
THE UNIVERSITY OF HULL

Towards an ab Initio Description

of Adsorbate Vibrations

by

Sergey Chulkov

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

in the University of Hull

November, 2013



Abstract

This thesis investigates accurate theoretical prediction of anharmonic vibrational

frequencies of molecules adsorbed on metal surfaces. Such adsorbed systems are

composed of two parts with different electronic properties, the adsorbate and the

surface. However, most existing quantum mechanical methods are not identically

accurate for both parts. Moreover, methods that can accurately describe extended

system are very time consuming and significantly complicates their usage for standard

anharmonic calculations.

This thesis introduces a fragment method to overcome this difficulty. Within

our method an energy correction is computed using high-level ab initio quantum

mechanical method by considering an adsorbed molecule separately from the metal

surface. The reliability of this approach is demonstrated for two test systems:

an acetylene molecule adsorbed on a Cu(001) surface and a thiophene molecule

adsorbed on a Au(111) surface. In both cases intra-adsorbate anharmonic frequencies

obtained using the fragment method show better agreement with experimental

data than the corresponding anharmonic frequencies computed using a standard

approach. Moreover, a correlation between the accuracy of the fragment method

and the accuracy of the ab initio method used for adsorbed molecule is observed.

This correlation provides a way to systematically improve adsorbate frequencies by

improving the quality of the potential energy surface used.

Finally, for each test systems we established a correlation between the strength

of adsorption and the value of the frequencies shift upon adsorption. This allows us

to conclude that terthiophene is only weakly adsorbed on a Au(111) surface based

on the similarity between the adsorbate and the gas-phase vibrational spectra.

Keywords: quantum chemistry, vibrational spectroscopy, anharmonicity, frag-

ment methods, adsorbate vibrations, ab initio calculations.
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Chapter 1

Introduction

Molecules adsorbed on metal surfaces remain a current theoretical interest. Adsorp-

tion is normally classified into two types according to the type of binding. The first

type is physisorption, which is caused by weak van der Waals interactions between an

adsorbed molecule and its metallic support. Physisorption is a reversible process that

usually does not alter molecular geometry and usually does not alter much the local

structure of the surface near its adsorption site. However, this type of adsorption is

non-specific to the particular adsorbate and the metallic surface and can be observed

at low temperature for almost all adsorbed systems.

The second type of adsorption is chemisorption when a molecule forms chemical

bonds with the adsorbent. In contrast with physisorption, chemisorption is usually

highly selective. In particular, catalytic properties of metallic surfaces are defined by

their ability to chemisorb as this often enhances the reactivity of adsorbed molecules

by altering their conformations, or changing their electronic distribution [1]. For

this reason, information about adsorbate’s equilibrium geometry as well as about

its adsorption site becomes very important, as it provides a better understanding of

catalytic reactions induced by metallic surfaces and gives the ability to control them.

There are a number of experimental techniques, such as scanning tunnelling

microscopy (STM) [2] and low energy electron diffraction (LEED) [3, 4], which can

provide direct information about the structure of such adsorbed systems. However, in

the case of a large adsorbed molecule it is still very difficult to observe experimentally
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Chapter 1. Introduction 2

an actual adsorption site, as the structure of metallic support is covered by adsorbates.

The situation becomes more involved as chemisorption affects not only the adsorbed

molecule but often leads to reorganisation of the surface structure itself. Fortunately,

this kind of information can potentially be obtained from the analysis of vibrational

spectra, as these spectra contain important information not only about the system’s

constituents but also about its actual molecular geometry. For adsorbed systems

vibrational spectroscopy also probes the arrangement of molecules on a surface [5]

that may be inaccessible by other methods.

There are several experimental techniques that have been developed to record

vibrational spectra of adsorbed molecules, such as (high resolution) electron energy

loss spectroscopy (HR)EELS [6, 7], infrared reflection absorption spectroscopy (IR-

RAS) [8, 9], surface enhanced Raman spectroscopy (SERS) [10], inelastic electron

tunnelling spectroscopy (IETS) [11], and many others. Moreover, the IETS technique

combined with STM also allows one to record the vibrational spectra of a specific

part of a complex molecule [12]. Nevertheless, the assignment of measured transition

frequencies to certain vibration modes still remains a very difficult task.

There are four commonly used approaches to perform this assignment. The first

one is based on characteristic vibrational frequencies which implies that the vibrational

motion of some group of atoms has a similar frequency in different molecules. However,

these characteristic frequencies often lie within widely overlapping intervals of possible

values, and the precise value strongly depends on the actual molecular conformation

and environment [13]. Furthermore, vibrational overtones from various functional

groups may appear in the vicinity of fundamental frequencies of other functional

groups, making the spectra even more difficult to interpret. In connection with

adsorbed systems this excessive sensitivity, however, is a very promising feature of

vibrational spectroscopy, as it potentially allows to distinguish between different

adsorption sites [14].

The second widely used approach is based on an isotopic effect. Thus, the

replacement of a given atom with its isotope affects the transition frequencies

of those vibrational modes which involve the replaced atom. The value of such
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isotopic shift can be estimated theoretically using a classical oscillator model. The

peaks in the target spectrum that experience this shift can be easily identified.

Unfortunately, a complete analysis of a vibrational spectrum using this approach

may be very expensive and time consuming, as it requires the synthesis of many

different isotopomers. Moreover, separate vibrational spectra need to be measured

for all of these isotopomers.

Alternatively, in gas phase conditions peaks can also be assigned to a particular

mode based on different selection rules which take place for different experimental

techniques. For example, the fact that IR and Raman spectra of molecules with an

inversion centre are complementary to each other can be used to assign a particular

symmetry along the inversion centre for every peak. However, in case of adsorbed

systems many other factors have to be taken into account and complicate the

assignment process based on selection rules. Persson and Baratoff [15] theoretically

proved that IETS can potentially detect all vibrational transitions of an adsorbate

molecule. However, the majority of peaks have low intensity due to “propensity

rules” [16, 17] and they are hidden by a noise signal. These propensity rules are

complex and depend on many factors such as a molecular symmetry, the symmetry

of molecular orbitals involved in each tunnelling channel, the type of vibration, and

experimental conditions [16]. The variety of these factors can prevent a reliable

interpretation of spectra and often means that we need to use additional sources of

information.

Finally, the vibrational modes can be assigned using theoretical simulations.

Nowadays it is massively used for interpretation of vibrational spectra as it does

not require extra experiments. It provides a way not only to do mode assignment

but also allows to recover some structural data from a vibrational spectrum by

comparing calculated spectra of possible structures with experiment [14]. The

standard framework for such theoretical predictions is the harmonic approximation.

Its popularity originates from the fact that its computational demands grow linearly

with the number of atoms. This is especially important for adsorbed systems as

often, in order to simulate them properly, hundreds of atoms should be taken into
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consideration. Unfortunately, the direct comparison between experimental and

harmonic frequencies is rarely possible, as these harmonic frequencies are usually

significantly overestimated. This overestimation is caused by the lack of anharmonicity

and in case of molecules in the gas phase can reach up to 15% [18, 19]. Moreover,

anharmonicity is also very important for adsorbed systems including systems with

weak molecule–surface interaction [20].

The simplest widely used technique to account for anharmonicity is to introduce

empirical scaling factors that are dependent on the particular ab initio method/basis

set used and the type of vibration [21]. This approach relies on transferability of

the scaling factors and was tested only for a relatively small set of molecules in the

gas phase. However, the question about its applicability to adsorbed systems still

remains open.

An important alternative to scaling factors to account for anharmonic effects are

approaches based on the vibrational self consistent field (VSCF) method [22], such

as (degeneracy-corrected) second order Møller–Plesset perturbation theory

((DC)VMP2) [23, 24], vibrational configuration interactions (VCI) [25], vibrational

coupled clusters (VCC) [26], and perturbation selected interactions VCI (VCIPSI) [27].

These methods are analogous to the corresponding ones from electronic structure

theory, and provide a fully quantum mechanical description of the nature of the

anharmonicity. They also provide a regular way to improve the accuracy, by increasing

the quality of used potential energy surface (PES) and the level of theory.

The thesis is organised as following. Chapter 2 contains a brief introduction

into the theory of molecular vibrations. Chapter 3 discusses methods of electronic

structure theory and basic principles of fragment methods. It also describes a method

adapted to improve the accuracy of a PES in case of adsorbed systems. Chapter 4

describes algorithmical aspects of my own implementation of general m-dimensional

VSCF and VCI solvers. The proposed fragment method is tested on an acetylene

molecule adsorbed on a Cu(100) surface (Chapter 5) and on a thiophene molecule

adsorbed on a Au(111) surface (Chapter 6) Finally, Chapter 7 summarises the

obtained results.



Chapter 2

The theory of molecular vibrations

According to the quantum chemistry, a molecule can be thought as a collection

of positively charged nuclei and negatively charged electrons with electrostatic

interactions between them. The stationary properties of such system are fully

described by a wave function Ψ(r,R) which depends on the positions of all nuclei

(R) and electrons (r). This wave function also depends on the spin of the electrons,

but for the purpose of simplicity this dependence is not indicated explicitly.

The wave function Ψ(r,R) and the corresponding energy E are obtained by

solving the time-independent non-relativistic Schrödinger equation:

ĤΨ(r,R) = EΨ(r,R) (2.1)

which is totally determined by a Hamiltonian operator Ĥ. This operator describes

interactions between particles which forms a molecular system and for this reason

it is unique for every molecular system. The Hamiltonian contains kinetic energy

operators of the nuclei (T̂n) and the electrons (T̂e), as well as an electron-nucleus

attraction (V̂en) operator along with electron-electron (V̂ee) and nucleus-nucleus (V̂nn)

repulsion operators. In case of the molecular system composed from Na nuclei and

5



Chapter 2. The theory of molecular vibrations 6

Ne electrons, it has the following form:

Ĥ = −1

2

Na∑
α

1

Mα

∇2
α︸ ︷︷ ︸

T̂n

+

Na,Na∑
α<β

ZαZβ
|Rα −Rβ|︸ ︷︷ ︸
V̂nn

−1

2

Ne∑
i

∇2
i︸ ︷︷ ︸

T̂e

+

Ne,Ne∑
i<j

1

|ri − rj|︸ ︷︷ ︸
V̂ee

−
Na,Ne∑
α,i

Zα
|Rα − ri|︸ ︷︷ ︸
V̂en

(2.2)

where Zα is the charge of the α-th nucleus and Mα is its mass in atomic units 1.

Usually there are many wave functions that satisfy the Schrödinger equation (2.1)

for a particular Hamiltonian. Each of them represents some nuclear-electronic state of

the molecular system, while the total energy of this state is equal E. These energies

aggregate to form a molecular spectrum which contains information about electronic,

vibrational, and rotational transitions. For this reason, in order to simulate the

vibrational spectra the vibrational component of the Hamiltonian operator Ĥ should

be separated from the electronic and the rotational ones and then the obtained

vibrational Schrödinger equation needs to be solved.

2.1 Born-Oppenheimer approximation

Solving of the Schrödinger equation (2.1) is a very laborious task, as it depends

on many variables. In particular, the molecular Hamiltonian [Eq. (2.2)] contains

the term V̂en which couples nuclei and electrons together. Without this term, the

Hamiltonian could be decomposed into the sum of two “reduced” Hamiltonians; one

depending on nuclear coordinates, while the other depends on electronic coordinates

only. This leads to a separation of the original Schrödinger equation into electronic

and nuclear equations of lesser dimensionality, which depend on their own disjoint set

of coordinates. Once solving these two equations, the total energy can be computed

as a sum of electronic and nuclear energies, and the total wave function expressed as

a product of the corresponding electronic and nuclear wave functions.

However, in reality the operator V̂en cannot be ignored, as it is responsible for

interaction between nuclei and electrons. Nevertheless, the ability to such separation

1e (elementary charge; 1.602× 10−19 C) = me (electron mass; 9.109× 10−31 kg) = a0 (Bohr
radius; 5.292× 10−11 m) = ~ (reduced Planck constant; 1.055× 10−34 J·s) = 1 a.u.
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can be postulated within the Born-Oppenheimer approximation [28] in assuming

that electrons instantly adapt to any alteration of nuclear positions. Thus, the total

wave function of a molecular system is sought in a form of superposition of a nuclear

[Ψn(R)] and electronic [Ψe(r; R)] wave functions:

Ψ(r,R) ' Ψe(r; R)Ψn(R). (2.3)

The electronic wave function depends explicitly only on the electron coordinates (r)

and it is the solution of the electronic Schrödinger equation:

ĤeΨ
k
e(r; R) =

{
T̂e + V̂ee + V̂en

}
Ψk
e(r; R) = Ek

e (R)Ψk
e(r; R), (2.4)

At the same time, the nuclear coordinates are considered as parameters which

enumerate different electronic Schrödinger equations. This means that Eq. (2.4)

should be thought as a set of equations; each of them corresponds to a particular

fixed arrangement of the nuclei.

The electronic Schrödinger equation (2.4) can be solved using variety of methods

developed within the electronic structure theory [29]. As the result, a set of electronic

wave functions Ψk
e(r; R) along with the corresponding electronic energies Ek

e (R) are

obtained. Being computed for different nuclear coordinates together with nuclear

repulsion term, these electronic energies form a potential energy surface (PES):

V̂ k(R) = V̂nn(R) + Ek
e (R) (2.5)

Once computed, this PES can be used within a nuclear Schrödinger equation for the

k-th electronic state:

ĤnΨk,γ
n (R) =

{
T̂n + V̂ k

}
Ψk,γ
n (R) = Ek,γΨk,γ

n (R). (2.6)

This equation allows to determine wave functions Ψk,γ
n (R) for various vibrational,

translational, and rotational states (γ) along with the corresponding energies (Ek,γ).
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From now on I will omit the index k for the purpose of simplicity, as this work is

dominantly focused on molecules in their electronic ground states.

2.2 Elimination of translational and rotational

motions

The different types of nuclear motions can be classified as internal and external

ones. External motions represent movements of a molecular system as a whole,

while internal ones represent the inter-atomic movements within the system. Thus,

molecular vibrations – which are the main interest of this work – is an example

of pure internal motion. As such, internal coordinates are better suited for their

description rather than the regular Cartesian coordinates R.

In addition to vibrational motion, the molecular system can also move as a whole

along some trajectory in three-dimensional space. This translational motion does

not affect inter-atomic distances and for this reason it corresponds to a pure external

motion. As translations and vibrations correspond to different types of motion, it is

possible to separate them completely by using a centre-of-mass frame instead of an

original laboratory frame. The origin of this centre-of-mass frame is determined as:

RCM =

∑Na
α=1MαRα∑Na
α=1 Mα

. (2.7)

In fact, changing a coordinate system is equivalent to invent a new set of nuclear

coordinates:

Ξ = {ξi}3Na
i=1 ≡ {R̃αx, R̃αy, R̃αz}Na

α=1, (2.8)

where the new coordinates are expressed using the old ones (R) as follows:

ξi =
Na∑
β=1

(ci;βxRβx + ci;βyRβy + ci;βzRβz) . (2.9)

A particular choice of the transformation coefficients {ci;βx, ci;βy, ci;βz}β=1...Na

i=1...3Na
solely

depends on the transformation technique used.
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Figure 2.1. A formaldehyde molecule in a laboratory Cartesian coordinate system
(centre) and in two different centre-of-mass frames with Jacobi (left) and Cartesian
(right) coordinates.

One way to perform this separation is to use Jacobi coordinates [30]. Within this

framework, the original molecular system composed from Na atoms is replaced by

the system of Na effective particles. The first particle represents the centre of mass of

the molecular system which is involved into translational motion. The other Na − 1

effective particles define positions of the real Na nuclei about the centre of mass. As

an advantage, the Jacobi coordinates allow to extract the kinetic energy of the centre

of mass from the original nuclear Hamiltonian reducing its dimensionality by three.

However, these coordinates are rarely used in practice for molecules with more than

three atoms [31], as the original atoms do not longer exist in them (see Figure 2.1).

However, changing the type of coordinates is not necessary at this stage. Instead,

the origin of the laboratory frame can be simply shifted to the centre of mass. This

trick does not reduce the dimensionality of the nuclear Hamiltonian immediately,

but the translational coordinates are naturally separated during the resolution of the

vibrational equation.

The molecular system may be also involved into rotation along some axis. However,

in contrast with translations and vibrations, it is not possible to assign the rotational

motion to a particular type according to external/internal classification. If we assume

fixed inter-atomic distances, the molecular system would experience a rigid rotation.

In this case it would be possible to separate this rotation from vibrations by bringing

the axes of the centre-of-mass frame into coincidence with the principal inertia axes

of the molecular system. With this approach, the rotation is fully described by three
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Eulerian angles [32, p. 286], which are completely invariant from translational and

vibrational motion. This particular selection of the coordinate system was firstly

proposed by Eckart [33] and it is called an Eckart frame [34].

In real molecular systems, however, vibrations may have an influence on rotation

by constantly altering its instantaneous angular momentum. At the same time,

rotational motion can also distort the atomic vibrational trajectories by enforcing

atoms to move in a perpendicular direction. This coupling between rotations and

vibrations is called Coriolis interaction [35]. The strength of such interaction is

usually small and can be ignored, which makes an approximate separation possible.

It also should be mentioned, that separation of rotational motions is only needed

in case of molecules in the gas phase. For periodic systems this separation is not

required as this type of systems is not involved into rotation.

2.3 Harmonic approximation

Prior to solving the nuclear equation (2.6), a suitable set of vibrational coordinates

has to be chosen. The reason is that the regular Cartesian coordinates do not

represent the actual shape of vibrations in polyatomic molecules, as these vibrations

primarily change the internal position of the atoms in a molecular system. Ideally,

this set of coordinates also should be intuitive and should have a simple physical

interpretation. As an example, a set of internal coordinates composed from inter-

atomic distances, angles and dihedral angles can be used which together define a

Z-matrix. This particular set of internal coordinates allows to classify molecular

vibrations by types, such as stretching modes, bending modes, internal rotational

modes, and others.

However, the number of such internal coordinates is less than the number of

Cartesian coordinates by the number of translational and rotational degrees of

freedom. In order to avoid degeneracy during coordinate transformation, the set of

internal coordinates is usually completed by three Cartesian coordinates of the centre
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of mass and by Eulerian angles in the Eckart frame which represent the translational

and rotational motions respectively.

Once the set of internal coordinates q = {qi}3Na
i=1 has been chosen, the nuclear

Hamiltonian expressed in Cartesian coordinates Ξ = {ξi}3Na
i=1 in the Eckart frame:

Ĥn = T̂n(Ξ) + V̂ (Ξ) =
3Na∑
i=1

1

2Mi

∂2

∂ξ2
i

+ V̂ (ξ1, . . . , ξ3Na) (2.10)

needs to be rewritten in terms of these new internal coordinates q. In order to do so,

the old coordinates Ξ are expanded into Taylor series at the equilibrium point:

ξk = ξ0
k +

3Na∑
i=1

(
∂ξk
∂qi

)
0

qi + . . . . (2.11)

If only the first two terms in the Taylor series [Eq. (2.11)] are taken into account, the

kinetic part of the Hamiltonian in Eq. (2.10) expressed in q has the simplest form:

T̂n ' −
1

2

3Na∑
i=1

3Na∑
j=1

(
1

MiMj

3Na∑
k=1

∂ξk
∂qi

∂ξk
∂qj

)
∂

∂qi

∂

∂qj
= −1

2

3Na∑
i=1

3Na∑
j=1

gij
∂

∂qi

∂

∂qj
. (2.12)

Here, Mi is a mass of the atom which is described by the i-th Cartesian coordinate

ξi.

Meanwhile, the potential energy in internal coordinates can also be expanded

into a Taylor series at the equilibrium point:

V (q) = V0 +
3Na∑
i=1

(
∂V

∂qi

)
0

qi +
1

2

3Na∑
i=1

3Na∑
j=1

(
∂2V

∂qi∂qj

)
0

qiqj + . . . . (2.13)

Here, the constant term V0 is not important and can be set to zero, as the interpreta-

tion of vibrational spectra does not require absolute energies but energy differences

between vibrational states. The linear term can be omitted as well, because all

first derivatives at the minimum point are constantly zero. Moreover, the cubic

and higher-order terms can also be ignored in assumption that the amplitude of
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vibrations is small. Finally, the remaining quadratic term:

V (q) ' 1

2

3Na∑
i=1

3Na∑
j=1

(
∂2V

∂qi∂qj

)
0

qiqj =
1

2

3Na∑
i=1

3Na∑
j=1

fijqiqj (2.14)

is positive-definite on a neighborhood of the equilibrium point due to the fact that

a molecular system reaches a minimum energy in its equilibrium configuration.

Accordingly, there is a mass-weighted normal coordinate basis set Q = {Qi}i that

diagonalises the Hessian matrix K = (fij) composed from force constants fij and the

G = (gij) matrix (see Eq. (2.12)) at the same time [36, p. 310]:

Q+GQ = 1, (2.15)

Q+KQ = Λ. (2.16)

Here, 1 is the identity matrix and Λ = (λi, . . . , λN , 0, . . . , 0) is a diagonal matrix

contains N non-zero diagonal elements for all vibrational modes and zero elements for

translational and rotational ones. By this mean, the original complicated vibrational

Schrödinger equation is decomposed into a series of N independent harmonic oscillator

equations:

1

2

(
− d2

dQ2
i

+ λiQ
2
i

)
φvi
i (Qi) = εvi

i φ
vi
i (Qi), (2.17)

Ev =
N∑
i=1

εvi
i , Ψv(Q) =

N∏
i=1

φvi
i (Qi). (2.18)

The solution of Eq. (2.17) for the i-th normal mode and for the vi-th vibrational

state is a Hermite orthogonal function [32, p. 37]:

φvi =
1

4
√
π

√
γi

2vivi!
Hvi

(γiQi)e
−γ2

i Q
2
i /2, (2.19)

Hn(ζ) = (−1)neζ
2 dn

dζn
e−ζ

2

, γi = 4
√
λi,
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along with the corresponding single-mode energy (εvi) and a harmonic frequency

(ωi):

εvi = ωi

(
vi +

1

2

)
=
√
λi

(
vi +

1

2

)
. (2.20)

2.4 Diagonal anharmonicity

The harmonic approximation implies that a molecular potential V (Q) in normal

coordinates has a quadratic form. However, this is not the case for real molecular

systems. One reason is that the potential energy does not approach infinity when

increasing the inter-atomic distance. Instead, increasing this distance leads to

dissociation of the molecule into non-interacting fragments. The total potential

energy of this dissociated system is a finite value which is equal to the sum of

potential energies of all disconnected fragments. The value of this total energy except

the equilibrium potential energy is called dissociation energy (De). In fact, the real

dissociation energy (D0) is lower than De by the difference in zero-point vibrational

energies (ZPE) of the original molecule and all disconnected fragments. This is

because the broken bond reduces the total number of vibrational modes and this

“released” vibrational energy from the destroyed modes should also be taken into

account. Figure 2.2 illustrates the difference between De and D0 in case of a diatomic

molecule.

Alternatively, when an inter-atomic distance becomes shorter, the repulsion energy

between the nuclei and – as a result – the total potential energy of the molecule

increase rapidly. Moreover, both of these energies tend to infinity at zero distance.

At the same time, the harmonic potential has a finite value at any finite coordinates,

including the case of zero inter-atomic distance. This means that the harmonic

potential does not fit well the actual potential energy while atomic displacements

from their equilibrium positions becomes large.

This deviation between the real potential and the harmonic one is caused by

diagonal anharmonic effects [37] as all normal modes are still thought to be inde-

pendent from each other. For diatomic molecules this type of anharmonicity can
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Figure 2.2. Anharmonic (solid line) and harmonic (dash line) potentials of a diatomic
molecule as a function of internuclear distance R. De and D0 denote dissociation
energy with and without zero-point vibrational energy (ZPE) respectively. An
equilibrium internuclear distance is equal to Re, while v is a vibrational quantum
number.

be approximately taken into account by using a potential function proposed by

Morse [38] in 1929. This potential function with respect to the inter-atomic distance

R has the following form:

V (R) = De

[
1− e−α(R−Re)

]2
, (2.21)

where De is a dissociation energy, Re is the equilibrium inter-atomic distance, and α

is a constant specific for each electronic state which determines the second derivative

of the Morse potential function at the equilibrium point:

d2V (R)

dR2

∣∣∣∣
R=Re

= 2Deα
2. (2.22)

The advantages of this potential is that it allows the analytical solution of the

vibrational Schrödinger equation. Thus, the energy levels for any vibrational quantum

number v can be computed using the following formulae:

Ev = ω

(
v +

1

2

)
− ω2

4De

(
v +

1

2

)2

, (2.23)

where µ = M1M2/(M1 + M2) is the effective mass of the diatomic molecule, and
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ω = α
√

2De/µ is the corresponding harmonic frequency. The last statement becomes

clearer after considering the transition energy between two adjacent vibrational levels

with quantum numbers v and v + 1:

Ev+1 − Ev = ω − ω2

2De

(v + 1) . (2.24)

Thus, when the dissociation energy goes to infinity as well as in case of a harmonic

potential, the energy difference becomes constant and equal to ω. Alternatively, in

case of a finite dissociation energy the distance between two adjacent vibrational

levels decreases with v.

However, the Morse potential is not an ideal model. Sometimes it is not suitable

for highly excited vibrational states [39] as it contains only two parameters. These

parameters determine the shape of the Morse potential based on the behaviour of the

real molecular potential near the equilibrium point and at the dissociation limit, but

not in the intermediate region. Moreover, as well as the harmonic potential, it has a

finite value at zero internuclear distance. Finally, it cannot be used for molecular

systems with negative anharmonicity, such as methyl radical and chloromethyl radical,

for which the harmonic approximation gives underestimated frequencies [40, 41].

In general, the diagonal anharmonicity can be taken into account by solving the

one-dimensional vibrational Schrödinger equation:

{
−1

2

d2

dQ2
+ V (1)(Q)

}
φv = εvφv (2.25)

with an actual one-dimensional potential curve V (1)(Q) computed along a mass-

weighted normal coordinate Q. This equation can be solved by choosing a normalized

orthogonal basis set ζi(Q)k – for example using a series of harmonic functions

in Eq. (2.19) – which approximates the target wave function:

φv =
∑
k

Ckζk(Q). (2.26)
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Then a Hamiltonian matrix can be constructed numerically by computing the

integrals:

Hij =
〈
ζi(Q)

∣∣∣T̂ ∣∣∣ ζj(Q)
〉

+
〈
ζi(Q)

∣∣∣V̂ ∣∣∣ ζj(Q)
〉

=

〈
ζi(Q)

∣∣∣∣−1

2

d2

dQ2
+ V (1)(Q)

∣∣∣∣ ζj(Q)

〉
, (2.27)

After diagonalisation of this Hamiltonian matrix:

HC = EC (2.28)

its diagonal elements E contains the vibrational energies while the matrix C deter-

mines the expansion coefficients Ck of the corresponding wave functions in terms of

the chosen basis set.

An obvious drawback of this approach is the necessity to chose some basis set

a priori that enforces to make some assumptions about the nature of vibrational

states. Fortunately, a Fourier-grid-Hamiltonian (FGH) method [42, 43] provides an

elegant way to overcome this difficulty. This method is based on observation that

contributions to the Hamiltonian matrix ([Eq. (2.27)]) from the kinetic and potential

parts have a simpler form in different basis sets. Thus, for a basis set composed

from functions which associate the normal coordinate Q with independent variables

ζk(Q) = NkQ(k) orthonormal to each other, the contribution from the potential

energy operator becomes diagonal:

〈
ζk(Q)

∣∣V (1)(Q)
∣∣ ζl(Q)

〉
= N2

kV
(1)(Qk)δkl. (2.29)

Alternatively, the contribution from the kinetic energy operator has a similar diagonal

form in the basis set ζ̃k(Q) = Ñkexp(iQ̃(k)):

〈
ζ̃k(Q)

∣∣∣∣−1

2

d2

dQ2

∣∣∣∣ ζ̃l(Q)

〉
=

1

4
Ñ2
k Q̃

2
(k)δkl, (2.30)

which can be derived from the basis set {ζk(Q)}k using a Fourier transformation. This
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property allows to obtain an analytical expression for the elements of the Hamiltonian

matrix [43]:

Hii =
π2

L2

n2 + 2

6
+ V (1)(Qi), (2.31)

Hij =
π2

L2

(−1)i−j

sin2(π(i− j)/n)
, i 6= j (2.32)

when the potential V (1)(Q) is defined on an uniform grid [Q1, . . . , Qn] with length

L = Qn − Q1 at the even number of points n. Again, diagonalisation of this

Hamiltonian matrix gives the set of vibrational energies and the corresponding wave

functions. However, in contrast with the regular approach, the matrix C in Eq. (2.28)

contains the amplitudes of the wave functions at the grid points, rather than the

expansion coefficients in some basis set.

2.5 Coupling anharmonicity

The harmonic approximation is also based on assumption that different normal modes

are independent from each other. However, it is feasible only for vibrations with small

amplitude when the high-order terms in the Taylor series expansion [Eq. (2.14)] of the

potential energy can be ignored. As for real systems this requirement is not fulfilled,

in normal mode coordinates, where the kinetic energy operator has a diagonal form,

the potential energy is no longer diagonal due to the presence of these high-order

terms. It couples normal modes together introducing coupling anharmonicity which

is also known as off-diagonal anharmonicity [37].

The coupling anharmonicity leads to the following N -dimensional vibrational

Schrödinger equation expressed in normal mode coordinates:

{
N∑
i=1

∂2

∂Q2
i

+ V (Q)

}
Ψv(Q) = EvΨv(Q), (2.33)

where the cumulative index v = {v1, . . . , vN} enumerates vibrational states. This

equation can be approximately solved using vibrational self-consistent field (VSCF)
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method originally proposed by Bowman [22]. The method assumes that the vibra-

tional wave function is factorizable into single-mode wave functions:

Ψv(Q) =
N∏
i=1

φvi
i (Qi). (2.34)

This reduces the original equation (2.33) into a system of N single-mode Schrödinger

equations: {
−1

2

∂2

∂Q2
i

+ V eff
i;v (Q)

}
φvi
i (Qi) = εvi

i φ
vi
i (Qi), (2.35)

where each modal wave function, φvi
i (Qi), is coupled with the others through the

effective potential [44]:

V eff
i;v (Qi) =

〈
N∏
j 6=i

φ
vj

j (Qj) |V (Q)|
N∏
j 6=i

φ
vj

j (Qj)

〉
. (2.36)

Finally, the VSCF energy of the vibrational state v can be computed as the sum of

modal energies εvi
i corrected for the average value of the potential, which has been

counted multiple times:

EVSCF
v =

N∑
i=1

εvi
i − (N − 1)

〈
N∏
i

φvi
i (Qi) |V (Q)|

N∏
i

φvi
i (Qi)

〉
. (2.37)

Within the VSCF framework, the PES is usually expressed in terms of a many-

mode expansion [44–47] of the potential V (Q) = V (Q1, . . . , QN) in the order of

anharmonicity:

V (Q) = [V (0)]+
N∑
i=1

V
(1)
i (Qi)+

N∑
i=1

N∑
j>i

V
(2)
ij (Qi, Qj)+

N∑
i=1

N∑
j>i

N∑
k>j

V
(3)
ijk (Qi, Qj, Qk)+. . .

(2.38)

Here, V (0) = V (0, . . . , 0) is the energy of the molecular system at their equilibrium

structure. This term shifts all the vibrational energies Ev in Eq. (2.33) by a constant

and can be set to zero without loss of generality. The first-order term, V
(1)
i (Qi),
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denotes a one-dimensional potential along the i-th normal coordinate:

V
(1)
i (Qi) = V (0, . . . , Qi, . . . , 0)− V (0, . . . , 0, . . . , 0), (2.39)

and is responsible for diagonal anharmonicity. The second-order term, V
(2)
ij (Qi, Qj),

corresponds to a pair-coupling between modes i and j:

V
(2)
ij (Qi, Qj) = V (0, . . . , Qi, . . . , Qj, . . . , 0)− V (1)

i (Qi)− V (1)
j (Qj), (2.40)

while other terms refer to higher-order couplings:

V
(3)
ijk (Qi, Qj, Qk) = V (0, . . . , Qi, . . . , Qj, . . . , Qk, . . . , 0)

− V (2)
ij (Qi, Qj)− V (2)

ik (Qi, Qk)− V (2)
jk (Qj, Qk). (2.41)

A special case of the expansion [Eq. (2.38)], when only diagonal (1-D) terms and

second-order (2-D) terms are considered to be important, is known as a pairwise

approximation [48].

The weak point of the VSCF method is that the vibrational wave function has

to be known in advance in order to construct the effective potential end to solve

VSCF equations (2.35). However, it is still possible to solve them iteratively. On

the first iteration step, the normal modes are thought to be uncoupled by cutting

the expansion [Eq. (2.38)] up to the first-order terms, V
(1)
i (Qi), inclusively. This

eliminates the implicit dependence of the effective potential along the i-th normal

mode from all other modes, that reduces the VSCF equation to the case of diagonal

anharmonicity. These equations provide the first approximation for the vibrational

wave function, that can be then used to construct the effective potential. This

procedure is repeated until convergence, which can be determined as stability of the

VSCF modal energies or the total VSCF energy.

The VSCF scheme does not provide exact energies of vibrational states as the

interactions between modes are accounted implicitly. Thus, the mean-field potential



Chapter 2. The theory of molecular vibrations 20

V eff
v (Q) differs from the actual multidimensional potential V (Q) by the value:

∆V v(Q) = V (Q)−
N∑
i=1

V
(1)
i (Qi)−

N∑
i=1

V v;eff
i (Qi). (2.42)

Neglecting of this difference potential introduce an error called correlation energy:

Ev
corr = Ev − Ev;VSCF, (2.43)

which can be taken into accounted using a series of approach.

When this correlation energy is small, the Møller-Plesset perturbation theory

can be used in order to estimate its value. This approach was described in details

by Norris et al. [23] and it is known as correlation-corrected VSCF (CC-VSCF) [44]

or vibrational Møller-Plesset perturbation theory (VMP) [49]. For systems with no

degenerate vibrational states, at the second order of this theory the energy correction

is defined as the sum of squared expectation values over the various VSCF wave

functions divided by the difference of the corresponding VSCF modal energies:

EVMP2
v = EVSCF

v +
∑
u6=v

|〈Ψv|∆Vv|Ψu
v〉|2∑N

i (εvi
i − ε

ui
i )

(2.44)

When a molecular system contains degenerate states, this method predicts non-

physically large correlation energy due to the small number in the denominator. As

an alternative, various degenerate perturbation theories [24, 50] can be used for this

kind of systems which treat such degenerate states in a different manner, for example,

using a variational approach.

The vibrational correlation energy can also be estimated using vibrational config-

uration interaction (VCI) method. This method is based on approximation of an

exact wave function by a linear combination of configuration state functions (CSFs):

Ψ(Q) =
∑
u

CuΨu(Q). (2.45)
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The Hamiltonian is then diagonalised in the basis of these CSFs by solving a secular

equation: (
HVCI − ES

)
C = 0, (2.46)

with a symmetric Hamiltonian matrix:

HVCI
vu = HVCI

uv = 〈Ψv |H|Ψu〉 , (2.47)

and a symmetric overlap matrix:

Svu = Suv = 〈Ψv |Ψu 〉 . (2.48)

There are two main VCI schemes which differ by a construction method of the

CSFs. One of them uses a basis of VSCF-optimized wave functions as a set of

CSFs [51]. The advantage of this scheme is that the secular equation needs to be

solved only once in order to obtain the energies of all vibrational states from the CSF

space. However, these CSFs are non orthogonal to each other, that does not allow to

reduce the secular equation to a single matrix diagonalisation. Moreover, the size

of the CSF space is usually much larger then the number of interesting vibrational

states, but for every CSF the iterative VSCF procedure has to be performed.

An alternative approach is a state-specific VCI (VSCF/VCI) [25]. Within this

approach CSFs are constructed from a set of orthogonal single-mode wave functions

optimized for a particular vibrational state v:

Ψu
v =

N∏
i

φ
ui;(v)
i (Qi). (2.49)

The advantage of this scheme is orthogonality of CSFs, as well as its non-iterative na-

ture. However, the secular equation needs to be solved separately for each vibrational

state under the question.

The VCI method yield to exact solution when the number of CSFs approaches

infinity. Nevertheless, from the computational point of view this number should be
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finite and as small as possible. Within the VSCF/VCI method this can be achieved

by restricting a number of single-mode wave functions which are used for generation

of the CSF space up to the certain vibrational quanta umax. Moreover, only one-mode

and two-mode excitations to the reference VSCF wave function are usually taken into

account. In addition, the size of the CSF space can be reduced by including only those

CSFs which have a large coefficients in decomposition [Eq. (2.45)]. Unfortunately,

these coefficients are unknown beforehand and some screening technique needs to be

used.

Vibrational configuration interaction with perturbation selected interactions

(VCIPSI) method proposed by Scribano and Benoit [27] provides an efficient way to

solve VSCF/VCI equation. Within this method, the VSCF/VCI equation is solved

iteratively within a small active space of CSFs. At each iteration step the active

space is then expanded by adding configurations which give sufficient contribution to

the VMP2 perturbation correction. These iterations are continued until convergence

of the total energy.

2.6 Fast-VSCF

A general way to construct a PES is to compute it numerically on a grid [52].

This direct evaluation increases the cost of the calculation by the time needed for

construction of this PES. In fact, construction of the PES is the most limiting

stage of such direct methods. Moreover, the number of coupling terms in the many-

mode expansion ([Eq. (2.38)]) increases dramatically with the number of atoms in

a molecular system. This makes difficult the construction of the PES even within

the pairwise approximation [48] when only the pair-couplings taken into account.

One way to increase the performance is to construct only those coupling terms which

contribute significantly to the anharmonic effect.

There are two basic approaches. The first approach is based on assumption that a

coupling term primarily affects those modes which are directly coupled through them.
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Other modes may also be altered through their couplings with the affected modes.

Nevertheless, this influence is usually significantly weaker as it appears indirectly.

This assumption might be used when only several vibrational modes of a large

molecular system are of the main interest. Adsorbed systems are one of the important

example. On the one hand, such systems usually contain hundreds of atoms, and

the total number of their vibrational modes are enormously large. On the other

hand, the intra-adsorbate vibrational modes and vibrations between the adsorbed

molecule and its support are particularly important as they contain information about

the alteration of the molecular structure and electronic properties of the adsorbed

molecule upon adsorption. In this case all coupling can be split into three groups.

The first group contains the most important couplings between each target mode,

such as intra-adsorbate and adsorbate-support couplings. The second group contains

terms that couple these target modes to other modes. The remaining couplings which

do not directly affect the target modes fall into the third category. Neglecting the

couplings from this third group leads to a single-to-all (STA) approach proposed by

Benoit [53] who demonstrated the good accuracy of such approach along with its

scalability using the example of acyclic alcohols.

Alternatively, an approach when only the couplings between a selected number of

modes are taken into account is well suited for adsorbed systems. In fact, a partial

Hessian technique [54, 55] which is commonly used for such adsorbed systems also

implies weak vibrational couplings. In particular, this partial Hessian technique

divides all atoms of the original molecular system into the active atoms which are

involved into vibration and the inactive atoms which are considered to be frozen.

Then only a reduced mass-weighted Hessian matrix K̄ is diagonalised which is

composed from the force-constants of the active atoms only:

K̄ij =
1√
MiMj

fij. (2.50)

This diagonalisation provides a set of active normal coordinates QA. In order for this

set of coordinate to be reliable, the couplings between this active vibrational mode



Chapter 2. The theory of molecular vibrations 24

and the excluded ones should be small. The correctness of such assumption was

tested on many systems [14, 54–57], in particular on water on a Al(111) surface [54]

and 4-mercaptopyridine on a Au(111) surface [14].

The second approach is called Fast-VSCF. It is based on a hypothesis that there

is a direct proportion between the intensity of a coupling term and the shift in

vibrational frequencies introduced by the coupling. It follows thence that not all the

couplings are equally important, therefore ignoring the weak couplings can reduce

the required computational costs dramatically. Unfortunately, the intensities of the

couplings are unknown beforehand, however they can be estimated using various

pre-screening techniques [58]. Thus, a coupling potential V
(m)
i1,...,im

can be pre-scanned

using a computationally cheap method or can be constructed on a sparse grid. Finally,

the strong coupling potentials should be detected according to some measure.

There are several intensity criteria proposed in the literature. One of them is

a ζ-measure which is based on the average absolute value of a coupling potential.

Thus, for the m-dimensional coupling term V
(m)
i1,...,im

constructed on an ni1 × · · · × nim

grid the measure can be computed using the following formula [59]:

ζ(i1, . . . , im) =
1

ni1 · · ·nim

ni1∑
i1=1

· · ·
nim∑
im=1

∣∣∣V (m)
i1,...,im

(Qi1 , . . . , Qim)
∣∣∣ . (2.51)

A similar measure is based on a root mean square average value [58]:

µ(i1, . . . , im) =

(∑ni1
i1=1 · · ·

∑nim
im=1[V

(m)
i1,...,im

(Qi1 , . . . , Qim)]2

ni1 · · ·nim

)1/2

. (2.52)

Alternative criteria [58] are also available, however these two ones are presumably

the most frequently used, due to their simplicity.

The main problem concerning with the Fast-VSCF technique is the selection of

threshold. On the one hand, it should be chosen in such a way that the number

of included weak coupling terms should be minimal. On the other hand, none of

the intense couplings should be filtered, even if it has reduced weight according to a

pre-scanned PES. Unfortunately, it is not possible to know the optimal threshold
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Figure 2.3. An artificial coupling between a bending mode and a stretching mode
in rectilinear coordinates. The coordinate along the axis ξ coincides with a normal
coordinate. For a large angle ϕ the position of the H-atom in normal coordinates is
equal to ξnorm., while the projection of its actual position on the ξ axis is equal to
ξreal. The red line represents the error magnitude, and the blue line shows artificial
elongation of the internuclear distance.

O H
φ

dφ
dξ≈(∂ξ/∂φ)0•dφ

ξ real

ξnorm.=(∂ξ/∂φ)0•φ

value in advance and it should be evaluated carefully for each system. Benoit [59]

demonstrated using a set of test molecules, that in case of 2-D coupling terms the 20%

value of threshold ζthr = 0.2ζmax should be sufficient in many cases. Alternatively,

when the number of vibrational modes are large, the value of threshold can be

estimated using statistical analysis [14] in assumption that coupling intensities are

normally distributed. Finally, the threshold value can be selected iteratively, by

computing couplings in descent order according to their intensities. These iterations

continue until convergence of the VSCF energy of some reference state.

2.7 Rectilinear and curvilinear coordinates

Rectilinear normal mode coordinates Qi introduced within the harmonic approxi-

mation is a good choice and they allow a reasonable description of many systems.

However, one assumption that was used in order to obtain them was small amplitude

vibrations. For high-amplitude motions, they can lead to artificial couplings.

Figure 2.3 illustrates this using the example of an O−H bending mode. In internal

coordinates this mode is described by an angle φ, while in normal-mode coordinates

it is described as displacement along a tangent line. This tangent line coincides with

the circular motion at the initial stage and introduces only small deviation when the
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amplitude is small. However, in case of large amplitude the deviation is significant.

In reality the atom moves in a circular orbit preserving the inter-atomic distance, but

in rectilinear coordinates the atom moves along a straight line stretching the bond.

This introduces an artificial coupling between this O−H bending mode and the O−H

stretching mode. Moreover, when the number of such bending and stretching modes

is greater than two, all of them become coupled simultaneously, which leads to the

necessity to take into account these high-order coupling terms as well. However,

internal valence coordinates could potentially reduce the number of this artificial

coupling terms and leads to faster convergence of the N -body expansion of the PES.

Curvilinear coordinates are also important for description of internal rotation

where one part of a molecule turns about an axis while the other part remains

fixed. A well known example of such type of motion is internal rotation of hydroxyl

group in methanol. Unfortunately, this type of motion is very difficult to describe

using rectilinear coordinates as the motion along the corresponding normal-mode

coordinate leads to “dissociation” of the hydroxyl group into constituent atoms. As

it was demonstrated by Scribano et al. [60] the rectilinear coordinate representation

doubles the frequency of this mode, while in curvilinear coordinates the obtained

frequency is very close to the experimental value.

Unfortunately, using a different set of coordinates (q) instead of normal-mode

coordinates leads to a non-diagonal complex form of the kinetic energy operator [60,

61]:

T̂n(q) = −1

2

∑
i,j

ρ(q)−1 ∂

∂qi
ρ(q)G−1

ij (q)
∂

∂qj
, (2.53)

where G is the metric tensor, and ρ(q) is a weight function which converts volume

elements between the curvilinear (q) and rectilinear (Q) coordinates:

dQ1 · · · dQN = ρ(q) dq1 · · · dqN . (2.54)

Moreover, all components of this metric tensor are dependent on curvilinear coordi-

nates, what makes their evaluation very challenging. For this reason some assumption

is required. Thus, if all components of the inverted metric tensor are constant, the
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kinetic energy operator becomes simpler [60]:

T̂n(q) =
∑
i,j

G−1
ij,0

∂

∂qi

∂

∂qj
. (2.55)

Despite of the fact that this simplification does not eliminate coupling anharmonicity

completely. most of the artificial coupling terms can now be avoided, that dramatically

increases the accuracy of the computed anharmonic frequencies.
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Electronic structure methods and

fragment methods

3.1 Wave function based methods

There are two types of methods for solving the electronic Schrödinger equation 2.4.

The first type of methods is based on a wave function formalism where the electronic

wave function depending on 3Ne spatial coordinates and Ne spin variables is sought.

As a first approximation, all electrons are thought as independent and interacting

with each other through mean-field potential. This method is called self-consistent

field (SCF) [29, p. 86] or Hartree-Fock (HF) method and it is analogous to VSCF

which was described in section 2.5. However, in contrast with latter method, the

electronic wave function is sought as an antisymmetrised product of one-electron

wave functions which form one Slater determinant Φ0 rather than a direct product.

This approach does not account for explicit electronic motion (electronic corre-

lation) which can be estimated using different methods. Thus, the energy can be

estimated using the configuration interaction (CI) method [29, p. 137], where an

exact electronic wave function Ψ is approximated by a linear combination of Slater

determinants of the ground and excited electronic states.

Ψ =
∑
i=0

CiΦi (3.1)

28
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The maximal excitation level is usually limited up to a certain order that gives a

particular CI methods. The simplest CI methods are are CI with double excitations

(CID) and CI with single and double excitations (CISD). State energies are then

obtained by diagonalisation of the Hamiltonian matrix in the basis of these determi-

nants. Alternatively, when the correlation energy is small it can also be estimated

using Møller-Plesset perturbation theory [62]. Within this method, the wave function

is expanded into a power series of λ and the state energy is computed as a sum of

corrections to energy.

Electronic correlation can also be taken into account using coupled-cluster (CC)

method [63]. Similarly to the CI approach, CC method approximates an exact

electronic wave function by combination of Slater determinants. However, these

determinants are constructed in a consistent fashion using an excitation cluster

operator:

Ψ = exp(T̂ )Ψ0. (3.2)

The cluster operator can be expanded into a series according to the excitation order:

T̂ = T̂1 + T̂2 + T̂3 + . . . . (3.3)

Applying the operator T̂1 to a wave function gives all single-excited wave functions

with respect to the reference one, while the T̂2 operators gives all double-excited

ones, and so on.

Truncation of the series (3.3) defines a particular CC method. In particular,

keeping only the second term in Eq. (3.3) gives coupled-cluster doubles (CCD)

method. In this method the wave function is expressed as:

ΨCCD = exp(T̂2)Ψ0 =

(
1 + T̂2 +

T̂ 2
2

2
+
T̂ 3

2

6
+ . . .

)
Ψ0. (3.4)

However, in contrast with the CID method where the wave function approximated

using the ground and the doubly excited configurations only, the CCD wave function

also contains excitation of the highest order. Moreover, the weights of such high-order
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excitations in ΨCCD are not independent from each other, but sought as a product of

the corresponding second-order coefficients:

ΨCCD = Ψ0 +
∑
i,a

∑
j>i,b>a

Cab
ij Ψab

ij +
∑
i,a

∑
j>i,b>a

∑
k>l,c>b

∑
l>m,d>c

Cab
ij C

cd
kl Ψ

abcd
ijkl + . . . , (3.5)

that makes them coupled.

The other frequently used CC methods are CC with single and double excitations

(CCSD) [64], and CC with single, double, and triple excitations (CCSDT) [65].

Despite of the importance of triple excitations, taking them into account is very time

consuming and it is usually tractable only for relatively small molecules. Instead,

they are usually taken into account approximately using a perturbation theory that

leads to the CC singles, doubles and perturbative triples (CCSD(T)) method [66].

3.2 Density functional theory

Computational demands of wave function based methods grow rapidly with the

number of electrons, which makes them impracticable for large molecular systems,

such as biomolecules or adsorbed systems. For such systems density functional theory

(DFT) [29, p. 232] becomes an attractive alternative as it describes them in terms of

electron density ρ(r) rather than wave function. The electron density depends only

on three spatial coordinates and uniquely defines the properties of the system. The

electron density that minimizes an energy functional E[ρ] is a true density of the

system.

The energy functional consists of three parts: the kinetic energy of electrons

T [ρ], the energy of electrons in a nuclear potential Ven[ρ], and an interaction energy

between electrons Vee[ρ]:

E[ρ] = T [ρ] + Ven[ρ] + Vee[ρ]. (3.6)
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Here, Ven[ρ] corresponds to the Coulomb interaction between nuclei and electrons

and can be expressed as an explicit functional of the density:

Ven[ρ] = −
∫ Na∑

α=1

Zα
|Rα − r|

ρ(r)dr, (3.7)

where Zα and Rα are the charge and the position of the α-th nucleus, respectively. It

is assumed that all characteristic properties of the molecular system, which distinguish

it from other systems, are solely determined by Ven[ρ]. It is also assumed that the

remained terms from the energy functional:

F [ρ] = T [ρ] + Vee[ρ], (3.8)

form an universal functional which is independent from the particular molecular

system [67].

In case of non-interacting electrons (for example, when all electrons are infinitely

distant), the energy functional contains only the kinetic part:

Ts[ρ] = −1

2

Ne∑
i=1

〈
φi(r)

∣∣∇2
i

∣∣φi(r)
〉
. (3.9)

Here, φi(r) are a set of one-electron orbitals which are related to the electron density

ρ as:

ρ =
Ne∑
i=1

|φi(r)|2. (3.10)

Moreover, since F [ρ] is a universal functional of the density regardless of the distance

between electrons, Ts[ρ] is also a universal functional.

Finally, the interaction energy between electrons Vee[ρ] among others includes an

electron-electron repulsion energy J [ρ]:

J [ρ] =
1

2

∫ ∫
ρ(r)ρ(r′)

|r− r′|
dr′dr, (3.11)
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which is also a universal functional of ρ. The residual term is called an exchange-

correlation (XC) functional Exc[ρ]:

Vee[ρ] = J [ρ] + Exc[ρ], (3.12)

with an unknown form. Once Exc[ρ] is determined, the energy functional E[ρ] can be

minimized by solving a Kohn-Sham equation, which is in fact a set of one-electron

Schrödinger equations with a Kohn-Sham effective potential vs:

(
−1

2
∇i + vs

)
φ(r) = εiφ(r). (3.13)

This effective potential consists of an external potential ven which is responsible for

interactions between nuclei and electrons:

ven(r) =
Na∑
α=1

Zα
|Rα − r|

, (3.14)

as well as from a Hartree potential:

vH(r) =

∫
ρ(r′)

|r− r′|
dr′, (3.15)

and an exchange correlation potential:

vXC(r) =
δE[ρ]

δρ(r)
. (3.16)

This XC-functional can be formally split into an exchange functional EX[ρ], which is

caused by indistinguishability of electrons, and a correlation functional EC[ρ], which

describes simultaneous movement of electrons:

EXC[ρ] = EX[ρ] + EC[ρ]. (3.17)

Because the universal XC-functional is unknown, a large number of approximate

functionals have been proposed. Among them are Perdew-Burke-Ernzerhof (PBE) [68]
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and Becke88 three-parameters Lee-Yang-Parr (B3LYP) [69] functionals which are used

in this work. The PBE functional is classified as a generalised gradient approximation

(GGA) functional as it explicitly depends on the density ρ and on the density gradient:

EPBE
XC [ρ] =

∫
ρ(r)εPBE

XC (ρ,∇ρ)dr. (3.18)

In particular, this functional approaches to the uniform electron gas limit for slowly

varying density and for this reason it describes metal surfaces at a reasonable level.

At the same time, it is less accurate for molecular systems with small number of

electrons, due to the fact that it does not compensate in full non-physical repulsion of

electrons from themselves [70] caused by the DFT formalism. The B3LYP functional

also depends on ρ and ∇ρ, but in addition it tries to compensate the self-interaction

problem by using Hartree-Fock (HF) exact exchange. For this reason, B3LYP

functional becomes very attractive for small molecules but it is less accurate for

surfaces as it is no longer approaches the uniform electron gas limit.

3.3 Fragment methods

In fragment methods a complex system is divided into fragments and then the total

energy of the system is approximated using the energies of these fragments. There

are two main approaches to express a total energy in terms of fragment energies.

Within an additive scheme, a target system is split into several non-overlapping

fragments. Thus, a large enzyme molecule can be divided into an active site, which

determines its catalytic properties, and surrounding atoms which are responsible for

steric properties of the protein. All fragments are then simulated independently using

different methods, for example using a quantum mechanical (QM) methods for atoms

from the active site and molecular mechanics (MM) for the other atoms. The total

energy is usually defined as a sum of fragment energies, each of them computed at

their respective level of theory. This obviously leads to loss in connectivity between

the fragments and requires an additional treatment of the boundary region. Thus, for

a two fragment system A− B, the total energy within additive schemes is expressed
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as:

E(A− B) = EI(A) + EII(B) + EIII(A,B), (3.19)

where EI(A) and EII(B) are energies of the fragments A and B computed at levels I

and II respectively, and EIII(A,B) is the energy correction due to the connectivity of

the original molecular system. This additive scheme is dominantly used in various

QM/MM approaches, for example in ones proposed by Bakowies and Thiel [71] or

by Field et al. [72]

Alternatively, within a subtractive scheme the most important part of the molec-

ular system is carved out and this model system is simulated using an accurate

“high-level” method, while the entire system is described using a “low-level” method

with a less computationally demanding technique. The accurate total energy of the

real system is then approximated as its low-level energy corrected by the energy

differences for each model system computed at high and low levels:

E(A− B) = Elow(A− B)− Elow(A) + Ehigh(A). (3.20)

Important examples of such methods are IMOMM (Integrated Molecular Orbital

+ Molecular Mechanics) [73], ONIOM (Our own N -layered Integrated molecular

Orbital and molecular Mechanics) [74], and QMPot (a combined quantum mechanics

inter-atomic potential function) [75].

The main challenge of additive schemes is to chose a reliable model that represents

the interaction between detached fragments. Thus, Field et al. [72] proposed a special

interaction Hamiltonian which reduces the actual complex interaction within an

original molecular system to van der Waals interaction between nuclei belonging to

different fragments, as well as to electrostatic interaction of nuclei and electrons from

one fragment with a series of point charges representing other fragments. Alternatively,

this interaction can be approximated using a special electrostatic potential which

can be constructed in many different ways, for example, using empirical [76] or

semi-empirical [77] approaches. In contrast, fragment methods based on subtractive

model do not require any additional Hamiltonian as interaction between various



Chapter 3. Electronic structure methods and fragment methods 35

parts are already taken into account by describing the whole system at low level of

theory. However, the problem still persists when the fragmentation leads to cutting

covalent bonds.

There are two main strategies to treat broken bonds. The most frequently used

approach – and probably the earliest one – is to saturate these bonds (A− B) by

link atoms (L). Thus, within additive schemes these fictitious atoms are usually

added on either side of a broken bond [72, 78]. Subtractive schemes preserve integrity

of the original molecular system, and for this reason within these schemes link

atoms are added only to the detached model system [73]. These link atoms are

usually hydrogens, but different atoms such as halogens are also popular. Sometimes

parametrised atoms which imitate particular groups of atoms [79] or even model

potentials [80] are used.

When a fragment method is used for the optimization of a large molecular

system, link atoms introduce additional degrees of freedom. However, it is possible

to eliminate them by imposing certain restrictions upon their possible position.

Thus, because the bond between atoms A and L mimics the original A− B bond,

a reasonable constraint could be to place the link atom L on the line along the

A− B bond and enforce it to stay on this line. Within the IMOMM method, the

enforcement is achieved by freezing all three atoms (A, B and L) during the geometry

optimisation. An alternative approach is implemented within QMPot framework

where the A− L distance is kept fixed, but the A− B distance is adjusted during the

optimization in order to minimize a force acting on the link atom [81]. In contrast

to all of the mentioned schemes, the ONIOM approach allows the A-L bond length

to vary in direct proportion to the real bond.

The second strategy to deal with broken bonds is to use localized bond orbitals [82,

83]. This set of approaches assumes similarity of molecular orbitals representing a

bond between two atoms in similar molecules. For this reason, the broken bond in

a large molecular system can be described using precomputed orbitals of a small

molecule. Ref. [84] showed that neither frozen orbitals strategy nor link atoms

strategy gives accurate results for all systems. Nevertheless, this localized bond
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orbital approach is non-adaptable for molecules adsorbed on metal surfaces, due to

the delocalized character of the electron density of metallic surfaces.

3.4 Fragment method for improvement of anhar-

monic adsorbate frequencies1

Despite of the long history of fragment methods, they are rarely used to study

adsorption on metallic surfaces. The reason being that fragment methods were

designed for acceleration purposes and additional acceleration is usually not required

for adsorbed systems. Thus, periodic DFT already provides reasonable speed as a

surface is described using a unit cell with a small number of atoms. Moreover, the

electron density in metals is uniformly distributed and thus XC-functionals that fulfil

homogeneous electron gas limit, such as PBE, are known to give very reliable results

in this case.

However, such functionals are liable to self-interaction error [85]. This error is

caused by the possibility of an electron to interact with itself and leads to over-

delocalization of the electrons which introduces an error when applied to isolated

molecules. This error can be partially neglected by using hybrid XC-functionals (for

example, Heyd-Scuseria-Ernzerhof (HSE) functional [86]) at the cost of efficiency,

as computing the HF exchange for metallic systems is time consuming. However,

an accurate description of the adsorbed molecule is especially important as the

most interesting aspects of adsorbed systems is related to the change in molecular

properties and behaviour of the adsorbed species during the adsorption process.

An alternative solution is to use a fragment method where each part of the

adsorbed system (metallic surface and adsorbed molecule) is simulated at the appro-

priate level of theory. Our fragment method [87] is based on a subtractive scheme,

and it does not require a special treatment of the region between adsorbate and metal-

lic support. Within this approach the metallic surface and the adsorbed molecule

1 Reprinted in part with permission from S. K. Chulkov and D. M. Benoit, “A fragment
method for systematic improvement of anharmonic adsorbate vibrational frequencies: Acetylene on
Cu(001)”, J. Chem. Phys., 139, 214704 (2013). Copyright 2013, AIP Publishing LLC.
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is described using periodic DFT (method I). In addition, the total energy of the

adsorbed molecule is computed using gas phase ab initio method, for example using

the CCSD(T) method (method II). Finally, the energy of the isolated adsorbed

molecule is computed using periodic DFT (method I) to obtain a hybrid correction

to the total energy of the system.

The total energy at the hybrid level (I|II) is computed using a subtractive scheme

as:

E(I|II) = E(I)− Ea(I) + Ea(II), (3.21)

where E(I) is the total energy for the whole system at level I, while Ea(I) and Ea(II)

denote the energies of adsorbed part at levels I and II respectively. This implies that

in order to compute the energy at hybrid level three calculations are needed for each

single point on the PES.

As our fragment method is based on a subtractive scheme, an “extracted” adsorbed

molecule remains connected with the surface through the E(I) term in Eq. (3.21).

For this reason, for a weak adsorption, additional treatments are not required.

However, for a moderate chemisorption, the geometry of adsorbate molecule is

usually significantly altered. Often such molecule, being detached from the surface,

has a multi-reference wave function that requires the use of a multi-reference approach

at level II. Unfortunately, in order to be able to compute Ea(I) term in Eq. (3.21)

a multi-reference approach has to be used for the periodic model system, that can

cause issues with standard DFT approaches.

In order to avoid this difficulty, extra link atoms L can be added in the line

between the atom from the adsorbed molecule A and the metallic surface B. The

exact position of the link atoms is similar to the ONIOM [74] method and determined

by:

~rL = ~rA + g(~rB −~rA), (3.22)

where g is a constant scaling factor and ~rL, ~rA, ~rB are Cartesian coordinates of the

link atom, and the atoms A and B respectively. However in contrast to the ONIOM

scheme where the g factor is defined as ratio between “standard” bond lengths, which
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are in fact empirical parameters, in the current implementation this ratio is computed

based on equilibrium distances obtained using methods I and II:

g =
|~rA −~rL|II
|~rA −~rB|I

. (3.23)

This approach allows to avoid needless empiricism, and to estimate this scaling factor

for a different systems in a consistent fashion.

In the current implementation, the method is based on assumption that the

periodic DFT describes the equilibrium structure of the adsorbed system reasonably

well. For this reason this fragment method is used for computing of anharmonic

PES only, while geometry optimization and the calculation of a Hessian matrix are

solely performed at level I. Fortunately, this assumption is usually fulfilled that is

supported by two test cases: acetylene on Cu(100) surface (see Chapter 5) and on

thiophene on Au(111) surface (see Chapter 6).



Chapter 4

Local implementation

For the purposes of this work, the vibrational Schrödinger equation (2.33) is solved

using a PVSCF computer code [88]. This vibrational Schrödinger equation, of course,

can be solved using widely available quantum mechanical (QM) program packages,

such as GAMESS-US [89] or MOLPRO [90]. However, there are some disadvantages

connected with this approach.

1. Using a vibrational self-consistent field (VSCF) solver from one of the mentioned

QM packages forces us to use a potential energy surface (PES) constructed with

one of the QM method available in the particular program. Thus, MOLPRO

stores a precomputed PES in a binary restart file with proprietary format and for

this reason using the PES constructed outside of MOLPRO is close to impossible.

In contrast with MOLPRO, GAMESS-US stores the PES in a text file with an

apparent format. However, it is still very difficult to locate a point on a PES

having only its internal index stored in the GAMESS restart file.

2. The maximal order of mode coupling terms in the many-mode expansion of

the PES (2.38) in the majority of QM packages is often limited up to the 2nd,

3rd or sometimes up to the 4th order. The reason being that the contribution

to the transition frequencies from the coupling terms decreases with increasing

of their order, and therefore the highest terms are rarely needed. Moreover,

construction of these highest order coupling terms are very time consuming and it

may be impractical. However, in the future with advances in computer hardware
39
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the highest terms may become tractable and the general m-dimensional (m-D)

implementation of VSCF based methods may be required.

3. Some available VSCF solvers (e.g. in GAMESS-US) need all coupling terms in the

many-mode expansion up to the certain order which depends on chosen accuracy

level. However, not all of them are important and actually need to be taken into

account. Fast-VSCF based methods can reduce the computational costs up to few

order of magnitudes [91]. Moreover, the acceleration becomes more significant for

high-order coupling terms.

The current implementation of the PVSCF code focuses on a balance between

an accuracy and a time consumption. It uses a PES defined on a grid (both regular

and non-regular grid are allowed), and makes no assumptions about the actual

functional form of the PES. For each tabulated point on the grid PVSCF generates

an input file based on a template provided by user. When all single-point energy

(SPE) calculations are done, the potential file with an intuitive and well described

format should be created by user which is used within VSCF-based approaches. This

architecture makes the program compatible with any existing QM packages, that is

in fact a big advantage of PVSCF.

Another key feature of the PVSCF code is a fast and accurate solver of 1-D

vibrational Schrödinger equation described in details in Ref. [88]. This solver is based

on the Fourier-grid-Hamiltonian (FGH) method [42] discussed in Section 2.4 and

inherits all of the advantages of this approach. Thus, it can naturally deal with

aperiodic and periodic potentials that can be useful for adsorbed systems.

My contribution to this code was to implement a general efficient solver for

VSCF and VSCF/VCI methods which can deal with a coupling potential of an

arbitrary dimensionality. In order to do this, a set of interrelated problems were

sorted out. Thus, the number of tabulated points on a PES, where an energy should

be evaluated, significantly increases with the order of coupling terms. The amount

of time required to construct these coupling terms, however, is mainly dependent on

the performance of the implementation of a particular ab initio electronic structure
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method. The separate VSCF code gives an opportunity to chose the most efficient

implementation of the particular ab initio method. Whereas there is no other way

to speed up a single SPE calculation, an additional acceleration may be achieved

by distributing these SPE tasks over a number of computational nodes. Then, the

constructed high-dimensional coupling potentials should be interpolated using a

general m-dimensional (m-D) interpolation technique. Finally, the constructed high

order coupling terms should be used within VSCF and VSCF/VCI frameworks, so

an effective parallel m-D implementation needs to be developed.

4.1 GridDatabase interface1

The computational bottleneck of direct VSCF-based methods is the generation of an

accurate PES. Thus, for typical systems the number of single point energies (SPE)

that have to be computed usually lies between 103 and 106. This upper boundary

can be easily reached even within the pairwise approximation [48] for systems with

more than 35 active atoms. Moreover, at the same time computational efforts which

are required even for one SPE calculation increase drastically with the number of

atoms in a molecular system. A similar problem may occur during construction of

the Hessian matrix. Thus, if an analytical gradient is not available for the chosen

ab initio level of theory, the number of displacements grows as the square of the

number of active atoms and reaches a million SPEs for a system with 236 active

atoms. In both cases, the amount of processing time (wall time) can be reduced

through parallel computing, the obvious technique being to distribute serial tasks

across available computing cores. This method can be easily implemented and yields

directly to a linear scaling approach (in terms of the number of points). Nevertheless,

in order to use computational resources efficiently, some important questions need to

be considered.

1Reprinted in part with permission from D. M. Benoit, B. Madebene, I. Ulusoy, L. Mancera,
Y. Scribano, and S. Chulkov, “Towards a scalable and accurate quantum approach for describing
vibrations of molecule–metal interfaces”, Beilstein J. Nanotechnol., 2, 427–447 (2011). Copyright
2011, Beilstein Institut.
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First, some queueing systems on grid resources distribute jobs on each node, not to

each core, such that several serial jobs need to be started on each node simultaneously,

in order to optimise computational power use. Unfortunately, the different jobs,

which run on the same node, may take different computational time. This situation

happens very often, because during the PES generation the displacements far from

the equilibrium position usually require a longer iteration cycle in order to achieve

convergence. It is also very difficult to predict how many nodes and cores may

be expected, due to different priority policies for each computer grid. Thus, we

need a balancing mechanism which allows us to utilise all cores on all available

nodes evenly. The solution involves implementing a distribution system that submits

points dynamically to every single node. Instead of submitting a batch script, a

special universal executable script (UES) is submitted. This script connects to a SQL

database, downloads the first unprocessed grid point, related files and an appropriate

external executable script (EES), and runs the EES on the particular node and core.

This additional EES provides a way to extend functionality dynamically. For example,

a switching between several alternative PES which are computed using different

quantum packages can be performed on a regular basis without necessity of releasing

an occupied computational node and resubmit the UES. As jobs should have an

ability to run on different clusters, grids and individual nodes with different kinds of

processors and under various operating systems, all scripts have to be cross-platform.

The distribution system was implemented using the Perl programming language,

as it has pure MySQL and PostgreSQL database interfaces which do not use dy-

namic libraries written in other languages. This is a critical point given that usually

MySQL/PostgreSQL client programs and libraries are not installed on the computa-

tional nodes. Moreover, almost all Perl interpreters provide a command line option to

specify the location of non-standard modules, which makes the installation procedure

simple and flexible.

Second, due to the unreliable nature of distributed computing across various

locations, some results can go missing for various reasons. In order to avoid missing

points, an intelligent system is needed to recognise and react to various failures, such
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as when a node goes down, job killed by queueing system or abnormally terminated

due to convergence problems, network or SQL server troubles, and so on. Such a

system was implemented in two stages. After the calculation of a grid point, the

EES parses the output file and looks for results. It then sends the results to the

UES and returns an exit code. Depending on this code, the results will be uploaded

back to the database, or the current point or even all points within a project may

be marked as erroneous and will be no longer considered. In the meantime, if there

are no results during a specified period of time, it is assumed that something went

wrong and the point will be resubmitted.

Third, due to various security policies, there are some grid locations where

outgoing direct connections to the SQL server are not allowed. In order to use these

computational nodes as well, a special script was developed. This script exports

a specified number of grid points along with dependent files from the database

and generates a regular batch script that can be submitted manually on these non-

standard locations. The calculated results can then be uploaded to the database

using a separate Perl script which scans log files and processes the exported grid

points exactly as if they were distributed in an automatic fashion. Moreover, this

export feature does not conflict with the automatic distribution mode, because the

exported points are marked appropriately and no longer considered as available.

In summary, the grid-based PES construction process is composed of the following

steps (Figure 4.1):

1. Generate the set of grid points and upload them to the database. Upload an EES

designed specifically to perform a particular single point calculation along with

dependent files, such as templates, external basis sets, restart files, etc.

2. Submit batch scripts using PBS, SGI, xgrid or any other batch system, which

will start one UES for each CPU, and/or start the UES manually on the local

workstation.

3. After the UES is started, it downloads the EES and correspondent files once for

each grid location. Then it downloads the first available grid point, runs the EES
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Figure 4.1. Diagrammatic representation of the GridDatabase interface.

and sends the geometry of the system at the selected grid point to the EES. At

the meantime, the EES produces a valid input file from a downloaded template

file and provided geometry, runs the particular ab initio program, and, when

it finished, parses the results and sends them back to the UES along with an

appropriate exit code After termination of the EES, the UES returns results to the

database or marks the grid point as defective, and tries to download the geometry

of the next grid point. This step is repeated until no more points available.

4. If the UES is unable to establish an outgoing Internet connection to the SQL

database, for example due to a strict firewall policy, an alternative batch script

which runs a bundle of SPE jobs can be automatically generated and then

submitted manually to a particular grid location. After termination of this

batch script the obtained results can then be uploaded back to the database in a

consistent fashion.

5. Retrieve constructed PES and the list of non-converged points from the database.

4.2 Interpolation

The automated distribution system described in the previous section dramatically

accelerates the performance of the PES generation process. However, because PVSCF
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uses grid-based representation of the PES, a numerical integration algorithm needs

to be used in order to solve 1-D vibration Schrödinger equations. According to the

previous experience [88], the optimal number of grid points required for an accurate

numerical integration lies between 32 and 128 along each vibrational coordinate.

However, from the computational perspective it is impractical to compute the energy

at all of these grid points using an ab initio electronic structure method. Instead,

the PES can be constructed on a sparse grid where, for example, only 16 SPEs along

each coordinate are accurately computed. The energies at other grid points can be

approximated using various interpolation techniques.

This section discusses three interpolation methods implemented in PVSCF, such as

a cubic spline interpolation, a bicubic interpolation, and a Shepard interpolation. The

first two methods have their own application area while the Shepard interpolation can

be used for surfaces with any dimensionality. The reliability of these three methods

is then tested with model systems against each other and against available analytical

vibrational frequencies.

4.2.1 Cubic spline interpolation

One of the interpolation technique that is commonly used and implemented in

PVSCF code for 1-D potential curves along a single normal mode is a cubic spline

interpolation [92, p. 120]. Within this technique an energy at any arbitrary point x

which lies between two reference points xi−1 and xi is calculated as the value of a

piecewise cubic polynomial:

fi(x) = Ai(x− xi)3 +Bi(x− xi)2 + Ci(x− xi) + Ei, (4.1)

where Ai, Bi and Ci are polynomial coefficients and Ei is a tabulated energy value

computed at the grid point xi. With an assumption that all of these polynomials

as well as their first and second derivatives are continuous their coefficients can be
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determined using the following relations:

hi+1Bi+1 + 2 (hi+1 + hi)Bi + hiBi−1 = 3

(
Ei+1 − Ei
hi+1

− Ei − Ei−1

hi

)
, (4.2)

Ai =
(Bi −Bi−1)

3hi
, Ci = hiBi − h2

iAi +
Ei − Ei−1

hi
, hi = xi − xi−1.

The equation (4.2) makes a connection between the second derivatives of the cubic

spline at three adjacent tabulated points. However, the number of such equations

are two less than the total number of grid points n. For this reason two boundary

conditions at the first (x0) and the last (xn−1) tabulated grid points need to be

defined. The following two boundary conditions are implemented in PVSCF.

1. An assumption that the second derivatives at the first and the last grid points

are both equal zero (B0 = Bn−1 = 0) gives natural cubic splines. These splines

were dominantly used for the interpolation of 1-D potential curves. Moreover,

originally PVSCF uses linear extrapolation to estimate the validity of a PES range.

In fact, it is equivalent to the natural cubic spline extrapolation as the natural

cubic spline becomes linear outside the interpolation interval [x0 . . . xn−1].

2. The required PES range often can be estimated more accurately using splines which

preserve their behaviour on the boundary subintervals outside of the interpolation

interval. For example, if the potential curve has a quadratic shape on a subinterval

[x0 . . . x1], it probably remains quadratic from the left of x0. This behaviour can

be achieved by fixing the values of second derivatives at the first and the last grid

points equal to those at the nearest neighbour grid points (B0 = B1, Bn−1 = Bn−2).

4.2.2 Bicubic interpolation

In contrast with the cubic spline interpolation, a bicubic interpolation approach [92]

is designed to manipulate with 2-D rectangular surfaces. This approach is based on

an assumption that the value of a bivariate function at some point with coordinates

(x, y) within a rectangular region [xi−1, yi−1 . . . xi, yi] can be estimated as a value of
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Figure 4.2. Evaluation of a first derivative along the x coordinate. The red circle
marks the reference point which together with 3 green tabulated points forms an
adjacent points set. The selected nearest points outside of the adjacent points set
are marked in blue. The orange line represent a least-square-line.

the following bivariate piecewise cubic polynomial:

fi(x, y) =
3∑

k=0

3∑
l=0

A
(kl)
i (x− xi)k(y − yi)l, (4.3)

where A(kl) are 16 polynomial coefficients specific for a particular rectangular region.

These coefficients are computed from four values of interpolated function at the

tabulated grid point in the corners of the region along with values of the first

partial derivatives (∂fi(x, y)/∂x, ∂fi(x, y)/∂y) and mixed second partial derivatives

(∂2fi(x, y)/(∂x∂y)) at these reference grid points. However, the value of these

derivatives are often unknown a priori and need to be computed numerically from

known tabulated values. The bicubic interpolation approach does not specify how

exactly the evaluation of these derivatives should be performed. Moreover, as

the accuracy of an interpolated surface depends mainly on the accuracy of these

derivatives, a differentiation algorithm should be chosen carefully.

PVSCF program uses an approach suggested by Akima [93] for this purpose.

Using the example of a one-dimensional function, the first partial derivative over x

at the grid point xi can be computed within this framework through the following

steps (see Figure 4.2):



Chapter 4. Local implementation 48

1. Select the nearest six grid points in such a way that three of them are located

to the left of the reference tabulated grid point xi, while the other three ones

are located to the right of xi. If the reference point xi does not have enough

neighbours on one of the sides, all available points from this side have to be

selected. Using these six grid points group them into four adjacent sets in such a

way that each adjacent set contains the reference grid point xi.

2. For each adjacent set of four points calculate the coefficients of a cubic polynomial.

These coefficients are then used to compute four primary estimates of the first

partial derivative at the grid point xi (one for each point set).

3. For every adjacent set:

(a) Fit the points with least-squares line and compute the variability factor by

summing up the squares of the deviations between the actual value of the

function at the grid point and the predicted value using this least-squares-line.

(b) Compute the distance factor by summing up the squares of the distances

between xi and its three neighbours in a set.

(c) Compute a weight factor by multiplying the variability factor and correspond-

ing distance factor.

4. Normalise the obtained four weight factors and use them to compute the value of

the first partial derivative over x at the grid point xi by averaging four primary

estimates.

The mixed second-order partial derivatives are computed using a similar algorithm,

except of the fact that six nearest grid points are selected along both x and y

direction at the step 1. It follows, therefore, that 16 primary estimates, instead of

just four ones, need to be precomputed and that a least-squares-fit plane instead of

the least-squares-fit line have to be used at the step 3a.

The bicubic interpolation can be generalised for m-dimensional (m-D) surfaces

giving m-cubic interpolation. Unfortunately, the complexity of the algorithm increases
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significantly with the number of dimensions. Thus in case of 3-dimensional PES 64

polynomial coefficients have to be determined, that is four times larger in comparison

with bicubic interpolation approach. Moreover, as the number of these polynomial

coefficients is increased, all mixed partial derivatives up to the third order are now

required for each tabulated point on the 3-D grid. Unfortunately, as the main

bottleneck of such algorithms is the accurate evaluation of these partial derivatives,

using m-cubic interpolation for the large m may be impractical.

4.2.3 Shepard interpolation

Against this background, a Shepard interpolation algorithm [94, 95] looks particularly

promising. In fact, the Shepard interpolation is a specific instance of a more general

approach called normalized radial basis function interpolation [92, p. 139], as it

uses a weight factor based on a distance between grid points. Within the Shepard

interpolation, a function of m variables f(Q) = f(Q(1), Q(2), . . . , Q(m)) defined on

a grid is expanded in a Taylor series in the neighbourhood of each tabulated point

Qj = (Q
(1)
j1
, Q

(2)
j2
, . . . , Q

(m)
jm

):

fj(Q) = f(Qj) +
m∑
k=1

[
Q(k) −Q(k)

jk

] ∂f(Q)

∂Q(k)

∣∣∣∣
Q=Qj

+
1

2!

m∑
k=1

m∑
l=1

[
Q(k) −Q(k)

jk

] [
Q(l) −Q(l)

jl

] ∂2f(Q)

∂Q(k)∂Q(l)

∣∣∣∣
Q=Qj

+ . . . . (4.4)

By substituting actual coordinates of the point in question Q into Eq. (4.4), a primary

estimate of the value of the function f(Qj) with respect to the tabulated point Qj

can be computed. In case of complete expansion, the value of these estimates does

not depend from the reference point Qj used, but it does in case of a truncated series.

For this reason, in order to obtain the approximate value of f(Q), all estimates are

averaged as follows:

f(Q) =

n1·n2·...·nm∑
j=1

Wj(Q)fj(Q), (4.5)

Wj(Q) =
wj(Q)∑
k wk(Q)

, (4.6)
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where ni is the number of tabulated grid points along the i-th coordinate. There are

several ways to define the weight function wk(Q) [94]. All of these factors, however,

depend on the inverse distance between the reference point and the point in question,

as for smooth functions the Taylor series [Eq. (4.4)] converges faster with decreasing

this distance.

One of the most significant advantage of the Shepard interpolation is its high

scalability with increasing of the dimensionality of a PES. Thus, even in case of

complete decomposition, its complexity increases by the factor of [exp(1 + 1/m)−

1]nm+1 with increasing the number of dimensions from m to m+ 1, where nm+1 is

the number of tabulated grid points along the new m+ 1-th dimension. In particular,

for large m the complexity of incrementing the number of dimension approaches the

value of 1.7nm+1 asymptotically. The actual factor, however, is even smaller as not

all terms in the Taylor series (4.4) need to be computed. Moreover, in contrast with

m-cubic interpolation, the maximal order of partial derivatives which need to be

evaluated is usually small and remains constant for surfaces of any dimensionality.

This makes the Shepard interpolation approach more preferable for the large m.

The Shepard interpolation as implemented in PVSCF can deal with the PES

of any dimensionality. The following steps are applied separately for each coupling

term:

1. All partial derivatives of the function f(Q) are computed numerically up to

the certain order at each tabulated point. The differentiation is performed

recursively using difference formulae of the first- and the second-order from

Ref. [96, p. 884]. Despite the absence of any algorithmic limitations of the

maximal order of derivatives, it is limited in practice by accumulation of numerical

errors during recursive differentiation. This is usually not a problem, because the

convergence of Eq. (4.4) can be improved by increasing the number of tabulated

points. Alternatively, this computational error can be reduced by using analytical

derivatives of the lowest orders. In particular, the availability of such derivatives

can significantly reduce the number of reference grid points and, as a sequence,

to accelerate the construction of a PES [97, 98]. Moreover, some insight into the
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nature of the high-order coupling terms can be revealed that leads to additional

acceleration [99] At the current stage, however, we compute analytical derivatives

and estimates them numerically using the sparse PES only. This is caused by

the limitation of the PVSCF code which forgets about transformation between

the Cartesian and normal coordinates since the construction of the PES has been

done. However, this transformation has to be retained, as analytical derivatives

provided by electronic structure programs are usually computed in Cartesian

coordinates.

2. For all interpolation point:

(a) Check if it coincides with a tabulated one. Return the found tabulated value

if coincidence was detected.

(b) Otherwise compute primary estimates in the vicinity of the target point and

average them using the following weight function:

wj(Q) =

(
m∑
k=1

(
Q(k) −Q(k)

jk

)2
)−p

, (4.7)

where p is some positive number. Ishida and Schatz [100] and Oyanagi et al.

[98] demonstrated that p = 6 is a very reliable choice in terms of accuracy.

Moreover, it leads to a rapid decay of the weight function wj(Q) with the

distance between target and tabulated points, and makes conditions for

rapid convergence of the interpolated energy with respect to a number of

used tabulated points. Thus, all tabulated points are sorted in terms of the

distance to the reference point in ascent order. The interpolation continues

as long as the total contribution to the energy from all equidistant points is

greater than a threshold ∆Emax
s = 10−10 Hartree with introducing the next

distance (see Figure 4.3).

To validate the correctness of the implementation of these three interpolation

techniques, vibrational frequencies for three test systems were calculated using PES

interpolated with different approaches. Of course, the accuracy of the cubic spline
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Figure 4.3. Interpolation of the pair coupling term between symmetric (Q1) and
antisymmetric (Q2) OH stretching modes of a water molecule computed at the
CCSD(T)/aug-cc-pVQZ level of theory. The width of a line passing through
tabulated points schematically represents the weight of the estimate wj(Q) with
respect to the target point (in black).
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interpolation and bicubic interpolation cannot be directly compared with each other

as this techniques designed the surfaces with different dimensionality. However, these

techniques can be justified against the Shepard interpolation, as the last one was

implemented in general m-D case and can be applied to surfaces of any dimensionality.

4.2.4 Test system: a Morse oscillator

The first test system is a Morse oscillator whose Hamiltonian in atomic units is

expressed in a form:

Ĥ = − 1

2µ

∂2

∂R2
+De

[
1− e−αR

]2
, (4.8)

with the following parameters (in atomic units): De = 0.1740, α = 1.0346, µ =

918.6811. This oscillator corresponds to the stretching mode of a H2 molecule in

the gas phase. These parameters were determined by fitting the ab initio 1-D PES

of a H2 molecule in the gas phase obtained at the CCSD(T) / aug-cc-pVQZ level

of theory. The advantage of this system is that the transition frequencies can be

calculated analytically using Eq. (2.23).

A test PES was precomputed on a 16 point uniform grid on the interval between -

0.75 Bohrs and 2.75 Bohrs from the equilibrium point. This PES was then interpolated
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Table 4.1. First eight vibrational eigenvalues of the Morse oscillator computed within
FGH approach using PES-s obtained with cubic spline interpolation and 1-D Shepard
interpolation up to the second- and the third-order. Relative CPU time is estimated
based on interpolation of 106 curves. Eigenvalues are given in cm−1.

v 0 1 2 3 4 5 6 7 RMSD Time
Analytical 2178 6341 10248 13900 17296 20437 23321 25950 — —

Cubic spline 2186 6344 10231 13866 17262 20413 23312 25954 20 1
Shepard (2) 2180 6345 10252 13901 17297 20438 23324 25952 3 14
Shepard (3) 2178 6341 10249 13900 17296 20436 23321 25949 1 20

on the uniform grid with 128 points using natural cubic splines. At the same

time, extra two interpolated PES-s were obtained using the Shepard interpolation

algorithms where all derivatives up to the 2nd and the 3rd order derivatives were

taken into account. The vibrational eigenvalues for the ground state and for the

first seven excited states were obtained using three different PES along with the

corresponding exact analytical solution are shown in Table 4.1.

The results obtained using the PES interpolated with the Shepard interpolation

technique perfectly match the analytical solution. Thus, when all the third order

derivatives in Eq. (4.4) are taken into account, the RMSD averaged over these 8

states lies within 1 cm−1 which is within the spectroscopic accuracy. Decreasing the

level of approximation down to the second order terms increases the RMSD up to

3 cm−1.

Alternatively, in contrast with the Shepard interpolation up to the third deriva-

tives, cubic spline interpolation can boost the performance up to 20 times. However,

the cubic spline interpolation can introduce a relatively large error on a very sparse

grid. Thus, in this case the RMSD value over the lowest eight eigenvalues is equal

to 20 cm−1. The main contribution to this error comes from excited states with

vibrational quantum number v between 2 and 5 inclusively. The reason being that

he energy raises very rapidly with the reduction of the inter-atomic distance beyond

the equilibrium position, but only 4 tabulated points reside in this region. Despite of

the fact, that an extra tabulated point reduces the RMSD down to 1 cm−1 for all

interpolation techniques, the Shepard interpolation is the most robust as it allows to

obtain very accurate results regardless of the sampling technique.
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4.2.5 Two-dimensional test case: two oscillators in Henon-

Heiles potential

As the second test the eigenstates of a system of two oscillators coupled together by the

Henon-Heiles potential were computed. This potential was originally introduced by

Contopoluos [101] to describe a motion of stars in a galaxy and then was generalised

Henon and Heiles [102]. The potential reads:

V (Q1, Q2) =
1

2
ω2

1Q
2
1 +

1

2
ω2

2Q
2
2 + λQ1

(
ηQ2

1 +Q2
2

)
, (4.9)

with parameters ω2
1 = 0.29375, ω2

2 = 2.12581, λ = -0.1116, η = 0.08414 [103].

This set of parameters makes the frequencies to be sensitive to errors incurred by

numerical computation. For this reason, it is often used to test various numerical

algorithms [22, 60].

A 2-D test PES was precomputed on the 8 × 8 uniform grid on the intervals

between -9.0 Bohrs and 9.0 Bohrs and between -6.0 Bohrs and 6.0 Bohrs along the first

and the second vibrational mode respectively. This PES was than interpolated on the

uniform 128×128 grid using bicubic interpolation and the Shepard interpolation with

all derivatives up to the second and the third order. To maintain the experimental

integrity, two 1-D PES were generated on the dense uniform grid with 128 points

along each mode. The vibrational eigenvalues were computed using VSCF/VCI

method with configuration space limited up to 7 excitation quanta for each normal

mode.

The comparison between different interpolation techniques are given in Table 4.2.

Bicubic interpolation demonstrates the excellent performance, however the eigenvalues

differ from exact solution by 0.0009 Hartree according to the RMSD. When only the

second derivatives are taken into account, the Shepard interpolation demonstrates

an increased RMSD (by 30%) coincidently with increasing in time by factor of 7.

Third-order derivatives doubles the time consumption of the Shepard interpolation

dramatically improving accuracy (up to 0.0001 Hartree).
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Table 4.2. Deviation of the first four vibrational eigenvalues of 2-D oscillator in the
Henon-Heiles potential from the exact quantum solution. Relative CPU time was
estimated based on interpolation of 104 PES. Eigenvalues are given in Hartree.

(v1, v2) (0,0) (1,0) (2,0) (1,1) RMSD, 10−3 Rel. CPU Time
Exact quantum [103] 0.9916 1.5159 2.0308 2.4188 — —

Bicubic 0.0002 -0.0004 -0.0005 0.0017 0.9 1
Shepard (2) 0.0004 0.0001 -0.0019 0.0014 1.2 7
Shepard (3) 0.0000 0.0001 0.0001 0.0001 0.1 14

Note, that in this test the number of grid points along each mode is only half as

much as in the previous 1-D test. In case of 2-D PES computed on the 16× 16 grid

all three methods yield identical results, and the RMSD is equal to 0.0001 Hartree

for all of them. For this reason, despite of the excessive time consumption, the

Shepard (3) method can significantly increase the overall performance because it

requires a sparser grid for the same accuracy.

4.3 A general VSCF algorithm

Jung and Gerber’s variant [44] of the vibrational self-consistent field (VSCF) method,

which has been described in Section 2.5, does not rely on any representation of

the potential V (Q). It is possible, however, to accelerate this algorithm slightly by

simplifying the form of the effective potential V eff
i [Eq. (2.36)]. Thus, splitting the

potential into diagonal and coupling terms

V (Q) =
N∑
i=1

V
(1)
i (Qi) + Vc(Q) (4.10)

allows to group these diagonal terms together with the kinetic energy operator:

ĥ(Q) =
N∑
i=1

ĥi(Qi) =
N∑
i=1

(
−1

2

∂2

∂Q2
i

+ V
(1)
i (Qi)

)
. (4.11)
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The vibrational Schrödinger equation (2.33) for a state v takes an equivalent form

up to notation:

{
N∑
i=1

ĥi(Qi) + Vc(Q)

}
Ψv(Q) = EVSCF

v Ψv(Q), (4.12)

Therefore, on a subspace of factorizable wave functions Ψv(Q) [Eq. (2.34)] is reduced

to the system of 1-D Schrödinger equations:

{
ĥi(Qi) + V̄ eff

i;v (Q)
}
φvi
i (Qi) = ε̄vi

i φ
vi
i (Qi), (4.13)

where φvi
i (Qi) and ε̄vi

i are modal wave functions and corresponding VSCF modal

energies. However, in contrast with Jung and Gerber’s formulation, the effective

potential

V̄ eff
i;v (Q) =

〈
N∏
j 6=i

φ
vj

j (Qj) |Vc(Q)|
N∏
j 6=i

φ
vj

j (Qj)

〉
(4.14)

does not contain any diagonal terms from V (Q), This allows to avoid evaluation of

N one-dimensional integrals and, as a result, slightly improves the performance of

the algorithm. Elimination of diagonal terms from multi-dimensional potential, of

course, alters modal energies according to relation:

εvi
i = ε̄vi

i +
N∑
j 6=i

〈
φ
vj

j (Qj)
∣∣∣V (1)
i (Qi)

∣∣∣φvj

j (Qj)
〉
. (4.15)

However, the VSCF total energy remains unchanged:

EVSCF
v =

N∑
i=1

ε̄vi
i − (N − 1)

〈
φv1

1 (Q1)
∣∣V eff

1;v

∣∣φv1
i (Q1)

〉
=

N∑
i=1

ε̄vi
i − (N − 1)

〈
N∏
i=1

φvi
i (Qi) |Vc(Q)|

N∏
i=1

φvi
i (Qi)

〉
(4.16)

=
N∑
i=1

εvi
i − (N − 1)

〈
N∏
i=1

φvi
i (Qi)

∣∣∣∣∣
N∑
j=1

V
(1)

1 (Qi) + Vc(Q)

∣∣∣∣∣
N∏
i=1

φvi
i (Qi)

〉

due to equality of Hamiltonians in Eqs. (2.33) and (4.12). Note, that the VSCF

method was originally invented by Bowman [22, 104] following this strategy.
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An extra acceleration in performance can be achieved by expressing the coupling

potential Vc(Q) using many-mode expansion [Eq. (2.38)]:

Vc(Q) =
N∑
i=1

N∑
j>i

V
(2)
ij (Qi, Qj) +

N∑
i=1

N∑
j>i

N∑
k>j

V
(3)
ijk (Qi, Qj, Qk) + . . . (4.17)

Considering the effective potential [Eq. (4.14)] for the mode i, all coupling terms can

be divided into two groups according to their dependence on the i-th coordinate:

V̄ eff
i;v (Q) =

〈
N∏
j 6=i

φ
vj

j (Qj)

∣∣∣∣∣
N∑
j=1

N∑
k>j

V
(2)
jk (Qj, Qk) + . . .

∣∣∣∣∣
N∏
j 6=i

φ
vj

j (Qj)

〉

=
N∑
j 6=i

〈
φ
vj

j (Qj)
∣∣∣V (2)
ij (Qi, Qj)

∣∣∣φvj

j (Qj)
〉

+ . . .︸ ︷︷ ︸
Ṽ eff

i;v (Q)

(4.18)

+
N∑
j 6=i

N∑
k>j

〈
φ
vj

j (Qj)φ
vk
k (Qk)

∣∣∣V (2)
jk (Qj, Qk)

∣∣∣φvk
k (Qk)φ

vj

j (Qj)
〉

+ . . .︸ ︷︷ ︸
constant terms

.

If the dependence takes place, then averaging of such terms over all but the i-th

vibrational coordinate leads to non-trivial one-dimensional operators which have

to be taken into account. At the same time, the contribution from the remaining

couplings to the effective potential does not depends on the i-th coordinate at all.

These constant terms simply shift the i-th modal energy without any influence on

the corresponding modal wave function, therefore they can be ignored. As a price,

this trick complicates the expression for the VSCF total energy through the modal

energies ε̃vi
i :

EVSCF
v =

N∑
i=1

ε̃vi
i −

〈
N∏
i=1

φvi
i (Qi)

∣∣∣∣∣
N∑
i=1

N∑
j>i

V (2)(Qi, Qj)

∣∣∣∣∣
N∏
i=1

φvi
i (Qi)

〉

− 2

〈
N∏
i=1

φvi
i (Qi)

∣∣∣∣∣
N∑
i=1

N∑
j>i

N∑
k>j

V (3)(Qi, Qj, Qk)

∣∣∣∣∣
N∏
i=1

φvi
i (Qi)

〉
− . . . . (4.19)

Note that this above formula is non-optimal, as it requires evaluation of all constant

terms from Eq. (4.18) (in number of couplings) that we try to avoid. Instead, the

equation above can be rewritten in an equivalent form introducing a corrective
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effective potential, V̊ eff
i;v :

EVSCF
v =

N∑
i=1

ε̃vi
i −

N∑
i=1

〈
φvi
i (Qi)

∣∣∣V̊ eff
i;v (Qi)

∣∣∣φvi
i (Qi)

〉
︸ ︷︷ ︸

∆Ẽv

. (4.20)

This corrective potential contains only integrals which have already been evaluated

during the construction of the effective potential Ṽ eff
i;v (Q):

V̊ eff
i;v =

1

2

N∑
j 6=i

〈
φ
vj

j (Qj)
∣∣∣V (2)
ij (Qi, Qj)

∣∣∣φvj

j (Qj)
〉

(4.21)

+
2

3

N∑
j 6=i

N∑
k>j

〈
φ
vj

j (Qj)φ
vk
k (Qk)

∣∣∣V (3)
ijk (Qi, Qj, Qk)

∣∣∣φvk
k (Qk)φ

vj

j (Qj)
〉

+ . . . .

Here, the coefficient in front of the m-D coupling integrals is equal to (m − 1)/m.

Its numerator comes from Eq. (4.20) and is caused by the fact that the contribution

from each m-D coupling term to the total energy has been counted m times instead

of once. Moreover, each coupling term contributes to the corrective effective potential

multiple times – once per coupled mode – that requires an additional scale factor

1/m.

In PVSCF, evaluation of components of the effective potential is implemented by

sequential reduction of their dimensionality. Thus, in order to compute a contribution

to the Ṽ eff
i;v (Q) from a 3-D coupling term Vijk = V 3

ijk(Qi, Qj, Qk), this coupling can

be firstly averaged over the k-th vibrational coordinate:

V k
ij (Qi, Qj) = 〈φvk

k (Qk) |Vijk(Qi, Qj, Qk)|φvk
k (Qk)〉 , (4.22)

followed by averaging of the obtained 2-D potential over the j-th coordinate:

V jk
i (Qi) =

〈
φ
vj

j (Qj)
∣∣V k
ij (Qi, Qj)

∣∣φvj

j (Qj)
〉
. (4.23)

Unfortunately, because coupling terms are defined numerically on a grid, computa-

tional costs increase exponentially with the dimensionality of an averaging coupling.
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Figure 4.4. Evaluation of components of the effective potential by following the
shortest route (a) and by combining similar coupling terms (b). Subscript indices
denote modes which are coupled through the coupling term, while superscript indices
correspond to modes over which the coupling term has already been averaged. Vertical
line in subscript dichotomizes the coupled modes and marks the branch point of
the shortest path algorithm. The coupling term which is shown in a dashed line
may be integrated separately, as it only increases overall performance in specific
circumstances (see text).

Thus, in case of uniformly distributed grid with n points along each mode, in order

to average an m-D coupling term along one mode nm−1 integrals should be computed.

Because for an accurate numerical integration the number of grid points should be

relatively large, minimizing the number of high-dimensional couplings which have to

be integrated is of critical importance.

To improve the performance, we use two approaches which are shown in Figure 4.4.

The first approach finds the shortest route that gives the contributions from the

particular coupling term to the effective potential along each coupled mode. The

method is based on independence of averaged coupling terms from changing the order

of integration. For example, the term V ik
j (Qj), which contributes to the Ṽ eff

j;v(Qj), can

be obtained from Vijk(Qi, Qj, Q3) by averaging over the mode k followed by averaging

over the mode i. As an alternative route, one can use integration in inverse order.

However, if the term V jk
i (Qi) has previously been computed using Eq. (4.3), the

term V k
ij (Qi, Qj) is already known. This makes the former route to be more optimal

than the latter one, as it allows to skip unnecessary averaging of the 3-D coupling.
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In general, the most optimal route can be found using a bisection method. Thus,

all modes which are coupled together through the particular coupling term are divided

into two groups with the same size. The coupling term is then averaged over the

modes in each group independently, that gives two complementary directions. The

procedure is applied recursively for each reduced coupling term until all of them

become one-dimensional.

The construction of the effective potential can be further accelerated by combining

the similar coupling terms and averaging them simultaneously. Supposing that in

addition to the coupling term Vijk there is also a term Vijl. Being averaged over the

l-th coordinate, the latter term transforms into the reduced term V l
ij(Qi, Qj). As

well as V k
ij (Qi, Qj), this term contributes to the effective potential over the i-th and

j-th coordinates, and for this reason they can be merged together and integrated

simultaneously. Additionally, these terms could even be combined with a pair-coupling

Vij(Qi, Qj). In most cases, however, mixing couplings of different dimensionality is

not profitable. The reason being that the corrective potential V̊ eff
i;v (Qi) should be also

computed in order to calculate the VSCF total energy. Unfortunately, potentials

Ṽ eff
i;v (Qi) and V̊ eff

i;v (Qi) contain different scale factors, that leads to impossibility to

construct such corrective potential using only precomputed components. However,

this variant of contraction can be in principle helpful at intermediate VSCF iterations,

if an alternative convergence criteria, such as the sum of modal energies itself, is

used.

4.4 A general VSCF/VCI algorithm

The VSCF state energy EVSCF
~v obtained for the v-th vibrational state can be further

improved using a state-specific vibrational configuration interaction (VSCF/VCI)

method described in Section 2.5. Within this approach a series of configuration state

functions (CSFs), Ψu
v, is constructed from orthonormal VSCF modal wave functions,
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ψ
ui;(v)
i (Qi), optimized for the reference state v:

Ψu
v(Q) =

N∏
i=1

ψ
ui;(v)
i (Qi). (4.24)

A symmetric VCI matrix is then computed on the basis of CSFs:

HVCI
uw = HVCI

uw = 〈Ψu
v |H|Ψw

v 〉 . (4.25)

Finally, the VCI energy of the v-th state is obtained by diagonalisation of this VCI

matrix.

For the PES expressed in terms of many-mode representation [Eq. (2.38)] a

Hamiltonian matrix element between two CSF, Ψu
v and Ψw

v , denotes as:

Huw =

〈
N∏
i=1

φ
ui;(v)
i (Qi)

∣∣∣∣∣
N∑
i=1

ĥi(Qi) + Vc(Q)

∣∣∣∣∣
N∏
i=1

φ
wi;(v)
i (Qi)

〉
, (4.26)

where the diagonal operator is defined in Eq. (4.11). By adding and subtracting an

effective potential V eff
i;v (Qi) to the Hamiltonian operator, this matrix element can be

split into three parts:

Huw =

〈
N∏
i=1

φ
ui;(v)
i (Qi)

∣∣∣∣∣
N∑
i=1

{
ĥi(Qi) + V eff

i;v (Qi)
}∣∣∣∣∣

N∏
i=1

φ
wi;(v)
i (Qi)

〉
︸ ︷︷ ︸

Ha
uw

−

〈
N∏
i=1

φ
ui;(v)
i (Qi)

∣∣∣∣∣
N∑
i=1

V eff
i;v (Qi)

∣∣∣∣∣
N∏
i=1

φ
wi;(v)
i (Qi)

〉
︸ ︷︷ ︸

Hb
uw

(4.27)

+

〈
N∏
i=1

φ
ui;(v)
i (Qi) |Vc(Q)|

N∏
i=1

φ
wi;(v)
i (Qi)

〉
︸ ︷︷ ︸

Hc
uw

.

Note, that we make no assumption about the form of V eff
i;v (Qi). Therefore, it may be

defined either as V̄ eff
i;v (Qi) [Eq. (2.36)] or as Ṽ eff

i;v (Qi) [Eq. (4.18)] depending on the

used VSCF formalism.
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The first term in Eq. (4.27) can be simplified by considering the orthonormality

of the modal wave functions. Thus, taking the summation sign out of the brackets

gives:

Ha
uw =

N∑
i=1

〈
φ
ui;(v)
i (Qi)

∣∣∣[{ĥi(Qi) + V eff
i;v (Q)

}∣∣∣φwi;(v)
i (Qi)

〉] N∏
j 6=i

δuj ,wj
, (4.28)

where δuj ,wj
is a Kronecker’s delta function. Moreover, because the expression in

square brackets is the left-hand side of a 1-D Schrödinger equation (4.13) and because

all the modal wave functions are solutions of that equation, Ha
uw can be expressed in

terms of modal energies ε
ui;(v)
i :

Ha
uw =

N∑
i=1

ε
wi;(v)
i

〈
φ
ui;(v)
i (Qi) | φui;(w)

i (Qi)
〉 N∏
j 6=i

δuj ,wj
= δu,w

N∑
i=1

ε
ui;(v)
i . (4.29)

The second term in Eq. (4.27) can be simplified in a similar fashion. Thus,

applying the orthonormality condition one can obtain:

Hb
uw = −

N∑
i=1

〈
φ
ui;(v)
i (Qi)

∣∣V eff
i;v (Q)

∣∣φwi;(v)
i (Qi)

〉 N∏
j 6=i

δuj ,wj
. (4.30)

There are three possible cases depending on the CSFs Ψu
v(Q) and Ψw

v (Q):

Hb
uw =


−
∑N

i=1

〈
φ
ui;(v)
i (Qi)

∣∣V eff
i (Qi)

∣∣φui;(v)
i (Qi)

〉
, ∀i : ui = wi;

−
〈
φ
uk;(v)
k (Qk)

∣∣V eff
k (Qk)

∣∣φwk;(v)
k (Qk)

〉
, ∀i 6= k : ui = wi, uk 6= wk;

0, otherwise.

(4.31)

In case of diagonal matrix elements, Hb
uu, all delta functions in Eq. (4.30) are equal to

unity, that transforms the term Hb
uw into a sum of expectation values of the effective

potential along each vibrational coordinate. Alternatively, when the CSFs differ in

the k-th modal wave function, only the expectation value along this k-th coordinate

persists. Finally, when the CSFs differ in more than one modal wave function, the

terms Hb
uu becomes constantly zero.
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The last term in Eq. (4.27) is the most laborious one, because it requires the

evaluation of multi-dimensional integrals. In many-mode expansion this term can be

expressed as a sum of integrals:

Hc
uw =

∑
j

∑
k>j

〈
N∏
i=1

φ
ui;(v)
i (Qi)

∣∣∣V (2)
jk (Qj, Qk)

∣∣∣ N∏
i=1

φ
wi;(v)
i (Qi)

〉
(4.32)

+
∑
j

∑
k>j

∑
l>k

〈
N∏
i=1

φ
ui;(v)
i (Qi)

∣∣∣V (3)
jk (Qj, Qk, Ql)

∣∣∣ N∏
i=1

φ
wi;(v)
i (Qi)

〉
+ . . . .

However, some of these integrals are equal to zero and can be ignored. Thus, the

orthonormality condition ensures that if the CSFs Ψu
v(Q) and Ψw

v (Q) differ in a

mode that is not coupled through some coupling term, this coupling term does not

contribute to the corresponding VCI matrix element at all. Moreover, if these CSFs

differ from each other in m modal wave functions, all coupling terms up to the order

m− 1 can be ignored.

These obtained formulae can be validated against theory by considering two

special cases. Thus, the diagonal VCI matrix element constructed from the VSCF

reference state is equal to the VSCF energy:

HVCI
vv =

N∑
i=1

ε
ui;(v)
i −

N∑
i=1

〈
φ
vi;(v)
i (Qi)

∣∣V eff
i (Qi)

∣∣φvi;(v)
i (Qi)

〉
+

〈
N∏
i=1

φ
vi;(v)
i (Qi) |Vc(Q)|

N∏
i=1

φ
vi;(v)
i (Qi)

〉
= EVSCF

i . (4.33)

In particular, if the effective potential V̄ eff
i (Qi) is defined according to Eq. (4.14), the

equation above is identical to Eq. (4.16) which defines the VSCF energy.

Alternatively, considering the matrix element HVCI
vu , where the wave function Ψu

v

is different from the VSCF reference state by the k-th modal wave functions. It can
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be proven, that this matrix element is constantly zero:

HVCI
vu = −

〈
φ
vk;(v)
k (Qk)

∣∣V eff
k;v(Qk)

∣∣φvk;(v)
k (Qk)

〉
+

〈
N∏
i=1

φ
vi;(v)
i (Qi) |Vc(Q)|

N∏
i=1

φ
vi;(v)
i (Qi)

〉

= −
〈
φ
vk;(v)
k (Qk)

∣∣V̄ eff
k;v(Qk)

∣∣φvk;(v)
k (Qk)

〉
+
〈
φ
vk;(v)
k (Qk)

∣∣V̄ eff
k;v(Qk)

∣∣φvk;(v)
k (Qk)

〉
= 0. (4.34)

This statement is known as a generalized Brillouin theorem [105].

The current implementation makes no assumption about the modal wave functions

φui;v
i which are used to construct CSFs. The number of these CSFs, however, grows

very rapidly with the number of such modal functions, therefore some constraints can

be imposed to make calculations feasible. Thus, in typical calculations the maximal

excitation level from the reference state, |ui − vi|, remains fixed to the certain level

umax. At the meantime, the number of non-zero matrix elements increases significantly

with the maximal order of coupling terms. Thus, within the pairwise approximation

all matrix elements between the states which differ in more than two orbitals can

be ignored. However, it is not the case when 3-D coupling terms are taken into

consideration, that additionally requires to account all CSFs which are different in

three modal wave functions. This leads to a situation when the constructed VCI

Hamiltonian matrix does not fit into the fast computer memory (RAM). As each

matrix element requires some amount of time to be computed, straightforward usage

of direct-diagonalisation approaches, which evaluate matrix elements on demand does

not seem possible. In order to avoid this memory limitation, the precomputed matrix

elements are stored in 1-D array along with their indices in the VCI matrix. This

approach allows to keep only significant elements which is greater than a specified

threshold Hmin. If however, the number of elements that have to be stored still does

not fit to the available RAM, the new matrix elements replace the least significant

ones which are less than a “maximal” threshold Hmax. In the most unfortunate

case, when all residual matrix elements still cannot be resided in the main memory,
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PVSCF will dump the Hamiltonian matrix on disk keeping in RAM the indices of

the elements and will use the disk as a scratch space.

Finally, in order to make the diagonalisation of such sparse matrices possible,

the direct Davidson diagonalisation approach described in details in Ref. [88] was

modified. Thus, instead of recalculation of each matrix element Huw on the fly, these

elements are retrieved from the sparse storage. In order to increase access speed,

all matrix elements are sorted in ascending order of their indices, and a fast search

algorithm is used to locate the particular element by their index. Besides, if the

scratch space is used, the index array is still kept in the main memory that makes

possible direct retrieval of the matrix element from the scratch space without reading

the entire data.

4.4.1 Complete potential: Water molecule

In order to validate the general implementation of the VSCF/VCI method, I used

it to compute fundamental transition frequencies of a water molecule in the gas

phase. The water molecule has three vibrational normal modes: HOH bending mode

(δ(HOH)), symmetric (νs(OH)) and asymmetric (νa(OH)) OH stretching modes.

Because the correlation potential contains terms up to the 3rd order, it is possible to

construct the full PES and to account for all existing coupling terms. The PES was

constructed in normal mode coordinates using CCSD(T) ab initio electronic structure

method with Dunning’s correlation consistent basis sets (cc-pVnZ, n=T,Q) [106].

The augmented version of the latter basis set (aug-cc-pVQZ) was also tested in order

to approach the experimental data. The PES was computed on a uniform grid with

16 points along each normal mode (4912 points in total) and then interpolated on a

uniform grid with 64 points using the Shepard (3) interpolation method. Table 4.3

contains deviations of obtained VCI transition frequencies from the experimental

data. For each basis set two sets of frequencies are presented. The first one was

obtained using the pairwise approximation (2-D) when only the diagonal and the

pair-coupling terms in the PES expansion were taken into account. Alternatively,
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Table 4.3. Deviations of VCI fundamental frequencies of a water molecule in the gas
phase from the experimental data within pairwise approximation (2-D) and using the
complete PES. The PES was computed using CCSD(T) ab initio level with cc-pVTZ,
cc-pVQZ, and aug-cc-pVQZ basis sets. Eigenvalues are given in cm−1.

mode cc-pVTZ cc-pVQZ aug-cc-pVQZ Exp.[107]
2-D 3-D 2-D 3-D 2-D 3-D

δ(HOH) 7 9 -5 -2 -14 -11 1595
νs(OH) 1 9 2 11 -10 2 3657
νa(OH) -31 -11 -26 -6 -36 -14 3756
RMSD 18 10 15 7 23 10 —

fundamental transition frequencies were also computed using the full correlation

potential (3-D).

The pairwise approximation significantly underestimates the vibrational frequency

of the asymmetric OH stretching mode. Thus, this underestimation is equal to 31 cm−1

for the cc-pVTZ basis set, slightly decreases to 26 cm−1 for the cc-pVQZ basis set

and becomes even larger for the largest basis (aug-cc-pVQZ). The frequencies of two

remaining normal modes approach the experimentally observed values and slightly

deviate with the basis set used.

In contrast, taking into account the 3-D coupling term significantly improves

the most problematic νa(OH) mode. Thus, for all tested basis sets the difference

between the theoretical and experimental frequencies lies within 14 cm−1 interval.

At the same time, the frequency of the symmetric stretching mode obtained using

cc-pVTZ and cc-pVQZ basis sets within the pairwise approximation accidentally

matches the experimental data, while the inclusion of the 3-D coupling increases

this frequency by 8 cm−1 and 9 cm−1 respectively. In case of the aug-cc-pVQZ

basis set the reversed trend is observed: the frequency computed within the pairwise

approximation is underestimated by 10 cm−1, while the 3-D coupling increases it by

8 cm−1 approaching to the experimental value.

Summarizing, the RMSD shows the improvement of transition frequencies for

3-D PES with the basis set size. Probably, the further expansion of the basis set till

aug-cc-pV5Z could lead to even better agreement.



Chapter 5

Acetylene on a Cu(001) surface

5.1 Introduction

The adsorption of acetylene on a transition metal surfaces has attracted the attention

of researchers for some time [108–110]. The majority of metallic surfaces enhance

the reactivity of an adsorbed acetylene molecule by distortion of its geometry. This

activates the triple C−C bond and makes it more accessible for combination and

polymerization reactions. For example, platinum and palladium surfaces are well

known catalysts of the hydrogenation reaction of an adsorbed acetylene [111, 112].

A Pd(111) surface can also involve acetylene into a cyclotrimerization reaction to form

benzene [113, 114]. Moreover, metallic copper can lead not only to this trimerization

reaction [115], but also to a polymerization reaction to form cuprene [116].

This chapter is focused on vibrational properties of an acetylene molecule chemi-

sorbed on a Cu(001) surface. The choice of the test system was governed by the

large amount of information discovered in previous experimental [117–122] and theo-

retical [123–129] studies. Thus, using scanning tunnelling microscopy (STM) Stipe

et al. [117] established that an adsorbed acetylene molecule resides on the fourfold

hollow site of the surface (µ4, see figure 5.1) and parallel to the [110] direction.

This resolves a controversy about a preferable adsorption site, as various theoretical

Reprinted in part with permission from S. K. Chulkov and D. M. Benoit, “A fragment
method for systematic improvement of anharmonic adsorbate vibrational frequencies: Acetylene on
Cu(001)”, J. Chem. Phys., 139, 214704 (2013). Copyright 2013, AIP Publishing LLC.
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Figure 5.1. Theoretical adsorption sites of a C2H2 molecule on a Cu(001) surface
reported in the literature: threefold hollow site (µ3) [124], diagonal (µ4) [125] and

aligned (µ
||
4) [123] fourfold hollow sites. According to the STM image [117], the

correct adsorption site is µ4.

models predicts different sites. Thus, gas-phase DFT simulations of an acetylene

molecule on top of a cluster constructed from 17 copper atoms using Becke’s ex-

change [130] and Lee-Yang-Parr correlation [131] functionals (BLYP) and a double

zeta basis set predicts that the aligned fourfold site (µ
||
4) is the preferable one [123].

Alternatively, the analysis of an ultraviolet photoelectron spectrum (UPS) [124]

shows that the adsorption is driven by electron donation from the highest occupied

molecular orbital (HOMO) π of an acetylene molecule to a d orbital of copper which

are very close in energy. This d orbital, however, interacts with acetylene’s lowest

unoccupied molecular orbital (LUMO) π∗ through a back-donation mechanism [132]

that requires an overlap between the anti-bonding π∗ orbital and metallic d orbitals.

Therefore, an acetylene molecule should be oriented along the [110] direction on

the Cu(001) surface in order to maximize this overlapping. This proposed binding

mechanism is in very good agreement with the STM image. However, in the original

paper [124] Geurts and Avoird suggested an alternative 3-fold hollow site (µ3) as

a preferable one where an C2H2 molecule is equidistant from three copper atoms

and parallel to the [110] direction. This conclusion was based on the calculation

of orbital energy levels of an adsorbed acetylene molecule for various adsorption

sites using the Hartree-Fock ab initio approach and a cluster model. The orbital

energies obtained were then compared with the available UPS spectrum [120] and

the adsorption site that gave the best agreement with this spectrum was declared as

the preferred one. The subsequent theoretical simulations which were carried out
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using periodic DFT approach [125, 133] demonstrate an enhanced contribution from

the π∗ back-donation stage and predict the µ4 adsorption site. Moreover, the optimal

geometry obtained using DFT-based approaches is in agreement with the surface

extended X-ray adsorption fine structure (SEXAFS) experiment [122] which gives

the height between the centre of C−C bond and the closest copper atom equal to

1.30± 0.05 Å.

In contrast with an acetylene molecule in the gas phase which has a triple CC

bond and a linear structure, the molecule becomes non-linear upon adsorption on a

Cu(001) surface and its point symmetry group reduces from D∞h down to C2v. At

the same time, its C−C distance elongates from 1.20 Å [134] to 1.42 Å [122], that

lies between that of ethylene (1.34± 0.02 Å [135]) and ethane (1.522± 0.002 Å [136],

1.55± 0.03 Å [135]) in the gas phase. This elongation is in good agreement with the

proposed chemisorption mechanism as promoting of an electron from the acetylene’s

π HOMO (which binds both carbon atoms together) to its π∗ LUMO should reduce

the strength of the C−C bond and increase its length.

The fundamental vibrational frequencies of an acetylene molecule adsorbed on a

Cu(001) surface are also well studied experimentally. Because the adsorbed acetylene

molecule is no longer linear, it has six normal modes which represent intra-molecular

vibrations (see Figure 5.2). Among them are symmetric [νs(CH)] and antisymmetric

[νa(CH)] C−H stretching modes, one C−C stretching mode [ν(CC)], symmetric

[δs(CH)] and antisymmetric [δa(CH)] in-plane C− H bending modes, and an out-of-

plane antisymmetric C−H bending mode [γa(CH)]. The remaining six degrees of

freedom (out of 12) of the adsorbed acetylene molecule appear as frustrated vibrations

which correspond to translation- and rotation-like motions of the molecule relative to

its solid support. The first of them is the frustrated rotation of the acetylene molecule

in its own plane [ρ∠(C2H2/Cu)], that is equivalent to the change of the tilt angle.

The second mode is the frustrated rotation of the adsorbed molecule in the plane of

the surface [ρ⊥(C2H2/Cu)], that tends to swap the acetylene molecule between two

equivalent µ4 adsorption sites along the [110] direction and the perpendicular [11̄0]

direction. The last frustrated rotation corresponds to a change of dihedral angle
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Figure 5.2. Schematic illustration of intra-acetylene and acetylene-copper normal
vibrational modes of a C2H2 molecule on a Cu(001) surface. The mode notation
is: ν – stretch, δ – in-plane bend, γ – out-of-plane bend, ρ – frustrated rotation,
τ – frustrated translation. Labels s and a denote symmetric and antisymmetric
vibrations about the σv plane of symmetry which is perpendicular to the C− C
bond. Labels x, y and z mark frustrated translations along the [11̄0], [110] and [001]
directions respectively, while labels ∠ and ⊥ correspond to frustrated rotations in
the acetylene’s plane (affecting the tilt angle) and about the C2 rotation axis of the
adsorbed molecule (perpendicular to the solid surface).

between the acetylene’s plane and the solid support, and it is revealed as an out-of-

plane symmetric C− H bending mode [γs(CH)]. The remained three normal modes

are frustrated translations [τx(C2H2/Cu), τy(C2H2/Cu), and τz(C2H2/Cu)] along

orthogonal directions (see Figure 5.2). The most interesting one is the τz(C2H2/Cu)

mode which represents the change in the substrate-adsorbate distance.

A high resolution electron energy loss (HREEL) spectrum [137] obtained at 140 K

by exposure of clean Cu(100) surface to 2.5× 10−6 Torr·s of acetylene gas detects

almost all of the mentioned vibrations. This spectrum contains four intense peaks.

The first one is a very broad peak at 2880 cm−1 with a small peak at 2940 cm−1

located on its shoulder. Both of these peaks corresponds to CH stretching modes,

however a particular symmetry has not been assigned to them. In contrast with the

previous two peaks, the strong peak at 1320 cm−1 is uniquely assigned to the CC
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stretching mode. The remaining two intense peaks at 950 cm−1 and 630 cm−1 as well

as one small peak at 1140 cm−1 corresponds to four CH bending modes. However, the

available experimental data does not allow us to assign these fundamental transitions

to a particular band. Moreover, as the number of these peaks is smaller than the

number of CH bending modes, two of these fundamental frequencies probably fall

close together giving broad shoulders for one of these peaks. Finally, the HREELS

contains a weak broad peak at 420 cm−1 corresponding to the τz(C2H2/Cu) mode

with an unassigned small peak at 340 cm−1 on its shoulder.

In addition to HREEL spectrum, Stipe et al. [118] measured the vibration

frequency of one CH stretching mode at very low coverage (≈ 0.001 ML) using inelastic

electron tunnelling spectroscopy together with scanning tunnelling microscopy (STM–

IETS). The obtained value is equal to 2888 cm−1 which is in a good agreement with

the HREELS data. This band has been lately assigned to be the antisymmetric CH

stretch on basis of STM-IETS spectra for various acetylene isotopomers [138].

Several attempts to interpret these spectra using non-empirical quantum chemical

calculation were recently made in the literature [125, 133]. Most of them were

carried out using the periodic DFT within the harmonic approximation only, because

the obtained harmonic frequencies were in a good agreement with the reference

experimental data. However, anharmonic effects seem to be very important for this

system. In particular, Ulusoy [133] demonstrated that anharmonicity significantly

increases the deviation between theoretical and experimental frequencies of CH-

stretches, which becomes underestimated by 100 − 200 cm−1 depending on the

exchange-correlation (XC) functional used for the construction of the anharmonic

PES. This observation suggests that the close agreement between experimental

and harmonic frequencies reported previously is the result of an accidental error

cancellation, where the excessive softness of CH bonds is compensated by ignoring

anharmonic contributions.

The aim of this chapter is to demonstrate the advantage of the proposed fragment

method as a way of improving of the adsorbate vibrational frequencies. The second
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aim is to demonstrate a correlation between the accuracy achieved for an isolated

molecule and the same adsorbed molecule described at the same level of theory.

5.2 Computational details

Periodic DFT calculations were performed using the QuickStep [139] code (part of

the CP2K [140] program version 2.2) with the PBE [68] functional and Goedecker-

Teter-Hutter (GTH) pseudopotential parameter sets [141] optimized for PBE. The

electronic wave function was described using both atomic-centred Gaussian functions

and plane waves [139]. As a Gaussian-type basis set, the molecularly optimized

triple-zeta valence basis set with two polarization functions (TZV2P-MOLOPT-

GTH) [142] was used for all atoms except copper, for which the shorter range

molecularly optimized double-zeta valence basis set with one polarization function

(DZVP-MOLOPT-SR-GTH) was used.

The value of plane wave cutoff parameter, which determines the size of the

auxiliary plane wave basis set, was chosen based on a convergence criterion. On the

one hand, this cutoff value should be as minimal as possible because computational

costs raise with the size of the plane wave basis set. On the other hand, it should be

large enough to correctly represent electron density. Periodic boundary conditions

ensure that all properties have a translational symmetry in three directions which

coincide with lattice vectors of a simulated crystal. The lengths of these lattice vectors

define the size of a repeating unit cell and have to be known a priori . This makes

a straightforward geometry optimisation using a gradient-based technique difficult,

because the rr(CuCu) distance that has to be optimized is in direct proportion with

bulk copper lattice vectors which have to remain fixed. Fortunately, as bulk copper

has a face-centred cubic crystal structure, its three lattice vectors are equal to each

other. Therefore, this geometrical optimisation can be performed using a series of

fast SPE calculations for various values of the lattice parameter, while the optimal

r(CuCu) is derived from the value of the lattice parameter that gives the minimal

energy.
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Figure 5.3. An optimal bulk Cu-Cu distance calculated at PBE and PBE-D3 level of
theory with respect to used plain-wave cutoff. MOLOPT-TZV2P-GTH basis set was
used. Selected cutoff value is marked by the red point.
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Structural optimisation of bulk copper for various cutoff value was performed

using face-centred cubic unit cell with size (2a× 2a× 2a) with a lattice parameter

a =
√

2 r(Cu-Cu). The cell vector that gave a minimal total energy was considered

to be optimal for a particular cutoff value. The dependence of the optimal r(Cu-Cu)

distance against the cutoff parameter are illustrated in Figure 5.3. This optimal

r(CuCu) distance obtained using the PBE functional decreases monotonically to

2.580 Å with increasing the plane wave cutoff up to 500 Ry, remains unchanged as

the cutoff increases up to 700 Ry, and then oscillates within 0.005 Å converging to

2.580 Å at 1800 Ry onwards. At the same time, dispersion correction estimated

using Grimme’s DFT-D3 scheme [143] decreases this oscillation amplitude down to

0.002 Å. In this case, the optimal r(CuCu) distance asymptotically converges to

2.534 Å accidentally taking this value at 600 Ry. As the 600 Ry plane wave cutoff

leads to asymptotic r(Cu− Cu) length both with and without dispersion correction,

I used it for all subsequent periodic DFT calculations which were carried out in this

chapter.

The Cu(001) surface was modelled as a slab of six layers of copper atoms using

a (3
√

2× 3
√

2)R45 orthogonal surface unit cell with periodic boundary conditions

applied in all directions. The slabs were separated by 25 Å of vacuum along the

surface normal direction [001]. The adsorbate coverage was one acetylene molecule

per unit cell or 1/9 ML.
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In typical surface simulations one or several subsurface metallic layers are kept

frozen. These layers are usually frozen in the bulk metal structure in order to avoid

rearrangement caused by the vacuum region. However, the optimisation performed

shows that the lowest copper layer remained almost flat without imposing any

constraints, while the maximum displacement of Cu atoms from the plane did not

exceed 0.02 Å. For this reason structure optimisation was performed without any

frozen atoms (thus avoiding the necessity of a partial Hessian technique). Moreover

the cell vector was varied within certain limits near the value for bulk copper

(3.65± 0.10 Å) to obtain a minimal energy for the whole acetylene+copper system.

Strict convergence criteria were applied during the optimisation process: root mean

square (RMS) geometry displacement and gradient were 3 × 10−5 Hartree and

3× 10−6 Hartree/Bohr correspondingly along with 10−7 SCF convergence accuracy.

The adsorption energy was computed as the difference between the obtained

optimal energy of the adsorbed system and the sum of the energies of the relaxed

Cu(100) surface and optimized acetylene molecule in the gas phase:

Eads = Ee[C2H2/Cu(100)]− (Ee[Cu(100)] + Ee[C2H2]) (5.1)

The Hessian matrix was computed numerically using a two point difference scheme

with gradients computed by shifting all atoms by 10−2 Bohr along each the x, y, and

z axis in both directions. After that, a vibrational analysis was carried out in order

to obtain the harmonic frequencies and corresponding normal modes.

The anharmonic PES was constructed in rectilinear normal-mode coordinates.

All 1-D and 2-D couplings between 10 adsorbate and adsorbate-lattice vibrations (ex-

cluding two in-plane frustrated translational modes τx(C2H2/Cu) and τy(C2H2/Cu))

were taken into account. The remained two normal modes which correspond to

frustrated translations For each normal mode, 14 single point energies (SPEs) for

each 1-D curve and 14×14 SPEs for each 2-D coupling were computed (8960 SPEs in

total). The frequencies were computed using the VCIPSI method where the number

of possible virtual states was limited up to 7 excitation quanta for each normal mode.
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Figure 5.4. Schematic representation of the hybrid correction in case of a C2H2

molecule on a Cu(001) surface.

In addition to the periodic DFT, the adsorbed acetylene molecule was also

described at CCSD(T) level of theory within our fragment method. At this level

Dunning cc-pVTZ [106] was used while the calculation was performed using the

GAMESS-US quantum chemical package [89]. The hybrid correction was computed

using Eq. (3.21) (see figure 5.4)

Two link atoms were added in a line between carbon and copper atoms, while

the exact position was determined using Eq. (3.23). The optimal |~rC−~rCu|I distance

in the adsorbed system computed at the PBE level is equal to 1.969 Å, while the

equilibrium |~rC −~rH|II distance computed for ethane at CCSD(T) level is equal to

1.080 Å.

5.3 Adsorbate geometry and frequencies

Since vibrational frequencies are sensitive to the adsorbate structure, it is important

at the early stage to make certain that the used model adequately represents the

actual system. The easiest method to do this is to compare the predicted optimal

structure with the results of experimental observation. The structural parameters

computed at PBE and PBE-D3 levels of theory are listed in Table 5.1 along with

experimental and reference theoretical data. In addition, the computed heat of

adsorption is also shown in Table 5.1 and the optimal structure obtained at the PBE

level along with the used labels is pictured in Figure 5.5.
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Table 5.1. Optimal geometry and adsorption energy of an acetylene molecule on a
Cu(001) surface. r(Cu/CC) denotes a distance between the centre of the C−C bond
and the copper surface (the distance with respect to the closest side copper atom is
given in brackets).

r(CC),Å r(CH),Å r(Cu/CC),Å α(HCC),◦ r(CuCu),Å Eads,eV
Experiment 1.42 [121, 122] — 1.30 ± 0.05 [122] — 2.55 [117] —
PBE [125] 1.37 1.10 1.49 120 2.56* —
PBE [128] 1.37 1.08 — 120 — −1.38†

PW91 [144] 1.36 1.10 — 120 2.58 −1.31
PBE 1.37 1.10 1.48 (1.32) 119 2.62 −1.33
PBE-D3 1.37 1.10 1.52 (1.34) 119 2.57 −2.25

* Fixed at the experimental value without optimization.
† The energy of adsorption has not been corrected by the zero-point vibrational energy.

Figure 5.5. Optimized molecular geometry of a C2H2 molecule on a Cu(001) surface.
Top and side views. The (3

√
2× 3

√
2)R45 unit cell is outlined with a dash line.

The calculated optimal geometry is consistent with experimental data. The

acetylene molecule is found to be 1.48 Å above the Cu(001) surface at its µ4 ad-

sorption site. Despite the good agreement with an alternative periodic DFT (PBE)

study [125] this is higher than observed in the SEXAFS experiment [122]. However,

the Cu(001) surface becomes non-planar upon acetylene adsorption, due to vertical

displacement (by 0.16 Å) of the closest copper atoms on each side of the C−C bond

line. Accordingly, the height between these out-of-plane copper atoms and the centre

of the C−C bond is equal to 1.32 Å that falls into the confidence interval of the

SEXAFS experiment. The C−C bond length of the adsorbed acetylene molecule is

equal to 1.37 Å that is shorter than the corresponding experimental value by 0.05 Å,

however it is in a perfect match with other theoretical predictions [125, 128, 144].

The C−H bond length [r(CH)], H−C−C bond angle [α(HCC)], and the adsorption
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Table 5.2. Comparison between HREELS and calculated harmonic (ω0) frequencies
for C2H2/Cu(001). Vibrational modes along with the corresponding notation are
illustrated in Figure 5.2. For simplicity, the labels in brackets are omitted for all
adsorbate-substrate modes as well as modes involving C−H bonds. All frequencies
(ω0) are given in cm−1 and all relative deviations ∆ω0 are in percents.

νs νa ν(CC) δa δs γa γs ρ∠ τz ρ⊥ τy τx RMSD
HREELS [137] 2940 2880 1320 1140 950 — 630 — 420 — — — —
ω0, PBE 2972 2944 1346 1154 972 932 644 479 423 307 138 123 31
ω0, PBE-D3 2985 2958 1341 1157 980 931 640 489 429 297 106 92 38
∆ω0, PBE 1.1 2.2 2.0 1.2 2.3 — 2.2 — 0.7 — — — —
∆ω0, PBE-D3 1.5 2.7 1.6 1.5 3.2 — 1.6 — 2.1 — — — —

energy [Eads] are equal to 1.10 Å, 119◦, and −1.33 eV respectively. Whereas the

corresponding experimental data have not been reported so far, all of these results

are also in good agreement with the previous theoretical studies.

The importance of weak van der Waals interaction was reported for adsorption

of oxygen on Cu(110) [145]. However, in case of acetylene on Cu(001) this type

of interaction does not affect significantly the geometrical parameters of adsorbed

molecule. Nevertheless, the dispersion correction slightly increases the r(Cu/CC)

height to 1.52 Å with respect to the top metal layer and 1.34 Å with respect to the

non-planar Cu atoms. Besides, this correction increases the adsorption energy (up to

−2.25 eV) and improves the intra-metallic distances of the Cu surface [rCuCu] from

2.62 Å to 2.57 Å. The obtained r(CuCu) distance is in very good agreement with

the STM image of Ref. [117].

Table 5.2 compares the harmonic frequencies with the HREELS frequencies of

Ref. [137]. It can be seen that the obtained frequencies lies in close proximity of

the experimental peaks, and almost all peaks can be easily assigned. The only one

exception is the peak at 950 cm−1 which can be assigned either to γa(CH) or δs(CH)

mode. The latter mode, however, is the more preferable alternative because in

this case all harmonic frequencies become overestimated relative to their HREELS

counterparts. In particular, at the PBE level of theory the harmonic approximation

overestimates experimental frequencies on average by 1.7%. The most overestimated

modes are νa(CH), νs(CH), and ν(CC) whose harmonic frequencies differ from the

corresponding experimental values by 64 cm−1, 32 cm−1, and 26 cm−1 respectively.
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Figure 5.6. Contribution to the vibrational frequencies from 1-D and 2-D anharmonic
corrections (in % with respect to the corresponding harmonic frequency).
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The gap between two C−H stretching modes is 28 cm−1 which is two times smaller

than the experiment (60 cm−1). The difference in harmonic frequencies of δs(CH)

and γa(CH) bending modes is equal to 40 cm−1. The harmonic frequencies for the

other peaks resolved experimentally in HREELS are equal to 644 cm−1 and 423 cm−1

and correspond to γs(CH) and ν(C2H2/Cu) respectively.

The dispersion correction slightly increases the RMSD error (38 cm−1 instead

of 31 cm−1 for the PBE PES). Both νs(CH) and νa(CH) frequencies increase by

∼ 14 cm−1, reaching 2985 cm−1 and 2958 cm−1 respectively. The gap between them

remains constant and amounts to 27 cm−1. Conversely, the difference between δs(CH)

and γa(CH) harmonic transitions with dispersion correction raises slightly to 49 cm−1

by virtue of increasing of δs(CH) to 980 cm−1, while γa(CH) remains constant and is

equal to 931 cm−1. The other transition frequencies of acetylene vary but differ from

dispersion uncorrected results by no more than 6 cm−1.

It can be seen that the harmonic approximation yields surprisingly accurate

frequencies at both PBE and PBE-D3 levels. All frequencies are slightly overestimated,

and the dispersion correction increases this overestimation for all modes except ν(CC).

However, anharmonicity plays an important role and taking this into consideration

leads to drastic changes.

The distribution of the 1-D and 2-D anharmonicity over the vibrational modes is

demonstrated in Figure 5.6, while the resulting anharmonic frequencies are given

in Table 5.3. It can be seen that the anharmonic effect is the same regardless



Chapter 5. Acetylene on a Cu(001) surface 79

Table 5.3. Anharmonic (ν) fundamental transition frequencies for C2H2/Cu(001)
computed using pairwise approximation (1D+2D) and their relative deviation (in %)
from the HREELS data. Vibrational modes along with the corresponding notation
are illustrated in Figure 5.2 For simplicity, the labels in brackets are omitted for all
adsorbate-substrate modes as well as modes involving C−H bonds. All frequencies
(ν) are given in cm−1 and all relative deviations ∆ν are in percents.

νs νa ν(CC) δa δs γa γs ρ∠ τz ρ⊥ RMSD
HREELS [137] 2940 2880 1320 1140 950 — 630 — 420 — —
ν, PBE 2795 2697 1324 1126 950 914 625 469 416 295 88
ν, PBE-D3 2804 2704 1319 1128 954 913 621 479 424 293 84
∆ν, PBE -4.9 -6.4 0.3 -1.2 0.0 — -0.8 -1.0 — —
∆ν, PBE-D3 -4.6 -6.1 -0.1 -1.1 0.4 — -1.4 1.0 — —

of the dispersion correction. The contribution from the diagonal anharmonicity

mostly affects in-plane and out-of-plane C− H bending modes. Moreover, symmetric

bending modes demonstrate a stronger anharmonic nature than their antisymmetric

counterparts. Thus, 1D correction increases the harmonic frequencies of γs(CH),

δs(CH), γs(CH) by 10.5%, 3.5%, and 3% respectively. At the same time, both νa(CH)

and νs(CH) frequencies changes by 2.3% but in opposite directions while the 1-D

anharmonic effect for other modes (except frustrated rotation) does not exceed 1.5%.

While 1-D anharmonicity tends to increase frequencies, 2-D anharmonic corrections

decrease them. Again, the most affected modes are CH stretching and bending

modes, especially γs(CH) (−10.8%) and νa(CH) (−3.7%) ones. Occasionally, for

almost all modes (including γs(CH) mode) 1-D and 2-D contributions compensate

each other. At the same time, the sum of 1-D and 2-D contributions for νa(CH) and

νs(CH) modes are very high and lead to a significant underestimation of these modes

with respect to the experimental data by −6.4 cm−1 and −4.9 cm−1 respectively.

This causes an increased RMSD error (88 cm−1 for PBE PES and 84 cm−1 for PBE-

D3 PES). This behaviour allows to conclude that the agreement of the harmonic

frequencies with the experimentally observed data is caused by an accidental error

cancellation, as a consequence of compensation of the DFT PES deficiencies by

neglecting anharmonicity.
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Table 5.4. The relative deviation of computed harmonic (∆ω0) and anharmonic
(∆ν) frequencies of C2H2 in the gas phase with respect to experimental data. PBE
PES was computed using MOLOPT-TZV2P-GTH basis set, while CCSD(T) PES
was computed using cc-pVTZ basis set. The mode assignment convention is: ν –
stretching mode, δ – bending mode. Labels s and a mark symmetric and asymmetric
vibration. RMSD value counts the error from bending modes twice (7 modes in
total), as these modes are doubly degenerate. All values are given in cm−1

νs(CH) νa(CH) ν(CC) δa(CH) δs(CH) RMSD )
Experiment [146–149] 3373 3295 1974 731 613 —
∆ω0, PBE 68 49 22 10 -16 34
∆ν, PBE / 2-D -81 -160 -16 -5 -24 69
∆ω0, CCSD(T) 138 115 27 15 -35 72
∆ν, CCSD(T) / 2-D -18 -105 -18 -3 -36 45
∆ν, CCSD(T) / 3-D -13 -20 -11 11 -15 14
∆ν, CCSD(T) / 4-D 3 -11 -10 -4 -29 17

5.4 Acetylene molecule in the gas phase

The accidental error cancellation mentioned in the previous section is not specific to

the adsorbed system under consideration. It also takes place for an acetylene molecule

in the gas phase computed at the PBE level of theory. In order to demonstrate the

strength of this effect, the fundamental vibrational frequencies have been computed

within the harmonic approximation using PBE and CCSD(T) PESs. Besides, the

role of anharmonicity has also been studied at the different level of approximations.

The results are summarised in Table 5.4. As for the adsorbed acetylene, the

harmonic frequencies computed for an acetylene molecule in the gas phase at the PBE

level of theory are in good agreement with the experimental data. Thus, the harmonic

frequencies for symmetric [δs(CH)] and antisymmetric [δa(CH)] C− H bending modes

differ from the corresponding experimental values by no more than 16 cm−1. The

frequency of the C− C stretching mode is slightly overestimated (by 20 cm−1). The

mostly overestimated modes are symmetric (68 cm−1) and antisymmetric (49 cm−1)

C− H stretches which are the main contributors to the overall error.

Note that the achieved accuracy (RMSD = 34 cm−1) is very close to that obtained

for the adsorbed acetylene on Cu(001) (RMSD = 31 cm−1). Moreover, this agreement

is also caused by the accidental error cancellation. Thus, the anharmonic correction

computed using PBE PES within a pairwise approximation (2-D) leads to dramatically
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underestimated CH stretching modes. The νa(CH) frequency is underestimated by

160 cm−1 which is very close to that of the adsorbed molecule (190 cm−1). The

absolute underestimation of νs(CH) frequency (81 cm−1) is two times smaller that

the corresponding underestimation in the case of adsorbed acetylene (145 cm−1).

However, in both cases the relative values of the blue shifts caused by anharmonic

effects are comparable to each other (149 cm−1 vs. 177 cm−1 respectively).

In contrast with the PBE PES, at the CCSD(T) level of theory the difference

between the calculated fundamental transition frequencies and the experimental ones

increases slightly for ν(CC) (27 cm−1) and δa(CC) (15 cm−1) modes. The δs(CH)

modes remains underestimated by 35 cm−1, while the harmonic frequencies of both

CH stretching modes are overestimated drastically by 138 cm−1 and 115 cm−1 for the

νs(CH) and νa(CH) respectively. At the same time within the pairwise approximation

all frequency are underestimated. The most anharmonic modes are νs(CH) and

νa(CH) which are shifted downward by 158 cm−1and 220 cm−1 respectively in

comparison with the harmonic frequencies. The pairwise approximation significantly

improves the accuracy of the description (RMSD = 45 cm−1). Moreover, higher-order

couplings lead to further improvement and approaches the experimentally observed

frequencies. Thus, taking into account 3-D reduce RMSD error down to 14 cm−1

by improving the description the most problematic νa(CH) and δs(CH) modes. At

the same time, 4-D coupling terms lead to further improvement of (CH) stretching

modes at the cost of additional underestimation of the δs(CH) frequency. In case of

4-D PES, the achieved RMSD value is equal to 17 cm−1, however with the exception

of δs(CH) the frequency deviation from the experimental data in this case does not

exceed 11 cm−1.

Note that for acetylene in the gas phase, using the CCSD(T) PES instead of

the PBE PES gives more accurate anharmonic frequencies within the pairwise

approximation. However, within the harmonic approximation the PBE PES gives a

better agreement with the experimental data. As for the adsorbed molecule, this

improved agreement is the result of accidental error cancellation, that allows us to

expect significant improvement of the anharmonic adsorbate frequencies within the



Chapter 5. Acetylene on a Cu(001) surface 82

Figure 5.7. The relative deviation (in cm−1) of the anharmonic frequencies from
the experimental data. (a) PBE PES and PBE|CCSD(T) PES; (b) PBE-D3 PES
and PBE-D3|CCSD(T) PES. The deviation for the γa(CH) frequency computed in
assumption that modes γa(CH) and δs(CH) are degenerate.
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Table 5.5. Anharmonic (ν) fundamental transition frequencies for C2H2/Cu(001)
calculated using a hybrid PBE|CCSD(T) PES. Vibrational modes along with the
corresponding notation are illustrated in Figure 5.2 For simplicity, the labels in
brackets are omitted for all adsorbate-substrate modes as well as modes involving
C−H bonds. All values are in cm−1.

νs νa ν(CC) δa δs γa γs ρ∠ τz ρ⊥ RMSD
HREELS [137] 2940 2880 1320 1140 950 — 630 — 420 — —
ν, PBE|CCSD(T) 2880 2793 1317 1170 991 922 643 496 430 309 45
ν, PBE-D3|CCSD(T) 2893 2805 1315 1173 993 922 639 506 439 308 40

fragment method.

5.5 Hybrid correction

The anharmonic frequencies computed within the fragment method using PBE|CCSD(T)

and PBE-D3|CCSD(T) hybrid PES are listed in Table 5.5. The relative deviations of

these frequencies from experimental data were plotted in Figure 5.7 along with the

similar deviation of uncorrected PBE frequencies. It can be seen, that the hybrid

PES significantly improves the anharmonic frequencies of the C− H stretching modes.

In comparison with the PBE PES, the frequency deviation for the most problematic

νa(CH) decreases by a factor of two (from −183 cm−1 to −87 cm−1). The same is

also valid for the νs(CH) mode, which also demonstrates an excellent improvement

(from −145 cm−1 to −60 cm−1). The fragment method slightly alters the predicted

ν(CC) stretching frequency which closely approaches the experimental data (∆ω =
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Figure 5.8. 2-D coupling map between normal modes of acetylene on a Cu(001)
surface computed using hybrid PBE|CCSD(T) PES. C− H stretching modes are
strongly coupled with themselves as well as with all C− H bending modes. The first
three modes which correspond to frustrated rotations and frustrated translations are
almost decoupled with the intra-acetylene vibrations.
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−3 cm−1). At the same time, the τz(C2H2/Cu) and γs(CH) modes becomes slightly

overestimated (by 10 cm−1 and 13 cm−1 respectively) while with no hybrid correction

they are underestimated by 4 cm−1 and 5 cm−1. The fragment method describes

δa(CH) and δs(CH) modes less accurate (∆ω = 30 cm−1 and 41 cm−1 respectively)

in comparison with the PBE PES. However in later case the experimental peak at

950 cm−1 may be assigned to the γa(CH) mode which demonstrate improvement from

−36 cm−1 to −28 cm−1. The dispersion correction slightly improves the RMSD error

(from 45 to 40 cm−1), raising CH stretches as well as τz(C2H2/Cu) by ∼ 10 cm−1

but keeping the most problematic CH stretch modes drastically underestimated.

Nevertheless, in comparison with uncorrected results, the fragment method allows

to nearly double the accuracy. Thus, it reduces the RMSD error by 43 cm−1 (by

44 cm−1 with the dispersion correction). Moreover, comparison between the obtained

hybrid results and anharmonic frequencies for the free molecule in gas phase computed

within the pairwise approximation shows that the RMSD values in both cases are

almost identical (∼ 45 cm−1). That means that for a suitable description of the

periodic surface, the accuracy of the fragment method is limited by the accuracy of

ab initio method used for the adsorbate. For this reason, 3-D coupling terms should
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lead to further improvement of the anharmonic frequencies of the adsorbate.

This is supported by a coupling map computed at the hybrid PBE|CCSD(T)

level (see Figure 5.8). It can be seen that all rotational modes are strongly coupled

with translational modes which involves the same group of atoms (C− H). The large

number of such couplings usually highlights their artificial nature. Such couplings

are usually strong in rectilinear normal-mode coordinates, and often can be vanished

using coordinates described in section 2.7. Unfortunately, at this stage, curvilinear

coordinates have not been implemented in PVSCF for periodic systems. Alternatively,

expanding PES up to the 3-D is very time consuming; thus taking into account

3-D couplings even between the six strongly coupled modes would require over

50,000 SPEs. Nevertheless, the accuracy that has already been achieved within the

fragment method demonstrates significant improvements against uncorrected data.



Chapter 6

Thiophene on a Au(111) surface

Thiophene is a building block of a class of substances called oligothiophenes and

also the monomer unit of polythiophenes. Since their discovery in the 1970s, poly-

thiophenes have applications as materials for light-emission diodes [150], field-effect

transistors [151, 152], polymer electrodes [153], and in many other areas [154]. Olig-

othiophenes are also very promising materials for molecular electronic and solar

cells [155]. In addition they have a tendency to form a regular structure – self-

assembled monolayers (SAM) [156] – on many transition metal surfaces [157, 158]

that allows to vary properties of such surfaces over wide range [159]. In this respect,

the adsorption of thiophene on transition metals as a prototype of such materials

attracts the attention of researchers.

In particular, the adsorption of thiophene on Au(111) was extensively studied

using a variety of experimental techniques, such as scanning tunnelling microscopy

(STM) [160, 161], near edge X-ray adsorption fine structure (NEXAFS) [162], and

infrared reflection absorption spectroscopy (IRRAS) [163]. It was found that on

a Au(111) surface a thiophene molecule prefers on-top adsorption site, but the

orientation of the ring is different at different coverage. Thus, according to an

STM image [161], at low coverage the molecule lies almost parallel to the surface

with a small tilt angle. This tilt angle increases with the coverage, leading to a

vertical orientation for a coverage of about one molecule per three gold atoms. This

observation is in good agreement with a NEXAFS experiment [162] where this effect

85
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was also observed.

The adsorption of thiophene and several oligothiophenes on Au(111) surface was

also studied using vibrational spectroscopy. Thus, the vibrational spectra of the

terthiophene (3T) was measured using IRRAS [163], SERS [164] and STM-IETS [165]

techniques which allowed to detect over 30 fundamental transitions. However, despite

its importance, no detailed spectrum was reported for thiophene adsorbed on a

Au(111) surface. In this chapter, a theoretical spectrum of thiophene on a Au(111)

surface obtained using the fragmentation method is presented. In addition, a mode

assignment of 3T on Au(111) surface is given based on the theoretical spectra of 3T

in the gas phase.

6.1 Thiophene in the gas phase

The aim of this section is to discuss an influence of the quality of the used PES

on the anharmonic frequencies using a thiophene molecule in the gas phase as a

test molecular system. For this purpose, the structure was optimization using three

different levels of theory. Then, the Hessian matrix and all diagonal- (1-D) and

pair-couplings (2-D) were constructed for each of these levels.

The first PES was computed using periodic DFT approach with the PBE exchange-

correlation functional [68]. This functional is widely used in the literature for metallic

surfaces and adsorbed systems [166, 167], and for this reason it has to be tested.

At this level of theory, calculations were performed using the CP2K (ver. 2.2)

program [140]. The unit cell size was 10 × 10 × 14 Å3 with periodic boundary

conditions applied in all three directions. The TZV2P-MOLOPT-GTH basis set [142]

was used for all valence electrons, while core electrons were described using Goedecker-

Teter-Hutter (GTH) pseudo-potentials [141] optimized for the PBE functional. In

addition, a basis of plane waves with a plane wave cutoff of 400 Ry was used within

a Gaussian and plane wave scheme (GPW) [139].

The second PES was computed using the B3LYP functional [69] which is used

often for organic compounds. At this level, the calculation was carried out using
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Figure 6.1. The structure of a thiophene molecule in the gas phase

Table 6.1. Calculated and experimental molecular geometries of thiophene in the gas
phase. Uncertainties are given with respect to the last digits, for example, 1.7140(14)
means 1.7140±0.0014.1

Absolute values ∆,%
B3LYP PBE CCSD(T) B3LYP PBE CCSD(T) Experiment [170]

r(C–S), Å 1.728 1.712 1.722 0.8 -0.1 0.5 1.7140(14)
r(C–C), Å 1.424 1.424 1.429 0.1 0.1 0.4 1.4232(23)
r(C=C), Å 1.364 1.376 1.372 -0.4 0.5 0.2 1.3696(17)
r(–C–H), Å 1.080 1.088 1.081 -0.1 0.7 0.1 1.0805(14)
r(=C–H), Å 1.077 1.085 1.078 -0.1 0.7 0.0 1.0776(15)
α(CSC), ◦ 91.6 92.2 91.9 -0.6 0.0 -0.3 92.17(10)
α(SCC), ◦ 111.5 111.4 111.7 0.0 -0.1 0.2 111.47(23)
α(CCC), ◦ 112.7 112.5 112.4 0.2 0.0 0.0 112.45(18)
α(SCH), ◦ 120.1 120.0 120.2 0.2 0.1 0.3 119.85(78)
α(CCH), ◦ 124.0 124.2 123.4 -0.2 -0.1 -0.7 124.27(7)

RMSD, 10−3 Å 6.8 5.6 4.6 0.3 0.4 0.2 MARE (r), %
RMSD, ◦ 0.3 0.1 0.4 0.2 0.1 0.3 MARE (α), %

1 Reprinted in part with permission from D. M. Benoit, B. Madebene, I. Ulusoy, L. Mancera,
Y. Scribano, and S. Chulkov, “Towards a scalable and accurate quantum approach for
describing vibrations of molecule–metal interfaces”, Beilstein J. Nanotechnol., 2, 427–447
(2011). Copyright 2011, Beilstein Institut.

the GAMESS-US (ver. 1 OCT 2010 (R1)) program [89] along with TZV-2P basis

set [168, 169] Finally, a reference PES was constructed at the coupled-cluster singles,

doubles and perturbative triples (CCSD(T)) level of theory along with Dunning’s

correlation consistent triple zeta basis sets (cc-pVTZ) [106]. This calculations was

also performed using the GAMESS-US program.

Figure 6.1 shows the structure of a thiophene molecule in the gas phase, while its

optimal structural parameters computed at three different levels of theory are listed in

Table 6.1. In all three cases the predicted molecular geometry are in good agreement

with experimental data, while deviations do not show any regular pattern. Both
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B3LYP and CCSD(T) methods overestimate the C–S internuclear distance by 0.8%

and 0.5% respectively, while the PBE functional gives a value within experimental

accuracy (0.1%). The CCSD(T) method also overestimates the r(C–C) length by

0.4%, while B3LYP and PBE functionals reproduce the experimental value. However,

for the double C=C bond the situation is reversed: the least accurate results are

those obtained using PBE (0.5%) and B3LYP (-0.4%) levels of theory which are two

times larger than those of CCSD(T) (0.2%). In contrast with internuclear distances,

almost all predicted values of linear angles lies within the experimental confidential

interval. The only exception is two angles α(CSC) and α(CCH) which are both

slightly underestimated at B3LYP and CCSD(T) levels.

Despite of the fact that all three electronic structure methods predict similar struc-

ture parameters, the difference of their potential energy surfaces (PES) is significant.

Thus, this difference has an impact on the computed vibrational frequencies even at

the harmonic level. These harmonic frequencies are presented in Table 6.2. Thus, the

CCSD(T) method gives reliable results for all low-frequency and middle-frequency

modes. The deviation from the experimental data for most of them does not exceed

2% with the exception of one out-of-plane CH bending mode [γ(CH)], one in-plane

CH bending mode [δ(CH)], and two CC bending modes [ν(C− C) and ν(C = C)]

whose accuracy lies within a 2-3% interval. At the same time, C− H stretches

[ν(CH)] are significantly overestimated (by more than 4% or 130 cm−1) which is

mainly caused neglecting anharmonicity.

At the B3LYP level of theory the harmonic frequencies demonstrates the same

tendency. Thus, all ν(CH) and δ(CH) modes are overestimated in average by 4% and

2% respectively. However, in contrast to the CCSD(T) level, the error for torsional

modes [γ(CCSC) and γ(CCCC)] and one γ(CH) mode (Nr. 10) exceeds 2%.

In contrast to the CCSD(T) and B3LYP levels, the PBE functional gives surpris-

ingly “accurate” harmonic frequencies for CH stretching modes. Thus, the deviation

from the experimental values for these modes does not exceed 1.8% or 59 cm−1.

Moreover, the frequencies of all δ(CH) modes are underestimated by a similar value

(up to 1.7%) while CCSD(T) and B3LYP methods overestimate them. This leads to a
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Table 6.2. Harmonic frequencies ω0 of thiophene in the gas phase and their relative
deviations from the experiment ∆ω. The mode assignment convention is: ν –
stretching, δ – in-plane bending, γ – out-of-plane bending. The symmetry labels
denote irreducible symmetry representation in C2v. All harmonic frequencies are
given in cm−1 and the deviations are given in percents.

Mode Sym. Assignment PBE B3LYP CCSD(T) Experiment[171]
number ω0 ∆ω ω0 ∆ω ω0 ∆ω

1 B1 γ(CCSC) 466 3.1 461 2.0 453 0.2 452
2 A2 γ(CCCC) 571 1.2 581 3.0 566 0.4 564
3 A1 δ(CSC), ν(SC) 607 -0.3 612 0.5 610 0.2 609
4 A2 γ(CH) 643 -5.9 688 0.7 688 0.7 683
5 B1 γ(CH) 691 -2.9 722 1.4 726 2.0 712
6 B2 δ(CCC), ν(SC) 749 -0.7 743 -1.5 759 0.7 754
7 A1 δ(CCC), ν(SC) 828 -1.4 833 -0.8 846 0.7 840
8 B1 γ(CH) 830 -4.2 878 1.4 876 1.2 866
9 B2 δ(SCC), ν(SC) 856 -1.9 882 1.0 878 0.6 873

10 A2 γ(CH) 872 -3.1 920 2.2 903 0.3 900
11 A1 γ(ring) 1035 -0.1 1053 1.6 1052 1.5 1036
12 A1 δ(CH) 1066 -1.5 1107 2.3 1098 1.5 1082
13 B2 δ(CH) 1069 -1.5 1107 2.0 1101 1.5 1085
14 B2 δ(CH) 1235 -1.7 1284 2.2 1279 1.8 1256
15 A1 δ(CH) 1352 -0.9 1398 2.5 1396 2.3 1364
16 A1 ν(C− C) 1409 -0.1 1441 2.2 1443 2.3 1410
17 B2 ν(C = C) 1499 -0.7 1550 2.6 1545 2.3 1510
18 B2 ν(CH) 3130 1.4 3201 3.7 3214 4.1 3087
19 A1 ν(CH) 3144 1.5 3214 3.8 3228 4.2 3097
20 B2 ν(CH) 3179 1.7 3252 4.1 3256 4.2 3125
21 A1 ν(CH) 3181 1.8 3254 4.1 3259 4.3 3126

RMSD 28 56 59 —

small RMSD error (22 cm−1) at the PBE level, while in case of B3LYP and CCSD(T)

this error is significantly higher and equal to 56 cm−1 and 58 cm−1 respectively. At

the same time, at the harmonic level, PBE significantly overestimates the frequencies

of torsional modes (up to 3%) and overestimates all γ(CH) frequencies by 3–6%.

This pattern can be explained by an accidental error cancellation at the PBE level,

while B3LYP and CCSD(T) methods overestimate the frequencies at the harmonic

level due to the lack of anharmonicity. This is apparent during comparison of relative

deviations between the PBE and the reference CCSD(T) harmonic frequencies

(see Figure 6.2). Thus, almost all PBE frequencies are constantly underestimated

by 2–3%, while for all γ(CH) modes the deviation is even higher and lies within

5–7% interval. As this deviation is caused by the PES inaccuracy, the corresponding
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Figure 6.2. Relative deviation (in %) of PBE and B3LYP harmonic frequencies of
thiophene in the gas phase from the corresponding harmonic frequencies obtained
using CCSD(T) PES. Two torsional modes γ(CCSC) and γ(CCCC) are labelled as
γ(ring).
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anharmonic frequencies should also be underestimated. At the same time, comparison

between the B3LYP and CCSD(T) harmonic frequencies (see figure 6.2) demonstrate

a problem in the description of the torsional modes, two ν(SC) modes (Nr. 6 and

Nr. 7), and one γ(CH) mode (Nr. 10). For all of these modes the relative error is

about 3%.

Going beyond the harmonic approximation, VCIPSI anharmonic frequencies were

computed at each level of theory both in rectilinear and curvilinear coordinates. The

curvilinear coordinates were defined through a set of inter-atomic distances, angles and

dihedral angles. All calculations were performed within the pairwise approximation

where all pair-couplings were taken into account. The relative deviations of the

VCIPSI anharmonic frequencies from the experimental data for different PES-s are

shown in Figure 6.3, while the absolute values are given in Table 6.3. The best

agreement with the experimental data is achieved for the CCSD(T) PES. In this

case, the RMSD error is equal to 21 cm−1 and to 9 cm−1 for the PES expressed in

rectilinear and curvilinear coordinates respectively. It can be seen, that in case of

the CCSD(T) PES, the rectilinear coordinates are a very good choice. The main

contribution to this error comes from the C− H stretching mode [ν(CH)] (Nr. 20)

whose frequency is underestimated by 2% as well as from two bending [γ(CH)] modes

(Nr. 5 and Nr. 8) whose frequencies differ from the experimental data by 5% and
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Figure 6.3. Relative deviation of anharmonic frequencies (VCIPSI) of thiophene in
the gas phase from experimental data.
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1.5% respectively. This is not surprising, as it was mentioned earlier (see section 2.7)

that the rectilinear coordinates lead to artificial couplings between the stretching

and bending modes. Curvilinear coordinates improve the accuracy by eliminating

these coupling terms and reduce the deviation of all ν(CH) frequencies to below 1%.

For the B3LYP PES, a similar tendency is observed. Thus, in case of the rectilinear

coordinates the overall accuracy is equal to 36 cm−1. In rectilinear coordinates, the

most inaccurate modes are ν(CH) and γ(CH) due to artificial couplings between

them. Similarly to the CCSD(T) results, curvilinear coordinates eliminate these

couplings and significantly improve the RMSD error (from 36 cm−1 to 14 cm−1).

However, the change of coordinate representation does not affect the frequencies of

the torsional mode [γ(CCCC)], two stretching modes γ(CS) (Nr. 6 and Nr. 7), and

the bending γ(CH) mode (Nr. 10) which leads to the slightly excessive RMSD error

in comparison with the CCSD(T) PES (9 cm−1). This insensitivity to the type of

coordinates, together with the similar distribution of errors over vibrational modes,

at the anharmonic (see Figure 6.3) and harmonic levels (see Figure 6.2) allows to

conclude that for the mentioned modes the deviation is caused by a deficiency of the

PES.

Finally, all anharmonic frequencies computed at PBE level of theory are signifi-

cantly underestimated regardless of the coordinate representation used. Curvilinear

coordinates improves the RMSD error by 25 cm−1 (from 99 cm−1 to 74 cm−1) by

improving the most problematic high-frequency CH stretching modes. However, the
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Table 6.3. Experimental and anharmonic (VCIPSI) frequencies of thiophene in
the gas phase for the PBE, B3LYP and CCSD(T) PESs in rectilinear (rect.)
and curvilinear (curv.) coordinates. The mode assignment convention is: ν –
stretching, δ – in-plane bending, γ – out-of-plane bending. The symmetry labels
denote irreducible symmetry representation in C2v of the mode. All frequencies
are given in cm−1.1

Mode Sym. Assignment PBE B3LYP CCSD(T) Experiment[171]
number rect. curv. rect. curv. rect. curv.

1 B1 γ(CCSC) 410 418 456 455 452 450 452
2 A2 γ(CCCC) 521 522 580 578 561 564 564
3 A1 δ(CSC), ν(SC) 554 557 606 606 609 605 609
4 A2 γ(CH) 637 613 702 692 680 697 683
5 B1 γ(CH) 677 656 743 723 750 727 712
6 B2 δ(CCC), ν(SC) 693 699 734 735 757 752 754
7 A1 δ(CCC), ν(SC) 777 781 821 821 840 834 840
8 B1 γ(CH) 805 791 866 865 852 873 866
9 B2 δ(SCC), ν(SC) 807 817 893 879 874 870 873

10 A2 γ(CH) 839 831 926 921 893 905 900
11 A1 ν(ring) 982 987 1034 1033 1031 1035 1036
12 A1 δ(CH) 1016 1024 1094 1097 1081 1090 1082
13 B2 δ(CH) 1017 1016 1095 1098 1083 1093 1085
14 B2 δ(CH) 1174 1182 1262 1268 1253 1266 1256
15 A1 δ(CH) 1285 1285 1369 1362 1369 1365 1364
16 A1 ν(C− C) 1329 1360 1405 1449 1406 1426 1410
17 B2 ν(C = C) 1422 1429 1519 1521 1517 1516 1510
18 B2 ν(CH) 2877 2962 2989 3075 3060 3088 3087
19 A1 ν(CH) 2931 2978 3038 3091 3065 3109 3097
20 B2 ν(CH) 2919 3024 3034 3134 3050 3143 3125
21 A1 ν(CH) 2972 3021 3081 3135 3105 3137 3126

RMSD 99 74 36 14 21 9 —

1 Reprinted in part with permission from D. M. Benoit, B. Madebene, I. Ulusoy,
L. Mancera, Y. Scribano, and S. Chulkov, “Towards a scalable and accurate quantum
approach for describing vibrations of molecule–metal interfaces”, Beilstein J. Nanotech-
nol., 2, 427–447 (2011). Copyright 2011, Beilstein Institut.

remaining error is still high, and interpretation of the experimental spectra based

of these PBE anharmonic frequencies inevitably leads to mode misassignment. For

this reason, it is advisable to use our fragment method to discribe accurately the

vibrations of adsorbed thiophene (see below).
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Figure 6.4. Optimal geometry of a thiophene molecule adsorbed on a Au(111) surface.

Table 6.4. Optimal geometry and adsorption energy of thiophene adsorbed on a
Au(111) surface. r(S/Au) denotes the distance between the sulphur atom and the
gold surface, while θ denotes the dihedral angle between the thiophene ring and the
gold surface.

r(C-S), Å r(C-C), Å r(S/Au), Å θ, ◦ Eads, eV
C4H4S/Au(111) 1.729 1.427 2.768 16.9 −0.31
C4H4S/gas 1.712 1.424 — — —
Experiment [162] — — — 19±10 −0.56

6.2 Thiophene on a Au(111) surface

As starting point a thiophene molecule adsorbed on a Au(111) surface was optimised

using periodic DFT method with the PBE functional. The Au(111) surface was

simulated as slabs consisting of 6 layers with two fixed lowest layers. A (5 × 5)

unit cell separated by 20 Å of vacuum along the surface normal direction was used.

The cell vector was optimized for the whole adsorbed system by performing a set

of optimizations with different Au–Au inter-atomic distance. The minimal energy

was obtained at the distance of 2.947 Å that is close to the theoretical distance for

bulk gold (2.949 Å). The TZV2P-MOLOPT-GTH basis set was used for all atoms

except gold, for which the double-zeta valence basis set with one polarization function

(DZVP-MOLOPT-SR-GTH) was utilized. Core electrons were described using GTH

pseudopotentials. The plane wave cutoff was set to 600 Ry. The coverage was one

thiophene molecule per unit cell or per 25 gold atoms.

Figure 6.4 shows the optimal structure of an adsorbed thiophene molecule. In

addition the energy of adsorption and some structural parameters are presented

in Table 6.4. Note that during adsorption from the gas phase, the thiophene
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molecule remains flat preserving its C2v symmetry. The r(C-S) and r(C-C) inter-

atomic distances are elongated by 0.017 Å and 0.003 Å respectively, while other bond

lengths remain constant (for clarity these bond length are not shown in Table 6.4).

The molecule adsorbs on an on-top site, 2.768 Å above the surface and at an angle

of 16.9 degrees relatively to the surface. This angle is in good agreement with an

experimentally observed one (19◦) which was reported for the same coverage. At the

same time, the predicted energy of adsorption is equal to −0.31 eV that is almost

two times lower than the corresponding experimental energy (−0.56 eV). However,

it is in agreement with another DFT study [172] where a similar adsorption energy

(−0.37 eV) was found for slightly higher coverage (one thiophene molecule per 16

gold atoms).

Thiophene in the gas phase has three translational and three rotational modes

which are transformed into six extra vibrational modes upon adsorption. Among them

are three frustrated translations, one frustrated rotation and two modes corresponding

to the alteration of the dihedral angle between the molecule and the surface. However,

in normal-mode coordinates these modes does not exist in their pure states but

involve gold atoms into vibrations as well. This leads to delocalization of each of

these six extra modes among many adsorbate-metal normal modes and renders their

interpretation difficult. The thiophene’s tilt angle changes during various motions

of gold atoms from the top layer into the z direction. It may originate from an

inclination of the top gold layer with respect to the other layers, by a “bending” of this

top layer, or by numerous intermediate vibrations. The situation is also complicated

by mode-mode couplings. Many of these modes are likely coupled together, and

their number grows rapidly with the number of atoms in the top layer. Moreover,

the inclination of the upper gold layer does not only change the tilt angle θ but

also affects the distance between the thiophene molecule and the surface. It couples

tilting modes with the frustrated translations and complicates their simulation in

rectilinear coordinates.

Unfortunately, the current implementation of curvilinear coordinates in PVSCF

does not allow us to use them for periodic systems. For this reason an anharmonic
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PES was computed using rectilinear normal-mode coordinates and only mode-mode

couplings between 21 adsorbate vibrations were taken into account. By analogy

with acetylene on a Cu(001) surface (see chapter 5.5), where all intra-adsorbate and

adsorbate-metal vibrations are decoupled, we expect a similar situation to occur

in this case too. In fact, the thiophene-gold vibrational modes may be separated

from lattice vibrations using a partial Hessian technique (see Section 2.6) by freezing

almost all gold atoms. However, within this technique active gold atoms should

be chosen with care and each selection requires additional tests. As there are no

experimental frequencies reported in the literature for thiophene-gold vibrations we

focus exclusively on the intra-thiophene vibrational modes.

The harmonic and anharmonic frequencies of these vibrational modes are shown in

Table 6.5. The anharmonic PES was constructed within the pairwise approximation,

with all possible 2-D couplings between 21 adsorbate vibrations (210 pair couplings).

For each normal mode, 14 single point energies (SPEs) for each 1-D curve and

14 × 14 SPEs for each 2-D coupling were computed (41454 SPEs in total). The

frequencies were computed using the VCIPSI method where the number of possible

virtual states was limited up to 7 excitation quanta for each normal mode.

The anharmonic frequencies were also computed within the fragment method,

where the thiophene molecule was described at the CCSD(T) ab initio level of theory

using cc-pVTZ basis set. Because the adsorption has a little effect on the optimal

geometry of the thiophene molecule, the wave function of isolated thiophene molecule

remains single-reference upon adsorption. This permits to apply the fragment method

for this system without adding any extra link atom.

The only available vibrational spectrum of thiophene adsorbed on a Au(111)

surface was recorded by Matsuura and Shimoyama [163] using FT-IRRAS technique.

They observed only one peak at 720 cm−1 and assigned it to a γ(CH) mode based

on the transmission IR spectra of thiophene in the liquid state. This peak is in

agreement with anharmonic frequencies computed using both PESs (the PBE PES

and the hybrid PES), but a single data point does not allow a reliable assessment

of the accuracy. For this reason, in addition to the FT-IRRAS spectra, a HREELS
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Table 6.5. Harmonic and anharmonic (VCIPSI) and experimental frequencies
of thiophene on a Au(111) surface. Modes are sorted in the same order as for
thiophene in the gas phase. The mode assignment convention is: ν – stretching,
δ – in-plane bending, γ – out-of-plane bending. The symmetry labels denote
irreducible symmetry representation in C2v of the mode. The index (w) labels
weak bands in experimental spectra. All frequencies are given in cm−1.

Mode Sym. Assignment Harmonic VCIPSI VCIPSI Experiment
number PBE PBE PBE|CCSD(T)

1 B1 γ(CCSC) 436 427 428 4301

2 A2 τ(CCCC) 544 539 538
3 A1 δ(CSC), ν(SC) 592 583 590
4 A2 γ(CH) 668 679 718

7202, 7301

5 B1 γ(CH) 712 730 751
6 B2 δ(CCC), ν(SC) 717 703 717
7 A1 δ(CCC), ν(SC) 812 797 806
8 B1 γ(CH) 844 849 895
9 B2 δ(SCC), ν(SC) 852 838 859 860(w)*,1

10 A2 γ(CH) 885 883 912
11 A1 ν(ring) 1030 1012 1024
12 A1 δ(CH) 1071 1061 1083

1080(w)1

13 B2 δ(CH) 1069 1058 1086
14 B2 δ(CH) 1232 1212 1253
15 A1 δ(CH) 1343 1317 1360
16 A1 ν(C− C) 1400 1359 1394 1400(w)1

17 B2 ν(C = C) 1485 1452 1501
18 B2 ν(CH) 3140 2931 3023
19 A1 ν(CH) 3150 2964 3053
20 B2 ν(CH) 3176 2960 3045
21 A1 ν(CH) 3179 3013 3087 3130(w)1

* In Ref. [173] the frequency is assigned to the mode Nr. 7 according to the IR vapor
spectrum from Ref. [174]
1 HREELS spectrum of C4H4S/Cu(100) at 210 K, data from Ref. [173]
2 FT-IRRAS spectrum of C4H4S/Au(111), data from Ref. [163]

spectra of thiophene adsorbed on a Cu(100) [173] surfaces at low coverage was used

as a reference one. Similar spectra were also measured for thiophene adsorbed on

Pt(111) [175], Mo(100) [176] and Fe(100) [177] surfaces. However, in contrast with

Pt, Mo, and Fe, copper and gold atoms have an identical electronic configuration of

valence electrons (d10s1). Moreover, despite of the fact that the thiophene molecule

adsorbs on Cu(100) on a bridge site [178], rather than on an on-top site, the Cu(100)

surface is similar to the Au(111) surface in the sense that the thiophene molecule

does not dissociate on it [173].

Harmonic frequencies computed using the PBE PES provide a good match with
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Figure 6.5. Relative deviation (in %) of harmonic and anharmonic frequencies
of thiophene upon adsorption on Au(111) from the gas phase (PBE PES). At
the harmonic level only those modes which correspond to out-of-plane vibrations
or moving the sulphur atom along the surface are significantly altered, while all
anharmonic frequencies are shifted upward upon adsorption.
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available experimental data. The least accurate modes are the C− H stretches which

are overestimated by approximately 50 cm−1, For the other modes the maximal

deviation does not exceed 20 cm−1 and is on average 6 cm−1. However, comparison

between harmonic and anharmonic frequencies suggests that this agreement is the

result of error cancellation. In particular, the frequencies of all ν(CH) modes are

shifted downward by 6% or by 195 cm−1 on average, while other modes show

anharmonicity of ∼ 2%. There are also modes whose frequencies are increased at

the anharmonic level; all of them are correspond to out-of-plane C− H vibrations.

Figure 6.5 shows the frequency shifts of harmonic and anharmonic frequencies

upon adsorption. At the harmonic level there is a strong correlation between the

type of vibration and the size of the shift. Those modes which involve sulphur atom

see a decrease in frequencies upon adsorption due to the interaction between gold

and sulphur atoms. Alternatively, all γ(CH) modes increase their frequencies due to

the repulsion between the gold and hydrogen atoms. The last group is the modes

which correspond to in-plane vibrational motion. These vibrational frequencies are

shifted slightly because they represent a motion parallel to the surface. At the same

time all anharmonic frequencies are shifted upward during adsorption, while the
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value of the shift does not demonstrate any particular pattern.

Alternatively, anharmonic frequencies of CH stretching modes computed using

the hybrid PBE|CCSD(T) PES demonstrate systematic improvements with respect

to the PBE PES. These frequencies are up-shifted relative to their anharmonic

equivalents on average by 85 cm−1. The predicted frequency for symmetric ν(CH)

mode (Nr. 21) is lower than the corresponding experimental value by 40 cm−1 and is

closer than the harmonic one. The fragment method also improves the frequency of

the ν(C− C) and the δ(CH) modes.

6.3 Terthiophene on a Au(111) surface

Maurer and Koslowski [165] recorded a detailed STM-IETS spectra of terthio-

phene (3T) on the Au(111) surface in the region up to 120 meV (970 cm−1). Vi-

brational frequencies in this region are especially important, as they particularly

sensitive to the location of the adsorbate on the surface [14]. Among them are

out-of-plane C− H bending modes. However, in rectilinear normal-mode coordinates

these modes are strongly coupled and require high-order coupling terms to describe

them accurately. Moreover, this region contains internal rotations which also require

curvilinear coordinates. For this reason, as a first approximation the anharmonic

frequencies were computed for a 3T molecule in the gas phase, because curvilinear

coordinates are still not implemented in PVSCF for adsorbed systems.

The VCIPSI anharmonic frequencies were computed in curvilinear coordinates

within the pairwise approximation using the DFT/B3LYP level of theory with TZV2P

basis set. By analogy with the thiophene molecule (see section 6.1) using this PES

we expect to achieve reasonable accuracy.

The first 33 fundamental frequencies along with the STM-IETS data of 4 in-

dependent experiments are listed in Table 6.6. The computed frequencies are in

good agreement with the experimental data. Thus, the maximal deviation from the

experiment does not exceed 3 meV, that is very close to the experimental accuracy

(2 meV). Nevertheless, two experimental peaks remain unassigned. One peak lies
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within the interval between 32 meV and 35 meV and it is observed in all four spectra.

A similar peak was observed for clean Cu(111) surface by Vitali et al. [179] who

concluded that it was caused by the structure of a tip apex. The second unassigned

peak is observed between 99 meV and 102 meV that is in the middle between the

frequency of out-of-plane CH bending mode and CSC stretching mode. This mode

is likely the result of adsorption which shifts one of the modes mentioned above.

Because the experimental spectrum of the adsorbed 3T is in good agreement

with gas-phase anharmonic frequencies, it allows us to conclude that there is only a

weak interaction between 3T and the Au(111) surface. This also supported by the

scanning tunnelling spectroscopy experiments [180] where a similar energy difference

between the highest occupied and the lowest unoccupied molecular orbitals were

achieved for the adsorbed and free 3T molecules.

An alternative spectrum of 3T on Au(111) was measured by Matsuura and

Shimoyama [163] using FT-IRRAS technique. They found one peak at 84 meV

and assigned it to out-of-plane CH bending mode. This assignment is based on the

selection rules which assumes a parallel orientation of the 3T molecule relative to

the surface. However, this assignment contradicts our results based on gas-phase

frequencies which assign this frequency to the in-plane antisymmetric CSC stretching

mode. However, according to the STM image [180], the 3T molecule is not exactly

parallel with the surface and thus it possible to detect this in-plane vibration using

RAIRS.
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Table 6.6. Theoretical anharmonic frequencies (B3LYP/TZV2P) of 3T/gas and
STM-IETS frequencies of 3T/Au(111) obtained from 4 independent experiments.
Labels “ip” and “oop” denote in-plane and out-of-plane vibrations about the plane
of the molecule. The symmetry labels denote irreducible symmetry representation
about the plane in Cs which is perpendicular to the molecular plane. All units are
given in meV.

mode Assignment Sym. Direc- VCIPSI Experiment [165]
tion B3LYP

1 Frustrated ring rotation A2 oop 3.1
2.4

2 Frustrated ring rotation A1 oop 3.4
3 Molecular bending A1 oop 7.3

6.1, 6.2, 6.7
4 Frustrated ring rotation A1 ip 8.2
5 Ring wag A2 oop 18.7

16.7, 18.1, 18.9, 19.9
6 Frustrated ring rotation A2 ip 18.9
7 Inner ring breathing A1 ip 25.5 22.5, 23.7, 24,6
8 Ring wag A2 oop 29.6 27.5, 27.8, 29.1

Tip? — 32.4, 33.6, 34.0, 34.9
9 Frustrated ring translation A1 ip 41.3

41.2, 42.1, 43.310 Ring wag A2 oop 43.2
11 Frustrated ring translation A2 ip 43.7
12 Ring rotation A2 ip 54.7 52.4, 52.9, 54.4, 54.6
13 Ring deformation A1 oop 60.7 60.9, 61.0, 63.1
14 Ring deformation A2 oop 66.5 66.8, 67.0, 69.4
15 Ring deformation A1 oop 73.1

74.716 Ring deformation A2 oop 75.6
17 CSC stretch A1 ip 75.7
18 Ring deformation A1 oop 78.5

79.3, 80.4, 82.3, 82.519 Ring deformation A2 oop 79.8
20 Outer ring CSC stretch A2 ip 81.0
21 CSC stretch A2 ip 88.6 86.8, 86.9
22 Outer ring CSC stretch A1 ip 91.3

90.6, 91.6, 95.2, 96.4
23 Outer ring CSC stretch A2 ip 91.8
24 Ring breathing A1 ip 92.7
25 Inner ring CH bend A1 oop 92.9

Shifted mode? 99.7, 101.0, 101.2
26 Outer ring CSC stretch A1 ip 104.5

104.5, 106.0, 107.3
27 Outer ring CSC stretch A2 ip 106.5
28 CSC stretch A1 ip 109.0

109.1, 110.5, 112.2
29 Outer ring CH bend A1 oop 109.8
30 Outer ring CH bend A2 oop 114.3 112.8
31 Outer ring CH bend A2 oop 116.2

117.3, 117.9, 119.532 Outer ring CH bend A1 oop 116.9
33 CSC stretch A2 ip 124.9

1 Reprinted with permission from B. Koslowski, N. Maurer, M. Stocker,
S. K. Chulkov, D. M. Benoit, and P. Ziemann, “Analysis of rich inelastic electron
tunneling spectra: Case study of terthiophene on Au(111)”, Rev. Sci. Instrum.,
84, 043907 (2013). Copyright 2013, AIP Publishing LLC.
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Summary

Adsorbed systems are very complex from the perspective of electronic structure theory.

Indeed, electrons in metals are uniformly distributed. Therefore, such systems are

usually described using the density functional theory with an exchange-correlation

functional which approaches the uniform electron gas limit. However, the density

functional theory is liable to self-interaction problem as it allows electrons to repulse

from themselves. Since this self-interaction delocalizes electrons, it is usually not

completely compensated by the functionals designed for metals. As the result, such

functionals often over-delocalize electrons of adsorbed molecules that softens intra-

adsorbate bonds. For the very same reason, the methods that are usually applied for

adsorbed molecules do not work properly for their metal support.

The mentioned softening of the molecular bonds may accidentally lead to accurate

harmonic frequencies. However these “correct” frequencies are obtained by the wrong

reason, due to compensation of this bond weakness by neglecting anharmonicity.

Unfortunately, it is impossible to know in advance how accurate the obtained

harmonic frequencies are for a particular electronic method and for a particular

adsorbed system.

Our fragment method provides an elegant way to overcome this problem. Within

this method we estimate the value of the excessive exchange by extracting the molecule

and describing it using a suitable level of theory. Applicability of this approach was

demonstrated using two examples. For acetylene on Cu(001) this fragment method

101
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doubles the accuracy of anharmonic frequencies (from RMSD = 88 cm−1 for PBE

PES down to 45 cm−1 for PBE|CCSD(T) PES). Moreover, the achieved accuracy is

identical to the accuracy of the high-level ab initio method used for isolated acetylene

molecule. Despite of the large influence of the dispersion correction on acetylene

adsorption energy (−0.92 eV) this correction has only small effect on anharmonic

frequencies (4 cm−1).

At the same time, the obtained hybrid anharmonic frequencies of a thiophene

molecule adsorbed on a Au(111) surface are in agreement with the available single

data point. Besides, these frequencies agree closely with an alternative spectrum

of a thiophene molecule on a Cu(001) surface, except for high-frequency C− H

stretching modes. The similarity between the obtained adsorbate and gas-phase

spectra demonstrates the weakness of adsorption. The same weak adsorption is

also observed for a terthiophene molecule adsorbed on the Au(111) surface, whose

gas-phase anharmonic frequencies are nearly match the corresponding adsorbate

frequencies.

The proposed fragment method is relatively simple and does not rely on a specific

quantum chemistry program. The method provides a hierarchical way to improve

the anharmonic adsorbate frequencies. Thus, the improvement can be achieved by

increasing the level of the electronic structure theory. Taking into account higher

order terms also helps. In order to make it possible, a general m-dimensional VCI

solver was implemented. Despite of the fact that at this stage, this high-order

couplings are only tractable for relatively small molecules, the future advances in

computer hardware might accelerate the calculations of these couplings.

The low-frequency vibrations between lattice and adsorbate are the main challenge

for our fragment method. It can be seen for the acetylene adsorbed on a Cu(001)

surface that the acetylene–copper stretching modes is less accurate in comparison with

anharmonic frequencies obtained using PBE functional. However, the reason for this

weakening is the use of rectilinear normal mode coordinates, which introduce artificial

coupling between vibrations. Thus, implementation of this types of coordinates for

the adsorbed system remains the main priority.
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Nevertheless, the fragment method provides a way to obtain correct frequencies

for the right reason. We hope, that it can help to construct a new type of exchange-

correlation functionals which overcome limitations of the current functionals.



Bibliography

[1] S. T. Marshall and J. W. Medlin, “Surface-level mechanistic studies of adsor-
bate–adsorbate interactions in heterogeneous catalysis by metals”, Surf. Sci.
Rep., 66, 173–184 (2011).

[2] G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “Surface studies by scanning
tunneling microscopy”, Phys. Rev. Lett., 49, 57–61 (1982).

[3] C. Davisson and L. H. Germer, “Diffraction of electrons by a crystal of nickel”,
Phys. Rev., 30, 705–740 (1927).

[4] R. E. Schlier and H. E. Farnsworth, “Low-energy electron diffraction inves-
tigation of chemisorbed gases on the (100) faces of copper and nickel single
crystals”, J. Appl. Phys., 25, 1333–1336 (1954).

[5] C. Ma and J. M. Harris, “Surface-enhanced raman scattering study of the
kinetics of self-assembly of carboxylate-terminated n-Alkanethiols on silver”,
Langmuir , 28, 2628–2636 (2012).

[6] J. A. Stroscio, S. R. Bare, and W. Ho, “The chemisorption and decomposition
of ethylene and acetylene on Ni(110)”, Surf. Sci., 148, 499–525 (1984).

[7] A. Politano and G Chiarello, “Vibrational investigation of catalyst surfaces:
Change of the adsorption site of CO molecules upon coadsorption”, J. Phys.
Chem. C , 115, 13541–13553 (2011).

[8] F. M. Hoffman, “Infrared reflection-absorption spectroscopy of adsorbed
molecules”, Surf. Sci. Rep., 3, 107–192 (1983).

[9] E. L. Wilson and W. A. Brown, “Low pressure rairs studies of model catalytic
systems”, J. Phys. Chem. C , 114, 6879–6893 (2010).

[10] K. Kim and K. S. Shin, “Surface-enhanced raman scattering: A powerful tool
for chemical identification”, Analyt. Sci., 27, 775–783 (2011).

[11] R. C. Jaklevic and J. Lambe, “Molecular vibration spectra by electron tunnel-
ing”, Phys. Rev. Lett., 17, 1139–1140 (1966).

[12] X.-H. Qiu, G. V. Nazin, and W. Ho, “Vibrationally resolved fluorescence excited
with submolecular precision”, Science, 299, 542–546 (2003).

[13] J. A. Stearns, S. Mercier, C. Seaiby, M. Guidi, O. V. Boyarkin, and T. R. Rizzo,
“Conformation-specific spectroscopy and photodissociation of cold, protonated
tyrosine and phenylalanine”, J. Phys. Chem. C , 129, 11814–11820 (2007).

104

http://dx.doi.org/10.1016/j.surfrep.2011.03.001
http://dx.doi.org/10.1016/j.surfrep.2011.03.001
http://dx.doi.org/10.1103/PhysRevLett.49.57
http://dx.doi.org/10.1103/PhysRev.30.705
http://dx.doi.org/10.1063/1.1721555
http://dx.doi.org/10.1021/la2037444
http://dx.doi.org/10.1016/0039-6028(84)90596-X
http://dx.doi.org/10.1021/jp202212a
http://dx.doi.org/10.1021/jp202212a
http://dx.doi.org/10.1016/0167-5729(83)90001-8
http://dx.doi.org/10.1021/jp912080t
http://dx.doi.org/10.2116/analsci.27.775
http://dx.doi.org/10.1103/PhysRevLett.17.1139
http://dx.doi.org/10.1126/science.1078675
http://dx.doi.org/10.1021/ja0736010


BIBLIOGRAPHY 105

[14] I. S. Ulusoy, Y. Scribano, D. M. Benoit, A. Tschetschetkin, N. Maurer,
B. Koslowski, and P. Ziemann, “Fast degenerate correlation-corrected vi-
brational self-consistent field calculations of the vibrational spectrum of 4-
mercaptopyridine”, Phys. Chem. Chem. Phys., 13, 612–618 (2011).

[15] B. N. J. Persson and A. Baratoff, “Inelastic electron tunneling from a metal
tip: The contribution from resonant processes”, Phys. Rev. Lett., 59, 339–342
(1987).

[16] A. Troisi and M. A. Ratner, “Propensity rules for inelastic electron tunneling
spectroscopy of single-molecule transport junctions”, J. Chem. Phys.., 125,
214709 (2006).

[17] M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, and M. Brandbyge, “Unified
description of inelastic propensity rules for electron transport through nanoscale
junctions”, Phys. Rev. Lett., 100, 226604 (2008).

[18] M. D. Halls, J. Velkovski, and H. B. Schlegel, “Harmonic frequency scaling
factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with
the Sadlej pVTZ electric property basis set”, Theor. Chem. Acc., 105, 413–421
(2001).

[19] J. P. Merrick, D. Moran, and L. Radom, “An evaluation of harmonic vibrational
frequency scale factors”, J. Phys. Chem. A, 111, 11683–11700 (2007).

[20] F. Buatier de Mongeot, A. Cupolillo, U. Valbusa, and M. Rocca, “Anhar-
monicity of the O2–Ag(001) chemisorption potential”, J. Chem. Phys., 106,
9297–9304 (1997).

[21] G. Rauhut and P. Pulay, “Transferable scaling factors for density functional
derived vibrational force fields”, J. Chem. Phys., 99, 3093–3100 (1995).

[22] J. M. Bowman, “Self-consistent field energies and wavefunctions for coupled
oscillators”, J. Chem. Phys., 68, 608–610 (1978).

[23] L. S. Norris, M. A. Ratner, A. E. Roitberg, and R. B. Gerber, “Møller-Plesset
perturbation theory applied to vibrational problems”, J. Chem. Phys., 105,
11261–11267 (1995).
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[39] S. Flügge, P. Walger, and A. Weiguny, “A generalization of the morse potential
for diatomic molecules”, J. Mol. Spectrosc., 23, 243–257 (1967).

[40] M. E. Jacox and D. E. Milligan, “Matrix-isolation study of the vacuum-
ultraviolet photolysis of methyl chloride and methylene chloride. Infrared and
ultraviolet spectra of the free radicals CCl, H2CCl, and CCl2”, J. Chem. Phys.,
53, 2688–2701 (1970).

[41] P. B. Kelly and S. G. Westre, “Resonance raman spectroscopy of the methyl
radical”, Chem. Phys. Lett., 151, 253–257 (1988).

[42] C. C. Marston and G. G. Balint-Kurti, “The Fourier Grid Hamiltonian method
for bound state eigenvalues and eigenfunctions”, J. Chem. Phys., 91, 3571–3576
(1989).

[43] G. G. Balint-Kurti, R. N. Dixon, and C. C. Marston, “Grid methods for solving
the Schrödinger equation and time dependent quantum dynamics of molecular
photofragmentation and reactive scattering processes”, Int. Rev. Phys. Chem.,
11, 317–344 (1992).

http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1002/andp.19273892002
http://dx.doi.org/10.1007/BF00889856
http://dx.doi.org/10.1063/1.459104
http://dx.doi.org/10.1103/PhysRev.46.383
http://dx.doi.org/10.1016/0022-2852(79)90171-1
http://dx.doi.org/10.1098/rspa.1952.0110
http://dx.doi.org/10.1063/1.438336
http://dx.doi.org/10.1103/PhysRev.34.57
http://dx.doi.org/10.1016/S0022-2852(67)80013-4
http://dx.doi.org/10.1063/1.1674392
http://dx.doi.org/10.1016/0009-2614(88)85284-9
http://dx.doi.org/10.1063/1.456888
http://dx.doi.org/10.1080/01442359209353274


BIBLIOGRAPHY 107

[44] J. O. Jung and R. B. Gerber, “Vibrational wave functions and spectroscopy of
(H2O)n, n=2,3,4,5: Vibrational selfconsistent field with correlation corrections”,
J. Chem. Phys., 105, 10332–10348 (1996).

[45] S. Carter, S. J. Culik, and J. M. Bowman, “Vibrational self-consistent field
method for many-mode systems: A new approach and application to the
vibrations of CO adsorbed on Cu(100)”, J. Chem. Phys., 107, 10458–10469
(1997).

[46] K. Yagi, T. Taketsugu, K. Hirao, and M. S. Gordon, “Direct vibrational self-
consistent field method: Applications to H2O and H2CO”, J. Chem. Phys.,
113, 1005–1017 (1999).

[47] G. Rauhut, “Efficient calculation of potential energy surfaces for the generation
of vibrational wave functions”, J. Chem. Phys., 121, 9313–9322 (2004).

[48] R. B. Gerber, S. K. Chaban, G. M. amd Gregurick, and B. Brauer, “Vibrational
spectroscopy and the development of new force fields for biological molecules”,
Biopolymers , 68, 370–382 (2003).

[49] O. Christiansen, “Møller-Plesset perturbation theory for vibrational wave
functions”, J. Chem. Phys., 119, 5773–5781 (2003).

[50] N. Matsunaga, G. M. Chaban, and R. B. Gerber, “Degenerate perturbation the-
ory corrections for the vibrational self-consistent field approximation: Method
and applications”, J. Chem. Phys., 117, 3541–3547 (2002).

[51] K. M. Christoffel and J. M. Bowman, “Investigations of self-consistent field,
SCF CI and virtual stateconfiguration interaction vibrational energies for a
model three-mode system”, Chem. Phys. Lett., 85, 220–224 (1982).

[52] G. M. Chaban, J. O. Jung, and R. B. Gerber, “Ab initio calculation of
anharmonic vibrational states of polyatomic systems: Electronic structure
combined with vibrational self-consistent field”, J. Chem. Phys., 111, 1823–
1829 (1999).

[53] D. M. Benoit, “Efficient correlation-corrected vibrational self-consistent field
computation of OH-stretch frequencies using a low-scaling algorithm”, J. Chem.
Phys., 125, 244110 (2006).

[54] J. D. Head, “Computation of vibrational frequencies for adsorbates on surfaces”,
Int. J. Quantum Chem., 65, 827–838 (1997).

[55] N. A. Besley and J. A. Bryan, “Partial hessian vibrational analysis of organic
molecules adsorbed on Si(100)”, J. Phys. Chem. C , 112, 4308–4314 (2008).

[56] R. B. Campos, F. Wypych, and H. P. M. Filho, “Theoretical estimates of the
IR spectrum of formamide intercalated into kaolinite”, Int. J. Quantum Chem.,
111, 2137–2148 (2011).

[57] N. A. Besley and K. A. Metcalf, “Computation of the amide I band of polypep-
tides and proteins using a partial Hessian approach”, J. Chem. Phys., 126,
035101 (2007).

http://dx.doi.org/10.1063/1.472960
http://dx.doi.org/10.1063/1.474210
http://dx.doi.org/10.1063/1.481881
http://dx.doi.org/0.1063/1.1804174
http://dx.doi.org/10.1002/bip.10293
http://dx.doi.org/10.1063/1.1601593
http://dx.doi.org/10.1063/1.1494978
http://dx.doi.org/10.1016/0009-2614(82)80335-7
http://dx.doi.org/10.1063/1.479452
http://dx.doi.org/10.1063/1.2423006
http://dx.doi.org/10.1063/1.2423006
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)65:5<827::AID-QUA47>3.0.CO;2-U
http://dx.doi.org/10.1021/jp076167x
http://dx.doi.org/10.1002/qua.22496
http://dx.doi.org/10.1063/1.2426344


BIBLIOGRAPHY 108

[58] G. M. Chaban, J. O. Jung, and R. B. Gerber, “Anharmonic vibrational
spectroscopy of glycine: Testing of ab initio and empirical potentials”, J. Phys.
Chem. A, 104, 10035–10044 (2000).

[59] D. M. Benoit, “Fast vibrational self-consistent field calculations through a
reduced mode-mode coupling scheme”, J. Chem. Phys., 120, 562–573 (2004).

[60] Y. Scribano, D. M. Lauvergnat, and D. M. Benoit, “Fast vibrational configura-
tion interaction using generalized curvilinear coordinates and self-consistent
basis”, J. Chem. Phys., 133, 094103 (2010).

[61] A. Nauts and X. Chapuisat, “Momentum, quasi-momentum and hamiltonian
operators in terms of arbitrary curvilinear coordinates, with special emphasis
on molecular hamiltonians”, Mol. Phys., 55, 1287–1318 (1985).

[62] C. Møller and M. S. Plesset, “Note on an approximation treatment for many-
electron systems”, Phys. Rev., 46, 618–622 (1934).

[63] R. J. Bartlett, “Coupled-cluster approach to molecular structure and spectra:
A step toward predictive quantum chemistry”, J. Phys. Chem., 93, 1697–1708
(1989).
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T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar,
T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O.
Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer,
T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May,
S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri,
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