NURERICAL AMD FEETURATICN THECRETIC IGTECDS FCR THE SOLUTICN OF THE SCGÖDIIGER EQUATION
being a Thesis submitted for the Desree of Doctor of Fhilosorhy in the University of Hull

by

Susana Galicia Vartín del Campo, B.Sc. Nexico City

ACFMC日LEDSESMS

I would like to express my eratitude to Dr. J.F. Killin -beck for helpful conversatiors and advice during the accorplishment of this work.

I am indebted to the National Council of Science and Technology (CONACYT, Nexico City) for the award of a scholarship.

I would like to thank the Britisk Council for support during the first year of this work.

The great book of Nature lies ever open before our eyes and the true philosophy is written in it ... But we cannot read it unless we have first learned the lancuage and the characters in wich it is written ... It is written in mathematical lancuage and the characters are triangles, circles and other geometrical figures ...

ABETRACT

In the present work we present a numerical and perturbation theoretic approach to the solution of the one-particle Schrödineer equation. The numerical methods developed can be used to find energy eigenvalues for one-dimensional problems as well as for radial ones. Expectation values are determined by an approach based on eigenvalue calculations, without the explicit use of wave functions.

Eypervirial and Hellmann-Feynman theorems are used to obtain perturbation series to high order for polynomial type radial perturbations of the hydrogen atom. One such perturbation leads to an apparently new phenomenon in Rayleigh-Schrödinger perturbation theory.

Wynn's alcoritnm is used to get Fadé approximants for the perturbation series. The series for the energy and for the quantities $\left\langle r^{N}\right\rangle$ are treated, and both types of series can be found using the kypervirial method.

Several applications of the numerical techniques are given; it is emphasized that theoretical manipulations are needed to transform the problem to ar appropriate numerical form. It is demonstrated that a slight modification in the numerical techniques developed permits treatment of quasi-bound states as well as bound states. It is also shown how to calculate a local quentity, $\psi(0)$, usine enerey calculations, and how to reduce the problem of treating anetise terms in the quadratic Zeeman effect problem to a radial integration problem.

CCNTENTS

pages

1. IMECDUCTION
1.1 The Wavefunctioni ψ 1
1.2 Summary of Selected Frevious Works 2
1.3 Summary of Fresent Work 12
2. A PERTUKBATICI-THECRETIC APPROACH TO NURERICAL INMEGRATION METHODS
2.1 Mumerical Intesration Methods 15
2.1.1 Introduction ; 15
2.1.2 R-Method 15
2.1.3 F-iie thod 1ε
2.1.4 Fadial Froblem : 19
2.2 Ferturbation Theory in h^{2} 24
2.2.1 Introduction 24
2.2.2 Kodified R-Kethod 25
2.2.3 Modified F-Method 30
2.2.4 h^{2}-Extrapolation Process 31
2.2.5 Expectation Values 33
2.2.6 Direct Integration to Get $\left\langle\mathrm{x}^{N}\right\rangle$ 36
3. FERTUKBATICN PETHODS IN λ
3.1 Hypervirial Theorem 37
3.1.1 Introduction 37
3.1.2 Eyper Programme 41
3.1.3 Eypervirial Fesults for Excited s-States $\angle 5$
Z.1.4 Chermonius. Type Fotentials 47
3.1.5 Zič: Cràer Zxcited States 4.
3.1.6 Expectation Values for $V=-r^{-1}+2 \lambda r+2 \lambda^{2} r^{2}$ 49
3.2 Padé Approximants 51
3.2.1 Introduction 51
3.2.2 Hynn's Algorithm 1 53
3.2.3 Applications of Wynn's Alcorithm to 53Perturbation Series
4. FURTHER APPLICATICHS OF THE NUVERICAL TECHNIQUES
4.1 Guasi-Bound States 56
4.1.1 R-Method for $\lambda<0$ 56
4.1.2 Padé Approximants for $\lambda<0$ 64
4.1.3 Bound States for $\lambda<0$ 65
4.2 Calculation of $\psi^{2}(0)$ for the Charmonium Problem 67
4.3 Quadratic Zeeman Effect 75
4.3.1 The E(s) Problem 75
4.3.2 Inclusion of the $\ell=2$ Term 77
4.3.3 Excited State Calculations 79
CONCLUSION 84
APPENDIX A1 87
APPENDIX A2 92
APPEIDIX A3 98
AFPEIDIX A4 102
REFERENCES vii
LIST OF TABLES
pages
Table 1 Energy Eigenvalues Using F-Kiethod 18
Table 2 Energy Eigenvalues Using F-シethod 19
Table 3 Enercy Eigenvalues for $V=\lambda_{r-r}{ }^{-1}$ Usine R-Tethod 20
Table 4 2s State Encrey Eigervalues 21
Table 5 Energy Eicenvalues for $V=\lambda r-r^{-1}$ Using F-Hethod 24
Table 6 Eicenvalues of the Three Lowest Even-Farity States 28
Table 7 Ground State $\left\langle x^{2}\right\rangle$ Values, $h=(0.05) /(2)^{1 / 4}$ 29
Table 8 Energy Eigenvalues for $V=x^{2}$ 30
Table 9 Energy Eicenvalues Usiñ an h^{2}-Extrapolation 32
Process for $V=x^{2}$
Table 10 Frojected Energy Eizenvalue for $V=x^{2}+x^{2} /\left(1+c x^{2}\right)$ 32
Table 11 Energy and Expectation Values for $V=x^{2}$ 33
Table 12 Enerey and Expectation Values for $V=x^{4}$ 34
Table 13 Expectation Values for $V=x^{2}$ 36
Table 14 1s State Energy Ferturbation Coefficients 42
Table 15 is State Expectation Value Coefficients, $P=1$ 43
Table 16 1s State Expectation Value Coefficients, $P=2$ 44
Table 17 2s and 3s State Energy Ferturbation Coefficients, 46

$$
P=1
$$

Table 18 2s and 3s State Energy Perturbation Coefficients,46

$$
F=2
$$

Table 19 2s State Energy Ferturbation Coefficients for

$$
V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}
$$

Table 20 2r State Enerey Ferturbation Coefficients for

$$
V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}
$$

Eale 21 1s State Expectation Value Coefficients for

$$
V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}
$$

Table 22 Fadé Approximants for $V=\lambda r^{p}-r^{-4} 54$
Table 23 Enerey Values for $V=\lambda r-r^{-1}$ for $\lambda<0$ (First Node) 50
Table $24 R(\Xi)$ Values for Selected Iodes, $\lambda=-0.02, h=0.04 \quad 60$
Table $25 \quad \bar{r}(E)$ Values for Selected Nodes, $\lambda=-0.02, h=0.02 \quad 60$
Table $26 R(E)$ Values for Selected Nodes, $\lambda=-0.04, h_{1}=0.04 \quad 60$
Table $27 R(E)$ Values for Selected Nocies, $\lambda=-0.04, h=0.0261$
Table 28 Fadé fpproximants for $V=\lambda r-r^{-1}$, for $\lambda<0 \quad 64$
Table 29 Padé hpproximants for $V=\lambda r^{2}-r^{-1}$, for $\lambda<0 \quad 65$
Table 30 Fade' Approximants to $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for $\lambda<0$, 65

$$
V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}
$$

Table 31 Frojected Energy Values for $V=-r^{-1}+2 \lambda r+2 \lambda^{2} r^{2} 66$
Table 32 Fesults for the Lowest Three States for $V=r^{P} \quad 74$
Table 33 Results for $V=-r^{-1}+2 r+2 r^{2} 75$
Table 34 Energy Eiçenvalue (at $\gamma=0.1$) 82

CHAPTER I

I.:TODUCTION

As can be seen from the title of this work, our aim is to develop mathematical techniques to solve the one-particle Schrödiraer equation; that is, we are interested in how to calculate eifenvalues and eimenfunctions for a certain Hamiltonian. We may ask "what role do the eigenvalues and eigenfunctions play in the context of quantum mechanics, and why is the Schrödinger equation so relevant in quantum mechanics?" To answer these questions, and to be familiar with the ideas about quantum mechanics at the time the Schrödinger equation began to gain importance, we would like to summarize some of Erwin Schrödineer's own ideas about "wave mechanics" in the year $1926[1]$.

1.1. The Vave Function \mathcal{Y}

Schrödinger derived a differential equation for the eigenfunction ψ. One of his concerns was to find the value of $|\psi|^{2}$, which was initially thought to be a smeared out charge density. Liax Born changed the concept of $|\psi|^{2}$ by regarding quantum mechanics as describing the motion of definite point particles. Within this context he considered $|\psi|^{2}$ to be a probability density, so that expectation values such as $\langle r\rangle$ are averages of the type used in traditional probability theory.

Schrödineer used perturbation theory to solve the problem of the Stark effect for the hydrogen atom, where the potential function is equal to λz. Although this is an unbound state problem, it is possible to use perturbation theory for small values of λ up to low order, and still get reasonable results. The Rayleigh-

Schrödiñer approach to perturbation theory involves the calculation of perturbed wavefunctions ψ_{n} of various orders n.

The usual view is to use perturbation theory to work out the ciange in the energy $\Delta \Xi$, after adding the perturbation to the Hamiltonian, if the unperturbed eicenfunction ϕ_{0} and the potential function are known. Hovever, in the present work we reverse this argument; we calculate $\Delta \Xi$ numerically for arbitrary potential V so as to find $\langle V\rangle$ without explicitly recorcine the vavefunction. This reduces the importance of ψ in the calculation, and in our work on hypervirial methods ψ is completely eliminated. This means that series for $\Delta E,\langle r\rangle$ etc. result without any calculation of the perturbed vavefunctions ψ_{n}.
1.2. Sumary of Se?ecte Previous Works

Tato [2,1940] gives an improved and much simpler treatment of the theory of regular perturbations, based on the use of resolvents and contour integrals. His re thod allows the derivation of explicit formulae representing eigenvalues and eigenvectors up to any order in the perturbation parameter λ. Dalgarno and Lewis $[3,1956]$ describe a Eeneral sum rule which has many variants; it perrits, for example, the exact calculation of the lone range forces between a proton and a hydrogen atom using conventional perturbation theory. Their method finds the second order energy E_{2} by solving a differential equation, whereas the traditional method (which has many similarities with matrix methods) represents E_{2} as a summation over terms involving excited states. This sum-over-states involves continuum states, which are difficult to handle; the differential ecuation approach indirectly allows an estimate of these continuum contributions to be made. The limitation
of the Dalcerno-iewis method is the difficulty which may arise in solving the differential equation. The sum rule technique appears to have applications to many fields; it will work well for perturbed oscillator and hydrogen atom problems, which are popular test problems for perturbation and numerical methods.

Ferturbation theory can also be applied to modify numerical intesration methods for findine ψ. Fierl, Diestler and Vagner [4,1974] re-formulate the method of "reference-functions" to treat the problem of finding ψ for the radial Schrödinger equation in piecewise analytic form. Ordinary Rayleigh-Schrödingerperturbation theory is used to obtain the solution in a succession of intervals of the independent (radial) variable. The perturbation technique (carried to first order, taking the zero-order potential to be constant) is tested acainst the highly efficient Numerov direct-integration method on the Lennard-Jones potential. It is found that, under the restrictions imposed on the perturbation methods, the Numerov procedure is almost alvays more effective, except for partial waves of low angular momentum.

Adem, Ixaru and Corciovei $[5,1974]$ develop a very simple perturbative numerical algorithm for the solution of the radial Schrödinger equation. This algorithm uses the same basic approximation (a step function approximation for the potential well) as that previously reported by Riehl et.al. (op.cit.). It shows, however, an $O\left(h^{5}\right)$ rate of convergence in the step size h, as compared to the $O\left(h^{4}\right)$ rate of convergence of the algorithm given in the work of Fiehl et.al. A comparison with the Numerov method for eigenvalue problems proves the high efficiency of this algorithm. Killingbeck $[6,1977]$ presents a work which reviews some of the modern articles in perturbation theory in the context of traditional results from the theory of real and complex variables. He
compares the two major versions of time-independent perturbation theory, the Fayleich-Schrödinger (RS) and Erillouin-̈̈icner (BH_{H}) theories and reviens the alternative technicues for evaluating the ter: f in tie ererey serics. The sum-over-states rethod, the differenti三l eouation metroc, are tis variational yrinciple method are treated with emphasis on their inter-relations. Some specific variational principles are studied, inclucine those for upper and lower bounds to the second order energy, vith comments on the extra problem arising if the unperturbed function is not known exactly.

Don Secrest, Cashion and Hirschfelder [7,1952] present a numerical method for accurate calculation of the energy eigenvalue of one-dimensional Schröaincer equations. It is applicable to systems for which the potential is either analytic or has no pole of order greater than two. The method is based on a power serice expansion of the wave function ψ at larce distances. The method uses two trial energies, E and $E+\delta E$, and varies them until the calculated wave functions at some larธe distance L are of opposite sign. Secrest et.al. (op.cit.) estimate an energy eigenvalue so as to make $\psi(L)=0$; when this requirement is achieved they increase L in order to see if the value of E varies. This idea is used in our present vork, with the difference that we use three trial eneries to estimate E. Cur metrod (section 2.1.4.) does rot recuire a series of fixed L values, since the programme take the limit $i \rightarrow \infty$ durine the calculation ($a s$ expiained in section 2.1.4.). However, the enerey eicervalue obtained in our work refers to a particular strip width h, and an h-extrapolation is neaced (section 2.1.4.).

With the use of high-speed computing machines, the large
number of terms required in the power series in the me thod presented by Secrest et.al. (op.cit.) can be computed easily; nevertheless, it has been tested on the C.B. $\%$. Pet Minicomputer and it was not possible to make it work, because the wavefunction increased considerably, so as to cverflow the capacity $\left(10^{38}\right)$ of the Fet. Z̈wever it works satisfactorily on a pror rammable calculator which can handle numbers as large as 10^{99}.

Killingbeck $[8,1977]$ treats the radial Schrödinger equation, converting it to a recursive one which can be treated satisfactorily by a programmable pocket calculator. His calculations show that the eigenvalue error varies very smoothly with the integration strip width h. The method is applied to a problem for which the traditional energy perturbation series is divereent asymptotic. This method, which we call the R-method, is used in this vork (section 2.1.4.) to find the energy eigenvalue of a system with potential furction eçual to $\lambda r-r^{-1}$. We investicate the dependence of the error on h using perturbation theory and test problems, and show that the R-method can be improved in several respects. If the potential V is finite we show that a perturbation approach is possible which is much simpler than any previously used.

Killin§beck $[9,1977]$ Eives some more applications of programmable calculators. He finds the energy eicenvalue for one-dimensional problems (with $-\infty<x<+\infty$) directly by purely numerical methods. This can be done if the relevant Schrödincer equation is transformed into a difference equation. This one-dimensional-R-method is also used in this work for $V=x^{2}$ and x^{4} (in section 2.1.2. of this thesis.)

Killingbeck $[10,1978]$ uses several techniques to study the ground state properties of a hydrogen atom with the polynomial perturbation $2 \lambda r+2 \lambda^{2} r^{2}$. Fe uses a numerical method to calculate
the enercy eicenvalue, and using in addition the Eellmann-Feynman theorem he finds $\left\langle r^{2}\right\rangle$ values vithout explicit celculation of the :revefunctior. : \because develop trese ideas further (section 3.1.4.) an te check that the Faylei ch-Schrödiner eneruy series arrees (for $\lambda>0$) vith the exact eicenvalue $-\frac{1}{2}+3 \lambda$. For $\lambda<0$ the shape of tiee potential curve sious that boura strites still exist but their enerey differs from $-\frac{1}{2}+\frac{3}{2}$; tris is discusse 2 in section 4.1 . Biswas et.al. $[11,1973]$ calculate nor-perturbatively the ground state and the excited levels of the generalized anharmonic oscillator defined by the Hamiltonian $E=-d^{2} / d x^{2}+x^{2}+\lambda x^{2 m}, m=2$, 3, usine Hill determinants. For the λx^{4} perturbation they compared their ground state eigenvalues, for various values of λ, with the Borel-Fadé sum of the asymptotic perturbation series for the energy.

The numerical solution of the Schrödinger eçation is of ten achieved by means of step-by-step integration procedures, of which the best known one is the Numerov method. Killingbeck $[12,1979]$ shows that a much more simple "global" application of perturbation theory leads to useful ways of improving the accuracy of various step-bj-step nethods. Ee demonstrates that exnectation values can be determined by an approach based only on eigenvalue computations, without the use of vevefunctions. He improves the so-called K \therefore othod (section 2.1.2.) by chan-inc to a new variable $F(x)$ defined by $H(x)=1+r^{2} F(x)$, leadine to a method vich we call the F-method. We use these idees and arrily this methos to the srme test potentials as used for the \bar{f}-method (that is $V=x^{2}$ aris x^{4}) to show the improvement of chañine from one method to another.

Bolton and Scoins $[13,1956]$ treat the Schrödinser differential equation to calculate eigenvalues, usiñ finite difference techaiques.

They compare this way of solving these equations rith the RayleighRitz variational method.

तumerical procedures for solving the Fartree- Ioc' equations have been described by many authors. Froese $[14,1963]$ develops a procedure for solving these equations on a computer (IzN 7090). She uses the .iumerov method as aell as "the tail zrocedure" and finds out that these two methods compenent each other. She uses the hydroéen atom radial equation as a test proclem to compare different methods.

The numerical solution of the one-dimensional Schrödinger equation is also treated by 3latt $[15,1967]$. Fe discusses the various problems encountered e.g. choosing a step size; in this connection, he develops a midpoint formula to be used aith the Nunerov method. He discusses how to find the eigenvalie iteratively when already close to it, and comments on other mrobleo..s arisine durine the process of numerical intesration.

Eaij, Kobeicse and Nassif $[16,1974]$ use higher-order difference schemes in order to find a numerical solution of Jchrödinger's radial equation. These schemes are a fanily of difference equations which are extensions of the well-known Numerov difference equations, and give highly convergent approximate solutions. Eajj et.al. (op. cit.) uses a "shooting method" to solve the Schrödinger equation, rather than usine matrix met\%ods, lecause shooting metiods are simpler, reuiring saller storage and a shorter profrawe. A cornection for: ${ }^{\prime}$ la is used to estimate 2 for each trial solution, and this corrected enerej is then used as inrut to the next integration.

Raptis and allison $[17,1978]$ develop an expocential-fittine method to be apolied to the numerical solution o? tie radial

Schrödinger equation. Their metrod is based on a two-step numerical intesration formula, with all the advanteres of the Sumerov method, but with the ability to intesrate solutions of oscillatory and exponential form more efficiently. Their work belones to a class of methods which allow the strip width h to vary ;ith zosition during the nunerical integration, whereas for our problens ze find that a fixed-h approach is adequate. Iitra $[10,1978]$ calculates the ground state and the first two excited state energy levels for an oscillator :ith perturbing potential of type $\lambda x^{2} /\left(1+a x^{2}\right)$. Ae uses the Eitz variational method in combination with the Givens-Kouseholder algoritnm for numerical computations. Galicia and Killinebeck $[19,1979]$ give a simple numerical method for calculating the eigenvalues of the Schrödinger equation for the perturbed oscillator considerad bin. Fio direct numerical intearation method is more accurate fan the matrix aporosch for this bind of Hamiltoniar . Tre mation used is an h^{4} process for bound potentials and it is sho:n to be more simple tran the fumerov inethod. In section 2.2.2. we jive an explanation of this method and the results for the eceror eisenvalues of the three lowest even parity states obtained by our modified R-method and by Mitra's matrix approach. Direct metnods also pernit the calculation of expectation values such as $\left\langle x^{2}\right\rangle$. Fesults for this exnectation value are also giver in section 2.2.2.

$$
\text { Tirping }[20,1976] \text { precents a method whereby matrix elements }
$$ aro derived directiy in torms of the enerzy eiçenvalues, and of the potential parmeters, fithout explicit use of the ei, werfunctions. This method consists of setermining "initial" matrix elements via quantum mechanical sum rules, and then zeneratine all additional elements through an oxact hypervirisl recursion relationship.

The method is illustrated by sample calculations for the x^{4} oscillator, and it is shown how to obtain results more accurate than those coputed $k y$ direct irteeration employine numerical eigenfunctions.

Svenson and Denforth $[21,1072]$ apaly a set of hypervirial theorems plus the Rellmanr-Teynen theorem to a eeneral anharmonic oscillator. Tie exact energj and expectation values of porers of the position coordinate are expanded in a power series of the anharmonic coupling constant. It is shown that the use of the above theorems enables one to express each term in these expansions solely in terms of the unperturbed energy and known constants. This procedure eliminates the usual tedious calculations of sums over intermediate states of products of matrix elements, wich arises in nth oràer kayleigh-Schrödineer perturbation theory.

Tre Fadé approximants are a particular type of rational fraction approximstion to the value of a function (Eaker [22,1970]). Wynn [23,1956] ha's designed an aleorithm to evaluate Fadé approximants; the novelty of this algorithm is that it directly produces the numerical value of the approximants for a given λ without explicitly constructing the approximants as rational fractions at an intermediate stage.

Killingbect $[24,1978]$ shows that hypervirial relations yield the series for the enerey and expectation values for a hydrocen atom with perturbstion λ, up to fifth crder in λ, without calculation of yerturbed wave functions. He makes a ladé approximant analysis of the energy series. In a subsecuent paper Fillingbeck and Salicia [25, in the press] use hypervirial relations together With the Hellmann-Feynman theorem to get the energy coefficients of a power series for the hydrocen atom with potential function
$\lambda r-r^{-1}$ and $\lambda r^{2}-r^{-1}$. In thie present work (section 3.1.1.) we develop a procranme which calculates the perturbation series up to hif crder, for any hyorocen atom state and for a perturbing potenti:I $\lambda_{r}{ }^{P}$ (\bar{r} a positive intearer). Tie procrame also enables us to eet the serise for expectation values of type $\left\langle r^{N}\right\rangle$

Ze have develofed a romemme hich uses "ynn's alcorithm to calculate Padé approximants. It is used by Killinejeck and Galicia (op.cit.) to obtain the energy value for the potentials mentioned above. Their results inaicate that the exact energy lie s between the $[L+1, L]$ and $[L, L]$ Padé approximants. In this work we apply it to several perturbing potentials and expectation values (section 3.2.3.).

The problem of calculating the eicenfunction ψ at the origin for radial Hamiltonians, such as that for the Charmonium system, is shown by our approach to be reducible to a sequence of energy calculations. Killinébeck and Galicia (op.cit.) consider this problem, performing the calculations by the use of a pseudoangular momentum term in a numerical integration approach. They show how a first principles approach to s state hypervirial relations produces terms not given by the usual commutator approach. The problem of $\psi(0)$ is also discussed in the present work, which cives typical results (section 4.3):

Hazi ans Taylor $[25,1070]$ apply the stabilization method of calculating resonance snercies to the elastic scattering from a one-dimensional model potential containine a karrier. For sufficiently large basis sets, the stabilization rethod yields Eood approximations to the inner part of the exact scattering vave functions at energies equal to the eiçonvalues of tiee truncated matrix of the familtonian in both the resonant and non-resonant
enermy resions.

Gasi-bouna-state energy calculations are made for a pertrobse oscillstor ani a perturbed hyarosen atom ky rillincbech [27,157E]. Ee describes a simple rumerical variant of the wellhnorn stabilizatior rethod; the resilts are compred with thase from the least-souse and perturbstion-serics metiods. Frese ideas are further discussed in this work in section 4.1.

Austin $[28,1080]$ uses the hypervirial and Fiellmann-Feymman theorems to obtain perturbation series for the perturbed hydrocen atom to high order. Ee sho:s that although the series diverees, the diagonal Fadé apmoximants converge to an accurate eigenvalue. This asrect of the Fadé approximants is also denonstrated in this thesis (section 3.2.2.)

Austin (op.cit.) treats the problem of the Stark effect (i.e. zertirbation λz), where there are no bound states, by using Fadé aprexirants and parabolic coorcinates. For the radial perturbation λ, rillinębeck $[10]$ anà justin (op.cit.) cemonstrated that even for $\lambda<0$ there is still corvereence of the diagonal Fadé approximsnts, over a smaller range of λ. This is also considered in tre present work (section 4.1.1.) where typical results are Eiven.

As ve mentioned at the beginning of the introduction, Schoöinger treated the problem of the Stark effect (i.e. perturbation λ_{z}) enc oztained the enerey perturbetion serise up to second order. Minese have charfed since then; with the developaent of modern computationel metrocis it is nossible to hancle the series to verig ligh orier and interpret the results in terrs of the theory of quesi-bouna states.

Killirgbeck $[29,1979]$ ireats tie problem of the hydroeen-atom ouacratic Zseman effect usiñ perturbetion theory. The importent
step for solvine this probler is the rifit choice of the unperturbed Hamiltonian. $\because:=$ develop these iceas further in this thesis (section 4.3), using the F-:setrod of section 2.1.4. to perform the nuxerical iniecretions.

1.3. Eumery of Ererent iork

In chapter two we give a yerturbation theoretic treatment of numerical integration methods to solve the Schrödinfer equation. It is shown that after converting the equation to a recursive one it becomes so simple that it could be handed by a programmable pocket calculator.

We choose the test potertials $V=x^{2}$ and x^{4} to show the improvements which can be made by introducine several modifications of the oricinal simple method. The numerical methods developed can ke used to find the energy eicenvalue for one-dimensional problems (with $-\infty<x<\infty$) as well as for radial problems (with $0 \leqslant x<\infty)$.

It is shown hov the accuracy in the calculated energy depends on the choice of the strip width h. It is shown how to get a projected enercy eigenvalue by means of an extrapolation process in the quantity h^{2}.

It is demonstrated thet expectation values can be determined by an approach based on eienenvalue calculetions, without the Earlicit use of vave functions.

In clapter three, the hypenvirial theorem, tocether with the Nellmann-Feynman theorem, is used in order to obtain power series for the energy and expectation values of the type $\left\langle r^{N}\right\rangle$ for the hydrocen atom with perturbing potential λ_{r} (with positive integer P). This approach is used for the ground state as well as for some
excited states. The Charmonium type potential $\left(-1 / r+2 \lambda r+2 \lambda^{2} r^{2}\right)$ is also treated by hypervirial methods and is shown to have some interestinc rroperties.
\because ynr's alsorithm is used in section 3.2 to obtain Padé armeximats to pover series. fite resic point abeut this alcorithm ie that it directly rocuces the nurgmical ysue of the approximants for a civer λ rithout explicitly corsiructing the arroxirants as rational fractions at an intermediate stase. It is demonstrated for several of the perturbation problems of interest that, althoufh the perturbation series diverge, the $[L+1, L]$ approximants converge from above to the correct quantity reçuired and the diagonal fadé. approximants (i.e. [L,L]) converge from below.
frother application of lynn's algorithm is siven in section 3.2.3 for the calculation of expectation values such as $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$.

Ir chater four further applications of the numerical techniques are $\mathfrak{\varepsilon}$ iven, with some emphasis on the theoretical manipulations needed to transform the problem to an appropriate numerical form.

The problem of quasi-bound states is considered in section 4.1, with the aid of the R-method of section 2.1 .4 and of the Fade approximante of section 3.2. It is shown that for the hydrogen atom with perturbine potential $2 \lambda r+2 \lambda^{2} r^{2}$ there are boun: states even for $\lambda<0$. This problem shows thet interestine feature of a Rayleish-Echrödincer eners serics which is convercent (finite) but wion does not five the ereray correctly.

In section 4.2 it is shown hov to deal vith the $\psi(0)$ problem (i.e. the calculation of the wavefunction at $r=0$). The basic priaciple involved is that of reducing the calculation of the required quantity $\left(\psi^{\prime}(0)\right.$ in this case $)$ to the calculation of an
expectation value, and thence (by the nethods of section 2.2.5) to eicrenvalue calculations, which can be performed accurately by the method of section 2.1.4.

In the lest part of this work, the hydrocen-atom quadratic Zeeran effect is analyzed. The relevant icea is to make a suitable choice of the unperturbed Eariltorian. The $1 \mathrm{~s}, ~ 2 \mathrm{~s}, 2 \mathrm{p}, 2 \mathrm{p}_{ \pm 1}, 3 \mathrm{~d} \pm 2$ and $3{ }^{2} \pm 1$ states are studied in section 4.3.3. Some selected PASIC procrammes and their associated flow-charts are eiven in the appendices, tosether with comments on their use and on modifications which can be made in order to perform several different calculations.

CHAPTER 2

A PERTURBATION-THEOKETIC AFPROACH TO NUNERICAL INTEGFATION METHODS

2.1. Numerical Integration Kethods

2.1.1. Introduction

The numerical solution of the one-particle Schrödinger equation has attracted continuous interest over many years. The Numerov method, which is a step-by-step integration procedure, has been used and improved recently by many authors.

Our interest is to create simple numerical methods which could be used to solve the one-particle Schrödinger equation, even with a programmable calculator, avoiding the use of large matrices. Using the Fayleigh-Ritz method to solve the Schrödinger equation it is necessary to choose suitable basis functions. It is not alvays easy to find a suitable basis for a particular physical problem, and then there are also the problems of constructing and diagonalizing the Hamiltonian matrix. This makes fairly large demands on computing power and storage capacity, and so is not suitable for small machines. The direct finite-difference methods described in this work are designed so that it is possible to find information about the solutions of the differential equation for a given potential without such problems arising.

2.1.2. R-liethod

Vie choose the Schrödinger ecuation to be of the form

$$
\begin{equation*}
-\frac{1}{2} D^{2} \psi+V \psi=E \psi \tag{2.1}
\end{equation*}
$$

where V is the potential function and \bar{E} the unknown energy, which will assume some definite trial values during the course of the numerical integration procedure. We can represent the second
derivative $\left.D^{2}\right\}$ in the finite difference form $[9]$

$$
\begin{equation*}
D^{2} \psi=\frac{1}{h^{2}}[\psi(x+h)+\psi(x-h)-2 \psi(x)] \tag{2.2}
\end{equation*}
$$

yielding the result

$$
\begin{equation*}
\psi(x+h)+\psi(x-h)-2 \psi(x)=2 h^{2}(V-E) \psi(x) \tag{2.3}
\end{equation*}
$$

Since storing all the $\psi(x)$ values requires a lot of storage capacity, we want to avoid retaining the full vave function while solving the equation.

To this end we introduce the variable $R(x)$ defined as

$$
\begin{equation*}
R(x)=\frac{\psi(x+h)}{\psi(x)} \tag{2.4}
\end{equation*}
$$

That is, we have defined the new function $R(x)$ as the ratio of the wave functions at neighbouring points. In this way we can "see" the behaviour of the wave functions as x increases. Putting equation (2.4) into equation (2.3) we obtain

$$
\begin{equation*}
R(x)+\frac{1}{R(x-h)}=2\left[1+h^{2}(V-E)\right] \tag{2.5}
\end{equation*}
$$

The advantage of dealing with $R(x)$ instead of $\psi(x)$ is that initially we only need to store the value of $R(0)$, if we start at $x=0$; this value can easily be found to be $R(0)=1+h^{2}[V(0)-E]$ if we suppose that $\psi(h)=\psi(-h)$, which yields the result. $R(0)=1 / R(-h)$. This condition is valid for even parity solutions when the potential V is of even parity. We have chosen the potentials $V=x^{2}$ and x^{4} to test the efficiency of our method. The first potential can be treated exactly by analytical methods, while the second canrot. Because of the symmetry in the potential function we integrate along the positive x axis only. As noted previously, if we have $\psi(h)=\psi(-h)$ we can get an even parity solution. To get an odd parity solution, for which $\mathcal{H}(0)=0$, we start again at $x=0$ but with $R(0)=\infty$.

With these ideas in mind we can start our programme using, for example, a Casio fx-201P programmable calculator. The usual boundary conditions for a quantum-meckanical eicenvalue problem require the wave function to vanish at both ends of some range $0 \hat{\mathrm{n}} \mathrm{x}$. In this case ve start at $\mathrm{x}=0$ and recuire that $\psi(\infty)=0$. The second derivative, $D^{2} \psi$, can only be zero at che value of x, for a fixed E, if the potential is monotonic in x, as it is for our problem. This condition is valid only if the wave function is positive everywhere. As we know, from elementary quantum mechanics, a great variety of potentials have a wave function which is nodeless for the ground state. The nodes start appearing as E increases, each excited state having one more node than the one below it. Therefore if we start our programme using a trial energy E we have to observe the behaviour of the function $k(x)$. If $R(x)$ is negative at some x, that means that we have reached a node. This indicates that our trial E was too high, if we are interested in the ground state energy eigenvalue. On the other hand, if $R(x)$ passes through unity from below this occurrence shows that $\psi(x)$ is increasing with x, which suggests that E was too low. Trying various E values it is possible to "sandwich" the required E, up to as many decimal places as we went.

The stonvine condition ($\mathrm{F}<0$ or $\mathrm{F}>1$) can be written as $R(1-R)<O$, عivine only one stoppine instruction to the calculator. ts we can see from ectuation (2.5) the E value depends on h; we can also see this dependence in table 1. If we write the energy as $E(h)$, to show its h - dependence, then the eigenvalue of equation (2.1) is $E(0)$. The quantity $E(h)-E(0)$ is a function of h^{2}, as we shall discuss in more detail later.

A linear extrapolation (in h^{2}) gives the result $E=0.7071068$ for $V=x^{2}$, which fits to the analytical result $E=\frac{1}{2} \sqrt{2}$. For $V=x^{4}$ ve find $E=0.6679875$.

Table 1
Enermy Eicenvalues Using P-Yethod

$\mathrm{r}^{2} V$	x^{2}	x^{4}
0.0004	0.7070818140	0.6679494995
0.0008	0.7070567848	0.6679115115
0.0012	0.7070319225	0.6678739205

2.1.3. F-Method

As we have seen in the previous section, to get the energy value to high accuracy we need to use small h values, in which case it will be necessary to perform hundreds of step-by-step calculations. Consequently the resulting E value may be affected by rounding errors. If h is very small we know that $R(x)$ is of the order $1-h^{2} E$; this means that we can remove the integer 1 , since it is giving redundant information. In this way we can gain two or more significant figures at each step. In order to do so we define the F function as follows

$$
\begin{equation*}
R(x)=1+h^{2} F(x) \tag{2.6}
\end{equation*}
$$

Substituting this definition into equation(2.5) and using the . equality $1 /(1+x)=1-x /(1+x)$, we obtain

$$
\begin{equation*}
F(x)=\frac{F(x-h)}{1+h^{2} F(x-h)}+2(V-E) \tag{2.7}
\end{equation*}
$$

We use the same potential as the one used for the R-method to show the effect of using equation (2.6), using again a Casio fx-201P calculator. The starting value takes the form $F(0)=V(0)-E$. Because of the fact that both the equation (2.7) and our potentials depena on h^{2} we can shorten the programme by storing h^{2}
instead of h. The stopping condition is that $R(1-R)=$. $\left(h^{2} F\right)\left[1+h^{2} F(x-h)\right]$ shall be positive. Some typical results are shown in table 2.

Trble?
Eneray Eicenvalues Usine P - iethod

h^{2}	x^{2}	x^{4}
0.0004	0.7070817835	0.6679487405
0.0008	0.7070567805	0.6679112155
0.0012	0.7070317726	0.6678736915

To find the energy very accurately we fit the results in Tables 1 and 2 to the expansion $E(h)=E(0)+A h^{2}+B h$, and find the $E(0)$ value. We shall reserve this analysis until section 2.2.3., where results for several methods are grouped together and analysed. However, it is already clear from Tables 1 and 2 thet the change from the R-method to the F-method begins to affect the results at the sixth or seventh decimal place for our simple test potentials.

2.1.4. Fadial Problem

Considering equation (2.1) we assume ψ to take the form $y_{\ell} \phi(r)$ where \mathcal{Y}_{l} is a solid harmonic of degree l. Naking the substitution in (2.1), and multiplying throughout by r, leads to an equation for the function ϕ, (Killingbeck [8]):

$$
\begin{equation*}
2 r(V-E) \phi=r D^{2} \phi+(2 l+2) D \phi \tag{2.8}
\end{equation*}
$$

where D is the derivative. To make ecuation (2.8) much simpler we introduce the finite difference approximations

$$
\begin{align*}
h^{2} D^{2} \phi & \rightarrow \phi(r+h)+\phi(r-h)-2 \phi(r) \tag{2.9}\\
2 h D \phi & \rightarrow \phi(r+h)-\phi(r-h) \tag{2.10}
\end{align*}
$$

The resulting difference equation will only simulate (2.1) in the limit $h \rightarrow 0$, but it will be shown that very good results can be obtained without approaching the limit to closely.

The next step is the introduction of a ratio variable $R(r)$, defined by the equation

$$
\phi(r+h)=R(r) \phi(r)
$$

With the substitutions (2.9), (2.10) and (2.11), the differential equation (2.1) is converted to a recursive equation to calculate the values of $\mathrm{K}(\mathrm{r})$:
$R(r)[r+h(l+1)]+R(r-h)^{-1}[r-h(l+1)]=2 r\left[1+h^{2}(V-E)\right]$
This ecuation can be worked out using a programmable calculator. We can start at $r=h(l+1)$, since in this case $F(h l)$ can be assigned any finite value. If we deal with $l=0$ (s states) equation (2.12) takes the simple form

$$
\begin{equation*}
(r+h) R(r)+(r-h) R(r-h)^{-1}=2 r\left[1+h^{2}(V-E)\right] \tag{2.13}
\end{equation*}
$$

We have applied this equation to the problem of finding the energy eigenvalue for the potential $V=\lambda r-r^{-1}$ usingaCasio fx-201P programmable calculator. The starting co-ordinate is $r=h$. It is possible to change to the variable $Y=R^{-1}$, so that the stopping condition becomes simply $Y<1$. Results for this problem are shown in table 3, which refers to the lowest eigenvalue.

Table 3

Enerey Eisenvalues for $V=\lambda r-r^{-1}$ Using R-Miethod

λ	0.04	0.02	Using h
λ^{2} law			
0.01	-0.484940100	-0.485092750	$-0.485143(633)$
0.02	-0.470345403	-0.470501254	$-0.470553(205)$
0.03	-0.455988774	-0.456146081	$-0.456198(516)$
0.04	-0.441847514	-0.442007440	$-0.442060(749)$
0.05	-0.427903578	-0.428065541	$-0.428119(529)$
0.10	-0.360671692	-0.360842678	$-0.360899(673)$
0.15	-0.296751531	-0.296929501	$-0.296988(824)$

A study of the error $E(h)-E(0)$ shows that it is proportional to $h^{2} u p$ to fairly large h values. We have applied an extrapolation law which rolds in the h^{2} region:

$$
\begin{equation*}
E=\frac{1}{3}[4 E(h)-E(2 h)] \tag{2.14}
\end{equation*}
$$

The first two columns of table 3 show results for the energy eicenvalue using two different h values. From these results we can say that, although the calculator displays nine decimal figures, after using equation (2.14), we can only consider the results to be accurate up to the sixth one. Even so, we show the results up to 9 figures enclosing the last three in brackets since those figures are not reliable.

We can easily pick out an excited state by allowing an arpropriate nuruber of nodes to appear, that is, instead of stopping the calculation when $R^{-1}<1$ we allow the programme to continue until R^{-1} fulfils the stopping condition for the second or third time, cepending on the particular excited state which we are interested in. Fesults for the first excited $s=t \in$ for $V=\lambda r-r^{-1}$ are shown in table 4; this time we did the calculations using a C.B.N. Pet mini computer; we have applied again an h^{2} law.

Table 4

λh^{h}	0.1	0.05	$h^{2} l a w$
0.01	-0.0695784343	-0.0696481205	$-0.0696713(492)$
0.02	-0.0200291862	-0.0201021321	$-0.0201264(474)$
0.03	+0.0259161898	+0.0259400819	$+0.0260117(581)$

It is convenient to get an equation for the radial problem using the F-method to show the advantage of this method over the R-method. In order to do so we apply the same criterion as to

Eet equation (2.12), i.e. we put equetion (2.6) into equation (2.12) use azain the equality $1 /(1+x)=1-x /(1+x)$, and obtain

$$
\begin{align*}
& (r+h) F(r)-(r-h) F(r-h)\left[1+h^{2} F(r-h)\right]^{-1} \\
& =2 r(V-E) \tag{2.15}
\end{align*}
$$

The function $\left[1+h^{2} F(r-h)\right]^{-1}$ can be replaced by its equivalent $F(r-h)^{-1}$ which yields the equation

$$
\begin{equation*}
(r+h) F(r)+(r-h) F(r-h) R(r-h)^{-1}=2 r(V-E) \tag{2.16}
\end{equation*}
$$

We have written a programme based on this equation for the PET. It gives many advantages over the F -method. It uses three trial E values ($E, E \pm \delta E$) at the same time, evaluating the appropriate functions, $W=V-E, W+\delta E$, and $W-\delta E$, whereas in the previous programes only $\mathrm{W}=\mathrm{V}-\mathrm{E}$ for one E was used. The idea behind this theory can easily by understood by looking at the next diagram.

The $\mathrm{P}_{\mathrm{i}} \mathrm{IIC}$-programme is given in Appendix A1 with a more detailed explanation of its use.

The prosrame is written in such a way that it is possible to know whether each of the three trial E's is too high or too low, as it shows the number of nodes that each function, ψ_{1}, ψ_{2}, or ψ_{3}, has passed through. It also calculates the correspondins wave functions, using equation (2.4) as a recursive equation, starting at $\psi(h)=1$ for each of the three trial E values.

When the true $E(h)$ value falls between two of the trial E values, the programme interpolates to get a "predicted" value for E, first using ψ_{1} and ψ_{2} by means of the relation $\varepsilon_{1}=E-\delta E /(1$ $-\psi_{2}\left(\psi_{1}\right)$ to get an initial predicted E value. It then calculates $\varepsilon_{2}=E-2 \delta E /\left(1-\psi_{3} / \psi_{1}\right)$ to get a second predicted value. Finally a third interpolated \mathcal{E}_{3} value is calculated as a result of dealing with ε_{1} and ε_{2} to get a predicted $E(h)$ to a higher order of accuracy. The interpolations are designed to find that $E(h)$ value which would make ψ tend to zero at large r values.

A remarkable result was found while running the programme. As the wave functions are calculated for increasing r values, passing through several nodes, the ratios $\psi_{2} / \psi_{1}, \psi_{3} / \psi_{1}$, etc. reach constant limiting values, giving as a result a stable predicted $E(h)$ value, even though the individual functions ψ_{1}, ψ_{2} and ψ_{3} deviate markedly from zero at large r.

Table 5 shows the results of dealing with the potential $V=\lambda r-r^{-1}$; these can be compared with the results of table 3 .

Table 5

λ	0.04	0.02	h^{2} law
0.01	-0.484940031	-0.485092755	-0.485143 (663)
0.02	-0.470345488	-0.470500864	-0.470552(656)
0.03	-0.455987767	-0.456146006	-0.456199(552)
0.04	-0.441847575	-0.442007719	-0.442061 (100)
0.05	-0.427903551	-0.428065849	-0.428119(948)
0.10	-0.360671584	-0.360842928	-0.360900(043)
0.15	-0.296751664	-0.296929955	-0.296989(385)

2.2. Perturbation Theory in h^{2}

2.2.1. Introduction

Up to this point we have noted that $E(0)-E(h)$ is a function of h^{2}; we now formalize this notion by regarding h^{2} as a perturbation parameter, using some standard. results of perturbation theory to improve the accuracy of the eigenvalue computations [12]. The basic quantity which we study is the second order finite difference operator δ^{2}, with the defining equation

$$
\begin{equation*}
\delta^{2} \psi=\psi(x+h)+\psi(x-h)-2 \psi(x) \tag{2.17}
\end{equation*}
$$

In the methods of section 2.2.3. we used $h^{-2} \delta^{2}$ to replace D^{2} in the Schrödineer equation. Using a Taylor series expansion, however, it is clear that $h^{-2} \delta^{2}$ actually represents a formal series;

$$
\begin{equation*}
h^{-2} \delta^{2} \psi=D^{2} \psi+\frac{1}{12} h^{2} D^{4} \psi+\frac{1}{360} h^{4} D^{6} \psi-- \tag{2.18}
\end{equation*}
$$

\because..e can use the Schrödinger equation in the form

$$
\begin{equation*}
D^{2} \psi=2(V-E) \psi=\phi \psi \tag{2.19}
\end{equation*}
$$

to simplify equation (2.18), yielding the result

$$
\begin{equation*}
\dot{h}^{-2} \delta^{2} \psi=\phi \psi+\frac{1}{12} h^{2} D^{2}(\phi \psi)+O\left(h^{4}\right) \tag{2.20}
\end{equation*}
$$

The lumerov metrod involves replacing the second derivative $D^{2}(\phi \psi)$ by the difference operator $h^{-2} \delta^{2}(\phi \psi)$ and dropping the hicher order terms.

This yields the Numerov equation

$$
\begin{equation*}
h^{-2} \delta^{2} \psi=\phi \psi+\frac{1}{12} \delta^{2}(\phi \psi) \tag{2.21}
\end{equation*}
$$

Our (alternative) approach is to note that the term $\frac{1}{12} h^{2} D^{4} \psi$ plays the role of a perturbation term, showing that (to order h^{2}) the effect of using $h^{-2} \delta^{2}$ to replace D^{2} is equivalent to adding the perturking operator $\frac{1}{12} h^{2} D^{4}$ to the Hamiltonian operator.

2.2.2. Modified F-Method

Cur aim is to find an equivalent relation to equetion (2.16) without requiring the storage of the functions $\phi(x), \phi(x+h)$, and $\phi(x-h)$ which the Numerov metrod requires. (It also needs certain instructions to make the transfers $\phi(x+h) \rightarrow \phi(x) \rightarrow \phi(x+h)$ as one passes from one step to the next).

Using a perturbation analysis we know that the first order effect of a perturbing operator λV is to give an energy shift of the form $\lambda\langle V\rangle$ where $\langle V\rangle$ is the expectation value of the operator V with respect to the unperturbed wave function. For our particular problem we need an expression for the expectation value of the operator D^{4}, taken with respect to the ψ which oveys equation (2.19). $\hat{\text { n }}$ find

$$
\begin{align*}
\left\langle D^{4}\right\rangle & =\int \psi D^{4} \psi d x=\int\left(D^{2} \psi\right)\left(D^{2} \psi\right) d x+b . t . \\
& =\int \psi \phi^{2} \psi d x+b . t .=\left\langle\phi^{2}\right\rangle+\text { b.t. } \tag{2.22}
\end{align*}
$$

The boundary terms, b.t., which arise by integration by parts, are given by

$$
\text { b.t. } \left.=\left[\begin{array}{c}
\text { University } \tag{2.23}\\
\text { Library } \\
3 \text { H.lll }
\end{array}\right) \psi \psi \phi\right]_{A}^{B}
$$

For bound state problems, like the one we are dealing with, the boundary terms vanish, vith $A=-\infty$ and $B=\infty$, provided that the potential function V is bounded. Therefore it fcllows that the expectation value of D^{4} is equal to $\left\langle\phi^{2}\right\rangle$, where ϕ^{2} is a multiplying furction instead of a differential operetor.

If two perturbing operators give the same expectation value, then they will give the same first order perturbed energy, giving an energy difference only at the λ^{2} term. Therefore, if we replace the term $\frac{1}{12} h^{4} D^{4} \psi$ by its equivalent, i.e. $\frac{1}{12} h^{4} \phi^{2}$ in equation (2.20) we will get the value of the energy with an error proportional to the square of the perturbing parameter, i.e. h^{4}, because as we have pointed out the perturbation parameter is h^{2}. This leads to an equation for the $R-m e t h o d$ of the form

$$
\begin{equation*}
R(x)+R(x-h)^{-1}=2+h^{2}(V-E)+\frac{1}{12} h^{4}(V-E)^{2} \tag{2.24}
\end{equation*}
$$

Equation (2.24) gives an h^{4} process (for bounded potentials). The risht hand side is a function of $(V-E)$ at the single co-ordinate x, so the method is more simple than the Numerov method, which requires the retention of the ($V-E$) values at three neighbourine points.

As an example to show the advantages of this improved P-method, we deal with the potential $V=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$. Nitra [18] has used a matrix approack to solve this problem. He deals with the perturbed oscillator Schrödinger equation

$$
\begin{equation*}
-D^{2} \psi+\left[x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)\right] \psi=E \psi \tag{2.25}
\end{equation*}
$$

To solve equation (2.25) using the traditional Fayleigh-Ritz method it is necessary to choose the basis functions and then evaluate the matrix elements of the Hamiltonian. For this
particular potential there is an extra difficulty. At large g values, e.g. $g=100$, the perturbing potential is concentrated in a small bump near the origin. hs a consequence, the numerical inteeration process with yields the natrix elements becomes difficult to perform accurately, and any error at this stage necessarily affects the eigenvalues resulting from the final matrix diagonalization.

We present a better way of solving this problem using equation (2.24) (Galicia and Killingbeck [19]). Table 6 shows a comparison between Mitra's method and our direct numerical integration method; we can see that even at large galues our method still works, giving a very accurate result.

We use equation (2.24) in a similar manner to equation(2.5), with starting condition $R(0)=R(-h)^{-1}$ at $x=0$. However, the value of $R(0)$ is Eiven by

$$
2 R(0)=2+h^{2} \phi^{\prime}\left(1+\frac{1}{12} h^{2} \phi^{\prime}\right)
$$

where $\phi^{\prime}=(V-E)$, since in this case our Schrödinger equation is of the form $-D^{2} \psi+(V-E) \psi$ instead of equation (2.1). To incorporate the starting condition in the programme we can use a dividing factor $K . ~ R(0)$ is evaluated with $R(-h)^{-1}=0$ and the result is divided by K, which is initially set equal to 2. At the end of the first cycle the instruction $\mathrm{K}=1$ is used to go back to the correct equation for all later x values. The stopping condition is as for equation (2.5).

Table 6
Eigenvalues of the Three Lowest Even-Parity States

h	$\begin{aligned} & \lambda=0.1 \\ & \varepsilon=0.1 \end{aligned}$	$\begin{aligned} & 100 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$
0.05	1.043173894	0.976128000	1.000841232	1.836334485
	5.181065365	40.29305035	$5.0009280 \div 0$	5.028328447
	9.272820	87.447805	9.0009,52	C. 949162
$0.05 / 2^{1 / 4}$	1.043173987	9.976154200	1.000841333	1.836335907
	5.181095215	49.29287438	5.000927960	5.928328893
	9.272810	87.446244	9.000950	9.949162
0	1.04317408	9.976180	1.00084143	1.8363373
	5.18105506	4S.29269	5.0009278	5.9283293
	c.272818	87.4447	9.000948	9.949162
Mitra	1.04317	9.97618	1.00084	1.8364
	5.18109	49.29269	5.00093	5.928
	-	-	-	- .

Table 6 also shows results for the 2 s and 3 s excited states; they were calculated using the procedure explained in section 2.1.4.

Direct methods also permit the calculation of expsctation values such as $\left\langle x^{2}\right\rangle$, and allow us to "pick out" an excited state simply by increasine the number of nocies.

Table 7 shows results for the expectation value $\left\langle x^{2}\right\rangle$ for the Eround state. The vay in which they are calculated is as follows. We do two calculations to get two E values, using $(1+E) x^{2}$ and $(1-E) x^{2}$ instead of x^{2} in the potential function of equation (2.25). ε is a
very small number, e.g. 0.001.
The value of $\left\langle x^{2}\right\rangle$ is then given by

$$
\begin{equation*}
\left\langle x^{2}\right\rangle=\frac{1}{2 \varepsilon}\left[E_{+}-E_{-}\right] \tag{2.26}
\end{equation*}
$$

where E_{+}and E_{-}are the two enereies.

Table 7
Ground State $\left\langle x^{2}\right\rangle$ Values, $h=(0.05) /(2)^{1 / 4}$

$\lambda{ }^{E}$	0.1	100
0.1	0.48147	0.49997
100	0.05041	0.46524

In terms of first order perturbation theory, we are using the idea that the perturbations $\pm \varepsilon x^{2}$ chance the energy by an amount $\pm \varepsilon\left\langle x^{2}\right\rangle$ if \mathcal{E} is small; the use of the difference ($E_{+}-E_{-}$) removes any ε^{2} error terms. In order to get a very cood estimate of $\left\langle x^{2}\right\rangle$ it is best to use two different h values to calculate E_{+}and E_{-}, and then use an h^{2}-law to get a projective E_{+}and E_{-}value. The results shown in Table 7 were calculated using only one h value since looking at Table 6 we can see that the value of the energy is accurate up to 5 or 6 decimal places. Tinis assures an accuracy for $\left\langle\mathrm{x}^{2}\right\rangle$ up to 5 decimal places. For $\varepsilon=100$ and $\lambda=0.1$ there is an error in the value of $\left\langle\mathrm{x}^{2}\right\rangle$ because in this case the enercy eicenvalue is not very accurate at this h value. For this particular case it will be necessary to use another h value to $\varepsilon^{e t} E_{+}$and E_{-} before calculating $\left\langle x^{2}\right\rangle$.
If ve use the Schrödinger equation in the form of equation (2.1) the corresponding R-equation takes the form

$$
R(x)+R(x-h)^{-1}=2+2 h^{2}(V-E)+\frac{1}{6} h^{4}(V-E)
$$

which in terms of the function $\phi=2(V-E)$ takes the form

$$
\begin{equation*}
R(x)+R(x-h)^{-1}=2+h^{2} \phi+\frac{1}{12} h^{4} \phi^{2} \tag{2.27}
\end{equation*}
$$

i' \in have applied this equation to the potential $V=x^{2}$, using the sane computing procramme as for :itra's problem,adding a multiplyine factor of 2 for the function ϕ. Fesults are shown in table 8 using different h values in order to extrapolate. The extrapolation will be done in section 2.2.4.

Table 8

Energy Eigenvalues for $V=x^{2}$

Method	0.01	0.02	0.03
R-Method without correction	0.7071010936	0.7070819496	0.7070506032
F-Method Without correction	0.7071005320	0.7070817835	0.7070505262
R-Wethod with correction F-Method with correction	0.7071038460	0.7070942890	0.7070786658

2.2.3. Modified F-Yethod

An h^{4} process based on the F-iNethod can also be developed. The one dimensional recursive relation takes the form

$$
\begin{equation*}
F(x)=F(x-h)\left[1+h^{2} F(x-h)\right]^{-1}+2(V-E)+\frac{1}{3} h^{2}(V-E)^{2} \tag{2.28}
\end{equation*}
$$

In terms of the function ϕ it takes the form

$$
\begin{equation*}
F(x)=F(x-h)\left[1+h^{2} F(x-h)\right]^{-1}+\phi+\frac{1}{12} h^{2} \phi^{2} \tag{2.29}
\end{equation*}
$$

We have applied this equation to the potential $V=x^{2}$ to compare the results with the previous methods. The starting condition is $F(0)=\frac{1}{6} h^{2} E^{2}-E$, and the stopping one is the same as for the R-Nethod;
the results are in table δ together with those for the improved F－method．

2．2．4．$\quad \dot{r}^{2}$－Extrarolation Frocess

In order to $\xi^{e t}$ an improved value of the energy we can use an h^{2} process of extrapolation．i．e have calculated E for the potential $V=x^{2}$ using different strip widths and using our four one－dimensional numerical methods．To be able to use the same extrapolation formula for all our previous results we need first to calculate the energy using the R and $F-$ Methods of sections 2．1．2．and 2．1．3．using two more values for h ，e．E．$h=0.01$ and 0.03 ．

> The extrapolation formulae are

$$
\begin{equation*}
E=\frac{1}{3}\left[4 E_{1}-E_{2}\right] \tag{2.30}
\end{equation*}
$$

an㐅̀

$$
\begin{equation*}
E=\frac{1}{10}\left[15 E_{1}-6 E_{2}+E_{3}\right] \tag{2.31}
\end{equation*}
$$

Table 8 shows results for the eigenvalue $E(h)$ using the R and F－Methods with and without the correction term．Table 9 shows results for the extrapolated eigenvalue using equations（2．30） and（2．31）．The exact value，as we have pointed out is $E=1 / \sqrt{2} \approx 0.707105781$

Table 9
Enerey Eicenvalues Using an h^{2} - Extranolation Frocess for $V=x^{2}$

	F-Wethod without correction	F-Me thod without correction	F-Fe thod with correction	F-Method with correction
${ }^{E}(1,2)$	0.707107474	0.707106781	0.707107032	0.707106780
$E_{(1,3)}$	0.707092398	0.707092203	0.707099497	0.707106783
${ }^{E}(1,2,3)$	0.707107529	0.707106780	0.707107062	0.707106780

At this stage we are now able to say that the modified F-Method is the one which gives the very best result, as we had predicted on the basis of perturbation-theoretic reasoning.

From table 8 we can see that even without the extrapolation formula it gives a very good estimate for the energy at $h=0.01$. On the other hand even the "poor" R-Method gives a good estimate up to 6 figures using $E_{(1,2)}$.

We can use this h^{2} - extrapolation process for the potential of section 2.2.2., that is, $V=x^{2}+\lambda x^{2} /\left(1+g x^{2}\right)$ with $h=0.1$ and 0.05. Results are in table 10.

Table 10

2.2.5. Expectation Values

In section 2.2.2. we showed that expectation values can be calculated by means of (2.26). In order to get a very good value of $\left\langle z^{N}\right\rangle$ for a potential $V=X^{N}$ it is necessary to get the energy values, i.e. E E_{+}and E_{-}, up to a very high accuracy. Ye have proved, throughout the last sections, that the modified F-Method gives a very good estimate of the energy. Therefore we can rely on our previous results to obtain a good estimate of $\left\langle x^{2}\right\rangle$ for $V=x^{2}$ and $\left\langle x^{4}\right\rangle$ for $V=x^{4}$.

We have used $h=0.01$ and $h=0.02$ to calculate $E_{+}(0.01)$ and $E_{+}(0.02)$ and then we have applied an h^{2} law to get $E_{+}(1,2)$ using (2.30). The same was done for E_{-}. We have used two different values for the perturbing parameter ε (these are $\varepsilon=0.01$ and $\varepsilon=0.02$) in order to get two $\left\langle x^{2}\right\rangle$ and $\left\langle x^{4}\right\rangle$ values. We use them to get a projected value. Results for the energy and expectation values are shown in table 11 and table 12.

Table 11
Energy and Expectation Values for $V=x^{2}$

	$\varepsilon=0.01$	$\varepsilon=0.02$
E_{+}	0.71063352	0.71414284
E_{-}	0.70356236	0.70000000
$\left\langle x^{2}\right\rangle$	0.35355779	0.35357104

Table 12
Enerev and Expectation Values for $V=x^{4}$

	$\epsilon=0.01$	$\varepsilon=0.02$
z_{+}	0.67020550	0.67241014
E_{-}	0.66575218	0.66350300
$\left\langle x^{4}\right\rangle$	0.22266627	0.22267858

Therefore, using an h^{2} - law for the expectation values, we have

$$
\left\langle x^{2}\right\rangle=0.353553(37)
$$

and

$$
\left\langle x^{4}\right\rangle=0.222662(16)
$$

We note that the use of too small an ε value ((. . . $10^{-3}, 10^{-4}$) can lead to rounding errors. The use of $\varepsilon=0.01$ and 0.02 avoids the munding errors and gives results which can be reliably treated by an extrapolation process.

For example, we can see, from the results below, that although the values of \mathcal{E} are very small, i.e. 0.001 and 0.002 , after applying an h^{2} - law the results should get worse for $\left\langle x^{2}\right\rangle$ because of a loss of sjgnificant figures. Unreliablp diEits are bracketed.

	$E=0.001$	$E=0.002$	$h^{2}-l_{\text {aw }}$
$\left\langle x^{2}\right\rangle$	$0.35355(386)$	$0.35355(397)$	$0.35355(382)$
$\left\langle x^{4}\right\rangle$	$0.22266(214)$	$0.22266(203)$	$0.22266(216)$

The virial theorem for the harmonic oscillator stands that. 2 E $=(M+2)\left\langle x^{M}\right\rangle$, therefore for our particular case $\left\langle x^{2}\right\rangle=\frac{1}{2} E$ and $\left\langle x^{4}\right\rangle=\frac{1}{3} E$. We can use this result to show the accuracy of our results. First we need the value of the energy for $V=x^{4}$
for $h=0.01$ and 0.02 . These energy values can be found using the F-method, equation (2.28). We have

$$
\begin{aligned}
& E(0.01)=0.6679862592 \\
& E(0.02)=0.6679862516
\end{aligned}
$$

hence

$$
E_{(1,2)}=0.667986261
$$

Then, using $E(1,2)=0.707106781$ for $V=x^{2}$ we have

$$
\left\langle x^{2}\right\rangle=\frac{1}{2} E=0.35355339
$$

and

$$
\left\langle x^{4}\right\rangle=\frac{1}{3} E=0.22266209
$$

If we compare these results with the previous ones we can say that this nethod of calculating expectation values is much more accurate than that using a matrix approach. In general a matrix calculation will give $\left\langle x^{N}\right\rangle$ values in error by order η when the eigenvalues are in error by order η^{2}, and the results for excited states (using a given basis size) are poorer than those for the ground state. The integration me thods described in the present work do not sffer from these defects, as many trial calculations have shown. The ultimate limit appears to be set by the precision of the calculating apparatus, rather than by choice of basis functions, since basis functions are not used. Even that limit can be "postroned" by chancing from the F function to the F function, as the results of the precedine sections show.

2.2.6. Direct Integration to Get $\left\langle x^{N}\right\rangle$

Numerical integration methods to calculate $\left\langle x^{N}\right\rangle$ have been developed by Killingbeck and Galicia [25]. Using a similar approach we have improved our F-liethod to get expectation values after calculating the energy eigenvalue. The idea is simply as follows: the programme calculates the eičenfunction $\psi(x)$ as x increases, so that we can easily calculate the integrals $\int \psi x^{2} \psi d x$ and $\int \psi^{2} d x$ while the energy integration proceeds. We input the value of E that was given previously by the same programme (for that h value) and stop it when $\psi_{\text {has reached a suitably }}$ small value. This requires a little care, since at very large z the calculated $\psi_{\text {will }}$ depart from the true one, and these contaminating contributions to the integrals must be excluded. Experience shows that the estimates for $\left\langle X^{N}\right\rangle$ obtained differ from the true $\left\langle\mathrm{x}^{N}\right\rangle$ by a term of order h^{2} when h is small. Table 13 shows some results for the trial potential $V=x^{2}$.

Table 13

Expectation values for $V=X^{2}$

	$h=0.01$	$h=0.02$	$h^{2}-$ law
$\left\langle x^{2}\right\rangle$	0.35354508	0.35351999	0.35355344

CHAPTER 3

PERTURBATION FETRODS IN λ

3.1. Hypervirial Theorem
3.1.1. Introduction

It has been shown by Killinebeck [24] that hypervirial relations yield the perturbation series for the energy E and for the expectation values $\left\langle r^{N}\right\rangle$ for a hydrofen atom with perturbation λr, without the calculation of perturbed wave functions.

The classical mechanical equation of motion in terms of Poisson brackets and the corresponding Heisenberg quantum mechanical ecuation of motion provide a means for determining certain generalization of the virial theorem. The cuantum mechanical treatment provides a set of integral conditions which might be used to determine the constants in an approximate wave function, as has been shown by Hirschfelder [30].

If W is a function of the co-ordinates and momenta, then for periodic motion (bound) the time average of the Poisson bracket (H,W) is zero. The commutator expectation value $\langle[\mathrm{W}, \mathrm{H}]\rangle$ in quantum mechanics is zero for any wave function corresponding to a stationary energy state of the system. It secms reasorable that vith an appropriate selection of V there should be a dynamical relationship, in a time-average or space-average sense, which the system must obey.

Let \because be an arbitrary functicn of the ε eneralized co-ordinates and of the differential operators for their conjugate momenta. Let ψ_{m} and ψ_{n} be eigenfunctions with eigenvalues E_{m} and E_{n} respectively. Then, using the time-dependent Schrödinger equation we find

$$
\begin{array}{r}
\frac{d}{d t} \int \psi_{m}^{*} W \psi_{n} d \tau=-(i / \hbar) \int \psi_{m}^{*}[W, H] \psi_{n} d \tau \\
=(i / \hbar)\left(E_{m}-E_{n}\right) \int \psi_{m}^{*} W \psi_{n} d \tau \tag{3.1}
\end{array}
$$

if ψ_{m} and ψ_{n} are eiqenfunctions of the Hamiltonian operator H.
If the expectation value of i for a stationary energy state n is not infinite, equation (3.1) gives

$$
\begin{equation*}
O=(i / \hbar) \int \psi_{n}^{*}[w, H] \psi_{n} d \tau \tag{3.2}
\end{equation*}
$$

This is what Hirschfelder calls the hypervirial theorem [HVT], as this relation corresponds to a generalization of the usual virial theorem, which follows from the particular choice $W=\overline{\mathrm{r}} \cdot \mathrm{grad}$.

We define the operator

$$
\begin{equation*}
Q_{W}=(i / \hbar)[W, H] \tag{3.3}
\end{equation*}
$$

then equation (3.2) states that if ψ is any solution to the Schrödinger equation, the expectation value of Q is equal to zero, i.e.

$$
\begin{equation*}
\int \psi^{*} Q_{w} \psi d \tau=0 \tag{3.4}
\end{equation*}
$$

The Hellmann-Feynman theorem, (HFT) states that if $H=H(\lambda)$, where λ is a parameter, then

$$
\begin{equation*}
\frac{\partial E_{n}}{\partial \lambda}=\langle\partial H / \partial \lambda\rangle_{n} \tag{3.5}
\end{equation*}
$$

We have already used this result to calculate expectation values in section 2.2.2.

As an application of the HVT and the HFT we treat the case of the potential $V=\lambda r-r^{-1}$. The Eamiltonian is taken to be

$$
\begin{equation*}
H=-\frac{1}{2} D^{2}-r^{-1} D+V(r) \tag{3.6}
\end{equation*}
$$

where D is the operation of differentiation.
Choosing the function $W=r^{N} D$, and using the basic relations for commutators

$$
\begin{align*}
& {[D, H]=D V+r^{-2} D} \tag{3.7}\\
& {\left[r^{N}, H\right]=\frac{1}{2} N(N+1) r^{N-2}+N r^{N-1} D} \tag{3.8}
\end{align*}
$$

and the Jacobi identity $[A B, C]=A[B, C]+[A, C] B$, we arrive at the result

$$
\begin{align*}
2 N E\left\langle r^{N-1}\right\rangle & =2 N\left\langle r^{N-1} V\right\rangle+\left\langle r^{N}(D V)\right\rangle \\
& -\frac{1}{4} N(N-1)(N-2)\left\langle r^{N-3}\right\rangle \tag{3.9}
\end{align*}
$$

Here we have used the diagonal hypervirial requirement that $\left\langle\left[r^{N} D, H\right]\right\rangle$ shall vanish for the eigenstates of equation (3.6). To make (3.6) and (3.9) refer to the radial eigenvalue problem for states of angular momentum l, we simply add the term $\frac{1}{2} \ell(l+1) r^{-2}$ into the potential $V(r)$.

The last term on the right of (3.0) simplifies a little if we use $W=r^{N+1} D$ instead of $r^{N} D$ in the hypervirial derivation, or simply set $N \rightarrow N+1$ in (3.9). We obtain the equation

$$
\begin{align*}
(2 N+2) E\left\langle r^{N}\right\rangle & =(2 N+3) \lambda\left\langle r^{N+1}\right\rangle-(2 N+1)\left\langle r^{N-1}\right\rangle \\
& -\frac{1}{4} N\left(N^{2}-1\right)\left\langle r^{N-2}\right\rangle \tag{3.10}
\end{align*}
$$

if we take the case $V=-r^{-1}+\lambda$.
In order to use this recursive relation ve need a relationship between the energy \equiv an? tie exiciontion values $\langle r\rangle$ and $\left\langle r^{-1}\right\rangle\langle r\rangle$ is given by $\partial E / \partial \lambda$, according to the Eellmann-Feynmann theorem. Setting $\mathbb{N}=0$ in (3.10) yields the traditional virial theorem, $2 \Xi=3 \lambda\langle r\rangle-\left\langle r^{-1}\right\rangle$, so that $\left\langle r^{-1}\right\rangle$ can be calculated from E and $\langle r\rangle$. Postulating a power series for the energy, then, we can express
the series for $\langle r\rangle$ and $\left\langle r^{-1}\right\rangle$ in terms of the enerEy coefficients, as follows,

$$
\begin{align*}
& E=\sum E_{n} \lambda^{n} \quad n=0,1,2, \cdots \tag{3.11a}\\
& \langle r\rangle=\sum(n+1) E_{n+1} \lambda^{n}=\partial E / \partial \lambda \tag{3.11b}\\
& \left\langle r^{-1}\right\rangle=\sum(3 n-2) E_{n} \lambda^{n}=3 \lambda\langle r\rangle-2 E \tag{3.11c}
\end{align*}
$$

We also express other $\left\langle r^{N}\right\rangle$ values as power series,

$$
\begin{equation*}
\left\langle r^{N}\right\rangle=X_{N, 0}+X_{N, 1} \lambda+X_{N, 2} \lambda^{2}+\cdots+X_{N, N} \lambda^{N} \tag{3.11d}
\end{equation*}
$$

The idea in mind is to get as many E_{n} values as possible and also to obtain the numerical values of the $X_{N, M}$. As we can see, the $X_{N, O}$'s do not depend on the perturbing term, so they can be calculated independently of λ. For the 1 s state we can establish that $X_{N+1,0}=\frac{1}{2}(N+3) X_{N, 0}$ holds, by using the explicit unperturbed function, but this procedure is cumbersome. In a subsequent section we will give a general equation which uses only the quantity E_{0} to हet the energy coefficients for excited states as well as for the ground state.

In order to describe the rest of the claculation we use the label $\{N, N\}$ for the equation arising by taking the λ^{M} terms in (3.10) for some N.

We have found out that to get G of the E-coefficients we need 6 of the $X_{N, 4},(C-1)$ of the $X_{N, 2},:-2$ of the $X_{N, 3}$, etc., and, 1 coefficient of the form $X_{N, Q-1}$ -

Another important feature is that to get the value of the $X_{N_{1} j}$ for some j we only need to know the set $X_{N, i}$ where $i<j$; this makes the calculation even easier. Killingbeck [24] has calculated up to E_{5} by hand and Austin $[2 B]$ calculated many $E_{\text {w }}$ using a computer.
:"e have developed a programme for the C.B.N. Fet miniconputer which calculates the perturbation series up to high order, for any state and for a perturbing potential λr^{P}, where F is any positive intecer.

The procrame enables us to eet the series for other expectation values. In particular the series for $\langle r\rangle,\left\langle r^{2}\right\rangle$ and the higher $\left\langle r^{N}\right\rangle$ can be calculated up to high order also.

Since we have the obvious requirement $\left\langle r^{0}\right\rangle=\langle 1\rangle=1$, it follows that we require all the $Z_{0, M}$ with $M \neq 0$ to be equal to zero, with $X_{0,0}=1$. The values of E_{0} and $X_{0,0}$ must be given initially to start off the calculation for s states. For states with $l>0$ the value of $X_{-1,0}$ is also required, but it follows from the virial relation $\left\langle r^{-1}\right\rangle=-2 E_{0}$ for the unperturbed hydrogen atom problem. The details of the required initial input data will be discussed further in section 3.1.5.

3.1.2. Hyper Frogramme

As we pointed out previously it is possible to devise a general programme which calculates all the coefficients $X_{N, M}$ and the series for the energy up to high order, requiring only the input of the unperturbed energy E_{0} and the angular momentum ℓ.

The general equation for the coefficients $X_{N, O}$ takes the following form (with starting value $X_{0,0}=1$),

$$
\begin{equation*}
(2 N+2) E_{0} X_{N, 0}=-(2 N+1) X_{N-1,0}-\frac{1}{4} N\left(N^{2}-1\right) X_{N-2,0} \tag{3.12}
\end{equation*}
$$

If the perturbing potential is λr^{p} (instead of λr) we obtain the following generalization of (3.10)
$(2 N+2) E_{0}\left\langle r^{N}\right\rangle=(2 N+2+P) \lambda\left\langle r^{N+P}\right\rangle-(2 N+1)\left\langle r^{N-1}\right\rangle$

$$
-\frac{1}{4} N\left(N^{2}-1\right)\left\langle r^{N-2}\right\rangle-(2 N+2) E^{\prime}\left\langle r^{N}\right\rangle
$$

where $E^{\prime}=\sum E_{j} \lambda^{j}(j>0)$
As the value of P increases, the size of the coefficients $X_{N, M}$ increases considerably, which yielas two difficulties. When the numbers concerned are large, loss of sienificant figures occurs when the comnuter performs a long sequence of operations on the numbers. The rinicomputer cannot calculate the $X_{N, M}$ beyond the point at which they reach its overflow level $\left(\sim 10^{38}\right)$. If $n(P)$ is the number of terms in the energy series obtainable for the 1 s state with perturbation $\lambda \mathrm{r}^{\boldsymbol{P}}$, we find (for the C.B.M. Pet), $n(1)=26, n(4)=8$, and $n(8)=3$.

Table 14 shows the energy coefficients for $V=\lambda r-r^{p}$ for $F=1,2,3,4$ for the $1 s$ state. We can see from these results that u_{F} to \bar{E}_{10} and for $P=1$ and 2 the results are very accurate and reliable, whereas for $P \geq 3$ the size of the energy coefficients increases rapidly.

Table 14

1s State Energy Perturbation Coefficients

En	1	2	3	4
E_{0}	-0.5	-0.5	-0.5	-0.5
E_{1}	1.5	3	7.5	22.5
E_{2}	-1.5	-32.25	$-66 E .4375$	-17355.0375
E_{8}	6.75	1362.75	264894.141	78606633.5
E_{4}	$-49.6 E 75$	-103280.8593	-231369814	$-1.06540776 E+12$
E_{5}	480.375	11477957.9	$3.6606458 E+11$	$3.4377598 E+16$
E_{6}	-5583	$-1.71918761 \mathrm{E}+09$	$-9.54820392 E+14$	$-2.29200098 E+21$

$\overline{E n}$	1	2	3	4
E_{7}	74557.3359	$3.31953619 \mathrm{E}+11$	$3.854406365+18$	$2.84124228 \mathrm{E}+26$
Σ_{8}	-1114319.34	-8.0350229E+13	$-2.29091021 \mathrm{E}+22$	$-6.03880379 \mathrm{E}+31$
E_{q}	18329171.5	$2.388909282+16$	$1.923985293+26$	-
Ξ_{10}	-328051598	$-8.5807 \varepsilon 26 E+18$	$-2.206442825+30$	-

To calculate the coefficients for the expectation values, for the potential $V=\lambda r-r^{-1}$, without using eigenfunctions we use equations (3.11b) and (3.11d).

The Hellmann-Feynman theorem provides an equation for $\left\langle r^{2}\right\rangle$ for the potential $V=\lambda_{r}^{2}-r^{-1}$, which has the form

$$
\left\langle r^{2}\right\rangle=\sum(n+1) E_{n+1} \lambda^{n}
$$

or in general, for $V=\lambda r^{P}-r^{-1}$ it yields the result

$$
\begin{equation*}
\left\langle r^{p}\right\rangle=\sum(n+1) E_{n+1} \lambda^{n} \tag{3.14}
\end{equation*}
$$

We show results for $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for $P=1,2$ for the 1 s state. Although the programe can be used for different values of P and for other s states we do not give the details here because the results are not very accurate, since the size of the coefficients increases even more rapidly for these excited states. Results are shown in tables 15 and 16 respectively.

Table 15

1s State Expectation Value Coefficients, $P=1$

	$\langle r\rangle$	$\left\langle r^{2}\right\rangle$
C_{0}	1.5	3
C_{1}	-3	-13.5
C_{2}	20.25	115.5

	$\langle r\rangle$	$\left\langle r^{2}\right\rangle$
C_{3}	-198.75	-1299.375
C_{4}	2401.875	17325
C_{5}	-33498	-261571.078
C_{6}	521901.351	4363821.61
C_{7}	-8914554.72	-79268073.3
C_{8}	164962543.5	$1.55269662 \mathrm{E}+09$
C_{9}	-3280515880	$-3.25761178 \mathrm{E}+10$
C_{6}	$6.970375 \mathrm{E}+10$	$7.28399280 \mathrm{E}+11$

Table 16
1s State Expectation Value Coefficients, $P=2$

	$\langle r\rangle$	$\left\langle r^{2}\right\rangle$
C_{0}	1.5	3
C_{1}	-13.5	-64.5
C_{2}	677.25	4088.25
C_{3}	-59110.312	-413123.43
C_{4}	7309433.67	57389789.5
C_{5}	$-1.18599208 E+09$	$-1.03151257 E+10$
C_{6}	$2.43142777 E+11$	$2.32367533 E+12$
C_{7}	$-6.15703651 E+13$	$-6.42801832 E+14$
C_{8}	$1.89459177 \mathrm{E}+16$	$2.15001835 \mathrm{E}+17$.
C_{9}	$-6.98901374 \mathrm{E}+18$	$-8.5807826 \mathrm{E}+19$
C_{10}	$3.053694285+21$	$4.03801504 \mathrm{E}+22$

At first sight equation (3.13) might look rather difficult to solve, since we are replacing the energy and the expectation values by their corresponding series. When we first started looking at this way of calculating the energy coefficients we
used a programmable pocket calculator [24]. Using the label $\{N, M\}$ we used the equations $\{2, N\}(M \leq 4),\{3, M\}(N \leq 3),\{4,1\}$, $\{4,2\}$ ard $\{5,1\}$ to calculate the energy series to fifth order. We did not follov any special order to solve (3.13). In a second atter.pt to calculate two more energy coefficients we discovered that the coefficients $X_{N, M}$ can easily be calculated, as follows. We first calculate as many $X_{N_{1} 0}$ coefficients as we want, as they do not depend on anything but E_{0}. To get the energy to Q th order (for perturbation $\lambda_{r}{ }^{P}$) it suffices to calculate $P Q$ of the $X_{N, 0}$ coefficents. With these known coefficients we can now calculate the $X_{N, 1}$ coefficients, that is, the coefficients for the energy and expectation value series at first order in λ. Although we can obtain $P Q$ of these coefficients, we have found out that, to find the rest of the coefficients, we only require $P G-P$ of these $X_{N, 1}$ coefficients. Then we calculate the $X_{N_{1} 2}$ requiring $P_{G}-2 P$ coefficients, and so on, until we finally calculate only one of the form $X_{N, Q-1}$. Therefore, what is relevant in solving this set of recursive equations is the fact that we do not need the coefficients of higher order in λ to calculate the lower ones. And finally, to calculate E_{j}, for a given value of j, we only need the value of $X_{p, j-1}$. The PASIC programe and flow-chart are given in Appendix $A 2$.

3.1.3. Hypervirial Results for Excited states

We heve already mentioned that the programe is written in such a way that only the value of E_{0} needs to be stored to start off the programme. In this way we can obtain the energy coefficients for any s state. For other excited states, such as 2p, 3p, 3d,, an extra line must be added in order to include
the depenoence on the angular momentum; this will be discussed in a subsequent section. For the 2 s state $E_{0}=-0.125$ and for tree 3 s state $E_{0}=-1 / 18$; giving these values, one at a time, we obtain the energy coefficients which are mesented in table 17 and 18 , for $P=1,2$. As we can see from the results of tables (14-18) the energy ana expectation values series are all alternating: this typical property of the series provides a clue to check whether the proframme is working properly or not.

Table 17
2s and 3 s States Enerey Perturbation Coefficients, $P=1$

	2 s	3 s
E_{0}	-0.125	-0.05555
E_{1}	6	13.5
E_{2}	-66	-688.500001
E_{3}	3312	152543.251
E_{4}	-271680	-54048288.2
E_{5}	28848384	$2.45922332 \mathrm{E}+10$

Table 18
$2 s$ and 3 States Enerey Perturbation Coefficients, $P=2$

	2ε	$3 s$
E_{0}	-0.125	-0.05555
E_{1}	42	207
E_{2}	-14784	-670497.753
E_{3}	19923456	$7.73691005 \mathrm{E}+09$
E_{4}	$-4.53150566 \mathrm{E}+10$	$-1.45951474 \mathrm{E}+14$
E_{5}	$1.41421867 \mathrm{E}+14$	$3.65612987 \mathrm{E}+18$

3.1.4. Tharnonium Pue Fotentials

The problem of finding the energy eigenvalue for the charmonium system, in other terms, the bound quark-antiguark pair has attracted attention over the past years. Killingbeck [10] has dealt with this problem for the potential $V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}$ Fe has found out that the energy series for the ground state is finite and acrees with the exact eigenvalue for $\lambda>0$. The series takes the form $E=E_{0}+E_{1} \lambda=-\frac{1}{2}+3 \lambda$. He has proved that the next two energy coefficients E_{2} and E_{3} are equal to zero, by explicitly calculating the first order perturbed wave function.

If we set $\mathrm{W}=\mathrm{f}(\mathrm{r}) \mathrm{D}$ in the hypervirial argument of section 3.1.1, and study a Hamiltonian with kinetic energy operator $T=-\alpha D^{2}$, then the following more general version of the hypervirial theorem is obtained,

$$
\begin{equation*}
2\left\langle f^{\prime} T\right\rangle=\left\langle f V^{\prime}\right\rangle-\frac{1}{2} \alpha\left\langle f^{\prime \prime \prime}\right\rangle \tag{3.15}
\end{equation*}
$$

With $\alpha=\frac{1}{2}$, we obtain, using $V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}$,

$$
\begin{aligned}
& 2\left\langle f^{\prime}\left(E+r^{-1}-2 \lambda r-2 \lambda^{2} r^{2}\right)\right\rangle=\left\langle f\left(r^{-2}+2 \lambda r+4 \lambda^{2} r\right)\right\rangle \\
& -\frac{1}{4}\left\langle f^{\prime \prime \prime}\right\rangle
\end{aligned}
$$

Choosing the function f of the form $f=r^{N+1}$, we obtain the recursive relation

$$
\begin{align*}
& (2 N+2) E\left\langle r^{N}\right\rangle+(2 N+1)\left\langle r^{N-1}\right\rangle+\frac{1}{4} N\left(N^{2}-1\right)\left\langle r^{N-2}\right\rangle \\
& =(4 N+6) \lambda\left\langle r^{N+1}\right\rangle+(4 N+8) \lambda^{2}\left\langle r^{N+2}\right\rangle \tag{3.16}
\end{align*}
$$

We have developed a procramme to solve (3.16) to get energy coefficients, using the C.B.M. minicomputer. By means of this programme it is possible to check that the energy coefficients E_{n} are all equal to zero, for $2 \leq n \leq 8$. We have calculated the coefficient $X_{1,8}$ of the $\langle r\rangle$ series at 8 th order in λ and $X_{2,7}$,
which is the coefficient of $\left\langle r^{2}\right\rangle$ series at 7 th order in λ, by hand because they are the coefficients needed to calculate E_{q}. We found an error in the 9 th significant figure for $X_{1,8}$ as given by the minicomputer. Using the "nev" value for $X 1,8$ we found that $\mathrm{E}_{\mathbf{q}}=0$. The reason is that when tie FET starts witinf the numbers in exponential form there is a loss of accuracy in the oth figure, that is, roundiñ errors affect the accuracy of the calculations. After this discovery we decided to run the programme in a big computer using Fortran. This time we found that indeed E_{q}, and also E_{10}, are equal to zero. Finally we ran the programme using Fortran double precision to avoid rounding errors. The results show that $u p$ to E_{16} all the energy coefficients, except E_{0} and E_{1}, are equal to zero.

We can infer that the rest of the coefficients are all equal to zero, having as a result a finite series for the energy. The programe, either in Basic or Fortran, is written so as to enable us to obtain the energy coefficients for excited states also. The EASIC programme is given in Appendix A3.

Since the programme is written in such a way as to allow us to get the energy coefficients for any state, we have used it to obtain the energy series for the $2 s$ state; the results are shown in table 19.

Table 10
2s Stete Enerev Perturbation Coefficients for $v=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}$

$$
\begin{array}{ll}
E_{0}=-0.125 & E_{4}=-2972160 \\
E_{1}=12 & E_{5}=600099840 \\
E_{2}=-180 & \\
E_{3}=18720 &
\end{array}
$$

3.1.5. Hirh Crjer Excited States

In section 3.1.3. it was rentioned that it is possible to include the dependence on the ancular momentum l in equation (3.13) or (3.16) for the calculation of the energy coefficients. The extra tern to put on the r.h.s. of ecuation (3.13) or (3.16) is $N \ell(l+1)\left\langle r^{N-2}\right\rangle$, so that the total term involvine $\left\langle r^{N-2}\right\rangle$ becomes $\frac{1}{4} N\left[\left(N^{2}-1\right)+\angle \ell(l+1)\right]\left\langle r^{N-2}\right\rangle$. If $\left.l\right\rangle 0$ this term is not zero at $N=1$. Thus, for the calculation of the energy coefficients for an excited state with $\ell \neq 0$ it is required to knov: the coefficients for the $\left\langle r^{-1}\right\rangle$ series at first order in λ, in order to start off the recursive calculation.

We need the value of $X_{-1,0}$ and $X_{-1,1}$. For the potential $-1 / r+2 \lambda r+2 \lambda^{2} r^{2}$, we can use the hypervirial theorem to show that $X_{-1,0}=-2 E_{0}$ and $X_{-1,1}=E_{1}=2 X_{1,0}$. Adding these values to the Hyper-Programme we find the energy series for the $2 p$ state for the charmonium type potential; the coefficients are shown in table 20.

Table 20
2p State Energy Perturbation Coefficients for $V=1 / r+2 \lambda r+2 \lambda^{2} r^{2}$

$$
\begin{aligned}
& E_{c}=-0.125 \\
& E_{1}=10 \\
& E_{2}=-139.5 \\
& E_{3}=16480 \\
& E_{4}=-2700439 \\
& E_{5}=553828556
\end{aligned}
$$

3.1.6. Expectation Values for $V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}$

By means of equation (3.16) we can get all the coefficients $X_{N, M}$ for the 1 s state. We put them into equation (3.11d) to
obtain, without eigenfunctions, the series for $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ These coefficients are shown in table 21. The Rayleigh-Schrödinger series for $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ obey the following relationship based on the Fellmann-Feynman theorem

$$
\begin{equation*}
\frac{d E}{d \lambda}=2\langle r\rangle_{\lambda}+4 \lambda\left\langle r^{2}\right\rangle_{\lambda}=3 \tag{3.17}
\end{equation*}
$$

For $\lambda>0, d E / d \lambda=3$. This result has been checked by Killingbeck [10].

We have also checked relation (3.17) for $\lambda=0.1$ and $\lambda<0$. For λ negative the result is not exactly 3 but very close to it. We have used the partial sums to show that the value lies in the neighbourhood of 3. For $\lambda<0$ the energy $:(\lambda)$ contains a component which is not given by the Rayleigh-Schröcincer series, as has been shown by Killingbeck [10]. The problem of a potential with $\lambda<O$ will be discussed in more detail in the next chapter.

Table 21
1 s State Expectation Value Coefficients for $V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}$

	$\langle r\rangle$	$\left\langle r^{2}\right\rangle$
C_{0}	1.5	3
C_{1}	-6	-27
C_{2}	54	333
C_{3}	-666	-4977
C_{4}	9954	85563
C_{5}	-171126	-1645947
C_{6}	3291894	34845093
C_{7}	-69690186	-802990017
C_{8}	$1.60598004 \mathrm{E}+09$	$1.09875992 \mathrm{E}+10$
C_{9}	$-3.99751984 \mathrm{E}+10$	$-5.34279859 E+11$
C_{10}	$1.068559972 \mathrm{E}+12$	$1.52663509 E+13$

Within the theory of Fade' aproximante it is known that the $[\mathrm{N}, \mathrm{N}]$ Padé approximant to a power series, (particul三rly if that series is a member of the class of Stieltjes series), converces fairly quickly as N increases. Having this in mind it is then possible to use the Padé approximants to get a good estimate of the energy eicenvalue or any of the expectation values. The use of Pade approximants in perturbation theory is ofter numerical; it is often the case that a formal proof that Pade approximants should work for a perturbation series lags behind the empirical demonstration that they do work.

3.2. Fadé Approximants

3.2.1. Introduction

The fadé apyroximants are a particular tive of rational fraction approximation to the value of a function, (Baker [22]). Definition 3.1. - Let the $[L, \because]$ Pade' approximant to the series $A(x)$ be denoted by

$$
\begin{equation*}
[L, M]=P_{L}(x) / Q_{M}(x) \tag{3.18}
\end{equation*}
$$

where $P_{L}(x)$ is a polynomial of degree at most L and \hat{a}_{M} a polynomial of degree at most K . Ve recuire that the formal power series for P / Q agrees with the $A(x)$ series up to the (Iri:)th power.

The following theorem is due to Frobenius, G., and Fadé, H.:
Theorem 3.1. - (Theorem of Cnioueness). The [I,M] Fadé
approximant to any formal power series $A(x)$, when it exists,
is unique. (For the proof see ref. [22] page 8).
This theorem holds whether the definins ecuations are nonsingular or not. If they are nonsingular, then they can be solved directly to yielà

where we define $a_{n} \equiv 0$ if $n\left\langle 0 ; q_{j} \equiv 0\right.$ if $\left.j\right) \mathbb{K}$; and, if the lower index on a sum exceeds the upper, the sum is replaced by zero.

Using the coefficients given in table 14 for the energy series for the potentials $V=\lambda r-r^{-1}$ and $\lambda r^{2}-r^{-1}$, we have applied the determinant (3.19) for certain values of λ to get the fade arroximents to these series. Killingbeck [24] gives some results for the potential $V=\lambda r-r^{-1}$ for $\lambda=0.05,0.10$, and 0.15. He shows that the $[L+1, L]$ approximants converge from above to the correct eigenvalue (as found by the method of section 2.1 .2), while the $[L, I]$ approximants converge from below.

This way of calculating the Padé approximants to a series is quite cumbersome since the determinantsin(3.19) become bigger and bigger as the number of coefficients increases.

Since we are interested in the numerical value of the Fade approximants, rather than in the appearance of the polynomials, we shift to another way of calculating them.
3.2.2. 首ynn's Aleorithm

Wynn [23] has desiened an algorithm to evaluate Padé approximants without the use of bie determinants. The idea is based on the relation

$$
S_{n-1}^{i+2}=S_{n}^{i}+\left(S_{n}^{i+1}-S_{n-1}^{i+1}\right)^{-1} \quad \begin{array}{ll}
n=1,2,3, \ldots \tag{3.20}\\
& i=0,1,2, \ldots
\end{array}
$$

where S_{l}^{m} is the l element of column m in an " S array". We start by considering all S_{n}^{0} equal to zero and setting the S_{n}^{1} equal to the partial sums of the series (for a given λ). Using relation (3.20) recurrently we form successive columns of the S array, and the S_{l}^{m}, with m even, are exactly the $[I, M]$ Fadé approximants to the series (for our chosen λ value).

Be have written a programme based on hynn's algoritnm for the C.B.A. .inicorputer which evaluates Fadé approximants to the perturbation series, for the potential $V=\lambda r^{p}-r^{-1}$, for some λ value. It is given in Appendix A4. The basic point about the programe is that it directly produces the numerical value of the approximants for a given λ without explicitly constructing the approximants as rational fractions at an intermediate stage.

3.2.3. Anplications of i.ynn's Alforithm to Perturbation Series

We have applied Hynn's algorithm to tre perturbation energy series for the potential $V=\lambda r^{P}-r^{-1}$ with $P=1,2$. Fesults are shown in table 22 for the $1 s$ and $2 s$ states for selected values of λ. Although tie Fadé approximants method increases the range of λ over which the series can zive a good estimate of the energy, in practice there will still be an upper limit to the λ value for Winch even the Fadé approximents can Eive reliable results. The results inzicate that the exact energy lies between $[L+1, L]$ and
$[L, L]$; the accurate energy was found using the F-method of section 2.1.3. Killingbeck and Galicia [25] have applied Wynn's algorithm to these series; whose results are those of table 22 in connection with the $\psi(0)$ problem (section 4.2).

Table 22

Padé Approximents for $V=\lambda r^{p}-r^{-1}$

P	State	λ	$[5,4]$	$[5,5]$	Exact
1	1 s	0.10	-0.360899563	-0.360900277	$-0.3609000(43)$
1	2 s	0.01	-0.069671275	-0.069671614	$-0.0696715(21)$
2	1 s	0.01	-0.472392041	-0.472393160	$-0.4723927(36)$
2	2 s	0.0003	-0.113392947	-0.113393085	$-0.1133930(38)$

Another application of kynn's algorithm is the calculation of expectation values, such as $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$, using perturbation series. \because.e have considerea the potential $V=\lambda r-r^{-1}$ at a given λ value.
a) By means of liynn's algorithm it is possible to get a value for $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ starting from the perturbation series for them. For $\lambda=0.05$ the results are as follows:

b) Using the hypervirial relation

$$
\begin{equation*}
5 \lambda\left\langle r^{2}\right\rangle=3+4 E\langle r\rangle \tag{3.21}
\end{equation*}
$$

we can either calculate the value of $\langle r\rangle$ or $\left\langle r^{2}\right\rangle$ by obtaining E and $\left\langle r^{2}\right\rangle$ or $\langle r\rangle$, respectively,

from Fadé approximants for their series.

For $\lambda=0.05$ we ottain:

$$
\begin{aligned}
& \langle r\rangle=1.38480040 \\
& \left\langle r^{2}\right\rangle=2.51422865
\end{aligned}
$$

From these results we can check once more that the exact
value lies between $[L+1, L]$ and $[L, L]$ Fadé approximants.
hynn's algorithm has also been used to get Fadé approximants to the energy series for the charmonium type potential for the 2 s state. Results are as follows, for $\lambda=0.001$:

$$
\begin{aligned}
& {[2,2]=-0.113163838} \\
& {[2,1]=-0.113163044}
\end{aligned}
$$

where we have used the energy coefficients given in table 19.

FURTEE APFLICATICQS CF THE JUGEICAL TECH:ICUES

4.1. Cuasi-Bound States
4.1.1. R-: ethod for $\lambda<0$

In section 2.1.4. we applied the F-Method for a hydrogenlike potential, $\lambda r-r^{-1}$. In this section we present an approach to solve the Schrödinger equation vith a perturbing operator which is unbounded from below.

Killingbeck [27] has looked at the problem of calculatinc the quasi-bound-state energy values for a perturbed oscillator and a perturbed hydrofen atom. We use a different criterion to find the energy "eigenvalues" from the one used in previous sections. For a given $\lambda<0$ and a value of the strip width h, we use our F-Method starting at $\psi(h)=1$. The initial trial E is obtained using Padé approximants, e.g. the $[5,5]$ gives a good estimate for different regative values of λ. The f-Nethod prosrame is modified so that it prints out the r values at which the wavefunction has a node. For example, if $\psi(r)$ is positive and $\psi(r+h)$ is negative, then the programme prints out the quantity $h R(r)[R(r)-1]^{-1}+r$. This is the interpolated estimate of the r value at which the wavefunction has a node. As E varies, the quantity $|\partial r / \partial E| f o r$ - a given node will show a sharp maximum.

The most accurate energy value will be considered to be the one that lies between the maximum and minimum on the graph of $r(E)$ acainst E. (Specimen graphs are shown here).

$$
\begin{aligned}
& \lambda=-0.04 \\
& h=0.04
\end{aligned}
$$

It is easy to see from the eraphs that as λ gets more negative it renders it more difficult to decide which value of E is the most accurate. Using an $h^{2}-1 a w$ it is possible to get a good extrapolated result for the E value which corresponds to the limit of zero h. Some typical energy values are presented in table 23 tocether with the projected energy.

Table 23
Enersy Values for $V=\lambda r-r^{-1}, \lambda<0$ (First node)

E(h)	-0.01	-0.02	-0.03	-0.04	-0.05
$E(0.02)$	-0.5151085	-0.5306155	-0.5465445	-0.5630205	-0.5802005
$E(0.04)$	-0.5149615	-0.5304725	-0.5464055	-0.5628875	-0.5801105
E	-0.515157	-0.5306632	-0.546590	-0.56300	-0.580230

We must bear in mind that this value for the energy is taken at the first node. We can see from the results of Table 24 that this value varies as we pass from node to node. Killingbeck $[31]$ calculates the energy for a potertial $V=7.5 r^{2} e^{r}$ by a numerical integration procedure similar to the one described here and shows that the energy value, although changing slightly from node to node, stabilizes at hicher node numbers.

We apply the method to the present problem for $\lambda=-0.02$ and -0.04 . The results are crouped together in tables (24-27)

Table 24
$E(E)$ Values for Selected Nodes, $\lambda=-0.02, \mathrm{~h}=0.04$

Eneryode	1	2	3	9
-0.530470	10.36	31.48	36.68	57.20
-0.530471	10.68	31.48	36.68	57.20
-0.530472	11.20	31.48	36.68	57.20
-0.530473	31.48	36.68	40.96	59.9
-0.530474	31.48	36.68	40.96	59.9

Table 25
$P(E)$ Values for Selected Jodes, $\lambda=-0.02, h=0.02$

Ener.odes	1	2	3	9
-0.530614	10.64	31.48	36.70	57.20
-0.530615	11.18	31.48	36.70	57.20
-0.530616	31.48	36.70	40.96	59.94
-0.530617	31.48	36.70	40.96	59.94

Table 26
$K(E)$ Values for Selected Nodes, $\lambda=-0.04, h=0.04$

Mrodes	1	2	3	9
-0.562887	14.64	19.80	23.52	39.28
-0.562888	14.88	19.92	23.64	39.36
-0.562889	15.08	20.08	23.76	39.44
-0.562890	15.28	20.20	23.88	39.48
-0.562891	15.48	20.32	23.96	39.56

Table 27

$R(E)$ Values for Selected Nodes, $\lambda=-0.04, h=0.02$

Eneredes	1	2	3	9
-0.563019	14.14	19.50	23.30	39.14
-0.563020	14.36	19.62	23.40	39.20
-0.563021	14.60	19.76	23.52	39.28
-0.563022	14.82	19.90	23.62	39.34
-0.563023	15.04	20.04	23.74	39.42

Looking at the increments in the node position in tables (24-27), while varying the energy values, we can see that for $\lambda=-0.02$ the lareest increment appears at the same energy value for different nodes, that is for $h=0.04$ the value of E is -0.5304725, and for $h=0.02$ the value of E is -0.5306155 , as in table 23. However for $\lambda=-0.04$ the predicted E value changes from one node to another. From the results of table 26 we have for the first node $E=-0.5628875$; for $n=2, E=-0.5628885$; for $\mathrm{n}=3, \mathrm{E}=-0.5628895$. The predicted E value stabilizes at -0.5628品 to six places of decimals for the lisher nodes. From the results of table 27 we have for the first node $E=-0.5630205$, for the second $E=-0.5630215$, and then it stabilizes at $E=-0.563021$, also to six decimal places, for the higher nodes as before. Therefore a projected E value can be calculated using an h^{2}-law yielding the result $\bar{E}=-0.563065$. This has changed slightly from the corresponding E value in table 23 , which refers to the first node.

The resonance energies found from the preceaing calculation are not the energies of true bound states, since there are none for $\lambda<0$.

Within the context of operator theory a bound state function ψ obeys the eigenvalue equation $H \mathcal{H}=\mathrm{F}$. Another way to describe this is to say that the resolvent operator $R(E)=(H-E)^{-1}$ becomes an unbounded operator in Hilbert space if E is equal to an eigenvalue. This second way of describing things is unwieldy for bound state problems, but it is appropriate for our $\lambda<0$ case, since there will still be complex E values for which $R(E)$ is unbounded. In other words, the spectrum of H (as defined by von Neumann) is the set of E values for which $R(E)$ is unbounded, and the spectrum can contain more than just the usual eigenvalues corresponding to bound states. What the preceding calculation cives (Yillingbeck [27]) is the real part of the complex E value at which $R(E)$ has a singularity. It is in principle possible to estimate the imaginary part of E by manipulations based on the results of this kind of calculation (Xillingbeck[31]). but we do not pursue this point further in the present work.

Zany authors present different ways of solving the problem of quasi-bound states. There are various unbounded perturbing operators wilich, when added to the Hamiltonian; destroy in principle the bound states of the system (just as $-\lambda r$ dœs for our problem). Eazi and Taylor [26] use the stabilization method to calculate resonance energies. (They also describe how the imaginary part of the complex pole position can be estimated). For a given potential $V(x)$, they compute the matrix of the exact Eamiltonian $H(x)$ in a finite basis set corsisting of the first N functions of the form $\psi_{n}(x)=\left(2^{n} n!\pi^{1 / 2}\right)^{-1 / 2} H_{n}(x) \exp \left(-\frac{1}{2} x^{2}\right)$, $\mathrm{n}=0,1, \ldots$ For a given N , they obtain the matrix elements of the Hamiltonian as follows: $E_{n_{m}}^{N}=\left\langle\psi_{n}(x), H(x) \psi_{m}(x)\right\rangle$, with
$\delta_{n m}=\left\langle\psi_{n}(x), \psi_{m}(x)\right\rangle, n, m=1, \ldots$, . They use fifty functions anc diagonalize the matrix H^{N} to yield a set of N eigenenergies θ_{i}^{N} and the correspondi ng eigenfunctions $\Phi_{i}^{N}(x)$ given by $\theta_{i}^{N} \delta_{i j}=$ $\left\langle\Phi_{i}^{N}(x), H(x) \Phi_{j}^{N}(x)\right\rangle$. These eigenfunctions are linear combinations of the first $:$ functions $\psi_{n}(x)$ given above, i.e., $\Phi_{i}^{N}(x)=\sum_{n=1}^{N} C_{i n}$. $\psi_{n}(x)$, for each i; they are also square integrable, like the basis functions, and can be normalized such that $\delta_{i j}=\left\langle\Phi_{i}^{N}(x)\right.$, $\left.\Phi_{j}^{N}(x)\right\rangle$.

They repeat this procedure for increasing values of N, observing the behaviour of θ_{i}^{N} and $\Phi_{i}^{N}(x)$ as a function of li. For a Hamiltonian containing a potential with a barrier, like the one they deal with, certain of the eigenenergies change very little compared to other eigenvalues as ly chences over a relatively large range, that is, they stabilize, and this "stable" enerey is very close to the exact resonance energy E_{r}. This fact suggests that the "stable" eigenenergy and the correspording eigenfunction are associated in some way with the resonant energy.

Our approach is much better than the matrix one because it avoids explicit construction and diagonalization of matrices of large dimension.

We should mention that, even for the true bound state problem, the Hazi and Taylor (op.cit.) approach may give problems. For example, Detwiler and Klunder [32] have discussed "supersingular perturbations" (such as $\lambda x^{-4}, \lambda|x|^{-3}$) for which any attempt to set up the Hamiltonian matrix in a basis of unperturbed states fails, since all the matrix elements are infinite ! Nevertheless, well defined perturbed eigenvalues can be found. Detwiler and Klauder (op.cit.) get the eicenvalues by a modification of a method due to Milne, but a preliminary calculation using
the F method of section 2.1.4., while internally self-consistent, does not quite agree with their results. We suspect that there is an error either in their algebraic theory or in the operation of their programme.

4.1.2. Fadé Approximants for $\lambda<0$

Usiñ "ynn's alغorithm for the potentials $V=\lambda r-r^{-1}$ and $\lambda_{r^{2}-r^{-1}}$ for $\lambda<0$ we have checked that the Padé approximants to the energy converge numerically to the quasi-bound energy. That this should happen theoretically was established by Graffi $[33]$. Results for the potential $V=\lambda r-r^{-1}$ are shown in table 28. We can see that as the value of λ becomes more negative the Padé approximants to the energy become less accurate, although the exact value still lies between the $[L+1, L]$ and $[L, L]$ Fadé approximants. Table 29 contains results for $V=\lambda r^{2}-r^{-1}$; even in this case the Fadé approximants apparently converge to a definite value. We have used only eight energy coefficients for the potential $V=\lambda r^{2}-r^{-1}$ since the presence

Table 28
Padé Approximants for $V=\lambda r-r^{-1}$, for $\lambda<0$

λ	-0.01	-0.02	-0.03	-0.04	-0.05
$[5,5]$	-0.51515729	-0.53066398	-0.54659147	-0.56309361	-0.58024036
$[5,4]$	-0.51515730	-0.53066398	-0.54659144	-0.56307433	-0.57991074

Table 29

PadéApproximants for $V=\lambda r^{2}-r^{-1}$ for $\lambda<0$

λ	-0.001	-0.002	-0.003	-0.004	-0.005
$[4,4]$	-0.50303373	-0.50614213	-0.50930827	-0.51264553	-0.51612015
$[4,3]$	-0.50303373	-0.50614211	-0.50934220	-0.51247232	-0.51603676

of the higher ones spoils the results, that is, the $[5,5]$ Padé approximant is less accurate than the $[4,4]$; this is due to the large size of the high order coefficients, which causes numerical errors which outweigh the theoretical gain of knowing more terms in the series.

Vynn's algorithm can also be used to get Fadé approximants to $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for the Charmonium type potential of section 3.1.4. for λ neqative. The results show that also for this problex the exact value can be found between $[I+1, I]$ and $[I, L]$ Fadé approximants. The results are presented in table 30.

Table 30

Fadé Anproximants to $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for $\lambda<0$

$$
V=-1 / r+2 \lambda r+2 \lambda^{2} r^{2}
$$

4.1.3. Pound States for $\lambda<0$

We have shown in the last section that when an unbounded negative potential is added to the Hamiltonian the bound
states are all destroyed in rinciple. In this section we consiàer the case of the potential $V=-r^{-4}+2 \lambda r+2 \lambda^{2} r^{2}$ for $\lambda<0$. Be apply the R-Method to this potential and find that the bound states still exist for λ negative because the potential goes to $+\infty$ in all directions, whereas for a problem such as those of the last section the potential eoes to $-\infty$, (Killincebeck $[10]$).

We use several extrapolation formulae, of increasing accuracy, to find a projected energy value. The formulae are as follows:

$$
\begin{align*}
E_{(1,2)} & =\frac{1}{3}\left[4 E_{1}-E_{2}\right] \tag{2.30}\\
E_{(1,2,4)} & =\frac{1}{45}\left[64 E_{1}-20 E_{2}+E_{4}\right] \tag{2.31}\\
E_{(1,2,3)} & =\frac{1}{10}\left[15 E_{1}-6 E_{2}+E_{3}\right] \tag{4.1}\\
E_{(1,2,3,4)} & =\frac{1}{35}\left[56 E_{1}-28 E_{2}+8 E_{3}+E_{4}\right] \tag{4.2}
\end{align*}
$$

Where E_{k} is the enerey value obtained usine kh as the strip width. Fecults are fiven in table 31, including those for one positive value to show the advantage of using these new formulae to obtain a rrojected energy value. The quantity $-\frac{1}{2}+3 \lambda$ is also shown in the table. Be use the following h values: $h_{1}=0.05, h_{2}=0.10$, $h_{3}=0.15$, and $h_{4}=0.20$.

Table 31
Projected Enerey Values for $V=-r^{-1}+2 \lambda r+2 \lambda^{2} r^{2}$

	-0.025	-0.050	-0.100	0.100
$E_{(1,2)}$	$-0.574092(146)$	$-0.649105(272)$	$-0.765825(303)$	$-0.199998(969)$
$E_{(1,2,4)}$	$-0.574099(720)$	$-0.649106(925)$	$-0.765826(819)$	$-0.109999(904)$
$E_{(1,2,3)}$	$-0.574909(736)$	$-0.649106(951)$	$-0.755826(837)$	$-0.199999(909)$
$E_{(1,2,3,4)}$	$-0.574909(756)$	$-0.649106(985)$	$-0.765826(861)$	$-0.199999(914)$
$3 \lambda-\frac{1}{2}$	-0.575000	-0.649110	-0.755230	-0.200000

In section 3.1 .4 , we have shown that the energy series for this kind of potential, when λ is positive, is finite. That is, the enery deviation $E(\lambda)+\frac{1}{2}-3 \lambda$ is zero because the eigenfunction $\phi=\exp \left[-\left(r+\lambda r^{2}\right)\right]$ which is a solution of the equation $H \phi=E \phi$ is normalizable. For $\lambda<0$ this is not so, and $-\frac{1}{2}+3 \lambda$ is only an upper bound, as shown below, where we use the data from Table 31.

λ	$\Xi+\frac{1}{2}-3 \lambda$
-0.025	0.000000
-0.050	0.000897
-0.100	0.034173
+0.100	0.000000

4.2. Calculation of $\psi^{2}(0)$ for the Charmonium Problem

In secticn 2.2.5. it was mentioned that, while performing a matrix calculation to get the value of $\left\langle x^{N}\right\rangle$, an error of order η^{2} appears in the results if the eigenvalues are in error to order η. The integration methods considered in the present work do not have this weak point (Killingbeck and Galicia [25]). In some branches of traditional theory es. the theory of hyperfine interaction (Young and Uhlenbeck [35]) and the theory of excitons (Cabib, et.al.[36]), it is necessary to know the value of the scuare of the wavefunction at the orizin. If one attempts to calculate the value of this local quantity by means of a matrix-variational method which optimizes the energy then a poor value of the local quantity will be obtained. Such a quantity is also required in recent non-relativistic models of the charmonium system, (which was mentioned previously in section 3.1.4.), when estimating the various decay rates of the system
(Kaushal and Euller-Kirsten [37]).
Eichten et.al. [38] and İCCarter [39] have considered
the Schrodinger equation in the form

$$
\begin{equation*}
-\alpha \nabla^{2} \psi-\frac{\beta}{r} \psi+\mu r^{P} \psi=E \psi \tag{4.3}
\end{equation*}
$$

to solve the charmonium problem (with $P \geqslant 1$). The r^{P} term represents a confining potential which prevents direct break up of the system, while the $\boldsymbol{\beta}$ coefficient gives the size of the "gluon" force. β is usually taken to be small; the coefficient α is inversely proportional to the quark mass (since the kinetic energy operator is conventionally written as $-\hbar^{2} / 2 \mathrm{~m} \nabla^{2}$).

To convert equation (4.3) into a one-parameter perturbed hydrogen atom equation it is necessary to introduce the change $\vec{r} \rightarrow k \vec{r}$ of length scale. By doing so we find the scaling relationship which indicates how the eigenvalues depend on the parameters α, β and μ :

$$
\begin{equation*}
k^{2} E(\alpha, \beta, \mu)=E\left(\frac{1}{2}, 1, \lambda\right) \tag{4.4}
\end{equation*}
$$

where $k=\left(2 \alpha \beta^{-1}\right)$ and $\lambda=\mu k^{p+2}$. Writing the radial factor in Win the form $r^{-1} R$, equation (4.3) takes the form

$$
\begin{equation*}
-\frac{1}{2} D^{2} R+V R=E R \tag{4.5}
\end{equation*}
$$

with

$$
V=-r^{-1}+\lambda r^{p}+\frac{1}{2} \frac{l(l+1)}{r^{2}}
$$

and the normalization condition

$$
\int_{0}^{\infty} R^{2} d r=1
$$

The s states are the ones of interest in connection with the $\mathcal{W}(0)$ problem; for them the term involving the angular. momentum l does not appear. Since we have

$$
D R=D(r \psi)=r D \psi+\psi
$$

with the requirement $\Omega(0)=0$, then it follows that the wavefunction at the origin $\psi(0)$ will be given by the slope $D K(0)$ at the origin.
rausal et.al. (op.cit.) present a way of calculating $\mathcal{Y}(0)$. Trey state that $\psi(0)$ can only be found if the wavefunction is explicitly normalized. They use W.F.B. approximations to calculate the value of ψ at various points in space. Wevertheless, their value for $\psi(0)$ appears to be of low accuracy.

Ve decided to approach this problem by a numerical treatment involving expectation values and avoiding the use of wavefunctions. Nultiplyiñ equation (4.5) by a function $F(r)$ and integrating between C and ∞, we obtain the result

$$
\begin{equation*}
\int_{0}^{\infty}\left[D^{2} F+2 F(E-V)\right] R d r=F(0) D R(0) \tag{4.6}
\end{equation*}
$$

if $D(F F)=0$ at ∞ and $E D F=0$ at 0 .
For the special case $F=1$ equation (4.6) is converted into an equation equivalent to that of Trivedi $[40]$. He surgests that if an anoroximate normalized K is used in the integral, and if E is replaced by the variational energy associated with R, then a reasonable estimate of $D R(0)$ for the exact eigenfunction can be obtained. For example, considering the groundstate of the hydrogen atom and using as a trial function an optimized Gaussian type function in (4.6) we find $\operatorname{DR}(0)=1.796$, as opposed to the exact value 2 and the poor value 0.980 obtained
by simply substituting $r=0$ in the approximate function. If the exact R is used in equation (4.6) the same $\operatorname{DR}(0)$ should result for different choices of F, provided that $F(0)$ is nonzero. he do not discuss in detail Trivedi's work because we want to approach the problem using expectation values. In order to do so we simply multiply equation (4.5) by $D R$ and integrate between 0 and ∞. Integration by parts on the r.h.s. leads to the result

$$
\begin{equation*}
2 \int_{0}^{\infty} R^{2}(D V) d r=[D R(0)]^{2} \tag{4.7}
\end{equation*}
$$

This relation involves the expectation value of DV. Therefore using (4.7) it is possible to reduce the $\psi(0)$ problem to the problem of finding an expectation value. Fromen [41] uses equation (4.7) and estimates the value of $\langle(D V)\rangle$ by means of a \because. F.B. approach. Since we are now familiar with the calculation of expectation values involving energies from the theory of section 2.2.5., we can reduce the problem of finding $\psi(0)$ to the $\langle(D V)\rangle$ problem, and then reduce the expectation value problem to a set of eigenvalue problems which can be solved using a numerical integration method.

For the particular case of the unperturbed hydrogen atom, with potential function $V=-r^{-1}$ for states, we heve $\langle(D V)\rangle=$ $\left\langle r^{-2}\right\rangle=2 n^{-3}$, where n is the principal quantum number of the state concerned. The energy eicenvalue E is $\frac{1}{2} n^{-2}$, so that it yields the relation

$$
\begin{equation*}
\psi^{2}(0)=2\langle(D V)\rangle=4 \frac{d E}{d n} \tag{4.8}
\end{equation*}
$$

This relation is called the Fermi-Segré formula (Froman and Froman [42]) and can be used also for the case of a perturbed Coulomb potential. This relation is relevant to us because it
relates $\psi^{2}(0)$ to entities arising from ener£y calculations. Eowever, it has two drawbacks; it involves the estimation of the derivative of a (hypothetical) smooth function $E(n)$, whereas the actual eigenvalues form a discrete sequence; and, further, it is not exact if the perturbation is strong. These two causes of uncertainty render equation (4.8) unsuitable for accurate work in theoretical calculations, although it allows rough estimates of $\psi^{2}(0)$ to be obtained from empirically selected energies.

In section 2.2.5. we explained how to calculate expectation values using energies; equation (2.26) can be slightly modified to take the form

$$
\begin{equation*}
\left\langle r^{N}\right\rangle=\operatorname{Lt}_{\varepsilon \rightarrow 0} \frac{E\left(H+\varepsilon r^{N}\right)-E\left(H-\varepsilon r^{N}\right)}{2 \varepsilon} \tag{4.9}
\end{equation*}
$$

Frovided that the eigenvalues for the perturbed Hariltonians $H \pm \varepsilon r^{N}$ can be evaluated accurately, equation (4.9) will allow us to estimate $\left\langle r^{N}\right\rangle$. We have tested this approach for different potentials in previous sections and it gives good results. The eigenvalue calculation can easily be performed by using the previously tested F-method of section 2.1.4. Starting from equation (2.12) we can obtain an equation for the F-method in the case where the stetes of engular momentum ℓ are required, $[r+h(l+1)] F(r)+[r-h(l+1)] F(r-h)\left[1+h^{2} F(r-h)\right]^{-1}=2 r(V-E)$
The terms on the left take care of l completely, i.e. no centrifugal term needs to be included in the potential V. This feature is particularly useful for the $\psi^{2}(0)$ calculations, since for the charmonium problem we have

$$
\begin{equation*}
\varepsilon(D V)=\varepsilon\left(r^{-2}+\lambda \mathrm{Pr}^{P-1}\right) \tag{4.11}
\end{equation*}
$$

The derivative of the Coulomb potential (DV) resembles a centrifugal term for which $\varepsilon=\frac{1}{2} \ell(\ell+1)$, so that $\ell \rightarrow 2 \varepsilon$ as $\varepsilon \rightarrow 0 . T 0$ find $\langle(D V)\rangle$ usiñ equation (4.9), for an state, we use a "pseudo-aneular momentum" $l=2 \varepsilon$. This takes care of the r^{-2} term in (4.11). The second term in (4.11) can be added explicitly to V, or else we can use an "advanced potential" term, so that the potential becomes

$$
\begin{equation*}
v=-r^{-1}+\lambda(r+\varepsilon)^{p} \tag{4.12}
\end{equation*}
$$

By using the pseudo-angular momentum and the advanced potential artifices to ether, it is possible to perform the calculations rather simply on a computer, since the programme can be written to make the adjustnents automatically when \mathcal{E} is given as part of the input data. Usinc two values $\pm \varepsilon$ we can estimate $\langle(D V)\rangle$ by means of equation (4.9).

The E value obtained using (4.10) is not the required Schrödinger equation eigenvalue, since it is arrived at by using a difference equation involving a finite strip width. h. In section 2.2.4. it is explained how to get a projected energy value with the use of different values of h. We use the extrapolation formula (4.2) of the last section with $h=0.025$.

Further, to make sure that $\langle(D V)\rangle$ has been determined accurately, we perform the calculation twice, once for $\pm \varepsilon$ and once for $\pm 2 \varepsilon$, and then perform an ε^{2} type extrapolation to arrive at a good estimate of the limiting value which is formally specified in equation (4.9).

Equation (4.9) can be used also for excited states since the energy value can be found as explained in section 2.1.4. Thue $\psi^{2}(0)$ for excited states can be found, and Table 32 shows
some results for excited states.
Considering a potential of the form $V=\lambda_{r}{ }^{P}$ in (4.3), we are taking the "zero gluon" limit in the charmonium problem; this will make the results more likely to be useful, since it is usual in charmonium models to take the "gluon" coefficient to be small. Vith this restriction we can do the calculations for $\lambda=1$ and obtain results for any other λ by scaling. By calculatine $\left\langle r^{p-1}\right\rangle$ we can find $\psi^{2}(0)$ from (4.7); the $\left\langle r^{-1}\right\rangle$ value provides a reans of estimating the first order effect of introducing a weak gluon term.

The virial theorer relates the values of E and $\left\langle r^{N}\right\rangle$ in the form $E=\frac{1}{2}(P+2)\left\langle r^{p}\right\rangle$, so that the $\left\langle r^{p}\right\rangle$ found from this relation can be checked against the $\left\langle r^{p}\right\rangle$ found by a direct numerical calculstion using the energy differencing approach based on eruation (4.9).

We can also apply the ideas given in this section to the charmonium type potential of section 3.1.4, i.e., $V=r^{-1}+2 \lambda r+2 \lambda^{2} r^{2}$. This particular potential provides a clear-cut test case, since the exact ground state eigenfunction is known to be $\operatorname{rexp}\left[-\left(r+\lambda r^{2}\right)\right]$. This means that $\left\langle r^{N}\right\rangle$ values which are of very hich accuracy (i.e. virtually exact) can be computed by simple numerical integration using the known exact wavefunction.

Table 32 gives the results for the lowest three s states for the potential $V=r^{P}$ for $P=1,2$, and 3. We used $H=0.025$ for the calculation of the energies and $\varepsilon=0.02$ and 0.04 for the calculation of $\left\langle r^{N}\right\rangle$ values. The results for $\psi^{2}(0)$ can be obtained from the results for $\left\langle r^{p}\right\rangle$ values using equation (4.7). Table 33 Eives the results for the potential $V=-r^{-1}+2 r+2 r^{2}$. For the calculation of $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ we used $\varepsilon=0.002$ and 0.004 ,
and for the calculation of $\langle 2(D V)\rangle$ we used $\varepsilon=0.04$ and $C .0 \varepsilon$. We also include results using the integration procedure explained in section 2.2.6. It is clear that this latter procedure, while satisfactory for finding $\left\langle r^{N}\right\rangle$ for $\left.\mathbb{N}\right\rangle$, is not as good as the ε method for finding $\left\langle r^{N}\right\rangle$ with $\mathbb{N}<0$.

Table 32
Fesults for the lowest Three s States for $V=r$

$\mathrm{M}=1$	1 s	2s	3 s
E	1.85575709	3.24460763	5.38561378
$\langle r\rangle$	1.237171	2.163072	3.591076
$\left\langle r^{2}\right\rangle$	1.836712	5.614655	15.4749¢
$\left\langle r^{-1}\right\rangle$	1.051866	0.733486	0.512970
$\mathrm{F}=2$			
E	2.12132034	4.94974747	7.77817459
$\langle r\rangle$	0.948850	1.423275	1.779094
$\left\langle r^{2}\right\rangle$	1.050660	2.474874	3.889087
$\left\langle r^{-1}\right\rangle$	1.341877	1.118230	0.995225
$x=3$			
E	2.27652238	6.28222760	10.7997582
$\langle\mathrm{r}\rangle$	0.642919	1.143043	1.363334
$\left\langle r^{2}\right\rangle$	0.827677	1.617848	2.322209
$\left\langle r^{-1}\right\rangle$	1.491243	1.392730	1.309490

Table 33

Results for $V=-r^{-1}+2 r+2 r^{2}$					
Fethod	E	$\langle r\rangle$	$\left\langle r^{2}\right\rangle$	$\langle 2(D V)\rangle$	
Exact	$5 / 2$	0.60586289	0.44706856	25.693806	
Integration	2.5exact to 8 places	0.605867	0.447072	24.96017	
E-Nethod					

4.3. Quadratic Zeeman Effect

4.3.1. The E(s) Problem

The problem of the quadratic Zeeman effect for the hydrogen atom has relevance for astrophysics and also for the theory of simple excitons in solid state physics. Killingbeck [29] treats the problem by several techniques. In this section we present a perturbation approach which involves a numerical solution of the radial Schrödinger equation based on the s part of the potential.

Cabib et.al. (op.cit.) use a method involving fairly large matrices and numerical integration of the Schrödinger differential equation; their results for the ground state are very accurate.

We study the case of the hydrogen atom situated in a uniform magnetic field. The \mathbf{Z} axis of a Cartesian system of axes is chosen to be along the direction of the field, with the nucleus at the origin. The magnetic quantum number of the energy eicenfunctions will be well defined because of the rotational symmetry about the z axis; it will not change in the presence of the macnetic field. Trie Haniltonian contains a linear and a çuadratic tern in the macnetic field strencth.

Since the 1 s ground state of the hydrocen atom has $m=0$, then for such a state the linear term vanishes, Eiving a Hamiltonian of the form

$$
\begin{equation*}
H=-\frac{1}{2} \nabla^{2}-r^{-1}+\frac{1}{8} \gamma^{2}\left(x^{2}+y^{2}\right) \tag{4.13}
\end{equation*}
$$

We use atomic units, in which the ground state has energy $-\frac{1}{2}$. The quantity γ^{2} is equal to $\left(e^{2} B^{2} / \mu c^{2}\right)$ in S.I. units; B represents the magnetic field strength and e and μ the electronic charge and mass respectively. The numerical scale is such that a value of $\gamma=1$ in (4.13) corresponds to a magnetic field strength of $2.35 \times 10^{9} \mathrm{G}$.

The perturbing potential due to the magnetic field is a sum of two tensor operators, of rank 0 and 2, which we refer to as the s and d parts of the perturbation. The Hamiltonian can be written as follows, to show this decomposition of the perturbation,

$$
\begin{equation*}
H=-\frac{1}{2} \nabla^{2}-r^{-1}+\frac{1}{8} r^{2}\left[\frac{2}{3} r^{2}-\frac{1}{3}\left(3 z^{2}-r^{2}\right)\right] \tag{4.14}
\end{equation*}
$$

where the s part is given by $\frac{1}{12} \gamma^{2} r^{2}$ and the d part by $-\frac{1}{24} \gamma^{2}\left(3 z^{2}-r^{2}\right)$.
It has been shown by various authors that for $\gamma \leqslant 5$ the main problem in a matrix approach is to get the basis states to represent correctly the $\ell=0$ component of the perturbed is wavefunction. The main idea to solve the present problem is to consider only the s part of the potential and to drop the corresponding d part. By doing so we are obtaining an eigenvalue which we denote by the symbol $E(s)$; this is the energy due to only the s part of the potential; it is not the full perturbed energy E of the system. However, $E(s)$ gives a very good upper bound to E . This arises because the \dot{a} part in the perturbing
term gives no first order enerey shift when it is added to the Hamiltonian; it has zero expectation value for any s type function. To obtain the full perturbed energy E it will then te necessary to include the second order energy shift which. is produced by adding the d part of the potential function to the Hamiltonian. By calculating $E(s)$ very accurately we are essentially partitioning the Hamiltonian so that the s terms are treated exactly, with only the d term of the potential : remaining to be treated as a perturbation. This potential problem can be treated using the F-method of section 2.1.4...

Finding $E(s)$ by a matrix approach would involve using a complete s-state basis, with discrete and continuum basis functions (when described in terms of the unperturbed hydroEenic eigenfunctions). A comparison of our $E(s)$ with the $E(s)$ estimate from a matrix calculation will thus provide a egood calibratory test for the adequacy of the metrix basis functions; indeed, there has been some dispute in the literature about how (and whether) it is possible to allow... for continuum-type basis states in a matrix approach. The a numerical integration approach avoids such problems by being:.... implicitly equivalent to a "complete set" calculation without :...kine eny explicit mention of basis states.

4.3.2. Inclusion of the $l=2$ term

As we pointed out in the previous section, the addition of the d potential term to the Hamiltonian does not alter the erercy eicenvalue in first order. It does not chance any Exrectation value of the type $\langle f(r)\rangle$ in first order, because the first-order function ψ_{1} is of d type, and the matrix
elements of $\langle f| i(r i|d\rangle$ tyre are equal to zero by the usual angular momentum selection rules.

The first-order function ψ_{1} can be calculated explicitly When the α part of the potential $\left(3 Z^{2}-r^{2}\right)$ acts on an unperturbed hydrocenic is orbital $\phi_{0} ; \psi_{1}$ is found to be a function of type $a(b+r)\left(3 Z^{2}-r^{2}\right) \phi_{0}$. Therefore we use this form for our trial ψ_{1}, with ϕ_{0} being the s eigenfunction associated with $E(s)$, and with a and b variable. Fe use this trial ψ_{1} in the Eylleraas functional, winch gives a lower bound on the modulus of the second-order energy (Killingbeck [29]). Writing the potential as $V=\frac{1}{24} \gamma^{2}\left(3 z^{2}-r^{2}\right)$ thais functional takes the followins form

$$
\begin{equation*}
F(\psi)=2\left\langle\phi_{0}\right| V|\psi\rangle+\langle\psi|\left(H_{0}-E_{0}\right)|\psi\rangle \tag{4.15}
\end{equation*}
$$

In order to convert all the terms in (4.15) into expectation values for the s function, we need a very simple but powerful identity. Consider the Hamiltonian $-\frac{1}{2} \nabla^{2}+U(r)$ for any local radial potential $U(r)$. If ϕ is any s-type eigenfunction with energy E, and Y_{ℓ} is a solid harmonic of decree ℓ, we can proceed in a manner similar to that used to derive hypervirial relations in section 3.1. and obtain the result
$\langle\phi| r^{P} y_{l}\left[H, r^{N} y_{l}\right]|\phi\rangle=\langle\phi| r^{P+N-2} y_{l}^{2}|\phi\rangle\left[\frac{1}{2} \ell(P+N+2 l+1)\right]$ (2.10)

The inequality $\left.\left|E_{2}\right|\right\rangle F(\psi)$ becomes
$\left.\left|E_{2}\right|\right\rangle \frac{8}{5}\left\langle b r^{4}+r^{5}\right\rangle^{2}\left\langle 10 b^{2} r^{2}+24 b r^{3}+15 r^{4}\right\rangle^{-1}\left(\frac{1}{24} \gamma^{2}\right)^{2}$
A closure approximation also fives us the simple upper bound

$$
\left|E_{2}\right|\left\langle\frac{4}{5}\left\langle r^{4}\right\rangle(E(2)-E(0))^{-1}\left(\frac{1}{24} \gamma^{2}\right)^{2}\right.
$$

$E(2)$, the enery of the lowest d state in the radial problem, is obtained just as easily as $E(0)$ (i.e. $E(s)$) by the F method of section 2.1.4. The upper bound is equal to -0.497527 and the lower bound equals -0.497528 .

The main feature of the preceding calculation is the followine: although! the Hylleraas principle involves ϕ_{0}, the use of the identity (4.16) allows us to express the required quantities in terms of expectation values $\left\langle r^{N}\right\rangle$ take n with respect to \oint_{0}. As pointed out previously, such expectation values can be calculated by using eic̃envalue differencing methoas and hypervirial relations, even though the explicit ϕ_{0} is not extracted during the eigenvalue calculations. Thus the whole of the proceding theory has been translated into a formalism which requires only the calculation which can be done accurately by various techniques (in particular, by the R and F methods discussed in this thesis).

4.3.3. Excite State Calculations

At first sight it seems that the p and d states should be considered as excited states, since the energy associated with them is hicher than the energy for the 1 s state, which is the ground state. However, if we take into consideration the macnetic quantum number m and the parity for these states, we can see that some of them can be considered as ground states, since they will have the lowest energy of their symmetry type. $\because \in$ can examine the following table, which shows the hydrogenic states and their cuantum numbers.

State	m	Parity
$1 s_{0}$	0	+1
$2 s_{0}$	0	+1
$2 p_{0}$	0	-1
$2 p_{-1}$	-1	-1
$2 p_{+1}$	+1	-1
$3 d_{-2}$	-2	+1
$3 d_{-1}$	-1	+1
$3 d_{\bullet}$	0	+1
$3 d_{+1}$	+1	+1
$3 d_{+2}$	+2	+1

The quantum numbers given remain unchanged when the magnetic field is turned on, and from the table we can see that all of the states, rith the exception of the $2 s_{0}$ state and the $3 \mathrm{~d}_{0}$, can be considered as ground states since they all have different quantum numbers. Even so, as ve will show below, the energy corresponding to the $2 s_{\text {o }}$ excited state can be. calculated using the same ideas as for the ground states. The main idea for calculating the energy in first order is to treat the potential for each particular state in such a manner that when adding the residual part of the potential no change will appear in the energy eigenvalue to first order. For the 1 s state the residual part of the potential is of pure $\ell=2$ type, as discussed in section 4.3.1., but we shall see that for p and d states the appropriate residual potential is rot of definite ℓ type.

The Hariltonianifor the different states is as follows, with $H_{0}=-\frac{1}{2} \nabla^{2}-r^{-1}$

$$
\begin{align*}
& \text { 1S0, } H=H_{0}+\frac{1}{12} \gamma^{2} r^{2}-\frac{1}{24} \gamma^{2}\left(3 z^{2}-r^{2}\right) \tag{4.19}\\
& 2 p_{0}, H=H_{0}+\frac{1}{20} \gamma^{2} r^{2}-\frac{1}{24} \gamma^{2}\left(3 z^{2}-\frac{9}{5} r^{2}\right) \tag{4:20}\\
& 2 P_{-1}, H=H_{0}+\frac{1}{10} \gamma^{2} r^{2}+\frac{1}{2} \gamma m-\frac{1}{24} \gamma^{2}\left(3 z^{2}-\frac{3}{5} r^{2}\right) \tag{4.21}\\
& 3 d_{-1}, H=H_{0}+\frac{1}{14} \gamma^{2} r^{2}+\frac{1}{2} \gamma m-\frac{1}{24} \gamma^{2}\left(3 z^{2}-\frac{9}{7} r^{2}\right) \tag{4.22}\\
& 3 d_{-2}, H=H_{0}+\frac{3}{28} \gamma^{2} r^{2}+\frac{1}{2} \gamma m-\frac{1}{24} \gamma^{2}\left(3 z^{2}-\frac{3}{7} r^{2}\right) \tag{4.23}
\end{align*}
$$

The last term in equations (4.19-4.23) represents the residual poteritial. Treating the potentials in this way we can be sure that when adding thel residual part of the potential to the Familtonian there vill not be a chance in the energy eigenvalue in first order. For example, the residual operator $\left(3 z^{2}-\frac{9}{5} r^{2}\right)$ has zero expectation value for any state of p_{0} type, as can be verified by explicit calculation. The $2 p_{0}$ energy for the Hamiltonian $H_{0}+\frac{1}{20} \gamma_{r}^{2}{ }^{2}$ can be found by the $F-$ method (section 2.1.4.).

The energy eigenvalue associated with the $2 p_{+1}$ state can easily be calculated from the results for the $2 p_{-1}$ state. The term $\frac{1}{2} \gamma \mathrm{~m}$ gives the linear Zeeman term in equations (4.21-4.23); for the $2 p_{-1}$ state we have $m=-1$ and for the $2 p_{+1}$ state wé have $r=1$; therefore they differ in energy by an amount γ, which means that to get the energy eicenvalue for the $2 p_{+1}$ state it vill only be necessary to add this amount to the resultins enerey for the $2 p_{-1}$ state. In a similar vay we can calculate. the energy eigenvalue for the $3 \dot{d}_{+1}$ state and for the $3 d_{+2}$ state, vith the difference that the $3 d_{+2}$ and $Z_{\mathbf{Z}}{ }_{\mathbf{2}}$ states differ in
energy by an arount 2γ.
The $2 s_{0}$ state can be treated by means of equation 4.19 and the ideas about excited states of section 2.1.4. This is so because the contribution of E_{2} to the exact energy is small for this state, since the 3d state, which is the one which couples with the 2s state, is far above the $2 s$ state. We can understand this idea by looking at the energy level diagram;

Therefore, for the 2s state we can get a good estimate by calculating the energy up to first order, whereas for the $3 s$ state the influence of the 3 d state is much stronger, and presumably gives a value for E_{2} which is larger than the E_{2} for the 1 s and 2 s states.

The energy eigenvalue results for the ground states and for 2 s are given in table 34. They were obtained using the F-method (for $\gamma=0.1$). It was found to be sufficient to use strip widths equal to $0.1,0.2$, and 0.3 to get projected energy eigenvalues after using equation (2.31). Table 34 includes also the results of Praddaude. [4 3]

Table 34
Energy Eicenvalue (at $\gamma=0.1$)

State	Energy	Praddaude results
$1 s_{0}$	-0.497520	-0.497525
$2 s_{0}$	-0.005523	-0.090085
$2 p_{-1}$	-0.150522	-0.150845
$2 \mathrm{r}_{0}$	-0.111752	-0.112410
$3 \dot{c}_{-2}$	-0.086575	$-0.0 E 7 E 35$
$3 \dot{c}_{-1}$	$-0.05<255$	-0.057810

Fracidzude used a large matrix basis of Laguerre functions (essentially scaled hydrocenic functions) to calculate the energy eicenvalues. We can see from table 34 that our energies are very close to (but slightly higher than) his. This is in accord with theory, since for the ground states concerned-our calculation is equivalent to a variational calculation which uses as trial function the exact eifenfunction of the Hamiltonian with the residual patential subtracted. The resulting energy estimate must trus be an upper bound to the exact energy. The results shor that our estirate is already a good one. For the case of, for example, the $2 p_{0}$ state, our calculation would be equivalent to the use of a comnlete p type basis, which is in practice impossible in a matrix calculation. The small extra lowerine of the energy must be due (for $2 p_{0}$) to the f type furctions in Praddaude's basis set, and could be computed in our approach by a Hylleraas variational calculation of E_{2}, as outlined for the 1 s state in section 4.3 .2 . Since our results correspond to those which would arise from complete basis sets of particular ℓ types, they should be of value to workers who employ matrix diagonalization methods, since they provide standard test values. Thus, if the p basis states used by any worker are inadequate, this will show up as an eigenvalue estimate which is higher than our $2 p$ eigenvalues. Adding the f basis states cannot remove any error due to the use of a poor set of p basis states.

COMCLUSION

With the development of pocket calculators, mini-computers and big computers, it seems reasonable to attempt to solve mathematical and physical problems with their aid.

The task of finding simple numerical methods which can be treated by a programable pocket calculator is an interestine challenee: it calls for a clear theoretical understanding of the problems treated and if a satisfactory method is obtained this allows other research workers to treat the problem by themselves without large scale computing facilities. Further, a method compact enough to work on a small machine will probably be a time-savinE method for a big machine.

The numerical methods presented in this work have been tested for Schröaincer equations involving several perturbed and unperturbed potentials. These methods have been shown to be very effective and to be more simple and accurate than the widely used matrix calculations.

The use of a ratio variable $R(r)$, (section 2.1.2), makes this numerical method rather simple to apply and yet. it gives accuratero results even when treatins perturbation problems for potentials such as $V=\lambda r^{p}-r^{-1}$. It has been demonstrated that the change from the \therefore. R-method to the F-miethod, (section 2.1.3), improves the accuracy of the results.

The results of section 2.2 show that the error in the energy eigenvalue varies as h^{2} over an extended raree of h values. An h^{2} extrapolation process works accurately without the requirement of using complicated integration formulae in the integration process. In general the eicenvalue error seems to be vell represented by a power series $\therefore x^{2}$.

It has keen demonstratec (section 2.2) that perturbation theory, veed ir. a "zlobsl" sense, gives a correction term in the integration
formula which is more simple than any previously derived using step-bystep perturbation theory.

The F-method of section 2.1.4. allows us to get an interpolated energy eigenvalue using three trial energies (i.e. E, E士EE); in this way we need to perform only an outward intecration. This makes our method more easy to use, in comparison with previous methoas, which usually employ an outward and an inward intésration and get an improved energy estimate by using a formula involving the slope "mis-match" at.. some intermediate r. Some position $r=L$ must be used to start the invard integration, and may have to be revised to simulate adequately the boundary condition $\psi(\infty)=0$. However, this difficulty also is avoided in our frocrammes, which take the limit $L \rightarrow \infty$ during the calculation, as explained in the quoted sections.

It has been shown, (section 2.2.5), that expectation values such as $\left\langle r^{m}\right\rangle$ car be calculated rithout storiñ the explicit value of ψ. This is done b_{i} vaing enerey calculations, which can be performed by the method of section 2.1.4 (or, indeed, by any accurate metrod).

Hypervirial methods (section 3.1) make it possible to calculate some perturbation series up to high order without any calculation of the perturbed wave functions of various orders. Further, the series for various $\left\langle r^{N}\right\rangle$ also result from the calculation. The various perturbation series can then be treated (even when divergent) by means of Padé approximants. We have shown several examples in which the diagonal Fadé approximants (i.e. [I,L]) converee from below to the correct quantity required, and the $[I+1, L]$ converee from above.

In section 3.1 .4 an apparently new perturbation phenomenon has been treated; this arises in the case of a hydrogen atom with perturbing rciextiol $2 \lambda r+2 \lambda^{2} r^{2}$. The Fayleich-Schrödincer energy series for the Erounc state converces to an exact value; we rave demonstrated that this
value is not the true energy for necative values of λ, although there still existe bound states.

The F and F methods presented in chapter 2 are particularly suited to handle the various problems described in chapter 4. These methods avoid many of the lencthy calculations and inaccuracies involved in the matrix diagonalization methods, both for bound and quasi-bound states. The concomitant penalty which arises from this gain in calculational simplicity is, of course, the need to study the relevant theory carefully in order to rewrite it in a form which permits application of the numerical methods.

F-METHOD

A1.1 BASIC Prorramme

5	PRINT " $-\mathrm{A}(\mathrm{D} 2)+\mathrm{V}=\mathrm{H}^{\prime \prime}$
10	PRIHT "AIPK, LAMDA, E, E, DE"
15	INPUT A, L, H, E, DE
20	PRINT "NODES" : INFUT Q
25.	PRINT "AI" : INPUT AM
30	$E=E+D E$
35	$N=A M$
40	$W=1: W W=1: W 2=1$
45	$\mathrm{R}=1: \mathrm{FR}=1: \mathrm{R} 2=1$
50	$N=N+1: X=N * H$
55	$\mathrm{N} 1=\mathrm{N}+\mathrm{SN}+1: \mathrm{N} 2=\mathrm{N}-\mathrm{AN}-1$
60°.	$T=(-1 / X)+1 * X_{2}-E$
65	$T T=T+D E: T 2=T+2 * D E$
70	$T=T * N / A: T T=T T * N / A: T 2=T 2 * N / A$
75	$F=(F / E) * 12+T: F=F / N 1$
80.	$F F=(F F / E R) * 2+m T: F F=F F / N 1$
85.	$\mathrm{F} 2=(\mathrm{F} 2 / \mathrm{F} 2) \times 1 \mathrm{H} 2+\mathrm{T} 2: \mathrm{F} 2=\mathrm{F} 2 / \mathrm{N} 1$
90:	$\mathrm{K}=1+\mathrm{EF} \times \mathrm{F}$
95:	
100	
105.	IFI.<O TESM $2=Z+1$
110	
15	IFF2<0 THEN $22=22+1$
20	IFZくC. THEN GOTO 50
$25^{\text {! }}$	$P=E-D E /(1-n / W)$
30	$P P=E-(2 D E) /(1-W 2 / W)$
35°	$\mathrm{P} 2=\mathrm{P}+(\mathrm{PP}-\mathrm{P}) /(1-22 / \mathrm{Fi})$
40	PRIIT ${ }^{\text {P }} 1 \mathrm{ST}^{\text {P }}$
45	PRINT "2ND" P2
50	FRINT Z, $2 \mathrm{Z}, \mathrm{Z} 2$
55	GCTO 50

A1.2 Comments on the F-Method Programme

The input variables are as follows. Alpha (A) is either 1 or $\frac{1}{2}$ depending whether the Schrödinser ecuation is used in the form $-D^{2} \psi_{+}(V-\Sigma) \psi=0$, or $-\frac{1}{2} D^{2} \psi_{+}(V-Z) \psi=0$ respectively (i.e. $-\alpha$ is the coefficient of D^{2} in the kinetic energy operator). Lsmda. (L) represents the volue of the perturbine parameter in the potential function. H rerrescots the strip width to be used in the numerical intesration.
E is the trial enercy and $D E$ is the increment of the energy (so that the trial enercies used are actually E and $E \pm D E$). Nodes (G), the number of nodes, i.e. 1 for the eround state, 2 for the first excited state, and so on. AF represents the value of the angular momentum, i.e. it is 0 for, an s state, 1 for a p state, and so on. (In the method of section 3.1.3A.M. can usefully be given a non-integer value). The variable W^{\prime} represents the wavefunction.
: The potential function is given in line 60; this is the only line that has to change in order to use the programme for a different potential function. We use the potential $-1 / r+\lambda r$ in the preceding specimen procramme.

There is not a stopping condition for this problem. The reason for this is that the person who runs the prosramme will have to stop it manually when the two enerfies shown on the screen reach a stable value; otherwise the FミT will stop it by itself when reaching its overflow capacity. The two displayed energies (lines 140 and 145) are the first and :second order interpolated energies calculated in the manner discussed i in section 2.1.4.

The discussion of section 2.2.2. shows that the accuracy of our numerical integration methods can be improved (when the potential V is bounded at $r=0$) by the simple procedure of using the quantity $(V-E)+\frac{1}{12}$ $h^{2}(V-E)^{2}$ instead of (V-E) in the numerical integration. This is accomplished in the programme by including thrce extra lines (between lines 65 and 70) which carry out this replacement. For example the instruction

$$
M=T+T * * * \Psi / 12
$$

(rittr similer lines for $T \mathrm{~m}$ ard m 2) would serve this purpose $\therefore 1.3$ Inc:-clert

Mhe flov-chert is shon ir ficure $\therefore 1$.

F-METHOD

Figure A1

$A F P E N D I X \quad A 2$

HYPER

A2.1 BASIC Procramme

5 FRINT "ENERGY COEFFICIENTS FOR $V=-1 / R+\lambda R \uparrow P "$
10 InPUT "P VALUE"; P
15 I!PLCT "Q VALUE"; Q
20 DII: X $\left(8 *_{\hat{c}}, \mathrm{Q}\right)$
25 DIF $E(6+1)$
30. IfPut "E Value"; E(0)
$35 \mathrm{~V}=\mathrm{C} \times \mathrm{P}$
$40 \quad X(0,0)=1$
$45 x(1,0)=-3 /(4 * E(0))$
50 FOR I $=2 \mathrm{TO} \mathrm{V}$
$55 X(I, 0)=(-(2 * I+1) * X(I-1,0)-I *(I * I-1) * X(I-2,0) / 4) /((2 * I+2) * E(Q)) *$
60 :PPINT "A"; I; X(I,0)
65 NEXT I
70. $E(1)=X(P, 0)$
$75 \mathrm{R}=\mathrm{V}-\mathrm{P}$
80 FOF K $=1 \mathrm{TO} \mathrm{G}$
$85 \mathrm{FOR} \mathrm{I}=1 \mathrm{TO} \mathrm{K}$
$90 \mathrm{~T}=0$
95. FOR IT = 1 TO N
$100 S=E(N) * X(I, N-M)$
$105 T=T+S$
110: NAT is
115 IF I = 1 TYEN 125
120 IF I<>1 THEN
$125, \mathrm{X}(\mathrm{I}, \mathrm{M})=(2 * I+\mathrm{P}+2) * X(\mathrm{I}+\mathrm{P}, \mathrm{M}-1)-(2 * I+1) * X(\mathrm{I}-1, \mathrm{~B})$
$130^{-1}(I, M)=(X(I, M)-(X(I, M)-(2 * I+2) * T) /((2 * I+2) * E(0))$
135: GOTO 150
140. $\mathrm{X}(\mathrm{I}, \mathrm{M})=(2 * I+\mathrm{P}+2) * X(I+P, \mathrm{H}-1)-(2 * I+1) * X(I-1, M)-I *(I * I-1) * X(I-2, M) / 4$
$145 \mathrm{X}(\mathrm{I}, \mathrm{H})=(\mathrm{X}(\mathrm{I}, \mathrm{H})-(2 * I+2) * I /((2 * I+2) * E(0))$
150 PRINT I; F ; $\mathrm{X}(\mathrm{I}, \mathrm{M})$
$155 E(K+1)=X(P, m) /(i+1)$
160 NEXT I
165 IF I \triangle R THEN $R=R-P$
170 NiKT M
175 FCR J $=0$ TO Q
180 FRINT J; E(J)
185 REXT J

A2.2 Comments on the Hyper Procramme

The input variables are as follows. P is the power of r in the rotertiel function $V=\lambda r^{p}-r^{-1}$ (P is a positive inteçor). \& is the nuwer of energy cofficients vantez. $E(0)$ is the value of the unperturbed energy for the hydrocen s state considered. (Fodification
to allow treatment of states :ith $l>0$ is possible).

- The element $X(0,0)$ of the array $X(I, A)$ is equivalent to $X_{0,0}$ in the text: (section 3.1.1.), and is equal to 1, i.e., the value of the zero. order coefficient in the series for $\left\langle r^{0}\right\rangle \equiv 1$

A2.3 Flow-chart

The flow-chart is shown in figure A2.

Figure A 2

A P P END I X

2-IYYPEP

A3.1 BASIC Promramne

5 PRINT "ENEFGY CCEFFICIENTS FCR $V=-1 / R+2 \lambda R+2 \lambda+2 R 12 "$
10 INPUT "G ValUe"; Q
15 DIK $E(\varepsilon+1), B(E *, Q)$
20 IFPUT "L ValUe"; L
25 IfPUT "E VALUE": E(0)
$30 \cdot B(0,2)=-2 * \Xi(0)$
$35 B(1,2)=1$
40 FOR $\mathrm{F}=0 \mathrm{TO} \mathrm{G}-2$
45 FOR N $=1$ TO $\epsilon-1$
$50 \quad S=0$
55 FOR $\mathrm{P}=0$ TO N
$60 \quad \mathrm{~S}=\mathrm{S}+\mathrm{E}(\mathrm{P}) \neq \mathrm{E}(\mathrm{M}+1, \mathrm{~N}+2-\mathrm{P})$
65 NEXT P
$70 \mathrm{~F}=(4 *+6) * 3(N+2, N+1)+(4 * 1+8) * E(N+3, \mathrm{I})$
$75 \mathrm{R}=\mathrm{F}-(2 *+1) * B(\mathrm{~N}, \mathrm{~N}+2)-: N(N \mathrm{~N}-1) * 3(N-1, \mathrm{~K}+2) / 4$
$80 \mathrm{R}=\mathrm{F}+\pi * L *(\mathrm{~L}+1) * 3(\mathrm{~N}-1, \mathrm{H}+2)$
$85 E(\mathbb{N}+1, N+2)=(K /(2 * i+2)-S) / E(0)$
90 PRINT $\mathrm{N}-1 ; \mathrm{n}-1 ; " \quad " ; B(\mathrm{~N}+1, \therefore+2)$
$95 \mathrm{E}(\mu+1)=(2 * B(2, \pi+2)+\angle * B(3, \because+1)) /(N+1)$
$100 B(0,3)=E(1)$
105 以う" 1
110. IEAT E
115. $\mathrm{FCA} \mathrm{J}=0 \mathrm{TO}$

120 FRINT "E"; "J"; E(J)
125: NEXT J

A3.2 Comments on 2-Hyper Promrame

This programme, which is meant to be used to find the energy coefficients for the potential $V=-r^{-1}+2 \lambda r+2 \lambda^{2} r^{2}$, can be used for the potential $V=\lambda r-r^{-1}$ by replacing line $70 \mathrm{ky} F=(2 * \mathrm{r}+3) * B(\mathrm{~N}+2, \mathrm{H}+1)$ and line 95 by $E(N+1)=B(2, N+2) /(N+1)$.

The input variables represent the same as for the Eyper programme, with the addition of L, the angular momentum. The programme works for p and d states as well as s ones. The relevant modification is explained theoretically in secticy 3.1.5. end is executed in the prosreme ky

$B(\mathrm{~N}-1, \mathrm{M}+2)$.

A3.3 Flow-chart

The flow-chart is shown in figure $A 3$.

2-HYPER

Figure A 3

AFPENDIX A4

YYM

A4:1 BASIC Frogramme

5 PRINT "PADE APPROXIFANTS"
10 INPUT "a VALUE"; \&
15 DIF: C ($\mathrm{a}+20$)
20 DIM $T(Q+5, Q+5)$
25 INPUT "C(0) VALUE"; C(0)
-
-

35 IRPUT " λ VALUE"; L
$40 \quad T(1,3)=C(0) T 2 /(C(0)-C(1) * L)$
$45 T(0,1)=C(0)-(C(1) * L *(T(1,3)-C(0))) /(T(1,3)-C(0)-C(1) * L)$
50 FOR I $=0$ TO
$55 T(I, 0)=0$
60 INEXT I
$65 T(1,1)=C(0)$
$70 \mathrm{FOR} I=2 \mathrm{TO} \mathrm{a}+1$
$75 T(I, 1)=T(I-1,1)+C(I-1) *(L T(I-1))$
80 FRIMT $T(I, 1)$
85 IEXT I
$9 C \mathrm{~J}=1$
05 FCE i. $=1$ TC $\mathrm{C}+1$
100 FOF IN = J TO G+1
$105 T(N, N+1)=T(N-1, K-1)+(T(N, M)-T(N-1, N) T(-1)$
10 PRINT $\mathrm{N}-1-\mathrm{K} / 2$; $\mathrm{M} / 2$; $\mathrm{T}(\mathrm{N}, \mathrm{M}+1)$
115 NEXT N
120 IF NT $\mathrm{a}+1$ THEN $\mathrm{J}=\mathrm{J}+1$
125 IF J J G +1 THEN 35
130 NEXT N

A4.2 Comments on the Vynn Procramme

The input variables are as follows. Gis the number of coefficients of the power series which is to be used. $C(0), C(1), \ldots C(G)$ are the numerical values of the coefficients. λ (L) is the value of the perturbation parameter in the potential function, for our problems, but in ceneral is the λ value for which the sum of the power is required.
"rmn's alcorithm allows us to calculate Padé approximants of the for: $[\bar{j}, \bar{u}],[\bar{u}, \tilde{j}-1], \ldots,[\tilde{j} 1]$ orily, but the proeramme is written so as to calculate alsc the ampoximants $[0,1],[1,2]$, etc. which
are not mentioned in Kynn's original algorithm.
For numerical purposes it is of ten sufficient to know the values of $[J, J]$ and $[J, J-1]$ kecause, as has been discussed in section 3.2.3., the exact value often lies between these approximants. The line 110 of the programe displays first the $[N, 1]$ coefficients, then the $[N, 2]$ coefficients, and so on, together with their labels.

A4:3 Flow-chart

The flow-chart is shown in figure A4.

Figure A4

REFERE:CES

1. Schrödinçer, E., Collected Fapers on Tave Necienics, Elackie \& Son Ltd., trenslated from German by Shearer, J.F. anà Dearis, $\because .:$. (1928)
2. Kato, T., Prog. Theo. Phys. $4(15 ¢ 0) 514$
3. Dalgarno, A. and Lewis, J.T., Froc. Eioy. Soc. 4233 (1956) 70
4. Fiehl, J.F., Diestler, D.J. and Vagner, A.F., J. Comput. Phys. 15 (1974) 212
5. Adam, Gh., J. Comput. Fhys. 22 (1976) 1
6. Killinebeck, J.f., Rep. Proe. Fhys. 40 (1077) 953
7. Secreat, D., Chashion, K. and Firschfelàer, J.C., J. Chem. Fhys. 37 (1062) 830
C. Finユingkeck, J., J. Phys. 1.10 (1977) LSS
c. ǐiユ1inebeck, J., Contemp. Fhys. 18 (1977) 265
8. Kiliiñebeck, J., Fhys. Lett. A57 (1078) 13
9. Biswas, S.N., Datta, K., Saxena, F.P.,

Srivastava, F.K. and Varma, V.S., J. Math. Fhys. 14 (1973) 1190
12. Killingbeck, J., Comput. Phys. Commun. 18 (1979) 211
13. Bolton, F.C. and Scoins, H.I., Froc. Camb. Fril.

Soc. $52(1955) 215$
14. Froese, Ch., Can. J. Prys. 41 (1963) 1895
15. Elatt, J.K., I. Corput. Fhys. 1 (1067) 382

J. Comput. Fhys. 16 (1974) 150
17. Ė=-tis, A. and Allison, A.C., Comput. Phys.

Commun. 14 (1978) 1
18. Vitra, A.j., J. Vath. Phys. 10 (197E) 2010
19. Galicia, S. and Killingbeck, J. Phys. Lett. A71 (1979) 17
20. Tippine, R.I., J. Nol. Spect. 59 (1976) 8
21. Sienson, R.J. and Danforth, S.H., J. Chem. Fhys. 57 (1972) 1734
22. Baker, G.h.Jr., Essentials of Padé hrproximants, Academic Press (1975)
23. Mynn, P., Nath. Tables and Aids to Comput. 10 (1956) 91
24. Killingbeck, J., Phys. Lett. 465 (1978) 87
25. Killiñुbeck̀, J. anã Galicia, S., J. Phys. (in the press)
26. Fazi, A.U. and Taylor, H.S., Phys. Rev. A1 (1970) 1109
27. Killingbeck, J., Phys. Lett. 255 (1978) 180
28. Austin, E.J., Vol. Phys. 40 (1979) 893
29. Killinsbeck, J., J. Fhys. B12 (1079) 25
30. Firschfelder, J.C., I. Chem. Fhys. 33 (1050) 1462
31. Killingbeck, J., Fhys. Lett. A78 (1930) 235
32. Detwiler, L.C. and Klauder, J.R., Fhys. Rev. D11 (1075) 1436
33. Graffi, S., Grecchi, V., Levoni, S. and Naioli, R.,
J. Nath. Phys. 20 (1979) 685
34. Naier, C.H., Cederbaum, L.S. and Domcke, W., J. Phys. B13 (1990) L119
35. Younc, L.A. and thlenbeck, G.E., Phys. Fev. 36 (1930) 1154
36. Cabib, D., Fabri, ミ. and Fiorio, G., Kuovo Cim. 108(1972) 185
37. Kaushal, F.S. and Muller-Kirsten, E.J.i.., J. Nath. Phys. 20 (1970) 2233
38. Eicteter, Z., Gottfried, F., Kinoshita, T., No天at, J., Lere, Z.L. and Yen, T.I., Fhys. Fev. Lett. \mathbb{L} (1975) 369
39. HeCarter, G., Phys. Rev. D19 (1978) 3073
40. Trivedi, E.P., J. Fhys. B13 (1980) 839
41. Froman, H., Fhys. Fev., A17 (1978) 493
42. Froman, 1. and Froman, P.O., Fhys. Rev., . ; (1972) $_{2064}$
43. Fraddaude, F.C., Phys. Fev., A6 (1972) 1321

PUBLICATIONS

The following papers, concerned with the present work, have been ... accepted for publication.

1. Galicia, S. and Killingbeck, J., Accurate Calculations of Perturbed Oscillator Energies. Phys. Lett. A71 (1979) 17.
2. Killingbeck, J. and Galicia, S. The Ψ (o) Problem for Charmonium Hamiltonians. (In the Press).
