness has already been noted- it is a partial productivity 

measure which ignores the role of capital, at least, and also capital-labour substitution. 

However, the results for gold mining have made the case for introducing the other non

discretionary variables which would capture the unique features for each mine. In 

particular, it would have been of great interest to distinguish between the perfonnances 

of gold mine depending on the degree of union is at ion. 

In addition, it would seem that the results and certainly the explanations for the types of 

efficiencies which pre-dominate (technical or scale efficiency), would benefit from 

including geological characteristics such as whether the mining of gold involves the 

mining of other minerals such copper and silver. It would also have helped to include, in 

addition to the geological characteristics, other mine-specific characteristics such the 

mineralogical complexity of the ore and therefore distinguishing between oxide and 

sulphide ores, and, open-pit and underground mines. A major conclusion that can be 

drawn is that, to obtain meaningful results from the application of DEA in efficiency 

studies, the context in which the DMUs are operating is equally as important. The case 

for gold in Zimbabwe has shown the inadequacy of ignoring these contextual issues. It 

is therefore not been possible to attribute the different efficiencies to a particular source 

of set of sources. 
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CHAPTER 5 ZIMBABWEAN GOLD MINING IN A GLOBAL CONTEXT: 

INTERNATIONAL BENCHMARKING OF GOLD MINES 

5.1 Introduction 

In Chapter 4, an analysis of efficiency of Zimbabwean gold mining was undertaken. 

The results implied a relatively efficient gold mining sector in Zimbabwe when 

analysed in isolation, although scale and technical inefficiencies were identified. Given 

the way Zimbabwean gold mines perform relative to each other, a pertinent question to 

ask is how they compare with gold mines outside Zimbabwe. In this chapter such a 

wider perspective is adopted with efficiency being estimated using a second data set for 

an international sample. A warning is in order, however. The sources and dates for the 

two sets of data are different as are the variables used Chapter 4 was based on an 

anonymous sample from Zimbabwe census data. There is no [known] direct relationship 

between the Zimbabwean mines in this Chapter and those in Chapter 4 (which were, 

anyway, anonymous). In addition, the data sources and collection methods are totally 

different. For this chapter, data was obtained from a commercial database. In addition, 

the identities of the DMUs are known and extensive use is made of this knowledge in 

the analysis. Hence, the approach in this chapter, while based on the same DEA 

methodology, is slightly different from that adopted previously. 

The objectives of the analysis in this chapter are to carry out an inter-country 

comparison of the productive efficiency of gold mines. In so doing, the assumption 

made is that there exits, and is being employed, a common technology across all the 
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countries in the sample44
• This allows the identification of the most efficient gold mines 

in the sample and by inference in the world. In Chapter 2, it was noted that Zimbabwe 

had experienced periods of political and economic shocks. These shocks resulted in 

many constraints being faced by gold mines in Zimbabwe, constraints which were 

probably not faced by mines elsewhere. 

In order to assess the impact of these shocks, a secondary objective is to examine how 

the performances of Zimbabwean gold mines in the sample compares with others 

elsewhere in the world, as measured by the estimated efficiency score. A further 

objective is to identify and analyse peer influences on the individual, inefficient mines 

in the sample. This is achieved by investigating (a) which efficient mines (peers) 

exercise the most influence on the subset of inefficient mines, (b) whether anyone 

country has a preponderance of peers and (c) the international nature of peers in their 

reference set. The statistical properties of the estimated efficiency score are also 

investigated as in Chapter 4 to determine whether the differences in performance using 

the bootstrap method are statistically significant. Hypotheses on the characteristics of 

groups of mines and their efficiencies are also tested using non-parametric methods 

outlined in Chapter 3. 

The chapter is organised as follows. The next section provides a description of the data. 

Section 5.3 reports the results of the DEA computations of efficiency and includes the 

decomposition of the overall efficiency score into technical efficiency and scale 

44 Fundamentally, the technology as it is modelled in terms of the inputs and outputs is deemed the same. 

How the inputs are combined will necessarily differ from mine to mine. 
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efficiency components. This allows the identification of the nature of inefficiency. In 

Section 5.3.2. peer influence is discussed and analysed. An international comparative 

element is introduced with the aim of investigating whether there are any truly 

international peers: mines referenced by mines from every country and whether there 

are mines which are only referenced by mines from their own country. In Section 5.3.3, 

the bias-corrected DEA estimates are analysed. Section 5.4 provides some concluding 

remarks together with a summary and discussion of the main findings. 

5.2 Data and Model Specification 

The data were extracted from a commercially available database provided by the Raw 

Materials Group (RMG)45. Their data have been compiled from a variety of sources 

including trade literature, company annual reports and press and media releases. The 

sample consists of fifty-nine gold mines from fifteen countries for the year 2003, the 

sample being determined by the availability of data for the key variables46
• Already, it 

can be seen that this is for a different time period from that used in Chapter 4. The 

4~ The RMG is a Swedish research and consultancy group which has been collecting world mining data 

for more than 25 years. However their data tends to be used for specific commercial purposes and they 

ignore virtually most of the mining operations in Zimbabwe, expect the very large-scale ones. 

46 The initial data set comprised about five hundred gold mines. However, there are missing data points 

for many of the sample. This is a result of the use to which the original data is put- mainly to monitor 

structural changes in the global mining industry, not just gold. The sample covers most of the largest 

primary gold producers in the world, and excludes all those which produce gold as a by-product of, say, 

copper (or other base metal) mining, platinum mining or those which, for a variety of reasons, did not 

operate for the full year. 
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sample also includes at least one gold mine from each major gold-producing region of 

Africa, Australasia, Central Asia, North America, South America and South-East Asia. 

For example, there are three Zimbabwean, nine South African, seven US mines. From 

Australia and Canada there are nineteen and sixteen mines respectively. There is at least 

a mine from three other African countries (Ghana, Mali and Tanzania), Russia, South

East-Asia and South America. 

The DEA analysis is performed using a model comprising five variables -- one output 

and four inputs. The inputs comprise (a) the grade of gold, (b) the recovery rate of gold, 

(c) the maximum physical amount of gold ore that could be processed (rated capacity) 

in million tonnes per year, and (d) the labour force, which is represented by the total 

number of full-time employees. 

A brief discussion on the grade and recovery rate is necessary in order to justify their 

inclusion in the analysis. The grade of gold in the ore produced is measured in grammes 

per tonne and the recovery rate is measured as a percentage of the indicated gold 

content extracted from each tonne of ore which is mined. The grade of ore and recovery 

rate are treated as non-purchased inputs which represent the characteristics of the ore. 

The grade variable differentiates between an occurrence of a mineral and a deposit47, 

and hence the quality of the mineral material being extracted. The recovery rate is a 

technical attainment indicator, representing the percentage of the metal contained in the 

are produced which is recovered. This rate must not be confused with "efficiency" as 

47 An ore deposit is one which can economically be exploited while an occurrence is one which, with 

current technology and prices, cannot. 
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the process of recovering gold is a function of factors such as the mineralogical and 

physical properties of the gold ore, for which the recovery rate is a proxy. There are also 

costs and benefits considerations when extracting metal at the margins as noted in the 

discussion on gold mining and processing in Chapter 1. 

In discussing inputs, the issue of capital flows arises, once more. It has already been 

acknowledged in Chapter 4 that data for capital input are notoriously difficult to obtain 

and how, in that chapter, the service costs of capital was used in place of capital flows. 

Here as there, this problem of capturing capital flows is encountered. In this context, 

given the data available, the variable most likely to capture the differences in capital 

stock is the maximum amount of raisable ore. This is a key departure from Chapter 4 

where the cost of servicing the capital stock was the proxy for capital. The key here is 

that the variable used is the expected annual output of ore (which is the maximum 

capacity of the mine). The case for using capacity as a proxy for capital is supported by 

several previous studies, including Simar & Wilson (1998), LOthgren & Tambour 

(1999) and Fried et al (2000), where the production capacity of a DMU is used in place 

of capital. Again, the shortcomings from the use of stock rather than the flow of capital 

services were documented in Chapter 4. Finally, with reference to Chapter 4, there is no 

energy and materials which further limit the comparability of ten results of the two sets 

of results. It must be borne in mind, however, that the research questions being 

addressed in this chapter do differ from those in Chpater4. 

The output variable is the total gold metal produced in tonnes per annum for the year 

2003. The choice of the output variable is informed by fact this represents the main 

activity of gold mining. 
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The data set is hrietly described with an overview of the main characteristics given by 

the descriptive statistics for the sample presented in Table 5.1. 

Table 5.1 Descriptive Statistics of the Data Set 

Lat'lou r Ore Production Grade In Ore Recovery Gold Metal 

Minimum 550C 015 020 56.00 0.72 

Standard Dellla!'o"" 17'361 868 743 8.91 923 

Mean 111112 393 6.93 89.71 9.20 

Median 40000 1 32 5.81 92.00 6.13 

1st Quartile 19550 052 274 88.50 3.03 

3rd Quartile 96750 309 782 96.00 11.57 

Maximum 710000 5709 49.10 99.00 48.51 

CoeffiCient of Vanallon '54 221 107 0.10 1.00 

There is much variability in the data with the coefficient of variation being greater than 

1 for all the variables. The variability indicated by these descriptive statistics is not 

surprising, as this is a sample of mines located across the world, the sizes of which are 

invariably determined by geological and other conditions. The most significant variation 

is in the maximum capacity of the mines as shown by the quantity of raisable ore. 

The data are reported in appendix E. The regional dimensions are interesting. It can be 

seen that Australian, Canadian, South African and US mines are particularly large as 

measured by gold output. A large number of mines in these countries produce more than 

the mean annual gold output of 6.13 tonnes. The largest mine is in the US, producing 

over 48 tonnes of gold per annum. There are twenty-three other mines from Australia, 

Canada and South Africa which produced more than sample average of 6.13 tonnes. 

The three Zimbabwe mines are the smallest here, already illustrating some mine 
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characteristics in relation to the rest of the sample. Still, caution needs to be applied as 

there are only three Zimhabwe mines out of at least thirty-four (in comparison to 

Chapter 4). Freda-Rehecca. producing 1.59 tonnes of gold is the largest 

Zimhahweanmine while smallest mine (and in the sample as well) is Renco, producing 

0.72 tonnes of gold. 

The other variahle for which there is notable variability is the grade of ore with the 

lowest grade heing 0.2 grammes per tonne and the highest being 49.1 grammes per 

tonne. It can be observed (from appendix E) that a number of US mines have grades at 

below 1 gramme per tonne, an indication of the variation in the geological quality of the 

ore. Additionally the Zimbabwean mines generally have lower grade deposits than the 

mean grade at 7.43 grammes per tonne, with Renco grading the highest at 3.59. 

Given the strong similarities between South Africa and Zimbabwe, particularly with 

regard to geological conditions and the ownership of mines48
, this size distribution begs 

a question to be asked. Why are do mines from countries with such similar geology and 

political and economic history differ so much? Recall also from Chapter 2 that even in 

the early days, one of the biggest disappointments of Cecil John Rhodes's prospectors 

was the absence of any deposits comparable in size, but not geology, to those found in 

South Africa. Equally valid, is the possibility that the deeper-lying deposits in 

Zimbabwe have not yet been discovered and this is a reflection of the level of 

exploration investment. However, since this does not lie within the scope of this 

48 The mines captured by the database tend to be the large ones, so the three mines would typically be 

among the largest in Zimbabwe. 
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research. it must oe left for another study. This study will be focused on efficiency 

estimation given the noserved path of development of the Zimbabwean gold mining 

industry. 

5.3.1 Results: DEA Estimates 

Estimates of efficiency were ootained using both CRS and VRS DEA (Equations 3.9 

and 3.10). The DEA routines outlined in Chapter 3 were employed and the individual 

DEA scores are given in Table 5.2 together with the summary statistics. 

Table 5.2: DEA Results and Scale Efficiency Scores 

MINE COUNTRY II) (2) (3) 
CRS DEA VRS DEA SCALE EFFICIENCY 

Cerro Vanguard,a Mine Arger"llina 06228 08409 07406 

Super PIt '-'ne Australia 10000 10000 1.0000 

Granny Smith Mine Australia 04545 08746 0.5197 

Peak Mine Australia 05221 0.9817 0.5318 

PlutoniC Mtne Australia 04559 08723 0.5226 

Challenger '-'ne Australia 04983 1.0000 04983 

ThunderbO. Mine Australia 04512 09279 0.4863 

Klrkalocka '-'ne Australia 02595 1.0000 02595 

G,dgee Mine Australia 04194 0.9360 0.4481 

Norseman Mine Australia 05632 09209 0.6116 

Darlot Mone Australia 0.5453 0.9175 05943 

Lawlers Mine Australia 04066 09244 04399 

Henty Mone Australia 06599 0.9780 06747 

Sao Bento '-'ne Brazil 05537 09277 0.5969 

en.as (Serra Grande) '-'ne Brazil 0.6514 0.8802 0.7401 

Kernes. South Mine Canada 0.7125 10000 0.7125 

TrOilu. Mine Canada 0.4377 09262 0.4726 

Laronde Mone Canada 03725 08783 0.4241 
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------~---

COUNTRY MINE 1'1 (21 (3) 
CRS DEA VRS DEA SCALE EFFICIENCY 

Holloway Mine Car-ada 04388 09568 04586 

Joe Mar'l Mine Car ada 04487 10000 04487 

Eskay Creek. Mine Canada , 0000 '0000 1.0000 

Holt McDermott Mi ne Canada 04529 09423 0.4806 

Seabee Mme Canada 04530 1.0000 0.4530 

Golden Giant Mne Canada 08267 09540 08666 

Campbell M,ne Caflada 09091 10000 09091 

Musselwhite Mine Ca'1ada 05073 08969 0.5656 

Doyon Mtne Ca'lada 05097 08714 05849 

Sleeping Giant Mine Cailada 05328 09461 0.5632 

Beaufor Mlne Canada 04604 0.9363 0.4917 

Blblanl Mine Ghana 03477 09993 0.3479 

Iduapnem Mne Ghana 04782 08864 0.5395 

Kumtor Mine Kyrgyzstan 06630 0.9478 0.6995 

PenJom Mine Malays'a 05923 0.9803 0.6042 

Sadlola Mone Mal, 06435 10000 0.6435 

Mania Mine Malo 08828 09371 0.9421 

Orcopampa Mine Peru 08539 09875 0.8647 

Julietta Mine Russia 0.5878 10000 0.5878 

Kubaka Mine RUSSia 05255 0.8702 0.6039 

Ergo Gold Tailings Mtne South Afnca 07103 1.0000 0.7103 

Petrex Mtnes South Afnca 03212 0.8703 03691 

Tau Lekoa Mine South Afnca 04581 08098 05657 

South Deep Mone South Afnca 06715 08164 0.8225 

Great Nohgwa Mine South Afnca 09849 0.9909 0.9939 

Savuka (West) Mine South Afnca 05095 07765 0.6561 

Tautona M,ne South Afnca 1.0000 1.0000 1.0000 

Kopanang Mine South Afnca 0.6919 0.8184 08454 

Mponeng (South) Mine South Afnca 08054 0.8723 0.9233 

Gelta Mne Tanzania 0.7463 0.9074 08225 

Chatree MIne ThaIland 0.3314 0.9424 0.3517 

Round Mountain Mone USA 1.0000 1.0000 1.0000 

Montana Tunnels Gold Mine USA 0.2725 1.0000 0.2725 
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MINE ---·----a5iINTRY ,I, 121 (3) 
eRS DEA VRS DEA SCALE EFFICIENCY 

----------
Fort Knox Mine -~CiSA C 833: 10000 08332 

Betze Post Mire LISA ~ :)000 10000 10000 

Cortez Mine liSA 1 GOOO 10000 10000 

Meikle (Purple Ve,n', Mine USA 06943 • 0000 0.6943 

Bald Mounlaln M"E- LISA 04828 10000 04828 

Reneo Mine ? rntab\l\oe 0:288 10000 0.2288 

Blankel MIne 7''1'1babwe 01195 1 0000 01195 

Freda Re~ecca Moe I r-tatwe C 1651 09593 01721 

Mean 05886 09434 0.6236 

Sid Dev 02272 0.0609 02293 

Median 05328 09540 0.5943 

MinImum 01195 07765 0.1195 

MaXimum 10000 1.0000 1.0000 

Coeffloenl of VanaliOn 03861 00646 0.3677 

The sample is characterised by some low efficiency scores with a minimum of 0.1195, a 

median 0[0.5328 and a mean 0[0.5886 when analysing the CRS frontier (overall 

efficiency). The mean indicates an estimated average overall efficiency of 41.14 per 

cent. Out of the fifty-nine mines, twenty-four have estimated an overall efficiency score 

ofless than 0.5. Analysing technical efficiency, the mean increases to 0.9434 and of the 

mines have an estimated technical efficiency score of less than 0.5. This implies that on 

average, technical efficiency falls short by about 5.66 per cent. Both measures exhibit 

low variance with the coefficient of variation being lower than 1 in both cases. 

The analysis proceeds to look at individual efficiency scores. Assuming CRS 

technology, it can be seen that six mines are judged efficient, that is have an overall 

efficiency score of 1. These mines represent what can be termed the "advanced gold 
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mining economies"; three are American, one Australian, one Canadian and one South 

African49 • Therefore the peers on the overall efficiency frontier are from those 

economies. The implication is that the overall efficiency frontier is defined by the mines 

from these developed mining economy countries. Hence, a tentative conclusion is that 

the optimal scale of operations for the mines in this sample are defined by these 

countries. 

It is observed that no Zimbabwean mines are overall efficient. In fact, the three least 

efficient mines in the sample are Zimbabwean with Blanket Mine, with an estimated 

efficiency score of 0.1195, being the most inefficient. Of the three, Renco is the most 

efficient with an estimated efficiency score of 0.2288. The least efficient is Blanket, 

which also happens to be the oldest among these three mines having started operations 

in the 1960s and the other two having started after 1980. 

A legitimated question would be why do the Zimbabwean mines have such obviously 

low overall efficiency scores? This may be an indication of a uniquely Zimbabwean 

characteristic and needs to be used to qualify any inferences on Zimbabwean mines. The 

next most inefficient mines are Kirkalocka (Australia) and Montana Tunnels (USA) 

with scores of 02595 and 0.2725 respectively. There are also mines from Canada and 

South Africa which have poor overall efficiency estimates, indicating this is not 

49 Advanced here refers to the level of development, similar in fact to economic development. Theses are 

the largest gold producers and the major technological inventions and innovations in gold mining have 

mainly come from these countries. 

159 



confined to Zimbabwe alone but extends over mines from the developed mining 

economies. 

Turning to the technical efficiency measures, twenty-one mines are now judged 

efficient. as opposed to six. The minimum efficiency score rises from 0.1195 (for 

Blanket) to 0.7765 for Savuka of South Africa. Hence, the two frontiers identify 

different inefficient mines. The average efficiency score rises to 0.9434 from 0.5886. 

In terms of cross-country distribution, the largest number of efficient mines comes from 

the USA with all the American DMUs having technical efficiency scores of 1. 

However, there now are some mines from other countries as well, such as from Mali, 

Russia and Zimbabwe. Two of the three mines from Zimbabwean, (Renco and Blanket), 

are now identified as being fully efficient. Given the low overall efficiency scores, the 

implication is that these mines have low scale efficiency scores. 

Scale efficiency estimates are presented in Column 3 of Table 5.2. It is observed that for 

most of the mines, the scale efficiency score in Column 3 is lower than the technical 

efficiency score in Column 2, indicating that most of the mines suffer from scale 

inefficiency. Of the thirty-eight mines deemed to have technically inefficient, only five 

have a scale efficiency score higher than the technical efficiency score. This implies 

that, in this sample, scale inefficiency largely dominates technical inefficiency. The 

levels of scale efficiency mirror those of the overall efficiency in size. Hence, there are 

a large number of mines (twenty) with a scale efficiency score of less than 0.5. These, 

as with overall efficiency, include mines from both developed and developing 

economies. An observation can therefore be made that using DEA, scale efficiency 
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dominates local technical efficiency in gold mining. Having the frontier defined by six 

mines and with such a large fraction of the sample exhibiting such low efficiency scores 

is an indication that a large proportion of the sample is well away from the overall 

efficient frontier. The other implication is that in a sample of world mines, Zimbabwean 

DMUs suffer from scale inefficiencies. 

Given this observation about the nature of overall efficiency, it is pertinent to analyse 

the nature of return to scale. Theses are reported in Table 5.3. 

Table 5.3: Nature of Returns to Scale 

MINE COUNTRY HiCRS 1" NIRS LA,CRS RTS 

L A,.YIRS 

Cerro Vanguardla Gold Mine Argentina 0.3624 0.3624 1.0000 IRS 

Super Pit Gold Mine Auslralla 1.0000 1.0000 1.0000 CRS 

Granny Smllh Gold Mine Auslralla 0.1896 0.1896 1.0000 IRS 

Peak Gold Mine AuSlralia 0.1885 0.1885 1.0000 IRS 

PlutOniC Gold Mine Australia 0.2949 0.2949 1.0000 IRS 

Challenger Gold Mine Auslralla 0.0857 0.0857 1.0000 IRS 

Thunderbox Gold Mine Auslralia 0.2047 0.2047 1.0000 IRS 

Kirkalocka Gold Mine Auslralia 0.0652 0.0652 1.0000 IRS 

Gidgee Gold Mine Australia 0.1106 0.1106 1.0000 IRS 

Norseman Gold Mine Australia 0.2490 0.2490 1.0000 IRS 

Oarlot Gold Mine Auslralia 0.2353 0.2353 1.0000 IRS 

Lawiers Gold Mine Australia 0.1161 0.1161 1.0000 IRS 

Henty Gold Mine Auslralia 0.2195 0.2195 1.0000 IRS 

Sao Benlo Gold Mine Brazil 0.1875 0.1875 1.0000 IRS 

Crixas (Serra Grande) Gold Mine Brazil 03458 0.3458 1.0000 IRS 

Kemess South Gold Mine Canada 0.3568 0.3568 1.0000 IRS 

Troilus Copper/Gold Mine Canada 0.1884 0.1884 1.0000 IRS 

Laronde Gold Mine Canada 0.2152 0.2152 1.0000 IRS 
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MINE COUNTRY Lill CRS Lill NIRS 
~A,CRS RTS 

"2. A,.\'IRS 

Holloway Gold Mme Canada 01355 0.1355 1.0000 IRS 

Joe Mann Gdd Mine Canada 04487 04487 1.0000 IRS 

Eskay Creek Gold Mine Canada 1.0000 1.0000 1.0000 CRS 

Holt McDermott Gold Mine Canada 01663 01663 10000 IRS 

Seabee Gold Mine Canada 0.1129 01129 10000 IRS 

Golden Giani Gold Mine Canada 0.4530 0.4530 10000 IRS 

Campbell Gdd Mine Canada 0.4527 0.4527 10000 IRS 

Musselwhite Gold Mine Canada 0.2790 0.2790 10000 IRS 

Doyon Gold Mine Canada 0.2786 0.2786 10000 IRS 

Sleeping Giant Gold Mine Canada 0.1545 0.1545 10000 IRS 

Beaufor Gold Mine Canada 0.1155 0.1155 10000 IRS 

Bibiani Gold Mine Ghana 0.1756 01756 1.0000 IRS 

Iduapnem Gold Mine Ghana 0.1770 0.1770 1.0000 IRS 

Kumtor Gold Mine Kyrgyzstan 04598 0.4598 1.0000 IRS 

Penjom Gold Mine Malaysia 0.2376 0.2376 1.0000 IRS 

Sadiola Gold Mine Mall 0.3245 0.3245 10000 IRS 

Monla Gold Mine Mali 0.9038 0.9038 10000 IRS 

Orcopampa Gold Mine Peru 0.4184 04184 1.0000 IRS 

Julietta Gold Mine Russia 0.3350 0.3350 1.0000 IRS 

Kubaka Gold Mine Russia 0.2724 0.2724 1.0000 IRS 

Ergo Gold Mine South Afnca 0.2583 0.2583 1.0000 IRS 

Petrex Gold Mines South Africa 0.1301 0.1301 10000 IRS 

Tau Lekoa Gold Mine South Afnca 0.2975 0.2975 1.0000 IRS 

South Deep Gold Mine South Africa 0.5169 0.5169 1.0000 IRS 

Great Noligwa Gold Mine South Afnca 1.0147 1.0000 1.0147 DRS 

Savuka (West) Gold Mine South Africa 0.2636 0.2636 1.0000 IRS 

T autona Gdd Mine South Africa 1.0000 1.0000 1.0000 CRS 

Kopanang Gold Mine South Africa 0.5556 0.5556 1.0000 tRS 

Mponeng (South) Gold Mine South Africa 0.6695 0.6695 1.0000 IRS 

Geita Gold Mine Tanzania 0.4459 0.4459 1.0000 IRS 

Chatree Gold Mine Thailand 0.1526 0.1526 1.0000 tRS 

Round Mountain Gold Mine USA 1.0000 1.0000 1.0000 tRS 
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MINE COUNTRY LAI CRS DINIRS YAIRS RTS 

~ A,1\'IRS 

Montana Tunnels Gold Mine USA 0.0649 0.0649 1.0000 IRS 

Fort Knox Gold Mine USA 04616 0.4616 10000 IRS 

Betze Post Gold Mine USA 1.0000 1.0000 1.0000 CRS 

Cortez Gold Mine USA 1.0000 1.0000 1.0000 CRS 

Meikle (Purple Ve,n) Gold Mine USA 1.0000 1.0000 1.0000 CRS 

Bald Mountain Gold Mine USA 0.0987 0.0987 1.0000 IRS 

Renco Gol d Mine Zimbabwe 0.0400 00400 1.0000 IRS 

Blanket Gold Mine Zimbabwe 0.0299 0.0299 10000 IRS 

Freda Rebecca Gold Mine Zimbabwe 0.0443 0.0443 1.0000 IRS 

Six mines are confinned to be operating under constant returns to scale the same mines 

which with overall efficiency scores of 1. Of the fifty-three mines which are deemed 

globally inefficient, it is observed that fifty-two mines are operating under increasing 

returns to scale. Only one mine, Great Noligwa, is exhibiting decreasing returns to 

scale. 

It can therefore be concluded that the predominant reason for the low overall 

inefficiencies is operating at the wrong scale. Specifically, most mines are operating 

under IRTS, implying that their perfonnance can be improved by upward adjustments in 

scale. Given that the scale inefficiencies are relatively large for a significant proportion 

of the sample, these scale adjustments would necessarily need to be large, too. For those 

mines deemed to have low overall efficiency scores, only one of them, Great Noligwa 

(South Africa) could benefit from a reduction in scale. 

163 



In tenns of figure 3.4, the increasing returns production possibility part of the VRS 

frontier is a large distance from the CRS frontier, explaining the large divergences 

between the two efficiency measures. 

5.3.2 Analysis of Peer Influence 

One of the benefits of using DEA is that it identifies peers for inefficient mines. In 

considering behavioural and organizational changes for inefficient mines, the 

characteristics of the peers may help in defining the reference DMU which these 

inefficient mines emulate. The peers and the number of mines which refer to them are 

given in Table 5.4, which shows the technically efficient peers which are referenced by 

relatively inefficient units. This excludes self-evaluators of more of which there were 

three. 

Table 5.4: Gold Mining Peers: VRS DEA 

MINE COUNTRY PEER INFLUENCE (%) COUNT AS PEER 

Challenger Mine Australia 23.3201 28 

Kirkalocka MIne Australia 37816 5 

Kemess South Mi ne Canada 1.8487 3 

Joe Mann Mine Canada 3.9919 5 

Eskay Creek Mine Canada 2.7254 16 

Campbell Mine Canada 1.7241 6 

Sadiola Mine Mali 3.2684 2 

Julietta Mine Russia 2.2289 3 

Ergo Gold Tailings Mine South Africa 1.7407 5 

Tautona Mine South Africa 1.7610 4 

Round Mountain Mine USA 3.2409 3 

Montana Tunnels Gold Mine USA 1.7241 23 

Seize Post Mine USA 8.6101 17 
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Cortez Mine USA 1.7241 38 

Meikle (Purple Vein) Mloe USA 3.6703 

Bald Mountain Mine USA 9.9420 

Reneo Mine Zimbabwe 2.4797 39 

Blanket Mine Zimbabwe 18084 9 

The peers subset includes mines from both the developing economies such as Mali and 

Zimbabwe and from the advanced mining economies. Out of the fifteen countries in the 

sample, seven provide peers. 

It has already been seen from Table 5.2 that the USA provides the largest number of 

efficient mines with all the seven mines from that country adjudged fully efficient under 

VRS technology (and three under CRS). Of the seven, six are referred to by other mines, 

implying the other one, Fort Knox, is a self-evaluator. The next highest number of peers 

is provided by Canada with five of which one, Seabee is another self-evaluator. 

Zimbabwe along with Australia and South Africa provides two peers. In the context of 

the VRS DEA frontier, this is defined by the mines predominantly from the USA and 

Canada, but also from Australia, Mali, Russia, South Africa and Zimbabwe. 

An important point, when looking at peers is also to determine how influential the 

individual peers are. This can be assessed by looking at the number of times a peer is 

referenced by inefficient mines (as reported in Table 5.4). From Table 5.4, it is can be 

seen that the most referenced mines are Renco (Zimbabwe) and Cortez (USA), in that 

they appear the most often in the reference set of inefficient mines' , with a frequency 

(count) of thirty-nine and thirty-eight respectively. Using another measure of peer 

influence which takes into account the weights (~), Challenger (Australia), however, is 
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the most influential peer with a peer influence index of 23 per cent. It can be seen that 

there is divergence between peer influences as measured by the peer count and by peer 

influence and which measure one adopts depends entirely on the context. 

Table 5.5 reports the DMUs which reference the peers 
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Table 5.5: Peers and Referencing Mines 

Cerro Vanguardia Mine 0.2141 0.0000 0.0000 0.0000 0.0109 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 01843 00000 00000 05908 0.0000 

Granny Smith Mine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 05938 0.0000 00101 0.2114 0.0000 0.0000 0.0636 0.1210 

Peak Mine 0.8308 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0306 0.0000 0.0000 0.0671 0.0000 0.0000 0.0715 0.0000 

Plutonic Mine 0.0120 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3050 0.0000 0.0000 0.2883 0.0000 0.0000 0.3947 0.0000 

Thuderbox Mine 0.2026 0.3022 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 02980 0.0000 0.0000 0.1483 0.0000 0.0489 0.0000 0.0000 

Gidgee Mine 0.9469 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00000 0.0000 0.0000 0.0033 0.0000 0.0000 0.0044 0.0000 0.0000 0.0454 0.0000 

Norseman Mine 0.7983 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0000 0.0000 0.0787 0.0000 0.0000 0.1215 0.0000 

Danot Mine 0.7733 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0312 0.0000 0.0000 0.1004 0.0000 0.0000 0.0950 0.0000 

Lawlers Mine 0.8792 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0621 0.0000 0.0000 00427 0.0000 0.0000 0.0161 0.0000 

Henly Mine 0.7176 0.0000 0.0000 0.0949 0.1316 0.0000 0.0558 0.0000 0.0000 00000 0.0000 00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Sao Bento Mine 0.4138 0.0000 0.0000 0.0000 0.0823 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0164 0.0264 0.0000 0.4612 0.0000 

Crixas (Serra Grande) Mine 0.4302 0.0000 0.0000 0.0000 0.0613 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1131 0.0258 0.0000 0.3696 0.0000 

Troilu. Mine 0.0000 0.0000 0.0723 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.8603 0.0000 0.0605 0.0000 0.0000 0.0000 0.0069 0.0000 
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LarondeMine 0.1942 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 00000 00000 02512 0.0000 0.0000 0.1895 00000 0.0000 0.2712 0.0939 

Holloway Mine 0.8757 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0196 0.0000 0.0000 0.0225 00000 0.0000 0.0822 0.0000 



Joe Mann Mine 

Holt McDermott Mine 

Golden Giant Mne 

Musselwhite Mine 

Doyon Mine 

Sleeping GianI Mine 

Beaufor Mine 

Bibiani Mine 

Iduapriem Mine 

KumtorMine 

Penjom Mine 

Morila Mine 

Orcopampa Mine 

Kubaka Mine 

Petrex Mines 

Tau Lekoa Mine 

South Deep Mine 

Gneat NoIigwa Mine 

Sawka (West) Mine 

0.0000 0.0000 0.0000 

08223 0.0000 0.0000 

0.4817 0.0000 0.0000 

0.5854 0.0000 0.0000 

0.4507 0.0000 0.0000 

0.1329 0.0000 0.0000 

0.5053 0.0000 0.0000 

0.0517 0.0000 0.0000 

0.0000 0.3848 0.0000 

0.0000 0.0000 0.0000 

07572 0.0000 0.0000 

0.0322 0.0000 0.0000 

0.2301 0.0000 0.0000 

0.5564 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

1.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.7451 

0.4752 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0489 0.0000 0.1796 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0711 0.0000 0.0000 

0.0133 0.0000 0.0062 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

o 0000 0 0000 0.0000 

0.0045 0.0000 0.0000 

0.0500 0.0000 0.0000 

0.0892 0.0000 0.6541 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0176 0.0000 0.0000 

0.0000 0.0000 0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.2928 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00096 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 
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0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0214 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

00000 

0.5748 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0186 

0.0000 

0.0942 

0.0766 

0.0000 

0.0000 

0.4549 

0.4106 

0.0000 

0.0000 

0.0000 

0.0000 

0.0285 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

a 0000 

0.0000 

0.0000 

0.1218 

0.3417 

0.0000 

00000 

0.0000 

0.0000 

0.0597 

0.0846 

00182 

00000 

0.0091 

0.0000 

0.0363 

00000 

0.1696 

0.1693 

0.0000 

0.0000 

0.1660 

0.0000 

0.0000 

0.0718 

0.7228 

0.0000 

0.1196 

0.0256 

0.1566 

03738 

0.4076 

0.1442 

0.0000 

0.0000 

02702 

00000 

00000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

00138 

00000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

0.0000 

00000 

00000 

00000 

00000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

00000 

0.0000 

00000 

01228 

00195 

01508 

0.3035 

00412 

0.0000 

03274 

0.0000 

0.3442 

0.1665 

0.1949 

0.0128 

0.2954 

01290 

0.3192 

06080 

0.0000 

0.8467 

0.0000 

0.0000 

00000 

0.0000 

00000 

0.0000 

0.0000 

0.0000 

0.0828 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.7856 

0.4395 

0.0000 

0.0000 

0.0000 



Kopanang Mine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Mponeng (South) Mine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Gaita Mine 0.0000 0.2371 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Chatree Mine 0.6310 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Freda Rebecca Mine 0.0000 0.2692 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 3 4 5 6 7 9 

Key: Each number in the bottom row corresponds to a peer in table below. 

Challenger Mine 

Kirkalocka Mine 

Kemess South Mine 

Joe Mann Mine 

Eskay Creek Mine 

Seabee Mine 

Campbell Mine 

Sadiola Mne 

Julietta Mne 

3 

4 

5 

6 

8 

9 

169 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0221 0.4217 0.0000 0.0000 05561 0.0000 

0.0000 03049 0.0000 0.0000 0.0000 0.0000 02224 01020 0.0000 0.3707 0.0000 

0.0000 0.0000 0.0000 0.2821 0.0000 04009 00000 00000 00000 0.0000 00799 

0.0000 0.0000 0.0000 0.1718 00000 0.0000 00860 00000 00000 0.1007 00105 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0057 00000 0.0000 00092 07159 

10 11 12 13 14 15 16 17 18 19 20 



Ergo Gold Tailings Mine 10 

T autona Mine 11 

Round Mountain Mine 12 

Montana Tunnels Gold Mine 13 

Fort Knox Mine 14 

Betze Post Mine 15 

Cortez Mine 16 

Meikle (Purple Vein) Mine 17 

Bald Mountain Mine 18 

Renco Mine 19 

Blanket Mine 20 

170 



Tabled 5.5 is read with the bottom row (numbered 1 to 20) containing the peers and the 

key to interpreting them is given in the table below it. Hence, 1 stands for Challenger 

mine and the non-zero values in that whole column indicating the ~ where the 

constraint is binding. Therefore the mines in that row reference Challenger. The rows 

sum to 1 (the VRS constraint, ~ =i). The sizes of the ~ are an indication of the 

influence the peer on the reference DMU for the inefficient mine. It can be observed 

that Challenger does exert the most influence on those inefficient mines which reference 

it. Hence, it exerts its greatest influence on Gidgee (Australia) and the least on Plutonic 

(Australia). 

Turning to the Zimbabwean peers, it can be seen that Renco exerts its highest influence 

on Savuka (South Africa). Most South African mines also reference Renco. Blanket is 

the most influential peer in Freda Rebecca's reference set. 

From Table 5.5, it can be seen that all the peers are truly international in nature. There 

are no "national peers" which are only referenced by mines from their own countries. 

The most international peer is Renco which is referenced by mines from ten other 

countries. As can be deduced, there is no peer which is referenced by mines from each 

country which would have been truly international. 

This exercise has also illuminated number of interesting points. For a variety of reasons, 

it is expected that mines from Australia, the USA, Canada and South Africa would 

dominate the peers subset and this has proved to be the case. The main reason why this 

dominance is expected is that these countries also have longer mining (in the modem 

era) traditions, have pioneered modem mining and mineral processing technologies. 
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They have also heavily invested in a large number of mining schools, professional 

courses and have active government departments which spend large amounts of money 

on R&D. Whether using the peer count or the percentage peer index, the most 

influential mines come from these four countries. In particular, an Australian mine, 

Challenger, is the most influential peer, as judged by the percentage influence it exerts 

on the location and shape of the VRS frontier. The two next influential mines are from 

the USA, Bald Mountain and Betze Post. Hence, as both Tables 5.4 and 5.5 show, the 

most influential peers (whichever method is used to measure influence) are mainly 

drawn from the advanced mining economies. It needs to be borne in mind that these 

countries also provide the largest number of DMUs to the sample and therefore the 

inference must be tampered by this qualification. 

Further, given the economic and political shocks which often taken place in Africa, in 

particular in Zimbabwe, and also the pressures under which the mining sectors Has 

tended to operate, it is slightly surprising that mines from Zimbabwean are part of this 

peers' subset. 

Recall from Chapter 2 the challenges which the Zimbabwean mining sector has faced, 

such as shortages of foreign currency, political instability and intermittent access to 

technology since the 1960s. The sample provides evidence that wherever gold mining is 

taking place, technical efficiency is determined by other factors other than the usual 

political environmental ones. In particular, these results show that a mine can be 

technically efficient despite encountering external constraints. An interesting aspect of 

all this is that Freda-Rebecca, the newest mine, although with a relatively high technical 

efficiency score, does not appear as a peer. It is the relatively older Zimbabwean mines, 
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Renco and Blanket, which are regarded as peers. Renco happens to be the most 

influential peer using the peer count. The fact that its influence is less under the peer 

index method is an indication of how small its limited influence is on each of the in 

each of the thirty-nine referencing sets where it appears as a peer. Being a peer tends to 

imply that it has some distinct features. These, unfortunately cannot be identified from 

the present data set. 

Finally, it was observed that there are three mines which are self-evaluators. Efficient 

DMUs which self-evaluate are arguably unique in some way and may have certain 

characteristics unaccounted for by the available data such as different mine-specific 

characteristics (some gold may be mined in association with copper, silver or lead-zinc) 

,different ownership and (therefore objectives), geological conditions among many 

others. Not enough data are available to pursue this line of enquiry in this study. As a 

result, a discussion on self-evaluators would be a convenient way to conclude this 

section. Bias-correction which will be implemented later has been shown to change the 

positions of so many of the efficient DMUs such that those forming the bias-corrected 

frontier may differ from those defining the DEA frontier. 

5.3.3 Bias-corrected DEA Analysis 

In this section, the results of the bootstrap and bias-correction are analysed. In Table 

5.6, the individual bias-corrected efficiency scores are reported while the summary 

statistics of both the bias-corrected CRS and VRS scores with comparisons to the 

original DEA result are given in Table 5.7 
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Table 5.6: Bias-corrected Bootstrap DEA Efficiency 

(1) (2) 
(3) (4) (5) (6) (7) 
Bias-eorT8Cted Bias-corTllCled Bias-eorT8Cted 

MINE COUNTRY CRS CRSBia8 VRS VRS Bias Scale 

Cerro Vanguardla MIne Argentina 05809 0.0419 08166 0.0243 0.7685 

Super Pit Mme Australia 0.5865 0.4135 0.9305 00695 0.6629 

Granny Smith Mine Australia 0.3431 0.1114 08446 00300 0.6259 

Peak Mine Australia 0.4776 0.0445 0.9693 0.0124 0.5699 

Plutonic Mine Australia 0.3570 00989 0.8484 0.0239 0.6192 

Challenger Mine Australia 04151 0.0832 0.9371 0.0629 0.5482 

Thunderbox Mine Australia 0.2922 01590 0.8925 0.0354 0.6328 

Klfkalocka Mine Auslralla 0.1750 0.0845 0.9341 0.0659 0.3234 

Gidgee Mine Australia 0.3905 0.0289 0.9090 0.0270 0.4657 

Norseman Mme Australia 05295 0.0337 0.9086 0.0123 0.6397 

Darlol Mine Australia 0.5014 0.0439 09064 0.0111 0.6345 

Lawlers Mine Australia 0.3036 0.1030 0.8930 0.0314 0.5337 

Henly Mme Australia 0.5321 0.1278 0.9446 0.0334 0.7783 

Sao Bento Mine Brazil 05257 0.0280 0.8997 0.0280 0.6088 

Crixas (Serra Grande) Mine Brazil 0.6147 0.0367 0.8606 0.0196 0.7649 

Kemess South Mine Canada 0.4786 0.2339 0.9416 0.0584 0.8244 

Troilus Mine Canada 0.3223 0.1154 08929 00333 0.5769 

Laronde Mine Canada 0.2918 0.0807 08595 0.0188 0.5052 

Holloway Mine Canada 0.4149 0.0239 0.9322 0.0246 0.4716 

Joe Mann Mine Canada 0.4169 0.0318 0.9362 0.0638 0.4527 

Eskay Creek Mine Canada 0.8532 0.1468 0.9341 0.0659 0.5661 

Holt McDermott Mine Canada 0.4304 0.0225 0.9290 0.0133 0.4976 

Seabee Mine Canada 0.4085 0.0445 0.9431 0.0569 0.4715 

Golden Giant Mine Canada 0.7579 0.0688 0.9261 0.0279 0.9068 

Campbell Mine Canada 0.7976 0.1115 0.9533 0.0467 0.9068 

Musselwhite Mine Canada 0.4393 0.0680 0.8850 0.0119 0.6331 

Doyon Mine Canada 0.4625 0.0472 0.8579 0.0135 0.6295 

Sleeping Giani Mine Canada 0.4821 00507 0.9140 0.0321 0.5969 

Beaulor Mine Canada 04311 0.0293 0.9021 0.0342 05050 

Bibiani Mine Ghana 0.2787 0.0690 0.9790 0.0203 0.4088 
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Iduapnem Mme Ghana 0.4217 0.0565 08578 0.0286 05846 

KumlOr Mme Kyrgyzstan 0.4 750 0.1880 09212 0.0266 08286 

Penlom Mme Malaysia 0.5644 0.0279 09677 00126 0.6246 

Sadiola Mine Mall 0.5233 0.1202 09703 0.0297 0.7405 

Morila Mme Mall 0.5891 0.2937 09028 0.0343 0.7572 

Orcopampa Mine Peru 07379 01160 09564 0.0311 09068 

Jul,ella Mine Russia 02851 0.3027 0.9358 00642 07429 

Kubaka Mme Russia 0.4929 0.0326 0.8587 0.0115 06330 

Ergo Gold Tailings Mine Soulh Africa 0.3412 0.3691 0.9340 00660 07538 

Petrex Mines South Africa 02887 0.0325 0.8440 00263 0.3947 

Tau Lekoa Mine South Africa 0.3806 0.0775 0.7871 0.0227 0.6435 

South Deep Mine South Africa 0.5994 0.0721 0.7965 0.0199 0.8762 

Great Nohgwa Mine South Africa 0.8171 0.1678 0.9505 0.0404 0.8686 

Savuka (Wesl) Mine South Africa 0.4731 0.0364 0.7518 0.0247 0.6818 

Tautona Mme South Africa 0.8428 0.1572 0.9405 0.0595 0.8694 

Kopanang Mme South Africa 0.6051 0.0868 0.7975 00209 0.8984 

Mponeng (South) Mme South Afnca 0.7212 0.0842 0.8455 0.0268 0.9307 

Geita Mine Tanzania 0.6119 0.1344 0.8768 00306 0.8765 

Chatree Mine Thailand 0.2585 0.0729 0.9243 00181 0.4210 

Round Mountain Mine USA 0.9118 0.0882 0.9365 0.0635 0.5174 

Montana Tunnels Gold Mne USA 02160 0.0565 09343 00657 0.3094 

Fort Knox Mine USA 0.6293 0.2039 0.9535 00465 0.8691 

SeIze Post Mine USA 0.3473 0.6527 0.9353 0.0647 0.5844 

Cortez Mine USA 0.3547 0.6453 0.9339 0.0661 0.5529 

Meikle (Purple Vein) Mme USA 0.8004 01006 0.9425 00575 0.8485 

Bald Mountain Mone USA 0.3903 00925 0.9349 0.0651 0.5412 

Reneo Mine Zimbabwe 0.2146 0.0142 0.9326 0.0674 0.2281 

Blanket Mine Zimbabwe 0.1069 00126 0.9379 0.0621 0.1246 

Freda Rebecca Mine Zimbabwe 0.1487 0.0164 0.9219 0.0374 0.1822 
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Table 5.7 Descriptive Statistics: DEA and Bias-corrected DEA Estimates 

CRS DEA Bias -corrected VRS DEA Bias -corrected SCALE Bias-corrected 
CRS VRS SCALE 

Mean 05886 0.4493 0.9434 0.9062 0.6236 0.6261 

Standard Deviation 02272 o t815 0.0609 0.0499 0.2293 01911 

Median 05328 04311 09540 0.9261 05943 06259 

Mmlmum 01195 01069 0.7765 0.7518 0.1195 0.1246 

Maximum 1.0000 08428 1.0000 09790 1.0000 0.9307 

The most visible changes are the obvious reductions in the bias-corrected efficiency 

scores when compared with the DEA. This is expected, given the method. As expected, 

the mean efficiency is downwardly adjusted, falling from 0.5886 to 0.4493 for CRS 

DEA and from 0.9434 to 0.9062 for the VRS DEA. Another point to note in passing is 

that the biases are all positive, as indicated by columns 4 and 6 in Table 5.6. This may 

be compared to findings in earlier studies, such as Ferrier & Hirschberg (1997) and 

Gonzalez & Miles (2002), where some biases were negative. Although this may have 

something to do with the way the former applied the bootstrap, that is, they did not 

smooth their results, there is no indication that the latter committed the same oversight. 

Using the overall efficiency measure, the best-performing mine after bias-correction is 

identified as Round Mountain (USA) with a score of 0.9118. From Table 5.2, it can bee 

seen that Round Mountain was also deemed DEA efficient using the overall efficiency 

measure. Although Table 5.2 indicates that Round Mountain retains it top status after 

bias-correction, some efficient mines see their scores drastically reduced. Of the six 

mines considered overall efficient using DEA, only three remain in the top ten best-

performing sub-set. The rest see their rankings go down after bias-correction. Two of 

176 



them, Betze Post and Cortez (all USA), are 15th and 16th best-performing, respectively. 

The magnitude of the biases is, therefore, observed to be quite large at the top end of the 

distribution of results. There is little change at the bottom end of the ranked distribution 

with the two Zimbabweans mines still the worst-performing. It can thus be concluded 

that most of the adjustments in rank as a result of bias-correction take place at the top 

end of the distribution of efficiency scores but the lower end remains relatively 

unchanged. This confirms the premise of Simar & Wilson that the inconsistency of non

parametric estimation is at the upper bound where there is a mass of ostensibly efficient 

DMUs. 

As with overall efficiency, after bias-correction, there now are no longer any fully 

efficient mines using the technical efficiency measure; rather there remain best 

performing mines such as Bibiani (Ghana) with a technical efficiency score of 0.9790 

and Sadiola (Mali) with a score of 0.9703. Although Sadiola was deemed efficient 

under DEA, Bibiani was not. So part ofthe change, which has mostly taken place at the 

upper bound of the distribution, is the displacement of efficient mines by mines which 

were deemed less efficient under DEA. Of the ten most efficient mines, using the 

technical efficiency measure, only four were fully efficient under DEA. The other six 

had technical efficiency scores less than 1. However, the top twenty-seven best 

performing mines includes all the twenty-one technically efficient mines. 

The main effect of correcting for bias, therefore, is that it allows the identification of 

mines which lie at the upper bound in DEA and allows a proper performance ranking 

and identification of the best -practice in the absence or reduction of sampling errors. 
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It was noted in Chapter 4 that using confidence intervals to test for differences of means 

leads to unsatisfactory inferences. Primarily this is because no differences can be 

inferred when the confidence intervals of different DMUs overlap. However, the benefit 

of the bootstrap approach is in the testing of differences between the efficiency scores. 

This is made possible by the availability of standard deviations, which then enable the 

significance of sampling variations to be tested. Based on tests of the differences 

between means, several hypotheses can be tested. For example, it is observed that after 

bias-correction, Holloway (Canada) which was not judged efficient under DEA 

becomes better-performing than some mines such as Super Pit (Australia), which had 

originally been judged "efficient" under VRS DEA. 

Hence the first step is to check whether the bias-corrected DEA scores of Holloway and 

Super Pit are significantly different or is the observed difference because of random 

sampling variations. This hypothesis is tested only to give an idea of the significance of 

the difference and is motivated by the seemingly close efficiency scores for the two 

mines. 

Formally, this test is stated as follows. 

flo: e Holloway = e Super Pit 

HI: e Holloway i- e Super Pit 

a. = 0.05,2 tailed test, to.05 =1.96 

e Holloway = 0.9322, std error = 0.0196; e Super Pit =0.9305, std error = 0.0541 
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There are two ways of approaching this test. The first is to test the hypothesis that Super 

Pit comes from a distribution centred on Holloway. This test will use the standard error 

of Holloway. The other test uses a pooled standard error based on the two observed 

standard errors. Using the first method, the calculated t statistic is 0.0843 which is less 

than the critical value. Hence the null hypothesis cannot be rejected. The t value is 

0.9075 for the second variant of the test and, again, at the 5 level of significance, the 

null hypothesis cannot be rejected. Hence the difference between the two mines is 

statistically insignificant and may merely be due to sampling variation. The conclusion 

here is that after bias-correction, what had initially seemed to be a more efficient mine 

(Super Pit) turns out not to be significantly different from another mine deemed less 

efficient (Holloway). In particular the differences between the two after bias-correction, 

noted by visual analysis, turns out to be insignificant. This is a profound result and sets 

the tone for further tests. 

A second set of test is now performed which are centred on the Zimbabwean mines in 

the sample. The first set of tests solely concerns the comparisons among Zimbabwean 

mines. Renco and Blanket are judged equally (and fully) efficient by VRS DEA. After 

bias-correction, Blanket seems to be more efficient than Renco. The aim here is to 

check whether the differences in their point estimates are statistically significant. A 

relevant question, then, is whether they are really that different in terms of performance. 
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Ho: 8 B1anket = 8Rencll 

a. 0.05, to.05 = 1.96 

8Blallket = 0.9379, std error =0.0466; 8 Renco = 0.9326, std error = 0.0519 

The calculated t statistic (using the pooled standard error) is 0.ll30. Hence the null 

hypothesis that there is no difference in performance between Renco and Blanket cannot 

be rejected. The inference is that the difference between the two mines point estimates 

is merely a result of sampling variations. For the sake of completeness, a test of the 

difference between Blanket and Freda Rebecca produced a calculated t-statistic of 

0.3434 which also implies that the difference between them is statistically insignificant 

and that Freda-Rebecca is just as efficient as Blanket. Therefore, on the basis of the t

statistic, there are no significant differences among the three Zimbabwean mines in 

terms of technical efficiency. 

A second set of tests on Zimbabwean mines compares them to mines from other 

comparative countries. These hypothesised similarities are (a) similar geology and (b) 

similar political (geographical experiences). These tests will use the Banker (1993) 

statistics, outlined in Chapter 3 and discussed in the review of literature. 

The null hypothesis is that there is no difference in the average efficiency scores of the 

Zimbabwean mines and (a) Australian (b) Canadian (c) South African (d) Ghanaian and 

(e) Malian mines. Tanzania which only has one mine is excluded as there are not 
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enough degrees of freedom. Instead, Blanket will be compared to Geita using the 

difference of means method. Table 5.8 reports the results. 

Table 5.8: Test of Technical Efficiency Differences: 

(Zimbabwe against Comparative Countries) 

COUNTRY Sum ratio Test 

Ghana 1.1792 

Mall 1.0904 

South Africa 2.1724 

Australia 1.3033 

Canada 1.3265 

USA 18.1954" 

* significant at the 10 per cent level of significance 

** significant at the 5 per cent level of significance 

Sum 0 f Squares Ratio Test 

2.1385 

09348 

5.7021' 

1.9440 

1.8146 

1.2705 

From Table 5.8, the null hypothesis that country specific effects, in relation to 

Zimbabwe, do not exist, cannot be rejected except with respect South Africa and USA 

and then only for the specific tests indicated. 

Table 5.9 reports the results for overall efficiency, again applying the same Banker 

(1993) test. 
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Table 5.9: Test of Overall efficiency Differences: (Zimbabwe against Comparative 

Countries) 

COUNTRY Sum ratio Test Sum 0 f Squares Ratio Test 

Ghana 07706 05994 

Mall 1.9000 36001 

South Africa 0.5180 03200 

Austratla 0.7013 0.5093 

Canada 0.6398 0.4214 

USA 2.7594 2.3333 

Here the null hypothesis of country-specific differences between Zimbabwe and the 

above-listed countries cannot be rejected by any of the measures. The implication is that 

Zimbabwean mines as a group are as efficient as, say, those from Ghana, with which it 

(as a country) competes for direct foreign investment in mining. It can also be 

concluded that the overall efficiency of Zimbabwean mines as a group, despite the 

prima facie evidence, is not statistically different from that of countries with similar 

gold belts such as Australia, Canada and the USA. Neither is it significantly less 

efficient than South Africa with which it also shares a common geology and many other 

cultural and political characteristics. 

A technique adopted in previous studies (Byrnes et ai, 1984; F0rsund et ai, 2006) has 

been to try to correlate DMU characteristics and efficiency. The two-stage estimation 

process, as described in Chapter 3, has been one such method. Others, in the absence of 

additional information on the observations have made use of the characteristics of the 

DMUs in an effort to explain the causes of inefficiency. Hence, in a study of Illinois 
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coal mines, B ymes at al (1984) noted that there was a strong, negative relationship 

between labour-output ratio and efficiency. Instead of using partial measure such as 

labour-output ratio, this study will work on the DMU characteristics, two inputs and one 

output. The two inputs are the labour input and the grade of ore which denotes the 

geological characteristics. Labour is a proxy for size in much the same way as output 

was in Chapter 4. 

The non-parametric statistic of the Spearman rank correlation coefficient is applied and 

the results are reported in Table 5.10. 

Table 5.10 Spearman Rank Coefficient of Efficiency 

Vanable Spearman Rank Correlalion Coefficient 

LABOUR -0.3192· 

GRADE 0.0784 

RECOVERY -04174· 

ORE PRODUCTION -0.1094 

* significant at the 5 per cent level using the t-test. 

The Spearman coefficient is significant at the 5 per cent level of significance for labour 

and the recovery rate. The correlation in both cases is negative. There are two 

implications here, first in relation to the non-significant variables and with respect to the 

significant ones. 

First, there appears to be no correlation of any statistical significance between technical 

efficiency and maximum capacity. Recalling that maximum capacity is a proxy for 

capital, this implies that the size of the mines in terms of capital stock is not a 
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significant factor in detennining its technical efficiency. Neither is the geological 

characteristic, proxied by the grade of ore. 

Turning to labour and the recovery rate, both have a negative correlation with 

efficiency. The implication is that large mines (as measure by the size of the labour 

force) are generally less efficient than those without. It must also be noted that there is a 

distinct possibility that the part of the labour forces is a direct substitute for capital for 

entirely logical economic reasons, such as being relatively cheap and labour may not be 

such a good indicator of mine size after all. Unless infonnation on input prices is 

available and, hence, allocative efficiency calculated, this conclusion on the correlation 

between labour and efficiency must be tampered with caution. 

The other negative correlation is with respect to the recovery rate. The implication here 

is that those mines with mineralogically simple tend to have than those with simpler 

ores. A plausible explanation for this is that those mines with complex ores do not 

spend as much on crushing, for example, and therefore save on milling costs. The 

downside of that is that they recover less gold than is available. 

5.4 Concluding Comments 

The main aim in this chapter was to benchmark the perfonnance of gold mines from 

different countries, by estimating their efficiencies in using three inputs to achieve two 

objectives, production of gold metal and a high recovery of metal from the ore. Another 

was to decompose overall efficiency and detennine which was the more predominant. 
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Based on DEA, a number of findings, on the nature of the efficiencies of the sample, 

have been made. Decomposing the efficiency scores to determine scale and technical 

efficiency components showed that a significant number of mines were found to be 

inefficient mainly because they were operating at the non-optimal scales. That is scale 

inefficiencies dominated. A large number of mines had very low overall efficiency 

scores, with some scores as low as 0.l195. Only six mines out of a total of fifty-nine 

mines are judged efficient under CRS technology, about 10 per cent of the total. 

Twenty-four mines, about 41 percent of the total sample had an overall efficiency score 

of less than 0.5 per cent. The result was that many of theses mines had low scale 

efficiencies with, in particular, the three Zimbabwean mines the least scale efficient. An 

implication of the relatively low scale efficiencies may be that gold mining operations 

are not easily adjustable in size. This is could arise from the fact the maximum capacity 

is already determined by the size of the deposit. However, given that the orientation in 

this study is from the input side, it would seem that there may be issue which prevent 

reduction in inputs which would push the inefficient gold mines closer to the frontier. 

Given the low scale efficiency estimates, the next step was to investigate the nature of 

the returns to scale. Fifty-two mines, over 88 per cent of the sample, were deemed to be 

operating under increasing returns to scale. Only one, Great Noligwe (South Africa) was 

operating under decreasing returns to scale. 

The general performance of the mines in the sample improves significantly for the three 

Zimbabwean mines under VRS technology. This however is maybe simply be 

consequence of only the Zimbabwean mines being isolated at that [low efficiency] end 

the distribution with the VRS frontier which inevitably having to envelop them. The 
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mean technical efficiency is now 0.9434 as opposed to 0.5886 for overall efficiency. 

The implication, particularly for Zimbabwean mines, is that the VRS frontier, in the 

increasing returns to scale region is quite far from the CRS frontier. In terms of Figure 

3.4, the distance between pREF and pCRS is relatively large for a large number of mines, 

particularly the three Zimbabwean mines. In the long term all three mines, as with the 

other mines in the sample, will need to embark on long term adjustment plans to 

improve scale efficiency and hence overall efficiency. Since the three mines are 

operating under increasing returns to scale, the adjustments required are of an input 

reducing nature. Yet, without any further information it is not clear how this adjustment 

would take place. 

The results of the bootstrap and bias-correction show that applying the naive bootstrap, 

that is, the non-smoothed DEA leads to potentially misleading conclusions. In 

particular, as noted by Simar & Wilson, there is a mass of ostensibly efficient mines at 

the upper bound (sixteen with VRS technology), that is, at efficiency score of 1. In this 

case, the study is in agreement with other DEA studies which show the justification for 

correcting bias. Correcting for bias, which is often (but may not always be) positive 

bias, see for example Hawdon (2003), Gonzalez & Miles (2002) and Ferrier & 

Hirschberg (1997), provides a more reliable picture of efficiency. Since the technology 

frontier is unknown, the use of the bias-corrected results where none of the DMUs attain 

full efficiency seems to be more plausible. 

Bias-correction therefore indicates that the scope for savings is much higher than 

indicated by DEA results. The performance of the mines is significantly altered by bias

correction. Hence, for the Zimbabwean mines, it is noted that Renco and Blanket which 
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were the most efficient under DEA, are respectively ranked 14th and 26th when bias

correction is carried out. Freda Rebecca which was 28 th becomes ranked 32nd
• Hence at 

the top of the distribution of results, there are some major changes. The best-performing 

mine is one that was not deemed fully efficient in DEA. 

Another outcome of the analysis is the use of Spearman rank correlation to investigate 

any correspondence between certain identifiable mine characteristics. Two of the inputs, 

ore grade and recoveries are what are termed non-purchased inputs. Rather they denote 

certain geological and other mine characteristics which are deemed to affect the 

attainment of the DMUs' objectives, in this case the production of gold with the 

minimal use of inputs. 

First, it was observed that there was a statistically significant correlation between 

technical efficiency and recoveries. The correlation was negative in nature implying that 

mines with low recoveries generally tend to be more efficient. Although, this may seem 

perverse, there are perfectly logical reasons why this may be a reasonable result. Those 

mines with relatively more complex ores, for that is the major reason for low recoveries, 

tend to be more efficient in the use of other resources. In point of fact, that may mean 

that the level of fineness to which the ore is ground is much lower, that is the ore being 

fed into the mineral processing cycle is of a much coarser texture than for those mines 

with higher recoveries. This means in the process of extraction, savings of other inputs 

such as energy, cyanide and activated carbon can be made. 

An example of this is Renco and Freda Rebecca, where the use of low-grade ores and 

low recoveries was synonymous with their operations when they started were being 
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brought on stream. Freda Rebecca, for example was low grade, high tonnage (ore) 

operation with most of the savings taking place at the heap leach stage of the gold 

extraction process. The implication is that mines in the sample with a low recovery rate 

have a higher probability of being efficient than those with higher rates. 

There, however, is no statistically significant correlation between the grade of ore and 

efficiency. In this regard, the geological conditions do not seem to playa notable role in 

the performance of the mines. 

On the other question of how Zimbabwean gold mines compare with those from other 

countries, the prima facie evidence based on the DEA, is that they perform 

comparatively well. The Banker tests, for example, showed no country-specific effects 

which would have confirmed negative expectations given the political and economic 

environments under which they operate. The low overall efficiencies and, as 

consequence, the degree of scale inefficiency, however, is such that this problem of low 

efficiencies for Zimbabwean mines cannot be ignored. One way of improving efficiency 

would be seem to be the reduction of inputs usage. One important question, potentially 

being posed by the results of this dissertation, is whether the unstable political 

environment in Zimbabwe has contributed to this apparent inability to achieve scale 

efficiency? A legitimate question would be whether the results are pointing to 

something else other than poor optimisation decisions by the mines. It has already been 

noted in Chapter 2 that the political and economic environment in Zimbabwe is rather 

unstable. Whether this could this contributory factor is a question worth investigating 

further. Compared to other African countries such as Ghana, Mali and Tanzania, the 
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answer does not seem to be in the affinnative. Yet it is a major observation, however, 

that all three Zimbabwean mines have poor overall efficiencies. 

To answer this question requires more infonnation and, preferably more [Zimbabwean] 

observations would be required. This also means identifying and collecting data on the 

so-called environmental variables which capture cross-country differences should they 

exist. Hence a contribution of this chapter is to challenge the application of DEA and 

bootstrap DEA across countries without acknowledging characteristics which may be 

peculiar to individual countries and be part of what Cooper et al (2000) 

"disadvantageous conditions under which the DMU is operating". In this study a 

common technology has been assumed but nothing else such as a common socio

political climate or even specific geological differences. As with the results in Chapter 

4, the inter-country comparisons highlight peculiarities to gold which have not arisen in 

other studies such as banking, libraries and electricity distribution. 

Given the nature of the perfonnance of Zimbabwean mines, there are some possible 

policy recommendations. Another question which was implicitly being asked is why 

total gold output in Zimbabwe has not risen in line with the boom experienced by 

countries with similar gold belts must have been caused by other factors. In terms of 

perfonnance, the political and economic shocks to which the Zimbabwe has been 

subjected do not seem to have caused the gold mines to lag behind their competitors. 

However, it is possible that the relatively hostile political environment may have had a 

large role in deterring investment in more gold mines in Zimbabwe. 
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This study, while not in a position to answer this question, has at least pointed in the 

direction in which the answers may be found. This involves a more detailed study of 

inter-country differences and then analysing if and to what extent they explain the 

relatively low growth rates for total gold output in Zimbabwe. 

In relation to the above point, a series of statistical tests were carried out, making use of 

the bias-corrected estimates. They help answer important questions about prima facie 

differences between groups of DMUs. Using these tests, it was concluded that in 

comparison to two groups of mines, Zimbabwean mines are only statistically different 

from the mines in South Africa and the USA, among countries with similar gold belts 

judged by technical efficiency scores. Even the apparently low overall (and scale) 

efficiencies for the Zimbabwean mines have not been deemed significantly different 

from some comparator mines. There is no significant difference with two African 

countries with which Zimbabwe is deemed to compete for foreign direct investment. 

Statistical tests show that the differences in efficiencies are not as significant as visual 

analysis may imply. Hence, a test of the difference in performance between 

Zimbabwean and other groups of comparator mines shows that, as a group, there are no 

statistically significant differences, except with South Africa and the USA. Therefore 

the observed divergences in the growth of the gold output between Zimbabwe on the 

one hand and Ghana and Mali on the other is as result of other factors not considered in 

this analysis. One such factor may be the investment climate. However, this will need to 

be supported by more investigations and more data than has been available to this 

dissertation. 
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Another test was done on the difference between means. Using this test, a variety of 

conclusions were reached with regards to Zimbabwean mines and also about the sample 

itself. A fundamental conclusion reached is that there are only two mines which are 

being judged to be statistically similar to the best-performing mine. The rest would be 

located some distance away from the best-practice frontier defined by these three. 

There are some general implications from this study, too. The next point worth 

discussing is the network of peers. The results show a subset of international peers, with 

peers from many different countries being referenced by mines from countries other 

than their own. In this regards, Australia, Canada and the USA are the most influential 

in terms of the location of the frontier. In terms of providing the most numbers of peers, 

Australia is the relatively dominant country followed by Canada. Two Zimbabwean 

mines are identified as peers. One of them, Renco, is judged the most influential peer 

using the peer count measure. Given that in the overall efficiency measures, 

Zimbabwean mines did not perform very well, Renco's being a peer reinforces 

scepticism of not taking into account contextual issues in applying DEA to efficiency 

studies in gold mining, in particular, and cross-country analysis in general. 
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

6.1 Introduction 

This chapter summarises the main findings of this research. In particular, it attempts to 

present some common issues arising from the results from Chapters 4 and 5, bearing in 

mind that these are two separate studies and therefore comparisons must be treated with 

caution. 

This is the first study which has looked at multi-factor analysis of gold mining in 

Zimbabwe. It also the first study to study the performance of gold mining whether in 

Zimbabwe or in a cross-country setting using DEA. In addition, this study has applied 

the DEA technique to a sample comprising both developed and developing economies 

and analysed the relative performances of individual mines in that context 

Chapter 1 gives a brief summary of the objectives and poses the research questions. 

Primarily these are to use the DEA method to investigate and measure the efficiency of 

gold mining, applied on two different a samples; the first a sample of anonymous 

Zimbabwean mines and the second a sample of mines from different countries. A 

general history of gold mining and the evolution of mining and mineral processing 

technology are also given. The main activities in the extraction of gold are highlighted 

as are the major producers. 

In Chapter 2, a history of gold mining in Zimbabwe is given particular attention, tracing 

the interaction of gold mining and economic development. The importance of gold 
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mining 10 Zimhahwe, in particular during periods of crises are highlighted. The 

prohlems and challenges rhar have confronted and continue to face the gold mines, such 

as wars, t(lreign currency shortages and political instability, are also identified and 

discussed. 

Chapter 3 lays the theoretical foundations of this dissertation. The point of departure 

from the hasic theory of production found in intermediate microeconomics to frontier 

analysis is identitied. In particular the influence on nonparametric analysis, of which 

data envelopment analysis (DEA) is part, of the seminal work by Farrell (1957) is 

discussed. A hriefsynopsis. given that this approach is not used in this study, of 

stochastic frontier analysis (SFA) is carried out with a look at the major milestones 

achieved in its development. A more extensive discussion of the DEA is carried out, 

including moditications which have made the original, deterministic work more 

amenable to statistical analysis. Attention is drawn to the fact that the bias-correction, in 

particular. is applied to sampling variation only and not errors in or omissions of 

variables. 

In this regard the work done by Efron (1979), in the development of the bootstrap, and 

by Simar & Wilson ( 1998), in applying the bootstrap to efficiency analysis, is 

particularly emphasised. Finally a selective review of previous studies is carried out 

highlighting methodological problems, results and analyses. Particular attention is paid 

to studies of mining and of DEA analysis where the bootstrap has been applied. 

The core of this dissertation has been the application of DEA and bias-corrected DEA in 

estimating the efficiency scores of gold mines. The DEA estimates are biased, and have 
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been shown to be so by, among many, Simar & Wilson (1998). Since this technique is 

still widely used, it has formed an important part in analysing the performance of the 

gold mines and in testing some hypotheses using tests which have long existed in 

nonparametric statistical analysis and formalised in the efficiency literature by Banker 

(1993). Given that the DEA estimates are largely biased and inconsistent, particularly at 

the upper bound, the bootstrap is particularly useful in the correction of this bias which, 

arises from sampling variation, and in adjusting the calculated efficiency estimates. The 

results of bias-correction demonstrate the upward biased nature of the DEA identified 

and proved by Coelli et al (2005) and Simar & Wilson (1998, 2007) among others. 

Two empirical studies are carried out. The first is on Zimbabwe, the results of which are 

reported in Chapter 4. The main findings in are that the technical inefficiency in 

Zimbabwean gold mining is a mixture of both scale and technical inefficiency. Over the 

whole sample scale inefficiency was the more predominant cause of overall 

inefficiency. In addition, it was noted that the majority of mines were operating under 

increasing returns to scale implying that the mines were mainly smaller than optimal 

and that there was scope for reducing inputs usage. This poses a number of questions as 

to the reason for this state of affairs. Why have these problems not been addressed? The 

results therefore point to certain characteristics of Zimbabwean mining which may 

require further data and investigation. These include the socio-political environment in 

which the mines operate. They may also include any geological features which may 

contribute to these results being observed. 

The second set of empirical results is reported in Chapter 5. Two broad conclusions can 

be drawn. The first set of conclusions, based on DEA, shows that the most influential 
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mines in the location of the frontier are from Australia, Canada, South Africa and the 

USA. An analysis of the most influential mines shows that Australia provides the most 

number of peers, although the most influential peers judged by how times it is 

referenced by inefficient mines are from Canada and the USA. The results also identify 

the nature of returns to scale of the different mines and show that all three types of 

returns to scale are exhibited. Hence the reference technology is mainly determined by 

Australian gold mines. 

The second set of conclusion is based on the results of bias-corrected efficiency 

estimates. Correction for bias changes the order in which some of the mines, previously 

judged as efficient by DEA, are ranked. Bias-correction also serves as a "tie-breaker", 

distinguishing among the many efficient mines. In this regard the best-performing mine 

is identified as from Malaysia. By testing the difference of means to distinguish which 

among the fifty-nine mines can be classified as statistically from this best-performing 

mine, only two mines, one from Australia and one from South Africa are judged as not 

being significantly different from it. Then rest are judged to be different and hence less 

efficient. 

The third observation is that all three Zimbabwean mines perform relatively poorly in 

overall efficiency terms when compared to mines from the rest of the world. There are 

possible explanations for this and they will be explored in more detail below. Suffice it 

to say that the small number of Zimbabweans mines must necessarily lead to some 

caution in making inferences not supported by data and evidence. 
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A key characteristic of the studies cited in the review in Chapter 3, with the exception of 

Hawdon (2003) has been that they have they been applied not only to a single industry 

but also to a single country. Yet there have been studies which have used a cross

country analysis have focused on developed economies only, and none of these have 

focused on mining: for example, Edvardsen & F0rsund (2003) on electricity 

distribution, Homburg (2001) on libraries and Cherchye et al (2001) on banking. Their 

findings seem to imply a common technology across countries. Additional studies 

include Berg et al (1993) • Bergendahl (1998) and Molyneaux & Casu (2003) banking, 

Reichmann & Sommers gutter-Reichmann (2006) on university libraries, Edvardsen & 

F0rsund (2003b) on electricity distribution, Goto & Tsutsui (1998) on electricity 

generation. Key to this ability to conduct a cross-country analysis was an assumption of 

a common underlying technology. It is important, however, to note that the emphasis in 

all theses studies has been on measuring efficiency based on "controllable" inputs. 

In this study, the cross-country analysis also assumed a single underlying random 

process and technology. Given the description of the gold production process in Chapter 

1, this is not an implausible assumption to make. As was argued in Chapter 1, the 

technology for producing gold is fairly straightforward and easily transferrable; not only 

that, but the analysis of peers also supports the assumption of a common gold 

production technology. 

The results of Chapter 5 seem to indicate that gold mining technology is quite mobile as 

mines from Zimbabwe and Australia are found in the same reference set for a mine 

from Thailand, for example. In fact the results of the inter-country comparison seem to 

indicate that mines in the developed mining economies define the overall efficiency 
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reference frontier, as indicated by the overall efficiency estimates. Relative to this 

frontier, Zimbabwean mines are the least efficient. Even taking into account that there 

are only three mines from to which to draw inferences, the question again needs to 

asked; are there any Zimbabwe-specific issues which cause these, seemingly, unique 

low scores? A Banker (1993) test does not seem to support, except in two cases of 

South Africa and the USA, any significant difference between Zimbabwean mines and 

those from other countries. 

The inter-country results seem to be challenging the methodological assumption of a 

common technology, though. In particular can one merely apply DEA and bootstrap 

DEA on cross-sectional data from different countries without controlling for inter

country differences? Hence, is it a plausible expectation that an USA gold mine can 

easily be "imposed" in Zimbabwean conditions (as suggested by the peers for the 

Zimbabwean mines with low efficiencies). At best the results seem to indicate that this 

may not be entirely possible. A possibility would be that more and better data would be 

required robustly to answer this question. 

6.2 Reflections and Conclusions 

By estimating the efficiency of gold mining in Zimbabwe, the study enables the 

identification of how much potential there is for improving current gold mining 

operations. Apart from this, the results also allow the identification the direction mines 

might take to improve this performance, that is, by better using current levels of inputs 

to increase local technical efficiency and also by adjusting the scale of operations to 

improve overall efficiency. It has been noted that scale inefficiency is the more 

197 



dominant source of technical inefficiency which points to possible policy remedies in 

addressing this. The policy issue could point to the turbulent political environment 

prevailing in Zimbabwe since 2000. Additionally, there could also be geological and 

other physical features which would favour the relatively small operations. Whichever 

route one takes- and a prudent approach is not to exclude any credible reasons, there 

are enough indications to suggest justify further investigation supported, at the very 

least, by collecting more data. These include more observations and, also, additional 

variables such as non-discretionary inputs to control for country-specific characteristics. 

The second contribution comes from the second set of results in Chapter 5 which allow 

the comparison of the performance of Zimbabwe mines with mines from other 

countries. Given that, in relation to other countries with similar gold belts, the total 

output from Zimbabwe has been seriously lagging behind, the results indicate that in 

terms of overall efficiency, Zimbabwean mines do not, from initial observations, 

compare favourably with mines from elsewhere. In particular, when corrected for 

sampling bias, they seem to suffer more from scale inefficiency than mines from other 

countries. This seems to reinforce the findings in Chapter 4, particularly with respect to 

scale inefficiency as the predominant source of overall inefficiency, even though 

caution needs to be exercised as the context were different. 

On this issue of the relatively poor performance of Zimbabwean mines, a question 

which can legitimately be asked is whether there are country-specific factors which 

have possibly affected efficiency. Clearly, as noted in Chapter 2, mines in Zimbabwe in 

2003 were operating in a very tough economic environment, arguably tougher than in 

other countries. There were frequent shortages of foreign currency and energy. This is 
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likely to be a reason why the glaringly obvious steps of expanding or merging 

contiguous mines rarely ever took place. These questions can be answered provided 

certain conditions are met. These "uncontrollable" characteristics, however, ifproperJy 

defined and measured, can in principle be included as environmental variables in the 

DEA. Fundamentally, therefore, when cross-country studies are carried out, answers to 

the above questions and further insight may be obtained by including environmental and 

category variables which take into account the possibility of more than one distinct 

random process giving rise to the technology frontier. Equally as important, is the 

identification and measurement of these variables, whether as inputs or outputs. Byrnes 

et al (1984) attempted to account for different environmental features by incorporating 

geological characteristics of the different mines. This approach can to reflect different 

political and economic environments which may exist in different countries. 

However, some caution ought again to be exercised here. There are only three 

Zimbabwean mines in the sample used and they mayor not be capturing any 

Zimbabwe-specific characteristics, where they happen to be present. In addition, 

although the Zimbabwean operation come least of all the mines in overall efficiency, 

there are some mines from other countries which lie close to them. Specifically, these 

are Granny Smith, Lawlers and Plutonic in Australia, Troilus in Canada, Bibiani in 

Ghana, Julietta in Russia, Chatree in Thailand and Montana TunnIes in the United 

States. A second and equally reasonable question to ask, then, is whether there are any 

other characteristics which other inefficient mines share with the poorly performing 

Zimbabwean mines and, hence, which would explain the relatively low overall 

efficiency scores? Specifically could, as already mentioned, ask if there are any 
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geological and other physical features of these mines which would separate them from 

the rest. Without further information, one cannot conclusively explain the relatively 

poor peIiormance. There are, however, suggestions on how to pursue analyses which 

incorporate these extra, no-controllable features, of gold mines. 

A number of studies have attempted to estimate efficiency scores in the presence of so

called environmental variables or non-discretionary inputs (or outputs) in a variety of 

different ways. The main problem has always been how to measure them. This issue 

will briefly be discussed below. 

The third contribution is the use of bias-corrected scores which show the potential 

pitfalls of using the DEA in measuring performing of productive organisations. From 

Chapter 3 it was declared that nonparametric estimation methods tend to produce biased 

and inconsistent results. Hence a key observation is that the potential for improvements 

to a DMU's performance are underestimated if the correction of bias is not 

implemented. 

The pooling together of the results and conclusions from the two samples necessarily 

presents some difficulties. First, the data in Chapter 4 are anonymous. Hence the three 

Zimbabwean mines in the second sample cannot be identified from the first sample. 

Secondly, conventional wisdom and practice caution against making cross-sample 

comparisons particularly those for different years. Finally, the specifications of the two 

models are different. In Chapter 4, energy is explicitly included but is not in Chapter 5. 

In addition, there is a different proxy for capital services in each study. This limits the 

scope for making inter-sample comparisons. 
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However, there are still some common observations which will be highlighted. Both 

sets of results indicate that scale efficiencies dominate technical efficiency. Hence, the 

mines in both samples have potential further improve their performances by making 

adjustments to the scale of their operations. In the general context of this study, this 

would entail reductions in inputs usage without reducing output for a many of the 

mines. In addition, the nature of the returns to scale indicates that most the mines are 

operating under increasing returns to scale. Hence, the nature of the necessary 

adjustments is predominantly upwards. This is more relevant in the international 

sample, where over 88 per cent of the observations were observed to operate under 

increasing returns to scale, than in the Zimbabwe-only sample. Whether this is a feature 

of gold mining is something that can only be uncovered through further investigations 

with a large data set. 

On the evidence presented so far, therefore, the indications are that not many gold mines 

operate at their optimal scale, as judged using overall efficiency and scale efficiencies. 

The degree of scale inefficiencies in gold mining, with a mean bias-corrected scale 

efficiency score of 62.61 per cent, is so large that steps need to be taken to address. 

A possible suggestion to the problem of small scale operations may be to merge those 

mines which lie on contiguous claims, of which Zimbabwe has many. This necessitates 

the question of why merging of contiguous properties or expansion of existing 

properties has not up to now been undertaken. 

A possible explanation for the state of affairs may be an unstable economic 

environment, certainly when compared to other gold mining economies to. To test this 
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would require not only identification of these latent variables which are deemed to 

affect efficiency but also their measurement. However, the discussion in Chapter 2 also 

indicates that the relatively small scale of Zimbabwean undertakings has confronted 

politicians since the times of the Pioneer Column and solutions have seemingly 

remained elusive. This is a reason why one hesitates attributing this poor performance 

to the unstable political environment of the 21 st century, at least without additional data 

and analysis. 

Another reSUlt, given the negative correlation between low recoveries and efficiency is 

that the there is also scope for developing the mineralogically complex ores which are 

found in one or two areas in Zimbabwe. The Copper Queen deposit in Sanyati (see map 

in Chapter 2) comes to mind. In this regard, government policy as it pertains to 

investment incentives could be of great assistance through the granting of tax and other 

fiscal incentives on technology adoption and foreign investment. In particular, the 

tenure of properties, the encouragement of exploration, among others, could be 

improved. Again, whether this could take place in the current political climate is 

doubtful. The scope of improvements is so large that on average, the Zimbabwean 

mines could improve their mean performance, by expanding the scale of their 

operations, by about 82 per cent as opposed to the, still large, sample average of about 

37 percent. 

6.3 Contribution to the Literature and Possible Directions for Further Study 

The study has also provided another framework analysing cross-country performances 

in a resource-based industry such as gold using observations from both developing and 
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developed countries. Most previous cross-country studies on mining have tended to 

compare partial productivity measures such as labour productivity (Tilton, 2001; Kuby 

& Xie, 2000). Here. performance has been analysed using more a more general multi

input measure. This is therefore the first study which has applied the DEA to gold 

mining. first in a single country context but also, and equally as importantly, in a multi

country setting which encompassed both developed and developing economies. In doing 

so, the study has highlighted some important issues in DEA methodology, particularly 

with respect to the local context in which the DMUs operate which precludes the 

straightforward application of DEA without accounting for mine- specific peculiarities. 

It validates the previous studies on coal mining which advocated for including non

discretionary inputs. Therefore, following from the studies by Byrnes, Hire & 

Grosskopf ( 1984) and Byrnes & Fare (1987), the inclusion of geological and other 

mine-specific characteristics may add to understanding the sources of the differences in 

efficiencies. 

With respect to bias-corrected DEA, specifically that obtained through the bootstrap, it 

is important to heed the words of Coelli et al (2005); 

"The DEA bootstrapping methods are designed to deal with sampling 

variability. That is, they provide an indication of the degree to which efficiency 

estimates are likely to vary when a different sample is randomly selected from 

the population. However, these methods do not attempt to account for random 

noise such as that which may result from measurement error or specification 

error. The DEA method assumes that data noise does not exist." 
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This study has also indicated that bias introduced as a result of some heterogeneity of 

the observation for which this heterogeneity must be controlled can lead to erroneous 

results and conclusions. Hence, there is no substitute for removing or minimising mis

specification or other measurement error bias. This may involve more observation upon 

which inferences can be made. In this case, while there is not enough evidence to 

support the case for a distinctly different random process for Zimbabwe-- as opposed to 

all mines with a low overall efficiency score-- at the very least, the result illuminates 

some unanswered questions about Zimbabwe in comparison with the result of the 

world. One could, therefore, argue for a different technology for all the mines with low 

overall efficiency or for Zimbabwean mines only, and hence justify the subdivision of 

the sample into two or more subsamples. 

The possibility that such cross-country factors exist and contribute to the differences in 

overall efficiency justifies further research using additional non-discretionary variables, 

be they geological or political risk. The key challenge is whether such data exists as to 

enable this to be done and how it can be measured. 

Finally, it was argued in Chapter 3 that overall efficiency is but one aspect of economic 

efficiency, the other component being allocative efficiency. An interesting further study 

would investigate economic efficiency and the input and output choices of firms when 

facing different relative prices. It has been noted that there are differences in labour

output ratio and therefore an analysis which takes into account input substitutability 

through prices would further enrich the results. 
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APPENDIX A: ZIMBABWEAN GOLD MINING DATA 

DMU LABOUR MATERIALS ELECT SERVICES FUEL OUTPUT 

4291 132543372.18 14517540.10 18184737.89 2855825.48 214695000 

1074 535288278 1809057.34 984438.94 948001.97 35040000 

1147 1178844483 2439232.66 804603.31 56938212 33385946 

4 2664 27420871 05 531608235 5060845.69 375736.20 39112673 

5 730 4184587.23 1340257.77 771627.08 415696.07 23658000 

6 534 4769008.77 890984.69 1074965.39 530604.18 21266308 

1395 6141753.72 3197841.31 1682492.23 1889623.48 33870309 

8 1910 1688237403 3230933.68 404704.46 1172064.86 29323000 

9 837 1881056176 1840810.18 785640.94 785344.99 31564000 

10 684 580686707 865544.70 915814.03 104807.33 18221000 

11 889 4292812.26 1992149.48 1255757.90 822230.48 37385000 

12 226 480094308 628224.72 817629.39 24251084 14825000 

13 345 2724440.85 735620.48 1087345.72 258074.82 15231000 

14 422 378058444 626826.89 1213271.34 357210.83 17353684 

15 508 2949630.31 797527.21 84668657 96979.98 11974146 

16 365 4225391.52 55786530 1539684.28 45476.66 9922572 

17 280 1545936.25 433868.60 650082.83 76304.25 7823101 

18 199 138011.06 206189.83 5136864 39911.58 1608697 

19 185 5912088.87 49867306 1429002.74 275770.85 11831478 

20 334 203075.87 25338.58 19095.74 34519.23 799277 

21 152 279292.17 135331.30 548850.38 1636610 1446963 

22 190 759276.42 119386.93 11119.26 87050.21 1430838 

23 153 768384.70 179394.47 309140.93 155208.51 5007668 

24 126 3400674.76 396801.06 830843.21 162956.99 8508894 

25 127 60290.90 22319.02 62566.54 35181.53 561431 

26 73 101482.92 6183.69 11275.88 14017.05 305556 

27 62 34005.25 39672.79 7934.56 6801.05 276000 

28 27 20527.60 3119.10 3741923 1986.46 82908 

29 77 32106.32 25197.27 12026.68 4525.29 89267 

30 34 220783.61 2809606 17038.93 17243.40 755085 

31 41 103649.42 2730.41 23323.34 36988.40 163660 
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32 14 2516393 1248.18 15905.58 3954.12 69887 

33 992886 182691 218435 186663 56819 

34 20 64866.98 100829 369708 907465 86076 

APPENDIX B: DEA AND BOOTSTRAP DEA RESULTS: 95% CONFIDENCE 

INTERVAL) 

Mine CRS VRS CRS Blas- VRS Bias- CRS VRS 
Onglnal Onginal corrected corrected 2.5% 97.50% 
Score Score Efficiency Efficiency 

Score Score 2.5% 97.50% 

10000 1.0000 07837 0.8854 0.7724 1.1031 0.5689 1.9110 

0.5765 0.5837 0.5288 0.5540 0.4820 0.6792 05250 0.6776 

3 0.7642 07982 0.7049 0.7593 0.6468 0.8580 0.7212 0.9069 

4 1.0000 1.0000 0.7326 0.7826 0.4665 1.3588 0.5664 1.8361 

5 0.5866 05872 0.5374 0.5582 0.4890 0.6791 0.5300 0.6655 

6 0.4723 0.5018 0.4449 0.4885 0.4182 0.5120 0.4758 0.5380 

7 0.7528 0.7533 0.6675 0.7149 0.5835 1.0489 0.6774 0.9473 

8 1.0000 1.0000 0.6693 0.7967 0.3400 1.8353 0.5945 1.7565 

9 07768 0.7776 0.7145 07389 0.6532 0.8748 0.7013 0.8447 

10 10000 1.0000 0.8879 0.9293 0.7774 1.2424 0.8599 1.2129 

11 1.0000 1.0000 07758 08143 0.5534 1.2646 0.6297 1.5603 

12 0.4110 0.4121 0.3809 0.3911 0.3514 0.4552 0.3707 0.4540 

13 0.5425 0.5450 0.4986 0.5198 0.4555 0.6172 0.4952 0.6210 

14 0.8295 0.8687 0.8007 08504 07730 0.9024 0.8330 0.9188 

15 0.9977 10000 0.9257 0.9604 0.8549 1.1431 0.9223 1.1262 

16 0.8931 0.9036 0.7915 0.8558 0.6912 1.2587 0.8092 1.1358 

17 0.8495 0.8538 0.8013 0.8270 0.7542 0.9422 0.8013 0.9298 

18 0.7034 0.7413 0.6555 0.7132 0.6086 0.8416 0.6859 0.8342 

19 0.8528 0.8542 0.8113 08226 0.7708 0.9744 0.7919 0.9389 

20 1.0000 1.0000 0.7342 0.8085 0.4699 1.2579 0.6182 1.4362 

21 0.6965 0.7211 06721 0.7017 0.6485 0.7628 0.6831 07719 
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22 1.0000 10000 08412 08531 06844 1.5458 0.7076 1.3813 

23 1.0000 10000 08858 0.9033 0.7734 10527 0.8080 1.0730 

24 1 0000 10000 08900 0.9021 0.7817 11061 0.8055 11348 

25 0.9902 10000 08813 0.9104 0.8323 1.1661 0.7640 1.1633 

26 08568 08799 07772 08182 0.6991 1.0321 0.7578 1.0936 

27 07941 10000 07392 0.9050 0.6853 0.8968 0.8113 1.2224 

28 0.3606 09020 0.3395 08530 0.3189 0.3817 0.8050 10691 

29 06238 10000 0.5773 07828 0.5317 0.6966 0.5673 1.8435 

30 09881 09957 09383 09451 0.8903 1.0784 0.8957 1.0973 

31 10000 10000 07715 08262 0.5449 1.3886 0.6537 1.4340 

32 05576 0.9851 0.5183 09260 0.4799 0.6461 0.8680 1.2299 

33 03192 1.0000 0.2995 08474 0.2803 0.3474 0.6960 1.4042 

34 10000 10000 06906 07675 0.3826 1.5381 0.5364 1.9025 

APPENDIX C: DEA AND BOOTSTRAP DEA RESULTS: (90% CONFIDENCE 

INTERVAL) 

Mine eRS VRS eRS Blas- VRS Bias- eRS VRS 
Original Original corrected corrected 5% 95% 
Score Score Efficiency Efficiency 

Score Score 5% 95%, 

1.0000 1.0000 0.7837 0.8854 0.4386 0.7692 0.5696 1.5452 

0.5765 0.5837 0.5288 0.5540 0.6728 0.8700 0.5254 06512 

3 07642 0.7982 0.7049 0.7593 0.8823 0.9170 0.7218 0.8690 

4 1.0000 1.0000 0.7326 0.7826 0.6870 0.4980 0.5673 1.5404 

5 05866 0.5872 0.5374 0.5582 0.6860 0.8761 0.5307 0.6462 

6 0.4723 0.5018 0.4449 0.4885 0.5277 0.6215 0.4761 0.5245 

0.7528 0.7533 0.6675 0.7149 0.8700 0.8983 0.6779 0.9013 

8 1.0000 1.0000 0.6693 0.7967 0.7227 0.5573 0.5957 1.5009 

9 0.7768 0.7776 0.7145 07389 0.8983 0.8981 0.7018 08255 

10 1.0000 1.0000 08879 0.9293 0.3094 0.7743 0.8611 1.1471 

11 1.0000 1.0000 0.7758 08143 0.8486 0.5559 0.6306 1.4267 
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12 04110 04121 03809 03911 0.4718 0.5756 0.3711 04444 

13 05425 05450 04986 05198 0.6311 0.7929 0.4956 0.6062 

14 08295 0.8687 08007 0.8504 0.8878 0.9831 0.8335 08935 

15 09977 10000 09257 0.9604 0.5777 0.8644 0.9232 1.0923 

16 08931 09036 0.7915 0.8558 0.5181 0.9676 08098 10456 

17 0.8495 0.8538 08013 0.8270 0.9342 0.9234 0.8018 0.9083 

18 07034 07413 06555 07132 0.7994 0.9690 06864 07991 

19 08528 08542 08113 0.8226 09230 09496 0.7928 09167 

20 1 0000 10000 07342 08085 0.6816 0.4690 0.6191 1.3837 

21 06965 07211 0.6721 07017 0.7460 0.8602 0.6836 0.7510 

22 10000 10000 08412 08531 0.9822 07163 0.7085 1.2137 

23 10000 1.0000 0.8858 0.9033 0.4905 07698 0.8088 10593 

24 10000 1.0000 0.8900 0.9021 0.4538 0.7781 0.8067 1.1003 

25 09902 1.0000 0.8813 0.9104 0.5494 0.8744 0.7647 1.1344 

26 0.8568 08799 07772 0.8182 0.8877 0.9257 0.7585 1.0064 

27 07941 10000 0.7392 09050 0.8990 0.9198 0.8124 1.1345 

28 0.3606 09020 0.3395 0.8530 0.4034 0.4662 0.8056 1.0132 

29 0.6238 1.0000 05773 0.7828 0.7177 0.8826 0.5680 1.5234 

30 09881 0.9957 0.9383 0.9451 0.7643 0.9418 0.8964 10752 

31 1.0000 1.0000 0.7715 0.8262 0.7610 0.5531 0.6545 1.3646 

32 0.5576 09851 05183 0.9260 0.6372 0.8035 0.8688 1.1388 

33 0.3192 10000 0.2995 0.8474 0.3591 0.4262 0.6968 1.2482 

34 1.0000 1.0000 0.6906 0.7675 0.6156 0.4878 0.5370 1.5288 

APPENDIX D: DEA AND BOOTSTRAP RESULTS: ST ANDRAD ERRORS 

Mine eRS On91nal VRS eRS Bias-

Score Original corrected 

Score EffiCiency Score 

1.0000 1.0000 0.7837 

0.5765 0.5837 05288 

3 0.7642 0.7982 0.7049 

4 1.0000 1.0000 0.7326 

VRS Bias-

corrected 

EffiCiency Score 

0.8854 

05540 

0.7593 

07826 
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eRS Standard 

Deviations 

0.0982 

0.0593 

0.0624 

0.2816 

VRS Standard Deviations 

0.3365 

0.0491 

0.0484 

0.3316 



0.5866 05872 05374 0.5582 0.0582 00405 

04723 05018 0.4449 0.4885 0.0275 0.0171 

0.1528 07533 06675 0.7149 0.1264 0.0756 

1 0000 1.0000 0.6693 0.7967 0.4302 0.3191 

0.7768 07776 0.1145 0.7389 0.0677 0.0482 

10 10000 1.0000 0.8879 0.9293 0.1314 0.0985 

11 1.0000 10000 07758 0.8143 0.2163 0.2736 

12 0.4110 04121 03809 0.3911 0.0324 0.0252 

13 05425 0.5450 04986 05198 0.0519 0.0366 

14 08295 08687 0.8007 08504 0.0343 0.0227 

15 09977 1.0000 0.9257 0.9604 0.0912 0.0576 

16 0.8931 0.9036 07915 0.8558 0.1501 0.0881 

17 0.8495 0.8538 0.8013 0.8270 0.0572 0.0341 

18 0.7034 0.7413 0.6555 0.7132 0.0652 0.0441 

19 0.8528 0.8542 0.8113 0.8226 0.0538 0.0417 

20 1.0000 1.0000 0.1342 0.8085 0.2733 0.2592 

21 0.6965 0.7211 0.6721 07017 0.0330 0.0245 

22 10000 1.0000 0.8412 0.8531 0.2456 0.1918 

23 10000 1.0000 0.8858 0.9033 0.0926 0.0954 

24 1.0000 10000 0.8900 0.9021 0.0984 0.0990 

25 0.9902 1.0000 0.8813 0.9104 0.0964 0.1332 

26 0.8568 0.8799 0.7772 0.8182 0.0988 0.0883 

27 0.1941 1.0000 0.7392 0.9050 0.0650 0.1133 

28 0.3606 0.9020 0.3395 0.8530 0.0211 0.0711 

29 0.6238 1.0000 0.5773 0.7828 0.0554 0.3297 

30 0.9881 0.9957 0.9383 0.9451 0.0539 0.0606 

31 1.0000 1.0000 07715 0.8262 0.2347 0.2509 

32 0.5576 0.9851 0.5183 0.9260 0.0461 0.1055 

33 0.3192 1.0000 0.2995 0.8474 0.0190 0.1957 

34 1.0000 1.0000 0.6906 0.7675 0.3591 0.3553 
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APPENDIX E: WORLD GOLD MINING DATA 

Mine Country Labour Ore Hoisted Grade Recovery Au prod 

Cerro Vanguardla Gold Mine Argentina 791 1.000 7.150 95 7.030 

Super Pit Gold Mine Austral a 560 13008 2.430 85 27.120 

Granny Smith Gold Mme Australia 400 3.995 2.500 89 8.710 

Peak Gold Mine Australia 150 0637 6.400 90 3.800 

Plutonic Gold Mine Australia 640 2.730 4.220 90 10.390 

Challenger Gold Mine Austraha 55 0.298 4.190 90 1.770 

Thunderbox Gold Mine Australia 180 2.516 2.700 93 6.610 

Klrkalocka Gold Mine Australia 120 0.993 1.640 94 2.250 

Gldgee Gold Mine Australia 106 0.344 5.930 95 1.860 

Norseman Gold Mine Australia 210 0.591 7.690 96 4.110 

Darlot Gold Mine Australia 196 0.797 6.240 96 4.820 

Lawlers Gold Mine Australia 100 0.731 4.390 96 3.090 

Henty Gold Mine Australia 93 0.289 11.400 96 3.180 

Sao Bento Gold Mine Brazil 549 0.374 8.500 89 2.960 

Cnxas (Serra Grande) Gold Mine BraZil 514 0.748 8.200 95 5890 

Kemess South Copper/Gold Mine Canada 350 18.633 0.700 67 9.150 

Trollus Copper/Gold Mine Canada 285 5.980 1.030 81 5.100 

Laronde Gold Mine Canada 525 2.221 3.770 91 7.360 

Holloway Gold Mine Canada 148 0.461 4.870 92 2.390 

Joe Mann Gold Mine Canada 160 0.166 7.340 93 1.330 

Eskay Creek Gold Mine Canada 135 0.249 49.100 93 10.950 

Holt McDermott Gold Mine Canada 195 0.507 5.830 93 2.780 

Seabee Gold Mine Canada 108 0.209 7.950 95 1.580 

Golden Giant Gold Mine Canada 265 0.653 11.760 95 7.140 

Campbell Gold Mine Canada 332 0.363 17.600 96 6.130 

Musselwhite Gold Mine Canada 293 1.331 5.500 96 6.930 

Doyon Gold Mine Canada 462 1.278 5.600 96 6.760 

Sleeping Giant Gold Mine Canada 191 0.203 10.500 97 2.070 

Beaufor Gold Mine Canada 115 0.251 6800 99 1.710 

Blbiani Gold Mine Ghana 479 2.591 3.290 78 6.620 

Iduapnem Gold Mine Ghana 1306 3.754 2.000 95 7.580 
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Kumtor Gold Mine Kyrgyzstan 1600 5.631 4.500 82 21070 

Penlom Gold Mine Malaysia 238 0.524 7.280 89 3.890 

Sadlola Gold Mine Mall 1159 5.071 2.770 76 14.050 

Monla Gold Mine Mall 500 2735 13.400 92 24.700 

Orcopampa Mine Peru 265 0356 17.300 95 5.640 

Julietta Gold Mine RUSSia 400 0.145 27.900 88 3.680 

Kubaka Gold Mine RUSSia 428 0.883 6.420 97 5.210 

Ergo Gold Tailings Mine South Africa 1850 30905 0.200 56 6.310 

Petrex Gold Mines South Africa 3800 1.844 2.640 89 4.700 

Tau Lekoa Gold Mine South Africa 4252 2.363 4.240 97 10.010 

South Deep Gold Mine South Africa 4730 1.958 7.200 97 13.710 

Great Nohgwa Gold Mine South Africa 7100 2.389 10.570 97 25.260 

Savuka (West) Gold Mine South Africa 3229 1003 5,810 98 5.830 

Tautona Gold Mine South Africa 5498 1.663 12.090 98 20.110 

Kopanang Gold Mine South Africa 6312 2.184 7.070 98 15,450 

Mponeng (South) Gold Mine South Africa 5876 1.733 8.960 99 15.520 

Geita Gold Mine Tanzania 2256 5.704 3.600 92 20,560 

Chatree Gold Mine Thailand 220 1.324 3,900 91 4.350 

Round Mountain Gold Mine USA 650 57.087 0.550 66 24.430 

Montana Tunnels Gold! Mine USA 200 4.230 0.530 75 1,740 

Fort Knox Gold Mine USA 400 13.685 1,070 84 12,190 

Setze Post Gold Mine USA 988 9.107 6,480 85 48.510 

Cortez Gold Mine USA 370 3.452 6.530 89 33.140 

Meikle (Purple Vein) Gold Mine USA 521 1.471 13.200 90 17.160 

Bald Mountain God Mine USA 105 4.125 0,700 91 2.820 

Renco Gold Mine Zimbabwe 988 0.234 3.590 74 0.720 

Blanket Gold Mine Zimbabwe 661 1.200 1.630 77 1.100 

Freda Rebecca Gold Mine Zimbabwe 947 1.197 1.750 85 1,590 
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