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ABSTRACT 

 

Emerging technological systems present complexities that pose new risks and hazards. 

Some of these systems, called safety-critical systems, can have very disastrous effects 

on human life and the environment if they fail. For this reason, such systems may fea-

ture multiple modes of operation, which may make use of redundant components, paral-

lel architectures, and the ability to fall back to a degraded state of operation without fail-

ing completely. However, the introduction of such features poses new challenges for 

systems analysts, who need to understand how such systems behave and estimate how 

reliable and safe they really are. 

Fault Trees Analysis (FTA) is a technique widely accepted and employed for analysing 

the reliability of safety-critical systems. With FTA, analysts can perform both qualita-

tive and quantitative analyses on safety-critical systems. Unfortunately, traditional FTA 

is unable to efficiently capture some of the dynamic features of modern systems. This 

problem is not new; various efforts have been made to develop techniques to solve it. 

Pandora is one such technique to enhance FTA. It uses new 'temporal' logic gates, in 

addition to some existing ones, to model dynamic sequences of events and eventually 

produce combinations of basic events necessary and sufficient to cause a system failure. 

Until now, Pandora was not able to quantitatively evaluate the probability of a system 

failure. This is the motivation for this thesis. 

This thesis proposes and evaluates various techniques for the probabilistic evaluation of 

the temporal gates in Pandora, enabling quantitative temporal fault tree analysis. It also 

introduces a new logical gate called the 'parameterised Simultaneous-AND' (pSAND) 

gate. The proposed techniques include both analytical and simulation-based approaches. 

The analytical solution supports only component failures with exponential distribution 

whilst the simulation approach is not restricted to any specific component failure distri-

bution. Other techniques for evaluating higher order component combinations, which 

are results of the propagation of individual gates towards a system failure, have also 

been formulated. These mathematical expressions for the evaluation of individual gates 

and combinations of components have enabled the evaluation of a total system failure 

and importance measures, which are of great interest to system analysts.  
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Chapter  One  

INTRODUCTION 

 

1.1 Field of Research 

More and more, technology is being integrated into every facet of human life, increas-

ing our dependence on it. Though technology is typically intended to open up new pos-

sibilities, allow us to work faster and make life easier, the failure of some of these tech-

nological systems can be catastrophic, causing harm to both human life and the envi-

ronment. Such systems are known as safety-critical systems or high-consequence sys-

tems. Therefore, it is imperative that such systems provide a high level of reliability 

with low levels of risks and hazards. 

For various reasons – such as the development of new systems and industries, the 

changing nature of accidents, the emergence of new vulnerabilities and exposure to haz-

ards – technological risks keep increasing (Leveson, 2011), making the issue of safety 

and reliability of systems vital; the importance of this issue cannot be understated. For 

example, for engineers in the automotive, nuclear and aeronautic industries, the reliabil-

ity of the systems they design and manufacture is a core requirement. This requirement 

has given birth to the field of reliability engineering: to analyse systems for their safety 

(ability to cause no harm) and reliability (ability to perform their intended functions 

within a specific duration and in specific conditions). 

There are several techniques for analysing the reliability of systems. A reliability engi-

neering technique that has served as the genesis of various modern techniques is Fault 

Tree Analysis (FTA). FTA was created in the 1960s to study the Minuteman Launch 

Control System (Ericson, 1999). It is a top-down deductive method of analysing the root 

causes of hazards. It usually commences by identifying a hazard or an undesired event 

or failure known as the top-event. This is followed by the determination of combina-

tions of individual component faults known as basic event or input events, which can 

trigger the occurrence of the top-event. Basic events or combinations of them, known as 

intermediate events, are connected to the top-events with logical Boolean connectives: 

AND and OR. 
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FTA can be performed quantitatively (probabilistically) or qualitatively (logically). 

Logical analysis of FTA involves using Boolean algebra to obtain a logical expression 

that contains all the minimal cut sets (MCS) resulting in the top event occurrence. 

MCSs are combinations of logically related events necessary and sufficient to cause the 

top event: necessary because each basic event in the MCS is needed for the top event to 

occur and sufficient because the MCS does not need the occurrence of additional events 

to cause the top event occurrence. This evaluation gives valuable information, such as 

the critical components – those that possess individual faults that by themselves can 

lead to the failure of a system – to engineers and system analysts. Based on this infor-

mation, engineers can redesign their systems to enhance system reliability and make 

better economic decisions before the system is actually produced.  

On the other hand, quantitative analysis usually involves the calculation of how reliable 

a system is. It involves making use of the probabilities of basic events in evaluating the 

probabilities of each MCS and the top-event and eventually the relative contribution 

between MCSs to the occurrence of the top-event. 

Even though traditional FTA has achieved many successes, it is handicapped when the 

sequence of events is considered. To illustrate this short-coming, consider a medical 

Hospital Power System (HPS) with two main power sources: electricity and generator.  

It is likely that medical service providers will use dual power sources (especially if the 

primary source of power is not very reliable) due to the criticality of the services (surgi-

cal equipment, incubators and intensive care units) they provide. Assume that the pri-

mary source of power is a mainstream electric (E) power supply and the standby power 

source is a generator (G). Let ‘I’ represent an input command, such as a switch, to pow-

er a medical device, MD; and let S represent a sensor that activates the generator system 

when it detects an omission in the electricity system.  An abstract diagram of the entire 

system is given below in Fig. 1.1-1.   

Using the classical FTA, the MCSs for total failure of the medical deviceare as follows: 

1. failure of the medical device (MD) itself  

2. failure of the electricity system (E) and generator system (G) 

3. failure of the electricity system (E) and sensor (S) 

4. omission of the input command (I) 
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Figure  1.1-1: A 2-Fuel Hospital Power Supply (HPS) system 

With this list of MCSs and the individual component failure rates, the probability of MD 

failing can be determined. However, a critical study of these MCSs reveals some inac-

curacies when the system is considered to be a real world system where the order in 

which individual fuel sub-systems fail is essential. For example, what will happen if the 

sensor fails before the main electricity power supply or vice versa? Traditional FTA is 

unable to capture, incorporate and analyse these situations in its analysis. 

A more precise analysis of HPS, considering the sequential order in which events fail, 

will be: 

1. omission of an input command (I) 

2. failure of the medical device itself (MD) 

3. failure of the sensor (S) before failure of the main power supply (E) 

4. simultaneous failure of the sensor (S) and the electricity system (E) 

5. failure of both electricity (E) and generator (G) systems 

Though the results from classical FTA and that from the sequential ordering of events 

have common causes of failure of MD, there are few significant differences. For exam-

ple, from the above results it is evident that more information about the dynamic behav-

iour of HPS is not captured by FTA. For example, the third point, ‘failure of the sensor 

(S) before failure of the main power supply (E)’ will cause a failure in a medical device 

because the failure of the electricity system will not be captured by the sensor (which 

has already failed), and thus the generator system will not get activated and finally no 

power supply to the medical device. However, failure of the electricity system before 

the sensor will not necessarily lead to a failure in the medical system because immedi-

ately after the electricity system fails, the sensor detects its omission and activates the 

generator system, which supplies power to the medical device afterwards. Failure of the 

sensor after this point will not affect the operation of the medical device. 

  

Medical Device  
(MD) 

Electricity 
(E)  

Generator 
(G) 

Sensor 
(S) 

Input 
(I) 
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This means that the third point ‘failure of the electricity system (E) and sensor (S)’ from 

the previous results using classical FTA is inaccurate because it suggest that whenever 

E and S fail – E fails before S or S fails before E or both E and S fail simultaneously – 

the medical device will fail. Traditional FTA fails to capture these critical dynamic sce-

narios in contemporary high-consequence systems. This is a major drawback because it 

could lead to inaccurate evaluation of both qualitative and quantitative analyses of safe-

ty-critical systems. 

FTA, since its inception, has seen several modifications to enable it to overcome the 

limitation of the particular sequence of events. One significant and predominant modifi-

cation is the Dynamic Fault Tree (DFT) (Dugan et al., 1992; Dugan, 2001). DFTs, with 

the introduction of new gates and quantitative analysis, addressed (to some extent) the 

issue of sequential event occurrence deficient in traditional FTA. Another recent signifi-

cant modification to the classical FT is the Temporal Fault Tree (TFT) (Palshikar, 2002) 

which specifies temporal dependencies between events and introduces more formal se-

mantics for analysis.  

Pandora (Walker, 2009; Walker & Papadopoulos, 2007) is yet another recent modifica-

tion of FTA which introduces novel gates (Priority-OR and Simultaneous-AND) in ad-

dition to existing gates (Priority-AND, Boolean AND and OR) and provides a system of 

logical laws to quantitatively analyse fault trees by considering the order in which 

events occur. The end product of Pandora’s qualitative analysis is a list of Minimal Cut 

Sequences (MCSQs), which are sequences of events necessary and sufficient to cause a 

top event. 

 

1.2 Motivation and Scope 

As earlier discussed (and will be seen in detail later), FTA is very useful, but its ability 

to fully capture and analyse dynamic behaviours inherent in modern safety-critical sys-

tems is largely unsolved. There are various techniques developed to enhance the capa-

bilities of classical FTA. Some of these techniques are used for qualitative analysis, oth-

ers for quantitative analysis and some others for both qualitative and quantitative analy-

sis. Pandora is a more recent technique formulated to incorporate sequential failure log-

ic (SFL) into FTA. It does so by introducing new temporal gates and laws for logically 

analysing safety-critical systems.  
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The difference between Pandora and other techniques is that it provides novel logical 

gates and laws which eliminate some contradictions present in the others. This will be 

discussed further in later chapters. However, Pandora is only a logical analysis tech-

nique. The question remains: how can Pandora be used as a quantitative tool to evaluate 

state-of-the-art safety-critical systems which feature dynamic behaviour due to their 

multiple modes of operation? This is the motivation of this thesis. 

The solution to this question requires the formulation of rigorous techniques for proba-

bilistically analysing Pandora’s new gates, which are required for the evaluation of sys-

tem failure probabilities. The evaluation of system failure provides a lot of benefits to 

engineers and system designers who use it. They are able to prioritise components in 

relation to their contribution to the occurrence of the system failure which aids them in 

making strategic decisions concerning the reliability of the system. 

 

1.3 Research Question 

The question this thesis aims to answer is: 

How can the temporal fault tree of a safety-critical system featuring various 

failure distributions be quantitatively analysed using both simulation and ana-

lytical approaches? 

The following objectives are formed to address the research question. 

Probabilistic Evaluation of Each Novel Temporal Gate 

To perform the probabilistic analysis of any fault tree, whether a traditional fault tree or 

a dynamic fault tree, one needs to identify how to evaluate probabilistically each gate in 

the fault tree. Each gate has a specific description and behaviour both logically and se-

mantically. This necessitates the probabilistic evaluation of each individual gate.  

The initial objective of this research is to identify or formulate techniques for probabil-

istically evaluating the Priority-AND (PAND), Simultaneous-AND (SAND) and Priori-

ty-OR (POR) gates as defined by Pandora. The evaluation of PAND, SAND and POR 

will contribute significantly to the determination of the overall system failure probabil-

ity. 
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Probabilistic Evaluation of MCSQs in Temporal Fault Trees 

As important as evaluating individual temporal fault tree gates (POR, PAND, SAND) 

probabilistically is, it is not sufficient when evaluating MCSQs with two or more differ-

ent gates. It is an objective of this research to identify or formulate techniques for evalu-

ating MCSQs and techniques for parsing and evaluating such expressions computation-

ally. This thesis also investigates how MCSQs with components of various distributions 

can be evaluated using simulation approaches. 

Techniques to Evaluate the Top-event Probability 

The top-event probability of a system, also referred to as the system failure probability, 

is the probability that a system failure will occur within a given time duration. Formu-

lating techniques of calculating this probability is the ultimate objective of this research. 

This research investigates the possibility of evaluating the top-event probabilities either 

analytically or with simulation or a combination of both. The possibility of calculating 

importance measures – measures of how contributing combinations of events influence 

a system failure – is also considered. 

 

1.4 Research Contribution 

Succinctly, this thesis provides both analytical and simulation techniques for quantita-

tively evaluating state-of-the-art safety-critical systems. The proposed solutions are 

scalable; they enable the determination of component importances and potential applica-

tions to other fields of study other than engineering. In details, the thesis contributions 

are as follows: 

Individual Gate Evaluation 

PAND gates can be considered to be inclusive (iPAND) or exclusive (ePAND). In the 

former, input events occur one after another or at the same time to trigger the occur-

rence of the output gate whilst in the later the events need to occur strictly one after an-

other to trigger the output event. Various techniques to evaluate the iPAND gate have 

been identified. These include a derivation from Calculus, Markov Chains, Stochastic 

PetriNets, Bayesian Networks, Monte Carlo simulation and Poisson Stochastic Process.  
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It has been proven that the iPAND and ePAND gates are probabilistically evaluate to 

zero, however, they have different logically interpretations. The expression from Calcu-

lus has been adopted for use in Pandora.  

An expression for the SAND gate has been formulated from three of Pandora Laws and 

from logical analysis. However, this expression evaluates to zero; meaning for any sta-

tistically independent exponentially distributed events, the probability of the events oc-

curring is zero. An expression for the POR gate has been formulated from Markov 

Chains, Calculus and Pandora’s logical analysis. A simulation solution has also been 

developed. 

The SAND gate is used to model the situation where two or more events occur at exact-

ly the same time. It is known (Merle and Roussel, 2010) that the occurrence of two ex-

ponentially distributed and statistically independent events is zero. However, there exist 

nearly-simultaneous situations where two or more input events trigger the occurrence of 

an output event if the input events occur within a relatively small time interval. This 

necessitates the description and the formulation of a mathematical expression for a logi-

cal gate to represent such scenarios. The proposed gate is called parameterised SAND or 

pSAND. pSAND is similar to SAND but has a consideration for a time interval within 

which all input events must occur for the output event to occur. Analytical and simula-

tion solutions have been formulated for probabilistically evaluating the pSAND gate. 

Probabilistic Evaluation of MCSQs in Pandora 

With the help of a precedence order, the evaluation of MCSQs has been made possible. 

To implement MCSQs evaluation computationally, the Shunting-Yard algorithm is 

slightly modified to parse MCSQs into Reverse Polish Notation (RPN). A postfix algo-

rithm is formulated to evaluate the probability of the expression generated from the 

RPN. The evaluation of MCSQ probability is very important for the evaluation of the 

system failure probability. Conditions necessary for Monte Carlo simulations of 

MCSQs with various component failure distributions have been constructed; these ena-

ble the modelling and simulation of total system failures. 

Probabilistic Evaluation of System Failure 

Due to the probabilistic evaluation of Pandora’s temporal gates in combination with 

traditional Boolean gates, the system failure probability of temporal fault trees has been 

made possible. It also makes the evaluation of importance measures possible. These do 
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not only give information about the probability of a system failure within a time frame 

but also makes possible the ranking of system components with respect to their contri-

bution to the occurrence of the system failure. This is the focal contribution of this re-

search and can be succinctly stated as: the probabilistic analysis of dynamic safety-

critical systems. 

Probabilistic Evaluation of System with Other Distributions 

All analytical solutions described in this thesis are restricted to exponential distribution. 

However, some state-of-the-art systems feature components with other failure distribu-

tions such as the Weibull or Lognormal distributions. In this thesis, Monte Carlo models 

have been constructed for evaluating systems with exponential, Weibull and Lognormal 

distributions. These have been made possible by the use of the time-to-failure (TTF) of 

components to model simulation conditions where temporal gates are present. 

Alternative Qualitative Analysis 

In addition to contributing to the quantitative analysis of temporal fault trees, this thesis 

also provides two techniques to enhance the qualitative analysis of temporal fault trees. 

The first, known as Groups and Modules Modularization Technique (GMMT), is an 

enhancement of existing qualitative techniques by the use of modularisation and the 

second, known as Temporal Binary Decision Diagram (TBDD), is a novel technique for 

extending Binary Decision Diagrams to include temporal features. 

 

1.5 Assumptions 

The following assumptions are made in this thesis. 

Statistical Independence 

It is assumed that the occurrences of basic events are statistically independent, meaning 

that the occurrence of an event is not dependent on the occurrence of another event in 

any way. 

Non-Repairable Events 

It is assumed that events are non-repairable. That is, once a basic event has occurred, it 

remains in that state. Therefore the state of an event can only change from ‘not oc-

curred’ (false) to ‘occurred’ (true) and not vice versa. 
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System Coherency 

The final assumption in this thesis is that all systems are coherent. A system is coherent 

“if sufficient components are functioning to cause the system to function, the function-

ing of additional components can only improve matters; if sufficient components have 

failed to cause system failure, then the failure of additional components can only make 

matters worse” (Esary and Proschan, 1963).  

 

1.6 Structure  

The structure of this thesis is arranged to give the reader a progressive understanding of 

the background, motivation, contribution and conclusions. The structure, organised into 

seven chapters, is as follows: 

Chapter 1: Introduction 

This introductory chapter explains the central problem – the probabilistic evaluation of 

fault trees of dynamic safety-critical systems – and sets out how the problem will be 

solved. It also discusses the specific aims and objectives of the work. 

Chapter 2: Background 

This chapter provides the theoretical background underpinning the remaining chapters 

of the thesis. It commences with the definition, importance, and terminology of reliabil-

ity engineering, and introduces fundamental probability theories. It then discusses Fault 

Tree Analysis (FTA), its advantages and disadvantages and why it needs to be en-

hanced. It goes on to discuss two enhancements of FTA – Dynamic Fault Trees (DFTs) 

and Pandora. Finally, a detailed review of significant quantitative techniques is made. 

Chapter 3: Temporal Quantitative Analysis 

In this chapter, the theoretical bases of the quantitative analysis of dynamic systems are 

made. These include the algebraic, timing and probabilistic models for all OR, AND, 

POR, PAND, SAND and parameterised-SAND (pSAND) gates used in Pandora. It also 

provides analytical algorithms for evaluating MCSQs leading to the evaluation of sys-

tem failure probability.  
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The analytical approach is restricted to the exponential distribution. In concluding this 

chapter, models of how Monte Carlo simulations for constructing MCSQs are dis-

cussed. The Monte Carlo simulations are not restricted to only exponential distributions. 

Discussions on Monte Carlo simulations for Weibull and Lognormal distributions are 

made. 

Chapter 4: Temporal Qualitative Analysis 

Though the major aim of this thesis is the provision of quantitative techniques for the 

evaluation of temporal fault trees, a technique based on modularisation for enhancing 

Pandora’s qualitative technique has been developed. This chapter contains a modulari-

zation technique and an alternative technique for qualitatively analysing temporal fault 

trees using Binary Decision Diagrams (BDDs). 

Chapter 5: Case Study 

This chapter demonstrates the use of developed techniques in the analysis of an Aircraft 

Fuelling System (AFS). AFS describes how a dual engine aircraft can be fuelled from 

five tanks by the use of connecting valves, flow meters, sensors and the likes. It also 

demonstrates how quantitative and qualitative analyses techniques developed in chap-

ters 3 and 4 can be applied to a temporal fault tree derived from AFS’s description. The 

results are top event occurrence probabilities for various system lifetimes using various 

component failure distributions and importance measures. 

Chapter 6: Evaluation 

Firstly, this chapter discusses the achievements of this thesis against its aim and objec-

tives. Secondly, it provides a comparative analysis of proposed techniques will be made 

against each other to evaluate them. Discussions on the successes and limitations of this 

research are also made and finally, directions for future research are identified. 

Chapter 7: Conclusion 

This is the final chapter that summarises the work discussed in this thesis: problems this 

thesis aims to solve, how it has solved them and why this thesis is necessary. 
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1.7 Note on Publication 

It should be noted that some materials of this thesis have been published in a number of 

academic outputs. Materials in chapter three has been published in Edifor et al. (2012), 

Edifor et al. (2013) and two other articles has been submitted for publications. Chapter 

four has been published in Edifor et al. (2013); another article has been extracted from 

this chapter and submitted for publication.  
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Chapter  Two  

BACKGROUND 

 

This chapter discusses theories underpinning the content of this thesis by providing def-

initions and some fundamental probability theories of reliability engineering. It also 

discusses various techniques for logically and probabilistically evaluating fault trees. 

The differences between these techniques are clearly distinguished and their strengths 

and weaknesses are reviewed. Finally, justifications for using some of these techniques 

are made. 

 

2.1 Reliability Engineering 

A system is an entity made up of a set of logically connected components performing 

specific tasks to enable the entity to perform and provide its overall functionality 

(Stapelberg, 2009). In this context, this means a system is one which takes in a set of 

inputs and converts them into required outputs by the use of its complicated web of log-

ically related components (Naikan, 2009). A component or subsystem is an integral 

constituent of a system that contributes to the overall functionality of the system 

(Stapelberg, 2009; Naikan, 2009). In more detail, a subsystem can become a system 

when considered as an entity under study. For example, a car can be a system with an 

engine as a sub-system. However, at a lower level of abstraction, an engine can be a 

system with various components, such as an alternator as a subsystem.  

A system is said to be reliable if it can be trusted (OUP, 2013). The US Department of 

Defense defines reliability as “the probability that an item can perform its intended 

function for a specified interval under stated conditions” and reliability engineering as 

“the technical discipline of estimating, controlling, and managing the probability of 

failure in devices, equipment and systems” (DoD, 1998). Meaning, the reliability R of a 

system is the probability that the system will perform the functions it was designed to 

perform in the conditions it has been designed to function within a given time interval 

{0, t}; where 0 is the start time and t is the system’s lifetime. Conversely, system unre-

liability, Q, is the probability that a system will fail to perform its intended functions 

under normal conditions within a given time interval {0, t}.  
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Reliability and safety are sometimes used interchangeably but they are technically not 

the same. Safety is the ability of a system not to cause unacceptable harm or risks to 

human life and its environment (BSI, 1979). It is commonly assumed that the increase 

of a system’s (or its components’) safety is directly proportional to its reliability. 

Leveson (2011) debunks this assumption: a system can be safe yet not necessarily relia-

ble and vice versa. For example, a nuclear reactor may be reliable but that does not 

make it safe; it may pollute its surrounding environments. Conversely, a personal com-

puter may be very unreliable but it may be very safe to use. Generally, though, unrelia-

bility makes safety-critical systems less safe. 

The reliability of a system can be seriously compromised by a failure, which is usually 

caused by a fault. A system failure occurs when the system deviates from its specified 

performance – it is unable to perform its intended function as specified by the system 

designer (Pukite & Pukite, 1998; Sundararajan, 1991). A fault can be described as an 

erroneous state of a component (Pukite & Pukite, 1998) or “an abnormal undesirable 

state of a system … induced by [the] presence of an improper command or absence of a 

proper one, or by a [component] failure" or “a non-compliance with specifications” 

(Sundararajan, 1991). A very simple example to distinguish the difference between a 

failure and a fault is this: 

Failure: A battery-powered torch will have a failure if the torch fails to produce 

light under the specified conditions it was manufactured to operate. 

Fault: A failure of a torch could be caused by wrongly placing its batteries. 

A fault can be classified into one of three basic categories: primary, secondary or com-

mand (Bedford & Cooke, 2001). Primary faults occur when a component fails to deliver 

the intended tasks for which it was designed under suitable conditions for which it was 

designed: an example is wrongly placing the batteries of a torch. A secondary fault 

however, arises when the component fails to deliver the intended tasks for which it was 

designed under unsuitable conditions for which it was not designed: for example using a 

non-water resistant torch in a swimming pool. A command fault, however, occurs when 

the component functions in the correct manner in which it was designed but produces 

wrong output or functions at a wrong time or place. For example, there will be a com-

mand failure if a torch manufactured to produce light only when its switch is turned on 

produces light when its switch is turned off (when the touch’s switch is short circuited).  
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While secondary and command faults are caused by external entities, primary faults are 

caused by the component itself. An error is a basically the “manifestation of a fault” 

(Pukite & Pukite, 1998). 

2.1.1 Reliability Theory 

A system that is prone to fail frequently within a given duration is deemed less reliable 

than another that fails less often within the same duration if both systems have the same 

intended system lifespan. Reliability can therefore be expressed as a function of time 

and can be probabilistically evaluated. Just as any probability function, the reliability R 

of a system S over a period of time t is a numeric value that lies between 0 and 1 inclu-

sive. The more the probability approaches zero, the lower the reliability; the more it ap-

proaches 1 the higher the reliability. Therefore a reliability of 1 means the system is 

100% reliable – the system cannot fail at any time – which is unrealistic. If the reliabil-

ity is zero then the system is always in a failed state – it never functions as intended. 

The mathematical relationship between reliability, R, and unreliability, Q is popularly 

known and given as: 

𝑅(𝑆){𝑡} = 1 − 𝑄(𝑆){𝑡} ( 2.1-1) 

Where 0 < 𝑡 < ∞, 0 ≤ 𝑅(𝑆){𝑡} ≤ 1 and 0 ≤ 𝑄(𝑆){𝑡} ≤ 1 

The failure rate λ of a system S between the intervals t1 and t2 is defined as “the ratio of 

probability that failure occurs in the interval, given that it has not occurred prior to t1, 

the start of the interval, divided by the interval length” (DoD, 1998) and is mathemati-

cally expressed as: 

𝜆𝜆(𝑆){𝑡} =
𝑅(𝑆){𝑡1} − 𝑅(𝑆){𝑡2}

(𝑡2 − 𝑡1)𝑅(𝑆){𝑡1}   
( 2.1-2) 

In simple terms, a failure rate is the rate at which a component fails given a time inter-

val. The failure rate of a system is generally depicted with a bathtub like curve (Henley 

& Kumamoto, 1981; DoD, 1998) as seen in Figure 2.1-1. It is assumed that due to poor 

design, lack of appropriate structures, procedures in the manufacturing process or use of 

low quality components, the failure rate of a system is initially high. This is known as 

the infant mortality stage. However, as the errors, mistakes, omissions etc., are correct-

ed, the system gets into a more stable operation zone where the failure rate remains at 

its presumably lowest ebb for a period of time. This period of the system’s lifetime is 

called the useful life. As the system ages, it enters its wear out period and the failure 

rate begins to increase again. 
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Figure  2.1-1: Failure rate curve 

The hazard rate h of a system S is also known as the instantaneous failure rate. It is the 

value of the failure rate as the system time interval length approaches zero (DoD, 1998) 

and is given as: 

ℎ(𝑆){𝑡} = 𝑙𝑖𝑚
∆𝑡→0

�
𝑅(𝑆){𝑡1} − 𝑅(𝑆){𝑡2}

(𝑡2 − 𝑡1)𝑅(𝑆){𝑡1} � =
1

𝑅(𝑆){𝑡}
�−

𝑑𝑑𝑅(𝑆){𝑡}
𝑑𝑑𝑡

� 
 

( 2.1-3) 

From 2.1-3 is evident that 

1
𝑅(𝑆){𝑡}

�
𝑑𝑑𝑅(𝑆){𝑡}

𝑑𝑑𝑡
� = −ℎ(𝑆){𝑡};  ∴

𝑑𝑑𝑅(𝑆){𝑡}
𝑅(𝑆){𝑡}

= −ℎ(𝑆){𝑡}𝑑𝑑(𝑡) 
 

( 2.1-4) 
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However, at time t = 0, R(S){0} = 1 and 

𝑅(𝑆){𝑡} = 𝑒𝑥𝑝 �−�ℎ(𝑆){𝑡}𝑑𝑑(𝑡)
𝑡

0
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( 2.1-5) 
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The next time a system is expected to fail is referred to as the time-to-failure (TTF). 

Technically, the average TTF is called the Mean TTF (MTTF) and is given by: 

𝑀𝑇𝑇𝐹 = �𝑅(𝑆){𝑡}𝑑𝑑𝑡
∞

0

 
 
 

( 2.1-6) 

The importance of reliability engineering cannot be over emphasised. In 1986, the Chal-

lenger space shuttle blew up a few minutes after take-off because of some leak through 

a faulty seal, killing seven people (BBC, 2009b).  Three months later, a nuclear disaster 

(Chernobyl) caused by a power surge (due to design flaw) led to massive explosions 

which blew the top off the reactor in the Ukraine. It is estimated that Chernobyl could 

potentially cause the death of over nine thousand people (BBC, 2009a). A more recent 

explosion leading to a massive disaster was the BP oil spill at the Gulf of Mexico. Even 

though people perished on the spot, the extent of the damage cannot be accurately quan-

tified since it directly affects aquatic life, which indirectly affects human life. According 

to BP (2010) the disaster was caused by “a sequence of failures involving a number of 

different parties ...” arising from “a complex and interlinked series of mechanical fail-

ures, human judgments, engineering design, operational implementation...” 

These disasters represent a few examples; many other system disasters have occurred 

causing a lot of harm to man, plants animals and entire ecosystems. For these reasons, 

there is a need for rigorous reliability analysis of safety-critical systems.  

 

2.1.2 Probability Theory 
Every system is doomed to eventually fail sometime in the future because no system is 

perfectly reliable forever. For this reason, engineers must anticipate the failure of the 

systems they design and make appropriate adjustments to reduce the frequency of these 

failures. The more a system is liable to fail, the less trusted it becomes and the less like-

ly it will be used. 

Uncertainties are part of normal life. Statements such as, “I am not too sure”, “it is very 

likely to rain today”, etc. are made almost every day. Even though unaware to many 

people, they make several probabilistic statements every day. In reliability engineering, 

probabilistic techniques are used in evaluating a system’s reliability. Unlike the vague, 

ambiguous probabilistic statements made by people every day, reliability engineering 

requires accurate and precise probabilistic evaluations. This must be so for various rea-

sons including: 
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1. the lives of persons who will be using the systems and safety of the system’s en-

vironment (including people, properties etc.) are at stake 

2. frequency of failures must be known because repairs cost money  

3. entire system reliability must be known to boost business competitive advantage. 

According to Freund (1962), mathematical probabilistic evaluation began in the 17th 

century when a gambler, Chevalier de Mere, consulted the famous mathematician, 

Blaise Pascal, about how to divide the winnings in a game of chance. Blaise’s corre-

spondence with Pierre Fermat, a lawyer and mathematician, is what produced the origin 

of modern probability theory. Later on, other mathematicians further developed the the-

ory and applied it to various fields apart from gambling (Shooman, 2002). 

Generally, probability can be evaluated in three main ways: the Priori or equally-likely-

events approach, the relative-frequency approach and using axiomatic definition 

(Papoulis & Pillai, 2002). The priori approach is convenient for evaluating the probabil-

ity of equally-likely-events but cannot handle not-equally-likely events. The relative-

frequency approach can be used in evaluating unequally likely events; however, it can 

lead to theoretical problems if care is not taken. The axiomatic approach is recognised 

as superior to the priori and relative-frequency approaches because it eliminates ambi-

guities whilst providing robust foundation for complex applications (Papoulis & Pillai, 

2002). 

This thesis focuses on the axiomatic approach. An event A with probability of occur-

rence, P satisfies the following conditions: 

1. the probability is a non-negative number but no greater than 1 

0 ≤ 𝑃(𝐴) ≤ 1 ( 2.1-7) 

2. if Ω is the whole or entire set of events, the probability of the whole set is unity 

𝑃(𝛺) = 1 ( 2.1-8) 

3. if Ø is the empty set, A and B are independent events, A ∩ B = Ø, then 

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴).𝑃(𝐵) ( 2.1-9) 

An event A is said to be statistically dependent on another event B if the occurrence of B 

affects the probability of the occurrence of A. 
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The dependent or conditional probability of A given that B has occurred, P(A|B), is gen-

erally given by: 

𝑃(𝐴|𝐵) =
𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

 
( 2.1-10) 

 
𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵)  

Conversely, A and B are said to be statistically independent if the occurrence of B does 

not affect the probability of the occurrence of A. If the probability of A and B occurring 

are P(A) and P(B) respectively, then from 2.1-10 the probability of A occurring given 

that B has occurred will be the same as the probability of A. 

A and B are said to be mutually exclusive or disjoint if they cannot occur at the same 

time. That is: 

𝑃(𝐴 ∩ 𝐵) = 0  

On the other hand, A and B are not mutually exclusive if they can both occur at the same 

time: 

𝑃(𝐴 ∩ 𝐵) ≠ 0  

 

Probability Distribution 

A variable X can be defined as a random variable if each value of X can be associated 

with an element x in an event A defined on a sample space S (Shooman, 2002). Mean-

ing, a random variable is a variable whose value is not fixed or single but can assume a 

set of different possible values – each value having an occurrence probability associated 

with it. If X assumes a finite number of values, then it is termed as a discrete random 

variable. Random variables can be defined over a continuum (real number) that is not 

discrete; this is a continuous random variable. Unlike the discrete random variables 

where the value of a random variable is finite, the values for a continuous random vari-

able cannot be counted. 

The probability distribution function (pdf) (Dinov, 2004) of a continuous random 

variable X is a function f(x), such that for any two numbers a and b, 

𝑃(𝑎 ≤ 𝑋𝑋 ≤ 𝑏) = � 𝑓(𝑥)𝑑𝑑𝑥
𝑏

𝑎
 

 
( 2.1-11) 
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The cumulative distribution function (cdf) (Dinov, 2004) of a continuous random var-

iable X is a function F(x), such that for every x, 

𝐹(𝑥) = 𝑃(𝑋𝑋 ≤ 𝑥) = � 𝑓(𝑦)𝑑𝑑𝑦
𝑥

−∞
 

 
( 2.1-12) 

Therefore for every continuous random variable X, for every element x, if there exist 

the derivative 𝐹′(𝑥) then 

𝐹′(𝑥) = 𝑓(𝑥)  

Probability distributions have different properties and exhibit different behaviours. For 

this reason, each has its distinct functions (PDF, CDF etc.). Table 2.1-1 to Table 2.1-3 

are summaries of the common life distributions (O’Connor, 2011) used in reliability 

engineering. 

Table  2.1-1: Summary of Exponential Distribution (O’Connor, 2011) 

Function Description 

Parameters 𝜆𝜆 = hazard rate; S = system; t = system lifetime 

f(S){t} 𝑓(𝑆){𝑡} = 𝜆𝜆𝑒−𝜆𝑡  ( 2.1-13) 

F(S){t} 𝐹(𝑆){𝑡} = ∫ 𝑓(𝑆){𝑥}𝑑𝑑𝑥 = ∫ 𝜆𝜆𝑒−𝜆𝑥𝑑𝑑𝑥 =𝑡
0

𝑡
0 1 − 𝑒−𝜆𝑡  ( 2.1-14) 

h(S){t} ℎ(𝑆){𝑡} = 𝜆𝜆  ( 2.1-15) 

R(S){t} 𝑅(𝑆){𝑡} = 1 − 𝐹(𝑆){𝑡} = 1 − �1 − 𝑒−𝜆𝑡� = 𝑒−𝜆𝑡  ( 2.1-16) 

Application Used to model no-wear out or cumulative damage situations, some elec-

tronic components such as capacitors or integrated circuits (ICs) and 

random shocks. 

 

Table  2.1-2: Summary of Lognormal Distribution (O’Connor, 2011) 

Function Description 

Parameters 
S = system; t = system lifetime 

𝜇𝑁 = mean of normally distributed ln(x).  𝜇𝑁 = ln � 𝜇2

�𝜎2+𝜇2
� 

𝜎𝑁 = standard deviation of normally distributed ln(x). 𝜎𝑁 = ln �𝜎
2+𝜇2

𝜇2
� 
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𝜙 = standard normal PDF; Φ = standard normal CDF 

f(S){t} 
𝑓(𝑆){𝑡} = 1

𝜎𝑁𝑡√2𝜋
𝑒
�−12�

ln(𝑡)−𝜇𝑁
𝜎𝑁

�
2
�

= 1
𝜎𝑁𝑡

𝜙 �ln(𝑡)−𝜇𝑁
𝜎𝑁

�  
( 2.1-17) 

F(S){t} 
𝐹(𝑆){𝑡} = 1

𝜎𝑁𝑡√2𝜋
∫ 1

𝑢
𝑒
�−12�

ln(𝑢)−𝜇𝑁
𝜎𝑁

�
2
�
𝑑𝑑𝑢 = Φ�ln(𝑡)−𝜇𝑁

𝜎𝑁
�𝑡

0    
( 2.1-18) 

h(S){t} 
ℎ(𝑆){𝑡} =

𝜙�ln
(𝑡)−𝜇𝑁
𝜎𝑁

�

𝜎𝑁𝑡�1−Φ�
ln(𝑡)−𝜇𝑁

𝜎𝑁
��

  
( 2.1-19) 

R(S){t} 𝑅(𝑆){𝑡} = 1 − 𝐹(𝑆){𝑡} = 1 −Φ�ln(𝑡)−𝜇𝑁
𝜎𝑁

�  ( 2.1-20) 

Application Suitable for modelling many life distributions and components with 

repair time distributions.  It is also appropriate for parameter variability 

and modelling elements in breakage processes. 

 

Table  2.1-3: Summary of Weibull Distribution (O’Connor, 2011) 

Function Description 

Parameters S = system; t = system lifetime 

𝛼 = scale parameter; 𝛽 = shape of the distribution or slope 

f(S){t} 
𝑓(𝑆){𝑡} = 𝛽𝑡𝛽−1

𝛼𝛽
𝑒−�

𝑡
𝛼�

𝛽

  
( 2.1-21) 

F(S){t} 
𝐹(𝑆){𝑡} = 1 − 𝑒−�

𝑡
𝛼�

𝛽

   
( 2.1-22) 

h(S){t} ℎ(𝑆){𝑡} = 𝛽
𝛼
�𝑡
𝛼
�
𝛽−1

  ( 2.1-23) 

R(S){t} 
𝑅(𝑆){𝑡} = 𝑒−�

𝑡
𝛼�

𝛽

  
( 2.1-24) 

Application It is the most popular life distribution used in reliability engineering. 

Used for modelling acceptance sampling, warranty analysis, wear mod-

elling, corrosion modelling maintenance and renewal etc. 
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Component Input Data 

As discussed earlier, a total system failure is a result of combinations of basic event 

(component) failures. Therefore, before the probability of a system failure can be de-

termined, the probability of the failure of the various combining components leading to 

the system failure must be known. There are various failure-parameters supplied for 

components for the evaluation of the total system failure occurrence. These include 

component failure probability, event occurrence probability and pure event probability. 

The component failure probability, P, is also known as the component unreliability. 

Where t and λ are the relevant time and failure rate of a component C respectively, P, t 

and λ are related in (2.1-25) for exponentially distributed events (Vesely et al., 2002). 

𝑃(𝐶){𝑡} = 1 − 𝑒−𝜆𝑡 ( 2.1-25) 

Where d is the functional duty cycle: total operation time divided by total mission time. 

If λo is the component failure rate in the operating state and λN is the contribution to the 

component failure rate from the non-operating state then the failure rate of the compo-

nent, λc, is: 

𝜆𝜆𝑐 = 𝜆𝜆𝑜𝑑𝑑 + 𝜆𝜆𝑁(1 − 𝑑𝑑) ( 2.1-26) 

The event occurrence probability is very similar to the component failure probability. 

However, with the event occurrence probability, the inputs supplied are the event occur-

rence rate, instead of component failure rate, and time. Supposing the event occurrence 

rate and time of an event E are respectively given as λe and t, then the event occurrence 

probability Pe can be given as (Vesely et al., 2002): 

𝑃(𝐸){𝑡} = 1 − 𝑒−𝜆𝑡 ( 2.1-27) 

The pure event probability, according to Vesely et al. (2002) is also known as the prob-

ability per act or probability per demand. It is generally an input for an event “for which 

a failure rate or occurrence rate per unit time is not recorded” (Vesely et al., 2002). A 

typical example is an input for human error. 
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2.2 Fault Tree Analysis (FTA) 

FTA (Vesely et al., 1981) is a safety analysis technique used for evaluating the reliabil-

ity of safety-critical systems since the early 1960s. It was first conceived when Bell La-

boratories, in collaboration with the US Air Force, examined the reliability of one of the 

Air Force’s weaponry systems. The Boeing Company identified the usefulness of this 

tool and adopted it for use. Since then FTA has gained worldwide popularity and has 

been used in various fields beyond engineering, such as supply chain (Ziegenbein & 

Baumgart 2006), health care (Ong & Coiera 2010), service process (Geum et al. 2009) 

and agriculture (Buck 1997) etc. 

As a safety analysis technique, FTA falls under a broader group of techniques known as 

risk assessment techniques. Risk assessment technique are methods used to identify, 

manage, control and evaluate situations of a system that have the potential of putting the 

system in an unwanted state (Garvey, 2008). Detailed discussion on risk assessment 

techniques can be found in Alverbro et al. (2010) and Izvercian et al. (2012).  

A fault tree in reliability engineering is a graphical structure consisting of events related 

by logical connectives to describe how combinations of these events can lead to the 

failure of a system. To construct the fault tree of a system, a system failure is first de-

cided. The system failure is examined to determine its immediate causes; each combina-

tion of causing events is related with appropriate logical gates. All immediate causes are 

also examined to determine combinations of events that can cause them. This identifica-

tion of immediate causes events continue until all causing events are basic events. A 

detailed review of these can be obtained from Vesely et al. (2002). 

FTA revolves around the concept of events. An event is a binary outcome of a compo-

nent’s functionality: whether it has failed or it is operational. If an event’s outcome con-

tributes to the occurrence of another event then the causing event is known as an input 

event whilst the resulting event is known as an output event. A basic event is an event 

that has no input events but can be an input event itself. An intermediate event is a 

combination of events that has one or more input events and is by itself an input event 

to another event. A top event corresponds to a system failure; it usually has input events 

but cannot have an output event. Events are combined using logic gates. A logic gate is 

a logic operator that transforms its input events into an output event based on its (gates) 

behaviour. A logic gate could be unary, binary or multi-nary. FTA uses a number of 

logic gates; a summary of these gates (Vesely et al., 2002) are described in Table 2.2-1.  

22  
 



Table  2.2-1: FTA’s Logical Gates 

Name of Gate Abbr. Symbol  

(analysis) 

Symbol  

(graphical) 

Description 

 
AND 
 

 
AND 

 
. 

 Output event occurs if all of 
its inputs events occur 

 
OR 
 

 
OR 

 
+ 

 Output event occurs if at 
least one of its inputs events 
occur 

 
COMBINATION 
 

 
NA 

 
NA 

 Output event occurs if a 
number, n, of its inputs 
events occur 

 
EXCLUSIVE OR 
 

 
NA 

 
NA 

 Output event occurs if ex-
actly one of its inputs 
events occur 

 
PRIORITY AND 

 
NA 

 
NA 

 Output event occurs if all of 
its input events occur in a 
specific sequence: one after 
another 

 
INHIBIT 

 
NA 

 
NA 

 Output event occurs if its 
input event occurs (based 
on the satisfaction of a con-
dition) 

 
K-OUT-OF-N 
 

 
NA 

 
NA 

 Output event occurs if at 
least K input events occur 
out of N input events. 

 

We describe the Boolean AND and OR gates (below) because they are the most relevant 

to this thesis. They are popular gates employed for logical and probabilistic analyses of 

classical fault trees. 

 

AND Gate 

A logical AND gate is a conjunctive operator that is fired when all its input events have 

occurred. All input events must occur to trigger the AND gate. There is no specification 

of the relative times within which the events occur; sequential failures of events are ig-

nored. Figure 2.2-1A is a graphical model of an AND gate with two events X1 and X2; Q 

is fired when X1 and X2 have both occurred.  Figure 2.2-1B is an AND with n events; Q 

is triggered when all input events, X1, X2, ..., Xn-1, Xn have occurred. 

n 

 

K/N 
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Figure  2.2-1: Graphical representations of the AND gate 

Figure 2.2-2 is a timing diagram for Figure 2.2-1A. In Figure 2.2-2A X1 occurs before 

X2, X1 . X2 occurs at t(X2). In Figure 2.2-2B X1 occurs at the same time as X2, X1 . X2 oc-

curs at t(X1) or t(X2). In Figure 2.2-2C X2 occurs before X1, X1 . X2 occurs at t(X1). The 

AND gate occurs when all its input events have occurred. 

 

 

 

 

Figure  2.2-2: Timing diagram of the AND gate with 2 input event 

If t is the lifetime of the event in Figure 2.2-1A, (2.2-1), (2.2-2) and (2.2-3) are expres-

sions corresponding to Figure 2.2-2 A, B and C. This means, in (2.2-1) the time of oc-

currence of X1 is less than the time of occurrence of X2; this means X1 occurs before X2. 

It must be noted that the symbol ‘<’ used in (2.2-1) means less than (not Priority-AND 

as discussed later). In (2.2-2) both events occur at the same time. X2 occurs before X1 in 

(2.2-3). 

𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1.𝑋𝑋2) = 𝑡(𝑋𝑋2)              ( 2.2-1) 

𝑡(𝑋𝑋1) = 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1.𝑋𝑋2) = 𝑡(𝑋𝑋2)              ( 2.2-2) 

𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1.𝑋𝑋2) = 𝑡(𝑋𝑋1)              ( 2.2-3) 
 

OR Gate 

The logical OR gate is a disjunctive operator that models the occurrence of events; all 

input events do not need to occur for the OR gate to be fired. The OR gate is fired only 
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X1 
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X2 

Q 
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X1 
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if at least one of the input events have occurred. Just as the AND gate, there is no speci-

fication of the relative times within which the input events of an OR gate occur; particu-

lar sequences do not matter – at least one must occur. Figure 2.2-3A is a graphical rep-

resentation of an OR gate with two events; Q is fired when at least X1 or X2 have both 

occurred.  Figure 2.2-3B is OR with n events; Q is triggered when at least one of its in-

put events have occurred. 

 

 

 

Figure  2.2-3: Graphical representations of the OR gate 

Figure 2.2-4 is a timing diagram for Figure 2.2-3A. In Figure 2.2-4-A X1 occurs before 

X2, X1 + X2 occurs at t(X2). In Figure 2.2-4B X1 occurs at the same time as X2, X1 + X2 

occurs at t(X1) or t(X2). In Figure 2.2-4C X2 occurs before X1, X1 + X2 occurs at t(X1). 

The OR gate occurs when at least one of its input event occurs. 

 

 

 

Figure  2.2-4: Timing diagram of the OR gate with 2 input event 

If t is the lifetime of the system in Figure 2.2-3A, (2.2-4), (2.2-5) and (2.2-6) are expres-

sions corresponding to Figure 2.2-4 A, B and C respectively. 

𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1 + 𝑋𝑋2) = 𝑡(𝑋𝑋1)              ( 2.2-4) 

𝑡(𝑋𝑋1) = 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1 + 𝑋𝑋2) = 𝑡(𝑋𝑋1)      ( 2.2-5) 

𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1 + 𝑋𝑋2) = 𝑡(𝑋𝑋2)              ( 2.2-6) 

Again, the symbol ‘<’ used in (2.2-4) means less than. In (2.2-4) the time of occurrence 

of X1 is less than the time of occurrence of X2; this means X1 occurs before X2. In (2.2-5) 

both events occur at the same time. X2 occurs before X1 in (2.2-6). 
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To clarify the construction of fault trees, consider the HPS scenario described in Chap-

ter 1. The top-event is a total failure in a medical device (MD). A failure in MD is 

caused by an internal failure of MD or an omission of power supply from the electricity 

system (E) and the generator system (G). Though an internal failure in MD is a basic 

event – due to our level of abstraction, it cannot be broken down further – omission of 

power supply from E or G is an intermediate event with two non-basic events so each 

needs investigating further. An omission of power from the electricity system is caused 

by a failure in the electricity system or lack on an input command. An internal failure of 

the generator or an internal failure of the sensor or an absence of input demand causes 

an omission from the generator. If Xf stands for the output failure of an event X, Xi for 

internal failure of X and Xo for omission of output from X then the above description of 

HPS can be expressed as: 

MDf = MDi OR Eo AND Go 

Eo = Ei OR Io 

Go = Gi OR Si OR Io 

From these logical expressions, a fault tree, Fig. 2.2-5, can be generated using the FTA 

symbols in Table 2.2-1 – where GXX is the number of the gate and BXX is the number 

of the basic event. 

 

 

 

 

 

 

 

 

 

Figure  2.2-5: An abstract model of HPS 
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2.2.1 Qualitative Analysis 

Fault trees contain cut sets which are combinations of basic events whose occurrence 

causes the top event to occur (Vesely et al., 2002). The HPS fault tree in Fig. 2.2-5 is 

only an equivalent logical graphical representation of the HPS description. From the 

fault tree, one can tell how HPS works. Qualitative analysis of a fault tree is an evalua-

tion of the fault tree in terms of an equivalent expression for more focused analyses. It 

involves the determination of cut sets that are necessary and sufficient to cause the top-

event or system failure; necessary because each basic event in the combination is need-

ed to trigger the top event and sufficient because the cut sets do not need the occurrence 

of additional events to cause the top event. These necessary and sufficient combinations 

of basic events are known as Minimal Cut Sets (MCS). Lee et al. (1985) provide a de-

tailed review of techniques used in qualitative analysis; these techniques reduce fault 

trees into their minimal structure.  

Since the focus of this thesis is on quantitative analysis rather than qualitative analysis, 

we only consider briefly a few techniques (Vesely et al., 2002) for qualitatively analys-

ing fault trees with Boolean algebra – in this case using HPS. The full list of Boolean 

laws for manipulating Boolean algebra are well known and can be found in Boole 

(1916). However, some few to remember for the sake of demonstration are: 

Distributive Law: 

A . (B + C) = A . B + A . C                          ( 2.2-7) 

A + (B . C) = (A + B) . (A + C)               ( 2.2-8) 

Idempotent Law 

A . A = A                  ( 2.2-9) 

A + A = A                ( 2.2-10) 

Identity Law 

A . 1 = A                ( 2.2-11) 

Annulment Law 

A + 1 = 1                ( 2.2-12) 

Since the fault tree can be expressed in terms of Boolean logic, Boolean laws can be 

used to reduce it to its ‘minimal’ logical form. The Boolean distributive laws are used to 

expand the cut sets whilst the identity and reduction laws are used to eliminate redun-

dancies. This expansion and reduction of cut sets is done repeatedly until MCSs are 

achieved. The MCSs are usually in a form of a sum of disjoint products. 
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From the HPS example, 

MDf  = MDi + (Ei + Io) . (Gi + Si + Io)                       ( 2.2-13) 

Using the Boolean distributive law (2.2-7) and (2.2-8),  

(Ei + Io) . (Gi + Si + Io) = Ei . Gi + Ei . Si + Ei . Io + Io . Gi  

    + Io . Si + Io . Io                ( 2.2-14) 

Substituting (2.2-14) into (2.2-13), 

MDf  = MDi + Ei . Gi + Ei . Si + Ei . Io + Io . Gi + Io . Si + Io . Io         ( 2.2-15) 

Using (2.2-9) and (2.2-11), 

Io . Io = Io . 1 

Using the distributive law again 

Ei . Io + Io . Gi + Io . Si + Io = Io . (Ei + Gi + Si + 1)                    ( 2.2-16) 

Finally applying the annulment law (2.2-12) to (2.2-16), 

MDf  = MDi + Ei . Gi + Ei . Si + Io                        ( 2.2-17) 

Equation (2.2-17) is the list of MCSs leading to the occurrence of the medical device 

failure. From this expression, it can be seen that the single-event MCSs are lack of an 

input demand Io and failure of the medical device itself, MDi. These single-event MCSs 

are called critical events because they, by themselves, can cause the top-event to trigger. 

The remaining MCSs are combinations of basic events and therefore they are not as 

critical in their contribution to the occurrence of the top event.  

These logical relationships are the sort of information qualitative analysis provides to 

engineers and system designers who work with fault trees of hundreds of events and 

gates. Based on the results of qualitative analysis, a system can be improved or rede-

signed to enhance its reliability. For example, it has been seen in the HPS that the medi-

cal device is a critical component. Therefore to enhance its reliability a high quality de-

vice may be purchased for use in the hospital. Alternatively, if the hospital has enough 

resources, a standby device may be purchased instead. Again, it can be seen that the 

electricity system contributes more to the medical device failure than the generator sys-

tem therefore with limited funds, attention can be focused on getting electric power 

supply from a more reliable provider and getting a cheaper generator. 
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2.2.2 Quantitative Analysis 

The quantitative analysis of FTs involves the evaluation of its top event probabilities, 

basic event importance and the uncertainties of these results. The top event quantifica-

tion determines the unreliability (failure probability) of the top event. The importance 

quantification determines the contribution or significance of components or cut sets to 

the occurrence of the top event. 

2.2.2.1 Top-Event Probability 

In accordance with the laws of probability, all events (top events, intermediate events 

and basic events) are real numbers, , ranging from 0 to 1 inclusively. The probability 

of an event X occurring at any time before time t is denoted Pr(X) {t} and represented by 

Fig. 2.2-6. This is the same as the CDF, F(X) {t}, of the event. In the graph, the arc is 

annotated with its corresponding CDF. 

Fig. 2.2-7 below is a timing diagram for Fig. 2.2-6 where ‘0’ is the ‘FALSE’ or ‘not-

occurred’ state represented by a sunken timeline and ‘1’ is the ‘TRUE’ or ‘occurred’ 

state represented by the raised timeline. 

 

 

 

 

 
Figure  2.2-6: Graphical representation of an event X 

  

 

 

Figure  2.2-7: Timing diagram of an event X 

Basic event failure probabilities are necessary for complete quantitative analysis of sys-

tem to take place. There are various techniques for evaluating traditional fault trees. 

Again, Lee et al. (1985) and Vesely et al. (2002) provide a detailed review of quantita-

tive analysis approaches for evaluating fault trees. We classify these approaches into 

ℝ 
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three main categories in this thesis: Minimal Cut Set (MCS) approach, Binary Decision 

Diagram (BDD) approach and Monte Carlo (MC) Simulation approach.  

From this point onwards, HPS will be used to demonstrate the applicability of the quan-

titative analysis techniques that are to be reviewed. For this reason, we assume some 

failure probabilities (given that t=1) for HPS’ basic events in Table 2.2-2. 

Table  2.2-2: Failure Probabilities of HPS' Events 

Event Failure Probabilities (hrs) 

MD 0.000562 

E 0.000112 

S 0.0007562 

G 0.0003579 

I 0.0000655 

 

Minimal Cut Set approach 

This technique is based on the MCS approach described in the qualitative analysis re-

view. Once the MCSs of a fault tree have been determined qualitatively, and basic event 

failure rates are known, the probability of the top-event occurrence can be calculated. 

Given that TE is any top event and n is the number of logically related MCSs of TE, TE 

can expressed as Boolean sums of products: 

TE = MCS1 + MCS2 + ... + MCSn-1 + MCSn 

Therefore, the probability of TE occurring at a particular time, t is 

𝑃(𝑇𝐸){𝑡} = �𝑃(𝑀𝐶𝑆𝑖)
𝑛

𝑖=1

{𝑡} 
 
 

( 2.2-18) 

Each MCSs is usually a product term with m independent events, X  

𝑃(𝑀𝐶𝑆𝑖){𝑡} = �𝑃(𝑋𝑋𝑘)
𝑚

𝑘=1

{𝑡} 
 
 

( 2.2-19) 

There are two major ways of quantitatively evaluating FTs using the MCS approach. 

These are the Principle of Inclusion-Exclusion (PIE) and the Esary-Proschan (EP) tech-

niques. 
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According to the Inclusion-Exclusion (Linial & Nisan, 1990; Sherstov, 2009; Gallier, 

2010) principle originally developed by Poincare-Sylvester, for any finite sequence of 

events X1,…,Xn, of n ≥ 2 subsets of a finite set S, 

��𝑋𝑋𝑘

𝑛

𝑘=1

� = � (−1)(|𝐼|−1)

𝐼⊆{1,…,𝑛}
𝐼≠0 

��𝑋𝑋𝑖
𝑖∈𝐼

� 
 
 

( 2.2-20) 

𝑃(𝑇𝐸){𝑡} = 𝑃 ���𝑀𝐶𝑆𝑘

𝑛

𝑘=1

�� = 𝑃𝑟 � � (−1)(|𝐼|−1)

𝐼⊆{1,…,𝑛}
𝐼≠0 

��𝑀𝐶𝑆𝑖
𝑖∈𝐼

�� 

 
 
 
 

( 2.2-21) 

𝑃𝑟(𝑇𝐸){𝑡} = �𝑃{𝑀𝐶𝑆𝑖}
𝑛

𝑖=1

(𝑡) − � 𝑃�𝑀𝐶𝑆𝑖 ∗ 𝑀𝐶𝑆𝑗�
𝑛

1≤𝑖<𝑗≤𝑛

(𝑡)

+ � 𝑃�𝑀𝐶𝑆𝑖 ∗ 𝑀𝐶𝑆𝑗 ∗ 𝑀𝐶𝑆𝑘�
𝑛

1≤𝑖<𝑗<𝑘≤𝑛

(𝑡) + ⋯

+ (−1)𝑛−1𝑃 ��𝑀𝐶𝑆𝑖

𝑛

𝑖=1

� (𝑡) 

 
 
 
 
 
 
 
 

( 2.2-22) 

Esary and Proschan (1963) proposed a formula for quantifying coherent systems with 

independent components. This quantification method has been popularised (Henley & 

Kumamoto, 1981) and used in some software (Item, 2005) thereafter. According to the 

Esary-Proschan formula, the probability of a system failure (TE) of ‘n’ minimal cut sets 

(MCSs) with each cut set having a combination of ‘m’ basic events is: 

𝑃(𝑇𝐸){𝑡} = 1 −��1 −�𝑃�𝑀𝐶𝑆𝑖,𝑗�{𝑡}

𝑚𝑗

𝑖=1

�
𝑛

𝑗=1

 
 
 

( 2.2-23) 

Both techniques produce similar results. For example, the top-event probability of HPS 

using PIE and EP are 6.27587889902248E-4 and 6.27587889902253E-4 respectively. 

However, as the MCSs grow larger, PIE becomes very computationally expensive. In 

evaluating HPS, PIE required 31 arithmetic calculations while EP required only 8. For a 

fault tree with twenty (20) MCSs, PIE will require 10485759 arithmetic calculations 

while EP will require only 40 calculations. For a fault tree with n MCSs, PIE will re-

quire ∑ 𝑘 × �𝑛𝑘� − 1𝑛
𝑘=0  arithmetic calculations whilst EP will require only2 × 𝑛.  
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Binary Decision Diagrams (BDD) 

A BDD can be used as an alternative approach to analysing classical fault trees. A Bina-

ry Decision Diagram (Lee, 1959; Akers, 1978; Bryant, 1986) is technically a directed 

acyclic graph – a graph with all paths in one direction and it has no loops – with termi-

nal and non-terminal nodes (vertices) connected by branches (edges). Vertices or nodes 

are represented by circles whilst branches or paths are represented by lines. A BDD has 

one root vertex. Every other vertex, apart from the root vertex, has only one parent ver-

tex. Each non-terminating vertex has exactly two children.  

Unlike the MCS approach, which identifies combinations of basic events necessary and 

sufficient to cause the top event, a BDD is a graphical representation that encodes the 

logical structure of a fault tree and is able to perform quantitative analysis via this struc-

ture instead of cut sets. The use of BDDs in FTA was developed (Rauzy, 1993; 

Sinnamon, 1996; Sinnamon & Andrews, 1996) to translate FTs into BDD and then en-

code the Shannon’s decomposition (Schneeweiss, 1989) if-then-else (ite) structure.  

In FTA, a BDD’s non-terminating nodes represent basic events whilst terminating 

nodes represent the final state of a system or component: 0 for failure or 1 for success. 

They are represented with boxes in this thesis. Usually, the leftmost path from a vertex 

leads to a failure and rightmost path leads to a success. They are annotated with a ‘1’ 

and ‘0’ respectively. Fig. 2.2-8 is a BDD with an ite structure for a basic event X. 

Where, the function f1 on the ‘1’ branch is considered if X fails and f2 on the ‘0’ branch 

is considered if X is operational. 

 

 

 

Figure  2.2-8: BDD and ite structure for a basic event X 

Due to its efficient data structure encoding, BDDs utilize comparatively low computing 

resources while producing the same probabilistic and importance measures results as the 

MCS technique. However, for an efficient BDD analysis to take place, there is need for 

the events in a fault tree to be appropriately ordered to produce accurate results 

(Sinnamon & Andrews, 1996). This ordering of events is simply the prioritisation of 

events; events with higher priority occur higher in the BDD and low priority events oc-
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cur lower. In this thesis, X→Y means the event X has higher priority over the event Y; X 

will have a higher level in the resulting BDD than Y. Also in this thesis, depth-first tra-

versal (top-down, left-right) will be used for BDD analysis unless stated otherwise. 

Representing any Boolean operator ‘.’ or ‘+’ with ‘♦’, the following procedure (Rauzy, 

1993; Sinnamon and Andrews, 1998) can be followed for BDD analysis in FTA. 

1. Assign an order to the basic events in the fault tree.  

2. Generate an ite structure for each basic event. 

3. For any two event A=ite(X, fx1, fx0), B=ite(Y, fy1, fy0) 

If A→B then, 

 A ♦ B = ite(X, fx1 ♦ B, fx0 ♦ B) 

If A = B then, 

 A ♦ B = ite(X, fx1 ♦ fy1, fx0 ♦ fy0) 

Bearing in mind that if ♦ is an OR gate and E is any event, 

 1 ♦ E = 1 

 0 ♦ E = E 

 Whilst, if ♦ is an AND gate, 

 1 ♦ E = E 

 0 ♦ E = 0 

We demonstrate the operation of BDD using the HPS case study. To begin with, we 

consider the order MD→E→I→G→S. 

G03 = B02 + B03  

        = ite(Ei, 1, 0) + ite(Io, 1, 0) 

        = ite(Ei, 1, ite(Io, 1, 0)) 

G05 = B05 + B06  

        = ite(Si, 1, 0) + ite(Io, 1, 0)  

        = ite(Io, 1, ite(Si, 1, 0))  

G04 = B04 + G05  

        = ite(Gi, 1, 0) + ite(Io, 1, ite(Si, 1, 0)) 

        = ite(Io, 1, ite(Gi, 1, ite(Si, 1, 0))) 

G02 = G03 . G04  

        = ite(Ei, 1, ite(Io, 1, 0)) . ite(Io, 1, ite(Gi, 1, ite(Si, 1, 0))) 

        = ite(Ei, ite(Io, 1, ite(Gi, 1, ite(Si, 1, 0))), ite(Io, 1, 0)) 
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Top = G01 

        = B01 + G02 

        = ite(MDi, 1, 0) + ite(Ei, ite(Io, 1, ite(Gi, 1, ite(Si, 1, 0))), ite(Io, 1, 0)) 

        = ite(MDi, 1, ite(Ei, ite(Io, 1, ite(Gi, 1, ite(Si, 1, 0))), ite(Io, 1, 0))) 

 

 

 

 

 

 

Figure  2.2-9: BDD for HPS using MD→E→I→G→S 

Figure 2.2-9 is a corresponding BDD for the above HPS analysis. Cut sets for HPS can 

be derived from Figure 2.2-9 by tracing the paths through the BDD from the root vertex 

to a terminal vertex with a “1” value. Only basic events on branches labelled “1” are 

considered when tracing these terminal vertices. Therefore, the cut sets for the above 

BDD are: 

1. MDi 

2. Ei . Io 

3. Ei . Gi 

4. Ei . Si 

5. Io 

It is evident that the cut sets listed above are not minimal; Io is a critical event and so 

redundant in Ei . Io. The power of BDD is in its ability to calculate the top event proba-

bility from a fault tree directly without having to minimise it (i.e., generate MCS for it). 

To evaluate the top-event probability of a fault tree using BDD, the probability of the 

sum of logically disjoint paths in the BDD is calculated (Sinnamon and Andrews, 

1996). Logically disjoint paths are paths that lie on branches labelled “0”– branches 

representing event failures. We represent events lying on logical disjoint paths with a 

bar on top of them, for example, 𝑋𝑋, which means NOT X. 𝑋𝑋 logically means X has not 

occurred and probabilistically is 1 – P(X), which is the reliability of X. 
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 Disjoint paths through Figure 2.2-9 are: 

1. 𝑀𝐷𝑖 

2. 𝑀𝐷𝑖  .𝐸𝑖 . 𝐼𝑜 

3. 𝑀𝐷𝑖  .𝐸𝑖 . 𝐼𝑜 .𝐺𝑖 

4. 𝑀𝐷𝑖  .𝐸𝑖 . 𝐼𝑜 .𝐺𝑖 . 𝑆𝑖 

5. 𝑀𝐷𝑖  .𝐸𝑖  . 𝐼𝑜 

The top event is calculated by finding the probability of the sum of disjoint paths 

(Rauzy, 1993). Summing all the disjoint paths obtained from HPS together produces 

6.27587859612539E-4. 

To demonstrate the impact of using different ordering in BDDs, we use a different order 

S→MD→I→E→G to analyse HPS. 

G03 = B02 + B03  

        = ite(Ei, 1, 0) + ite(Io, 1, 0) 

        = ite(Io,1, ite(Ei,1, 0)) 

G05 = B05 + B06  

        = ite(Si, 1, 0) + ite(Io, 1, 0)  

        = ite(Si, 1, ite(Io, 1, 0))  

G04 = B04 + G05  

        = ite(Gi, 1, 0) + ite(Si, 1, ite(Io, 1, 0)) 

        = ite(Si, 1, ite(Io, 1, ite(Gi, 1, 0))) 

G02 = G03 . G04  

        = ite(Io,1, ite(Ei,1, 0)) . ite(Si, 1, ite(Io, 1, ite(Gi, 1, 0))) 

        = ite(Si, ite(Io,1, ite(Ei,1, 0)), ite(Io, 1, ite(Ei, ite(Gi, 1, 0), 0))) 

Top = G01 

        = B01 + G02 

        = ite(MDi, 1, 0) + ite(Si, ite(Io,1, ite(Ei,1, 0)), ite(Io, 1, ite(Ei, ite(Gi, 1, 0), 0))) 

        = ite(Si, ite(MDi, 1, ite(Io,1, ite(Ei,1, 0))), ite(MDi,1,ite(Io,1, ite(Ei, ite(Gi, 1, 0), 0)))) 

The above BDD expression for the top-event produces the BDD diagram in Figure 2.2-

10. It is evident that the cut sets are Si.MDi, Si.Io, Si.Ei, MDi, Io and Ei.Gi. 
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The disjoint paths through Figure 2.2-10 are: 

1. 𝑆𝑖 .𝑀𝐷𝑖 

2. 𝑆𝑖 .𝑀𝐷𝑖  . 𝐼𝑜 

3. 𝑆𝑖 .𝑀𝐷𝑖  .  𝐼𝑜 .𝐸𝑖 

4. 𝑆𝑖 .𝑀𝐷𝑖 

5. 𝑆𝑖 .𝑀𝐷𝑖 .  𝐼𝑜 

6. 𝑆𝑖 .𝑀𝐷𝑖 .  𝐼𝑜 .𝐸𝑖  .𝐺𝑖   

 

 

 

 

 

 

 

Figure  2.2-10: BDD for HPS using S→MD→I→E→G 

Using the failure data in Table 2.2-2, the top-event of the BDD in Figure 2.2-10 is cal-

culated by summing the disjoint products listed above which results in the value 

6.27587859612539E-4 – the same as the previous BDD result – the only difference be-

ing the number of cut sets generated. 

Monte Carlo (MC) Simulation 

A simulation is a means of learning something about the real world by imitating a sce-

nario using a model. Simulations provide myriads of benefits. They are used in situa-

tions where real world scenarios are financially costly, safety hazards, complicated to 

design or time consuming to implement (Clark and Daigle, 1997; Rozenblit, 2001; 

Pasquale, 2010). Monte Carlo (MC) simulation is a popular mathematical simulation 

technique used in various fields such as chemistry, engineering, medicine, games, fi-

nance, and telecommunications. It provides numerical solutions to complex problems 

that are difficult to solve analytically by generating suitable random numbers and ob-
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serving that fraction of the numbers which obey some properties (Weisstein, 2013). Its 

use has also been extended into reliability analysis (Dutuit and Rauzy, 1997; Wang and 

Pham, 1997; Marseguerra et al., 1998; Bremaud, 1999; Ejlali and Ghassem Miremadi, 

2004; Rocco and Muselli, 2004; Zio et al., 2007; Durga Rao et al., 2009; Manno et al., 

2012).  

The estimation θ (Terejanu, 2013) for N trials with a standard Monte Carlo method, 

where ψ(xi) is a generated random number obeying some properties, is defined as 

𝜃𝑁 =
1
𝑁
�𝜓(𝑥𝑖)
𝑁

𝑖=1

 
 

( 2.2-24) 

The MC method is entirely reliant on the use of random numbers for the computation of 

its results. The general method involved in creating a MC model includes defining the 

probability distribution of variables; calculating the cumulative probability distribution 

for each of these models, generating random numbers, and finally simulating a series of 

trials. Once the model is created, results can be evaluated after the simulation. 

A typical MC simulation begins with modelling the system under study. Once this is 

done, the model is simulated or ‘run’ by generating random numbers for the model vari-

ables to create a unique ‘instance’ of the model. The system variables are generated 

several times, called trials, to create several instances of the model. These instances are 

examined for some common predetermined property (Pukite and Pukite, 1998; 

Bremaud, 1999), which eventually determines the behaviour of the model. There are 

various types of Monte Carlo methods (Weinzierl, 2000). In this thesis we focus on 

Monte Carlo Integration. 

For example, to evaluate the probability of C = A . B, that is Pr(C) = Pr(A . B), using 

MC simulation, the first thing to do is to model the system. For this model to be con-

structed, the following conditions must be considered: 

• Evaluating the probability of C requires the probabilities of A and B. 

• Evaluating the individual probabilities of A and B requires that their random 

numbers ai and bi are less or equal to the probability of A and B respectively 

(Yevkin, 2010). 

With these conditions in mind, the following steps can be followed to evaluate C: 

1. Set a variable for summation, S, to zero. 

2. Generate two random numbers to simulate an A probability, ai, and a B probabil-

ity, bi 
37  

 



3. If ai is less than or equal to P(A) AND bi is less or equal to P(B) then S is incre-

mented by 1. 

4. Steps 2 and 3 are repeated a large number of times, T. 

5. P(C) is the ratio of S to T. 

Algorithms 2.2-1 and 2.2-2 are generic Monte Carlo simulations for the OR and AND 

gates with n events respectively. X[n] is an array of the failure rates of events. S is a 

variable to sum the number of instances possessing the AND/OR behaviour. F is a flag 

and T is the number of trials. R[i] is a random number corresponding to the failure 

probability, P(X[i]){t}, of X[i]. 

Algorithm 2.2-1: A Generic Monte Carlo simulation for the OR gate 
Require: X[n] 
     S ← 0 
     F ← false 
     for k = 1 to T do 
          for i = 1 to n do 
               R[i] ← NextRandomNumber 
               if (R[i] <= Pr(X[i]){t}) then 
                    F ← true 
               end if 
          end for                
          if (F) then 
               S ← S + 1 
               F ← false 
          end if 
     end for 
return S/T 
 
Algorithm 2.2-2: A Generic Monte Carlo simulation for the AND gate 
Require: X[n] 
     S ← 0 
     F ← true 
     for k = 1 to T do 
          for i = 1 to n do 
               R[i] ← NextRandomNumber 
               if (R[i] > Pr(X[i]){t}) then 
                    F ← false 
               end if 
          end for 
          if (F) then 
               S ← S + 1 
               F ← true 
          end if 
     end for 
return S/T 
 
As described earlier, the Monte Carlo simulation of a system is done by generally simu-

lating various instances of the system and examining these instances for some common 

behaviour. Algorithm 2.2-3 is a Monte Carlo simulation for the quantification of HPS. 
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Algorithm 2.2-3: Monte Carlo simulation for quantifying HPS 
Require: E, I, S, G, MD 
   S ← 0 
   for k = 0 to T do 
       rndE ← NextRandomNumber 
       rndI ← NextRandomNumber 
       rndS ← NextRandomNumber 
       rndG ← NextRandomNumber 
       rndMD ← NextRandomNumber 
          if(rndMD <= MD OR (rndE <= E AND rndG <= G) OR (rndE <= E AND rndS <= S)                
            OR rndI <= I) then 
                 S ← S + 1 
          end if 
      end for 
   return S/T 

In Algorithm 2.2-3, random number are generated for each event, E, I, S, G and MD in 

the HPS MCS. If all MCS behaviours in the ‘if’ statement have been met the counter S 

is incremented. This represents an instance of the simulation known as a trial. The entire 

process is done for T trials. Running the simulation 5000000 times using the failure data 

in Table 2.2-2 produces a value of 6.282E-4. Figure 2.2-11 is a graph showing how the 

number of trials affects the accuracy of results. It is evident that the results converge 

towards the value provided by BDD and MCS approaches. 

 

 

 

 

 

 

Figure  2.2-11: Graph for Monte Carlo simulation of HPS 

The number of trials used in the above case study is large because the values of failure 

data used are relatively small and will be very scarcely generated by a standard random 

number generator. For this reason, a large sample space is needed for accurate results to 

be produced. The 95% lower and upper confidence levels for the above simulation using 

a linear regression are 6.40876E-4 and 6.54627E-4 respectively with a best fit (linear) 

of 6.47751E-4. 
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MC simulation has also seen various improvements to improve its computational effi-

ciency; (Manno et al., 2012) and (Wang and Pham, 1997) provide brief and detailed 

reviews of MC in reliability engineering respectively. Yevkin (2010) is a recent im-

provement that increases the efficiency of MC analysis of non-repairable FTs with se-

quential dependencies existing between their events. After a comparative analysis of 

various techniques, Yevkin (2010) asserts that “the most significant [MC improvement 

technique] is the importance sampling approach to reduce standard error of the mean … 

[and] is valid for highly reliable systems”.   

More recently, Meedeniya et al. (2011) and Trubiani et al. (2013) have provided a MC 

simulation based on the dynamic stopping technique to reduce the number of MC sam-

ples – improving its computational efficiency. In their technique, the simulation is regu-

lated with respect to some preset conditions; the simulation is executed until these con-

ditions are satisfied. Therefore, a large number of trials may not be necessary for simu-

lation as with the standard Monte Carlo method. A comparative analysis of this tech-

nique and the standard Monte Carlo technique is provided in chapter six. 

2.2.2.2 Importance Measures 

Another significant quantitative measure of FTA is the top event importance which 

measures the sensitivity of the top-event to basic or intermediate events. Importance 

measures determine the various contributions of basic or intermediate events to the oc-

currence of the top event or how a change in any of these events can affect the occur-

rence of the top event.  

Component importance evaluations do not only provide valuable information about 

their contribution to the top event occurrence, they serve as useful source of data for 

resource allocation (upgrade, quality, maintenance and the likes). This information aids 

stakeholders in improving a system (safety, reliability, efficiency, effectiveness etc.) 

whilst reducing its financial impact. 

The worth or ration of a safety-critical system achieving its present level of risk is 

known as the Risk Achievement Worth (RAW) whilst the worth of such a system fur-

ther reducing its risk is the Risk Reduction Worth (RRW). Technically RAW is “the 

increase in risk [of a system] if the feature [component or event] were assumed not to be 

there or to be failed” and RRW is “the decrease in risk [of a system] if the feature [basic 

event] were assumed to be optimised or were assumed to be made perfectly reliable” 

(Vesely et al., 1986).  
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Detailed reviews of these importance quantities are available in (Vesely et al., 1986; 

van der Borst and Schoonakker, 2001; Vesely et al., 2002). However, in this thesis, we 

discuss two of these quantities: Fussell-Vesely importance and Birnbaum importance. 

The Fussell-Vesely Importance (Vesely et al., 2002), also known as the Top Contribu-

tion Importance, is the contribution of a particular basic event to the top event occur-

rence probability given that the system has failed. This is calculated by summing all the 

MCSQs containing a particular event. For any system, S, the FV importance (Henley 

and Kumamoto, 1981) of an event, X, is given as: 

𝐹𝑉𝑋 =
𝑃(∑ 𝑀𝐶𝑆𝑄𝑖𝑛

𝑖 ){𝑡}
𝑄(𝑆){𝑡}

 
 
 

( 2.2-25) 
Where n is the number of MCSQs containing X. 

The second importance measure is the Birnbaum Importance Measure (BM). BM meas-

ure determines the sensitivity of the top event probability with respect to some given 

events. Meaning, BM measures the rate of change in the top event probability with re-

spect to the changes of the probability of a specific event. For a system, S, the BM im-

portance (Henley and Kumamoto, 1981) of an event, X, is given as: 

𝐵𝑀𝑋 =
𝜕𝑄(𝑆){𝑡}
𝜕𝑄(𝑋𝑋){𝑡}

 
 

( 2.2-26) 
 

2.2.3 Limitations of FTA 

Modern safety-critical systems are complex and dynamic. To evaluate such systems 

appropriately, one will have to capture the sequential dependencies between their com-

ponents. Failure to do so can result in the underestimation or overestimation of qualita-

tive and/or quantitative results.  When a system’s reliability is underestimated, it is as-

sumed that the system is less reliable. Therefore, the system is improved to attain a 

higher level of reliability which may be unnecessary because the system was wrongly 

evaluated – underestimation. Overestimation is the more dangerous of the two. When a 

safety-critical system’s reliability is overestimated, the actual reliability of the system is 

lower than the estimated value. This can be very dangerous when the overestimated val-

ue is excessively higher than the actual system reliability value. For these reasons, it is 

expedient that a safety-critical system’s reliability is appropriately evaluated. 
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One of traditional FTA’s major limitations is its inability to consider the sequential de-

pendencies between component failures. This means it is unable to capture the dynamic 

behaviours present in modern systems. For this reason, it is referred to as static (Gulati 

and Dugan, 1997; Merle and Roussel, 2007); traditional FTAs are also known as Static 

FTAs (SFTA). This is due to the fact SFTs use only the Boolean gates AND and OR 

which are inadequate to represent the failure behaviour of systems with particular se-

quence-dependent components. This significant disadvantage can lead to the inaccurate 

evaluation of a system’s reliability (Dugan et al., 1992; Dugan and Doyle, 1997; Walker 

and Papadopoulos, 2008). 

To explain STFA’s limitation in more detail, let us go back to the HPS case study. Ac-

cording to the MCSs produced by SFTA, the failure of the electricity, E, sub-system and 

sensor-subsystem, S, will result in a failure of the medical device, MD. Let us introduce 

some dynamic behaviour into the MCS: E failing before S or S failing before E. In the 

situation where E fails before S, the system does not necessarily fail. The reason being, 

immediately E fails, S (at this point S has not failed) detects an omission from E and 

activates the standby generator, G, to provide power to MD. On the contrary, if S fails 

before E, the entire system fails. This is so because, when E fails, S has already 

(dormant) failed and is unable to activate the generator therefore there will be no power 

supply to MD. Therefore, listing E . S as a MCS leading to the occurrence of MD failure 

is an extremely pessimistic result, which can be costly. There are situations where 

SFTA results are also too pessimistic (Walker 2009). 

The solution to SFTA’s limitation can be considered in three broad areas: 

1. It must have the ability to capture and model dynamic behaviours. To do this, 

there is the need for the introduction of novel logical gates (in addition to the 

classical AND and OR gates), which will be able to capture the temporal behav-

iours that exist between the components of a dynamic systems. For example, it 

must be able to model the possible before relation that can exist between two 

events. A typical case is evident in the HPS model, where S before E can result 

in the total failure of MD. 

2. It must be able to perform qualitative analysis where necessary. Boolean gates 

have underpinning laws for evaluating Boolean algebra when evaluating classi-

cal fault trees. There is also a necessity for the logic relating dynamic gates to 

have a set of laws, which will serve as a catalyst for reducing dynamic fault trees 
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into their minimal forms. This will require the firm understanding of the logical 

dependencies between dynamic components.  

3. It must be viable for probabilistic analysis. Any dynamic gate prescribed to 

model a dynamic behaviour must be suitable for probabilistic evaluation. The 

probabilistic evaluation of these gates in relation to others (dynamic and Boole-

an) must also be determined. This will enable the probabilistic evaluation of the 

top-event. 

Unfortunately, all the techniques discussed for the quantitative analyses of SFTs are 

also limited and unable to perform quantitative analysis of dynamic systems. The MCS 

and Monte Carlo techniques depend on MCS obtained from qualitative analysis. There-

fore, since the MCS is unable to capture the dynamic behaviour of systems, both tech-

niques are unable, at this level, to include dynamic behaviours in their analyses. BDD, 

the third approach, though it does not depend on MCS, has no theoretical or practical 

structure to incorporate dynamic behaviours in its analysis. In conclusion, all these 

techniques for quantitatively analysing classical fault trees are inadequate for analysing 

modern dynamic safety-critical systems because they cannot capture their dynamic be-

haviours. 

Extended FTA (Vesely et al. 2002) is one of the earliest improvements made to classi-

cal FTA. It introduces some FT modelling principles. These include common cause 

failure (CCF), human error and loop and feedback. It also alters some naming schemes 

and ground rules stated in the classical FTA definition. However, these changes do not 

make classical fault tree analysis formidable enough to tackle challenges modern sys-

tems present. 

Other earlier (pre 1990s) improvements to FTA were heavily centred on the efficiency 

of the analysis (both qualitative and quantitative) of large fault trees, evaluation of im-

portance measures and the use of simulation. The only major publication made on the 

analysis of dynamic gates in FTA is on the quantitative analysis of Priority-AND 

(PAND) gates (Fussell et al., 1976). This paper describes the PAND scenarios and pro-

vides a model for it. It also derives a mathematical expression for its quantification of n 

events. However, it makes no mention of qualitative analysis. Though it seemed that 

FTA’s fate in analysing dynamic systems was forgotten, there was a massive break-

through in the early 1990s. During this time, FTA saw a revolutionary turn towards the 

dynamic behaviours of modern systems when the Dynamic Fault Tree (DFT) analysis 

was invented. This caused an explosion of investigation in this field of research. 
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2.3 Dynamic Fault Trees (DFT) 

DFT (Dugan et al., 1992) was proposed to extend SFT and allow analysts to tackle 

computer-based systems, which feature dynamic behaviours and require the accurate 

evaluation of their outcomes – the major limitation of SFT. To do this, DFT introduced 

special gates to model possible behaviours existing between dynamically related com-

ponents. These gates, known as dynamic gates, are the Functional Dependency (FDEP) 

Gate, Cold spare Gate, Priority AND (PAND) Gate, and the Sequence-Enforcing Gate 

(Dugan et al., 1990; Dugan et al., 1992; Vesely et al., 2002). DFT uses these dynamic 

gates in addition to the static gates of SFTs in its analysis. To comprehend the structural 

and logical functions of these gates in detail, we consider them one after the other. 

 

Priority-AND (PAND) Gate 

As earlier discussed, the PAND gate is one of the oldest dynamic gates described and 

analytically analysed in the late 1970s by Fussell et al. (1976) to model particular se-

quences in which basic events fail. It was defined as being “logically equivalent to an 

AND gate where the input events must occur in a specific order” (Fussell et al. 1976). 

According to the Fussell et al., the output event of a PAND gate is triggered when all its 

input events occur and they do so in a particular sequence – one occurs after another. 

DFT’s PAND is the same as that of Fussell et al. However, the only difference between 

the two is the structural/graphical representation of the gate with n events. While the 

former represents a PAND gate with n events with cascading gates of two events (depth 

wise), the later represents it with one single gate having all its inputs underneath it 

(breadth wise). Both representations have the same interpretation and quantitative result. 

 

 

  

 

 

 

 

 

 

 

 

Figure  2.3-1: A (right): PAND gate for n events, B (left): equivalent SFT 
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Figure 2.3-1A (right) is a representation (depth wise) of the PAND gate with n events. 

In the diagram, the initial input events (IE1 and IE2) are fed into the first PAND gate, 

G01. G01 and the subsequent input event, IE3, serve as input events to G02. G02 and 

the subsequent event also are used as input events to the next gate; on and on this is re-

peated until the last PAND gate and last input event are reached. Figure 2.3-1B on the 

left is a representation of the PAND gate with an AND gate. This representations con-

tains the BEFORE expression to represent the dynamic behaviour missing in the classi-

cal AND representation. 

 

Cold-Spare (CSP) Gate 

A redundancy, standby or spare component is a component that replaces a primary 

component when the primary component fails.  A spare gate (Dugan et al., 1990; Dugan 

et al., 1992) is used to model the situation where one or more spare components can 

replace a primary component when it fails. It takes in one or more basic inputs events 

and has one output that becomes true after all its input events have occurred. The left-

most input event is usually the primary component and the subsequent events are the 

standby components. During the initial operation of the system, the primary input event 

is usually active (turned on) while the spare input events are inactive (turned off), wait-

ing to replace the primary component when it fails. When the primary component fails, 

the subsequent spares are activated sequentially; leftmost to rightmost. Depending on its 

dormancy factor, spare gates could be termed as cold, hot or warm (Dugan et al., 1992). 

A spare gate is cold if it does not fail before it is activated – dormancy factor is zero. A 

spare gate is hot when its failure behaviour as a spare is the same as while it is active – 

dormancy factor is one. Finally, a spare gate is warm if its failure behaviour is between 

hot spare and cold spares. Figure 2.3-2 is a graphical representation of the cold spare 

gate with n input events where PC is the primary component, SC the spare component 

and OE the output event. 

 

 

 

 
 

 

 

Figure  2.3-2: A cold spare gate with n events 
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A special case of spare gates worth noting is their ability to model spare components 

shared between two or more primary components; shared spare input events feed more 

than one spare gate as shown in Figure 2.3-3.  

 

 

 
 

 

 
 

 

Figure  2.3-3: A spare component for two primary components 

In Figure 2.5-3, SC is a spare component for primary components PC1 and PC2. SC can 

replace only one failed component at a time – usually the first component to fail. There-

fore, if PC2 fails first, SC is activated to replace PC2. This makes SC unavailable so if 

PC1 fails afterwards, there will be no spare component to replace it and OE1 occurs; 

OE2 will occur if SC fails. 

Functional Dependency (FDEP) Gate 

The FDEP gate (Dugan et al., 1990; Dugan et al., 1992) was introduced to model com-

mon cause failures (CCF) of events. A CCF occurs when the occurrence of a single 

event failure triggers the failure occurrence of other dependent events almost at the 

same time. A real world example is the Browns Ferry Nuclear Power Plant fire incident 

in 1975 (USNRC, 2013) where “cables for power, control systems and instrumentation” 

of a nuclear reactor plant were ‘simultaneously’ damaged by fire. The FDEP gate has 

three basic components (Dugan et al., 1992): 

a) a ‘trigger-input’ which is a basic event or the output of another gate. 

b) a ‘non-dependent output’ which reflects the status of the trigger event  

c) one or more ‘dependent basic events’ which are functionally dependent on the 

trigger events.  

The dependent basic events are activated when the trigger event fires. However, the in-

dividual occurrence of any dependent basic event has no influence on the trigger event. 

Figure 2.3-4 (Vesely et al., 2002) is a graphical representation of an FDEP gate with a 

trigger event TE and n dependents events DEs. The non-dependent outputs are connect-
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ed to the fault trees with dashed lines; they do not have any logical output (Vesely et al., 

2002). 

 

 
 
 

 

 

 

Figure  2.3-4: An FDEP gate with a trigger and n dependent events 

 

Sequence Enforcing (SEQ) Gate 

A Sequence-Enforcing (SEQ) gate “allows events to occur in a particular order” unlike 

the PAND gate which “detects whether events occur in a particular order” (Dugan et al., 

1992). Meaning the SEQ gate enforces or constraints a set of events to occur in a specif-

ic sequence; the output event occurs if all input events occur in the specific sequence. It 

has an output event and a list of n input events.  

2.3.1 DFT Qualitative Analysis 

As mentioned earlier, traditional Boolean laws are incapable of analysing dynamic fault 

trees. For qualitative analyses of DFTs to take place, there must be underpinning laws 

for representing and manipulating the behaviour of the new DFT logic gates and their 

relationships with one another. DFT, since its inception, has been used mainly as a 

quantitative tool to calculate the probability of a system failure occurring. 

Relatively little effort has been expended on qualitatively analysing DFTs. One of the 

earliest works on the qualitatively analysing DFTs was done by Tang and Dugan (2004) 

which introduced ‘minimal cut sequences’ – a set of ordered events. DFTs are usually 

analysed using Markov Chains. As popularly known, Markov chains can become very 

cumbersome and time-consuming to analyse as the chains grow bigger. Tang and 

Dugan (2004) acknowledged that extracting temporal information from Markov chains 

for further analysis would also be time-consuming so they proposed an approach that is 

based on BDDs. This approach commences with the decomposition of dynamic gate 

constraints into logical constraints and timing constraints which represent the logical 

relations (AND and OR) and the sequential relations respectively. For example, a 

PAND gate will be decomposed into ‘AND’ logic constraint and ‘must fail in order 
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from left-to-right’ timing constraint. After this, dynamic gates are replaced with their 

corresponding static logical constraints and a Zero-suppressed BDD (ZBDD) is derived 

from the resulting tree and minimised to produce MCSs. Finally, the resulting MCSs are 

expanded using the timing constraints to produce minimal cut sequences. Given the use 

of BDDs, this approach should perform better than its Markov chain counterpart. How-

ever, the drawback of this approach is that, since temporal dependencies are not consid-

ered during the minimisation stage, it is possible that the resulting minimal cut sequenc-

es will contain some redundancies or contradictions. This, unfortunately, can lead to 

inaccurate quantitative results. 

 

Liu et al. (2007) proposed non-Markov Chains DFT based algorithm – Cut Sequence 

Set Algorithm (CSSA) – for generating a Cut Sequence Set (CSS), which is a set of 

event failures with sequences. CSSA prescribes a temporal failure relationship between 

any two events and represents cut sequences with what they called sequential failure 

expression (SFE). After this, a set of transformations are done to translate the SFE into 

CSS. Liu, Zhang, et al. (2007) provide technique to quantitatively analyse the CSS. 

 

Merle (2010) provides enhancements to DFT both quantitatively and qualitatively. He 

provides an algebraic model and structure function for all dynamic gates in DFTs, as 

well as laws and their proofs to serve as a formidable theoretical foundation for the full 

qualitative and quantitative analysis of DFTs, just as done for SFTs. 

A more recent advancement in the qualitative analysis of DFTs is provided by Yi et al. 

(2013). The authors provide temporal rules and proofs for the qualitative analysis of 

DFTs. Unfortunately, these rules are less comprehensive than that provided by Merle 

(2010). However, the authors claim that their work is to provide a ‘completeness’ of the 

techniques proposed by Liu et al. (2007) and Merle (2010). By ‘completeness’ they 

mean reducing DFTs to cut sequences. 

2.3.2 DFT Quantitative Analysis 

DFT, since its inception, has become a very popular technique in the field of reliability 

engineering for quantitative analysis. DFT’s quantification can be considered under two 

main categories: analytical and simulation. The analytical techniques are usually deter-

ministic techniques that are based on Markov Chains, Poisson process, Bayesian net-

works and Petri nets whilst the simulative approaches are usually estimation methods 

based on Monte Carlo simulation. The analytical techniques can also be sub-classified 
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into combinatorial or state-space models (Chiacchio et al. 2011). The combinatorial 

methods are used for evaluating static gates whilst the state-space approaches are used 

for dynamic gates. 

Techniques for evaluating combinatorial methods (MCS, BDD Monte Carlo) have been 

discussed in the previous section. There are various state-space approaches for DFTs. 

Chiacchio et al. (2011) and (Merle 2010) provide some detailed review of some of these 

techniques. In this thesis, we provide a focused review by considering the major state-

space and simulation approaches. 

 

Continuous Time Markov Chains (CTMC) 

Markov models are widely used for analysing continuous time, discrete state scenarios 

(DoD, 1998; Pukite and Pukite, 1998) in reliability engineering. DFTs can be quantified 

by converting dynamic fault trees into CTMC (Dugan et al., 1992). DFT analysis com-

mences by converting the fault tree with dynamic gates into state models. These models 

are modularised (Gulati and Dugan, 1997) into static and dynamic modules; static mod-

ules contain only static gates while dynamic modules contain dynamic gates. Static sub 

trees are evaluated using Zero-suppressed BDD-based approaches (Gulati and Dugan, 

1997; Tang and Dugan, 2004) while the dynamic sub trees are evaluated using CTMC. 

Once the quantification of both static and dynamic sub trees is done, the modules are 

represented as basic components. The resulting top-level FT is then evaluated as a static 

tree with many basic events. Using a BDD approach to quantify SFTs is very fast but 

the use of CTMCs in analysing DFTs tends to suffer state-space explosion when the 

DFT gets large. 

Apart from the state-space explosion problem, Markov-based approaches are difficult to 

model and analyse for large fault trees and they are restricted to exponential distribu-

tions only (Dugan et al., 1990; Boudali and Dugan, 2006). 

Bayesian Networks (BN) 

Bayesian Networks (Pearl, 1985) or probabilistic dependence graphs have been a prob-

abilistic technique used in uncertainty analysis (Bobbio et al., 2001) over the past two 

decades. Bobbio et al. (2001a) introduced the application of BN into FTA. In their ap-

proach, they mapped classical fault trees with only AND and OR gates to Bayesian 

networks and quantitatively analysed this resulting Bayesian network using two practi-

cal methods: a forward/predictive method and a backward/diagnostic method. A similar 
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approach of mapping classical FTA in the form of Reliability Block Diagrams (RBD) to 

BN has been exploited (Torres-Toledano and Sucar, 1998). However, these BN ap-

proaches are also restricted by the inability of Boolean gate not being able to capture the 

sequential dependencies between components. 

Improvements to include dynamic/temporal features into BN for reliability analysis in-

clude DBN (Weber and Jouffe, 2003; Montani et al., 2005; Montani and Portinale, 

2006; Salem et al., 2006), DTBN (Boudali and Dugan, 2005), CTBN (Boudali and 

Dugan, 2006) and more recently (Marquez et al., 2008). Unfortunately, all the above 

BN approaches provide only quantitative analysis (Merle, 2010). 

Petri Nets (PN) 

Petri Nets (Peterson, 1977) are alternative graphical modelling structures for represent-

ing and evaluating fault trees (Bobbio and Franceschinis, 2003). They have arcs that 

connect nodes to transitions or vice versa – similar to state machines. Reviews of the 

application and techniques based on PN for reliability analysis are provided in Aldemir 

et al. (2006) and Sadou and Demmou (2009). Some well-known PN-based techniques 

include GSPN (Marsan, 1989; Malhotra and Trivedi, 1995), CSPN (Sknourilova and 

Bris, 2008). Unlike CTMCs where DFTs are converted into failure automata, DFTs can 

be converted into various derivatives of PN (such as General SPN) before being trans-

lated into a CTMC for quantitative analysis. The main advantage of most PN-based 

techniques it their ability to evaluate a system using Markov chains (Aldemir et al., 

2006). Unfortunately, PN-based techniques inherit some of Markov chain based tech-

nique’s limitations: they are prone to the state-space explosion (Sadou and Demmou, 

2009) and they consider only the exponential distribution of components and are solely 

used for quantitative analysis (Merle, 2010). Sadou and Demmou (2009) propose a 

technique to minimize the state-space explosion problem of PN by extracting certain 

aspects of the graph susceptible to explosion and analysing these sub graphs differently. 

Monte Carlo Simulation 

In an earlier section, the discussion of how MCs can be used in quantitatively analysing 

SFTs was made. However, when it comes to DFTs, some sequential ordering issues 

must be tackled. Recent research by Rao et al. (2009) has succeeded in implementing 

the dynamic gates (PAND, SEQ, SPARE and FDEP) with the MC simulation technique. 

This led to the development of a tool called DRSIM (Rao et al., 2009) for quantitative 

analysis of DFTs using MC simulation. Just like most MC simulation tools, the major 
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drawback of DRSIM is the computational cost of running MC; however, the developers 

think with the incredible development of computing power, this should not be a major 

challenge. Unfortunately, the quantitative computation of large fault trees present in the 

real world hybrid systems where rare events exist continue to pose computational chal-

lenges (Villen-altamirano and Villen-altamirano, 1994). 

Algebraic Model 

Amari et al. (2003) proposed algebraic model for evaluating each gate in DFTs but 

make no mention of how qualitative analysis of cut sequences is performed. A more 

recent DFT quantitative technique is the algebraic framework for specifying the struc-

ture function of DFTs (Merle, 2010; Merle et al., 2013). The algebraic approach is for-

mulated from first-principle and does not depend on the failure distributions of system 

components. It prescribes temporal semantics for the analysis of the Boolean operators 

AND and OR and temporal operators BEFORE (BF) and SIMULTANEOUS (SM) 

(Merle and Roussel, 2007). It then provides algebraic expressions for the structure func-

tions of DFTs with all the dynamic gates: PAND (Merle and Roussel, 2007; Merle et 

al., 2010), FDEP (Merle et al., 2009) and Spare (Merle et al., 2010). Once these alge-

braic expressions have been produced, cut sequences can be determined and minimised 

to produce the sum-of-products, which are used to evaluate the top event probability. 

Merle et al. (2013) provide a summary of the algebraic framework of DFT and apply it 

to a case study. 

2.3.3 Limitations of DFT 

Inclusion of temporal behaviour into static structures does not come cheap. Several fac-

tors have to be considered and handled appropriately. The introduction of DFT solved 

SFT’s major limitation by introduction novel gates that modelled the dynamic behav-

iours in modern safety-critical systems. Unfortunately, DFT’s major limitation was its 

use of Markov Chains for quantitatively analysing fault trees which by-passed qualita-

tive analysis. It is a known fact that the complexity of Markov chains explodes expo-

nentially out of proportion when the chains grow larger. This makes it very cumber-

some and difficult to generate. Fortunately, various improvements have been made to 

solve the state explosion problem by the use of modularisation, Monte Carlo simulation, 

algebraic modelling among others. Attempts have also been made to qualitatively ana-

lyse DFTs. In spite of these enhancements, some fundamental issues need resolving.  
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The major drawback of the DFT technique is the ambiguity in the definitions of its gates 

– PAND, FDEP and SPARE. These ambiguities arise because DFTs do not consider the 

simultaneous occurrences of events. Details of these issues are discussed in (Coppit et 

al., 2000) and (Walker, 2009). We review one such ambiguity.  

DFT adopts (Dugan et al., 1992) the PAND gate described by Fussell et al. (1976). This 

PAND, as described earlier, occurs if the input events occur in a particular sequence – 

one before another or at the same time – therefore, it is referred to as the inclusive 

PAND because it includes the simultaneous occurrence of events. Technically, A < B = 

A BEFORE B OR A SIMULTANEOUS B. However, since A SIMULTANEOUS B re-

sults in a zero because both events cannot occur at the same time, A < B = A BEFORE 

B. This means that (A PAND B).(B PAND A) is not a contradiction. However, accord-

ing to Walker (2009),  quantitatively analysing (A PAND B).(B PAND A) 

𝑃𝑟((𝐴 PAND 𝐵). (𝐵 PAND 𝐴)) ≠ 𝑃𝑟(𝐴 PAND 𝐵).𝑃𝑟(𝐵 PAND 𝐴) 

𝑃𝑟((𝐴 𝑃𝐴𝑁𝐷 𝐵). (𝐵 𝑃𝐴𝑁𝐷 𝐴)) = 𝑃𝑟(𝐴 𝑆𝐼𝑀𝑈𝐿𝑇𝐴𝑁𝐸𝑂𝑈𝑆 𝐵) 

The POR gate, as will be discussed later in this literature, is used to represent situations 

where an output event is triggered when its first input event occurs before the occur-

rence of a subsequent input event or where only the first input event alone occurs with-

out the occurrence of the subsequent input event. Another limitation of the DFT tech-

nique, discussed in Edifor et al. (2012), is its inability to concisely model the Priority-

OR scenario. Edifor et al. (2012) conclude that evaluating several POR scenarios with 

DFTs can be error-prone and cumbersome to model. 

 

2.4 Temporal Fault Tree (TFT) Analysis  

A more recent enhancement of classical FTA is temporal fault tree (TFT) analysis. TFT 

analysis discussed in this thesis refers to fault trees with temporal behaviours encoded in 

their structure. Palshikar (2002) provides some TFT analyses using novel temporal 

gates by which the sequential ordering of event occurrences of a fault tree can be de-

scribed. These logical descriptions are then formalised using the Past-oriented Linear 

Propositional Temporal Logic (PLTLP). Palshikar’s TFT is therefore a formal descrip-

tion of a fault tree with temporal behaviours. Though his technique provides qualitative 

analysis, it is useful as a diagnostic tool for analysing a system that has failed.  
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A more recent TFT technique is Pandora (Walker & Papadopoulos 2006; Walker & 

Papadopoulos 2007; Walker et al. 2007; Walker & Papadopoulos 2008; Walker 2009). 

The word ‘PANDORA’ was brewed from two words: ‘PAND’, for Priority-AND, and 

‘ORA’, meaning ‘hour or time’ in Greek. Therefore ‘Pandora’ means ‘the time of 

PAND’. It is a technique recently developed by the University of Hull for performing 

qualitative analysis of temporal fault trees. Pandora was developed to provide solutions 

to some of DFT's limitations while maintaining SFT’s simple approach to qualitative 

analysis. Pandora’s aim is to define clearer and more precise dynamic gates similar to 

that of DFT while maintaining the easy-to-use and easy-to-understand nature of classi-

cal FTA. For the remaining sections of this thesis, unless otherwise stated, the term TFT 

refers to Pandora and not Palshikar’s definition. 

In addition to the Boolean gates (OR and AND) employed in SFT analysis, Pandora 

introduces two novel gates – Simultaneous-AND (SAND) and Priority-OR (POR). It 

also uses a modified PAND gate derived from Fussell et al. (1976). The AND and OR 

gates have been described in earlier sections; however, the descriptions of Pandora’s 

PAND, SAND and POR follows. Analogous to MCS in SFT is the MCSQ (Minimal 

Cut Sequence) in Pandora. A MCSQ is a smallest combination/sequence of basic events 

related by temporal/dynamic gates that causes the occurrence of a top-event. In other 

words, MCSQs are sequences of basic events necessary and sufficient to cause a top-

event.  

Priority-AND Gate 

Pandora retains the basic definition of the original PAND gate: “failures [of input 

events] must occur in a specific sequence in order to generate the output event” (Fussell 

et al. 1976). Just like the traditional PAND gate, Pandora’s PAND gate is also true if 

and only if all its inputs are true and the input events have occurred in a particular se-

quence – usually from left-to-right with the rightmost occurring first. However, Pandora 

PAND gate differs slightly from the original PAND gate in DFTs. In Pandora (Walker 

2009): 

- the PAND gate is ‘exclusive’. Meaning, its inputs cannot occur at the same time 

but strictly in a particular sequence.  

- temporal relations are mutually exclusive, so expressions like (X PAND Y) AND 

(Y PAND X) are impossible and will always be false. 

Therefore the PAND is used to model the scenario where an event occurs strictly before 

another or other events; it is false for any simultaneous occurrence of input events. 
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Figure  2.4-1: A PAND gate with n input events 

Figure 2.4-1 is a graphical representation of a PAND gate with n input events IE1, IE2 

... IEn-1, IEn and an output event OE. OE will be triggered only when IE1 occurs strict-

ly before IE2, IE2 occurs strictly before IE3 ... IEn-1 occurs strictly before IEn. The 

symbolic representation of PAND for both qualitative and quantitative analyses is ‘<’. 

Therefore A < B is A PAND B which means A occurs strictly before B. 

Simultaneous-AND Gate 

The SAND gate is modelled to represent simultaneous occurrence of events. It does not 

overlap with the definition of the PAND gate in any way; they are mutually exclusive 

hence both cannot be true at the same time. Therefore (X PAND Y) AND (X SAND Y) 

will result in a FALSE value. Figure 2.4-2 is a diagrammatic representation of a SAND 

gate with n events. OE is an output event which is fired if IE1, IE2, ..., IEn-1, IEn are 

fire at exactly the same time. SAND is represented by the symbol ‘&’; A & B is A 

SAND B meaning, A and B occur at exactly the same time. 

 

 

 

 

Figure  2.4-2: A SAND gate with n input events 

Priority-OR Gate 

Pandora introduces the POR gate to model situations where an output event occurs 

when the following two conditions are met: 

a) all the input events occur in a specific order. These events occur strictly; no two 

events occur at the same time. 
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b) the first event alone occurs (subsequent events need not occur). 

Therefore, for any two events, the POR output event occurs when the first input event 

occurs strictly before the second event or the first input event occurs and the subsequent 

event does not. POR is similar to a temporal version of an OR gate by being true when 

at least one of its input events is true. However, POR differs slightly because it attaches 

higher priority to its leftmost input. The POR gate is slightly similar to the PAND gate 

because priority is given to the first input (preceding the others) but it becomes true as 

soon as this first input becomes true; unlike the PAND gate that remains false until all 

its input events have occurred before it turns true. Classical examples of the use of the 

POR gate are presented in Walker and Papadopoulos (2007) and Edifor et al. (2012). 

Figure 2.4-3 is a fault tree with a POR gate that triggers OE when IE1 all n events occur 

in the particular sequences they appear (left-to-right) or when IE1 occurs and the re-

maining events have not yet occurred. 

 

 

 

 

Figure  2.4-3: A POR gate with n input events 

2.4.1 Qualitative Analysis 

It is evident that standard Boolean gates and laws used in SFT analysis cannot adequate-

ly and sufficiently be used for TFT analysis because they make no provision for tem-

poral ordering of events. As discussed earlier in the limitations of SFTs, any improve-

ment to them must have the capability of considering temporal behaviours and must 

have laws for comprehensively analysing temporal gates logically. 

Pandora presents solutions to this limitation by providing a formidable logical structure 

for presenting and analysing fault trees with temporal behaviours. It does this by the 

formulation of novel temporal laws. Pandora formulates some 143 novel laws (Walker 

2009) in addition to the traditional Boolean laws to analyse its gates (both Boolean and 

temporal). These novel laws can be proved with the Temporal Truth Table (TTT). TTTs 

are analogous to the Boolean Truth Tables but contain values other than zero and one. 

These values are known as sequence values (Walker 2009) – they represent the sequen-
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tial order with which events occur and not necessarily the exact time within which they 

occur. Some of the temporal laws are based on classical Boolean laws while others are 

completely novel. Details of the description of these laws are found in Walker’s PhD 

thesis (Walker 2009). Some of Pandora’s laws worth noting are the Completion Laws: 

1st Completion Law: A . B ⇔ A < B + A & B + B < A 

2nd Completion Law: A + B ⇔ A | B + A & B + B | A 

3rd Completion Law: A ⇔ B < A + A & B + A | B 

Pandora has two primary distinct techniques for qualitative TFT analysis: Archimedes 

and Euripides. A third technique is the combination of both Archimedes and Euripides.  

Euripides 

Euripides (Walker 2009) is a law-based deductive technique that consists of four main 

stages. The first is the Binarboreal state, which is a recursive depth-first process that 

translates any gate of more than two inputs into “a nested series of the same type of 

gate” (Walker 2009), each with exactly two inputs. The second stage is the Flattening 

stage, where a repeated depth-first use of some classical Boolean laws is used to flatten 

(expand cut sequences breadthwise) the resulting tree from the Binarboreal stage into a 

structure called the Hierarchical Temporal Form (HTF) (Walker 2009). Flags are then 

set for each gate, to show that they have been flattened so that they are not re-flattened 

later. The gates are then rearranged and, based on the type of gate appropriate laws are 

applied to them to produce a binary HTF.  

The third stage, Encapsulation stage or Doubletiser creates doublets (Walker et al. 

2007), which are compositions of two basic event expressions and a temporal operator  

using temporal laws (Walker and Papadopoulos 2007; Walker 2009). The last stage, 

which is also the most relatively difficult, is the Minimisation stage. At this stage, cut 

sequences are minimised (reduced into their minimal forms) as far as possible by per-

forming reductions within cut sequences and comparison of cut sequences. 

Archimedes 

Archimedes (Walker 2009) is an inductive methodical technique that converts fault 

trees into an alternative structure by enumerating all possibilities of cut sequences oc-

curring and then generating possible sequences for a set of events. It commences by 

generating a dependency tree (logical tree designed to represent completion laws) from 
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a precedence tree (a representation of a branching timeline that shows all possible se-

quences for a set of basic events). Archimedes’ evaluation of the dependency tree be-

gins with assessing the expression for each basic temporal node, which represents every 

sequence of the events and every unique combination of possible sequence values. Ac-

tual sequence values are unnecessary in this process; however, their truth values are 

used to set a flag to true if the value is not zero and unset the flag to false when zero. 

The dependency tree is then traversed depth-first, counting children with their flags set. 

Parent nodes have their flags set if all their children have their flags set. The process is 

carefully done to eliminate duplicates. Upon completion of the evaluation, the depend-

ency tree is then created using the completion laws to reduce the total number of 

MCSQs as much as possible.  

Archimedes and Euripides 

Archimedes and Euripides can be used to complement each other by harnessing their 

strengths for TFT analysis (Walker 2009). To achieve this, Euripides is used in obtain-

ing the cut sequences (because of its efficacy at doing this) and these cut sequences are 

then analysed separately with Archimedes (because it is competent in appropriately ana-

lysing a smaller number of events). 

2.4.2 TFT Quantitative Analysis 

The importance of quantitative analyses has been discussed in section 2.2.2. They pro-

vide probabilities for the failure of systems, which helps determine the relative contribu-

tion of components or MCSQs and their contributions to the top-event occurrence. Pan-

dora is a more recent technique, which provides only qualitative analysis of temporal 

fault trees. Therefore, unfortunately, unlike DFT, it does not provide any quantitative 

solution to its logical results. Techniques to quantify Pandora will be an improvement of 

Pandora and will have to satisfy the following conditions: 

• Be able to provide quantitative analysis of each novel gate in Pandora 

• Be capable of providing quantitative analysis of various combinations of both 

temporal and Boolean gates 

2.4.3 Limitations of TFT 

Pandora’s major limitation is its inability to quantify TFTs. The solid qualitative 

framework it provides, in addition to other benefits, is an input for quantitative analysis. 

For a full analysis of Pandora, quantitative analysis must be possible. Techniques for 

quantifying Pandora may be formulated from Calculus, Markov Chains, Monte Carlo 
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simulation, Bayesian Nets and the likes. The main aim of this thesis is the exploration of 

previous fault tree techniques or formulation of new techniques that will support the 

quantitative analysis of Pandora. 

Another area of improvement is the efficiency of its logical techniques: Euripides and 

Archimedes. Even though Euripides works efficiently through reduction and contradic-

tion, it must be enhanced to detect completion-based reductions. Also it faces perfor-

mance problems when the number of events increases because the minimisation stage 

uses an algorithm that depends on creating prime numbers for each basic event. If this 

prime number technique is not used in minimisation, the volume of checking required 

during minimization is greater: hitting harder at performance. Dependency trees depict 

all possible cut sequences. For increasing numbers of events, this tree grows exponen-

tially, increasing computational costs. This is unfortunately the downside of using Ar-

chimedes. 

 

2.5 Review of Quantitative Techniques 

So far in this thesis, various techniques for quantitatively evaluating fault trees (static or 

dynamic) have been discussed. We group these into four main headings for comparative 

analysis: Monte Carlo simulations, Markov chain based solutions, Bayesian network 

based solutions and algebraic solutions. Table 2.5-1 contains a summary of the ad-

vantages and limitations of these techniques. 

From Table 2.5-1, it is obvious that one of the more scalable techniques is Monte Carlo 

simulation. Unlike Markov chains-based techniques which suffer performance re-

strictions (due to state-space explosion) when analysing intricate systems, Monte Carlo 

simulations can be used to evaluate such systems – repairable or non-repairable – of 

various network configurations and featuring various failure distributions. The unfortu-

nate drawback of the simulation technique is its ‘need’ to run several trials to enable it 

to estimate more accurate results. Though recent research efforts have been made to 

improve the performances of Markov chain-based and Monte Carlo techniques, it is still 

clear that the latter is far more scalable than the former. 

Bayesian networks are efficient in representing dynamic behaviours inherent in modern 

systems. They can also be used for modelling complex safety-critical systems with dif-

ferent network configurations. However, unlike Monte Carlo or the algebraic tech-

niques, they are incapable of analysing systems featuring different failure distributions. 
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Table  2.5-1: Comparison of Quantitative Techniques 

Technique Advantages Limitations 

Monte Carlo 

(Wang and 

Pham 1997) 

1. Not restricted to any system 

distribution. 

2. Can be applied to most net-

work configurations  

3. Appropriate for modelling and 

evaluating complex systems. 

4. Can incorporate priori infor-

mation into its simulation us-

ing Bayes method. 

5. Can evaluate repairable and 

non-repairable systems. 

1. May require high computing 

resources for more accurate 

results. 

2. Significant digit number of 

confidence limits is small. 

Markov 

(Vesely et al. 

2002; Merle 

2010) 

1. Can evaluate repairable and 

non-repairable systems. 

2. Appropriate for relatively 

small systems. 

3. Provides exact results (unlike 

estimations produced by simu-

lations). 

1. Restricted to exponential 

distribution. 

2. Susceptible to state-space 

explosion. 

3. Error-prone and cumber-

some to design for large 

fault trees. 

Bayesian 

(Torres-

Toledano and 

Sucar 1998; 

Weber and 

Jouffe 2003; 

Merle 2010) 

1. Powerful technique for explic-

itly representing dependencies. 

2. Can be applied to most net-

work configurations (series, 

parallel, bridge etc.) 

3. Can be used in modelling 

complex systems. 

1. Restricted to Gaussian dis-

tribution with truncated ex-

ponentials. 

2. Restricted to DFT and SFT 

evaluations 

 

Algebraic 

(Merle 2010) 

1. Not restricted to any system 

distribution. 

2. Can be used to evaluate rela-

tively larger systems. 

3. Provides exact results (unlike 

estimations produced by simu-

lations). 

1. Restricted to non-repairable 

events. 

2. Restricted to DFT and SFT 

evaluations 
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The algebraic technique, just as Monte Carlo simulation, can be used to analyse com-

plex systems featuring different failure distributions. However, though the former pro-

vides exact results, the latter provides approximations. Monte Carlo simulation has its 

advantages over the algebraic technique too: it can be used to model and evaluate non-

repairable systems and is not restricted to any network configuration. 

From the above comparative analysis, it is obvious that the most scalable techniques are 

Monte Carlo simulation and the algebraic technique. For this reason, these two tech-

niques will be considered, in the remaining chapters of this thesis, for the quantitative 

analysis of Pandora. It must be noted that the algebraic technique provides formulae for 

evaluating DFTs quantitatively. These formulae have been produced from calculus 

(first-principle). They provide quantitative solutions for the PAND gate and a POR gate 

with two events. This thesis explores the quantitative analysis of Pandora’s gates using 

Calculus and Monte Carlo simulation. 

 

 

  

60  
 



Chapter  Three  

TEMPORAL QUANTITATIVE ANALYSIS 

 

This chapter contains the main contributions of this thesis. Firstly, it describes the be-

havioural, timing and analytical frameworks that make the quantitative analysis of the 

SAND, pSAND, ePAND and POR gates possible. Secondly, it provides generic Monte 

Carlo simulation models for these gates. Thirdly, it prescribes a precedence order for 

evaluating MCSQs and describes methods for evaluating MCSQs containing combina-

tions of two or more gates. Finally, it provides Monte Carlo algorithms for modelling, 

simulating and evaluating combinations of component failures and total system failures 

with various component failure distributions. It must be noted that apart from Monte 

Carlo simulation, all analytical solutions are restricted to exponential distribution of 

component failures. 

In this chapter, various formal semantic expressions of Pandora are used. Details of 

these expressions and what they mean are provided in Walker et al., (2007). Some of the 

symbols (used in the semantic expressions) worth noting are: 

o(E) a set of all possible event orderings for a given set of events E. 

Po(E) power set of an event ordering o. 

pre(o) a set of event orderings preceeding event ordering o in a precedence tree. 

3.1 SAND Gate Quantification 

The SAND output event occurs when all its input events occurs at exactly the same 

time. All input events must occur and, without any form of priority, they must occur at 

exactly the same time. 

3.1.1 Behavioural and Timing Models 

The formal semantic temporal definition (Walker et al., 2007; Merle, 2010) of the 

SAND gate with all input events occurring at exactly the same time is: 

&:𝐏𝑜(𝐸)  ×  𝐏𝑜(𝐸) → 𝐏𝑜(𝐸) ( 3.1-1) 

∀𝑋𝑋1,𝑋𝑋2:𝐏𝑜(𝐸) • 𝑜 ∈  𝑋𝑋1&𝑋𝑋2 ⇔ 𝑜 ∈ 𝑋𝑋1 ∧ 𝑜 ∈ 𝑋𝑋2 ∧ ∀ 𝑟:𝑝𝑟𝑒(𝑜) • 𝑟
∈  𝑋𝑋1 ⇔ 𝑟 ∈ 𝑋𝑋2 
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Where, 

𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1&𝑋𝑋2) = ∅ ( 3.1-2) 

𝑡(𝑋𝑋1) = 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1&𝑋𝑋2) = 𝑡(𝑋𝑋2) ( 3.1-3) 

𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1&𝑋𝑋2) = ∅ ( 3.1-4) 

The symbols ‘<’ and ‘>’ are the less than and greater than operators respectively. Fig. 

3.1-1A, Fig. 3.1-1B and Fig. 3.1-1C below are the timing behaviours for (3.1-2), (3.1-

3), (3.1-4) respectively. 

 

 

 

 

Figure  3.1-1: Timing models of an SAND gate 

In Fig. 3.1-1A X1 occurs before X2, X1&X2 does not occur. In Fig. 3.1-1B X1 occurs at 

exactly the same time as X2, X1&X2 occur at t(X2) or t(X2). In Fig. 3.1-1C X2 occurs be-

fore X1, X1&X2 does not occur. For the SAND gate, also known as the non-

parameterized SAND, all input events occur at exactly the same time. 

 

3.1.2 Analytical Model 

In this section, we evaluate the SAND gate probability. We do so by evaluating P(X1 & 

X2){t}, where X1 and X2 occur exactly at the same time, t, from four expressions – a log-

ical description and Pandora’s three Temporal Completion Laws. We then provide the 

SAND probability for n events. 

From Logical Definition 

Logically, the probability of two events occurring at exactly the same time is equal to 

the probability that both events occur and none occurs before the other. Thus, 

 𝑋𝑋1& 𝑋𝑋2 =  𝑋𝑋1.𝑋𝑋2. �𝑁𝑂𝑇(𝑋𝑋1 < 𝑋𝑋2)�. �𝑁𝑂𝑇(𝑋𝑋2 < 𝑋𝑋1)� 

𝑃( 𝑋𝑋1& 𝑋𝑋2) {𝑡} = 𝑃 � 𝑋𝑋1.𝑋𝑋2. �1 − (𝑋𝑋1 < 𝑋𝑋2)�. �1 − (𝑋𝑋2 < 𝑋𝑋1)�� {𝑡} 

 𝑋𝑋1& 𝑋𝑋2             = 𝑃�𝑋𝑋1.  𝑋𝑋2 − 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋2 < 𝑋𝑋1) − 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2)
+ 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2). (𝑋𝑋2 < 𝑋𝑋1)�{𝑡} 
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0 
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Using the Principle of Inclusion-Exclusion (2.2-22), 

𝑃( 𝑋𝑋1& 𝑋𝑋2) {𝑡}

= 𝑃�𝑋𝑋1.  𝑋𝑋2 − 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋2 < 𝑋𝑋1) − 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2)�{𝑡}

+ 𝑃�𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2). (𝑋𝑋2 < 𝑋𝑋1)�{𝑡}

− 𝑃�𝑋𝑋1.  𝑋𝑋2 − 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋2 < 𝑋𝑋1)

− 𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2)�{𝑡}.𝑃 �𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2). (𝑋𝑋2 < 𝑋𝑋1)�{𝑡} 

However,  

𝑃�𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2). (𝑋𝑋2 < 𝑋𝑋1)�{𝑡} =  ∅ 

because X1, X2, X1 < X2 and X1 < X2 cannot all occur – it is a logical contradiction. Also, 

from Pandora’s absorption laws, 

𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2) =  (𝑋𝑋1 < 𝑋𝑋2)  ⟹ 𝑃 �𝑋𝑋1.𝑋𝑋2. (𝑋𝑋1 < 𝑋𝑋2)�{𝑡} =  𝑃 (𝑋𝑋1 < 𝑋𝑋2){𝑡} 

Thus, 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡}

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

 

( 3.1-5) 

From Completion Law 1 

According to Pandora’s Completion Law 1, 

𝑋𝑋1.𝑋𝑋2 = (𝑋𝑋1 < 𝑋𝑋2) + 𝑋𝑋1&𝑋𝑋2 + (𝑋𝑋2 < 𝑋𝑋1) ( 3.1-6) 

Thus, 

𝑃(𝑋𝑋1.𝑋𝑋2){𝑡} = 𝑃�(𝑋𝑋1 < 𝑋𝑋2) + 𝑋𝑋1&𝑋𝑋2 + (𝑋𝑋2 < 𝑋𝑋1)�{𝑡}  

Using the (2.2-22), 

𝑃(𝑋𝑋1.𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃( 𝑋𝑋1&𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}

− 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}

− 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡}.𝑃( 𝑋𝑋2 < 𝑋𝑋1){𝑡}

− 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}

+ 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} 

However, the following terms result in logical contradictions; hence evaluate to zeroes. 
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𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = ∅  

𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡}.𝑃( 𝑋𝑋2 < 𝑋𝑋1){𝑡} = ∅  

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} = ∅  

𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} = ∅ 

Therefore, 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡}

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

 
 

( 3.1-7) 
 

From Completion Law 2 

From Pandora’s Completion Law 2, 

𝑋𝑋1 + 𝑋𝑋2 = 𝑋𝑋1|𝑋𝑋2 + 𝑋𝑋1&𝑋𝑋2 + 𝑋𝑋2|𝑋𝑋1 

Therefore, 

𝑃(𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋2){𝑡} − 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡} = 

𝑃𝑟{ 𝑋𝑋2}(𝑡)    𝑃(𝑋𝑋1|𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} −  

𝑃𝑟{ 𝑋𝑋2}(𝑡)    𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} − 𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} −  

𝑃𝑟{ 𝑋𝑋2}(𝑡)    𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2|𝑋𝑋1){𝑡}  

For the same reasons as stated earlier, the remaining terms result in logical contradic-

tions. 

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = ∅  

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} = ∅  

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} = ∅  

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}.𝑃(𝑋𝑋1&𝑋𝑋2){𝑡}.𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} = ∅ 

Therefore, 

𝑃(𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋2){𝑡} − 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡} = 

𝑃𝑟{ 𝑋𝑋2}(𝑡)    𝑃(𝑋𝑋1|𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2|𝑋𝑋1){𝑡} −  

Recalling the POR derivation,  

𝑃(𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋2){𝑡} − 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡} = 

𝑃𝑟{𝑋𝑋1}(𝑡) + 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1){𝑡}. [1 − 𝑃(𝑋𝑋2){𝑡}] + 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} +  

𝑃𝑟{𝑋𝑋1}(𝑡) + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋2){𝑡}. [1 − 𝑃(𝑋𝑋1){𝑡}]  
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and hence, 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡}

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

 
 

( 3.1-8) 
 
From Completion Law 3 

The Completion Law 3 in Pandora states that, 
𝑋𝑋1 = 𝑋𝑋2 < 𝑋𝑋1 + 𝑋𝑋1&𝑋𝑋2 + 𝑋𝑋1|𝑋𝑋2 

𝑃(𝑋𝑋1){𝑡} = 𝑃�(𝑋𝑋2 < 𝑋𝑋1) + (𝑋𝑋1&𝑋𝑋2) + (𝑋𝑋1|𝑋𝑋2)�{𝑡} ( 3.1-9) 

Expanding the (3.1-9) using (2.2-22) and removing all contradictory terms produces, 

𝑃(𝑋𝑋1){𝑡} = 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1|𝑋𝑋2){𝑡}  

𝑃𝑟{𝑋𝑋1}(𝑡) = 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} + 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} +  

𝑃𝑟{𝑋𝑋1}(𝑡) = 𝑃(𝑋𝑋1){𝑡} −  𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡}  

Finally, 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡}

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

 
 

( 3.1-10) 

It is evident that (3.1-5), (3.1-7), (3.1-8), (3.1-10) are exactly the same and SAND is 

commutative, meaning, 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋2&𝑋𝑋1){𝑡}  

Using (3.2-5), (2.1-13) and (2.1-14), the mathematical expression for a SAND gate with 

two events obtained from (3.1-5), (3.1-7), (3.1-8), (3.1-10) is, 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 𝐹(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡}

− �� �𝑓(𝑋𝑋2){𝑡}.𝐹(𝑋𝑋1){𝑡}�𝑑𝑑𝑦
𝑡

0
+ � �𝑓(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡}�𝑑𝑑𝑦

𝑡

0
� 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = �1 − 𝑒(−𝜆1)𝑡�. �1 − 𝑒(−𝜆2)𝑡�

− �� � 𝑋𝑋2𝑒(−𝜆2)𝑦. �1 − 𝑒(−𝜆1)𝑦��𝑑𝑑𝑦
𝑡

0

+ � �𝑋𝑋1𝑒(−𝜆1)𝑦. �1 − 𝑒(−𝜆2)𝑦��𝑑𝑑𝑦
𝑡

0
� 

𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} = 0 
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 It follows that, 

𝑃(𝑋𝑋1&𝑋𝑋2& … &𝑋𝑋𝑛−1&𝑋𝑋𝑛){𝑡} = 0 

This result is consistent with the fact that the probability of two or more independent 

stochastic events occurring exactly the same time is zero (Merle, Roussel, Lesage & 

Bobbio 2010). The SAND gate may not have much significance in quantitative analysis 

of independent events, but as earlier discussed, it is beneficial in qualitative analysis. 

The focus of this thesis is the quantitative analysis of safety-critical systems using Pan-

dora therefore, unless stated otherwise, all MCSQs containing the SAND gate would be 

assumed to evaluate to zero. 

 

3.2 Non-Inclusive PAND Gate Quantification 

The PAND output event  occurs when all its input events occur in a particular sequence; 

the first input event occurs strictly before the second and the second occurs strictly be-

fore the third and so on. As earlier mentioned, the output of an exclusive PAND gate 

occurs if and only if its leftmost input event occurs strictly before subsequent input 

events – they do not occur at the same time. As a reminder, it must be noted that the 

inclusive-PAND (iPAND) and exclusive-PAND (ePAND) are logically different; they 

have different interpretations. The former occurs when its input events occur strictly one 

after another or at the same time while the later occurs when its input events occur 

strictly one after another. PAND from this point onwards refers to ePAND. 

3.2.1 Behavioural and Timing Models 

The formal semantic temporal definition (Walker et al., 2007; Merle, 2010) of the 

PAND gate is given as: 

<:𝐏𝑜(𝐸)  ×  𝐏𝑜(𝐸) → 𝐏𝑜(𝐸) ( 3.2-1) 

∀𝑋𝑋1,𝑋𝑋2:𝐏𝑜(𝐸) • 𝑜 ∈  𝑋𝑋1 < 𝑋𝑋2 ⇔ 𝑜 ∈ 𝑋𝑋1 ∧ 𝑜 ∈ 𝑋𝑋2 ∧ ∃ 𝑟:𝑝𝑟𝑒(𝑜) • 𝑟
∈  𝑋𝑋1 ∧ 𝑟 ∉ 𝑋𝑋2 

 

  
Where, 

𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1 < 𝑋𝑋2) = 𝑡(𝑋𝑋2) ( 3.2-2) 

𝑡(𝑋𝑋1) = 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1 < 𝑋𝑋2) = ∅ ( 3.2-3) 

𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1 < 𝑋𝑋2) = ∅ ( 3.2-4) 
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Fig. 3.2-1A, Fig. 3.2-1B and Fig. 3.2-1C below are the timing behaviours for (3.2-2), 

(3.2-3) and (3.2-4) respectively. 

 

 

 

 

Figure  3.2-1: Timing models of an ePAND gate 

It must be noted that the symbol ‘<’ used in the leftmost hand side of (3.2-2) is the less 

than operator and not the PAND operator. In Fig. 3.2-1A X1 occurs before X2, X1 < X2 

occurs at t(X2). In Fig. 3.2-1B X1 occurs at the same time as X2, X1 < X2 does not occur. 

Finally, in Fig. 3.2-1C X2 occurs before X1, X1 < X2 does not occur. The PAND gate 

output event is triggered when its entire input events occur and they do so in a particular 

sequence, one occurring after another. 

3.2.2 Analytical Model 

Fig. 3.2-2 is a graph of events X1, X2, ..., Xn-1, Xn and a time t. The ePAND probability, 

the probability that X1 occurs strictly before X2 and X2 occurs strictly before X3 and con-

tinuing in the same fashion until Xn, can be given as, 

ePAND(X1, X2, ..., Xn-1, Xn){t} =  

                                      iPAND(X1, X2, ..., Xn-1, Xn){t} – SAND(X1, X2, ..., Xn-1, Xn){t} 

Meaning, the probability that X1 occurs before X2 is equal to the probability that X1 oc-

curs strictly before X2 or the probability that both X1 and X2 occur at exactly the same 

time. 

 

 

 

 

Figure  3.2-2: Graph of n events occurring at t 
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However, since the SAND probability of any n events is zero,  

ePAND(X1, X2, ..., Xn-1, Xn){t} = iPAND(X1, X2, ..., Xn-1, Xn){t} 

Therefore quantitatively, ePAND is equal to iPAND; they both evaluate to zero. The 

significant difference between iPAND and ePAND lies in qualitative analysis where 

they have completely different meanings as explained in the previous section.  

There are several techniques to evaluate the inclusive PAND gate. These including der-

ivations from calculus (Fussell et al. 1976; Yuge and Yanagi 2008; Merle, Roussel, 

Lesage and Bobbio 2010), Markov Chains (Dugan et al. 1992), Stochastic Petri Nets 

(Marsan 1989), Bayesian Networks (Bobbio et al. 2001), Monte Carlo simulation 

(Durga Rao et al. 2009), and Poisson Stochastic Process (Eid 2011). In this thesis, all 

PAND gates, except otherwise stated, are quantitative evaluated using Fussell et al.’s 

(1967) formula which states that for any N number of events, 

𝑃(𝑁,𝑁 − 1, … , 2, 1){𝑡} = �𝜆𝜆𝑖

𝑁

𝑖=1

��
𝑒(𝑎𝑘𝑡)

∏ �𝑎𝑘 − 𝑎𝑗�𝑁
𝑗=0
𝑗≠𝑘

�
𝑁

𝑘=0

 

 
( 3.2-5) 

Where 𝑎0 = 0 and 𝑎𝑚 = −∑ 𝜆𝜆𝑗𝑚
𝑗=1  for 𝑚 > 0. 

 

3.2.3 Monte Carlo Solution 

The algorithm below demonstrates how the PAND probability of n events can be esti-

mated. Random numbers, R, and next Time-to-Failures, TTFs, are generated for all n 

events. If for all n random numbers Rx and Rx+1 are less or equal to the actual probabili-

ties of the event they represents and TTFx is less than TTFx+1, then a counter, S, is in-

cremented. An estimation of the PAND probability is calculated by dividing S by T. 

Algorithm 3.2-1: A Generic Monte Carlo simulation for the PAND gate 
Require: X[n] 
     S ← 0 
     for k = 1 to T do      
          F ← true 
          R[0] ← NextRandomNumber 
         TTF[0]= (1 / Pr(X[0]){t}) × Log(1 / (1 – R[0])) 
          for i = 1 to n do 
               R[i] ← NextRandomNumber 
              TTF[i]= (1 / Pr(X[0]){t}) × Log(1 / (1 – R[0])) 

68  
 



               if (R[i – 1] > Pr(X[i – 1]){t} || R[i] > Pr(X[i]){t} || TTF[i – 1] >= TTF[i]) then 
                    F ← false 
               end if 
          end for 
               if (F) then 
                    S ← S + 1 
               end if 
     end for 
return S/T 
 

 

3.3 POR Gate Quantification 

The POR output event occurs when its first input event occurs before any subsequent 

input events occur or when the first input event occurs but the subsequent input events 

do not occur. The occurrence of the subsequent events does not matter; however, the 

priority does: the first event must occur strictly before all subsequent events. 

3.3.1 Behavioural and Timing Models 

The formal semantic temporal definition (Walker et al., 2007; Merle, 2010) of the POR 

gate is: 

| ∶ 𝐏𝑜(𝐸)  ×  𝐏𝑜(𝐸) → 𝐏𝑜(𝐸) ( 3.3-1) 

∀𝑋𝑋1,𝑋𝑋2:𝐏𝑜(𝐸) • 𝑜 ∈  𝑋𝑋1|𝑋𝑋2 ⇔ 𝑜 ∈ 𝑋𝑋1 ∧ ∃ 𝑟:𝑝𝑟𝑒(𝑜) ∪ {𝑜} • 𝑟
∈  𝑋𝑋1 ∧ 𝑟 ∉ 𝑋𝑋2 

 

Where,  

𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1|𝑋𝑋2) = 𝑡(𝑋𝑋2) ( 3.3-2) 

𝑡(𝑋𝑋1) = 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1|𝑋𝑋2) = ∅ ( 3.3-3) 

𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1|𝑋𝑋2) = ∅ ( 3.3-4) 

𝑡(𝑋𝑋1.𝑁𝑂𝑇(𝑋𝑋2)) ⟹ 𝑡(𝑋𝑋1|𝑋𝑋2) = 𝑡(𝑋𝑋1) ( 3.3-5) 

𝑡(𝑋𝑋2.𝑁𝑂𝑇(𝑋𝑋1)) ⟹ 𝑡(𝑋𝑋1|𝑋𝑋2) = ∅ ( 3.3-6) 

Again, it must be noted that the symbol ‘<’ used in the leftmost hand side of (3.3-2) is 

the less than operator and not the PAND operator. Fig. 3.3-1A, B, C, D and E below are 

the timing behaviours corresponding with (3.3-2), (3.3-3), (3.3-4), (3.3-5) and (3.3-6) 

respectively.  
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Figure  3.3-1: Timing models of a POR gate 

In Fig. 3.3-1A X1 occurs before X2, X1 | X2 occurs at t(X1). In Fig. 3.3-1B X1 occurs at the 

same time as X2, X1 | X2 does not occur. Fig. 3.3-1C X2 occurs before X1, X1 | X2, does 

not occur. In Fig. 3.3-1D X1 occurs but X2 does not, X1 | X2 occurs at t(X1). In Fig. 3.3-

1E X2 occurs but X1 does not, X1 | X2 does not occur at all.  

The POR gate occurs when an input event occurs and the subsequent event has not yet 

occurred. 

3.3.2 Analytical Model 

A POR gate can be thought of as being equivalent to (X1 PAND X2) OR (X1 AND NOT 

(X2)). Meaning X1 | X2 ⟺ X1<X2 + X1•¬X2. The POR gate ensures that the fault tree 

remains coherent, unlike use of the NOT gate (Andrews 2000). In this thesis, it is as-

sumed that any system under consideration is coherent, i.e., it cannot improve as a 

whole when one or more of its components fail (Esary & Proschan 1963). 

Firstly, the analytical solution for the POR gate with only two events is derived from 

Markov Chains and Pandora’s logical analysis. A generic evaluation of POR gates for 

multiple events is then deduced afterwards using calculus and some pre-existing logical 

laws (temporal encapsulation, binary and temporal associative laws) in Pandora. 
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Merle’s Algebraic Solution 

Merle (2010) provides an algebraic model for probabilistically analysing the PAND, 

Spare, and FDEP gates of a DFT. It equates the POR gate to a “Non-inclusive 

BEFORE”, represent by the symbol ‘⊲’.  

Using the definition of f(X){t} and F(X){t} in (2.1-13) and (2.1-14) respectively, Merle 

provides a probabilistic expression for the Non-inclusive BEFORE as: 

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡} = � �𝑓(𝑋𝑋1){𝑡}(1 − 𝐹(𝑋𝑋2){𝑡})�𝑑𝑑𝑦
𝑡

0
 

 

𝑃𝑟{𝑋𝑋1|𝑋𝑋2}     = � ��𝜆𝜆1 ∗ 𝑒−𝜆1∗𝑦� �1 − �1 − 𝑒−𝜆2∗𝑦��� 𝑑𝑑𝑦
𝑡

0
 

 

𝑃𝑟{𝑋𝑋1|𝑋𝑋2}     = � �𝜆𝜆1 ∗ 𝑒−(𝜆1+𝜆2)𝑦�𝑑𝑑𝑦
𝑡

0
 

 
 

( 3.3-7) 

 

Derivation from Markov Chains 

In reliability engineering, Markov models are widely used for analysing continuous 

time, discrete state scenarios (DoD 1998; Pukite & Pukite 1998). Fig. 3.3-2 represents a 

Markov model for the POR gate with two basic input events X1 and X2 which have fail-

ure rates λ1 and λ2 respectively. The arrowed lines represent the transition from one state 

to another and are labelled with the failure rate at which the transition occurred. The 

circles represent the states; failure states of the model (2 and 3) are shaded while non-

failure states are not (1 and 4). Transition to state 4 is ignored because it does not lead to 

failure. With this in mind, at state 1, the system is fully functional and input event X1 

has not failed. At state 2, X1 has failed but X2 has not, nevertheless leading to total fail-

ure of the system. If X2 subsequently fails (leading to state 3), the system remains in a 

failed state. 

 

 

 

Figure  3.3-2: Markov model of a POR gate 
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The probability of being in state 1 at a particular time t + dt is equal to that of being in 

state 1 at t and not transitioning to 2 during (t, t + dt). Mathematically this can be ex-

pressed as: 

∂
∂t
𝑃1(𝑡) = −(𝜆𝜆1 + 𝜆𝜆2)𝑃1(𝑡) 

 
( 3.3-8) 

The probabilities of being in states 2, 3 and 4 are similarly given as: 

∂
∂t
𝑃2(𝑡) = 𝜆𝜆1𝑃1(𝑡) − 𝜆𝜆2𝑃2(𝑡) 

 
( 3.3-9) 

∂
∂t
𝑃3(𝑡) = 𝜆𝜆2𝑃2(𝑡) 

 
( 3.3-10) 

∂
∂t
𝑃4(𝑡) = 𝜆𝜆2𝑃1(𝑡) 

 
( 3.3-11) 

Solving (3.3-8), (3.3-9), (3.3-10), (3.3-11) gives: 

𝑃1(𝑡) = 𝑒−(𝜆1+𝜆2)𝑡  

𝑃2(𝑡) = −  
𝜆𝜆2

𝜆𝜆1 + 𝜆𝜆2
𝑒−(𝜆1+𝜆2)𝑡 +

𝜆𝜆2
𝜆𝜆1 + 𝜆𝜆2

 

 

𝑃3(𝑡) = 𝑒−(𝜆2)𝑡 −  𝑒−(𝜆1+𝜆2)𝑡 
 

𝑃4(𝑡) =
𝜆𝜆2

𝜆𝜆1 + 𝜆𝜆2
𝑒−(𝜆1+𝜆2)𝑡 − 𝑒−(𝜆2)𝑡 + 1 −

𝜆𝜆2
𝜆𝜆1 + 𝜆𝜆2

 

 

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡} = 𝑃3(𝑡) + 𝑃4(𝑡) =
𝜆𝜆1�1 − 𝑒−(𝜆1+𝜆2)𝑡�

𝜆𝜆1 + 𝜆𝜆2
 

 
 

( 3.3-12) 

 

Derivation from Pandora's definition of POR 

From the definition of a POR gate it is clear that the occurrence of a POR gate, e.g. X1 | 

X2, is dependent on the occurrence of either of two cases, i.e., X1 before X2 (i.e., X1<X2) 

and X1 without X2 (i.e., X1•¬X2). Mathematically, X1 | X2 = X1<X2 + X1•NOT(X2). Thus 

by calculating the probabilities of these two cases, one can determine the probability of 

the POR gate as a whole by using the principle of inclusion-exclusion.  

It must be noted that NOT(X) is the probability that X does not occur and is equal to 1 – 

F(X). 

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} +  𝑃�𝑋𝑋1.𝑁𝑂𝑇(𝑋𝑋2)�{𝑡}
− 𝑃 �(𝑋𝑋1 < 𝑋𝑋2) ∗ �𝑋𝑋1.𝑁𝑂𝑇(𝑋𝑋2)�� {𝑡} 
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However, P(X1<X2 *X1•NOT(X2)){t} results in a logical contradiction because both 

terms cannot occur at the same time – X2 cannot happen both after X1 and not at all. 

Therefore P(X1<X2 *X1•NOT(X2)){t} = 0, and thus: 

𝑃(𝑋𝑋1|𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃�𝑋𝑋1.𝑁𝑂𝑇(𝑋𝑋2)�{𝑡}  

 𝑟{𝑋𝑋1|𝑋𝑋2}(𝑡) = � �𝑓{𝑋𝑋2}(𝑡) ∗ 𝐹{𝑋𝑋1}(𝑡)�𝑑𝑑𝑦
𝑡

0
+ 𝐹{𝑋𝑋1}(𝑡). �1 − 𝐹{𝑋𝑋2}(𝑡)� 

 

𝑃𝑟{𝑋𝑋1|𝑋𝑋2}(𝑡) = � ��𝜆𝜆2 ∗ 𝑒−𝜆2∗𝑦� ∗ �1 − 𝑒−𝜆1∗𝑦�� 𝑑𝑑𝑦
𝑡

0

+ �1 − 𝑒−𝜆1∗𝑡�. �1 − �1 − 𝑒−𝜆2∗𝑡�� 

 

𝑃𝑟{𝑋𝑋1|𝑋𝑋2}(𝑡) =
𝜆𝜆1�1 − 𝑒−(𝜆1+𝜆2)𝑡�

𝜆𝜆1 + 𝜆𝜆2
 

 
 

( 3.3-13) 
 
 
Deriving the Multiple POR Formula 

Until now, in this thesis, the expression deduced for evaluating a POR gate is restricted 

to only two events. However, in the real world, there may be MCSQs that may contain 

more than one POR gate in succession. For this reason a generic analytical formula for 

such PORs gate is derived from first principles and some of Pandora’s laws. 

Multiple POR Formula from First Principles 

For any POR MCSQs with the expression X1 | X2 | ... | Xn-1 | Xn, and constant failure 

rates λ1, λ2 ... λn-1, λn respectively, the probability of this MCSQ is derived as: 

𝑃( 𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋𝑛−1|𝑋𝑋𝑛){𝑡}

= � �𝑓(𝑋𝑋1){𝑡}(1 − 𝐹(𝑋𝑋2){𝑡}) … (1 − 𝐹(𝑋𝑋𝑛−1){𝑡})(1
𝑡

0
− 𝐹(𝑋𝑋𝑛){𝑡})�𝑑𝑑𝑦 

 

𝑃𝑟{𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋𝑛−1|𝑋𝑋𝑛}(𝑡)  

= � �𝜆𝜆1�𝑒−𝜆1𝑦��𝑒−𝜆2𝑦�… �𝑒−𝜆𝑛−1𝑦��𝑒−𝜆𝑛𝑦�� 𝑑𝑑𝑦
𝑡

0
 

 

𝑃𝑟{      𝑋𝑋𝑛}(𝑡)  =
𝜆𝜆1 − 𝜆𝜆1�𝑒−(𝜆1+𝜆2+⋯+𝜆𝑛−1+𝜆𝑛)𝑡�

(𝜆𝜆1 + 𝜆𝜆2 + ⋯+ 𝜆𝜆𝑛−1 + 𝜆𝜆𝑛)  

 

𝑃𝑟{𝑋𝑋1|𝑋𝑋2}(𝑡) =
𝜆𝜆1 �1 − �𝑒−�∑ 𝜆𝑖𝑛

𝑖=1 �𝑡��
∑ 𝜆𝜆𝑖𝑛
𝑖=1

 

 
 

( 3.3-14) 
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Multiple POR Formula from Induction Using Pandora’s Laws 

The multiple POR formula in (3.3-14) can also be derived from three of Pandora’s laws: 

1. Temporal Encapsulation Law 

2. Binary Law and 

3. Temporal Associative Law 

We prove this by formulating logical expressions for MCSQs with two or more POR 

gates from these laws. From these logical expressions a generic probabilistic formula 

for the multiple POR evaluation is induced. 

From Temporal Encapsulation Law 

One of Pandora’s Temporal Encapsulation Laws states that 

𝑋𝑋|𝑌|𝑍 = 𝑋𝑋|𝑌.𝑋𝑋|𝑍 ( 3.3-15) 

Therefore, 

 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1|𝑋𝑋2.𝑋𝑋1|𝑋𝑋3  

However, as discussed earlier; 

 𝑋𝑋1|𝑋𝑋2 = 𝑋𝑋1 < 𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2 ( 3.3-16) 

𝑋𝑋1|𝑋𝑋3 = 𝑋𝑋1 < 𝑋𝑋3 + 𝑋𝑋1. ¬𝑋𝑋3 ( 3.3-17) 

Substituting (3.3-16) and (3.3-17) into (3.3-15) produces, 

 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = {𝑋𝑋1 < 𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2}. {𝑋𝑋1 < 𝑋𝑋3 + 𝑋𝑋1. ¬𝑋𝑋3}  

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3  = 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1 < 𝑋𝑋3 +  𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1. ¬𝑋𝑋3 + 𝑋𝑋1. ¬𝑋𝑋2.𝑋𝑋1
< 𝑋𝑋3 + 𝑋𝑋1. ¬𝑋𝑋2.  𝑋𝑋1. ¬𝑋𝑋3 

 
( 3.3-18) 

By applying the temporal absorption (3.3-19) and idempotent (3.3-20) laws to (3.3-18), 

(3.3-21) is obtained. 

𝑋𝑋. (𝑋𝑋 < 𝑌) = 𝑋𝑋 < 𝑌 ( 3.3-19) 

𝑋𝑋.𝑋𝑋 = 𝑋𝑋 ( 3.3-20) 

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1 < 𝑋𝑋3 + 𝑋𝑋1 < 𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋3. ¬𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2. ¬𝑋𝑋3 

 

( 3.3-21) 

However, when X1 < X2 • X1 < X3 is fully minimised using Pandora’s laws, it produces 

𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋3  + 𝑋𝑋1 < 𝑋𝑋3 < 𝑋𝑋2 +  𝑋𝑋1 < 𝑋𝑋2 & 𝑋𝑋3  
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But, as already proven, technically, the SAND gate is statistically zero and therefore, X1 

< X2 & X3 is ignored in the logical analysis. Thus: 

𝑋𝑋 1|𝑋𝑋2|𝑋𝑋3 =  𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋3  + 𝑋𝑋1 < 𝑋𝑋3 < 𝑋𝑋2 +  𝑋𝑋1 < 𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋3. ¬𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2. ¬𝑋𝑋3 

 

( 3.3-22) 

From Binary Law 

One of Pandora’s Binary Laws states that: 

𝑋𝑋|𝑌|𝑍 = 𝑋𝑋|(𝑌 + 𝑍) ( 3.3-23) 

Using (3.3-23) a logical expression similar to what is done for the Temporal Encapsula-

tion Law can be derived. Substituting (3.3-23) into (3.3-16) produces, 

 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1 < (𝑋𝑋2 + 𝑋𝑋3) + 𝑋𝑋1. ¬(𝑋𝑋2 + 𝑋𝑋3) ( 3.3-24) 

However, one of Pandora’s Temporal Distributive Laws states that 

𝑋𝑋1 < (𝑋𝑋2 + 𝑋𝑋3) = 𝑋𝑋1|𝑋𝑋2.𝑋𝑋1|𝑋𝑋3. (𝑋𝑋2 + 𝑋𝑋3)  

Therefore, 

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1|𝑋𝑋2.𝑋𝑋1|𝑋𝑋3. (𝑋𝑋2 + 𝑋𝑋3) +  𝑋𝑋1. ¬(𝑋𝑋2 + 𝑋𝑋3)  

Employing (3.3-16) again,  

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1|𝑋𝑋2.𝑋𝑋1|𝑋𝑋3. (𝑋𝑋2 + 𝑋𝑋3) +  𝑋𝑋1. ¬(𝑋𝑋2 + 𝑋𝑋3)  

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1 < 𝑋𝑋3.𝑋𝑋2 + 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1 < 𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋2.𝑋𝑋1.𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1.𝑋𝑋3. ¬𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋3.𝑋𝑋1.𝑋𝑋2. ¬𝑋𝑋2 + 𝑋𝑋1
< 𝑋𝑋3.𝑋𝑋1. ¬𝑋𝑋2 + 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1.𝑋𝑋3. ¬𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋3.𝑋𝑋1.𝑋𝑋2. ¬𝑋𝑋2 + 𝑋𝑋1 < 𝑋𝑋3.𝑋𝑋1. ¬𝑋𝑋2 + 

 

 

 

 

( 3.3-25) 

Applying (3.3-19), (3.3-20) and Boolean Complementary Laws X•¬X = 0 to (3.3-25), 

(3.3-22) is produced. 

From Temporal Associative Law 

Finally, we show that the logical expression (3.3-22) can be derived from one of Pando-

ra’s Temporal Associative Law that states that, 

𝑋𝑋|𝑌|𝑍 = (𝑋𝑋|𝑌)|𝑍 ( 3.3-26) 
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Substituting (3.3-16) into (3.3-26) produces, 

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = (𝑋𝑋1 < 𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2)|𝑋𝑋3 ( 3.3-27) 

Applying the Temporal Distributive Law in (3.3-28) to (3.3-27) produces (3.3-29) 

(𝑋𝑋 + 𝑌)|𝑍 = (𝑋𝑋|𝑍) + (𝑌|𝑍) ( 3.3-28) 

𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = ( 𝑋𝑋1 < 𝑋𝑋2)|𝑋𝑋3 + ( 𝑋𝑋1. ¬𝑋𝑋2)|𝑋𝑋3 ( 3.3-29) 

However, 

( 𝑋𝑋1 <  𝑋𝑋2)|𝑥3 = (𝑋𝑋1| 𝑋𝑋2). ( 𝑋𝑋2|𝑋𝑋3) ( 3.3-30) 

Therefore, 

(𝑋𝑋1 <  𝑋𝑋2)|𝑋𝑋3 = {𝑋𝑋1 <  𝑋𝑋2 +  𝑋𝑋1. ¬ 𝑋𝑋2}. { 𝑋𝑋2 <  𝑋𝑋3 +  𝑋𝑋2. ¬ 𝑋𝑋3}  

( 𝑋𝑋o <)| 𝑋𝑋3      = 𝑋𝑋1 <  𝑋𝑋2.  𝑋𝑋2 <  𝑋𝑋3 + 𝑋𝑋1 <  𝑋𝑋2. ¬ 𝑋𝑋3 +  𝑋𝑋1. ¬ 𝑋𝑋2.  𝑋𝑋2
<  𝑋𝑋3 + 𝑋𝑋1.  𝑋𝑋2. ¬ 𝑋𝑋2. ¬ 𝑋𝑋3 

 

It must be noted that due to the Boolean Redundancy and Temporal Absorption Laws 

 𝑋𝑋1. ¬ 𝑋𝑋2.  𝑋𝑋2 <  𝑋𝑋3 =  𝑋𝑋1. ¬ 𝑋𝑋2.  𝑋𝑋2.  𝑋𝑋2 <  𝑋𝑋3 = 0  

Hence, 

( 𝑋𝑋1 <  𝑋𝑋2)| 𝑋𝑋3 = 𝑋𝑋1 < 𝑋𝑋2.  𝑋𝑋2 <  𝑋𝑋3 +  𝑋𝑋1 <  𝑋𝑋2. ¬ 𝑋𝑋3 ( 3.3-31) 

Also,  

( 𝑋𝑋1. ¬ 𝑋𝑋2)| 𝑋𝑋3 = ( 𝑋𝑋1| 𝑋𝑋3). (¬ 𝑋𝑋2| 𝑋𝑋3)  

 ( 𝑋𝑋1. ¬ 𝑋𝑋2)|   3 = { 𝑋𝑋1 < 𝑋𝑋3 + 𝑋𝑋1. ¬ 𝑋𝑋3}. {¬ 𝑋𝑋2 <  𝑋𝑋3 + ¬ 𝑋𝑋2. ¬ 𝑋𝑋3}  

( 𝑥1. ¬ 𝑥2)| 𝑥3  =  𝑋𝑋1 <  𝑋𝑋3. ¬ 𝑋𝑋2 <  𝑋𝑋3 +  𝑋𝑋1 < X3. ¬ 𝑥𝑋𝑋2. ¬ 𝑋𝑋3 +  

( 𝑥1. ¬ 𝑥2)| 𝑥3  =  𝑋𝑋1. ¬ 𝑋𝑋3. ¬ 𝑋𝑋2 <  𝑋𝑋3 +  𝑋𝑋1. ¬ 𝑋𝑋2. ¬ 𝑋𝑋3  

 ( 𝑥1. ¬ 𝑥2)| 𝑥3 =  𝑋𝑋1 <  𝑋𝑋3. ¬ 𝑋𝑋2 <  𝑋𝑋3 +  𝑋𝑋1. ¬ 𝑋𝑋2. ¬ 𝑋𝑋3 ( 3.3-32) 

Substituting (3.3-31) and (3.3-32) into (3.3-29) produces, 

 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3 = 𝑋𝑋1 < 𝑋𝑋2.  𝑋𝑋1 < 𝑋𝑋3 + 𝑋𝑋1 < 𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋3. ¬𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2. ¬𝑋𝑋3 

 

 𝑥𝑟𝑟1|𝑥2|   = 𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋3 +  𝑋𝑋1 < 𝑋𝑋3 < 𝑋𝑋2 +  𝑋𝑋1 < 𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1
< 𝑋𝑋3. ¬𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2. ¬𝑋𝑋3 
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Proof by Induction 

Now that the logical expression (3.3-22) has been derived from some of Pandora’s laws, 

we derive the probabilistic evaluation of a multiple POR expression from mathematical 

induction. It has been previously proven that for n events, where n is 2, 

𝑃( 𝑋𝑋1|𝑋𝑋2){𝑡} = 𝑃( 𝑋𝑋1 < 𝑋𝑋2 +  𝑋𝑋1. ¬𝑋𝑋2){𝑡}  

𝑃( 𝑋𝑋1|𝑋𝑋2){𝑡} =
𝜆𝜆1�1 − 𝑒−(𝜆1+𝜆2)𝑡�

𝜆𝜆1 + 𝜆𝜆2
 

 

and n is 3, 

𝑃( 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3){𝑡}

= 𝑃(𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋3 +  𝑋𝑋1 < 𝑋𝑋3 < 𝑋𝑋2 + 𝑋𝑋1
< 𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1 < 𝑋𝑋3. ¬𝑋𝑋2 + 𝑋𝑋1. ¬𝑋𝑋2. ¬𝑋𝑋3){𝑡} 

 

𝑃( 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3){𝑡} =
𝜆𝜆1�1 − 𝑒−(𝜆1+𝜆2+𝜆3)𝑡�

𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3
 

 

Using both Boolean and Pandora’s Laws, for n = 4, 

𝑃( 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3|𝑋𝑋4){𝑡}

= 𝑃( 𝑋𝑋1 < 𝑋𝑋4 < 𝑥3 < 𝑋𝑋2  +  𝑋𝑋1 < 𝑋𝑋3 < 𝑋𝑋4 < 𝑋𝑋2  +  𝑋𝑋1

< 𝑋𝑋3 < 𝑋𝑋2 < 𝑋𝑋4  +  𝑋𝑋1 < 𝑋𝑋4 < 𝑋𝑋2 < 𝑋𝑋3  + 𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋4

< 𝑋𝑋3  +  𝑋𝑋1 < 𝑋𝑋2 < 𝑋𝑋3 < 𝑋𝑋4 + 𝑋𝑋1 < 𝑋𝑋2.  𝑋𝑋1

< 𝑋𝑋3.  ¬𝑋𝑋4 + 𝑋𝑋1 < 𝑋𝑋2.  𝑋𝑋1 <  𝑋𝑋4. ¬𝑋𝑋3 +  𝑋𝑋1 < 𝑋𝑋3.  𝑋𝑋1

< 𝑋𝑋4. ¬𝑋𝑋2 + 𝑋𝑋1 < 𝑋𝑋2. ¬𝑋𝑋3. ¬𝑋𝑋4 + 𝑋𝑋1

< 𝑋𝑋3. ¬𝑋𝑋2.  ¬𝑋𝑋4 + 𝑋𝑋1

< 𝑋𝑋4. ¬𝑋𝑋2. ¬𝑋𝑋3 + 𝑋𝑋1. ¬𝑋𝑋2. ¬𝑋𝑋3.  ¬𝑋𝑋4){𝑡} 

 

𝑃( 𝑋𝑋1|𝑋𝑋2|𝑋𝑋3|𝑋𝑋4){𝑡} =
𝜆𝜆1�1 − 𝑒−(𝜆1+𝜆2+𝜆3+𝜆4)𝑡�

𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3 + 𝜆𝜆4
 

 

Finally, any n number of events, 
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𝑃( 𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋n−1|𝑋𝑋n){𝑡}

= 𝑃

⎝

⎜
⎛
� �𝐶𝑗=2𝑛 � 𝑋𝑋1 <  𝑋𝑋j��

(𝑛−1)!

𝑖=2

+

⎣
⎢
⎢
⎢
⎡
�

⎝

⎜
⎛
�  𝑋𝑋1 < 𝑋𝑋j

𝑛

𝑗=2
𝑗≠𝑖 ⎠

⎟
⎞

. ¬ 𝑋𝑋i

𝑛

𝑖=2
⎦
⎥
⎥
⎥
⎤

+ ⋯

+

⎣
⎢
⎢
⎢
⎡
�  𝑋𝑋1 < 𝑋𝑋i

𝑛

𝑖=2

.

⎝

⎜
⎛
�¬ 𝑋𝑋j

𝑛

𝑗=2
𝑗≠𝑖 ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡
 𝑋𝑋1.

⎝

⎛�¬𝑋𝑋j

𝑛

𝑗=2
⎠

⎞

⎦
⎥
⎥
⎤

⎠

⎟
⎞

{𝑡} 

 

Where, 

𝐶𝑗=2𝑛 � 𝑋𝑋1 <  𝑋𝑋j� = 𝑋𝑋1 < 𝑋𝑋2.𝑋𝑋1 < 𝑋𝑋3. … .𝑋𝑋1 < 𝑋𝑋𝑛−1.𝑋𝑋1 < 𝑋𝑋n  

Therefore, 

𝑃(𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋n−1|𝑋𝑋n){𝑡}

= 𝑃

⎝

⎜
⎛
� �𝐶𝑗=2𝑛 �𝑋𝑋1 < 𝑋𝑋j��

(𝑛−1)!

𝑖=2

+

⎣
⎢
⎢
⎢
⎡
�

⎝

⎜
⎛
�𝑋𝑋1 < 𝑋𝑋j

𝑛

𝑗=2
𝑗≠𝑖 ⎠

⎟
⎞

. (1 − 𝐹{𝑋𝑋i}(𝑡))
𝑛

𝑖=2
⎦
⎥
⎥
⎥
⎤

+ ⋯

+

⎣
⎢
⎢
⎢
⎡
�𝑋𝑋1 < 𝑋𝑋i

𝑛

𝑖=2

.

⎝

⎜
⎛
��1 − 𝐹�𝑋𝑋j�(𝑡)�
𝑛

𝑗=2
𝑗≠𝑖 ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎡
𝐹{ 𝑋𝑋1}(𝑡).

⎝

⎛��1 − 𝐹�𝑋𝑋j�(𝑡)�
𝑛

𝑗=2
⎠

⎞

⎦
⎥
⎥
⎤

⎠

⎟
⎞

{𝑡} 

 

𝑃( 𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋𝑛−1|𝑋𝑋𝑛){𝑡}

=
𝜆𝜆1. �𝑒−(𝜆1+𝜆2+⋯+𝜆𝑛−1+𝜆𝑛)𝑡�. �−1 + 𝑒(𝜆1+𝜆2+⋯+𝜆𝑛−1+𝜆𝑛)𝑡�

(𝜆𝜆1 + 𝜆𝜆2 + ⋯+ 𝜆𝜆𝑛−1 + 𝜆𝜆𝑛)  
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𝑃( 𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋𝑛−1|𝑋𝑋𝑛){𝑡} =
𝜆𝜆1 �1 − �𝑒−�∑ 𝜆𝑖𝑛

𝑖=1 �𝑡��
∑ 𝜆𝜆𝑖𝑛
𝑖=1

 

 
 

( 3.3-33) 

The multiple POR expression derived from Pandora’s laws (3.3-33) is exactly the same 

as that derived from First Principles (3.3-14). This validates the multiple POR formula 

and demonstrates the uniformity and correctness of Pandora’s logical laws. 

 

3.3.3 Monte Carlo Solution 

To formulate a Monte Carlo solution for the POR gate, a model gate needs to be con-

structed. Upon careful examination of Pandora’s laws, one of its Binary Laws (3.3-34) 

promises to be a good foundation for modelling the POR gate.  

𝑃( 𝑋𝑋1|𝑋𝑋2| … |𝑋𝑋𝑛−1|𝑋𝑋𝑛) {𝑡}

= 𝑃 � 𝑋𝑋1| ��(𝑋𝑋2 + 𝑋𝑋3) … + 𝑋𝑋𝑛−1� + 𝑋𝑋𝑛�� {𝑡} 

 
 
 

( 3.3-34) 

The right hand side of the above expression can be divided into two parts in relation to 

the POR gate:  

1. X1 and  

2. ((X2+X3 )…+Xn-1 )+Xn which is basically a summation of all events from X2 to 

Xn. 

If X1 is event A and ((X2+X3 )…+Xn-1 )+Xn is B, the POR probability can be computed 

with the following model. 

1. Generate two random numbers, R1, R2 to simulate events A and B respectively. 

2.  If R1 <= A and R2 <= B and TTF of A is less than TTF of B, or R1 is less or 

equal to A but R2 is greater than B then a pre-set counter is incremented. 

3. The above steps are repeated a large number of times. 

4. The POR probability is evaluated by dividing the counter by the number of 

times the steps were repeated. 

Using the definition of R1, R2, A and B above, Algorithm 3.3-1 is a Monte Carlo model 

for a multiple POR gate where S is a counter, X[0] is A, m is P(B){t}, T is the number of 

trials and TTF1 and TTF2 are next times-to-failure of A and B respectively. 
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Algorithm 3.3-1: A Generic Monte Carlo simulation for the POR gate 
Require: X[n] 
     S ← 0 
     TTF1 ← 0, TTF2 ← 0 
     R1 ← 0, R2 ← 0 
     for k = 1 to T do 
          m ← 1 
          for i = 1 to n do 
               m ← 1 – Pr(X[i]){t} 
          end for 
          m ← 1 – m 
         R1 ← NextRandomNumber 
         R2 ← NextRandomNumber 
         TTF1 ← (1 / Pr(X[0]){t}) × Log(1 / (1 – R1)) 
         TTF2 ← (1 / m) × Log(1 / (1 – R2)) 
          if ((R1 <= F(X[0]){t} && R2 <= m && TTF1 < TTF2) || (R1 <= F(X[0]){t} &&  
                R2 > m)) then 
               S ← S + 1 
          end if 
     end for 
return S/T 

 

3.4 Parameterised-SAND Gate Quantification 

In the previous section, the SAND gate was discussed and it was proven that, quantita-

tively, it evaluates to zero. However, some events, known as nearly simultaneous 

events, will trigger the occurrence of an output event if they should happen within a 

relatively short period or fraction of time – i.e., within a given interval. In other words, 

the output event of a nearly simultaneous gate will occur if the first input event occurs 

and the subsequent event occurs within a subsequent interval of time. The output event 

should occur if the sequence of the events were vice versa. In this thesis, a novel gate is 

introduced to represent this nearly simultaneous scenario. This new gate is known as the 

parameterised-SAND or pSAND.  

A typical example of a pSAND scenario is evident in the case of the front wheel braking 

system of a car. If the left front wheel brakes of the car inadvertently activate, the vehi-

cle begins to veer left. Conversely, if right front wheel brakes commit inadvertently, the 

vehicle veers to the right. Any of these failures can be potentially dangerous because 

they can alter the dynamics of the car causing the vehicle to veer off the road into a 

bush, river, pedestrian etc. or causing the vehicle to enter the path of oncoming vehicles. 
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However, if both brakes fail within a fraction of a second, this may cause harsh braking, 

which, if should occur on a motorway, could be critical. After this fraction of time, if an 

accident (top-event) has not occurred, the driver of the vehicle could follow some safety 

procedures, or the vehicle, if capable could automatically do so after detecting the fail-

ure of brakes. 

Another classical example is the gas, burner and water sprinkler scenario. Assume a 

large scientific oven has a burner, which provides ignitions to a gaseous fuel source for 

burning metals at high temperature. This combustion chamber also has a sprinkler sys-

tem, which is automatically activated after a fraction of time to put out fire in case of 

inadvertent combustion.  

It must be noted that this combustion system is different from the popular gas 

leak/combustion systems formalised in Chaochen et al. (1991), Gorski and Wardzinski 

(1996) and Hansen et al. (1998) in two main areas. Firstly, the top event of the gas/leak 

combustions is usually an explosion due to the gas leak concentration and ignition; 

however, the top-event of the pSAND scenarios is inadvertent combustion due to the 

mere presence of gas (not necessarily a concentration leading to explosion) and ignition.  

Secondly, the pSAND gate is commutative, so no matter the sequence of the events, the 

top event will occur provided one occurs first and the second occurs within a specified 

time interval. This cannot be said of the traditional gas leak system because if the gas 

leaks to a concentration before the ignition, then there will be an explosion. However, if 

the ignition fails by commission before the gas leaks, there will not be an explosion 

(top-event will not occur); there will be mere continuous combustion. 

An extreme use of the pSAND gate is its application in supply chains where the dura-

tion is not a fraction of seconds but rather hours. For example, a top event may occur if 

the deliveries of two goods are not made within a couple of hours, after which a mitiga-

tion procedure is followed.  

In this thesis, novel symbols for pSAND are modelled for qualitative and quantitative 

analyses. In addition, the original SAND gate is slightly extended to accommodate the 

pSAND’s requirements, but not redefined entirely. 
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Semantics of pSAND:  

All input events of the pSAND gate must occur and they must do so within a rel-

atively short interval of duration ’d’, which starts with the first input event to 

occur. The pSAND is therefore false if any of its inputs do not occur or if they 

occur outside the interval, i.e., the time between the first and last input to occur 

is more than d. 

Since pSAND is a light modification of the SAND gate, the graphical symbol of the 

SAND gate Fig. 3.4-1A is retained for the situation where d=0: input events occur at 

exactly the same time. Alternatively, Fig. 3.4-1B can also be used to represent the same 

scenario where d=0. Fig. 3.4-1C on the contrary represents a situation where the input 

events are nearly simultaneous with an interval or duration, d, between them and d>0. 

 

 

 

 

Figure  3.4-1: pSAND graphical representations 

3.4.1 Behavioural and Timing Models 

The formal semantic temporal definition of the pSAND gate given a specific duration, 

d, within which its input events occur is given as: 

&𝑑:𝐏𝑜(𝐸)  ×  𝐏𝑜(𝐸) → 𝐏𝑜(𝐸) ( 3.4-1) 

∀𝑋𝑋1,𝑋𝑋2:𝐏𝑜(𝐸) • 𝑜 ∈  𝑋𝑋1&𝑋𝑋2 ⇔ 𝑜 ∈ 𝑋𝑋1 ∧ 𝑜 ∈ 𝑋𝑋2 ∧ ∀ 𝑟:𝑝𝑟𝑒(𝑜) • 𝑟
∈  𝑋𝑋1 ⇔ 𝑟 ∈ 𝑋𝑋2 

 

  
Where, 

{𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2)} 𝐴𝑁𝐷 {𝑡(𝑋𝑋2) − 𝑡(𝑋𝑋1) ≤ 𝑑𝑑} ⟹ 𝑡(𝑋𝑋1&𝑑𝑋𝑋2) = 𝑡(𝑋𝑋2) ( 3.4-2) 

{𝑡(𝑋𝑋1) < 𝑡(𝑋𝑋2)} 𝐴𝑁𝐷 {𝑡(𝑋𝑋2) − 𝑡(𝑋𝑋1) > 𝑑𝑑} ⟹ 𝑡(𝑋𝑋1&𝑑𝑋𝑋2) = ∅ ( 3.4-3) 

{𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2)} 𝐴𝑁𝐷 {𝑡(𝑋𝑋1) − 𝑡(𝑋𝑋2) ≤ 𝑑𝑑} ⟹ 𝑡(𝑋𝑋1&𝑑𝑋𝑋2) = 𝑡(𝑋𝑋1) ( 3.4-4) 

{𝑡(𝑋𝑋1) > 𝑡(𝑋𝑋2)} 𝐴𝑁𝐷 {𝑡(𝑋𝑋1) − 𝑡(𝑋𝑋2) > 𝑑𝑑} ⟹ 𝑡(𝑋𝑋1&𝑑𝑋𝑋2) = ∅ ( 3.4-5) 

𝑡(𝑋𝑋1) = 𝑡(𝑋𝑋2) ⟹ 𝑡(𝑋𝑋1&𝑑𝑋𝑋2) = 𝑡(𝑋𝑋2) ( 3.4-6) 
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Fig. 3.4-2A, Fig. 3.4-2B, Fig. 3.4-2C, Fig. 3.4-2D and Fig. 3.4-2E  below are the timing 

behaviours for (3.4-2), (3.4-3), (3.4-4), (3.4-5) and (3.4-6) respectively. 

 

 

 

 

 

 

 

 

Figure  3.4-2: Timing models of a pSAND gate 

The leftmost symbol ‘<’ in (3.4-2) and (3.4-3) is the less than symbol. In Fig. 3.4-2A X1 

occurs before X2 within the duration that is less or equal to d but greater than zero; X1 

&d X2 occurs. In Fig. 3.4-2B X1 occurs before X2 for a time interval greater than d; X1 &d 

X2 does not occur. In Fig. 3.4-2C X2 occurs before X1 within a duration, which is less or 

equal to d but greater than zero; X1 &d X2 occurs.  

In Fig. 3.4-2D X2 occurs before X1 within a time interval greater than d; X1 &d X2 does 

not occur. In Fig. 3.4-2E X1 occurs at exactly the same time as X2; X1 &d X2 does occur 

though it is zero. The parameterized SAND occurs when all of its input events occur 

within a specified duration. 

 

3.4.2 Analytical Model 

This section contains discussions on the quantitative analysis of the pSAND gate using 

analytical techniques. This is done for MCSQs with only two events and a generic for-

mula for MCSQs with n number of events. 
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pSAND Term with 2 Input Events 

 

 

 
 

 

 

 
Figure  3.4-3: Graph of two nearly simultaneous events 

From Fig. 3.4-3, the probability of X1 and X2 occurring between t and t+d is the sum of 

the probabilities of X1 and X2 occurring at t+d less the sum of the probabilities of X1 and 

X2 occurring at t. Mathematically, 

𝑃(𝑋𝑋1&𝑑 𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑}

= [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡 + 𝑑𝑑} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡 + 𝑑𝑑}]

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

From Pandora’s Completion law in (3.3-6), 

𝑃(𝑋𝑋1.𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1&𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} 

𝑃(𝑋𝑋1.𝑋𝑋2){𝑡 + 𝑑𝑑} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋1&𝑑𝑋𝑋2){𝑡 + 𝑑𝑑} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡} 

 

Also, from the graph in Fig. 3.4-3, it is evident that 

𝑃(𝑋𝑋1.𝑋𝑋2){𝑡 + 𝑑𝑑} = 𝐹(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡 + 𝑑𝑑} + 𝐹(𝑋𝑋1){𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋2){𝑡} 

However,  

𝐹(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡 + 𝑑𝑑} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡 + 𝑑𝑑} 

𝐹(𝑋𝑋1){𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋2){𝑡} = 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡 + 𝑑𝑑} 

Thus, 

𝑃(𝑋𝑋1.𝑋𝑋2){𝑡 + 𝑑𝑑} = 𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡 + 𝑑𝑑} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡 + 𝑑𝑑} 

 

 

 

lifetime 

F(X1) 

∞ 0 t 

1 

F(X2) 

d pr
ob

ab
ili

ty
 

84  
 



And, 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑}

= [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡 + 𝑑𝑑} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡 + 𝑑𝑑}]

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

 
 
 

( 3.4-7) 

Where d=0, &d = &. Substituting d=0 into (3.4-7), 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2){𝑡, 𝑡 + 0}

= [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡 + 0} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡 + 0}]

− [𝑃(𝑋𝑋1 < 𝑋𝑋2){𝑡} + 𝑃(𝑋𝑋2 < 𝑋𝑋1){𝑡}] 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑} = 0  

The SAND and PAND gates are specific instances of the pSAND gate. As d approaches 

zero, the pSAND value approaches the SAND value, which is zero. It is also evident 

that pSAND is commutative; X1 &d X2 is equal to X2 &d X1.Where d is zero, SAND is 

zero and iPAND is equal to ePAND.  

pSAND Term with n Input Events 

Where F{X}(t) is the probability that X occurs any time before t and F{X}(t0, t1) is the 

probability that X occurs between t0 and t1, then, 

For any two input events X1 and X2, 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑} = 𝐹(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑} + 𝐹(𝑋𝑋2){𝑡}.𝐹(𝑋𝑋1){𝑡, 𝑡 + 𝑑𝑑} 

For any three input events X1, X2 and X3, 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2&𝑑𝑋𝑋3){𝑡, 𝑡 + 𝑑𝑑}

= 𝐹(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋3){𝑡, 𝑡 + 𝑑𝑑}

+ 𝐹(𝑋𝑋2){𝑡}.𝐹(𝑋𝑋1){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋3){𝑡, 𝑡 + 𝑑𝑑}

+ 𝐹(𝑋𝑋3){𝑡}.𝐹(𝑋𝑋1){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑} 

For any four input events X1, X2, X3 and X4, 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2&𝑑𝑋𝑋3&𝑑𝑋𝑋4){𝑡, 𝑡 + 𝑑𝑑}

= 𝐹(𝑋𝑋1){𝑡}.𝐹(𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋3){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋4){𝑡, 𝑡 + 𝑑𝑑}

+ 𝐹(𝑋𝑋2){𝑡}.𝐹(𝑋𝑋1){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋3){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋4){𝑡, 𝑡 + 𝑑𝑑}

+ 𝐹(𝑋𝑋3){𝑡}.𝐹(𝑋𝑋1){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋4){𝑡, 𝑡 + 𝑑𝑑}

+ 𝐹(𝑋𝑋4){𝑡}.𝐹(𝑋𝑋1){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋2){𝑡, 𝑡 + 𝑑𝑑}.𝐹(𝑋𝑋3){𝑡, 𝑡 + 𝑑𝑑} 
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For any n input events X1, X2, ... Xn-1 and Xn, 

𝑃(𝑋𝑋1&𝑑𝑋𝑋2&𝑑 … &𝑑𝑋𝑋𝑛−1&𝑑𝑋𝑋𝑛){𝑡0, 𝑡1}

= �

⎝

⎜⎜
⎛
𝐹(𝑋𝑋𝑖){𝑡0}.

⎝

⎜
⎛
�𝐹�𝑋𝑋𝑗�{𝑡0, 𝑡1}
𝑛

𝑗=1
𝑗≠𝑖 ⎠

⎟
⎞

⎠

⎟⎟
⎞𝑛

𝑖=1

 

 
 
 
 
 
 

( 3.4-8) 

3.4.3 Monte Carlo Solution 

The algorithm below is a generic Monte Carlo simulation for estimating the pSAND 

gate for n events. In the algorithm, a count, S, is kept of the number of times each event 

occurs at t while the remaining events occur between t and t + d. This is repeated for a 

large number of times, T, and dividing S by T produces the pSAND probability. 

Algorithm 3.4-1: A Generic Monte Carlo simulation for the pSAND gate 
Require: X[n], d 
     S ← 0 
     for i = 1 to n do 
          R[i] ← NextRandomNumber 
     end for 
for k = 1 to T do 
     for i = 1 to n do 
          for j = 1 to n do 
               if (j != i) 
                    if (R[i] <= Pr(X[i]){t} && R[j] > Pr(X[j]){t} && R[j] <= Pr(X[j]){t + d})   
                            then 
                         S ← S + 1 
                    end if 
               end if 
          end for 
     end for 
end for 
return S/T 
 

3.5 MCSQ and Top-Event Quantification 

A qualitative analysis of a fault tree produces cut sets, or cut sequences for a dynamic or 

temporal fault tree. Cut sequences are conjunctions of sequences, and the cut sequences 

themselves are connected as part of a disjunction — the occurrence of any one cut 

sequence will cause the top event to occur. Thus the most natural representation for cut 

sequences and MCSQs is in a sum-of-products form, also known as disjunctive normal 
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form. Quantitative analysis of Pandora fault trees follow a prior qualitative analysis. 

The qualitative analysis produces a set of MCSQs, which contains no redundancies and 

contradictions. Before quantitative analysis starts, pSAND gates are identified and 

assigned corresponding d values. We discuss below the evaluation of MCSQs with one 

type of gate and MCSQs with different gates. 

3.5.1 MCSQ with One Type of Operator 

This subsection discusses the evaluation of MCSQs which contains two or more 

different input events but only one type of operator; the operator may repeat more than 

once. Evaluating a MCSQs with one type of operator qualitatively is simple but if not 

meticulously done can be wrongly evaluated. For this reason, we discuss MCSQs with 

each gate  below. SAND gates evaluate to zero so they are ignored. 

For MCSQs with more than one operator in a particular sequence, the leftmost operator 

has priority over its immediate right operator. Given that ‘*’ is any of the operators in 

Pandora, 

𝑃(𝑋𝑋1 ∗ 𝑋𝑋2 ∗ … ∗ 𝑋𝑋𝑛−1 ∗ 𝑋𝑋𝑛){𝑡} = 𝑃 ���(𝑋𝑋1 ∗ 𝑋𝑋2) ∗ … ∗ 𝑋𝑋𝑛−1� ∗ 𝑋𝑋𝑛�� {𝑡}  

For example,  

𝑃(𝑋𝑋1 < 𝑋𝑋2 < ⋯ < 𝑋𝑋𝑛−1 < 𝑋𝑋𝑛){𝑡} = 𝑃 ���(𝑋𝑋1 < 𝑋𝑋2) < ⋯ < 𝑋𝑋𝑛−1� < 𝑋𝑋𝑛�� {𝑡}  

The input events X1, X2, ..., Xn of a MCSQ could be basic events or intermediate events. 

The type of input event is not necessary here because, depending on the level of 

abstraction, an intermediate event can be an input event. If it is a basic event, P(Xi){t} = 

F(Xi){t}. However, if it is an intermediate event, P(Xi){t} will have to be evaluated on 

the input events of Xi. The focus here is the wrong evaluation of a particular P(Xi){t} by 

replacing F(Xi){t} with λi or vice versa. Some of the formulae are expressed in terms of 

failure rates, λ, whilst others are expressed in probabilities P. For the sake of uniformity, 

we describe all the gates in Pandora using failure rates expressions. 

Recalling the AND gate formula for a MCSQ of n input events from (2.2-19) 

𝑃(𝑀𝐶𝑆𝑄){𝑡} = 𝑃(𝑋𝑋1){𝑡}.𝑃(𝑋𝑋2){𝑡}. … .𝑃(𝑋𝑋𝑛−1){𝑡}.𝑃(𝑋𝑋𝑛){𝑡}  

𝑃(𝑀𝐶𝑆𝑄){𝑡} = �1 − 𝑒𝜆1𝑡�. �1 − 𝑒𝜆2𝑡�. … . �1 − 𝑒𝜆𝑛−1𝑡�. �1 − 𝑒𝜆𝑛𝑡� 
 

( 3.5-1) 
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The OR formula using Esary-Proschan (2-2-23) for a MCSQ of n input events is 

𝑃(𝑀𝐶𝑆𝑄){𝑡} = 1 − ��1 − 𝑃(𝑋𝑋1)�. �1 − 𝑃(𝑋𝑋1)�. … . �1 − 𝑃(𝑋𝑋𝑛)��  

𝑃(𝑀𝐶𝑆𝑄){𝑡} = 1 − �𝑒𝜆1𝑡. 𝑒𝜆2𝑡. … . 𝑒𝜆𝑛−1𝑡. 𝑒𝜆𝑛𝑡� 
 

( 3.5-2) 

Describing the pSAND expression in (3.4-8) in terms of failure rate is 

𝑃(𝑀𝐶𝑆𝑄){𝑡0, 𝑡1} = �

⎝

⎜⎜
⎛
�1 − 𝑒𝜆𝑖𝑡0�.

⎝

⎜
⎛
��1 − 𝑒𝜆𝑗(𝑡1−𝑡0)�
𝑛

𝑗=1
𝑗≠𝑖 ⎠

⎟
⎞

⎠

⎟⎟
⎞𝑛

𝑖=1

 

 
 
 
 

( 3.5-3) 

POR (3.1-33) and PAND (3.2-5) formulae are already expressed in terms of failure rate. 

For a reminder, they are stated below as (3.5-4) and (3.5-5) respectively. 

𝑃(𝑀𝐶𝑆𝑄){𝑡} =
𝜆𝜆1 �1 − �𝑒−�∑ 𝜆𝑖𝑛

𝑖=1 �𝑡��
∑ 𝜆𝜆𝑖𝑛
𝑖=1

 
 

( 3.5-4) 

𝑃(𝑀𝐶𝑆𝑄){𝑡} = �𝜆𝜆𝑖

𝑛

𝑖=1

��
𝑒(𝑎𝑘𝑡)

∏ �𝑎𝑘 − 𝑎𝑗�𝑛
𝑗=0
𝑗≠𝑘

�
𝑛

𝑘=0

 

 
( 3.5-5) 

Where 𝑎0 = 0 and 𝑎𝑚 = −∑ 𝜆𝜆𝑗𝑚
𝑗=1  for 𝑚 > 0. 

(3.5-1), (3.5-2), (3.5-3), (3.5-4) and (3.5-5) are analytical techniques for evaluating 

MCSQs with only one type of gate whilst algorithms 2.2-1, 2.2-2, 3.1-1, 3.2-1 and 3.4-1 

are Monte Carlo simulations for evaluating such MCSQs. 

 
3.5.2 MCSQ with Different Operators 

In this thesis, the quantification of basic or intermediate events with Boolean logical 

operators AND and OR have been reviewed and various techniques for the POR, PAND 

and pSAND gates have been formulated. It must also be noted that a operator 

precedence is required for all temporal and Boolean gates in Pandora before quantitative 

analysis can take place. The precedence of operator evaluation in Pandora is: 

SAND  pSAND  PAND  POR  AND  OR 
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Where the precedence is in descending order; thus SAND has higher precedence than 
PAND and X&Y<Z should be evaluated as (X & Y) < Z and, 

𝑃(𝐺.𝐴 < 𝐵|(𝐶 + 𝐷.𝐹&𝐸)){𝑡} = 𝑃 ��𝐺. �(𝐴 < 𝐵)| �𝐶 + �𝐷. (𝐹&𝐸)����� {𝑡}  

So far, straight forward generic Monte Carlo simulations have been constructed for 

evaluating MCSQs with only one type of gate. However, MCSQs with combinations of 

different temporal gates require more effort to construct. To construct Monte Carlo 

simulations for some of these MCSQs, the MCSQs are first categorised into groups. 

Most MCSQs containing any of the temporal gates, |, <, and/or & will usually have | 

succeding < and &. For example A<B|C, A&dB|C, A&dB<C, A<B&dC are MCSQs but 

A|B&dC, A|B<C are not. To demonstrate the scale of these complexities and how they 

can be solved, consider a top event T = A<B|C•E + A<B&dE•C. Before constructign a 

Monte Carlo simulation for T, we discuss the conditions necesary for achieving its 

MCSQs: A<B|C•E and A<B&dE•C.  

To model A<B|C•E, it must be noted that A<B|C•E = ((A<B)|C) •E. The time-to-failure, 

TTF(x, r){t}, and CDF, F(x){t}, of all events will be required will be required (where x is 

the failure rate of an event and r is the random number to simulate the probability of 

that event). As mentioned earlier, the condition required for A<B, ApandB, to occur, if 

&& is the logical AND, is 

𝐴𝑝𝑎𝑛𝑑𝑑𝐵 = 𝑅𝐴 ≤ 𝐹(𝜆𝜆𝐴){𝑡} && 𝑅𝐵 ≤ 𝐹(𝜆𝜆𝐵){𝑡} && 𝑇𝑇𝐹(𝜆𝜆𝐴,𝑅𝐴){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐵,𝑅𝐵){𝑡} 

Which means the simulated instance of A occurs, that of B also occurs and the next 

time-to-failure of A is less than that of B. Evaluating A<B is quite simple. However, this 

cannot be said of A<B|C. Assume A<B evaluates to X, then the condition necessary for 

X|C, XporC, to occur, if || is the logical OR, is 

𝑋𝑋𝑝𝑜𝑟𝐶 = (𝑅𝑋 ≤ 𝐹(𝜆𝜆𝑋){𝑡} && 𝑅𝐶 ≤ 𝐹(𝜆𝜆𝐶){𝑡} && 𝑇𝑇𝐹(𝜆𝜆𝑋 ,𝑅𝑋){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐶 ,𝑅𝐶){𝑡} )|| (𝑅𝑋 ≤ 𝐹(𝜆𝜆𝑋){𝑡} && 𝑅𝐶 > 𝐹(𝜆𝜆𝐶){𝑡})  

Which means the simulated instances of X and C occur and X occurs before C or X oc-

curs but C does not. The next step is the incorporation of ApandB into XporC. This pre-

sents some challenges. ApandB is a Boolean value which could be a True or a False. 

Evaluating 𝐹(𝜆𝜆𝑋){𝑡}  or 𝑇𝑇𝐹(𝜆𝜆𝑋 ,𝑅𝑋){𝑡} < 𝑇𝑇𝐹(𝜆𝜆𝐶 ,𝑅𝐶){𝑡}  requires numerical values 
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(failure rates) not Boolean values. Therefore, simply replacing X with ApandB is im-

practical. 

To solve this problem, one must consider the sequential order in which the events A, B 

and C occur. A<B means A occurs before B. A<B|C means A occurs before B and B oc-

curs before C if C should occur. Meaning 𝑇𝑇𝐹(𝜆𝜆𝑋 ,𝑅𝑋){𝑡} < 𝑇𝑇𝐹(𝜆𝜆𝐶 ,𝑅𝐶){𝑡} can be 

replaced by 𝑇𝑇𝐹(𝜆𝜆𝐵,𝑅𝐵){𝑡} < 𝑇𝑇𝐹(𝜆𝜆𝐶 ,𝑅𝐶){𝑡}. Therefore, the condition required for 

A<B|C, ApandBporC, to occur is 

𝐴𝑝𝑎𝑛𝑑𝑑𝐵𝑝𝑜𝑟𝐶 = (𝐴𝑝𝑎𝑛𝑑𝑑𝐵 && 𝑅𝐶 ≤ 𝐹(𝜆𝜆𝐶){𝑡} && 𝑇𝑇𝐹(𝜆𝜆𝐵,𝑅𝐵){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐶 ,𝑅𝐶){𝑡} )|| (𝐴𝑝𝑎𝑛𝑑𝑑𝐵 && 𝑅𝐶 > 𝐹(𝜆𝜆𝐶){𝑡}) 

And the condition required for the first MCSQ, A<B|C•E, ApandBporCandE is 

𝐴𝑝𝑎𝑛𝑑𝑑𝐵𝑝𝑜𝑟𝐶𝑎𝑛𝑑𝑑𝐸

= (𝐴𝑝𝑎𝑛𝑑𝑑𝐵 && 𝑅𝐶 ≤ 𝐹(𝜆𝜆𝐶){𝑡} && 𝑇𝑇𝐹(𝜆𝜆𝐵,𝑅𝐵){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐶 ,𝑅𝐶){𝑡} )|| (𝐴𝑝𝑎𝑛𝑑𝑑𝐵 && 𝑅𝐶 > 𝐹(𝜆𝜆𝐶){𝑡}) && 𝑅𝐸
≤ 𝐹(𝜆𝜆𝐸){𝑡} 

The second MCSQ, A<B&dE•C, follows a similar approach however, differs slightly. 

Firstly, it must be noted that, A<B&dE•C = (A<(B&dE)).C. The condition required for 

B&dE occurring is 

𝐵𝑠𝑎𝑛𝑑𝑑𝐸 = 𝑅𝐵 ≤ 𝐹(𝜆𝜆𝐵){𝑡} && 𝑅𝐸 > 𝐹(𝜆𝜆𝐸){𝑡} && 𝑅𝐸 ≤ 𝐹(𝜆𝜆𝐸){𝑡 + 𝑑𝑑} || 𝑅𝐸
≤ 𝐹(𝜆𝜆𝐸){𝑡} && 𝑅𝐵 > 𝐹(𝜆𝜆𝐵){𝑡} && 𝑅𝐵 ≤ 𝐹(𝜆𝜆𝐵){𝑡 + 𝑑𝑑} 

The next level to consider is A<B&dE. Again assuming B&dE=X, the condition required 

for A<X, to occur has already been stated above. Again, it is impractical to substitute 

BsandE into into A<X. A logical solution to this challenge would be to evaluate 

A<B&dE using for following condition 

𝐴𝑝𝑎𝑛𝑑𝑑𝐵𝑠𝑎𝑛𝑑𝑑𝐸 = 𝑅𝐴 ≤ 𝐹(𝜆𝜆𝐴){𝑡} && 𝐵𝑠𝑎𝑛𝑑𝑑𝐸 && 𝑇𝑇𝐹(𝜆𝜆𝐴,𝑅𝐴){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐵,𝑅𝐵){𝑡}  && 𝑇𝑇𝐹(𝜆𝜆𝐴,𝑅𝐴){𝑡} < 𝑇𝑇𝐹(𝜆𝜆𝐸 ,𝑅𝐸){𝑡} 

Meaning, A occurs before the simultaneous occurrence of B and E. Finally, the 

condition required for A<B&dE•C occurring is 

𝐴𝑝𝑎𝑛𝑑𝑑𝐵𝑠𝑎𝑛𝑑𝑑𝐸𝑎𝑛𝑑𝑑𝐶 = 𝑅𝐴 ≤ 𝐹(𝜆𝜆𝐴){𝑡} && 𝐵𝑠𝑎𝑛𝑑𝑑𝐸 && 𝑇𝑇𝐹(𝜆𝜆𝐴,𝑅𝐴){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐵,𝑅𝐵){𝑡}  && 𝑇𝑇𝐹(𝜆𝜆𝐴,𝑅𝐴){𝑡}

< 𝑇𝑇𝐹(𝜆𝜆𝐸 ,𝑅𝐸){𝑡} && 𝑅𝐶 ≤ 𝐹(𝜆𝜆𝐶){𝑡} 
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So far, the Monte Carlo conditions required for MCSQs with two temporal gates have 

been constructed. Unfortunately, each MCSQ in a Monte Carlo simulation, unlike the 

analytical solution, needs to be modelled individually. For example, to evaluate 

A<B•C&dE|F analytically, generic formulae for evaluating pSAND, POR, PAND and 

AND could be used to evaluate (A<B) • ((C&dE)|F). However, for a Monte Carlo 

solution, A<B•C&dE|F will have to be constructed and not evaluated with a generic 

formula. For this reason, there is need for the individual construction of MCSQs such as 

A<B&C|D•E etc.  

Appendix 1 contains a list Monte Carlo conditions for some MCSQs with four or less 

events. It contains MCSQs with combinations of events and temporal gates only. 

MCSQs containing static gates – AND and OR – are ignored because: 

1. If an AND gate is present in a MCSQ, a simple logical AND is needed for their 

modelling. For example, in the construction of A<B&dC•E above, a logical AND 

condition, && 𝑅𝐸 ≤ 𝐹(𝜆𝜆𝐸){𝑡}, was appended to the condition of A<B&dC. 

2. It is rare to find an OR gate in one particular MCSQ; OR gates are usually 

logical disjunctions between various MCSQs. If a MCSQ contains an OR gate, a 

simple logical OR can be used to construct the condition required for it 

occurring. 

Full quantitative analysis of temporal fault trees of safety-critical system can now be 

evaluated. Quantitative analysis of real world critical systems containing several 

hundreds of events and gates manually is almost impractical. Appendix 2 contains 

algorithms based on a modifications of the Shunting-Yard Algorithm (Dijkstra 1961) 

and the Reverse Polish Notation (Burks et al. 1954; Hamblin 1962) to provide a 

programmatic solution which takes in a string of MCSQs, parses them into appropriate 

RPN, evaluates them and calculates the top-event probability. 

 

3.6 Evaluating Systems with Different Failure Distributions 

So far in this thesis, the analytical techniques and simulations proposed are restricted to 

the exponential distribution. In real world scenarios, a safety-critical system may feature 

many components with different failure distributions. The Weibull and lognormal 

distributions are common failure distributions associated with many components 

91  
 



(O’Connor 2011). We present algorithms for modelling, simulating and evaluating such 

dynamic systems with Monte Carlo simulation. 

All temporal gates used in Pandora have particular sequences. Therefore to model these 

gates, one would have to consider the sequential dependencies encapsulated by these 

gates. Just as earlier described, the TTF property of events is use to model the dynamic 

behaviours of temporal gates. As already mentioned, simulation for the exponential 

distributions have already been provided for the PAND (Algorithm 3.2-1), POR 

(Algorithm 3.1-1), pSAND (Algorithm 3.4-1), OR (Algorithm 2.2-1) and AND 

(Algorithm 2.2-2) gates.  

We present the modelling of all these gates for both the Weibull and Lognormal 

distributions. It must be noted that throughout this section, F(a, b ,t) and TTF(a, b, r, t), 

are the CDF and TTF respectively for an event with α=a and β=b (for a Weibull 

distribution) or µ=a and σ=b (for a Lognormal distribution); r is a random number 

representing the failure probability of an event. r_x means the failure probability of an 

even X. ‘t’ represents the system lifetime. The TTF of the Weibull and lognormal 

distributions below, can be calculated from the CDF of both distributions stated in (2.1-

22) and (2.1-18) respectively. 

𝑇𝑇𝐹𝑊𝑒𝑖𝑏𝑢𝑙𝑙 = 𝛼. �log �
1

1 − 𝑟
�

𝛽

 
 

( 3.6-1) 

𝑇𝑇𝐹𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 = 𝑒𝜎.Φ−1(𝑟)+𝜇 
( 3.6-2) 

We provide algorithms for modelling the pSAND, PAND and POR gates conditions for 

Monte Carlo simulation of two events x and y below. && and || represent the logical 

AND and OR respectively. 

Algorithm 3.6-1: CDF of event X having a Weibull distribution 
Require: a, b, r_x, t 
return r_x<=(1 - Exp(-Power((t / a), b))) 

 
Algorithm 3.6-2: CDF of event X having a Lognormal Distribution 
Require: a, b, r_x, t 
return r_x <= CDF(Log(t) - a) / b)  //Note: CDF is the standard normal CDF function 

 
Algorithm 3.6-3: TTF for Weibull Distribution 
Require: a, b, r, t 
return a * Power(Log(1 / (1 - r)), 1 / b) 
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Algorithm 3.6-4: TTF for Lognormal Distribution 
Require: a, b, r, t 
return Exp(b * InverseCDF(r) + a) 

 
Algorithm 3.6-5: SimPAND 
Require: r_x, x_a, x_b, r_y, y_a, y_b, t 
return r_x <= F(x_a, x_b, t) && r_y <= F(y_a, y_b, t) && 
           TTF(x_a, x_b, r_x, t) < TTF(y_a, y_b, r_y, t) 

 
Algorithm 3.6-6: SimPOR 
Require: r_x, x_a, x_b, r_y, y_a, y_b, t 
return (r_x <= F(x_a, x_b, t)) && r_y <= F(y_a, y_b, t) &&  
                    TTF(x_a, x_b, r_x, t) < TTF(y_a, y_b, r_y, t) || 
                    (r_x <= F(x_a, x_b, t) && r_y > F(y_a, y_b, t)) 

 
Algorithm 3.6-7: SimSAND 
Require: r_x, x_a, x_b, r_y, y_a, y_b, d, t 
return (r_x <= F(x_a, x_b, t) && r_y > F(y_a, y_b, t) && 
                    r_y <= F(y_a, y_b, t+d)) || (r_y <= F(y_a, y_b, t) && 
                    r_x > F(x_a, x_b, t) && r_x <= F(x_a, x_b, t+d)) 
 
 
SimPAND, SimSAND and SimPOR are generic conditions for modelling the PAND, 

pSAND and POR conditions for Monte Carlo simulation for both the Weibull and 

lognormal distributions. To demonstrate how to model a system with different failure 

distributions, we consider the HPS example described in chapter 1. The following 

assumptions are made: 

1. the medical device, MD, has a cumulative damage effect and therefore has an 

exponentially distributed failure behaviour. 

2. the main electricity sub-system, E, is subject to corrosion maintenance and 

therefore has a failure behaviour of a Weibull distribution. 

3. the generator sub-system, G, is subject to a repair time distribution that is a 

lognormal distribution. 

4. MD fails if E and S fail 0.05 seconds apart; that is d = 0.05. 

5. the sensor, S, comprises of capacitors and integrated circuits with exponential 

distribution. 

6. The input command to power the medical device, I, is trivial; the input will 

always be made when necessary. 
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As a reminder, the MCSQs of HPS are: 

1. I (Input command – this is ignored from hence forth) 

2. MD (internal failure of medical device) 

3. S<E (failure of sensor before electricity) 

4. S&0.05E (simultaneous failure of sensor and electricity) 

5. E.G (failure of electricity and generator) 

Before modelling the entire system failure, we construct simulation conditions that must 

be satisfied for each MCSQs to occur.  

Algorithm 3.6-8: SimMD 
Require: r_md, md, t 
return r <= (1-Exp(-md*t))  
 
In Algorithm 3.6-8 r_md, and t as as described earlier. md is the failure rate of MD. The 

algorithm determines if MD, which is exponentially distributed, has occurred. 

Algorithm 3.6-9: SimSpandE 
Require: r_s, s, r_e, e_a, e_b, t 
return r_s <= (1-Exp(-s*t)) && r_e<=(1 - Exp(-Power((t / e_a), e_b))) && 
           (1 / s) * Log(1 / (1 – r_s)) < e_a * Power(Log(1 / (1 – r_e)), 1 / e_b) 
 
Algorithm 3.6-9 models the condition where S occurs before E – S<E. S<E occurs when 

S occurs and E occurs and the TTF of S is less than that of E. In this model, S is 

exponentially distributed and E has a Weibull distribution. 

Algorithm 3.6-10: SimSsandE 
Require: r_s, s, r_e, e_a, e_b, d, t 
return (r_s <= (1-Exp(-s*t)) && r_e>(1 - Exp(-Power((t / e_a), e_b))) &&  
                    r_e<=(1 - Exp(-Power((t+d / e_a), e_b)))) ||  
                   (r_e<=(1 - Exp(-Power((t / e_a), e_b))) && 
                    r_s > (1-Exp(-s*t)) && r_s <= (1-Exp(-s*(t+d))) 
 

Algorithm 3.6-10 models the condition where S and E occur within a duration of 

interval d – S&dE. S is exponentially distributed and E has a Weibull distribution. 

Algorithm 3.6-11: SimEandG 
Require: r_e, e_a, e_b, r_g, g_a, g_b, t 
return (r_e<=(1 - Exp(-Power((t / e_a), e_b))) && r_g<=(CDF(Log(t) – g_a) / g_b)   
 

Algorithm 3.6-11 is a simple condition that checks if E and G have occurred; the former 

has Weibull failure distribution whist the later has lognormal failure distribution. 
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Algorithm 3.6-12: Estimating the HPS system failure probability 
S ← 0 
for k = 1 to T do 
     if (SimMD || SimSpandE || SimSsandE || SimEandG) then 
          S ← S + 1 
     end if 
return S/T 
 

Algorithm 3.6-12 is a Monte Carlo simulation model that uses the previously discussed 

conditions to estimate the probability of a total system failure of HPS. These different 

component/sub-system failure distributions of a particular system are rarely discussed in 

literature; most researchers assume a system to have one failure distribution. 
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Chapter Four 

TEMPORAL QUALITATIVE ANALYSIS 

 

The primary goal of this thesis is the quantitative analysis of temporal fault trees of 

safety-critical systems. This chapter provides two new improvements to the qualitative 

analysis that makes the quantitative analysis possible. First of all, it describes how a 

temporal safety analysis technique – Pandora – can be modularised to enhance its 

efficiency. The modularisation approach proposed is a simple technique that reduces the 

size of cut sequences to be analysed at a particular instance by breaking the cut 

sequencesinto logical chunks that can be analysed recursively. The second technique is 

based on Binary Decision Diagrams (BDD), where temporal behaviours are introduced 

into BDDs and evaluated with novel procedures to produce MCSQs from which 

quantitative analysis can be performed. Finally, some examples are given to 

demonstrate the potential of these techniques. 

 

4.1 Groups and Modules Modularization Technique (GMMT) 

In fault tree analysis, modularisation is, primarily, a way of categorizing large fault trees 

into logically related modules to enhance computational efficiency (Dutuit and Rauzy 

1996). In DFTs, modularization is used to group dynamic fault trees into those with 

temporal gates and those with static gates. Modules with static gates are analysed using 

traditional FTA approaches, especially BDD, whilst modules with dynamic gates are 

analysed with Markov approaches (Gulati and Dugan, 1997). This modular approach 

harnesses the strengths of both techniques. By doing so, the computational efficiency 

and accuracy of the evaluations are enhanced. 

As mentioned earlier, Pandora, a temporal fault tree analytic technique, has two primary 

approaches – Archimedes and Euripides – for logically analysing temporal fault trees. 

The third approach is a combination of both techniques and the use of modularisation 

(Walker, 2009). Pandora employs the Linear Time Algorithm (LTA) (Dutuit and Rauzy, 

1996) for evaluating large fault trees. LTA, unlike Gulati and Dugan’s (1997) 

technique, focuses on ‘independent’ subtrees of a large fault tree. A simple example of 

how LTA can be used in Pandora is the evaluation of the expression A&(B|D + B.D) + 

(C|(E• (F+E))) described in (Walker, 2009). 
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Using LTA, this expression has four modules: 

Module 1: A&(B|D + B.D) 
Module 2: (B|D + B.D) 
Module 3: (C|(E.(F+E)) 
Module 4: (E.(F+E)) 

The fourth module has only static gates and is analyzed with classical FTA techniques 

to produce E. Substituting this result into the third module produces C|E. Archimedes or 

Euripides could be used in evaluating the second module and this will produce B. 

Substituting this into the first module produces A&B. Therefore the MCSQ of the 

expression is A&B + C|E. Unfortunately, this technique may not be able to detect some 

subtle completions that may exist in CSQs such as: 

A&(B|D + B.D) + (A<(B.(F+B))) + (B<A).(A|E + A.E)  

Breaking the above CSQs into modules:  

Module 1: A&(B|D + B.D) 
Module 2: B|D + B.D = B 
Module 3: (A<(B.(F+B))) 
Module 4: B.(F+B) = B 
Module 5:(B<A).(A|E + A.E) 
Module 6: A|E + A.E = A 
Note that: (B<A).A = A 

Substituting Module 6 into 5 produces B<A, 4 into 3 produces A<B and 2 into 1 

produces A&B. Therefore the entire expression reduces to A&B + A<B + B<A. Without 

applying Achimedes to these CSQs, one may think they are minimal; this is inaccurate. 

A&B + A<B + B<A actually reduces into A•B. How then can such a set of CSQs be 

modularised so that such completions can be identified and solved? The quest to solve 

this challenge has led to the Groups and Modules (GM) modularisation technique.  

The GM approach seeks to modularise temporal fault trees using Euripides and 

eliminating redundancies, contradictions and completions using Archimedes. GM has 

three principal phases: Classification, Combination, Comparison. The following are 

discussions of these phases in details. 

4.1.1 Classification 

Classification is the process of putting CSQs into groups and modules. A group is a set 

of CSQs with the same number of distinct events whilst a module is a set of CSQs with 
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exactly the same events. Classification has four processes: Euripides (already 

described), cut-off, grouping and regrouping. 

Cut-Off 

The cut-off stage applies a logical cut-off on CSQs. A cut-off value of 4 means only 

CSQs with a maximum of 4 distinct events will be considered in an analysis. That is to 

say, if a cut-off of 4 applies, A•B<A|C&A•D will not be cut off but A•B<C|D&E will be 

cut off; the former has 4 distinct events but the later has 5. 

Grouping 

This process involves the arrangements of CSQs into groups; all CSQs in a group 

contain the same number of distinct events in increasing order. For example, Group 1 

will contain only CSQs with one distinct event, Group 2 will contain CSQs with only 

two distinct events, Group 3 will contain CSQs with only 3 distinct events and so on. It 

does not matter the number of times an event repeats itself in a CSQs. Grouping does 

not count the total number of events but the number of distinct events. Therefore the 

CSQs, A•B<A|C&A, A•C|G and X<Y<Z, contain only three distinct events each and 

would be in the same group. 

The final process of grouping is the classification of CSQs in groups into Modules. 

Modules contain exactly the same distinct events. Individual CSQs in a group are called 

Modules. Therefore, A•B<A|C&A and A<B<C will belong to the same module because 

they have exactly the same events – A, B and C – whilst A•C|G will belong to another 

module because though it contains A and B, it has G instead of a C. Both modules will 

however belong to the same group. To clarify the GM technique more practically, 

consider the ‘unminimised’ top-event below: 

F|G + C + A<B + E&B|D + A + A&B + E<G + F.G + H&D<G.I + A<B&C + 
G<E + E&G + E<B&C + B.D 

These CSQs can be arranged into four groups with modules as seen in the table below. 

Group 1 has two modules A and C. Group 2 has four modules, Group 3 has three 

modules and Group 4 has one module. Module 3 of Group 2, G<E + E<G + E&G, has 

only two distinct events E and G though it has three CSQs. This table of groups 

(columns) with corresponding modules (rows) is referred to as the the Groups and 

Modules Table (GMT). GXMY means Group X Module Y. Therefore, G2M2 is B•D. 
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            Group 1  Group 2  Group 3 Group 4 
Module 1:  A   A&B + A<B  A<B&C H&D<G.I 
Module 2:  C  B.D   E&B|D 
Module 3:   G<E + E<G + E&G E<B&C 
Module 4:   F|G + F.G 

Regrouping 

Once groups with modules have been formed, each module in the group is minimised 

using Archimedes. This is done from the first module in the first group to the last 

module in the last group. As each module is minimized, its number of distinct events 

can either decrease or remain the same; it cannot increase. If the number of events in the 

module decreases after this process, the module is regrouped – put in the group 

containing its number of distinct events. After a module is regrouped, it may belong to 

an entirely new module if none of the modules in the new group has the same distinct 

events or it may be added to a module with exactly the same events. The new module is 

also minimised and regrouped. This goes on until no regrouping is possible after a 

minimization. 

From the example given in the Grouping phase, no module in Group 1 can be regrouped 

because they are critical events and cannot be minimised any further. G2M1 and G2M2 

cannot also be minimised so they remain as they are. G2M3, G<E + E<G + E&G 

minimizes to G•E but cannot be regrouped so it remains in Group 2. However, Module 

4 F|G + F•G reduces to F therefore will be regrouped into Group 1 resulting in the 

GMT below. 

Group 1  Group 2  Group 3 Group 4 
Module 1:  A   A&B + A<B  A<B&C H&D<G.I 
Module 2:  C  B.D   E&B|D 
Module 3: F  G.E    E<B&C 

4.1.2 Combination 

Combination is a recursive process of combining various CSQs and minimizing them 

using Archimedes. This is done by removing modules from their groups/modules, 

minimizing them and regrouping the result. The process starts by considering each 

module in turn, starting from the first group to the last. Each module is combined with 

other modules which contains all of its events, minimized and regrouped. Considering 

the example used in the classification phase, G1M1 cannot be combined with G1M2 or 

G1M3 because they belong to the same group, neither can it be combined with G2M2 

because it does not contain A. The first possible combination is G1M1 with G2M1 – A + 
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A&B + A<B – because G2M1 contains all the events in G1M1. This should produce the 

result A, which when regrouped produces the following GMT. 

Group 1  Group 2  Group 3 Group 4 
Module 1:  A   B.D   A<B&C H&D<G.I 
Module 2:  C  G.E   E&B|D 
Module 3: F     E<B&C 

With no modules in Group 2 containing all the events in G1M1, the next step in 

combination is to evaluate G1M2 with G3M1 – A + A<B&C. This also produces A, 

therefore the resulting GMT becomes 

Group 1  Group 2  Group 3 Group 4 
Module 1:  A   B.D   E&B|D H&D<G.I 
Module 2:  C  G.E   E<B&C 
Module 3: F      

This ends the combination process with G1M1 because no other module in Group 3 or 

Group 4 contains all of its events. The next module in Group 1, G1M2, is considered for 

combination. No module in Group 2 contains all the events of G1M2 so no combination 

with Group 2 is possible. The only module in Group 3 containing the events of G1M2 is 

G3M2, E<B&C; Evaluating G1M2 with G3M2, C + E<B&C, produces C which is 

regrouped. The only module in Group 4 does not contain the events in G1M2 and the 

GM table reduces to 

Group 1  Group 2  Group 3 Group 4 
Module 1:  A   B.D   E&B|D H&D<G.I 
Module 2:  C  G.E    
Module 3: F      

Th next step is the combination of F in G1M3 but there is no module in groups 2, 3 and 

4 containing F so the GM table remains unchanged. With all modules in Group 1 

considered, modules in Group 2 will be used for combination. Combination does not 

consider groups of lower levels, therefore, the first module to be reduced is E&B|D in 

Group 3. B•D + E&B|D produces B•D + B&E. It must be noted that before 

minimization, both B•D and E&B|D are removed from their respective groups and after 

minimization the result, B•D and B&E is regrouped producing the GMT below. 

Group 1  Group 2  Group 3 Group 4 
Module 1:  A   G.E     H&D<G.I 
Module 2:  C  B.D    
Module 3: F  B&E    
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At this point, Group 3 becomes void of modules. We continue to reduce H&D<G.F in 

Group 4 using B•D. Unfortunately, H&D<G•I does not contain all the distinct events in 

B•D. For the same reason G•E and B&E, the remaining modules in Group 3 cannot be 

used for combination with H&D<G•I. Since Group 3 has no modules, the combination 

process ends. 

4.1.3 Comparison 

Comparison is a simple phase that has three processes – declassifying, classification and 

comparison. The declassification is the process of converting GMTs into a set of CSQs. 

Classification has already been described. The final process is the comparison, where 

the GMT from the classification process in this phase is compared to the previous GMT 

in the combination phase. If both GMTs are not the same Combination and Comparison 

are repeated until they are. When they are the same, the modules in the final GMT are 

the MCSQs. Applying these processes to the previous GMT will involves the following: 

Declassification - converting GMT into CSQs: 

A + C + F + B.D + G.E + B&E + H&D<G.I 

Classifying the result: 

Group 1  Group 2  Group 3 Group 4 
Module 1:  A   G.E     H&D<G.I 
Module 2:  C  B.D    
Module 3: F  B&E   

The final step is comparison. Comparing the above GMT with that from the 

combination stage shows that the GMT produced in both phases are the same. This 

complete the GM analysis and the various modules A, C, F, B•D, G•E, B&E, H&D<G•I 

are the MCSQs. 

4.1.4 Strengths and Limitations of the GMMT Approach 

The GMMT approach, unlike Euripides, is able to detect and elimitate subtle 

completions. This is due to the fact that it evaluates all CSQs with the same number of 

distinct events in one module using Archimedes. Also, unlike Archimedes, GMMT is 

not restricted by the number of distinct events provided the cut-off is less than 4. In the 

example used in section 4.1.3, nine distinct events, A, B, C, D, E, F, G, H, I, were 

present in the analysis.  
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Using Archimedes alone to evaluate a set of CSQs with nine distinct events will require 

high computing resources and time (evaluating 2.96917108E10 possible temporal 

sequences); it is certainly impractical to do this manually. However, the GMMT 

approach is such that Archimedes is used several times to evaluate CSQs of smaller, 

usually less than 4, distinct events. 

Unfortunately, GMMT has some limitations. Though it can be used for CSQs with 

several distinct events, due to its use of Archimedes, it is restricted to a cut-off of 4. 

Meaning, no single CSQs should have more than 4 distinct events. This may not be a 

limitation in some cases where a logical cut-off of 4 is required; CSQs with more than 

four distinct events are less probable to occur. Another disadvantage is the fact that 

Archimedes is used several times in GMMT. An ideal solution will be to have 

Archimedes evaluate the entire set of CSQs in one evaluation. However, at the moment, 

this is a challenge when CSQs with more than 5 distinct events are considered. 

Finally, GMMT may not be very practical until an efficient technique for analyzing 

Archimedes and/or Euripides is developed. However, until then, it tremendously 

improves the qualitative analysis of temporal fault trees using both Archimedes and 

Euripides. A more realistic application of GMMT is described in Chapter 5. 

 

4.2 Temporal Binary Decision Diagrams (TBDD) 

As discussed in earlier chapters, BDD is an alternative technique for evaluating tradi-

tional fault trees. Previous research (Sinnamon and Andrews 1998) shows that with an 

appropriate event ordering, they can accurately and efficiently evaluate the top-event 

probability without minimising the fault tree. BDDs are mainly employed in classical 

FTA. The author is not aware of any use of BDDs in temporal fault trees.  

In this chapter, a novel technique for analysing temporal fault trees using BDDs is dis-

cussed. This technique, known as Temporal Binary Decision Diagram (TBDD), uses a 

mathematical sub-tree containment technique in minimising temporal fault trees to pro-

duce MCSQs which are then used in evaluating the top-event probability. Note that, 

unlike the classical BDD, TBDD is unable to produce the top-event probability from 

‘unminimised’ temporal fault trees but is useful because it forms the foundation for 

evaluating temporal fault trees with BDDs. 
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4.2.1 Introducing Temporal Binary Decision Diagrams 

This section contains a novel technique for analysing temporal fault trees using Binary 

Decision Diagrams (BDDs). It commences with the definition of a modified If-Then-

Else structure to contain the temporal relations. Secondly, it describes very important 

minimisation operators – “contains” and “is-contained in” – that helps reduce temporal 

fault trees into their smallest forms. A procedure for analysing TBDDs is constructed 

and some examples of the use of TBDD are analysed. 

Temporal Binary Decision Diagram Structure 

TBDD is an extension of the traditional BDD approach. The most significant feature of 

TBDD is its ability to consider the temporal gates in its analysis. TBDD, just like the 

traditional BDD, is a directed acyclic graph with only two leaves: 0 encoding a success 

state and 1 encoding a failed state.  

TBDD introduces a new structure called the If-Relation-Then-Else (irte) structure which 

is a slight extension of the traditional BDD If-Then-Else (ite) structure (Rauzy 1993). 

As an extension of BDDs ite structure, TBDD’s irte structure has an additional element 

to represent the temporal relation between an event and its left child event (conjunctive 

event). Fig. 4.2-1 is an expression and graphical representation of a basic TBDD irte.  

 

 

 

Figure  4.2-1: Basic TBDD irte structure 

In the ordered quadruple node irte(X,Ox,f1,f2), X is the Boolean variable or event repre-

sented by the node. Ox is the relationship between the current node and its conjunctive 

node on its 1 leaf. f1, and f2 are the logical functions on its 1-branch and 0-branch re-

spectively. The irte is the If-Relation-Then-Else operation 

if X with a relation Ox then 
      consider f1 
else 
      consider f2 
end if 

 irte(X,Ox, f1, f2) 

 

f2 

X 

1 0 

f1 

Ox 
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Ox can be represented by ‘<’, ‘|’ or ‘&’ for PAND, POR or SAND respectively. It can 

also be ‘:’ for an end of a PAND operation or ‘-’ for no temporal relation.  If X is a basic 

event, the no temporal relation ‘-’ and end of temporal relation ‘:’ can be ignored.  

Sub-tree Containment 

Lozano and Valiente (2004) provide a technique for detecting if a tree is a sub tree of 

another tree. They represent binary trees with “well-formed parenthesis strings” they 

refer to as balanced sequences. 

To obtain a balance sequence of a tree, the tree is traversed depth-first; a descent is rep-

resented with a ‘0’ ascent with a ‘1’. For example, the ordered balanced sequence of the 

binary tree in Fig. 4.1-2 is 000010110110010111001011.  

 

 

 

 

Figure  4.2-2: Directed binary tree 

Due to the way they are structured and formed, balanced sequences will always have an 

even number of characters with equal amounts of ‘0’s and ‘1’s. They also always start 

from a ‘0’ and end on a ‘1’. They do not take into account the node but rather the 

branches relating the nodes. Therefore, the names of the nodes do not matter. 

A tree X is said to be contained in another Y if either X = Y or there exist balanced se-

quences x1, x2, ..,xn and y1, y2,...,yn with xi ⊆ yi, 1 ≤ i ≤ n, such that X = x1 x2 ..xn and Y = 

y1 y2...yn. Therefore, the tree in Fig. 4.1-2 has the following sub-trees: 0101, 001011. 

Fig. 4.1-3 clearly shows how some of the sub-trees and how they are related. 

 

 

Figure  4.2-3: Balanced sequence 

Lozano and Valiente 's (2004) technique cannot be applied to temporal fault trees for 

two major reasons: 
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1. Inclusion of nodes 

From the balanced sequence, one cannot determine the types of nodes. Ignoring 

the node names, the balanced sequence of A•B is 0011 and the balanced se-

quence for M•N is 0011. Though A•B and M•N have the same balanced se-

quence, they are not necessarily equivalent. Adopting balanced sequences in re-

liability engineering requires that the nodes of binary tree from which balanced 

sequences will be generated include the events they represent. Meaning, the 

name of the node comes first in the balanced sequence and its branches are con-

sidered. The name of the node is written only once; it comes before the first de-

scent branch and does not reappear after the last ascent branch.   

Another issue to be resolved is the ‘0’s and ‘1’s used for descent and ascent re-

spectively on branches and those used for ‘success’ and ‘failed’ states respec-

tively. Using ‘0’s and ‘1’s for both situations will be chaotic and confusing. For 

the purpose of demonstration, the ‘0’s used for descent and ‘1’s used for ascent 

are represented by ‘↓’ and ‘↑’ respectively. If nodes/events are considered in 

balanced sequences and branches are represented with ‘↓’ and ‘↑’ for descent 

and ascent respectively, the balanced sequence of A•B in Fig. 4.1-4A will be 

A↓B↓1↑↓0↑↑↓0↑.  

 

 

 

 

 

Figure  4.2-4: Directed binary tree of A.B 

However, the inclusion of ‘failed’ and ‘success’ states makes analysis cumber-

some since the balanced sequences are unnecessarily longer. They are therefore 

ignored in this thesis and the ‘↓’ and ‘↑’ are replaced with the original ‘0’ and 

‘1’ respectively. A•B therefore, will have the balanced sequence A0B1. The 

‘failed’ and ‘success’ states are disregarded. 

 

2. Inclusion of Sequences 

Traditionally, balance sequences do not consider the order in which 

nodes/events occur because they were not made to represent dynamic systems in 

the first place; they represent binary data structures. 
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Again, in this thesis, balanced sequences are modified slightly to include the dy-

namic relations existing between nodes. Every descent that is a temporal relation 

between a parent node and a child node is represented with the logical relational 

symbol ‘&’, ‘<’, ‘|’, ‘.’ or ‘+’ instead of a ‘0’. Therefore, A<B will have a bal-

anced sequence A<B1. 

For these reasons, the definitions of balanced sequence and sub-tree containments are 

redefined to include temporal behaviour. They are also renamed to temporal balanced 

sequence and temporal sub-tree containment. 

Temporal balanced sequence: 

If X is a tree with n edges, the temporal balanced sequence of X, denoted by x, is 

a sequence over {0, *, 1} (where ‘*’ is either ‘<’ or ‘&’ or ‘|’) of 3n + 1 sym-

bols defined as follows. The balanced sequence of a terminal node is an empty 

sequence. The balanced sequence of a non-terminal node is acquired by concat-

enating the balances sequences of the children of that node, each of them pre-

ceded by the name of the node, a 0 for a descent and an additional 1 for an as-

cent. The balanced sequence of X is the balanced sequence of the root of X. A 

string x over {0, *, 1} is a balanced sequence if there is a tree T such that t is its 

balanced sequence. 

Temporal Sub-tree Containment: 

A tree X is said to be contained in another Y if either X = Y or there exist bal-

anced sequences x1, x2, ..,xn and y1, y2,...,yn with xi ⊆ yi, 1 ≤ i ≤ n and all tem-

poral symbols in Y changed to 0s, such that X = x1 x2 ..xn and Y = y1 y2...yn.  

Two important binary operators responsible for checking if a TBDD structure is con-

tained in another are described as follows. The ‘contains’ operator, represented by ‘⊇’, 

checks if a left hand operand contains or consists of a right hand operand. Conversely, 

the ‘is contained in’ operator, represented by ‘⊆’, checks if a left hand operand is con-

tained in or consists of a right hand operand. For example the balanced sequence B0C1, 

A0C1, B0D<E11, A0F1 and D<E1 will be contain in the balanced sequence 

A0B0C10D<E1110F1. 
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TBDD Procedure 

To make TBDD analyses easier, all CSQs with parentheses have to be expanded before 

a ‘contains’ or ‘is contained in’ operation can take place. For example, using Pandora’s 

laws, A<(B•C) will be evaluated into A<B•C + A<C•B before TBDD analysis can be 

undertaken. The order introduced by a temporal gate always overrides the order pre-

scribed for a TBDD tree traversal. For example, if A→B is the order for a tree traversal, 

B<A is irte(B,<,ite(A,-,1,0),0) instead of irte(A,<,ite(B,-,1,0),0). 

TBDD structure is defined as follows. Given that:  

A = irte(X, Ox, fx1, fx2)  

B = irte (Y, Oy, fy1, fy2)  

‘X⊇Y’ = X contains Y and 

‘X⊆Y’ = X is contained in Y.  

If X→Y (unless order in temporal term says otherwise), then:  

A + B = irte(X, Ox, fx1, fx2 + B) 

                      = irte(X,Ox,fx1, fx2 + irte(Y, Oy, fy1, fy2))             ( 4.2-1) 

A . B = irte(X,Ox, fx1 . B, fx2 . B) 

                  =irte(X,Ox,fx1.irte(Y,Oy,fy1,fy2),fx2.irte(Y,Oy,fy1,fy2))           ( 4.2-2) 

If X=Y and Ox=‘-’, then: 

A + B = irte(X, Ox, fx1 +  fy1, fx2 +  fy2)              ( 4.2-3) 

If X=Y and Oy=‘-’, then: 

A . B = irte(X, Ox, fx1 .  fy1, fx2 .  fy2)              ( 4.2-4) 

If X⊆Y:  

A + B = irte(X, Ox, fx1 +  fy1, fx2 +  fy2)              ( 4.2-5) 

A . B = irte(Y, Oy, fx1 .  fy1, fx2 .  fy2)              ( 4.2-6) 

If X⊇Y:  

A + B = irte(Y, Oy, fx1 +  fy1, fx2 +  fy2)              ( 4.2-7) 

A . B = irte(X, Ox, fx1 .  fy1, fx2 .  fy2)              ( 4.2-8) 

If A is a set of CSQs and M is a subset of A such that for each member, i, of M, Mi⊆B:  

A + B = (A – M1) + (M1 + B)                ( 4.2-9) 
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If A is a set of CSQs and M is a subset of A such that for each member, i, of M, B⊆Mi :  

A + B = (A – M) + (M + B)                         ( 4.2-10) 

Where ‘A–M’ means A without the subset M. 

PAND Gate Operations (Walker 2009) 

1 PAND B = B; 0 PAND B = 0 

The following are some examples of TBDD evaluations. 

 

A + A<B = irte(A,-,1,0) + irte(A,<,irte(B,:,1,0),0) 

     = irte(A,-,1+ irte(B,-,1,0),0+0)                   using (5) 

     = irte(A,-,1,0) = A 

A<B.A = irte(A,<,rite(B,:,1,0),0) . irte(A,-,1,0) 

 = irte(A,<, irte(B,-,1,0).1,0.0)            using (8) 

 = irte(A,<,irte(B,-,1,0),0) = A<B 

A<(B.C) 

In Pandora a<(b.c) = a<b.c + a<c.b, thus: 

A<(B.C) = irte(A,<,irte(B,:, irte(C,-,1,0),0),0) + irte(A,<,irte(C,:, irte(B,-,1,0),0),0) 

               = irte(A,<,rite(B,:,ite(C,-,1,0),0)+irte(C,:,irte(B,- ,1,0),0),0)        using (1) 

               = irte(A,<,irte(B,:,irte(C,-,1,0),irte(C,:,irte(B,-,1,0),0),0) 

A<(B.C)+A = irte(A,<,irte(B,-,irte(C,:,0,1),irte(C,-,irte(B,-,1,0),0),0) + irte(A,-,1,0) 

                    = irte(A,-,1,0) = A                   using (7) 

A<B<C + A<B = irte(A,<,irte(B,<,irte(C,:,1,0),0) + irte(A,<,irte(B,:,1,0),0) 

               = irte(A,<,irte(B,:,1,0),0)                   using (7) 

A<B<C + A<B + A = irte(A,<,irte(B,:,1,0),0) + irte(A,-,1,0) 

                      = irte(A,-,1,0) = A                   using (7) 

For any CSQ without a temporal gate, the traditional BDD procedure is used in deter-

mining the resulting TBDD structure. However, if a temporal gate is present in a CSQ, 

then the new TBDD structure is employed.  

Also, TBDD makes provision for contradictions. If a CSQ with a temporal gate appears 

on the ‘1’ branch of another CSQ with the same events but in reverse order, the entire 

branch is eliminated because it is a contradiction. For example the CSQ A<B•B<A or 
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irte(A, <,irte(B,:,irte(B,<, irte(A,:,1,0),0),0),0) will result in a contradiction and thus is 

eliminated. 

4.2.2 Case Study: Hypothetical System 

This section demonstrates the use of TBDD on a hypothetical system – Fig. 4.2-5. In the 

illustration, the top-event connects directly to nine (9) cut sequences. Two (2) of these 

cut sequences are critical events; four (4) have temporal gates and the remaining three 

(3) have only static gates. There are seven (7) events, five (5) temporal gates (PAND) 

and eight (8) static gates. 

 

 

 

 

 

 

Figure  4.2-5: Hypothetical model 

Top = A<(B.C) + A + A.B.F + E + D.(C+A) + B<F + (E+G).B + C<E + G<F.G<E 

Following the TBDD structure, the first step in the analysis is to employ Boolean and 

temporal expansion laws. 

A<(B.C) = A<B.C + A<C.B       (using the Temporal Distributive Law) 

G<F.G<E = G<E<F + G<F<E       

D.(C + A) = D.C + D.A           (using the Boolean Distributive Law) 

(E + G).B = E.B + G.B            

Therefore, 

Top = A<B.C + A<C.B + A + A.B.F + E + D.C + D.A + B<F + E.B + G.B + C<E + 

G<E<F + G<F<E 

Using the depth first traversal (A→E→B→F→C→D→G) for ordering the tree in 4.2-5: 

A<B.C+A<C.B 

=irte(A,<,irte(B,:,irte(C,-,1,0),0),irte(A,<,irte(C,:,irte(B,-,1,0),0),0)) using (1) 

  Top 

A E 

A 
B 

G E B C 

A B F 

D 

C A 

B F C E 

G F 

G E 

109  
 



A<B.C+A<C.B+A 

=irte(A,-,1,0)                using (10, 4) 

A<B.C+A<C.B+A+A.B.F  

=irte(A,-,1,0)         using (5) 

A<B.C+A<C.B+A+A.B.F+E 

=irte(A,-,1,irte(E,-,1,0))         using (1) 

A<B.C+A<C.B+A+A.B.F+E+D.C 

=irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),0))    using (5) 

A<B.C+A<C.B+A+A.B.F+E+D.C+D.A 

=irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),0))     using (9, 5) 

A<B.C+A<C.B+A+A.B.F+E+D.C+D.A+B<F 

=irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),irte(B,<, irte(F,:,1,0),0))) using (1) 

A<B.C+A<C.B+A+A.B.F+E+D.C+D.A+B<F+E.B 

= irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),irte(B,<, irte(F,:,1,0),0))) using (9, 5) 

A<B.C+A<C.B+A+A.B.F+E+D.C+D.A+B<F+E.B+G.B 

=irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),irte(B,<,  irte(F,:,1,0),irte(B,-,irte 

(G,-,1,0),0))))         using (1) 

A<B.C+A<C.B+A+A.B.F+E+D.C+D.A+B<F+E.B+G.B +C<E 

= irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),irte(B,<, irte(F,:,1,0), 

irte(B,-,irte(G,-,1,0),0))))                         using (9, 5) 

A<B.C+A<C.B+A+A.B.F+E+D.C+D.A+B<F+E.B+G.B +C<E+G<E<F 

= irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),irte(B,<, irte(F,:,1,0),irte(B,-, 

irte(G,-,1,0),0))))                using (9, 5) 

Top = A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F + (E+G).B +  

C<E + G<E<F + G<F<E 

= irte(A,-,1,irte(E,-,1,irte(C,-,irte(D,-,1,0),irte(B,<, irte(F,:,1,0),irte(B,-, 

irte(G,-,1,0),0))))        using (9, 5) 
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Figure  4.2-6: TBDD for A→E→B→F→C→D→G 

Using the depth first traversal (G→D→C→F→B→E→A) for ordering the tree: 

A<B.C = C.A<B      

=irte(C,-,irte(A,<,irte(B,:,1,0),0),0) 

A<C.B = B.A<C 

= irte(B,-,irte(A,<,irte(C,:,1,0),0),0) 

A<B.C + A<C.B 

= irte(C,-,irte(A,<,irte(B,:,1,0),0),0) + irte(B,-,irte(A,<,irte(C,:,1,0),0),0) 

= irte(C,-,irte(A,<,irte(B,:,1,0),0), irte(B,-,irte(A,<,irte(C,:,1,0),0),0)) using (1) 

A<B.C + A<C.B + A 

= irte(C,-,irte(A,<,irte(B,:,1,0),0), irte(B,-,irte(A,<,irte(C,:,1,0),0),0)) + irte(A,-,1,0) 

= (C.A<B +A)+(B.A<C+A) = A+ A      using (10) 

= irte(A,-,1,0)         using (4) 

A<B.C + A<C.B + A + A.B.F 

=irte(A,-,1,0)+irte(F,-,irte(B,-,irte(A,-,1,0),0),0) 

=irte(A,-,1,0)                using (5) 

A<B.C + A<C.B + A + A.B.F + E 

=irte(E,-,1,irte(A,-,1,0))       using (1) 

A<B.C + A<C.B + A + A.B.F + E + D.C 

=irte(E,-,1,irte(A,-,1,0))+irte(D,-,irte(C,-,1,0),0) 

= (E+A)+D.C = E+A+D.C       using (9) 

= irte(D,-,irte(C,-,1,0), irte(E,-,1, irte(A,-,1,0)))    using (1) 
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A<B.C + A<C.B + A + A.B.F + E + D.C + D.A 

= irte(D,-,irte(C,-,1,0), irte(E,-,1, irte(A,-,1,0)))+irte(D,-,irte(A,-,1,0),0) 

= (D.C + E + A) + (D.A) = (D.C + E)+(A + D.A) = D.C + E + A  using (9) 

= irte(D,-,irte(C,-,1,0), irte(E,-,1, irte(A,-,1,0))) 

A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F 

= irte(D,-,irte(C,-,1,0), irte(E,-,1, irte(A,-,1,0)))+ 

= irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-,1,0))))  using (1) 

A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F + B.E  

= irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-,1,0))))+irte(B,-,irte(E,-

,1,0),0) 

=(D.C + E + A+B<F)+B.E =(D.C + A+B<F)+ E+B.E    using (9) 

= D.C + A + E+B<F     

= irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-,1,0)))) 

A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F + B.E + G.B 

= irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-,1,0))))+irte(G,-,irte(B,-

,1,0),0) 

= irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0)))))         using (9) 

A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F + (E+G).B + C<E 

= irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0))))) +irte(C,<,irte(E,:,1,0),0) 

= (D.C + A + E+B<F+G.B)+C<E=(D.C + A + B<F+G.B)+ (E+C<E) 

= D.C + A + E+B<F+G.B       using (9) 

= irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0))))) 

A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F + (E+G).B + C<E + G<E<F 

= irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0)))))  + irte(G,<,irte(E,<,irte(F,:,1,0),0),0) 

= (D.C + A + E+B<F+G.B)+G<E<F  

= (D.C + A + B<F+G.B) +(E+G<E<F) = D.C + A + E+B<F+G.B         using (9) 

= irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0))))) 
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Top = A<B.C + A<C.B + A + A.B.F + E + D.(C+A) + B<F + (E+G).B + C<E + 

G<E<F + G<F<E 

       = irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0)))))+ irte(G,<,irte(F,<,irte(E,:,1,0),0),0) 

= (D.C + A + E+B<F+G.B)+G<F<E  

= (D.C + A + B<F+G.B) +E+G<F<E = (D.C + A + E+B<F+G.B)         using (9) 

= irte(G,-,irte(B,-,1,0), irte(D,-,irte(C,-,1,0), irte(B,<,irte(F,:,1,0),irte(E,-,1, irte(A,-

,1,0))))) 

= G.B + D.C + B<F + E + A 

Using the depth first traversal (F→B→D→E→G→A→C) for ordering the tree: 

A<B.C + A<C.B 

= irte(A,<,irte(B,:,irte(C,-,1,0),0),0)+irte(B,-,irte(A,<,irte(C,:,1,0),0),0) 

= irte(B,-,irte(A,<,irte(C,:,1,0),0), irte(A,<,irte(B,:,irte(C,-,1,0),0),0)) using (1) 

A<B.C + A<C.B + A 

= irte(B,-,irte(A,<,irte(C,:,1,0),0), irte(A,<,irte(B,:,irte(C,-,1,0),0),0))+irte(A,-,1,0) 

= (B.A<C + A<B.C)+A = (B.A<C + A)+A<B.C = A+A<B.C = A  using (10) 

= irte(A,-,1,0) 

A<B.C + A<C.B + A + A.B.F 

= irte(A,-,1,0)+irte(F,-,irte(B,-,irte(A,-,1,0),0),0) 

= irte(A,-,1,0)                using (5) 

A<B.C + A<C.B + A + A.B.F + E 

= irte(A,-,1,0)+irte(E,-,1,0) 

= irte(E,-,1,irte(A,-,1,0))       using (1) 

A<(B.C) + A + A.B.F + E + D.C  

= irte(E,-,1,irte(A,-,1,0))+irte(D,-,irte(C,-,1,0),0)      

= (E + A) + (D.C) = D.C + E + A      using (9) 

= irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0)))    using (1) 

A<(B.C) + A + A.B.F + E + D.C + D.A 

= irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0))) +irte(D,-,irte(A,-,1,0),0) 

= (D.C + E + A) + D.A = (D.C + E )+A+D.A = D.C + E + A  using (9) 

=irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0))) 
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A<B.C + A<C.B + A + A.B.F + E + D.C + D.A+ B<F 

= irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0)))+irte(B,<,irte(F,:,1,0),0) 

= irte(B,<,irte(F,:,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0)))) using (1) 

A<B.C + A<C.B + A + A.B.F + E + D.C + D.A+ B<F+ E.B 

=irte(B,<,irte(F,:,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0))))+irte(B,-,irte(E,-

,1,0),0) 

= (B<F + D.C + E + A) + B.E = (B<F + D.C + A) + B.E+ E= B<F +  

D.C + E + A         using (9) 

= irte(B,<,irte(F,:,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0)))) 

A<B.C + A<C.B + A + A.B.F + E + D.C + D.A+ B<F+ E.B+G.B 

= irte(B,<,irte(F,:,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-,1,0))))+irte(B,-,irte(G,-

,1,0),0) 

=(B<F + D.C + E + A) + G.B= B<F + D.C + E + A + G.B 

= irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-

,1,0)))))         using (1) 

A<B.C + A<C.B + A + A.B.F + E + D.C + D.A+ B<F+ E.B+G.B+C<E 

=irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-

,1,0)))))+irte(C,<,irte(E,:,1,0),0) 

= (B<F + D.C + E + A + G.B)+C<E 

= ( B<F + D.C + A + G.B)+ E+C<E 

= B<F + D.C + E + A + G.B 

= irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0),  

irte(E,-,1,irte(A,-,1,0)))))       using (9) 

A<B.C + A<C.B + A + A.B.F + E + D.C + D.A+ B<F+ E.B+G.B+C<E+ G<E<F 

=irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0),  

irte(E,-,1,irte(A,-,1,0)))))+ irte(G,<,irte(E,<,irte(F,:,1,0),0),0) 

= (B<F + D.C + E + A + G.B) + G<E<F 

=( B<F + D.C + A + G.B)+ E+G<E<F 

=B<F + D.C + E + A + G.B 

=irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-

,1,0)))))         using (9) 
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Top = A<B.C + A<C.B + A + A.B.F + E + D.C + D.A+ B<F+ E.B+G.B+C<E 

         + G<E<F+G<F<E 

= irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-

,1,0))))) + irte(G,<,irte(E,<,irte(F,:,1,0),0),0) 

= (B<F + D.C + E + A + G.B) + G<F<E 

=( B<F + D.C + A + G.B)+ E+G<F<E=B<F + D.C + E + A + G.B  using (9) 

= irte(B,<,irte(F,:,1,0), irte(B,-,irte(G,-,1,0), irte(D,-,irte(C,-,1,0), irte(E,-,1,irte(A,-

,1,0))))) 

= B<F + B.G + D.C + E + A 

It is evident that using all three traversal orders, A→E→B→F→C→D→G, 

G→D→C→F→B→E→A and F→B→D→E→G→A→C the results for the final mini-

mized top event is the same: A + E + B•G + D•C + B<F. It is not guaranteed that this 

will always be the case; future work will be directed towards further investigation into 

this.  

4.2.3 Strengths and Limitations TBDD Approach 

Due to the techniques – ‘contains’ and ‘is-contained in’ – used in the minimization pro-

cess, most ordering of events produce similar MCSQs. TBDD is not restricted to the 

size of a temporal fault tree; even though not proven yet, it is assumed that TBDD 

would be applicable on real world complex systems featuring only the static and PAND 

gates. The number of events in a temporal fault tree does not restrict its analytical capa-

bilities. 

Unfortunately, TBDD has some drawbacks. Unlike the traditional BDD analysis, TBDD 

is unable to produce the top-event probability from ‘unminimised’ CSQs. An area worth 

investigating is the development of a more efficient algorithm for the operations of the 

‘contains’ and ‘is contained in’ operators. Furthermore, TBDD analyses can currently 

accommodate only the Priority-AND gate; thus there is also scope for future work in 

including other temporal gates.  
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Chapter  Five  

CASE STUDY 

 

This chapter describes the functionality of an Aircraft Fuel System (AFS) and demon-

strates how the qualitative and quantitative analysis of such a dynamic safety-critical 

system using Pandora can be achieved. It starts with the detailed description of AFS and 

continues to evaluate it qualitatively and then quantitatively. The novel GMMT ap-

proach described in chapter four is used in the qualitative analysis whilst the quantita-

tive analysis (individual MCSQs and top-event probabilities) is evaluated with simula-

tion and analytical techniques proposed in chapter three. The AFS used in this thesis is a 

modified version of that in Dheedan (2012). 

 

5.1 Aircraft Fuel System (AFS) 

Over the few past decades, aircraft have become one of the major means of international 

and intra-national transportation worldwide. There are increasing efforts to make them 

safer because their failure can lead to significant loss of life. This case study is an analy-

sis of the fuelling system of an aircraft with two on-board engines and five fuel tanks. 

The AFS has two primary functions – storing and distributing fuel in the aircraft during 

both refuelling and consumption modes. Fuel is pumped via the fuelling point and is 

evenly distributed to all fuel storage tanks in the aircraft during refuelling mode. During 

the consumption mode however, the stored fuel is drawn to feed the aircrafts engine(s) 

at specific flow rates. Fig. 5.1-1 is a model of an AFS with port and starboard engines.  

AFS operates with the help of the following components: 

- Five fuel storage tanks: these tanks are positioned along the horizontal axes of the 

aircraft to maintain a balance across its entire body. Two storage tanks are deployed 

to the port wing, two to the starboard wing and one in the centre of the fuselage. Fuel 

storage tanks are kept even and symmetrical along the horizontal axes to avoid any 

imbalances between the wings of the aircraft. 

- Seven bi-directional pumps: individually embedded with speed sensors, these devic-

es can pump fuel in a forward (positive) and reverse (negative) direction at variable 

rates to satisfy the port and starboard engines and maintain an even fuel level across 

the horizontal axes of the aircraft. 
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Figure  5.1-1: A
ircraft Fuel System
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- Thirteen valves: these devices allow fuel to flow in directions they requested by the 

pumps. They are shut to stop any flow of fuel through them. During the normal oper-

ation of AFS some valves are permanently shut whilst others are open to enable it 

achieve its dynamic functionality. 

- Six Flow meters: each flow meter is responsible for measuring the volume of fuel 

flowing across it. Since the pumps are bi-directional, the flow meters are designed to 

determine the direction of flow also – negative or positive. 

- Two jettison points: these are fuel outlets that have a valve and a pump each. The 

pumps draw and release fuel from associated tanks into the atmosphere via the valves 

during an in-flight emergency. This is done to make the aircraft lighter so that it can 

glide to a safer emergency landing. 

- Fuel pipes: these are conduits that connect tanks to engines, refuelling point and jetti-

son points and are interconnected with pumps, valves and flow meters. 

- One Fuel Supply Control Unit (FSCU) : This is a centralised computer for control-

ling the entire AFS by providing the following functions: 

o Ensure the even distribution of fuel to all five tanks during refuelling mode by 

controlling the valves and directions of pumps and determining the amount of fuel 

in each tank using the level sensors. This collaboration between the FSCU and the 

pumps, valves and level sensors ensure that all tanks are adequately fed and to ap-

propriate levels to ensure an even balance of the aircraft. 

o Ensure both port and starboard engines are evenly fed from appropriate tanks dur-

ing consumption mode. This will also require the controlling of pumps, valves and 

flow metres to deliver the required amount of fuel to both engines to satisfy the 

demand thrust. 

o Communicates the status (including measurements) of the AFS with other aircraft 

computing systems. This also involves receiving commands from the cockpit or 

other computing systems to control AFS’s components and executing the com-

mand accordingly. 

The AFS is divided into three sub-systems: Port Feed (PF) sub-system, Central Reserva-

tion (CR) sub-system and the Starboard Feed (SF) sub-system. PF and SF are further 

divided into various subsystems. PF has the Port Outer Sub-system (POS) and the Port 

Inner Sub-system (PIS); these are represented by the blue and red short-dashes lines 

respectively in Fig. 5.1-1. SF has the Starboard Outer Sub-system (SOS) and Starboard 
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Inner Sub-system (SIS); these are represented within brown and green short-dashes 

lines respectively in Fig. 5.1-1. 

5.1.1 Operational Behaviour of AFS 

The operations of AFS can be categorised in two main modes – refuelling and con-

sumption – over the entire flight phase of the aircraft. The refuelling mode takes place 

before a flight (pre-flight) whilst the consumption mode occurs during a flight (in-

flight), which includes the taxiing, take-off, climbing, cruising, approaching and landing 

phases. During the refuelling mode, the FSCU opens CRV to allow fuel flowing from 

the refuelling point into the CRT. CSP and CSV are activated to draw fuel from the 

CRT into SIT and SOT. Prior to this, SEV is shut to avoid fuel flowing into the engine. 

SJV is deactivated whilst SIV and SOV are regulated to allow flow into SIT and SOT 

respectively. The same operation takes place in the Port Feed system to refuel both in-

ner and outer port tanks. After refuelling, the FSCU sets the valves and pumps in posi-

tion, reverse to the refuelling mode, to supply fuel to both engines. 

In normal operation, during consumption mode, PF tanks supply fuel to the port engine 

whilst the SF tanks feed the starboard engine. During this phase, the jettison valves are 

shut. The outer tanks are the primary sources of fuel to the engines while the inner tanks 

are the secondary sources. Therefore to run SE, a demand is placed on the FSCU which 

ensures that SE’s ‘thirst’ is satisfied by the SOT first. In this case, SIV is closed and the 

SIS is dormant. If SOS reads ‘empty’ or SOF fails low (meaning, due to a fault, it reads 

a lower value than expected), SOV is shut and control is directed to draw fuel from SIT 

instead; in this case SOV is closed and SIF is activated.  If SIS reads ‘empty’ or SIF 

fails low, SIV and SCV are closed to deactivate the SF sub-system and SE is fed from 

the CRT, which serves as a tertiary backup. The same order of operations applies to the 

PF sub-system. 

To maintain a steady balance of the aircraft during the failure of any or all subsystems, 

FSCU communicates with another computing system, Aircraft Stability Control Unit 

(ASCU), which, with the use of other conduit/valve systems, ensures that fuel is evenly 

distributed across the horizontal axes of the plane. If for any reason, ASCU is not able 

to maintain a steady balance across the aircraft, it activates appropriate jettison valves 

and pumps to release fuel into the atmosphere to achieve a steady balance. A detailed 

description and functionality of ASCU is outside the scope of this thesis. 
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5.1.2 Temporal Fault Tree Analysis 

The failure of SF, CR and PF is the failure of the entire fuelling system. This means 

there will be no fuel supply to the engines because the aircraft will be in a hazardous 

state – a state any pilot, crewmember or passenger will dread. If either SF or PF fails in 

addition to CR, the aircraft will be in a degraded state – only one engine will be opera-

tional. If anyone of the sub-systems – POS, PIS, SOS or SIS – fails, the aircraft remains 

in an operational state: both engines function normally. If any of the feed systems – PF 

or SF – fails, the aircraft remains operational because CR will substitute the failed feed 

system.  

A typical top-event for AFS would be the failure of both starboard and port engines. 

However, since the aircraft is symmetrical, the qualitative analysis of SF is similar to 

that of PF. If the same components are used in building SF and PF then the quantitative 

analysis of both feed systems will be the same too. For this reason, we consider failure 

of the starboard feed (SF) system as the top-event used for constructing a temporal fault 

tree and qualitative and quantitative analysis of AFS.  

 To model the failure data of AFS, the following abbreviation scheme is adopted: 

• ‘I’ is for internal failure of a components 

• ‘C’ is for the inadvertent commission of a component 

• ‘O’ is for omission of functionality of a component 

• ‘Hi’ if fail high meaning the component reads an erroneous high value instead of 

an accurate lower value. 

Failure of the starboard engines is due to omission of functionality from Starboard En-

gine Flow meter (SEF) (Fig. 5.1-2).  Omission of SEF will occur: 

• if Hi-SEF occurs strictly before an omission of functionality of SCV or  

• if there is an omission in both SIS and SOS at exactly the same time or  

• if there is an omission of SIS before an omission of SOS or  

• if there is an omission of functionality of SCV and CSP. 

O-SEF = Hi-SEF < O-SCV + O-SOS & O-SIS + O-SIS < O-SOS + O-SCV . O-CSP  

The starboard connecting valve (SCV) will fail: 

• if it has an internal failure or  

• if SOS fails and Hi-SEF occurs, both before SIS or both occurring without the 

occurrence of SIS or  
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• if there is an omission of functionality of SCP  

O-SCV = I-SCV + (O-SOS . Hi-SIF) | O-SIS + O-SCP 

There will be no flow through the starboard connecting pump (SCP): 

• if the pump is itself faulty or 

• if there is an omission of functionality of both inner and outer starboard subsys-

tems or 

• if Hi-SOF occurs before the starboard outer subsystem fails: 

O-SCP = I-SCP + O-SIS . O-SOS + Hi-SOF < O-SOS 

The Central Starboard Pump will fail: 

• if there is an internal failure of CRL or  

• if there is an internal failure of CSV or  

• if CSP has an internal failure 

O-CSP = I-CRL + I-CSV + I-CSP 

The starboard outer subsystem will cease operation: 

• if either SOV fails internally or 

• SOL is faulty. 

O-SOS = I-SOV + I-SOL 

The starboard inner subsystem will also fail: 

• if there is an internal failure of either SIV or  

• SIL is faulty. 

O-SIS = I-SIV + I-SIL 

Figure 5.1-2 is a temporal fault tree for the failure of the starboard Feed (SF). The dia-

gram is a graphical representation of the above failure descriptions. 
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Figure  5.1-2: AFS temporal fault tree for “Failure of Starboard Feed” 
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5.2 Qualitative Analysis of AFS 

As discussed earlier, Pandora can perform qualitative analysis using Euripides, Archi-

medes or a combination of both techniques. Unfortunately, Archimedes, due to its high 

demand for computing resources, is unable to analyse the AFS directly – the fault tree is 

too large. Euripides is unable to detect subtle completion within CSQs, and therefore the 

GMMT – combination of Archimedes and Euripides – is used. Below is an outline of 

the GMMT process on the AFS. 

Classification 1: 

1. Euripides  

Evaluate O-SEF using Euripides produces one hundred and sixteen (116) CSQs 

listed in Appendix 3. Some of the CSQs contain doublets, which are decom-

posed further into many more CSQs. For example, the CSQ [Hi-SEF|I-

SOV].[Hi-SEF|I-SOL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] produces eighty-five 

(85) CSQs having five distinct events each. 

2. Cut-Off 

To reduce the size of the CSQs in this case study, we implement a logical CSQ 

cut-off of 4. CSQs of the order five and above – meaning having more than five 

distinct events – are ignored in this analysis. We assume the combinations of 

events forming such cut sequences are practically impossible and therefore the 

probability of such a combination occurring is almost negligible. Applying the 

logical cut-off reduces the number of CSQs to 26.  

I-SIL.[I-SOV&I-SIL].I-SIL.I-SOV.I-SOV + I-SOV.[I-SOV&I-SIV]. 
I-SOV.I-SIV.I-SIV + I-SOL.[I-SOL&I-SIV].I-SOL.I-SIV.I-SIV + 
[I-SIV<I-SOV].[I-SIV|I-SOL] + [I-SIV|I-SOV].[I-SIV<I-SOL] + 
[I-SIL<I-SOV].[I-SIL|I-SOL] + Hi-SIF|I-SIL].Hi-SIF.I-CSP.I-SOV. 
I-SOV + I-CRL.Hi-SIF.Hi-SIF.I-SOV.I-SOV + Hi-SIF.Hi-SIF.I-SOV. 
I-SOV.I-CSV + Hi-SIF.Hi-SIF.I-CSP.I-SOL.I-SOL + Hi-SIF.Hi-SIF. 
I-SOL.I-SOL.I-CSV + I-SCP.I-CSP+I-CRL.I-SCP+I-SCP.I-CSV +  
I-CSP.I-SOL.I-SIL + I-CRL.I-SOL.I-SIL + I-SOL.I-SIL.I-CSV +  
I-CSP.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] + I-CRL.[Hi-SOF<I-SOV]. 
[Hi-SOF|I-SOL] + I-CSV.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] + I-CSP. 
[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] + I-CRL.[Hi-SOF|I-SOV].[Hi-SO< 
I-SOL] + I-CSV.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] + I-CSP.I-SCV +  
I-CRL.I-SCV + I-CSV.I-SCV 

As earlier mentioned, pSAND gates are not used in qualitative analysis. They 

are treated as ordinary SAND gates. However, once a temporal fault tree has 

been qualitatively analysed by Pandora to produce MCSQs, individual SAND 

gates can be examined to determine those that demonstrate the pSAND gate be-
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haviour. When the pSAND gates have been determined, they are assigned their 

corresponding d values. 

3. Grouping the above CSQs produces 

Group 1  Group 2  
Module 1:  I-CSP.I-SCV  I-CSP.I-SOL.I-SIL 
Module 2:  I-CRL.I-SCV  I-CRL.I-SOL.I-SIL 
Module 3:  I-CSV.I-SCV  I-SOL.I-SIL.I-CSV 
Module 4:  I-SCP.I-CSP  [I-SIV<I-SOV].[I-SIV|I-SOL] +  

[I-SIV|I-SOV].[I-SIV<I-SOL] +  
[I-SIV<I-SOV].[I-SIV|I-SOL] 

Module 5:  I-CRL.I-SCP  I-CRL.Hi-SIF.Hi-SIF.I-SOV.I-SOV   
Module 6:  I-SCP.I-CSV   Hi-SIF.Hi-SIF.I-SOV.I-SOV.I-CSV 
Module 7:  I-SIL.    Hi-SIF.Hi-SIF.I-CSP.I-SOL.I-SOL 

[I-SOV&I-SIL]. 
I-SIL.I-SOV.I-SOV     

Module 8:  I-SOV.   Hi-SIF.Hi-SIF.I-SOL.I-SOL.I-CSV 
[I-SOV&I-SIV]. 
I-SOV.I-SIV. I-SIV 

Module 9:  I-SOL. 
[I-SOL&I-SIV]. 
I-SOL.I-SIV.I-SIV 

     
Group 3 

Module 1: [Hi-SIF|I-SIL].Hi-SIF.I-CSP.I-SOV.I-SOV 
Module 2: I-CSP.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] +  

I-CSP.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] 
Module 3: I-CRL.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] +  

I-CRL.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] 
Module 4:  I-CSV.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] +  

I-CSV.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] 
 

4. Regrouping step 3 produces the GMT below 

Group 1  Group 2  
Module 1:  I-CSP.I-SCV  I-CSP.I-SOL.I-SIL 
Module 2:  I-CRL.I-SCV  I-CRL.I-SOL.I-SIL 
Module 3:  I-CSV.I-SCV  I-SOL.I-SIL.I-CSV 
Module 4:  I-SCP.I-CSP  I-SIV<I-SOV&I-SOL +  

I-SIV<I-SOV|I-SOL + I-SIV<I-SOL|I-SOV 
Module 5:  I-CRL.I-SCP  I-CRL.Hi-SIF.I-SOV   
Module 6:  I-SCP.I-CSV   Hi-SIF.I-SOV.I-CSV 
Module 7:  I-SIL&I-SOV  Hi-SIF.I-CSP.I-SOL     
Module 8:  I-SOV&I-SIV  Hi-SIF.I-SOL.I-CSV  
Module 9:  I-SOL&I-SIV  
 

Group 3 
Module 1: Hi-SIF<I-SIL.I-CSP.I-SOV + Hi-SIF<I-CSP|I-SIL. I-SOV+ 
          I-CSP<Hi-SIF|I-SIL.I-SOV + Hi-SIF&I-CSP|I-SIL.I-SOV +  

I-SOV<Hi-SIF|I-SIL.I-CSP + Hi-SIF<I-SOV|I-SIL.I-CSP +  
Hi-SIF&I-SOV|I-SIL.I-CSP 
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Module 2: Hi-SOF<I-SOL<I-SOV.I-CSP + Hi-SOF<I-SOV<I-SOL.I-CSP + 
Hi-SOF<I-SOV&I-SOL.I-CSP + Hi-SOF<I-SOV|I-SOL.I-CSP + 
Hi-SOF<I-SOL|I-SOV.I-CSP 

Module 3: Hi-SOF<I-SOL<I-SOV.I-CRL + Hi-SOF<I-SOV<I-SOL.I-CRL 
+ Hi-SOF<I-SOV&I-SOL.I-CRL + Hi-SOF<I-SOV|I-SOL.I-CRL 
+ Hi-SOF<I-SOL|I-SOV.I-CRL 

Module 4:  Hi-SOF<I-SOL<I-SOV.I-CSV + Hi-SOF<I-SOV<I-SOL.I-CSV + 
Hi-SOF<I-SOV&I-SOL.I-CSV + Hi-SOF<I-SOV|I-SOL.I-CSV + 
Hi-SOF<I-SOL|I-SOV.I-CSV 

 

Combination 1: 

Only 3 modules can be combined. These are  

a) G1M7 and G3M1 

b) G1M8 and G2M4 

c) G1M9 and G2M4 

The results of these combinations do not result in different CSQs therefore the GMT 

remains the same. 

Comparison 1: 

1. Declassification produces the following list of CSQs: 

I-CSP.I-SCV + I-CSP.I-SOL.I-SIL + I-CRL.I-SCV + I-CRL.I-SOL. 
I-SIL + I-CSV.I-SCV + I-SOL.I-SIL.I-CSV + I-SCP.I-CSP + I-SIV< 
I-SOV&I-SOL + I-SIV<I-SOV|I-SOL + I-SIV<I-SOL|I-SOV + I-CRL. 
I-SCP + I-CRL.Hi-SIF.I-SOV + I-SCP.I-CSV + Hi-SIF.I-SOV.I-CSV + 
I-SIL&I-SOV + Hi-SIF.I-CSP.I-SOL + I-SOV&I-SIV + Hi-SIF.I-SOL. 
I-CSV + I-SOL&I-SIV + Hi-SIF<I-SIL.I-CSP.I-SOV + Hi-SIF<I-CSP| 
I-SIL.I-SOV + I-CSP<Hi-SIF|I-SIL.I-SOV + Hi-SIF&I-CSP|I-SIL. 
I-SOV + I-SOV<Hi-SIF|I-SIL.I-CSP + Hi-SIF<I-SOV|I-SIL.I-CSP +  
Hi-SIF&I-SOV|I-SIL.I-CSP + Hi-SOF<I-SOL<I-SOV.I-CSP + Hi-SOF< 
I-SOV<I-SOL.I-CSP + Hi-SOF<I-SOV&I-SOL.I-CSP + Hi-SOF< 
I-SOV|I-SOL.I-CSP + Hi-SOF<I-SOL|I-SOV.I-CSP + Hi-SOF<I-SOL< 
I-SOV.I-CRL + Hi-SOF<I-SOV<I-SOL.I-CRL + Hi-SOF<I-SOV& 
I-SOL.I-CRL + Hi-SOF<I-SOV|I-SOL.I-CRL + Hi-SOF<I-SOL|I-SOV. 
I-CRL + Hi-SOF<I-SOL<I-SOV.I-CSV + Hi-SOF<I-SOV<I-SOL. 
I-CSV + Hi-SOF<I-SOV&I-SOL.I-CSV + Hi-SOF<I-SOV|I-SOL. 
I-CSV + Hi-SOF<I-SOL|I-SOV.I-CSV 

2. Classification: Euripides, Cut-off, Grouping produces 

Group 1  Group 2  
Module 1:  I-CSP.I-SCV  I-CSP.I-SOL.I-SIL 
Module 2:  I-CRL.I-SCV  I-CRL.I-SOL.I-SIL 
Module 3:  I-CSV.I-SCV  I-SOL.I-SIL.I-CSV 
Module 4:  I-SCP.I-CSP  I-SIV<I-SOV&I-SOL +  

I-SIV<I-SOV|I-SOL +  
I-SIV<I-SOL|I-SOV 

Module 5:  I-CRL.I-SCP  I-CRL.Hi-SIF.I-SOV   
Module 6:  I-SCP.I-CSV   Hi-SIF.I-SOV.I-CSV 
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Module 7:  I-SIL&I-SOV  Hi-SIF.I-CSP.I-SOL     
Module 8:  I-SOV&I-SIV  Hi-SIF.I-SOL.I-CSV  
Module 9:  I-SOL&I-SIV      Hi-SOF<I-SOL.I-CSV 
Module 10:    Hi-SOF<I-SOV.I-CSV 
Module 11:    Hi-SOF<I-SOL.I-CRL 
Module 12:    Hi-SOF<I-SOV.I-CRL 
Module 13:    Hi-SOF<I-SOL.I-CSP 
Module 14:    Hi-SOF<I-SOV.I-CSP 
Module 15:    Hi-SIF&I-SOV.I-CSP +  

I-CSP<Hi-SIF.I-SOV +  
Hi-SIF<I-SOV.I-CSP +  
Hi-SIF<I-CSP.I-SOV +  
I-SOV<Hi-SIF.I-CSP +  
Hi-SIF&I-CSP.I-SOV 

 
Group 3 

Module 1: Hi-SIF<I-SIL.I-CSP.I-SOV 
 
Regrouping identifies a very subtle completion and produces 

Group 1  Group 2  
Module 1:  I-CSP.I-SCV  I-CSP.I-SOL.I-SIL 
Module 2:  I-CRL.I-SCV  I-CRL.I-SOL.I-SIL 
Module 3:  I-CSV.I-SCV  I-SOL.I-SIL.I-CSV 
Module 4:  I-SCP.I-CSP  I-SIV<I-SOV&I-SOL +  

I-SIV<I-SOV|I-SOL +  
I-SIV<I-SOL|I-SOV 

Module 5:  I-CRL.I-SCP  I-CRL.Hi-SIF.I-SOV   
Module 6:  I-SCP.I-CSV   Hi-SIF.I-SOV.I-CSV 
Module 7:  I-SIL&I-SOV  Hi-SIF.I-CSP.I-SOL     
Module 8:  I-SOV&I-SIV  Hi-SIF.I-SOL.I-CSV  
Module 9:  I-SOL&I-SIV      Hi-SOF<I-SOL.I-CSV 
Module 10:    Hi-SOF<I-SOV.I-CSV 
Module 11:    Hi-SOF<I-SOL.I-CRL 
Module 12:    Hi-SOF<I-SOV.I-CRL 
Module 13:    Hi-SOF<I-SOL.I-CSP 
Module 14:    Hi-SOF<I-SOV.I-CSP 
Module 15:    Hi-SIF.I-SOV.I-CSP 
 

Group 3 
Module 1: Hi-SIF<I-SIL.I-CSP.I-SOV 

3. Comparison: The final GMT in Comparison 1, Step 2 and Comparison 1, step 4 

(because the combination process did not change the table) are different there-

fore, the entire Combination and Comparison is repeated. 

Combination 2: 

Again, only G1M7 and G3M1, G1M8 and G2M4, and G1M9 and G2M4 can be com-

bined but they do not change the GMT. 
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Comparison 2: 

Declassification and Classification produces the GMT below (note, only 2 groups): 

Group 1  Group 2  
Module 1:  I-CSP.I-SCV  I-CSP.I-SOL.I-SIL 
Module 2:  I-CRL.I-SCV  I-CRL.I-SOL.I-SIL 
Module 3:  I-CSV.I-SCV  I-SOL.I-SIL.I-CSV 
Module 4:  I-SCP.I-CSP  I-SIV<I-SOV&I-SOL +  

I-SIV<I-SOV|I-SOL +  
I-SIV<I-SOL|I-SOV 

Module 5:  I-CRL.I-SCP  I-CRL.Hi-SIF.I-SOV   
Module 6:  I-SCP.I-CSV   Hi-SIF.I-SOV.I-CSV 
Module 7:  I-SIL&I-SOV  Hi-SIF.I-CSP.I-SOL     
Module 8:  I-SOV&I-SIV  Hi-SIF.I-SOL.I-CSV  
Module 9:  I-SOL&I-SIV     Hi-SOF<I-SOL.I-CSV 
Module 10:    Hi-SOF<I-SOV.I-CSV 
Module 11:    Hi-SOF<I-SOL.I-CRL 
Module 12:    Hi-SOF<I-SOV.I-CRL 
Module 13:    Hi-SOF<I-SOL.I-CSP 
Module 14:    Hi-SOF<I-SOV.I-CSP 
Module 15:    Hi-SIF.I-SOV.I-CSP 

 

Combination 3: 

Only G1M7 and G3M1, G1M8 and G2M4, and G1M9 and G2M4 can be combined but 

they do not change the GMT. 

Comparison 3: 

Declassification and classification produces the GMT in Comparison 3; this is the end 

of the qualitative process and the 26 CSQs in all the modules are the MCSQs. It is evi-

dent that there is no single point of failure. 

 

5.3 Quantitative Analysis of AFS 

Before any quantitative analysis (top-event probability and/or importance measures) of 

AFS is evaluated, basic component failure data are assigned to its components in Table 

5.3-1.  

These component failure data for various distributions are hypothetical data and not 

necessarily related; 𝜆𝜆 is the constant failure rate per hour for exponential distribution, 𝛼 

and 𝛽 are the scale and shape parameters for Weibull distribution and 𝜇𝑁 and 𝜎𝑁 are the 

mean and standard deviation for a lognormal distribution.  
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Table  5.3-1: Component Failure Data 

Component (X) 𝝀  𝜶  𝜷  𝝁𝑵  𝝈𝑵  

I-SCP 5.84267E-5 3760 3.8 5.0235 1.1652 

I-CSP 5.84267E-5 3760 3.8 5.0235 1.1652 

I-SOV 1.65633E-3 535 0.7 7.0245 3.5152 

I-SIV 1.65633E-3 535 0.7 7.0245 3.5152 

I-CSV 1.65633E-3 535 0.7 7.0245 3.5152 

I-SCV 1.65633E-3 535 0.7 7.0245 3.5152 

I-CRL 2.21127E-6 4200 4.5 3.0125 1.1842 

I-HiSOF 4.06861E-5 3510 3.8 6.0015 2.9332 

I-HiSIF 4.06861E-5 3510 3.8 6.0015 2.9332 

I-SOL 3.31774E-5 3490 3.2 8.0548 1.5122 

I-SIL 3.31774E-5 3490 3.2 8.0548 1.5122 

 

Table 5.3-2 contains various assumed d values for all pSAND gates. The durations are 

converted to hours during calculations. 

Table  5.3-2: pSAND Gate Time Intervals 

CSQ interval (d) /seconds 

I-SIL&dI-SOV 0.1 

I-SOV&dI-SIV 0.2 

I-SOL&dI-SIV 0.3 

I-SOV&dI-SOL 0.4 

 

MCSQs FV importance can be generated for all MCSQs achieved from the qualitative 

analysis of AFS and the component failure data tables above. Table 5.3-3 is a summary 

of MCSQ probabilities and importance measures for the first hour of operation using 

exponential distribution. It also has the top event probability for the same operational 

duration. In the table MCSQ is a minimal cut sequence, Q(MCSQ){t} is the unreliability 

of a MCSQ given a system lifetime t, FV(MCSQ){t} is the FV importance value for the 

MCSQ using equation (2.2-25) and Rank is the rank of the MCSQ with respect to its 

contribution to the occurrence of the top-event. Therefore, the first MCSQ in the table, 

I-CSV.I-SCV, contributes most to the top-event occurrence and Hi-SOF<I-SOL.I-CRL 

contributes least to the top-event occurrence. This demonstrates the usefulness of the 
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analytical techniques proposed in chapter three in the evaluation of MCSQs FV im-

portance for dynamic safety-critical systems. 

Table  5.3-3: MCSQs Probabilities and Importance for t = 1 

MCSQ Q(MSCQ){t} FV(MCSQ){t} RANK 

I-CSV.I-SCV 2.7388894E-06 6.3113568E-01 1 

I-SIV<I-SOV|I-SOL 1.3694220E-06 3.1556260E-01 2 

I-SCP.I-CSV 9.6690971E-08 2.2280973E-02 3 

I-CSP.I-SCV 9.6690971E-08 2.2280973E-02 4 

I-SIV<I-SOL|I-SOV 2.7437861E-08 6.3226404E-03 5 

I-CRL.I-SCV 3.6595572E-09 8.4328966E-04 6 

I-SCP.I-CSP 3.4134798E-09 7.8658484E-04 7 

I-SOV&I-SIV 3.0406895E-09 7.0068094E-04 8 

I-CRL.I-SCP 1.2919329E-10 2.9770642E-05 9 

Hi-SIF.I-SOV.I-CSV 1.1143246E-10 2.5677927E-05 10 

I-SOL&I-SIV 9.1471872E-11 2.1078310E-05 11 

I-SIL&I-SOV 3.0490631E-11 7.0261051E-06 12 

Hi-SOF<I-SOV.I-CSV 8.9486793E-12 2.0620879E-06 13 

Hi-SIF.I-SOV.I-CSP 3.9338985E-12 9.0650745E-07 14 

Hi-SIF.I-SOL.I-CSV 2.2338789E-12 5.1476363E-07 15 

I-SOL.I-SIL.I-CSV 1.8216190E-12 4.1976456E-07 16 

Hi-SOF<I-SOV.I-CSP 3.1591509E-13 7.2797857E-08 17 

Hi-SOF<I-SOL.I-CSV 1.7938591E-13 4.1336772E-08 18 

I-CRL.Hi-SIF.I-SOV 1.4889008E-13 3.4309469E-08 19 

I-SIV<I-SOV&I-SOL 1.0094928E-13 2.3262236E-08 20 

Hi-SIF.I-CSP.I-SOL 7.8862591E-14 1.8172692E-08 21 

I-CSP.I-SOL.I-SIL 6.4308586E-14 1.4818942E-08 22 

Hi-SOF<I-SOV.I-CRL 1.1956746E-14 2.7552513E-09 23 

Hi-SOF<I-SOL.I-CSP 6.3328580E-15 1.4593114E-09 24 

I-CRL.I-SOL.I-SIL 2.4339496E-15 5.6086690E-10 25 

Hi-SOF<I-SOL.I-CRL 2.3968584E-16 5.5231979E-11 26 

Top Event 5.7562871E-05 NA NA 

 

129  
 



Table 5.3-4 and 5.3-5 are the respective Fussell-Vesely (FV) and Birnbaum (BM) im-

portances for Table 5.3-3. The former is computed using equation (2.2-25) whilst the 

latter is computed using (2.2-26). In Table 5.3-4, it can be seen that the biggest and least 

contributors to the top event occurrence are I-SCV and Hi-SOF respectively. Though I-

SCP and I-CSP have the same failure data, they have different FV importance values 

because I-SCP is a primary pump serving SIT and SOT whereas I-CSP is a secondary 

pump serving CRT when I-SCP fails. 

Table 5.3-5 lists the basic events in order of how the top event sensitivity to them – how 

a change in any affects the top event. Therefore a change in I-SCP has the biggest im-

pact on the top event occurrence probability. 

Table  5.3-4: FV Importances of Components t=1hr (0.006 wks) 

Component (X) FV(X){t} Rank 

I-SCV 6.5420269E-01 1 

I-CSV 6.5338818E-01 2 

I-SOV 3.2259352E-01 3 

I-SIV 3.2257882E-01 4 

I-SOL 3.2187921E-01 5 

I-SCP 2.3095310E-02 6 

I-CSP 2.3066555E-02 7 

I-CRL 8.7302168E-04 8 

Hi-SIF 2.7149276E-05 9 

I-SIL 7.4605964E-06 10 

Hi-SOF 2.1803348E-06 11 

 

Table  5.3-5: BM Importances of Components t=1hr (0.006 wks) 

Component (X) BM(X){t} Rank 

I-SCV 1.0844213E-03 1 

I-SCP 1.0844183E-03 2 

I-CSV 1.0830726E-03 3 

I-CSP 1.0830696E-03 4 

I-CRL 1.0830687E-03 5 

I-SIV 6.2180488E-04 6 

I-SOV 4.3840699E-04 7 
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I-SOL 4.3804547E-04 8 

Hi-SIF 1.8306665E-06 9 

I-SIL 4.9542360E-07 10 

Hi-SOF 1.8668020E-07 11 

 

Tables 5.3-6, 5.3-7 and 5.3-8 are the top-event probabilities with various lifetimes for 

the exponential, Weibull and Lognormal distributions. ‘S-MC’ represents results for 

standard Monte Carlo simulation with 1x106 trials whilst ‘Exact’ represents the result 

from analytical techniques. Table 5.3-6 below contains results for the top event proba-

bility with various system lifetimes using the exponential distribution. The percentage 

errors are less than 10%. It is clear that for both simulation and analytical solutions, the 

system is due to fail after about 60 weeks of operation without repairs – component 

failures are non-repairable. System failure probability increases with time which is what 

is expected of every system with exponentially distributed components. 

Table  5.3-6: AFS Top-Event Probabilities using Exponential Distribution  

System Lifetimes Top-Event Probabilities 

Exact S-MC % Error 

t=1hr (0.006 wks) 4.3396207E-06 4.0000000E-06 7.8260E+00 

t=10hr (0.06 wks) 4.2746102E-04 4.5000000E-04 5.2728E+00 

t=100hr (0.6 wks) 3.6771307E-02 3.6429000E-02 9.3091E-01 

t=1000hr (6 wks) 7.9614228E-01 7.8337800E-01 1.6033E+00 

t=10000hr (60 wks) 9.9999999E-01 1.0000000E+00 7.4732E-07 

t=100000hr (600 wks) 1.0000000E+00 1.0000000E+00 0.0000E+00 

 

The exact results have been calculated using the analytical solutions discussed in chap-
ter three for Pandora’s gates. The simulation results have been estimated by modelling 
the system with the following simulation condition: 

if (r_I-SCP <= F(I-SCP, t) && r_I-CSP <= F(I-CSP, t) ||  r_I-CRL <= F(I-CRL, t)  
&& r_I-SCP <= F(I-SCP, t) ||r_I-SCP <= F(I-SCP, t) && r_I-CSV <= F(I-CSV, t) || 
r_I-CSP <= F(I-CSP, t) && r_I-SCV <= F(I-SCV, t) ||r_I-CRL <= F(I-CRL, t) && 
r_I-SCV <= F(I-SCV, t) ||r_I-CSV <= F(I-CSV, t) && r_I-SCV <= F(I-SCV, t) ||   
r_Hi-SIF <= F(Hi-SIF, t) && r_I-SOV <= F(I-SOV, t) && r_I-CSV <= F(I-CSV, t) || 
r_Hi-SIF <= F(Hi-SIF, t) && r_I-CSP <= F(I-CSP, t) && r_I-SOL <= F(I-SOL, t) || 
r_Hi-SIF <= F(Hi-SIF, t) && r_I-SOL <= F(I-SOL, t) && r_I-CSV <= F(I-CSV, t) || 
r_I-CSP <= F(I-CSP, t) && r_I-SOL <= F(I-SOL, t) && r_I-SIL <= F(I-SIL, t) || 
r_I-CRL <= F(I-CRL, t) && r_I-SOL <= F(I-SOL, t) && r_I-SIL <= F(I-SIL, t) || 
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r_I-SOL <= F(I-SOL, t) && r_I-SIL <= F(I-SIL, t) && r_I-CSV <= F(I-CSV, t) || 
r_I-CRL <= F(I-CRL, t) && r_Hi-SIF <= F(Hi-SIF, t) && r_I-SOV <= F(I-SOV, t) || 
r_Hi-SIF <= F(Hi-SIF, t) && r_I-SOV <= F(I-SOV, t) && r_I-CSP <= F(I-CSP, t) || 
((SimPAND(r_I-SIV, I-SIV, r_I-SOV, I-SOV, t) && r_I-SOL <= F(I-SOL, t) && TTF(I-
SOV, r_I-SOV, t) < TTF(I-SOL, r_I-SOL, t))||(SimPAND(r_I-SIV, I-SIV, r_I-SOV,  
I-SOV, t) && r_I-SOL > F(I-SOL, t))) || ((SimPAND(r_I-SIV, I-SIV, r_I-SOL, I-SOL, t) 
&& r_I-SOV <= F(I-SOV, t) &&  TTF(I-SOL, r_I-SOL, t) < TTF(I-SOV, r_I-SOV, t)) ||  
(SimPAND(r_I-SIV, I-SIV, r_I-SOL, I-SOL, t) && r_I-SOV > F(I-SOV, t))) ||  
SimSAND(r_I-SIL, I-SIL, r_I-SOV, I-SOV, t, d1) || SimSAND(r_I-SOV, I-SOV, r_I-SIV, 
I-SIV, t, d2) || SimSAND(r_I-SOL, I-SOL, r_I-SIV, I-SIV, t, d3) || r_I-SIV <= F(I-SIV, t) 
&& SimSAND(r_I-SOV, I-SOV, r_I-SOL, I-SOL, t, d4) && TTF(I-SIV, r_I-SIV, t) < 
TTF(I-SOV, r_I-SOV, t) && TTF(I-SIV, r_I-SIV, t) < TTF(I-SOL, r_I-SOL, t) || 
SimPAND(r_Hi-SOF, Hi-SOF, r_I-SOL, I-SOL, t) && r_I-CSV <= F(I-CSV, t) || 
SimPAND(r_Hi-SOF, Hi-SOF, r_I-SOV, I-SOV, t) && r_I-CSV <= F(I-CSV, t) || 
SimPAND(r_Hi-SOF, Hi-SOF, r_I-SOL, I-SOL, t) && r_I-CRL <= F(I-CRL, t) || 
SimPAND(r_Hi-SOF, Hi-SOF, r_I-SOV, I-SOV, t) && r_I-CRL <= F(I-CRL, t) || 
SimPAND(r_Hi-SOF, Hi-SOF, r_I-SOL, I-SOL, t) && r_I-CSP <= F(I-CSP, t) || 
SimPAND(r_Hi-SOF, Hi-SOF, r_I-SOV, I-SOV, t) && r_I-CSP <= F(I-CSP, t) ) 
end if 

Where F, TTF, && and || retain their already defined meanings and SimPAND, Sim-

SAND and SimPOR are algorithms for evaluating the PAND, SAND and POR condi-

tions for the exponential distribution as described in chapter three. The CDF and its in-

verse are computed using the Numerics2.6.2 component from Math.NET (2013). Tables 

5.3-7 and 5.3-8 are the top event probabilities for various lifetimes using the Weibull 

and Lognormal distributions respectively. There are no results for the analytical ap-

proach because techniques to quantitatively evaluate the PAND, POR and pSAND gates 

have not yet been developed for both distributions. From both results it is obvious that 

with increasing time, the probability of the top event occurring increases. 

Table  5.3-7: AFS Top-Event Probabilities using Weibull Distribution 

System Lifetimes Top-Event Probabilities 

Exact S-MC % Error 

t=1hr (0.006 wks) NA 2.1100000E-04 NA 

t=10hr (0.06 wks) NA 5.4200000E-03 NA 

t=100hr (0.6 wks) NA 1.0338100E-01 NA 

t=1000hr (6 wks) NA 7.4124600E-01 NA 

t=10000hr (60 wks) NA 1.0000000E+00 NA 

t=100000hr (600 wks) NA 1.0000000E+00 NA 

132  
 



Table  5.3-8: AFS Top-Event Probabilities using Lognormal Distribution 

System Lifetimes Top-Event Probabilities 

Exact S-MC % Error 

t=1hr (0.006 wks) NA 9.2400000E-04 NA 

t=10hr (0.06 wks) NA 4.1609000E-02 NA 

t=100hr (0.6 wks) NA 5.5378900E-01 NA 

t=1000hr (6 wks) NA 9.8613400E-01 NA 

t=10000hr (60 wks) NA 9.9999600E-01 NA 

t=100000hr (600 wks) NA 1.0000000E+00 NA 

 

‘Exact’ and ‘S-MC’ are the same as described earlier. Since both the Weibull and 

lognormal distributions have two parameters each, the same simulation condition is 

used to model both evaluations. The SimPAND, SimPOR and SimSAND for both simu-

lations are evaluated with Algorithm 3.6-5, 3.6-6 and 3.6-7 respectively. However, the 

respective F and TTF functions are used for the distributions. The simulation condition 

for both the Weibull and lognormal simulation is: 

if ( r_I-SCP <= F(I-SCP_a, I-SCP_b, t) && r_I-CSP <= F(I-CSP_a, I-CSP_b, t) || 
r_I-CRL <= F(I-CRL_a, I-CRL_b, t) && r_I-SCP <= F(I-SCP_a, I-SCP_b, t) || 
r_I-SCP <= F(I-SCP_a, I-SCP_b, t) && r_I-CSV <= F(I-CSV_a, I-CSV_b, t) || 
r_I-CSP <= F(I-CSP_a, I-CSP_b, t) && r_I-SCV <= F(I-SCV_a, I-SCV_b, t) || 
r_I-CRL <= F(I-CRL_a, I-CRL_b, t) && r_I-SCV <= F(I-SCV_a, I-SCV_b, t) || 
r_I-CSV <= F(I-CSV_a, I-CSV_b, t) && r_I-SCV <= F(I-SCV_a, I-SCV_b, t) || 
r_Hi-SIF <= F(Hi-SIF_a, Hi-SIF_b, t) && r_I-SOV <= F(I-SOV_a, I-SOV_b, t) &&  
r_I-CSV <= F(I-CSV_a, I-CSV_b, t) || r_Hi-SIF <= F(Hi-SIF_a, Hi-SIF_b, t) &&  
r_I-CSP <= F(I-CSP_a, I-CSP_b, t) && r_I-SOL <= F(I-SOL_a, I-SOL_b, t) || 
r_Hi-SIF <= F(Hi-SIF_a, Hi-SIF_b, t) && r_I-SOL <= F(I-SOL_a, I-SOL_b, t) &&  
r_I-CSV <= F(I-CSV_a, I-CSV_b, t) || r_I-CSP <= F(I-CSP_a, I-CSP_b, t) && r_I-
SOL <= F(I-SOL_a, I-SOL_b, t) && r_I-SIL <= F(I-SIL_a, I-SIL_b, t) || r_I-CRL <= 
F(I-CRL_a, I-CRL_b, t) && r_I-SOL <= F(I-SOL_a, I-SOL_b, t) && r_I-SIL <= F(I-
SIL_a, I-SIL_b, t) || r_I-SOL <= F(I-SOL_a, I-SOL_b, t) && r_I-SIL <= F(I-SIL_a, I-
SIL_b, t) && r_I-CSV <= F(I-CSV_a, I-CSV_b, t) ||r_I-CRL <= F(I-CRL_a, I-CRL_b, 
t) && r_Hi-SIF <= F(Hi-SIF_a, Hi-SIF_b, t) &&r_I-SOV <= F(I-SOV_a, I-SOV_b, t) 
||r_Hi-SIF <= F(Hi-SIF_a, Hi-SIF_b, t) && r_I-SOV <= F(I-SOV_a, I-SOV_b, t) &&  
r_I-CSP <= F(I-CSP_a, I-CSP_b, t) ||((SimPAND(r_I-SIV, I-SIV_a, I-SIV_b, r_I-SOV, 
I-SOV_a, I-SOV_b, t) &&r_I-SOL <= F(I-SOL_a, I-SOL_b, t) && TTF(I-SOV_a, I-
SOV_b, r_I-SOV, t) < TTF(I-SOL_a, I-SOL_b, r_I-SOL, t)) ||(SimPAND(r_I-SIV,  
I-SIV_a, I-SIV_b, r_I-SOV, I-SOV_a, I-SOV_b, t) && r_I-SOL > F(I-SOL_a, I-SOL_b, 
t))) ||((SimPAND(r_I-SIV, I-SIV_a, I-SIV_b, r_I-SOL, I-SOL_a, I-SOL_b, t) &&  
r_I-SOV <= F(I-SOV_a, I-SOV_b, t) && TTF(I-SOL_a, I-SOL_b, r_I-SOL, t) <  
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TTF(I-SOV_a, I-SOV_b, r_I-SOV, t)) || (SimPAND(r_I-SIV, I-SIV_a, I-SIV_b, r_I-SOL, 
I-SOL_a, I-SOL_b, t) && r_I-SOV > F(I-SOV_a, I-SOV_b, t))) || SimSAND(r_I-SIL,  
I-SIL_a, I-SIL_b, r_I-SOV, I-SOV_a, I-SOV_b, t, d1) ||  SimSAND(r_I-SOV, I-SOV_a, 
I-SOV_b, r_I-SIV, I-SIV_a, I-SIV_b, t, d2) || SimSAND(r_I-SOL, I-SOL_a, I-SOL_b, 
r_I-SIV, I-SIV_a, I-SIV_b, t, d3) ||r_I-SIV <= F(I-SIV_a, I-SIV_b, t) && SimSAND(r_I-
SOV, I-SOV_a, I-SOV_b, r_I-SOL, I-SOL_a, I-SOL_b, t, d4) && TTF(I-SIV_a, I-SIV_b, 
r_I-SIV, t) < TTF(I-SOV_a, I-SOV_b, r_I-SOV, t) && TTF(I-SIV_a, I-SIV_b, r_I-SIV, t) 
< TTF(I-SOL_a, I-SOL_b, r_I-SOL, t) || SimPAND(r_Hi-SOF, Hi-SOF_a, Hi-SOF_b, 
r_I-SOL, I-SOL_a, I-SOL_b, t) && r_I-CSV <= F(I-CSV_a, I-CSV_b, t) ||  
SimPAND(r_Hi-SOF, Hi-SOF_a, Hi-SOF_b, r_I-SOV, I-SOV_a, I-SOV_b, t) && 
r_I-CSV <= F(I-CSV_a, I-CSV_b, t) ||  SimPAND(r_Hi-SOF, Hi-SOF_a, Hi-SOF_b, 
r_I-SOL, I-SOL_a, I-SOL_b, t) && r_I-CRL <= F(I-CRL_a, I-CRL_b, t) || 
SimPAND(r_Hi-SOF, Hi-SOF_a, Hi-SOF_b, r_I-SOV, I-SOV_a, I-SOV_b, t) &&  
r_I-CRL <= F(I-CRL_a, I-CRL_b, t) || SimPAND(r_Hi-SOF, Hi-SOF_a, Hi-SOF_b, 
r_I-SOL, I-SOL_a, I-SOL_b, t) && r_I-CSP <= F(I-CSP_a, I-CSP_b, t) || 
SimPAND(r_Hi-SOF, Hi-SOF_a, Hi-SOF_b, r_I-SOV, I-SOV_a, I-SOV_b, t) && 
r_I-CSP <= F(I-CSP_a, I-CSP_b, t)) 
end if 

From Table 5.3-6, the results of the analytical approach and Monte Carlo simulation 

estimation are similar. However, Tables 5.3-7 and 5.3-8 have no results for the analyti-

cal solution. A way of checking if the Monte Carlo simulation of a system converges 

with increasing trials achieved by simulating the model for various trials and plotting 

the values of the results against the trials. Figures 5.3-1 and 5.3-2 are charts for Monte 

Carlo estimates against various trials using the Weibull and lognormal distributions re-

spectively.  

The estimates have been calculated using a system lifetime, t, of 100 hours. From Fig-

ure 5.3-1 it can be seen that the results converge towards 0.1034 as seen in Table 5.3-7. 

Also in Figure 5.3-2 the estimates converge towards 0.5538 as seen in Table 5.3-8. A 

large number of trials have been used because no importance/dynamic sampling tech-

niques have been used and the component failure parameters used in all experiments are 

relatively small. 
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Figure  5.3-1: Monte Carlo estimates for Weibull distribution 

 
Figure  5.3-2: Monte Carlo estimates for Log-normal distribution 

 

We use Mathematica (Wolfram 2011) to compute the best fit line and confidence inter-

vals of both graphs using a linear regression. The results are summarized in Table 5.3-9.  

The lower and upper bounds are 95% confidence limits. The ‘best fit’ is the fitted model 

of the graph and ‘original’ is the initial Monte Carlo results achieved using t = 100 

hours in Table 5.3-7 (for Weibull Distribution) and Table 5.3-8 (for Lognormal distribu-

tion). 
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Table  5.3-9: Characteristics of Figures 5.3-1 and Figure 5.3-2 

Characteristics Weibull Distribution Lognormal Distribution 

Lower Bound  0.103274 0.553400 

Upper Bound 0.103545 0.553962 

Best Fit 0.103409 0.553681 

Original 0.103381 0.553789 
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Chapter  Six  

EVALUATION 

 

This chapter evaluates the research described previously in this thesis and provides 

some suggestions for further research. Firstly, the techniques proposed in this thesis are 

compared against three of the techniques described in chapter two – Continuous Time 

Markov Chains, Bayesian Networks and Petri Nets. Secondly, the thesis contributions 

in chapters three and four are compared against the set research question and objectives 

in chapter one. 

 

6.1 Evaluation of Techniques 

In this subsection, two main evaluations are made: evaluation of quantitative techniques 

proposed in chapter three, and evaluation of qualitative techniques described in chapter 

four. 

6.1.1 Evaluation of Quantitative Techniques 

The main contribution of this thesis proposes two major quantitative techniques for 

evaluating temporal fault trees – analytical and simulation. In this subsection, both 

techniques are compared with each other and also compared against other techniques. 

Analytical and Monte Carlo Simulation Techniques 

The proposed analytical techniques in this thesis are algebraic expressions for the quan-

titative analysis of the POR, PAND and pSAND gates. These generic mathematical ex-

pressions have been formulated from first-principle. They can be applied to MCSQs 

with any amount of temporal gates. Analytical techniques are generally known to pro-

duce deterministic and exact solutions than simulation approaches. They are also gener-

ally more computationally efficient than simulation. Unfortunately, the analytical tech-

nique has some limitations: it is currently restricted to exponential distribution and may 

not be applicable to some complex systems as discussed in chapter two. 

The simulation approach is evaluated using the Monte Carlo simulation; this is a con-

crete contribution of this thesis. It is popularly known that simulation is a powerful tool 
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for modelling and evaluating complex systems and is not restricted to any failure distri-

bution. Wang and Pham (1997) report that Monte Carlo methods can be practically used 

to estimate the availability and unreliability of some complex systems that cannot be 

analytical analysed. However, unlike the analytical approach where a generic algorithm 

(like the RPN and Shunting-Yard) can be used in evaluating system failures, simulation 

models must be customized for every system; this can be time consuming and relatively 

difficult. In more detail, if A<B|C + A&D.E and C|D.E + A<B&G are the top-events of 

temporal fault trees X and Y, then generic analytical algorithm can be constructed to 

evaluate both X and Y, however, different simulation models must be constructed for 

these top-events. The generic Monte Carlo simulations proposed for the individual gate 

evaluations can be used for evaluating such expressions but it will be too computation-

ally expensive to do so. 

Evaluation of Proposed Techniques against CTMC 

Markov chains are heavily used in the quantitative analysis of DFTs. Fault trees with 

dynamic behaviours can be modelled using Markov chains. Mathematical expressions 

can be extracted from these chains for quantitatively analysing a fault tree. In CTMC, 

Markov chains are used in the evaluation of CSQs with dynamic behaviours whilst 

BDD is used for the evaluation of static CSQs; this is done to harness the computational 

efficiency of BDDs.  

Though continuous efforts are being made to improve Markov based techniques, they 

are known to be prone to the state-space explosion. This makes them error-prone, diffi-

cult and time consuming to construct and evaluate for large fault trees (Yevkin 2010). 

Unfortunately, they are also restricted to exponential distributions. 

6.1.2 Evaluation of Qualitative Techniques 

In this thesis two qualitative analyses techniques have been proposed – GMMT and 

TBDD. GMMT is a modularization technique whilst TBDD incorporates temporal be-

haviour into BDD. Evaluations of these proposed techniques are discussed below. 

Groups and Modules Modularization Technique (GMMT) 

The GMMT proposed in this thesis, is a simple modularization technique that categoriz-

es CSQs into groups and CSQs with exactly the same type and number of events in 

CSQs into fields called modules. GMMT has been developed with the intention of par-
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tially alleviating Pandora’s inability to analyse large real-world temporal fault trees 

which is discussed in details in Walker (2009). Given a logical expression of a temporal 

fault tree, GMMT uses an algorithm which employs Archimedes and Euripides (de-

scribed in chapter two) in generating the MCSQs. 

GMMT can be used to evaluate dynamic safety-critical systems with several events as 

seen in the case study in chapter five. However, due to its use of Archimedes, it is 

restricted to CSQs with four or less events. Meaning, no single CSQs should have more 

than 4 distinct events though the temporal fault tree may have several hundreds of 

distinct events. Some reliability engineers may not consider this logical cut-off to be a 

limitation in some case studies; CSQs with more than four distinct events are less 

probable to occur.  

One limitation of GMMT is its repeated use of Archimedes. This is not a direct 

limitation of GMMT as a modularization algorithm but due to its use of Archimedes. 

An ideal solution will be to have Archimedes evaluate the entire set of CSQs in one 

evaluation. However, at the moment, the  Achimedes’ algorithm is unable to analyse 

CSQs with more than 5 distinct events within a reasonable space of time (Walker 2009). 

Temporal Binary Decision Diagrams (TBBDs) 

A TBDD is a pioneering attempt to incorporate dynamic behaviours into Binary Deci-

sion Diagrams (BDDs) for quantitative and qualitative analysis. In this thesis, the 

TBDD approach proposed extends the if-then-else (ite) structure of a BDD (Rauzy 

1993; Sinnamon 1996; Sinnamon & Andrews 1996) to include a temporal entity, r, rep-

resenting the dynamic behaviour between two events. Thus TBDD uses a novel if-

relation-then-else (irte) structure. A new procedure has been developed for qualitatively 

analysing TBDD structures. Apart from these two modifications, all other definitions 

and process in BDD are maintained in TBDD. At the moment, TBDD considers only 

the Priority-AND gate in its analysis. 

The main advantage of BDD over its alternative approaches is its ability to provide 

quantitative information without the need of a prior qualitative analysis. Therefore, it 

has been proven to be more computationally efficient than the MCS or Monte Carlo 

approaches. This merit is the motivation for the development of TBDD. Unfortunately, 

TBDD is unable to exhibit this positive feature at the moment. TBDD uses a sub-tree 

containment algorithm to reduce CSQs into their smallest structures – minimization. For 
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this reason, it produces qualitative information from which temporal quantitative infor-

mation can be computed. BDD is efficient but does not consider temporal information; 

TBDD considers some temporal information but is not as efficient as classical BDD. 

 

6.2 Evaluation Against Objectives 

The research question of this thesis states that: 

How can the temporal fault tree of a safety-critical system featuring various fail-

ure distributions be quantitatively analysed using both simulation and analytical 

approaches? 

From this statement, the research objectives stand out: 

1. Probabilistic evaluation of temporal gates. 

2. Probabilistic evaluation of MCSQs. 

3. Probabilistic evaluation of top-event probability. 

The probabilistic evaluation of a system can be broken down into various units as 

shown in Fig. 6.1-1: 

 

 

 

 

Figure  6.1-1: Breakdown of thesis’ aim 

Therefore, the quantitative analysis (top-event probability and importance measures) of 

a total system failure is dependent on the quantitative analysis of individual MCSQs, 

which is also dependent on the quantitative analysis of individual logic gates; this is the 

structure by which the objectives are evaluated. 

 

 

Evaluation of MCSQs 

Top-Event Evaluation 

Evaluation of Individual Gates 

 SAND PAND POR AND OR 
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Evaluation of Top-Event Probability 

As already mentioned, apart from classical BDD analysis, the top-event failure proba-

bility and importance measures of a dynamic system can be calculated when the proba-

bility of MCSQs have been determined. At a top level, a system failure can be ex-

pressed in terms of a Disjunctive Normal Form (DNF); this is a disjunction of MCSQs. 

This means the top level operator of a system failure is an OR gate. This DNF represen-

tation of system failure is not new; it has been adopted in most PSA techniques since 

the inception of FTA.  

As stated in chapter 2, there are two popular analytical techniques for evaluating the OR 

gate: the Esary-Proschan (Eqn. 2.2-22) and PIE (Eqn. 2.2-23). For a fault tree with n 

MCSQs, PIE will require ∑ 𝑘 × �𝑛𝑘� − 1𝑛
𝑘=0  arithmetic calculations to evaluate a system 

failure whilst Esary-Proschan will require only 2 × 𝑛  arithmetic calculations. Both 

techniques provide very similar results; this makes EP more computationally efficient 

than PIE. Apart from the analytical approaches, a simulation alternative using Monte 

Carlo can be used. This involves the construction of a Monte Carlo model of individual 

MCSQs and ‘ORing’ them to produce the system failure probability. Unfortunately, 

Monte Carlo simulation cannot be used to evaluate importance sampling as ‘easily’ as 

its analytical counterparts; this will be discussed in detail later. 

Evaluation of MCSQs 

In classical fault tree analysis, quantitative analysis of minimal cut sets (smallest com-

binations of events that can cause a system failure) are done by evaluating the conjunc-

tion (AND) gates followed by the disjunction (OR) gates. In temporal fault tree analy-

sis, a similar approach is adopted; however, due to the presence of temporal gates an 

extended operator precedence is prescribed. Using the analytical approach, this prece-

dence order is simple to implement and evaluate. However, this can be more technically 

challenging when simulation is used. For example, to quantitatively evaluate A<B|C 

analytically, one would only need to evaluate (A<B)|C. The evaluation of A<B|C with 

simulation using the order of precedence can be done but it is too computationally ex-

pensive. This is because two simulations would be required: a large number of trials 

would need to be executed to evaluate A<B and another large number of trials would be 

required to simulate (A<B)|C.  
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A more efficient simulation approach is to have one simulation model for A<B|C with-

out literally using the precedence order. In such an approach, the time-to-failure (TTF) 

of components is used to model temporal behaviours in MCSQs. Since a MCSQ may 

contain two or more temporal behaviours, there may be the need for more TTF compar-

isons in the simulation model; this can be problematic. Thankfully, the solution to this 

challenge is to construct the TTF comparison on a logical sequence in the MCSQ and 

not on the precedence order. More details and examples of the construction of MCSQs 

models for simulation have been provided in section five of chapter three. 

Evaluation of the POR Gate 

The usage and importance of the Priority-OR (POR) gate have been discussed in Edifor 

et al. (2012) – where the POR gate is used to model some specific situations which dif-

ficult and cumbersome to model with ordinary fault trees. Apart from the fact that it 

simplifies a temporal fault tree with the POR behaviour, it has a set of laws for its quali-

tative analysis (Walker 2009). An earlier effort (Merle 2010) to quantify the POR gate 

provided an algebraic solution for evaluating a POR gate with only two events. 

In this thesis, a generic mathematical expression has been formulated for the quantita-

tively analysis of MCSQs with two or more POR gates. This has been done from three 

different expressions: logical definition in Pandora, Markov chains and some of Pando-

ra’s laws. Also a Monte Carlo simulation model has been constructed for estimation of 

MCSQs with the same or different combinations of temporal and static gates. 

Evaluation of the PAND  

The Priority-AND gate represents the situation where an event occurs before another 

event. There are generally two types of PAND gates: Inclusive PAND (iPAND) where 

an event occurs before or at the same time as another event or exclusive PAND 

(ePAND) where and event occurs strictly before another event. Pandora uses the 

ePAND in its qualitative analysis. It has been proven in chapter three that these gates 

provide different qualitative interpretations but quantitatively both gates evaluate to ze-

ro. Various techniques for quantitatively analysing iPAND analytically have been iden-

tified and adopted for ePAND quantification. Unfortunately, these analytical techniques 

are restricted to exponential distribution. This thesis has proposed a simulation alterna-

tive – using Monte Carlo – which is not restricted to a particular distribution and can be 

used for the analysis of MCSQs with any number of ePAND gates. 
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Evaluation of the SAND Gate 

The SAND gate models situations where two or more events occur at exactly the same 

time. A mathematical expression has been formulated in this thesis from all three com-

pletion laws in Pandora’s to quantitatively model the SAND gate. Interestingly, this 

expression evaluates to zero. This means that it is technically nearly impossible for two 

or more exponentially distributed mutually exclusive events to occur at exactly the same 

time. This result is not new and has been widely discussed (Merle, Roussel, Lesage & 

Bobbio 2010). Therefore, though the SAND gate is significant in qualitative analysis it 

cannot be used for quantitative analysis. For this reason, no attempts have been made to 

evaluate the SAND gate using simulation or to evaluate it in other failure distributions. 

Evaluation of the pSAND Gate 

There are situations where the occurrence of two events within a relatively short dura-

tion of time can trigger the occurrence of an output event; these scenarios are known as 

‘nearly simultaneous’ scenarios. Although there are various descriptions of this scenar-

io, in this thesis, a peculiar type of the nearly simultaneous events – parameterised Sim-

ultaneous-AND (pSAND) – has been described and quantitatively analysed. pSAND is 

represented by &d where, d is the duration of interval between the occurrence of the in-

put events. The main difference between the pSAND gate and other nearly simultaneous 

descriptions are: 

1. The pSAND gate is commutative; A &d B = B &d A 

2. The pSAND gate does not occur if the duration between its input events is 

greater than d. 

3. pSAND is mainly used in quantitative analyses and not a formal description of 

the nearly simultaneous scenario. 

An analytical model and quantitative analysis of the pSAND gate with multiple input 

events have been developed in this thesis. A Monte Carlo simulation for the pSAND 

gate has also been developed in this thesis from a simulation model. Though the analyt-

ical solution is restricted to exponential distribution, the simulation model can be ap-

plied in other distributions. Unfortunately, the pSAND gate is currently not used in 

qualitative analysis; details of this limitation are discussed below. 
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6.3 Limitations and Further Research 

Though this thesis has made some significant contributions, there remain a number of 

areas for potential future development: the techniques proposed and developed in the 

thesis could be improved in terms of their functionality. Another development would be 

to apply the techniques in other fields apart from reliability engineering. Below are 

some limitations that can lead to further research 

Repairable Events 

One of the assumptions made in this thesis is that all systems under consideration are 

non-repairable. Meaning, when a component fails, it remains in the failed state and is 

not repaired. Therefore for all system lifetime durations defined in this thesis, a compo-

nent’s operational state can only move from a success state to a failed state and not vice-

versa. 

However, in the real world, many safety-critical systems experience wears, malfunc-

tions and the likes, which may require repairs of components. Some fault tree tech-

niques such as the DFT and classical FTA have quantitative techniques for analysing 

reparable systems (Kumamoto et al. 1980; Boudali et al. 2007). It will be a worthwhile 

effort to develop techniques for quantitatively analysing temporal fault trees of systems 

which are reparable. This will improve the practicability and scalability of Pandora on 

real-world case studies. 

pSAND Logical Analysis 

The pSAND gate is a novel gate that represents the occurrence of two or more events 

within a relatively short duration of time. After qualitative analysis of temporal fault 

trees, MCSQs with SAND gates are examined for the pSAND behaviour. All MCSQs 

with SAND gates but that do not exhibit the pSAND behaviour are ignored from quanti-

tative analysis whilst the remaining MCSQs with SAND gates are quantified using the 

pSAND formula. The inclusion of the pSAND gate into qualitative analysis of temporal 

fault trees is a potential field for future research. One way of including the pSAND gate 

will be the redefinition of the PAND and POR gates to include specific time. For exam-

ple, a new parameterized-PAND (pPAND) and parameterized-POR (pPOR) could be 

defined to complement the pSAND gate in such a way that: 

  A . B = (A pPAND B) + (A pSAND B) + (B pPAND A) 
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Where A and B will occur when A occurs before B within a duration or A and B occur 

within a duration or B occurs before A within a duration. It is worth noting that this is 

only a proposed solution that will require further investigation. It is not clearly known if 

the existing laws in Pandora will accommodate pPAND, pSAND and pPOR; perhaps 

novel laws must be formulated. 

Temporal Binary Decision Diagram (TBDD) 

TBDD is an initial attempt to quantify temporal fault trees with BDDs. TBDD includes 

only the PAND gate in its analysis; it is unable to consider the SAND or POR gates in 

its analysis. Some real world dynamic safety-critical systems feature more behaviours 

than the AND, OR and PAND behaviours. For TBDD to be more applicable to real 

world case studies, it must be extended to consider other temporal gates. 

Monte Carlo Simulation 

As discussed earlier, the standard Monte Carlo technique is very effective for modelling 

complex systems. However it requires relatively higher computing resources to simulate 

models before estimating their failure probabilities in reliability engineering. This prob-

lem is not new and various efforts have been made to improve this. Some of these tech-

niques include importance sampling which concentrates on acquiring random number 

for simulation from a favourable domain of values.  

Though analytical solutions are generally more computationally efficient than Monte 

Carlo simulations in solving a problem, it has been shown, in this thesis, that Monte 

Carlo simulation can be used for problems where analytical solutions have not yet been 

developed. Unfortunately, the Monte Carlo simulation used in this thesis has no im-

portance sampling technique or dynamic stopping technique to improve its computa-

tional efficiency.  

However, towards the completion of this thesis, the author has identified a recent and 

efficient dynamic stopping technique (Meedeniya et al. 2011). Though this has not been 

used in this thesis, a glimpse of its effects can be seen in Table 6.3-1 and Table 6.3-2; 

the latter is an extension of the former. The results in both tables have been calculated 

using the exponential distribution of AFS case study (Table 5.3-6) described in chapter 

five. 
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Table  6.3-1: Effect of dynamic stopping technique 1 

Mission Time Exact Solution S-MC APPX DS-MC APPX 

1E+01 4.2746102E-04 4.1500000E-04 3.753955E-04 

1E+02 3.6771307E-02 3.6571000E-02 3.762376E-02 

1E+03 7.9614228E-01 7.8379300E-01 7.776000E-01 

1E+04 9.9999999E-01 1.0000000E+00 1.000000E+00 

1E+05 1.0000000E+00 1.0000000E+00 1.000000E+00 

 

In Table 6.3-1, “S-MC” is the result for standard Monte Carlo simulation and “DS-MC” 

is the result for Monte Carlo simulation with the dynamic stopping technique. In table 

6.3-2, “S-MC DEV” and “DS-DEV” are the deviations for the standard and dynamic 

stopping Monte Carlo techniques whilst “S-MC TIME” and “DS-MC TIME” are the 

execution times (in seconds) for both techniques. 

Table  6.3-2: Effect of dynamic stopping technique 2 

Mission Time S-MC DEV DS-MC DEV S-MC TIME DS-MC TIME 

1E+01 2.9151E+00 1.2180E+01 3.2884217 1.4949691 

1E+02 5.4474E-01 2.3183E+00 4.9749460 1.5529996 

1E+03 1.5511E+00 2.3290E+00 5.8943707 1.5820028 

1E+04 7.4732E-07 7.4732E-07 6.2754881 1.5945726 

1E+05 0.0000E+00 0.0000E+00 6.5254955 1.6035880 

 

In Table 6.3-2, it is evident that though the dynamic sampling technique is generally 

more deviated than the standard technique, its execution time is considerably lower than 

that of the standard simulation technique – approximately four times faster. 

Another limitation associated with the use of Monte Carlo simulation is its inability to 

calculate importance measures. For example, to calculate the FV importance of particu-
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lar MCSQs, one will find the ratio of the MCSQ to the top-event probability. As already 

discussed, the most appropriate way of evaluating the top-event probability of a system 

using Monte Carlo is to model the entire system and evaluate it. Unfortunately, using 

this method does not permit the evaluation of importance measures at the moment. A 

crude method will be to model, simulate and evaluate MCSQ individually before using 

them for importance analysis. However, this method requires more computational re-

sources and is prone to deviation from the accurate results due to multiple rounding-ups. 

Potential future efforts can be directed towards an efficient Monte Carlo model that will 

allow the calculation of both top-event probabilities and importance measures. 

Application in Other Fields 

In this thesis, Pandora has been applied to the automotive, electrical and aircraft indus-

tries. Future research can be focused on using Pandora to evaluate other fields of study 

outside the scope covered in this thesis; a plausible field is Supply Chain Risk Man-

agement (SCRM). So far, classical FTA is used in evaluating the reliability of some 

supply chains (Vanany et al. 2009). To make Pandora applicable in SCRM: 

a. the PAND gate could represent a situation where the occurrence of an output 

event (failure) is caused by the occurrence of an event followed by another 

event. For example, assuming a company gets its supplies (raw materials) for 

production by two means of transportation: trucks (primary) and trains (second-

ary). It also has a supplies department that is responsible for ordering supplies 

via the trains system when the truck system fails. There will be no supplies to 

the company if the supplies department fails to order for more supplies (perhaps 

due to employee strike or unavailability) before the train system fails. 

b. the pSAND gate could be used to represent the situation where the occurrence of 

two failures within a duration of time could trigger the occurrence of another 

bigger failure. For example, if two deliveries to a manufacturing plant do not ar-

rive (fail delivery targets) at the plant within a specific duration of time for man-

ufacturing to take place, the manufacturing of a batch will be delayed leading to 

financial loses. 

c. the POR gate could be used to represent situations where the occurrence of an 

event before another or the occurrence of the first event alone can lead to the oc-

currence of a supply chain failure. 

An example of the application of Pandora in SCRM is described in Appendix 4. 
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Incorporation into HiP-HOPS 

HiP-HOPS (Hierarchically Performed Hazard Origin and Propagation Studies) is a 

technique for the semi-automatic construction and evaluation of fault trees FMEAs 

(Papadopoulos et al. 2001). HiP-HOPS operates by annotating the model of a system 

with expressions representing its component failure behaviour, examining the model 

and finally constructing and evaluating fault trees and FMEAs generated from the mod-

el. Due to HiP-HOPS’ semi-automated ability to construct and evaluate fault trees and 

FMEAs, it offers system designers the opportunity of performing FTA and FMEA more 

easily than most conventional ways which are not automated. 

Unfortunately, HiP-HOPS is restricted to static gates. Future research efforts could be 

channelled into: 

1. investigating how Pandora could be incorporated into HiP-HOPS using 

GMMT. 

2. quantitatively evaluating HiP-HOPS’ resulting temporal fault trees using the 

quantitative techniques discussed in this thesis. 
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Chapter  Seven  

CONCLUSION 

 

State-of-the-art safety-critical systems promise numerous benefits. However, they intro-

duce new hazards and risks. It is the priority of dependability engineers to ensure that 

such risks and hazards are minimised as much as reasonably possible to improve such 

systems’ reliability, availability, maintainability, safety and integrity. Fault Tree Analy-

sis (FTA) is one of the earliest techniques used in reliability engineering to perform of-

fline evaluation of safety-critical systems but, unfortunately, is unable to capture the 

sequential/dynamic failures of components; this leads to the inaccurate qualita-

tive/quantitative evaluation of system reliabilities.  

Temporal Fault Tree analysis – via Pandora – is one of the recent improvements made 

to solve this problem by the use of the combinatorial AND and OR gates and novel 

temporal gates: exclusive Priority-AND (ePAND), Simultaneous-AND (SAND), Priori-

ty-OR (POR). 

Pandora’s strength lies in its approach to qualitative analysis; it provides several laws 

for a comprehensive logical analysis of temporal fault trees of dynamic safety-critical 

systems. However, it is unable to provide any quantitative analysis, which provides 

measures of how reliable/unreliable a system is and how relative contributions, sensitiv-

ities or importances of component failures lead to a total system failure. This leads to 

the research question of this thesis: 

How can the temporal fault tree of a safety-critical system featuring various 

failure distributions be quantitatively analysed using both simulation and ana-

lytical approaches? 

Techniques to improve the quantitative analyses of temporal fault trees should be able 

to evaluate probabilistically ePAND, SAND and POR and combinations of them. Also, 

they should be able to evaluate the total system failure probability and relative compo-

nent importances analytically or with simulation. 

In this thesis, analytical expressions have been formulated and simulations developed to 

satisfy the aims and objectives stated in chapter one; these are the contributions of this 

thesis are described below. 
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1. Probabilistically evaluate individual temporal logic gates: 

ePAND: Various solutions (from algebraic modelling, Markov chain analysis, 

first principle, Petri nets, Bayesian nets and Poisson process) for evaluating 

iPAND have been identified. It has been mathematically proven in this thesis 

that though iPAND and ePAND probabilistically evaluate to zero, they mean 

different things logically. The evaluation of ePAND has therefore been deduced 

from a mathematical formulation of the iPAND. 

SAND: It has been mathematically proven in this thesis, from some of Pandora’s 

logical laws, that for any statistically independent events the SAND gate equates 

to zero.  

POR: In this thesis, a mathematical expression has been formulated for quantita-

tively evaluating the POR gate; this has been done from first principle (calcu-

lus), Markov Chains and Pandora’s laws. 

pSAND: There are situations where the occurrence of two or more events within 

a relatively short duration of time can lead to the occurrence of another event. 

Such situations are known as nearly simultaneous events. In this thesis, the de-

scription of such nearly simultaneous situations – parameterised Simultaneous-

AND (pSAND) – is made. pSAND, unlike Common Cause Failure (CCF), con-

siders an interval of duration, d, within which its input events must occur to trig-

ger the occurrence of an output event. pSAND is also different from many near-

ly simultaneous scenarios described in literature because it is commutative: A 

pSAND B is equivalent to B pSAND A. Probabilistic evaluation of the pSAND 

gate has been deduced in this thesis and applied to a real world safety-critical 

system. 

2. Probabilistically evaluate Minimal Cut Sequences (MCSQs): 

Combinations of component failures with static gate have different behaviour 

from combinations of component failures temporal gates. Not only has tech-

niques been developed for evaluating combinations of components failures with 

different temporal and static gates, simulation conditions necessary for such ex-

pressions with both temporal and static gates to be evaluated with Monte Carlo 

have been developed. Therefore, the quantitative analysis of MCSQs can be 

achieved both with analytical and simulation approaches. 
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3. Probabilistically evaluate the top event and importance measures: 

The evaluation of individual gates and combinations of such these gates make 

the evaluation of total system failure probability possible. Analytical and simula-

tion approaches for evaluating the top-event probability have been developed. In 

the analytical approach, as in most analytical approaches, the top-event is calcu-

lated after individual MCSQs are evaluated whilst in the simulation approach, 

the entire system is modelled using conditions for each MCSQs occurring and 

simulated a large number of times to estimate the top-event probability. The 

evaluation of top-event probability using the analytical approach makes the 

evaluation of individual component contribution to the top-event occurrence 

possible. However, with simulation, only the top-event can be estimated; im-

portance measures cannot be estimated at the moment. 

 
4. Monte Carlo Simulation of total system failure for various distributions: 

All analytical solutions for quantitatively analysing temporal fault trees made in 

this thesis are restricted to exponential distribution. Monte Carlo simulations of 

temporal fault trees of system failures with other distributions, other than the ex-

ponential distribution, have been developed. This has been achieved by using the 

time-to-failures of components with temporal behaviours and constructing a 

simulation condition to satisfy such situations. Once these conditions for various 

MCSQs are developed, a simulation model of the entire system can be con-

structed and simulated. Once these have been done, the failure of the system can 

be estimated. Apart from exponential distribution, these techniques have been 

used for analysing systems with Weibull and Lognormal distributions. Unfortu-

nately, these simulation approaches are unable to evaluate the relative compo-

nent importances contributing to the system failure. 

 
5. Improvement to logical analysis technique: 

Quantitative analysis of temporal fault trees using either analytical or simulation 

approaches in this thesis cannot be done without prior qualitative analysis. How-

ever, the qualitative approaches used in evaluating temporal fault trees have 

some limitations. In this thesis, two techniques have been described for improv-

ing the qualitative analysis of temporal fault trees. The first technique is a modu-

larization technique known as Groups and Modules Modularization Technique 

(GMMT) which arranges fault trees in terms of groups and modules and evalu-

ates these repeatedly using Archimedes and Euripides – logical techniques for 
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analysing temporal fault trees – until minimal cut sequences are achieved. The 

second technique, known as Temporal Binary Decision Diagram (TBDD), in-

volves the inclusion of temporal behaviour into Binary Decision Diagrams. In 

addition to the traditional AND and OR gates, GMMT considers all three tem-

poral gates – PAND, SAND and POR – whilst TBDD considers only the PAND 

gate. 

Currently, the novel pSAND gate is not considered in logical analysis – only in proba-

bilistic analysis. The inclusion of pSAND into the logical analysis of Pandora is a limi-

tation that requires future efforts. A possible improvement is the introduction of novel 

gates – parameterised PAND and parameterised POR instead of PAND and POR – into 

the logical analysis to complement it. In this thesis, all Monte Carlo simulations are 

standard simulations where a system is modelled and simulated – without any dynamic 

stopping technique. However, system failures are relatively small and require simula-

tions of large numbers of trials for more accurate evaluations.  

Another area requiring improvement is the implementation of a dynamic stopping tech-

nique in Monte Carlo simulation which will improve its computational efficiency in 

terms of computing resources and time. Finally, it is worth noting that many real world 

systems are repairable, where a component fails and does not remain in a failed state 

because it can be repaired. This, unfortunately, contrasts one of the assumptions in this 

thesis; all component failures are non-repairable. One particular area of future work 

would be to develop novel approaches or improve the existing approaches to evaluate 

repairable system. 

Reliability engineering is a sensitive and critical area engineers, system designers, 

stakeholders and system users do not take for granted because of the devastating effects 

systems can have if they should fail. This thesis discusses some of the improvements 

made in reliability engineering and proposes techniques for quantitatively analysing 

dynamic safety-critical systems using both analytical and simulation approaches. These 

techniques are useful for engineers who wish to quantitatively analyse complex state-of-

the-art systems to find out how reliable they really are. 
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APPENDIXES 

 

APPENDIX 1: Monte Carlo Condition for Various MCSQs 

 

Where X, Y and Z, are events, r is a random number to simulate the probability of an 

event and t is the system lifetime. && and || are the logical AND and OR respectively. F 

is the CDF and TTF retains its previously described meaning. It must be noted that these 

conditions are for exponential distributions only. 

 

X < Y: Referred to as SimPAND 

r_x <= F(x, t) && r_y <= F(y, t) && TTF(x, r_x, t) < TTF(y, r_y, t); 

 

X | Y: Referred to as SimPOR 

r_x <= F(x, t) && r_y <= F(y, t) && TTF(x, r_x, t) < TTF(y, r_y, t)) ||  

    (r_x <= F(x, t) && r_y > F(y, t) 
 

X &d Y: Referred to as SimSAND 

r_x <= F(x, t) && r_y > F(y, t) && r_y <= F(y, t + d)) || (r_y <= F(y, t) &&  

    r_x > F(x, t) && r_x <= F(x, t + d) 
 

X < Y < Z 

r_x <= F(x, t) && r_y <= F(y, t) && r_z <= F(z, t) && TTF(x, r_x, t) <  

    TTF(y, r_y, t) && TTF(x, r_x, t) < TTF(z, r_z, t) && TTF(y, r_y, t) < TTF(z, r_z, t) 
 

X < Y | Z 

(SimPAND(r_x, x, r_y, y, t) && r_z <= F(z, t) && TTF(x, r_x, t) <  

    TTF(z, r_z, t))|| (SimPAND(r_x, x, r_y, y, t) && r_z > F(z, t)) 
 

X < Y & Z 

r_x <= F(x, t) && SimSAND(r_y, y, r_z, z, t, d) &&  

    TTF(x, r_x, t) < TTF(y, r_y, t) && TTF(x, r_x, t) < TTF(z, r_z, t) 
 

X & Y . Z 

SimSAND(r_x, x, r_y, y, t, d) && r_z <= F(z, t) 
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X < Y + Z 

SimPAND(r_x, x, r_y, y, t) || r_z <= F(z, t) 

     

X | Y + Z 

SimPOR(r_x, x, r_y, y, t) || r_z <= F(z, t)  

168  
 



APPENDIX 2: Algorithm to Evaluate Top-Event 

 

// token = basic events or operators or parenthesis 
//convert MCSQ to RPN 
while (MCSQ contains tokens) 
     tkn ← Read leftmost token 
     if (tkn is basic event) then 
 Add failure probability of tkn to output queue 
     end if 
     if (tkn is operator) then 
              op1 ← tkn 
 while (top of stack is operator token, op2, AND op1 has less precedence than 
op2) 

     Pop op2 off stack unto output queue 
end while 

 Push op1 unto the stack 
     end if 
     if (tkn is left parenthesis) then 
 Push tkn unto the stack 
     end if 
     if (tkn is right parenthesis) then 
 while (token at top of stack is not left parenthesis) 
      Pop operators off stack unto output queue 
 end while 
 Pop left parenthesis from stack; not unto output queue 
 if (stack is empty without finding left parenthesis) then 
      Error: mismatched parenthesis 
 end if 
while (stack contains operators) 
     if (operator on top of stack is parenthesis) then 

Error: mismatched parenthesis 
     end if 
end while 
Pop operator unto output queue 
rpn ← output queue 
 
//Evaluate MCSQ RPN 
while (rpn contains tokens) 
     tkn ← read leftmost token 
     if (tkn is an event) then 
          push tkn unto stack 
     else if (tkn is an operator) then 
          op1 ← tkn 
      if (stack has less than 2 values) then 
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          error: insufficient input values in MCSQ 
      else  
           pop top two values on stack 
           switch (op1) 
                case ‘&’: temp = _SAND (num2, num1, d)  
                case ‘<’: temp = _PAND (num2, num1) 
                case ‘|’: temp = _POR (num2, num1) 
                case ‘.’: temp = _AND (num2, num1) 
                case ‘+’: temp = _OR (num2, num1) 
                case else: Error: Unknown operator 
           end switch 
           push temp unto stack 
       end if 
    end if 
end while 
if (stack contains 1 value) then 
    MCSQprobability ← value on top of the stack 
else 
    error: invalid input. Input has too many values 
 

As previously discussed, the OR gate is the least in the order of precedence. This makes 

it easy to represent the top event in the form of sum of other gates at the top level in the 

resulting temporal fault tree. Using the Eqn (2) we present an algorithm for the 

evaluation of the top event as:   

reliability ← 1 
top-event ← 0  
while (MCSQList contains MCSQ) 
     mcsqProbability ← Next MCSQ probability //using algorithms above 
     reliability ← reliability * (1 – mcsqProbability) 
end while 
top-event = 1 – reliability 
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APPENDIX 3: Preliminary List of CSQs 

 

[I-SOL<Hi-SOF].Hi-SIF.Hi-SIF.[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].Hi-SEF.[Hi-SEF|Hi-
SIF].[Hi-SEF|I-SCV].I-SOV.I-SOV 
 
[I-SOL<Hi-SOF].Hi-SIF.Hi-SIF.[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].Hi-SEF.[Hi-SEF|Hi-
SIF].[Hi-SEF|I-SCV].I-SOL.I-SOL 
 
[I-SOL&Hi-SOF].Hi-SIF.Hi-SIF.[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].Hi-SEF.[Hi-SEF|Hi-
SIF].[Hi-SEF|I-SCV].I-SOV.I-SOV 
 
[I-SOL&Hi-SOF].[Hi-SEF|I-SCP].[Hi-SEF|Hi-SIF].[Hi-SEF|I-SCV].Hi-SOF.Hi-
SOF.Hi-SIF.Hi-SIF.Hi-SEF.Hi-SEF.I-SOL.I-SOL 
 
[Hi-SEF|I-SCP].[Hi-SEF|Hi-SOF].[Hi-SEF|Hi-SIF].Hi-SIF.Hi-SIF.[Hi-SEF|I-SCV].Hi-
SEF.Hi-SEF.I-SOL.I-SOL 
 
[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF|I-SCP].Hi-SIF.Hi-SIF.[Hi-SEF|I-SCV].Hi-
SEF.Hi-SEF.I-SOL.I-SOL 
 
[Hi-SOF&I-SOL].Hi-SOF.Hi-SOF.[Hi-SEF|I-SOV].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SIF].Hi-SIF.Hi-SIF.[Hi-SEF|I-SCV].Hi-SEF.Hi-SEF.I-SOL.I-SOL 
 
[I-SOV<Hi-SOF].Hi-SIF.Hi-SIF.[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].Hi-SEF.[Hi-SEF|Hi-
SIF].[Hi-SEF|I-SCV].I-SOV.I-SOV 
 
Hi-SIF.Hi-SIF.Hi-SEF.Hi-SEF.I-SOL.I-SOL.[Hi-SOF&I-SOV].[Hi-SEF|I-SOL].[Hi-
SEF|I-SCP].[Hi-SEF|Hi-SIF].[Hi-SEF|I-SCV] 
 
[Hi-SEF|I-SOV].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|Hi-
SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-
SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-
SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-SEF|I-SIV].[Hi-
SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-SEF<I-SIV].[Hi-
SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOV&Hi-SOF].Hi-SEF.[Hi-SEF|I-SOV].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF<Hi-SOF].[Hi-SEF|I-SCV] 
 
[Hi-SOF&I-SOL].Hi-SEF.[Hi-SEF|I-SOV].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-
SCP].[Hi-SEF|I-SCV] 
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[Hi-SOF&I-SOL].Hi-SEF.[Hi-SEF|I-SOV].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF|I-SCV] 
Hi-SOF.Hi-SEF.Hi-SEF.Hi-SEF.[I-SOL<Hi-SEF].[Hi-SOF<I-SOL].[Hi-SEF|I-
SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-SOF].[Hi-SEF|I-SCV] 
 
[Hi-SEF|I-SOL].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|Hi-
SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF|Hi-SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOL].[Hi-
SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOL].[Hi-
SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-
SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-
SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF<Hi-SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-
SCP].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF|I-SCV] 
 
[I-SOV&Hi-SOF].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-
SCP].[Hi-SEF|I-SCV] 
 
[Hi-SOF&I-SOV].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-
SCP].[Hi-SEF|I-SCV] 
 
[Hi-SOF&I-SOV].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SEF].Hi-SEF.[I-SIV<I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-
SCP].[Hi-SEF|Hi-SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[I-SOL<Hi-SEF].[I-SIV<I-SOL].[I-
SIV<Hi-SOF].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[I-SOL<Hi-SEF].[I-SIV<I-SOL].[I-SIV<Hi-SOF].[Hi-SEF|I-
SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[I-SOL<Hi-SEF].[I-SIV<I-SOL].[I-SIV<Hi-SOF].[Hi-SEF|I-
SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
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[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SEF].[I-SIV<I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-
SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[I-SIV&I-SOL].[I-SIV<Hi-SOF].[Hi-SEF<I-SOL].[Hi-SEF|I-
SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[I-SIV&I-SOL].[I-SIV&Hi-SOF].[Hi-SEF<I-SOL].[Hi-
SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
[Hi-SEF|I-SIV].Hi-SEF.[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|Hi-SOF].[Hi-SEF|I-
SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SOF].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-
SCP].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-
SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-
SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-
SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-
SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|I-
SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-
SCV] 
 
[I-SOL&Hi-SOF].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-
SCP].[Hi-SEF<Hi-SOF].[Hi-SEF|I-SCV] 
 
[Hi-SEF<I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SCP].[Hi-SEF|Hi-SOF].[Hi-SEF|I-SCV] 
 
[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-SCP].[Hi-SEF|I-SCV] 
 
I-SIV.[Hi-SEF|I-SOV].[Hi-SEF<I-SOL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
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I-SIL.[Hi-SEF|I-SOV].[Hi-SEF<I-SOL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
[Hi-SEF<I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-
SIV].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[Hi-SOF&I-SOL].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-
SCP].[Hi-SEF<Hi-SOF].[Hi-SEF|I-SCV] 
 
[I-SOV<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-
SIV].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SOV&Hi-SOF].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-
SCP].[Hi-SEF<Hi-SOF].[Hi-SEF|I-SCV] 
 
[Hi-SOF&I-SOV].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-
SCP].[Hi-SEF<Hi-SOF].[Hi-SEF|I-SCV] 
 
[Hi-SOF|I-SOV].[Hi-SOF<I-SOL].[Hi-SEF|I-SOV].[Hi-SEF<I-SOL].[Hi-SEF|I-
SCP].[Hi-SEF|I-SCV] 
 
[I-SIL<I-SOV].[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SCP].[Hi-
SEF|I-SCV] 
 
[I-SIL<I-SOV].[Hi-SEF<I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[Hi-SEF<I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SCP].[Hi-SEF|Hi-SIF].[Hi-SEF|I-SCV] 
 
[I-SOV&Hi-SOF].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF<I-SCP].[Hi-SEF|Hi-
SIF].[Hi-SEF|I-SCV] 
 
[I-SOV&Hi-SOF].[Hi-SEF<I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SIF].[Hi-SEF|I-SCV] 
 
[I-SIL<Hi-SIF].[Hi-SEF<I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[I-SIL&Hi-SIF].[Hi-SEF<I-SOL].[Hi-SEF<I-SIV].[Hi-SEF|I-SCP].[Hi-SEF|I-SCV] 
 
[Hi-SEF|I-SOV].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SOF].[Hi-SEF<I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-
SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOV].[Hi-SEF|I-SIV].[Hi-
SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[Hi-SOF&I-SOL].Hi-SEF.[Hi-SEF|I-SOV].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF<I-SCV] 
 
[Hi-SEF|I-SOL].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SOF].[Hi-SEF<I-SCV] 
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[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOL].[Hi-
SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SOF<Hi-SEF].[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-
SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF<I-SCV] 
 
[Hi-SOF&I-SOV].Hi-SEF.[Hi-SEF|I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF<I-SCV] 
 
[I-SOL<Hi-SEF].Hi-SEF.[I-SIV<I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF|Hi-SOF].[Hi-SEF<I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[I-SOL<Hi-SEF].[I-SIV<I-SOL].[I-
SIV<Hi-SOF].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[I-SOL<Hi-SEF].[I-SIV<I-SOL].[I-SIV<Hi-SOF].[Hi-SEF|I-
SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[I-SOL<Hi-SEF].[I-SIV<I-SOL].[I-SIV<Hi-SOF].[Hi-SEF|I-
SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SEF].[I-SIV<I-SOL].[Hi-SEF|I-SIV].[Hi-SEF|I-
SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[I-SIV&I-SOL].[I-SIV<Hi-SOF].[Hi-SEF<I-SOL].[Hi-SEF|I-
SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[I-SIV&I-SOL].[I-SIV&Hi-SOF].[Hi-SEF<I-SOL].[Hi-
SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
 
[Hi-SEF|I-SIV].Hi-SEF.[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-SOF].[Hi-SEF<I-
SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[I-SOL<Hi-SOF].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-
SCP].[Hi-SEF<I-SCV] 
 
[I-SOL<Hi-SOF].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-
SCV] 
 
[I-SOL&Hi-SOF].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-
SCV] 
 
[I-SOV<Hi-SOF].Hi-SEF.[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF<I-
SCV] 
 
[Hi-SEF|I-SOV].[Hi-SEF|I-SOL].[Hi-SEF|I-SCP].[Hi-SEF<I-SCV] 
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[I-SOV&Hi-SOF].[Hi-SEF|I-SIV].[Hi-SEF|I-SIL].[Hi-SEF|I-SCP].[Hi-SEF|Hi-
SIF].[Hi-SEF<I-SCV] 
 
I-SIL.[I-SOV&I-SIL].I-SIL.I-SOV.I-SOV 
 
I-SOV.[I-SOV&I-SIV].I-SOV.I-SIV.I-SIV 
 
I-SOL.[I-SOL&I-SIV].I-SOL.I-SIV.I-SIV 
 
[I-SIV<I-SOV].[I-SIV|I-SOL] 
 
[I-SIV|I-SOV].[I-SIV<I-SOL] 
 
[I-SIL<I-SOV].[I-SIL|I-SOL] 
 
[Hi-SIF|I-SIL].Hi-SIF.I-CSP.I-SOV.I-SOV 
 
I-CRL.Hi-SIF.Hi-SIF.I-SOV.I-SOV 
 
Hi-SIF.Hi-SIF.I-SOV.I-SOV.I-CSV 
 
Hi-SIF.Hi-SIF.I-CSP.I-SOL.I-SOL 
 
Hi-SIF.Hi-SIF.I-SOL.I-SOL.I-CSV 
 
I-SCP.I-CSP 
 
I-CRL.I-SCP 
 
I-SCP.I-CSV 
 
I-CSP.I-SOL.I-SIL 
 
I-CRL.I-SOL.I-SIL 
 
I-SOL.I-SIL.I-CSV 
 
I-CSP.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] 
 
I-CRL.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] 
 
I-CSV.[Hi-SOF<I-SOV].[Hi-SOF|I-SOL] 
 
I-CSP.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] 
 
I-CRL.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] 
 
I-CSV.[Hi-SOF|I-SOV].[Hi-SOF<I-SOL] 
 
I-CSP.I-SCV 
 
I-CRL.I-SCV 

176  
 



 
I-CSV.I-SCV 
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APPENDIX 4: Supply Chain Risk Management Using Pandora 

In this appendix, Pandora’s logic gates are used to model some supply chain scenarios. 

These are then used to evaluate the reliability of a hypothetical supply chain. It must be 

noted that this appendix is the author’s concept of how Pandora can be used in analys-

ing the reliability of supply chain. Although there may be existing literature covering 

some parts of this contribution (especially, with classical Boolean Gates), no literature 

review is made – the entire content, except for the case study, is solely the author’s 

work. 

Modelling of Scenarios 

First of all, some key terminologies to be used in this appendix are redefined to suit the 

context in which they are used. 

Entity: A person, process, department, organisation or equipment forming part of a 

supply chain; these entities contribute to the success of the supply chain. 

System: A group of interconnected entities operating to achieve a common goal. 

Event: A binary outcome of the operation of an entity. This could be either a success or 

a failure. 

Failure: A system or entity’s inability to deliver its intended function. 

Reliability: A system or entity’s ability to deliver its intended function withig a speci-

fied time in the conditions it was designed to function. 

Before Pandora can be used in analysing fault trees of supply chains, each gate (both 

temporal and static) is described in the “supply chain” context to model various scenari-

os. All gates maintain their symbols and representations described in earlier chapters of 

this thesis.  

AND Gate 

The AND gate logic describes the scenario where one or more events in a supply chain 

occur. Meaning, the output event of an AND gate is triggered if all its input events oc-

cur. For example, a manufacturing firm, MF, which has more than one channel, C1, 

C2…CN, of getting raw materials will fail to function if all its channels fail. That is: 

MFfails = C1fails AND C2fails AND … AND CNfails 
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OR Gate 

The OR gate represents the scenario where the failure of at least one event in a supply 

chain can lead to the failure. Meaning, the output event of an OR gate is triggered if at 

least one of its input events occur. For example, a manufacturing firm, MF, will fail if 

all its power plants, F1, fail or if all its workers, F2, fail to turn up for work or if all its 

channels of raw materials, F3, fail. Assuming all event failures leading the failure of MF 

are F1, F2 … FN then, 

 MFfails = F1fails AND F2fails AND … AND FNfails 

Priority-AND (PAND) Gate 

The PAND gate is used to model situations where there occurrence of an event strictly 

before the occurrence of another event will trigger the occurrence of another event. 

Meaning, an output event is fired when its input events occur in a sequence – strictly 

one after another. For example, consider a manufacturing firm, MF, with two produc-

tion lines, P1 and P2. P1 is a primary production line and P2 is a standby production 

line. If P1 fails before P2, there is a chance that immediately P1 fails, P2 will quickly 

get activated into production so the entire production system does not necessarily fail. 

However, if P2 has already failed before P1, then when P1 fails, the entire production 

system fails. The PAND gate is used to represent the latter – P2 PAND P1. 

Parameterised Simultaneous-AND (pSAND) Gate 

The pSAND gate is used to represent the scenario where the occurrence of two or more 

events within a relatively short duration of time will trigger the occurrence of another 

event. Therefore, with the pSAND gate, an output event is triggered if its input events 

occur within a small interval of duration. For example, an automotive company, A, has 

only one source of steel - from a firm C. A has an outsourcing department, D, that is 

responsible for ordering steel from alternative sources should C fail. If D fails to source 

for steel within seven working days (due to employee strike etc.), another department X 

in A takes on the duty of ordering for steel; during this time, the production (of vehicle 

bodies), P, comes to a halt. The pSAND gate is the logic for representing this scenario 

where P fails when C and D fail within an interval of duration. Therefore, using the no-

tations described earlier, 

 Pfails = Cfails pSAND7days Dfails 
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Priority-OR (POR) Gate 

The Priority-OR gate is used to represent the scenario where and event occurs strictly 

before its subsequent event or the earlier event occurs and the later does not. Meaning, 

for two events, A and B, the output event of a POR gate, C, is triggered if its first input 

event A occurs strictly before its second input event B or A occurs but B does not. For 

example, a medium size shoe making company, C, gets its leather from a source S. As-

suming one of C’s employees E, has two primary responsibilities: ordering leather from 

alternative sources if S fails to deliver leather on time and cutting the leather into shapes 

for making preordered custom shoes for customers. In this case, the production of cus-

tom made shoes, P, will come to a halt if E fails before S or E fails and S does not. 

Therefore, 

 Pfails = Efails POR Sfails 

 

Case Study: Suces Fruit Company (SFC) 

This case study demonstrates how Pandora, a temporal fault tree analysis tool, can be 

used to evaluate the reliability of a hypothetical supply chain model and to determine 

the critical aspects of the model. The diagram in Figure APX4-1 is a model of a fruit 

juice manufacturing company called Suces Fruit Company (SFC). SFC is a large United 

Kingdom (UK)-based fruit juice manufacturing company. Its primary function is to im-

port raw fruits from suppliers, extract juices from these raw fruits and package them for 

retailers to sell to consumers. Suces has international suppliers in addition to what Suces 

gets from its local suppliers. It imports the two most patronised fruits in the UK fruit 

juice market – oranges and apples – from international sources. This is so because the 

UK local manufacturers do not produce enough oranges and apples to satisfy the de-

mands of UK’s thirsty market. 

Suces has three big plants across the UK: one in the southeast (SE), another in the 

northeast (NE) and the third in the mid-west (MW) regions. Suces has three main pro-

cesses – pre-extraction (PE), extraction and packaging (EP) and distribution (DC). Dur-

ing the pre-extraction process, the imported raw fruits undergo separation and washing; 

where good fruits are separated from bad ones and are cleaned with water and other 

chemicals to remove all forms of germs and bacteria. The extraction process, involves 

the actual extraction of juices, straining, filtration, blending and pasteurisation. During 
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the packaging process, the fruit juice is put into appropriate packages, sealed, sterilised, 

labelled and packaged into boxes. Suces has a three extraction and three packaging 

plants: one of each at a production site. However, to save cost, it has only one pre-

extraction plant located in the mid-west, which supplies prepared raw fruits to all the 

extraction and packaging plants. Figure APX4-1 is an abstract supply chain structure of 

the plant distribution over the UK. 

Suces produces only orange and apple juices so it imports only raw oranges and apples. 

It imports huge quantities of its oranges and apples from Agro Exporters (AE) in Spain. 

and Yaba Exporters (YE) based in Italy. Argo and Yaba are Suces’ primary sources of 

raw materials. Smot Exporters (SE) in Mexico is Suces’ secondary source of raw orang-

es and apples. Because of the cost of shipping, Suces rarely imports from Smot. It only 

does so when there is an unusual increase in demand for both orange and apple juice – 

especially during festive seasons. All imported raw fruits are directed to the PE for 

cleaning and screening. Once the pre-extraction processes are completed, the prepared 

raw fruits are sent to all three extraction and packaging plants; of which one is onsite, 

close to the pre-extraction plant. Each EP plant has a DC, which serves as a warehouse 

and a distribution point of finished products to retailers (RT). These retailers are super-

markets who make Suces’ finished products available to consumers. Figure APX4-2 is 

an abstract graphical model of Suces’ supply and distribution network. 

 

 

 

 

 

 

 

 

 

Figure APX4- 1: Suces regional structure 
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Figure APX4- 2: Suces fruit company supply chain model 

Suces has an Inventory Department, ID, responsible for monitoring the stock of import-

ed raw fruits. ID ensures that: 

1.  there is a constant supply of raw fruits to PE. If the raw fruits are 20% less than 

PE’s storage capacity, a request is placed for AE and YE to supply the 80% 

shortage. Originally, each is required to supply 50% of the shortage. However, if 

one cannot meet up with the demand, the other is asked to supply what was lack-

ing.  

2. if AE and YE supply over 60% of the required 80% shortage, local suppliers 

will be contacted to supply the remaining 20% else Smot will be contacted.  

3. if both of them fail to supply the needed 80% of shortage, Smot, the secondary 

supplier, is asked to satisfy shortage. It is very unlikely that Smot will be unable 

to satisfy a request. However, if Smot is not able to satisfy the 80% shortage, lo-

cal (UK-based) fruit farmers, who produce very small quantities of oranges or 

apples will be contacted. 

Suces also has a Distribution Department (DD) which is responsible for the even distri-

bution of finished products to the retailers who sell the products to consumers across the 

three regions. 

The entire logistic network model of Suces is considered coherent: no part of the system 

can be improving while others are failing. For example, It is assumed that if the total 

output production of Suces is decreasing due to the low supply of orange, there will be 

no increase in apple juice production to make up for the loss. 
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Qualitative Analysis 

What can cause a shortage in finished products: O-juice 

O-PE = PE + AE & YE & SE + SE<(AE . YE) 

O-EP1 = EP1 + O-PE 

O-EP2 = EP2 + O-PE 

O-EP3 = EP3 + O-PE 

O-DC1 = DC1 + O-EP1 

O-DC2 = DC2 + O-EP2 

O-DC3 = DC3 + O-EP2 . O-EP3 

O-RT1 = O-DC1 

O-RT2 = O-DC2 

O-RT3 = O-DC2 . O-DC3 

O-RT4 = O-DC3 . O-DC4 

O-juice = O-RT1 . O-RT2 . O-RT3 . O-RT4 

 

Finally, 

O-juice = DC1 . DC2 . DC3 + DC1 . DC3 . EP2 + DC1 . EP2 . EP3 +  

                 DC2 . DC3 . EP1 + DC3 . EP1 . EP2 + EP1 . EP2 . EP3 + PE  

                 + [AE&YE] . [AE&SE] . [SE&YE] + AE . [SE<YE] + [SE<AE] . YE 

 

The above expression for o-juice are the MCSQs. From the MCSQs, it is obvious that 

PE (pre-extraction) is the only critical part of the system. It is critical because when it 

fails, the entire system fails. Hence Suces’ management must spend/allocate resources 

in keeping this section running at all times. 

Using the techniques proposed in this thesis, the quantitative analysis (top-event and 

importance measures) can be determined if some failure data are provided for the 

events. From the quantitative measure, importances can be attached to each individual 

MCSQ. These will further inform Suces’ management contributions of MCSQ leading 

to the top-event. 
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GLOSSARY  

 

Archimedes 

An inductive methodical technique for analysing temporal fault trees. It does so by con-

verting fault trees into an alternative structure by enumerating all possibilities of cut 

sequences occurring and then generating possible sequences for a set of events. 

 

Balanced Sequence 

A string of zeroes and ones that represent a fault tree. The fault tree is traversed depth-

first from left to right, each decent is a zero and each ascent is a one. Balanced sequenc-

es usually contains other balanced sequences: these can be considered as sub-trees. 

 

Basic Event 

A single component failure that contributes to the failure of another component. It can 

have not causative component failures. 

 

Binary Decision Diagram (BDD) 

A directed acyclic graph. Static fault trees can be translated into BDDs and analysed 

quantitatively without qualitative analysis. The quantitative analysis can yield both top-

event probabilities and importance measures. 

 

Birnbaum Measure (BM) of Importance 

It determines the sensitivity of the top event probability with respect to some given 

events. In other words, measures the rate of change in the top-event probability with 

respect to the changes of the probability of a specific event. 

 

Component 

A subsystem or integral part of a system that contributes, usually in addition and rela-

tion to other components, to the overall functionality of the system. 

 

Cold Spare (CSP) 

A redundant or standby component that replaces a primary components when it (prima-

ry component) fails. It is used in DFT analysis. 
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Continuous Random Variable 

Random variable defined over a continuum which is supposedly uncountable/non-

discrete. 

 

Cut Set 

A combination of logically related basic events that propagate to cause a total system 

failure or top event. 

 

Dynamic Fault Tree (DFT) 

A fault tree that considers the temporal or dynamic behaviours present in systems by the 

use of dynamic gates – FDEP, CSP, PAND, SEQ. The temporal/dynamic behaviours 

include the sequential or order in which events occur. DFTs are usually analysed quanti-

tatively. 

 

Error 

A mistake caused by the manifestation of a fault. 

 

Euripides 

A law-based deductive technique for logically analysing temporal fault trees. It does so 

by the use of four processed: binarboreal, flattening, encapsulation and minimization. 

 

Event 

A binary outcome of a component’s functionality: whether it has failed or it is opera-

tional. 

 

Exclusive Priority-AND (ePAND) 

A logical gate that is triggered when an event occurs strictly before another event; its 

input events cannot occur at the same time. 

 

Failure 

A system’s deviation from its specified performance; meaning, the system is unable to 

deliver the function(s) it was designed to deliver. 
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Failure Rate 

The rate at which the failure of a component/system fails per unit of time. Meaning, the 

number of failures of a system per unit of time. 

 

Fault 

An abnormal or erroneous state of a system. 

 

Fault Tree Analysis (FTA) 

A deductive technique of analysing a system by considering how the basic combina-

tions of components of the system propagate to cause a system failure. 

 

Functional Dependency (FDEP) 

A logical gate used to model Common Cause Failures (CCF) of events. CCF occurs 

when the occurrence of a single event failure triggers the failure occurrence of other 

dependent events almost at the same time. 

 

Fussell-Vesely (FV) Importance 

A measure of the contribution of a particular basic event to the top event occurrence 

probability given that the system has failed. Simply, it is the ratio of all MCSs or 

MCSQs in which an event occurs to the total failure of the system. 

 

Groups and Modules Modularization Technique (GMMT) 

A technique for categorizing all dependent events for logical minimization by the use of 

groups and modules. A module is a set of MCSQs with exactly the same distinct events 

whilst a group is a set of MCSQs with the same number of distinct events. 

 

Groups and Modules Table (GMT) 

A table with groups and modules. Groups could be considered as the columns and mod-

ules as the rows. 

 

Inclusive Priority-AND (iPAND) 

A logical gate in which all basic events occur one after the other or at the same time. 

Therefore, for any two input events, A and B, A iPAND B means A occurs strictly before 

B or A and B occur at the same time.  
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Intermediate Event 

A combination of events that leads to the occurrence of another event. It is neither a top-

event nor a basic event. 

 

Mean Time-to-Failure (MTTF) 

The average TTF of a system. 

 

Minimal Cut Set (MCS) 

A combination of logically related basic events necessary and sufficient to trigger the 

occurrence of a top-event. These logically related combinations lack dynamic behav-

iours; they are usually related by the static gates AND and OR. 

 

Minimal Cut Sequence (MCSQ) 

This is analogous to MCS. It is a combination of logically related basic events, with 

dynamic behaviour, necessary and sufficient to cause a top-event. The dynamic behav-

iour is modelled with dynamic gates. 

 

Pandora 

A temporal fault tree analysis technique that seeks to extend FTA, whilst keeping its 

simplicity, by the use of novel temporal gates and laws. 

 

parameterized-Simultaneous-AND (pSAND) 

A temporal logical gate used to represent the situation where events occur nearly simul-

taneously – within a relatively short duration of time.  

 

Priority-AND (PAND) 

A temporal logical gate representing the sequential occurrence of events; an event oc-

curs then another occurs and on and on. 

 

Priority-OR (POR) 

It is a temporal logical gate that represents the occurrence of an event before another or 

the occurrence of the former event is sufficient to cause the output event. 
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Reliability 

The probability of a system delivering its intended functions, without deviation, under 

specified conditions within a specific time frame. 

 

Reliability Engineering 

A branch of science concerned with the estimation of the reliability of a system. It is 

part of dependability analysis. 

 

Safety 

The measure of a systems ability not to cause devastative effects if it should fail. 

 

Safety-Critical System 

A system that will have catastrophic effects on human life and its environment if it 

should fail. Such systems are also known as high-consequence systems. 

 

Sequential Failure Logic (SFL) 

A logic that considers the dynamic/temporal dependencies existing between events. 

These are inherent in most dynamic safety-critical systems. 

 

Simultaneous-AND (SAND) 

It is a temporal logical gate that represents the occurrence of events at exactly the same 

time. Statistically, nearly impossible for two or exponentially independent events to oc-

cur at the same time. 

 

Static Fault Tree (SFT) 

A fault tree with only static gates – AND and OR. They are unable to capture the dy-

namic behaviours. 

 

System 

A composition of various logically connected and related functional units performing 

individual tasks to perform an overall function. 

 

Time-to-Failure (TTF) 

The next time to failure of an event. 
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Temporal Binary Decision Diagram (TBDD) 

A binary decision diagram that is able to include temporal features such as sequential 

failures. 

 

Temporal Fault Tree (TFT) 

A fault tree that is capable of capturing the sequential failure present in systems by the 

use of temporal gates – PAND, SAND, POR. TFTs can be analysed both quantitatively 

and qualitatively. TFT in this thesis refers to Pandora defined by M. D. Walker not as 

proposed by G. K. Palshikar. 

 

Top-Event 

This corresponds to the total failure of a system under consideration. 

 

Qualitative Analysis 

Logical analysis of a fault tree: either static or temporal. Usually involves using logical 

laws to reduce an expression into its minimal form. 

 

Quantitative Analysis 

Probabilistic analysis of a fault tree: static or temporal. Provides the probability of the 

top-event occurring or importance measures. 

 

Unreliability 

The measure of a system not delivering its intended purpose – deviation from intended 

purpose – under specified conditions it was designed to operate. 
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