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Srnne Problems Related to the Rejection of 

Outlying Observations 

FOREWORD 

The general problems in terminology and methodology encountered 

1n testing for outliers are discussed in Chapter I. 

Chapter 2 is concerned with outliers in gamma samples. The 

null distribution of the statistic T(n)' used for testing for a single 

upper outlier, is a known result; the result, given in section 2.2, 

that it is the likelihood-ratio statistic for an appropriate alternative 

hypothesis and the method of derivation of the distribution given in section 

2.2.1 are new. All the results given in sections 2.3 to 2.7 are new. 

These concern the derivations and distributions of likelihood-based criteria, 

for testing for single and mUltiple lower outliers, for multiple upper 

outliers, and also for testing simultaneously the largest and smallest 

observations in the sample. The null distributions of the 'Dixon' criteria 

considered in section 2.8 are known results in the particular case of 

exponential parent populations; the derivations of the distributions and 

the extensions to a more general gamma parent popUlation are new results. 

In section 2.9 some of the results are applied to practical examples. 

Chapter 3 is concerned with single outliers in univariate normal samples. 

The various cases of known and unknown mean and variance are considered in 

sections 3.2 to 3.5. The results that the various criteria are likelihood-

based for certain appropriate alternative hypotheses are new. The null 

distributions of these criteria and of their extensions to criteria 

incorporating external estimates of the variance are known, but the methods 

of derivation presented using recursive procedures, are new. Tests for 

outliers in normal samples with known mean and unknown variance (section 3.4) 
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have not previously been considered. In section 3.6 'two-sided' test 

criteria are considered. The distinction drawn between one-sided and 

two-sided criteria in terms of the alternative hypothesis is new, the 

method of obtaining upper and lower bounds for the percentage points is a 

known result. An error in a paper by Tietjen and Moore (1972) is corrected. 

Chapter 4 is concerned with mUltiple outliers in univariate normal 

samples. A general discussion of the problems of testing for multiple 

outliers is given and the phenomenon of "swamping" is identified. An 

error in a paper by Tietjen and Moore is identified. Section 4.1 considers 

multiple upper outliers. The derivation of the test criteria, in the 

various cases of known and unknown mean and variance, as likelihood·-ratio 

statistics for certain appropriate alternative hypotheses is new. The 

null distributions of these criteria for the cases of two upper outliers 

when the population variance is known and unknown (and the mean is unknown) 

are known; the derivations of these distributions presented is new, and the 

extensions to criteria incorporating independent estimates of the variance anc 

to criteria for a general number of upper outliers is also new. A minor 

error of sign in a paper by Quesenberry and David (1961) is corrected. 

Section 4.2 considers tests for the largest and smallest observations 

simultaneously as outlying. All the results in this section relating to 

the criteria shewn to be likelihood-based for appropriate alternative 

hypotheses are new. In section 4.2.1 known results relating to the 

'internally' studentized range are extended to cases when an external estimatE 

of the population variance may be incorporated in the statistic. In 

section 4.3 tests for outliers at unspecified ends of the sample are 

considered. In section 4.3.1 it is shewn that in the case when the 

population mean is unknown, the procedures and criteria proposed and 

investigated empirically by Tietjen and Moore (1972) have undesirable 
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properties, and that these criteria are essentially different from the 

criteria derived as likelihood-ratio statistics for appropriate alternative 

hypotheses. The results of section 4.3.2 relating to tests for outliers 

in samples from a population with known mean are new. 

Chapter 5 considers outliers in linear models. The derivation of the 

statistic T(n) as a likelihood-ratio criterion given in section 5.1 is new. 

The main results of section 5.2 relating to upper bounds on T(n-l) are new; 

it is shewn that these may be used to derive the rather weaker results of 

Srikantan (1961) and Stefansky (1971 and 1972). The calculation of the 

upper bounds for the percentage points of T(n)' given in Table 5.1, was 

performed independently of Lund (1975) who gives tables of an equivalent 

quantity for a smaller range of significance levels but for a larger range 

of sample sizes. The other results of section 5.3 are new. Section 5.4 

is concerned with outliers in polynomial regression. The results relating 

to linear regression are extensions to a larger range of significance levels 

of equivalent results of Srikantan (1961); the results relating to quadratic 

and cubic regression are new. Numerous important errors in a paper by 

Tietjen, Moore and Beckman (1973) are identified and corrected. All the 

results of sections 5.6 and 5.7 concerning mUltiple outliers and tests for 

outliers incorporating independent estimates of the variance are new. 

In section 5.7 applications of the results to practical examples are given. 

Chapter 6 considers outliers in multivariate normal samples. Some of 

the general problems of detecting outliers in multivariate data are discussed 

in section 6.1, and some deficiencies in a paper by Rohlf (1975) are 

discussed. 

In sections 6.2 and 6.3 the derivation of the test statistics for 

single and mUltiple outliers in all the various cases of known and unknown 

mean and variance as likelihood-ratio criteria is new. The results 
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concerning single and mUltiple outliers in samples with unknown mean and 

variance are known, but "in the case of a single outlier (section 6.7.4) 

they are derived by a simpler method. All the results concerning single 

and multiple outliers in samples where either the mean or the variance 

or both are known, given in sections 6.2.1 to 6.2.3 and the early paragraphs 

of 6.3, are new. All the results of section 6.4 concerning criteria 

incorporating independent estimates of the variance are new. The results 

of section 6.5, which provide a new interpretation of the 'one-outlier 

scatter ratio', of Wilks (J963), are new. 



(ii) 

Summary of Thesis for Ph.D. degree 

by N.R.J. Fieller 

on 

Some Problems Related to the Rejection of Outlying Observations 

The thesis consists of six chapters. The introductory first 

chapter considers some of the more general problems involved in the 

detection and rejection of outlying observations, and.describes the 

general form of the tests discussed in detail in the later chapters. 

In Chapter 2. likelihood-based criteria are derived for testing 

for single and multiple outliers at both the upper and the lower ends 

of samples from gamma distributions. The null distributions of these 

criteria are obtained by use of a recursive algorithm and the methods 

are extended to criteria appropriate for testing for multiple outliers 

occurring at both ends of the sample and to various 'Dixon' criteria. 

The results are applied to some practical examples. 

In Chapter 3 likelihood-based tests and criteria for single outliers 

in univariate normal samples are considered. The null distributions 

of the criteria are obtained by recursive algorithms. The cases of 

known and unknown mean and variance are considered separately and the 

methods are extended to cases where independent estimates of the 

variance are available. These methods and results are extended in 

Chapter 4 to tests and criteria for mUltiple outliers in univariate 

normal samples. The extensions of the results of both of these 

chapters to single and multiple outliers in multivariate normal samples 

are considered in Chapter 6. 

In Chapter 5 problems of single and multiple outliers in data 

following a linear model are discussed. A likelihood-based criterion 

is derived and the extreme tail of the null distribution of this 

criterion is obtained. Some practical examples on data from a series 

of chemical experiments are given. 
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1.1 

Chapter I 

The Problems of Outlying Observations 

1.1 Introduction 

It has long been recognised that the occurrence of spurious 

observations in sets of recorded and collected data is an inevitable 

hazard in most, if not all, statistical investigations. 

One of the earliest statements which contains in essence the 

two basic aspects of the problems encountered in such situations is 

that by the a3tronomer Benjamin Peirce. In 1852 he wrote, "In 

almost every true series of observations, some are found, which 

differ so much from the others as to indicate some abnormal source 

of error not contemplated in the theoretical discussions, and the 

introduction of which into the. investigations can only serve, in 

the present state of science, to perplex and mislead the inquirer". 

The first aspect which may be identified here is the detection 

of spurious observations. Sets of experimental data may, and 

frequently do, contain some observations which are not of the same 

statistical population as the overall majority of the sets. Whether 

the population of primary interest in the investigation is that of 

the overall majority or that of the aberrant observations, it is 

important to detect and identify the aberrant observations in the 

set, either with a view to correcting them if possible (and 

appropriate), or to excluding them entirely from the analysis of the 

bulk of the data, or to focussing attention upon abnormal values. 

Indeed the latter may be the sole purpose of the experiment. 
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The second aspect is the accommodation of spurious observations. 

If the population of primary interest is that of the overall majority 

of the data set then the inclusion of any spurious observations in an 

analysis may lead to erroneous inferences being made, unless, of 

course, a method of analysis is employed which affords protection 

against the presence of aberrant observations; since 1852 "the state 

of science" has developed and advanced and now includes a great many 

techniques and procedures which do offer such protection. 

The particular aspect discussed in detail in the later chapters 

is the first of these; various criteria and methods will be derived 

and developed for the detection of outliers in a wide variety of 

statistical situations. The following sections of this chapter 

consider some of the more general problems associated with the 

occurrence of spurious observations in sets of data, problems whose 

consideration is of importance not only when the primary aim is their 

detection but also when the aim is their accommodation. 
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~ Preliminary Considerations 

Many different terms have been used by different authors in 

the literature to refer to spurious observations; as well as the 

adjectives 'doubtful', 'suspicious', 'surprising', 'discordant', 

'unrepresentative', 'aberrant', 'wild', 'rogue' and 'spurious' arid 

the nouns 'stragglers' and 'mavericks', there are the more 

commonly used terms 'outliers' and 'outlying observations', terms 

which have been in use certainly since the beginning of this century. 

See for example Pearson (1902). There is a lack of consistency 

not only in terminology but also in interpretation;' while some 

authors may use a given term to refer to an observation which in 

actuality arises from a distribution different from that of the 

remainder of the sample, others may use the very same term to refer 

to an observation which merely ap'pears, subjectively to the analyst, 

to deviate from the majority parent population. This inconsistency 

is not a mere matter of semantics; it reveals a deeper distinction 

in the lines of approach to the problems of spurious observations 

(here the adjective 'spurious' is taken to have its common usage 

meaning of "not proceeding from the pretended source"). Some authors, 

such as Ferguson, specifically stipulate that the decision of whether 

or not to apply statistical tests and procedures for the presence of 

spurious observations should not be made in the light of the data in 

question, and that any tests should be regarded as "part of the data 

screening process for every set of data which the experimenter may 

encounter". (Ferguson (1961a». Other authors are less clear on 

the subject and some even imply that the various techniques will only 
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be applied when the sample contains observations which appear to the 

experimenter to be spurious just on subjective grounds. For example 

Guttman and Smith (1969) say, "The problem of how to deal with data 

which contain 'outliers', i.e. observations which look suspicious 

in some way, has long been a source of concern to experimenters and 

data analysts". Indeed not even each individual author is entirely 

consistent on the subject. For example Ferguson (1~61) referring 

to the problem of the rejection of outlying observations says, "In 

a sample of moderate size taken from a certain population, it appears 

that one or two values are surprisingly far away from the main group". 

This would imply a certain degree of subjectivity on the part of the 

analyst as to whether or not to scrutinise the 'surprising' observations 

by employing a statistical test or procedure, in apparent contradiction 

to his (1961a) statement quoted above. 

The position taken throughout the following chapters is that 

the various tests and procedures discussed should be regarded implicitly 

as part of the routine analysis to be performed upon all data sets. 

Of course it has to be recognised that many analysts will not in 

practice apply these tests in complete detail in cases where it is 

'clear' or 'obvious' that the sets of data concerned contain no 

spurious observations. This is no novelty in statistical methodology; 

many statistical analysts would not actually pursue the detailed 

calculations necessary to perform a 't-test' for the equality of normal 

population means in cases where it is 'clear' or 'obvious' that no 

statistical difference exists, 'clear' or 'obvious' that is on the 

basis of the extensive statistical experience of the analyst. If 

on the other hand the various techniques and methods advocated in the 

following chapters were to be regarded as applicable only to those data 
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sets which appeared, subjectively to the experimenters, to contain 

spurious observations then the interpretation of the results of any 

statistical tests performed would have to be treated with extreme 

caution. Collett and Lewis (1976) _shew that in such cases the 

conventional frequency interpretation of both the type I and type II 

errors are invalid and that the correct interpretations depend upon 

the subjective judgement of the analysts concerned. They shew 

further, from an experiment involving undergraduate and postgraduate 

students, that these subjective judgements differ not only from 

analyst to analyst but also from occasion to occasion for the same 

analyst. and that the decision of whether or not to apply a test 

depends upon both the particular scale and configuration and the method 

of presentation of the data. 

Throughout the following chapters, in conformity with the 

position taken above, the terms 'outlier' and 'outlying observation' 

will be reserved to denote those observations, if any, in a sample 

which arise from a population other than that of the rest of the sample. 

The phrases 'suspected outlier', 'possible outlier' and the like 

will refer to those observations which are to be tested as outlying 

(or equivalently tested for 'discordancy'), by a statistical test; 

that is they are the 'extreme' observations in the sample as defined 

by some objective criterion. The definitions of the 'extreme' 

observations in the various statistical situations considered in the 

later chapters are given as the occasion arises. In many situations 

these definitions conform to the intuitive notions of 'extremeness'. 

Certainly this is so for single suspected outliers in univariate 

samples from unimode1 parent populations where the 'extreme' observation 

is either the maximum or the minimum in the sample. In cases of 
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suspected multiple outliers or in cases of data following a linear 

model or from a multivariate population the definitions of the 'extreme' 

observations may not necessarily conform with intuitive considerations. 

For example in Chapter 5 it is shewn that the observation which must 

be regarded as most 'extreme' in data following a simple linear 

regression on an independent variable is not necessarily that 

observation lying furthest from the 'fitted' line. It may be noted 

in this context that considerable complications would arise if 

observations in such sets of data were to be tested as outlying or 

discordant only if they were thought to be 'surprising' by the particular 

experimenter concerned. Intuitively the 'most surpis~' observation 

would usually be that lying furthest from the 'fitted' line; 

calculation of the true type I and type II errors of a test of this 

observation as outlying (using say, the test criterion discussed in 

Chapter 5) would be extremely difficult as allowance would have to be 

made for the possibility that this observation was not the most 

extreme as judged by an objective criterion. Similar considerations 

apply to most complex situations; in multivariate samples, for example, 

it is not even at all clear which is the 'most surpnsfug observation 

as judged intuitively. The only consistent procedure for avoiding 

these difficulties is to regard tests for the presence of outliers 

in data as part of the routine analysis to be applied to all data sets. 

If, on the other hand, the aim of the statistical analysis of the 

sample of data is not primarily the detection of outliers but instead 

is say the estimation of some population parameter, so that it is 

desired to 'accommodate' any outliers in the sample by using a 'robust' 

method of estimation which affords protection against their presence, 
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then similar considerations to those outlined above would suggest 

that the am~st should decide in advance of the data (and not 

because. the data does or does not contain 'surptmlig' or 'suspicious' 

observations) whether or not to apply such 'robust' procedures • 

• 



1.8 

1.3 The Form of Tests for Outliers 

All the various tests for outliers considered in detail in the 

later chapters have the form of a hypothesis test. The null 

hypothesis is always that all the observations in the data set form 

a random sample of some specified distribution (such as gamma, 

normal or multivariate normal). This is tested against an alternative 

hypothesis of the form that all but a 'small' number of the sample 

arise from that same specified distribution, the remaining 'small' 

number of observations arising from a different distribution (or 

distributions), typically this second distribution is of the same 

family as the first but with a change in scale or location. There 

are several issues in this formulation which need emphasis and 

clarification. 

It must be noted firstly that it is crucial to specify the null 

distribution of the sample. An observation which is judged to be 

an outlier in relation to the rest of the sample on the null 

assumption of normality might not be so judged if the null assumption 

were that the sample was from a distribution with 'fatter tails', such 

as a Cauchy distribution. Or again if it is assumed that the 

observations arise from a normal distribution with known mean and 

variance then outliers might be discovered which would not be detected 

without the assumption of those known values of the mean and variance. 

Indeed it is known that certain families of distributions, such as 

the gamma and log-normal families, are what has been termed "outlier­

prone" (Neyman and Scott (1971) and Green (1974», that is samples 

from distributions in these families are 'more likely' (in a strict 
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probabilistic sense) to contain observations which are well 

separated from the bulk of the observations than samples from 

distributions in families which are "outlier-resistant" (such as 

the normal and, surprisingly, the Cauchy families). 

It may be noted that there have been some attempts to devise 

tests for outliers which are 'distribution-free' or 'non-parametric', 

that is tests which require the minimum of assumptions on the 

particular form of the parent distribution of the majority of the 

sample. Typically the only assumption made is that the parent 

distribution is symmetric. Such tests have been considered by 

Walsh (1950, 1958) in the case of univariate samples. However 

these tests have great disadvantages since, as he indicates, they 

are rather insensitive to the presence of outliers unless the sample 

sizes are large and the number of suspected outliers is greater than 

four or five, all of which are assumed to occur at the same end of 

the sample. For the detection of outliers in designed experiments, 

tests have been derived by Bross (1961) and Brown (1975) based upon 

the 'pattern' of signs of the residuals, tests which again require a 

minimal assumption of a symmetric parent distribution. Presumably 

these latter tests are restricted to designs which have the property 

that the residuals have a common variance, though this is not made 

clear; the particular examples considered by both authors were two-

way classification designs. A rather different form of non-parametric 

test has been discussed by Thompson and Wilke (1963), again for a two-

way classification design, which is based entirely upon ranking the 

data in each of the 'columns' and summing these ranks across the 'rows', 

the purpose being to detect an 'outlying row' rather than an outlying 



1. 10 

individual observation. Although these various distribution-free 

tests for outliers have the advantage of requiring only minimal 

assumptions about the form of the parent distribution, the 

inevitable loss of power entailed severely restricts their application. 

Further, it would seem difficult to define the term 'outlier' (at 

least in a form similar to that given in the preceding section) 

unless the form of the distribution of remainder of the sample is 

known with some precision. 

A second crucial point in the formulation of tests for outliers 

given above is that the number of observations tested as outlying, 

k say, should be 'small' in relation to the total sample size, n say. 

If k is not 'small' in relation to n then the test becomes one of the 

adequacy of the original model rather than one for outliers, a point 

which will be returned to below. Exactly how 'small' is difficult 

to say; it would clearly be unreasonable to declare more than half 

the sample as outlying, so k should certainly be less than in, and 

probably less than a rather smaller fraction of n, (maybe k should be 

less than a fractional power of n1). Further the number of 

observations accepted as genuine (i.e. not tested as outlying) clearly 

should be sufficient to estimate all the unknown parameters in the 

model, a possible restriction in samples from multivariate normal 

distributions or in data following a linear model. Naturally the 

omission from the sample of those observations tested as outlying 

should not render any parameters inestimable. 

Most of the tests discussed in detail in the later chapters 

require the number of observations in the sample tested as outlying 

to be stipulated in advance. It is well known (see for example 
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Pearson and Chandra Sekar (1936» that a test designed for a single 

outlier may fail to detect any outliers at all if in fact the samples 

contain two or more outliers. That is, the presence of a second 

outlier may mask the presence of the first. Complemental~a single 

outlier may deviate so greatly from the rest of the sample as to 

, 'h b . h' . fb . swamp ot er 0 servat10ns, t at 1S a test on a pa1r 0 0 servat10ns 

as outlying might result in the erroneous declaration of both 

observations as outlying when in fact only one is an outlier. The 

phenomena of masking and 'swamping' are returned to in Chapter 4. 

It can easily be seen, in view of these two phenomena, that the 

decision of how many outliers to test can be critical. In some 

situations external considerations might determine the number of 

observations to be tested as outlying. For example there might be 

some knowledge of the probability of occurrence of outliers for the 

particular experiment concerned, or there may be knowledge that some 

specific number of observations are in doubt because of some known 

temporary aberration in the experimental procedure at an unknown stage 

in the course of the experiment. In many cases however the number 

of outliers to be expected will not be known, and some preliminary 

analysis on the data has to be performed. This will affect the 

calculation of the probabilities of the type I and, type II errors. 

Some work has been done on this problem by Daniel (1959), Dempster 

and Rosner (1972) and Rosner (1975), though note that the work of 

Rosner (1975) suffers from the same defect as that of Tietjen and 

Moore (1972), discussed in detail in Section 4.3.1, in not necessarily 

identifying the 'most extreme' set of observations in the sample 

as defined by a likelihood-based criterion. These and related points 

are discussed more fully in Chapter 4. 
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The third essential point of note in the formulation of outlier 

tests, given at the beginning of this section, is the distinction 

between outlier tests and tests on the overall validity of the model. 

When a test for outliers in normal samples of size n, for example, is 

performed the hypothesis that all observations arise from a common 

normal distribution N(p,02) is tested against the alternative 

hypothesis, that a 'small' number, k say, of the sample arise from a 

different distribution, but the remaining n~k observations (the 

majority of the sample) arise from the null distribution N(~,o2). 

The essential point is that the distribution of the overall majority 

of the sample is not in doubt; the only question is whether or not 

a 'small' proportion of the sample deviates from this distribution. 

On the other hand a test of the overall validity of the model would 

test the same null hypothesis against the alternative that the entire 

sample arises from a different distribution. There is a possibility 

of confusion between these two forms of test, particularly in the 

case of normal samples, because certain criteria which have been 

proposed for testing for outliers are also commonly used as overall 

tests of normality. For example the coefficients of skewness and 

kurtosis, which have been shewn by Ferguson (1961) to have certain 

locally optimal properties when used to test for outliers, are 

familiar as criteria used for testing for normality. Again the 

studentized range (whether 'externally' or 'internally' studentized) 

considered in Chapter 4 as a test statistic for the detection of a 

pair of outliers (one each of the pair occurring at each end of the 

sample) was originally studied as a 'short~cut' test for normality, 

(see for example, Pillai (1952), David, Hartley & Pearson (1954), 
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Pearson and Stephens (1964) and the introduction to Biometrika 

Tables for Statisticians Volume I, p. 59). These, and various 

other criteria which may be applied to the problem of the detection 

of outliers, are discussed in the context of testing for normality 

by Shapiro and Wilk (1965) and Shapiro, Wilk and Chen (1965). 

Clearly there is some danger, when testing for outliers, of committing 

an error of the third kind (i.e. correctly rejecting the null 

hypothesis, but for the wrong reason, Kendall and Buckland (1957». 

It can only be assumed, when testing for outliers, that an extreme value 

of a test statistic indeed indicates the presence of an outlying 

observation, rather than a departure of the entire sample from the 

null distribution, when there are a priori reasons for believing in 

the validity of the null distribution, at least for the great majority 

of the sample. 

Considerations similar to those commented upon above apply when 

the particular aspect of the problem of the occurrence of outliers 

is their accommodation rather than their detection. Just as 

there are tests for outliers and tests for normality (or more generally 

the overall validity of the model) which employ the same test criteria, 

so there are robust procedures of estimation which offer protection 

not only against the presence of outliers but also against departures 

from normality (or whatever the null distribution of the sample may 

be). Typically these departures are assumed to be in the direction of 

the distribution being fatter tailed. An Example of such a procedure 

when estimating the mean of a univariate population would be 'data 

trimming', i.e. invariably discarding both maximum and minimum 

observations in the sample before calculating the estimate, the 
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principle being that the discarding of genuine observations will 

affect the estimate of the mean very much less than the inclusion 

of spurious ones. Further, just as there are test criteria (such 

as the studentized extreme deviates from the sample discussed in 

the later chapters) which are designed specifically for the detection 

of outliers (though they could presumably be used as tests on 

the overall validity of the model) so there are methods of estimation 

which are designed specifically to be robust against the presence of 

outliers. Many of these procedures involve first the detection of 

any outliers, using one or other of the many criteria designed for 

that purpose, and then discarding any outliers detected and estimating 

the population parameters on the reduced sample. Other procedures, 

robust against the presence of outliers, which do not involve their 

rejection as such, include 'Winsorization' (replacing the extreme 

observations by values equal to the second-most extremes) and various 

Bayesian procedures which essentially give little weight in the 

estimation procedure to the extreme observations. Various methods 

of estimating of the mean and variance in normal samples, robust 

against the presence of outliers, are discussed fully by Anscombe 

(1960 and 1961), Guttman and Smith (1969 and 1971) and Gebhardt 

(1964 and 1966). In the case of the estimation of parameters in an 

exponential population the literature is equally extensive and includes 

that of Veale and Hutsberger (1969), and Mount and Kale (1973) as 

well as the numerous papers discussed in the following chapter. 

Approaching the problems of estimation in the presence of outliers 

from an essentially Bayesian viewpoint is the work of de Finetti (1961), 

Tiao and Guttman (1967), Box and Tiao (1968), Guttman (1973) ,and 
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Guttman and Khatri (1975). 

The final issue of import arising from the formulation of the 

test of outliers given above is that the particular observation (or 

observations) singled out as 'extreme' and tested as outlying depends 

upon the form of the alternative hypothesis. For example, in the 

case of normal samples, if the alternative hypothesis is that any 

outlier arises from a popUlation with a larger mean than that of the 

rest of the sample then the 'extreme' observation is clearly the 

maximum of the sample. Correspondingly the 'extreme' observation 

is the minimum of the sample if the alternative hypothesis is that 

any outlying observation arises from a population with smaller mean 

than that of the remainder of the sample. If, however, the 

alternative is 'two-sided' in the sense that it is specified only 

that the aberrant observation arises from a population with a different 

mean then the 'extreme' observation is the maximum or minimum of the 

sample, whichever is more distant from the mean. This important 

point, first emphasised by King (1953), will be discussed further 

in the following chapters. 
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1.4 Probabilistic Models for Outliers 

The formulation of outlier tests given in the previous 

section presupposes a specific probabilistic model for the occurrence 

of outliers, a model which is contained in the statement of the 

alternative hypothesis. It is assumed that a sample of size n 

containing k outliers (where k is assumed to be known) may be 

described probabilistically by saying that the sample is composed of 

n-k observations arising from one distribution, F, say, and k 

observation arising from some different distribution G, say, (or 

distributions G.). 
~ 

This may be described as a contamination model; 

that is the sample of observations from the distribution F is 

contaminated by the inclusion of observations from the distribution G. 

An intrinsically different form of model for 'outliers' which 

may be termed a 'mixture' model, has been proposed by some authors, for 

example by Elashoff (1972) in the case of outliers in linear regression. 

This model does not require the number of outliers in the sample to be 

known. In its most general form it describes a sample containing 

outliers as one where there is a constant probability of (l-p) that any 

particular observation in the sample arises from a distribution F say, 

and a probability of p. that the observation arises from a distribution 
~ 

G
i

, where P=LPi and where usually it is assumed that p is small. This 

is taken as the alternative to the null hypothesis that all observations 

in the sample arise from the distribution F. 

This second model has some considerable intuitive appeal since it 

reflects the 'generation' of any outliers in the sample; it assumes 

that there is a small probability p that any particular observation in 
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the sample is spurious, i.e. that it arises from one of the distributions 

G. rather than the null distribution F. 
1 

It is easily seen, however, that the assumption of a 'mixture' 

model for outliers is equivalent to testing the null hypothesis that 

the set of observations is a random sample from the distribution F 

against the alternative that it is a random sample from the 'mixed' 

distribution (l-p)F+LP.G. 
1 1 

that is the assumption of a 'mixture' 

model for outliers implies that the test is not so much one for outliers, 

in the sense described in the previous section, as one on the overall 

validity of the model. The essential distinction between the 

'contamination' and 'mixture' models is that the former merely supposes 

that the sample contains a specified number of spurious observations 

'W'hi le. the latter involves the construction of a probabilistic mechanism 

to describe the actual generation of the spurious observations. 

The model assumed throughout the following chapters is the 'con-

tamination' model. In Chapter 2 the distribution F is taken to be a 

gamma distribution r(~,r) where the degrees of freedom parameter r is 

assumed known. In Chapters 3 and 4 it is taken to be a normal 

distribution N(~,02), the four distinct cases involving ~ and 02 known 

and unknown are considered separately. In Chapter 5 the distribution 

F is taken to be N(X~,02) where X is a known matrix and ~ is an unknown 

vector, and in Chapter 6 it is taken to be the multivariate normal 

distribution N(~,A), where again the four distinct cases of ~ and A 

known and unknown are considered separately. In the derivations of the 

various likelihood ratio test criteria the contaminating distribution F 

is taken to be of the same family as F but with a change in scale or 

location, or both. In cases w'here the distribution G is of the same 
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family as F but with a change in location some of the tests for 

outliers become particular cases of the so-called 'slippage tests' 

discussed in the cases of univariate normal samples by Paulson (1952) 

and more generally in the cases of multivariate normal samples by 

Karlin and Truax (1960). 

It may appear somewhat unrealistic to assume that any outliers in a 

sample arise from the same form of distribution as the rest of the 

sample but with a change in location or scale. If the outliers reflect 

gross errors in the actual recording or copying of data, such as the 

interchanging of a pair of adjacent digits, or even some quite arbitrary 

misrecording, then indeed it may not be possible to regard the outliers 

as arising from the same distribution, except for a shift in location 

or a change in scale, as the rest of the sample. If however the 

recording error is say the omission or addition of a terminal zero, or 

if the outlier reflects the measurement of a unit from a set similar to, 

though distinct from, the rest of the experimental units, then the outliers 

may well be regarded as arising from a distribution shifted in 

location or scale from that of the rest of the sample. Only some 

external knowledge of the likely causes of any outliers in the data 

can settle this question. Some examples are discussed in Chapter 5 

where a likely cause of outliers was identified which indicated that 

outliers in the data could be regarded as arising from a normal 

distribution with a shift in mean, of unknown magnitude, but with the 

same variance, as the rest of the sample. Another interesting example 

of this kind has been discussed by Finney (1974), and relates to a 

study performed by his former student B.K. Thompson, now of the 

University of Toronto. The data were the weights of a very large 
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number of chickens (measured in kilograms), data which could be assumed 

to be normally distributed. The chickens had been weighed on balance 

scales at regular intervals in their growth by an assistant. It 

was recognised that the sheer numbers of chickens weighed at each 

session meant that the assistant was liable to misrecord the weights of 

some birds and further it was recognised that the most likely form of 

error was a miscounting of the individual weights on the balance, so 

that it was possible that the recorded weight of a chicken could be in 

error by 50, 100, 500 or 1000 grams. It would therefore be entirely 

reasonable to suppose that any outliers in the data were observations 

from a normal distribution with a shift in mean (in fact a shift of 

precisely 50, 100, 500 or 1000 grams) from that of the rest of the sample. 

It is of interest to note (Thompson (1973» that this particular set of 

data was first 'screened' for the presence of recording errors by 

screening separately the data for each 'family' of chickens (i.e. 

chickens raised from the same clutch of eggs) for outliers, using as 

test criterion the studentized extreme deviation from the mean. However 

this approach failed to detect any outliers in the data and it was not 

until the sequences of weights of individual chickens were examined, 

as discussed by Finney (1974), that the recording errors were detected. 

This example illustrates a further feature of the difficulties 

involved in the detection of outliers. A wide range of test criteria 

can only detect an outlier when it occurs as the 'extreme' of the sample, 

that is if the value of the test criterion used (in the above example the 

maximum studentized deviation from the sample mean) achieves its most 

extreme value for the outlying observation. In samples from a 

unimodal population this means that outliers can only be detected if 

they occur as either the maximum or the minimum of the sample. The 



1.20 

reason that outliers were not detected by the first screening, 

family by family, of Thompson's data was that the intra-family variation 

was so large that frequently the observations later detected as outlying 

did not occur as the extremes of their particular families; in cases 

where they did they were not sufficiently separated from the rest of 

the sample to allow their declaration as outlying. It was only by 

examining a sequence of numbers, representing the weights of a chicken 

at regular intervals in the course of its growth, such as 

1·20, 1·60, 1·90, 1·55 2·20 2·25 

that the observation 1·55 is readily identified as outlying, particularly 

when it is remembered that outliers are likely to be in error byO~kg. 

Formal tests of outliers in such time series data are discussed by Fox 

(1972) • 

Finally it must be noted that it is only possible to investigate 

the power of tests for outliers if the distribution from which they 

arise is specified. Studies of the power of various outliers tests 

have been made by a number of the authors referred to in later chapters 

and also, in a paper specifically devoted to the subject, by David 

and Paulson (1965). 
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1.5 The Aims and Results of Outlier Detection 

Two basic reasons for scrutinizing data for the presence of 

outliers may be distinguished. The first is to 'clean up' or 

'launder' the data before performing any further analysis; the 

second is that any outliers in the data may be of intrinsic interest, 

representing, in the context of variety trials say, the 'high yielding' 

variety. 

Historically it was the first of these that was the prime 

motivation in the development of the many techniques for the detection 

and rejection of outlying observations. Many of these techniques 

were developed by experimental scientists (and in particular by 

astronomers) to handle the spurious observations occurring in their 

own sets of experimental data. Rider (1933) gives a comprehensive 

account of this early work, starting from the experimentally motivated 

work of Peirce (1852), quoted earlier, on a series of measurements of 

the diameter of Venus to the more statistically based work of Tippett 

(1925) and Irwin (1925) discussed in Chapter 4. It was only later 

that similar techniques and methods were applied to samples where the 

outliers were themselves of intrinsic interest, such as the problems 

in harmonic analysis considered by Fisher (1929) and in certain 

geometrical problems considered by Stevens (1939), which are discussed 

in the following Chapter 2. 

The decision of how to proceed when an outlier has been detected 

in a sample involves not only consideration of the reason for 

examining the sample for outliers, but also consideration of the aims of 

the entire analysis. If the sample has been scrutinised for the 
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presence of outliers with a view to 'cleaning up' the data then the 

outliers can only be 'rejected' if the very fact of their occurrence 

is immaterial to the purpose of analysis. To take the original 

astronomical example considered by Peirce (1852), as illustration; 

if the aim of the analysis is the estimation of the true diameter of 

Venus, then the inclusion of any outliers in this estimate can only, 

as he says so succinctly, "perplex and mislead the inquirer". If, 

however, the aim of the experiment were an investigation of the reliability 

of the astronomical equipment used to make the measurements, then the 

very fact that an outlier had occurred would be of great importance. 

Sometimes the decision of whether or not to reject the outliers 

can only be made after consideration not only of the purpose of the 

analysis but also of the likely causes of the outliers. Kruska1 (1960) 

discusses a hypothetical example relating to the accuracy with which 

bombs are dropped on a target. He supposes that a few of the bombs 

are very wide of the target and that it was observed that the fins 

on these wild bombs came loose in flight. He points out that if the 

purpose of the analysis is to investigate the accuracy of the bomb sight 

then these outliers are irrelevant, while if the aim is to investigate 

the accuracy of the bombing system as a whole then the occurence of 

outliers is of vital interest. 

The essential point of the example of Kruskal's bombs is that it 

would only be possible to discount entirely the outliers from the 

assessment of the bombsight accuracy with the knowledge that the fins 

had come loose on the bombs involved. If this were not known then the 

outliers might have had to have been taken to reflect inaccuracies in 

the bombsighting mechanism. In the example on the measurements of the 
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diameter of Venus, however, it would not be necessary to know the causes 

of any outliers in the data before excluding them from the final 

estimate of the Venusian diameter. 

Of course there can be no invariable rule, applicable to all 

situations, for dealing with outliers once they have been detected. 

The examples discussed above illustrate that the decision of whether 

to 'reject' or 'retain' them (or indeed 'correct' them, as would perhaps 

be possible with Thompson's data discussed in the previous section) 

can only be made in the light of the particular experimental situation 

involved. 
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Chapter 2 

Outliers in Gamma Samples 

The problems associated with the occurrence of outliers in 

samples from exponential parent populations have received much 

attention in recent years. The impetus for this work lies in 

practical situations, as is indeed the case with the study of all 

outlier problems. The particular context within much of this work 

has been concentrated, is that of life testing, that is testing 

batches of manufactured items (in particular electronic components), 

whose times to failure may be considered to be exponential random 

variables. In such situations the experimenter may be confronted 

with items which survive for a surprisingly long time or which fail 

suspiciously quickly. The experimenter will then be interested in 

whether the 'abnormal' items are truly representative of the batch 

of items under test or whether there is any evidence to indicate 

that the 'abnormal' items are defective in some way. The statistical 

problem, given the observed times to failure of the items, is then to 

decide whether the extreme observations in the sample are consistent 

with the rest of the data or whether there is evidence that they may 

be outliers. 

Of course life testing is by no means the only situation which 

gives rise to samples of observations of an exponential random variable. 

Indeed some of the early distributional results of importance for the 

detection of outliers in exponential samples were obtained within 

entirely different contexts. Fisher (1929) considered the problem 

of testing the largest amplitude in a harmonic analysis, Stevens (1939) 
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and Fisher (1940) investigated a problem in geometrical probability, 

and Cochran (1941) examined the problem of testing the homogeneity 

of a set of estimated variances. Although none of these studies 

was directed to the specific problem of outlier detection, all 

developed methods and results which may be used to test as outlying 

the largest observation ~n an exponential, or chi-square, or more 

generally gamma sample. In a later section two examples are discussed 

one of which involves outliers in a sample of excess cycle times in 

steel manufacture and the other of which concerns the validation of 

a pseudo-random number generator in a simulation program. In the 

next two chapters it is shewn that the problem of detecting outliers 

in 'samples from a normal distribution with known mean may be reduced 

to that of detecting outliers in gamma samples. 

While the detection of outliers in exponential, and more generally 

gamma, samples is applicable to a wide variety of practical situations 

it is in the field of life testing that it has received perhaps the 

greatest attention. This is clearly shewn in the work of Epstein 

(1960(a),(b», Laurent (1963), Like~ (1966) and Kabe (1970), all of 

whom consider tests for a single outlier in such situations. Darling 

(1952), who considers the distribution, under general conditions, of 

a statistic which in the particular case of a gamma distribution is 

appropriate for testing for an upper outlier (the statistic T(n) of 

section 2.2), refers to applications in the broader area of quality 

control. Other work, following a rather different approach to the 

problem of outliers, though still within the context of life testing 

is that of Basu (1968), Joshi (1972), Kale (1974,1975), Kale and 

Sinha (1971), Sinha (1972,1973(a),(b),(c», Veale (1975), and Veale 

and Kale (1972). This work is directed more to the problems of 
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estimation in the presence of outliers rather than to direct tests 

for their detection. 

The results of this chapter apply to the problems of detection 

and not directly to estimation. The null distributions of 

likelihood-based test criteria for single and mUltiple outliers 

occurring at either the upper or the lower end of a gamma ,sample 

are obtained using a recursive procedure. The methods are extended 

to consider other criteria for testing for a single outlier and to 

a criterion appropriate to testing simultaneously the largest and 

smallest observations in a gamma sample. 

the terminology and notation. 

The first section establishes 
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2.1 Preliminaries 

Let xI"",xn be a sample from a gamma population with density 

function 

r A r-I 
r(r) x exp(-Ax) (x > 0) (2. I) 

where r ~s known but A ~s unknown. Denote the ordered sample by 

X(I)"",x(n) where x(l) < ••• Let S 
n 

n 
= Ix. ,x = S In 

, 11. n n 
1.= 

and T . = x./S ~ 
n,J J n Also write T (') = x(,)/S n, J J n 

and in particular 

• n ) 
T () = maf (T . = x(n)/Sn ; n, n J= n,J 

in cases where the sample size is 

clearly n, x , T , T (') and T () will be abbreviated to n n,n n, J n, n 

X, Tn' T(j) and T(n) respectively. For any j, T ,follows a beta 
n,J 

distribution with parameters rand r(n-I), i.e. 'its density function 

is B ( 1)(') where r,r n-

Ba,b (u) 
a-I b-I {r(a+b)/r(a)r(b)} u (I-u) (0 < u < I) (2.2) 

(Here, and elsewhere, a density function whose value is specified 

only over certain regions is understood to be otherwise zero.) 

Two classes of criteria for testing for outliers will be 

considered, firstly 'studentized' statistics of the form T(n) and 

secondly those of the form 

y = 
Xes) -X(r) 

x(q)-x(p) 

, 

(I ~ P ~ r < s ~ q ~ n, q - p > s - r) (2.3) 
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where, for example, the choice s = q = n, r = n - I, P = I is 

made when testing whether or not the largest observation may be an 

outlier. Statistics of both forms possess two essential qualifications 

for consideration as outlier detecting criteria; firstly their value 

is sensitive to the presence of outliers and secondly they are 

independent of the scale of measurement used. 
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2.2 The Statistic T(n) 

It is shewn first that statistics of the form T(n) may be 

regarded as likelihood-based in the particular case when the alternative 

to the null hypothesis, that all members of the sample come from the 

same gamma population, is that all but one observations come from 

tr.at gamma population and the remaining one arises from a gamma pop-

ulation with a smaller scale parameter. 

Let Ho be the hypothesis that xI, ••• ,xn come from a gamma 

population with density (2. I) and let HI be the hypothesis that 

XI': •• ,xn_1 come from that population and that one observation, 

X without loss of generality, arises from a papulation with density 
n 

function 

lJr r-I 
r(r) X exp (-lJx), (x > 0), 

where J.l < ).. 

Under H the log-likelihood is 
a 

n 
(where K(xl, ••• ,xn) = (r-I)L l logxi - nlog(r(r») 

which is a maximum when ). = r/x giving a maximised log-likelihood 
n 

under H of a 

nrlog(r/x) - nr + K(xl, ••• ,x ). n n 
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Under HI the log-likelihood is 

(n-l)rlogX-(n-l)Xx I+rlog~-~x +K(xl, .•• ,x ) n- n n 

which is a maximum when 

A = r/xn_1 and ~ = r/xn , giving a maximised log-likelihood under HI 

of 

The difference between the maximised log-likelihoods under Hand o 

HI is thus 

nrlog(x )-(n-t)rlog(x l)-rlog(x), n n- n 

which may be written as 

Thus it is seen that the statistic T(n) has the important property 

that it is essentially the increase in the maximised log-likelihood 

consequent upon acceptance of the alternative hypothesis that the 

queried observation arises from a different distribution. 
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2.2. I A Recursive Algorithm for the Distribution of T(n) 

Suppose T(n) has density function an (.) and distribution' 

function A (.). Then n 

an(u)du = P [T(n) E (u,u+du)J 

n 
= LP [T . E (u,u+du),T () = T 

j=1 n,J n, n 
. ] 

n,J 

= nP [T E (u,u+du),M~i{x /(S -x )} < x /(S -x )J n,n 1<.=1 1<. n n n n n 

= nP [T n,n 

= nP [T E (u,u+du)J n,n 

(noting that T = x /S and ~ /(S -x ) are independent for each n,n n n 1<. n n 

k=I,2, ••• ,n-l, since the x. follow a gamma distribution). 
~ 

Thus 

an(u)du = nP [Tn,n E (u,u+du)J P [Tn-I,(n-I) < u/(I-u)] , 

which gives the recurrence relation 

a (u) a n6 ( 1)(u)A I{u/(l-u)} • n r,r n- n- (2.4) 

Consider first the particular case of an exponential parent 

population, (r=I). If I ~ u < I then u/(l-u) ~ I, so 

A l(u/(l-u» = I and hence from (2.4) n-
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A (u) = l-n(l-u)n-l. 
n 

1 
If 3 ~ u ~ ~ then ~ ~ u/(I-u) ~ 1 and so, from (2.5), 

n-2 An_l(u/(I-u» = 1-(n-l){(1-2u)/(I-u)} ,and then, from (2.4), 

a (u) 
n 

n-2 n-2 
= n(n-I) (l-u). -n(n-I)2(l-2u) , 

and in general for 1/(q+l) < u ~ i, where q =[&] , 

n-2 2 n-2 a (u) = n(n-I (I-u) -n(n-I) (1-2u) + 
n 

n!(n-I) n-2 
(q-l)!(n-q)! (l-qu) 

q
-I () i+l n-l n-2 = n(n-I)L(-) . {1-(i+l)u} , 

. 0 1 1= 

(2.5) 

(2.6) 

This is of course the well-known result of Fisher (1929,1940), 

and which has also been obtained by Darling (1952) who used a method 

employing characteristic functions. 

For general r, the same procedure can be applied, lSing the 
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recursive formula (2.4) to evaluate the functions a (u),A (u) 
n n 

1 in successive intervals l/(q+l) < u ~ - (q=I, ••• ,n-I). In 
q 

particular, since 

An- 1 (ul (I-u» if u ~ ! 

and An- 1 (u/(l-u» < 1 if u < ! 

it follows that a (u) = nS ( I)(u) if u ~ ! n r,r n-

and 

so 

and 

a (u) < nS (u) if u < 1 n r,r(n-I) 2 

P [T(n) > uJ = I-A (u) 
n 

1 

1 
= nf Sr r(n_l)(t)dt 

u ' 

P [T( ) > uJ< nf B ( I)(t)dt n r, r n-
u 

if u ~ ! 

if u < !. 

Thus, if r is a positive integer, the upper tail probability 

P [T (n) > u J , which can be used as a significance probability 

for testing the largest observation as an outlier, satisfies 

P [T(n) > uJ = nP [F2r ,2r(n-l) > (n-l)u/(l-u)J, if u ~ 1, 

P [T(n) > ~< nP [F2r ,2r(n-l) > (n-l)u/(l-u)J , if u < !. 

where F2r ,2r(n-l) denotes a variate following an F-distribution 

with (2r,2r(n-I» degrees of freedom. 

(2.7) 
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2.3 The Statistic T(I) 

The statistic Tn,(I) is suitable for testing the smallest 

observation, x(l) as an outlier in a gamma sample of size n; 

not only is its value deflated if the observation x(l) is an outlier 

but it may also be regarded as likelihood-based in the sense of 

section 2.2, where now the alternative hypothesis is that one 

observation arises from a gamma distribution with a larger scale 

parameter. 

Suppose Tn ,(I) has density function bn (.) and dist:ibution 

function B (.). 
n 

Then, using an argument similar to that of 

section 2.2.1, we have the recurrence relation 

bn(u) = n8r ,r(n_I)(u) [1-Bn_ 1 (u/(I-u»J , (0 ~ u ~ lIn). 

(2.8) 

Since BI(u) = 0 or 1 according as u < 1 or u ~ 1 (2.8) gives 

= 28 (u) r,r 

(0 ~ u ~ l>, 

(2.9) 

ans successive use of (2.8) gives b
3

(u), b4(u), ••• ,bn (u). 

In the case of an exponential parent population, r=l, 
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and (2.8) becomes 

n-2 
b (u) = n(n-I)(l-u) [l-B I(u/(I-u»] (0 ~ u ~ I/n) n n-

whence bn(u) = n(n-I) (l_nu)n-2 (0 ~ u ~ I/n). (2.10) 

In the case r=2, 

b2(u) = 12u(1-u) 

and the recurrence relation (2.8) is 

b (u) = n(2n-l) (2n-2)u(l-u)2n-3 [I-B l(u/(I-u)], (0 ~ u ~ I/n) n n-

whence recursively 

(0 ~ u ~ 1/3) 

(0 ~ u ~ 1/4) 

(0 ~ u ~ 1/6) 

b
7

(u) = I092u(I-7u)5(1+24u+75u2_920u3_2265u4+7728u5+3997u6) 

(0 ~ u ~ 1/7) 

and so on. 

(2. II) 
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In the case r=3, 

and the recurrence relation (2.8) is 

1 2 3n-4 bn(u) = 2(3n-I)(3n-2)(3n-3)u (I-u) [1-Bn_l(u/(I-u)] , (0 ~ u ~ I/n), 

so, proceeding recursively 

(0, u It; 1/3) 

(0 ~ u ~ 1/4) (2.12) 

and so on. As rand n increase the polynomial expressions for 

b (u) become increasingly difficult to compute. 
n 

However the lower 

tail probability P [T(I) < u] , which, as in section 2.2.1, may be 

used as a significance probability for testing the smallest 

observation as an outlier, satisfies the inequality 

P [T(l) < u] < nP [F2r ,2r(n-l) < (n-l)u/(I-u)] , (u ~ I/n), 

or equivalently 

P [T(I)< u] < nP [F2r (n-I),2r > (I-u)/(n-I)u] , (u ~I/n). 

(2.13) 
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2.4 The Joint Distribution of T(I)' T(n) 

In order to consider the null distribution of certain statistics 

appropriate for testing the largest and smallest observations 

simultaneously as outliers, it is necessary to find the joint 

distribution of T(I)' T(n)' under the null hypothesis that xI' 

x2"",xn are all observations from the same gamma population. 

Suppose this distribution has joint density function c (.,.) and 
n 

distribution function C (.,.). 
n 

n 

and since L T(J') = I it follows that 
j=1 

(n-I)T(I) + T(n) ~ I 

and that 

T(I) + (n-I)T(n) ~ I. 

Thus c (u,v) is zero outside the region R defined by 
n c 

For (u,v) e: R c 

u ~ 0 

(n-l)u+v ~ 

u+(n-I)v' ~ I. 

Cn(u,v) du dv = P [T(I) e: (u,u+du),T(n) e: (v,v+dv)J 

n n 
= L L P [T . e: (u.u+du),T . e: (v,v+dv), 

n,1 n,J i=1 j=1 
i~j T = T T = n, (I) n,i' n, (n) T .J n,J 
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n(n-]) P [T E (u,u+du), T E (v,v+dv), n,n-] n,n 

T =T T =T J n,(]) n,n-]' n,(n) n,n 

= n(n-I) P [T E (u,u+du), T E (v,v+dv), n,n-] n,n 

= n(n-]) P [T ] E (u,u+du), T E (v,v+dv), n,n- n,n 

u/(]-u-v) < Tn- 2,(]) < Tn- 2,(2) <. v/(]-u-v)J 

= n(n-]) P [T ] € (u,u+du), T € (v,v+dv)J x n,n- n,n 

x p [u/(]-u-v) < Tn- 2,(]) < Tn- 2,(n-2) < v/(]-u-v)J 

(2.]4) 

(noting that both T ] = x ]/S and T = x IS are independent, n,n- n- n n,n n n 

for each k=],2, ••• ,(n-2), of Tn- 2 k = , ~ I(S -x -x I) since the x. 
K n. n n- 1 

follow a gamma distribution). 

The first of the two probabilities in (2.J4) is e (u,v)du dv, where 
n 

e (u,v) is the value of the joint density of T 1 and T at the n n,n- n,n 

point (u,v). Now the joint density of (x
l
,x2 ' ••• ,xn) is 

n r r-) 
.TI){A x. exp(-Ax.)/r(r)} dx

l
dx2, ••• ,dxn • 

1= 1 1 

The Jacobean of the transformation 

s 
n 

n n 
t2 = x2/Ix., ••• ,t = xlIx. 

1 1 n n 1 1 



2. 16 

n n nr -n r-I \ r-I nr-l 
A {fer)} {TI(t. )}(I-Lt.) s exp(-As )ds dt2 .•. dt , 

j=2 J 2 J n n n n 
(2.15) 

which, on integrating out the variables S ,T2, ... ,T 2 gives value 
n n-

of the joint density of r I' T at the point (u,v) as n- n 

2 r-l r-I r(n-2)-1 f(rn)/{(f(r» f(r(n-2»}u v (I-u-v) • (2.16) 

Thus (2.14) with (2.16) gives 

2 r-I r-I r(n-2)-1 c (u,v) = n(n-l)r(rn)/{(r(r» f(r(n-2»}u v (l-u-v) ~ 
n 

where ~ = P [u/(I-u-v) < Tn- 2,(I) < Tn- 2 ,(n-2) < v/(I-u-v)J. (2.17) 

When n ~ 5, (2.17) can be written 

~ = P[Tn- 2,(n-2) < v/(I-u-v)J - P [Tn- 2,(I) < u/(I-u-v), 

Tn- 2,(n-2) < v/(I-u-v)J 

= An_2{v/(I-u-v)}-Cn_2{u/(I-u-v), v/(I-u-v)}. 

Hence for n ~ 5 

c (u,v) ~ n(n_l)f(rn)/{(r(r»2r(r(n-2»}ur - 1vr - I (I-u-v)r(n-2)-1 
n 

x 

x [An_2{v/(I-u-v)}-Cn_2{u/(I-u-v), v/(I-u-v)}]. (2.18) 

When n=3, the probability ~ in (2.17) is I if u/(J-u-v) < J and 
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and v/{I-u-v) > I, and is 0 otherwise; hence 

3 r-I r-I r-I 3!{r(3r)/(r(r»}u v (I-u-v) , 

(2u+v < I, u+2v> I, u > 0). (2.19) 

When n=4, T2,{I)+T2,{2) = 

If = p [T2,{I) 

= 2 r (2r) 
(r(r»2 

where w = (l-u-2v)/{I-u-v) 

u/ (J-u-v) 

and so 

> max{I-(v/(I-u-v»,u/(I-u-v)}] 

I 
J t r-I (I-t) r-I d t {using (2.9», 
w 

for 2u+2v < I, (u,v) £ R 
c 

for 2u+2v > I, (u,v) £ Rc; 

hence, in the cases where r is a positive integer, 

(2.20) 

2(r-I-k) 2k+1 
(l-u-v) z 

where z - u+3v-1 for 2u+2v < I, u+3v > 1, u > 0 

z = 1+.3u-v for 2u+2v > I, 3u+v < I, u < 0 

Recursive use of the formula (2.18) now gives expressions for 

c (u,v) for odd n, using (2.19) initially, and for even n, using 
n 

(2.21) initially. 

(2.21) 

In the particular case rzl, (the exponential case), this gives 
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(u+2v> I, 2u+v < I, u > 0), 

c4(u,v) = 2.32.4(u+3v-I), (u+3v> I, 2u+2v < I, u > 0), 
, 

2.32.4{(u+3v-I)-2(2u+2v-I)}, (2u+2v> I, 3u+v < I, u > 0), 

CS(u,v) = 3.42.S(u+4v-I)2, (u+4v> I, 2u+3v < 1, u > 0), 

3.42.S{(u+4v-I)2_3(2u+3v-I)2}, (2u+3v> I, 3u+2v < 1, u > 0), 

3.42.5{(u+4v-I)2_3(2u+3v-I)2+3(3u+2v-I)2}, 

(3u+2v> I, 4u+u < I, u > 0), 

c6 (u,v) = 4.52.6 (u+5v-I)3, (u+5v> I, Zu+4v < 1, u > 0), 

4.S2.6{(u+5v-I)3_4(Zu+4v-I)3}, (2u+4v> 1, 3u+3v < 1, u > 0), 

4.S2 .6{(u+Sv-I)3_4(2u+4v-I)3+6(3u+3v-I)3}, 

(3u+3v> I, 4u+2v < I, u > 0), 

4.S2 .6{(u+5v-I)3_4(2u+4v-I)3+6(3u+3v-I)3_6(4u+2v-I)3}, 

(4u+2v> I, Su+v < I, u > 0), 

and generally 

c (u,v) = k (u+(n_l)v_l)n-3, (u+(n-I)v> I, Zu+(n-Z)v < I, u > 0), 
n n 

n-3 . n-3 
k {(u+(n-I)v-I) -(n-I)(2u+(n-2)v-l) }, 

n 

(2u+(n-2)v> I, 3u+(n-3)v < I, u > 0), 

n-3 n-3 
k {(u+(n-I)v-I) -(n-2) (Zu+(n-2)v-l) 

n 

(
n-2) n-3 + 2 (3u+(n-3)v-l) - ••.• 

+ (_I)n (n-z) 
n-4 

_(_l)n (:=~) 

n-3 «n-3) u+3v-l) 

n-3 «n-2)u+2v-l) }, 

«n-Z)u+2v> I, (n-I)u+v < I, u > 0), 
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where k = (n-2)(n-I)2n. 
n (2.22) 

This may be written more concisely as 

c (u,v) = (n-2)(n-I)2nL (-1)1 n~2 {(i+l)u+(n-i-l)v-]}n-3 q-2 . ( ) 

n i=O ~ 
q-2 (n-2) n-3 -(-I) q-2 {qu+(n-q)v-I} , 

for qu+(n-q)v > ], (q+l)u+(n-q-l)v < 1, (2.22a) 

Again, in the particular case r=2 (2.]9) and (2.21) become 

c3 (u,v) - 720uv(]-u-v), (u+2v> ], 2u+v < ], u > 0) 

c
4

(u,v) = ]0080uv(u+3v-]){(]-u)2_3v2},(u+3v > ], 2u+2v < ], u > 0), 

]0080uv(]-3u-v){(]-v)2_3u2},(2u+2v> ], 3u+v < ], u > 0), 

(2.23) 

whence c (u,v) can be obtained recursively for further values of n. n 

For other positive integral values of r (2.]9) and (2.2]) give 

expressions for c
3
(.,.) and c

4
(.,.) allowing the recursive evaluation 

of c (.,.) by (2.]8). 
n 

In cases when r is non-integral, for example, 

when the parent population is chi-square with odd degrees of freedom, 

c3 (.,.) is again given by (2.]9) but it will not be possible to 

express c4(.,.) in the polynomial form of (2.21). (2.18) can 

nevertheless be used to derive expressions recursively for c (.,.) from 
n 

(2.]9) and (2.20). 
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2.S The Null Distribution of T(n)-T(l) 

The joint density cn(.,.) of T(l)' T(n) may be used to derive 

expressions for the density function, d (.), say, of the statistic 
n 

Wen) = T(n)-T(I)' under the null hypothesis that all the observations 

are from the same gamma population. The value of the 'studentized' 

statistic Wen) will be particularly inflated if x(n) is large and 

xCI) is small, in relation to the values of x(2), ••• ,x(n-I)' and so 

is an appropriate statistic to use for testing simultaneously the 

largest and smallest observations in a gamma sample. 

The transformation w = v-u, z = (n-I)u+v gives the joint 

density of Wen) = T(n)-T(I)' Zen) = (n-I)T(n)+T(n) from cn(u,v). 

Integration out of the variable z then gives the density function 

In the exponential case, r=l, this gives 

d3 (u) m 4u, (0 ~ u ~ 1/2) 

4{u-(2u-I)}, (1/2 ~ u ~ I) 

d4 (u) = 9{2u2 }, (0 ~ u ~ 1/3) 

9{2u2-(3u-I)2}, (1/3 ~ u ~ 1/2) 

9{2u2-(3u-I)2+2(2u-I)2}, (1/2 ~ u ~ 1) 

dS(u) - 16{6u3}, (0 ~ u ~ 1/4) 

16{6u 3-(4u-l)3}, (1/4 ~ u ~ 1/3) 

16{6u3-(4u-l)3+3(3u-I)3}, (1/3 ~ u ~ 1/2) 

16{6u3-(4u-l)3+3(3u-I)3_3(2u-I)3}, (1/2 ~ u ~ 1) 
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d6(u) = 25{12u4}, (0 ~ u ~ I/S) 

2S{12u4-(Su-I)4}, (I/S ~ u ~ 1/4) 

25{12u4-(Su-I)4+4(4u-I)4}, (1/4 ~ u ~ 1/3) 

25{12u4-(Su-I)4+4(4u-I)4_6(3u-I)4}, (1/3 ~ u ~ 1/2) 

2S{12u4-(Su-I)4+4(4u-I)4_6(3u-I)4+4(2u-I)4}, (1/2 ~ u ~ I) 

and in general 

2 n-2 n-2 (n-2) n-2 dn(u) = (n-I) {(n-3)(n-2)u -«n-l)u-l) +l I «n-2)u-l) - ••• 

+(_I)n-q( n-2 ) ( u_l)n-2}. 
n-q ( n-q-l q 

= (n-I)2{(n-3) (n-2)un- 2-I(-I)i ~-2) {(n_i)u_I)}n-2} 
i=1 1-1 

where q = [I/u]. 

In the case r=2 the corresponding expressions for d3 (u) and 

d3(u) - 40/9u(2-5u2), 

40/9(I-u)3(1+4u), 

(0 ~ u ~ 1/2), 

(l /2 ~ u ~ I), 

(0 ~ u ~ 1/3), 

21/32{(I-u)5(13+IOlu)-2(1-2u)4(13+I04u+lOOu2), 

(l /3 ~ u ~ 1/2), 

21/32(I-u)5(13+IOlu), (l /2 ~ u ~ I). 

(2.24) 

(2.25) 
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2.6 Several Upper Outliers 

Consider first the case of two upper outliers. 
_ n 

Suppose g (.,.) 
n 

is the joint density of T(n_l) and T(n); since L~T(j) = I and 

o < T(I) < ••• < T(n) < I, 

Thus g (u,v) will be zero outside the region R2 defined by n g 

For (u,v) E R2 
g 

u + v < I, 

(n-I)u + v > I, 

o < u < v. 

gn(u,v)du dv = P [T(n_l) £ (u,u+du),T(n) £ (v,v+dv)] 

m n(n-I)P [T I E (u,u+du), T £ (v,v+dv), n,n- n,n 

T - T T = T ] n,(n-l) n,n-I' n,(n) n,n 

= n(n-l) P [T I E (u,u+du), T £ (v,v+dv), n,n- n,n 

= n(n-I) P [T I E (u,u+du), T E (v,v+dv)] x n,n- n,n 

x P [Tn- 2,(n-2) < u/(I-u-v)] 
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(noting that both Tn,n-I and Tn,n are independent of Tn- 2,(n-2» 

2 r-I r-I 
= n(n-I)r(rn/{(r(r» r(r(n-2»}u v x 

r(n-2)r-1 x (I-u-v) An_2{u/(I-u-v)}dudv 

(using (2.16». Thus 

g (u,v) = n(n-l)r(rn)/{(r(r»2r(r(n-2»}ur - 1vr - I (I-u-v)r(n-2)-1 
n 

x 

-I 
x {(n-I)6 ( 2)(u/(I-v»} a I(u/(I-v» r,r n- n-

(using (2.4» 

-I r-I r(n-I)-2 
= nr(rn){r(r)r(r(n-I»} v (I-v) an_l{u/(I-v)}. 

(2.26) 

In the exponential case (r=l) this becomes 

g (u,v) = n(n-I) (l_v)n-3a I{u/(I-v)} 
n n-

2 n-3 (n-2) n-3 (n-2) n-3 = n(n-I) (n-2){(I-u-v) - I (1-2u-v) + 2 (1-3u-v) 

q-l(n-2) n-3 - ••• +(-1) q_1 (l-qu-v) } 

_ n(n-I)2(n-2)L(-I)i n~2 {1-(i+l)u-v}n-3 q-I () 
. 0 1 

(2.27) 
1= 

where q - [(I-v)/u] • 

In the case of three upper outliers, if g (u,v,w) is the joint n 

density of T(n-2)' T(n-3)' T(n) then an immediate extension of the 

method used above yields, for (u,v,w) t R~, where R~ is the region 

defined by 
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u+v+w<l, 

(n-2)u + v + W > I, 

o < u < v < w. 

x 

x r(n-3)-1 (I-u-v-w) A {u/(I-u-v-w)} n-3 

= n(n-l)r(rn){(f(r»2r(r(n-2»}-l vr-I wr-I(I-v-w)r(n-2)-2 x 

x an_2{u/(I-v-w)}, 

(using (2.4» (2.28) 

which in the exponential case becomes 

g (u,v,w) 
n 

2 n-4 = n(n-I? (n-2)(I-v-w) an_2{u/(I-v-w)} 

= n(n-I)2(n-2)2(n-3){(I-u-v-w)n-4- (n~3) (1-2u-v-w)n-4 

+ (n;3) (I_3u-v-w)n-4- ••• 

+ (-I)q-I (n-3) {1-qu-v-w)n-4} 
q-I 

q-I i ~n-3) n-4 = n(n-I)2(n-2)2(n-3)L(-I) . {1-(i+l)u-v-w} 
• 0 1 1= 

where q = [(I-v-w)/u] • (2.29) 

For the general case of k upper outliers the same method gives 

the joint density of T(n-k+I)' Tn- k+2), ••• , T(n) as 

g (u,v,w, ••• ,z) = 
n 

k-I -I r-I r-I r-I (n)k_Ir(rn){(r{r» (r(n-k+I»} v w ••• z 

r(n-k+I)-2 (I-v-w- ••• -z) an_k+l{u/{I-v-w- ••• -z)} 

(where (n)k • n:/(n-k): = r{n+l)/r(n-k+l» (2.30) 
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for (u,v,w, .•• z) £ R~, the region defined by 

u + v + ••• + Z < I, 

(n-k+l)u+v+w+ +z > I, 

o < u < v < ••• < z. 

In the particular case r=1 this gives 

g (u,v,w, .•• ,z) 
n 

n-k-I = (n)k_l(n-l)k_l(l-v-w- ••• -z) an_k+J{u/(I-u-v- ••• z)} 

n-k-l (n)k+1 (n-J)k_I{(I-u-v- ..• -z) -

(n-k) n-k-J 
~ J (1-2u-v-w- ••• -z) 

(n-k) n-k +~ ~ (1-3u-v-w- ••• -z) -

q-I(n-k) + (-I) q_1 (l-qu-v-w- ••• 

q-J ( ) \ i n-k = (n)k+l(n-J)k-llo(-> i {J-(i+J)u-v-w-
1= 

where q - [(I-v-w- ••• -z)/u] • 

n-k -z) 

_z)}n-k 

(2.31) 

A useful statistic for testing for k upper outliers in a gamma 

sample is T(n-k+I)+T(n-k+2)+ ••• +T(n) = Zn,(k)' say· This statistic 

is likelihood-based for the alternative hypothesis that k observations 

arise from a single gamma distribution with a smaller scale parameter 

than the other (n-k) observations. The density function of Z () n, n 

hn (.) can, in principle, be found from the above joint density. Now 

since 

hn(u) = P [Zn,(k) £ (u,u+du)J 
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Tn-k+l+Tn-k+2+ ••• +Tn = T(n-k+l)+T(n-k+2)+ ••• +T(n)J 

,.(:) P [Tn-k+1+ .•• +T(n)(u,u+du)J 

_ (n) (u) 
- k Brk,r(n-k) 

The following inequality therefore for the upper tail probability 

holds: 

P [Zn,(k) > uJ ,(~) P [F2rk ,2r(n-k) > «n-k)/k)(u/(I-u»J (2.32) 
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2.7 Several Lower Outliers 

Consider first the case of two lower outliers. Suppose k (.,.) 
n 

is the joint density of T(l) and T(2); 

outside the region ~ defined by 

u + (n-l)v < 

o < u < v. 

For (u,v) £ ~ 

k (u,v) is clearly zero n 

kn(u,v)du dv = P [T(l) £ (u,u+du), T(2) £ (v,v+dv)] 

= n(n-I)P[T 1 £ (u,u+du), T 2 £ (v,v+dv)] x n, n, 

x P [Tn- 2,(I) > v/(l-u-v)] 

z n(n_l)r(rn){(r(r»2r(r(n-2»}-lur - 1vr - I (I-u-V)(n-2)r-1 x 

x {1-Bn_2(v/(I-u-v»} 

-I r-l r(n-I)-2 = nr(rn){r(r)r(r(n-I»} u (l-u) bn_l{v/(l-u)}. 

(using ~.8» (2.33) 

In the exponential case (r=l) this becomes 

n-3 
kn(u,v) = n(n-l)(l-u) bn_l{v/(l-u)} 

2 n-3 = n(n-I) (n-2){I-u-(n-l)v} (2.34) 
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In the general case of m lower outliers the same method gives 

the joint density.kn(u,v, •.• , y,z) of T(I)' •.• , T(m)' for 

(u,v, ••. ,z) £ ~, the region defined by 

u + v + ••• + y +(n-m+l)z < I, 

o < u < v < < z, 

as 

k (u,v), •.• ,z) = (n) r(rn){(r(r»mr(r(n-m»}-lur-lvr-l ••• zr-l x 
n m 

(n-m)r-l . 
x (l-u-v- ••• -z) {l-B (z/(l-u- ••• -z»} n-m 

m-l -I r-l r-l r-l = (n)m_lr(rn){(r(r» r(r(n-m+l»} u v ••• y x 

(n-m+l)r-2 x (l-u-v- ••• -y) b l{z/(l-u-v- ••• -y)}, n-m+ 

(2.35) 

which in the case r=l gives 

n-m-l 
kn(u,v, ••• z) = (n)m_l(n-l)n_l(l-u-v- ••• -y) bn-m+l{z/(l-u-v- ••• -y)} 

n-m-l = (n)m+t(n-l)m_t{l-u-v- ••• -y-(n-m+l)z) • 

(2.36) 

An appropriate statistic for testing the significance of m lower 

outliers in a gamma sample is T(1)+T(2)+ ••• +T(m) - Yn,(m), say. This 

statistic is likelihood-based for the alternative hypothesis that m 

observations arise from a gamma distribution with a larger scale 

parameter than the other n-k observations. The density function, 

t (.), of Y () in principle can be found by transforming the above n . n, m 

density. In the case of two lower outliers in an exponential sample 

this yields 
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t (t) = n(n-l)2/(n-2){(l-~nt)n-2_(1-(n-l)t)n-2} (0 < t < l/(n-l» 
n 

• 2 n-2 
n(n-l) /(n-2){(I-!nt) } (l/(n-I) < t < 2/n). 

Even without the exact distribution of Y () in the general 
n, m 

(2.37) 

case the method of section 2.6 gives t (u) «n)e ( )(u), so that 
n m rm,r n-m 

p [y () < uJ «n)p [F2 2 ( ) < «n-m)/m)(u/(l-u»J n, m m rm, r n-m 

or equivalently 

p [y () < uJ «n)p [F2 ( ) 2 > m(l-u)/(u(n-m»J • n, m m r n-m , rm 

(2.38) 
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2.8 Other Test Criteria 

The recursive methods of the preceding sections can readily be 

applied to statistics of the form given in equation (2.3). These 

were proposed by Dixon (1950, 1951) in the case of testing for outliers 

in samples from a normal parent population, and have been discussed 

in the particular context of an exponential parent population by 

Likes (1966) and Kabe (1970). 

Consider first the statistic 

which can be used for testing the smallest observation as outlying. 

Let mn(.,.,.) be the joint density of T(I),T(2)':(n)' 

will be zero outside the region R defined by m 

u+(n-2)v+w < I, 

u+v+(n-2)w> I, 

o < u < v < w. 

For (u,v,w) E Rand n > 3 m 

m (u,v,w) 
m 

mn(u,v,w) dudvdw = (n)3P [T I £ (u,u+du), T2 £ (v,v+dv), Tn £ (w,w+dw), 

T(I) - TI , T(2) = T2 , T(n) - Tn] 

- (n)3P [T I £ (u,u+du), T2 £ (v,v+dv), Tn £ (w,w+dw), 

n~1 min x. > x
2

, 
i=3 1 

gal < x ] 
i=3 n 
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( ') 3 }-1 r-l r-l r-l r(n-3)-1 = n)3r (rn){(r(r) r(r(n-3» u V w (l-u-v-w) x 

x P [v/(l-u-v-w) < Tn- 3 ,(I)< Tn- 3,(n-3) < w/(I-u-v-w)] 

{ --I r-l r(n-I)-3 = nr(rn) r(r)r(r(n-I»} u (I-u) cn_l{v/(I-u),w/(I-u)}, 

(using (2.17» 

which, upon making the substitution y = (v-w)/(w-u), g~ves the joint 

density function of T(I)' y, T(n) as 

q (u,y,w) = nr(rn){r(r)r(r(n-I»}-l ur-I(I-n)r(n-I)-3(w-u) x n _ 
J 

x c 1{(u+(w-u)y)/(I-u),w(l-u)} 
n-

for (u,y,w) £ R , the region defined by 
q 

(n-2)(u+(w-u)y) + W < l-u, 

(u + (w-u)y) + (n-2)w > I-u. 

o < y < 1, u > O. 

(2.39) 

The distribution of the statistic y can now be derived by integrating 

out the variables u and w, using the expressions for cn_1 given in 

section 2.4. 

For example consider the exponential case (r=l) with n=4. 

Substituting for c3 from (2.22) gives 

Q4(u,y,w) = 4.3!/(2!).(w-u).12 = 144(w-u) 

for 

(3+2y)u+(1+2y)w < 1, (2-y)u+(2+y)w> I, u > 0, 0 < y < 1. 
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Integrating out the variables u and w gives the density function of 

y as 

(0 < y < I) (2.40) 

and, integrating, the distribution function as 

9y/{(2y+I)(y+2} , (2.41) 

in agreement with Likes (1966) and Kabe (1970). 

As an example of a non-exponential situation consider the case 

r=2, n=4. From (2.39) and (2.23) 

m4(u,y,w) = 4.7:/(5:)u(l-u)3(w-u).720(u+(w-u)y)w(I-2u-w-(w-u)y)(I-u)-3 

= 120960uw(w-u)«I-y)u+yw)(I-(2-y)u-(I+y)w), 

(u > 0, (3-2y)u+(1+2y)w < I, (2-y)u+(2+y)w> I). 

Integrating out the variables u and w gives the density function of 

y as 

3/8{11(1+2y)-2+44(1+2y)-3_69(1+2y)-4+24(1+2y)-5 

_IO(2+y)-2_44(2+y)-3_12(2+y)-4+192(2+y)-5}, (0 < y < I), 

(2.42) 

and, integrating, the distribution function as 

3/16{-II(I+2y)-1_22(1+2y)-2+23(1+2y)-3_6(1+2y)-4 

+20(2+y)-1+44(2+y)-2+8(2+y)-3_96 (2+y)-4} (2.43) 
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Consider next the Dixon type statistic 

z = 

which can be used for testing the largest observation in the sample 

as outlying. Let sn(.'.'.) be the joint density of T(I)' T(n_I),T(n)· 

Then s (u,v,w) will be zero outside the region R defined by 
n s 

r 

(n-2)u+v+w < I, 

u+(n-2)v+w> I, 

o < u < v < w. 

For (u,v,w) £ Rand n ~ 3 it is easily seen that the application of 
s 

the method used before gives 

s (u,v,w) = nr(rn){r(r)r(r(n-I»}-l wr-I(I-w)r(n-I)-3 
n 

·x 

x c I{u/(I-w),v/(I-w)}, n-

which, upon making the substitution z = (w-v)/(w-u), gives the joint 

density function of T(I)' z, T(n) as 

t (u,z,w) = nr(rn){r(r)r(r(n-I»}-l wr-I(I-w)r(n-l)-3(w-u) x 
n . 

x cn_l{u/(l-w),(w-(w-u)z)/(l-w)}, 

(2.44) 

provided (u,z,w) £ Rt , the region defined by 
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(n-2)u+(w-(w-u)z) < I-w, 

u+(n-2)(w-(w-u)z) > I-w, 

o < z < 1, u > O. 

The distribution of z can now be obtained by integrating out the 

variables u and w. 

In the exponential case with n=4 for example, 

t 4 (u,z,w) = 144(w-u) 

for (2+z)u+(2-z)w < I, (1+2z)u+(3-2z)w> I, 0 < z < I, u > o. 

Integrating out the variables u and w gives the density function of 

z as 

-2 -2 
6{ (2-z) -(3-2z) } (0 < z < 1), (2.45) 

and, integrating, the distribution function as 

z(z-4z)/{(2-z)(3-2z)}, (2.46) 

in agreement with Like~ (1966) and Kabe (1970). 

In the case r=2~ n=4, using (2.42) and (2.23) 

t
4

(u,z,w) = 120960uw(w-u)(zu+(I-z)w)(I-(I+z)u-(2-z)w) 

(u > 0, (2+z)u+(2-z)w < I, (1+2z)u+(3-2z)w> 1), 

which, upon integrating out the variables u and w gives the density 

function of z as 



2.35 

3/8{10(2-z)-2+36 (2-z)-3_36 (2-z)-4 

-11 (3-2z)-2_44(3-2z)-3+69(3-2z)-4_24(3-2z)-5} 

(0 < z < 1) (2.47) 

with distribution function 

-1 -2 -3 3/16{20(2-z) +36(2-z) -24(2-z) 

, . -1 -2 -3 -4 
-11 (3-2z) -22(3-2z) +23(3-2z) -6(3-2z) -32/3}. 

(2.48) 
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2.9 Two Examples 

2.9.1 An Example in Steel Manufacture 

Table 2.1 shews a sample of 132 excess cycle times in steel 

manufacture. The two largest observations appear surprisingly large 

by comparison with other 130 values. 

( 

Excess cycle time 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1 
12 
13 
14 
15 
21 
32 
35 
92 
97 

Table 2.1 

Frequency 

18 
]2 
]8 
16 
10 
4 
9 
9 
2 
7 
6 
7 
2 
I 
3 
3 
2 
I 
1 
I 

An examination of the sample moments about the mean of the 

reduced sample obtained by omitting the observations 

x(131) = 92 and x(132) = 97 suggests that the distribution of 

excess cycle times may be assumed to be exponential. The two 

values 92 and 97 can be tested as outlying using the results of 

section 2.6. Calculation of the statistic Zn,(k) of that section 

gives 
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ZI3Z,(Z) = (9Z+97)/1043 = 0·8IZ. 

Putting n = 132, k=Z, r=1 in inequality (3.23) gives 

(
132) P [ZI3Z,(Z) > 0·181ZJ ~ 2 P [F4,260 > (130/2)(0·1812/0·8188)] 

= 8646 P [F4,260 > 14 385J 

= 8646 P [X~ > 57·54J 

- (8646)29·77) exp(-28·77) 

< 

Thus there is very strong evidence indeed for regarding the upper 

two extreme values 92 and 97 as outliers. 

Z.9.2 An Example in Simulation 

In an early version of a computer program designed to simulate 

the distribution of stock from a warehouse to a chain of retail 

outlets a library pseudo-random number generator was used to construct 

a sample of exponentially distributed random numbers which were to 

represent the loading times of lorries at the warehouse. Table 

2.2 gives a sample of twelve such values obtained in a trial run of 

the program. 
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Table 2.2 

Loading Times 

87 
62 

124 
53 

343 
21 
32 

4 
3 

1 1 
323 

1067 

The programmer was suspicious firstly of the high value 1067, and 

secondly of the pair of low observations 4 and 3. 

Calculation of the statistic T(n) of section 2.2 gives 

T(12) = 1067/(87+62+ ••• +]067) 

... ]067/2130 

= 0·5009. 

Equation (2.6) with n=]2 gives 

... 12(0.4991)1] 

.. 0-0057. 

There is thus strong evidence to indicate that the observation 
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1067 does not belong to the same distribution as the other II values. 

Armed with this knowledge the progrannner re-examined his program and 

discovered that there was an error in the print instructions and 

that indeed the value 1067 represented not a loading time of a lorry 

but the 'current time' of the simulation. 

The observation 1067 was therefore 'rejected' and an examination 

made of the compatibility of the lowest two observations with the 

rest of the sample. Calculation of the statistic Y () of section . n, m 

2.7 gives 

Y1I ,(2) - (3+4)/1063 

= 0 0 0066. 

Equation (2.37) with n = I] gives 

0·0066 
p [Y]I,(2) ~ 0·0066] - f t]l(t)dt 

o 

o 0066 
= f ]100/9{(1-5·5t)9_(1-IOt)9}dt 

o 

- 1-20/9(]-5 0 5 x 0 0 0066)10+11/9(1-0 0 066)10 

.. 0·082 • 

Thus although the values 3 and 4 appear to be suspiciously low 

the evidence for regarding them as belonging to a different 

distribution from the rest of the sample is weak and it is not 

possible to say with any degree of certainty that either the library 

pseudo-random number generator or the program itself is at faulto 
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Chapter 3 

Single Outliers in Univariate Normal Samples 

The detection and the treatment of outliers in data were 

first studied, as were so many statistical concepts, methods and 

techniques of wider application, in the context of univariate 

normal samples. It was not until comparatively recent years that 

the ideas and methods were developed and extended to consider 

outliers in samples from other parent populations, such as samples 

from exponential, and then more generally gamma, populations 

considered in the previous chapter, or samples from linear models 

and multivariate populations considered in later chapters. The 

reasons for this are clear. The question of the treatment of 

outliers is a practical problem; it arises with the occurrence 

of aberrant or discordant observations in actual data, especially 

data which by their very method of generation are subject to 

contamination or to gross errors of recording or to gross errors 

of measurement. This is in particular true of repeated observations 

of some quantity made in the course of scientific experiment, 

observations which a priori could be'considered to constitute 

a univariate normal sample, and it is in this context that the 

need for coherent and objective methods and techniques for 

handling spurious observations became pressingly apparent in the 

latter half of the nineteenth century. It was by workers involved 

in experimental sciences, notably astronomy, that some of the 

earliest approaches to the problem were made. Very much the 

same reasons that led to outliers in the context of univariate 
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normal samples being the first case to be studied still hold 

true in the present day and make the further study and refine­

ment of techniques in this seemingly narrow area important, and, 

from the viewpoint of the practical experimentalist, essential 

and inevitable. It is with outliers in univariate normal 

samples that this chapter, and the next are concerned; this 

chapter primarily with single outliers and the next primarily 

with multiple outliers. In some cases, however, it is useful to 

avoid the separation and to consider the two cases concurrently. 

The particular aspect of the wide general problem that is 

considered here is the detection of outliers, rather than their 

accommodation by the use of robust estimates or by trimming or 

by Winsorisation or by other methods. The problem of how to 

proceed, as discussed earlier, when an outlier is detected is one 

which needs consideration in the light of the particular experimental 

situation under study. 

Numerous criteria for the detection, and rejection, of 

outliers have been proposed. Some are based upon objective 

considerations, others have only intuitive appeal: intuition which 

may well be i1lfounded as with Chauvenet's'criterion for the 

rejection of outliers. The following sections will be .concerned 

in the main with likelihood-based criteria; likelihood-based that 

is in the face of particular alternatives to the null hypothesis 

that all the observations come from the same normal population. 

It is possible that either, or both, of the two parameters specifying 

the parent normal population may be considered to be known (or at 

least may be independently estimated), and thus not have to be 
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estimated internally from the data. These various cases are 

considered separately in the followingsections; the first section 

establishes the terminology and notation. 
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3.] Preliminaries 

Let x1, ••• ,xn be a sample from a normal population with 

density 

(3.1) 

Denote the ordered sample by x(I), ••• ,x(n) where x(l) < ••• < x(n). 

1 r 1 r 
Let x = - r x. and s2 = - L (x.-x )2, (I ~ r ~ n). 

r r. 1 1. r r. 1 1. r 
1.= 1.= 

Most of the criteria that have been considered for detecting 

outliers fall into three broad classes. These consist firstly 

of statistics based upon either the studentized or else the 

standardised range, that is statistics of the form (x(n)-x(I)/a 

where a is either an internal or external estimate of a as 

considered by David et al (1954), and Hartley (1944), respectively. 

When a is known,o itself is used, this is the case considered by 

Student (1927) 

Secondly there are statistics involving the standardised or 

studentized extreme deviation fr~rr the mean, that is of the form 

(X(n)-~)/a where again ~ and a are either the known values of V 

and a or are estimated, either internally from the sample itself 

or externally. Thirdly there are statistics of the Dixon type, 

that is of the form given in (2.3). 

Falling into rather different categories are statistics of 

the form (x(n)-x(n_]»/o investigated by Irwin (]925) (in a sense 

this is in a class between standardised range and Dixon type 

criteria) and other more specialised criteria, specialised in the 
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sense that they may be designed to have optimal properties for 

special alternative hypotheses. An example of this latter kind 

would be the coefficient of skewness as considered by Ferguson (1961). 

Statistics in all the categories have the two essential qualifications 

for consideration as outlier detecting criteria; firstly their 

value is sensitive to the presence of outliers, and 'secondly they 

are independent, where these are unknown, of both the scale and 

the origin of measurement used. It will be shown that statistics 

in the second category, i.e. ones based upon the studentized extreme 

deviation from the mean, may in certain cases be regarded as 

likelihood-based and it is with statistics of this form that the 

succeeding sections will be concerned. 

The tests and criteria proposed and discussed in detail in 

this chapter are for outliers at the upper end of the sample. The 

null hypothesis (referred to throughout as H ) is that all the 
o 

observations are from the same normal population N(~,02) and the 

alternative hypothesis is that all observations but one come from 

that same normal popUlation whilst the aberrant observation itself 

arises from a different normal popUlation N(~I'o~), where either 

~I > ~ and 0 1 - 0 or ~I = ~ and 0 1 > 0 • (The restriction that 

the aberrant observation arises from a normal distribution may of 

course be relaxed but this is done at the price of sacrificing 

the calculation of the likelihood explicitly under the alternative 

hypothesis). The symmetrical nature of the situation ensures 

that tests and criteria for outliers at the lower end of the sample 

will be essentially identical. However the case commonly met in 

practice is that there is no a priori reason for suspecting that an 
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outlier may occur at one particular end of the sample and so the 

observation actually tested as outlying is the more extreme of 

the largest and the smallest. This is equivalent to formulating 

the alternative hypothesis (to the null hypothesis referred to 

above) as that all but either the maximum or the minimum "(but not 

both) observations come from that population, the remaining 

observation from some other popUlation. In this situation the 

appropriate test criterion, when, for example, using the 

studentized extreme deviation from the mean, should be 

max{(x(n)-U)/a, (~-X(J»/&} rather than either of the two 

statistics based upon x(n) and x(J) separately. 

be returned to in a later section. 

This point will 
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3.2 The case both ~ and 0 known 

This very simple case is of less practical importance than 

those considered later but is presented here for completeness. 

Under the hypothesis H the log-likelihood is 
o 

n 
-lnlog{2no2)-IL{x._~)2/o2 

i=] ~ 

and under the alternative hypothesis HI' that all the observations 

except one, x without loss of generality, arise from the same 
n 

normal population N{~,o2) and x arises from the normal population n 

N{~I,a2), where ~I > ~, the maximised log-likelihood is, on 

substituting ~] = xn ' 

The difference in maximised log-likelihoods under Ho and HI is 

thus I{x _~)2/a2. 
n 

If z{n)-{x{n)-~)/a then z{n) will be a likelihood-based 

criterion appropriate for testing the largest observation as 

outlying. The null distribution of z{n) is well known 

(Tippett ]925) (it is the maximum of n observations of a standard 

N(O,I) normal distribution) and is extensively tabulated. 

(Biometrika Tables for Statisticians Vol. I, Table 24) 
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3. 3 The ~ 11 unknown a known 

Let u 0 = (xo-i )/0 and u (0) = (x(10)-xr)/0 , (I ~ i ~ r). r,1 1 r r, 1 

U and Un,(n) will be abbreviated to un and u(n) when the sample n,n 

size is clearly n. 

Under the hypothesis H the log-likelihood of the sample 
o 

which is maximised when ~ - x , (assuming that the true value 
n 

of 0 is known), giving a maximised log-likelihood under H of o 

Under the alternative hypothesis HI' that xn arises from a normal 

population N(~1,02), where ~I > ~, and all the other observations 

are from the same distribution N(11,02), the log-likelihood of 

the sample is 

which is maximised when ~ • xn_1 and 11) - xn ' giving a maximised 

log-likelihood of 

The difference in maximised log-likelihoods under Ho and H) is thus 
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which may be written as 

n = -,:-:_n.::....,...,.... 
2(n-l) 2(n-l) 

It follows therefore that the statistic u(n) is essentially 

the increase in log-likelihood consequent upon acceptance of the 

alternative hypothesis that the queried observation arises from 

a normal population with a different mean. 

The null distribution of u(n) is well known, having been 

found independently by McKay (1935), Nair (1948) and Grubbs (1950). 

However the following derivation, analagous to the one in 2.2.1., 

is presented for its simplicity and because the method may be 

extended to the more general cases when cr is unknown. 

3.3.1 Recursive Algorithm for the Distribution of u(n) 

Suppose u(n) has density function an (.) and distribution 

function A (.). 
n 

Then 

an(y)dy • P [u(n) e: (y,y+dy» 

n 
.. 'P[u . e: (y,y+dy),u () .. u .] .'-1 n,J n, n n,J 

J= 

n-1 - n P [ u e: (y ,y+dy), max u . < u ] n,n j_1 n,J n,n 

n-I .. n P [ u e: (y ,y+dy), max x. < x ] 
n,n j=l J n 



= n 

= n 

= n 
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p[u (y,y+dy), n-I 
£ max u n-I,j < n,n j=1 

p[u £ (y;y+dy), u < n-I,(n-I) n,n 

n (since x -x = --- (x -x » n n-l n-I n n 

(x -x 1)/0] n n-

n 
n-I Un] 

n p [ u £ (y,y+dy)][ P u < n-l, (n-I) n-l y] n,n 

(noting that (x.-x I) and (x -i ) have zero covariance and are ] n- n n 

therefore independent for each j=I,2, ••• ,n-l). 

Thus 

(since for arbitrary j, u . follows a normal distribution 
n,] 

(3.2) 

N(O,(n-I)/n», which is equation (29) of McKay (1935). The density 

functions a (.) may now be found for successive values of n, for 
n 

when n=2 

a
2

(y) • ~ exp{-y2} 
in 

(y ~ 0). 

Percentage points of the distribution have been tabulated 

by Nair (1948b), and are given in Table 25, Biometrika Tables 

for Statisticians, Vol I, Table 25. 
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3.4 The case ~ known and 0 unknown 

Under the null hypothesis H the log-likelihood of the sample 
o 

x x is , ••• t n 

n 
-nlogo-~nlog(2n)-~L(x._~)2/02 

i=1 ~ 

n 
which is maximised when 02 = ! L (x._~)2, assuming that the value 

n i =1 ~ 

of ~ is known, giving a maximised log-likelihood of 

n 
-!nlog(Lx.-~)2)+!nlog(n)-!nlog(2n)-!n. 

i=l~ 

Under the alternative hypothesis that all the observations other 

than x arise from the same normal distribution N(~,02) and x 
n n 

arises from a normal distribution N(~tO~) where 0 1 > 0 t the 

likelihood of the sample is 

n-l 
which is maximised when 02 = __ 1_ L(x._~)2 and 02

1 
- (xn-~)2, 

n-l . 1 1 
~= 

giving a maximised log-likelihood of 

The difference in maximised log-likelihoods under the two 

hypotheses is therefore 

which may be written as 
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-!n1og(I-T )-!log{T J(l-T )} + !(n-l)log(n-I)-!n1og(n), n n n 

(where T 
n 

It follows that an appropriate likelihood based statistic 

for testing the most extreme observation (either x(l) or x(n)' 

whichever is the greater absolute distance from ~) as outlying is 

n 
T(n) = max{(x(I)-~)2,(x(n)-~)2}{~~xi-~)2, 

which, under the null hypothesis H , is the ratio of the largest 
o 

of a set of n independent variates, each distributed as X2 with 

one degree of freedom, to the sum of those variates. Thus the 

problem of detecting an outlier in a random sample from a normal 

population with known mean is essentially equivalent to the simpler 

problem of detecting an upper outlier in a random sample from a 

xi population. This problem was considered in the more general 

case of a gamma population in section 2.2. Putting r - 1 in 

(2.7) gives 

P [ T (n) > u] - nP [ F I ,n-I > (n- J) uJ (I-u)] u ~ I 

P[T(n) > uJ < nP[FI,n_1 > (n-l)u/(I-u)J u < I (3.3) 

where F) n-) denotes a variate following an F-distribution with , 
(I,n-I) degrees of freedom. Upper 5% and 1% points of T(n) for 

n • 2(1)10,12,15,20 have been calculated by Eisenhart, Hastay and 

Wallis (1947) and are given in Table 31(a) of Biometrika Tables for 
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Statisticians Vol. I. 

It is of interest to note that not only is T(n) a likelihood­

based statistic in the sense described above, but it can also be 

regarded as likelihood-based when the alternative hypothesis is 

that the queried observation arises from a normal distribution with 

the same variance as, but a different mean from, the parent 

distribution of the rest of the sample; that is that x arises n 

from a normal distribution N(~1,02) with~1 ~ ~ (rather than 

N(~,ot) with 0 1 > 0 as considered above). 

This follows since under this alternative hypothesis the 10g-

likelihood is 

which is maximised when 

and ~ - x I n 

giving a maximised 10g-like1ihhod of 

n-I 
-lnlogI(x.-~)2-1nlog2n + In10g(n)-ln, 

i-I 1 

so that the increase in maximised 10g-like1ihhods in this case 

is 

-inlog(J-T ) • 
n 

The problem of detecting outliers in normal samples with known 
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mean would seem to be one with practical applications. One context 

which suggests itself is the control of a manufacturing process 

by a quality control chart, particularly one based upon a continuous 

variable. The detection of a sudden or abnormal change in the 

operating conditions from the control chart plots could be thought 

of perhaps as a problem in outlier detection. This would apply 

whether the change was representable as a shift in mean or an 

increase in variance. 
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3.5 The case when both ~ and a are unknown 

The study of outliers in samples drawn from a normal population 

with unknown mean and variance is of considerable practical importance 

and has received much attention in receJt years. Broadly the work 

falls into two categories; firstly the detection of outliers and 

secondly their accommodation by various techniques of robust 

estimation and analysis, the latter category would also include 

the various aspects of the Bayesian approach to the analysis of 

outliers (such as that of de Finetti (1961), Box & Tiao (1968), 

Dempster & Rosner (1971». In some cases the Bayesian methods, 

though directed to the accommodation of outliers, are equivalent 

to their detection. The detection of outliers in this situation 

has been studied by a variety of authors, who have proposed a 

number of different criteria and test statistics, usually on 

intuitive grounds. In some cases the exact null distribution of 

the statistic has been calculated and tables of upper percentage 

points have been derived; in other cases the exact null distribution 

has not been found and tables of upper and lower bounds for the 

upper percentage points are given, these are obtained by iterative 

procedures based upon Bonferroni's inequalities. 

This section is concerned with statistics that may be regarded 

as likelihood-based under certain conditions, and with closely 

related criteria. Two cases are to be distinguished; the first 

is when the actual sample under inspection contains all the 

available'information relating to the parent normal population, the 

second is when an external estimate of the parent population 

variance is available (independent of the sample) In the first case 
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the null distribution of a likelihood-based statistic will be 

obtained by the recursive methods described earlier, in the second 

case it will be shewn that the natural modification, using the 

extra information available, of the likelihood-based criteria 

results in a statistic whose null distribution can also be obtained 

recursively. 

3.5.1 Studentized Criteria Based upon an Internal Estimate of 0 

Under the null hypothesis H the log-likelihood of the 
o 

n 
-!nlog(2n)-nloga-!L(x._~)2/02, 

i= 1 1 

where both ~ and 0 may vary. 
In 

This is maximised when ~ - x and 02 = _\(x.-x )2 n of. 1 n ' 
1=1 

giving a maximised log-likelihood of 

n 
-inlog(2n)-inlog{L(x.-i )2}+inlog(n)-in. 

i-I 1 n 

Under the alternative hypothesis, HI' that all the observations 

with the exception of x are from the same distribution N(~,02) 
n 

and xn arises from a norm&distribution N(~1,02), with ~I > ~, 

the log-likelihood of the sample is 

n-l 
This is maximised when ~ ... xn- I ' ~I - xn and 02 - !.L(xi -xn_ I )2, 

1-1 
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giving a maximised log-likelihood of 

n-I 
-!nlogC21r linlog{ L (x. -j{ -I) 2}+ !nlog(n)-!n. 

. i=1 1 n . 

The difference in maximised log-likelihoods is thus 

n-l n 
!nlog{L(x.-i 1)2}/{L(x.-i )2}, 

• 1 1 n- . 1 1 n 
1= 1= 

which may be written as 

where 

I (mog(n-l )-nlog{ (n-I )-nU2}) 
n 

n 
U2 = (x -i )2/{L(x.-x )2}, 

n nn '11n 
1"" 

I upon application of the identity 

n-l 
\(x.-x )2+ -E- (x -i )2. 

• L 1 n-l n-l n n 1=1 
(3.4) 

It follows that an appropriate statistic for testing the largest 

observation x(n) as outlying is one of the form 

This statistic is of course equivalent to the studentized extreme 

deviation from the mean considered by many authors, in particular 

Pearson and Chandra Sekar (1936) and Grubbs (1950). 
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It should be noted that in general U(n) cannot be regarded as 

likelihood-based when the alternative hypothesis is that the queried 

observation arises from a normal population N(~,o1)' that is' f~om 

a population with a shift in variance rather than a shift in 

location. 

With the following notation the null distribution of U(n) will 

be obtained by a recursive procedure similar to that of earlier 

sections. 

Let 

n 
S2... L(x.-i )2, 
r i= I 1 r 

U . ... (x.-i )/S • r,1 1 r r 

In particular 

U ... (x -i )/S n,n n n n 

and 

U III 
n, (n) m~f{U .} - (x( )-i )/S 1= n,1 n n n 

which will be abbreviated to Un and U(n) when the sample size 

is clearly n. 

Now for any it I ~ i ~ r t S2 may be written as the sum of 
r 

r - 2 two independent variates, X and Y say, where X - r-I (xi-xr ) 

which is distributed as a2X2 with one degree of freedom and where 
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Y is distributed as 02X2 with r-2 degrees of freedom. Then 

U . may be written as (-E-I +Y/(x.-i )2)-! or as (-E-I)-!(I+ rz-})-! 
r,1 r- 1. r r-

where Z is distributed as Student's t with n-2 degrees of freedom. 

It follows that for arbitrary i U . has density function t (.) r,1. r 

given by 

{1-ru2 /(r-I)}!(r-4), 0 ~ u ~ I{(r-I)/r}. 

Now suppose that U(n) has density function bn (.) and distribution 

function B (.). Then 
n 

bn(u)du = P [U(n) E (u,u+du) ] 

n 
= LP [U . E (u,u+du), U () = U .] . I n,J n, n n,J 

J= 

II: nP[U e:(u,u+du).,x( I)<X] n,n n- n 

- nP [ U E (u,u+du), <x( I)-x I)/S I < (x -xn I)/Sn] n,n n- n- n- n-

(3.5) 

- nP[Un,n e: (u,u+du), (x(n_I)-xn_I)/Sn_1 < 

{n2u2/«n-I)2-n (n-l)u2)}i ] 

(upon application of identity (3.4». 

Now x and ~ are complete sufficient statistics for ~ and n n 

02 , also for each j, I ~ j ~ n-I, the distribution of (Xj-Xn_I)/Sn_l=Un-l,j 

is independent of both ~ and 0 2 and so it follows (Basu (1955» that 

the joint distribution of xn and S~ is independent of that of Un_l,j 
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for each j, 1 , j , n-l. Further U I . is independent of x , 
n- ,J n 

(for I , j , n-l) and so U and U I • are independent for each j, n,n n- ,J 

1 , j , n- I. Thus U and U 1 ( I) are independent and then n,n n- , n-

b (u)du = nP [U e: u,u+du Jp [U 1 ( J) < {n2u2/«n-l)2-n (n-l)u2)}!J, n n,n n- , n-

yielding the recurrence relation 

b (u) 
n 

Now U~ may be written as 

2 n-I 
U = ---n n 

n-l 
where Y1" - x.-x and Yn-I - n~I.L Yi - -Yn/(n-I). 

1 n 1-1 . 

Consequently U2 , (n-I)/n for all samples xI""'x • n n 

(3.6) 

(Note that 

equality is achieved if all the observations except one are equal). 

Thus if u ~ {(n-I)/n}! then B (u) - I. If 
n 

{!(n-2)/n}! , u, {(n-I)/n}i 

then 

and (3.6) becomes 
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b (u):: n4> (u) 
n n 

~ (n-I) 

:: n 1T(n-l) n :(~){I_nu2/(n_I)}I(n-4). 

and so fr-om (3.7) 

and then b (u) may be obtained from (3.6). 
n 

(3.7) 

Proceeding in this fashion it can be seen that b (u) may be 
n 

obtained for successive values of n by evaluating it in each of 

the (n-I) intervals ({(n-r-I)/(r+l)n}l, {(n-r)/(rn}l) for 

r = 1,2, ••• ,(n-2), using the recursive relation (3.6). 

Now U(2) - II for all samples xI' x2' so B2(u) • 0 or I 

according as u < II or u ~ II. Thus 

o 

u ~Ji 
u < IT. "6 . 

b (u) may now be obtained for n a 4,5, ••• using (3.6) 
n 

(3.8 ) 
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recursively with (3.7) initially. It may be noted that 

b (u) 
n 

o if 0 ~ u ~ {n(n-])}-l. 

Upper percentage points of U(n)' or of a monotonic function 

of U(n)' have been tabulated by Quesenberry and David (]96]) 

and Grubbs (1950); Biometrika Tables for Statisticians, Vol I, 

Table 26(a) give the upper 5% and.]% points of U(n) for sample 

sizes 3(])]0,]2,]S,20. Grubbs and Beck (1972) give ]0%,5%,2·5% 

1%,·5%,·1% points of the statistic (n-I)! U(n) for sample sizes 

3(])]47. 

3.5.2 Studentized Criteria Incorporating an External estimate of a 

It may happen that in addition to the sample x
l
,x2 , ••• xn 

from a Normal population N(~,a2) there is available an unbiased 

external estimate of 0 2 , s2 say, such that vs 2 is distributed as 
v v 

X2 with v degrees of freedom independently of the sample under 

study. This may occur, for example, when repeated sets of 

observations are made on the same population, in addition to the 

sample under study, and the estimate of 0 2 is obtained from these 

additional sets of observations. Another common situation when 

an independent estimate of 0 2 is available is in the analysis of 

an orthogonally designed experiment, when, in the context of variety 

trials, one would be interested in the variety with the highest or 

lowest yield. An interesting example in this latter category is 

discussed by Pearson and Hartley (Biometrika Tables for Statisticians, 

Vol I, Example 25). They quote data relating to the yields of 

four strains of wheat replicated in five blocks, and show that the 
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minimum yielding strain is highly significantly low. Further 

they show that had the residual error been rather larger, so that 

an overall F-test would have failed to detect any difference 

between strains in general, the 'outlier' test would nevertheless 

still have detected the low-yielding strain. 

In cases such as these it would seem advantageous on 

intuitive grounds to utilize the extra available information when 

testing for outliers and modify the test statistic U(n) of 3.5.1 

to take account of this. The natural modification to make is to 

replace the divisor S , which is essentially an estimate of the 
n 

standard deviation a, by a pooled estimate of the standard 

deviation, R say, where R2 = 52 + vs 2. n n n V 
Then a test criterion 

for testing the largest observation x(n) as outlying is 

Although this statistic is not likelihood-based for any 

immediate alternative hypothesis which allows the occurrence of an 

outlier in the sample, it is possible to show that under certain 

restrictions a test based upon this statistic maximises the 

probability of detecting a single outlier, (Kudo (1956». The 

distribution of statistics of this form has been considered by 

Quesenberry and David (1961) who obtained approximate percentage 

points for the statistic using iterative procedures, based upon 

Bonferroni's inequalities. They tabulate the upper 5% and 1% 

points of V(n) for n - 3(1),10,12,15,20 and v • 0(1),10,12,15,20, 

24,30,40,50. The tables are reproduced in the Biometrika Tables 

for Statisticians, Table 26(a). 
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The exact null distribution of V(n) can in principle be 

obtained by the recursive method of the earlier sections. With 

notation analogous to that of 3.5.1, it can readily be shown by an 

extension of the method of 3.5.1, that for arbitrary i, V. has 1,r 

density function ~ (.) given by 
r 

,I, (u) = . ( r ) i r ( (r+v-I» 2 1 (r+v-4) 
't' =+,r-+---:::7~ {I-ru 1 (r- 1) J2 , r n(r-I) r( (r+v-2» 

lui ~ I { (r-I ) 1 r} • (3.9 ) 

Suppose that V(n) has density function cn (.) and distribution 

function C (.) then it is easily seen that 
n 

This recurrence relation is essentially identical to (3.6) with 

~ (.) replaced by ~(.). n 
Further V2 ~ (n-I)/n for all samples 

n '" 

(3.10) 

XI' ••• 'Xn and it follows that the null distribution of V(n) may be 

evaluated in successive intervals 

({(n-r-I)/(r+l)n}i, {(n-r)/rn}i) 

for r - J,2, ••• ,(n-J), for each n - .3,4, ••• , in a manner which 

parallels the derivation of the distribution of U(n). The 

principal distinction is that whereas U(2) - Ii, a constant, 

which is a non-degenerate random variable. The distribution of 
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V(2) may be obtained by noting that 

where t denotes a variate following Student's t-distribution with 
\) 

\) degrees of freedom. 

Thus 

C (u) _ 2 /2 f<I<\)+I» {1-2u2}1(\)-2), 11 
2 {if f(I\) 0 :: u :: y~ 

c (u) may now be obtained for further values of n using the 
n 

recurrence relation (3. 10). 

There are situations when it is desirable to use a test 

statistic which does not involve an internal estimate of the 

(3. II ) 

population variance. If for example the sample contains more 

than one outlier then the estimate of the population variance 

obtained internally from the sample will be seriously inflated, 

leading to a small value of the test statistic V(n)' and indeed 

U(n)' so lessening the chance of detecting a single outlier using 

either of these statistics. It should be noted that although the 

estimate of the population variance will be inflated by the presence 

of a single outlier, this inflation is of no consequence when 

testing for that outlier since the test statistics V(n)' and U(n)' 

are essentially equivalent to statistics based upon an estimate of 

the population variance obtained by omitting the suspected outlier. 

For example, if 

n-l 
U' • (x -i J)/{t(x.-x J)2}i, n n n- .L ~ n-

~-1 
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then it is easy to show, using identity (3.4), that 

u' = {n/(n-l)}U /{I-(n/(n-l»U2}!. n n n 

It is only when there are two or more outliers that the inflation 

of the estimated population variance may result in failure to 

identify a single outlier. This is the problem of "masking" 

discussed in the next chapter. 

If it is suspected that the sample may contain more than one 

outlier the experimenter may wish to test for just one outlier 

using a statistic which will afford some protection if there is 

in fact more than one outlier. This procedure is an expedient; 

if it is thought that there may be mUltiple outliers in the 

sample then this should be tested directly. This situation is 

considered in the next chapter. The natural modification of the 

likelihood-based test statistic to use in such cases is the 

externally studentized extreme deviation from the mean or 

equivalently the statistic 

Approximate percentage points of the statistic Ivw(n) have been 

extensively tabulated; David (1956(b» gives upper JO%, 5%, 

2·5%, J%, 0·5% and O·J% points for n - 3(J)10,12 and v - 10(1)20, 

24,30,40,60,120, Pillai (1959) gives upper 5% and 1% points for 

n - 2(1),10,J2 and v - J(I)10, Nair (J948) gives lower 5% and 1% 

points for n • 3(1)9 and v - JO,15,30. These last have no 
or 

immediate application to the problem~detecting outliers. 
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It is of interest to note that the distribution of Wen) may 

be derived by the recursive methods described earlier. With 

notation analagous to that used earlier, for arbitrary i W . has 
r,~ 

density function e (.) given by 
r 

e (u) 
r 

where t (.) is the density of a variate following Student's 
. \I 

t-distributions with \I degrees of freedom, that is 

~ r( (\1+1» 
er(u) = In(n-l) r( \I) 

If d (.) and D (.) are the density and distribution functions 
n n 

of Wen) then the methods of 3.5.1 and 3.3.1 give 

d (u) = ne (u)D l{nu/(n-J)}. n n n- (3.12) 

When n - 2 

R r( (\1+1» 
d (u) - 2 -2 n r( \I) 

(u ~ 0), 

and then d (u) may be found for successive values of n. The 
n 

similarity of (3.12) with (3.10) is clear. 
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3.6 Two-sided criteria 

The test criteria discussed in the preceding sections (with 

the exception of 3.4) are designed to test the null hypothesis H 
o 

against the alternative that the observation at a specified end 

of the sample is an outlier; without loss of any essential 

generality it was assumed that the possible outlier was the maximum 

of the sample. These criteria would be employed in situations 

where for some reason one was interested only in detecting outliers 

which occurred at the upper end, or in situations where there were 

a priori reasons for believing that if an outlier should occur in 

the sample then it could only manifest itself as the maximum of 

the sample. The latter case corresponds to specifying the one­

sided alternative hypothesis that the maximum observation is from 

a normal population N(~I,a2) with ~I > ~. 

In many situations there are no a priori reasons for suspecting 

which end of the sample a possible single outlier may occur and 

one may be equally interested in either an upper or a lower single 

outlier. The alternative hypothesis in such situations may be 

formulated either as that the parent population of the most extreme 

observation (whether it be the maximum or minimum of the sample), is 

normal with a shift in mean (either increase or decrease corresponding 

. to whether the maximum or minimum is the more extreme), or that 

this parent population is normal with an increase in variance, as 

considered in 3.4. 

In these cases where the alternative hypothesis is two-sided, 

an appropriate two-sided test criterion is the larger of the two one­

sided criteria appropriate for testing the maximum and the minimum 
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observations individually as outlying. That is, for example, in 

the case considered in 3.5.1, the appropriate statistic would be 

= m~{lx.-x I/s } , 
1=1 1 n n 

with corresponding definitions of V* and w* of 3.5.2. In principle 

the null distribution of U* can be obtained by integration of the 

joint density of. U(I) and U(n). This problem will be considered 

in the following chapter. However it is easy to obtain upper 

bounds for the percentiles of the distribution of UK; since 

p [U* > U J = P [U(n) > u J+p [U(I) < -u J-P [U(n) > u, U(n) < -u J 

~ 2P [ U (n) > u J , 

an upper bound for the a% point of the distribution of U* is 

provided by the upper !a% point of U(n). Lower bounds for the 

percentage points of U* may be obtained from the Bonferroni inequality 

p [U* > u J ~ nP [ u. I > u J -(n2) P [ I u. I > u, I u. I > u J • l,n l,n 1,n 

For small samples and, in the case of the statistics v* and W*, for 

small values of v the upper and lower bounds agree closely (Quesenberry 

and David (1961), Halperin et a1. (1955). 

Upper and lower bounds for the upper 5% and 1% of U* and V* are 

tabulated by Quesenberry and David (1961), and are reproduced in 

Biometrika Tables for Statisticians, Table 26(b), and of vlw* by 
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Halperin et a1 (1955), who also tabulate those of the statistic 

u* for use in cases where the population variance is known, as in 

section 3.3. 

Tietjen and Moore (1972) give approximate percentage points, 

obtained by Monte Carlo methods, for the statistic 

n-I n 
min{I(x(o)-i _1)2,I(x( )-x2 )2}/S2 

° 1 ~ n ° 2 n ,n n 
~= ~= 

(3.13) 

which is equivalent to U*, but they erroneously state that their 

empirical 20% points may be compared for accuracy with the a% 

points of the statistic 

n-I 
I (x( 0 )-x 1)2/S2, 

° I ~ n- n 
~. 

which were tabulated by Grubbs (1950). These points are of course 

lower bounds for the 2a% points of the statistic (3.13), and 

equiality is achieved only for small samples. 
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Chapter 4 

Multiple Outliers in Univariate Normal Samples 

There are two distinct approaches to the problem of detecting 

the presence of several outliers occurring simultaneously in a 

normal sample. The first approach is to use statistics specifically 

designed to test simultaneously several observations as outlying, 

that is, statistics whose value is markedly inflated when all the 

suspected observations are outlying. 

The second approach, which has immediate intuitive appeal, 

is the so-called 'sequential' method; the most extreme observation 

is tested as outlying and, if declared an outlier, is rejected 

and the test repeated on the reduced sample, the process continues 

until the sample is reduced to one where no outliers can be detected. 

The test used at each stage can be based upon any of the criteria 

discussed in the previous chapter. McMillan and David (1971) 

and McMillan (1971) consider the case of detecting two outliers 

(assumed to be at the same end of the sample) using likelihood-based 

criteria and their natural modifications based upon external estimates 

of the popUlation variance. Dixon (1953) and Ferguson (J961) 

suggest procedures based upon Dixon type criteria and the coefficients 

of skewness and kurtosis respectively. The problems associated 

with such a procedure are complex. Firstly there is the possibility 

that in cases where the parent popUlation is mistakenly assumed to 

be normal instead of fatter tailed an unreasonably large number 

of observations may be declared outliers. Indeed it is easy to 

construct artificial samples of any specified size where all but 

two of the observations would be declared outlying by such a 
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'sequential' procedure. Secondly, and of more practical importance, 

is the problem of "maskin~'; the presence of several outliers, as 

detected by a simultaneous test, could inflate the internal estimate 

of the variance so greatly that even the most extreme observation 

would not be detected as outlying by a test of that observation 

singly and the procedure would stop. Such cases are discussed 

by Pearson and Chandra Sekar (1936) and Tietjen and Moore (1972). 

This problem may be overcome by using an external estimate 

of the variance (see 3.5.2) if this is available, or by employing 

one of the many Dixon type criteria, although deciding which of 

the criteria was the most appropriate in any particular case would 

involve careful preliminary inspection of the data. A third 

difficulty with the 'sequential' procedure is the calculation of 

the significance probabilities of a group of several outliers; 

while the probability of rejecting the null hypothesis that all 

observations are from the same normal populations depends only upon 

the level of the first test in the sequence used, this will not be 

the same as the significance level attached to the group of 

observations eventually declared as outlying. This fact appears 

to have been overlooked by Tietjen and Moore (1972). McMillan and 

David (197J) and McMillan (J97J) have considered the calculation of 

these probabilities for the case of two outliers at the same end of 

the sample, when using the likelihood-based criteria U(n)' but see 

the correction in Moran and McMillan (1973). Hawkins (J973) 

considers the repeated use of the partially externally studentized 

criteria V(n) in samples containing a maximum of two upper outliers 

and calculates the loss of power due to 'masking'. 

The approach to the detection of multiple outliers discussed 
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in later sections of this chapter is the non-sequential method 

described in the opening paragraph; various test criteria will be 

considered for testing several possible outliers simultaneously. 

There are of course many problems associated with this approach 

also. It is implicit that the procedure is to perform only one 

test, for k outliers say, and that no test for k-l or k+l outliers, 

depending upon the result of the test for k outliers, will be 

made. In many cases it may be unreasonable. to expect the 

experimenter to specify in advance how many observations he wishes 

to test as outlying and some decision has to be made as to which 

value of k to use. This problem is considered by Daniel (1959) 

who suggests the use of a sequence of half-normal plots of the 

data and by Dempster and Rosner (1972) who consider a "semi-Bayesian" 

approach. A further complication is that the choice of k may 

determine which set of observations to test, and the set determined 

by the choice k may not be a subset of the set determined by the 

choice k+l. Complementary to the phenomenon of "masking" in the 

'sequential' procedure is the phenomenon of "swamping"; if the 

sample contains only one outlier which is sufficiently far removed 

from the rest of the data then a test of the two or more most extreme 

observations as outlying may erroneously detect two or more outliers, 

only one of which is a 'true' outlier. 

In the succeeding sections it will be assumed that the choice 

of k, the number of observations to be tested as outlying, has 

been made, whether by external a priori reasons or by one of the 

procedures referred to earlier. The tests and criteria discussed 

will be for a specified number of outliers at specified ends of 
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the sample, these criteria correspond to the "one-sided" criteria 

discussed in the previous chapter; the extension of the methods to 

situations corresponding to those requiring "two-side~' criteria 

increases in complexity rapidly with the number of possible 

outliers tested. 

The notation of chapter 3 will be used, with any extensions 

specified as the occasion arises. Throughout, the null hypothesis 

H will be that all the observations arise from a single normal o 

population N(~,o2), where both ~ and 0 may be unknown, or where 

either or both of ~ and 0 may be known. This will be tested 

against various alternatives of the general form that a given 

number k > 1 of the observations are from a normal population with 

a shift in mean or an increase in variance. The various cases 

of ~ and 0 known and unknown, and the case when an external estimate 

of a is available will be considered separately. 
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4.1 Several Upper Outliers 

Consider first the case of two upper outliers. 

If both ~ and a are known it is easily seen that an 

appropriate likelihood-based criterion, for the alternative 

hypothesis that the two largest observations are from a normal 

distribution with an increased mean, is 

The null distribution of this statistic may be derived from the 

joint distribution of x(n_l) and x(n)O The case is of little 

practical importance and the details are omitted. Upper and 

lower bounds for the percentiles of the distribution may be 

obtained by noticing that 

P [2Z(n_l) > yJ < P [Z(n_I)+Z(n) > y] < P [2Z(n) > y] , 

It follows that if k( I) ,k() and k are the a n- ,a n ,a a 

percentiles of the distributions of Z(n_I)' Z(n) and Z(n-J)+Z(n) 

respectively then the following inequality holds: 

2k(n_J) ,a < ka < 2k(n) ,a • (4.1) 

Consider now the case when a is known but ~ is unknown. It 

is not difficult to shew by essentially the same argument as used 
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in section 3.3 that for the alternative hypothesis that the two 

largest observations arise from a normal population with the same 

variance as the remainder of the sample, but with an increase in 

mean, the likelihood-based statistic for testing the two largest 

observations as outlying is 

McMillan and David (1971) obtain approximate upper 5% and 1% 

points, for sample sizes 4(1)27, of this statistic by approximating 

the integral, over an appropriate region, of the joint density of 

(x(n-I)-Xn- 2) and {(n-I)/n}l(x(n)-Xn_ l ) which they obtain by several 

successive transformations and integrations of the joint density 

of the n ordered values x(I), ••• ,x(n)' 

The distribution of u (_I)+u () may be derived from the n, n n, n 

joint density of u (-1) and u ()' g (.,.) say, a recursive n, n n, n n 

formula for which may be obtained by the following probabilistic 

argument. 

gn(u,v)dudv - P [un,(n-I) E (u,u+du),un,(n) E (v,v+dv)J 

- Ip [u • € (u,u+du),u . E (v,v+dv), 
n,1 n,J 

i<j 

u ( ) - u .,u () - u .J n, n-I n,1 n, n n,J 

- n(n-I) P [u 1 E (u,u+du),u E (v,v+dv), n,n- n,n 

n-2 
ma~ x. < xI] 
1=1 1 n-
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=n(n-l) P[U 1 £ (u,u+du),u £ (v,v+dv), n,n- n,n 

u n-2,(n-2) < (x I-x 2)/oJ n- n-

= n(n-I) P [u -1 £ (u,u+du),u £ (v,v+dv), n,n n,n 

un- 2,(n-2) < «n-l)u+v)/(n-2)J 

= n(n-l) P [u 1£ (u,u+du),u £ (v,v+dv)J x n,n- n,n 

x P [un- 2,(n-2) < «n-l)u+v)/(n-2)J 

(4.2) 

(noting that both uland u have zero covariance with, and n,n- n,n 

are therefore independent of, u 2 . for each j=I, ••• ,n-2). The 
n- ,J 

first of the two probabilities in (4.2) is t (u,v)du dv, where 
n 

~ (u,v) is the joint density of u I and u at the point (u,v). n n,n- n,n 

Now u I and u have means zero, variances (n-I)/n and covariance n,n- n,n 

-1/n, and so have joint density at the point (u,v) 

(2n)-I/{n/(n-2)}exp [-i{(n-I) (u2+v2)+2uv}/(n-2)]. 

The second of the two probabilities in (4.2) is the distribution 

function of un- 2,(n-2) evaluated at «n-l)u+v)/(n-2). Thus 

n(n-I) 
gn(u,v) - 2n/{(n-2)/n} [ 

(n-l)u2+2uv+(n-l)v2] 
exp - 2(n-2) x 

x A
n

_
2
{«n-l)u+v)/(n-2)}, (4.3) 
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and g (u,v) may be evaluated for successive values of n using the­n 

results for A (.). 
n 

The results of McMillan and David may be 

readily derived from (4.3)0 

Suppose now that both ~ and 0 are unknown. For the alternative 

hypothesis, HI say, that two observations arise from a common normal 

distribution with the same variance as the remainder of the sample, 

but with an increase in mean, the likelihood based statistic for 

testing the two largest observations as outlying is easily seen to 

be 

which can be written as U(n_I)+U(n) 0 

different from the statistic 

This statistic is essentially 

n-2 
L(x(,)-x _2)2/S2 

. I ~ n n 
~. 

proposed by Grubbs (1950). Grubbs (1950) investigated the 

distribution of this latter statistic and calculated lower 1%, 

205%, 5% and 10% points for sample sizes 4(1)20. Tietjen and 

Moore (1972), using Monte Carlo procedures, obtained approximate 

lower percentage points for the same levels for sample sizes 

4(1)20(5)40. Grubbs and Beck (1972) give lower 01%, 05%, 1%, 

2,5%, 5% and 10% points for sample sizes 4(1)149. It is easy 

to show that Grubbs' statistic is likelihood-based for the alternative 

hypothesis, H2 say, that two observations arise from two separate 

normal distributions both with the same variance as the remainder 

of the sample, but with larger means. Grubbs' statistic is 
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essentially equivalent to 

If there is available an unbiased external estimate of 

S2 say, such that vs 2 is distributed as X2 with v degrees of v v 

freedom independently of the sample under study, then the natural 

modifications of the likelihood-based criteria are 

where R~ = S~+vs~, when the alternative hypothesis is HJ , and 

when it is H2• 

The first of these criteria may be written as 

\ 

V(n_J)+V(n) 

and the second is essentially equivalent to 

The distributions of both of these statistics may be obtained 

from the joint distribution of 

and 



h (.,.) say. 
n 

4. 10 

Now if v > 0, hn (u, v) is clearly zero outside the region Fit 
defined by 

o <u <v < {(n-I)/n}! and 

u2+2uv/(n-I)+v 2 < (n-2)/(n-I). 

For (u,v) E ~ 

h (u,v)du dv = P [V (-I) E (u,u+du),V () E (v,v+dv)] n n, n n, n 

= n(n-I) P [V 1 E (u,u+du),V E (v,v+dv), n,n- n,n 

- n(n-I) P [V 1 E (u,u+du),V E (v,v+dv), n n- n n· l ' , 

v < {(n-l)u+v}/{(n-2)«n-2)-(n-l)u2-2uv-(n-l)v2)}I] n-2,(n-2) 

• n(n-I) p[v 1 E (u,u+du),V E (v,v+dv)] x n,n- n,n 

x P[Vn- 2,(n-2) < {(n-l)u+v}/{(n-2)«n-2)-(n-l)u2-2uv-(n-l)v2)}']. 

(4.4) 

(noting that both Vn,n-l and Vn,n are independent of Vn- 2,(n-2». 
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The first of these two probabilities is ~ (u,v)du dv, where 
n 

~ (.,.) is the joint density of V and V • n n,n-I n,n This is(Quesenberry 

and David (1961» 

n+v-3 
27T (

I _ n-I if _ 2uv _ n-I V 2) !(n+v-5) 
n-2 n-2 n-2 

for (n-l)u2+2uv+(n-l)v2 ~ (n-2), 

(note .the error of sign in the region of support of this distribution 

given by Quesen~erry and David (1961) in their equation (3.3». 

The second of the probabilities in (4.4) is the distribution function 

of Vn- 2, (n-2) ,Cn- 2(·)· 

Thus 

h (u,v) = n(n-l){n/(n-2)}1(n+v-3)/27T}{I-(n-l)u2/(n-2)-2uv/(n-2)­
n 

then 

2 !(n+v-5) (n-l)v l(n-2)} x 

x C {{(n-l~u+v}/{(n-2)«n-2)-(n-l)u2-uv-(n-l)v2)}!}. 
n-2 

Now C (x) • 1 if x > I{(r-l)/r}, and if 
r 

2(n-l)u2+4uv+(n-2)v2 > n-3, 

(4.5) 

(4.6) 

{(n-l)u+v}/{(n-2)«n-2)-(n-)u2-2uv-(n-l)v~}! > 1{(n-3)/(n-2)} 
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and so (4.5) becomes 

hn(u,v) = n(n-l)~n(u,v) for (u,v) satisfying (4.6). (4.7) 

if 

Further C (x) = 
r 

I{ (r-l) In} 
- J r~ (t)dt 

x r 

1{~(r-2)/r} < x < I{(r-J)r}, 

(where ~ (t) is as defined in (3.9). If r 

3(n-l)u2+6uv+(n-3)v2 > (n-4) 

and 

2(n-l)u2+4uv+(n-2)v2 < n-3 

then 

(4.8) 

1{!(n-4)/(n-2)} < {(n-l)u+v}/{(n-2)«n-2)-(n-l)u2-2uv-(n-l)v2)}~ < 

1{(n-3)/(n-2)}, 

1{(n-3) (n-2) 
and so C 2(t) - J - J ~n_2(t)dt, n- n t 

n 

(writing t for {(n-l)u+v}/{(n-2)«n-2)-(n-l)u2-2uv-(n-l)v~}!). 
n 

Thus (4.5) becomes 



h (u,v) 
n 
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/{(n-3)/(n-2)}1/J (t)dt 
= n(n-I)~n(u,v){1 - J n-2} 

t 
n 

for (u,v) in the region defined by the inequalities (4.8). 

It is readily seen, extending the arguments above, that the 

evaluation of C 2(t) in each of the intervals n- n 

(/{(n-r-3)/(r+I)(n-2)} , /{(n-r-2)/r(n-2)}) for r = 0,1,2,3, ••• ,(n-3) 

allows the calculation of h (u,v), using (4.5), in each of the 
n 

(n-2) subregions of ~ defined by the pair of inequalities 

(r+2)(n-l)u2+2(r+2)uv+(n-r-2)v2 ~ n-r-3 

and (4.9) 

(r+J)(n-J)u2+2(r+J)uv+(n-r-J)v2 ~ n-r-2, for r - O,J,2, ••• ,(n-3). 

It may be noted that if v II: 0, (the case when no external 

estimate of 0 2 is available), then C (.) will reduce to B (.) and 
r r 

in particular h (u,v) will be zero for ° < u < {n(n-J)}-! and in 
n 

the region defined by the last of inequalities (4.9). 

The null distribution of V(n_J)+V(n) and 

V(n_J)+2V(n_J)V(n)/(n-)+V~n) may in theory be derived by integration 

of h (u.v) over the appropriate regions. 
n 

It is easy however to 

obtain the upper tail of the distribution of V(n_J)+V(n) directly 

by noting that if u+v > 1{(3n-8)/2n} then 

2(n-J)u2+4uv+(n-2)v2 > (n-3) and (n-2)u2+4uv+2(n-J)v2 > n-3, 
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so that if V I+V > 1{(3n-8)/2n} then V and V must be the n- n n-I n 

largest pair V(n-I) and V(n) (in some order). 

KJ 

Now R2 may be written as 
n 

[V I+V > KJ n- n 

R2 = {(n-2)/2n}(x +x -2i )2+Y+vs2 
n n n-l n-2 v 

Hence 

if K > 1{(3n-8)/2n}. 

where Y is a o2X2 variate distributed independently of n-2 

s,x 1 and x 2. n n- n-
n-2 

Also x +x }-2x = --- (x +x 1-2x 2) and so n n- n n n n- n-

(V +V 1)2= «n-2)/n)2(x +x 1-2i 2)2/{{(n-2)/2n}(x +x 1-2x 2)2+ n n- n n- n- n n- n-

= (2(n-2)/n)t2 /{t2 +n+v-2} n+v-2 n+v-2 . t 

where t n+v- 2 denotes a variate following Student's t-distribution 

with n+v-2 degrees of freedom. 

Thus for K > {(3n-8)/2n}i 

P [V(n_I)+V(n) > KJ ... (~) P [tn+v- 2 > I{K2n(n+v-2)/{2(n-2)-nK2 }}J 

(4.10) 

This is an extension of the result of McMillan (1971). 

The extension of the above methods and results to the case of 
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three, and more, upper outliers, is straightforward. In the case 

when a is known and ~ unknown the likelihood-based statistic for 

testing the k largest observations as outlying, for the alternative 

hypothesis that k observations in the sample arise from a normal 

distribution with variance 0'2 and mean ~I > V, is 

(4. II) 

The distribution of this statistic may be derived from the joint 

distribution of (u (-k I)'u (-k 2)""'u ()' g k(·'·'···'·) n, n + n, n + n, n n, 

say. A probabilistic argument essentially identical to that 

described in the case of two outliers gives 

gn,k (uI'···'~) = (~)k~n,k (u l '··· ,~)An-k {( (no-k+1 )u I +u2+··· +~) / (n-k)} 

(4.12) 

where ~n,k(uI" •• '~) is the density function at the point 

(uI' ••• '~) of a k-dimensional multivariate normal random variable 

with mean zero and variance-covariance matrix {Ik-n-Il k}, here Ik 

denotes the k x k matrix all of whose elements are I. 

Suppose now that both ~ and 0' are unknown. For the alternative 

hypothesis, H] say, that k observations arise f~om a normal dist­

ribution N(~I,02) where ~] > ~ the likelihood-based statistic for 
k 

testing simultaneously x(n_k+I), ••• ,x(n) is.Iu(n_i+I)' For the 
1=1 

alternative hypothesis, H2 say, that k observations arise from k 

separate normal distributions each with variance 0'2 and means 

greater than ~ the likelihood-based test criterion is the Grubbs 

type statistic 



4.16 

n-k 
L(x.-x )2/52 • 

. 1 ~ n-k n 
~= 

Approximate upper 1%, 2·5%, 5% and 10% points of this latter 

statistic were obtained by Tietjen and Moore (1972), using Monte 

Carlo procedures, for k = 1(1)10 and n = 2k(I)20(5)40. In 

situations where an external estimate based on v degrees of freedom 

of 0 2 is available, S2 say, the modifications of these two statistics, 
v k k 

information, are,IV(n_i+l) and.L(x(i)-xn_k)2/R~ 
1= 1 ~= 1 

utilising the extra 

respectively. The null distributions of both of these statistics 

may be derived from the joint density function of 

(V~_k+Q"",V(n»' hn,k(""""') say. 

Applications of the two identities 

and (4.13) 

(the latter is a generalisation of identity (3.4» and an extension 

of the probabilistic argument,described earlier in the case of two 

outliers,give an expression for the joint density hn,k(".""")' 

For (u1""J~) € ~J the region defined by 

o < u1 < u2 < ... < ~ < {(n-l) In} I and 
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(4.14) 

where ~ k("""') is the joint density of (V k+I""'V ) n, n,n- n,n 

and C k{'} is the distribution function of V ( ). n- n-k, n-k 

The joint density ~ k("""') of (V k I""'V ) may n, n,n- + n,n 

be derived by a generalisation to k variables of the method used 

by Quesenberry and David (1961) in the case of two variables. 

Consider first the joint density, ~* k("""') say, of n, 

(V k+I""'V ). n- n,n The density function of V ,,+' k+' is, n-.. J,n- J 

putting r = n-k+j in (3.~), 

r(!(n+v-k+j-I» 
r <I (n+v-k+j-2» 

x 

~ (n+v -k+ j -4) x {1-(n-k+j)u2/(n-k+j-I)} , 

for lui ~ I{(n-k+j-I)/(n-k+j)}. 

Since the V k+' k+" (j-I,2, ••• ,k) are mutually independent n- J,n- J 

(Quesenberry and David (1961» 

• 
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_ -!k ( n )! r(l(n+v-l» 
- n n-k r(l(n+v-k-l» x 

k 1 ( • 4) 2 n+v-k+ -
x TI {1-(n-k+j)u~«n-k+j-l)} J, 

Now V k+' n- J,r = 

j=1 J 

for lui ~ 1{(n-k+j-l)/(n-k+j)},j=I, ••• ,k. (4.15). 

{Vn- k+k+1,r + Vn- k+j +1,n-k+j+l/(n-k+j)} 

{1-(n-k+j+l)V2 . . /(n-k+j)}l n-k+J+l,n-k+J+l 

for r ~ n-k+j,j=1,2, ••• ,(k-l). 

Repeated application of this transformation to (4.15) for each r 

in the range n-k+l ~ r ~ n-k+j for each j=I,2, ••• ,(k-l) gives 

-!k ( n)i r( (n+v-l» 
~n,k(ul'···'~) = n n-k r( (n+v-k-l» x 

k -1 k 
over the region 2u~+(n-k) {2u.}2 ~ I. 

. 11 . 11 1= 1-

Evaluation of C k{.} in each of the intervals n-

(4.16) 

(/{(n-k-r-l)/(r+l) (n-k)} , I{(n-k-r)/r(n-k)}) for r=O,I,2,.,n-k 

allows the calculation of hn ,k(u1, ••• ,~) using (4.14) in each of 

the (n-k) subregions of ~ defined by the pair of inequalities 
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and 

(r+I)(n-k)u1+2(r+l)uIL~ui+(n-k-r-I)L~ui+{L~ui}2 ~ (n-k-r-I) 

(4.17) 

It may be noted that in the case when no external estimate of 

02 is available v=O and hn,k(uI""'~) will be zero for 

o < u l < {n(n-J)}-~ and in the region defined by the last of 

inequalities (4.17). 

Of particular interest is the subregion of ~ defined by the 

first of the inequalities (4.17». If 

(4. J 8) 

then t k > I{(n-k-J)/(n-k)}, where n, 

and so C kit k} - I. n- n, Thus (4.14) becomes 

for (uI""'~) satisfying (4.18). The upper tail of the distribution 

of V(n-k+J)+V(n-k+2)+""'+V(n) may be derived directly from this 

result, but it is easier to note that if 

k k 
(n-k)V .+2V • 'V .+(n-k-J)\V2 . n n-k+J n n-k+J.l. n n-k+1 .l. n n-k+1 

, , 1= J ' 1- J ' 

k 
+{Iv k .}2 ~ (n-k-J) for each j-I,2, ••• ,k, (4.19) 

. In,n- +1 
1- · 
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then (V k I""'V ) must be the set consisting of the k n,n- + n,n 

largest V , (V ( k I)""'V ()' in some order. n,r n, n- + n, n Further, since 

the hyperplane 

k 
Lu. = /{«2k-l)n-2k2)/2n} 

i=1 1 

is tangential to each of the surfaces 

k k k 
(n-k)u.+2u. Lu.+(n-k-I)Lu?+{Lu.}2 = n-k-l,j=J,2, ••. ,k, 

J J. 11 . 11 . 11 1- 1= 1-

each of which encloses a convex region, it follows that if 

V + n,n-k+1 +V > /{«2k-I)n-2k2)/2n} n,n 

then each of the inequalities (4.10) will be satisfied. 

Thus if 

K ~ /{«2k-l)n-2k2)/2n}, then 

Now R2 may be written as 
n 

k 
R2 - {(k-I) (n-k)/nk}{'(x k .-x k)}2+Y+vs2, n . L n- +1 n- v 

1=1 

where Y is a o2X~_k variate distributed independently of 

, xn- k + I' • • • ,xn and xn- k • Also 

+ V > K] • n,n 
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k 
{(n-k)/n}t(x . I-x k) .L n-1+ n-1=1 

and so {IV .}2 may be written as 
i=l n ,n-k+1 

k 
{{(k-I)(n-k)/nk}{t(x k I-i k)}2+Y+vs2} .L n- + n- v 

1=1 

= k(n-k)n- I t 2 /{(k-l)t2 +n+v-k 
n+v-k n+v-k ' 

where t is a variate following Student's t-distribution with n+v-k 

n+v-k degrees of freedom. 

Thus for K ~ 1{«2k-1)n-2k2)/2n} 

It is of interest to note that a similar result is not 
k 

available for the Grubbs type statistic L(x(.)-x _k)2/R2; 
. I 1 n n 
1-

that is there is no constant K such that for K > K a a 

k k 

(4.20) 

p [2(x(.)-x _k)2/R2 < K] 
. I 1 n n 

[t(x.-X )2/R2 < K] 
.L 1 n-k n ' 

1- 1=1 

unless both sides of the equation are zero. To see this first 

note that the Grubbs type statistic is equivalent to the statistic 

k k 
(n-k)Lv2( _k+·)+{Iv( _k+·)}2, 

'I n 1 'In 1 1- 1-
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(this follows from the second of identities (4.13». 

each of the surfaces 

is tangential to the surface 

if K* = (n-k), 

and wholly encloses that surface if K* < (n-k). 

It follows that if K is such that o 

k k 

Further, 

the inequality (n-k~LV~ n-k+i+!LVn n-k+i}2 > Ko implies 
1=1 ' 10::1 ' 

that the set (V k+J' ••• 'V ) must be the set consisting of n,n- n,n 

the k largest V , (V (_k+.)' ••• 'V (», n, r n, n 1 n, n 

then K ~ (n-k). 
o 

k k 
However P [(n-k)LV2 k+o+{LV k+o}2 > (n-k)J - 0, . In,n- 1 • 1n,n- 1 

1= 1-

k 
since hn,k(u1, ••• ,un) is zero outside the region Rb, and the 

result follows. 



4.23 

4.2 An Upper and a Lower Outlier 

In many situations it may be desired to test both the largest 

and the smallest observations of a sample as outlying. The 

problems associated with applying a sequential procedure to such a 

situation are rather more complex than those encountered when 

testing a group of possible outliers at one end of the sample. 

The phenomenon of masking is highlighted in the studies, by Irwin 

(1925), Grubbs (1950) and Tietjen and Moore (1972), of the classical 

set of data relating to the observations made by Lieutenant 

Herndon in 1846 of the vertical semi-diameter of Venus discussed 

originally by Chauvenet (1863), and reproduced in Table 4.1. 

-I ·40 -0·44 

-0·13 -0·05 

0,20 0·39 

Table 4.1 

-0·30 

-0·06 

0·48 

-0·24 

0·10 

0·63 

-0·22 

0·18 

I • 0 1 

Both Irwin and Grubbs, testing the observations sequentially, 

declare the lowest observation, -1·40, but not the highest, 1·01, 

to be outlying, at the 5% level of significance. However Tietjen 

and Moore, testing both observations simultaneously, declare the 

pair to be outlying at the 5% level of significance. Chauvenet, 

although using sequential procedures, based upon a variety of 

different criteria, also declared both observations to be outlying, 

but the significance levels of the tests he used are considerably 

higher than 5%. 

The calculation of the significance probabilities of two (or 
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even more) outliers detected 'sequentially', not all lying at 

the same end of the sample~ appears to be exceedingly complex and 

no study has been made of this problem in the literature. 

These difficulties are avoided by using a criterion which 

tests both observations simultaneously. 

the use of the statistic 

(where x r,s 
J s 

= s-r+J.I x(i)'s > r) 
1=r 

Grubbs (J950) proposed 

but did not obtain any distributional results for it. Tietjen 

and Moore (1972) obtain approximate percentage points, using Monte 

Carlo procedures, for a variety of outlier testing criteria of the 

Grubbs type, but not specifically for this one. The statistic 

they use in their analysis of the data of Chauvenet makes some 

allowance for the possibility that the most extreme pair of 

observations may occur at the same end or at different ends of the 

sample, though exactly how much allowance is made is not clear. 

This point will be discussed further in the next section. 

It is easily seen that the statistic proposed by Grubbs is 

essentially equivalent to the likelihood ratio statistic for 

testing the null hypothesis, H , that all observations arise from 
o 

the same normal population N(~,a2), where both ~ and a are unknown, 

against the alternative hypothesis, HI' that all but two observations 

arise from the same normal population N(~,a2) and the two remaining 

observations arise from two distinct normal populations N(~I,a2) 
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and N(~2,a2), each with the same variance as the rest of the sample, 

but with ~1 < ~ < ~2· Since 

n-l n 
i~~x(i)-x2,n-l)2 =i~~xi-in)2-{(n-l)(x(I)-xn)2+2(X(I)-xn)(x(n)-xn) + 

(n-l)(x -i )2}/(n-2) 
(n) n ' 

Grubbs' statistic is equivalent to 

In cases when there is available an external estimate of 02 s2 , v 

say, where vs 2 is distributed as 02X2 then this statistic may be v v' 

modified to 

In the case when 02 is known exactly then a similar argument 

shews that an appropriate likelihood-based statistic (for testing 

The null distribution of each of these statistics in principle 

may be derived from the joint distributions of (U(I)'U(n»' 

(V(I),V(n» or (u(I),u(n» as appropriate. 

Consider in particular the joint distribution of (V(I),V(n»' 

Suppose (V(I),V(n» has joint density function t n(.,.) and joint 
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distribution function L (.,.). 
n t (u,v) is clearly zero outside 

n 

the region R~ defined by 

u ~ 0 ~ v, 

u2+2uv/(n-I)+v2 < (n-2)/(n-I), 

(if v=O, then t (u,v) will also be zero unless 
n 

~{n(n-I)}-! < u < v < {n(n-I)}-!). 

Now for (u,v) £ Ri 

tn(u,v)dudv - P [V(I) £ (u,u+du),V(n) £ (v,v+dv)J 

= n(n-I) P [V I £ (u,u+du),V £ (v,v+dv), n,n- n,n 

(x -i )/R < V < V ( ) < (x -x 2)/R 2] n-l n-2 n-2 n-2,(I) n-2, n-2 n n- n-

- n(n-l) P [V I £ (u,u+du),V £ (v,v+dv)] x n,n- n,n 

x P [{(n-l)u+v}/{(n-2)«n-2)-(n-l)u2-2uv-(n-l)v2)}1 < 

V < V n-2,(1) n-2,(n-2) 
< {u+(n-l)v}/{(n-2)«n-2)-(n-l)u2-2uv-(n-l)v})}1] 

(4.21) 

(noting that both Vn,n-l and Vn,n are independent of Vn- 2,(n-2». 

Now the second of the two probabilities in (4.21) may be written 

as 
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P [Vn- 2 ,(1) < {(n-l)u+v}/~n(u,V),Vn_2,(n_2) < {u+(n-I)v}/~n(u,v)] 

(writing ~ (u,v) for {(n-2)«n-2)-(n-l)u2-2uv-(n-l)v2)}~) 
n 

= C 2 [{u+(n-I)v}/~ (u,v)] -L 2 [{(n-I)u+v}/~ (u,v),{u+(n-I)v}/~ (u,v)]. 
~ n ~ n n 

Thus 

1 (u,v) = n(n-I)~ (u,v)C 2 [{u+(n-I)v}/~ (u,v)] -n n n- n 

Ln- 2 [{(n-I)u+v}/~n(u,v),{u+(n-I)v}/~n(u,v)]. 

(4.22) 

Now since In (x,y) is zero outside the region Ri and since 

x Y 
L (x,y) = f f 1 (~,n)d~dn n n 

-co -00 

L (x,y) is zero either if x < -{(n-I)/n}~ or if y < O. Thus 
n 

if 

L 2 [{(n-l)u+v}/~ (u,v),{u+(n-I)v}/~ (u,v)] - 0 n- n n 

{(n-l)u+v}/~ (u,v) < -{(n-3)/(n-2)}I, 
n 

Le. if 2(n-l)u2-4uv+(n-2)v2 > n-3 and (n-l)u+v < O. 

(4.23) 
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Hence 

t (u,v) = n(n-I)~ (u,v)C 2 [{u+(n-I)v}/~ (u,v)] n n n- n 

for (u,v) E Ri satisfying either inequalities (4.23), or 

u+(n-I)v < O. 

if 

Further C (x) = 1 if x > {(n-I)/n}! and so 
n 

(n-2)u2+4uv+2(n-l)v2 > n-3 and u+(n-I)v > 0, 

and (4.22) becomes 

t (u,v) - n(n-I)~ (u,v) 
n n 

for (u,v) E Ri satisfying inequalities (4.23) and (4.25). 

(4.24) 

(4.25) 

(4.26) 

Application of a similar method ~o the joint density and 

distribution functions of (u(I),u(n»,mn(.,.) and Mn(.,.) 

respectively say, gives the recursive formula 

-I I m (u,v) - n(n-I)(2n) {n/(n-2)} exp{-I{(n-l)(u2+v2 )+2uv}/n-2} x n 

x [An_2{u+(n-l)v}/(n-2)-M
n

_2 [{(n-l)u+v}/(n-2),{u+(n-l)v}/(n-2)]] 

for u < 0 < v. (4.27) 



since M (x,y) 
n 
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Oify<O 

m (u,v) = n(n-l) (2n)-I{n«n-2)}i exp{-i(n-l) (u2+v2)+2uv}/(n-2)} x 
n 

for u+(n-l)v < O. 

x An- 2 [{u+(n-l)v}/(n-2)] 

(4.28) 

The similarities with equations (4.22) and (4.24) are clear. 

However since (u(I),u(n» can take values over the entire quarter 

plane u < 0 < v there is no counterpart of equation (4.26). 

The null distribution of any outlier detecting criterion, 

based upon the two extreme studentized (or standardised) deviations 

from the mean, may be obtained by the integration of the joint 

density R, (u,v) (or m (u,v» over the appropriate regions. n . n 

In the case of statistics of the Grubbs type an argument similar 

to that given in the preceding section, for the case of Grubbs type 

statistics for testing upper outliers, shews that it is not 

possible to obtain even the tail of the distribution in the simple 

form of equation (4.20). 

4.2.1 The Studentized Range 

Another statistic which may be used for testing simultaneously 

the upper and lower observations of a sample as outlying is, in the 

case when a is unknown, V(n)-V(I)' and in the case when a is known, 

This statistic is essentially the studentized. or 

standardised, range of the sample. Although this statistic is 

not likelihood-based, for any appropriate alternative hypothesis, 
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it does possess considerable intuitive appeal; its value will be 

inflated when bo~h x(l) and x(n) are outliers, it is independent 

of both the location and scale of measurement used, and it may be 

considered as a generalisation of the likelihood-based statistic 

for testing two possible outliers at the same end of the same, 

V(n)+V(n_I)' since both statistics are the sums of the studentized 

absolute deviations of the queried observations from the mean of 

the sample. The use of the statistic u(n)-u(l) was proposed by 

Student (1927) for testing the single most extreme observation as 

outlying, rather than the upper and lower extreme values simultaneously. 

It is interesting to note that Student advocates what is basically 

a sequential procedure for testing for outliers, though the 

particular situation considered by Student allowed the replacement 

of rejected outliers by new observations before each repetition 

of the test, in essence a 'topping-up' procedure. 

The distribution of (n-I)i(v(n)-V(I»' the studentized range, 

in the particular case v=O was considered by David, Hartley and 

Pearson (1954), and Pearson and Stephens (1964), though not in the 

context of outlier detection. They obtain the upper tail of the 

distribution for small samples and provide approximate upper and 

lower 0·5%, 1%, 2·5%, 5% and 10% points for sample sizes 

3(1)20(5)100,150,200,500,1000. These are reproduced in Table 29c 

of Biometrika Tables for Statisticians vol I. 

The work of David, Hartley and Pearson relating to the upper 

tail of the distribution may be extended to the cases v10 using 

the results given above • Now if all four of the following 

. inequalities hold 
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2(n-J)V2 J+4V IV +(n-2)V2 > n-3, n, n, n,n n,n (n-I)V I+V < 0, n, n,n 

(4.29) 

(n-2)V2 +4V IV2 +2(n-I)V > n-3 n,n n, n,n n,n and V I+(n-I)V > 0 n, n,n 

then (4.26) shews that (Vn,I,Vn,n) must be the pair (Vn,(I),Vn,(n»' 

in that order. Further the line v-u = 3/2 is tangential to both of 

the ellipses 

2(n-l)u2+4uv+(n-2)v2 = n-3 

and 

(n-2)u2+4uv+2(n-l)v2 = n-3, 

and so if V -V I > 3/2 then inequalities (4.29) will be satisfied. n,n n, 

(It should be noted that necessarily (V I'V ) must satisfy the . n, n,n 

inequality (n-I)V2 1+2V2 IV +(n-I)V < (n-2) and so n, n, n,n n,n 

V -V I > 3/2 implies that both the following inequalities hold; n,n n, 

(n-I)V I+V < 0 and V I+(n-I)V > 0). n, n,n n, n,o 

It follows that for K ~ 3/2 

= n(n-I) P [V -v I > K] • n,n n, (4.30) 

In the case v=O this corresponds to the result of David, Hartley 

and Pearson (1954). 

The probability on the right hand side of (4.30) may be derived 

by an extension of the method used by David, Hartley and Pearson 

(1954). R2 may be written as 
n 
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where Y is distributed as a2X2 with n-2 degrees of freedom 

It follows that (V -V 1)2 may be n,n n, 

written as 

= 2t2 /{t2 +(n+v-2)} n+v-2 n+\I-2 

where t is a variate following Student's t-distribution with n+v-2 

n+v-2 degrees of freedom. 

Thus for K > 3/2 

Putting v=O retrieves the result of David, Hartley and Pearson. 

It may be noted that since the line 

v-u = 2 

is tangential to the ellipse 

(n-1)u2+2uv+(n-1)v2 - n-2, 

it follows that Vn,(n)-Vn ,(1) ~ 2 for all samples and so 

P [Vn,(n)-Vn,(l) > 2J = O. 

This is a generalisation to the cases vl-O of a resul t of Thomson 

(1955) • 



4.2.2 An Example 

Consider again the-data in table 4.1 discussed earlier. Here, 

with 15 observations, the range of the sample is 1·01+1·40 = 2·41, 

and R15 = 4·296 (with v=O), giving a value of V(15)-V(J) of 

1·168, or equivalently a value of the studentized range of 4·37. 

The upper 2~% and 1% points of this statistic are 4·29 and 4·44 

respectively (Table 29c Biometrika Tables), so that the pair 

-1·40 and 1·01 are declared outliers at the 2!%_ level of significance. 

The apparent discrepancy with the result of Tietjen and Moore (1972) 

is explained in part by the partial allowance made in the latters' 

analysis for not specifying in advance which ends of the sample the 

outliers may occur. 

It is interesting to note that if only the most extreme observation, 

in this case -1·40, is rejected and the test repeated on the reduced 

sample of 14 observations a value of 3·61 is obtained for the 

studentized range, which is less than even the 10% point 3·95, 

illustrating again the phenomenon of masking. It is curious that 

were instead the maximum value J·OI to be omitted and the test 

repeated on the reduced sample of 14 observations then a value of the 

studentized range of 4·094 would be obtained, which falls between the 

5% and 2!% points 4·09 and 4·21, indicating that both the observations 

-1·40 and 1·01 may be considered as outlying. 

This illustrates the difficulties encountered in using a statistic 

based upon the range of the sample for testing only one observation 

as outlying (as suggested by Student) rather than considering such a 

criterion as testing simultaneously both the largest and the -

smallest observations. 
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4.3 Outliers at Unspecified Ends of the Sample 

4.3.1 The case ~ unknown 

The criteria and tests discussed in the preceding sections are 

designed to test as outlying observations at a specified end 

(section 4.1) or ends (section 4.2) of the sample. That is the 

null hypothesis H (that all observations arise from a normal o 

population N(~,a2» was tested against an alternative of the form 

that k of the observations in the sample come from normal 

distributions N(~.,a2)(i=I, ••• ,k} where it is specified in advance 
1 

whether, for each i, ~. > ~ or ~. < ~. 
1 1 

This corresponds to 

the 'one-sided' case of chapter 3. Corresponding to the 'two-

sided' case discussed in section 3.6, it is possible to consider 

mUltiple outliers at unspecified ends of the sample and obtain 

likelihood-based criteria for testing the most 'extreme' set of k 

observations as outlying. The k observations declared to be the 

most extreme set of size k will be those whose omission from the 

sample produces the largest increase in the likelihood of the sample. 

It is clear that this is a generalisation of the case of a single 

outlier discussed in (3.6). For example in the case of two outliers 

the criterion is 

and the two observations actually tested as outlying are those 

corresponding to that sum of squares out of the three above which is 

found to be the smallest. The extension to two-sided criteria for 
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testing k possible outliers involves considering (k+l) sets of 

possible outliers at specified ends of the sample, deciding which,of 

these k+l sets is the most 'extreme', in the sense outlined above, 

and then testing that set, using as test criterion the minimum of 

the k+l separate test criteria. 

It must be noted that this method of identifying possible 

outliers is essentially different from that proposed by Tietjen and 

Moore (1972). They identify as the k possible outliers to be tested 

that set consisting of the k observations whose absolute distances 

from the mean of the whole sample are the greatest. Take for example 

k=2 and consider a situation where all but four observations in a 

sample of size n have value 0, and the remaining four values are 

(-1+E),I,(l+E),2 (where 0 < £ < I), and suppose that 

(1+3E)/E < n < (3+2E)/E. Then x - (3+2E)/n, n 

(I+E)-i = (n+nE-3-2E)/n and x ~(-l+E) = (3+2E+n-nE)/n, and so n n 

X -(-1+£) > (I+E)-x, (since n < (3+2£)/£). 
n n 

Also 

n-I 
and .L

2
(x(i)-X2,n-J)2= J+(I+E)2_(2+E)2/(n-2) 

1~ 

n-2 
and so i~~x(i)-Xn-2)2 < L(x(i)-x2 ,n_I)2 

(since n > (1+3£)/£). 

Thus the two values selected as possible outliers by Tietjen and 

Moore's procedure are 2 and (-1+£), while the pair of values 
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selected by the likelihood-based method described above are 2 

and (1+£). Of course on purely intuitive grounds the latter pair 

might be considered more 'extreme' than the former since the 

observation (1+£) lies further from the main body of the sample than 

the observation (-1+£). It may be noted that a sequential 

procedure would select initially the value 2 and then the value 

(1+£). 

The above example shews that the statistic E2 used by Tietjen 

and Moore (1972), in their analysis of the data of 4·1, is not as 

they assert, the same as the statistic (4.31). Further, the 

example illustrates that if it is desired to use the tables of 

Tietjen and Moore (1972) it is important to ensure that the k 

observations tested as outlying are indeed those which lie furthest 

in absolute distance from the mean of the whole sample, rather than 

that set of k observations which on purely subjective grounds 

appears to be the most 'extreme'. 

The null distributions of the likelihood-based two-sided criteria 

are extremely complicated and it would seem that a Monte Carlo study 

would be more productive than a direct algebraic approach. 

4.3.2 The case~ kno~ 

In cases when the mean of the popUlation is known, but the 

variance 02 is unknown, it may be desired to test the null hypothesis 

H against an alternative of the form that all but k observations 
o 

come from the same normal popUlation N(~,02), and k observations 

come from a normal population N(~,of) where~2 > 0 2• In such 

cases there will be no a priori reasons for specifying the ends of 

the sample at which outliers may occur. 
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It is easy to shew that an appropriate likelihood-based 

statistic for testing the k observations furthest in absolute 

distance from the mean~, (x(n-k+l), ••• ,x(n» say, is 

which, under the null hypothesis H , is the ratio of the sum of the 
o 

k largest of a set of gamma variates with degrees of freedom parameter 

~ to the sum of those variates. Putting r=i in (2.32) gives the 

following inequality for the upper tail probability of Zn,(k): 

P [Zn,(k) > u] < (~)p [Fk,n-k > {(n-k)/k}{u/(l-u)}] , 

(4.33) 

where Fk n-k is an F-variate with (k,n-k) degrees of freedom. , 
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Chapter 5 

Outliers in Linear Models 

The study of outliers in univariate samples, the subject of 

the previous three chapters, may be considered as a special, though 

important, case of more general situations. This chapter and the 

next are concerned with two such generalisations; this chapter 

with outliers in data described by a general linear model and the 

next with outliers in multivariate samples. Both of these contain 

the univariate sample as a particular case. In both chapters 

attention will be restricted to normal data, that is to data 

following a linear model with a normal error structure in this 

chapter and to samples from a multivariate normal distribution 

in the next. 

It is only in comparatively recent years that attention has 

been paid to the detection of outliers in data arising from linear 

models. Early contributions are those of Daniel (1960) and Bross 

(1961) in the particular context of outliers in factorial experiments, 

and Srikantan (1961) in the context of outliers in regression models. 

More recent is the work of Cox and Snell (1968 and 1971), working 

from a general viewpoint, Andrews (1971), Elashoff (1972), Tietjen, 

Moore and Beckman (1973), Prescott (1975) and Lund (1975), who all 

consider problems of testing for outliers in simple linear regression 

models, and that of Stefansky (1971 and 1972), John and Prescott 

(1975) and Gentleman & Wi1k (1975) who consfder outliers in certain 

designed experiments which have the 2roperty that all residuals have 

a common variance. The la~ consider various graphical procedures, 

based upon half normal plots, and extend the work of Daniel (1959) 
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from univariate samples to two-way tables. The results of this 

chapter apply to the general problem of detecting outliers in data 

following the linear model 

Y = X/He:, (5. I) 

where Y is an n x I vector of observations, X is an n x m matrix 

of known constants (where n > m+2) , B is an m x I vector of unknown 

parameters and E is an n x I vector of errors jointly distributed 

normally with mean 0 and variance a 2V, where V is a known n x m 

positive definite diagonal matrix, and a is unknown scalar. It 

will be assumed that X is of full rank m. Without loss of any 

generality V may be taken to be the n x n identity matrix I. This 
n 

follows since if P is the unique n x n diagonal matrix such that 

p2 = V 

and if y* = p-I y , x* - p-I x, e:*=p-Ie: then the model (5.1) may be 

expressed as 

where E* ~ N(O,a 2 I ). 
n 

y* = X*B+e:* 

Particular attention is given to the £pecia1 cases when the , 

model (5.1) represents a po~omia1 regression of degrees one, two 

and three, (i.e. linear, quadratic and cubic regression), on a 

single independent variable measured at equally spaced points. The 



5.3 

empirical studies by Tietjen, Moore and Beckman (1973) suggest that 

the concentration on equally spaced values of the independent variable 

is, in the case of linear regression models at least, not unduly 

restrictive. These models fall outside the restricted class 

considered by Stefansky (1971, 1972) since the residuals do not, in 

general, have a common variance. 

The detection of outliers in data described by such a linear 

model must involve consideration of the differing variances of the 

residuals, a point emphasised by Behnken and Draper (1972), since 

the 'most extreme' observation (as judged by an objective criterion) 

may not necessarily be that observation with the largest residual. 

For example in data having a linear regression upon a single 

independent variable the 'most extreme' observation is not necessarily 

that observation lying furthest from the 'fitted' regression line, 

since allowance must be made for the differences in variances of the 

residuals or deviations from the 'fitted' line. In particular a 

large deviation from the 'fitted' line at a value of the independent 

variable near its mean is of more note than an equally large deviation 

at one of the extremes of the range of the independent variable. This 

fact has been ignored by Andrews (1972) and in some standard texts on 

statistical methods, for example Snedecor and Cochran (1967), (sections 
~ 

6.13 and 11.11). The definitions of 'most extreme' employed in the 

following sections is one based upon the likflihood of the sample. 
~ 

It is a direct extension of that used in the previous three chapters 

and, in the case of a single extreme, is equivalent to that implied 

by the use of the 'maximum normed residual' discussed in detail by 

Stefansky (1971, 1972) and, less explicitly, by the other authors 
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referred to above. 

An important distinction between the problems of the detection 

of outliers in univariate samples and in data following more complex 

linear models is that in the more complex models it is no longer 

useful to consider separately 'one-sided' and 'two-sided' criteria. 

That is the observations tested as outlying will be those which 

are the most 'extreme', without regard to whether they are 'large' 

or 'small' (however 'large' and 'small' may be defined for data 

following a general linear model). Of course it is possible to 

define 'one-sided' criteria, for single outliers at least. for example 

by referring to the sign of the residual. In the context of simple 

linear regression this would entail testing only that observation 

which lay furthest above the 'fitted' regression line, (taking 

account of the differing variances of the deviations). Srikantan 

(1961) considers just such criteria. However 'one-sided' criteria 

are of limited practical application and furthermore do not in general 

have the desirable property that their definition can be extended 

to 'one-sidedness' for multiple outliers, since the removal of one 

suspect observation from the data may alter the sign of the residuals 

of other suspect observations after fitting the model to the reduced 

set of data. For these reasons only criteria which are equivalent 

to 'two-sided' criteria in the univariate case will be considered 

in this chapter. ) 
Throughout the following sections it will be assumed that 

the vector B in the model (5.1) is unknown and to be estimated. If 
t e were known the problem would reduce to the detection of outliers 

I 
in univariate samples cons14ered in the previous two chapters. 
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The following section establishes the notation and derives 

a likelihood-based ·criterion for testing outliers in linear models. 

Succeeding sections develop some general results concerning this 

criterion and some applications to particular models and practical 

examples. 

I 
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5.] Preliminaries 

5.].1 The Likelihood Ratio Test 

Let Y = (YI""'Yn)' be an n x I vector of observations of 

an n-dimensional random variable. Let X be a known n x m 

matrix with elements x. " with n > m+2, and assume X is of full 
1.J 

rank m. Let a be an unknown m x I vector and let 1 be the 
n 

n x n identity matrix. 

Denote by Y. the (n-I) x I vector obtained by omitting the 1. 
• th f Y ( • h ( ) , ) 1. component 0 , 1..e. t e vector YI' Y2""'Yi-]'Yi+l""'Yn • 

Similarly denote by X. the (n-I) x m matrix obtained by omitting 1. 

h .th ~ 
t e 1. row o~ X. 

Let H be the hypothesis that Y is an observation of a normal 
o 

random variable with mean X6 and variance 0
2 1 , where 0 is an 

n 

unknown scalar. Under H the log-likelihood of Y is 
o 

-~nlog (21T)-nlcgo-! (Y-x eP (Y-xe) /02 • 

This is maximised when . 

(say) 

and 

giving a ~aximised log-likelihood under H of o 

-!nlog(21T)-ln-!nlog{(Y-X8)'(Y-XB)/n}. 

'" 
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Let HI be the alternative hypothesis that one observation, 

y without loss of generality, arises from a normal distribution 
n 

with mean ~ and variance cr 2 , and that the remaining (n-I) 

observations, represented by the vector Y , arise from a normal 
n 

distribution with mean X B and variance 02r I. n n- Under HI the 

log-likelihood of Y is 

This is maximised when 

= (X'X )-IX'Y = 
n n n n 

(say) , 

0 2 = (Y -X 8 )'(Y -x 8 )/n, n n n n n.n 

giving a maximised log-likelihood under HI of 

-~nlog(2n)-ln-~nlog{(Y -x B )'(Y -x 6 )/n}. n nn n nn 

The difference between the maximised log-likelihoods under 

the null and alternative hypotheses is thus 

12nl og{{(Y-XS)'(Y-XB)}/{(Y -x a )'(Y -X en)}}' n n n n n 

which may be written as 
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where R = (Y-XB)'(Y-X6) 

and R. = (Y.-X.S.)'(Y.-X.S.) 
1 ill ill 

(i= 1 , ••• ,n) • 

It follows that an appropriate criterion for testing an 

observation as outlying is any monotonic function of 

~~f{R/Ri}' where the observation actually tested as outlying, 

is that for which R/R. is maximum. 
1 

That is the "extreme" 

observation is defined to be that observation whose omission 

from the sample produces the greatest decrease in the residual 

sum of squares after fitting the model (5.1). Throughout this 

chapter the 'extreme observation' will be that as here defined. 

5.1.2 The Criterion T(n) 

Let Ti ~ (n-m-l)(R-Ri)/Ri and suppose T(l) < T(2)< ••• < T(n) 

are the ordered values of the T .• 
1 

Since T(n) is a monotonic 

function of m~¥{R/R.}, T( ) is an appropriate likelihood-based 
1=1 1 n 

statistic for testing the extreme observation as outlying. 

For arbitrary i, T. follows an F-distribution with 1 and 
1 

(n-m-l) degrees of freedom. This may be seen by considering 

h d 1 h Z • h • h . th t e mo e Y = X +Z.Y+E, were . is t e vector Wit 1 component 
1 1 

equal to 1 and zero's elsewhere, and Y is an unknown scalar. 

R. will be equal to the residual sum of squares, with n-m-l 
1 

degrees of freedom, after fitting this model and R will Le the 

residual sum of squares, with n-m degrees of freedom, after 

fitting the model under the constraint y-O. 

Throughout" this chapter the statistic T(n) will be used to 

test the extreme observation as outlying. It is important to note 

that this statistic is essentially equivalent to that used by 
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Srikantan (1961), and termed the 'maximum studentized residual' 

by Ferguson (1961). Here 'studentized residual' is taken to mean 

the residual divided by an estimate of its standard deviation. In 

the case of the residuals having a common variance it is also 

equivalent to the 'maximum normed residual' of Stefansky (1971 and 

1972). To see this define the 1 x m vector x! to be the ith row 
1. 

of X, i.e. 

x! = (x. 1 x. 2' ••• , x. ), 
1. 1. , 1. 1.m 

and let the vector of residuals be the n x 1 vector 

A 

e = (e l ,e2, ••• ,en)' = y-Xs, 

then 
, A 

e. = y.-x.B. 
1. 1. 1. 

The statistic used by Srikantan for testing the extreme observation 

as outlying is 

where t. - e?/{R(l-x!(X'X)-lx.)}. 
1. 1. 1. 1. 

(5.2) 

Now R - y'y-y'X(X'X)-lX'y 

and R .• y!y.-y!X.(X!X.)-JX!Y •• 
1. 1. 1. 1. 1. 1. 1. 1. 1. 

Since y!Y. - Y'y-y~, 
1. 1. 1. 

(S.3a) 
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x!x. = Y'X-x.x!, 
1. 1. 1. 1. 

and x!Y. = X'Y-y.x., 
1. 1. 1. 1. 

R. may be written as 
1. 

2 -) -) -) R. = Y'Y-y.-(Y'X-y.x!)X'X) {I -x.x!(X'X) } (X'Y-y.x.). 
1. 1. 1. 1. m 1. 1. 1. 1. 

Expanding {I -x.x!(X'X)-)}-) as 
m 1. 1. 

-) -) -I 
I +x.x!(X'X) +x.x!(X'X) x.x!(X'X) + 

m 1.1. 1.1. 11 

and collecting terms gives 

-) 2 R. = Y'Y-Y'X(X'X) X'Y-y.-
1. 1. 

-I -) 2 where W = )+x!(X'X) x.+(x!(X'X) x.) + 
1. 1 1. 1. 

-) -I = {1-x!(X'X) x.} , 
1. 1. 

whence R-R .• e~/{I-x!(X'X)-)X.}. 
1 1. 1. 1. 

Hence T. - (n-m-l)t./(I-t.), 
1. 1. 1. 

(5.3b) 

(5.3c) 

(5.4) 

(5.5) 

and in particular, the statistics T(n) and t(n) are related by the 

equation 



5. 11 

(5.5a) 

It follows that the statistics T(n) and t(n) are essentially 

equivalent, as asserted. A particular consequence of the equivalence 

is that the 'extreme observation' may be defined alternatively to be 

that observation with the largest studentized residual, in the sense 

defined above. 

It is readily seen that the null distribution of T(n)' Fn(.lx) 

say, depends upon the particular form of the design matrix x. It 

is not possible to derive this distribution by a recursive procedure 

in a manner analogous to that described in earlier chapters. Such 

a procedure would relate Fn (. Ix) to Fn-l(.I~~ the distribution of 

the likelihood-based criterion based upon the reduced design matrix 

xn • The reason for this is that T(n) is essentially a 'two-sided' 

criterion; an examination of the particular case X = (1,1, ••• ,1)' 

(i.e. the univariate sample case consid;red in section 3.6) makes 

this clear. It is possible to derive recursively the distribution 

of 'one-sided' criteria, such as m~x e./{I-x!(X'X)-l x .}i}, at least for 
1=1 1 1 1 

some forms of the design matrix X, but the matter is not pursued 

here. 

It is possible to derive the upper tail of the distribution of 

T(n) using upper bounds on the magnitude of T(n-J)' the second 

largest of the T .• 
1 

These bounds are established in the following 

section and their application to the distribution of T(n) is 

considered in the section 5.3. 
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5.2 Upper Bounds for T(n_l) 

The following notation will be needed: let x .. be the 
1J 

( 2) . b . db' . b h h . th ·d·· th n- x m matr1x 0 ta1ne y om1tt1ng ot t e 1 an J rows 

of X, (assuming i~j throughout), let Y .. be the (n-2) x 1 vector 
1J 

b . db· . b h h . th d· th f Y d 1 o ta1ne y om1tt1ng ot t e 1 an J components 0 ,an et 

R .. be the residual sum of squares after fitting the model of the 
1J 

form (5.1) to the observations Y .. , that is 
1J 

-1 
R •• = Y! .Y •• -Y! .x .. (X! .x .. ) X! .Y ..• 

1J 1J 1J 1J 1J 1J 1J 1J 1J 

-1 -I -I 
For brevity write Z = (X'X) ,Z. = (X!X.) and Z .. = (X!.X .. ) • 1 . 1 1 1J 1J 1J 

Applying identity (5.4) to the reduced sample Y. gives 
J 

R.-R .. = (y.-x!&.)2/{I-x!Z.x.}. 
J 1J 1 1 J 1 J 1 

Now x!e. "" x!Z.X!Y. 
1 J 1 J J J 

-I - x!z{r -x.x!Z} (X'Y-y.x.) 
1 m J J J J 

(on application of identities 5.3). 

-1 
Expanding {I -x.x!Z} and rearranging terms yields 

m J J 

giving 

,. 
x!a. = 

1 J 

IX) 

, '{ ". r(, )r} 'z x.ZX Y+ y.-x.ZX Y}{l x.Zx. x. x., 
1 J J oj J 1 J 

r" 

y.-x!S. - e.+e.x!Zx.(I-x!Zx.)-I. 
11J 1J1J J J 

(5.6) 

(5.7) 
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Substitution of (5.7) in (5.6) and the addition of identity (5.4) 

(with i replaced by j) gives, after some algebra, 

R-R •• = ef/{I-x!Z.x.}+e~/{I-x!Z.x.}+2e.x!Z .. x .• 
1J 1 1 J 1 J J 1 J 1 1 1J J 

Thus, upon substitution of t. defined in (5.2), 
1 

(R-R •• )/R = A .. (t.+t.)+2B .. (t.t.)! 
1J 1J 1 J 1J 1 J 

(writing A .. = {1-x!Zx.}/{I-x!Z.x.} 
1J 1 1 1 J 1 

= {1-x!Zx.}/{J-x!Z.x.} (after some algebra), 
J J J 1 J 

and B .. = x!z .. x.{I-x!Zx.}!{J-x!Zx.}I). 
1J J 1J J 1 1 J J 

Now necessarily R .. ~ 0, 
1J 

since R .. is a sum of squares. 
1J 

(5.8) 

(5.9) 

(5.10) 

It follows 

that the point (/t.,/t.) 
1 J 

must lie within the ellipse defined by 

Thus if 

-1 -1 
t. > max{l(A .. +B •• ) ,HA .. -B .. ) } 

1 1J 1J 1J 1J 

then t."> t •• 
1 J 

-I -1 Let k .... max{i(A .. +B .. ) ,!<A .. -B .. ) }. 
1J 1J 1J 1J 1J 

(5. J 1) 

(5.12) 
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It may be noted that k .. > O. This follows since R > R .. , 
1J . 1J 

implying that the right hand side of equation (5.9) is positive 

definite, so that A •• > B ••• 
1J 1J 

Clearly k .. < 1. 
1J 

Define k. 
1 

then 

n = max{k .. }, 
J=1 1J 
j;'i 

t. > k. implies that t. > t. for all j;'i. 
1 1 1 J 

Now define K. = (n-m-l)k./(I-k.). 
1 1 1. 

Then, since 0 < k. < 1, (5.14) gives 
1. 

T. > K. implies that T. > T. for all j;'i. 
1 1 1 J 

(5.13) 

(5.14) 

(5. 15) 

n 
If K = max K. then (5.15) gives the rather weaker result' that 

1.= I 1 

T. > K implies T. > T. for all j;'i, 
1 1. J 

(5.16) 

which is equivalent to that obtained by Srikantan (1961), by a 

different argument. If the design matrix X is such that the 

residuals have common variance then it will follow that all the k., 
1 

defined in (5.13), will be equal, so that statements (5.15) and 

(5.16) will be identical and will reduce to the result of Stefansky 

(1971 and 1972). 

It may be noted that (5.16) is equivalent to the inequality 

T (n-l) < K, (5. 17) 
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that is K is an upper bound for T(n-l). 

be stated as 

Further (5.15) may 

'if there exists an i, 1 ~ i ~ n, such that T. > K. 
1 1 

(5.18) 
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5.3 The Upper Percentage Points of T(n) 

In section 5.1 attention was drawn to the important fact that 

the null distribution of T(n) depends upon the particular form of 

the design matrix X. In this section it is shewn that it is possible 

to obtain upper bounds for the upper percentage points of T(n) 

irrespective of the particular form of X. These are tabulated in 

Table 5.1 for various significance levels and sample sizes. It is 

shewn further that for the smaller sample sizes, depending upon the 

form of the design matrix x, these upper bounds coincide with the 

actual percentage points of T(n)' The special cases when the model 

(5.1) represents a polynomial regression of degrees one, two and 

three, with a constant term, are considered in section 5.4 

Consider the identity 

n 

P [T(n) > u] = LP [T. > u, T
J
• = T(n)] • 

j:o: 1 J 
(5.19) 

Since P [T. > u, T. = T( )J ~ P [T. > u ] 
1. 1. n 1. 

it follows that 

P [T(n) > uJ ~ n P [T. > uJ • 
J 

Now for arbitrary j,T. follows an F-distribution with (I,n-m-I) 
J 

degrees Df freedom (see section 5.1.2). Hence the upper IOOa 

(5.20) 

percentage point of T(n) is bounded above by the upper IOOa/n 

percentage point, T (a;m) say, of the r-distribution with (I,n-m-l) 
n 

degrees of freedom. 
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Table 5.1 gives the values of the upper bounds T (ajm) of 
n 

the percentage points of T(n) for each value of m, m=2(1)6, 

n=(m+3)(1)30 and a=O·I, 0·05, 0·025, 0·01, 0·001. (Values for 

m=l, which includes the univariate sample case, may readily be 

derived from the tables of Quesenberry and David (1961) or Srikantan 

(1961». Recently Lund (1975) has calculated upper bounds for 

the equivalent statistic t(n) for m=I(I)6,8,10,15,25, n=(m+4)(1)20(S) 

SO(I~IOO and a=O·I, 0·5, 0·01. 

The values in Table 5.1 were obtained by solving the equation 

T (a:m) 

f n dF .. I-a/n o I,n-m-I 

(where here FI I is the distribution function of the ,n-m-

F-distribution of (I,n-m-I) degrees of freedom), using a modified 

Newton-Raphson iterative procedure. The values are expected to be 

correct to within one unit in the last figure. 

Let {T(I),T(2), ••• ,T(n)} be a permutation of the integers 

{1,2, ••• ,n} such that 

Let u > 0 and suppose that r is the unique positive integer such 

that 

(i.e. suppose u lies between the rth and (r+l)th largest of the Ki ). 

If u < K (J) de fi ne r=O, if u > K (n):: K de fine r=n. 
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Table 5.1 

Upper Bounds for the Upper percentage points of T(n) 

a) m=2 

n 10% 5% 2-5% 1% 0-1% 

5 48-5051 98-5025 198-5013 498-5005 4998!5000 

6 23- 5871 38-8321 63·0396 118· 1305 557-0338 

7 17-2043 25-6796 37-6755 61-4872 201-6098 

8 14-5161 20-4821 28-3654 42·7905 113-9082 

9 13-0968 17-8162 23-7742 34-1039 79-4624 

10 12-2464 16-2356 21-1107 29-2452 62-1667 

1 1 11-6949 15-2090 19-4005 26-1970 52-0883 

12 11-3179 14-4999 18-2245 24-1312 45-6076 

13 11 -0505 13-9881 17-3750 22-6520 41-1408 

14 10-8561 13-6063 16-7384 21-5484 37-9007 

15 10·7122 13-3144 16-2477 20-6986 35·4567 

16 10-6046 13 -0869 15-8610 20-0278 33-5558 

17 10-5236 12-9070 15-5507 19-4873 32-0403 

18 10-4628 12-7630 15-2982 19-0447 30-8075 

19 10-4175 12-6469 15-0901 18-6771 29-7875 

20 10-3842 12-5525 14-9170 18-3683 28-9315 

21 10-3604 12-4755 14-7718 18-1063 28-2044 

22 10-3443 12-4126 14-6492 17-8821 27-5802 

23 10-3343 12- 361 1 14-5451 17-6888 27-0396 

24 10-3293 12-3191 14-4563 17-5210 26-5674 

25 10·3284 12-2850 14-3893 17-3748 26-1522 

26 10-3309 12-2574 14-3150 17-2465 25-7848 

27 10-3362 12-2355 14-2590 17-1336 25-4577 

28 10-3438 12-2182 14-2107 17-0339 25-1652 

29 10-3534 12-2050 14-1692 16-9455 24-9023 

30 10-3646 12-1953 14-1335 16-8669 24-6652 



5.19 

Table 5.1(cont.) 

b) m=3 

n 10% 5% Ii. 0·1i. 

6 58'5042 IIS·S021 598·5010 598'5004 5998'5000 

7 26·3955 43·2922 70·1207 131·1750 617·5830 

8 18·6163 27·6787 40·5041 65·9610 215·7595 

9 15·4161 21·6718 29·9368 45·0589 119·6090 

10 13·7450 18·6350 24·8073 35·5075 82·4890 

1 1 12·7484 16·8495 21·8605 30·2208 64·0529 

12 12·1026 15·6956 19·9806 26·9277 53·3902 

13 11·6601 14'9008 18·6933 24·7073 46·5708 

14 11·3449 14· 3277 17'7662 23·1232 41·8898 

15 11 • 1140 13'9002 17·0728 21·9446 38·5050 

16 10·9414 13·5730 16'5390 21·0390 35·9583 

17 10·8107 13·3175 16·1185 20·3252 33·9815 

18 10·7108 13·1148 15'7811 19·7509 32·4082 

19 10·6342 12'9521 15'5064 19·2808 31·1301 

20 10'5755 12·8201 15·2798 18·8907 30·0738 

21 10·5307 12'7123 15'0912 18·5631 29·1883 

22 10·4969 12·6238 14'9327 18· 2852 28·4368 

23 10·4721 12·5509 14·7986 18·9473 27·7921 

24 10·4544 12·4906 14·6845 17'8422 27·2340 

25 10'4425 12·4408 14· 5869 17·6642 26·7469 

26 10·4355 12·3998 14·5031 17·5089 26·3187 

27 10·4325 12'3660 14·4309 17· 3726 25'9399 

28 10·4328 12·3385 14·3687 17·2526 25·6029 

29 10·4359 12'3162 14·3148 17·1464 25·3015 

30 10·4414 12 -:~985 14·2682 17·0522 25·0308 
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Table 5.I(cont.) 

c) m=4 

n 107. 57. 17. o· 17. 

7 68-5036 138·5018 278-5009 698·5004 6998·5000 

8 29-0731 47-5442 76-8714 143-6106 675-3054 

9 19-9428 29-5565 43-1610 70-1629 229-0493 

10 16-2582 22-7848 31-4067 47-1808 124-9412 

11 14-3516 19·4010 25- 7738 36-8204 85·3200 

12 13-2191 17-4249 22-5632 31-1351 65-8204 

13 12-4858 16-1529 20-5255 27-6142 54-6131 

14 11-9826 15-2785 19-1350 25-2498 47-4780 

15 11-6230 14-6485 18-1358 23-5682 42- 5971 

16 11-3583 14-1786 17-3896 22·3198 39- 0772 

17 11-1591 13- 8185 16-8155 21-3622 36-4344 

18 11-0070 13-5370 16-3635 20-6082 34-3866 

19 10 -8895 13-3131 16-0008 20-0022 32-7590 

20 10-7980 13·1328 15-7053 19·5065 31·4383 

21 10-7267 12- 9861 15-4615 19-0952 30-3480 

22 10-6712 12-8657 15-2582 18-7499 29-4346 

23 10-6281 12-7663 15-0872 18- 4570 28-6600 

24 10-5950 12-6839 14-9423 18-2063 27-9959 

25 10-5701 12-6153 14-8188 17-9901 27-4213 

26 10-5518 12-5582 14-7129 17-8023 26-9200 

27 10-5390 12-5106 14-6217 17-6384 26-4795 

28 10-5308 12-4711 14-5430 17-4946 26-0899 

29 10-5264 12-4383 14-4748 17-3677 25-7434 

30 10-5252 12-4112 14-4157 17-2555 25-4336 
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Table 5.1(cont.) 

d) m=5 

n 10% 5% 1% 0'1 % 

8 78-5031 158-5016 318'5008 798'5003 7998'5000 

9 31-6414 51-6223 83'3458 155-5372 730-6652 

10 21-1977 31-3328 45'6740 74-1373 241-6191 

1 1 17·0514 23·8330 32,7909 49,1789 129· 9623 

12 14-9227 20'1221 26·6834 38,0561 87·9843 

13 13-6627 17'9672 23,2254 31,9965, 67·4856 

14 12·8476 16,5846 21-0400 28·2621 55·7674 

15 12-2878 15·6358 19,5529 25·7632 48·3362 

16 11' 8868 14,9528 18·4863 23·9901 43·2677 

17 11' 5905 14,4431 17-6906 22·6764 39·6208 

18 11-3665 14,0524 17-0789 21-6699 36·8877 

19 11-1943 13·7464 16-5973 20·8783 34· 7730 

20 11' 0603 13'5026 16-2109 20·2424 33·0943 

21 10'9550 13'3059 15-8959 19- 7226 31·7334 

22 10-8719 13·1452 15-6358 19-2914 30'6109 

23 10-8062 13'0130 15-4187 18-9294 29-6713 

24 10,7543 12,9034 15-2360 18·6223 28·8748 

25 10-7135 12'8121 15-0808 18-3595 28-1923 

26 10-6817 12'7357 14-9484 18,1327 27·6020 

27 10-6573 12'6717 14-8346 17'9357 27-0872 

28 10,6391 12·6179 14'7365 17·7637 26·6349 

29 10,6259 12,5728 14,6515 17'6126 26·2351 

30 10,6171 12,5349 14· 5777 17·4793 25·8795 
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Table 5.I(cont.) 

e) m=6 

n 10% 5% 2·5% 1% 0·1% 

9 88·5028 178·5014 358·5007 898·5003 8998·5000 

10 34·1162 55·5520 89·5843 167·0292 784·0073 

1 1 22·3915 33·0223 48·0643 77·9175 253·5746 

12 17· 8026 24·8256 34·1016 51·0708 134·7163 

13 15·4630 20·8043 27·5439 39·3250 90·5045 

14 14·0827 18·4805 23·8521 32·8118 69·0617 

15 13·1907 16·9939 21·5177 28·8763 56·8615 

16 12· 5777 15·9752 19·9498 26·2505 49·1510 

17 12·1378 15·2423 18·8197 24·3915 43·9056 

18 11·8119 14·6954 17·9775 23·0162 40·1389 

19 11· 5646 14· 2758 17·3304 21·9637 37·3206 

20 11·3735 13·9468 16· 8210 21·1367 35·1426 

21 11·2240 13·6843 16·4121 20·4726 33·4155 

22 11 • 1057 13·4720 16·0788 19·9299 32·0167 

23 11·0115 13·2983 15·8033 19·4800 30·8636 

24 10·9362 13·1549 15·5733 19·1022 29·8990 

25 10· 8760 13·0356 15·3793 18·7817 29·0817 

26 10·8279 12·9358 15·2145 18· 5073 28·3817 

27 10·7896 12·8520 15·0736 18·2705 27·7765 

28 10·7594 12·7814 14·9523 18·0648 27·2488 

29 10·7360 12·7217 14·8476 17·8850 26·7854 

30 10·7181 12·6713 14·7567 17·7270 26·3758 
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Then (5.15) gives 

for each i, ~ i ~ r. (5.21) 

Now (5.19) may be written as 

n 
P [T (n) > u] = LP [T (0) > u, T (JO) = T(n)] , 

j=1 J 

n 
Thus p[ T (n) > u] = rp[FI,n_m_1 > u] + L PET (') > u, Tt(J') = T(n)] 

j=r+J T J 

(where FI I denotes a variate following an F-distribution ,n-m-

with (I,n-m-I) degrees of freedom). 

In particular if r=n, i.e. if u > K, then 

P [T (n) > u] = "P [F I 1 > u] • ,n-m-

Thus if the upper JOQa/n percentage point of FJ 1 exceeds K ,n-m-

then it coincides with the upper JOOa percentage point of T(n)' 

Hence 

and equality is achieved if T (a ;m) ~ K. 
n 

(5.22) 

(5.23) 

(5.24) 

It may be noted that the calculation of the upper bounds on 

T(n_I)' the Ki and K of section 5.2, for any particular design matrix 
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X may be performed with only a small amount of computation additional 

to that needed in any standard analysis of the data. In particular 

the matrix (X'X)-l will be needed not only for evaluating the K. 
1. 

but also in any later analysis. Values of the K. for some standard 
1 

polynomial regression models are given in the next section. 
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5.4 Polynomial Regression 

Table 5.2 gives values of Ki' the upper bounds on T(n_l) 

defined in section 5.2, for the particular cases when the model 

5.1 represents a polynomial regression of degrees one, two and 

three (Tables 5.2 (a), (b) and (c) respectively) on equally spaced 

values of the independent variable, for all sample sizes up to 30. 

Since values of the Ki are clearly invariant under transformations 

of location and scale of the independent variable, in these polynomial 

cases the design matrix X may be taken, without loss of generality, 

b h • h ( .. )th 1 . .j-I to e t e matr1.X w ose 1.,J e ement 1.S 1. , I ~ i ~ n, I ~ j ~ m. 

Considering the symmetry of such models it is clear that for 

each i 

K. "" K • I. 1. n-1.+ 

For compactness therefore values of K. are tabulated only for 
1. 

1 ~ i ~ in if n is even, and I ~ i ~ i(n+l) if n is odd. 

In these particular models it is seen that the largest K. 
1. 

always occurs when i-I (or i=n), that is the first column of each 

table gives the values of K, defined in section 5.2, for various 

sample sizes. A comparison with Table 5.1 shews, upon application 

of the result (5.24), that in the case of linear regression on 

equally spaced values of the independent variable the upper bounds 

T (a;m) given in Table 5.I(a) for the upper 100a percentage points 
n 

of T(n) coincide with the actual upper 100a percentage points of 

T(n) for sample sizes n up to and including n=7,9,11,14,21 
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Table 5.2 

Values of K. for Polynomial Regressions 
---------1 ------~------=------

a) Linear Regression 

Sample 
Size 

n 

4 14'73 

5 14· 39 

6 14,52 

7 14'93 

8 15'50 

9 16· 17 

10 16,92 

11 17' 72 

12 18· 56 

13 19·42 

14 20'31 

15 2 l' 21 

16 22·13 

17 23·05 

18 23,99 

19 24'93 

20 25,88 

21 26'84 

22 27,79 

23 28'76 

24 29' 72 

25 30'69 

26 31' 66 

27 32·64 

28 33'61 

29 34·59 

30 35·57 

Values of Independent Variable, i 

2 3 4 5 6 7 

14· 73 

14'39 14'39 

14'52 6'70 

14'93 8·84 6' 14 

15'50 10·65 8·06 

. 16· 17 12·23 9·82 8, 1 I 

16· 92 13·64 I 1·43 9·79 
·17, 72 14·94 12·93 I I· 37 10'09 

18'56 16· 17 14·-34 12·87 1 1·64 

19'42 17·33 ]5·67 ] 4· 29 13· 11 12·08 

20'31 18·46 16·94 15·65 14·53 13·53 

21'21 19'56 18· 17 16· 96 15·90 14·94 

22·13 20·64 19·36 18·23 17· 22 16· 30 

23·05 21·70 20·52 19· 46 18·50 17· 63 

23'99 22·75 21· 65 20·66 19· 75 18· 92 

24'93 23'80 22· 77 21· 84 20·98 20·18 

25·88 24,83 23'87 22,99 22· 17 2 1·41 

26·84 25·86 24'96 24· 13 23·35 26·62 

27,79 26·88 26·04 25·25 24· 51 23· 8 I 

28·76 27·90 27· 11 26·36 25·65 24·98 

29'72 28· 92 28' 17 27·46 26· 78 26· 15 

30·69 29'93 29·22 28·54 27· 90 27·28 

31' 66 30'95 30·27 29·62 29· 01 28· 41 

32·64 31,96 31' 3 I 30·69 30· 10 29· 53 

33'61 32,97 32'35 31·76 3 1· 19 30· 64 

34,59 33,98 33'39 32,82 32· 27 3 1·75 

35,57 34·98 34·42 33·87 33·35 32· 84 



Sample 
Size 

n 

15 

16 

17 

IS 

19 

20 

21 

22 

23 

24 

25 

26 

27 

2S 

29 

30 

8 

14'07 

15·46 

16·S2 

IS'14 

19·43 

20·69 

21'93 

23·15 

24'35 

25'53 

26·69 

27·S5 

2S'99 

30·12 

31·24 

32·35 

5.27 

Table 5.2(a) (cont.) 

Values of Independent Variable, i 

9 10 1 1 12 13 14 15 

16·06 

17·40 

IS· 72 IS'06 

20'01 19'36 

21·27 20·65 20'05 

22'52 21 • 91 21' 33 

23'74 23 '15 25'59 22'04 

24'94 24·37 23·S3 23'30 

26·13 25·5S 25·05 24·54 24'04 

27·30 26·77 26·26 25·76 25·2S 

2S·46 27'95 27'45 26'97 26·50 26·04 

29·61 29·11 2S·63 28·16 27'70 27·26 

30'74 30·26 29·80 29·34 2S'90 2S·46 2S'03 

31· 87 31 ·41 30·95 30·51 30·0S 29·65 29·24 
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Table 5.2 (cont.) 

(b) Quadratic Regression 

Sample 
Size 

n 

5 48'27 

6 44·41 

7 41'78 

8 40'00 

9 38·81 

10 38'05 

II 37·62 

12 37'43 

13 37·44 

14 37'59 

15 37·86 

16 38·23 

17 38'68 

18 39·20 

19 39'77 

20 40·39 

21 41·05 

22 41·74 

23 42·46 

24 43·20 

25 43·97 

26 44·76 

27 45'56 

28 46'38 

29 47·21 

30 48·06 

2 

48'27 

44·41 

41·78 

40·00 

38· 81 

38·05 

37-62 

37·43 

37·44 

37'59 

37·86 

38·23 

38·68 

39·20 

39'77 

40·39 

41·05 

41'74 

42·46 

43·20 

43'97 

44·76 

45·56 

46·38 

47·21 

48·06 

Values of Independent Variable, i 

3 4 5 6 7 

4'04 

6'80 

7·24 7·24 

7-63 8·74 

9'58 9·47 9'47 

12·23 10·07 10·70 

14·75 10·73 II- 54 II' 54 

17·10 11'50 12'27 12·67 

19·28 13 ·15 12·99 13'57 13'57 

21 • 31 15 ·12 13·76 14·37 14·65 

23·19 17·02 14·59 15·15 15·58 

24·94 18·87 15·48 15·95 16·43 

26'59 20·65 17· 01 16·78 17·25 

28'15 22·36 18·70 17·64 18·08 

29·63 24·01 20·36 18· 55 18· 92 

31·04 25·61 21· 98 19·50 19·78 

32'40 27·16 23·57 20-94 20·67 

33·71 28'66 25·12 22·48 21· 59 

34'98 30·12 26·64 24·01 22·53 

36·22 31· 53 28·12 25·50 23·54 

37·42 32'91 29-57 26·98 24·90 

38'61 34·26 30-99 28·42 26·35 

39· 77 35·59 32'39 29·85 27·78 

40'91 36·88 33'76 31· 26 29·19 

42'03 38-15 35·11 32·64 30·59 

43'15 39·40 36·43 34·00 31· 97 



Sample 
Size 

n 

15 

16 

17 

18 

]9 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

8 

15·58 

16·63 

17·58 

18·46 

19·32 

20·17 

21·03 

21·91 

22·80 

23·70 

24·62 

25·57 

26·53 

27·56 

28·87 

30 30·25 
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Table 5.2(b) (cont.) 

Values of Independent Variable, i 

9 10 I I 12 13 14 15 

17· 58 

18·62 

19·58 19·58 

20·49 20·60 

21·37 21· 57 

22·24 22·50 22·60 

23·13 23·40 23·57 23·57 

24·02 24·29 24·57 24·59 

24·91 25·19 25·43 25·57 25·57 

25·81 26·10 26·33 26·52 26·58 

26·72 27·00 27·25 27·45 27·56 27·56 

27·65 27·90 28·16 28·36 28·52 28·58 

28·59 28·07 29·07 29·29 29·46 29·56 29·56 

29·53 29·74 29·98 30·21 30·39 30·52 30·57 
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Table 5.2 (cont.) 

(c) Cubic Regression 

Sample 
Size 

n 

6 115'65 

7 106·38 

8 98'99 

9 93'16 

10 88·49 

11 84·72 

12 81·67 

13 79'19 

14 77·19 

15 75'57 

16 74·27 

17 73·23 

18 72·43 

19 71· 82 

20 71· 37 

21 71· 06 

22 70·88 

23 70·81 

24 70·83 

25 70·93 

26 71' 11 

27 71' 35 

28 71· 65 

29 72·00 

30 72·40 

2 

115' 79 

106·36 

98'99 

93'16 

88'49 

84'72 

81· 67 

79'19 

77'19 

75'57 

74·27 

73·23 

72·43 

71' 82 

71'37 

71· 06 

70·88 

70'81 

70'83 

70'93 

71· 11 

71' 35 

71' 65 

72'00 

72·40 

Values of Independent Variable, i 

3 4 5 6 7 

13'95 

11'14 5'59 

10·19 8'84 

11' 23 11· 23 7'89 

12·58 12·58 10·05 

13·37 13·37 12· 10 10·05 

13·99 13'99 13·79 11·78 

14·60 15' 10 15· 10 13· 54 12· 15 

16·17 16· 14 16·14 15· 17 13·65 

18· 92 17· 03 17·03 16· 61 15.22 

21· 63 17·83 17· 86 17· 86 16.75 

24·26 18·62 18·96 18· 96 18.19 

26·80 19·42 19·44 19·44 19·51 

29·24 20·25 20·86 20·86 20·71 

31· 58 21· 11 21· 74 21·82 21.82 

33·82 22·73 22·60 22· 85 22.85 

35·96· 24·73 23·46 23·83 23.83 

38·02 26·71 24·33 24· 76 24.76 

39'99 28·65 25· 21 25·67 25·77 

41·87 30·56 26· 12 26·57 26·78 

43·69 32·43 27·04 27· 47 27·75 

45·43 34·27 28· 13 28·37 28·70 

47· 11 36·06 29·64 29· 27 29.63 

48·74 37·82 31· 35 30· 19 30. 55 

50·31 39·55 33·05 31. 12 31.47 



Sample 
Size 

n 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

8 

14·21 

15·58 

17·02 

18·46 

19·86 

21·19 

22·44 

23·62 

24·72 

25·77 

26·78 

27·75 

28·71 

29·73 

30·72 

31·69 
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Table 5.2{c) (cont.) 

Values of Independent Variable, i 

9 10 11 12 13 14 15 

16·26 

17·54 

18·89 18·30 

20·26 19·52 

21·62 20·80 20·32 

22·93 22·11 21· 50 

24·19 23·43 22·74 22·34 

25·40 24·72 24·02 23·49 

26·55 25·97 25·31 24·69 24·36 

27·65 27·19 26·58 25·95 25·48 

28·71 28·36 27·21 27·21 26·65 26 37 

29·73 29·49 29·00 28·46 27·89 27·48 

30·72 30·59 30·18 29·68 29·12 28·63 28·39 

31·69 31·65 31· 33 30·87 30·35 29·84 29·48 
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~or 0=0'1,0'05,0·025,0'01,0·001 respectively. This agrees with 

an equivalent result for a=0'05 and a=O·OI given by Srikantan (1961). 

In the case of quadratic regression on equally spaced values of the 

independent variable the upper bounds given in Table 5.1(b) coincide 

with the actual 1000 percentage points for sample sizes n up to 

and including n=6,6,8,9,15 for 0=0·1,0·05,0·025,0·01,0·001 respectively. 

In the case of cubic regression the upper bounds given in Table 5.I(c) 

coincide with the actual values for sample sizes n up to and 

including n=7,7,8,11 for a=0·05,0·025,0·01,0·001 respectively, 

(note that for a=O·l there is no value of n for which the upper 

bound coincides with the actual value). It is clear that in the case 

of polynomial regression of order higher than three the upper bounds 

T (a;m) will coincide with the actual upper 1000 percentage points n 

of T(n) only for very small values of a and even then only for small 

sample sizes. 

An examination of the values of K. second largest in magnitude, 
1 

which in practice means, for the particular models under discussion, 

the fifth Ki in ordered sequence, since for these models K) and K2 

agree to several significant figures, so KZ=Kn_1 = K1=KnEK), and 

application of result (5.22) indicates that although equality of the 

upper bounds Tn(ajm) with the actual percentage points of T(n) is not 

achieved, these bounds will nevertheless be close to the actual values 

for sample sizes rather larger than those quoted above as ensuring 

equality of bound and actual percentage point. In the case of 

linear regression this will be so for samples of sizes one or two 

greater than those quoted above, and for cubic regression it will 

be so for samples of sizes seven or eight greater than those quoted 

above. 
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Although the results given above apply specifically to 

polynomial regressions on equally spaced values of the independent 

variable they have wider applicability. Tietjen, Moore and 

Beckman (1973), in a small scale Monte Carlo experiment, studied 

the effect of various different spacings of the independent variable, 

in the case of simple linear regression, upon the distribution of a 

statistic functionally related to T(n). They generated two samples 

of 5,000 values of their test criterion for each of four different 

configurations of values of the independent variable and for each 

of four sample sizes. The four configurations of the independent 

variable they considered were firstly equally spaced values, secondly 

[ in] values of 1 and the others at 0, thirdly all but two values at 

o and the other two at and fourthly all but two values at i and 

the other two at 0 and 1. The four sample sizes were 5, 10, 16 and 

20. They found that the empirical five per cent point of the 

distribution of their statistic was little affected by the configuration 

of the values of the independent variable. Of course this is not 

surprising; the result (5.24) shews that for small sample sizes the 

upper tail of the distribution of T(n) is independent of the configuration 

of the values of the independent variable, and result (5.22) indicates 

that for rather larger sample sizes the distribution of T(n) is well 

approximated by a scaled F-distribution with (l,n-3) degrees of 

freedom, again independently of the relative values of the independent 

variable. In the cases of polynomial regression of higher orders it 

is also true that for small samples the extreme tail of the distribution 

of T(n) is independent (or at least "approximately independent", in 

the sense suggested above) of the relative spacings of the independent 
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variable. 

Tietjen, Moore" and Beckman (1973) extend the empirical study 

of the distribution of a test criterion for a single outlier in linear 

regression, referred to above, to sample sizes 4(1)12(2)20,24,30. 

They again obtain two samples of 5,000 values of their test criterion 

for each of four distinct arrangements of the independent variable. 

They derive empirical 100a percentage points (for a=0·1,0·05,0·01) 

of the distributions of their criterion from each of the eight samples 

and then tabulate the 'averaged' values of these empirical percentiles, 

for each a, despite the fact that the eight empirical percentiles 

are derived from the four different distributions of their criterion 

corresponding to the four distinct arrangements of the independent 

variable. They also tabulate empirical 'percentiles' of their 

criterion for sample sizes 36,48,60 and 100 based on a total of only 

10,000 observations for each sample size, but do not state which 

configuration (or configurations) of the values of the independent 

variable was used to obtain these values. It may be noticed, 

however, that for the smaller samples at least their tabulated 

'critical values' for their criterion differ by only one or two units 

in the second decimal place from the exact values for the criterion 

obtained on equally spaced values of the independent variable. The 

latter may easily be derived from Table 2 of Srikantan (1961) 

(for a=0·05 and a=O·OI and n ~ 20) or from Table 5.1(a), 

(for a=001,0·05,0·01 and n ~ 30). 

Tietjen, Moore and Beckman (1973) claim that the critical values 

at each level a of their criterion for a single outlier in linear 

regression on n points, given in their Table I, differ by less than 
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0·01 from the critical values at level a/2 of the statistic used 

by Grubbs (1950) for testing for a single outlier at a specified end 

of a univariate sample of size (n+I), given in his Table LA. They 

proceed to emphasise that II critical values [for their criterion] may 

be obtained from Grubbs' (1950) Table IA by using his tabulated values 

for (n+l) in place of (n), [and with a replaced by 0/2].11 A 

comparison of the two tables referred to (for 0=0·1 and 0·05) 

reveals that the empirical critical values at level a in samples of 

size n tabulated by Tietjen, Moore and Beckman (1973) are close to 

those of Grubbs (1950) at level a/2 for samples of size (n-I), and 

not (n+l). Further, the differences between the values tabulated 

are in some cases rather greater than 0·01. A comparison with the 

extended tables of Grubbs and Beck (1972) for n ~ 30 and for 0=0·01 

shews that while there is the same broad correspondence between the 

sets of critical values the actual differences are considerably 

larger for a=O·OI and for the larger sample sizes, (the difference 

is 0·083 fora=O~l and n=60 for example). 

A point of interest in this comparison between the tables of 

Tietjen, Moore and Beckman (1973) and Grubbs and Beck (1972) (which 

may be taken to include that of Grubbs (1950» is that although the 

empirical values of Tietjen, Moore and Beckman are consistently close 

to the values of Grubbs & Beck, the former are almost consistently 

greater than the latter, (in fact only ten of the fifty-seven values 

of the former are less than the comparable values of the latter; 

seven of these are empirical values forazO~I, which may be expected 

to be subject to large sampling errors). It is not difficult to 

appreciate why this should be. It may easily be seen, using (5.5a~ 
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that the criterion of Tietjen, Moore and Beckman, U(n) say, is 

related to T(n) (defined in 5.2) by the equation 

T(n) = 

(n-3)U2 
(n) 

(n-2)-U2 
(n) 

It follows from (5.24) that the. upper JOOa percentage of U(n)' for 

small values of a and n at least, is approximately 

(5.25) 

where F),n_3(a/n) is the upper 100a/n percentage point of F1,n-3' 

Now if U(n) is the statistic used by Grubbs (1950) then U(n) is 

the maximum of a set (U J ,U2 , ••• ,Un) where for arbitrary i 

U./(n-2)/I(n-l-U~) follows a·Student's t-distribution with (n-2) 
1 1 

degrees of freedom (see Thompson (1935». 

It follows :that the upper 100a/2 percentage point of U(n-l) 

is approximately 

[(n-2)F1,n_3(a/(n-l»/{n-3+F1,n_3(a/(n-l»}]I. (5.26) 

The similarity of (5.25) and (5.26) explains the similarity of the 

tables of Tietjen, Moore and Beckman (1973) and Grubbs (1950), while 

the one being consistently greater than the other is explained by the 

difference in the divisors, nand (n-l) respectively, of the arguments 

of Fl n-3(') in the two expressions. , 
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5.5 Tests for Multiple Outliers 

Consider first the case of two outliers. Suppose H is the 
o 

hypothesis that Y is an observation of a normal random variable with 

mean X8 and variance 0 2 1 , and that this is tested against the 
n 

alternative hypothesis HI that two observations, y. and y. say, arise 
1 J 

from two distinct normal distibutions with means ~I and ~2 and 

with a common variance 0 2 , the remaining (n-2) observations Y •• 
1J 

arising from a normal distribution with mean X .. S and variance 
1J 

It is easily seen that the difference in maximised 10g-

likelihoods under the null and alternative hypotheses is 

lnlog(R/R .. ). 
1J 

It follows that an appropriate criterion for testing an observation 

as outlying is any monotonic function of 

max{R/R .. }. 
1 <: J 1J 

The pair of observations declared to be the "extreme pair", and 

tested as outlying, is defined to be that pair whose omission from 

the sample produces the greatest decrease in the residual sum of 

squares after fitting a model of the form (5.1). 

Let 

T .. '"' l(n-m-2)(R-R .. ) /R .. , 
1J 1J 1J 

(i;tj) , 
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T {n),2 
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= max{T •. }, 
~<:J ~J 

Then T(n),2 is a monotonic function of ~~J{R/Rij}' and so is an 

appropriate statistic for testing the extreme pair of observations 

as outlying. 

It is easily seen, using an extension of the argument of 5.1.2, 

that for arbitrary i and j, (i~j), T •. follows an F-distribution with 
~J 

(2,n-m-2) degrees of freedom. Further, by an argument similar to 

that of section 5.3, the following inequality holds; 

P [T(n),2 > uJ ~ (~) P[F2,n-m-2 > uJ , (5.27) 

Where F2 2 is a variate following an OF-distribution with ,n-m-

(2,n-m-2) degrees of freedom. In particular it may be noted that 

the upper IOOa percentage points of T(n),2 are bounded above by the 

looa/(~) percentage points of F2,n-m-2' 

The generalisation to k outliers is now clear, (where it is 

assumed that k is 'sensibly' small in relation to n, certainly less 

than in). For the alternative hypothesis that k observations arise 
, 

from k distinct normal distribution with different means but a 

common variance 0 2, the remaining (n-k) observations arising from a 

linear model of the form (5.1), it is seen that the set of k 

observations declared to be the 'extreme set of size k', and tested 

as outlying, is defined to be that set of size k whose omission from 

the sample produces the greatest decrease in the residual sum of 

squares after fitting a model of the form (5.1). 
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With obvious extensions in notation, the criterion used for 

testing the extreme set of size k is 

T( ) k = max{T.. .} n , 1 11 2 •• 1
k 

(where the 

maximum is taken over the set (i 1 < i2 < ••• < i
k
», 

Since for arbitrary i1 ,i2 , ••• ,ik , T.. . follows an F-distribution 
1112,·lk 

with (k,n-m-k) degrees of freedom, the following inequality for the 

upper tail probability of T(n),k holds; 

(5.28) 

Further, the upper 100~ percentage points of T(n),k are bounded 

above by the upper 100~/(~) percentage points of Fk,n-m-k' 

It should be stated that there are practical difficulties involved 

in employing the criteria discussed above for the detection of 

multiple outliers, For even moderately large values of n and values 

of k larger than two or three, these difficulties may prohibit, in 

practice, the use of these criteria. 

The greatest difficulty, of course, is identifying the set of 

k observations which are the most extreme. Except in the restricted 

class of models where the variances of the residuals are equal, it 

may not be obvious from a cursory examination of the data which k 

observations are the most extreme, and it may be necessary to calculate 

(~) residual sums of squares to establish which is the extreme set. 

This contrasts with the case of the univariate sample, discussed in 
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Chapter 4, (and with the case of models with residuals having common 

variance), where at most only k+J residual sums of squares need be 

calculated. 

A second difficulty is that for large values of nand k the 

right hand side of inequality (5.28) may be so large as to render it 

valueless as an upper bound on the significance probability of an 

observed value of T(n),k' 

In view of these difficulties, particularly for large values 

of nand k, a "sequential procedure" for detecting outliers 

successively, analogous to the methods discussed in chapter 4, 

may be preferred, despite the inherent disadvantages associated with 

such procedures (for example the loss of power owing to 'masking'). 
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5.6 Criteria Incorporating Independent Estimates of the Variance 

In certain experiments there may be available an independent 

unbiased estimate, s2, of the variance 0 2 , based upon v degrees of 
v 

freedom, where vs 2 is distributed as X2. v v For example in orthogonally 

designed experiments one factor might represent the differing levels 

of a continuously varying quantity, and it may be desired to 

investigate whether the observations have a polynomial regression 

upon this quantity. Such a situation is commonly met in problems of 

biological assay where, typically, it is of interest to fit a pair of 

straight lines, under the constraints of either parallelism or 

intersection at the origin, to the mean responses of numbers of 

subjections to various concentrations of test and standard preparations 

of some drug. In such" situations an independent estimate of the 

variance 0 2 is available from the inter-subject variation at each 

concentration. 

When an independent estimate s2 of 0 2 is available it may be v 

desired to modify the test criterion T(n) of section 5.1.2 (and 

equivalently the criterion t(n) of Srikantan (1961» to utilize the 

additional information. This is achieved by taking as test criterion 

n 
T~ ) = maf{T*} \n ~= ~ 

where T* = (n+v-m-J)(R-R.)/(vs2+R.) 
~ ~ v ~ 

(5.29) 

(or equivalently in the case of Srikantan's criterion, 



5.42 

where t* = e?/{(R+vs2)(I-x!(X'X)-l x .)}). 
1. 1. V 1. 1. 

It is easily seen that the upper tail probability of T(n) satisfies 

nP [F I + I;> uJ , ,n -m- (5.30) 

and that the upper )OO~ percentage point of T(n) is bounded above 

by the upper 100~/n percentage point of FI I' ,n+v-m-

Further it is evident that if 

K* = (n+v-m-I)k./(I-k.) = (n+v-m-I)K./{n-m-I) 
1. 1. 1. 1. 

(where k. is as defined in (5.13» 
1. 

then 

T* > K* implies that T* > T~ for all j;i, 
1. 1. 1. J 

(5.31) 

(5.32) 

and that K* - r~f Kt is an overall upper bound for the second largest 

T*. It follows that a result analogous to that of (5.22) holds, 
1. 

and in particular the upper 100a percentage point of T(n) is equal 

to the upper 100a/n percentage point of FI + I if the latter ,n v-m-

is greater than K*. 

In the case of polynomial regression of degrees one, two and 

three upon equally spaced values of the independent variable the 

bounds K* and K* may easily be derived from Table 5.2 using relation 
1. 
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(5.31). 

The extension of the above results to criteria for testing 

simultaneously the k extreme observations as outlying are clear. 

In particular the test criterion is 

and 

(5.32) 

Further the upper IOO~ percentage point of T(n),k is bounded 

above by the upper 100~/(kn) percentage point of F k' I,n+v-m-
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5.7 Some Examples 

The following three examples concern chemical experiments to 

determine equilibrium constants of various bivalent metal ions 

(in combination with a number of complexing ligands) in electrolytic 

reactions. The examples are selected from a large number of 

similar analyses on data obtained in the course of a series of 

experiments performed in the Department of Chemistry at the 

University of Hull. These experiments involved bivalent ions of 

seven different metals and six different complexing ligands; the 

values of the equilibrium constants obtained in certain of these 

experiments, particularly those involving the heavier metals, 

suggested to the experimenter that the data might contain outliers. 

In any particular analysis the value of the equilibrium constant 

was obtained as the slope of a regression line of a dependent 

variable on a single independent variable. Neither a cursory 

examination nor a simple plot of the data would necessarily reveal 

possible outliers since the variances of the observations were unequal. 

The independent variable in the first two examples is the free 

concentration of the complexing ligand in the electrolyte with a 

particular concentration of the metal ion; in both cases the metal 

involved was lead at a concentration of 0·0778 (measured in suitable 

units). In the third example the independent variable is the 

reciprocal of the concentration of the metal ion in the electrolyte 

in the absence of any complexing ligand; the metal involved was 

again lead. 

In the first two examples the dependent variable was essentially 
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the reciprocal of the observed rate of the electrolytic reaction, in 

the third it was essentially the rate of the electrolytic reaction. The 

observed rates had previously been obtained as the slopes of regression 

lines fitted to subsidiary sets of data; the observed optical density 

of the electrolyte at specified times in the reaction was regressed 

upon time as the independent variable. The sets of times at which the 

optical density was observed were different for different values of the 

independent variable (the concentrations of the metal ions and comp1exing 

ligands), consequently the variances of the observations of the 

dependent variable (i.e. the estimated slopes of the subsidiary 

regression lines and their reciprocals) were unequal. 

An identification of a likely cause of outliers in these particular 

sets of data involves an examination of the method of measuring the 

optical density of the electrolyte. The relevant feature of the 

method is that at each specified time in the reaction a small sample 

of the electrolyte was removed and filtered five times: should the 

experimenter inadvertantly filter the liquid four or six times 

instead (apparently a recognised laboratory error) then a spuriously 

high or low value of the optical density at that time is recorded. 

This in turn produces a spurious value of the rate of reaction 

(either high or low depending on whether the mistake is made towards 

the beginning or end of the reaction). Ostensibly it would have 

been preferable to attempt to identify these 'primary' outliers, 

and so obtain a 'corrected' value of the rate of the reaction. 

Typically, however, the optical density was measured only three or 

four times in each reaction, (the complete reaction for the lighter 

metals took only a few minutes). Further it was possible that there 
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were causes of outliers in the data other than that suggested 

above (for example, gross errors in the calculation of the rate of 

reaction) and which could only be detected by examining the data as 

a whole. 

The function of the optical density that was plotted against 

time was the logarithm of the difference between the optical density 

of the electrolyte at the specified time and the optical density of 

the electrolyte upon completion of the reaction. This is of 

importance in the third example. 

The data for the three examples are given in tables 5.3(i)-(iii). 

In each example the model to be fitted to the data was the standard 

linear model given in (5.]), with m=2 and with the first column of 

X taken to consist entirely of ones. The values of Y and the second 

column of X are given in Tables 5.3. The square roots of the diagonal 

elements of the matrix V, (where the variance of the errors E is 

Vo 2 ) are given in the fourth columns of Tables 5.3. 

Table 5.3(i) 

Point No. Conc.Nitrate [Reaction Rate] 
-] Relative Standard 

i x. y. deviations of y. 
1 1 1 

] 0·098 J ·07 O' 10 
2 O' J 98 J • 85 0'09 
3 0·297 2'09 0'09 
4 0·398 J ·49 o· J 0 
5 0·498 4·42 0·] 2 
6 0'599 4'72 O· 10 
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Table 5.3 (U) 

Point No. Cone. Chloride [Reaction Rate] -1 Relative Standard 

i x. y. deviations of y. 
1 1 1 

1 0·007 O· 011 0·06 
2 0- 011 0·017 0·07 
3 0·014 0·232 0·]9 
4 0·022 0-323 0·08 
5 0·029 0·180 0·10 
6 0·036 0·348 0·09 
7 0·044 0·307 0·12 
8 0·058 1·168 0·] 3 
9 0-074 0·862 0·] 0 

]0 0·092 0- 989 0-24 
] 1 O· ] ] 1 1·150 0-]8 
12 0·129 1· 480 0·28 
13 0·]49 1· 497 0·23 
14 0·]68 1· 450 0-17 
15 0-] 68 2-010 0-16 
16 0-187 1- 818 0·22 
17 0·224 2-398 0·50 
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Table 5.3 (iii) 

Point No. [Cone. Lead] 
-) 

(Reaction Rate) Relative Standard 

i x. Y· deviations of Yi 
l. l. 

1 102'88 552'0 0'30 
2 64'10 356'0 0·36 
3 51· 55 316·0 0·12 
4 34'25 204·0 0·12 
5 25'71 16) • 0 0'12 
6 20·58 136·5 o· 11 
7 17·15 118· 0 0·10 
8 14'71 104'5 0·05 
9 12'85 97·2 0·05 

10 12'85 97·2 0'06 
1 1 12'85 97·2 0·05 
12 11· 43 89'5 0·04 
13 10'29 76·8 0·05 
14 6·85 58·8 0·03 
15 4'12 43·2 0·07 
16 3'42 37·2 0·05 
17 2'94 33'0 0'03 
18 2·57 35·4 0·02 
19 2'29 30·0 0·03 
20 2·06 33'0 0'02 
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5.7.1 Example (i); Effects of Nitrate 

With a sample size of 6, calculation of the statistic T(6) 

(defined in section 5.1.2) gives 

T(6) = 22'40, 

with this maximum occurring at point 4. That is the fourth 

observation is the extreme of the set (in the sense defined in 

section 5.1. I) • To assess the evidence that this observation 

is an outlier it is necessary to calculate the bounds K. (defined 
1. 

in section 5.2). These are given in Table 5.4(i) below. 

largest K. (i.e. the bound K) is marked with an asterisk. 
1. 

. 
1.: 

K. : 
1. 

2 

4'4 3'1 

Table 5.4(i) 

3 4 5 6 

5'0 S'2 II • 9 ) I '9* 

The 

Entering Table 5.I(a) with nE 6, a=O'1 (and m=2) gives a value of 

the upper bound for the 10% point of T(6)' T6 (O'I;2) (defined in 

section 5.3), as 

Since this value is larger than the value of K, 11,9, the upper 

bound T6(0'1;2) is in fact the actual 10i. point of T(6)' (see 

(5.2.4». 
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The observed value of T(6)' 22·40 is less than this percentage 

point, which indicates that there is very little evidence to 

shew that the extreme observation is an outlier. 

The intercept and slope of the line fitted to all the data are 

0·148 and 6·971 respectively. 

5.7.2 Example (ii); Effects of Chloride 

With a sample size of 17, calculation of T(17) gives 

T(J7) = 20·17, 

with the maximum occurring at point 8. This is greater than 

19·49, the upper bound, TI7 (0.01;2), for the upper 1% point of 

T(J7)' Table 5.J(a». There is thus strong evidence to indicate 

that the observation at point 8 is an outlier. 

Omission of point 8 from the data and calculation of the 

statistic T(16) on the reduced sample of size 16 gives 

T(16) - 5·95, 

with the maximum occurring at point 14. Clearly therefore there 

is very little evidence for there being more than one outlier in 

the original data. 

The intercepts and slopes of the lines fitted to the data 

omitting the outlier at point 8 are -0·046 and 10·763 respectively, 

(the line fitted to all the data, including the outlier, has 

intercept and slope -0·026 and 10·937). 
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It may be noted that in this example, unlike the first, it 

is not essential to calculate the bounds K. to assess the 
1 

significance of the observed value of the criterion T(17)' The 

observed value is certainly significant at the one per cent level; 

for a more refined assessment the bounds K. would be required. 
1 

These are given in Table 5.4(ii) below. 

i: 

K. : 
1 

i: 

K. : 
1 

2 

31 '5* 31·5 

10 11 

16·6 18·9 

Table 5.4(H) 

3 4 

17·9 25·1 

12 13 

17· 6 19'7 

5.7.3 Example (iii); Effects of Lead 

5 

21·0 

14 

25·0 

6 7 8 

21 ·2 18·3 17·0 

15 16 17 

25·0 22·8 17·9 

With sample size of 20, calculation of T(20) gives 

with the maximum occurring at point 1. Clearly this provides 

little evidence of the presence of a single outlier in the data. 

The intercept and slope of the line fitted to the complete set of 

data are 20·511 and 5·627 respectively. The residual sum of 

squares after fitting the line is 11·137. 

After this analysis had been completed it was discovered that 

9 

19·2 
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there was considerable doubt as to the validity of the observations 

at concentrations of the lead ion greater than 0·0778, (i.e. values 

of the independent variable less than 12·85). The difficulty was 

that at the higher concentrations of the lead ion, in the absence 

of the complexing ligands, the reaction rate was extremely slow, 

(at a concentration of ·0778 the reaction has a half-life of about 

5 minutes), and was in fact very much slower than the experimenter 

had thought. It was therefore very probable that with these higher 

concentrations of the ion the reactions were incomplete when the 

final measurements of the optical densities of the electrolytes were 

made, thus invalidating the observations of the rates of the reactions 

for these higher concentrations of the lead ions. At the concentration 

of the lead ion of precisely 0·0778 particular care was taken with 

the experiments (in fact the experiments were performed in triplicate, 

points 9, 10 and I)~; this was because this same concentration of the 

lead ion was to be used later in conjunction with the various comp1exing 

ligands, and values from these particular experiments would be 

needed for a different analysis. 

It was therefore decided to discard the data relating to con­

centrations greater than 0·0778 and analyse only the data for 

concentrations less than or equal to this value, that is just the 

data for the first eleven points given in Table 5.3(iii). 

Before examining this reduced set of data for outliers it is of 

interest to fit a regression line to this set of )1 points. The 

intercept and slope of this line are 28·391 and 5·294 respectively, 

and the residual sum of squares is 2·617. 

statistic T)2 ••• 20 of section 5.5 gives 

Calculation of the 
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T = «20-2-9)/9)(11-137-2-617)/2-617 12 ••• 20 

= 3-26. 

If all 20 observations were from the same linear model then this 

would be an observation of F9 ,9' The upper 5% point of F9,9 is 

3- 18. There is thus some statistical evidence to lend support to 

the decision (arrived at originally by purely chemical considerations) 

to discard the lase 9 observations. Of course this does not imply 

that these 9 observations are outliers (in the usual sense of the 

term at least); with only 20 observations it would hardly be possible 

ever to say that 9 of them were outliers. Attention was directed 

specifically to this set of 9 observations because of the knowledge 

of gross errors in the experiments that produced them; it was not 

because they were the most extreme set of size 9 that they were 

investigated. 

Examination of the set of 11 observations for the presence of 

outliers gives a value of T(ll) of 146-406, with the maximum 

occurring at point 3. It is clear that this is highly significantly 

large (the upper bound for the 0·1% point is 52-0883, Table 5.l(a», 

even without calculation of the bounds K. given in Table 5.4(iii) 
1 

below. Omission of point 3 from the data and calculation of T(lO) 

on the reduced sample of size 10 gives 

T (10) - 37 -06 , 

with the maximum occurring at point 8. The bounds K. for the 
1 



. 
~: 

K. : 
~ 

. 
~: 

K. : 
~ 

2 

31,5* 12'9 

7 8 

10·3 14'9 
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Table 5.4(iil) 

3 4 5 6 

31·5 14·6 II, 2 9'9 

9 10 II 

15-7 13,6 15'7, 

reduced set of 10 values of the independent variable are given in 

Table 5.4(iv) below. 

. 
~: 

K. : 
~ 

. 
~: 

K. : 
~ 

24,7* 

7 

8-6 

Table 5.4(iv) 

2 3 4 

18-4 24-7 

8 9 10 

II-I 11'6 10'5 

5 6 

12'8 

I I 

) ) • 6 

The upper bounds for the upper )7. and 0·1% points of T(IO) are 

(Table 5.I{a» 29·2452 and 62·1667 respectively; comparison with 

the starred value in Table 5.4(iv) shews that both of these are 

in fact the actual percentage points. There is thus strong 

evidence that the observation at point 8 is also an outlier. 

Omission of point 8 and calculation of the statistic T(9) on 

the reduced sample gives 
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T(9) = 2·73, 

with the maximum occurring at point 1, which clearly provides 

little or no evidence for the existence of any further outliers 

in the data. The intercept and slope of the line fitted to this 

reduced set of data on 9 points are 32·366 and 5·036 respectively, 

with a residual sum of squares of only 0·022. 

It is interesting to see that the examination of the data on 

the original set of 20 points failed to reveal the two outliers at 

poirits 3 and 8 which were eventually identified by an analysis of 

the smaller sample. This is an example of the well-known 

phenomenon of 'masking'. 
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Chapter 6 

Outliers in Multivariate Samples 

This chapter considers some of the many problems encountered 

in the detection of outliers in multivariate samples. The 

criteria and methods discussed in sections 6.2 to 6.5 are immediate 

extensions of those described in Chapter 3 and 4 and are ones 

based upon the likelihood of the sample rather than solely upon 

intuitive considerations. In particular it is shewn that one 

commonly used statistic for the detection and testing of outliers 

in multivariate samples, the criterion proposed on intuitive grounds 

by Wilks ()963), is, in fact, likelihood-based under certain 

conditions. Further, in the case of a single outlier, it is 

shewn that this statistic has an intuitively appealing inter­

pretation in terms of a one-dimensional projection of the multi­

dimensional sample of observations. As in the previous chapter, 

attention is restricted to normal data, that is, in this case, 

to samples from multivariate normal distributions. 

The following section,6.t, first discusses some of the more 

general aspects of the problems of the detection of outliers in 

multivariate samples, in particular the problems of ordering 

multivariate data, and then considers some of the intuitively 

based methods and criteria which have been proposed previously. 
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6.1 Introduction 

A distinguishing feature of the general problem of detecting 

outliers in samples from distributions of dimensions higher than 

one is that there is no distinction between 'one-sided' and 'two­

sided' criteria, that is the extreme observation, or extreme set 

of observations, (with a suitable definition of 'extreme'), is 

tested as outlying.without regard to the 'direction' in which it 

is extreme. A qualification must be made at this point since there 

are rather special and restricted situations in which it is 

appropriate to detect outliers by examining the marginal samples, 

where both 'one-sided' and 'two-sided' criteria may be employed. 

Such' situations will be considered below. 

The lack of distinction between 'one-sided' and 'two-sided' 

criteria in detecting outliers in multivariate samples arises 

because, unlike the univariate case, there is no basis for completely 

ordering the multivariate sample in such a way that both the 'largest' 

and the 'smallest' observations are inherently 'surprising' or 

'questionable' in some sense. (Of course even in univariate samples 

the maximum and minimum are 'surprising' strictly only for certain 

particular forms of parent distribution, although these are the ones 

commonly met with in practice). 

There are a wide variety of methods of ordering multivariate data, 

methods which result in either a complete or a partial ordering of 

the data. For example there are those based upon some scalar 

function of the observations such as the distance, or generalized 

distance, of the observations from some arbitrary reference point or 
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from the mean of the sample, (which produce a complete ordering) and 

methods based upon the successive concentric convex hulls of the data 

(which result in only a partial ordering). Barnett (J976) considers 

many such methods and classifies four ordering principles; in 

addition to the 'reduced ordering' (i.e. based upon a scalar function 

of the observations) and the 'partial ordering' methods described above, 

he distinguishes 'marginal ordering' (i.e. based upon one of the 

marginal samples), which of course may be considered to be a special 

case of reduced ordering, and 'conditional ordering' (i.e. based 

upon one of the marginal samples conditional upon the ordering of 

other marginal sets of observations). The third principle (marginal 

ordering) will be returned to below. The fourth principle has 

applications to problems of outlier detection should extra information 

be available on one, or more, components of the multivariate distribution, 

or indeed on some concomitant variable not included in the original 

multivariate sample. However these will not be discussed here. 

While such methods of reduced and partial ordering multivariate 

data do exist, they nevertheless order the observations essentially 

h . i~ . b· on t e bas1s of extremeness; that,1t 1S only the 0 servat10ns at one 

end of the ordered sample which will be tested as outliers. For 

example it is only the observation furthermost from the mean or those 

observations on the outermost convex hull that intuitively are 

considered 'surprising', and that are the ones to be tested as outliers, 

(again strictly speaking these observations are 'surprising' only 

for particular forms of the parent distribution). It is because the 

ordering of multivariate data, in general, is based essentially upon 

increasing degrees of extremeness that the distinction between 'one-

sided' and 'two-sided' outlier detecting criteria does not arise in 
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multivariate samples, (with the exception of the particular situation 

considered below). 

The situation in which it may possibly be useful to employ 

'one-sided' criteria is when the marginal samples are examined 

separately for the presence of outliers. Such a procedure might be 

appropriate, for example, when the various components of each 

observation have been determined and recorded separately (e.g. 

measurements of heights and ,weights of people), and where it is 

thought outliers in the data would reflect gross errors of measurement 

or recording, rather than the presence of individuals from a population 

other than that under study (e.g. dwarves or giants). Typically 

such gross errors would affect only one component of an observation 

and so an examination of the marginal samples separately might reveal 

the outliers. However the outlier will be detected by such an 

examination only if the aberrant component observation occurs as 

the extreme of its particular marginal sample, whereas if there is 

some correlation between the various components then an examination 

of the complete multivariate sample as a whole might reveal the outlier 

even if none of its components were the extreme of its particular 

marginal sample. 

There are a variety of methods available for the detection of 

outliers in multivariate samples. Firstly there are those which depend 

upon graphical techniques such as those described by Healy (1968), 

Gnandesikan and Kettenring (1972) and Rohlf (1975). These may be 

considered as extensions to multivariate data of the methods of 

Daniel (1959) and Gentleman and Wilk (1975). Secondly there are 

methods depending upon first reducing the dimensionality of the data, 
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for example by performing a principal component analysis as discussed 

by Hawkins (1974). In a third category are those methods which 

depend upon the calculation of a statistic whose value is sensitive 

to the presence of outliers. These methods are exemplified by the 

work of Wilks (1963) and Rohlf (1975). These three categories are 

not exclusive; Gnanadesikan and Kettenring (1972) consider combinations 

of methods in the first two and indeed methods in these two categories, 

while useful for pin-pointing possible outliers (i.e. the 'extreme' 

observations), are most commonly used in conjunction with the 

calculation of some test statistic relating to the identified possible 

outlier. Falling outside these three categories are the various 

Bayesian procedures, such as that of Guttman (1973), which are direct 

extensions of those employed in the univariate case. 

The following sections are concerned with methods in the third 

category defined above. The particular statistics considered are 

those .which are likelihood-based in the various cases of known and 

unknown mean and variance, and their natural extensions. These 

statistics are not the only ones available; as in the univariate case, 

there are many others which have considerable intuitive appeal. For 

example there is the (internally) studentized bivariate range considered 

by Gentle, Kodel and Smith (1975), and its obvious extension to higher 

dimensions. This would be particularly appropriate for the detection 

of a pair of outliers in multivariate data with uncorrelated components. 

If the components are correlated then the (externally) studentized 

generalised range considered by Siotani (1959) and its internally 

studentized equivalent would perhaps be better. The use of all of 

these statistics implies a definition of the extreme observation (or 
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extreme set of observations) in the sample as that for which the value 

of the statistic is most extreme (i.e. either large or small as 

appropriate), and it is this observation (or set of observations) which 

is tested as outlying. In all cases the number of outliers suspected 

in the sample is specified in advance and the particular test criterion 

used is specific to this number. 

An essentially different type 'of intuitively based test has been 

discussed by Rohlf (1975), and which he refers to as the 'generalised 

gap test'. He proposed examination of the shortest simply connected 

graph (or minimum spanning tree) of the data and takes as test criterion 

the ratio of the square of the largest are to the sum of the squares of 

all the arcs in the graph. He shews that this criterion has 

approximately the same distribution as the statistic discussed in 

Chapter 2, T(n)' for the detection of a single upper outlier in gamma 

samples, (but note that Rohlf ignores the fact that the degrees of 

freedom parameter of the gamma distribution has to be estimated from 

the data). A feature of this method is that it is not specified in 

advance how many outliers are suspected; the observations declared 

as outlying are those contained in the smaller of the two sub-graphs 

obtained by removal of the largest arc. It is curious that Rohlf does 

not consider the application of this method to univariate data, where 

the test criterion has the simple form 

That is the observations tested as outlying are those separated 

from the body of the data by the largest interval between the ordered 
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observations. 

While Rohlf's 'generalised gap test' has the possible advantage 

of avoiding any requirement to specify in advance the number of 

outliers suspected in the sample, it has the counterbalancing 

disadvantage of only detecting groups of outliers which are adjacent 

on the shortest simply connected graph, (i.e. groups of outliers that 

are 'close' to one another). In the one dimensional analogue of the 

test, for example, only sets of observations which occur at one end 

of the sample would be declared outliers, and the test would reveal 

only one of a pair of outliers if they occur at different ends of 

the sample. It is apparent also that Rohlf's 'generalised gap test' 

makes no allowance for any correlation between components of the parent 

multivariate distribution. The various likelihood-based criteria 

do not suffer from either of these disadvantages; the test criterion 

for a set of outliers is not dependent upon the proximity of the outliers 

to each other, and further any correlation between the components ia 

automatically allowed for. 

It may be noted that Rohlf's 'generalised gap test' is not, as 

he implies, a multivariate generalisation of the various Dixon tests 

(Dixon (1950, 1951». 

It may be seen that the likelihood-based criteria discussed in 

the following sections induce partial 'orderings' of the multivariate 

sample outside the four categories defined by Barnett (1976). For 

each value m, (where m is less than the size of the sample, n) the 

most extreme set of size m is determined as that set for which the value 

of the test criterion for m observations has maximum value. For 

each m this defines a partial ordering on the sample as x > y if x £ M 
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and y E M, where M is the extreme set of size m. It is easily seen 

that the most extreme set of size m is not necessarily contained in 

the extreme set of size m+l, (see, for an example in the univariate 

case, the artificial data considered in section 4.3.1). It follows 

that the n-l partial orderings of the sample cannot be combined to 

produce an ordering of the complete sample on the basis of 'extremeness' 

as defined by the test criteria. That is the orderings of the sample 

induced by the outlier test criteria are not complete 'reduced orderings', 

although they are defined in terms of scalar functions of the 

observations, but are instead a sequence of partial orderings. The 

ordering induced by Rohlf's 'generalized gap test' is a partial ordering 

which essentially classifies each observation as either 'extreme' or 

'not extreme'; whether or not there is a single extreme observation 

depends upon the particular sample. 

The following section establishes the notation and derives the 

likelihood-based criteria for single outliers in various cases. The 

succeeding sections consider the extensions to criteria for multiple 

outliers and some further properties of these statistics. 

, 
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6.2 Likelihood-Based Test Criteria for Single Outliers 

Let x! = (xf ••••• ,x .), j=1 2 n be a random sample of n J J Pl ' , ••• , , 

observations of a p-dimensional random variable. 

Let 
_ _In 
x. = n LX .. , 

1. j=I1.J 
(I ~ i ~ p), the mean of the ith components 

of the n observations, let x be the p x I vector (xI' x2, ••• ,xp)'. 

and let X be the p x n matrix with ( • .) th (_ ) 1.,J component x •. -x .• 
1.J 1. 

For each r, I ~ r ~ n, let 

x. ( ) -1., r 

_In 
(n-I) LX. oJ 

j = I1.J 
jlr 

(I ~ i ~ p), 

h f h . th f 11 b h th f h b t· t e mean 0 t e 1. components 0 a ut t e rot e n 0 serva lons, 

let x(r) - (~I,(r),x2,(r), ••• ,xp.(r»', and let X(r) be the p x (n-I) 

matrix with components (x .. -i. ( », (1 ~ i ~ p, 1 ~ j ~ n, j;r). 1.J 1., r 

Similarly define the p x (n-k) matrix X( ) upon omission of 
rI···rk 

the k observations x • Further if A is a square matrix let 
rI,···,rk 

IAI be the determinant of A. Throughout the following sections the 

null hypothesis, referred to as H , will be that the n observations 
o 

are a random sample from a p-dimensional multivariate normal distribution 

with mean ~ and variance A, where ~ is a p x 1 vector and A is a 

p x p positive-definite symmetric matrix. This will be tested against 

various alternative hypotheses. 

6.2.1 The case of both ~ and A known 

This case, though of minor practical importance is considered 

here briefly for completeness. It generalises the results of 3.2. 

Under H the log-likelihood of the sample is 
o 



6. 10 

Let HI be the alternative hypothesis that one observation, 

xn without loss of generality, arises from a p-dimensiona1 normal 

distribution N(~*,A), and the remaining observations arise from 

the distribution N(~,A). Under HI the maximised log-likelihood 

is, upon substitution of ~* = x , 
n 

n-I 
-lnplog(2n)-lnlog{IAI}-lL(x.-~)'A-I(x._~). 

i=J 1 1 

-I 
The difference in maximised log-likelihoods is thus (xn-~)'A (xn-~)' 

and it follows that the like1ihood- based criterion for testing the 

'extreme' observation as outlying is Zen) where 

n -I 
Z( ) = maf{(x.-~)'A (x.-~)}, n 1= 1. 1. 

-I 
and where the 'extreme' observation is that for which (x.-~)'A (x.-~) 

1 l. 

is maximum, i.e. that observation whose generalized distance from 

the population mean ~ is the greatest. 

For arbitrary i, (x.-~)'A-I (X.-ll) follows a X2 distribution with 
1 1 

p degrees of freedom. Thus the following inequality for the upper 

tail probability of Zen) holds 

(6.1) 

In particular the upper IOOa percentage points of Zen) are bounded above 

by the upper (IOOa/n) percentage points of X2 • p 
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6.2.2 The case ~ unknown and A known 

Under H (with A known) the maximised log-likelihood is o 

n 
-!nplog(2n)-!nlog{IAI1-!L(x.-X)'A- I (x.-x). 

• I 1. 1. 
1.= 

Under the alternative hypothesis, HI' that one observation xn say, 

arises from N(~*,A) and the other (n-I) observations are from 

N(~,A) the maximised log-likelihood is 

n-I 
-!nplog(2n)-!nlog(IAI)oH (x.-x( » , A-I (x.-x( ». 

• I 1. n 1. n 
1.= 

The difference between these maximised log-likelihoods is 

\l n-I 
!L(x.-x)'A-I(x.-x)-IL(x.-x( »'A-I(X.-X(n» 
'11. 1. '11.· n 1. 1.-. 1.= 

- !n(x -X)'A-I(x -x)/(n-I). n . n 

It follows that a likelihood-based statistic for testing the 

'extreme' observation as outlying is u(n) where 

nfC
f _- _)' -I ( -)} u( ) - ma \X.-X A X'-X"J n 1.= 1. 1. 

and where in this case the 'extreme' observation is that observation 

whose generalised distance from the sample mean is the greatest. 

Since, for arbitrary i, n(x.-~)'A-I(x.-x)/(n-I) follows a 
1. 1. 

X2 distribution with p degrees of freedom the following inequality 

holds for the upper tail probability of u(n); 
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P [u(n) > u] ~ n P [X~ > nu/(n-I)] • (6.2) 

In particular the upper IOOa percentage points of u(n) are bounded 

above by {(n-l)ln}x2(a/n), where x2(a/n) is the upper IOOa/n percentage 
p p 

point of ~. 

6.2.3 The case ~ known A unknown 

Under the null hypothesis H (with ~ known) the log-likelihood 
o 

n 
is maximised when A=I/nL(x.-~) (x.-w', giving a maximised 10g-

. I 1. 1. 

likelihood under H of 
o 

1.= 

n 
-~np10g(2~)-~n1og{IL(x.-~)(x.-v)' 1}+!n10g(n)-!n. 

. I 1. 1 1= 

Under the alternative hypothesis, HI' that all observations other 

than x arise from the normal distribution N(~,A) and x arises 
n n 

from a normal distribution N(v*,A), where v* is to be estimated, the 
n-I 

log-likelihood is maximised when A=l/(n-l)L(x.-~)(x.-~)' and v*=x , 
. I 1 1 n 
1-

giving a maximised log-likelihood of 

n-J 
-!np1og(2~)-!n1og{IL(x.-v)(x.-v)'I}+~n1og(n)-~n. 

. I 1. 1 1-

The difference between the maximised log-likelihoods is therefore 

n n-J 
~n10g{ I r (x.-v) (x.-W' 1/1 L (x.-v) (x.-~)' I} 

'J1. 1. 'J1. 1. 1= 1.-

= -!n10g{J-T } 
n 

n -J 
where T. - (x.-~)'(L(x.-V)(X.-ll)') (x.-v), (j-J,2, ... ,n). 

J J i-I 1. 1. J 
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Thus a likelihood-based statistic for testing the 'extreme' observation 

as outlying is T( ) where T( ) = m~(T.), and where in this case the 
n n J-I J 

'extreme' observation is that observation whose (internally) studentized 

generalised distance from the population mean is the greatest. 

Now 

n 1 
(x.-~)'(L(x.-~)(x.-v)')- (x.-~) = t./(I+t.), 

J i= 1 1. 1. J J J 

where 

n 1 
t. = (x.-v)'(L(x.-~)(x.-v)')- (x.-~), 

J J i=1 1. 1. J 

i=lj 

and where, for arbitrary j, (n-p)t./p follows an F-distribution with 
J 

p and (n-p) degrees of freedom. Hence the following inequality 

holds for the upper tail probability of T(n); 

P [T(n) > uJ ~ 'n P [Fp,n_p > {n-p)/p}(~/(1-u)}J. 

In particular the upper IOOa percentage point of T(n) is bounded 

above by 

{pF (a/n)}/{n-p+pF (a/n)}, p,n-p p,n-p 

where F (a/n) is the upper (IOOa/n) percentage point of 
p,n-p 

F • p,n-p 

(6.3) 
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6.2.4 The case when both ~ and A are unknown 

Under the null hypothesis H the log-likelihood is maximised o 
n 

when ~=x and A=I/nL(x.-i)(x.-i)' = XX'/n, giving a maximised log-
i-I 1. . . 1. 

likelihood of 

-lnplog(2n)-lnlog{IXX'I}+lnlog(n)-ln. 

Under the alternative hypothesis, HI' that all observations 

other than x arise from a normal distribution N(~,A) and x arises 
n n 

from a normal distribution N(~*,A) the maximised log-likelihood 

is 

The difference between the maximised log-likelihoods is thus 

Hence a likelihood-based criterion for testing the 'extreme' 

observation as outlying is 

where the extreme observation is that observation which produces 

the maximum. Clearly this criterion is equivalent to 
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which is the criterion proposed by Wilks (1963) and which he terms 

the minimum 'one-outlier scatter ratio'. 

Since 

= I-n(x.-i)'(XX,)-I(x.-x)/(n-l), 
1 1 

(6.4) 

the extreme observation may alternatively be defined as that observation 

whose (internally) studentized generalised distance from the sample 

mean is the greatest. If U. = (x.-x)'(XX,)-I(x.-x) and 
1 1 1 

then the statistics r l and U(n) are related by the equation 

r = I I-nU(n)/(n-I), and either may be used to test the extreme 

observation as outlying. 

An extension of the argument used in 3.5.1 shews that, for 

arbitrary i, 

U. - {(n-l)/n}/{I+(n-p-I)/pF I}' 
1 p,n-p-

where F I is a variate following an F-distribution with p and 
p,n-p-

(n-p-I) degrees of freedom. Application of identity (6.4) shews 

that, for arbitrary i, IX(i)X(i)l/lxx'l follows a beta distribution 

B(I(n-p-I),lp), which is the result of Wilks (1962). Using this 

latter result Wilks (1963) calculates lower bounds for the lower 

100a percentage points, of r l for a=O-OI, 0·025, 0-05, 0·1, 

pa l(J)5, and n-5(1)30(5)100(100)500, and shews generally that 
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These lower bounds for r 1 may be used to derive equivalent upper 

bounds for U(n)' and in particular it follows from (6.5a) that 

p [U( ) < u] ~ n P [F 1 > {(n-p-l)/p}{nu/(n-l-nu)}]. n p,n-p-
(6.Sb) 
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6.3 Likelihood-based test criteria for Multiple Outliers 

In this section the criteria and the definitions of extreme 

observations, discussed in the previous section, are extended to the 

cases of multiple outliers. The null hypothesis H is tested against 
o 

the alternative hypothesis (referred to throughout this section as HI) 

that k observations arise from k distinct normal distributions, each 

with a common variance A and with unknown means ~i' ~~"",~~, and 

that the remaining n-k observations are from a normal distribution 

N (lJ, A) • The various cases of ~ and A known and unknown are considered 

separately. It is assumed that k is 'small' in relation to n, 

certainly less than both ~n and ~(2n-p(p+I». 

In the case of known mean and variance it is easily seen that 

for the alternative hypothesis, HI' a likelihood-based criterion 

for testing the k most extreme observations as outlying is 

where Z(I) < Z(2)< ••• < Z(n) are the ordered values of 

Z. - (x.-lJ)'A-I(x.-lJ), i-I,2, ••• ,n. The k most extreme observations 
1 1 1 

are defined as those k observations whose generalised distances 

from the population mean are the greatest. Clearly 

and further the upper IOOa percentage points of Z(n),k are 
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bounded above by the upper looa/(~) percentage points of X~p. 
In the case of unknown mean and known variance it may readily 

be seen that for the alternative hypothesis HI stated above (where now 

V is unknown and to be estimated, the likelihood-based criterion 

for testing the k 'most extreme' observations as outlying is 

u 
(n) ,k 

k k k 
= max{r(x (")-x)'A-I(x (")-x)+(n-k)-I(r(x (")-X»'A-I(I(x (O)-x)} 

1: i=1 1 1 1 1 i=1 1 1 i_Ill 

(6.7) 

where {1(I),1(2), ••• ,1(n)} is a permutation on the first n positive 

integers, and where the k 'most extreme' observations are those for 

which the expression in (6.7) is maximum, over all permutatio~l (notice 

these are not necessarily the k observations whose generalised distances 

from the population mean are the greatest). 

In the case of known mean and unknown variance the 1ike1ihood-

based criterion for the alternative hypothesis HI stated above (where 

now ~ is known and A is unknown and to be estimated) for testing the 

k 'most extreme' observations as outlying is T( ) k - min(T ), where 
n , 1 1 

Tl is the ratio of determinants given by 

n-k n 
T - Ir(x (")-~)(x (")-~)'l/lr(x"-~)(x"-~)' , 1 "Ill 11 011 1 

1= 1-

and where 1 is a permutation on the first n integers. 

In this case the k 'most extreme' observations are those for 

which T is minimum. Now 
1 

n 
T = IA I/I{A + L (x (O)-~)(x (")-~)'}I, 

1 1 • k+l1 1 T 1 l-n-

(6.8) 
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I 

where A is the p x p matrix 
'[ 

n-k 
L(x (')-~)(x (.)-~)'. 

"1'[1. T1. 
1.= 

Since A 

follows a Wishart distribution W(p,n-k,A) and since, for each 

i=n-k+l, ••• ,n, the (x'[(i)-~) are independently and identically 

normally distributed, N(O,A), each independently of A , it follows 
T 

(see for example Wilks (1962) p. 562) that, for arbitrary '[, T is 
T 

distributed as the product of k independent random variables having 

beta distributions B(I(n-p+l-i),lp), i=I,2, ••• ,k (or equivalently 
\ 

as the product of p independent random variables having beta 

distributions B(l(n-k+l-i),lk), i=1,2, ••• ,p). It is thus possible to 

obtain lower bounds for the lower percentage points of T(n),k' using 

the inequality 

P [T(n),k < u] ~(~)p [T < u], (6.9) 

where T has the distribution above. 

In the case when both the mean and the variance are unknown the 

likelihood-based criterion, for the alternative hypothesis HI stated 

above (where now both ~ and A are to be estimated), for testing the 

k most extreme observations as outlying is r
k 

- min{R }, where R 
T T 

the ratio of determinants 

R ... Ix X' Illxx'l, 
T (T (1 ) ••• T (k) ) (T (1 ) ••• T (k) ) 

and where T is a permutation on the first n integers. R is the 
T 

is 

'k-outlier scatter ratio' of Wilks (1963). Wilks (1963) shews that 

for arbitrary T, R is distributed as the product of k independent 
T 

random variables having beta distributions B(l(n-p-i),lp), i-l,2, ••• k, 
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and in the case k=Z he derives lower bounds for the lower 100~ percentage 

points of r Z for ~=0·01, 0·025, 0·05, 0·1, p=I(I)5 and 

n=S(1)30(S)lOO(lOO)SOO. 

It should be noted that the practical difficulties involved in 

applying the criteria discussed above may prohibit their use for large 

values of nand k. In particular the identification of the most 

extreme set of size k may, except in the simple case of known mean 

and variance, involve a considerable amount of computation. Further, 

the upper bounds for the tail probabilities of the various criteria 

given in (6.6) and (6.9) may be so large as to render them valueless. 

It may therefore be preferable to adopt a 'sequential' procedure and 

attempt to identify outliers successively (or possibly in small 

groups of, say, two or three at a time). The practical advantages of 

such a 'sequential' procedure may outweigh the inherent disadvantages 

such as loss of power owing to masking, but note that the subset of 

observations eventually declared as outlying might not be the most 

. extreme subset of that size as defined by an objective criterion. 
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6.4 Criteria Incorporating an Independent Estimate of the Variance 

In this section consideration is given to the modifications that 

may be made to the criteria discussed in the previous two sections 

when there is available an unbiased estimate, S say, of the population 

variance A. It is assumed that S is distributed independently of the 

sample, so that a 'pooled' estimate of A may be obtained by combining 

S with the estimate of A derived from the sample. It is assumed 

further that S is a symmetric p x p matrix such that vS follows a 

Wishart distribution W(p,v,A). 

Consider first the case of a single outlier. When the population 

mean ~ is known, the statistic T(n) of section 6.2.3 may be modified 

to 

n -I 
T~n) = mJ~X{T*I}' where T~ ~ (x.-~)'(L(x.-~)(x.-~)'+vS) (x.-~). 
{I J J 'l~ ~ J 1= 

It may be noticed that this implies a corresponding ~odification of 

the definition of the 'extreme' observation as that whose (pooled) 

studentized generalised distance from the population mean is the 

greatest. It is evident that for arbitrary j, {(n-p+v)/p}{Tj/(I-Tj} 

follows an F-distribution with p and (n-p+v) degrees of freedom. Thus 

the following inequality for the upper tail probability of T~n) holds; 

P [T~ ) > u] ~ n P [F > {(n-p+v)/p}{u/(I-u)}]. {n p,n-p+v 
(6.10) 

Further the upper 100a percentage points of T~n) are bounded above by 
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{pF (a/n)}/{n-p+v+pF (a/n)}, p,n-p+v p,n-p+v 

where Fp,n_p+v(a/n) 1S the upper IOO(a/n) percentage point of 

F • p,n-p+v 

In the case when both the population mean and variance are 

unknown the statistic U(n) of section 6.2.4 may be modified to 

U~ ) = m~f U* , where U~ = (x.-x)'(XX'+S)-I(x.-x), i=I,2, ••• ,n, tn 1.= 1. 1 1 1 

(with the corresponding modification of the definition of the 

extreme observation). Clearly this is equivalent to modifying 

the statistic r) of 6.2.4 to ~ where 

Further the following equivalent inequalities hold for the tail 

probabilities of U~n) and rt; 

P [r*1 < u] ~ n P [Sl( I) I < u] 2 n+v-p- ,2P 
(6.lla) 

P [U~ ) > u] ~ n P [F 1 > {(n+v-p-I)/p}{nu/(n-I-nu)}]. (6.llb) tn p,n+v-p-

In the case of mUltiple outliers the modifications T(n),k and 

r~ of the statistics T(n),k and r k , defined in section 6.3, are clear. 

It is evident that T* - min{T*}, where, for arbitrary T, T* is (n), k t t T 

distributed as the product of k independent random variables having 

beta distributions B(I(n+v-p+l-i),lp) i=I,2, •••• k. Further 

r*k - min{R*} where, for arbitrary L, R* is distributed as the product 
t T T 

of k independent random variables having beta distributions 
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B(l(n+v-p-i), i=J,2, ••• ,k. 

Different modifications of the likelihood-based criteria 

are of use when a 'sequential' procedure is adopted for the detection 

of multiple outliers. These are the 'externally studentized' criteria, 

whose use avoids the problems of masking. For example when the 

population mean is known T(n) may be modified to 

n -J 
max{(x.-~)'S (x.-~)/v}, 
~=1 ~ ~ 

which is the maximum of a set of n variates each distributed as 

p/(v-p+l)Fp ,V_p+J· When the mean is unknown U(n) may be modified to 

m~x{(x.-i)'S-J(x.-i)/v}, 
~=1 ~ ~ 

which is the maximum of a set of n variates each distributed as 

{(n-J)/n}{p/(v-p+J)}F +J. p,v-p This statistic is essentially 

identical to that considered by Siotani (J959). The 'externally 

studentized' versions of the criteria for mUltiple outliers may 

readily be derived, but they are of little practical importance. 
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6.5 q-Dimensional Projections of the Sample 

Wilks (1963) proposed the criteria r k , for testing for k outliers 

in p-dimensional samples with unknown mean and variance, on purely 

intuitive grounds. He shews that r k has a geometric interpretation 

as the ratio of two sums of squares of volumes of (p+l)-simplexes 

(each simplex being formed by p observations together with the sample 

mean,) the first sum excluding the k suspect observations and second 

including them. In sections 6.2 and 6.3 it was shewn that the 

criteria could also be regarded as likelihood-based under certain 

conditions. In this section it is shewn that in the case of a single 

outlier the criterion r 1 has another intuitively appealing property 

in terms of a q-dimensional projection of the p-dimensional sample. 

Let A be a q x p matrix (where q ~ p and A is assumed to be of 

full rank q) and let y. = Ax. (j=1,2, ••• ,n). 
J J 

Then y., j=1,2, ••• ,n, 
J 

is a q-dimensional projection of the sample x., j=1,2, ••• ,n. Let 
J 

Y - AX and Y(i) - AX(i). 

Let Ri = IX(i)X(i)l/lxx'l, the 'one-outlier scatter ratio' of 

the ith observation of the sample, and let Ri(A) - IY(i)Y(i)I/IYY'I, 

the 'one-outlier scatter ratio' of the ith observation of the projected 

sample. Let r 1 - m~n{R.}. 
~=l ~ 

It will be shewn that if A. is that 
1. 

projection which minimises R.(A) for all projections A then 
1. 

R.(A.) - R., that is the value of the one-outlier scatter ratio of 
1. 1. ~ 

. th . .. . . . 
the 1. observat1.on of the projected sample (where the pro]ect1.on 1.S 

chosen to minimise that ratio) is equal to the one-outlier scatter 

ratio of the ith observation of the original p-dimensional sample. 

Now R.(A) - I-ny!(yy,)-l y • / (n-l). 1. 1. 1. 
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= I-nx!A'(AXX'A,)-lAx./(n-l). 
1. 1. 

Suppose 6 is an elemental increment in A, then 

(n-I){I-R.(A+6)}/n = x! (A'+6')«A+6)XX'(A'+6,»-1(A+6)x. 
1. 1. 1. 

where G - AXX'A', (to terms in the first order of 6), 

Thus 

(n-I)!R.(A+6)-R.(A)}/n = 2x!(A'G-1AXX'-I )6'G-1Ax. 
1. 1 1. P l' 

(to terms in the first order of 6). 

If A. is such that R.(A.+6) a R.(A.) for all elemental increments 6 
1. 1 1. 1. 1. 

then 

A!(A.XX'A~)-IA.XX' - I 
1. 1. 1. 1. P 

so A!(A.XX'A!)-I A. - (XX,)-I 
1. 1. 1 1 

and R.(A.) = R. as asserted. 
1. 1. 1. 

(It may be noted that A. is not uniquely determined since of C is 
1. 

any q x q non-singular matrix it is easily verified that 



6.26 

R.(CA.) = R.(A.». 
1 1 1 1 

In particular m~n R.(A.) = r 1, and it" follows that a single 
1=1 1 1 

outlier in a p-dimensional sample can be detected by examining all 

q-dimensional projections of that sample, where q is fixed and 

1 ~ q ~ p; for each projection A the minimum one-outlier scatter 

ratio, r1(A), say, is computed on the projected sample, if A* is that 

projection for which 

then r1(A*) c r 1 and further if A*xm is the extreme observation in 

the q-dimensional projected sample A*x., j=I,2, ••• ,n, then x is 
J m 

the extreme observation in the p-dimensional sample x., j-l,2, ••• ,n. 
J 

Consideration of the particular case j~l illustrates the intuitive 

appeal of this result. The most extreme observation in a p-dimensional 

sample can be detected by examining the sample from all possible 

'viewpoints' (i.e. by examining all one-dimensional projections ~f the 

sample) and noting which particular 'viewpoint' (or one-dimensional 

projection) produces the smallest (most extreme) value of the test 

criterion for the extreme observation in the sample, as viewed one-

dimensionally, (i.e. in the one-dimensional projection of the sample). 

The extreme observation in the p-dimensional sample is then pin-pointed 

as that observation corresponding to the extreme observation in the 

sample as viewed from that particular viewpoint defined above. 

Furthermore the criterion for testing that extreme observation as 

outlying may be calculated from that one-dimensional projection of the 

sample. 
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It is easily seen that a corresponding result is not available 

for the cases of two or more outliers. Consider for example the 

case p=2 and q=l, and suppose the sample of n=4m observations is such 

that there are m values each of (1,0), (0,1), (-1,0) and (0,-1). The 

two-outlier scatter ratio for the two observations (1,0) and (0,1) 

is (n-4)/n. It is readily seen that the minimum value of the two­

outlier scatter ratio for these two points, when the sample is projected 

onto a straight line, occurs when the sample is projected onto the 

line x=y and that in this case the two-outlier scatter ratio has the 

value (n-4)/(n-2). It follows that it is not, in general, possible 

to detect mUltiple outliers in multidimensional samples by examining 

one-dimensional projections of the sample. 
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