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In the present work we present a numerical and perturbation theoretic
approach to the solution of the one-pzrticle Schrddinger equation, The
numerical methods developed can be used tc find energy eigenvalues for
one-dimensional problems as well as for radial ones. Lzrectation values
are determined by an approach based on eigenvalue calculations, without
the exrlicit use of wave functions.

Eypervirial and Hellmann-Feynman theorems are used to obtain per-
turbation series to high order for polynomial type radial perturbations
of the hydrogen atom. One such perturbation leads to an apparently new
phenomenon in Rayleigh-Schrodinger perturbation theory.

Wynn's alporithm is used to get Fad<d approximants for thre perturba-
tion series., The series for the energy and for the guantities <r“>are
treated, and both types of series can be found using the hypervirial
method.

Several applications of the numerical techniques are given; it is
emphasized that theoretical manipulaticns are needed to transform the
problem to ar approP;iate nurerical form., It is demonstrated that a
slight modification in the numerical techniqﬁes developed perrits treat-
meﬁt of quasi-bound states as well as bound states. It is also shown
how to calculate a local quantity,ab(o), using energy calculations, and

how to reduce the problem of treating angular terms in the guadratic

Zeeman effect protlem to a radial integration problem,
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CEAPTER 1

IITRCDUCTION

As can be seen from the title of this work, our aim is to develop
mathematical technigues to solve the one-particle Schrodinger eguation;
that is, we are interested in how to calculate eirenvalues and eiren-
functions for a certain Hamiltonian. We may ask "what role do the
eigenvalues and eigenfunctions play in the context of quantum mechanics,
and why is the Schrddinger equation so relevant in quantum mechanics?"
To answer these questions, and to be familiar with the ideas about
quantun mechanics at the time the Schrddinger equation began to gain
importance, we would like to summarize some of Erwin Schrddirger's own

ideas about "wave mechanics" in the year 1926 [1].

1.1« The Yave Function@b

Schrodinger derived a differential equation for the eigen-
functionyb. One of his concerns was to find the value of rybli
which was initially thought to be a smeered out charge densityr
Ilax Born changed the concept ofl%ﬂlz by regarding quantum mechanics
as describing the motion of definite point particles. Within this
context he cohsidereél}ﬁ]z to be a probability density, so that
expectation values such as <r>»are averagces of the type used in
traditional probability theory.

Schrodinger used perturbation theory to solve the problem of
the Stark effect for the hydrogen atom, where the potential function
is equal toAz. Although this is an unbound state problem, it is‘
possible to use perturbation theory for small values of )\up to

low order, and still get reasonable results. The Rayleigh-
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Schrodinger approach to perturbation theory involves the calculation

of perturbed wavefunctions'yh of various orders n.

The usual view is to use perfurbation theory to work out the
cizange in the energy A3, after adding the perturbation to the
Hamiltonian, if the unpsrturbed eigenfunction gi,and the potential

function are known. However, in the present work we reverse this

argument; we calculate AZ numerically for arbitrary potential V

so as to find(V)without explicitly recorcding the wavefuncticn,
This reduces the importance of‘yﬁin the calculation, and in our
work on hypervirial methodsj&'is completely eliminated. This means

that series for AE, (r) etc. result without any calculation of the

perturbed wavefunctions'yh.

Surrmzry of S:2lectel Previcus Works

Izto [?,1949] gives an improved and nuch simpler treatment

of the theory of reguler perturbations, based on the use of

resolvents and contour integrals. His rethod allows the derivation
of explicit formulae representing eigenvalues and eigenvectors

up to any order in the perturbation parametexmx. Dalgarno and
Lewis [?.1956] describe a general sum rule which has many variants;
it perrits, for example,,the exact calculation of the long range
forces between a proton and a hydrogen atom using conventional
perturbation theory. Their method finds the second order energy
52 by solving a differential equation, whereas the traditional
method (which has many sirilarities with matrix methods) represents
L, as a summation over terms involving excited states. This sum-
over-states involves continuum states, which are difficult to

handle; the differential ecuation approach indiréctly allows an

estimate of these continuum contributions to be made. The linmitation



of the Dzlgarno-lewis method is the difficulty which may arise in
solving the differential equation. The sum rule technique appears
to have applications to many fields; it will work well for per-
turbed oscillator and hydrogen atom problems, which are popular
test problems for perturbaticn and numerical methods,

Ferturbation theory can z2lso be aprlied to modify numerical
integration methods for finding}b. kiekl, Diestler and Wagner
Eh197{] re~-formulate the method of "reference-functions" to
treat the problem of finding}b for the radial Schr odinger equation
in piecewise analytic form. Ordinary Rayleigh-Schrddinger-
perturbation theory is used to obtain the solution in a succession
of intervals of the independent (radial) variable, The perturba-
tion technique (carried to first order, taking the zero-order
potential to be constant) is tested ageinst the highly efficient
Numerov direct—ihtegration rethod on the Lennard-Jones potential,
It is found that, under the restrictions imposed on the perturba -
tion methods, the Numerov procedure is almost always more effective,
except for partial waves of low angular momentumn.

Adem, Ixaru and Corciovei [5,1974] develop a very simple per-
turbative numerical algorithm for the solution of the radial
Schrodinger equation. This algorithm uses the same basic approxi;‘
mation (a step function approximation for the potential well) as
 that previously reported by Riehl et.zl. (op.cit.). It shows,
however, an O(hB) rate of convergence in the step size h, as com-
pared to the O(h‘) rate of convergence of the algorithm given in
the work of Riehl et.al, A comparison with the Numerov method for
eigenvalue problems proves the high efficiency of this algorithm.

¥illingbeck [6,1977] presents a work which reviews some of
the modern articles in perturbation theory in the context of tradi-

tional results from the theory of real and complex variables. He
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compares the two major versions of time-independent perturbation
theory, the Rayleigh-Schrodinger (RS) and Brillouin-%wigner (BW)
iewe the alternative technicues for evaluating

© series., The cum—over-states method, the

e

rincirle

trd

differentizl ecquzstion method, ard tiz variational
rethod ere trcated with emphasis on their inter-relations. Scrwe

specific variational principles &are studied, including those for
upper and lower bounds to the second order energy, vwith comments

on the extra problem arising if the unperturbed function is not

known exactly.

Don Secrest, Cashion and Hirschfelder [7,1962] present a
nunerical method for accurate calculation of the energy eigen-
value of one-dimensional Schrodinger equations, It is‘applicable

to systems for which the potential is either analytic or has no

"pcle of order greater than two., The method is based on a power

i

serieg expansion of the wave function}b‘at large distances. The

method uses two trial energies, E and E+8Z, and varies them until
the calculated wave functions at some largze distance L are of
opposite sign., Secrest et.zl. (op.cit.) estimate an energy‘eigen-
value so as to make}b(L) = 0; when this reguirement is achieved
they increase L in order tb see if the value of E varies.y This
idea is used in our present work, with the differesrce that we use
three trizl encrgies toc estimate E., Cur method (sectioh 2.1.4.)
does rot recuvire a series of fixed L vealues, since the Frogranne
takee the limit 1 -3 oo duringz the calculztion (es explained‘in
section 2.1.4.). However, the energy eigervalue obtained in our

work refers to a particular strip width h, and an h-extrapolation

14

is needed (section 2.1.4.).

With the use of high-speed computing machines, the large
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nurzber of terms required in the povwer series in the method !

presented by Secrest et.,al, (op.cit.) can be computed easily;
nevertheless, it has been tested on the C.B.,}. Pet Minicomputer
and it was not possible to make it work, because the wavefunction
increased considerably, so as to overflow the capacity (1032)‘of
the Pet. ZHowever it works satisfactorily on a programmable cal-
culator which can lLandle numbers as large as 1C?9.

Killingbeck [8,1977] treats the radial Schradinger eguation,
converting it to a recursive one which 'can be treated satisfactorily
by a programmable pocket calculator. His calculations show that
the eigenvalue error varies very smoothly with the integration
strip width h., The method is applied to a problem for which the
traditional energy perturbation series is divergent asymptotic.

This method, which we call the R-method, &s used in this work

(section 2.1.4.) to find the energy eigenvalue of a system with
potential function equal to Ar—r". We investigate the dependence

of the error on h using perturbation theory and test problems, and
show that the R-method can be improved in several respects. If the
potential V is finite we show that a perturbation approach is possible
which is much simpler than any previously used.

Killingbeck [?,1977] gives some more applications of program-
mable calculators. He finds the energy eigenvalue for one-dimeﬂsional
problems (with —es¢x(+es ) directly by purely numerical methods. This
can be done if the relevant Schrddinger equation is transfcrmed into
a difference equation. This one-dimensionzl-R-method is also used
in this work for V = x° and x‘(in section 2.1.2. of this theSis)

¥illingbeck [}O,197é] uses several techniques to study the
ground state properties of a hydrogen atom with the poiynomial

perturbation 2\r+2\*r*. Ee uses a numerical method to calculate
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the energy eigenvalue, and using in addition the Eellmann-Feynman
. 2\ . . :

theorem he finds <r > values without explicit czlculation of the

wavefunction. Ve develop thece ideas further (section 3.1.4.)

c

wn

an? we check that the Rayleigh-Schrddincer enersy series acr

O

g . 1
(foz-A)O) with the exact eigenvalue —z'ZA. For ALO the slare of

tre rotential curve shove that bound stutes still exict but their

energy differs from —%+3A; this is discussed in szction 4.1.

Biswas et.al. [11,197}] calculate non—perturbafively the
ground state and the excited levels of the generalized anharmonic
oscillator defined by the Hamiltonian E = —dz/dxa+x2+>x2m, m= 2,
3y seey using Hill determinants. For the.Xx‘ perturbation they
compared their ground state eigenvalues, for various values of)h

with the Borel-Pade’sum of the asymptotic perturbation series for

the energy.

The numerical solution of the Schrodinger eguation is often
achieved by means of step-by-step integration procedures, of which

the best known one is the Numerov method. Killingbeck [}2,1979]

shows that a much more simple "global" application of perturbation

theory leads to useful ways of improving the accuracy of various

step-by-step wethods, Xe demonstrates that expectztion values can
te determined by an approach based only on eigenvalue computations,

without the use of wesvefunctions. He improves the so-called k-

rothod (section 2.1.2.) by chanrings to a new veriable F(x) defined

2 . L. . . ; .\
by h(x) = 14L ?(x), leadins to & method vkich we cell the F-method.

ve use these idezo and aprly this method to the same 'test potentinle
- P 2 + A4y . .

as used for the R-method (that is V = x° znd x*) to show the improve-

ment of changing from one method to another,

Bolton and Scoins E3,195€]treat the Schrodinger differential

equation to calculate eigenvalues, using finite difference techmiques.



cozpare this way of solving these equations =with the Rayleigh-

Trey
Ritz variational method.

lumerical procedures for solving the Zartree-Tock =2quations
lave teen described by many authors. Iroesze [14,1963] develops

a vrocedure for solving these equations on a computer (I3M 70SC).

ethod as well as "the tail -rocsdure" and

She uses the urerov -

finds out that these two netlods compenent eacn cther. 3he uzes

the hydrozen a2tom radial equation as a test protlem to compare

differeat methods.

The numerical sclution of the one-dimensional Schrddinger
equation is also treated by 3Blatt [15,1967]. Ze discusses the
various problems encountered e.g. choosing a step éiée; in this
connection, he develops a midpoint forrula to be used with the

Humerov zmethod. He discusses how to find

when already close to it, and comments on otl.sr nrotlens arising

during the process of numerical integration.

Zajj, Kobeicse and Nassif [36,1974] use hizher-order difference

\

sciemes in order %o find a numerical solution of 3chrddinser's
i

radial equation. Thece schemes are a fanily of difference equations

wnich are extensions of tne well-known Numerov difference equations,

and give highly coavergent approxirate soluticns. Zajj et.al. (op.
cit.) uses a "shooting method" to solve the Scirddinger equation,

in2r matrix metioeds, Lecause shooting methods are

o
o)

n u

0]

rather th

aller gtorage and a snorter prograrne, A

W

sizpler, requiring s

correction fortula is us2d to estimate & for eacn trial sclution,

and this corrected enerzy is then used as inrut to the next integra-

tion,

Raptis and Allison [}7,1978] develop an expouential-fitting

method to be applied to tie numerical zolution ¢ the radial
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3chrédinger equation, Their method is

o
PRl £

numerical integration formula, with all the advaniss2s of the
Jumercv method, but with the ability to intesgrate solutions of
oscillatory and exponential form more efficiently. Their work
telongs to a class cf methoas which allow the strip width h to
vary with position during the nunerical integration, whereas for
our problens we find that a fized-h apnroach is adequate.
N

litra [}8,1978] calculates the ground state and the first
two excited state energy levels for an oscillator with perturbing
potential of typelkxz/(1+gx2). Je uses the Litz variational method

in combination with the Givens-Zouseholder alzoritnm for nurzerical

give a simple

0g

computations., Galicia and Killingbecic E9,1979]

o

nunerical method for calculating the eigenvalues of the Schrédinger

\ .
v onin,  Tle direct

. '
equation for the perturbted oscillater considered by hiin :
umerical 1nte~rdtloq method is more accurats ithan th2 mairix
aprroaci for thiz Zind of Hamilteniarn . Trhe metiol used is an

n4 process for bound potentials and it is shown to te wmore siaple

tran the Numerov method. In ssction 2.2.2, we give an explanation

of this method and the results for the srergy =sizeavalues of the )

three lowest even parity states obtainsd by our mcdified R-method \

and by ¥itra's ratrix approach. Dirzct methods also pernit the
calculation of expectation values such as <x2>. zesults for this
exrectation value are also given in secticon 2.2.2.

Tirping [20,1976] nracents a method whereby matrix elemeats

ara derived directly in ter-s of the encrzy eigenvalues, and of

[ pas

[#]

tle potential rarumeters, without explicit use of tr2 eienfuncticn

Trniz method consists of deterzining "initial" matrix elerments via

quantum mechanical sum rules, and thza generating all additional
\

.

elements through an oxact hypervirisl recurcion relationship.

At
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The method is illustireted by samnle calculations for the x4
oscilletor, and it is shown how to obizin results more accurate

erploying nurmerical

-
In

than thoce corprted 1y direct interratio

eigenfunctions.
Svenson and IJanforth [?1,197?] aprly a2 set of hypervirial .

v

theorems pluc the Hellmanr-Teynian

<

theorem tc a2 gereral anharmonic
oscillator. Tie exect energy and expectation values of powers of

the pesition coordinate are expanded in a power series of the

anharmonic coupling constant. It is shown that the use of the

above theorems enables one to express each term in these expansions

solely in terms of the unperturbed energy and known constants. This

procedure eliminztes the usual tedious calculations of sums over
intermedizte states of products of matrix elements, which arises
in nth order Rayleigh-Schrodinger perturbatiorn theory.

5 4 . : : .
The Pade approximants are a particular type of rational fraction

srproximstion to the value of a function (Faker [?2,197@]). Wynn
\ , )

[?3,1956] has designed an algorithm to evaluate Fade approximants;

the novelty of this algorithm is that it directly produces the

numerical value of the approximants for a given.A without explicitly

constructing the approximants as rational fractions at an inter-

mediate stege.
¥illingbeck 24,1978] showes that hypervirial relations yielgd

the series for the energy and expectation valuves for a hydrorcen

se
atem with perturbztion )uy up tc fifth crder in)\, wit hout cal-

. ~ . . v T . .
culaticn of certurbed wave functions. He makes & Fade approximant

analysis of the energy series. In a subsequent paper ¥illingbeck

and Galicia [?S,in the presé] use hypervirial relations together
with the Hellmann-Feynman theorem to get the energy coefficients

of a power series for the hydrogen atom with potential function

)
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~1 -1 . .
Ar-r andg Arz—r . In the present work (section 3.1.1.) we

develop a procramme whkich calculates the perturbation series up
any hydrorcen atom state and for a perturbing

1 . P f = i . ms.

tenti~l Ar’ (F & positive 1nteger). Tz yrogsrevme also enables

ctation valuee of type ™M\

[

us to ret the gserize for exo
We tave developed a procrzmre which uses Vynn'e alporithm

.’ . . s . N .
to calculate Pade approximents. It is used by ¥Killingbeck and

Galicia (op.cit.) to obtain the energy value for the potentials

mentioned above. Their results indicate that the exact energy

lics between the [L+1,L] and [L,L] Padé approximants. In this

work we aprly it to several perturbing potentials and expectation

values (section 3.2.3.).

The problem of calculating the eigenfunction’y}at the origin

- L

for radial Hamiltonians, such as that for the Charmonium system,

is shown by our apprcach to be reducitle to a sequence of energy

calculations. Killingbeck and Galicia (op.cit.) consider this
problem, performing the calculations by the use of a pseudo-

angular momentum term in a numerical integration approach. They

show how a first principles approach to s state hypervirial
relations produces terms not given by the usual commutator approach. .
The problem of%#(o) is also discussed in the present work, which
gives typical results (section 4.3).

Iazi and Ta

4

vlor [}6,197@] apply the stabilization method of
calcvlating resonance cnergiss to the elzstic scattering frem a

. -_

ier. Ior

H

one-dirensional model pcotential contzining & bar
sufficiently large basis sets? the stabilization rethod yieldsv
good approximations to the inner part of the exact scattering vave
functions at energies equal to the'eigenvalues 5f tre truncated

matrix of the Hamiltonian in both the resonant and non-resonant
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{uzsi-bound-state energy calculations are made for a per-
turted oecillztor and e perturbed hydrogen atom ty Fillingbeck

z b a

“7,1575]. Ze describes a sirple nuunsrical variant of the well-

¥novn stebilizztior retliod; the results are compored with tlese

3
»,.
U)
(0]

<
~e
(RN

from the least-cquzre and perturbztiozn-szcrics retiode,

ideas are further discussed in this work in section 4.1.
Aﬁstin [?8,1980] uses the hypervirizl and Hellmann-Feynman

theorems to obtain perturbation series for the perturbed hydroren

atom to high order. Ee showe thzt although the series diverges,

the diagonal Fads aprroxirants converge to an accurate eip envalue,
o

Trhic asrect of the Fade” approximants is also dermonstrated in this

\

thesis (secLlon 3,22 )

Austin (op.cit.) treats the problem of the Stark effect

wo LL
rerturbation Xz), where there are no bound states, by using

- s . ) . . e L .
‘ad€ errrexirants and parabelic coordinzies. For the radial

perturbation Ar Killingbeck [}Q] and sAustin (op.cit.) cemonstrated

alt }
that even for )v(O there is still convergence of the diagonal Pede’

prroximants, over a smaller range of)\. This is alsc considered

in tre present work (section 4.1.1.) where typical results are given.

4s ve mentioned at the beginning of the introduction,

Schrddinger treated the problem of the Stark effect (i.e. perturba-

tion Xz) znd ottzined the enersy perturbestion series up to second

order. Thinge have changed since then; with the developrent of

poesitle tc hancdle the series '

wm

rodern comnutational methocds it i
to very high oréer and interpret the results in terms of the theo*y

’

s

illirgbeck [ ,1079] treats tle prodler of the hydrogen-atom

ovadrztic Zeeran effect using perturbaticn theory. The important
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step for solving this protler is the right choice of the unper-
turbed Iamiltonian. Ve develop trese ideas further in this thesis
(section 4.7), using the F-zetlod of section 2.1.4. to rerform the

nuiericel integrations.

Summory of Frecent work

In chapter two we give a perturbation theoretic treatment of
nunerical integration metlods to solve the Schrodinger equation,
It is shown that after converting the equation to a recursive one

it becores so simple that it could be handled by a programmable

pocket calculator.

. ‘ . 2 _ . 4

we choose the test potentials V = x° and x* to show the
improvements which can be made by introducing several modifications

of the orizinal simple method. The numericel methods developed

can bte used to find the energy eigenvalue for one-dimensional
problems (With —-@(x(—o) as well as for radial protlems (with
O$x(eo).

It is shown how the accuracy in the calculated energy depends
on the choice of the strip width h. 1t is shown how to get a pro-
Jjected energy eigenvalue by means of an extrapolation process in
the quantity hZ.

It is demonstrated thzot expectaticn values can be determined
by an approach based on eizenvalus czlculztions, without the
explicit vese of wave functicus.

In cliapter three, the hyperviricl thecrem, tozether with the
Lellmann-Feynman theorerm, is used in order to cbtzin power series
fqr t’he energy and expectation values of the type <r~> for the

kydrocen atom with perturting potential Ar (with positive integer P).

Trhis approach is used for the ground state as well as for some
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excited states. The Charronlu" type poterntial ( 1/r¢2Xr+?X 2) is

also treated by hypervirial methods and is shown to have some

interezting properties,
wn'e zlsorithn ie used in section 3.2 to otta in Page’

~

oint abteut tidie algorithm

apyroximanis to pover series. The Yasic p
ie that it directly rroduces tie nunerical veslue of the approximants
for a giv en A vithout erplicitly consiructing the aprroxirents as

retional fractions at an intermediate staze., It is demonstrated

for several of the perturbtation problems of interest that, although

the perturbtation series diverge, the [P+1,y] approximants converge

“ . . - . 7/
from above to the correct quantity required and the diagonal Fade’

approxirants (i.e. [;,L]) converge from below,

hnother application of Wynn's algorithm ie given in section

thie calculation of expectation values such as <r> and

.aT

>.2.27 for
<r2>l
\
Ir. charier four further applications of the nuzxerical techniques

emphasis on the theoretical manipulations

/

are given, with some
needed to transform the problem to an appropriate numerical form.;

The problem of quasi-bound states is considered in seétion 4.1,
with the aid of the R-method of section 2.1.4 and of the Pade’ approxi-
mante of section 3.2. It is shown thast for the ﬁydrogen aton with

perturbing potentiel “X“+2V liere are bouni states even for k( 0.

Y = &
This problem shows thut interestins feature of a Rayleizh-Tchrodincer
enersy serices which is ccnvergent (finite) tul vhich does not give

tha energy correctly.

In ssction 4,2 it is shown kov to deal with theﬂf(o) problen

(i.e. thke czlculation of the wavefunction at r = O). The basic

rritciple involved is that of reducing the calculation of the

required cuantity @%{O) in this case) to the calculztion of an
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expectation value, and thence (by the rethods of section 2.2.5) to

eigenvalue ‘calculations, which can be performed accurately by the

rethed of section 2.1.4.
In the lzst pzrt of this work, ile hydrosen-atom quadratic

Zeernan effect is analyzed. The relevant idea is i0 make a suitable
choice of the unperturbed Hariltorian, Tle 1s, Zs, ?p, 2Payy 3G,
and 3ds4, states are studied in section £4.3.3. Some selected RASIC
programmes and their associated flow-charts are given in the

appendices, together with comments on their use and on modifications

which can be made in order to perform several different calculations,



CHAPTER 2

A PERTUKBATION-THEOKRETIC AFPPRCACH TO NUMERICAL INTEGEATICN NrTHCDS

2.1, Numerical Integration isethods

2.1.1. Introduction

The numerical solution‘of the one-particle Schrodinger
eguation has attracted continuous interest over many years.
Tre Numerov method, which is a step-by-step integration
procedure, has been used and improved recently by man& authors.

Our interest is to create simple numerical methods which
could be used to sdwe the one-particle Schrddinger equation,
even with a programmable calculator, avoiding the use of large
matrices. Using the Eayleigh-Ritz method to solve{the
Schrddinger equation it is necessary to choose suitable basis
functions. It is not alvays easy to find a suitable basis for
a particular physical problem, and then there are also the pro-
tlems of constructing and diagonalizing the Hamiltonian matrix.
This makes fairly large demands on computing power and storage
capacity, and so is not suitable for small machines. The direct
finite-difference methods described in this work are designed so
that it is possible to find information about the solutions of the

differential equation for a given potential without such problems
arising.

2.1.2. R-lMethod

We choose the Schrodinger ecuation to be of the form

_E‘{D"’#H. Vi = EY (2.1)

where V is the potential function and & the unknown energy, which
will assume some definite trial values during the course of the

numerical integration procedure. We can represent the second

~-15-



[

. 1€~

derivative]f in the finite difference form[?]
2. |\
B¢ =% [eshy+ Fx-h -2 9 @) (2.2)
yielding the result
Y (xeh)+ ¥ (x-h) =2 P = 2 B (V-E) P () (2.3)
Since storing all the'qf(x)values requires a lot of storage |

capacity, we want to avoid retaining the full wave function

while solving the equation.

To this end we introduce the variable R(x) defined as

R(x)= %%’l | (2.4)

That is, we have defined the new function R(x) as the ratio of

the wave functions at neighbouring points., In this way we can

"see" the btehaviour of the wave functions as x increases,

Putting equation (2.4) into equation (2.3) we obtain

P 2y
RO+ = = 2[1+), v E)] (2.5)

The advantage of dealing with R(x) instead of #q‘x) is that
initially we only need to store the value of K(0), if we start

at x = 0; this value can easily be found to be rR(0) =1 -f-Lz[V(O)‘E]

if we suppose that #r(h):gk(—H), which yields the result.

R(o)= 1/R(-|—.) . This condition is valid for even parity solu-

tions when the potential V is of even parity.

We have chosen the potentials V = £ and 7 to test the efficiency
of our rethod. The first potential can be treated exactly by
analyticel rethods, while the second cannot. ZIDeczuse of the

symmetry in the potentizl function we integrzte zlong the posi-

tive x axis only. As noted previously, if we have 3b(h):'4f6—h)
ve can get an even parity solution. To get an odd parity solu-

tion, for which}lf(o) = 0, we start again at x = O but with R(0) =eo.

1
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With these ideas in mind we can start our programme using, for
example, a Casio fx-201P programmable calculator. The usual
bourdery conditions for a guantum-mechanical eigenvalue problem
recuire the wave function to vanish at both ends of some range

ol %, In this case wve start at x = O and recuire that 11L"(°°):O .
Tre second derivative,If , can only be zero at corne value of x,

for a fixed E, if the potential is monotonic in x, as it is for
our problem., This condition is valid only if thé wave function
is positive everywhere. As we know, from elementary quantum
rechanics, a great variety of potentials have a wave function
which is nodeless for the ground state. The nodes start appear-
ing as E increases, each excited stzte having one more node than
the one below it. Therefore if we start our programme using a
trial energy E we have to observe the behaviour of the function
K(x). If R(x) is regative at some x, that means that we have
reached a node. This indicates that our trial E was too high,

if we are interested in the ground state energy eigenvalue. On
the other hand, if R(x) passes through unity from below this
occurrence shows that#f(x) is increasing with x, which suggests
that E was too low. Trying various E values it is pOSSible to
"sandwich" the required E, up to as meny decimal places as we
went.

The stonping condition (KO or E>1) can be written as

'R(i-ﬁ)(o, giving only one stopping instructicn tc the calculator.

Le ve can see from ecuatiorn (2.5) the E value depends on h; we
can also see this dependence in table 1, If we write the energy

as E(h), to show its h- dependence, then the eigenvalue of equation
(2.1) is E(0). The quantity E(h)-E(0) is & function of h', as we

shall discuss in more detail later.
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A linear extrapoletion (in W) gives the result E = 0.7071068 for

V = xe which fits to the analytical result E =3J2 . For V = 'S

ve find E = C.6679875.
Table 1

Energy Zirenvalues Using R-lethod

Vv 2 4
,hz X X

0.0004 0.7070818140 0.6679494995
0.0008 0.7070567848 0.6679115115

0.0012 0.7070319225 0.6678739205

F-Fethod

As we have seen in the previous section, to get the energy
value to high accuracy we need to use small h values, in which

case it will be necessary to perform hundreds of step-by-step

calculations. Consequently the resulting E value may be affected

by rounding errors. If h is very small we know that R(x) is of

the order 1-th; this means that we can remove the integer 1,

since it is giving redundant information. In this way we can

gain two or more significant figures at each step. In order to
do so we define the F function as follows

R(x) = 1+52F&x) (2.6)

.

Substituting this definition into equation(2.5) and using the
ecuality 1/(1 + x) = 1-x/(1 + x), we obtain

- _FK&x-h _ o
FO) = Trach + 2 (V-E) (2.7)

¥We use the same potential as the one used for the R-method
to show the effect of using ecuation (2.6), using again a Casio
fx~201P calculator.
Because of the fact that both the eguation (2.7) and our

potentials depend on h?we can shorten the programme by storing hz

Tre starting value takes the form F(0) = V(C)-E.
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instead of h. The stopping condition is that R(1-R) =
(hﬁ:)[1+h‘?(x-h)] shall be positive. Some typical results
are shown in table 2.
Table 2
Enercy Eirenvalues Usine F-Tiethod

v XZ x4

hZ
0.0004 0.7070817835 0.66794874C5

0.00C8 0.7070567805 0.6679112155

0.0012 0.7070317726 0.6678736915

To find the energy very accurately we fit the results in Tables 1
. 4 ‘
and 2 to the expansion E(h) = E(0) + Ah%+ Bh, and find the E(0)

value. We shall reserve this analysis until section 2.2.3., where
results for several methkods are grouped together and analysed.
However, it is already clear from Tables 1 and 2 tld the change
from the R-method to the F-method begins to affect the fesults at

the sixth or séventh decimal place for our simple test potentials.

kadial Problem

Considering equation (2.1) we assume '()lfto take the form qj}¢(ﬂ
where'ﬂﬂis a s0lid harmonic of degree-f. Making the substitution

in (2.1), and multiplying throughout by r, leads to an equation

for the function$, (Killingbeck [8]):
2r(V—E)¢ :rD2§5+(24 +2)D¢ (2.8)
where D-is the derivative. To make ecuation (2.8) much simpler
we introduce the finite difference approximations
D¢ — d(reh)+ G Cr-h) -2 ¢ () (2.9
2hDg — P(rih)- ¢ (r-h)  (2.10)
The resulting difference equation will only simulate (2.1) in the

limit h-»0, but it will be shown that very good results can be

obtained without approaching the limit too closely.
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The rext step is the intfoduction of a ratio variable R(r),

defined by the equation
¢(r+H): R(F)¢(r) | (2.11)
With the substitutions (2.9), (2.10) and (2.11), the differential

ecuation (2.1) is converted to & recursive eguation to calculate

the values of H(r):

R(r)[r + rm_Q+»1)J " R(r—hja[r—h(l " 1)J - 2r[14—hz(V—E)J (2.12)

This ecuation can be worked out using a programmable calculator.
We can start at r = h(-2+-1), since in this»case R(hﬂ) can be -
assigned any finite value. If we deal with-g = 0 (s states)
equation (2.12) takes the simple form

(F+RRGY + (-RR G- = 2 [14Hv-D)]  (2ur3)
We hLave applied this equation to the problem of finding the
energy eigenvalue for the potential V =‘Ar-fd usingaCasio fx-201P
programmable calculatof. The starting co-ordinate is r = h, It
is possible to change to the variable Y= R-’ ,» so that the
stopping condition becomes Simply”Y<1. " Results for this problem

are shown in table 3, which refers to the lowest‘eigenvalue.

Table 3
Energy Eicenvalues for V = Ar-r. Using R-Method

\ b 0.04 0.02 Using h?law

0.01 -0.484940100 |  —0.485092750 -0.485143(633)
0.02 -0.470345403 -0.470501254 -0.470553(205)
0.03 -0.45598£774 -0.4561460€1 -C.456195(516)
0.04 -0.441827514 -0.44200744C -C.442060(749)
0.05 ~0.427903578 -0.428065541 -0.428119(529)
0.10 -0.360671692 -0.360842678 -0.360899(673)
0.15 | -0.296751531 ~0.296929501 -0.296988(824)
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A study of the error E(h) - E(C) shows that it is proportional
to hzup to fairly large h values. We have applied an extra-

polation law which holds-in the h region:
A
E=3[4EGN-E@R)| (2.14)

The first two columns of table 3 show results for the energy

eigenvalue using two different h values, From these results we

can say that, although the calculator displays nine decimal figures,

after using equation (2.14), we can only consider the results to

bte accurate up to the sixth one. Even so, we show the results up

to 9 figures enclosing the last three in brackets since those

figures are not reliable.
We can easily pick out an excited state by allowing an

arpropriate number of nodes to appear, that is, instead of stopping

the celculation when 154( 4 we allow the programme to continue

-1 : Lo
until R fulfils the stopping condition for the second or third

time, depending on the particular excited state which we are

interested in. Eesults for the first excited stzte for'V::Xr-r-‘

are shown in table 4; this time we did the calculations using a

C.B.IM. Pet mini computer; we have applied again an hzlaw.
Table 4

2s State Energy Eigenvalues

NN 0.1 0.05 h? law

0.01 -0.0695784343 -0.0696481205 -0.0696713(492)
0.02 ~-0,0200291862 -0.,0201021321 -0.0201264(474)
0.03 +0.0259161898 +0.025040081¢ +0.0260117(581)

It is convenient to get an equation for the radial problem using
the F-method to show the advantage of_this method over the

R-method. In order to do so we apply the same criterion as to



get equation (2.12), i.e. we put equztion (2.6) into equation
(2.12) use azain ths equality 1/(1+x) = 1—x/(1+x), and

obtein

- -1
(r+ h)F(r)-(r—-MF(r—h)[f + W F( r—MJ
=2 (v-E) (2.15)

-4
The function [1+h?F(r-hﬂ can be replaced by its equivalent

R(r-h)—‘ which yields the equation
(r+h) FCA +(r=h)F(r-RR(r-hY "= 2¢ (V-E)  (2.16)

We have written a programme based on this equation for the PET.

It gives many advantaces over the k-method. It uses three trial

E values (E, E*$E) at the same time, evaluating the appropriate

~ functions, W = V-E, V+dE, and W-8E, whereas in the previous

programmes only W = V-E for one E was used. The idea behind this

theory can easily by understood by looking at the next diagram,

¥
3

Figure 1



The BEAZIC-programme is given in Appendix A1 with a more
detailed explanation of its use.x |

Thie progresame is written in such a way that it is possible
toe know whether each of the three trial E's is too high or too
low, as it shows the number .ofvnodes that each function, ‘l//‘f )‘IILZ )
or '(lbg, has passed through. It also calculates the corresponding
wave functions, using eguation (2.4) as a recursive equation,
starting at‘;’(ﬁ) = 1 for each of fhe three trial E values.

When the true E(h) value falls between two of the trial
E values, the programme interpolates to get a "predicted" value
for E, first using#qand ‘sL‘zby means of the relation €, =E ’(‘SE/(‘I
-‘l}fz/]}’,)to get an initial predicted E value. It then calculdles
£,=E - ZJE/(F‘}[’S/%) to get a second predicted value, Finally
a third interpolated ES value is calculated as a result of dealing
with €, and £, to get a predicted E(h) to a higher order of
accuracy. The interpolations are designed to find that &(h)

value which would make'S/ftend to zero at large r values.

A remarkable result was found while running the’programme.
As the wave functions are calculated for increasing r values,
passing through several nodes, the ratios '}1'2/}6’1’%/#‘4 » ete.
reach constant limi'ting values, giving as a result a stable
predicted E(h) value, even though the individual functionsfl)lq ,
’l)l/'z and'4"3 deviate markedly from zero at large r.

Table 5 shows the resultsof dealing with the potential

V= Ar—r"; these can be compared with the results of table 3.
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Table 5
Energy Eirenvalues for V = Xr—fJ\Using F-lethod

XI’ 0.04 0.02 h? Law
0.01 ~C. 484940031 -0.485092755 | -0.485143(663)
0.02 -0.470345488 -0.470500864 -0.470552(656)
0.03 ~0.455987767 -0.456146506 -0.456199(552)
0.04 -0.441847575 -0.442007719 -0.442061(100)
0.05 -0.427903551 -0.428065849 —0;428119(948)
0.10 -0.360671584 -0.360842928 -0.360900(043)
0.15 -0.296751664 -0.296929955 -0.296989(385)

Perturbation Theory in hz

Introduction

Up to this point we have noted that £(0) - E(h ) is a
function of hz; we now formalize this notion by regarding n*
as a perturbation parameter, using some ‘standard. results of
perturbation theory to improve the accuracy of the eigenvalue
computations []2]. The basic quantity which we study is the

2 . PR
second order finite difference operatorcs y with the defining

equation

S = Yocsh) 4 Pix-R-2 P

-2 2
In the methcds of section 2.2.3. w2 used h (Sz to replace D in the

(2.17)

Schrédinger eguation. Using a Taylor series expansion, however,

L. . -2 ’ .
it is clear thzat h (Sz actually represents a formal series;

-2¢2 2 { 2 4 { 4 L
L\CS ¢:D-¢,—+ELD'¢’+?‘:—5‘“D 'p'““"' (2.18)

We can use the Schrodinger equation in the form
{2.19)

Dy =2(V-E)Y =¢Y
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éo simplify eguation (2.18), &ielding the result
FSY= $¥ 4+ KD ($9)+ OCHY) (2.20)

Tre Numerov netriod involves replacing the second derivative
2 -2 -2
D (d’l/f) by the difference operator 11 J (¢Zﬂand dropping the

Lhizher order terms.

Tris yields the Numerov eguation

282 1/’ 957)[” 5@53[') (2.21)

Cur (alternative) approach is to note that the term -1-5?-_- };ZD “i[)"
plays the role of a perturbation term, showing that (to order n)
the effect of using kiéz to replace D2 is equivalent to adding

the perturting operator ‘-!zl\z_ﬁ to the Hamiltonian operator.

Modified k-Method

Cur aim is to find an equivalent relation to equation (2.16)

without requiring the storage of the functions #(x), ¢(x + h) )

(It also needs

i

and¢(x-h) which the Numerov method requires.
certain instructions to make the transfers ¢(x+h)—?¢(x) —>¢(x+h)
as one passes from one step to the next). |

Using a perturbation analysis we know that the first order
effect of a perturbing operator AV is to give an energy shift of

the form )\(V) where (V) is the expectation value of the operator

V with respect to the unperturbed wave function. For our parti-

cular problem we need an expression for the expectatiorn value
of the opersztor Dq, taken with respect to the'#rwhich oteys
equation (2.19). Ve find

(p*) = (g dx _g(m2¢)(n wx + bt
=(y @ pda bt =(P2D> 4 bt

The boundary terms, b.t., which arise by integration by parts,

(2.22)

are given by University

b.t. = [

\(2<23)




For bound state protlems, like the one we are dealing with, the

boundary terms vanish,with A = -ecand B =es, provided that the

potential function V is bounded. Therefore it fcllows that the
" 2
expectation value of p? is ecgual to <¢2>, where ¢ is a multi-

plying function instesd of a differential opzrator.,

If two perturbing operstors give the same expectation

value, then they will give the same first order perturbed energy,
2
giving an energy difference only at the )\ term. Therefore, if
114_4 . . . 1 14 12
we replace the term ‘-5_-1,]) 3[»‘ by its eguivalent, i.e. -1-3'}1 95
in equation (2.20) we will get the value of the energy with an
error proportional to the square of the perturbing parameter,

i.e. kﬁ , because as we have pointed out the perturbation parameter

is hz. This leads to an eguation for the R-method of the form

~1 2 114 2
RX) +R (x-hY = 2 + K (V-E)+ 7z h' (V-E) (2.24)

Equation (2.24) gives an }ﬁ process (for bounded potentials).

The richt hand side is a function of (V-E) at the sinsle
co-ordinate x, so the method is more simple than the Numerov
method, which requires the retention of the (V-E) values at three
neighbouring points.

As an example to show the advantages of this improved
R-method, we deal with the potential V = X + )\xz/(1 +gx%) .
Kitra st has used a matrix approack to solve this problém. He

deals with the perturbed oscillator Schrddinger eguation
2 2 2 2 - '
—-Dx)bw-[x +Ax/(1+5x)]-5b‘_E"§b" (2.25)

To solve eguation (2.25) using the traditional Kayleigh-Ritz

method it is necessary to choose the basis functions and then

evaluate the matrix elements of the Hamiltonian. For this
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particular potential there is an extra difficulty. At large g

values, e.g. g = 100, the perturbing potential is concentrated

in a small bump near the origin. As a consequence, the numericel

integration process whrich yields the ratrix elements becores
difficult to perform accurately, and any error at this stage

necessarily affects the eigenvalues resulting from the final

matrix diagonalization.

Ve present a better way of solving this problem using

eguation (2.24)(Galicia and Killingbeck [liD. Table 6 shows

a comparison between Mitra's method and our direct numerical

integration method; we can see that even at large g values our

method still works, giving a very accurate result.
We use equation (2.24) in a similar manner to equation@.S),
-1
with starting condition R(0) = R(-h) at x = O. However, the

value of R(0) is given by
1 1{ 2 /)
2R(0)= 2 + h*¢'(1+ - h #')
' ) | .o
where ¢= (V-E), since in this case our Schrodinger equation is
of the form =D ¥ + (V-E)Y instead of equation (2.1). To incor-
perate the starting condition in the programme we can use a
-1
dividing factor K. R(0) is evaluated with R(~h) = O and the

result is divided by K, which is initially set equal tc 2., At

the end of the first cycle the instruction K = 1 is used to go

back to the correct eguation for all later x values. The stopping

condition is as for eguation (2.5).
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Pable 6

L A= 0.1 100 0.1 100
£ = 0.1 0.1 100 100

0.05 1.0431738%4 ©.07612800¢ 1.000841232 1.536334L85
5.,181095365 10, 20306035 5,000C28020 5028328447
¢.270820 £7.447€05 9.000952 ©.949162

' |

0.05/2"" 1.043173987 9.976154200 1.000841333 1.836335907
5.181095215 49.29287438 5.000927960 5.928328893
0.27281¢ 87.446244 9.000950 9.949162

0 1.04317408 9.976180 1.00084143 1.8363373

/

5.181055C6 4€ ., 29269 5.0009278 5.9283293
¢.272818 87.4447 $.000048 9.949162

Fitra 1.04317 9.97618 1.00084 1.8364
5.18109 49.29269 5.00093 5.9028

and 3s excited states; they

Table 6 also shows results for the 2s

were calculzted using the procedure explained in section 2.1.4.

Direct methods also permit the calculation of expzctation values

such as <xz>, and allow us to "pick out" an excited siate simply by

increasing the number of nodes.

Table 7 shows results for the expectation value <x2> for the

ground stzte.

The way in which they are calculated is as fbllows.

We

. 2 2,
do two calculations to get two E values, using (i+€)x and (1-E)x

.instead of x

2 4n the potential function of eguation (2.25). €& is a
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very small number, e.g. 0.001.

The value of<x2> is then given by

<Xz> = ;_1;_ [E+" E-J (2.26)

where E_ and E_ are the two energies.

Tzble 7

4
Cround State {x) Values, h = (0.05)/(2)

. |
0.1 100

A

0.1 0.48147 | 0.49997

100 | 0.05041 0.46524

In terms of first order perturbztion theory, we are using the idea
\ . 2

that the perturbations Y€ X change the energy by an amount b4 £<xz>
o . 2'
if £ is small; the use of the difference (E+~B_) renoves any &

. AN
error terms, In order to get a very good estimate of (x >1t ie

best to use two different h values to calculate E, and E_, and
then use an h -law to get a projective E and E_ value. The
results shown in Table 7 were calculated using onlyoneh value
since looking at Table € we can see that the value of the energy

is accurate up to 5 or 6 decimal places. This assures an accuracy

2 . N .

for(x > up to 5 decimal places. For g = 100 and }\ = 0.1 there is
. F4 . . L} . 3
an error in the value of<x > because in this case the ernergy eigen-
velue is rot very accurate at this k velue. For this pmrticular
case it will be necessary to use another h value to get E+ and E
. 2

before calculating <x )

If ve use the Schrodinger eguation in the form of equation (2.1)

the corresponding R-equation takes the form

RO +Rx-hy'= 2 +2 K (V-£)+ ¢ Wev-E) -
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vhich in terms of the function ¢= 2(V-E) takes the form
‘ -1 2 1 14 g2
R() +R(x-h) = 2+ h’d+ = h'd (2.27)

wWe have applied this equation to the potential \/=><§ using the
sare computing programme as for Mitra's problem)adding a multi-
plying factor of 2 for the function ¢. Lesults are shown in
table 8 using different h values in order to extrapolate. The

extrapolation will be done in section 2.2.4.

Table 8
Energy Eipgenvalues for V = x2
h 0.01 0.02 0.03
Method ¢
R-liethod o
without correction 0.7071010936 0.7070819496 0.7070506032
F-llethod
without correction 0.7071005320 0.7070817835 0.7070505262
R-Fethod a
with correction 0.7071038460 0.70709428,0 0.7070786658
F-lethod

2.2.3¢ I':Odjfied F—T'Iethod

in b* process based on the F-Fethod can also be developed.

Trke one dimensional recursive relation takes the form

FOO= Fx-h[ 1+ K RO +2v-E) kS R(v-B)F (220
In terms of the function ¢ it takes the form .
F(x) = F(x-h)[H-kz F(X—H]-jk 74 + LW (2.29)

We have applied this equation to the potential V = x to compare

the results with the previous methods. The starting condition is

F(o):i—},zEz—E , and the storping one is thesume as for the R-Nethod;
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the results are in table & together with those for the improved

Remethod.

.2 .
n - nxtrarolation Frocess

In order to get an improved value of the energy we can use

2 . ..
an h” process of extrapolation. e have calculated E for the

2

potential V = x using different strip widths and using our four

one-dimensional numerical methods., To be able to use the same
extrapolation formula for all our previous results we need first
to calculate the energy using the R and F-lethods of sections

2.1.2. and 2.1.3. using two more values for h, e.g. h = 0,01

and 0.03,

The extrapolation formulae are

E =

o >

[4 E,-Ez] (2.30)

F= ;—'5[15E.-LE2+53] (2.31)

Table 8 shows results for the eigenvalue E(h) using the R and
F-llethods with and without the correction term. Table 9 shows
results for the extrapolated eigenvalue using equations (2.30)

and (2.31). The exact value, as we have pointed out is

E = 1/J2 & 0.707106781
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Iable 9

2

. . 2 - . :
Energy Eigenvalues Using an h® - Extravolation Process for V = x

E-lethod F-Fethod k-lethod F-¥ethod
without without with with
ccrrection correction correction ‘correction
E(tZ) 0.707107474 0.7071C6781 0.707107032 0.,707106780
¢y, 3 0.707092398 0.707092203 0.707095497 0.707106783
‘E(LL3) 0.70710752¢ 0.707106780 0.707107062 0.707106780

At this stage we are now able to say that the modified F-Method

is the one which gives the very best result, as we had predicted

on the basis of perturbation-theoretic reasoning.

Fror table & we can see that even without the extrapolation

formula it gives a very good estimate for the energy at h = 0.01.

On the other hand even the "poor" R-Fethod gives a good estimate

up to 6 figures using Eqra)*
4

of section 2.2.2., that is, V =X +Ax/(1+9X)

and 0,05.

We can use this h'- extrapolation process for the potential

Results are in table 10.

Table 10

with h = 0.1

2 2
Projected Energy Eirenvalue for V =X+ AL (14953)

Eq,a

A= 0.1 100 0.1 100
£ = Cul 0.1 100 100
1.04317426 0,07638864 1.00084178 1.83657797



2.2.5.

Exvectation Values

In section 2.2.2. we showed that expectation values can be
calculated by means of (2.26). 1In crder to get a very good
value of (x") for a potential V= XN it is necessary to get the
energy veluves, i.e, Ejand E-, (up to a very high accuracy. ¥e have

proved, throughout the last sections, that the modified F-Fethod

gives a very good estimate of the energy. Therefore we can rely

on our previous results to obtain a good estimate of<x2> for
\/:xz and <x4> for \/ = )(4,.

We have used h = 0,01 and h = 0.02 to calculate E,(0.01)
and E+(0.02) and then we have applied an hz- lav to get E4 ¢4,2)
using (2.30). The same was done for E_. We have used two
different values for the perturbing parameter € (these are
€=0.01 and €= 0.02) in order to get two <xz>and <x"> values.

We use them to get a projected value. Results for the energy

and expectation values are shown in table 11 and table 12,

Table 11

. 2
Energy and Exvectation Values for VA X

€ = 0.01 €= 0.02
E4 0.71063352 | 0.71414284
E- | 0.70356236 | 0.7000000C
="y | 0.35355773 | 0.35357104
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Table 12
-nereyv and mxpectation Valves for V: x4
€ = 0.01 £= 0.02
o 0.67020550 0.67241014
E. C.6657521¢€ 0.66750300
() | o.22266627 | 0.22067858

Therefore, using an hz- law for the expectation values, we have

(x‘) = 0.353553(37)

and

(x’+> = 0.222662(16)

We note that the use of too small an € value (e.g. 10-3, 104) can
lesd to rounding errors. The use of € = 0.01 and 0.02 avoids

the runding errors and gives results which can be reliably treated
by an extrapolation process.

For example, we can sée, from the results below, that although
the values of € are very small, i.e, 0.001 and 0.002, after apply-

ing an n*- law the results should get worse for<x2> because of

a loss of sjgnificant figures. Unreliable dig%ts are bracketed.
€ = 0.001 &= 0.002 h'- law

(x®) | o.35359389 | 0.35355397 | 0.3535%382)
{x“) 0.22266R14) | 0.22266203) | 0.22266216)

The virial theorem for the harmonic oscillator stands that 2 E

= (M+2)<x"> , therefore for our particular case <x2): E‘-E

and <x1’>-’-%E . VWe can use this result to show the accuracy of
4

our results., First we need the value of the energy for V=1x
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for h = 0.01 and 0.02., These energy values can be found using

the F-method, equation (2.28). We have

E(0.01) = 0.6679862592

E(0.02) = 0.6679862516
hence

Bera) = 0.667986261

Then, using E(y2) = 0.707106781 for V = x% we have
(1,2) :
2 {
<x >=—2:E
(%) =37

If we compare these results

0.35355339

and

0.22266209

with the previous ones we can say
that this method of calculating expectation values is much more
accurate tﬁan that using a matrix approach., In general a matrix
calculation will give (x")‘values in error by ordex'?lwhen the
eigenvalues are in error by order'bz, and the results for excited
states (using a given basis size) are poorer than those for the
ground state. The integration methods described in the present
work do not sffer from these defects, as many trial calculations .
have shown. The ultimate limit arpears to be éet by tke precision
of the calculating apparatus, rather than-by choice of basis
functions, since basis functions are not used. Even that limit

can be "postponed" by changing fror the K function to the F

function, as the results of the preceding sections show.

li
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N
2.2.6. Direct Intesration to Get {x")

Numerical integration methods to calculate <xN)»have been
developed by Killingbeck and Galicis [25] . Using a sipilar
arproach we have improved our F-Kethod‘to get expectation values
after calculating the energy eigenvalue. The idea is simply as
follows: the programme calculates the eirenfunction}b(x) as x
increases, so that we can easlly calculate the integrals S’% '}&' Jx
and.jjﬁ'dx while the energy integration proceeds. We input |
the value of E that was given previously by the same programme

(for that h value) and stop it when'y}has reached a suitably.

small value. This requires a little care, since at very large
¥ the calculated '%’will depart from the true one, and these
contaminating contributions to the integrals must be excluded.

Experience shows that the estimates for(x”) obtained differ

from the true (x").by a term of order h2 when h is small. Table

13 shows some results for the trial potential V=x .

Table 13

Expectation values for V =

2
h = 0.01 h = 0.02 h = law

Y

<x‘> 0.35354508 0.35351999 0.35355344
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CHAPTER 3

PEKTURBATIOK _FETHODS IN )\

3.1, Hypervirial Theorem

Zelele Introduction

It has been shown by Killingbeck [24] that hypervirial
relations yield the perturbation series for the energy E and for
the expectation values <i"> for a hydrogen atom with perturbation
Ar, without the calculation of perturbed wave functions.

The classical mechanical equation of motion in terms of
Poisson brackets aﬁd the corresponding Heisenberg quantum mecha-
nical ecuation of motion provide a means for determining certain
generalization of the virial theorem. The cuantum mechan;cal
treatment provides a set of integral conditions which might be
used to determine the constants in an approximate wave function,

as has been shown by Hirschfelder [30] .

If W is a function of the co-ordinates and momenta, then for peri-
odic motion (bound) the time average of the Poisson bracket (H,W)
is zero. The commutator expectation value <3?,Hi> in quantum
mechanics is zero for any wave function corresponding to a
stationary energy state ;f the system. It secems reasonable that
vith an appropriate selection of W there should be a dynazical
relationship, in & time-average cr space-average sense, which the
syster rust obey.

Let W be an arbitrary functicn of the generalized co-ordinates
and of the differentizl operators for their conjugate momenta.

Let 'S[); and %‘ be eigenfunctions with eigenvalues E, and E, res-

pectively. Then, using the time-dependent Schrédinger equation

we find



_36-

j{;p&,:w;/; dv = —-(z/h).(v,&,’,*[w, H] Y5 de
:(’:/*l)(Em-En)S‘%..*W%JT ‘(3.1)
if yt‘and #t are eigenfunctions of the Hamiltonian operator H.

If the expectation value of ¥ for a stationary energy state

n is not infinite, ecuation (3.1) gives

o) :(«;/);,)jgbh* [W,H] ¥ d (3.2)

This is what Hirschfelder calls the hypervirial theorem [?Vf],
as this relation corresponds to a generalization of the usual

virial theorem, which follows from the particular choice
¥ = T.grad.

Wwe define the operator
Q= /R W, 1] (3.3)

then equation (3.2) states that if Yris any solution to the

Schrodinger eguation, the expectation value of Q is equal to zero,

i.e.

Sl/r*Qw‘glrdT =0 | (5.4)

The Hellmann-Feynman theoren, (HFT) states that if H = H(A),

where A ic a parameter, then

gi": <aH/a>‘>n - (3.5)

e have already used this result to calculate expectation values

in section 2.2.2.

As an application of the EVT and the HFT we treat the case of

the potential V = Ar-fd. The Eamiltonian is taken to be

H=-iD"- r'D+V(r) (3.6)



where D is the operation of differentiation,

Choosing the function W = r'D, and using the basic relations

for ccmrutators
[iD:H] =DV+rp (3.7)

[¢% H] = 2NN 26N e ™D (5.8)

and the Jacobi identity [AB,C] = A[B,C]+[A,C] B, we arrive at the -

result
2NE(r™ ' Y = 2N RV ) + (P (D)) |
- %N(N~1)(N—Z)<r”'3> (3.9)

Here we have used the diagonal hypervirial requirement that
<[r”D,H]> shall vanish for the eigenstates of equation (3.6).
To make (3.6) and (3.9) refer to the radial eigenvalue problem
. 1‘Q -2

for states of angular momentum.a?, we simply add the term 7 ‘(‘?+1)r
into the potentisl V(r).

The last term on the right of (3.9) cimplifies a little if
we use W = r*'D instead of ™D in the hypervirial derivation, or

simply set N-»N+1 in (3.9). We obtain the equation

(2 N“’Z)E <rN> = (2N+3)/\ (r-""“>.. (2NH)(r~"">
— ;1- N (N’~1)<r'~'"2> (3.10)

if we take the case V = -1 +Ar.

In order to use this recursive relation ve nced a relationship
between the ensrgy Z ant tie exyzciation velues (r) and <r"). <r>
is given by OE/9\, according to the Fellmann-Feynmann theorem..
Setting N = O in (3.10) yields the traditional virial theorem,

22 = Z\(r)~(r""), so that (r") can bte calculated from E and{r).

Postulating a power series for the energy, then, we can express
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the series for (r) and (r“) in terms of the energy coefficients,

as follows,

E:ZEn)\n n=o 12 ... (3.11a)
<‘">:Z("+’)Enu )‘":aE/a,\ (3.110)
FY2 S (3n-2)E A" = 3A{r) -2 F (3.11¢)

Ve also express other (f”) values as pover series,
N\ - 2 N
<r' >—X",°+Xu.4)\+xu.z>‘+.”*X",N)‘ (5.114)

The idea in mind is to get as many E, values as possible and

also to obtain the numerical values of the Xy As we can see,
d .
*the.X,,.° 's do not depend on the perturbing term, so they can be
calculated independently of}X. For the 1s state we can establish
that X . o = %(N+3)X“ o holds, by using the explicit unperturbed
2 )

function, but this procedure is cumbersome. 1In a subsequent section

we will give a general equation which uses only the quantity E, to

cet the energy coefficients for excited states as well as for the

ground state.

In order to describe. the rest of the claculation we‘use
the label {N,M} for the equation arising by taking the Ah‘tefms
in (3.10) for some N.

Ve have found out that to get ¢ of the E-coefficients we

need C of the %,y (C-1) of the X, ., 12 of the X, etc., and

1 coefficient of the form X

v,Q-1 °
Another important feature is that to get the value of the
z":i for some j we only need to know the set XN,C where i¢Jj; this

makes the calculation even easier. Killingbeck @4- has calculated’

up to ES by hand and Austin l.ZB) calculated many E_ using a computer.
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Wwe have developed a programme for'the C.3.I., Pet mini-
computer which calculates the perturbation series up to high
order, for zny state and for a perturbing potential.ArP, where
F is any positive integer.

The progremme enables us to get the/series for othér
expectation values. In particular the series for><r>, <r2>
and the higher (r”> can be calculated up to high order also.

Since we have the obvious requirement <r°> = <1 > =1, it
follows that we require 21l the Z,, with I#0 to be equal to
zero, with X‘,'° = 1. The values of E, and Xoﬁ, must be given
initially to start off the calculation for s states. For states
with £30 the value of X;uo is also required, but it follows from
the virial relation (f‘» = -2E, for the unperturbed hydrogen atom

problem. The details of the reguired initial input data will be

discussed further in section 3.1.5.

Hyvper Prozramme

As we pointed out previously it is possible to devise‘a
general programme which calculates all the coefficients XM‘M
and the series for the energy up to high order, requiring
only the input of the unperturbed energy E, and the angular

momentum—?.

The general ecguation for the coefficients X, o takes the
i

following form (with starting value Xoqo = 1),
- {
(2N+2)E X, , = (2N X, - N (NN X, |, (5.12)

If the perturbing potential is Ar’ (instead of Ar) we obtain

the following generalization of (3.10)



where E\

increases considerably, which yields two
the numbers concerned are large, loss of
occurs when the computer performs a long
on the numbers.

beyond the point at which they reach its
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(2N+2)E (MY = (NP 28 PIALE Y = (2Ned) (P01
—FN(NH) (2 - (2N32)E'( N Y (313)

-5z X (50)

Ls the value of P increasss, the size of

The rinicomputer cannot

calculate the X

the coeff1c1ents XNM
difficulties., When
significant figures

sequence of operations

N

overflow level ('\;1 O”) .

1f n(P) is the number of terms in the energy series obtainable

for the 1s state with perturbation‘ArP, we find (for the C.RB.M.

Pet), n(1) = 26, n(4) = 8, and n(8) = 3.

Table 14 shows the energy coefficients for V::)\r-rP for

P =1,2,5,4 for the 1s state.

ur to Bio

and for P =

%e can see from these results that

1 and 2 the results are very accurate and

reliable, whereas for P23 the size of the energy coefficients

increases rapidly.

Table 14

1s State Energy Perturbation Coefficients

’

AN 1 2 3 4

E, | -0.5 -0.5 -0.5 -0.5

E, | 1.5 3 7.5 22.5

E, | -1.5 ~32.25 —666.4375 ~17355.5375

E, | 6.75 1362.75 264894.141 78606633.5

E, | -4c.6875 | —103280.8593 | 231369814 ~1.065407765+12
£, | 480.375 11477957.9 3.66064563+11 | 3.4377598E+16
E, -5583 -1.71918761E+02 -9;5482039ZE+14 —2.292060983+21



=) 1 2 3 4

Ey | T4557.3359 | 3.31953610E+11 | 3.85440636%+18 2.84124228E+26
g | ~1114319.34| -6.0350229E+13 | -2.29091021E8+22 | -6.03880379E+31
By | 18329171.5 | 2.368500282+16 | 1.925985295+26 -

By | -328051528 | -2,5807226E+18 | -2.2064425825430 -

To calculate the coefficients for the expectation values, for the

. -1 . . . . .
potential V =,Xr—r , without using eigenfunctions we use eguations

3,11b) and (3.11d).

The Hellmann-}"eynn}an theorem provides an eguation f6r<r1> for

-4
the potential V =:A1?-r , which has the form

<Y‘z> = Z(n“H)EnM )\n

T
or in general, for V::Az‘—r it yields the result

(rf“) :Z(D’H") En+1 )\"

We show results for <r)and <r2> for P = 1,2 for the 1s state.

(3.14)

Although the programme can be used for different values of P and for

other s states we do not give the details here because the results

are not very accurate, since the size of the coefficients increases

even more rapidly for these excited states.

tables 15 and 16 fespectively.

Table 15

1s State txvpectation Value Coefficients, P = 1

Results are shown in

(=)

%)

1.5
-3

20.25

-13.5
115.5
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() (=2
Cy ~198.75 -1299.375
C, 2401.875 17325
Cq -33498 ~261571.,078
Ce 521901.351 4363821.61
c, ~£614554,72 ~79266073.3
Cq 164962543.5 1.55260662E+00
Cq ~3280515880 ~3.25761178E+10
C,. 6.970375E+10 | 7.28399280E+11
Table 16

1s State Exvectation Value Coefficients, P = 2

¢ (-*)
Co 1.5 3
c, -13.5 -64.5
C, 677.25 4088.25
Cy -59110.312 -413123.43
Cq 7309433 .67 57389789.5
Cs ~1.18599208E+09 ~1.03151257E+10
C, 2.43142TTTE+11 2.32367533E+12
c, -6.15703651E+13 ~6.42801832E+14
Ce 1.89459177E+16 2.150018355+17
Cq -6.9682013742416 -8.58076265+19
Cre 3.053694255+21 4.03801504E+22

At first sight equation (3.13) might look rather difficult

to solve, since we are replacing the energy and the expectation

!

values by their corresponding series. When we first started

looking at this way of calculating the energy coefficients we
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used a programmable pocket calculator PA]. Using the label
{15} we used the equations {2, (u¢a), (3,5} (143), {a,1}, -
{4,2} and'{5,1} to calculate the energy series to fifth order.
We did not follow any special order to solve (3.13). In a
second attermpt tQ caiculate tvo more energy coefficients we
discovered that the coefficients X%" can eacily be calculated,

as follows. Wwe first calculate as many X coefficients as we

N0
want, as they do not depend on anything but E,. To get the

energy to Qth order (for perturbation.krp) it suffices to
calculate PQ of the XNlo coefficents., With these known co-
efficients we can now calculate the Xwi coefficients, thét is,

the coefficients for the energy and expectation value series

at first ordex'jJ1X. Although we can obtain PQ of these co-
efficients, we have found out that, to find the rest of the
coefficients, we only require P(~P of these XNJ coefficients.

Then we calculate the XNﬁ'requiring PC-2P coefficients, and so

on, until we finally calculate only one of the form qu4. There-
fore, what is relevant in solving this set of recursive equations
is the fact that we do ﬁot need the coefficients of higher order in
Ato calculate the lower ones. 4And finally, to calculate Ei, for
a given value of j,(we only need the value of Xﬂjl" The PASIC

programme and flow-chart are given in Appendix A2.-

Hyvervirisl Results for Zxcited s States

We have glready mentioned that the programme is written in
such a vay that only the value of E, needs to be stored to start
off the programme. In this way we can obtain the energy co-
efficients for any s state., For othef excited states, such as

2py 3py, 3d, e.., @n extra line must be added in order to include
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the dependence on the angular momentum; this will be discussed

in a subsequent section. For the 2s stafe ;0 = -0.125 and for

tre 3s state E, = —1/18; giving these values, one af a time,

we obtain the energy coefficients which are presented in table

17 and 18, for P = 1,2, As we can cee from the results of tables

(14-18) the erergy and expectation valuves series are all alternat-
ing: this typical property of the series provides a clue to check

whether the programme is working properly or not.

Table 17

2s and 3s States Energy Perturbation Coefficients, P = 1

2s 3s
E, -0.125 -0.05555
g, |6 13.5
E, -66 -688. 500001
By 3312 152543 .251
B, -271680 ~-54048288, 2
Eg 28848384 2.450223325+10
Tzble 18

~
6]
W

nd 3c States Energy Perturbation Coz2fficients, P = 2

2s 38 /
Zo -0.125 -0.05555
B, 42 207
E, -14784 -670497.753
Eg 19923456 7.73691005E+0S
E, -4.5%150566E+10 -1.459514T4E+14
Es 1.414218675+14 ' 3.65612987TE+18
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Charmonium Tvpe Fotentials

The problem of finding the energy éigenValue for the
charmoniun system, in other terms, the bound quark-antiquark
pair has attracted attention over the past years. Killingbeck
[10] has d.ealt with this problem for the potential V = -1/r+2hr+2¥?
He hze found ocut that the energy series for the ground state is
finite and agrees with the exact eigenvalue ftun>>0. The series
takes the form E = Eg+E A = -$+3). He has proved that the next
two energy coefficients E, and E5 are equal to zefo, by explicitly
calculating the first order perturbed wave function.

If we set W = f(r)D in the hypervirial argument of section
3.1.1 , and study a Hamiltonian with kinetic energy operator
T = -«Dz, then the following more general version of the hyper-

virial theorem is obtained,

2(FTY=(fVY -2« ) (5.15)
Wwith « = ¥, we obtain, using V = —1/r+2Ar+2Xr", |

2(F(E+etahr-2XF) d=(F(rPaz)r +40%))

i ” o\
‘4<7t >
W .
Choosing the function f of the form f = r , we obtain the

recursive relation

(2N+2)E<r~”> + (2N+0<YN-'>+4—N(NZ— l){r N—2>
= (AN+6) A (P + (4N+8) A2 (e ‘(3.1e>

We have develcped & programme to solve (3;16) to get energy
coefficients, using the C.B.li. minicomputer. By means of this
programme it is possible to check that the energy coefficients
E, are all equal to zero, for 2¢né8. Ve have calculated the

coefficient X; g of the <r>series at 8th order in >\ and Xz;;'
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which is the coefficient of (r2> series at Tth order in );, by
hand because they are the coefficients needed to calculate Eq.

We found an error in the G@th significant figure f‘or'X,'8 as given
by the migicomputer. Using the "neuw" value for %4y ve found that
Eq = 0. The reason is that when the PzT starts writing the numbers
in exponential form there is a loss of accuracy in the ©th figure,
that is, rounding errors affect the accuracy of the cdalculations.
After this discovery we decided to run the programme in a big
computer using Fortran., This time we found that indeed Eq, and
also E,,, are equal to zero. Finally we ran the programme using
Fortran double precision to avoid rounding errors. The results
show that up to Ey, all the energy coefficients,except E4 and Eq,
are equal to zero.

Ve can infer that the rest of the coefficients are all equal
to zero, having as a result a finite series for the energy. The
programme, either in Basic or Fortran, is written so as to enable
us to obtain the energy coefficients for excited states also.

The EASIC programme is given in Appendix A3,

Since the programme is written in such a way as to allow us

to get the energy coefficients for any state, we have used it to

obtain the energy series for the 2s state; the results are shown

in table 196,

Table 1C

2s Stete Eners~v FPerturbation Coefficicnts for V = -1/r+2kr+2)2ra
Eg = =0.125 Eq = =2G72160
Ey =12 E¢ = 600099840
E, = -180
E, = 18720



High Crder =xcited States

In secticn 3.1.3. it was rmentioned that it is possible to
include the dependence on the angulaf momentum.Q in eguation
(3.13) or (3.16) for the calculation of the energy coefficients.
The extra term to put on the r.h.s. of equatioh (3.13) or (3.16)
is NQ(}K1)<}Wi>, so0 that the totzl term involving (rﬂ'z>teéomes
-31\7[(1‘:2-1)+4,Q(X+1):|<r“>. 1£ {30 this term is not zero at N = 1.
Thus, for the calculation of the energy coefficients for an |
excited state with-Q%O it is reqguired to know the coefficients
for the (r—‘> series at first order inA, in order to »sta;rt off
the recufsive calculation,

We need the value of X%O and X 4. For the potential
-1/r+2kr+2kzrz; we can use the hypervirial theorem to shbw
that &4,°= -2E° and %JA =E,; = 2Xt°' Adding these values to
the Hyper-Programme we find the energy series for the 2p state
for the charmonium type potential; the coefficiehts are shown

in table 20.

Table 20

2vp State Energyv Perturbation Coefficients for V = 1/r+2Xr+2)?rz

E, = -0.125
2, = 10

Ep = ~139.5
Ly = 16480

L, ==-2700439

ng]
i

553528656

Lxpectation Values for V = -1/r+2)r+2>2rz

By means of equation (3.16) we can get all the coefficients

XN.1for the 1s state. Ve put them into equation (3.114d) to

’
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obtain, without eigenfunctions, the series for <r>and <r2>

These coefficients are shown in table 21. The Rayleigh-Schrédinger

series for <r> and (rz >obey the following relationship based on

the Eellmann-Feynman theorem

de

d A

For A)o, dE/a).

10].

—2 <Y‘>)‘ +4>\<rz>x: 3

(3.17)

3. This result has been checked by Killingbeck

Ve have also checked relation (3.17) for A = 0.1 and >\(0-

For )\ negative the result is not exactly 3 but very close to it.

We have used the partial sums to shof-r that the vealue lies in the

neighbourhood of 3. _For >\<O the energy ...()\) contains a component

which is not given by the Rayleigh—-SchrSdinger series, as has

been shown by Killingbeck [10] . The problem of a potential with

N¢Owuill be discussed in more detail in the next chapter.

Table 21

/

1s State Expectation Value Coefficients for V = —1/r+2Ar+2Ar?

(=*)

3291894
-69690186
1.60598004E+09
-3.99751984E+10

1.068559972E+12

3 ;
27

333

4977

85563

1645947
34845093
-802990017
1.998759925+10
~5.34279859E+11

1.52663509E+13
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Within the theory of Fade’approximants it is knowg that

the [F,N] Pade’ approximant to a power series, (pafticularly if
that series is a member.of the classrof Stieltjes series), con-
verges fairly quickly as N incréases. vHaving this in mind it is
then possible to use the Pade’approximants to get a good estimate
of the energy eigenvalue or any of the expectation values., The
use of Pade’approximants in perturbation theory is often numerical;
it is often the case that a formal proof that Pade’ approximants
should work for a perturbation series lags behind the empirical

demonstration that they do work,.

- 4 .
362 Fade Avproximants

3e2.1 Introduction

s . 3 .
The FPade apvroximants are a particular type of rational
frzction approximation to the value of a function, (Baker [;2]).
‘ . . . »- ’ .
Definition 3.1. - Let the [L, u] Pade approximant to

the series A(x) be deroted by

[L,M] = R6I/Q, (5.16)

where PL(x) is a polynorial of degree at most L and Q"a
polynomial of degree at most M. Ve require that the forral
power series for P/Q agrees with the A(x) series up to the
(L+:)th pover.:

The following theorem is due to Frobenius, G., and Fade, E.:
Theorem 3.1. — (Theorem of Unigueness). The [;,N] Fade’
approximant to any formal pover series A(x), when it exists,
is unique. (For the proof see ref. [?2] page 8).

This theoremrhgléé vhether the defining ecuations are nonsingular

or not. If tééyjare nonsingular, then they can be solved‘directlf

to yield
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where ve d’efine A,=0 if n(O; ?J =0 if j), and, if the lower
ingex on a sum exceeds the upper, the sum is replaced by zero.

Using the ccefficients given in table 14 for the energy
series for the potentials V =>\r—r~‘ and >\r2—r~‘, ve have applied
the determinant (3.19) for certain values of)\ to get the Pade’
erproximents to these series. Killingbeck [24] ‘géves soxe
results for the potential V =dr-r' for A= 0.05, 0.10, and
0.15. Ee shows that the [L+1,L] approximants converge from
above to the correct eigenvalue (as founa by the rethod of
section 2.1.2.), while the [L,IJ appéoximants converge from
below.

This way of calculating the Pade’ approximants to a series
is quite cumbersome since the determinants in(2.19) become bigzer
and bigger as the nurber of coefficients incresses.

Since we are interested in the numerical value of the Pade’
approximants, rather than in the appearance of the polynomials,

we shift to anothez" wey of calculating them.
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Wwynn's Algorithm

Wynn [23] has designed an algorithm to evaluate Pade’
approximants without the use of big determinants.  The idea is

based on the relation

n= 42,3,...

é+2 ¢ fer ire
Sn-a - Sﬂ + (Sn - Sn-. ) i=014,2,.-. (3.20)

4

where S: is the .,Q elexent of column m in an "S array". Ve start
by considering all S:: e§u31 to zero and setting the S:' equal to
the partial sums of the series (for a given)\). Using relation
(3.20) recurrently we form successive columns of the S array,
and the S;‘, with meven, are exactly the [L,I-I Fadé approximants
to the series (for our chdsen )\value).

We have written a programme based on Wynn's aigorithm for
the C.B.X. Finicomputer which evaluates Pade’ approximants to the
perturbétion series, for the potential V =)\rp—r—‘, for some >\ '
valuve. It is given in Appendix A4. The basic point about the
programme is that it directly produces the numerical value of
the approximants for a given )x without explicitly constructing

the approximants as rational fractions at an intermediate stage.

_Avplications of wvnn's Alcorithm to Perturbation Series

We have applied Wynn's algorithm to the perturbation energy
series for the potential V “Ar'-rVuith P = 1,2. EResults are
shown in table 22 for the 1s and 2s stztes for selected values
ofA « Although the Fadé approximants method increases the range
of >\ over which the series can give a good estimate of the energy,
in rractice there will still te an urper limit to the >\ value for
viich even the Fad€ approximants can give reliable results. The

results indicate that the exact energy lies between [L+1,L] and
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[L,y]; the accurzte energy was foﬁnd using the F-method of
section 2.1.3. Killingbeck and Galicia [25] have applied Vymn's
algorithm to these serieé; vhose results are those of table 22

in connection with theﬁb(O) prcblem (section 4,2).

Table 22

’ . -1
Pade Aprproximants for V =,XrP_r

State )\ [5,4] [5,5] : =xact

1s 0.10 -0.360899563 | -0.360900277 | -0.36090C0(43)
2s 0.01 -0.069671275 | -0.069671614 | -0.0696715(21)
1s 0.01 ~0.472392041 | -0.472353160 | -0.4723927(36)
2s 0.0003 | -0.113392947 | -0.1133593%085 | -0.1133930(38)

Lnother application of VWynn's algorithm is the calculation
of expectztion values, such as (r) and <rz), using perturbation
series, e have considered the potential V “hr—r"'at a given \

value.

a) By means of Wynn's algorithm it is possitble to get

a value for <r> and.<r2>'starting from the pertur-
bation series for them. For )\: 0.05 the results
are as follows:

B | 64

(:r) 1.38480039 1.38480040

(r?) | 2.51422862 | 2.51422860
b) Using the hypervirial relation
5)\(\“2) = 3+4E{r) (3.21)

we can either calculate the value of <r> or <}2>

by obtaining E and.<r2> or (r}, respectively,
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from Pade'approximants for their series.
For A= 0.05 we ottain:

{r) = 1.38480040 |

{?) = 2.51422865

From these results we can check once more that tﬁe exact
value lies between [P+1,L] and [},L] Pade approxinmants.

Wynn's algorithm has also been used to get Padé approximants
to the energy series for the charméniﬁm type potential for the
2s state. Results are as follows, for A = 0.001:

[2,2] = -0.113163838

[2,1] = -0.113163044

where we have used the energy coefficients given in table 19.



CIrPTER 4

FURTZER _APFLICATICHS CF THE IUMZRICAL TnCHIICUES

Tuasi-Bound States

E_Yethod for A<O

In section 2.1.4. ve applied the E-Vethod for a hydrogen-
like potential, Xr—fJ . In this section we present an approa;h
to solve the Schrodinger equation with a perturbing operator
which is unbounded from below.

Killingbeck [27] has looked at the problem of calculating
the quasi-bound-state energy values for a pgrturbed oscillator
and a perturbed hydrosen atom.
We use a different criterion to find the energy "eigenvalﬁes"
from the one used in previous sections. For a given )x(O and a
value of the strip width h, we use our E-lethod starting at
'sﬁ‘(h) = 1. The initial trial E is obtained using Padé approxi-
nants, e.g. the [?,S] gives a good estimate for differént
negcagtive values of)\. The H-lethod programme is modified so
that it prints out the r values at which the wavefpnction has
a node. For example, if}b(f) is positive andyb(r+h) is negative,
then the programme prints out the guantity hR(r)[?(r)-J]f:r.
This is the interpolated_estimate of the r value at which.thei
wavefunction has a node. As & variec, the quantityla"'/aElfor
a given node will show a sharp maximuzn,

The rost accurate ernergy value will be considered to be

the one that lies between the maximum and minimum on the graph

cf r(E) against E. (Specimen graphs are shown here).

-56-
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It is easy to see from the grarhs that as,A gets more negative
it renders it more difficult to decide which value of E is the
most accurate. Using an n%-law it is possible to get a good
extrapolated result for the E value which corresponds to the
limit of zero h.

Some typical erergy values are presented in

table 23 tosether with the projected erergy.

Table 23

Ererzy Values for V = )\r—r" . A(O(Firstynode)

E(h

£(0.02) | -0.5151085 | -0.5306155 | -0.5465445 -0.5630205 | -0.5802005
E(0.04) | -0.5149615 | -0.5304725 | -0.5464055 | -0.5628875 | -0.58011C5
E -0.515157 -0.5306632 | -0.546590 -0.56300 -0.580230

taken at the first ncde.

We must bear in mind that this value

for the energy is

that this value varies as we pass from node to node.

We can see from the results of Table 24

Killingbeck

[3| ]calculates the energy for a poterntislV = 7.5r2e r by a

nurerical integration procedure similar to the one described

here and shows that the energy value, although changing slightly

from node to node, stabilizes at higher node numbers.

and -0,04.

We apply the method to the present problem for )\: -0.02

The results are grouped together in tables (24-27)
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Table 24

E(E) Values for Selected Nodes, A = 0,02, h = 0.04

Kode
Energy

-0.530470 | 10.36 | 31.48 | 36.68 | 57.20
-0.530472 | 11.20 | 31.48 | 26.68 | 57.20

-0.530474 | 31.48 | 36.68 | 40.96 | 59.9

Table 25

R(E) Values for Selected Nodeslwk = -0,02, h = 0,02

~odes
Enersy 1 2 3 9

-0.530614 | 10.64 | 31.48 | 36.70 | 57.20
-0.530615 | 11.18 | 31.48 | 36.70 | 57.20
-0.530616 | 31.48 | 36.70 40.96. 59.94
-0.530617 | 31.48 | 36.70 | 40.96 | 52.94

Table 26

k(E) Values for Selected Nodes, A = =0.04, h = 0.04

P )
s0aes
o 1 2 3
Energ

\O

-0.562888 | 14.88 | 19.%2 | 23.64 | 30.36
-0.562889 | 15.08 | 20.08 | 23,76 | 3S.44

-0,562890 { 15.28 | 20.20 | 23.88 | 39.48

-0.562891 15.48 | 20.32 | 23.96 | 39.56
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Table 27

R(E) Values for Selected Nodes, A = =0.04, h = 0,02

lodes
Lnerg ! 2 3 °

-0.563019 | 14.14 | 19.50 | 23.30 | 39.14
-0.,563020 | 14.36 | 19.62 | 23.40 | 392,20

-0.563022 | 14.82 | 19.90 | 23.62 | 39.34

-0.563023 | 15.04 | 20.04 | 23.74 | 39.42

Looking at the increments in the node position in tables
(24—27), while varying the energy values, we can see that for
A: -0.02 the largest increment appears at the same energy value
for different nodes, that is for h = 0.04 the value of E is
-0.5304725, and for h = 0.02 the value of £ is -0.5306155, as
in table 23. However for4k = =0.04 the predicted E value changes
from one noie to another. Fror the results of taﬁle 26 we have
for the first node E = -0.5628875; for n = 2, E = -0.5628885;
for n =3, E = -0.5628895. The predicted E value stabilizes at
-0.56288S to six places of decimals for the hisher nodes. From

the results of table 27 we have for the first node E = -0.5630205,

for the second E = -0.5630215, and then it stabilizes at

1

E = -0.563021, elso to six decimal places, for the higher nodes
as before, Therefore a projected E value can be calculated using
an hi-law yielding the result E = -0.563065. This has changed
slightly from the corresponding E value in table 23, which refers
to the first node.

. The resonance energies found from the preceding calculation

are not the energies of true bound states, since there are none

for A<O.
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Within the context>of operétor theory a bound state function
y}obeys the eigénvalue equation H7?=’E7c Another way to describe
this is to say that the resolvent operator R(E) = (H-E)’f becomes
an unbounded operator in Hilbert space if E is equal to an eigen-
value., This second way of describing things is unwieldy for
bound state problems, but it is appropriate for our,X(O case,
since there will still be complex E values for which R(Z) is
unbounded. In other words, the spectrum of H (as defined by
von Neumann) is the set of E values for which R(E) is unbounded,
and the spectrum can contain more than just the usual eigen-
values corresponding to bound states. VWhat the preceding
calculation gives (¥illinsbeck [271) is the real part of the
complex E value at which R(E) has a singularity. It is in
principle possible to estimate the imaginary part of E by
manipulations based on the results of this kind of calculation
(Killingbeck [31])_ but we do not pursue this point further in the
present work,

¥any authors present different ways of solving the problem
of gquasi-bound states. There are various unbounded perturbing
operators wiich, when added to the Eamiltonian, destroy in
principle the bound states of the system (just as -Ar dees for
our problem). Eazi and Taylor [2éJus¢ the stabilization method
to calculate resonance energies. (They also describe how the
imaginary part of the complex pole position can be estimated).
For a given potential V(x), they compute the matrix of the exact
Eamiltonian H(x) in a finite basis set comsisting of the first
X functions of the form%(x) = (ZnH!IT%)—‘Iz Hn_(x) exp(-%xz),
n=0,1, ... For a given N, they obtain the mtrix elements

of the Hamiltonian as follows: I—:“ =<%'(x),H(x)¥L(x)>, with
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5nm=<%(x),’lﬁ:ﬂ(x)>,n,m =1, eesy o They use fifty functions
and diagonalize the matrix HN to yield a set of N eigenenergies
e?and the correspondi ng eigenfunctions ét(x) given by e?c&;:
<§“(x),h(x)¥‘(x)> Thése eigenfunctions are linear combinatioﬁs
¢ J N N

of the first ! functions 7{{‘(){) given above, i.e., é‘:(x) = Z‘C‘:".
4£(x), for eachi‘; they are also square integrable, 1iken%he
basis functions, and can be normalized such tha® C&j:=< é;(x),
d).

J

They repeat this procedure for increasing values of N,
observing the behaviour of G{‘and 4221) as a function of N.

For a Eamiltonian containing a potential with a barrier, like
the one they deal with, certain of the eigenenergies change
very little compared to other eigenvalues as I chznges over a
relatively large range, that is, they stabilize, and this
"stable" energy is very close to the exact resonance energy
Z,. Thie fact suggests that the "stable" eigenenergy and the
corresponding eigenfunction are associated in some way with the
resonant energy.

Cur approach is much better than the matrix one because it
avoids explicit construction and diagonalization of matrices
of large dimension.

We should mention that, even for the true bound state
problem, the Hazi and Taylor (op.cit.) approach may give problems.
For example, Detwiler and Xlunder [32& have discussed "super-
singular perturbations" (such asAf*, )\lxlq) for which any
~attempt to set up the Hamiltonian matriz in a basis of unperturbed‘
states fails, since all the matrix elements are infinite !
Tevertheless, well defined perturbed eigenvalues can be found.
Detwiler and Klauder (op.cit.) zet the eigenvalues by a modifica-

tion of a method due to lMilne, but a preliminery calculation using
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the F method of section 2.1.4., while internz1lly self-consistent,

does not quite agree with their results. We suspect that there

is en error either in their algebraic theory or in the operation

of their programre,

Fade Approxirants for /\<O

Using Wynn's algorithm for the potentials V = Ar-r ' and

Ar?-r' for AOve have checked that the Pade approximants to

the energy converge numerically to the quasi-bound energy.

That this should happen theoretically was established by -

Graffi [3 ]. Results for the potential V =/\r—r.'1 are -shown

in table 28. Ve can see that as the valué cf >\ becomes more

negative the Pade approximants to the energy become less accurate,

although the exact value still lies between the [L+1,L] and [L,L]

S . ‘ . 2 -
Fzde approximants. Teble 29 contains results for V = Ar-r H
even in this case
& definite value.

for the potential

Table 28

2 -4 .
v =)\r -r since the presence

Pade” Approximants for V = Ar-r ., for A<O

]

the Pade’ approximants apparently converge to

We have used only eight energy coéfficients

A ~-0.01 -0.02 -0.03 -0.04 -0.05
[5,5]| -0.5151572¢ | ~0.5306639¢ | -0.54659147 | -0.5630361 | -0.58024036
[5,4]| -0.51515730 | ~0.53066308 | ~0.54659142 | 056307433 | -0.57991074
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Table 29
Pade’ Approximants for V = Ari-r~! for A<O
Mo o001 ~0.002 ~0.003 ~0.004 -0.005
[4,4] -0.50303373 | -0.50614213 | =0.50930827 | -0.51264553 | -0.51612015
[4,3]| -0.50303375 | -0.50614211 | -0.50934220 | -0.51247232 | -0.51603676

of the higher ones spoils the results, that is, the [5,5] Pade

approximant is less accurate than the [4,4]; this is due to

the large size of the high order coefficients, which causes

numerical errors which outweigh the theoretical gain of knowing

more terms in the series.

I
Wynn's algorithm can also be used to get Pade approximants

to (r) and <r2> for the

3e1.4., for )\ negative.

probler the exact value

4
Fade approximants.

The

Charmonium type potential of section

The results show that a2lso for this

can be found between [P+1,LJ and [L,L]

results are presented in table 30.

Table 30

Pade” Approximants to ¢r) and {r?) for A0

=)

Ve -

A= -0.01

G

l/%+2Ar+2)3rz

(=)

A= -0.02

G

]
[4f31

1.56618686

1.5661E6€E6

3.3
3.3

Pound States for /\(O

0834285

0934281

1.64C045466

1.64%44041

3.73642426
3.73634769

7e have shown in the last section that when an unbounded

negative potential is added to the Hamiltonian the bound
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states are all deetro~ed in principle. In this section we con-
sider the case of the potential V = - +2Xr+2)3r2 for-k(O. Ve
arply the R-liethod to this potential and find that the bound
states stili exist for A negative because the potential goes to
+eo in all directions, whereas for a problem such as those of-the
last section the potential soes to -eo, (XKillingbeck [10]).

We use several extrapolation formulae, of increasing accuracy,

to find 2 projected energy value., The formulae are as follows:

= +[ez, -2, (2.30)

o 1
“a,2 3
E —“[64E ~-20E +u (2 31)
(’;21"), - 45 4 .
3 _ A i
b(‘lz‘!) —To- 15u' 6LZ+E3] (4.1)
E = Als6E, -288, 488 ]
“01,2,3,0 “3s 565, —28E, +8E; +E, (4.2)

where 2y is the encrgy value obtained using kh es the strip width.
Results are given in table 31, including those for one positive
value to show the zdvantage of using these new formulae to obtain
e projecﬁed energy value. The cuantity -%+3>\is also shown in the
table. Ve use the following h values: h, = C.05, hz = 0.10,

hy = 0.15, and h, = 0.20.

Table 31
Proiected Enerev Values for V = —r"‘+2kr+2>\2rz
-0.,025 -0.050 ~-0.100 0.100

E¢4,2)

t

o

4,2,4)
E1,2,9)

E
(4,2,39

N2

-2.57499e(146) | -0.649105(272) | -0.765825(303) | -0.199998(969)
-2.574999(720) | -0.642106(¢25) | -0.765826(819) | -0.199999(904)
-0.574296(736) | -0.649105(251) | -0.765226(e37) | -0.199999(902)
-0.574959(756) | -0.649106(5e5) | -0.765826(861) | -0.199999(914)

T

-2.575000 ~0.649110 -0.765230 ~0.200000
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In sectioﬁ 3.1.4. ve have shown that the energy sefies for

| this kind of potential, when s positive, is finite. That is,

the enerzy deviation E(A)+%—3A.is zero because the eigenfunction
= exp[—(r+Ar2)] which is a solution of the equation H¢=' ,E;‘is

normalizable. For A<O this is not so, and —%+3)\is only an upper

bound, as shown below, where we use the data from Table 31.

A S+3-3 )\

-0.025 0.000000
-0.050 0.000897

~+0.100 0.000000

Calculation of]ﬁz(o) for the Charmonium Problem

In secticn 2.2.5. it was mentioned that, while performing
a matrix calculation to get the value of‘(x"), an error of order
qfappears in the results if the eigenvalues are in error to
orde?'l. The integration methods considered in the present
vwork do not have this weak point (Killingbeck and Galicia EZS]),_
In some branches of traditional theory es. the fheory’of hyper-
fine interaction (Young and Uhlenbéck:[SEﬂ)hénd the theory of
excitons (Cabib, et.al.E36] );:it is necessary to know the
value of tﬂe scuare of the wavefunction at the origin. If one
attempts to calculate the value of this local guantity by means
of a matrix-variational re thod which optimizes the energy then
& poor value of the local gquantity will be obtained. Such a.
quantity‘is also reguired in recent non-relativistic models of

the charmonium system, (which was mentioned previously in section

3.1.4.), vhen estimating the various decay rates of the system
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(Xaushal and Fuller-Kirsten [37]).
Sichten et.al. [3 B] and rcCarter [39] have considered

the Schrodinger equation in the form
2 I4
AV - S pryEY

to solve the charmonium problem (with P21). The rPterm

/

Qw

represents a confining potential which prevents direct break up
of the system, while the’é coefficient gives the size of the
"gluon" force. B is usually taken to be small; the coefficient
o/ is inversely proportional to the quark mass (since the kinetic
energy operator is conventionally written as —*\z/vaz).

nTo convert equation (4.3) into a one-parameter perturbed
hydrogen atom equation it is necessary to introduce the change
T kr of length scale. By doing so we find the scaling relation-

ship which indicates how the eigenvalues depend on the parameters

o, P and/‘»:
KE (%, p,0) = E(%,1,0) )

-f P
where k = (2-:(‘6 ) and )\:./Akﬂ. Writing the radial factor in

’%’in the fornm r-1R, equation (4.3) takes‘the form
I ' ,
~3DR+VR=ER | (4.5)
with
-1 14 2
Vz-r+ Ar + ?2- ’Q(:E“

and the normalization condition

katlr =4
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The s states are the ones of interest in connection with
the]b(o) problem; for them the term involving the angular

momentum.l does not appear. Since we have

DR = D(xY) = rDY + 2

with the requirement R(0) = O, then it follows that the wave-
function at the origin%ﬁ(O) will be given by tﬂe slope Dr(0)
at the origin. |

rauszl et.al. (op.cit.) present a way of calculatingy#(O).
They state that@b(o) can only be found if the wavefunction is
explicitly normalized. They use W.L.B. approximations to cal-
culate the value of@b‘at various points in space, Nevertheless,
their value foryb(O) appears to be of low accuracy.

We decided to approach this problem by a numerical treatment
involving expectation values and avoiding the use of wavefunctions.
Tultirlying equation (4.5) by a function F(r) and integrating

between C and a0, we obtain the result

S D’F+2F(E;v)] Rdr = F(0)DR(0) (4.6)

o

if D(FE) = O ateo and RDF = O at O.

For the special case F =-1 equation (4.6) is converted into
an ecuation equivalent to that of Trivedi EQCJ. ﬁe suggests
that if an appreximate normalized Kk is used in the integral,
and if E is replaced by the variational energy associa%éd with
R, then a reasonable estimate of DR(O) for the exact eigen—
function can be obtained. For exarple, considering the ground-
state of the hydrogen atom and using as a trial function an
optimized Gaussian type function in (4.6) we find DR(O) = 1.796,

as opposed to the exact value 2 and the poor value 0.980 obtained
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by simply substituting r = O in the approximate function, If
the exact R is used in equation (4.6) the same DR(0) should
result for different choices of F, provided that F(0) is non-
zero, we do not discuss in detail Trivedi's work because we
vant to approach the problem using expectation values, In order
to do so we simply multiply equation (4.5) by DR and integrate
between O andeo ., Integration by parts on the r.h.s. leads to

the result
2 ga (DV)dr = [DR(O)] (4.7)

This relstiorn inveolves the expectation value of DV, Therefore
using (4.7) it is possible to reduce the%b(O) problem to the
problem of finding an expectation value, Fromzn E4|] uses
equation (4.7) end estimates the value of <(DV)>'by means of
2 V.E.B., approach, Since we are now familiar with the calcula-
tion of expectation values involving energies from the theory
of section 2.2.5., we can reduce the problem of fipdingﬂk(o)
to the<(DV)> problem, and then reduce the expectation value
problem to a set of eigenvalue problems which can be solved
using a numerical integration method.

For the particular case of the unperturbed hydrogen atom,
with potential function V = Y for s states, we hzve <(DV)>=
<r’2>= 2n, where n is the principal quantum number of the

state concerned. The energy eigenvalue E is %nf%, so that it

yields the relation

2 ds '
Y (o) = 2<Dv)>= 4o \ ~ (4.8)
Thie relation is called the Fermi—Segré formula (Froman and

FronmI1E4ZJ ) and can be used also for the case of a perturbed

Coulomb potential. This relation is relevant to us because it
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relatesQP!(O) to entities arising from energy calculations.
Eowever, it has two drawbacks; it involves the estimatioh of
the derivative of a (hypothetical) smooth function E(n), whereas
the actuel eigenvalues form a discrete sequence; and, further,
it is not exact if the perturbtation is strong. These two
causes of uncertainty remder equation (4.8) unsuitable for
accurate work in theoretical calculations, although it allows
rough estimates ofT#s(O) to be obtained from empirically
selected energies.

In section 2.2.5. we explained how to calculate expectation
values using energies; equation (2.26) can be slightly modified
to take the form

COERE: 2 ol el Gl )

€50 2¢

Provided that the eigenvalues for the perturbed Hamiltonians
P{ifrycan be evalusted accurately, eguation (4.9) will allow

us to estimate (r“). We have tested this approach for different
potentials in previous sections and it gives good results; The
eigenvalue calculation can easily be performed by using the
previously tested F-method of section 2.1.4. Starting from
equation (2.12) we can obtain an equation for the F-method in

the case where the stetes of engular momentum.pare required,

[r+h-(-?+1):|F(r)+[r-hw+1)JF(r—h)[1+h2F(r—h)]_‘ = 2r(v-8) (4.10)

The terms on the left tzke care of-Q completely, i.e. no

centrifugal term needs to be included in the potential V. This
2
feature is particularly useful for the4¢'(0) calculations,

since for the charmonium problem we have

£ V) =EG2der ) | (4.11)



The derivative of.the Coulomb potential (DV) resembles a
centrifugal term for which § = %,Q(.eﬂ), so that ,Q—-)2£ as

£50.To find <(DV)> us;lng ecuation (4.8), for an s state, we

use a "pseudo-angular momentum"_p = 2E. This takes care of

the v 2 term in (4.11). The second term in (4.11) can be

added explicitly to V, or else we can use an "advanced potential"

term, so that the potential becomes
-4 P
V= -r +A(r+€) (4.12)

By using the pseudo-angular momentum and the advanced potential
artifices together, it is possible to perform the calculations
rather sinmply on a computer, since the programme can be written
to make the adjustments automatically when € is given as part
of the input data. Using two values *€ ye can estimate <3DV£>
by means of equztion (4.9).

The S value obtained using (4.10) is not the required
Schrodinger ecuation eigenvalue, since it is arrived at by using
a difference equation involving a finite strip width . h. In .
section 2.2.4. it is explained how to get a projected energy
value with the use of different values of h., Ve .use the extra-
polation formula (4.2) of the last section with h = 0.025.

Further, to make sure that <3DV£> has.been determined
accurately, we perform the calculation twice, once forif; and
once for32£, and then perform an fz‘nqm extrapolation to
arrive at a good estimate of the limiting value which is
formally specified in equation (4.9).

Equation (4.95 can be used also for excited states since
thie enersy value can be found as explained in section 2.1.4.

2 , .
Thusyk (0) for excited s states can be found, and Table 32 shows
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some results for excited states.

Considering a potential of the form V =)\rp in (4.3), we
are taking the "zero gluon" limit in the charxfonium problem;
this will make the results more likely to be useful, since
it is usual in charmonium models t6 take the "gluon" coefficient
to be srall, VWith this restriction we can do the calculations for
A: 1 and obtain results for any other>\ by scaling. By cal-
culating <rP-'> we can find '4’2(0) from (4.7); the<r4> §a1ue
provides a mreans of estimating the first order effect of intro-
ducing a vesak gluon term,

The virial theorer relates the values of E and <r">in \
the forn E = $(P+2){x" ), so that the {r’ ) found from this
relation can be checked against the <rp>found by a direct
numerical calculstion using the energy differencing approachl
tased on ecuation (4.9).

We can also apply the ideas given in this section to the
charmonium type potentisl of section 3.14, i.e., V = r—‘ +2/\r+2/\2 2,
This particular potential provides a clear-cut test case, since
the exact ground state eigenfunction is known to be rexé [-(r+kr2)].
This nmeans that <rN>values which are of very high accuracy (i.e.
virtually exact) can be computed by simple numerical integration
using the known exact wavefunction,

Table 32 gives the results for the lowest three s states'
for the potential V = r for P = 1,2, and 3. We used H = 0.025
for the calculation of the energies and £ = 0.02 and 0.04 for
the calculation of <r”> values., The results for'#"z(o) can be
obtained from the results for (rr> values using equation (4.7).
Teble 33 zives the results for the potentizl V = —r" +2r+2r2.,

For the calculation of {r)and {r%)we usea £ = 0.002 and 0.004,
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and for the calculztion of <2(DV)> we used € = 0.04 and C.CE.
We also include results using the integration procedure
explained in section 2.2.6. It is clear that this latter
procedure, while satisfactory for finiing(r"> fo# 0, is.

not as good as the € method for finding (™) with N<O. .

Table 52

P
kesults for the lowest Three s States for V= r

M= 1s . 2s - 3s
E | 1.85575709 | 3.24460763 | 5.38661378
{r) | 1.237171 2.163072 | 3.591076

(r®) | 1.836T12 | 5.614655 | 15.27495

(z""') | 1.051866 | 0.733486 | 0.512970

E | 2.12132034 | 4.94974747 | 7.7781745¢
() | o0.948850 1.423275 1.779004
(r*) | 1.050660 | 2.472874 | 3.88%087

(=) | 12341877 | 1.118230 | 0.995225

E 2.27652238 | 6,28222760 | 1C.7997582

r) | 0.842919 1.143043 | 1.363334

(
{?) | 0.e27677 1.617848 | 2.322200 ,
{r

]
~

1.491243 1.39273C 1.309490
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Table 33

-1
Kesults for V = -r +'2r+?_r2

Tiethod | E <r> ( <I‘2> <2(DV)> - .

4.3.

4.3010

Exact 5/2 0.60586282 | 0.44706856 | 25.693806

Integration | 2.5exact| 0.605867 0.£447072 - | 24.96017
to 8

§£-Method places |  go5e63 0.447069 25,69380

Quadratic Zeeman Lffect

The E(s) Problem

The problem of the guadratic Zeeman effect for the
hydrogen atom has relevance for astrophysics and also for the
theory of simple excitons in solid state physics. Killinébéck
[?gﬂ treats the problemvby several technigues. In this section
ve present a perturbation approach which involves a numerical
solution of the radial Schrodinger equation based on the s
part of the potential,

Cabib et.al. (dp.cit.) use a method involving fairly
large matrices and numerical integration of the SchrSdingerﬁﬂ
differential equation; their resulis for the ground state
are very accurate.

We study the case of the hydrogéh atom situated in a
uniform magnetic field., The Z axis of z Cartesian system
of axes is chosen to be along the direction of the field, with
the nucleus at the origin. The magnetic quantum number of the
energy eigenfunctions will be well defined becauée of the'
rotational symmetry about the Z axis; it will not change in
the presence of the magnetic field, The Hamiltonian contains

& linear and a cuadratic ter: in the nmagnetic fielé strength.
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Since the 1s ground state of the hydrosen atom has m = 0, then
for such a state the linear term vanishes, giving a Hamiltonian

of the form

H=-1v=r' -;-xzcxa e*) RN CRE)
We use atomic units, in which the ground state has energy -3.
The quantity Xzis equal to (esz/)«cz) in 5.I. units; B
represents the magnetic field strength and @ and M the electrénic
charge and mass respectively. The numerical scale is such that
a value of”r = 1 in (4.13) corresponds to a magnetic field
strength of 2.35 x 109G.

The perturbing potential due to the magnetic field is.a

sum of two tensor operators, of rank O and 2, which we refer
to as the s and @& parfs of the perturbation. The Hamiltonian

can be written as follows, to show this decomposition of the
perturbation,
12 =t 4 22 2 4 2 2

H:-EV-—r+—§X‘ [-s-r—-g(.%z-r)] (4.14)
where the s part is given byi%}%rz and the d part by -é%jﬂ32?;ra).

It has been shown by various authors that for Y &5 the
mzin problem in a matrix approach is to get the basis states to
represent correctly the-g = O component of the perturbed 1s
wavefunction., The main idea to solve the rresent problem is to 
consider only the s part of the potential and to drop the
corresponding 4 part. By doing so we are obtaining an eigenvalue
which we denote by the symbol E(s); this is the energy due to
only tke s part of the potential; it is not the full perturbed
energy E of the system. Kowever, E(s) gives & very good upper

bound to E. This arises because the ¢ part in the perturbing
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term gives no first order energy shift when it is added to the-
Eamiltonian; it has zero expectation value for any s type
function. To obtain the full perturbed energy E it will then
te necessary to include the second crder energy shift‘which"

is produced by adding the d part of the potential function

to the Hamiltonien. By calculating E(s) very accurately we

are essentially partitioning the Hamiltonian so that the s terms  :

are treated exactly, with only the.d term of the potential -:
remaining to be treated as a perturbation., This potential -
problem can be treated using the F-method of section 2.1.4..°
Finding E(s) by a matrix approach would involve using a
complete s-state basis, with discrete and continuum basis
functions (when described in terms of the unperturbed hydro-
genic eigenfunctions). A comparison of our E(s) with the
E(s) estimate from a matrix calculation will thus provide
a good czlibratory test for the adeguacy of the mtrix
basis functions; indeed, there has been some dispute in the
literature about how (and whe£her) it is possible to allow =
for continuum-type basis states in a matrix approach. The.ﬁc
nurerical integration approach avoids such problemé‘by being. ...
implicitly equivalent to a "complete set" calculation without

meking eny explicit mention of basis states.

4.3.2. Inclusion of the.ﬁ = 2 ternm

As we pointed out in the previous section, the addition
of the 4 potential term to the Hamiltonian does not alter the
erercy eigenvalue in first order. It does not change any
exrectation value of the type <%(ri> in first order, because

the first-order function?ﬁ} is of d type, and the matrix
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elements cf <<:|f(r)|d>typc ar> equal to zerc by the ususl
angular pomentum selection rules.

The first-order function@ﬁ} can be calculated explicitly
when the & part of the potential (BZz-rz) acts on én unperturbed
hydrogcenic 1s orbital ¢i; 3#} ic found to be & function of tyre
a(b+r)(§22—rz) %« Therefore we use this form for our trial
’3[3;, with ¢° being the s eigenfunction associated with Z(s),
and with a and b variable. Ve use this trial’yh in the
Eylleraas functicnal, which gives a lower bound on the modulus
of the seconié-order energy (Killingbeck EZQ]).— Writing the

2\

potential as V =y (32°-r®) tois functional takes the follo-

ing form

F(¥) = 2{IVIY) + (P |H-EN[w)y  (419)

In crder to convert all the terms in (4.15) intoc expectation
values for the s function, we need & very simple but powerful
identity. Consider the Hamiltoniar —%Val]'('r) for any local
radial potentiall](r). Ifsﬁ is any s-type eigenfunction with
en2rgy B, and nikis a solid harmonic of degree.g, we can proceed
in a manner similar to that used to derive hypervirial relations

.

in section 3.1. and obtain the result

Iy oy Ig ) = (I 40 [Eacrmntia)]

(2,16

The inequality IE,I)F(?O becomes

-1
B (hrts oY (bt asb s sety Gr) e

!

A closure approximation also gives us the simple upper -bound

-4

IEzl <-§' <r4>(E (2)-E(O)) (514‘, 3‘2)2' (4.1’8)
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E(2), the energy of the lowest 4 state in the radial problem,
is obtained just as easily. as E(O) (i.e. E(s)) by the F method
of section 2.1.4. Tie upper bound is equal to -0.497527 and
the lower bound equals -0,497528.

The main feature of the preceding calculation is the
following: althcughithe Eylleraas principle involves?i ’
the use of the identity (4.16) allows us to express the

required quantities in terms of expectation values (r") taken

with respect to gi. tAs pointed out previously, such expectation
values can be calculdted by using eigenvalue differencing
methods and hypervirial relations, even though the explicit
¢Lis‘not extracted during the eigenvalue calculatiéns. Thus
the whole of the preceding theory has been translated into

a formelism which reguires only the calculation which can be
done accurately by various technigues (in rarticular, by the

R and F nmethods discussed in this thesis).

Excited State Calculstions )

At first sight it seems that the p and d states should

be considered as excited states, since fhe energy associated
with ther is higher than the energy for the 1s state, which

is the ground state, However, if we take into consideration
the macnetic ouantum number m and the parity for these states,
ve can see that some of them can be considered as ground sta£es,
since they will have the lowest energy of their symrzetry type.
Ve can exarmine the following table, which shows the hydrogenic

staztes and their cuzntum nunmbers.



State m Parity
15, 0 o #1
2s, 0 +1
2Pe 0 -1
2D-¢ -1 -1
2p“ +1 -1
34, 0 +1
3d +1 +1
+
34 +2 +1
+2 .

The guantum nurbers given remain uncﬁanged when the magnetic
.field is turned on, and from the table we can see that all of
the states, vith the exception of the 2s, state and the 34,
can be considered as ground states since they all have
different quantum numbers. Even so, as we will show below,
the energy correspohding to the 2s, excited state can be
calculated using the same ideas as for the ground states.

The main idea for calculating the energy in first ordér is

to treat the potentia} for each particular state in such a
manner that when.adding the residual part of the potential

no change will appear in the energy eigenvalue to first érder.
For the 1s state the residual part of tie potential is of pure
,Q= 2 type, as discussed in section 4.3.1., but ve shall see
that for p and d stztes the appropriate residual potential

is not of gefinite .2 type.
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Tre Hamiltonianifor the different states is as follows,

2 _
with B = -Zf -r !

1S, H=Ho+5¥r-5 Y 2-r") S {(aa9)
2P, H=H +m¥r—g ¥ (32-%r") L 420)
2P H =H°+{—'5X2r2+-;-h‘m—5‘7‘x2(3zz——§rz) (4.21)

g 2)

3""?1 H = Ho +1_;' Tzrz"‘ %‘Km—i\f(f)za- —7'Y‘ —(4.22) -

3dasH =H 4 27 + 3 ¥m- 2 VG2~ 207). . a2

The lest term in equations (4.19-4.23) represents the residual

potential, Treating:the potentials in this way we can be sure

that when adding thel residual part of the potential to the

Hamiltonian there will not be a change in the energy eigen—

value in first order. For example, the residual operator

(z="- 57 ) has zero expectation value for any state of p,

type, as can be verified by explicit calculation. The 2p,

2

1
energy for the Hamiltonian H +5o r? can be found by the F-

method (section 2.1.4.).

The energy eigenvalue associated with the 2p_M state can

easily be calculated from the results for the 2p 4 state. The

term $¥m gives the linear Zeeman term in equations (4.21-4.23);

for the 2p_; state we have m = -1 and for the 2p,, state we

have = 1; therefore they differ in energy by an amountx',

vhich reans that tc get the energy eigenvalue for the 2p_H state

it will only be necessary to add this amount to the resulting

energy for tle 2p 4 stete. In a similar way we can calculate:

the energy eigenvalue for the 3644 state and for the 3d,, state,

v

»ith the difference that the Ed*z angd ?d_z states differ in
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energy by an amount 2}:

The 2s, state can be treated by means of equation 4.19
and the ideas about excited states of section 2.1.4. This
is so because the contribution of E, to the exact energy
is small for this state, since the 3d state, which is the -
one which couples with the 2s state, is far above the 2s state.
We can understand this idea by looking at the energy level
diagram;

3s, 3p, 3d

2s, 2p

is

Therefore, for the 2s state we can get a good estimate
by calculating the enefgy up to first order, whereas for the
3s state the influence of the 3d state is much stronger, and
presumably gives a value for E, which is larger than the E,
for the 1s and 2s states.

The energy eigenvalue results for the ground states and

for 2s are given in table 34. They were obtaiped using the
F-method (for ¥ = 0.1). It was found to be sufficient to - :
use sirip widths equal to 0.1, 0.2, and 0.3 to get projected
energy eigenvalues after using equation (2.31); Table 34

includes also the results of Praddaude .[4 3]

Table 324

Ernergy Eirenvalue (at X = 0.1)

State Energy Praddaude results
1s, -0.497520 -0.497525
2s, -0.085¢23 -0.082085
2p_4 -0.150522 -0.150845
2P, -0.111752 -C.112410
3¢, -C.C8€657% -0,087235
3, -0.05£255 -0,057810
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Fraddeude used a large matrix basié of Laguerre functions
(essentially scaled hydrogenic functions) to calculate the
energy eigenvalues., We czn see from table 34 that our energies
are very close to (but slightly higher than) his. This is in.
accord with thecry, since for the ground states concerned-our
calculation is equivalent to a variational calculation which
uses as trial function the exact eigenfunction of the Hamiltonian
with the reSiduallpatential subtracted. The resulting energy
estimate must thus be an upper bound to the exact energy. The
results show that our estirate is already a good one., For the
case of, for exampie, the 2p, state, our calculation would be
equivalent to the use of a complete p type basis, which is in
practice impossible in avmatrix calculation., The small extra
lowering of the energy must be due (for 2p°) to the £ type
functions in Praddaude's basis set, and could be computed in
our approach by a Hylleraas variational calculation of E;, as
outlined for the 1s state in section 4.3.2. Since our results
correspond to those which would arise from complete basis sets
of particular.g types, they should be of value to workers who
employ matrix diagonalization methods, since they provide
standard test values. Thus, if the p basis states used by
any worker are inadequate, this will show up as an eigenvalue
estimate which is higher than our 2p eigenvalues. Adding the
f basis states cannot remove any error due to the use of a poor

set of p basis states.
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With the development of pocket calculators, mini-computers and big -
computers, it seems reasonagble to attempt tc solve mathematical and ...
rhysical problexs with their aid.’

The task of finding simple numerical methods which can be treated:
by a programmable pocket calculator is an interesting challenge: it
calls for a clear theoretical understanding of the problems treated
and if a satisfactory method is obtained this gllows other research. -
workers to treat the problem by themselves without large scale computing-
facilities. Further, a method compact enough to work on a small machine "
will probably be a tire-saving method for a big machine.

The numerical methods presented in this work have been tested for
Schrodinger equations involving several perturbed and unperturbed poten-
tials. These methods have been shown to be very effective and to be
more cimple and accurate than the widely used metrix calculations.

The use of a ratio variable R(r), (section 2.1.2), makes this .
numerical method rather siﬁple to apply and-yet it gives accurate--=
results even when treating perturbation problems for potentials such - -
as V = XrPQfA . It has been demonstrated that the change from the . .-

R-method to the F-nmethod, (section 2.1.3). inproves the accuracy of -
the results.
The results of section 2.2 show that the error in the energy —
. . 2 2
eigenvalue varies as h~ over an extended range of h values. An h
extrapolation process works accurately without the recguirement of .~
using complicated integration formulae in the integration process. 1In
general the eigenvalue errcr seems to bte well represented by a power

it Yoo teen demonstrated (section 2.2) theat perturbation theory,

veed irn a "zlobzl" sense, gives & correction term in the integrztion

\



formula which is more simple than any previously derived using step-by-
step perturbation theory.

The F-method of section 2.1.4. allows us to get an interpolated
energy eigenvalue using three trial energies (i.e. E, £¥z2); in this
way we need to perform only an outward integration. This makes our
method more easy to use, in comparison with previous methods, which
usually employ an outward and an inward intezration and get an improved
enérgy estimate by using a formula involving the slope "mis-match" at_.
some intermediate r. Some position r = L nust be used to start the
inwvard integration, and may have to be revised to simulate adequately
the boundary condition?b@o) = 0, However, this difficulty also is T
avoided in our programmes, which take the limit L3 ee during the cal-
culation, zs explzined in the guoted sections.

It Las been shown, (section 2.2.5), that expectation values such as
<' > . be caleculated without storing the explicit value of@k This is
done by veing energy calculations, which can be performed by thg method

of section 2.1.4 (or, indeed, by any accurate method).

Eypervirial methods (section 3.1) make it possible to calculate some

perturbation series up to high order without any calculation of the per-

turbed wave functions of various orders. Further, the series for various

<%":>also result from the calculation, The various perturbation series
can then be treated (even when divergent) by means of Pade’approximants.
We have shovn several examples in which the diagonel Padé’approximants
(i;e. [L,L]) converge from below fo the correct quantity required, and
the [L+1,L] converge from above,

In section 3.1.4 an apparently new perturbation phenomenon has been
trezted; this zrises in the case of a hydrogen atom with perturblnr

. 2.2

ZATHENT .

'he L} lelgh—ucnrodlnrer energy series for the

3

cround stete cenverpges to an exact value; we have demonstrated that this
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value is not the true eneréy for negative values of\x, although there
still existe bouvnd states.

"The E and F methods presented in chapler 2 are particularly suited
to héndle the various problems described in chapter 4. These methpds
avoid many of the lengthy calculations and inaccuracies invelved in the
matrix diagonalization methods, both for bound and quasi-bound states.
The concomitant penalty which arises from this gain in calculational
simpiicity is, of course, the,neea to study the:relevant theory care-
fully in order to re-write it in a form which permits applicafion of the

numerical methods.



APPENDIX A1

F-METHOD

At1.1 ASIC Prosramme

5 PRINT "-A(D2)+V = H" .
10' PRINT "4IR{., LAMDA, H, E, DE -
15 INPUT 4, L, H, E, DE
20 PRINT "NODZS" : IKFUT ¢
25. PRINT "AL" : INPUT AM

30 E = E+DE

35 XN = &M

40 W =1: Wi =13:W2=1
45 R=1:ER =1 : R2 =1
50" N = N+1 : X = I'xHE

55 N1 = N+iM+1 ¢ N2 = N=-Ali-1

60" T = (=1/X)+1x7-E .

65 TT = T+DZ : T2 = T+2DF .

70. T = T*N/A ¢ TT = TTXY/A : T2 = T2oxN/A : : ¥
.75 F = (F/R)%U2+T : F = 7/W1

80- FF = (FF/ER)%:2+7T : FF = FF/N1 -

85. F2 = (F2/R2)%ui2+T2 : F2 = F2/M1 >

90: R = 1+EXIXF

05+ EE = 1+IXEXFF : R2 = 1+EXIx2

100 Vo= Uiz 7= WiXEE s W2 = WOXRZ
105, IFICO TELY Z = Z+1

110; IFLR<0 TELY 22 = ZZ+1
115. IFR2<O TEEX 22 = 22+1
120, IFZ<¢ THEN GOTO 50
125' P = B-D&/(1-w/W)

130, PP = E-(2 D=)/(1-w2/¥)
135" P2 = P+(PP-P)/(1-=w2/:r)
140 PRILT "1ST" P

145 PRINT "2KD" P2

150 FRINT Z, 2Z, Z2

155 GCTO 50

A1.2 Comments on the F-Method Progranme

The input variables are as follows. Alpha (A) is either 1 or %
depending whether the Schrddinzer ecuation is used in the form
_D23l"+(V—3)'¢= 0, or —%Dz)ﬁ'-k(V-E)}lf: 0 respectively (i.e. -is the
coefficient of D2 in the kinetic energy operator). Lemda (L) represents
the volue of the perturbing parsmeter in the potential function. E

rerreecniis the strip width tco be used in the numerical intezration.



E 1s the trial erergy and D= is the increment of the energy (so that the
trial energies used are actually E and EiDé). Hodes (Q), the number ‘of
noces, i.e, 1 for the ground state, 2 for the first excited state, and
SO én. LIi represents the value of the angular momentum, i.e, it is O
for ,an s state, 1 for a p state, and so on. (In the rethod of section
3.4.3 A.1. can usefully be 'given a non-integer value)., The variable ¥
represents the vavefunction.

; The potential function is giveﬁ in line 60; this is the only = -
line that has to change in order to use the programme for a different
potential function., We use the potential -1/r+\r in the preceding
speéimen progranme.

" There is not a stopping condition for this problem. The reason for
thig is that the person who runs the programme will have tp stop if
manually when the two energies shown on the screen reach a stable value;
otherwise the PZT will stop it by itself when reaching its overflow
capdacity. The two displayed energies (lines 140 and 145) are the first
and;second order interpolated energies calculated in the manner discussed

i .
in section 2.1.4.

The discussion of section 2.2.2. éhows that the accuracy of our
numerical integration methods can be improved (when the potential V is
bounded at r = O) by the simple procedure of using the guantity (V—E)+;%

n2(v-g)” instead of (V-E) in the numerical integration. This is
accomplished in the programme by including threce extra lineS'(betweeﬁ
lines 65 and 70) which carry out this replacement. Fcr exanple the
instruction

T = T+TxTXIXY/12
(vith sirilsr lines for TT and T2) would serve this purpose

21.3 Flci=chart

m .
+

e flev-chiert ie shewn i figpure o,



F-METHOD

(Stort)

Input A,L,H,E,SE

Input Q,AM

E-E+JE

w=1:wwz1:w2=1

R={: RR=1‘' R2=1%

N1 = N+AM+]

N2 =N-AM-1

T=(-1/X)+L*X—E
TT=T+Jd8E
T2 =T+2x%S8E

5



T
T=TxN/A
TT=TT*xN/A

T2=T2xN/A

F=(F/R)xN2+T :F=F/NI1

FF=(FF/RR)*N2+TT:FF=FF/NI1
F2=(F2/R2)* N2+T2:F2 =F2/NI

R=1+HxHxF
RR=1+HxHx*FF

R2=1+H*xH*xF2

W=WxR

WW=WWxRR

W2=W2xR2

< Yes ,

«

s

Z=7+1

+

No
@Y‘“r 72=272+1
v
No
Ro<O MYesy 22272 +1

g;o.

Y




...Ci-{_

%YCS 7 <Q

J-NO

p= E-—cSE/( {-WW/W)
PP=E-(2xS5E)/(1-W2/ww)
P2= P+(PP-pP)/(1-W2/ww)

Print P,
P2

\{\

Print Z,
22,22

Add 1 toN
¢ ]

Figure A1l
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AY

A2.1 BASIC Programme

5 PRINT "ENEKGY CCEFFICIENTS FOR V =-1/R+\R4P"
10 INPUT "P VALUE"; P
15 INPUT "Q VALUE"; ¢
20 DIK X(8%Z,(
25 DI E(¢+1)
30 INPUT "E VALUE"; E(0)
35 V = (XP
40 x(0,0)

45 x(1,0) : 13/(4a<E(0)) v

50 FOR I =2 T0 YV

55 X(I,0) = (-(2%T+1)%x(I-1,0)-Ix(IxI-1)xX(1-2,0)/4)/((2%1+2)*E(Q))

60 . PRINT "A"; I; X(I,0)

65 NEXT I

70. E(1) = x(p, o)
75 = V-P

80 FOR I =1 T0 ¢
85 FCRI=1T0K
90 T =0

95 "FCR Il = 1
100 S = B(X)*X
105 T = T+S
110 * TZXT X
115 IF I = 1 TEZN 125
120 IF I<>1 TEE
125: X(I,14) = (2*I+P+2)*A(I+P M-1)- (2x1+1)*x(1 1,“) =
130 X(1,1) = (x(T,m) — (x(1, L) (2xI+2 *T)/ (2x1+2)%E(0))

135 . GOTO 150

140 - X(I,1) = (2%

145 X(1,11) = (x(
I

150 PRINT I; x(1,

155 E(Ii+1) P, M) /(“+1)

160 NZAT 1

165 1IF IR THEN R = R-P 4 \
170 NiXT M

175 FCRJ =0 TO ¢

180 FPRINT J; E(J)

185 NTIT J

2%
X ,}) (2*1+2‘*I/((¢x1+2)xh(o))
(s,

L
-
19

I e

A2.2 Comments on the Hvper Prosramme

\
Tke input variszbles are as follows. P is the power of r in the
s ~ . P4 . .
retertiel function V = )r -r (P is & pocsitive int "er). ¢ is the
numter OF energzy coefficients wented. E(O) ie the value of the un-

o«

perturbed energy for the hydroren s state considered. (Fodification

I+P+2)%X(I+P,K-1)- (2x1+1)*x(1-1 M)-I%( I*I- 1)xx(1-2 M)/4
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to allow trestment of states with £30 is possible).
‘The element X(0,0) of the array X(I,X) is eguivalent to Xeo in the

text: (section 3.1.1.), and is equel to 1, i.e., the value of the zero

order coefficient in the series for <r°> = 1

A2.3 Flow-chzart

. The flow-chart is shown in figure A2,
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HYPER

(Start )

Input P, Q

Detine Array X

Define Array A

InputA (o,0)

V=QxP
|

v
Ford=1toQ

X(0J)= o

Add 1 toJ

T S

X (0,0)= 1

X(1,0)7 =3/(4%xA ()

Print X (ojo)
X(1,0)

O-

-
ForI=2to V

8




- 75~

1

X(1,0)= (~(2%xT+1) ¥ X(I-1,0) ~-I* (I *I-1)
x X(I2,0)/4)/ ((2 % 1+2) *A(0,0))

Print X(I,0)

< Add 1toI

A(1, 9= x(P,0)

Print A (llo)

R=V-P
|

-
For M=1to0Q

O

L 4

ForI=1toR

T=0

-

For N=1toM

!




-9¢ —

T

Sum = ANO * X0,M-N)

Total = Total + Sum

I

4-

Add 1 toN

No

X(I,M):((sz+P+2)* X
(1+PMD)—(2xT+4) % X (L
“,M)-(2x1+2)* )/ ((

251 +2)* A(QO)

X(I,M)=((2%TI+P+2)* X (I
+PM-1)-(2%T+1) % X(T -

1 M)- (Ix(1%1-1)/4)* X
(I-2,M)-(2*I #2)%T)[(C

2xI+2) x A(0,0)

—

A(M+1.0)= X( BM)[(M+1)

£—

Add 1tolI

R=R-P

@)




-7~

!

Add 1 toM

b

ForJ=0toQ

Print A(J,0)

\/r_\

Add1toJ

(Stop )

Figure A2




APPENDIX 43

2=-TYPzP

A3.1 R4ASIC Programme

5 PRINT "EXZRGY CCEFFICIZNTS FCR V = -1/R+2\R+2A12Rt2 "
10 INPUT "Q VALUZ"; ¢
15 DIN E(g+1), B(ex;,q)
20 IKPUT "L VALUE"; L
25 INPUT "E VALUE"; E(O0)

30 B(0,2) = -2%=(0 »
35 B(1,2) = 1

40 FOR K = O TO =2

45 FOR N =1 TO (=1

50 S=0

55 FOR P=0TCK

60 = S+E(P)*E(1+1,142-P) ¥

65 FZXT P

70 R = (4%7+6)%3(1+2, M1 )+ (2xli+& )% B(5+3,1) . N
75 R = E-(2%H+1)%B(W, 4+ 2)-m% (1x2-1 )xB(“-1 ¥+2)/4 .
80 R = r+*XLx(L+1)*B(n-1 1+2) .
85 B(N+1,1+2) = (R/( IX42) - s)/E(0

90 PRINT L=1; I=1; " " (n+1,a+2)

95 E(I+1) = (2x3(2,2+2)+4*3(3,>y1))/(x+1) a
100 ( 3) =

105 LLnT %

110 1TXT X

115 FCR J = 0 10 ¢
120 FRINT "E"; "J"; E(J)
125 'NEXT J

A3.2 Comments on 2-Hyper Proecramme -

This programme, which is meant to be used to find the energy.A
coefficients for the potential V =-r" +2>;r+2y'r2, can be used for the
potential V =Ar-r~ vy replacing line 70 bty R = (2%X¥+3)%B(N+2, MN+1)
and line 95 by =(¥+1) = B(2,1+2)/(¥+1).

The input variables represent the szwe zs for the Lyper procramme,
with the addition of L, the angular momentum. The programme works for
p and d states as well as s ones. The relevant rnodification is explained
=tically in escticr 2.1.5. and is executed in the programme by

- rodifies the coefficient of



’

B(u-1,1+2).

A3.3 Flow-chart

The flow-chart is shown in figure 43.

b drmsde
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2-HYPER

(Start ’

Input Q

Detine Array E

Detine Array B

InputL,E)

B(0,2) =-2xE(0)

B(,2)=1

’ |

<+
For M=O to Q-2
1

¥
ForN=1to Q-1

S =0
I

-
For P=Oto M

1s=s+E(P)* B(N+1,M+2-P)

—4 Addito P

O



- {01 -

i

R=(4%xN+6)x B(N+2,M+1)+(4*N+8)

% B(IN+3,M)-(2xN+1) x BIN, M+2)
- Nx(N *N—i)/4 * B(N-1,M+2)

+ N Lx( L+1) * B(N-1,M+2)

B(N+1,M+2)=(R/(2%N+2)-S) [E(O)

N-1,M |
B(N+1,M+2)

E(M+1)= (2% B(2,M+2) +4x B@,M+1)) [(M+1)

B(o,3)= E(1)

4 Add 1to N

Add1i to M
=

-
ForJ=0to Q

Print E,J
ECJ)

\_/I/_\

—4 Add1to J
(Stop )

Figure A3
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APPENDIY A4

A4.1 BASIC Programme

.5 PRINT "PADE APPROXINANTS" . )
10 INPUT "¢ VALUE"; ¢

15 DLAC(@QO)

20 DIK T(q+5,0+5)

25 IKPUT "c(o) VALUE"; ¢(0)

i e -

30 INPUT "c(gq) VALUE"; c(c¢)

35 INPUT " AVALUE"- L -
40 7(1,3) c(o)rz/(c(o)-c(1)xL;

45 7(0,1) = c(0)-(c(1)x1x(T(1,3)-c(0)))/(1(1,3)-C(0)-C(1)%L)
50 FORI = O TO ¢

55 T(I,0) =0

60 NIZXT I

65 T(1,1) = c(0)

70 FCR I=2T0 ¢+

75 2(1,1) = T(I-1,1)+C(1-1)%(LTN(I-1)) ' Lv
80 PRINT T(1,1) |
85 IZXT I

6C J = 1

95 FC: 1. = 1 TC

100 FOR N = J TC Q+1

105 T(X,M+1) = T(L-1 L—1)+(T(N M)-T(n-1, N)T( 1) :

110 PRINT N-1-1/2; W/2; fNDH1) T T
195 NEXT N ' B

120 IF NYG+1 THEN J = J+1

125 IF J¥G+1 TEEY 35

130 NEXT K

A4.2 Comments on the Vynn Procramme

The input variables are as follows. § is the number of coefficients
of the power series which is to be used. C(O), C(1),'... C(Q) are the
nunerical values of the coefficients. X (L) is the value of the per-
turbation parameter in the potential function, for our problems, but
in general is the A\ value for which the sum of the power is required.

wynn's zlporithm allowe us to calculate Pade approximants of the
ferz [C,J], [»,¢-1] seey [;,1] orly, but the programme is written

€2 z¢ to caleculzte alsc the appreximants [9,1], [1,2], etc. which
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are not mentioned in wynn's original algorithm,

For numerical purposes it is often sufficient to know the values
of [J,J] and [J,J-1] tecause, as has been discussed in section 3.2.3.,
the exact value often lies between these approximants. The line 110
of ‘the programme displays first the [N,j] coefficients;‘then the [N,z]

coefficients, and so on, together with their labels.

A4i3 Flow-chart .

i The flow-chart is shown in figure A4. : - .
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WYNN

(Start )

Input Q

Define Array C

Detine Array T

Input value of coefficients

into Arrav C

-

Inputl
]
<
ForI1=010Q
4
TH,0)=0
——4— Addltol

TG,3)=Cl0012/(Clo,0)-Cc10) * L)

T, =cl00-(clo*Lx*(T{,3)

-cloo))/(T(1,3) -C(0,0-C1,0)*L)

T(1,1)=Cc(00)

O
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@)

ForI=2toQ

T(1,1) =T(I-1,1)+C(1-1,0) x L #(1-1)

Print T(1,1)

ForM=1to Q+1

ForN=J toQ+l

TINM +) =T(N-,M-D+{TINM)=T(N-,M)) ¢ (-1)

Print
T(N,M+)

,\/]/\

Add 1 toN

—¢No < N>+t

Yes



Add1toM

No

-doL—

Add 1 tod

Yes

Figure A4
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