
 THE UNIVERSITY OF HULL

Mutation Analysis of Dynamically Typed Programs

Being a Thesis submitted for the Degree of

Doctor of Philosophy

in the University of Hull

By

Nabil Abu Hashish

B.Sc., Yarmouk University, Jordan, 1985

Master of Computer Engineering, METU, Turkey, 1988

Department of Computer Science

December 2013

2

Abstract

The increasing use of dynamically typed programming languages brings a new challenge

to software testing. In these languages, types are not checked at compile-time. Type errors

must be found by testing and in general, programs written in these languages require

additional testing compared to statically typed languages.

Mutation analysis (or mutation testing) has been shown to be effective in testing statically

(or strongly) typed programs. In statically typed programs, the type information is

essential to ensure only type-correct mutants are generated. Mutation analysis has not so

far been fully used for dynamically typed programs. In dynamically typed programs, at

compile-time, the types of the values held in variables are not known. Therefore, it is not

clear if a variable should be mutated with number, Boolean, string, or object mutation

operators.

This thesis investigates and introduces new approaches for the mutation analysis of

dynamically typed programs. The first approach is a static approach that employs the

static type context of variables to determine, if possible, type information and generate

mutants in the manner of traditional mutation analysis. With static mutation there is the

danger that the type context does not allow the precise type to be determined and so type-

mutations are produced. In a type-mutation, the original and mutant expressions have a

different type. These mutants may be too easily killed and if they are then they represent

incompetent mutants that do not force the tester to improve the test set. The second

approach is designed to avoid type-mutations. This approach requires that the types of

variables are discovered. The types of variables are discovered at run-time. Using type

information, it is possible to generate only type-correct mutants. This dynamic approach,

although more expensive computationally, is more likely to produce high quality, difficult

to kill, mutants.

3

To my beloved Wife: Sahar Atyeh (Abu Hashish)

To my children: Majd, Deya, Mohanad, Ahmad, Juman, and Zaid

To my great Mother

4

Acknowledgement

I am deeply indebted to my supervisor, Dr. Leonardo Bottaci, who has encouraged me to

swim in the ocean of software testing. This research would not have been completed

without his continued help, support, and guidance throughout all stages of this research.

I would also like to thank Prof. Yiannis Papadopoulos and Dr. Chandra Kambhampati for

their comments and helpful supports. In addition, thanks to all administrative staff in the

department of Computer Science, in particular, Colleen Nicholson, Helen El-Sharkawy

and Joan Hopper.

I would like to acknowledge Isra Private University, Jordan and the department of

computer science, University of Hull for giving me this opportunity and for financial

support during my last year of study.

Finally, many thanks should also be extended to my mother, wife and children for their

support and patience.

5

Publications

Nabil Hashish, Leonardo Bottaci (2009). ‘Language Constructs for Generalising Unit

Test: Research Proposal’, TAIC-PART '09 Proceedings of the 2009 Testing: Academic and

Industrial Conference - Practice and Research Techniques IEEE Computer Society,

Washington, DC, USA.

6

Table of Contents

Abstract .. 2

Chapter 1: Introduction ... 13

1.1 Research Scope and Context .. 13

1.1.1 Mutation Analysis ... 14

1.2 Motivation .. 16

1.3 Research Aim ... 21

1.3.1 Research Questions ... 21

1.4 Contributions .. 22

1.5 Thesis Outline ... 23

Chapter 2: Mutation Analysis ... 25

2.1 Introduction .. 25

2.2 Mutation and Mutant Generation ... 25

2.3 Mutation Testing Hypotheses ... 28

2.4 Mutation Assessment and Adequacy Measurement ... 29

2.5 Mutation Analysis Process ... 31

2.6 The Problems of Mutation Analysis ... 32

2.6.1 Equivalent Mutant Problem .. 32

2.7 Mutation Cost Reduction Techniques .. 32

2.7.1 Random Selection x% ... 33

2.7.2 Mutant Clustering ... 33

2.7.3 Selective Mutation .. 33

2.8 Reduction of a Mutant Execution Cost .. 34

2.8.1 Strong, Weak, and Firm Mutation .. 35

2.8.2 Comparing Mutants .. 37

2.8.3 Interpretation and Compilation Techniques ... 39

7

2.8.4 Mutant Schema Generation .. 40

2.9 Previous Work on Mutation of Dynamically Typed Programs 43

Chapter 3: Dynamic Type System: JavaScript .. 45

3.1 Introduction .. 45

3.2 Statically vs Dynamically Typed Languages ... 45

3.3 JavaScript Value Types and Variables ... 46

3.4 Operators and Implicit Type Conversion of Value Types.................................. 47

3.4.1 The “==” and Other Comparison Operators Conversions 50

3.4.2 The Logical Operators && and || Conversions ... 52

3.5 Object Type .. 52

3.5.1 Objects in JavaScript .. 53

3.5.2 JavaScript Arrays .. 53

3.5.3 Prototype Object ... 54

3.5.4 Function Object... 56

3.6 Other Dynamic Programming Languages .. 56

Chapter 4: Static Mutation of Dynamically Typed Programs 58

4.1 Introduction .. 58

4.2 Insertion Mutations ... 58

4.3 Replacement Mutations .. 61

4.3.1 Operator Replacement .. 61

4.3.2 Operand Replacement ... 62

4.3.2.1 Replacement with Literal ... 63

4.3.2.2 Variable Replacement with Variable .. 65

4.3.2.3 Other Possible Mutations ... 66

4.4 Use of Type Context to Selectively Apply Mutation Operators 67

4.4.1 Checking the Type and Context.. 68

8

4.5 Context Sensitive Mutations .. 70

4.5.1 Number Context Mutations .. 70

4.5.2 Boolean Context Mutations .. 76

4.5.3 String Context Mutations .. 79

4.5.4 Object, Array, Function and Member Context Mutations 80

4.5.5 Any-type Context Mutations .. 81

4.6 Example to illustrate the Static Mutation Method .. 83

Chapter 5: Typed Mutation of Dynamically Typed Programs 87

5.1 Introduction .. 87

5.2 Typed Application of Mutation Operators ... 87

5.3 Mutation Analysis Process for Dynamically Typed Programs 91

5.3.1 Number Context Mutations .. 94

5.3.2 Boolean Context Mutations .. 99

5.3.3 String Context Mutations .. 101

5.3.4 Object Context Mutations ... 102

5.3.5 Any-type Context Mutations .. 104

5.4 Operator Replacement Mutations ... 104

5.5 Dynamic Mutation Example .. 105

5.6 Type Discovery .. 110

Chapter 6: Empirical Investigation .. 115

6.1 Introduction .. 115

6.2 Evaluating Cost of Mutation Analysis ... 115

6.3 Minimal Test Sets ... 117

6.4 Tescripta Mutation Analysis Tool .. 119

6.5 Evaluating Quality of Mutation Analysis ... 120

6.5.1 Competence of Mutants .. 124

Chapter 7: Evaluation and Discussion .. 125

9

7.1 Introduction .. 125

7.1.1 Experiments and Evaluation of Results .. 126

Chapter 8: Conclusions ... 133

8.1 Contributions .. 133

8.2 Mapping the Thesis Contribution to Research Questions 135

8.3 Limitation and Future Work ... 138

Bibliography .. 139

Appendix A …………………………………………………………………………….142

Appendix B …………………………………………………………………………….147

Appendix C …………………………………………………………………………….162

10

List of Figures

Figure 1.1: An example of a mutant program generated by inserting the abs() function at an

occurrence of the variable i …………………………………………………… 15

Figure 1.2: The different approaches used to generate mutants of statically and dynamically

typed programs. ………………………………………………………………. 20

Figure 2.1: An example of a mutant produced from a small syntactic change to the original

program. ……………………………………………………………………… 26

Figure 2.2: An example of an equivalent mutant…………………………………………. 30

Figure 2.3: The process of mutation analysis……………………………………………… 31

Figure 2.4: Comparison of weak state and strong state mutations………………………… 36

Figure 2.5: Program segment to assess the quality of test cases…………………………. 37

Figure 3.1: An example of how variables hold values of different types in a dynamically

typed language. In the first occurrence of x, it holds a number, in the occurrence

on the left of the assignment, it holds a string. ………………………………. 46

Figure 3.2: An example of a mixed type arithmetic expression in JavaScript in which no

exception is raised……………………………………………………………. 46

Figure 3.3: Some examples of type conversion in the context of mathematical operators... 48

Figure 3.4: A sample of type conversions using && and || logical operators………...…… 52

Figure 3.5: The graphical representation of creating an object……………………………. 55

Figure 4.1: An example used to illustrate the generation of mutants of program elements of

different types. The variable x is assigned number, Boolean and string values

depending on the input. ………………….…………………………………… 84

Figure 5.1: Dynamic mutation analysis algorithm for generating mutants of a program P.. 92

Figure 5.2: Enhancement of a test set T for a program P…………………………………. 93

11

Figure 5.3: An example used to illustrate the generation of mutants of program elements of

different types. The variable x is assigned number, Boolean and string values

depending on the input. ……………………………………………………... 105

Figure 5.4: Labelled variables occurrences for the program given in Figure 5.3………... 105

Figure 5.5: Labelled variables occurrences for the program given in Figure 5.3 but with the

shorter labels that are easier to read. ……………………………………….. 106

12

List of Tables

Table 3.1: The different types in JavaScript………………………………………………. 47

Table 3.2: The most common operators used in JavaScript………………………………. 48

Table 3.3: Values and type conversion in JavaScript based on context…………………… 50

Table 3.4: Type conversion rules in the context of the comparison operators…………….. 51

Table 4.1: For the literal numbers listed, the number insertion mutation operators that are

not equivalent or equivalent to each other when applied to number literals

shown. Assumes argument also replaced with constant 0 and 1 where not

equivalent..………………… ………………………………………………… 72

Table 7.1: Description of programs used in the empirical evaluation…………………… 127

Table 7.2: Sets of mutants generated for the programs used in the empirical evaluation… 128

Table 7.3: Number of mutation adequate tests, number of mutant executions and number

of equivalent mutants for each method and for each programs used in the

empirical evaluation. ………………………………………………………... 130

Table 7.4: The percentages of mutants killed by a test set. The column shows the

method used to produce the mutation adequate test set. The row shows the

method used to produce the mutants that are killed by the test set. For each

program, the percentages are averaged across the 10 trial and are rounded to

the nearest 1%………………………………………………………………. 131

13

Chapter 1: Introduction

1.1 Research Scope and Context

Software testing (Bertolino 2003) is the process of executing a program with inputs and

checking the results. It is an essential part of establishing the quality and reliability of

software systems (Hierons 2002). In practice, testing cannot be exhaustive (i.e., exercising

the program on every input) and so the main objective of testing software is to find the

most faults for a given amount of testing effort. If testing is not exhaustive then some

approach to test selection must be used (Yanping Chen et al. 2002). Software test selection

approaches are traditionally divided into black-box testing (functional testing) and white-

box testing (structural testing) (Sofokleous and Andreou 2008). The black-box approach

treats the program as a black box and tests are selected from the specification without

using knowledge of the implementation. On the other hand, the white-box approach

allows the testers to view the structure of the program under test to examine if their tests

cover the code. The tester chooses test case inputs in order to achieve some given

structural coverage criteria, e.g. execute every statement or branch in the program,

evaluate all logical expressions to both true and false, execute inequalities at their

boundaries, and so on.

Recently, the widespread use of dynamically typed programming languages (Laurence

Tratt 2009), JavaScript for example, especially in internet application, imposes a new

challenge to software testing. Dynamically typed languages are usually used for scripting

programs that do not check or enforce type-safety at compile-time. The JavaScript

programming language is typical among dynamic languages (Mikkonen and Taivalsaari

2007). JavaScript is widely used to script html web pages but has also been used to

implement large frameworks, e.g. JQuery (Goodman and Morrison 2007).

In dynamically typed programs, values have types but variables do not. The type

information of values is available at run-time; no type-checking is done until run-time.

Even then, in some programming languages, e.g. JavaScript, extensive automatic type

http://en.wikipedia.org/wiki/Black_box_testing
http://en.wikipedia.org/wiki/White_box_testing
http://en.wikipedia.org/wiki/White_box_testing

14

conversion is performed to allow operations to continue and avoid throwing up

exceptions. In these languages, many type errors are not detected by the compiler. If the

errors are to be found then they must be found during testing. This suggests that dynamic

programs require more testing than the equivalent statically typed programs.

1.1.1 Mutation Analysis

Mutation analysis is a technique for assessing the quality of a test set. It is not easy to

determine that a program has been well tested. A program may pass every test in a given

test set but the program may still contain many faults. Mutation analysis (or mutation

testing) is a white-box fault-based coverage criterion proposed for software testing

(Hamlet 1977, Demillo and Lipton 1978). The basic idea is to deliberately insert faults

into the program under test and check if the faults are detected by any of the tests in the

test set. If the tests cannot detect the faults then additional tests are required.

In practice, the process of inserting faults is approximated by a process in which small

changes are made to the program under test. The primitive elements of the program are

systematically modified or replaced and the set of programs so generated are called

mutants. Typically, only a single element of the original program is modified to create a

mutant. Syntactically, these mutants closely resemble the original program and are in the

neighbourhood of the original program (Untch 2009).

Figure 1.1 shows an example of a program under test and a possible mutant program.

Assume the variable i holds a number, then the original program may be modified by

inserting, for example, the abs() function (i.e., modify the operand i to abs (i)) to

produce a mutant program.

15

 //Original Program

function f(i, j) {

 var max;

 if (i > j) {

 max = i;

 }

 else {

 max = j;

 }

 return max;

}

//mutant Program

function f(i, j) {

 var max;

 if (abs(i) > j) {// i becomes abs(i)

 max = i;

 }

 else {

 max = j;

 }

 return max;

}

Figure 1.1: An example of a mutant program generated by inserting the abs() function at

an occurrence of the variable i.

Consider, for example, the execution of a specific test on the original program under test

and also on the mutant program. It is not necessary to know the correct output for the test;

instead the outputs are compared. If the output produced by the original differs from that

of the mutant then at least one of the two programs is incorrect. The mutant is said to be

distinguished and such a test is considered informative. In the example program the input

(i = -1, j = 0) will distinguish the mutant because the original program outputs 0

and the mutant outputs -1. If in contrast, the outputs do not differ, both programs may be

correct or incorrect. No more is known about the programs than before the execution of

the test; consequently the test is considered uninformative. In this case, the mutant is said

to be alive.

Mutants are created automatically and it is possible, of course, that some mutants cannot

be distinguished from the original program. For example, consider a different program to

the program of Figure 1.1, produced by inserting the code i = i * i; in front of the if-

statement, i.e.

i = i * i;
if (abs(i) > j) { //abs(i) equivalent to i, i always positive

16

then the occurrence of i in the if-statement condition is always positive in which case i

and abs(i) always have the same value.

Alive mutant should force the tester to identify either that the two programs are

equivalent, i.e., syntactically different but semantically the same, or that the test set is

insufficient to detect the change in the mutant program. In this case, the test set should be

enhanced by adding new test cases to kill the live mutants.

Mutation analysis relies on the competent programmer hypothesis, i.e. the programmer is

assumed to be competent (Acree et al. 1979). Under this hypothesis, the competent

programmer produces programs that are either correct or differ from a correct program by

a small fault. To test such a program, it is sufficient to establish that the given program

does not contain any small fault. In order to assess the fault finding power of the given test

set, the program and the neighbourhood programs are all executed on this test set to

determine if all nonequivalent programs can be detected.

The idea underlying mutation analysis is that the modifications or changes made by

mutation analysis depict faults that competent programmers may introduce. A set of

transformation rules (or mutation operators) are applied to a program under test to create a

set of variants of the original program, called mutants, each containing a small single

syntactic change. Typically, these changes are introduced by modifying operands or

replacing operators and operands in the program.

1.2 Motivation

Mutation analysis has been applied to programs written using statically typed procedural

programming languages (Demillo et al. 1988, King and Offutt 1991, Offutt et al. 1996a),

with some work on the mutation of object-oriented programs (Ma et al. 2005). In all cases,

the languages have been statically typed. For statically typed programs, mutation analysis

has been shown to be an effective testing method (Wong 1993), but it is not clear how it

should be applied to dynamically typed programs.

17

Mutation analysis depends mainly on the replacement or modification of program

elements. Typical mutation operators modify program elements (typically operands or

operators) by replacement, insertion or deletion operators. The availability of type

information is essential to guide the mutation analysis and prevent generation of type-

incorrect expressions within mutants. The insertion of the abs() function at a variable i,

for example, is allowed only if the type of i is a number. In a statically typed language, a

type-incorrect expression is an error that is detected at compile-time. A mutant that does

not compile is clearly not a competent program and so obviously, mutations of statically

typed programs should not contain type-incorrect expressions.

In dynamically typed programs, the variables have no-type, only values have type. This

raises the problem, for example, of how to ensure that i is not mutated to abs(i) when

the value held in i is not a number. One approach towards the lack of type information is

to ignore type or equivalently to consider all variables to be of the same type. For

example, instead of attempting to apply the abs() operator to only number variables, it is

applied to all variables.

In a statically typed language, abs(“-23”) is type-incorrect and the program will not

compile. In a dynamically typed program, such as JavaScript, for example, there are

extensive automatic type conversions that allow what would be considered type-incorrect

expressions to return a value without stopping the execution of the program. In the case of

abs(“-23”) there would be an attempt to convert the string to a number. In the case of

“-23” it would return the value -23 and 23 would then also be the result of abs(“-

23”). In the case of abs(“hello”) an attempt to convert the string to a number would

fail and return the value NaN (Not a Number). This would then also be the result of

abs(“hello”).

Using this simple, indiscriminant approach, mutants can be defined statically in the

manner of statically typed programs. Mutations are made wherever they are syntactically

valid by applying a set of mutation operators to make a small change to the syntax of a

program. This approach would be relatively simple to implement but some of the mutants

18

produced will be “type-mutations”, i.e. not only does the mutated expression hold a

different value to the original expression, it is also a different type than the original type.

The mutation of “hello” to abs(“hello”) is an example of a type-mutation. The

original expression has type string but the mutated expression has a value of NaN and type

number (in JavaScript the type of NaN is number). Compared to a same type-mutation, it

is expected that a type-mutation will be easier to kill. If a mutant is too easily killed then

it has little value in forcing the tester to enhance the test set.

The term “type-mutation” is introduced in this thesis to describe the mutation produced

when the type of a value in the original program and the mutant at the mutated expression

is different. In general, it might be expected that type-mutations are less difficult to kill,

i.e. produce a larger change in the program behaviour than traditional value mutations. A

mutant that is too easily killed, i.e. incompetent, does not force the tester to enhance the

test set. Hence it is not clear if type-mutations are useful. The extent to which type-

mutations are incompetent is one of the questions that this thesis investigates.

In any case, the simple static application of mutation operators will lead to an increase in

the number of mutants compared to the typed application of mutation operators. For

example, assume that there are 8 number mutation operators, 2 string mutation operators

and 3 Boolean mutation operators. Consider a program with one number variable, one

string variable and one Boolean variable. This makes a total of 1 * 8 + 1 * 2 + 1 * 3 =

13 mutations when mutations are typed. If mutations are not typed then every mutation is

made to every variable and this makes a total of 3 * 8 + 3 * 2 + 3 * 3 = 39 mutations when

mutations are not typed.

The no-typed mutation will result in a greater number of mutations that would be

generated if type information were used. The increase in number of mutants will increase

the cost of mutation analysis. It is not known if this increase in cost will be significant

because the cost of a mutant is dependent on the number of tests required to kill it. The

equivalent mutants, the mutants that cannot be killed, are the most expensive because they

19

have been executed with every test and they also require human inspection. The extent of

the additional cost is a research question for this thesis.

This extra cost may be cost effective if the additional mutants force the tester to enhance

the test set. Whether the additional mutants are cost effective is one of the questions that

this thesis investigates.

If type-mutants are likely to be incompetent (too easily killed) it raises the question of how

to avoid generating type-mutants. How, for example, will it be possible to avoid mutating

the variable i to abs(i), when i is not a number if it is not known whether i is a

number type? This is the question of how to apply the mutation operators in a type-

sensitive manner.

One way to try to discover the type of a variable is to consider the context in which the

variable occurs. The context can be used as a heuristic to assume a type. This can be done

statically but the assumption may be wrong. In order to apply mutation analysis in a typed

manner, the type of the elements in the program under test should be discovered. A

simple method of discovering the type of a variable is to test the type of the variable at

run-time. Consider, for example, the type-sensitive implementation of the abs() mutation

operator below:

absTypeSensitive(i) {
 if (typeof(i) == ”number”) {
 return abs(i);
 }
 else {
 return i;
 }
}

This method discovers the type of the value stored in a variable at run-time. Discovering

the type of the value before each time it is mutated is likely to be inefficient because inside

a loop the type of i may be discovered many times in situations in which there is no

possibility that the type can change. It would also be tested by all the number mutation

20

operators. For example, it would be tested for every number mutation of i, e.g.

abs(i), add1(i) (i.e. add 1 to i), sub1(i), etc. Clearly, the values held in a

specific occurrence of a variable i will not change according to the function that inputs

those values.

Since the type of a given variable does not vary with the mutant, it varies only with the

program input (i.e., the test), the dynamic mutation approach presented in this thesis

executes each test case on the original program under test in order to discover the types of

values and variables. This is done before generating mutants. After a test has been

executed, the types of values and variables can be known for that test. As a result, the

generation of mutants for that test can be done using that type information. In this way the

type information is discovered once only.

Figure 1.2 compares the different approaches for generating mutants of statically and

dynamically typed programs. For dynamically typed programs, test cases are required in

order to define values at variables. The types of these values are then used to define type-

specific mutations at those variables. Such mutants are generated by modifying the value

of operands with the type compatible mutation operators, replacing a variable with other

type compatible variables or constants, and replacing each operator with other type

compatible operators in the same way as in traditional mutation analysis.

Statically typed mutation

 Program + mutation operators ---------------------- Set of mutants

Dynamically typed mutation

 Program + test cases + mutation operators ------- Set of mutants

Figure 1.2: The different approaches used to generate mutants of statically and

dynamically typed programs.

21

In dynamically typed mutation, a program produces approximately the same number of

mutants as a statically typed program if every variable in the program takes a value of

only one type. In addition, when the types of all program variables are known i.e., they

have been discovered by execution of the tests, the dynamic mutation analysis is

equivalent to statically typed mutation analysis. There is a risk, however, with dynamic

mutation analysis, that the tests do not exercise the program fully and not all the types are

discovered.

The motivation for this research is to develop mutation analysis approaches for the

mutation analysis of dynamically typed programs. The work in this thesis is based on the

JavaScript language (Crockford 2008), but the result is expected to apply to programs

written in a similar language: Python (Linda Dailey 2007), PhP, Ruby, etc.

1.3 Research Aim

In order to make mutation analysis applicable effectively to dynamically typed programs,

the thesis introduces two new approaches to mutation analysis. These two approaches are

called static and dynamic mutation approaches. In the static approach, the mutation is

done statically as in traditional mutation analysis. With the static approach there is the

danger of generating type-mutants but in order to reduce type-mutation, the context in

which the mutated element occurs is used to eliminate some redundant mutations and also

to heuristically assume a type for a variable in an expression. In the dynamic approach, the

type of an element is discovered at run-time and the definition of mutants is then

performed with the availability of type information. The dynamic approach allows

mutants to be defined in a type-sensitive manner.

1.3.1 Research Questions

Research questions that will guide the research in comparing the two approaches and

evaluate the efficiency of each approach for testing dynamically typed programs are given

below:

22

Q1: Using the static mutation approach, what proportion of the mutants are type-

mutants? This is the same question as how many mutants are not generated in the

dynamic method.

Q2: Using the static mutation approach, what proportion of the type-mutants is

incompetent? Are type-mutants more incompetent than mutants where the

different values in the original and mutant programs have the same type?

Q3: What is the cost reduction by not generating type-mutants? In other words, how

does the cost of the static method compare with the dynamic method?

Q4: How does the choice of static or dynamic mutation affect the number of equivalent

mutants generated?

Q5: Which is the most cost effective method?

1.4 Contributions

The difficulties involved in mutation testing of dynamically typed programs refer to the

fact that the type information is unknown prior to the program run-time. Mutation testing

has been shown to be an effective test coverage criterion but it has not yet been applied to

dynamically typed programs.

The thesis investigates and introduces two new approaches for the mutation analysis of

dynamically typed programs, which have not been done before. Firstly, a static approach

to generate mutants of dynamically typed programs has been developed. This approach

does not use run-time type information but does exploit some static information. The type

context in which a program element occurs can be used to eliminate some type-mutations

and to make heuristic assumptions about the type of the element. This approach is based

on making only syntactic changes to the program under test. Secondly, a dynamic

approach is adopted to generate type-correct mutants at run-time. This thesis argues that

mutation analysis of dynamically typed programs can also be established at run-time by

executing test cases against the program under test. The aim is to discover type

information at program run-time to avoid type-mutations and, therefore, some of the

incompetent mutants. The two approaches are evaluated and compared for the mutants

produced for the selected sample programs. The two approaches are suitable for the

23

mutation analysis of dynamically typed programs, but the dynamic approach is shown to

be more effective than the static approach.

Moreover, the thesis investigates and answeres the research questions about the

effectiveness and the performance of these approaches. The research of this thesis is

mainly based on the JavaScript language but these approaches are applicable to the

mutation analysis of other similar high-level dynamically typed languages.

1.5 Thesis Outline

The thesis is organized as follows:

Chapter 2 of this thesis presents background information on software testing and mutation

analysis of statically typed programs. It also presents an overview of the various

techniques that have been used to improve the performance of mutation analysis and

reduce the cost and time of generating, compiling and running mutants. The work related

to mutation analysis of dynamically typed programs is also reviewed.

Chapter 3 briefly introduces the difference between statically typed programs and

dynamically typed programs. It also highlights the typing system and different features of

dynamically typed languages, e.g. JavaScript. In addition, the capability of this language

to perform implicit type conversion and the use of arithmetic and logical operators in

different context are investigated. This is useful to understand the effect of converting the

type of an element to another type during the program execution.

Chapter 4 presents a static approach to mutation analysis of dynamically typed programs.

It discusses how static mutation analysis can be performed for dynamically typed

programs. In addition, the type context of variables in expressions is used to heuristically

assume types of these variables to avoid some type-mutations. This chapter, also, collects

a set of mutation operators similar to the traditional mutation operators used in the

mutation of statically typed programs and proposed new operators that are required for the

mutation analysis of dynamically typed programs.

24

Chapter 5 introduces a dynamic approach for the mutation analysis of dynamically typed

programs. This approach requires that the type information is to be discovered during

program execution time. This chapter, also, investigates the type discovery methods that

can be used effectively for this approach to reveal type-correct information and how the

mutation operators are applied in a typed manner at run-time to avoid type-mutations.

Chapter 6 presents an empirical investigation to evaluate the static and dynamic

approaches introduced for dynamically typed programs. It also investigates the minimal

test sets and the quality of test sets that are mutation adequate in order to reduce the cost

of mutation analysis that produced that mutation adequate test set for a dynamically typed

program.

Chapter 7 revisits the research questions and summarizes the empirical results obtained of

seven JavaScript programs. This is necessary to check the effectiveness of static and

dynamic approaches for the mutation analysis of dynamically typed programs introduced

in this thesis.

Chapter 8 concludes by summarizing the results of this thesis, contributions of this thesis,

limitation and suggestions for future work.

25

Chapter 2: Mutation Analysis

2.1 Introduction

Mutation analysis (also referred to as mutation testing) is a method used to measure how

good a given set of test cases are in detecting potential faults in the program under test

(Amman and Offutt 2008). Mutation testing is not directly concerned with testing the

program to find faults. Instead of this, it tests the test cases by measuring how good these

tests are at detecting changes introduced into the program. If the test cases cannot detect

the changes then new tests are added to enhance the test set. This results in improved

program testing except equivalent mutants.

The mutation analysis assumption is that the program under test is written by a competent

programmer. Mutation testing targets faulty programs (called mutants) that are close to a

correct version of the program. A set of synthetic faulty programs (mutants) is generated

by introducing small syntactic changes to the program under test. The aim is to produce a

test set that shows that the program under test is not equal to any of these mutants.

Mutation testing has been used to test software at various levels, including unit testing,

integration testing, system testing and the specification testing (Jia 1996). Unit testing is

the most common to mutation analysis (Jia 2009). A unit is a software component that

cannot be subdivided into other components. In object-oriented programming, these units

typically are classes and methods or functions. Approximately 65% of all bugs can be

caught in unit testing (Beizer 1990). Unit testing may be structural (white box) or

functional (black box).

2.2 Mutation and Mutant Generation

Usually, the changes are introduced into a program using mutation operators. The purpose

of the mutation operators is to generate the set of competent programs that a competent

programmer might produce. The collection containing the original program and the

mutants is known as the program neighbourhood (Untch 2009).

26

One way in which mutation operators can be defined is to consider the ways in which the

competent programmer may make an error in an expression. The programmer may use

the wrong operator; this suggests operator replacement mutations. The programmer may

include an operator that should not be present; this suggests operator deletion mutations.

The programmer may omit an operator that should be present; this suggests operator

insertion mutations. The programmer may use the wrong variable or literal, which

suggests operand replacement mutations.

//Original Program P

function min(i, j) {
 var m;
 m = 0;
 if (i < j) {
 m = i;
 }
 else {
 m = j;
 }
 return m;
}

//mutant Program m

function min(i, j) {
 var m;
 m = 0;
 if (i > j) { // mutant
 m = i;
 }
 else {
 m = j;
 }
 return m;
}

Figure 2.1: An example of a mutant produced from a small syntactic change to the original

program.

Consider, for example, the program given in Figure 2.1. Assume that this program has

been written by a programmer. The programmer may make a mistake in the relational

operator in a condition. To check for this, a copy is made of P, called m in Figure 2.1,

and in this copy the < symbol is replaced with >. The tester should now find a test input

that produces different outputs when executed on P and m. This mutant forces the tester

to introduce a test which compares the results of a program using < with another program

that uses >. Both of these programs cannot be correct if there is a test that produces

different outputs.

27

This way of thinking about mutation operators leads to the idea that a mutation operator

should be a minimal change to the original program produced by insertion, replacement or

deletion of a single operand or operator. This kind of small syntactic change defines the

program neighbourhood.

Another way in which mutation operators can be defined is to consider the coverage that

should be achieved by the test set. Mutation operators force the tester to cover certain

elements of the program under test. For example, Mothra (King and Offutt 1991) includes

a statement deletion operator. This is not because the competent programmer is likely to

make a mistake and include a statement that should not be present; instead the statement

deletion operator forces the tester to write a test set that has statement coverage. This is

because to detect the deletion of a statement the test case must execute that statement.

Another example of a mutation operator designed to enhance the test set coverage is the

Mothra zpush() operator. This is a function that is applied to variables in the program.

The mutant is killed only if the argument to zpush() is zero. The zpush() mutation

forces the tester to write a test that sets each variable to zero.

This way of thinking about mutation operators allows more flexibility in the design of

mutation operators than the operand and operator insertion, replacement and deletion

approach. This kind of mutation operator may make a syntax change that is not small but

the aim is always that the resulting program behaviour change is small. The program

neighbourhood is the programs that have similar input-output behaviour to the original

program. In this thesis, it is this idea of the program neighbourhood that is used when

considering mutation operators.

In general, mutations can be classified as follows:

1. Operator mutations: The operator mutations are used to mutate operators in

expressions. These operators include assignment, arithmetic, logical, and relational or

comparison operators. Mutants are generated by replacing an operator with other

compatible operators. For example, each arithmetical operator (+, -, *, /, %), is

replaced with another arithmetical operator. Each relational operator < > <= >= ==

28

!= can be replaced with another relational operator or a binary operator && by ||, and

the assignment operator += can be replaced with -=, *=, /=, %=. Moreover, the

pre-decrement, pre-increment, post-increment and post-decrement mutations can also

be mutated. For example, ++x is mutated with --x (replace operator), x (remove

operator), and x++ (move operator from pre to post).

2. Operand mutations: Mutants can be generated by modifying or replacing the value of

each operand in an expression. Mutants can be generated by replacing an operand

with another operand, variable or literal, usually taken from the same program.

Clearly, the context of an operand affects the possible replacements. A variable, for

example, if it is on the left hand side of an assignment statement, cannot be replaced

with a literal.

3. Other mutations such as zpush() and statement deletion designed to achieve a

specific coverage criterion.

Mutants can also be classified according to whether they are insertion mutations or

replacement mutations. An insertion mutation is performed by inserting a function call

around an operand, e.g. x is mutated to abs(x). To check whether to perform an

insertion mutation for a particular operand it is necessary only to check the local context

of the operand.

A replacement mutation is performed by replacing one operator or operand with another.

To check whether to perform a replacement mutation for a particular operand, it is

necessary to check the local context of the operand (e.g. type of operand) and the context

of the replacement operand (e.g. type of the replacement operand) for compatibility.

2.3 Mutation Testing Hypotheses

The competent programmer hypothesis was introduced by DeMillo et al. (DeMillo et al.

1978, DeMillo and Lipton 1978). It states that the programmer tends to develop programs

that are correct or close to the correct program. One can assume that these programmers

make only small faults which are targeted by mutation analysis. Further discussion of the

competent programmer hypothesis can be found in Acree et al. work’s (Acree et al. 1979).

29

Although all of the produced mutants are syntactically similar to the original program,

many may not be behaviourally similar. The ideal mutation operator produces only a small

semantic change (Offutt et al. 96). A small syntactic change can, however, result in a large

semantic change. The produced mutants may be type-incorrect and hence do not survive

beyond the compilation stage. These are the so-called still-born mutants (Offutt et al.

1996). Other mutants can be distinguished from the original program by the execution of

any test that executes the mutated statement; these are the so-called trivial mutants. Type-

incorrect mutants and trivial mutants can easily be detected and are considered to be

incompetent, because they would be produced only by an incompetent programmer.

Furthermore, mutation operators tend to produce a small but significant number of

mutants that are behaviourally indistinguishable from the given program. These mutants

are known as equivalent mutants (see Figure 2.2). Equivalent mutants can require a lot of

effort to be devoted to identify them. The presence of both incompetent mutants and

equivalent mutants has the effect of reducing the efficiency of mutation analysis and

increasing the cost.

2.4 Mutation Assessment and Adequacy Measurement

In mutation testing, every test case t is executed against both the original program and the

mutants. Test cases are assessed by checking each mutant output with that produced by the

original program. If the results produced by a mutant m can be distinguished from that of

the original program P (i.e., a mutant behaves differently from the original program) by

at least one test case t in a test set T such that P(t)≠ m(t), then the mutant m is said to

be killed by the test case t. Moreover, each killed mutant can be investigated to decide

whether the program or the mutant or both are incorrect. If m is correct then mutation

testing has found a fault in P. If P is correct then the test set has been improved with a

new test that checks for a potential fault. Otherwise, if P and m produce the same output,

then the T is unable to distinguish P from m and the mutant is either an equivalent to the

original program or the test cases are inadequate to kill that mutant. If both programs

produce the same results for all test cases in the input domain, i.e., P(t)= m(t), then the

30

mutant is equivalent to the program and no test case will be able to kill it. If the mutant

and the program are not equivalent then new test cases are added to the tests to kill that

mutant.

Figure 2.2 shows an example of an equivalent mutant generated by replacing the operand

i of the original program into the abs(i). The two programs will produce identical

output, because i equals abs(i) for i >= 0. Since no test case can kill this mutant, it

must be removed and not considered in assessing the adequacy of test data set.

Original program P

….

if(i>=0) {
 if(j>=i) {
 ….
}

Mutant program m

….
if(i>=0) {
 if(j>=abs(i)) {
 ….
}

Figure 2.2: An example of an equivalent mutant

A non-equivalent live mutant offers the tester an opportunity to produce a new test case

and improve a test set. A test case that causes one or more mutants to fail is called

effective (Offutt et al. 2006).

The test set is assessed by the mutation adequacy score (or mutation score) (Untch 2009).

The mutation score is the ratio of killed mutants over the total number of non-equivalent

mutants (Jia 2006).

A mutation adequate test set kills all the non-equivalent mutants and has a mutation score

of 100%.

31

2.5 Mutation Analysis Process

The process of mutation analysis is illustrated graphically in Figure 2.3. The process starts

by submitting a program P, then a test set T is generated (manually or automatically) to

serve as inputs to the original program P. The test set T needs to be executed against the

original program P to verify that the output is correct for the test cases. If P is incorrect,

an error has been found and the program should be modified and the process is restarted.

If the output is correct, mutants are constructed by applying a set of mutation operators.

Input

Program P

Create

mutant P1

Generate

test cases

T

Run T

on P

P(T)

 Correct

?

Run cases on

each mutant

Fix P

All mutants

dead

 ?

Analyze and

mark equivalent

mutants

Any live

nonequivalent

mutants

 ?

Mutants already

created for P ?

Yes

No

Yes

Yes

No

Yes

No

Quit

mutant P2

mutant Pn

No

Figure 2.3: The process of mutation analysis

32

Each mutant m is run against one or more test cases in T. If the results of a mutant m

differ from that of P on the same test case, the mutant is marked as being killed. Once

killed, a mutant is not executed against any additional test cases. After each test case has

been executed against each mutant, all the remaining mutants are considered live and

should be analysed to determine and remove the equivalent mutants.

In practice, there may still be a few non-equivalent live mutants, but the test set is

inadequate to kill them. In this case, a new test case needs to be supplied and the process

is continued until a mutation adequate test set is produced.

2.6 The Problems of Mutation Analysis

To generate a large number of mutants, execute each test case on each live mutant and

analyse the result requires a lot of time (Polo et al. 2009). One problem that prevents

mutation analysis from becoming a practical testing technique is the computational cost of

executing the enormous number of mutants against test set. The other problems are related

to the required human effort incorporated in using the mutation analysis, for example, the

equivalent mutant problem.

2.6.1 Equivalent Mutant Problem

Given even a small program, many mutants are produced and some of these are

equivalent. Because of the undecidability of program equivalence, automatically detecting

all equivalent mutants is impossible (Offutt and Pan 1997) and the detection of equivalent

mutants often involves additional human effort, the result is expensive and time-

consuming. How to avoid equivalents mutants is investigated in this thesis.

2.7 Mutation Cost Reduction Techniques

One way to reduce the mutation testing cost is to reduce the number of mutants generated.

Many techniques have been used to reduce the number of mutants generated including,

mutant sampling, mutant clustering and selective mutation. These techniques seek

33

significant reductions without significant loss of effectiveness. In addition, other

techniques are proposed to optimize the running speed of mutants. Some of these

techniques include compiler-based testing, byte-code translation, weak mutation and

mutant schema generation.

The process of mutant reduction can be summarized as: For a given set of mutants, M, and

a set of tests T, MST(M) denotes the mutation score of the test set T applied to mutants

M. The mutant reduction problem can be defined as the problem of finding a subset of

mutants M′ from M, where MST(M′) ≈ MST(M),i.e., the mutation score of the subset

mutants is approximately equal to the mutation score of mutants (Harman et al 2009).

These subset M′ can be produced in different ways.

2.7.1 Random Selection x%

In this approach, a small percentage of mutants are randomly selected from the entire set

possible generated mutants. The mutants are generated first as in traditional mutation

analysis and then x% of these mutants are then chosen randomly for mutation analysis,

and the remaining mutants are ignored (Wong and Mathur 1995).

2.7.2 Mutant Clustering

A clustering algorithm classifies the mutants into different clusters based on the killable

test cases. Each mutant in the same cluster is guaranteed to be killed by a similar set of test

cases. Only a small number of mutants are selected from each cluster to be used in

mutation testing (Shamaila 2008).

2.7.3 Selective Mutation

Selective mutation has been applied to reduce the number of mutants generated, which can

be achieved by reducing the number of mutation operators (Untch et al 1993). Mutation

operators generate different numbers of mutants, and some mutation operators generate

more mutants than others, many of which may be redundant. For example, two mutation

34

operators of the 22 Mothra operators were found to generate about 40% to 60% of all

mutants (King and Offutt 1991). In order to reduce the generated mutants, it was

suggested to omit two mutation operators which generated most of the mutants (Offutt et

al 1996).

Constraint mutation (Mathur et al 1991) is another type of selection strategy based on test

effectiveness. It suggested using only two mutation operators: ABS and ROR. Another

type of selective mutation was proposed by Mresa and Bottaci (Mresa and Bottaci 1999).

Each mutation operator is assigned a score which is computed by its value and cost of

detecting equivalent mutants.

Another approach on selective mutation was suggested by Namin and Anderws (Namin

and Anderws 2006). They formulated the selective mutation problem as a statistical

problem. They applied linear statistical approaches to identify a subset of 28 mutation

operators from 108 C mutation operators.

2.8 Reduction of a Mutant Execution Cost

The computational cost of mutation testing can be minimized by optimizing the cost of

each mutant execution. However, a test case that kills a mutant must satisfy the following

three conditions (Offutt 93):

1. Reachability condition: The test case must cause execution to reach the mutated

statement. If the test case does not reach the mutated statement then clearly the

output of the mutant must equal the output of the original program because exactly

the same statements have been executed.

2. Necessity condition: once the mutated statement is executed, the test case must

produce a different data state in the mutant program compared to the original

program. If the mutant is to be killed, some variable in the mutant program must

be set to a different value compared to the same variable in the original program.

3. Sufficiency condition: the different data state at the mutated statement must be

propagated to the output of the program, i.e., at the end of the program, one of the

35

output variables must have a different value compared to the same variable in the

original program.

2.8.1 Strong, Weak, and Firm Mutation

Based on the way in which a mutant is killed during the execution process, mutation

testing techniques can be classified into three types, strong mutation, weak mutation and

firm mutation. The strong mutation technique (also known as traditional mutation testing)

was originally proposed by DeMillo and Lipton (1978). In strong mutation, the mutants

are executed against a test case and the produced output is checked after the execution of

the program. A mutant is said to be killed only if the output can be distinguished from the

output of the original program. This is called ‘strong mutation testing’ because it places a

strong requirement on the used test case.

The weak mutation technique is proposed to reduce the execution time of the mutant

(Howden 1982). In weak mutation testing, instead of checking mutants after the execution

of the program, the mutants only need to be checked immediately after the execution point

of the mutant or a mutated component. A mutant is said to be killed if the value produced

at the location of the mutation is different from the corresponding value in the original

program. This is less demanding on the test cases because it is always easier to force a

program to have a different value at the mutation point than it is to force it to have a

different value at the end of the program. Figure 2.4 demonstrates the execution of

executing a test case on the program and the generated mutants and compares the two

different states to kill mutants. The strong state mutation requires the outputs to be

compared after the entire execution of the program and the mutants.

36

Figure 2.4: Comparison of weak state and strong state mutations

Since mutation testing is concerned with assessing the quality of test cases, one may prefer

strong mutation testing to weak mutation testing. To explain how these two techniques

affect the quality of test cases, consider the program segment given in Figure 2.5.

Assume, for example, that the statement labeled 2 is mutated by replacing the

assignment statement x = y * 2 with x = y * 4. If the program is tested on the test

case z = 10, then the value of x just after statement 2 has been executed is 8, whereas

its value was 4 in the original program. If only the value of x at statement 2 is only

considered then one could have tested the program with any test case except z = 0 and

would have killed the mutant. However, if the value of x is required to be different at

the end of the program, then only the test cases where z has a value between 4 and 9

would have caught the fault and therefore killed the mutant.

37

 function f(z) { // test z = 10
1 y = 2;
2 x = y * 2; // mutate to x = y * 4;
3 if (x < z) {
4 x = 1;
 }
 else if (x == z) {
 x = 0;
 }
 else {
 x = x + 1;
 }
 return x;
 }
}

Figure 2.5: Program segment to assess the quality of test cases

The advantage of weak mutation is that each mutant does not require a complete execution

process. Once the mutated component is executed, one can check for survival. However,

as different components of the original program may give different outputs from the

original execution, a weak mutation test set can be less effective than a strong mutation

test set.

The firm mutation technique is suggested to overcome the shortages of both weak and

strong mutations. It compromises between the two techniques, where execution is stopped

at some point between the mutated code and the end of the program (Jackson et al. 2001).

2.8.2 Comparing Mutants

An equivalent mutant is a mutant that is syntactically different to the original program but

has the same input-output behaviour. Sometimes two mutants of a program are not

necessarily equivalent to the original program but they have the same input-output

behaviour as each other. In this situation the mutants are equivalent to each other but they

are not “equivalent mutants”. For example,

38

original mutant1 mutant 2
x = x - 3; x = 0 - 3; x = false - 3;

Consider that the statement x = x - 3; is present in a program and two mutants are

generated as shown above. Because false is present in an arithmetical expression it is

converted to a number which is zero. This means that mutant1 and mutant2 are equivalent

to each other, but mutant1 and mutant2 are not equivalent mutants because they are

not the same as the original program.

It is beneficial to detect mutants that are equivalent to each other because if a test case is

found that kills one of the mutants then it will also kill the other mutant. It is necessary

only to execute one of the mutants that are equivalent to each other because the output of

one mutant will be equal to the output of every other mutant that is equivalent.

If two programs are equivalent to each other then they must have the same output for

every possible input. If two programs have the same output for only some of the possible

inputs then the programs are partially equivalent. Sometimes two mutants are partially

equivalent. For example

original mutant1 mutant 2
x = x - 3; x = 0 - 3; x = sub1(x) - 3;

Consider that the statement x = x - 3; is present in a program and two mutants are

generated as shown above. Assume there is an input that sets x always to the value 1. In

this situation sub1(x) is the same as 0 false and so mutant1 and mutant2 are

partially equivalent to each other. Another example of two mutants that are partially

equivalent to each other is

original mutant1 mutant 2
x = x - 3; x = 0 - 3; x = logneg(x) - 3;

providing that there is an input that sets x always to a non-zero number or any other

value which converts to true. In this situation logneg(x) is always

39

logneg(true) which is the same as false which in an arithmetical expression is

converted to 0 so mutant1 and mutant2 are partially equivalent to each other.

It is beneficial to detect mutants that are partially equivalent to each other because if a test

case is found for which the mutants are partially equivalent and the test case kills one of

the mutants then it will also kill the other mutant. It is necessary only to execute one of

the mutants that are partially equivalent to each other.

2.8.3 Interpretation and Compilation Techniques

The interpreter-based technique was used in the first generation of mutation testing tools

(Offutt and King 1987). For example, MOTHRA was the first significant mutation testing

tool (Offutt and King 1987, King and Offutt 1991). This tool applies mutation testing to

FORTRAN programs. The submitted program is parsed and the mutant maker (mutmake)

invoked to generate mutant descriptor records (MDRs) (King and Offutt 1991). Each

record describes the mutation to produce a mutant. Furthermore, the content of the MDR

for a given variable depends on the type of that variable. In general, a mutant is created by

modifying the source code and an interpreter executes the source code directly.

In order to improve speed, the compiler-based technique was suggested to replace the

interpreter-based technique, because execution of compiled binary code is much faster

than interpretation (Delamaro and Maldonado 1996). In the compiler-based technique, the

mutant source is compiled into an executable program first, and then each compiled

mutant will be executed by a number of test cases. There is, however, a high compilation

cost for large programs (Choi and Mathur 1993).

Another optimization technique that is used in mutation testing is the compiler-integrated

technique (DeMillo et al. 1991). It improves the performance of the compiler-based

techniques. Because there is only a minor small change between each mutant and the

original program, compiling each mutant separately in the compiler-based technique will

result in redundant compilation cost. In the compiler-integrated technique, an

instrumented compiler is designed to generate and compile mutants. The instrumented

40

compiler generates two outputs from the original program: an executable object code for

the original program, and a set of patches for mutants. Each patch contains instructions

which can be applied to convert the original executable object code image to executable

code for a mutant directly. As a result, this technique can reduce the cost of compilation.

2.8.4 Mutant Schema Generation

The mutant schema generation approach has been used in mutation analysis to reduce the

cost of the interpreted techniques (Untch 1992). Instead of compiling each mutant

separately, the mutant schema technique generates, from the original program, a special

parameterized program called a meta-mutant. By changing the parameters, the meta-

mutant can be used to represent all possible mutants. The cost of this technique is

composed of a one-time compilation cost and the overall runtime cost. As this meta-

mutant is a compiled program, its running speed is faster than the interpreter-based

technique (Untch et al. 1993).

In order to explain how a meta-mutant can represent all the functionality of a set of

mutants, one should recall that each mutant of a program P differs from P by only a

single syntactic change to some statement in P. The way in which these statements are

changed is guided by the set of mutation operators used. For example, assume that the

statement z = x + y; is in the program under test. If the arithmetic operator

replacement is applied to replace each occurrence of an arithmetic operator by each of the

other possible arithmetic operators (i.e.,-, *, /, and %), then the following four mutants will

be produced:

z = x - y; z = x * y; z = x / y; z = x % y;

All these mutants can be represented as z = x opr y; and can be implemented as z =

opr(x, y); where a parameter opimutantOperator selects, within the function

opr, one of the arithmetic operators. The opr function can be implemented as follows:

41

function opr(x, y){
 switch (opimutantOperator){
 case “+”: return x + y;
 case “-”: return x - y;
 . . .
 }
}

An opimutantOperator parameter is required for each occurrence of an operator in

the original program. The same approach can be used to implement operand replacement

mutations. A function can be defined to get the value of a variable or some other specified

variable depending on the value of a parameter ximutantVariable that defines the

required variable mutation.

function getVal(x) {
 switch (ximutantVariable){
 case “x”:
 return x;
 case “y”:
 return y;
 . . . // other variables here
 }
}

An ximutantVariable parameter is required for each occurrence of each variable in

the program. With these two functions, it is possible to define a meta-mutant arithmetical

expression for the original program expression x + y as given below:

opr(getVal(x), getVal(y))

To mutate the variable on the left-hand-side of an assignment statement, i.e. a variable in

an l-value context, it is necessary to replicate the assignment statement. For example, the

original program assignment expression x = x + y; would be implemented as the

meta-mutant statement as follows:

42

switch (ximutantVariable) {
 case “x”:
 x = opr(getVal(x), getVal(y));
 break;
 case “y”:
 y = opr(getVal(x), getVal(y));
 break;
 . . . // other variables here
 }
}

Overall, the meta-mutant is produced by translating each statement of the original program

into a corresponding switch or conditional statement.

Object-oriented languages like Java and C++ are structured differently from procedural

languages and they contain new features such as encapsulation, inheritance, and

polymorphism (Barbey and Strohmeier 1994). These features imposed the need to change

the requirements for mutation testing to handle new types of faults. The existing mutation

operators for procedural languages are not sufficient for programs written in object-

oriented languages and hence a set of class mutation operators (Chevalley et al. 2001) has

been introduced.

The most recent work on reduction of the compilation cost is the bytecode translation

technique (Ma et al. 2005). In this technique, mutants are generated from the compiled

object code of the original program. As a result, the generated ‘bytecode mutants’ can be

executed directly without compilation, which reduces the cost of mutant generation. This

technique has been used in the mutation analysis of Java programming language. The

MuJava tool (Ma et al. 2005) is an example of a mutation system that used bytecode and

mutant schema techniques to produce mutants. Each mutation operator is related to one of

the six language feature groups. The first four groups are based on language features that

are common to all object-oriented languages. The fifth group includes language features

that are Java-specific, and the last group of mutation operators are based on common

object-oriented programming mistakes (Ma et al. 2005).

43

However, not all programming languages provide an easy way to manipulate intermediate

object code. There are also some limitations for the application of bytecode translation in

Java, such as not all the mutation operators can be easily implemented at the bytecode

level (Schuler et al. 2009).

2.9 Previous Work on Mutation of Dynamically Typed Programs

Little work on the mutation testing of dynamically typed programs has been found in the

literature. Almost all mutation testing tools have been developed for statically typed

languages. Mutation analysis for dynamically typed programs has been used for Python

and Ruby programs

 Due to the unavailability of type information until the execution of the program, mutation

operators that are commonly used in statically typed programs are not used. For example,

the + operator in a dynamically typed programs can be used in number addition and

string concatenation. In order to replace this operator with another arithmetical operator (-,

/, *. %), the type information of operands is required to avoid generating type-mutants

(Bottaci 2010). Instead the Pester and Heckle system mutate only the typed operators and

literals in the program.

Gligoric has developed a mutation system for Smalltalk (SMutant) which is a dynamic

language.(Gligoric et al. 2011). Instead of applying mutations statically, SMutant waits

until the type information is available (at runtime) and applies mutations dynamically.

Little information has been published and it is not clear which mutation operators are

applied.

Bottaci (Bottaci 2010) introduced the basic concepts of dynamic mutation. It was at the

concept stage at that time and has now been developed into a mutation analysis tool

(Tescripta) as a result of work done in this thesis.

44

In the context of computer security, the problem of cross-site scripting has been

investigated by applying a small number of mutation operators to JavaScript and PhP

programs (Shahriar et al. 2009).

45

Chapter 3: Dynamic Type System: JavaScript

3.1 Introduction

JavaScript is a dynamically typed object-based high-level scripting language (Richards et

al. 2010). Unlike statically typed programming languages, it allows a programmer to add,

at run-rime, properties to an object, new functions and variables, and dynamically

determines the data types of values and operations in a program. The following discussion

explains the basic elements and features of dynamically typed languages e.g. JavaScript,

and how they are different from statically typed languages.

3.2 Statically vs Dynamically Typed Languages

A programming language that provides type information during compile-time is

considered a static or statically typed language. In a statically typed language, all variables

used in a program are associated with a particular type in the program. In a statically typed

language, all variables have either a particular type or a generic type but in either case, no-

type error can occur at run-time. Typically, statically typed languages allow type errors to

be discovered early in the development cycle. Examples of these languages include Ada,

Java, Pascal, C++, C#, etc.

In contrast, a dynamically typed language such as JavaScript, determines the types of

values in a program at run-time. Examples of dynamically typed languages include

JavaScript, Lisp, Python, PhP, Ruby, etc.

Consider, for example, the JavaScript code given in Figure 3.1, where variables are

defined without specifying the type of values that may hold. When the code is run, the

definition of + takes into account the type of both operands x and y, implicitly

converting x to the string "8" and then concatenate the values of x and y to produce

"855". In the first occurrence of x, it holds a number; in the occurrence on the left of the

assignment, it holds a string.

46

…
var x = 8; // x is a number
var y = "55"; // y is a string
x = x + y; // x assigned string “855”
…

Figure 3.1: An example of how variables hold values of different types in a dynamically

typed language. In the first occurrence of x, it holds a number, in the

occurrence on the left of the assignment, it holds a string.

Figure 3.2 shows an example of a mixed type arithmetical expression that would be a

program error in a statically typed language. In JavaScript, there is no exception raised in

this case. Instead, an attempt is made to implicitly convert the string to a number by

parsing the string and a normal arithmetical operation is performed. Since the string

contains non-numeric characters, and therefore, cannot be parsed to a number, the result of

this expression will be the value NaN (Not a Number). Note that NaN is not considered

an error and program execution continues normally. If the NaN value occurs in a Boolean

context then it will be implicitly converted to a Boolean false.

…
x = 3 - "hello"; //JavaScript assigns x the NaN value
if (x) { //no exception here, x is converted to false
 …

Figure 3.2: An example of a mixed type arithmetic expression in JavaScript in which no

exception is raised

However, execution with values such as NaN is not permitted in all dynamically typed

languages; Python for example, throws an exception.

3.3 JavaScript Value Types and Variables

In JavaScript, the simple value types include the three value types: number, Boolean, and

string. It also contains two special value types null and undefined. Everything else is

considered an object type. Table 3.1 lists these types.

47

number: 64-bit floating point numbers as well as integers. It also includes the special

values NaN (Not a Number) and Infinity (e.g. divide by zero).

Boolean: A value type which is either true or false value.

string: A series of zero or more characters inside quotation marks.

null: A value type that can have only the value null.

undefined: A value type assigned to uninitialized variable or undefined variable used

in the program.

object: Properties and methods of an object. Also, arrays, functions, and prototypes

are objects

Table 3.1: The different types in JavaScript

Usually, variables are defined using the var statement. Variables which are not explicitly

initialized or used in a program without defining them are given the value undefined. A

variable can be set to a value of any type of those listed in Table 3.1.

3.4 Operators and Implicit Type Conversion of Value Types

Table 3.2 lists the most common operators available in JavaScript. These operators allow a

wide range of implicit type conversions and are influenced by the context. Therefore, the

result produced by using these operators depends on the current type of values of

operands. For instance, the + operator is used for both numeric addition and string

concatenation. If both operands are numbers, then the + operator performs addition. If

any of the two operands is a string value type and the other is not, then the non-string

value is converted to a string type and the result is concatenated. Figure 3.3 shows the

possible conversion by using some mathematical operators.

48

Operators

Arithmetic Assignment comparison logical Bitwise Special

+ = == && & ?:

- += != || ^ delete

* -= === ! | in

/ *= !== << instanceof

% /= > >> new

++ %= < <<< this

-- >= ~ eval

 <= void

Table 3.2: The most common operators used in JavaScript

5 + "4"; // "54"
1 + true ; // 1 + 1 = 2
null + false; // 0 + 0 = 0
null + true; // 0 + 1 = 1
null + undefined; // NaN
new Date() + 86400000; // Tue Apr 19 12:30:52 UTC+0100
 20118640000
5 - ""; // 5 – 0 = 5
null - "5"; // 0 – 5 = -5
"5" * 5; // 25
5 - "55"; // -50
5 - "abc"; // NaN

Figure 3.3: Some examples of type conversion in the context of mathematical operators

During execution, JavaScript will check the types of values as particular operations are

applied and attempt to convert types as necessary. For example, if a string is used in a

numeric context, JavaScript will attempt to convert it to a number. If that string contains

one or more nonnumeric characters, then it cannot be converted to a number and the result

will be NaN. Also, if, for, while and do-while statements require Boolean values

in their condition part, so if other types are present then they are converted to Boolean.

49

The automatic conversions are wide ranging. Arrays containing a single element are

automatically converted to the element. Consider, for example, the code below:

var x = [5];
document.writeln(x - 1); //produces 4
document.writeln(x + 1); // produces “51”
x[1] = 9;
document.write(x + 1); // produces “5,91”
document.write(x - 1); // produces NaN

Although the array x contains a number, the use of the + operator will result in

producing a string (i.e., concatenate x with 1). On the other hand, if the operator is an

arithmetical operator other than the + operator and x can be parsed to a number then the

result will be a number. However, this is not the same if the array contains two or more

values. For example, if x[1] = 9 then subtracting 1 from x will result in NaN.

In general, JavaScript will automatically perform implicit conversions into values suitable

for the context. Table 3.3 shows a set of equivalent values that are used in different

contexts.

50

Table 3.3: Values and type conversion in JavaScript based on context

3.4.1 The “==” and Other Comparison Operators Conversions

JavaScript allows variables and values of any type to be compared. It applies special rules

of type conversion when comparison operators are used. Consider, for example, the two

conditional expressions

"0" ? true : false and

"0" == true ? true : false.

The first argument to the conditional expression (expression in front of the ?) is evaluated

as a Boolean. If true, the result is the value in front of the ‘:’ otherwise the result is the

value after the ‘:’. The result of the first expression above is true because when a

string is converted to a Boolean, only the empty string is false. Now consider the

51

second conditional expression. Since "0" converts to true, we would expect "0" ==

true to be true. In fact this expression is false. In the evaluation of the expression

"0" == true. The string "0" is not converted to a Boolean but instead it is converted to

a number, i.e. 0. true is also converted to a number, i.e. 1, and hence the result is

false. In JavaScript, the type conversion rules depend on the context in which the value

occurs. In particular, in the context of a == expression, the operands are converted to

numbers, in the context of a conditional expression or if-statement, the operands are

converted to Booleans. Table 3.4 lists the possible type conversion rules with the

comparison operators. Note that == is not transitive since

"" == 0 is true because "" converts to number 0,

0 == "0" is true

Using transitivity, i.e. a = b and b = c => a = c then from the above two expressions

we would expect that "" == "0" is true. Since they are both strings, no conversion

takes place and so the strings are compared directly so

"" == "0" is false.

true is converted to the number 1.

false is converted to 0.

If both or any of the operands are NaN, the equality operator returns false.

undefined and null are equal, when compared in an expression.

undefined and null are not equal to 0 (zero), "", or false.

compare a string and a number, the string is converted to a number

compare an object and a number, the object is converted to a number

compare an object and a string, the object is converted to a string

compare two objects for equality, the addresses are compared

Table 3.4: Type conversion rules in the context of the comparison operators

The relational comparison operators in JavaScript, i.e. == != === !== > < >= <=,

compare strings using lexicographical ordering and numbers using number ordering. If a

52

number is compared to a string then they will be converted to the same type before

comparing the two values. However, the same is not true if a number is compared with

a string using === or !== operators. For example, "10" === 10 will return false

because the two values are not of the same type. The === and !== operators are strict and

do no-type conversion.

3.4.2 The Logical Operators && and || Conversions

The logical operators in JavaScript can be used with any type. They expect Boolean values

and if not, the operands are converted to Boolean. Though the logical operators convert

the operands to Boolean, they do not return a Boolean value but the value of their operand

itself is returned. Figure 3.4 shows some possible conversion by using some logical

operators.

var y = 0 || "8"; // y is equal to "8", 2nd operand returned

var y = "5" || "8"; // y is equal to "5", 1st operand returned

var y = 0 && 8; // y is equal to 0, 1st operand returned

var y = "8" && 5; // y is equal to 5, 2nd operand returned

var y = "5" && "8"; // y is equal to "8"

var y = 8 && "abc"; // y is equal to "abc",

var y = false && "8";// y is equal to false

Figure 3.4: A sample of type conversions using && and || logical operators

3.5 Object Type

There are different sub types of objects that can be used in JavaScript such as arrays and

functions. The following discussion will briefly explain the use of these types.

53

3.5.1 Objects in JavaScript

JavaScript allows the developer to use built-in objects as well as define his own objects. In

JavaScript, an object is an unordered collection of name-value pairs. The members of an

object can be any type and function members are called methods. There are no classes in

JavaScript. To create an object, an object literal expression is used. For example,

var address = {num: 22,
 street: “Oxford”,

 city: “London”}

In order to access (i.e., get and set) the properties of an object, one can use either the “.”

(dot) operator or the “[]” operator.

var houseNum = address.num;
var streetName = address[“str” + “eet”];

The dot operator expects an object on its left and a property name on its right. An

expression can be used with [] operator, e.g. o.[a+b], where a+b should produce a

string which can be a name of a property of object o. Objects are dynamic; new members

can be added or existing members can be deleted at run-time.

In JavaScript, member access expressions are calculated at run-time. A possible error is to

use the wrong member or property name. If the wrong name is used in the context of an l-

value (l-value means left-hand-value i.e. the target of an assignment), and the name is not

an existing property name then a new property is implicitly added to the object and

becomes the target of the assignment. If the wrong name is used in the context of an r-

value (r-value means right-hand-value, i.e. the value to be assigned) and the name is not

an existing property name then the property value has the value undefined.

3.5.2 JavaScript Arrays

An array is an ordered collection of values. Using an array, a list of different types of

values can be grouped in a single variable. In JavaScript, arrays are considered of an

54

object type. Arrays in JavaScript are dynamic and not typed. Unlike many other

programming languages, neither the length of an array nor the types of values is fixed. An

array can contain numbers, strings, Booleans, objects, functions, arrays or a mixture of

them. Arrays have functions and properties associated with them. For example, length,

pop(), slice(), etc.

Due to the dynamic capability of arrays, arrays can grow or shrink at run-time; a new

element can be added or an existing element can be deleted. The first array element is

indexed by 0, but string and negative indices can also be used to index the array. In this

respect an array is similar to an object in that elements are indexed by name rather than

position.

3.5.3 Prototype Object

There are no class objects in JavaScript. In order for a set of objects to share the same set

of properties, the common properties are placed in a shared prototype object. Every object

that shares the common properties has a reference to the single prototype object. For

example, all array objects have a function property concat(Array) which creates a new

array by concatenating the current array with an argument array. This function is a

property of the Array prototype object. Every object has a property that refers to the

prototype object for that object.

When an object is created it is always created as an instance of an existing object rather

than with a class. The prototype property of the new object is set to be the same object as

the prototype object of the existing object. Like any object property, the prototype

property of an object can be set to any value. When attempting to retrieve the value of a

given object property, if the property is not defined directly in the object then the

properties of the prototype are searched for the given property. This is known as

prototypical inheritance. New properties can be added to the prototype object in which

case all objects that link to that prototype object can “inherit” the new property.

Consider, for example, the code

55

var circle = {radius: 2, fill: true};
circle.prototype.getArea =
 function() {
 return (3.1459 * this.radius * this.radius);
 }

The above code will create an object named circle with a radius property set to 2 and a

fill property set to true. The created object can be represented graphically as in Figure

3.5. As shown above, the circle object has a link to a default prototype object, Object.

The object Object() contains several properties and methods that can be referenced and

accessed, by prototypical inheritance, from circle.

circle

radius 2

fill true

prototype

Object

…

getArea = function() {...}

Object.Prototype …

constructor Object

Figure 3.5: The graphical representation of creating an object

Properties can be added to the prototype object. In this example, an area function is

added. For example,

circle.getArea() // has the value 3.1459 * 2 * 2

Because the getArea()function was added to the Object prototype, every object that links

to this prototype “inherits” the getArea()function, irrespective of whether the property

radius is defined for that object.

Because the prototype property of an object can be set like any other property, a prototype

object can itself have a prototype. In general, every JavaScript object inherits through a

chain of prototypes. The Object.prototype is the ultimate base prototype for all

56

prototypes. If a property of an object is to be accessed, JavaScript first checks to see if the

property is defined directly in that object. If it is not, it then checks at the object’s

prototype to see if the property is defined there. If not, then it continues checking at that

object’s prototype for the property until reaching the Object.prototype.

3.5.4 Function Object

JavaScript functions are objects with executable code, i.e. a function, associated with

them. A function definition consists of a function statement and a block of statements. A

function is executed by an event or by a call to the function. When a function is called, it

is not required that you pass the same number of arguments with which it was defined.

Extra arguments are ignored. Missing parameters are given the value undefined.

3.6 Other Dynamic Programming Languages

In addition to JavaScript, there are other dynamically typed languages. A number of these

languages are also widely used for scripting and web computing. These languages include

PHP, Python Perl, Ruby, etc. Some of these languages are prototype-based, as is

JavaScript, but others are class-based. With some languages that are class-based, class

members can be added and deleted at run-time. This makes them very similar to

prototype-based languages in terms of how objects can be mutated. The main difference

between a class-based object and a prototype-based object is that in the prototype, each

object instance contains a copy of both data and function (method) members.

Although dynamically typed languages are soft typing, some languages check the type to

ensure that no-type error may occur (e.g. Python), whereas other languages such as PHP,

Ruby, Perl and JavaScript are generous and usually allow implicit type conversions to

occur among different data types in a program at run-time. Due to the fact that the typing

system in the most of these languages is common to JavaScript, the mutation analysis

approach introduced in this thesis can also be applied to programs written using other

dynamically typed languages. Of course, some of these languages use different types of

57

values than those in JavaScript. In this case, a proper set of mutation operators should be

introduced for the mutation analysis of these new types.

58

Chapter 4: Static Mutation of Dynamically Typed Programs

4.1 Introduction

This chapter collects a set of mutation operators (or mutations) similar to the traditional

mutation operators used in the mutation of statically typed programs. These mutations are

the mutations that can be applied by making a small change to the syntax of a program.

These include the insertion of functions, e.g. unary minus, abs(), logical negation etc.

They also include the replacement mutations (i.e., replacement of operands and operators).

In a dynamic program, the choice of suitable mutation operators is influenced by the many

implicit type conversions that are present in JavaScript. Because of the automatic type

conversions, some of the traditional mutation operators become equivalent to each other

and hence redundant.

This chapter also describes a static approach to the mutation of dynamic programs that is

based on making small changes to the program based only on the syntax of the program;

no execution of the program is done to gain type information. In this static mutation

approach, mutations are made to all the program elements where some syntactic situation

is present.

4.2 Insertion Mutations

An insertion mutation operator inserts a function around a variable. So for example, x =

x + 3; can be mutated to x = abs(x) + 3;

when the abs() function is applied to the variable occurrence x. The variable occurrence

cannot be on the left-hand-side of an assignment, which is called an l-value context.

When the value of a variable is used rather than written, e.g. on the right hand side of an

assignment, it is called an r-value context and insertion mutations are applied to variables

in an r-value context.

59

The possible operator insertion mutations are the number operator insertions, the Boolean

operator insertion and the string operator insertion. The number insertion mutations are:

add1: x mutated to x + 1
sub1: x mutated to x - 1
neg: x mutated to -x
abs: x mutated to Math.abs(x)
negabs: x mutated to -Math.abs(x)
zpush: x mutated to zpush(x), zpush(x)= x for all x,

 but mutant killed if x equals 0

The numbers 0 and 1 have a special significance in arithmetic expressions and the number

mutation operators recognise this. This justifies the add1 and sub1 operators. The

zpush operator insertion was introduced in the Mothra mutation system (King and Offutt

1991). If the number is non-zero then zpush does nothing, i.e. returns the argument. If

the argument is zero then the mutant is killed. The purpose of this operator is to force the

tester to write a test that sets the value of a variable to zero. If this is not possible for the

program under test then the mutant cannot be killed and is an equivalent mutant.

In the case of dynamic programs, non-numeric values can be converted to numbers and

some of these values (“0”, false or the empty string) can be converted to zero. This

leads to the question of how zpush should behave with values that are not numbers but

can be converted to number. If zpush allows values to be converted to number before

testing for zero (i.e. it uses x == 0) then it will be easier to kill zpush mutants in

general. This is because the tester is being forced to write a test that will set a variable to

zero, false or the empty string. If instead the definition of zpush does not allow its

argument to be converted to number (i.e uses strict equals, x === 0) then the zpush

mutants are more difficult to kill.

The use of the strict equals test for zero will produce more equivalent mutants than if the

zpush used a non-strict test for zero. Any mutant where no input can set x to a number

will be equivalent. In the design of mutation operators it is important to avoid mutation

operators that generate many equivalent mutants. Equivalent mutants cannot be killed and

usually the tester must detect them manually by inspection. This is time consuming. In

60

the case of the use of the === test for zero in zpush, compared to the == test, all the

additional equivalent mutants will be equivalent because no input will set the zpush

argument to a number. The tester should find it easier to identify this kind of mutant

because all that is necessary is to calculate the type of the zpush operand rather than its

value.

For this reason, the additional type equivalent mutants produced when zpush uses the

=== test for zero are not considered a large amount of extra work for the tester. In

addition, the use of the === test for zero in zpush has the benefit that it forces the tester

to write a more discriminating test case. For these reasons, the thesis proposes that zpush

uses the strict equals test for zero.

The single Boolean insertion operator is:

logneg: logical negation

so for example,

if (x && y) { ... mutated to if (!x && y) { ...
if (x) { ... mutated to if (!x) { ...

Notice that the ! operator converts its argument to a Boolean before negation.

String mutations are not commonly used in existing statically typed mutation systems.

Strings are heavily used in JavaScript, however, and so string mutation operators are

suitable for this language. Following the example of the number mutations, the empty

string is considered a special string in the same way that zero is a special number. Using

the zpush number mutation as an example, this thesis defines deadOnEmpty(x)

which returns x unless x is the empty string, in which the mutant is killed.

 deadOnEmpty(x): mutant is killed if the argument x is the empty string

61

The deadOnEmpty(x) mutation operator forces the tester to write a test that sets the

argument variable x to the empty string. If the program under test does not allow this

then the mutant is equivalent to the original program. Again, if x cannot be set to a

string then deadOnEmpty(x) is an equivalent mutant. The previous discussion about

the equivalent mutants produced by zpush also applies to deadOnEmpty but to the

string type. This means that deadOnEmpty(x) is defined as x === "" and not

defined as x == "". If the argument to deadOnEmpty cannot be set to a string then

deadOnEmpty is an equivalent mutant.

The set of possible insertions mutations have been described but not all of them would

necessarily be applied to a variable occurrence because of the context of that variable

occurrence. The way the context of the variable occurrence determines which mutations

are applied is explained later in this chapter.

4.3 Replacement Mutations

Replacement mutations can be divided into mutations that replace operators and mutations

that replace operands.

4.3.1 Operator Replacement

Operators are typed. For example, arithmetic operators are applicable only to numbers. To

avoid type-mutations, arithmetic operators should be replaced only with other arithmetic

operators. This will not introduce type-mutations except that the + operator is overloaded

between number addition and string concatenation. Any arithmetic operator (except +) is

replaced with each other arithmetic operator. Replacement of the + operator is more

difficult. Without type information, it is not known if + is an arithmetic operator or a

string operator and for some inputs it could be both during a single program execution.

Sometimes the type of the + operator can be determined from the syntax of the

program. For example in x + "hello" + is always a string operator. A + operator

is replaced with other arithmetic operators only if the context in which the operator occurs

62

is not a string context. Later in this chapter, the thesis shows how type-mutations and

redundant mutations can be avoided by considering the context in which the operator or

operand occurs.

The logical operators || and && are replaced with each other only. The relational

operators <, <=, >, >=, ==, !=, ===, !== are replaced with each other only. In this

way type-mutations can be avoided.

The arithmetic assignment operators, e.g. +=, -=, *=, etc. are replaced with other

assignment operators. The = operator is not replaced with the arithmetic assignment

operators.

Each unary operator, e.g. !, -, ++, --, etc. is replaced with another unary operator.

In addition, ++x is replaced with x++, --x is replaced with x-- and vice versa. There is

no insertion of ++ and -- operators. In a mutation system for C (Agrawal et al. 1989), the

increment and decrement operators, ++ and --, are inserted before or after a variable to

mutate an expression. Although JavaScript contains these operators, they are not used

very much because JavaScript does not use pointer arithmetic. In addition, the operand

mutation performed by the add1 function and the sub1 function has the same necessity

condition as the prefix operators. The means that

add1(x) and ++x

return the same value. However, they are not equivalent to each other because ++x

changes the value of x.

4.3.2 Operand Replacement

Replacement of operands includes replacement of operands with literals and the

replacement of variables with variables as explained in the following subsections.

63

4.3.2.1 Replacement with Literal

There is the question of whether, when a literal is replaced with another literal, it should

the literal be of the same type, number, Boolean, string, etc. It is obviously possible at

compile-time to check that when a literal replaces a literal it has the same type. In

addition, it is more likely that a competent programmer will mistake one literal for another

literal only if they are of the same type. For these reasons, this thesis proposes that type-

mutation of literals is not done. This means that when a literal replaces a literal it must

have the same type.

There are some special cases with literals. If two literals are equal then they are not

replaced because obviously the mutant is an equivalent mutant. Two values that may be

held in program variables are undefined or null. In deciding whether to replace

literals with undefined or null it should be considered that the replacement of a literal

with undefined or null is likely to produce a reasonably large change in the input-

output behaviour of the program and the mutant should be easily killed, i.e. incompetent.

An important objective of a mutation method is to avoid incompetent mutants and for this

reason literals are not replaced with undefined or null.

The literals 0 and 1 are often used in programs. Even if these literals do not occur in the

function that is to be mutated they are still used to replace variables and other number

literals. This means that any number literal can be replaced with 0 and 1. In this thesis, the

two mutation operators which replace a variable or literal with 0 or 1 are called c0

(constant zero) and c1 (constant one).

There are two Boolean literal replacement mutation operators. The cFalse operator

replaces the argument operand with the literal false. The cTrue operator replaces the

argument operand with the literal true.

64

Operands can be replaced with string literals that occur in the program. There is a single

string literal replacement operator (cEmpty) which replaces an operand with the empty

string.

In addition to the primitive type literals, number, Boolean and string, JavaScript has object

and array literals. An object or array literal can be quite large. The aim of mutation is to

make small changes to a program and so replacement mutations should also be small

changes. Instead of replacing a complete object literal, only the variables and primitive

data type literals used in the definition of the object literal are replaced or used for

replacement. This rule also applies to array literals. In general, the value of an object

literal member can be any expression. The leaf members of object literals are values of the

primitive data types, number, Boolean and string. Consider, for example, the code given

below:

var days = [“mon”, “tue”, “wed”, “thu”, “fri”];
 // replace “mon” with “”, “tue”, ... “sizes”,

var small = 3; // replace with 0, 1, 4, 7

var o = {name: “sizes”, // replace with “mon”, etc.

 little: small,
 medium: small + 4, // replace with 0, 1, 3, 7
 large: small + 7}; // replace with 0, 1, 3, 4

In the above code, the number literals would replace each other and the string literals

would replace each other. Each string in the days array is replaced with every other

string. The complete array literal or the complete object literal is not replaced.

JavaScript contains a delete operator that deletes an element of an array or object. The

delete operator could be used as a mutation operator but it should be used to make only

small changes to the program otherwise the mutant is too easily killed. A possible

mutation operator is to delete the leaf elements of an array or object. In the following

example code

65

var residence = {house: 27,
 street: “Bayes”,

 tel: {code: 01536,
 num: 519146},
 };

the three numbers and single string could be deleted to make four mutants. The

properties, house, street, code and num would each be deleted to create different

mutants. An example property deletion mutant is

var residence = {street: “Bayes”,
 tel: {code: 01536,
 num: 519146},
 };

The value of tel property is not primitive and so the tel property is not deleted.

A very similar result to the delete operator can be achieved by setting a leaf element of an

array or object to the value undefined. For this reason, no delete mutation operator is

defined. Instead the replacement of a leaf element of an array or object with other

variables and literals is considered later as a replacement mutation.

4.3.2.2 Variable Replacement with Variable

If x and y are two variables that occur in a function then the variable replacement

mutant is generated by replacing an occurrence of x with y or replacing an occurrence

of y with x. The replacement is done only if the replacement variable is in scope in the

new location. JavaScript has two scopes, local or function scope and non-local or global

scope. In a function, a local variable is declared with the var statement. The scope of the

local variable begins at the var statement and ends at the end of the function. For

example,

66

function f(x) {
 var k = 0; // 0 replaced by 1, x. m not in scope

 k = x; // x replaced by 0, 1, k and k by x. m not in scope

 var m = k + 1; // k replaced by 0, 1, x. 1 replaced by 0, k,x.

 ... x ... ; // x replaced by 0, 1, k, m. m in scope

}

The variable occurrence that is used to declare the variable in a var statement is not

mutated. For example, in the above example, k in var k = 0; and m in var m = k

+ 1; are not mutated. If the variable that is declared in a var statement is mutated then

it has the effect of removing the original declaration. Removing the declaration of a

variable is likely to have a large effect on the behaviour of the program and the aim is to

avoid mutants that are likely to be too easily killed, i.e. incompetent.

In general, a variable can hold a value of any type so if a variable replaces a variable or

literal, the type of the replacement may not be the same as the type of the original.

Because of the implicit type conversions this is not necessarily a program error; it will not

necessarily raise an exception and stop the program execution. If a variable occurs in a

specific context then the context may indicate the probable type or that a type conversion

will be applied if the variable is not of the type required by the context. By making the

mutation operators sensitive to the type context of an expression, the number of type-

mutations is reduced. The next sections describe how this is done.

4.3.2.3 Other Possible Mutations

JavaScript allows a function to be invoked without checking at compile-time, the number

of arguments that are given in a function call. It is, however, possible to call a function by

passing any number of arguments that may not be the same as the number of parameters

of a function. For example, if the number of parameters exceeds the number of arguments

in a function call, then the ignored parameters are assigned the “undefined” value. On the

other hand, if the number of arguments is greater than the number of parameters, then the

extra arguments will be excluded without causing an error in the program.

67

It is, however, not obvious that the mutation of the arguments in a function call, perhaps to

delete arguments, is a good way to detect errors in the program. In some cases,

discovering missing arguments can be considered as a direct static analysis problem.

Furthermore, functions in JavaScript can be generated and added to the program at run-

time. Thus, the use of static analysis may not be possible to determine all cases of missing

arguments.

JavaScript has only function and global scopes. A variable can be used without the need to

declare it in the program. If the name of that variable is misspelled later in the program,

then this will lead to the implicit declaration of a new variable. Moreover, inside a

function, using an undeclared variable will introduce a global variable rather than a local

variable. In order to declare a variable in the scope of a program or a function, it is

necessary to precede the variable name by the keyword var. This suggests an obvious

mutation operator in this language feature. The operator would remove the declaration of a

variable that had a declaration and add a declaration for a variable that did not. It is not

clear, however, how competent such mutants would be. In addition, it is reasonable to

adopt a coding rule in which all variables are declared. Tools such as JSLint (Crockford,

2002) are available to enforce such rules. Given the doubtful benefit of variable

declaration mutation, and the accessibility of tools to enforce declaration, variable

declarations are not considered suitable for mutation.

4.4 Use of Type Context to Selectively Apply Mutation Operators

A syntactic approach towards mutation introduces the possibility of producing type-

mutations. Consider a mutation which is a variable occurrence for variable replacement.

This could lead to a variable occurrence holding a number replaced with a variable

holding a string. This is a type-mutation because at the mutated expression, during

execution, the mutant differs from the original program in the type of the value held in the

mutated variable occurrence.

68

Although in general a JavaScript variable can hold values of any type, in some cases, it is

possible to determine that a value will either be of a known type or will be converted to

that type. For example, in the code

x - y

the types of x and y may not be known, but because of the subtraction operation it is

known that either they hold numbers or that the values they hold will be converted to

number. If the construction of mutants is syntax directed then there is the possibility to

recognise the context of a variable occurrence because the context can be recognised from

the syntax.

In general, if the type context of an operator or a variable can be known at compile-time

then this information should be used to avoid replacement mutations that do not convert to

the type of the context.

4.4.1 Checking the Type and Context

To avoid type-mutations and redundant mutations it is necessary to know the type of a

value held in a variable occurrence and also the context of the variable occurrence. To

determine the context of a variable occurrence is relatively easy. The context is

determined by the local syntax of the program. When the program is compiled the syntax

tree for the program is constructed. At any variable occurrence node in the syntax tree it

is possible to move to the parent node in the tree and the parent of that parent if necessary

to determine the language element in which the variable occurrence occurs.

To determine the type of a value held in a variable occurrence is not as easy as checking

the context. One way to try to discover the type of a program element is to do type

inference (Duggan and Bent 1996). If the types of some elements are known then it is

possible to calculate the result types of expressions in which they occur; for example, if x

and y are numbers then x + y must be a number. This relies on some initial type

information and typed operators. In general, type inference uses data flow analysis (Rapps

& Weyuker 1982) to calculate the path of variable occurrences through which data values

69

are transferred during execution. For example, the third occurrence of the variable x in the

code below is in an ambiguous context, it is either number or string. From data flow

analysis it can be calculated that the value in the third occurrence of x is equal to the value

assigned in the previous assignment statement and so is a number.

x = x - y; // x in number context

. . . // no assignment to x or y in these statements

x + y // x in number or string context but type is number

Type inference is most effective in strongly typed languages. Languages that use type

inference are O’Caml (Leroy et al. 2002) and Haskell (Duggan and Bent 1996). In these

languages, all variables have a known type at compile time but it is not necessary to

declare the type of variables because the type is inferred. Depending on the operations

applied to a variable, the inferred type is either a simple type, e.g. int or a polymorphic

type, .e.g. List<T> where T is the type parameter and can be any type. In these

languages no-type conversions are allowed.

Type inference works from known types but in JavaScript variables are not typed so less

type information is known than in a strongly typed language. This makes type inference

in a language like JavaScript more complex and not so accurate. Anderson (Anderson

2006) defines a static type inference system for a subset of JavaScript. This subset

includes: functions that are used to create objects, members of objects, and members that

can be added to objects dynamically, but does not include: libraries of functions, dynamic

variable creation, functions as objects, dynamic deletion of members, and prototyping.

The objective of the Anderson type system for JavaScript is to find the most specific type

for a variable so that it can be compiled in the most efficient way. This is the most

specific type for all the occurrences of the variable. For mutation analysis different type

information is required. It is necessary to know the most specific set of types for each

variable occurrence because mutations are made at specific occurrences not to the variable

as a whole.

70

In this thesis, it was decided to limit the type analysis to context analysis and not to use

type inference. The research necessary to modify a type inference system such as the

Anderson system would be data flow analysis research and different from the mutation

analysis research which is the aim of this thesis. Another reason for not trying to use type

inference is that type inference and data flow analysis is a static technique and cannot take

account of impossible to execute paths. The data flow analysis has to assume that data can

flow along all the control flow paths present in the program. In practice, some paths may

be impossible to execute. For example, an if-condition may check for an exceptional

condition that should never occur in a correct program. In general, a static technique is

not as accurate as a dynamic technique which uses information from the execution of the

program with specific inputs.

It is relatively easy to check the context of a variable because it depends on the syntax of

the program and can be checked without execution of the program. An algorithm for

finding the context of an operator or operand is included in the Appendix A. This means

that some redundant and type-mutants of a program can be avoided without executing the

program or any of the mutants. This is a relatively fast way to eliminate type-mutants and

redundant mutants.

4.5 Context Sensitive Mutations

This section gives rules for the application of the insertion and replacement mutation

operators described in the previous sections. The rules depend only on the syntax of the

program and they make use of the context.

4.5.1 Number Context Mutations

A number is obviously in a number context. A variable occurrence is in a number context

if at compile-time it can be known that it will be converted to a number if it is not already

a number. For example, the variables x and y are in a number context in the following

expressions:

71

x - y
x * y
x / y
x % y
x > 0 // at least one argument is a number
x != -1 // at least one argument is a number
x++, x--, ++x, --x,
Math.abs(x), Math.floor(x), etc.
x = x – 3;

The variable of the left of an assignment is in a number context if the expression on the

right of the assignment is in a number context. In general, the variable of the left of an

assignment is in the context of the expression on the right of the assignment.

The operator + does not indicate a number context because + could be a string

concatenation. If an operator is applied to literals then the types are known and so it is

possible to determine the type of the operator. For example, in the code

x + “world”

the + operator is a string concatenation because whatever the type of x, it will be

converted to a string. In general, the + is in a number context if both operands are in

number contexts. The + is in a string context if at least one of the operands is in a string

context. For example, in the code

(a – x) + (y – b)

the + is in a number context because the two operands of + are both in number contexts.

If the + is not in a number context or a string context then it is not in any specific type

context.

The non-strict relational operators e.g. <, <=, >, >=, ==, !=, are in a string context if both

of the operands are in a string context. The operators are in a number context if at least

one of the operands is in a number context. In Chapter 3 it was explained that "" == 0

is true because "" converts to number 0. If the operands are both strings then no

conversion takes place so "" == "0" is false. In addition, no conversion takes place

72

for the strict equals test, === and !==. If the operator is not in a string or number context

then it is not in any specific type context.

For an operand in a number context, the mutations are as follows: The number insertion

mutations are applied to number literals but not all of the number insertion mutations are

applied to all the number literals. Depending on the literal value, some mutations are

equivalent or equivalent to each other. For example, if the literal is 0 then abs(0) = 0,

so this mutant is equivalent to the original program. If the literal is 0 then add1(0) = 1,

so this mutant is equivalent to the c1(0) = 1 mutant. Where two mutation operators

produce mutants that are equivalent to each other it is not necessary to apply both of them,

one is sufficient. The number literals for which not all the number insertion operators are

applied are given in Table 4.1.

Literal Insertion mutation operators applied

 -1 sub1
0 sub1
1 add1, neg
2 add1, neg

Table 4.1: For the literal numbers listed, the number insertion mutation operators that are

not equivalent or equivalent to each other when applied to number literals

shown. Assumes argument also replaced with constant 0 and 1 where not

equivalent.

add1 is equivalent to c0 for the -1 argument because the result is 0 and that mutant is

also produced by the c0 mutation operator. abs and negabs are not applied to number

literals, because if the literal is non-negative then abs will be an equivalent mutant and if

the number is negative then abs will be the same as the negabs mutation.

Only number insertion mutations are applied to variables in a number context. There is no

benefit to be gained from applying Boolean mutation operators cFalse and cTrue in a

number context. cFalse replaces an operand with a false literal. The false will be

converted to 0 in a number context. This is the same result as c0 which replaces an

73

operand with the 0 literal. This means that mutants produced by cFalse and c0 are

equivalent to each other in the number context. The mutants produced by the cTrue

operator and the c1 operator are also equivalent to each other in the number context.

The mutants produced by the logneg operator are not equivalent to any other mutant

produced by the number mutation operators. The logneg operator can produce mutants

that are partially equivalent to mutants produced by other number mutation operators.

Recall the example from chapter 2 of two mutants that are partially equivalent to each

other, i.e.

original mutant1 mutant 2
x = x - 3; x = c0(x) - 3; x = logneg(x) - 3;

providing that there is an input that sets x always to a non-zero number or any other

value which converts to true. In this situation logneg(x) is always logneg(true)

which is the same as false which in an arithmetical expression is converted to 0 so c0

and logneg can produce mutants that are partially equivalent to each other.

In order to detect that two mutants are partially equivalent to each other it is necessary to

detect that the test produces the same output for both mutants. Sometimes this can be

done by checking the values that the test produces at the argument to the mutant. For

example, in the previous example mutants, it is necessary to test if a test always sets the

argument x to a non-zero number or any other value which converts to true, then the

test will produce the same output for both mutants. The value produced in a variable

during execution with a specific test cannot be checked statically so it not possible to

check if the logneg mutant is equivalent to the c0 mutant. In the next chapter a

dynamic method for mutation analysis is presented and in that method the values of

arguments to mutation operators are checked at run-time. With dynamic mutation

analysis, it can be checked when the logneg mutant is equivalent to the c0 mutant.

Because the logneg may not be equivalent to any number mutation operator this is not

by itself a sufficient reason to apply the operator in a number context. Notice that when

74

the context is number the logneg operator has a function which maps its argument from

non-zero to zero and from zero to 1, i.e.

logneg(non-zero) = logneg(true) = false = 0
logneg(zero) = logneg(false) = true = 1

If logneg is included as a number mutation operator then it should be justified because it

produces a change to the behaviour of the original program that is sufficiently different

from that produced by other number mutation operators. In fact, the non-zero part of the

logneg function is performed by the c0 function and the zero part of the logneg

function is performed by the c1 function. For this reason, it is considered likely that tests

that kill the c0 and the c1 mutants will also kill the logneg mutant applied to a

number.

The string mutation operators are not considered very beneficial mutations for a variable

in a number context because deadOnEmpty is likely to be an equivalent mutant since a

variable in a number context is unlikely to hold the empty string. Also replacing a number

context variable with the empty string is the same as replacing the variable with 0 (the

empty string is converted to 0) and c0 already does that mutation so c0 and cEmpty are

equivalent to each other. This means that any test that kills the c0 mutant will also kill

the cEmpty mutant and vice versa.

If a variable is in a number context then the only literal replacements are number literals.

When replacing an operand with a variable the context of the replacement variable should

be considered. The type context of a variable occurrence indicates that the variable either

will hold a value of a given type or the value will be converted to a given type. It does not

indicate the type of the value in the variable occurrence. However, it may be used as a

heuristic for the type of the value in the variable.

In the simple case, all the occurrences of a variable are in the same single type context. In

this case, it is reasonable to assume that the type of the context is the type of the value in

75

the variable. For example, if all occurrences of a variable y are in arithmetical

expressions, i.e. the number context, then it is sensible to assume that y holds a number.

A variable can have more than one occurrence and so the variable can occur in more than

one type context.

For example,

if (y > 0) { // y in number context
 . . .
 y + "hello"; // y in string context
 . . .
}

The above code shows occurrences of y in number and string context. There are a

number of possibilities for the possible types of values held in each occurrence of y. The

first occurrence of y probably holds a number but the second may hold any type because

they all convert to string although the second occurrence probably does not hold an object

or a Boolean.

From experience of JavaScript programs seen during the research for this thesis, most

variables that at some occurrence hold a value of a simple type, number, Boolean or

string, hold the same type at all occurrences, i.e. hold only one type of value.

If this single type assumption is made for the code example above then it does not restrict

the possibilities very much for the type of y. Thus, y could still hold a number, a

Boolean or a string. A Boolean is probably unlikely because after conversion the string

"true" or "false" would be concatenated with another string and this does not seem

to be a very useful operation but y could still be a number or a string.

The approach to static mutation proposed in this thesis is that the type context should be

used to avoid mutations that are known to be type-mutations or have a high probability to

be type-mutations and to avoid redundant mutations. If the variable occurrence x to be

76

replaced is in a number context then it should not be replaced with a variable y that

occurs only in string contexts. From the single type assumption, the variable y probably

holds a string and only a string.

If the variably y is in number and string contexts then the probability of a type- mutation

is lower. There is the possibility that when y is moved to the location of the variable

occurrence to be replaced, x, the replacement variable y will hold only a number. In this

case there is no type-mutation but otherwise a type-mutation will happen. If there is a

reasonable probability that a mutation is not a type-mutation then it is proposed that the

mutation should be allowed. The benefit of allowing the mutation is that if it is not a type-

mutation and difficult to kill, it will force the tester to improve the test set. The benefit

should be balanced against the cost. The cost of allowing type-mutations is not very high.

If the type-mutation is incompetent it will be killed at the cost of some additional

execution time. On balance, the benefit is considered to be higher than the cost.

A variable occurrence x in a number context is therefore replaced with a variable y

providing all the occurrences of y are not in a non-number context. This means that if all

occurrences of y are in one of the context types, Boolean, string or object then y is not

used to replace x. Notice that this means that if there is at least one number context for y

or y is not in any type context then y is used to replace x.

4.5.2 Boolean Context Mutations

The Boolean literals true and false are in the Boolean context. A variable

occurrence is in a Boolean context if at compile-time it is known that it will be converted

to a Boolean if it is not already a Boolean. A variable is in a Boolean context if it is the

single variable expression in an if-statement, a while-statement or a conditional

expression. For example,

77

if (x) { . . .
while(x) { . . .
x ? : “x is true” : “x is false”

Also, a variable is in a Boolean context if it is the single variable expression in a logical

negation expression

!x

or if it is the left operand of a logical && or ||. In JavaScript

x && y is equivalent to

if (x) return y; else return x;

x || y is equivalent to

if (x) return x; else return y;.

In the above examples, y is not in a Boolean context unless it is contained in a

conditional expression or statement. So for example,

c = x && y; // y not in Boolean context, y not converted to Boolean

if (x && y) { // y in Boolean context, y converted to Boolean

Only the Boolean mutation operators are applied to operands in a Boolean context. This

means that Boolean literals are replaced with the opposite literal. A variable that is in a

Boolean context is mutated with the Boolean literal replacement mutations, i.e.

cFalse: replace with constant false

cTrue: replace with constant true

The Boolean insertion mutation, logneg, is also applied to variables in a Boolean

context as given below:

if (x && y) { ... mutated to if (!x && y) { ...
if (x && y) { ... mutated to if (x && !y) { ...
if (x) { ... mutated to if (!x) { ...

Notice that the ! operator converts its argument to a Boolean before negation.

78

Notice that any mutant that replaces a variable in a Boolean context with a non-Boolean

literal is equivalent to one of the mutants produced by cTrue and cFalse. The non-

Boolean literal will be converted to a Boolean constant true or false. These

replacement mutations will also be produced by the Boolean operators cFalse and

cTrue. In more detail, consider the following example of the occurrence of a variable x

in an if-statement condition as in the code

if (x) { . . .

or the code

x && y

If the type of the value in x is not Boolean, it will be converted to Boolean. The mutation

that replaces x with 0 (c0) is identical to the mutation that replaces x with false

(cFalse) because 0 is converted to false. For the same reason, the mutation that

replaces x with 1 (c1) is identical to the mutation that replaces x with true (cTrue)

because 1 is converted to true.

A variable occurrence in a Boolean context is replaced by another variable from the

program unless the other variable occurs only in non-Boolean type contexts. An

exception is that no replacement is done if the result is a Boolean expression containing a

Boolean operator with two equal variables. For example,

x && y does not mutate to y && y or to x && x
x || y does not mutate to y || y or to x || x

These mutations are not done because x && x = x and so it is equivalent to removing an

operand and an operator. This is considered more than a small change to the program and

therefore more likely to produce an incompetent mutant.

79

4.5.3 String Context Mutations

A string literal is in a string context. A variable occurrence is in a string context if at

compile-time it is known that it will be converted to a string if it is not already a string.

For example, the variables x and y are in a string context in the statements below:

x + "hello”
print(x);
y.charAt(index);
x.substring(index, length); etc.

The operator + is in a string context if at least one of the operands is in a string context.

In the code below both + operators are in a string context.

y + (x + "hello”)

The non-strict relational operators e.g. <, <=, >, >=, ==, !=, are in a string context if both

of the operands are in a string context.

The string mutation operator cEmpty is applied to every non-empty string literal, i.e.

replace the literal with the empty string. The string insertion mutation operator i.e.

deadOnEmpty, is applied if a variable is in a string context. The string insertion

mutation is not applied to operands in any other contexts.

The Boolean operators are not applied in the string context. If the argument value to be

mutated is a string then replacement by true and false is not redundant but they

seem to be arbitrary string mutations. The Boolean values as strings, “true” and “false”

are not special strings.

 A variable occurrence in a string context is replaced with any other variable unless that

variable occurs only in any of the non-string type contexts, i.e. number, Boolean or object.

80

4.5.4 Object, Array, Function and Member Context Mutations

There are two versions of the member or property access expression.

x.m

x["m"]

where the identifier m indicates a property of the object x. In the expression x.m, x must

be an object and m is a property of x. Obviously, in x.m the m is fixed at compile

time. In x["m"], m is a computed property access expression and any expression is

allowed in []. In the expression x["m"], x must be an object but it might also be an

Array object. An array is a special kind of object. Arrays in JavaScript need not have

number subscripts but can use named properties like objects because the prototype

inheritance chain from every Array object eventually leads to the Object prototype.

The variable occurrence x in

x.m

is in an object context. The variable occurrence x in

x["m"]

is in what in this thesis is called an Array context even though x might not be an array.

The array context is used as a short name for a computed property access expression.

A function is a special kind of object. A function call expression consists of a variable,

which should have a function object as a value, followed by parentheses, i.e. ()

containing any arguments. The variable x in

x(. . .)

is in a function context.

The variable occurrence m in the expression

x.m

is in a member context. A property of an object can be another object so these definitions

are recursive so for example, in the expression

x.y.m

81

x is in an object context, y is in an object context for m and also in a member context

for x and m is in a member context.

A variable in an object context is not replaced with a literal object. Literal objects very

rarely appear in member expressions. For example,

{house: 27,
 street: "Bayes",
 tel: {code: 01536,
 num: 519146},
}.street

It would be easier for the programmer to write just that part of the literal object accessed

by the property in the member expression, i.e. "Bayes".

If the variable occurrence o is in an object context then it can be replaced with another

variable unless the variable occurs only in non-object contexts, i.e. number, Boolean or

string. If x is in a function context then it can be replaced with y only if y has an

occurrence in a function context. This replacement condition is more strict than the

previous types because a variable that is a function object almost always occurs in a

function call context. This means that if a variable is not in a function call context then it

is probably not a function.

If the variable occurrence m is in a member context, e.g. in the expression x.m, then it

can be replaced only with a variable that has at least one occurrence in a member context.

This replacement condition is more strict because a variable that is a property name can

only occur in a member expression. For example, m can be replaced by n if y.n occurs in

the program.

4.5.5 Any-type Context Mutations

A variable need not necessarily occur in a number, Boolean, string or an object context.

In some contexts, no particular type can be determined and there is no-type conversion

82

that must happen. If a variable is not in a number, Boolean, string, object, array or member

context then it is said to be in the any-type context. For example, in the code

x = y;

both x and y are in an any-type context. In an any-type context, it is more likely that

the variable x will hold a number, Boolean, string or object. x is unlikely to hold an

array because in both an l-value context and in an r-value context an array usually occurs

as an array expression with an index, i.e. x[i]. x is unlikely to hold a function because

a function almost always occurs as a function call expression, i.e. x().

When a variable is not in the context of a specific type it is in an any-type context. The

issue is which mutation operators to apply. One possible choice is that a variable in an

any-type context is not mutated because of the risk of producing a type-mutation. A type-

mutation is likely to be easily killed and so it is likely to have little benefit because it does

not force the tester to improve the test set. Although the benefit is likely to be small there

is an extra cost in the execution of another mutant. The execution cost is relatively low if

the mutant is killed by the first few tests. So the benefit of no mutation is a minor

reduction in execution cost but the risk is that some effective mutants are not generated.

On balance, the benefit is considered to be of higher value than the cost. The approach

proposed in this thesis is to mutate variables in an any-type context with number and

string mutation operators. A variable in an any-type context is mutated by replacement

with number literals and c0 and c1. A variable in an any-type context is also mutated by

replacement with the string literals which includes cEmpty.

The Boolean mutation operators are not applied to operands in an any-type context. The

Boolean logneg insertion operation is not applied because when the context is not

Boolean the logneg operator converts its argument to Boolean. As discussed earlier, in

any context that is not a Boolean context, Boolean mutations are not considered useful.

A summary of the general rule for application of mutation operator to an operand

occurrence is:

83

1. If an operand occurrence is in a type context T where T is one of number,

Boolean, string or object type then the mutation operators for T are applied to the

operand occurrence and the operand occurrence is replaced with program literals

of type T and program variables except those variables that occur only in non-T

contexts.

2. If an operand occurrence is in a type context T where T is one of Array or

Function type then the operand occurrence is replaced only with program

variables of type T. This means that an array only replaces and array and a

function only replaces a function.

3. If an operand occurrence is not in a specific type context then number and string

mutation operators are applied to the operand occurrence and the operand

occurrence is replaced with number and string literals and program variables

except those variables that occur only in non-number or non-string contexts, i.e.

only in Boolean or object contexts.

4.6 Example to illustrate the Static Mutation Method

To illustrate how mutation operators would be applied in a program using the static

mutation method, consider the example program under test given in Figure 4.1. This

program has no purpose but uses variables that hold different types. Suppose that the

occurrence of the variable x in x - 3 is to be mutated.

84

function orig(n) {
 var x = 0, i = 0, r = 0;
 for (i = 0; i < n; i++) {
 if (i == 1) {
 x = true; // test n = 2, 3 executes
 }
 else if (i == 2) {
 x = "hello"; // test n = 3 executes
 }
 r += x - 3; // mutate x
 }
 return r;
}

Figure 4.1: An example used to illustrate the generation of mutants of program elements

of different types. The variable x is assigned number, Boolean and string

values depending on the input.

If three tests are executed by using test cases (n = 1), (n = 2) and (n = 3) then

different types are assigned to this occurrence of x in each test. The occurrence of x is

assigned number, Boolean or string values depending on the input.

Consider first the mutation of x in x - 3 without the use of any type context

information. When a no-type context is used, every variable is essentially considered to

be in the any-type context. The following mutations are made.

add1 sub1 neg abs negabs zpush number insertion mutations
deadOnEmpty string insertion mutations
c0 c1 2 3 number literal mutations
cEmpty hello string insertion mutations
n i r variable replacement mutations

The result of executing the original program with the input n = 3 is NaN because NaN is

the result of "hello" – 3. The results of the mutants with the input n = 3 are given

as in the following:

85

 Mutated statement output when killed

r += c0(x) - 3; -9
r += c1(x) - 3; -6
r += add1(x) - 3;
r += sub1(x) - 3;
r += -(x) - 3;
r += Math.Abs(x) - 3;
r += -(Math.Abs(x)) - 3;
r += zpush(x) - 3; exception
r += cEmpty(x) - 3; -9
r += deadOnEmpty(x) - 3;
r += 2 - 3; -3
r += 3 - 3; 0
r += "hello" - 3;
r += n - 3; 0
r += i - 3; -6
r += r - 3; -21

The mutants with no output shown are all live and all produce the same output as the

original, i.e. NaN. The reason that the r += deadOnEmpty(x) - 3 mutant is live is

that this mutant is in fact an equivalent mutant since no input can set x to the empty

string. r += "hello" - 3; is also an equivalent mutant because it always produces

the output NaN. In fact all the live mutants shown above are equivalent.

Consider now the mutation of the same variable occurrence using type context

information. The following mutations are made.

add1 sub1 neg abs negabs zpush number insertion mutations
c0 c1 2 3 number literal mutations
n i r variable replacement mutations

There are no string mutations because the context is recognised to be a number type. This

means that 3 less mutants are generated. The mutants that are not generated are shown

below

 Mutated statement output when killed

 r += cEmpty(x) - 3; -9
 r += deadOnEmpty(x) - 3;
 r += "hello" - 3;

86

The first of these mutants is equivalent to c0 because the function cEmpty(x) always

produces the empty string and in a number context the empty string is converted to 0. The

second two mutants are equivalent to the original program. In this example, the advantage

of the use of the type context has been demonstrated because some equivalent mutants and

mutants equivalent to each other have not been generated.

There are 3 fewer mutants for the variable x. If all the operands and operators in the

program are mutated for n = 3 without context information then there is a total of 208

mutants, 94 dead and 114 live. With context information, there is a total of 196 mutants,

88 dead and 108 live. There is not much difference in these results. There are about 5%

fewer live mutants for the tester to examine. In practice the tester would examine just a

few of these live mutants and create an additional test designed to kill these live mutants.

The new test would then be executed and the process repeated.

The example program is not a realistic program because the output is NaN for any input

that executes the false branch of the if-statement. It also means that most of the live

mutants when executed with n = 3 are equivalent mutants.

Later in the thesis, in an empirical evaluation, a set of sample programs are mutated and

this gives more data about the effectiveness of the static mutation method.

In the next chapter a dynamic technique is presented for the discovery of type information

at a variable occurrence. This type information is combined with the context of a variable

occurrence.

87

Chapter 5: Typed Mutation of Dynamically Typed Programs

5.1 Introduction

In the previous chapter, a static approach was taken to the mutation of dynamically typed

programs. The rules for the construction of mutants, the mutation operators, are syntax

sensitive only and some simple static type information from the context is used to select

suitable mutations. It is relatively easy to check the context of a variable because it

depends on the syntax of the program and can be checked without execution of the

program. This means that some equivalent and type-mutants of a program need not be

constructed. This saves the cost of having to execute the mutants and the work of the

tester is easier if there are fewer live mutants to examine.

With the static approach, it is possible that some type-mutants will be generated because

the type context allows only an assumption about the type of a variable occurrence. If the

type of the value held in a variable occurrence is tested at run-time then the type is known

accurately and all type-mutations can be avoided. This chapter considers a dynamic

approach to the mutation of dynamically typed programs. The aim is to discover

information about the values held in particular variables in order to avoid type-mutations

and equivalent mutations.

5.2 Typed Application of Mutation Operators

In the static mutation analysis method the choice of mutation operators to apply to an

operand depends on the type context of the operand. The choice of variables to replace

the operand depends on the context in which the variable occurs. The type context is used

as a heuristic for the type of the variable value. With the benefit of type information, the

types held at each occurrence of the variable are known precisely. This allows the

mutation operator application rule to be sensitive to the type of the value to be mutated as

well as the context.

88

Consider an example of a variable occurrence x in an assignment statement such as

y = x;

There is no specific type context for x. Consider that the program has been executed with

a test and the types of the values held in x are recorded as the test executes. The details

of how types are recorded are explained later in this chapter. Suppose that during the

execution of the test only number values are held in x. In this situation, to avoid type-

mutations, only the number mutations should be applied to x. In the static mutation

method described in the previous chapter, because x is not in any specific type context,

then number and string mutations would be applied and the string mutations would be

type-mutations. So run-time type information makes it possible to avoid type-mutations.

If during the execution of a single test case both number and string values are recorded in

x then in the dynamic mutation method both number and string mutations can be applied.

To avoid type-mutations however, this means that number mutations should not be

applied to x when x holds a string and string mutations must not be applied to x when x

holds a number. This means that the number mutations should be applied only when x

holds a number and the string mutations should be applied only when x holds a string.

This means that the algorithm for the dynamic meta-mutant for the statement y = x;

should be

if (mutate(x)) {
 if (typeof(x) == "number") {
 y = NumberMutation(x);
 }
 else if (typeof(x) == "string") {
 y = StringMutation(x);
 }
}
else {
 y = x; // no mutation of x
}

89

In practice, the types of the values held in x are not known until the program is executed

on each test case so the meta-mutant must be more general and allow for every type of

value in each variable occurrence of the program. This is done by adding a test for the

type of a value in each mutation operator. For example the dynamic add1 and cEmpty

mutation operators are defined as

add1(x) {
 if (typeof(x) == "number") {
 return x + 1;
 }
 else {
 return x; // no mutation if x not number
 }
}

cEmpty(x) {
 if (typeof(x) == "string") {
 return "";
 }
 else {
 return x; // no mutation if x not string
 }
}

The dynamic meta-mutant for y = x; is then defined as

switch (mutant) {
 case add1:
 y = add1(x);
 break;
 case cEmpty:
 y = cEmpty(x);
 break;
 default:
 y = x; // no mutation of x
}

By using run-time type information it is possible to avoid generating some equivalent

mutants. For example, the mutant cEmpty(x) will be equivalent to x if x never holds

a string or always holds the empty string.

90

When the types of the values held in x are recorded, it is just as easy to test that x is an

empty string or a non-empty string as it is to test that x is a string. This is the same as

dividing the type of string into two subtypes, empty and non-emtpy string. The benefit of

this is that if for a test only the empty string is recorded in x then the cEmpty mutation

is equivalent for that test. This means that the cEmpty mutation need not be generated

for that test. It is efficient to detect mutants that are partially equivalent to each other so

that if one mutant is executed by a test for which the two mutants have the same input-

output behaviour then the other mutant execution is not necessary because it will have the

same output.

To detect that two mutants are partially equivalent to each other it is necessary to detect

that the test produces the same output for both mutants. It is more efficient if two mutants

can be detected as equivalent to each other by checking the values that the test produces at

the mutated expression. If the value of a variable in the original program is always found

to be positive, for example, then the abs() mutation is equivalent and can be avoided.

The following subtypes of the number type are useful for not generating equivalent

number mutants.

 Subtype Definition

 zero, variable holds 0
 one, variable holds 1
 two, variable holds 2
 negone, variable holds -1
 positive, variable holds positive number except 1 or 2
 negative, variable holds negative number except -1

The zero subtype can be used to avoid generating the c0, neg, abs and negabs

equivalent mutants. In addition, when the value to be mutated is zero, c1 and add1 are

partially equivalent to each other. The one subtype can be used to avoid generating the

c1, abs and zpush equivalent mutants. In addition, when the value to be mutated is

one, c0 and sub1 are partially equivalent to each other. The positive subtype can

91

be used to avoid generating the abs equivalent mutant and the negative subtype can be

used to avoid generating the negabs equivalent mutant.

There are two subtypes of Boolean, true and false. For example, if for a test a

variable only holds the Boolean true value but not the false value then the cTrue

mutant is equivalent.

The basic difference between the static mutation method of the previous chapter and the

dynamic mutation method described in this chapter is that static mutation modifies the

syntax of the program. The modification to generate a mutant can be made before the

program executes. With the dynamic mutation method, the modification that generates a

mutant must be made at run-time because it depends on the type or subtype of the value in

the expression to be mutated.

In the static mutation method, in particular contexts, some mutations are equivalent to

each other. The effect of the context was described in the previous chapter and it needs to

be considered also for dynamic mutation. For example, if the variable x is in a Boolean

context and a test case places number values in x then the mutation of x should be

determined not just by the number value but also the Boolean context. For example, the

mutants produced by the add1 mutation operator are not equivalent in general. However,

if x is in a Boolean context and the type of the value held in x, for example, is positive

then a positive number and one plus a positive number are both converted to true and

so are equivalent to each other.

5.3 Mutation Analysis Process for Dynamically Typed Programs

In order to be able to use mutation analysis for dynamically typed programs in a type-

sensitive manner, the algorithm given in Figure 5.1 can be used to implement the mutation

analysis for a program P.

92

// initialise a table of mutants for each operator and operand
foreach (operatorOperand e in P) {
 mutants(e) = {};
}
// generate and execute mutants
foreach (test t) {
 // execute P on t, save output
 orig = execute(P, t); // also record types assigned to all
variables
 foreach (operatorOperand e in P) {
 // define mutants of P for types found with test t
 mutants(e) = mutants(e) union generateMutants(e, t);
 }
 foreach (operatorOperand e in P) {
 foreach (mutant m in mutants(e)) {
 if (not killed(m)) {
 mut = execute(meta(P, m), t);

 if (mut != orig) {
 killed(m) = true;
 }
}

 }
 }
}

Figure 5.1: Dynamic mutation analysis algorithm for generating mutants of a program P.

Each test is executed on the original program P and the output recorded. The types held

in variables are also recorded. Using the type information, the mutants of every statement

reached by the test can be generated. If these mutants have not been previously generated

then they are added to a global table. Each mutant reached by the test is then executed

with the test as input. meta(P, m) denotes the meta-mutant parameterised to execute the

mutant m.

The process of tests enhancement of dynamically typed mutation is depicted in Figure 5.2.

Mutants are generated after executing a test case against the program under test to reveal

the types of the elements to be mutated and the test output for the original program. The

mutants generated from the first test are executed and the produced output is compared

with the output of the original program. If the output of the original program is not equal

93

Figure 5.2: Enhancement of a test set T for a program P

to the output of the mutant, or the mutant throws an exception or the mutant program is

terminated because it has executed longer than a timeout value then the mutant is killed.

The killed mutants are not executed again but the live mutants will remain with the hope

that they will be killed by some later test. The adequacy score is calculated as the

percentage of non-equivalent mutants that have been killed. The process stops when the

score is 100% or before if the test budget has been consumed. In order to improve the

adequacy score, new test cases are introduced with the aim of killing more mutants. This

94

may result in generating new mutants because the test may cover new statements or

generate new types at variables compared to previous tests.

In the following sections, the mutants of each type of value are described according to the

context in which the mutated variable occurs.

5.3.1 Number Context Mutations

If a variable occurrence x is in a number context and for a particular test the type

recorded at x is one of the number subtypes then the mutants generated for each type

recorded at x are listed below:

type mutation operator
 c0 c1 add1 sub1 neg abs negabs zpush
zero * * *
one * * *
two * * * *
negone * * *
positive * * * * *
negative * * * * *

If two or more of the subtypes are recorded at a variable then the operators listed for each

type are combined. The reason that abs and negabs are not included is that they

generate equivalent mutants or mutants that are equivalent to some other mutant. For

example, for the positive type, neg and negabs are equivalent to each other. Also, when

two or more of the subtypes at a variable occurrence contain both positive and negative

numbers, e.g. negone and positive, then the abs and negabs mutation

operators are also applied because these operators no longer generate equivalent mutants.

If a variable occurrence x is in a number context and for a particular test the type recorded

at x is one of the Boolean subtypes then the mutants generated for each type recorded at x

are listed as in the following:

95

 type mutation operator
 cFalse cTrue logneg
 true *
 false *

Notice that logneg is partially equivalent to both cFalse and cTrue. This is because

if a variable always holds a false then cTrue is equivalent to logneg. If both the

true and false subtypes are recorded at a variable then the cFalse, cTrue and

logneg operators are applied.

If a variable occurrence x is in a number context and for a particular test the type recorded

at x is one of the string subtypes then the mutants generated for each type recorded at x

are listed below:

Type mutation operator
 cEmpty deadOnEmpty
empty *
nonempty *

If both the empty and nonempty subtypes are recorded at a variable then all the string

operators are applied.

If, during the execution of a single test, a variable holds values of two different basic

types, e.g. number and Boolean, then both the number and Boolean mutations are applied.

Because the mutations are applied to the values, not the variable, number mutations are

applied to number values only and Boolean mutations are applied to Boolean values only.

This is different to the static mutation method. Recall that in the static mutation method

that c1 and cTrue are equivalent to each other in the number context. In the dynamic

mutation method, c1 and cTrue are not equivalent to each other in the number context.

To explain this consider a variable occurrence x that when executed with a specific test,

holds a zero followed by a false. The following is an example program that does this.

96

var i = 0, x = 0, r = 0;
for (i = 0; i < 2; i++) {
 if (i == 0) {
 x = 0;
 }
 else {
 x = false;
 }
 r += x * i; // x holds both 0 and false
}

In the meta-mutant, the statement to be mutated, i.e. r += x * i; is replaced with the

code shown below.

switch (mutant) {
 case c1:
 if (typeof(x) == “number”) {
 r += 1 * i; // constant 1
 }
 else {
 r += x * i;
 }
 break;
 case cTrue:
 if (typeof(x) == “boolean”) {
 r += true * i; // constant true
 }
 else {
 r += x * i;
 }
 break;
 }

The c1 mutation will mutate the zero held in x into a one but not mutate the false

because it is not a number type. This means that the values produced at x in the c1

mutant are 1 followed by false. After conversion of the false into 0 because of the

number context, the values produced at x in the c1 mutant are 1 followed by 0. The final

value of r is therefore 1 * 0 + 0 * 1 = 0.

97

The cTrue mutation at x will not mutate the number but will mutate the false into

true. This means that the values produced at x in the cTrue mutant are 0 followed by

true. After conversion of the true into 1 because of the number context, the values

produced at x in the c1 mutant are 0 followed by 1. This is a different sequence of

values to the c1 mutant. The final value of r is therefore 0 * 0 + 1 * 1 = 1. The two

mutants produce different outputs, i.e. mutants not equivalent to each other. In general,

mutants produced by mutation operators of different basic types are not equivalent to each

other.

The variable replacement mutations are also type-sensitive. In a number context, an

occurrence of a variable x that holds a number type is mutated by replacing the number

value in x with a number value from some other variable in the program. In the static

mutation method, the variable occurrence x is replaced with some other variable, say y.

This means that the value in x is replaced with the value in y and every access of x is

replaced with an access of y no matter the type in x and y.

In the dynamic mutation method, only when the type in x is equal to the type in y, the

value in x is replaced with the value in y. In more detail, consider again the previous

program containing an occurrence of a variable x that is to be mutated.

var i = 0, x = 0, r = 0;
for (i = 0; i < 2; i++) {
 if (i == 0) {
 x = 0;
 }
 else {
 x = false;
 }
 r += x * i; // x holds both 0 and false
}

The types held in x in r += x * i; have been recorded as {zero, false}. The

program also contains some occurrences of another variable i and the types recorded at i

are {zero, one, two}. Because x holds a number type and i holds a number type, i

98

is identified as a possible replacement mutation for x. During execution of the

replacement mutant, the type of the value in i is checked and if it is a number type then

the value in i is copied to x and a value replacement mutation has been performed. If the

value held in i is not a number type then no replacement, i.e. no mutation is made.

switch (mutant) {
 case replace_i:
 if (typeof(x) == typeof(i)) {
 r += i * i; // x replaced by i
 }
 else {
 r += x * i; // x not replaced
 }
 break;
 }

In the previous program, the zero in x is replaced but the false in x is not replaced.

This ensures that there are no type-mutations produced during variable for variable

replacement mutations.

The number subtypes containing just one number, i.e. zero, one, two and negone, are

used to avoid equivalent mutants. This means that if the only number type recorded at the

variable occurrence x is 2, for example, and the literal 2 appears in the program then x is

not replaced with this literal because obviously it is equivalent. Also, if the type at the

variable occurrence x is just one of the subtypes, zero, one, two or negone and the type of

the replacement variable y is the same type as x then the mutation is equivalent because

both x and y hold just one number.

Notice that in the number context, all the mutation operators can be applied if there is a

value to be mutated of every type. In the static mutation method, the Boolean operators

are not applied in a number context. This is because in the static method a mutation

operator is applied statically, i.e. it is a static change to the program and the mutation

operator is applied to all the values held in the mutated variable and this means that

Boolean mutation operators could be applied to number values. In the dynamic mutation

method the mutation operator is applied only to values of the type of the operator. This

99

means that the number context does not affect which mutation operators to apply to a

variable.

5.3.2 Boolean Context Mutations

Number values in a Boolean context are converted to Boolean. When number mutation

operators are applied to number values, although the value is modified, because of the

mutation in a Boolean context, the final result may be equal to the original value. For

example, if the add1 mutation is applied to a positive number, the resulting number is

different but both original and mutated numbers are converted to the same value, true.

Only zero is converted to false.

If a variable occurrence x is in a Boolean context and for a particular test the type

recorded at x is one of the number subtypes then the mutants generated for each type

recorded at x are listed below:

 type mutation operator

 c0 c1 add1 sub1 neg abs negabs zpush
zero * *
one *
two *
negone *
positive *
negative *

Notice that there are many fewer mutations than when x is in a number context. The

mutation operators not selected above produce equivalent mutants in the Boolean context.

If a variable occurrence x is in a Boolean context and for a particular test the type

recorded at x is one of the Boolean subtypes then the mutants generated for each type

recorded at x are listed as in the following:

100

 type mutation operator

 cFalse cTrue logneg
true *
false *

If both the true and false subtypes are recorded at a variable then the cFalse,

cTrue and logneg operators are applied.

If a variable occurrence x is in a Boolean context and for a particular test the type

recorded at x is one of the string subtypes then the mutants generated for each type

recorded at x are listed below:

 type mutation operator

 cEmpty deadOnEmpty
empty *
nonempty *

If both the empty and nonempty subtypes are recorded at a variable then all the string

operators are applied.

Replacement of values for a variable occurrence in a Boolean context can produce

equivalent mutants. For example, assume x holds a number and y holds a different

number and the number in y replaces the number in x. In a number context the value of

x has changed which means it is possible to kill the mutant. In a Boolean context, if the

numbers in x and y are both non-zero then they both converted to true and the value

of x has not changed and so the mutant is equivalent. In general, a replacement mutation

in a Boolean context is equivalent if the original and the replacement value both convert to

the same Boolean value. Below is listed all the values that convert to false.

 NaN, null, undefined, "", 0, false

For a replacement not to be equivalent, a value that converts to true must be replaced

with a value that converts to false and vice versa. Replacement mutations that are

known to be equivalent are not generated for that test.

101

5.3.3 String Context Mutations

If a variable occurrence x is in a string context and for a particular test the type recorded

at x is one of the number subtypes then the mutants generated for each type recorded at

x are listed below

 type mutation operator

 c0 c1 add1 sub1 neg abs negabs zpush
zero * * *
one * * *
two * * * *
negone * * *
positive * * * * *
negative * * * * *

These are the same mutations that are applied to a number in a number context. Number

values in a string context are converted to string but this does not make any of the number

mutations equivalent. If two or more types are recorded at a variable then the operators

listed for each type are combined. Also, when two or more types contain both positive

and negative numbers, e.g. negone and positive, then the abs and negabs

mutation operators are also applied.

If a variable occurrence x is in a string context and for a particular test the type recorded

at x is one of the Boolean subtypes then the mutants generated for each type recorded at

x are listed below:

 type mutation operator

 cFalse cTrue logneg
true *
false *

If both the true and false subtypes are recorded at a variable then the cFalse,

cTrue and logneg operators are applied.

102

If a variable occurrence x is in a string context and for a particular test the type recorded at

x is one of the string subtypes then the mutants generated for each type recorded at x are

listed below:

 type mutation operator

 cEmpty deadOnEmpty
empty *
nonempty *

If both the empty and nonempty subtypes are recorded at a variable then all the string

operators are applied.

In a string context, an occurrence of a variable x that holds a string type is mutated by

replacing the string value in x with a string value from some other variable in the

program. Only when both x and the replacement variable hold a string value is

replaced. Equivalent mutants for a specific test can be detected if the string type of x is

just a single empty string type and the same string subtype is the only type held in the

replacement variable.

5.3.4 Object Context Mutations

The variables within an object, known as properties, are accessed using member

expressions. A member expression such as obj.mem is mutated by replacing the object

variable obj, and replacing the member name mem. For the mutation to be typed, any

replacement for obj should be an object with a member called mem.

Any replacement for the member name mem should be the name of another member of

obj. If the replacement member name was not a member of obj then the value of the

member expression is the special value undefined. The replacement property for mem

should also have a value which has the same type as the value of mem. In the example

code

103

var residence = {house: 27,
 street: “Bayes”,

 tel: {code: 01536,
 num: 519146},
 };

var school = {name: “Stamford Rd Boys”,

 street: “Stamford Rd”,
 };

The expression residence.street can be mutated to school.street because

the object school has a property called street and the type of the street property

in the school object is the same as the type of the street property (string) in

residence. When the program is executed with a specific test to collect type

information, if the value of a variable is an object then the object property names and

object property types are recorded. For example, in the above code, the following

property types are recorded.

{house: number,
 street: string,
 tel: {code: number,
 num: number},
};

{name: string,
 street: string,
};

In JavaScript an array access expression is very similar to an object member access

expression. There is a dynamic form of object member access expression, e.g. obj.mem

is equivalent to obj[“m” + “em”]. The array index expression or the member

expression is mutated in the way that any expression is mutated. The object or array is

mutated in the way that the object of a member expression is mutated. Consider the array

expression a[i – 2]. The expression i - 2 would be mutated as an arithmetical

expression. The array a would be replaced by another object with a member indexed by i

– 2 that has the same type.

104

5.3.5 Any-type Context Mutations

If a variable is not in a number, Boolean, string, object, array or member context then it is

said to be in the any-type context. In the any-type context there is no-type conversion that

must happen. In the case of the static mutation method there is the risk of producing a

type-mutation. In the static mutation method, the Boolean mutation operators are not

applied because of the possibility of a type-mutation. In the dynamic mutation method,

the types of the values to be mutated are known at run-time and so type-mutations can be

avoided. This means that if the value to be mutated is a Boolean then Boolean mutations

will be applied.

5.4 Operator Replacement Mutations

The + operator is overloaded between number addition and string concatenation. With

type information, it is possible to avoid the replacement of a string concatenation + by

arithmetic for operators such as – for example. The + operator is replaced with other

arithmetic operators only if both operands are numbers. For example for the statement

x = x + y;

the context is not string or number and so + could be an arithmetical or string operator.

In this situation the meta-mutant is defined as

switch (mutant) {
 case subtract:
 if (typeof(x) == “number”
 && typeof(y) == “number”) {
 x = x - y; // + replaced by -
 }
 else {
 x = x + y; // + not replaced
 }
 break;
 case multiply:
 . . . // other cases here
 }

105

5.5 Dynamic Mutation Example

To illustrate how typed mutation operators would be applied in a program, consider the

example program given in Figure 5.3. Suppose that the occurrence of the variable x in x

+ 3 is to be mutated. This program is the same as the example program from Chapter 4

but + replaces – so that the type context for + is ambiguous between number and string.

function orig(n) {
 var x = 0, i = 0, r = 0;
 for (i = 0; i < n; i++) {
 if (i == 1) {
 x = true; // test n = 2, 3 executes
 }
 else if (i == 2) {
 x = "hello"; // test n = 3 executes
 }
 r += x + 3; // mutate x
 }
 return r;
}

Figure 5.3: An example used to illustrate the generation of mutants of program elements

of different types. The variable x is assigned number, Boolean and string

values depending on the input.

function orig(n n.0) {
 var x x.0 = 0, i i.0 = 0, r r.0 = 0;
 for (i i.1 = 0; i i.2 < n n.1; i i.5 ++) {
 if (i i.3 == 1) {
 x x.1 = true; // test n = 2, 3 executes
 }
 else if (i i.4 == 2) {
 x x.2 = "hello"; // test n = 3 executes
 }
 r r.1 += x x.3 + 3; // mutate x
 }
 return r r.2;
}

Figure 5.4: Labelled variables occurrences for the program given in Figure 5.3.

In order to mention specific variable occurrences, each variable occurrence in the above

program is labelled with a unique label so that each occurrence can be uniquely identified.

106

The label consists of the variable name followed by a dot ‘.’ and then a number which is

incremented for each occurrence. The program with each variable occurrence followed

by its label is given in Figure 5.4. It is easier to read the program when the labels are

shortened by remove the variable name from the label. For example, the program in

Figure 5.5 is more easy to read when shown as in Figure 5.4.

function orig(n .0) {
 var x .0 = 0, i .0 = 0, r .0 = 0;
 for (i .1 = 0; i .2 < n .1; i .5 ++) {
 if (i .3 == 1) {
 x .1 = true; // test n = 2, 3 executes
 }
 else if (i .4 == 2) {
 x .2 = "hello"; // test n = 3 executes
 }
 r .1 += x .3 + 3; // mutate x
 }
 return r .2;
}

Figure 5.5: Labelled variables occurrences for the program given in Figure 5.3 but with

the shorter labels that are easier to read.

With the string or number context for x in x + 3 the following mutants are generated

using the static mutation method.

 add1 sub1 neg abs negabs zpush number insertions
 deadOnEmpty string insertions
 c0 c1 2 3 replacement with number literal
 cEmpty hello replacement with string literal
 n i r replacement with variable

Notice that the possible string context for the + operator means that the string mutations

are included. The objective of the dynamic mutation method is to get type information

from the execution of a test case and if possible avoid type-mutations and equivalent

mutants.

107

Assume that the program given in Figure 5.3 is to be executed with the test n = 1, n =

2, and n = 3.The program is executed with the first test (n = 1) and the types of the

values at each variable occurrence are recorded in a table. Not all variable occurrences are

executed when n = 1 but those that are executed are shown below with the recorded

types.

x.0 zero
i.0 zero
r.0 zero
i.1 zero
i.2 zero one
n.1 two
i.3 zero
i.4 zero
r.1 zero positive
x.3 zero
i.5 zero

The occurrence of x in x + 3, i.e. x.3, holds a zero number only. Using this type

information it is possible to reduce the mutations at the x.3 occurrence of the variable x

from

add1 sub1 neg abs negabs zpush number insertions
deadOnEmpty string insertions
c0 c1 2 3 replacement with number literal
cEmpty hello replacement with string literal
n i r replacement with variable

to the following:

sub1 zpush number insertion mutations

c1 2 3 literal replacement mutations
n i r replacement with variable

The mutant add1 is absent because it is partially equivalent to c1, add1(x) = c1(x)

when x = 0. The mutants neg, abs, and negabs are all equivalent to the original

program. The mutant c0 is also equivalent to the original program. For the same reason,

the replacement with the string literals is excluded.

Because x.3 holds a number, it is replaced with the other number literals that occur in the

program i.e. 2 and 3. Because x.3 holds a number, it is replaced with any other variables

108

in the program that also hold number values, i.e. n, i, and r. These variables have been

identified to hold number values because at least one of their occurrences has been

recorded as holding a number value. For example, n.1 hold a number, i.0 holds a

number and r.1 holds a number.

Notice that the use of type information has avoided the generation of the three string

mutations. The deadOnEmpty(x) + 3; is an equivalent mutant for this test and so it

is beneficial to avoid this mutant for this test. The cEmpty(x) + 3; mutant is not

equivalent and also the mutant "hello" + 3; is not equivalent. Both of these mutants

are type-mutations. Type-mutations are generally considered incompetent, i.e. easily

killed and both of these mutants are killed by the test n = 1. This is consistent with

being incompetent.

With the test case n = 1, all the dynamic mutants of x.3 are killed except the

replacement by r and the replacement by i. The replacement by r and the replacement by

i mutants are equivalent with dynamic mutation. This is because both r and i are

initialised to 0 and x is initialised to zero. Except for 0, the only other values held in x.3

are true and “hello”. These are not number values and so the replacement of x.3

with i and r is not done when x.3 holds true and “hello”.

The result of executing the mutants with the input n = 2 associates the same types to the

variables associated with n = 1 except that x.1 occurrence is now reached and the

Boolean type is also held in x.1 and x.3. The new variable type occurrence

information is

x.0 zero
i.0 zero
r.0 zero
i.1 zero
i.2 zero one two
n.1 two
i.3 zero one
x.1 zero true
i.4 zero
r.1 zero positive

109

x.3 zero true
i.5 zero one

Because the Boolean type is now held in x.3 Boolean mutations are added to the

mutations of the previous test. Only the Boolean subtype true is recorded at x.3 and

so only the mutation operator cFalse is applied. This is because the cTrue mutation

will produce an equivalent mutant. This means that the mutants of x.3 are now

 sub1 zpush number insertion mutations
 cFalse replace Boolean with false
 c1 2 3 literal replacement mutations
 n i r replacement with variable

The new cFalse mutant generated from the intput n = 2 is also killed by the input n =

2. The live mutants are still the replacement by r and the replacement by i.

When the test, n = 3 is applied the types recorded at the variable occurrences are

x.0 zero
i.0 zero
r.0 zero
i.1 zero
i.2 zero one two positive
n.1 positive
i.3 zero one two
x.1 zero true
i.4 zero two
x.2 strngnonempty true
r.1 zero positive strngnonempty
x.3 zero strngnonempty true
i.5 zero one two

There are new types held in i.2, n.1, i.3, i.4, r.1, x.3 and i.5. The variable

occurrence x.2 is reached for the first time. At x.3 a non-empty string type is recorded

and this causes string mutations to be generated for x.3. The mutations at x.3 for n = 3

are

sub1 zpush number insertion mutations
cFalse replace Boolean with false
cEmpty replace string with empty string
c1 2 3 literal replacement mutations
n i r replacement with variable

110

Notice that only the cEmpty mutant is generated because it can be predicted from the non-

empty string subtype recoded at x.3 that the deadOnEmpty mutant cannot be killed.

The output for each killed mutant is shown below

r += c1(x) + 3; 8hello3
r += sub1(x) + 3; 6hello3
r += zpush(x) + 3; killed
r += cfalse(x) + 3; 6hello3
r += cEmpty(x) + 3; 73
r += 2 + 3; 9hello3
r += 3 + 3; 10hello3
r += n + 3; 10hello3
r += i + 3;
r += r + 3;

Notice that the cEmpty mutant is killed.

5.6 Type Discovery

To apply type-sensitive mutation operators, it is necessary to know the type of program

elements. In the previous chapter it was explained why static type inference is not suitable

for a program written in JavaScript. In general, type discovery using program execution is

more accurate than static type discovery because the type is known for a specific test at

run-time. Although it is more accurate, it is less comprehensive because it is limited to the

inputs for which the program has been executed. Therefore, the mutants will be generated

and executed for the most accurate type that occurs with a given test rather than a possibly

more general type that covers all possible inputs. For example, if a variable occurrence x

is number type for test t1 then only number type-mutants are executed with t1. If the same

occurrence of x is string type for test t2, then only string mutants are executed for test t2.

Static type inference will discover only that x is both number type and string type, but

not necessarily the inputs for which x is only number and only string.

If types of variables are required to compile the code in the most efficient way then static

type discovery is most appropriate. It is efficient and can be used on large programs.

However, static type discovery is most accurate for strongly typed languages. Mutation

analysis is a different situation to compilation. Mutation analysis is a testing process and

111

testing is not expected to be as fast as a program compilation. It is expected that there will

be many executions of the program when a program is tested. In general, to determine the

type of a variable occurrence using static type inference is less expensive compared to

dynamic method of type discovery. However, the cost of mutant execution dominates the

cost of type discovery so the saving gained by using static type discovery is likely to be

small.

To determine the types of the values held in each variable occurrence of the program

instrumentation code is added to the original program. The instrumentation code does not

affect the output of the program but instead records the types of values in variables. The

type information is collected while the program is executed with a specific test. The extra

information for the number subtypes is only slightly more expensive to collect than the

simple type number but it is useful to detect mutants that are equivalent to the original

program or to each other. The same is true for the Boolean and string subtypes.

The program under test can be automatically instrumented. First, each variable

occurrence is identified by a label to distinguish the occurrence of the variable. The

abstract syntax tree of the program under test is traversed and a unique label is assigned to

each variable occurrence encountered during the traversal. For example, to record the

type of a value held in each variable occurrence, each assignment statement in the

program under test is automatically rewritten as follows

m = i; is transformed into the comma expression

recType(m, "m.0"), m = recType(i, "i.0"), recType(m, "m.0");

The first part of the comma expression, i.e. the function recType(m, "m.0"), tests the

type of the value in the variable m and stores the result in a table under the key "m.0"

which is the unique label assigned to the occurrence of the variable m.

recType(variable, label) {
 typeTable.get(label).unionWith(typeof(variable));
 return variable;
}

112

The first recType(m, "m.0") in the comma expression stores the type of the value of

the variable m before the assignment to i. The reason for this is that m may be a non-

local variable and so might be assigned a value outside of the function under test. The

second part of the comma expression, i.e.

 m = recType(i, "i.0")

is evaluated next and this part records the type of the variable i under the label "i.0"

and assigns the value of recType(i, "i.0"), which is the same as the value of i, to m.

The final part of the comma expression records the type of the value in m after the

assignment. In a dynamic language, the type of value in m before the assignment may be

different to the type in m after the assignment.

Expressions that assign values to properties of objects are instrumented in a similar way.

Each component of an object member access expression, i.e. in the expression

obj.prop

the property prop of object obj is given a unique label.

Although the variable occurrence type table records the set of types stored in a variable

occurrence, it is not known when during the execution that each type is assigned. A

variable may first hold a number followed by another number followed by a string and

then a number again. For this reason, during the execution of the meta-mutant, every time

a variable occurrence is used it is necessary to test the type of the value in the variable

occurrence in order to select a type-correct mutation.

Consider how the meta-mutant implements a variable replacement mutation. Each r-value

variable occurrence that is mutated with a variable replacement is implemented in the

meta-mutant as a function coded as follows:

113

function mutateVariable(varName) {
 switch (varName){
 case “x”:
 return x; // no mutation
 case “y”:
 if (typeof(x) == typeof(y)) {
 return y; // mutate x to y if same type
 }
 else {
 return x; // avoid type-mutation
 }
 case “z”:
 . . . // one case for each variable in
 } // function under test
}

Notice that the function is generated according to a template, i.e. a switch statement. To

fill in the template the variables that occur in the program under test should be collected

and one switch case generated for each variable.

The “+” operator is distinguished at run-time as a string concatenation operator or an

arithmetic operator; depends on the type of one or both operands. If the “+” operator is an

arithmetical + then it is replaced with other arithmetical operators. Otherwise, no

arithmetical operator replacement should be applied for this operator. This requires a type

check at meta-mutant run-time. Consider, for example, the code given in the following:

function MutateAdd(x, y) {
 var result = x + y;
 if (result !== NaN
 && typeof(result) == "number") {
 switch (opimutantOperator){ // mutate as arithmetic
 case “+”:
 return x + y;
 case “-”:
 return x - y;
 . . . // other operators here
 }
 else {
 return result; // no arithmetic mutation
 }
 }

114

Checking for the type of the result of x + y is a convenient way of testing if any of the

automatic conversions applied to x and y fail to produce a number.

115

Chapter 6: Empirical Investigation

6.1 Introduction

This chapter is intended to evaluate the new mutation analysis methods for dynamically

typed programs. The evaluation is done using some example programs. This raises the

question of how a mutation analysis method should be evaluated. The purpose of

mutation analysis is to force the tester to write a test set that rigorously tests the program.

Therefore, a good mutation analysis method forces the tester to write tests that test the

program rigorously. At the same time, the mutation analysis should not be more costly

than necessary. This means that the mutation analysis methods should be evaluated in

terms of the quality of the test sets that are mutation adequate, i.e. test sets that can kill all

the non-equivalent mutants and the cost of the mutation analysis that produced that

mutation adequate test set.

6.2 Evaluating Cost of Mutation Analysis

The cost of mutation analysis consists of the cost of (a) generating a set of tests, (b)

executing the tests on the mutants (c) investigation of the live mutants to check which are

equivalent and which can be killed with additional tests. The cost of generating a set of

tests depends on the method used. It can be done manually or by automatic test data

generation. In this thesis, the tests were partly automatic and partly manual. It is the

manual part that is expensive. In this thesis, the cost of tests generation was considered to

be proportional to the number of tests generated.

The cost of executing the test set on the mutants is the total number of mutant executions.

For an actual program with an actual test set, this can be counted. In general, however, the

first test is executed on every mutant. Some of the mutants will be killed by the first test

but the second test will be executed on the live mutants and the third test will be executed

on the remaining live mutants and so on. In general, suppose that the average proportion

116

of mutants that are still live after the execution of one test is s, 0 <= s <= 1. This

means that the total number of executions of M mutants for the test set T is

M + sM + s2M + . . . + sTM

The first M is from the execution of the first test, the sM is from the second test and so on.

In practice the proportion of mutants that are still live after the execution of one test is not

constant and is typically between 20% and 50% for the first test and increases as more

tests are executed. As more tests are executed, it is more difficult to kill mutants so s

increases. About 5% to 10% of the mutants that are executed are not killed by any test

because they are equivalent. When only equivalent mutants are left, the proportion of

mutants that are still live after the execution of one test, s, is equal to 1. It is possible

that a test kills no mutants, especially if it is executed near the end of the sequence of tests.

This is because, even though it can kill some mutants, these mutants have been killed by

previously executed tests.

The cost of the investigation of the live mutants is difficult to measure in general. The

live mutants are investigated either to manually generate a new test or to check that the

mutant is equivalent. This means that the cost of the investigation of the live mutants

should count only the investigation of the equivalent mutants because the investigation of

the live mutants that generates a new test is already counted in the cost of the manually

generated tests. In this thesis, the cost of equivalent mutants is considered as proportional

to the number of equivalent mutants.

To summarise, the cost of producing a mutation adequate test set T for a program is

based on

total number of tests
total number of mutant executions
number of equivalent mutants

117

Using these three numbers with some weighting, it is possible to compare the costs of

different mutation analysis methods used to produce a mutation adequate test set for the

same program.

Cost(T) = a * sizeOf(T) + b * MutantExecutions + c * EquivalentMutants

The most important cost is the number of equivalent mutants because to identify

equivalent mutants is a manual activity. The less important cost is the number of mutant

executions because this cost is machine time and not manual. It is not proposed to give

specific values for the weightings except that for a typical program we expect:

c * EquivalentMutants > a * sizeOf(T) > b * MutantExecutions

The weightings would have to be different if a program had no equivalent mutants but this

would be very unusual.

6.3 Minimal Test Sets

For a given set of mutants, there are usually many possible different mutation adequate

test sets. For example, if any test is added to a mutation adequate test set then the new test

set is also mutation adequate. When comparing the cost of producing a mutation adequate

test set for a program, it is the lowest possible cost that is required. It is desirable to

reduce cost of testing by not generating more tests than necessary. Also, there is a cost for

the use and management of a test set that is proportional to the size of the test set. If the

program function is modified, for example, then all the tests will need to be checked in

case they also need to be modified. For this reason it is desirable to minimise the size of

the test set.

In mutation analysis, a test set is non-redundant if no test can be removed without

lowering the number of mutants killed. A minimal size mutation adequate test set is the

smallest possible test set that is mutation adequate. A minimal test set (Akers et al. 1987)

is difficult to generate in general. Even the problem of finding the smallest mutation

adequate subset of a given set of tests is difficult. Given a set of tests, a minimal size

118

mutation adequate subset is the smallest possible test subset that is mutation adequate. If a

test set is minimal then it is also non-redundant but a test set may be non-redundant and

still not be minimal. For example, consider the test set {t1, t2, t3} and the set of

mutants {m1, m2, m3}. If t1 kills {m1, m2} and t2 kills {m2, m3} and t3 kills {m1,

m2, m3} then

{t1, t2} non-redundant set of mutation adequate tests

{t3} minimal set of mutation adequate tests

In general, an algorithm for producing a minimal test set from a given test set has

complexity O(2
n
) because it is necessary to check every subset of tests of the given test

set. In practice, a heuristic algorithm is usually used that is much faster and usually

produces near minimal test sets. In this thesis the following algorithm was used.

1. Select tests randomly from the test set and place in a list, i.e. order the tests in a

random order.

2. Execute each test in order on the mutants and remove any test that is redundant

with respect to the previously executed tests, i.e. it kills no new mutants. For

example, consider the test set {t1, t2, t3} above. t1 kills {m1, m2} and t2

kills {m2, m3} and so t2 is not redundant with respect to t1. Then t3 is

executed and it kills {m1, m2, m3} but these mutants have already been killed by

t1 and t2 and so t3 is redundant with respect to t1 and t2 so t3 is

removed.

3. Reverse the order of the remaining tests and repeat the execution and removal of

tests as in step 2.

4. Reorder the remaining tests so that the tests in the middle of the list are at the front

and the tests at either end are in the middle. For example, <t1, t2, t3, t4,

t5, t6> is reordered as <t3, t4, t2, t5, t1, t6>.

The test sets produced by this algorithm are called non-redundant test sequences. The idea

behind the heuristic is that different tests are executed first. The earlier a test is executed

the more likely it is to end up in the final list. Notice, however, that the above heuristic

119

can fail to find a minimal subset even when the set contains just three tests. For example,

consider the test set {t1, t2, t3} when t1 kills {m1, m2}, t2 kills {m2, m3} and t3

kills {m3, m4}. The minimal subset is {t1, t3} but if the heuristic algorithm executes

the three tests in the sequences below

<t1, t2, t3> // first random order
<t3, t2, t1> // reverse of first order
<t2, t1, t3> // middle of second order at front

no test is removed. To detect that t2 is redundant with respect to t1 and t3 it is

necessary to execute t2 last in the sequence.

6.4 Tescripta Mutation Analysis Tool

Tescripta is a test data generation and mutation analysis tool for JavaScript. Tescripta was

initially developed by Dr L Bottaci [Bottaci 2010] and has been adapted as a result of the

work done in this thesis to implement static and dynamic mutation analysis. Researchers

may obtain Tescripta by contacting Dr Len Bottaci. The tool has documentation in the

READ.ME file in the Tescripta solution that explains how to install and use Tescripta

using Microsoft Visual Studio. The sample programs in this thesis that are available in the

sample folder can be executed using Microsoft Visual Studio. Researchers can add new

sample programs by copying and modifying a suitable existing sample program.

Tescripta performs mutation analysis using up to three different methods, labelled notype

(static), context (static) and runtype (dynamic). The mutationMethods directive

specifies one or more methods. Tescripta performs mutation analysis when the

mutationAnalysis directive is true. The programmer should provide some

information about the input domain of the program under test to produce correct test cases.

In addition, the programmer may also add more tests manually to the generated tests.

These tests are collected in a file to test the program. Moreover, input data generation

always precedes mutation analysis. In this way, the tests generated can be used for

mutation analysis. By default, the tests used to kill mutants are taken from the

120

"*.bc.n.tst" files where n is the trial number. All this is documented in the Tescripta

Visual Studio solution.

The output of mutation analysis is a file listing the status, live, dead, etc. of each mutant

and a file of effective tests, i.e. those tests that killed at least one mutant not killed by any

preceding test. The mutant coverage information is printed to the file programName.mut,

where programName is the name of the sample program file and the function under test.

The name of the mutated object is printed together with the mutation table for that object.

The mutation table lists the possible mutants, each identified by an integer. The table also

lists the original object; the integer identifier of the original object is not followed by any

character. A sample output that is produced for the min program using the dynamic

mutation method is shown in Appendix C.

6.5 Evaluating Quality of Mutation Analysis

The aim is to compare the static mutation analysis method with the dynamic mutation

method. In general, consider two mutation methods, A and B for the same program.

Assume MA is the mutants generated by the method A and MB the mutants generated by the

method B. Let TA be a mutation adequate test set for MA that is also a non-redundant

sequence and let TB be a mutation adequate test set for MB that is also a non-redundant

sequence. TA is mutation adequate which is shown as Kills (TA, MA) which means that the

tests in TA kill all the mutants MA. Let Cost (TA) be the total cost of generating TA and

Cost(TB) be the total cost of generating TB.

When comparing A and B, one possibility is that TA costs less than TB but TA is better at

killing mutants than TB. This could be written as the condition

Cost(TA) < Cost(TB) and Kills(TA, MB) and not Kills(TB, MA)

TA can be considered to be better than TB because TA kills all the mutants of A and B but

TB cannot kill all the mutants of A. This obviously assumes that killing mutants is a good

way to evaluate the quality of a test set. More generally, if the above condition applied to

121

many test sets and many programs then it would be strong evidence that A is a better

mutation analysis method than B. The condition that both TA and TB should be non-

redundant test sequences reduces the risk that TA can kill more mutants than TB because

TA is larger than TB. TA should be large enough to kill all the mutants of MA and no larger.

Similarly for TB.

Another situation in which TA can be considered to be a better test set than TB is if TA is

better at killing mutants but TA costs no more than TB. This means replacing the < in the

above condition with a <=.

Another situation in which TA can be considered to be a better test set than TB is that as

above TA costs less than TB but TA has the same mutant killing ability as TB. This is

expressed as

Cost(TA) < Cost(TB) and Kills(TA, MB) and Kills(TB, MA) or

Cost(TA) < Cost(TB) and not Kills(TA, MB) and not Kills(TB, MA)

The comparison of mutation adequate test sets will vary according to the particular tests in

the test sets. To check if a condition holds in general, a number of different mutation

adequate test sets should be produced for the mutation analysis of a particular program

and the average taken across all the test sets. More generally, this should be repeated for a

range of programs.

To illustrate the cost and quality measurements described above, consider the following

JavaScript program. This program is similar to the example program in the last two

chapters.

122

 function orig(n) { // n is integer
 var x = 0, i = 0, y = "", r = 0;
 for (i = 0; i < n; i++) {
 if (i == 1) {
 x = true;
 y = "23";
 }
 else if (i == 2) {
 x = y - 1; // string y converted to number
 }
 r += x + 3; // x is number, string and Boolean
 }
 return r;
 }

The program has no purpose but inputs an integer which determines the number of times a

value is added to a result. Mutation analysis was performed on this program using a

mutation analysis test tool called Tescripta. Using Tescripta, 30 random tests were

generated. These tests are different values of n from [-9, 30]. Mutants were generated

using both the static and dynamic methods.

For the static method, the mutation analysis was done with and without type context

information to give three methods in all. In the tables below, to save space, the static

method without type context information is referred to as ‘static’ and the static method

with type context information is referred to as ‘context’.

 method total mutants % non-equiv % equiv % % equiv
 static 268 100 228 100 40 100 14.9
 context 250 93.2 216 94.7 34 85.0 13.6
 dynamic 159 59.3 147 64.5 12 30.0 7.5

For each of the three mutation methods, static with no type context, static with type

context, and dynamic, 10 random mutation adequate non-redundant test sequences were

generated. When generating test sets, the test set minimisation heuristic described earlier

was used. One of the 10 final sets produced was the 3 following tests:

123

n 5 output 82
n 0 output 0
n -1 output 0

To produce this set, 27 tests were removed from the 30 random tests to produce the final

non-redundant sequence of 3 tests. The total tests and the mutant executions are given in

the table below:

 method total tests mutant executions
 static 3 310
 context 3 298
 dynamic 3 152

From the number of executions it is clear that the cost of the dynamic method is the

lowest, the static method without type context is the most expensive and the cost of the

static method with type context information is more than the dynamic method but not as

high as the static method without context information. Notice that the cost of the dynamic

method is about a half of the cost of the other two methods. Notice also that the lower

cost of the dynamic method is not all due to the lower number of mutants. If the three

methods are compared to each other with the static no type context as 100% then the

static-context method produces 94.7% of the mutants and has about the same proportion

of executions at 96.1%. The dynamic method produces 64.5% of the mutants but has a

lower proportion of executions at 49.0%.

 method non-equiv % of static executions % of static
 static 228 100 310 100
 context 216 94.7 298 96.1
 dynamic 147 64.5 152 49.0

The following table shows how effective are the mutation adequate test sets of one method

at killing the mutants produced by other methods.

 kill tests mutation adequate on method
 generate method static context dynamic
 static 100 100 100
 context 100 100 100
 dynamic 100 100 100

124

The table shows that mutants generated by any of the three methods can all be killed by a

mutation adequate test set that is generated by any other method. For this particular

program

cost(context) < cost(static) and Kills(context, static) and Kills(static, context)

In this case, static-context is a better method than static because it has a lower cost but the

mutation adequate test sets are just as effective. Similarly, for this particular program

Cost(dynamic) < cost(context) and

 Kills(dynamic,context) and Kills(context, dynamic)

In this case, dynamic is a better method than static-context because it has a lower cost but

the mutation adequate test sets are just as effective.

6.5.1 Competence of Mutants

It is the mutants that are difficult to kill that force the tester to enhance the test set. A

good mutation method should produce mutants that are difficult to kill. For a given test

set and order of test, the competence of a mutant is defined as the proportion of the tests

executed before it is killed when the tests are executed in order. For example, if there are

10 tests and a mutant is killed by the third test then the competence of the mutant is 20%

because two out of 10 tests were executed before it was killed. The competence depends

on the order that the tests are executed. This is not desirable and is similar to the problem

that there are many different possible mutation adequate test sets for a given set of

mutants. For the same reason, it would be very costly to calculate the competence for

every possible ordering of a test set.

125

Chapter 7: Evaluation and Discussion

7.1 Introduction

An empirical investigation is required to answer the research questions and check the

effectiveness of static and dynamic approaches for the mutation analysis of dynamically

typed programs introduced in this thesis. Seven JavaScript programs have been used in the

evaluation. These programs were selected for performing experiments to answer the

following research questions:

Q1: Using the static mutation approach, what proportion of the mutants are type-

mutants? This is the same question as how many mutants are not generated in the

dynamic method.

Q2: Using the static mutation approach, what proportion of the type-mutants is

incompetent? Are type-mutants more incompetent than mutants where the

different values in the original and mutant programs have the same type?

Q3: What is the cost reduction by not generating type-mutants? In other words, how

does the cost of the static method compare with the dynamic method?

Q4: How does the choice of static or dynamic mutation affect the number of equivalent

mutants generated?

Q5: Which is the most cost effective method?

Typically, the results of these experiments can be used to demonstrate that the new

approaches for the mutation analysis of dynamically typed programs can generate mutants

in the manner of traditional mutation analysis. A tool called Tescripta, which was

designed initially for automatic test data generation and has been extended for the

mutation analysis of JavaScript programs, was used to perform the mutation analyses for

the selected programs.

126

7.1.1 Experiments and Evaluation of Results

Seven JavaScript programs were written. The programs were written because it is difficult

to find small JavaScript programs that do not execute inside an html web page. The

Tescripta tool can execute only stand-alone JavaScript programs. The programs written

are considered to be typical of JavaScript programs apart from, instead of input being

taken from a form on a web page, the input is provided programmatically by the Tescripta

tool. Also instead of writing output to a web page, the output is collected

programmatically by the Tescripta tool.

The seven programs all were written to use variables that hold values of different types.

Unless a variable holds values of different types then there is no difference in the static

and dynamic approaches to mutation analysis and such a program would not be useful for

comparing the static and dynamic approaches.

Although some dynamically typed languages, JavaScript for example, allow an operand to

hold different types of values, it is noticed by checking a large number of JavaScript

programs that this practice is not used very much by JavaScript programmers and did not

often happen that an operand was used to hold different types of values. In general, the

type of operands in a program depends mainly on the type of inputs supplied during the

execution and mixed types in a variable occur mainly in the input to a program, e.g.

number or string. The seven sample programs have been written in this style.

The seven programs used in the empirical investigation are listed in Appendix B and the

description of each program and the numbers of lines of code (LOC) are summarized in

Table7.1.

127

Program LOC Description

min 45 Depending on the types of the inputs, returns the

minimum of two numbers or the length of the shortest

of two strings or a number if it is less than the length of

the second string input or a string if its length is less

than the second number input.

boolStringNumber 17 Sets variable x to number, string and Boolean type and

adds the value of each x to the result.

wages 39 Calculate wages given salary information and number of

hours worked on each of 7 days adding on overtime.

price 62 Input is an array of orders. Each order is object

representing an Html input form containing the item

ordered, quantity and discount. Result is the cost of the

total orders. The inputs may be numbers or strings.

hazard 60 The old game of hazard, played with a pair of dice. The

first input declares main followed by a sequence of

throws of the dice. Outcomes of the game depending on

the value of main, and then the numbers on the pair of

dice.

game 131 Board game with a sequence of squares. Player starts at

square zero and array of inputs determines moves.

When player lands on a square, a unit of energy is

consumed and depending on the square various actions

take place which might move the player to another

square, cause the player to gain or loose energy or kill

the player and end the game.

student 35 Input is a set of module marks for a set of students. If

input module matches module in marksheet, mark is

added otherwise mark for new module.

Table 7.1: Description of programs used in the empirical evaluation

Each of the seven programs was submitted to Tescripta so that Tescripta could generate

the mutants of the program. In fact, for each method, static, context and dynamic,

Tescripta generates a single program that implements all the mutants of the method. The

program is known as a meta-mutant.

To generate the test data to kill the mutants, for each of the seven programs, Tescripta was

used to generate branch coverage test data. For each program, 10 random branch

coverage test sets were generated. All these 10 test sets were placed in a single test file,

one file for each program. This file was used as the test set to kill mutants. If needed,

128

tests were written by hand to kill any live non-equivalent mutants and added to the test set

for the program. The equivalent mutants for each program and method were identified.

Table 7.2 shows the number of mutants of each program for each method. For a program

and a method, the total of mutants is shown as the average of the killed non-equivalent

mutants and the equivalent mutants.

Program

Number of Mutants for each method

Static Context Dynamic

killed Eqv Total killed Eqv Total killed Eqv Total

min 408 107 515 387 100 487 308 82 390

boolStringNumber 236 43 279 224 37 261 174 22 196

wages 1482 120 1602 1388 102 1490 1123 56 1179

price 1587 214 1801 1437 209 1646 944 101 1053

hazard 1031 117 1148 982 117 1099 523 54 577

game 3148 462 3610 2930 436 3366 2064 279 2343

student 988 93 1081 950 93 1043 456 68 524

Average 888 116 1004 830 109 939 559 66 626

Table 7.2: Sets of mutants generated for the programs used in the empirical evaluation

These sets of mutants given in Table 7.2 are useful to help answer the research questions

above.

Q1: Using the static mutation approach, what proportion of the mutants are type-

mutants? This is the same question as how many mutants are not generated in the

dynamic method.

It can be seen from the results that on average across the seven programs the static method

generates the most mutants, the context method generates about 7% fewer mutants and

the dynamic method generates about 38% fewer than the static method. Notice that these

129

percentages are roughly constant for all of the seven programs so this is evidence that the

percentages generalise across JavaScript programs in general.

Consider the research question

Q2: Using the static mutation approach, what proportion of the type-mutants is

incompetent? Are type-mutants more incompetent than mutants where the

different values in the original and mutant programs have the same type?

For each element, the mutants that are present in the static method and not present in the

dynamic method i.e., type-mutants should be identified and checked. It will take too long

to do all of them. The lack of time did not allow a complete analysis of all the mutants that

are type-mutants. These have to be inspected by hand and there are many thousands of

mutants. For this reason, a sample of mutants was examined for the min program. From

this sample 100 % of the type- mutants were found to be killed by the first or second test.

This is good evidence that type-mutants are incompetent.

The number of tests in a non-redundant test sequence that kills all the non-equivalent

mutants for each of the seven programs is shown in Table 7.3. The total number of mutant

executions is also shown. For some mutants that are difficult to kill, tests are executed

many times. Using Table 7.3, the costs of the three methods can be compared. The data

can be used to answer the research questions

Q3: What is the cost reduction by not generating type-mutants? In other words, how

does the cost of the static method compare with the dynamic method?

Q4: How does the choice of static or dynamic mutation affect the number of equivalent

mutants generated?

130

Program

Number of

adequate tests /

method

Stc Ctx Dyc

Number of mutants

execution / method

Stc Ctx Dyc

Number of

equivalent mutants

/method

Stc Ctx Dyc

min 20 20 20 1643 1577 1749 107 100 82

boolStringNumber 3 3 4 379 357 310 43 37 22

wages 10 10 10 3550 3280 2538 120 102 56

price 14 13 19 4366 3996 4691 214 209 109

hazard 66 66 66 20587 20399 14197 117 117 54

game 26 26 26 34643 33799 26620 462 438 279

student 6 6 8 1640 1549 1562 93 93 68

Total 145 144 153 66808 64957 51667 1156 1096 670

Table 7.3: Number of mutation adequate tests, number of mutant executions and number

of equivalent mutants for each method and for each programs used in the

empirical evaluation.

For the min program, the dynamic method is considered to have the lowest cost. It was

explained in Chapter 6 that the most expensive part of the mutation analysis is the

equivalent mutants and that

c * EquivalentMutants > b * MutantExecutions

The number of tests is the same for all methods so this leaves only the number of

equivalent mutants and the number of executions. For the min program the number of

equivalent mutants for the dynamic method is the smallest.

The table shows that the situation of the min program is similar to the other six programs.

Notice that for the boolStringNumber program in the dynamic method, there is one

more test than in the static and context methods. This is because there is a mutant that is

killed in the static and context methods; instead the mutant is not defined in the dynamic

method because it is type-incorrect.

131

In general for the seven programs, the number of tests for each method varies very little.

The main difference between the methods is that the dynamic method has fewer mutants

and fewer equivalent mutants than the other methods. This shows that the dynamic

method is the least costly method.

There is the question of the effectiveness of the mutation method. Is the mutation

adequate test set of one method able to kill the mutants of another method? In other

words, are the mutants generated by a method difficult enough to kill mutants generated

by another method. Table 7.4 shows the percentages of mutants killed by a test set. The

column shows the method used to produce the mutation adequate test set. The row shows

the method used to produce the mutants that are killed by the test set. For each program,

the percentages are averaged across the 10 trial and are rounded to the nearest 1%.

 Mutant generate

method

Mutation adequate test method

Static Context Dynamic

Static 100 100

Context 100 100

Dynamic 100 100

Table 7.4: The percentages of mutants killed by a test set. The column shows the method

used to produce the mutation adequate test set. The row shows the method

used to produce the mutants that are killed by the test set. For each program,

the percentages are averaged across the 10 trial and are rounded to the nearest

1%

Consider the research question

Q5: Which is the most cost effective method?

Because the tests of each method can kill the mutants of the other methods, all methods

are equally effective. This means that a method must have a lower cost to be cost

effective. i.e. method TA is more cost effective than method TB when

Cost(TA) < Cost(TB) and Kills(TA, MB) and Kills(TB, MA)

132

From Table 7.3, it is clear that the dynamic method is the most cost effective and the

context method is the second most cost effective. This is true for all the seven programs

of the evaluation and so this suggests that the result can generalise to programs in general.

133

Chapter 8: Conclusions

8.1 Contributions

There are three main contributions of the thesis.

1. Methods have been developed for the mutation analysis of dynamic programs.

Previously, mutation analysis has been applied only to strongly typed programs.

2. The developed methods of mutation analysis have been evaluated empirically

using a set of sample programs.

3. There is evidence that the dynamic mutation analysis method is the most cost

effective method for dynamic programs.

The thesis investigated and introduced two new approaches for the mutation analysis of

dynamically typed programs which have not been done before. Firstly, a static approach to

generate mutants of dynamically typed programs has been developed. This approach can

be divided into two sub-approaches, static with no context information and static with

context information. This approach does not use run-time type information but does use

some static information. The type context in which a program element occurs can be used

to avoid some type-mutations and to make heuristic assumptions about the type of the

element. This approach is based on making only syntactic changes to the program under

test. Secondly, a dynamic approach to generate type-correct mutants at run-time. This

thesis argued that mutation analysis of dynamically typed programs can also be

established at run-time by executing test cases against the program under test. The aim is

to discover type information at program run-time to avoid type-mutations and, therefore,

some of the incompetent mutants.

Mutation analysis has been shown to be an effective test coverage criterion for statically

typed programs. Mutation analysis has not yet been fully applied to dynamically typed

programs. Since testing is important for programs written in dynamically typed languages

and mutation analysis is a demanding testing criterion, the combination of mutation

analysis for dynamically typed programs has the potential to be highly effective.

134

As discussed in Chapter 4, this thesis considered a small set of mutation operators. Most

of these mutation operators have been used in the mutation analysis of statically typed

programs but the string and object mutation operators are new. The simple static approach

for the mutation of dynamically typed programs is similar to the traditional mutation

analysis except that the mutation is done with the assumption that every variable can hold

values of all data types. This obviously will result in producing type-mutants. An

alternative to this is to use the type context in which the mutated element occurs to

eliminate some type-mutations. The static approach checks the type context of variables in

an expression and heuristically assumes types of these variables. In this approach, mutants

are generated by applying a compatible set of mutation operators in a static manner. It is,

however, possible that a variable hold a value of any-type context. In this case, all non-

redundant mutations are used to generate mutants.

The dynamic approach is investigated and introduced to generate mutants at run-time by

applying the same set of mutation operators that has been introduced for static mutation,

but in a typed manner. This is, however, required that test cases are executed against the

program under test to discover the type information of operands. Since mutants are

generated at run-time in a type-sensitive manner, this approach reduces the number of

mutants generated and produces more difficult to kill mutants.

The dynamic approach has been effective by improving the performance and reducing the

cost of mutation analysis for dynamically typed programs. There is, however, a risk that a

type may not be discovered because different inputs may result in different types. If a type

is not discovered then no mutation of that type are performed. Dynamic type discovery

allow the application of mutation operators to be more efficient. The dynamic mutation

method forces the tester to write tests that set a value of a variable to be of a specific type

as well as a specific value.

The static and dynamic approaches are evaluated and compared for the mutants produced

for seven sample programs. The dynamic approach has been shown to be the more cost

effective than the static approach. Although, in the dynamic mutation approach, time is

135

consumed to determine the type of operands and variables, dynamic mutation has been

shown to be efficient when compared to static mutation. As shown earlier in Chapter 7,

the results obtained by using Tescripta to perform the mutation analysis for a number of

JavaScript programs for the three different mutation methods have shown that the

dynamic approach provides an effective way to test dynamically typed programs. It is

clear that the cost of the dynamic method is the lowest, the static method without type

context is the most expensive and the cost of the static method with type context

information is more than the dynamic method but not as high as the static method without

context information. Notice that the cost of the dynamic method is about a half of the cost

of the other two methods.

Finally, a part of the type-mutants that are present in the static method and not present in

the dynamic method are identified and inspected. The lack of time did not allow a

complete analysis of all these mutants because they have to be inspected by hand and there

are many thousands of mutants. A sample of mutants were inspected and found that it was

found that100% of these mutants are easily killed, i.e., incompetent mutants.

8.2 Mapping the Thesis Contribution to Research Questions

The main contribution of this thesis is the development of two new approaches to the

mutation analysis of dynamically typed programs. These two mutation analysis

approaches, static and dynamic, are also useful to answer the research questions listed in

Chapter 1. These questions are concerned with evaluating the advantages and

disadvantages of the two approaches to the mutation analysis of dynamically typed

programs. In order to compare the approaches, both approaches were used on a sample of

example programs. Mutants were generated for each of the seven sample programs using

both the static and dynamic methods.

The first research question, Q1, is concerned with type-mutants. The advantage of the

dynamic mutation method is that it does not generate type-mutations. The benefit of this

advantage depends on how many type-mutants are generated by the static method. If the

static method generates only a small number of type-mutants then the mutants generated

136

by the static and dynamic methods will be very similar and it will not be possible to have a

significant advantage for dynamic mutation.

Q1: Using the static mutation approach, what proportion of the mutants are type-mutants?

This is the same question as how many mutants are not generated in the dynamic method.

The question was answered by calculating the difference between the numbers of mutants

generated using the static and dynamic methods. The difference was found to be about

38% fewer using the dynamic method.

The second research question, Q2, is concerned with what proportion of type-mutants is

incompetent.

Q2: Using the static mutation approach, what proportion of the type-mutants is

incompetent? Are type-mutants more incompetent than mutants where the different

values in the original and mutant programs have the same type?

It is reasonable to assume that type-mutations will make a large difference to the

behaviour of the program and so it is reasonable to assume that a type-mutant can be

easily killed, i.e. incompetent. Incompetent mutants are not useful. Although it is

reasonable to assume that type-mutations will make a large difference to the behaviour of

the program this assumption must be tested. This assumption was tested by counting how

many of the type-mutants are easily killed, i.e. killed by the first or second test. The type-

mutants are identified as the mutants present in the static method but not present in the

dynamic method. The empirical evaluation of the sample programs shows that all the

type-mutants are incompetent. This does not mean that for all programs, every type-

mutant is incmpetent but there is a high probability that it is incompetent.

The third and the fourth research questions, Q3 and Q4, are concerned with the reduction

of the cost of mutation analysis by not generating type-mutants and equivalent mutants.

137

Q3: What is the cost reduction by not generating type-mutants? In other words, how does

the cost of the static method compare with the dynamic method?

This question was answered by comparing the cost of the mutation analysis using the

static method with the cost of mutation analysis using the dynamic method. The

experiments with the seven example programs show that the cost of the mutation analysis

using the dynamic method is lower than the cost of mutation analysis using the static

method. On average, the cost was found to be about 40% lower

Q4: How does the choice of static or dynamic mutation affect the number of equivalent

mutants generated?

Comparing the number of equivalent mutants generated in the static method with the

number of equivalent mutants generated in the dynamic method, for the seven example

programs, less equivalent mutants were generated in the dynamic method. The equivalent

mutants generated using the dynamic method is about 45% fewer than using the static

method. The main reduction in cost is due to the lower number of equivalent mutants in

the dynamic method. The cost of the equivalent mutants is the dominant cost of mutation

analysis.

The fifth research question, Q5, is concerned with the most effective method.

Q5: Which is the most cost effective method?

This question was answered by generating mutants using the tests of each method to kill

the mutants of the other method. The results summarized in Table 7.4 shown that all

methods are effective. A mutation method of dynamically typed programs that avoids

producing type-mutants and reduces the number of equivalent mutants without affecting

the effectiveness of mutation analysis is considered as a cost effective method. Therefore,

comparing static with dynamic mutation, the dynamic is the most cost effective method

138

8.3 Limitation and Future Work

The empirical evaluation has been done on only seven programs and therefore more study

with a bigger range of programs is needed to fully establish the results of this thesis.

It is not clear how many actual JavaScript programs use variables that hold values of

different types. The lower cost of the dynamic method may not be so important if most

JavaScript programs use variables like statically typed programs. It could be in real

programs that most of the mixed types are number and string and apply mostly to input

variables. More research is needed to analyse existing JavaScript programs.

The investigation of the three approaches is based on the JavaScript programming

language. This language is widely used in web applications and combines the most

common features of other high-level dynamically typed languages. There are other

dynamic languages and further work involves applying these new approaches to the

mutation analysis of other high-level dynamically typed languages.

139

Bibliography

Acree, A. T., Budd, T. A., Demillo, R. A., Lipton, R. J. and Sayward, F. G. (1979).

Mutation Analysis, Atlanta, Georgia: Georgia Institute of Technology.

Adamopoulos, K., Harman, M. and Hierons, R. M. (2004). 'How to overcome the

equivalent mutant problem and achieve tailored selective mutation using co-

evolution', Genetic and Evolutionary Computation Gecco 2004 , Pt 2,

Proceedings, 3103, 1338-1349.

Agrawal, H., Demillo, R. A., Hathaway, B., Hsu, W., Krauser, E. W., Martin, R. J.,

Mathur, A. P. and Spafford, E. (1989). Design of Mutant Operators for the C

Programming Language, West Lafayette, Indiana: Purdue University.

Akers S.B., Joseph C. and Krishnamurthy B. (1987). ‘On the role of independent fault sets

in the generation of minimal test sets’, Proc. 1987 Int. Test. Conf., pp. 1100-1107.

Alexander, R. T., Bieman, J. M., Ghosh, S., Ji, B. X. and Ieee Computer, S. (2002).

'Mutation of Java objects', 13th International Symposium on Software Reliability

Engineering, Proceedings, 341-351.

Amman, P. and Offutt, J. (2008). Introduction to software Testing, Cambridge University

Press.

Arcuri, A. and Yao, X. (2007). 'On test data generation of object-oriented software', TAIC

PART 2007 - Testing: Academic and Industrial Conference - Practice and

Research Techniques, Proceedings: CO-LOCATED WITH MUTATION 2007, 72-

76.

Artzi, S., Dolby, J., Jensen, S. H., Moller, A., Tip, F. and Ieee (2011). 'A Framework for

Automated Testing of JavaScript Web Applications', 2011 33rd International

Conference on Software Engineering (Icse), 571-580.

140

Barbey, S. and Strohmeier, A. (1994). 'THE PROBLEMATICS OF TESTING OBJECT-

ORIENTED SOFTWARE', Software Quality Management Ii, Vol 2: Building

Quality into Software, 411-426.

Barbosa, E. F., Maldonado, J. C. and Vincenzi, A. M. R. (2001). 'Toward the

determination of sufficient mutant operators for C', Software Testing Verification

& Reliability, 11(2), 113-136.

Beizer, B. (1990). Software Testing Techniques, second ed., London: Van Nostrand

Reinhold Company Limited.

Bertolino, A. (2003). 'Software testing research and practice', Proceedings of the abstract

state machines 10th international conference on Advances in theory and

practice(ASM'03), Taormina, Italy, Springer-Verlag, PP 1-21.

Binder, R. V. (1999). Testing Object-Oriented Systems: Models, Patterns, and Tools,

Addison-Wesley Professional.

Chevalley, P. (2001). 'Applying mutation analysis for object-oriented programs using a

reflective approach', Apsec 2001: Eighth Asia-Pacific Software Engineering

Conference, Proceedings, 267-270.

Choi, B. J. and Mathur, A. P. (1993). 'High-Performance Mutation Testing ', Journal of

Systems and Software, 20(2), 135-152.

Crockford, D. (2008). JavaScript: The Good Parts, O'Reilly Media Inc.

Delamaro, M. E. and Maldonado, J. C. (1996). Proteum- A Tool For the Assessment of

Test Adequacy for C Programs, translated by New Brunswick, New Jersey: pp.

79-95.

141

Demillo, R. A., Guindi, K. N., King, K. N., McCracken, W. M. and Offutt, A. J. (1988).

'An Extended Overview of the Mothra Software testing environment', in

Proceedings of SIGSOFT Symposium on Software Testing, Analysis and

Verification 2, (July), 142–151.

Demillo, R. A., Krauser, E. W. and Mathur, A. P. (1991). 'Compiler-Integrated Program

Mutation', Compsac 91 - the Fifteenth Annual International Computer Software &

Applications Conference, Proceedings, 351-356.

Demillo, R. A. and Lipton, R. J. (1978). 'Hints On Test Data Selection - Help For

Practicing Programmer', Computer, 11(4), 34-41.

Duggan, D. and Bent, F. (1996). 'Explaining type inference', Science of Computer

Programming, 27(1), 37-83.

Flanagan, D. (2011). JavaScripts :The Definitive Guide. O'Reilly Media, Inc.

Gligoric, M., Badame, S. and Johnson, R. (2011). 'SMutant: a tool for type-sensitive

mutation testing in a dynamic language', in Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on Foundations of

software engineering, Szeged, Hungary, ACM, pp 424-427.

Goodman, D. and Morrison, M. (2007). Javascript bible, sixth ed., New York, NY, USA:

John Wiley & Sons, Inc.

Gupta, R., Harrold, M. J. and Soffa, M. L. (1996). 'Program Slicing-Based Regression

Testing Techniques', Software Testing, Validation, and Reliability, 6(2), 83-111.

Hamlet, R. G. (1977). 'Testing programs with the aid of a compiler', Ieee Transactions on

Software Engineering, 3(4), 279-290.

142

Harman, M., Hierons, R. and Danicic, S. (2001). 'The relationship between program

dependence and mutation analysis', Mutation Testing for the New Century, 24, 5-

13.

Hierons, R. M. (2002). 'Comparing test sets and criteria in the presence of test hypotheses

and fault domains', Acm Transactions on Software Engineering and Methodology,

11(4), 427-448.

Howden, W. E. (1982). 'Completeness Criteria for Testing Elementary Program Functions

- Week Mutation Testing and Completeness of Sets', IEEE Transactions on

Software Engineering, 8(4), 371-379.

IEEE-Standards-Board, Ieee standard for software unit testing. An American national

standard, ansi/ieee std 1008-1987. IEEE Standards: Software Engineering,

Volume two: Process Standards, 1999.

Jackson, D. and Woodward, M. R. (2001). 'Parallel firm mutation of Java programs',

Mutation Testing for the New Century, 24, 55-61.

Jia, Y. and Harman, M. (2009). 'Higher Order Mutation Testing', Information and

Software Technology, 51(10), 1379-1393.

Jia, Y. and Harman, M. (2011). 'An Analysis and Survey of the Development of Mutation

Testing', IEEE Transactions on Software Engineering, 37(5), 649-678.

King, K. N. and Offutt, A. J. (1991). 'A FORTRAN Language System for Mutation-Based

Software Testing ', Software-Practice & Experience, 21(7), 685-718.

Langdon, W. B., Harman, M. and Jia, Y. (2010). 'Efficient multi-objective higher order

mutation testing with genetic programming', Journal of Systems and Software,

83(12), 2416-2430.

143

Leroy, X., Doligez, D., Garrigue, J., R´emy, D. and Vouillon, J. (2002). The Objective

Caml system,documentation and user’s manual (release 3.06), Tech.rep., INRIA,

Rocquencourt, France.

Linda Dailey, P. (2007). 'Developers Shift to Dynamic Programming Languages',

Computer, 40(2), 12-15.

Ma, Y. S., Offutt, J. and Kwon, Y. R. (2005). 'MuJava: an automated class mutation

system', Software Testing Verification & Reliability, 15(2), 97-133.

Mathur, Aditya and p. (1991). 'Performance, Effectiveness, and Reliability Issues in

software Testing', in Proceedings of COMPSAC'91, CA: IEEE Press. pp. 604-605.

Mikkonen, T. and Taivalsaari, A. (2007). Using JavaScript as a RealProgramming

Language, Sun Microsystems Laboratories Technical Report TR-2007-168.

Mresa, E. S. and Bottaci, L. (1999) 'Efficiency of Mutation Operators and Selective

Mutation Strategies: An Empirical Study', Software Testing, Verification and

Reliability, 9(4), pp. 205-232.

Namin, A. S. and Anderws, L. H. (2006). Finding sufficient Mutation operators via

Variable Reduction, North Catolina: IEEE Computer Society.

Offutt, A. J. (1992). 'Investigation of the Software Testing Coupling Effect', ACM

Transaction on Software Engineering and Methodology, 1(1), 5-20.

Offutt, A. J. and King, K. N. (1987). 'A FORTRAN-77 Interpreter for Mutation Analysis',

Acm Sigplan Notices, 22(7), 177-188.

Offutt, A. J. and Pan, J. (1997). 'Automatically Detecting Equivalent Mutants and

Infeasible Paths', Software Testing, Verifivation and Reliability, 7(3), 165-192.

144

Offutt, A. J., Rothermel, L. G., Untch, R. H. and Zapf, C. (1996a). 'An Experimental

Determination of Sufficient Mutant Operator', ACM Transaction on Software

Engineering and Methodology, 21(7), 685-718.

Offutt, A. J., Voas, J. and J., P. (1996b). Mutation operators for Ada, George Mason

University.

Offutt, A. J. (1992). 'Investigation of the Software Testing Coupling Effect', ACM

Transaction on Software Engineering and Methodology, 1(1), 5-20.

Polo, M., Piattini, M. and Garcia-Rodriguez, I. (2009). 'Decreasing the cost of mutation

testing with second-order mutants', Software Testing Verification & Reliability,

19(2), 111-131.

Richards, G., Lebresne, S., Burg, B. and Vitek, J. (2010). 'An Analysis of the Dynamic

Behavior of JavaScript Programs', Acm Sigplan Notices, 45(6), 1-12.

Rapps, S., and Weyuker, E. J. (1982). 'Data flow analysis techniques for test data

selection', In Proceedings of the 6th international conference on Software

engineering, (pp. 272-278), IEEE Press.

Schuler, D., Dallmeier, V., Zeller, A. and Acm (2009). 'Efficient Mutation Testing by

Checking Invariant Violations', Issta 2009: International Symposium on Software

Testing and Analysis, 69-79.

Shahriar, H., Zulkernine, M. and Ieee (2009). 'MUTEC: Mutation-based Testing of Cross

Site Scripting', 2009 Icse Workshop on Software Engineering for Secure Systems,

47-53.

Shamaila H. (2008). 'Mutation Clustering', Masters Thesis, King’s College London,

Strand, London.

145

Sofokleous, A. A. and Andreou, A. S. (2008). 'Automatic, evolutionary test data

generation for dynamic software testing', Journal of Systems and Software, 81(11),

1883-1898.

Tratt Laurence (2009). 'Dynamically Typed Languages', Advances in Computers, Vol. 77,

pp. 149-184

Untch, R. H. (1992). Mutation-Based Software Testing Using Program Schemata,

translated by Raleigh, North Carolina: pp. 285-291.

Untch, R. H. (2009). 'On reduced neighborhood mutation analysis using a single utagenic

operator', in ACM Southeast Regional Conference, Clemson SC, pp. 19–21.

Untch, R. H., Offutt, A. J. and Harrold, M. J. (1993). Mutation Analysis Using Mutant

Schemata, translated by Cambridge, Massachusetts: pp. 139-148.

Wong, W. E. (1993). On Mutation and Data Flow, PhD thesis. Purdue University.

Wong W. E. and Mathur A. P (1995) . 'Reducing the cost of mutation testing: An

empirical study', JSS, 31(3):185–196, 1995.

Zhu, H., Hall, P. A. V. and May, J. H. R. (1997). 'Software unit test coverage and

adequacy', Acm Computing Surveys, 29(4), 366-427.

http://docstore.mik.ua/orelly/webprog/jscript/index.htm, revisited on 4/2/2013

Ivan Moore(2005). Pester. http://jester.sourceforge.net. revisited 5/2/2013

Heckle. http://seattlerb.rubyforge.org/heckle/ revisited 5/2/2013

http://jibbering.com/faq/notes/type-conversion/ Visited 15/12/20012

http://docstore.mik.ua/orelly/webprog/jscript/index.htm
http://www.oocode.com/
http://jester.sourceforge.net./
http://seattlerb.rubyforge.org/heckle/
http://jibbering.com/faq/notes/type-conversion/

146

Appendix A: An Algorithm for checking the context of an operand or

operator in a JavaScript program

The algorithm uses the abstract syntax tree of the function under test and traverses the

tree, each child node first followed by the node itself.

Object PostOrder(Object node) {

 foreach (Object child in children) {

 PostOrder(child);

 }

 return Postprocess(node);

 }

Object Postprocess(Object node) {
 if (node is ConstantWrapper) {
 if (((ConstantWrapper)node).isNumericLiteral) {
 progElem.AddContext(((ConstantWrapper)node).nome, JSType.number);
 }
 else if (((ConstantWrapper)node).value is String
 || ((ConstantWrapper)node).value is char) {
 progElem.AddContext(((ConstantWrapper)node).nome, JSType.strng);
 }
 else if (((ConstantWrapper)node).value is System.Boolean) {
 progElem.AddContext(((ConstantWrapper)node).nome, JSType.booln);
 }
 }
 else if (node is Lookup) {
 if (!(ParentStack(1) is VariableDeclaration)) {
 ;
 }
 }
 else if (node is Member) {
 Member memNode = (Member)node;
 progElem.AddContext(memNode.nome, JSType.member);
 progElem.AddContext(memNode.rootObject.nome, JSType.objct);
 }
 else if (node is Call) {
 Call callNode = (Call)node;
 if (callNode.inBrackets) {
 progElem.AddContext(callNode.func.nome, JSType.array);
 }
 else {
 progElem.AddContext(callNode.func.nome, JSType.functn);
 }
 }
 else if (node is If) {
 If ifNode = (If)node;
 if (ifNode.condition is Lookup
 || ifNode.condition is Member) {
 progElem.AddContext(ifNode.condition.nome, JSType.booln);
 }
 else if (ifNode.condition is Logical_and

147

 || ifNode.condition is Logical_or
 || ifNode.condition is Comma) {
 BinaryOp cond = (BinaryOp)ifNode.condition;
 progElem.AddContext(cond.operand2.nome, JSType.booln);
 }
 }
 else if (node is While) {
 While wNode = (While)node;
 if (wNode.condition is Lookup
 || wNode.condition is Member) {
 progElem.AddContext(wNode.condition.nome, JSType.booln);
 }
 }
 else if ((node is Logical_and)
 || (node is Logical_or)) {
 BinaryOp bop = (BinaryOp)node;
 if (bop.operand1 is Lookup
 || bop.operand1 is Member) {
 progElem.AddContext(bop.operand1.nome, JSType.booln);
 }
 }
 else if (node is NumericUnary) {
 NumericUnary uop = (NumericUnary)node;
 if (uop.operatorTok == JSToken.Minus) {
 progElem.AddContext(uop.nome, JSType.number);
 if (uop.operand is Lookup
 || uop.operand is Member
 || uop.operand is Plus) {
 progElem.AddContext(uop.operand.nome, JSType.number);
 }
 }
 else if (uop.operatorTok == JSToken.LogicalNot) {
 progElem.AddContext(uop.nome, JSType.booln);
 if (uop.operand is Lookup
 || uop.operand is Member) {
 progElem.AddContext(uop.operand.nome, JSType.booln);
 }
 }
 }
 else if (node is NumericBinary) { // -, *, /, %
 NumericBinary nop = (NumericBinary)node;
 if (nop.operatorTok == JSToken.Minus
 || nop.operatorTok == JSToken.Multiply
 || nop.operatorTok == JSToken.Divide
 || nop.operatorTok == JSToken.Modulo) {
 progElem.AddContext(nop.nome, JSType.number);
 if (nop.operand1 is Lookup
 || nop.operand1 is Member
 || nop.operand1 is Plus) {
 progElem.AddContext(nop.operand1.nome, JSType.number);
 }
 if (nop.operand2 is Lookup
 || nop.operand2 is Member
 || nop.operand2 is Plus) {
 progElem.AddContext(nop.operand2.nome, JSType.number);
 }
 }
 else {

148

 throw new Exception("Unknown type of NumericBinary");
 }
 }
 else if (node is Plus) {
 Plus p = (Plus)node;
 if (progElem.GetContext(p.operand1.nome).Equals(JSTypeSet.strng)) {
 progElem.AddContext(p.nome, JSType.strng);
 if (p.operand2 is Lookup
 || p.operand2 is Member) {
 progElem.AddContext(p.operand2.nome, JSType.strng);
 }
 }
 if (progElem.GetContext(p.operand2.nome).Equals(JSTypeSet.strng)) {
 progElem.AddContext(p.nome, JSType.strng);
 if (p.operand1 is Lookup
 || p.operand1 is Member) {
 progElem.AddContext(p.operand1.nome, JSType.strng);
 }
 }
 if ((progElem.GetContext(p.operand1.nome).Equals(JSTypeSet.number))
 && (progElem.GetContext(p.operand2.nome).Equals(JSTypeSet.number))) {
 progElem.AddContext(p.nome, JSType.number);
 }
 }
 else if (node is Relational // <, <=, >, >=
 || node is Equality) { // ==, !=
 BinaryOp r = (BinaryOp)node;
 if (progElem.GetContext(r.operand1.nome).Equals(JSTypeSet.number)) {
 progElem.AddContext(r.nome, JSType.number);
 if (r.operand2 is Lookup
 || r.operand2 is Member) {
 progElem.AddContext(r.operand2.nome, JSType.number);
 }
 }
 if (progElem.GetContext(r.operand2.nome).Equals(JSTypeSet.number)) {
 progElem.AddContext(r.nome, JSType.number);
 if (r.operand1 is Lookup
 || r.operand1 is Member) {
 progElem.AddContext(r.operand1.nome, JSType.number);
 }
 }
 if ((progElem.GetContext(r.operand1.nome).Equals(JSTypeSet.strng))
 && (progElem.GetContext(r.operand2.nome).Equals(JSTypeSet.strng))) {
 progElem.AddContext(r.nome, JSType.strng);
 }
 }
 else if (node is Assign) {
 Assign a = (Assign)node;
 if (a.lhside is Lookup) {
 JSTypeSet rhsideContext = progElem.GetContext(a.rhside.nome);
 if (rhsideContext.IsSingleton()) {
 progElem.AddContext(a.lhside.nome, rhsideContext.AsJSType());
 }
 else {
 // TODO investigate this case
 }
 }
 }

149

 base.Postprocess(node); // pop node
 return node;
 }

150

Appendix B: Set of the programs used for the empirical investigation

min program

/*
Depending on the types of the inputs, returns the minimum of two numbers or the
length of the shortest of two strings or a number if it is less than the length of
the second string input or a string if its length is less than the second number
input.*/

function min(i, j) {
 //Based on example from Kapoor and Bowen
 var m = 0;
 if ((typeof(i) == "number")
 && (typeof(j) == "number")) {
 //#BeginNoMutation
 //print("number number");
 //#EndNoMutation
 if (i < j) {
 m = i;
 }
 else {
 m = j;
 }
 }
 else if ((typeof(i) == "string")
 && (typeof(j) == "string")) {
 //#BeginNoMutation
 //print("string string");
 //#EndNoMutation
 if (i.length < j.length) {
 m = i;
 }
 else {
 m = j;
 }
 }
 else if ((typeof(i) == "number")
 && (typeof(j) == "string")) {
 //#BeginNoMutation
 //print("number string");
 //#EndNoMutation
 if (i < (j - 0)) { // convert j to number
 m = i;
 }
 else {
 m = j;
 }
 }
 else if ((typeof(i) == "string")
 && (typeof(j) == "number")) {
 //#BeginNoMutation
 //print("string number");
 //#EndNoMutation
 if (i.length < (j + "").length) { // convert j to string
 m = i;

151

 }
 else {
 m = j;
 }
 }
 else {
 //#BeginNoMutation
 //print(" null ");
 //#EndNoMutation
 m = null;
 }
 var r = m;
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(r, 9);
 return r;
 #EndNoMutation
 }
}

152

boolStringNumber2 program

/*

Sets variable x to number, string and Boolean type and adds the value of each x to

the result.*/

// function under test
 function boolStringNumber2(n) {
 var x = 0;
 var i = 0;
 var y = "";
 var r = 0;
 for (i = 0; i < n; i++) {
 if (i == 1) {
 x = true;
 y = "23";
 }
 else if (i == 2) {
 x = y - 1;
 }
 r += x + 3;
 }
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(r, 9);
 return r;
 #EndNoMutation
 }
/*
 // function under test
 function boolStringNumber2(n) {
 var x = 0, i = 0, r = 0;
 var b1, b2;
 for (i = 0; i < n; i++) {
 b1 = i == 1;
 b2 = i == 2;
 if (b1) {
 x = b1;
 }
 else if (b2) {
 x = "hello";
 }
 b1 = b1 || ((x == "hello") && x);
 b2 = b1 || ((x == "hello") && (x && b1));
 r += x + 3 + b1 + b2;
 }
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(r);
 return r;
 #EndNoMutation
 }
*/
}

153

wages program

/*
Calculate wages given salary information and number of hours worked on each of 7
days adding on overtime.*/

// function under test
 function wages(code, level, paygrade, hours) {
 var hoursInDay = 8;
 var salary = 0;
 var rate = 11;
 var allowance = 180; // before tax
 var year = "first";
 var totalHours = 0;
 var bonus = [80, 160, 240]; // added if work overtime
 var overtime = 0;
 var i = 0;
 if (code == 0) { // i0
 rate = 7;
 }
 if (level == 4000) { // i1
 if (paygrade == 5) { // i2
 year = "second";
 }
 }
 if (year == "first") { // i3
 rate = rate - 3;
 }
 while (i < 7) { // w0
 totalHours = totalHours + hours[i];
 if (hours[i] > hoursInDay) { // i4
 overtime += hours[i] - hoursInDay;
 }
 i += 1;
 }
 salary = totalHours * rate;
 salary += bonus[Math.floor(overtime / 7)];
 if (salary > allowance) { // deduct tax
 salary -= allowance; // do not tax allowance
 salary -= salary * 0.2;
 salary += allowance;
 }
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(salary, 9);
 return salary;
 #EndNoMutation
 }
}

154

price program

/*
 * Input is array of orders.
 * Each order is object of form {item: [number|string], discount:
[number|string], units: [number|string]}.
 * Calculate price of given item x units applying any discount.
 * item may be a number, in which case it is a unit price.
 * item may be a string, in which case it is the name of the item and the price
must be looked up.
 * discount may be a number, in which case it is a percentage by which the price
is reduced.
 * discount may be a string, in which case it is a code and must be looked up.
 */
 // function under test
 function price(orders) {
 var order;
 var item;
 var discount;
 var units;
 var cost;
 var totalCost = 0;
 var weeks;
 var weeklyCost;
 var i = 0;
 var j = 0;
 for (i = 0; i < orders.length; i++) {
 // calculate cost of order
 order = orders[i];
 item = order.item;
 discount = order.discount;
 units = order.units;
 //print("item " + item + " dis " + discount + " units " + units);
 cost = itemData[item];
 cost -= cost * discount;
 cost *= units;
 //print(item + " " + itemData[item] + " " + cost);
 if (cost >= 180) {
 // split cost across a number of weeks
 weeks = Math.ceil(cost / 30);
 weeklyCost = cost / weeks;
 cost = new Array(weeks);
 for (j = 0; j < weeks; j += 1) {
 cost[j] = Math.ceil(weeklyCost + (weeklyCost * 0.15));
 }
 }
 if ((typeof(totalCost) == "number")
 && (typeof(cost) == "number")) {
 totalCost += cost;
 }
 else if ((typeof(totalCost) == "number")
 && (typeof(cost) == "object")) {
 cost[0] += totalCost; // previous cost added to first week cost
 totalCost = cost;
 }
 else if ((typeof(totalCost) == "object")
 && (typeof(cost) == "number")) {

155

 totalCost[0] += cost; // previous cost added to first week cost
 }
 else if ((typeof(totalCost) == "object") // i.4
 && (typeof(cost) == "object")) {
 // add corresponding weekly costs into largest array
 if (totalCost.length >= cost.length) { // i.5
 for (j = 0; j < cost.length; j++) {
 totalCost[j] += cost[j];
 }
 }
 else {
 for (j = 0; j < totalCost.length; j++) {
 cost[j] += totalCost[j];
 }
 totalCost = cost;
 }
 }
 }
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(totalCost, 60);
 return totalCost;
 #EndNoMutation
 }
}

156

hazard program

The old game of hazard, played with a pair of dice. The first input declares main followed

by a sequence of throws of the dice. Outcomes of the game depending on the value of

main, and then the numbers on the pair of dice.

//The game of hazard, played with a pair of dice.
function hazard(throws) { // an initial number which declares main followed by a
sequence of throws of the dice
 // outcomes depending on the value of main, 5 to 9 and then the total thrown
 var rules = {1: "invalidInput",
 2: "invalidInput",
 3: "invalidInput",
 4: "invalidInput",
 5: {2: "outs", 3: "outs", 4: "chance", 5: "nicks", 6: "chance", 7:
"chance", 8: "chance", 9: "chance", 10: "chance", 11: "outs", 12: "outs"},
 6: {2: "outs", 3: "outs", 4: "chance", 5: "chance", 6: "nicks", 7:
"chance", 8: "chance", 9: "chance", 10: "chance", 11: "outs", 12: "nicks"},
 7: {2: "outs", 3: "outs", 4: "chance", 5: "chance", 6: "chance", 7:
"nicks", 8: "chance", 9: "chance", 10: "chance", 11: "nicks", 12: "outs"},
 8: {2: "outs", 3: "outs", 4: "chance", 5: "chance", 6: "chance", 7:
"chance", 8: "nicks", 9: "chance", 10: "chance", 11: "outs", 12: "nicks"},
 9: {2: "outs", 3: "outs", 4: "chance", 5: "chance", 6: "chance", 7:
"chance", 8: "chance", 9: "nicks", 10: "chance", 11: "outs", 12: "outs"}};
 var index = 0; // index input sequence
 var main; // first input sets this value
 var thrw;
 var thrwValue = 0;
 var chance = 0;
 var rule;
 main = throws[index];
 rule = rules[main]; // value of main determines interpretation of subsequent
throws
 if (typeof(rule) != "object") {
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(rule, 12);
 print("rule " + rule);
 return rule;
 #EndNoMutation
 }
 index = index + 1;
 thrw = throws[index]; // next input is a pair of dice values
 thrwValue = thrw.first + thrw.second;
 //print("[" + thrw.first + ", " + thrw.second +"]");
 //print("main: " + main + ", rule " + rule);
 var result = rule[thrwValue];
 if (result == "outs") {
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("lost", 20);
 return "lost";
 #EndNoMutation
 }
 if (result == "nicks") {
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("won", 20);
 return "won";

157

 #EndNoMutation
 }
 if (result == "chance") {
 chance = thrw.first + thrw.second;
 for (index = 2; index < throws.length; index++) {
 thrw = throws[index];
 //print("[" + thrw.first + ", " + thrw.second +"]");
 thrwValue = thrw.first + thrw.second;
 if (thrwValue == chance) {
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("won", 20);
 return "won";
 #EndNoMutation
 }
 else if (thrwValue == main) {
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("lost", 20);
 return "lost";
 #EndNoMutation
 }
 }
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("outOfInput", 20);
 return "outOfInput";
 #EndNoMutation
 }
 else {
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("invalidInput", 20);
 return "invalidInput";
 #EndNoMutation
 }
}
}

158

game program

/* Board for game is a sequence of squares.
 Player starts at square zero and array of inputs determines moves.
 When player lands on a square, a unit of energy is consumed and:
 - "safe", get next input
 - "mine", player dead, game over
 - "action":
 - "goback", move back prescribed number of squares
 - "food", acquire additional energy
 - "fight", consume given amount of energy, if energy = 0 player dead,
 game over */

 function game(moves) {
 var board = [
 "safe", // first square must be safe
 {action: "food", amount: 12}, // 1
 "mine",
 {action: "food", amount: 8},
 "mine",
 "safe", // 5
 {action: "goback", dist: 3},
 "mine", // v14
 {action: "food", amount: 13},
 {action: "goback", dist: 11},
 "mine", // 10 v21
 "safe", // v22
 {action: "food", amount: 8},
 {action: "food", amount: 7},
 {action: "goback", dist: 4},
 {action: "fight", amount: 7}, // 15
 {action: "fight", amount: 27},
 {action: "fight", amount: 17},
 "safe", // v41
 {action: "goback", dist: 5},
 {action: "goback", dist: 5}, // 20
 "safe", // v48
 {action: "fight", amount: 5},
 {action: "goback", dist: 3},
 {action: "fight", amount: 33},
 "safe", // 25 v58
 {action: "fight", amount: 35},
 {action: "fight", amount: 5},
 {action: "goback", dist: 6},
 "mine",
 {action: "fight", amount: 2}, // 30
 "safe",
 "mine",
 {action: "fight", amount: 19},
 "safe",
 {action: "goback", dist: 11}, // 35
 "safe",
 {action: "goback", dist: 11}, // v83
 "mine",
 {action: "goback", dist: 3},
 {action: "fight", amount: 9}, // 40
 {action: "goback", dist: 13},

159

 "safe",
 {action: "goback", dist: 11},
 {action: "fight", amount: 9},
 {action: "goback", dist: 18}, // 45
 "mine",
 "safe",
 {action: "fight", amount: 9},
 "mine",
 {action: "goback", dist: 6}, // 50
 {action: "fight", amount: 7},
 "mine",
 "end"
];
 var gameOver = false;
 var energy = 5; // must not fall below 0
 var energyIsEmpty = false; // true when energy = 0
 var fullEnergy = 50;
 var energyIsFull = false; // true when energy = fullEnergy
 var index = -1;
 var square = 0;
 var squareValue = board[square];
 while (!gameOver) {
 if (squareValue == "safe") {
 // get next input
 index += 1;
 if (index == moves.length) {
 gameOver = true;
 }
 else {
 square += moves[index];
 energy -= 1;
 if (square >= board.length) { // board overflow, reverse move
 square = (board.length - 1) - (square - (board.length - 1));
 energy -= 1;
 if (square < 0) { // board underflow, goto start, infeasible
 square = 0;
 energy -= 1;
 }
 }
 if (energy < fullEnergy) {
 energyIsFull = false;
 }
 squareValue = board[square];
 //print("moves[" + index + "] = " + moves[index] + ", square = " + square
+ ", " + stringSquare(squareValue));
 }
 }
 // move square if not safe
 else if ((typeof squareValue) == "object") {
 if (squareValue.action == "goback") {
 square -= squareValue.dist;
 if (square < 0) {
 square = - square;
 }
 squareValue = board[square];
 //print("back to square = " + square + ", " + stringSquare(squareValue));
 }
 else if (squareValue.action == "food") {

160

 energy += squareValue.amount;
 if (energy >= fullEnergy) {
 energyIsFull = true;
 }
 squareValue = "safe";
 //print("energy = " + energy + (energyIsFull?" energyIsFull":""));
 }
 else if (squareValue.action == "fight") { // f infeasible
 energy -= squareValue.amount;
 if (energy < fullEnergy) {
 energyIsFull = false;
 }
 if (energy == 0) {
 energyIsEmpty = true;
 }
 if (energy < 0) {
 gameOver = true;
 }
 squareValue = "safe";
 //print("energy = " + energy);
 }
 }
 else if (squareValue == "mine") {
 gameOver = true;
 }
 else if (squareValue == "end") { // f infeasible
 gameOver = true;
 }
 }
 //if (energyIsEmpty) {
 //print("energyIsEmpty");
 //}
 //if (energyIsFull) {
 //print("energyIsFull");
 //}
 if (squareValue == "end") {
 //print("end " + energy);
 //if (energyIsFull) {
 //print("energyIsFull");
 //}
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("end" + energy + energyIsFull +
energyIsEmpty, 20);
 return "end" + energy;
 #EndNoMutation
 }
 else {
 //print("gameOver");
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput("gameOver" + energy + energyIsFull +
energyIsEmpty, 26);
 return "gameOver" + energy;
 #EndNoMutation
 }
 }
}

161

Student program

Input is a set of module marks for a set of students. If input module matches module in

marksheet, mark is added otherwise mark for new module.

// function under test
 function student(students) {
 var markSheet = [
 {name: "John", marks: [{mod: "0101", mark: 30}, {mod: "0102", mark: 35}]},
 {name: "Jane", marks: [{mod: "0101", mark: 40}, {mod: "0200", mark: 20}]},
 {name: "Bill", marks: [{mod: "0104", mark: 0}, {mod: "0200", mark: 70}]}];
 var name;
 var mod;
 var mark = 0;
 var markOld = 0;
 var studnt;
 var studentMarks;
 var markSheetRow;
 var studentMark;
 var i, j, k = 0;
 for (i = 0; i < students.length; i++) {
 studnt = students[i];
 name = studnt.name;
 mod = studnt.mod;
 mark = studnt.mark;
 for (j = 0; j < markSheet.length; j++) {
 if (name == markSheet[j].name) {
 markSheetRow = markSheet[j];
 studentMarks = markSheetRow.marks;
 for (k = 0; k < studentMarks.length; k++) {
 studentMark = studentMarks[k];
 if (mod == studentMark.mod) {
 markOld = studentMark.mark;
 studentMark.mark = markOld + mark;
 }
 }
 }
 }
 }
 #BeginNoMutation
 TESCRIPTAClass.TESCRIPTA.defineOutput(markSheet);
 return markSheet;
 #EndNoMutation
 }
}

162

Appendix C: Sample outputs produced by Tescripta using Dynamic

method for the min program

function min(i_, j_)
 var i;
 i .0 = .0 i_ .0 s0;
 var j;
 j .0 = .1 j_ .0 s1;
 var m;
 m .0 = .2 0 v0 s2;
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1
 "number" v2)) {
 if i1 (i .2 < .0 j .2) {
 m .1 = .3 i .3 s3;
 }
 else {
 m .2 = .4 j .3 s4;
 }
 }
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3 "string"
v4)) {
 if i3 (i .5 .length m0 < .1 j .5 .length m1) {
 m .3 = .5 i .6 s5;
 }
 else {
 m .4 = .6 j .6 s6;
 }
 }
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5 "string"
v6)) {
 if i5 (i .8 < .2 (j .8 - .0 0 v7)) {
 m .5 = .7 i .9 s7;
 }
 else {
 m .6 = .8 j .9 s8;
 }
 }
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) {
 if i7 (i .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) {
 m .7 = .9 i .12 s9;
 }
 else {
 m .8 = .10 j .12 s10;
 }
 }
 else {
 m .9 = .11 null v11 s11;
 }
 var r;
 r .0 = .12 m .10 s12;
 TESCRIPTAClass.TESCRIPTA.defineOutput(r, 9);

min program after instrumentation. Labels are

added to identify every object in the

program. Assignment statement are labelled as

s0, s1 ,…, s12. The if statements are

labelled as i0, i1, …, i7

v1: the second occurrence of a
literal

==.0: the first occurrence of ==
j.2: the third occurrence of j
m.1: the second occurrence of m

<.1 the second occurrence of <
m0: the first occurrence of an

object member
=.5: the sixth occurrence of =

The tester defines the
output of min to be r

163

 return r;
}

(Test 0 i -4 j output -4 execCount 8)
(Test 1 i abc j ab output ab execCount 18)
(Test 2 i 10 j 10 output 10 execCount 6)
(Test 3 i 5 j 0 output 0 execCount 9)
(Test 4 i aa j bb output bb execCount 13)
(Test 5 i 4 j 5 output 4 execCount 23)
(Test 6 i number j 4 output 4 execCount 30)
(Test 7 i 0 j 1 output 0 execCount 42)
(Test 8 i true j false output null execCount 31)
(Test 9 i Od+ j 1629 output Od+ execCount 35)
(Test 10 i -33 j -383 output -383 execCount 15)
(Test 11 i j -383 output execCount 3)
(Test 12 i 4 j output execCount 4)
(Test 13 i JHw j 563 output 563 execCount 20)
(Test 14 i 0 j ab output ab execCount 41)
(Test 15 i j output execCount 7)
(Test 16 i ab j abc output ab execCount 19)
(Test 17 i -44 j -40 output -44 execCount 21)
(Test 18 i j]h" output execCount 34)

1 Total runtype mutants 429, dead(k, t or x) 308, missed(m) 82, type incorrect(i)
39, not reached(n) 0, equiv(e) 0, execs 1705, time 00:00:05.2413223

s0 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 i .0 = .0 i_ .0 s0; s0
 var j; 1, 0 k null 1 k null 2 k null 3 k null 4 k null 5 k null 6 k null 7 k
 null 8 m 9 k null 10 k null 11 k null 12 k null 13 k null 14 k null 15 k null 16
 k null 17 k null 18 k null, comp 0.1

i.0 i none i
 0 0, total 0 dead 0 miss 0

s1 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 j .0 = .1 j_ .0 s1; s1
 var m; 1, 0 k null 1 k null 2 k null 3 k null 4 k null 5 k null 6 k null 7 k

Set of mutation adequate
tests used to kill the
mutants of min program.

Test number followed by the values
of argument i and argument j and
the output r

Statistical information of the method used to generate mutants
and a summary of the number of mutants killed (k, t or x),
missed(m) live, type incorrect(i), not reached(n), equivalent(e).
Also, number and time of executions to perform the mutation
analysis.

A mutant generated for
s0 element

The original expression
(i.e., before mutation)

Test number

Element label

164

 null 8 m 9 k null 10 k null 11 k null 12 k null 13 k null 14 k null 15 k null 16 k
 null 17 k null 18 k null, comp 0.1

j.0 j i none j
 0 1k 0, total 1 dead 1 miss 0

 j .0 = .1 j_ .0 s1; j.0
 i .0 = .1 j_ .0 s1; 1, 0 i 1 k null 2 k null 3 k null 4 k null 5 k null 6 i
 7 k null 8 m 9 i 10 k null 11 i 12 i 13 i 14 i 15 k null 16 k null 17 k
 null 18 k null, comp 0.4

s2 expn deleteExpn none expn
 0 1m 0, total 1 dead 0 miss 1

 m .0 = .2 0 v0 s2; s2
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
 v2)) { 1, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m 12 m 13 m 14
 m 15 m 16 m 17 m 18 m, comp 1.0

m.0 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .0 = .2 0 v0 s2; m.0
 i .0 = .2 0 v0 s2; 1, 0 k 1 i 2 k 0 3 m 4 i 5 k 0 6 i 7 m 8 i 9 i 10 m 11 i
 12 m 13 i 14 m 15 i 16 i 17 k -40 18 i, comp 0.8
 j .0 = .2 0 v0 s2; 2, 0 i 1 i 2 k 0 3 m 4 i 5 k 0 6 k 0 7 m 8 i 9 k 0 10 k
 33 11 m 12 i 13 k 0 14 i 15 i 16 i 17 m 18 i, comp 0.7

v0 0 c1 sub1 zpush i j m none 0
 0 1m 2m 3x 4m 5m 6i 0, total 6 dead 1 miss 4 tin 1

 m .0 = .2 0 v0 s2; v0
 m .0 = .2 c1(0 v0) s2; 1, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m
 12 m 13 m 14 m 15 m 16 m 17 m 18 m, comp 1.0
 m .0 = .2 sub1(0 v0) s2; 2, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11
 m 12 m 13 m 14 m 15 m 16 m 17 m 18 m, comp 1.0
 m .0 = .2 zpush(0 v0) s2; 3, 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11
 x 12 x 13 x 14 x 15 x 16 x 17 x 18 x, comp 0.0
 m .0 = .2 i v0 s2; 4, 0 m 1 i 2 m 3 m 4 i 5 m 6 i 7 m 8 i 9 i 10 m 11 i 12 m
 13 i 14 m 15 i 16 i 17 m 18 i, comp 1.0
 m .0 = .2 j v0 s2; 5, 0 i 1 i 2 m 3 m 4 i 5 m 6 m 7 m 8 i 9 m 10 m 11 m 12 i
 13 m 14 i 15 i 16 i 17 m 18 i, comp 1.0
 m .0 = .2 m v0 s2; 6, 0 i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i
 13 i 14 i 15 i 16 i 17 i 18 i, comp 1.0

&&.0 && || none &&
 0 1k 0, total 1 dead 1 miss 0

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { &&.0
 if i0 ((typeof i .1 == .0 "number" v1) || .0 (typeof j .1 == .1 "number"
v2)) { 1, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12 m 13 m
14 m 15 m 16 m 17 m 18 m, comp 0.9

==.0 == != < <= > >= none ==
 0 1k 2k 3m 4k 5k 0, total 5 dead 4 miss 1

Mutants generated for m.0 by

replacing m with i and j.

Competence

of mutants

Total number of mutants
 generated for s2.
0 missed (live) mutant
1 killed (dead) and

Mutants of the first

occurrence of ==

The first mutant

is missedm (m)

Type-incorrect

mutant(i)

165

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { ==.0
 if i0 ((typeof i .1 != .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 1, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 k 1629 10 k
null 11 k -383 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.6
 if i0 ((typeof i .1 < .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 2, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m 10 k null
11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof i .1 <= .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 3, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m 12 m 13 m 14 m 15 m
16 m 17 m 18 m, comp 1.0
 if i0 ((typeof i .1 > .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 4, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 k 1629 10 k
null 11 k -383 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.6
 if i0 ((typeof i .1 >= .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 5, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12 m 13 m
14 m 15 m 16 m 17 m 18 m, comp 0.9

i.1 i c1 sub1 zpush c0 add1 neg abs negabs cfalse ctrue logneg cEmpty deadOnEmpty
number string j m none i
 0 1k 2k 3x 4k 5m 6k 7k 8k 9k 10k 11k 12k 13x
14k 15k 16k 17k 18k 0, total 18 dead 17 miss 1

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { i.1
 if i0 ((typeof c1(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 1, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12 m 13 m
14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof sub1(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 2, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12
m 13 m 14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof zpush(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 3, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 x 8 m 9 m 10 m 11 m 12 m 13 m 14
x 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof c0(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 4, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12 m 13 m
14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof add1(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 5, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 m 12 m 13 m 14
m 15 m 16 m 17 m 18 m, comp 1.0
 if i0 ((typeof - (i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 6, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12
m 13 m 14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof Math.Abs(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 7, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12
m 13 m 14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof - (Math.Abs(i .1)) == .0 "number" v1) && .0 (typeof j .1 ==
.1 "number" v2)) { 8, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383
12 m 13 m 14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof cfalse(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 9, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m 10
k null 11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof ctrue(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 10, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m
10 k null 11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7

Mutant killed by exception

166

 if i0 ((typeof !(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 11, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m 10 k null
11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof cEmpty(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 12, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m
10 k null 11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof deadOnEmpty(i .1) == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 13, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 m 10 m 11 x 12 m 13 m
14 m 15 x 16 m 17 m 18 x, comp 0.8
 if i0 ((typeof "number" .1 == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 14, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m
10 k null 11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof "string" .1 == .0 "number" v1) && .0 (typeof j .1 == .1
"number" v2)) { 15, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m
10 k null 11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof "" .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 16, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m 10 k null
11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof j .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 17, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12 m 13 m
14 m 15 m 16 m 17 m 18 m, comp 0.9
 if i0 ((typeof m .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 18, 0 m 1 m 2 m 3 m 4 m 5 m 6 m 7 m 8 m 9 k 1629 10 m 11 k -383 12 m 13 m
14 m 15 m 16 m 17 m 18 m, comp 0.9

v1 number cEmpty string i j m none number
 0 1k 2k 3k 4m 5m 6i 0, total 6 dead 3 miss 2 tin 1

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { v1

 if i0 ((typeof i .1 == .0 cEmpty("number" v1)) && .0 (typeof j .1 == .1
"number" v2)) { 1, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m
10 k null 11 m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof i .1 == .0 "string" v1) && .0 (typeof j .1 == .1 "number"
v2)) { 2, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 k 1629 10
k null 11 k -383 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.6
 if i0 ((typeof i .1 == .0 "" v1) && .0 (typeof j .1 == .1 "number" v2))
{ 3, 0 m 1 m 2 k null 3 k null 4 m 5 k null 6 m 7 k null 8 m 9 m 10 k null 11
m 12 m 13 m 14 m 15 m 16 m 17 k null 18 m, comp 0.7
 if i0 ((typeof i .1 == .0 i v1) && .0 (typeof j .1 == .1 "number" v2)) {
4, 0 i 1 m 2 i 3 i 4 m 5 i 6 m 7 i 8 i 9 m 10 i 11 m 12 i 13 m 14 i 15 m 16 m 17
i 18 m, comp 1.0
 if i0 ((typeof i .1 == .0 j v1) && .0 (typeof j .1 == .1 "number" v2)) {
5, 0 m 1 m 2 i 3 i 4 m 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 m 13 i 14 m 15 m 16 m 17
i 18 m, comp 1.0
 if i0 ((typeof i .1 == .0 m v1) && .0 (typeof j .1 == .1 "number" v2)) {
6, 0 i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i 14 i 15 i 16 i 17
i 18 i, comp 1.0

==.1 == != < <= > >= none ==
 0 1k 2k 3m 4k 5m 0, total 5 dead 3 miss 2

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { ==.1
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 != .1 "number"
v2)) { 1, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10 k null
11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7

string mutations of

“number” string

167

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 < .1 "number"
v2)) { 2, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10 k null
11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 <= .1 "number"
v2)) { 3, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14 m 15 n
16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 > .1 "number"
v2)) { 4, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10 k null
11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 >= .1 "number"
v2)) { 5, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14 m 15 n
16 n 17 m 18 n, comp 1.0

j.1 j c1 sub1 zpush c0 add1 neg abs negabs ctrue cEmpty deadOnEmpty number string
i m none j
 0 1m 2m 3x 4m 5m 6m 7m 8m 9k 10k 11x 12k 13k
14k 15m 16m 0, total 16 dead 7 miss 9

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { j.1
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof c1(j .1) == .1 "number"
v2)) { 1, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14 m 15 n
16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof sub1(j .1) == .1
"number" v2)) { 2, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14
m 15 n 16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof zpush(j .1) == .1
"number" v2)) { 3, 0 m 1 n 2 m 3 x 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14
m 15 n 16 n 17 m 18 n, comp 0.9
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof c0(j .1) == .1 "number"
v2)) { 4, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14 m 15 n
16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof add1(j .1) == .1
"number" v2)) { 5, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14
m 15 n 16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof - (j .1) == .1
"number" v2)) { 6, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14
m 15 n 16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof Math.Abs(j .1) == .1
"number" v2)) { 7, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14
m 15 n 16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof - (Math.Abs(j .1)) ==
.1 "number" v2)) { 8, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n
14 m 15 n 16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof ctrue(j .1) == .1
"number" v2)) { 9, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10
k null 11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof cEmpty(j .1) == .1
"number" v2)) { 10, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n
10 k null 11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof deadOnEmpty(j .1) == .1
"number" v2)) { 11, 0 x 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 x 13 n
14 m 15 n 16 n 17 m 18 n, comp 0.9
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof "number" .1 == .1
"number" v2)) { 12, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n
10 k null 11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7

168

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof "string" .1 == .1
"number" v2)) { 13, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n
10 k null 11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof "" .1 == .1 "number"
v2)) { 14, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10 k null
11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof i .1 == .1 "number"
v2)) { 15, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14 m 15 n
16 n 17 m 18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof m .1 == .1 "number"
v2)) { 16, 0 m 1 n 2 m 3 m 4 n 5 m 6 n 7 m 8 n 9 n 10 m 11 n 12 m 13 n 14 m 15 n
16 n 17 m 18 n, comp 1.0

v2 number cEmpty string i j m none number
 0 1k 2k 3k 4i 5m 6i 0, total 6 dead 3 miss 1 tin 2

 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "number"
v2)) { v2
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1
cEmpty("number" v2))) { 1, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8
n 9 n 10 k null 11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "string"
v2)) { 2, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10 k null
11 n 12 m 13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 "" v2)) {
3, 0 m 1 n 2 k null 3 k null 4 n 5 k null 6 n 7 k null 8 n 9 n 10 k null 11 n 12 m
13 n 14 m 15 n 16 n 17 k null 18 n, comp 0.7
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 i v2)) {
4, 0 i 1 n 2 i 3 i 4 n 5 i 6 n 7 i 8 n 9 n 10 i 11 n 12 i 13 n 14 i 15 n 16 n 17 i
18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 j v2)) {
5, 0 m 1 n 2 i 3 i 4 n 5 i 6 n 7 i 8 n 9 n 10 i 11 n 12 m 13 n 14 m 15 n 16 n 17 i
18 n, comp 1.0
 if i0 ((typeof i .1 == .0 "number" v1) && .0 (typeof j .1 == .1 m v2)) {
6, 0 i 1 n 2 i 3 i 4 n 5 i 6 n 7 i 8 n 9 n 10 i 11 n 12 i 13 n 14 i 15 n 16 n 17 i
18 n, comp 1.0

<.0 < == != <= > >= none <
 0 1k 2k 3m 4k 5k 0, total 5 dead 4 miss 1

 if i1 (i .2 < .0 j .2) { <.0
 if i1 (i .2 == .0 j .2) { 1, 2 m 3 m 5 k 5 7 k 1 10 m 17 k -40, comp 0.5
 if i1 (i .2 != .0 j .2) { 2, 2 m 3 k 5 5 m 7 m 10 k -33 17 m, comp 0.7
 if i1 (i .2 <= .0 j .2) { 3, 2 m 3 m 5 m 7 m 10 m 17 m, comp 1.0
 if i1 (i .2 > .0 j .2) { 4, 2 m 3 k 5 5 k 5 7 k 1 10 k -33 17 k -40, comp
0.2
 if i1 (i .2 >= .0 j .2) { 5, 2 m 3 k 5 5 k 5 7 k 1 10 k -33 17 k -40, comp
0.2

i.2 i c1 sub1 zpush c0 add1 neg abs negabs j m none i
 0 1k 2m 3x 4k 5k 6k 7k 8k 9k 10k 0, total 10 dead 9 miss 1

 if i1 (i .2 < .0 j .2) { i.2
 if i1 (c1(i .2) < .0 j .2) { 1, 2 m 3 m 5 m 7 k 1 10 m 17 k -40, comp 0.7
 if i1 (sub1(i .2) < .0 j .2) { 2, 2 m 3 m 5 m 7 m 10 m 17 m, comp 1.0
 if i1 (zpush(i .2) < .0 j .2) { 3, 2 m 3 m 5 m 7 x 10 m 17 m, comp 0.8
 if i1 (c0(i .2) < .0 j .2) { 4, 2 m 3 m 5 m 7 m 10 m 17 k -40, comp 0.8
 if i1 (add1(i .2) < .0 j .2) { 5, 2 m 3 m 5 k 5 7 k 1 10 m 17 m, comp 0.7

169

 if i1 (- (i .2) < .0 j .2) { 6, 2 m 3 k 5 5 m 7 m 10 m 17 k -40, comp 0.7
 if i1 (Math.Abs(i .2) < .0 j .2) { 7, 2 m 3 m 5 m 7 m 10 m 17 k -40, comp
0.8
 if i1 (- (Math.Abs(i .2)) < .0 j .2) { 8, 2 m 3 k 5 5 m 7 m 10 m 17 m,
comp 0.8
 if i1 (j .2 < .0 j .2) { 9, 2 m 3 m 5 k 5 7 k 1 10 m 17 k -40, comp 0.5
 if i1 (m .2 < .0 j .2) { 10, 2 m 3 m 5 m 7 m 10 m 17 k -40, comp 0.8

j.2 j c1 sub1 zpush c0 add1 neg abs negabs i m none j
 0 1k 2k 3x 4k 5m 6k 7k 8k 9k 10k 0, total 10 dead 9 miss 1

 if i1 (i .2 < .0 j .2) { j.2
 if i1 (i .2 < .0 c1(j .2)) { 1, 2 m 3 m 5 k 5 7 m 10 k -33 17 m, comp 0.7
 if i1 (i .2 < .0 sub1(j .2)) { 2, 2 m 3 m 5 k 5 7 k 1 10 m 17 m, comp 0.7
 if i1 (i .2 < .0 zpush(j .2)) { 3, 2 m 3 x 5 m 7 m 10 m 17 m, comp 0.8
 if i1 (i .2 < .0 c0(j .2)) { 4, 2 m 3 m 5 k 5 7 k 1 10 k -33 17 m, comp
0.5
 if i1 (i .2 < .0 add1(j .2)) { 5, 2 m 3 m 5 m 7 m 10 m 17 m, comp 1.0
 if i1 (i .2 < .0 - (j .2)) { 6, 2 m 3 m 5 k 5 7 k 1 10 k -33 17 m, comp
0.5
 if i1 (i .2 < .0 Math.Abs(j .2)) { 7, 2 m 3 m 5 m 7 m 10 k -33 17 m, comp
0.8
 if i1 (i .2 < .0 - (Math.Abs(j .2))) { 8, 2 m 3 m 5 k 5 7 k 1 10 m 17 m,
comp 0.7
 if i1 (i .2 < .0 i .2) { 9, 2 m 3 m 5 k 5 7 k 1 10 m 17 k -40, comp 0.5
 if i1 (i .2 < .0 m .2) { 10, 2 m 3 m 5 k 5 7 k 1 10 k -33 17 m, comp 0.5

s3 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .1 = .3 i .3 s3; s3
 else { 1, 5 k 0 7 m 17 k 0, comp 0.3

m.1 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .1 = .3 i .3 s3; m.1
 i .1 = .3 i .3 s3; 1, 5 k 0 7 m 17 k 0, comp 0.3
 j .1 = .3 i .3 s3; 2, 5 k 0 7 m 17 k 0, comp 0.3

i.3 i c1 sub1 zpush c0 add1 neg abs negabs j m none i
 0 1k 2k 3x 4k 5k 6k 7k 8k 9k 10k 0, total 10 dead 10 miss 0

 m .1 = .3 i .3 s3; i.3
 m .1 = .3 c1(i .3) s3; 1, 5 k 1 7 k 1 17 k 1, comp 0.0
 m .1 = .3 sub1(i .3) s3; 2, 5 k 3 7 k -1 17 k -45, comp 0.0
 m .1 = .3 zpush(i .3) s3; 3, 5 m 7 x 17 m, comp 0.7
 m .1 = .3 c0(i .3) s3; 4, 5 k 0 7 m 17 k 0, comp 0.3
 m .1 = .3 add1(i .3) s3; 5, 5 k 5 7 k 1 17 k -43, comp 0.0
 m .1 = .3 - (i .3) s3; 6, 5 k -4 7 m 17 k 44, comp 0.3
 m .1 = .3 Math.Abs(i .3) s3; 7, 5 m 7 m 17 k 44, comp 0.7
 m .1 = .3 - (Math.Abs(i .3)) s3; 8, 5 k -4 7 m 17 m, comp 0.7
 m .1 = .3 j .3 s3; 9, 5 k 5 7 k 1 17 k -40, comp 0.0
 m .1 = .3 m .3 s3; 10, 5 k 0 7 m 17 k 0, comp 0.3

s4 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

170

 m .2 = .4 j .3 s4; s4
 } 1, 2 k 0 3 m 10 k 0, comp 0.3

m.2 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .2 = .4 j .3 s4; m.2
 i .2 = .4 j .3 s4; 1, 2 k 0 3 m 10 k 0, comp 0.3
 j .2 = .4 j .3 s4; 2, 2 k 0 3 m 10 k 0, comp 0.3

j.3 j c1 sub1 zpush c0 add1 neg abs negabs i m none j
 0 1k 2k 3x 4k 5k 6k 7k 8k 9k 10k 0, total 10 dead 10 miss 0

 m .2 = .4 j .3 s4; j.3
 m .2 = .4 c1(j .3) s4; 1, 2 k 1 3 k 1 10 k 1, comp 0.0
 m .2 = .4 sub1(j .3) s4; 2, 2 k 9 3 k -1 10 k -384, comp 0.0
 m .2 = .4 zpush(j .3) s4; 3, 2 m 3 x 10 m, comp 0.7
 m .2 = .4 c0(j .3) s4; 4, 2 k 0 3 m 10 k 0, comp 0.3
 m .2 = .4 add1(j .3) s4; 5, 2 k 11 3 k 1 10 k -382, comp 0.0
 m .2 = .4 - (j .3) s4; 6, 2 k -10 3 m 10 k 383, comp 0.3
 m .2 = .4 Math.Abs(j .3) s4; 7, 2 m 3 m 10 k 383, comp 0.7
 m .2 = .4 - (Math.Abs(j .3)) s4; 8, 2 k -10 3 m 10 m, comp 0.7
 m .2 = .4 i .3 s4; 9, 2 m 3 k 5 10 k -33, comp 0.3
 m .2 = .4 m .3 s4; 10, 2 k 0 3 m 10 k 0, comp 0.3

&&.1 && || none &&
 0 1k 0, total 1 dead 1 miss 0

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { &&.1
 else if i2 ((typeof i .4 == .2 "string" v3) || .1 (typeof j .4 == .3
"string" v4)) { 1, 0 k 1 m 4 m 6 m 8 m 9 k 1629 11 k -383 12 m 13 m 14 m 15 m 16
m 18 m, comp 0.8

==.2 == != < <= > >= none ==
 0 1k 2k 3k 4k 5m 0, total 5 dead 4 miss 1

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { ==.2
 else if i2 ((typeof i .4 != .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 1, 0 k 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.5
 else if i2 ((typeof i .4 < .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 2, 0 k 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.5
 else if i2 ((typeof i .4 <= .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 3, 0 k 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 0.9
 else if i2 ((typeof i .4 > .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 4, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 >= .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 5, 0 m 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 1.0

i.4 i c1 sub1 zpush c0 add1 neg abs negabs cfalse ctrue logneg cEmpty deadOnEmpty
number string j m none i

171

 0 1k 2k 3x 4k 5m 6k 7k 8k 9k 10k 11k 12k 13x
14k 15k 16k 17k 18k 0, total 18 dead 17 miss 1

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { i.4
 else if i2 ((typeof c1(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 1, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof sub1(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 2, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof zpush(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 3, 0 m 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 x 15 m 16 m 18 m,
comp 0.9
 else if i2 ((typeof c0(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 4, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof add1(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 5, 0 m 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 1.0
 else if i2 ((typeof - (i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 6, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof Math.Abs(i .4) == .2 "string" v3) && .1 (typeof j .4 ==
.3 "string" v4)) { 7, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof - (Math.Abs(i .4)) == .2 "string" v3) && .1 (typeof j .4
== .3 "string" v4)) { 8, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m
15 k null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof cfalse(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 9, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof ctrue(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 10, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof !(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 11, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof cEmpty(i .4) == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 12, 0 k 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 0.9
 else if i2 ((typeof deadOnEmpty(i .4) == .2 "string" v3) && .1 (typeof j .4
== .3 "string" v4)) { 13, 0 m 1 m 4 m 6 m 8 m 9 m 11 x 12 m 13 m 14 m 15 x 16 m
18 x, comp 0.8
 else if i2 ((typeof "number" .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 14, 0 k 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 0.9
 else if i2 ((typeof "string" .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 15, 0 k 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 0.9
 else if i2 ((typeof "" .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 16, 0 k 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 0.9
 else if i2 ((typeof j .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 17, 0 k 1 m 4 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 m 16 m 18 m,
comp 0.9

172

 else if i2 ((typeof m .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { 18, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6

v3 string cEmpty number i j m none string
 0 1k 2k 3k 4k 5k 6i 0, total 6 dead 5 miss 0 tin 1

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { v3
 else if i2 ((typeof i .4 == .2 cEmpty("string" v3)) && .1 (typeof j .4 ==
.3 "string" v4)) { 1, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "number" v3) && .1 (typeof j .4 == .3
"string" v4)) { 2, 0 k 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k
null 16 k null 18 k null, comp 0.5
 else if i2 ((typeof i .4 == .2 "" v3) && .1 (typeof j .4 == .3 "string"
v4)) { 3, 0 m 1 k null 4 k null 6 m 8 m 9 m 11 m 12 m 13 m 14 m 15 k null 16 k
null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 i v3) && .1 (typeof j .4 == .3 "string" v4))
{ 4, 0 i 1 k null 4 k null 6 m 8 i 9 m 11 m 12 i 13 m 14 i 15 k null 16 k null 18
k null, comp 0.6
 else if i2 ((typeof i .4 == .2 j v3) && .1 (typeof j .4 == .3 "string" v4))
{ 5, 0 m 1 k null 4 k null 6 i 8 i 9 i 11 i 12 m 13 i 14 m 15 k null 16 k null 18
k null, comp 0.6
 else if i2 ((typeof i .4 == .2 m v3) && .1 (typeof j .4 == .3 "string" v4))
{ 6, 0 i 1 i 4 i 6 i 8 i 9 i 11 i 12 i 13 i 14 i 15 i 16 i 18 i, comp 1.0

==.3 == != < <= > >= none ==
 0 1k 2k 3k 4k 5m 0, total 5 dead 4 miss 1

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { ==.3
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 != .3
"string" v4)) { 1, 0 n 1 k null 4 k null 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14
n 15 k null 16 k null 18 k null, comp 0.5
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 < .3
"string" v4)) { 2, 0 n 1 k null 4 k null 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14
n 15 k null 16 k null 18 k null, comp 0.5
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 <= .3
"string" v4)) { 3, 0 n 1 m 4 m 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14 n 15 m 16
m 18 m, comp 0.8
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 > .3
"string" v4)) { 4, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 >= .3
"string" v4)) { 5, 0 n 1 m 4 m 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 m 16 m 18 m,
comp 1.0

j.4 j c0 c1 add1 sub1 neg abs negabs zpush ctrue cEmpty deadOnEmpty number string
i m none j
 0 1k 2k 3m 4k 5k 6k 7k 8m 9k 10k 11x 12k 13k
14k 15k 16k 0, total 16 dead 14 miss 2

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { j.4
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof c0(j .4) == .3
"string" v4)) { 1, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6

173

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof c1(j .4) == .3
"string" v4)) { 2, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof add1(j .4) == .3
"string" v4)) { 3, 0 n 1 m 4 m 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 m 16 m 18 m,
comp 1.0
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof sub1(j .4) == .3
"string" v4)) { 4, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof - (j .4) == .3
"string" v4)) { 5, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof Math.Abs(j .4) ==
.3 "string" v4)) { 6, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof - (Math.Abs(j .4))
== .3 "string" v4)) { 7, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n
15 k null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof zpush(j .4) == .3
"string" v4)) { 8, 0 n 1 m 4 m 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 m 16 m 18 m,
comp 1.0
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof ctrue(j .4) == .3
"string" v4)) { 9, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof cEmpty(j .4) == .3
"string" v4)) { 10, 0 n 1 m 4 m 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14 n 15 m 16
m 18 m, comp 0.8
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof deadOnEmpty(j .4)
== .3 "string" v4)) { 11, 0 n 1 m 4 m 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 x 16 m
18 m, comp 0.9
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof "number" .4 == .3
"string" v4)) { 12, 0 n 1 m 4 m 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14 n 15 m 16
m 18 m, comp 0.8
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof "string" .4 == .3
"string" v4)) { 13, 0 n 1 m 4 m 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14 n 15 m 16
m 18 m, comp 0.8
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof "" .4 == .3
"string" v4)) { 14, 0 n 1 m 4 m 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14 n 15 m 16
m 18 m, comp 0.8
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof i .4 == .3
"string" v4)) { 15, 0 n 1 m 4 m 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14 n 15 m 16
m 18 m, comp 0.8
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof m .4 == .3
"string" v4)) { 16, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k
null 16 k null 18 k null, comp 0.6

v4 string cEmpty number i j m none string
 0 1k 2k 3k 4k 5k 6i 0, total 6 dead 5 miss 0 tin 1

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"string" v4)) { v4
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
cEmpty("string" v4))) { 1, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n
15 k null 16 k null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3
"number" v4)) { 2, 0 n 1 k null 4 k null 6 m 8 n 9 k 1629 11 k -383 12 n 13 m 14
n 15 k null 16 k null 18 k null, comp 0.5

174

 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3 ""
v4)) { 3, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k null 16 k
null 18 k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3 i v4))
{ 4, 0 n 1 k null 4 k null 6 m 8 n 9 m 11 m 12 n 13 m 14 n 15 k null 16 k null 18
k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3 j v4))
{ 5, 0 n 1 k null 4 k null 6 i 8 n 9 i 11 i 12 n 13 i 14 n 15 k null 16 k null 18
k null, comp 0.6
 else if i2 ((typeof i .4 == .2 "string" v3) && .1 (typeof j .4 == .3 m v4))
{ 6, 0 n 1 i 4 i 6 i 8 n 9 i 11 i 12 n 13 i 14 n 15 i 16 i 18 i, comp 1.0

<.1 < == != <= > >= none <
 0 1k 2k 3k 4k 5k 0, total 5 dead 5 miss 0

 if i3 (i .5 .length m0 < .1 j .5 .length m1) { <.1
 if i3 (i .5 .length m0 == .1 j .5 .length m1) { 1, 1 m 4 k aa 15 m 16 k
abc 18 k]h", comp 0.4
 if i3 (i .5 .length m0 != .1 j .5 .length m1) { 2, 1 k abc 4 m 15 m 16 m
18 m, comp 0.8
 if i3 (i .5 .length m0 <= .1 j .5 .length m1) { 3, 1 m 4 k aa 15 m 16 m 18
m, comp 0.8
 if i3 (i .5 .length m0 > .1 j .5 .length m1) { 4, 1 k abc 4 m 15 m 16 k
abc 18 k]h", comp 0.4
 if i3 (i .5 .length m0 >= .1 j .5 .length m1) { 5, 1 k abc 4 k aa 15 m 16
k abc 18 k]h", comp 0.2

m0 i.length none i.length
 0 0, total 0 dead 0 miss 0

i.5 i j m none i
 0 1i 2i 0, total 2 dead 0 miss 0 tin 2

 if i3 (i .5 .length m0 < .1 j .5 .length m1) { i.5
 if i3 (j .5 .length m0 < .1 j .5 .length m1) { 1, 1 i 4 i 15 i 16 i 18 i,
comp 1.0
 if i3 (m .5 .length m0 < .1 j .5 .length m1) { 2, 1 i 4 i 15 i 16 i 18 i,
comp 1.0

m1 j.length none j.length
 0 0, total 0 dead 0 miss 0

j.5 j i m none j
 0 1i 2i 0, total 2 dead 0 miss 0 tin 2

 if i3 (i .5 .length m0 < .1 j .5 .length m1) { j.5
 if i3 (i .5 .length m0 < .1 i .5 .length m1) { 1, 1 i 4 i 15 i 16 i 18 i,
comp 1.0
 if i3 (i .5 .length m0 < .1 m .5 .length m1) { 2, 1 i 4 i 15 i 16 i 18 i,
comp 1.0

s5 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .3 = .5 i .6 s5; s5
 else { 1, 16 k 0 18 k 0, comp 0.0

175

m.3 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .3 = .5 i .6 s5; m.3
 i .3 = .5 i .6 s5; 1, 16 k 0 18 k 0, comp 0.0
 j .3 = .5 i .6 s5; 2, 16 k 0 18 k 0, comp 0.0

i.6 i cEmpty deadOnEmpty number string j m none i
 0 1k 2x 3k 4k 5k 6k 7i 0, total 7 dead 6 miss 0 tin 1

 m .3 = .5 i .6 s5; i.6
 m .3 = .5 cEmpty(i .6) s5; 1, 16 k 18 m, comp 0.5
 m .3 = .5 deadOnEmpty(i .6) s5; 2, 16 m 18 x, comp 0.5
 m .3 = .5 "number" .6 s5; 3, 16 k number 18 k number, comp 0.0
 m .3 = .5 "string" .6 s5; 4, 16 k string 18 k string, comp 0.0
 m .3 = .5 "" .6 s5; 5, 16 k 18 m, comp 0.5
 m .3 = .5 j .6 s5; 6, 16 k abc 18 k]h", comp 0.0
 m .3 = .5 m .6 s5; 7, 16 i 18 i, comp 1.0

s6 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .4 = .6 j .6 s6; s6
 } 1, 1 k 0 4 k 0 15 k 0, comp 0.0

m.4 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .4 = .6 j .6 s6; m.4
 i .4 = .6 j .6 s6; 1, 1 k 0 4 k 0 15 k 0, comp 0.0
 j .4 = .6 j .6 s6; 2, 1 k 0 4 k 0 15 k 0, comp 0.0

j.6 j cEmpty deadOnEmpty number string i m none j
 0 1k 2x 3k 4k 5k 6k 7i 0, total 7 dead 6 miss 0 tin 1

 m .4 = .6 j .6 s6; j.6
 m .4 = .6 cEmpty(j .6) s6; 1, 1 k 4 k 15 m, comp 0.3
 m .4 = .6 deadOnEmpty(j .6) s6; 2, 1 m 4 m 15 x, comp 0.7
 m .4 = .6 "number" .6 s6; 3, 1 k number 4 k number 15 k number, comp 0.0
 m .4 = .6 "string" .6 s6; 4, 1 k string 4 k string 15 k string, comp 0.0
 m .4 = .6 "" .6 s6; 5, 1 k 4 k 15 m, comp 0.3
 m .4 = .6 i .6 s6; 6, 1 k abc 4 k aa 15 m, comp 0.3
 m .4 = .6 m .6 s6; 7, 1 i 4 i 15 i, comp 1.0

&&.2 && || none &&
 0 1m 0, total 1 dead 0 miss 1

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { &&.2
 else if i4 ((typeof i .7 == .4 "number" v5) || .2 (typeof j .7 == .5
"string" v6)) { 1, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0

==.4 == != < <= > >= none ==
 0 1k 2k 3m 4k 5m 0, total 5 dead 3 miss 2

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { ==.4

176

 else if i4 ((typeof i .7 != .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 1, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof i .7 < .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 2, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof i .7 <= .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 3, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof i .7 > .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 4, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof i .7 >= .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 5, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0

i.7 i c1 sub1 zpush c0 add1 neg abs negabs cfalse ctrue logneg cEmpty deadOnEmpty
number string j m none i
 0 1m 2m 3x 4m 5m 6m 7m 8m 9k 10k 11k 12k 13x
14k 15k 16k 17k 18m 0, total 18 dead 10 miss 8

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { i.7
 else if i4 ((typeof c1(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 1, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof sub1(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 2, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof zpush(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 3, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 x, comp 0.9
 else if i4 ((typeof c0(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 4, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof add1(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 5, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof - (i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 6, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof Math.Abs(i .7) == .4 "number" v5) && .2 (typeof j .7 ==
.5 "string" v6)) { 7, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof - (Math.Abs(i .7)) == .4 "number" v5) && .2 (typeof j .7
== .5 "string" v6)) { 8, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0
 else if i4 ((typeof cfalse(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 9, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof ctrue(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 10, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof !(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 11, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof cEmpty(i .7) == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 12, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof deadOnEmpty(i .7) == .4 "number" v5) && .2 (typeof j .7
== .5 "string" v6)) { 13, 0 m 6 m 8 m 9 m 11 x 12 m 13 m 14 m, comp 0.9
 else if i4 ((typeof "number" .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 14, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof "string" .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 15, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof "" .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 16, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof j .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 17, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof m .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { 18, 0 m 6 m 8 m 9 m 11 m 12 m 13 m 14 m, comp 1.0

v5 number cEmpty string i j m none number
 0 1k 2k 3k 4m 5k 6i 0, total 6 dead 4 miss 1 tin 1

177

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { v5
 else if i4 ((typeof i .7 == .4 cEmpty("number" v5)) && .2 (typeof j .7 ==
.5 "string" v6)) { 1, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp
0.6
 else if i4 ((typeof i .7 == .4 "string" v5) && .2 (typeof j .7 == .5
"string" v6)) { 2, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "" v5) && .2 (typeof j .7 == .5 "string"
v6)) { 3, 0 k null 6 m 8 m 9 m 11 m 12 k null 13 m 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 i v5) && .2 (typeof j .7 == .5 "string" v6))
{ 4, 0 i 6 m 8 i 9 m 11 m 12 i 13 m 14 i, comp 1.0
 else if i4 ((typeof i .7 == .4 j v5) && .2 (typeof j .7 == .5 "string" v6))
{ 5, 0 k null 6 i 8 i 9 i 11 i 12 k null 13 i 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 m v5) && .2 (typeof j .7 == .5 "string" v6))
{ 6, 0 i 6 i 8 i 9 i 11 i 12 i 13 i 14 i, comp 1.0

==.5 == != < <= > >= none ==
 0 1k 2k 3m 4k 5m 0, total 5 dead 3 miss 2

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { ==.5
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 != .5
"string" v6)) { 1, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 < .5
"string" v6)) { 2, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 <= .5
"string" v6)) { 3, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 > .5
"string" v6)) { 4, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 >= .5
"string" v6)) { 5, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0

j.7 j c0 c1 add1 sub1 neg abs negabs zpush ctrue cEmpty deadOnEmpty number string
i m none j
 0 1k 2k 3m 4k 5k 6k 7k 8m 9k 10m 11x 12m 13m
14m 15k 16k 0, total 16 dead 10 miss 6

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { j.7
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof c0(j .7) == .5
"string" v6)) { 1, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof c1(j .7) == .5
"string" v6)) { 2, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof add1(j .7) == .5
"string" v6)) { 3, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof sub1(j .7) == .5
"string" v6)) { 4, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof - (j .7) == .5
"string" v6)) { 5, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof Math.Abs(j .7) ==
.5 "string" v6)) { 6, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp
0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof - (Math.Abs(j .7))
== .5 "string" v6)) { 7, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null,
comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof zpush(j .7) == .5
"string" v6)) { 8, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0

178

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof ctrue(j .7) == .5
"string" v6)) { 9, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof cEmpty(j .7) == .5
"string" v6)) { 10, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof deadOnEmpty(j .7)
== .5 "string" v6)) { 11, 0 x 6 n 8 n 9 n 11 n 12 x 13 n 14 m, comp 0.8
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof "number" .7 == .5
"string" v6)) { 12, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof "string" .7 == .5
"string" v6)) { 13, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof "" .7 == .5
"string" v6)) { 14, 0 m 6 n 8 n 9 n 11 n 12 m 13 n 14 m, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof i .7 == .5
"string" v6)) { 15, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof m .7 == .5
"string" v6)) { 16, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6

v6 string cEmpty number i j m none string
 0 1k 2k 3k 4i 5k 6i 0, total 6 dead 4 miss 0 tin 2

 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"string" v6)) { v6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
cEmpty("string" v6))) { 1, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null,
comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5
"number" v6)) { 2, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5 ""
v6)) { 3, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5 i v6))
{ 4, 0 i 6 n 8 n 9 n 11 n 12 i 13 n 14 i, comp 1.0
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5 j v6))
{ 5, 0 k null 6 n 8 n 9 n 11 n 12 k null 13 n 14 k null, comp 0.6
 else if i4 ((typeof i .7 == .4 "number" v5) && .2 (typeof j .7 == .5 m v6))
{ 6, 0 i 6 n 8 n 9 n 11 n 12 i 13 n 14 i, comp 1.0

<.2 < == != <= > >= none <
 0 1k 2k 3m 4k 5k 0, total 5 dead 4 miss 1

 if i5 (i .8 < .2 (j .8 - .0 0 v7)) { <.2
 if i5 (i .8 == .2 (j .8 - .0 0 v7)) { 1, 0 k 12 m 14 m, comp 0.7
 if i5 (i .8 != .2 (j .8 - .0 0 v7)) { 2, 0 m 12 k 4 14 k 0, comp 0.3
 if i5 (i .8 <= .2 (j .8 - .0 0 v7)) { 3, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 > .2 (j .8 - .0 0 v7)) { 4, 0 k 12 k 4 14 m, comp 0.3
 if i5 (i .8 >= .2 (j .8 - .0 0 v7)) { 5, 0 k 12 k 4 14 m, comp 0.3

i.8 i c1 sub1 zpush c0 add1 neg abs negabs j m none i
 0 1k 2m 3x 4k 5m 6k 7k 8k 9i 10k 0, total 10 dead 7 miss 2 tin 1

 if i5 (i .8 < .2 (j .8 - .0 0 v7)) { i.8
 if i5 (c1(i .8) < .2 (j .8 - .0 0 v7)) { 1, 0 k 12 m 14 m, comp 0.7
 if i5 (sub1(i .8) < .2 (j .8 - .0 0 v7)) { 2, 0 m 12 m 14 m, comp 1.0
 if i5 (zpush(i .8) < .2 (j .8 - .0 0 v7)) { 3, 0 m 12 m 14 x, comp 0.7
 if i5 (c0(i .8) < .2 (j .8 - .0 0 v7)) { 4, 0 k 12 m 14 m, comp 0.7
 if i5 (add1(i .8) < .2 (j .8 - .0 0 v7)) { 5, 0 m 12 m 14 m, comp 1.0
 if i5 (- (i .8) < .2 (j .8 - .0 0 v7)) { 6, 0 k 12 k 4 14 m, comp 0.3
 if i5 (Math.Abs(i .8) < .2 (j .8 - .0 0 v7)) { 7, 0 k 12 m 14 m, comp
0.7

179

 if i5 (- (Math.Abs(i .8)) < .2 (j .8 - .0 0 v7)) { 8, 0 m 12 k 4 14 m,
comp 0.7
 if i5 (j .8 < .2 (j .8 - .0 0 v7)) { 9, 0 i 12 i 14 i, comp 1.0
 if i5 (m .8 < .2 (j .8 - .0 0 v7)) { 10, 0 k 12 m 14 m, comp 0.7

-.0 - + * / % none -
 0 1m 2m 3k 4k 0, total 4 dead 2 miss 2

 if i5 (i .8 < .2 (j .8 - .0 0 v7)) { -.0
 if i5 (i .8 < .2 (j .8 + .0 0 v7)) { 1, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (j .8 * .0 0 v7)) { 2, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (j .8 / .0 0 v7)) { 3, 0 k 12 m 14 m, comp 0.7
 if i5 (i .8 < .2 (j .8 % .0 0 v7)) { 4, 0 k 12 m 14 m, comp 0.7

j.8 j cEmpty deadOnEmpty number string i m none j
 0 1m 2x 3k 4k 5m 6i 7i 0, total 7 dead 3 miss 2 tin 2

 if i5 (i .8 < .2 (j .8 - .0 0 v7)) { j.8
 if i5 (i .8 < .2 (cEmpty(j .8) - .0 0 v7)) { 1, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (deadOnEmpty(j .8) - .0 0 v7)) { 2, 0 x 12 x 14 m, comp
0.3
 if i5 (i .8 < .2 ("number" .8 - .0 0 v7)) { 3, 0 k 12 m 14 m, comp 0.7
 if i5 (i .8 < .2 ("string" .8 - .0 0 v7)) { 4, 0 k 12 m 14 m, comp 0.7
 if i5 (i .8 < .2 ("" .8 - .0 0 v7)) { 5, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (i .8 - .0 0 v7)) { 6, 0 i 12 i 14 i, comp 1.0
 if i5 (i .8 < .2 (m .8 - .0 0 v7)) { 7, 0 i 12 i 14 i, comp 1.0

v7 0 c1 sub1 zpush i j m none 0
 0 1m 2m 3x 4m 5i 6m 0, total 6 dead 1 miss 4 tin 1

 if i5 (i .8 < .2 (j .8 - .0 0 v7)) { v7
 if i5 (i .8 < .2 (j .8 - .0 c1(0 v7))) { 1, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (j .8 - .0 sub1(0 v7))) { 2, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (j .8 - .0 zpush(0 v7))) { 3, 0 x 12 x 14 x, comp 0.0
 if i5 (i .8 < .2 (j .8 - .0 i v7)) { 4, 0 m 12 m 14 m, comp 1.0
 if i5 (i .8 < .2 (j .8 - .0 j v7)) { 5, 0 i 12 i 14 i, comp 1.0
 if i5 (i .8 < .2 (j .8 - .0 m v7)) { 6, 0 m 12 m 14 m, comp 1.0

s7 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .5 = .7 i .9 s7; s7
 else { 1, 0 k 0, comp 0.0

m.5 m i j none m
 0 1k 2i 0, total 2 dead 1 miss 0 tin 1

 m .5 = .7 i .9 s7; m.5
 i .5 = .7 i .9 s7; 1, 0 k 0, comp 0.0
 j .5 = .7 i .9 s7; 2, 0 i, comp 1.0

i.9 i c0 c1 add1 sub1 neg j m none i
 0 1k 2k 3k 4k 5k 6i 7k 0, total 7 dead 6 miss 0 tin 1

 m .5 = .7 i .9 s7; i.9
 m .5 = .7 c0(i .9) s7; 1, 0 k 0, comp 0.0
 m .5 = .7 c1(i .9) s7; 2, 0 k 1, comp 0.0
 m .5 = .7 add1(i .9) s7; 3, 0 k -3, comp 0.0

180

 m .5 = .7 sub1(i .9) s7; 4, 0 k -5, comp 0.0
 m .5 = .7 - (i .9) s7; 5, 0 k 4, comp 0.0
 m .5 = .7 j .9 s7; 6, 0 i, comp 1.0
 m .5 = .7 m .9 s7; 7, 0 k 0, comp 0.0

s8 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .6 = .8 j .9 s8; s8
 } 1, 12 k 0 14 k 0, comp 0.0

m.6 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .6 = .8 j .9 s8; m.6
 i .6 = .8 j .9 s8; 1, 12 k 0 14 k 0, comp 0.0
 j .6 = .8 j .9 s8; 2, 12 k 0 14 k 0, comp 0.0

j.9 j cEmpty deadOnEmpty number string i m none j
 0 1k 2x 3k 4k 5k 6i 7i 0, total 7 dead 5 miss 0 tin 2

 m .6 = .8 j .9 s8; j.9
 m .6 = .8 cEmpty(j .9) s8; 1, 12 m 14 k , comp 0.5
 m .6 = .8 deadOnEmpty(j .9) s8; 2, 12 x 14 m, comp 0.5
 m .6 = .8 "number" .9 s8; 3, 12 k number 14 k number, comp 0.0
 m .6 = .8 "string" .9 s8; 4, 12 k string 14 k string, comp 0.0
 m .6 = .8 "" .9 s8; 5, 12 m 14 k , comp 0.5
 m .6 = .8 i .9 s8; 6, 12 i 14 i, comp 1.0
 m .6 = .8 m .9 s8; 7, 12 i 14 i, comp 1.0

&&.3 && || none &&
 0 1m 0, total 1 dead 0 miss 1

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { &&.3
 else if i6 ((typeof i .10 == .6 "string" v8) || .3 (typeof j .10 == .7
"number" v9)) { 1, 6 m 8 m 9 m 11 m 13 m, comp 1.0

==.6 == != < <= > >= none ==
 0 1k 2k 3m 4k 5m 0, total 5 dead 3 miss 2

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { ==.6
 else if i6 ((typeof i .10 != .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 1, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 < .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 2, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 <= .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 3, 6 m 8 m 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 > .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 4, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 >= .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 5, 6 m 8 m 9 m 11 m 13 m, comp 1.0

i.10 i cfalse ctrue logneg cEmpty deadOnEmpty number string j m none i
 0 1k 2k 3k 4m 5x 6m 7m 8m 9k 10k 0, total 10
dead 6 miss 4

181

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { i.10
 else if i6 ((typeof cfalse(i .10) == .6 "string" v8) && .3 (typeof j .10 ==
.7 "number" v9)) { 1, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof ctrue(i .10) == .6 "string" v8) && .3 (typeof j .10 ==
.7 "number" v9)) { 2, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof !(i .10) == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 3, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof cEmpty(i .10) == .6 "string" v8) && .3 (typeof j .10 ==
.7 "number" v9)) { 4, 6 m 8 m 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof deadOnEmpty(i .10) == .6 "string" v8) && .3 (typeof j .10
== .7 "number" v9)) { 5, 6 m 8 m 9 m 11 x 13 m, comp 0.8
 else if i6 ((typeof "number" .10 == .6 "string" v8) && .3 (typeof j .10 ==
.7 "number" v9)) { 6, 6 m 8 m 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof "string" .10 == .6 "string" v8) && .3 (typeof j .10 ==
.7 "number" v9)) { 7, 6 m 8 m 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof "" .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 8, 6 m 8 m 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof j .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 9, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof m .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { 10, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2

v8 string cEmpty number i j m none string
 0 1k 2k 3k 4k 5i 6i 0, total 6 dead 4 miss 0 tin 2

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { v8
 else if i6 ((typeof i .10 == .6 cEmpty("string" v8)) && .3 (typeof j .10 ==
.7 "number" v9)) { 1, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "number" v8) && .3 (typeof j .10 == .7
"number" v9)) { 2, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "" v8) && .3 (typeof j .10 == .7 "number"
v9)) { 3, 6 k null 8 m 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 i v8) && .3 (typeof j .10 == .7 "number"
v9)) { 4, 6 k null 8 i 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 j v8) && .3 (typeof j .10 == .7 "number"
v9)) { 5, 6 i 8 i 9 i 11 i 13 i, comp 1.0
 else if i6 ((typeof i .10 == .6 m v8) && .3 (typeof j .10 == .7 "number"
v9)) { 6, 6 i 8 i 9 i 11 i 13 i, comp 1.0

==.7 == != < <= > >= none ==
 0 1k 2k 3m 4k 5m 0, total 5 dead 3 miss 2

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { ==.7
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 != .7
"number" v9)) { 1, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 < .7
"number" v9)) { 2, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 <= .7
"number" v9)) { 3, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 > .7
"number" v9)) { 4, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 >= .7
"number" v9)) { 5, 6 m 8 n 9 m 11 m 13 m, comp 1.0

j.10 j c0 c1 add1 sub1 neg abs negabs zpush ctrue i m none j

182

 0 1m 2m 3m 4m 5m 6m 7m 8m 9k 10k 11m 0, total 11 dead 2 miss
9

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { j.10
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof c0(j .10) == .7
"number" v9)) { 1, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof c1(j .10) == .7
"number" v9)) { 2, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof add1(j .10) == .7
"number" v9)) { 3, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof sub1(j .10) == .7
"number" v9)) { 4, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof - (j .10) == .7
"number" v9)) { 5, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof Math.Abs(j .10) ==
.7 "number" v9)) { 6, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof - (Math.Abs(j
.10)) == .7 "number" v9)) { 7, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof zpush(j .10) ==
.7 "number" v9)) { 8, 6 m 8 n 9 m 11 m 13 m, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof ctrue(j .10) ==
.7 "number" v9)) { 9, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof i .10 == .7
"number" v9)) { 10, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof m .10 == .7
"number" v9)) { 11, 6 m 8 n 9 m 11 m 13 m, comp 1.0

v9 number cEmpty string i j m none number
 0 1k 2k 3k 4k 5i 6i 0, total 6 dead 4 miss 0 tin 2

 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"number" v9)) { v9
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
cEmpty("number" v9))) { 1, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7
"string" v9)) { 2, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7 ""
v9)) { 3, 6 k null 8 n 9 k null 11 k null 13 k null, comp 0.2
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7 i
v9)) { 4, 6 m 8 n 9 k null 11 k null 13 k null, comp 0.4
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7 j
v9)) { 5, 6 i 8 n 9 i 11 i 13 i, comp 1.0
 else if i6 ((typeof i .10 == .6 "string" v8) && .3 (typeof j .10 == .7 m
v9)) { 6, 6 i 8 n 9 i 11 i 13 i, comp 1.0

<.3 < == != <= > >= none <
 0 1k 2k 3k 4k 5k 0, total 5 dead 5 miss 0

 if i7 (i .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { <.3
 if i7 (i .11 .length m2 == .3 (j .11 + .0 "" v10).length m3) { 1, 6 m 9
k 1629 11 k -383 13 k JHw, comp 0.3
 if i7 (i .11 .length m2 != .3 (j .11 + .0 "" v10).length m3) { 2, 6 k
number 9 m 11 m 13 m, comp 0.8
 if i7 (i .11 .length m2 <= .3 (j .11 + .0 "" v10).length m3) { 3, 6 m 9
m 11 m 13 k JHw, comp 0.8
 if i7 (i .11 .length m2 > .3 (j .11 + .0 "" v10).length m3) { 4, 6 k
number 9 k 1629 11 k -383 13 m, comp 0.3

183

 if i7 (i .11 .length m2 >= .3 (j .11 + .0 "" v10).length m3) { 5, 6 k
number 9 k 1629 11 k -383 13 k JHw, comp 0.0

m2 i.length none i.length
 0 0, total 0 dead 0 miss 0

i.11 i j m none i
 0 1i 2i 0, total 2 dead 0 miss 0 tin 2

 if i7 (i .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { i.11
 if i7 (j .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { 1, 6 i 9 i
11 i 13 i, comp 1.0
 if i7 (m .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { 2, 6 i 9 i
11 i 13 i, comp 1.0

m3 none
(j .11 + .0 "" v10).length
 (j

+.0 + - * / % none +
 0 1k 2k 3k 4k 0, total 4 dead 4 miss 0

 if i7 (i .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { +.0
 if i7 (i .11 .length m2 < .3 (j .11 - .0 "" v10).length m3) { 1, 6 m 9 k
1629 11 k -383 13 m, comp 0.5
 if i7 (i .11 .length m2 < .3 (j .11 * .0 "" v10).length m3) { 2, 6 m 9 k
1629 11 k -383 13 m, comp 0.5
 if i7 (i .11 .length m2 < .3 (j .11 / .0 "" v10).length m3) { 3, 6 m 9 k
1629 11 k -383 13 m, comp 0.5
 if i7 (i .11 .length m2 < .3 (j .11 % .0 "" v10).length m3) { 4, 6 m 9 k
1629 11 k -383 13 m, comp 0.5

j.11 j c0 c1 add1 sub1 neg abs negabs zpush i m none j
 0 1k 2k 3m 4m 5k 6m 7k 8m 9i 10k 0, total 10 dead 5 miss 4 tin
1

 if i7 (i .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { j.11
 if i7 (i .11 .length m2 < .3 (c0(j .11) + .0 "" v10).length m3) { 1, 6 m
9 k 1629 11 m 13 m, comp 0.8
 if i7 (i .11 .length m2 < .3 (c1(j .11) + .0 "" v10).length m3) { 2, 6 m
9 k 1629 11 m 13 m, comp 0.8
 if i7 (i .11 .length m2 < .3 (add1(j .11) + .0 "" v10).length m3) { 3, 6
m 9 m 11 m 13 m, comp 1.0
 if i7 (i .11 .length m2 < .3 (sub1(j .11) + .0 "" v10).length m3) { 4, 6
m 9 m 11 m 13 m, comp 1.0
 if i7 (i .11 .length m2 < .3 (- (j .11) + .0 "" v10).length m3) { 5, 6 m
9 m 11 m 13 k JHw, comp 0.8
 if i7 (i .11 .length m2 < .3 (Math.Abs(j .11) + .0 "" v10).length m3) {
6, 6 m 9 m 11 m 13 m, comp 1.0
 if i7 (i .11 .length m2 < .3 (- (Math.Abs(j .11)) + .0 "" v10).length m3)
{ 7, 6 m 9 m 11 m 13 k JHw, comp 0.8
 if i7 (i .11 .length m2 < .3 (zpush(j .11) + .0 "" v10).length m3) { 8, 6
m 9 m 11 m 13 m, comp 1.0
 if i7 (i .11 .length m2 < .3 (i .11 + .0 "" v10).length m3) { 9, 6 i 9 i
11 i 13 i, comp 1.0

184

 if i7 (i .11 .length m2 < .3 (m .11 + .0 "" v10).length m3) { 10, 6 m 9
k 1629 11 m 13 m, comp 0.8

v10 deadOnEmpty number string i j m none
 0 1x 2k 3k 4k 5i 6i 0, total 6 dead 4 miss 0 tin 2

 if i7 (i .11 .length m2 < .3 (j .11 + .0 "" v10).length m3) { v10
 if i7 (i .11 .length m2 < .3 (j .11 + .0 deadOnEmpty("" v10)).length m3) {
1, 6 x 9 x 11 x 13 x, comp 0.0
 if i7 (i .11 .length m2 < .3 (j .11 + .0 "number" v10).length m3) { 2, 6
k number 9 m 11 m 13 k JHw, comp 0.5
 if i7 (i .11 .length m2 < .3 (j .11 + .0 "string" v10).length m3) { 3, 6
k number 9 m 11 m 13 k JHw, comp 0.5
 if i7 (i .11 .length m2 < .3 (j .11 + .0 i v10).length m3) { 4, 6 k
number 9 m 11 m 13 k JHw, comp 0.5
 if i7 (i .11 .length m2 < .3 (j .11 + .0 j v10).length m3) { 5, 6 i 9 i
11 i 13 i, comp 1.0
 if i7 (i .11 .length m2 < .3 (j .11 + .0 m v10).length m3) { 6, 6 i 9 i
11 i 13 i, comp 1.0

s9 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .7 = .9 i .12 s9; s9
 else { 1, 9 k 0 11 k 0, comp 0.0

m.7 m i j none m
 0 1k 2k 0, total 2 dead 2 miss 0

 m .7 = .9 i .12 s9; m.7
 i .7 = .9 i .12 s9; 1, 9 k 0 11 k 0, comp 0.0
 j .7 = .9 i .12 s9; 2, 9 k 0 11 k 0, comp 0.0

i.12 i cEmpty deadOnEmpty number string j m none i
 0 1k 2x 3k 4k 5k 6i 7i 0, total 7 dead 5 miss 0 tin 2

 m .7 = .9 i .12 s9; i.12
 m .7 = .9 cEmpty(i .12) s9; 1, 9 k 11 m, comp 0.5
 m .7 = .9 deadOnEmpty(i .12) s9; 2, 9 m 11 x, comp 0.5
 m .7 = .9 "number" .12 s9; 3, 9 k number 11 k number, comp 0.0
 m .7 = .9 "string" .12 s9; 4, 9 k string 11 k string, comp 0.0
 m .7 = .9 "" .12 s9; 5, 9 k 11 m, comp 0.5
 m .7 = .9 j .12 s9; 6, 9 i 11 i, comp 1.0
 m .7 = .9 m .12 s9; 7, 9 i 11 i, comp 1.0

s10 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .8 = .10 j .12 s10; s10
 } 1, 6 k 0 13 k 0, comp 0.0

m.8 m i j none m
 0 1i 2k 0, total 2 dead 1 miss 0 tin 1

 m .8 = .10 j .12 s10; m.8
 i .8 = .10 j .12 s10; 1, 6 i 13 i, comp 1.0
 j .8 = .10 j .12 s10; 2, 6 k 0 13 k 0, comp 0.0

185

j.12 j c0 c1 add1 sub1 neg i m none j
 0 1k 2k 3k 4k 5k 6i 7k 0, total 7 dead 6 miss 0 tin 1

 m .8 = .10 j .12 s10; j.12
 m .8 = .10 c0(j .12) s10; 1, 6 k 0 13 k 0, comp 0.0
 m .8 = .10 c1(j .12) s10; 2, 6 k 1 13 k 1, comp 0.0
 m .8 = .10 add1(j .12) s10; 3, 6 k 5 13 k 564, comp 0.0
 m .8 = .10 sub1(j .12) s10; 4, 6 k 3 13 k 562, comp 0.0
 m .8 = .10 - (j .12) s10; 5, 6 k -4 13 k -563, comp 0.0
 m .8 = .10 i .12 s10; 6, 6 i 13 i, comp 1.0
 m .8 = .10 m .12 s10; 7, 6 k 0 13 k 0, comp 0.0

s11 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 m .9 = .11 null v11 s11; s11
 var r; 1, 8 k 0, comp 0.0

m.9 m i j none m
 0 1i 2i 0, total 2 dead 0 miss 0 tin 2

 m .9 = .11 null v11 s11; m.9
 i .9 = .11 null v11 s11; 1, 8 i, comp 1.0
 j .9 = .11 null v11 s11; 2, 8 i, comp 1.0

v11 none
 0 0, total 0 dead 0 miss 0

s12 expn deleteExpn none expn
 0 1k 0, total 1 dead 1 miss 0

 r .0 = .12 m .10 s12; s12
 TESCRIPTAClass.TESCRIPTA.defineOutput(r, 9); 1, 0 k 1 k 2 k 3 k 4 k 5 k 6
k 7 k 8 k 9 k 10 k 11 k 12 k 13 k 14 k 15 k 16 k 17 k 18 k , comp 0.0

r.0 r i j m none r
 0 1k 2k 3k 0, total 3 dead 3 miss 0

 r .0 = .12 m .10 s12; r.0
 i .0 = .12 m .10 s12; 1, 0 k 1 k 2 k 3 k 4 k 5 k 6 i 7 k 8 i 9 k 10
k 11 k 12 i 13 i 14 i 15 k 16 k 17 k 18 k , comp 0.3
 j .0 = .12 m .10 s12; 2, 0 i 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 i 9 i 10 k
11 i 12 k 13 k 14 k 15 k 16 k 17 k 18 k , comp 0.2
 m .0 = .12 m .10 s12; 3, 0 k 1 k 2 k 3 k 4 k 5 k 6 k 7 k 8 k 9 k
10 k 11 k 12 k 13 k 14 k 15 k 16 k 17 k 18 k , comp 0.0

m.10 m c1 sub1 zpush c0 add1 neg abs negabs cEmpty deadOnEmpty number string i
j r none m
 0 1k 2k 3x 4k 5k 6k 7k 8k 9k 10x 11k 12k 13k
14k 15k 16i 0, total 16 dead 15 miss 0 tin 1

 r .0 = .12 m .10 s12; m.10
 r .0 = .12 c1(m .10) s12; 1, 0 k 1 1 i 2 k 1 3 k 1 4 i 5 k 1 6 k 1 7 k 1 8 i
9 i 10 k 1 11 i 12 i 13 k 1 14 i 15 i 16 i 17 k 1 18 i, comp 0.5
 r .0 = .12 sub1(m .10) s12; 2, 0 k -5 1 i 2 k 9 3 k -1 4 i 5 k 3 6 k 3 7 k -
1 8 i 9 i 10 k -384 11 i 12 i 13 k 562 14 i 15 i 16 i 17 k -45 18 i, comp 0.5

186

 r .0 = .12 zpush(m .10) s12; 3, 0 m 1 i 2 m 3 x 4 i 5 m 6 m 7 x 8 i 9 i 10 m
11 i 12 i 13 m 14 i 15 i 16 i 17 m 18 i, comp 0.9
 r .0 = .12 c0(m .10) s12; 4, 0 k 0 1 i 2 k 0 3 m 4 i 5 k 0 6 k 0 7 m 8 i 9 i
10 k 0 11 i 12 i 13 k 0 14 i 15 i 16 i 17 k 0 18 i, comp 0.6
 r .0 = .12 add1(m .10) s12; 5, 0 k -3 1 i 2 k 11 3 k 1 4 i 5 k 5 6 k 5 7 k 1
8 i 9 i 10 k -382 11 i 12 i 13 k 564 14 i 15 i 16 i 17 k -43 18 i, comp 0.5
 r .0 = .12 - (m .10) s12; 6, 0 k 4 1 i 2 k -10 3 m 4 i 5 k -4 6 k -4 7 m 8
i 9 i 10 k 383 11 i 12 i 13 k -563 14 i 15 i 16 i 17 k 44 18 i, comp 0.6
 r .0 = .12 Math.Abs(m .10) s12; 7, 0 k 4 1 i 2 m 3 m 4 i 5 m 6 m 7 m 8 i 9 i
10 k 383 11 i 12 i 13 m 14 i 15 i 16 i 17 k 44 18 i, comp 0.8
 r .0 = .12 - (Math.Abs(m .10)) s12; 8, 0 m 1 i 2 k -10 3 m 4 i 5 k -4 6 k -4
7 m 8 i 9 i 10 m 11 i 12 i 13 k -563 14 i 15 i 16 i 17 m 18 i, comp 0.8
 r .0 = .12 cEmpty(m .10) s12; 9, 0 i 1 k 2 i 3 i 4 k 5 i 6 i 7 i 8 i 9 k
10 i 11 m 12 m 13 i 14 k 15 m 16 k 17 i 18 m, comp 0.7
 r .0 = .12 deadOnEmpty(m .10) s12; 10, 0 i 1 m 2 i 3 i 4 m 5 i 6 i 7 i 8 i 9
m 10 i 11 x 12 x 13 i 14 m 15 x 16 m 17 i 18 x, comp 0.8
 r .0 = .12 "number" .10 s12; 11, 0 i 1 k number 2 i 3 i 4 k number 5 i 6 i 7
i 8 i 9 k number 10 i 11 k number 12 k number 13 i 14 k number 15 k number 16 k
number 17 i 18 k number, comp 0.5
 r .0 = .12 "string" .10 s12; 12, 0 i 1 k string 2 i 3 i 4 k string 5 i 6 i 7
i 8 i 9 k string 10 i 11 k string 12 k string 13 i 14 k string 15 k string 16 k
string 17 i 18 k string, comp 0.5
 r .0 = .12 "" .10 s12; 13, 0 i 1 k 2 i 3 i 4 k 5 i 6 i 7 i 8 i 9 k 10 i
11 m 12 m 13 i 14 k 15 m 16 k 17 i 18 m, comp 0.7
 r .0 = .12 i .10 s12; 14, 0 m 1 k abc 2 m 3 k 5 4 k aa 5 m 6 i 7 m 8 i 9 m
10 k -33 11 m 12 i 13 i 14 i 15 m 16 m 17 m 18 m, comp 0.8
 r .0 = .12 j .10 s12; 15, 0 i 1 m 2 m 3 m 4 m 5 k 5 6 m 7 k 1 8 i 9 i 10 m
11 i 12 m 13 m 14 m 15 m 16 k abc 17 k -40 18 k]h", comp 0.7
 r .0 = .12 r .10 s12; 16, 0 i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i
12 i 13 i 14 i 15 i 16 i 17 i 18 i, comp 1.0

