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ABSTRACT

ACCELERATING DATA RETRIEVAL STEPS
IN XML DOCUMENTS

by

Yun Shen
Doctor of Philosophy

University of Hull, January, 2005

The aim of this research is to accelerate the data retrieval steps in a collection

of XML (eXtensible Markup Language) documents, a key task of current XML

research. The following three inter-connected issues relating to the state-of-the-

art XML research are thus studied: semantically clustering XML documents,

efficiently querying XML document with an index structure and self-adaptively

labelling dynamic XML documents, which form a basic but self-contained foun-

dation of a native XML database system.

This research is carried out by following a divide-and-conquer strategy. The

issue of dividing a collection of XML documents into sub-clusters, in which se-

mantically similar XML documents are grouped together, is addressed at first.

To achieve this purpose, a semantic component model to model the implicit se-

mantic of an XML document is proposed. This model enables us to devise a set of

heuristic algorithms to' compute the degree of similarity among XML documents.

In particular, the newly proposed semantic component model and the heuristic

algorithms reflect the inaccuracy of the traditional edit-distance-based cluster-

ing mechanisms. After similar XML documents are grouped into sub-collections,
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the problem of querying XML documents with an index structure is carefully

studied. A novel geometric sequence model is proposed to transform XML doc-

uments into numbered geometric sequences and XPath queries into geometric

query sequences. The problem of evaluating an XPath query in an XML docu-

ment is theoretically proved to be equal to the problem of finding the subsequence

.matchings of a geometric query sequence in a numbered geometric document se-

quence. This geometric sequence model then enables us to devise two new stack-

based algorithms to perform both top-down and bottom-up XPath evaluation in

XML documents. In particular, the algorithms treat an XPath query as a whole

unit, avoiding resource-consuming join operations and generating all the answers

without semantic errors and false alarms. Finally the issue of supporting update

functions in XML documents is tackled. A new Bayesian allocation model is in-

troduced for the index structure generated in geometric sequence model. Based

on k-ary tree data structure and the level traversal mechanism, the correctness

and efficiency of the Bayesian allocation model in supporting dynamic XML doc-

uments is theoretically proved. In particular, the Bayesian allocation model is

general and can be applied to most of the current index structures.
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CHAPTER 1

Introduction

The goal (of XML) is to enable generic SCML to be served, received, and

processed on the Web in the way that is now possible with HTML.

- XML Specification

As the World Wide Web has become one of the most important communication

media, there is art exponential increase in the amount of electronic data which are

in a web-compliant format, such as HTML [RHJ99] and SGML {Standard Gen-

eralized Markup Language}. However, the increasing relevance of the Web as a

means of sharing data has posed a number of new issues to the database research

community [ABSOO,ViaOl]. Traditional database systems, such as relational,

object-oriented, and object-relational systems, of handling highly structured data

{Le. relational data}, are insufficient and ineffective [Suc98, ABSOO,ViaOl]

whereas Web data are semistructured [ABSOO]and encoded using different for-

mats (Le. HTML [RHJ99] and XML [W3COO]).

Especially, XML [W3COO]is a novel data representation standard wheredata

are bounded by user-defined, meaningful tags. In recent years, it has gained

increasing relevance as a means of exchanging information [Suc98, ABSOO,ViaOI].

The datatype underlying the XML paradigm, namely tree, is expressive enough

to capture the structure of diverse data sources, yet simple enough to be processed

by recursive algorithms.
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information
name age address postcode

John 18 - HU67RX

John 18 5 Carrington Ave. HU52AE

William 17 15 Exmouth Street -

Table 1.1: Relational Table: information

Figure 1.1: Representing information in XML 'free Model

1.1 Motivation of Research

XML was not originally derived from the database community [W3COOj.In fact,

XML has its roots in the document management community, and is derived from

a language for structuring large documents known as SGML. However, XML is

simple, lightweight, self-describing and allows users to define their own tags to

describe the meaning of data (with/without specific schema). Consider the ex-

ample in Table 1.1 and Figure 1.1, the hierarchical structure of XML enables it to

capture more detailed structural information and not to suffer from unnecessary

null information in traditional relational systems.

To cope with the tree-structure of XML documents, several query languages

have been proposed to retrieve data [AQM+97, DFF+99, RLS99, W3C99c, W3C03j.

However, retrieving data from tree structured XML data is not a trivial task. The
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recursion inherent in the tree-like data types [W3COO]as well as in the opera-

tions over these types turns out to be a challenge for the traditional database

community [Suc98,ABSOO,ViaOl]. Consider again the example in Table 1.1 and

Figure 1.1, if a user is to "find a person whose age is 18 and lives in HU6 7RX",

matching such a query pattern against a document tree without a preprocessing

mechanism is equivalent to the tree inclusion problem and has been proved to be

NP-complete [AHU74, SWG02].

_Toaddress the difficulties, in this thesis, a novel data retrieval mechanism is

developed to efficiently search all the answers that match the query conditions

precisely in a collection of XML documents. Throughout the thesis, diverse issues

needed to support such data retrieval mechanism in the XML tree data model is

carefully studied -.

1.2 Research Problems

To exploit the power of XML, a data retrieval mechanism for XML documents

should efficiently support queries with content and structural constraints [LMOl,

NND02, WPFY03, JLW03] supported by specialised query languages [AQM+97,

DFF+99, RLS99, W3C99c, W3C03] and index structures. The introduction of

a query evaluation in the XML data tree model brings up several challenging

technical issues as follows:

• Semantically Clustering XML Data

The traditional information retrieval community utilised the vector model
I

[DAM02]on the basis of keywords to model XML documents and the edit

distance algorithms to measure the degree of the similarity among docu-

ments. However, how to devise a mechanism that semantically and ac-
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products

t
books

~~~
title author publisher ISBN

goods

t
bib

~~~
title wrjter ISBN Misc

I~ /~
name title price publishing

company
(a) (b)

Figure 1.2: Two Similar XML Data Trees

curately clusters XML documents based on the semantic of XML data is

- an open research problem because there is no formal semantic defined for

XML data [W3COO]since XML is originally designed to improve the func-

tionality of the Web by providing more flexible and adaptable information

identification. For instance, the example in [LLK01] is used. In Figure

1.2, two sample XML documents about books are illustrated. It is clear

that once apparently different sets of elements are "normalised" using syn-

onyms (Le. "write" equals to "author"), they may constitute rather similar

documents. Secondly, their structures are similar considering how the el-

ements are nested. Assume the existence of the functions Generatef),

Computet) and Cluster [), in general, a methodology computes similar-

ity among a collection of XML documents 11} by taking account of XML

semantic works as follows.

1. Generate: 11} ~ S, where S denotes the semantic of 11}.

2. Compute: S ~ M, where M denotes the similarity matrix computing

from S.

3. Cluster: M'~ C, where C denotes the clusters computing from M.

Therefore, a mechanism that accurately models the semantic of an XML

document and can be further computed plays an essential role in dividing a
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large collection of XML documents. Ranges of queries can be dramatically

decreased to applicable documents to accelerate the data retrieval steps. In

this thesis, we thus focus on studying the problem of how to model and

accurately compute semantic similarity among a collection of XML data.

• Querying XML Data With An Index Structure

A query compatible to XPath [W3C99c] is modelled as a tree, called twig

pattern, and can be complicated when wildcards "*", self-or-descendent

axis( "I I") and content constraints are presented. Evaluating such a twig

pattern in a document tree without a preprocessing mechanism (i.e. an

index structure) is equivalent to the tree inclusion problem and has been

proved to be NP-complete [AHU74, SWG02]. Current XML query process-

ing techniques are divided into two groups: navigation-based algorithms

and index-based algorithms. Navigation-based methods [AFOO,CFGR02,

LP02, PC03] generate the results by processing an input document one tag

at a time. It implies that their processing performance degrades with the in-

creasing number of tags. In contrast to navigation-based algorithms, index-

based mechanisms [ZND+Ol, LMOl, KYUOl, NND02, CTZZ02, JLW03]

utilise the index structures over the input XML documents to accelerate

data retrieval steps. Assuming the existence of the function QueryO,

GenerateIndexO and the index structure I, the querying process can

be simplified as follows:

1. I +- Generatelndex(lI)))

2. While( there exists a potential answer in I)

Query(Q, I, 11)))

Therefore, a mechanism for accurately and efficiently retrieving data from

5



XML documents plays an important role in enhancing the performance of

XPath evaluation steps with the presence of a light-weight index structure,

and thus is the core part of the study in this thesis. The problem to devise

elegant twig pattern matching algorithms in which an XPath tree structure

(Le. a twig pattern) is treated as a whole unit to avoid expensive join

operations is carefully studied .

• Labelling Dynamic XML Data

A number of index structures based on corresponding labelling schemes

have been proposed to accelerate the query evaluation performance in static

XML documents [LMOl, KYUOl, Gru02, JLW03]. However, XML data in

the Web are dynamic [ABSOO,CKM02]. It implies that both the struc-

ture and the content of an XML document may be evolving with time.

Therefore, it is important to devise a labelling scheme to support update

operations on dynamic XML documents without affecting the querying per-

formance. Few research efforts have been proposed to solve this problem

[LMOl,KYUOl, CKM02, JLW03, WPFY03]. Assuming the existence of the

functions LabellingTreeO and Updatef ), the whole process of labelling

dynamic XML documents can be simplified as follows:

1. Labelling Tree (lDl):lDl-t I, where I stands for the index structure

2. LabellingTree{IF): IF-t IJF,where IFstands for an XML fragment and

IJFfor its index

3. Update{IJF, I): I + IJF-t Inew

Therefore, techniques for efficiently labelling dynamic XML data play an

important role in both minimising the cost of updating the index structure

6



and accelerating the index-based data retrieval steps in a dynamic envi-

ronment. The goal in this thesis is to devise such an efficient and general

labelling scheme for dynamic XML documents.

1.3 Contributions

The main aim of the thesis is to efficiently index and query XML documents

by following a divide-and-conquer [AHU74] strategy. Its main contributions are

summarised as follows:

• Semantically Clustering XML Documents

A collection of XML documents is divided into specific groups in which se-

mantically similar XML documents are aggregated together. The range of

queries can be thus decreased to applicable documents after relevant doc-

uments are grouped into sub-collections. The semantic component model

[SW03] is core to this contribution. The proposed set of heuristic algo-

rithms make the computing of similarity among XML documents practical.

Its unique feature on the detection of tree inclusion and tree isomorphism

renders previous approaches inapplicable. Extensive experimental results

using both real and synthesised documents have demonstrated the accuracy

of the proposed methods. The tradeoff among various parameters is also

investigated. More importantly, the proposed methodology offers opportu-

nities in optimising information retrieval, document classification, and data

mining .

• Holistic XPath Evaluation

After relevant documents are aggregated together, an efficient querying

mechanism [WFS05] is proposed to retrieve XML data with an index struc-

7



ture. XML documents and XML queries are transformed into geometric

sequences. By performing subsequence matching on a set of sequences in

the database, all the occurrences of an XPath query pattern (Le. twig pat-

tern) in the database are retrieved. The approach allows matching a twig

pattern query without breaking down the pattern into root-to-leaf paths

and processing these paths individually. Furthermore, it is theoretically

proved that all correct answers are found without false answers and seman-

tic false, and, most importantly, without refinement or post-processing. An

elegant use of stack mechanism is also proposed to support such efficient

data retrieval purpose.

• Self-adaptive Labelling Scheme for Dynamic XML Documents

XML data in the Web is dynamic. It implies that the structure and the

content of an XML document are evolving over time. A self-adaptive scope

allocation scheme [SFSW04] for labelling dynamic XML documents is in-

troduced to tackle the updating problem. It is general, light-weight and can

be built upon existing data retrieval mechanisms. The Bayesian inference

is initiatively used to compute the actual scope allocated for labelling a

certain node based on both the prior information and the actual document.

Through theoretical proofs and extensive experiments, it is proved that

the proposed Bayesian allocation model can practically and significantly

improve the performance of the conventional fixed scope allocation models.

1.4 Outline of Thesis

The overall approach of the research described in this thesis was to divide a col-

lection of semantically different XML documents into sub-collections, and then

8



_ index these XML documents to support data retrieval functions and update func-

tions. This divide-and-conquer approach [Llo84]gives rise to the following thesis

structure.

Following the short introduction of this chapter, the first part of Chapter

2 presents a background review of XML and its related schema languages and

query languages. The second part of Chapter 2 reviews the research issues related

to indexing and querying XML documents. Throughout this thesis, all XML

documents are treated as data files except where otherwise indicated.

Chapter 3 considers how to divide a collection of XML documents into groups

of semantically similar XML documents. The deficiency of the state-of-the-art

clustering techniques for XML documents is thoroughly examined. An advanced

semantic component model is introduced to model the semantic expressed in an

XML document. After that, a set of heuristic algorithms are presented to com-

pute the semantic similarity among a collection of XML documents. A heuristic

clustering technique is utilised to generate the final clusters.

Chapter 4 describes a method for efficiently indexing and querying XML doc-

uments after similar XML documents are grouped together. In this chapter, the

shortcomings of current XML data retrieval mechanisms is briefly reviewed. Then

a novel geometric sequence model is introduced to transform both XML docu-

ments and XPath queries. It is theoretically proved that the geometric sequence

model turns a twig pattern matching problem into a subsequence matching prob-

lem. Finally, two efficient stack-based algorithms are presented to extract data

from XML documents based on the geometric sequence model and a trie index

structure.

Chapter 5 considers how to support update functions in XML documents.

Previous research efforts in supporting update functions in XML documents are

9



reviewed. Then a novel Bayesian allocation model is proposed to self-adaptively

label XML documents by embedding the index structure into a K-ary tree with

the level traversal. Finally, the correctness and efficiency of the allocation model

is theoretically and experimentally proved.

Chapter 6 summarises the contributions of the thesis and proposes the future

"work.
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CHAPTER 2

Background

Knowledge is a process of piling up facts; wisdom lies in their simplification.

- Marlin Fischer

The use of semistructured data [ABSOO]is motivated by the challenges posed by

existing electronic data (e.g. HTML [RHJ99] and SGML) which do not conform

to the traditional relational data model. It requires the research and devel-

opment of the corresponding semistructured data models with query languages

adapted to these models. The emergence of XML [W3COO]has facilitated the

electronic data publication by providing a simple syntax for data which is both

machine- and human-understandable. Though introduced in a document com-

munity, XML is quickly gaining popularity· in data representation and exchange

on the Web [Suc98]. Interestingly, semistructured data and XML share con-

siderable similarity [GMW99]. Previous research efforts 011 semistructured data

[HGMI+95, QWG+96, MAG+97, FFLS97, AV97, Suc98, BFSOO]may thus offer

some solutions to the data-centric challenges posed by XML, though the efforts

may not be trivial [Suc98, ViaOI]. In this chapter, an overview of semistruc-

tured data and XML is presented. After that a thorough literature review on the

substantial research efforts 011 the issues covered in this thesis is studied.

11



2.1 Basics of Semistructured Data

The publication of electronic data has been becoming universal and pervasive in

the Web. However, these data lie outside of the conventional relational database

management systems but inside structured documents (e.g. in format of HTML

?r SGML). FrOID the perspective of the database community, it is the Web that

led to the development of semistructured data models and the relevant query lan-

guages, which are proposed to tackle the core issues on efficient data retrieval, ver-

sion control, change detection, indexing, and data management of semistructured

data, which can not be directly supported by conventional relational database

[ABSDD].

Semistructured Data is often explained as "schema-less" or "self-describing",

terms that indicate that there is no separate description of the type or struc-

ture of data [ABSDD] in contrast to the relational model. An example of the

semistructured data fragment is shown below.

&bookl{
author: "Serge Abiteboul, Peter Buneman and Dan Suciu",
book: "Data. on the Web: from relations to semistructured data

and XML",
publisher: "Morgan Kaufmann Publishers",

}

Typically, the data fragment is graphically represented by a node which is

viewed as an object and inter-connected with the other objects by labelled edges.

Each node can be atomic or complex using the syntax [ABSDD] below. For ex-

ample, "&book1" is an oid, "author" is a label and "Serge Abiteboul, Peter

Buneman atid Dan Suciu" is an atomicvalue.

12



<ssd-expr> ::= <value> I oid<value> I oid
<value>::=atomicvalue I <complexvalue>
<complexvalue> ::= {label: <ssd-expr>J "'J label: <ssd-expr>}

These inter-connected objects are normally represented by a graph. A graph

G(V, E) consists of a set of V nodes (objects) and a set of E edges. Each edge

connects a pair of ordered nodes, the source node (parent node) Vs and the target

node (child node) Vt. A path is a sequence of edges starting from the source node

Vs to the target node Vt, denoted as es, es+1, ... , et· A node r is a root if there is a

path from r to v for every V E V. A cycle in a graph is a path es, es+1, ... , es. A

'graph with no cycles is called acyclic. To summarise, the data model above is an

edge-labelled graph. The graph example of the above data fragment is illustrated

below in Figure 2.1.

"Serge Abiteboul, "Data on the Web: from "Morgan Kaufmann
Peter Buneman relations to semistructured Publishers"
and Dan Suciu" data and XML"

Figure 2.1: A Semistructured Data Model

The research on semistructured data started with the OEM (Object Exchange

Model) model in Tsimmis project at Stanford in 1995 [HGMI+95], following by

a related, successful Lore project in Stanford [QWG+96, MAG+97], in which an

edge-labelled variant of OEM was proposed. Later, UnQL [BDFS97, BFSOO],de-

veloped at the University of Pennsylvania, introduced an alternative data model

based on bisimulation.

13



Most of the research following the above projects has focused on the log-

ical data models and the corresponding query languages. Several query lan-

guages have been proposed: UnQL [BFSOO],StruQL [FFLS97], MSL [PAGM96],

and Lorel [AQM+97]. Other research includes heterogeneous data integration

[HGMI+95], Web site management [FFLS97], schema formalisms [BDFS97], in-

.dexing [MS99], and optimisations [AV97,Suc98].

2.2 Basics of XML

2.2.1 XML Premier

Unlike the semistructured data, XML [W3COO]does not originate in the database

community. It.was introduced in the document community as a subset of SGML

and is more like an augmentation of ~TML allowing annotation of data with

information about its meaning rather than just its presentation [ViaOl]. It is

designed to improve the functionality of the Web by providing more flexible

and adaptable information identification; and should be versatile enough to be

customised for domains as diverse as web sites, electronic data interchange, vector

graphics, object serialisation, remote procedure calls and genealogy.

XML defines a generic syntax used to mark up documents with simple, human

readable tags. The users can define their own tag names, contrasting to HTML

in which the terms are fixed. Data is included in XML documents as strings

of text, and is surrounded by the above mentioned text markup (tag name)

that describe the data. This particular unit is called an element. The XML

specification [W3COO]defines the exact syntax for: how elements are delimited

by tags, what a tag looks like, how elements are nested, and so forth. The markup

permitted in a particular XML document can also be stated in a document type
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<A>
<B>

«Dc-indexing-c/D»
<E>and</E>
«Fxquerying-c/F>

</B>
<B>

<D>XML<ID>
«Exdocuments-c/E»

</B>
<J>CIKM</J>

<lA>

Figure 2.2: An Example XML Document

definition (DTD), one of the most popular XML schema languages. It lists all

valid markup and designate where and how these markup may be included in an

XML document. Additionally, DTD provides a limited support for data types in

an XML document. An example XML document is shown in Figure 2.2,

2.2.2 XML Data Model

Data in XML is grouped into elements delimited by tags and elements can be

nested according to the user's specification. However, XML is only a meta-

markup language, and did not have an associated data model when introduced.

In this section, a data model for XML and some preliminaries for the rest of the

thesis is set up.

An XML document is modelled as an ordered, node labelled and rooted tree.

More formally, consider a graph T = (VG, VT, v-. EG, labelnode, nid, LT)'

Va is the set of.element nodes and VT is the set of text nodes. 'Vv E VT, v has no

outgoing edge. Vr is root of the XML data tree, where there exists a path from Vr

to v, 'Vv E V.aUVT. It implies that Vr has no incoming edge. Each node v E VaUVT
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is labelled through the function labelnode over the set of terms, LT' The label

of a node V E VG is referred to the tag name. The label of V E VT is referred to

a distinguishing keyword contained in the corresponding text. Quotation mark

in future figures is used to distinguish the label of VT. Each edge e, e EEG, is

a parent-to-child edge, denoting the parent-child relationship. The parent node

"is denoted as vep' and the child node is denoted as Vee' A path is a sequence of

edges starting from the node Vi to the node Vi' denoted as ei, eH}' ..., ei' A node

Vi is ancestor of Vi iff a path to Vi goes through Vi· The order among the sibling

nodes is distinguished. Each node is assigned a unique nid number for indexing

.and querying purpose. TVi refers to the subtree induced by node Vi'

Figure 2.3 shows an example of our data model. The solid edges represent

EG. The dashed edge denotes a edge e, vep E VG and Vee E VT. The quoted string

represents a label of a node v, V E VT..

··..·\'( "indexing" \'1: "and" \'~: "querying" "4: "X~U." "s: "documentli"

Figure 2.3: An Example XML Document in Tree Structure

2.2.3 XML Schema Languages

An XML schema language [W3C01b] aims to present a formalisation of the con-

straints, expressed as rules or a model of structures, which applies to a class of

XML documents. In this section, a brief overview of a number of schema lan-
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Figure 2.4: An Example of DTD Tree

guages have been proposed to model XML documents in both structures and

datatypes is presented.

DTD This grammar is known as a document type definition, or DTD [W3COO].

The document type declaration can point to an external subset (a special

kind of external entity) containing markup declarations, or can contain the

markup declarations directly in an internal subset, or can do both. DTD

is written in a formal BNF syntax that explains precisely which elements

and entities may appear in the document and what the elements' contents

and attributes are. Simple cardinality constraints can be imposed on the

elements using regular expression operators (?, *, +). Elements can be

grouped as ordered sequences (a,b) or as choices (alb). Elements have

attributes with properties type (PCDATA, ID, IDREF, ENUMERATION),

cardinality (#REQUIRED, #FIXED, #DEFAULT), and any default value.

An example DTD of Figure 2.2 is shown below and its tree structure is

shown in Figure 2.4. It states that an element called A may have two kinds

of child elements, respectively Band J, and B may have three kinds of child

elements, respectively D, E, and F.

<!ELEMENT A (B+, J?»
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<!ELEMENT B (D*, E+, F?»>
<!ELEMENT D (#PCDATA»>
<!ELEMENT E (#PCDATA»>
<!ELEMENT F (#PCDATA»>
<!ELEMENT J (#PCDATA»>

DTD supports limited data types and constraints definitions. However, it,

a subset of SGML DTD, is the de facto standard XML schema language of

the past and present and is most likely to thrive until XML-Schema finally

arrives. Mignet et al. [MBV03] conclude that the use of XML Schema,

the new mechanism for specifying the schema for an XML document, is in-

significant compared to the usage of DTD. Hence, this thesis mainly focuses

on DTD~ The brief summary of type definitions in DTD is listed below.

• <!DOCTYPE root-element [doctype-deciaration ... ]> determines the

name of the root element and contains the document type declarations.

• <!ELEMENT element-name content-model> associates a content model

to all elements of the given name. An element type declaration con-

strains the element's content.

• <!ATTLIST element-name attr-name attr-type attr-default ...> de-

clares which attributes are allowed or required in which elements.

XML attribute types are of three kinds: a string type, a set of to-

kenised types, and enumerated types.

XML Schema Language XML Schema is the W3C's object-oriented descrip-

tion for XML [W3COlb]. It extends the functionality provided by DTD,

most importantly, with the addition of a type system. An XML Schema is

based on the fact that the DTD is not an XML document; it is written in
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Extended BNF notation [W3COO,CEM03j. By contrast, the XML Schema

is itself an XML document. Moreover, XML schema is more complex than

DTD, using a uniform XML syntax and supporting a complicated notion

of derivation of document types. It is thus not likely to simply model XML

Schema as a tree. W3C [W3C01bj specifies that an XML Schema is mod-

elled as a set of schema components. Each component is a building block

that comprises the schema. W3C [W3COlbj also states there are 13 kinds of

components in all, falling into three groups. These components constrain

and document the meaning, usage and relationships of their constituent

parts: datatypes, elements and their content and attributes and their val-

ues [W3C01bj. In summary, XML Schema is both about structure and

datatyping, and is compatible to DTD.

Miscellaneous Schema Languages However, DTD and XML Schema lan-

guages do not provide all the facilities that might be needed by any applica-

tion. Some applications may require constraint capabilities not expressible

in DTD or XML Schema, and so may need to perform their own additional

validations. Document Content Description (DCD) [BFM98j proposes a

structural schema facility to specify rules covering the structure and con-

tent of XML documents with additional basic datatypes, and is consistent

with the ongoing W3C RDF (Resource Description Framework) [W3C04j

effort. Schema for Object-Oriented XML (SOX) [W3C99bj extends the lan-

guage of DTDs by supporting an extensive (and extensible) set of datatypes,

and defines the syntactic structure and partial semantics of XML document

types. Document Definition Markup Language (DDML) [W3C99aj encodes

the logical (as opposed to physical) content of DTDs in an XML document,

allowing schema information to be explored and used with widely available
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XML tools. RELAX NG [CMOl] was based on TREX [CMOI] designed

by James Clark and RELAX designed by MURATA Makoto [MurOO].RE-

LAX NG is supported by clean principles of hedge automata [MurDO] and

has the capability of expressing context-sensitive schema rules by means of

non-terminal symbols.

2.2.4 XML Query Languages

Several query languages, Le. Lorel [AQM+97],Qulit [CRFOl], XML-QL [DFF+99],

XQL [RLS99], XPath [W3C99c] and XQuery [W3C03], have been proposed to

. retrieve data from XML documents and semistructured data. The common fea-

tures of these languages are the use of regular path expressions and the ability to

extract information about the schema from the data [LMOl]. The database com-

munity is now well underway to adapt. its technology to host large XML stores

and to query these stores efficiently, preferably using query languages developed

in the XML domain: XPath and XQuery.

XPath XPath [W3C99c]is a language for addressing parts of an XML document.

It gets its name from its use of a path notation as in URLs for navigating

through the hierarchical structure of an XML document. In support of

its primary purpose of addressing parts of an XML document, XPath also

provides basic facilities for manipulation of strings, numbers and booleans.

It uses a compact, non-XML syntax to facilitate the use of XPath within

URIs and XML attribute values. XPath operates on the abstract, logical

structure of an XML document, rather than its surface syntax.

XPath operates on an XML document as a tree. Each node in the tree has

one of the seven types; root, element, attribute, text, namespace, processing

instruction and comment. Starting from a so called context node, XPath
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IA/B Select all elements B which are children of the root element A

IID/B Select all elements B which are children of the element D

1* 1* 1* IB Select all elements B which have 3 ancestors

IIB[@id='XML'] Select B elements which have attribute id with value XML

Table 2.1: Example of XPath Queries

query traverses its input documents using a number of location paths. The

result of a location path is the node-set containing the nodes selected by

the location path, which is further specified by its location steps. In each

step, an axis describes which document nodes (and the subtrees below these

nodes) form the intermediate result forest for this step. [W3C99c] specifies

13 different axes: child, descendant, parent, following-sibling, preceding-

sibling, following, preceding, attribute, namespace, self, descendant-or-self,

and ancestor-or-self. Importantly; the ancestor, descendant, following, pre-

ceding and self axes partition a document (ignoring attribute and names-

pace nodes); they do not overlap and together they contain all the nodes in

the document. "." is short for selfunodef}, "I" is short for children.modest),

and "I/" is short for Idescendant-or-self::nodeO/· In the rest of the thesis,

the abbreviations are used without further explanation. Several examples

are listed in Table.2.1.

XQuery XQuery [W3C03] is designed to be broadly applicable across many

types of XML data sources. It is designed to be a language in which

queries are concise and easily understood. It is also flexible enough to query

a broad spectrum of XML information sources, including both databases

and documents. It also uses the structure of XML intelligently to express

queries across all these kinds of data, whether physically stored in XML
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or viewed as XML via middleware [W3C03]. XQuery comes from an XML

query language called Quilt [CRFOl], which inherits several other query

languages, including XPath [W3C99c], XQL [RLS99], XML-QL [DFF+99],

SQL [IS099], and OQL [Cat96]. The current version of XQuery (version

1.0) is an extension of XPath Version 2.0. It implies that any expression

that is syntactically valid and executes successfully in both XPath and

XQuery will return the same result in both languages.

Miscellaneous Query Languages Lorel [AQM+97]was originally designed for

querying semistructured data, and has been extended to support XML data

[GMW99]. XML-QL [DFF+99] was introduced in Studel project. It extends

SQL with an explicit CONSTRUCT clause with the capability of integrat-

ing XML data from different sources [DFF+99]. The XML Query Language

(XQL) [RLS99] is a notation for addressing and filtering the elements and

text of XML documents, and can be treated as a natural extension to XSLT

syntax. Quilt [CRFOl] is designed as a small, implementable language that

meets the requirements identified by the W3C XML Query Working Group.

XML-GL [CCD+99] is a graph-based query languages with both of its syn-

tax and semantics defined in term of graph structures and operations. It is

well suitable for supporting a user-friendly interface.

2.3 Some of the Research Issues Involved in XML

Researchers have recently observed a striking similarity [ABSOO]between semistruc-

tured data models and XML [W3COO]:their structures may be irregular, may not

always be known ahead of time, and may change frequently and without notice

[Suc98]. However, XML and its applications require solutions to problems which

22



the research on semistructured data [HGMI+95, QWG+96, MAG+97, FFLS97,

AV97, Suc98, BFSOO]has not yet addressed (e.g. type inference), or has not found

efficient solutions (e.g. data mining, efficient indexing and querying). However,

adapting the previous research efforts on semistructured data is not trivial. In

this section, we briefly review and summarise some of the research issues involved

..in current XML research and covered in this thesis: (1) Clustering XML data,

(2) Labelling XML data and (3) Querying XML data with index structure.

2.3.1 Clustering XML Data

. Document clustering has been widely recognised as a powerful data mining tech-

nique and has been studied extensively in a number of different areas of text

mining and information retrieval in recent years. The main objective of docu-

ment clustering is to group similar documents into a certain partition. It has

several interesting applications, such as the management of Web data (especially

XML data) and knowledge discovery. With the advent of XML as a standard

for data representation and exchange in 'the web, the traditional approaches to

clustering documents are ineffective in the new context of structured documents.

In such context, current research efforts on clustering XML documents focus on

two research directions: (1) Text-centric clustering and (2) Structure-centric clus-

tering.

Text-centric Clustering Text-centric clustering technique treats XML docu-

ments as pure text documents. The hierarchical structure of an XML document

is ignored when calculating the similarity among a collection of documents .

• Antoine Doucet et al. [DAM02]proposed an approach of clustering a ho-

mogenous collection of text-centric XML documents. Each document is
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represented by an N-dimensional vector, with N being the number of doc-

ument features in the collection. Since the number of dimensions of the

vector, N, would easily place the computational efficiency at stake, all the

words in an XML document are not selected as features. Antoine Doucet

et al. [DAM02] used three different document feature sets: (1) "text fea-

tures only": it is achieved by ignoring words less than three characters and

longer words with a weak discriminative power and reducing words into a

canonical form; (2) "tag features only": it is achieved by collecting unique

tag names in an XML document; (3) "text+tags": it is achieved by simply

combining "text features" and "tag features" together. The vectors are

then filed with (term frequency - inverted frequency) tf-idf measures, and

the k-means clustering technique is utilised to partition the dataset. In this

mechanism, the hierarchical structure of an XML document is completely

ignored.

Structure-centric Clustering Structur.e-centric clustering techniques consider

to structurally measure the similarity among structured documents which are

modelled as trees or graphs .

• Damien Guillaume et al. [GMOO]proposed an approach to clustering inter-

linked AML (astronomical markup language) documents by giving these

links.weight. The clustering problem is then transformed into a graph par-

tition problem: a graph of connected nodes", with weighted edges (links)

between them. Damien Guillaume et al. partitioned this graph so that it

can be displayed on a density map which shows clusters of similar docu-

ments. This approach falls into the web structure clustering technique, and

1XML documents in the physical level
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does not contribute a lot, considering the structural originality of an XML

document .

• Jong Yoon et al. [YRCKOI]proposed a bitmap indexing technique, BitCube,

to cluster XML documents. An XML document is defined as a sequence of

root-to-content ePaths with associated element contents. Each document

is indexed by using a 2-dimensional bitmap index where a bit represents an

ePath and a row represents an XML documents. Since an XML document

database contains a set of XML documents, 2-dimensional bitmap index is

further extended into a 3-dimensional BitCube. The similarity of two XML

documents (bitmap rows in bitcube), d; and dj, is defined as sim(di, dj) =

I - IXOR(di,dj)I/MAX([di], [djD. The experiments showed that bitcube

works fine in clustering a large number of XML documents, however, it suf-

fers from enormous '0' bits when certain epaths do not exist in a collection

of XML documents .

• Jung-Won Lee et al. [LLKOI]proposed a methodology for quantitative de-

termination of similarity between XML documents. The minimal hierarchi-

cal structure of an XML document is generated using specialised automata.

Elements are sorted on path by tree levels. By traversing elements from the

root element to elements with atomic data, large I-paths, large 2-paths, ...,

large 11-paths are obtained through an adapted sequential pattern mining

algorithm. Nested path expressions of the base document (N P EB) is gener-

ated from the transformed path expressions of the base document (PEB).

To qualify the similarity between XML documents, Jung-Won Lee et al.

[YRCKOl] used the following computing phase:
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L(NPE) 1

L S(n) x V(Ek)
k=1

(2.1)

S(n) is a number of siblings of 1st level and LO is length function.

1,

1, if Ek is a atomic and selected;

if Ek is a atomic and not selected;

if Ek is a list.1 ",L(Ek) V(E )
L(Ek) L.."i=1 i ,

The experiments claim that this approach greatly outperforms the tradi-

tional vector-space model in clustering accuracy .

• Sergio Flesca et al. [FMM+02] proposed a completely different approach

in determining the similarity between XML documents. Sergio Flesca et

al. [FMM+02] represented the structure of an XML document as a time

series. The structure of an XML document is captured by using multilevel

encoding technique. The multilevel encoding of a document d is a sequence

[So, S1, S2, ... , Sn] where

Si = "Y(ti) X Bmaxdepthd-lti + L "Y(ti) X Bmaxdepthd-ltj (2.2)
tj Enestd(td

where B = Itnams(d) I + 1 and v is a tag encoding function (Le. mapping

tag names to integer set). Sergio Flesca et al. [FMM+02] defined the Dis-

crete Fourier Transform distance of the documents as the approximation

of the difference of the magnitudes of the two signals which are produced

in a depth-first traversal. The experiments demonstrate that this approach

clusters XML documents very efficiently, however, it fails to semantically

compute the similarity and can not solve both tree inclusion and tree iso-

morphism issues.
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2.3.2 Labelling XML Data

The objective of designing labelling schemes for XML trees is to allow quick

determination of the relationships between two element nodes specified in twig

patterns without actually accessing the XML file. In addition, labelling schemes

of XML trees have three desiderata: ease of computing, short code size and ex-

tensibility. Existing labelling schemes for XML data tree fall into the following

three categories: (1) Interval-based labelling schemes, (2) Prefix-based labelling

schemes and (3) Complete-tree-based labelling schemes. More recently, few re-

search efforts also tackle the problem of labelling dynamic XML trees within the

-above three categories of labelling scheme.

Interval-based Labelling Schemes The label of a node in a tree T is given an

interval label in this kind of labelling schemes. The key insight of interval-based

labelling schemes is due to Dietz [Die82], who noted that the ancestor relation-

ship between two nodes in a tree can be determined by using the following fact:

for two nodes Vi and Vj of a rooted tree T, Vi is an ancestor of Vj if and only if

Vi occurs before Vj in the pre-order traversal of T and after Vj in the post-order

traversal of T .

• Chun Zhang et al. [ZND+01] proposed to label each element node in an

XML data tree with a (begin, end, level) label and each text node with a

(wordno, level) label. This labelling scheme is achieved by doing a- depth-

first traversal of the tree, and sequentially assigning a number at each visit.

These numbers" could be physical or logical offsets of the begin and the

end of the nodes in the XML data tree. Given two nodes, Vi and Vj, Vi

is ancestor of Vj iff vi.begin < vj.start < vi.end holds; and Vi is parent of

Vj iff vi.level = vi.level - 1 /\ Vi. begin < vj.start < vi.end holds. Similar
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labelling schemes are also used in [YASUOl,AKJKP02, NND02, JLW03]

• Quanzhong Li et al. [LMOl] proposed an alternative labelling scheme, in

which each node is given a (order, size, level) label, where order is the pre-

order number and size is the number of descendants. The labelling scheme

is also achieved by doing a depth-first traversal and the numbers could

be physical or logical offsets of the begin and the end of the nodes in the

XML data tree. For a tree node Vi and its parent Vj, order(vj) < order(vi)

and orderlw) + size(vi) ~ order(vj) + size(vj) and vi.level = vj.level +
1. In the other words, interval [orderfw), order(vi) + size(vi)] is contained

in the interval [order(vj)' order(vj) + size(vj)]. For any given two nodes

Vi and Vj of a tree T, Vj is an ancestor of Vi if and only if order(vj) <

order(vi)~ order(vj) + size(vj). Similar labelling schemes are also used in

[CTZZOl, WPFY03, WM05].

• Torsten Grust [Gru02] proposed to give each node in an XML data tree a

(pre, post, level) label. The labelling scheme is achieved by assigning a node

a pre-order sequence number when parsing its open tag and a post-order

sequence number when parsing its close tag. Given any two nodes Vi and Vj

in a tree T, Vi is a descendant of Vj if and only if Vi. pre > Vj.pre 1\ Vi.POSt <
Vj. post. The labelling scheme is also used in [FLSW03] to efficiently order

XML data, in which limited update functions are supported. The above two

kinds of interval labelling schemes suffer from the global update problem,

The whole index has to be re-calculated if data in an XML document is

updated.

• Dao Dinh Kha et al. [KYUOl] proposed a Relative Region Coordinate

(RRC) labelling scheme, contrasting to the above absolute region coor-

dinate-(ARC) labelling schemes to tackle this global update problem. Each
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node v of a tree T is given a (Cl, C2) label, where Cl (respectively C2) is

the number of physical bytes from the starting byte of the parent node of

v to the starting byte (respectively, the end byte) of v. RRC represents

the relative location within the space of its parent, contrasting to ARC

which represents the location of a node by distance to the start of the

XML documents. The ancestor-descendant (parent-child) relationship can

be determined by induction. ARC can be computed into RRC: Assume

we compute the ARC of node v, the path of v is nb n2, ..., tu, where

nl = n, and RRC of each node ni is [Ti' Si], where i E [1, l], then ARC

of v is [L:~=lTi - (l - 1), L:!:~r, + bl - (l - 1)]. In case we change the

length of data in the node v with the node path P: in the same level with

node Vi (i=I,2, ...k), besides Vi, only the right siblings of Vi have their RRC

changed. Therefore, the total number of RRC-updated for v is the sum of

the numbers of RRC-updated nodes for v in each level.

Prefix-based Labelling Schemes Unlike interval-based labelling schemes, prefix-

based labelling scheme targets to encode the root-to- node path information for

each node in a data tree. One can check whether a node Vi is ancestor of Vj

in T in practically constant time complexity by checking whether a label of Vi

is a prefix of Vj's. Prefix-based labelling schemes are always utilised to support

dynamic XML trees which are subject to updates .

• Dewey Decimal Coding (DDC) has been widely used by librarians. Igor

Tatarinov et al. [TVB+02] exploited DDC to capture document order in

the relational data model. The labelling scheme is achieved by assigning

a vector that represents the path from the document's root to the node.

Though nnc identifies each node with a unique label and overcomes the

overhead problem incurred by updates, one of the potential disadvantages
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is the extra space required to store paths from the root to each node. Igor

Tatarinovet al. [TVB+02] utilised UTF-8 based representation to minimise

this overhead .

• Edith Cohen et al. [CKM02] presented a persistent structural labelling

scheme to label nodes of an XML tree which is subjected to insertions

and deletions of nodes. A persistent structural labelling scheme is a pair

(p, L) where p is a binary predicate over strings. The labelling function L,

however, behaves different from interval-based labelling schemes. Rather

than getting as input a full tree, L gets a sequence of insertions of nodes

into an initially empty tree. As each node is inserted, L assigns it a binary

string 2. The label can not be changed subsequently. Given any two nodes

Vi and vi -inthe resulting tree, P(L(Vi), L(vi)) evaluates to be TRUE iffViis

an ancestor of vi' Edith Cohen et.al. [CKM02] proved that the maximum

length of a label without clues in such a persistent labelling scheme is at

most 4dlog(D.), d being the maximal depth of a tree and D. the maximum

out-degree of a node. Edith Cohen et al. [CKM02] also proved that the

maximum length of a label with sub-tree clues requires n(log2 n) bits for

each label, which asymptotically matches the bound for static tree labelling

and the maximum length of a label with sibling clues is with tight lower

and upper bound of 8(logn). This persistent labelling scheme supports

unlimited update functions in an unordered XML document.

Complete-tree-based Labelling Schemes Unlike interval-based labelling schemes

and prefix-based labelling schemes, complete-tree-based labelling schemes aim to

utilise the perfect mathematical aspects of the k-ary complete tree.

2The children of a node v have the label concatenated with the string 8 attached to their
incoming edge. Given s(l)=O, to obtain s(i+1), the binary number represented by s(i) is
increased 1 and if the representation of s(i)+l consists of all ones, its length is double.
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• Yong Kyu Lee et al. proposed a labelling scheme to interpret an XML

document structure as a complete k-ary tree and assign each node a unique

element identifier (UID) according to the order of the level order tree traver-

sal. Suppose the maximum depth of a data tree is I and the total number

of nodes in a data tree is k, ((~~N- n virtual nodes would be introduced in

the worst case. The UID's of the parent and the j-th child of a node whose

UID is i can be obtain by the following functions.

parent(i) _ L (i - 2) + 1J
k

child(i,j) - k(i - 1)+ j + 1

(2.3)

(2.4)

• Wei Wang et al. [WPFY03] proposed a novel labelling scheme PBiTree to

binarise an XML data tree into a perfect binary tree. The labelling scheme

is achieved by (1) embedding the current node and its child nodes and (2)

recursively embedding the subtrees rooted at each child node during the

in-order traversal of a binary tree. The criteria of embedding the child

nodes of the current node is: if the level of the mapped parent is 1, the first

possible level to place all the m child,nodes is 1+ k, where k satisfies 2k ;:::

m. Each node of .adata tree is assigned a unique code after the binarisation

in the PBiTree. For a given node Vi of a PBiTree, its ancestor Vj at a given

height hj can be computed by,

(2.5)

Given two nodes Vi and Vj in a PBiTree, Vi is an ancestor of Vj if and only

if Vi = :F(Vj, height(vi)), where heightjw) is the position of the rightmost

'1' bit in its binary representation.
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2.3.3 Querying XML Data with Index Structure

XML is emerging as one of the dominant data formats for data representation

and exchange in the Internet. To query XML data, several query languages,

Le. Lorel [AQM+97], Quilt [CRF01], XML-QL [DFF+99], XQL [RLS99J,XPath

[W3C99c] and XQuery [W3C03J, have been proposed. However, conventional

traversal-based techniques are insufficient and not efficient to meet the process-

ing requirement under heavy requests in semistructured data environment. In

any DBMS, the tradeoff between efficient data querying and space complexity,

Le. index structure, must be considered. Indexing allows fast and efficient ac-

.cess to data by purposely summarising or replicating part of the source data.

State-of- the-art research efforts on indexing and querying XML data have two

major research directions: the navigation-based querying mechanism and the

index-based querying mechanism. In this chapter, the focus is on reviewing the

index-based querying mechanisms. This kind of querying mechanism have two

major research efforts: (1) Path-based indexing and querying, and (2) Node iden-

tification based indexing and querying.

Path Based Indexing and Querying The path based indexing and query-

ing techniques share common properties: (1) They treat paths as basic units

when indexing and querying; (2) They focus on structural indexing and querying

semistructured data and depend on the specialised data structure; and (3) They

all can efficiently process single path evaluation in semistructured data, however,

their performance degrades when tree queries are involved.

• PIndex Path based indexing and querying was first studied by Jason

McHugh et al. [MW99, MWA+98]. In contrast to conventional relational

DBMS in which index is created on an attribute, Jason McHugh et al.
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proposed Vindex (value index), Tindex (text index), Lindex (link index)

and Pindex (path index) on the basis of the OEM data model to enable

a fast and efficient access to semistructured data. Pindex is core of in-

dexing semistructured data since finding all objects reachable by a given

labelled path through the database is an indispensable part of semistruc-

tured data querying. Pindex is enabled by using DataGuides [GW97]which

concisely and accurately maintains dynamic structural summaries of graph

modelled semistructured data. In DataGuides, (1) two labelled paths point

to the same object in the DataGuide object if and only if the target sets

of both labelled paths are the same; (2) all the valid paths of a certain

object are indexed. Svetlozar Nestorov [NUWC97] et al. proved that cre-

ating a DataGuides over a source database is equivalent to converting of a

non-deterministic finite automaton (NFA) to a deterministic finite automa-

ton (DFA) [AHU74]. It may be able to compute a minimal DataGuide even

though there may exist a number of DataGuides for a single semistructured

database .

• T-index PIndex requires a powerset construct over the underlying database,

which, in the worst case, can be of exponential cost. T-index (template in-

dex) [MS99], another research effort of path based indexing and querying

graph modelled semistructured data, was proposed by Tova Milo et al. to

tackle the problem. The core of T-index is computing bi-simulation [PT87]

(denoted as ~b) or simulation (denoted as ~8) refined semistructured data

graph [PT87, HHK95] given a path template ITo I Xo ... ITk I Xk· T-index

guarantees linear size of index structure over a semistructured data in con-

trast to exponential size of DataGuide [GW97] in the worst case. Special

cases of T-index include I-index (indexing all absolute paths in semistruc-
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tured data) and 2-index (indexing all relative paths connecting ancestors

and descendants). However, T-index only supports paths matching a single

path template ITo I Xo ... ITk I Xk· It implies that all the paths which do

not conform to the template can not be efficiently evaluated. Tova Milo et

al. [MS99]proposed a partial solution, called prefix replacement, to rewrite

the query, allowing queries with a prefix matching of the path template be

rewritten and evaluated in T-index already created .

• Index Fabric Index Fabric [CSF+Ol] is a state-of-the-art research effort

in path based indexing and querying. All the root-to-leaf paths in an

XML documents are encoded as strings by using designators (i.e. B for

<Buyers». A well-known Patricia trie is utilised to index these encoded

paths. Raw paths (encoded root-to-leaf paths) and refined paths (spe-

cialised paths to optimise frequently occurring access patterns) are proposed

to accelerate a single path evaluation in XML documents. To achieve grace-

ful scaling properties, Index Fabric proposed a layered Patricia trie, allowing

a search to proceed directly into a block-sized subtries. Since Index Fabric

is designed for top-down path evaluation, evaluating twig pattern queries in

XML data by using Index Fabric may thus involve backtracking and require

mechanisms of upward navigation. XRel [YASUOl] proposed another sim-

ilar path based approach to decompose XML documents into nodes with

path information and store these fragments into a relational database to

support data storage and retrieval in XML documents.

Node Identification Based Indexing and Querying Node identification

based indexing and querying techniques share the following common feature:

unique node identification (label) is assigned to each node in a data tree (graph)

to determin~ the relationships between any given two nodes in twig patterns.
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State-of-the-art research efforts tackles two major research problems: (1) In-

dexing and querying with support of RDBMS (Le. relational database enabled

indexing and querying) and (2) Indexing and querying with support of Bj-Tree

and R+'free index structure or their variants (Le. native XML database) .

• RDBMS Supported Indexing and Querying Daniela Florescu et al.

[FK99] and Jayavel Shanmugasundaram et al. [STZ+99] firstly proposed

the idea of storing and querying XML data with the support of RDBMS

using binary mapping or DTD schema.

- XRel [YASUOl] is the first research effort which utilises numbered

labelling scheme to support data access to XML data. Four fixed re-

lational schemas, Element(doC/D, path/D, start, end, index, reindex),

Attribute(doc/D, path/D, start, end, value), Text(doc/D, path/D, start,

end, value), Path (path/D, pathexp) are proposed to decompose and

store XML data graph. Each element or text node is assigned with a

region which is a pair of two identical numbers equal to the start po-

sition of the parent element node plus one. In XRel, queries are later

evaluated by transferring XPathCoreGraph into corresponding SQL

expressions to access data in the XML documents. The advantage of

this approach is that it can easily identify whether a node is in a path

from another node by using 8-joins (to test the containment- relation-

ship using >, -c). But 8-joins are considered as more costly than equi-

joins. In addition, off-the-shelf database management systems usually

do not have a special index mechanism to support containments.

- Chun Zhang et al. [ZND+01] treated XPath expression queries as

containment queries and proposed MPMGJN (Multi-Predicate Merge
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Join) algorithm to access XML data with the support of inverted in-

dex (E-index and T-index), which is created on the basis of a pre-order

numbering scheme where each node is labelled with (docno, begin:end,

level). The two fixed schemes of MPMGJN are ELEMENTS(term,

docno, begin, end, level) and TEXTS(term, docno, wordno, level}. Dif-

ferent from XRel, queries are joined based on the containment of any

two nodes specified in an XPath expression. Shurug AI-Khalifa et al.

[AKJKP02] also proposed a general tree-merge algorithm, which is

similar to MPMGJN, to efficiently find all the occurrences of parent-

child and ancestor-descendant relationships in an XML database.

- Igor Tatarinov et al. [TVB+02] proposed an improved order encoding

methods to efficiently support data access to the ordered XML data

model in relational database. Wei Wang et al. [WPFY03] proposed

two models: interval model and position model, and a set of estima-

tion methods to estimate the size of results of a containment query.

These two research [TVB+02, WPFY03] efforts can be treated as com-

plimentary to Chun Zhang et al. [ZND+01]. Moreover, all the research

efforts in this part share common properties: (1) The pre-order num-

bering scheme is exploited and (2) RDBMS is fully utilised or adapted

to support binary join operations.

• B+ Tree and R-Tree Supported Indexing and Querying Despite of

the previous research efforts on bridging XML and RDBMS, it is widely

believed that the relational database technology failed to deliver neces-

sary functionality of efficiently processing regular path expression queries.

The primitive tree structured relationships are parent-child and ancestor-

descendant, and finding all occurrences of these relationships in an XML
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database is thus a core operation for XML query processing.

- Quanzhong Li et al. proposed X/SS (XML Indexing and Storage Sys-

tem) [LM01]to index and store XML data on the basis of the pre-order

numbering scheme. All the nodes in an XML data tree are labelled

with (pre-order, size, level) and are indexed in B+Tree. Regular ex-

pression queries are later processed by using (1) cc-Join (searching

paths from an element to another), (2) cA-Join (searching element-

attribute pairs), and (3) KC-Join (finding Kleene-Closure on repeated

paths or elements) with the support of the above index. Interestingly,

both XISS and MPMGJN break down the XPath expression queries

into binary twigs and join the temporary results of individual twigs on

the basis of a corresponding numbering scheme.

- Shurug Al-Khalifa et al. [AKJKP02] improved XISS by proposing a set

of stack-tree algorithms to efficiently find all the occurrences of binary

parent-child and ancestor-descendant relationships. These structural

join algorithms guaranteed the linear I/O and CPU complexities of

finding binary twigs. Both the space and CPU time complexity of the

stack-tree algorithms are O(IAI + IDI + k) where IAIand IDI are the

number of ancestor list A and the descendant list D, k is the size of

output list. The corresponding I/O complexity is O(~ + 1W + i)·
- Shu-Yao Chien et al. [CVZ+02] pointed out that previous structural

join algorithms [AKJKP02, ZND+01, TVB+02] do not utilise index

structures ..but sequentially scan the input lists. I/O's can be wasted

for scanning elements that do not participate in the join. Shu-Yao

Chien et al. [CVZ+02] proposed several index structures on the ba-

sis of B+ Tree and R-Tree to efficiently support structural join opera-
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tions and optimise the corresponding performance of data accessing by

skipping descendants and some ancestors without matches in the lists

(Ancestor-List and Descendant-List) by probing the B+-tree indexes.

Recently, Yuqing Wu et al. [WPJ03] further optimised the work of

Shurug Al Khalifa et al. [AKJKP02] and Shu-Yao Chien [CVZ+02]and

proposed five algorithms leading to structural join order optimisation

for XML tree pattern matching on the basis of dynamic programming.

- Nicolas Bruno et al. [NND02] points out two problems of the above

binary structural join techniques: (1) matching binary twigs against

an XML documents is inefficient and (2) the intermediate result sizes

can get very large. Nicolas Bruno et al. [NND02] proposed top-down

holistic twig join algorithms to efficiently solve the above problems

in querying stream XML data. PathStack is proposed to compactly

represent partial results to root-to-leaf query paths, which are then

composed to obtain matches for the twig pattern. TwigStack further

improved the PathStack and only generated solutions that are parts

of the final result, ensuring that before a node hq is pushed on its

stack Sq: (1) hq has a descendant hql in the input list Tql, where q'

is a child of q; and (2) each hql satisfies the property (1). Nicolas

Bruno et al. [NND02] proposed XB- Tree to solve the suboptimality

for parent-child edges in a twig pattern. More recently, Haifeng Jiang

et al. [JLW03] proposed XR-Tree to improve the I/O performance of

holistic twig join algorithms on all/partly indexed XML documents.

Byron Choi et al. [CMW03] studies the problem of optimising the

performance of holistic twig join algorithms in current data streaming

models and shows that the top-down computation of twig queries is

not memory-bounded.
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- More recently, Haixun Wang et al. [WPFY03] proposed ViST, a novel

indexing and querying technique, to accelerate XPath evaluation steps.

ViST transforms both XML documents and XPath queries into struc-

ture encoded sequences utilizing pre-order traversal. Structure en-

coded document sequences are sorted into a trie where the correspond-

ing B+ Tree index structure is built on. This mechanism turns twig

pattern matching problem into subsequence pattern matching problem

and greatly improves all the previous searching mechanisms since no

join operations are in need.

- Haixun Wang et al. [WM05]points out that subsequence matching in

ViST is not equal to the actual query evaluation because of the exis-

tence of false alarms and needs post-processing phases to eliminate the

false answers. Haixun Wang et al. [WM05] defined the sibling-cover

relationship between two nodes in the trie, and proposed a specialised

trle+list data structure to find sibling-cover to remove false answers.

However, ViST related techniques lack flexibility since a specialised

data structure must be involved.and the space complexity of the index

structure in the worst case is O(n2).

2.4 Summary

The semistructured data is motivated by the challenges posed by existing elec-

tronic data (e.g. HTML and SGML) The emergence of XML has remarkably

facilitated the above. electronic data publication by providing a simple syntax

for data which is both machine- and human-understandable. However, the emer-

gence ofXML brings interesting challenges for the database community in efficient

data retrieval, version control, change detection, indexing, and data management.
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Those challenges can not be efficiently solved using current techniques. In this

chapter, an overview of semistructured data, XML data model, its schema and

query languages is briefly presented and substantial research efforts on the issues

covered in this thesis: clustering XML documents, labelling XML documents and

querying XML data using an index structure are carefully reviewed. These re-

search efforts surveyed so far still need improvement and their deficiencies are the

motivations of this thesis.
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CHAPTER 3

Clustering XML Documents

Birds of a feather flock together.

- GoEnglish.com Pocket English Idioms

. Clustering is the process of grouping the data into classes or clusters so that

objects within a cluster have high similarity in comparison to one another, but are

very dissimilar to objects in other clusters [HKOO].Data clustering contributes to

a number of areas of research including data mining, statistics, machine learning,

spatial database, biology and markets [Dun03]. It has been widely recognised as a

powerful data mining technique and has been studied extensively in recent years.

With the arrival of XML data, the challenges of clustering become more evident;

due to the different hierarchical structures of XML data, it is often more difficult

to cluster XML data by only clustering the data according to their structural

and content characteristics, more desirably, according to their implied semantics.

In this chapter, the issue of semantically clustering the increasing number of the

schemaless (Le. no separate description of the type or structure of datasuch as

DTD or XML schema) XML documents is discussed. The technical contributions

in this chapter are as follows:

• An advance semantic component model [SW03] is proposed to model an

XML document. An XML document is then represented by a series of
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semantic components, in which the semantic of an XML document is max-

imally preserved.

• A set of heuristic algorithms are introduced to compute the similarity

among documents. These algorithms rely on the semantic component model

in computing the degrees of similarity in a document collection, while pre-

serving the linguistic, structural, content and semantic information in the

components when clustering. Theoretical bounds of the algorithms as well

as details of implementations are presented.

• An approximate mechanism is presented to compute the problem of the

tree inclusion and the isomorphic tree similarity. In this approach, a tree

inclusion range value is utilised to detect the tree inclusion while a best

matching schedule is proposed to compute the similarity among isomorphic

trees. The experiment results provide valuable insights into the tradeoff

between computing efficiency and clustering accuracy.

3.1 Motivation

XML [W3COO]has become the standard of data representation and exchange.

It allows users to define elements utilising words and organise them in a nested

structure. Nowadays, the subset of the Web formed by these XML documents,

hereafter called the XML web [MBV03], is growing into a large XML data repos-

itory. Consequently, integrating the XML documents to realise a Web database

is desirable. However, Mignet et al. [MBV03] show that only 48% of the docu-

ments contain the links to the specific schemas. It implies that integrating the

enormous schemaless and semantically different documents is a difficult task.

The above integrating task can be relieved by utilising data clustering tech-

42



nique [HKOO,Dun03, BYRNRN99], which assembles together the related docu-

ments. It implies that relevant documents which are highly similar to each other

are grouped in the same cluster. A very large XML data collection can thus

be automatically divided into smaller sub-collections. The benefits of document

clustering are obvious and are the motivations to perform this research:

• Efforts in integrating XML documents with different structures and seman-

tics can be alleviated because reconciling analogous and relatively small

document set is easier.

• Ranges of queries can be dramatically decreased to applicable documents

after relevant documents are aggregated together.

3.2 Related Work

Significant challenges for clustering XML data exist on how to abstract and rep-

resent distinctive semantic characteristics' and to design an effective yet efficient

similarity measure based on them. Several research approaches [LLKOl, LYHY02,

FMM+02, XylOl, LCMY04, DAM02, FGM03] had tackled the issue. However,

the deficiencies in these efforts are not trivial.

Xyleme [XylOl] is a dynamic warehouse for XML data in the Web. Its data

integration method is mainly based 011 natural language and machine learning

techniques. Firstly, DTDs are classified into domains based on a statistical anal-

ysis of the ontology similarities between words in different DTDs. Secondly, an

abstract DTD for a specific domain is manually constructed by administrator.

Finally, the semantic connections (mappings) between elements in the abstract

DTD and elements in concrete ones are generated. However, Xyleme's semantic
-

preservation mainly relies on human interaction, and its accuracy and extensibil-
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ity degrade with the increasing number of DTDs.

Mong Li Lee et al. introduce XClust [LYHY02]to automatically cluster DTDs

for a data integration system. The approach models a DTD as a tree T(V, E)

where V is a set of nodes and E is a set of edges. To facilitate schema match-

ing, [LYHY02] propose a set of transformation rules to determine the degree of

similarity of two elements that have AND-OR nodes. Finally a similarity matrix

among DTDs is computed and a hierarchical clustering technique is utilised to

group DTDs into clusters. This approach considers not only the linguistic and

structural information of DTD elements but also the context of a DTD element .

. However, its loss of semantic information is inevitable due to its transformation

niles. Furthermore, to adapt XClust for the schemaless documents is not trivial

due to its computational complexity which is only acceptable in case of DTDs

(Le. a relatively small number of nodes_in a DTD).

Laurent Mignet et al. [MBV03] conclude that only 48% XML documents in

the web contain the links to the schemas. This implies a huge amount of XML

documents are schemaless. Thus providing an efficient mechanism to cluster these

schemaless XML documents is very necessary.

To tackle the problem, Jung-Won Lee et al. [LLKOl] propose a methodology

for computing the similarity between XML documents by computing a minimal

hierarchical structure of an XML document using automata, then adapting a

sequential pattern mining algorithm to compute the similarity between XML

documents. However, the algorithm failed to detect isomorphic tree structures

though the semantic is partly considered.

Jong P. Yoon et al. [YRCKOl] describe a bitmap indexing technique to clus-

ter the XML documents. In this approach, an XML document is firstly defined

as a sequence of ePaths with associated element contents. Secondly, a bitmap
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index is constructed from all the ePaths in the documents. Finally, a bitcube is

assembled when element contents of the ePaths are integrated into the bitmap

index. Similarity and popularity operations are defined to compute the similarity

among these documents. Statistical analysis is also provided. Though Bitcube

can support clustering XML documents, it contains many unnecessary zero bits,

especially for the word dimension. The size of Bitcube impedes both its extensi-

bility and computational efficiency.

Antoine Doucet et al. [DAM02] address the problem of clustering a homoge-

nous collection of text-based XML documents. In this approach each document

,.is represented by an n-dimensional vector, which is generated by using three

different feature (defined as most significant words in the document) sets in an

XML document: 1) text features only; 2) tag features only; 3) text and tags.

Secondly, the document vectors are filled with normalised frequency and inverted

document frequency measures. Finally, k-means clustering algorithm is utilised

to cluster these documents. This approach is purely text-based and ignores the

structural information in XML documents. Thus the semantic information of an

XML document is completely ignored.

Sergio Flesca et al. .[FMM+02]propose a technique for detecting the similarity

in the structure of XML documents. This approach represents the structure of

an XMLdocument as a time series. Each impulse in the time series corresponds

to a certain tag in the document. The similarity between documents is computed

by analysing the frequencies of the consonant Fourier transform. Though this

approach can approximately determine the structural similarity between XML

documents, it can not detect isomorphic tree structures, and in particular, the

semantics are not preserved due to its linear encoding mechanism.

To accurately cluster schemaless XML documents, the proposed technique
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should:

• preserve the semantics defined in the XML documents when clustering,

• support structural information related computation, and

• find a baiance between efficiency and accuracy.

More importantly, there is not much work on semantically classifying schema-

less XML documents. To overcome these deficiencies, an advance and accurate

clustering technique is proposed to semantically assemble the schemaless XML

,documents.

However, the above approaches surveyed so far do not match the above re-

quirements due to their computational complexity and loss of semantic informa-

tion. To address these problems, the semantic component model is thus proposed.

3.3 Semantic Component Model

In this chapter, semantic is defined as the machine-understandable information

which describes the meaning of the corresponding XML data. However, XML

has no formal semantic which implies that a practical definition on the semantic

must be provided. Moreover, it is difficult to define and compute the similarity

among the schemaless (Le. no separate description of the type or structure of data

[ABSOO])XML documents as the semantic is concerned. To tackle the problem,

an accurate clustering technique is proposed to group these schemaless XML

documents on the basis of a competent, semantic-preserving document modelling

mechanism.
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3.3.1 Requirements

XML is pervasively modelled as a tree. However, computing the degrees of the

similarity among the trees is not feasible due to the computational complexity.

It implies that an efficient mechanism should be provided to model an document

tree, and ideally preserve its semantic. The proposed model should,

• maintain the linguistic information in an XML document.

• maximally prevent the semantic information loss.

• efficiently support a set of algorithms to possess an acceptable tradeoff

between computational complexity and accuracy when clustering a large

amount of documents.

Currently, there is no formal semantic for an XML document. It implies that

a practical definition on the semantic must be provided. In this thesis, it is

proposed that the semantic expressed in an XML document should be related to:

• terminological information in XML data. It includes the terms used in the

set of tag names and the keywords of the data.

• structural information in XML data. It includes the nested structure of

XML data, describing how the tags are organised and nested.

To match the above three requirements, a semantic component model is in-

troduced to semantically simplify an XML document tree.
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<Order SEQNUM = lIifrtei39djuedll>
<Billto BCODE = IIELEC8611>

<Customer MEBREF = IIcus0122001skfdll>
<FirstName>Andrew</FirstName>
<LastName>Angel</LastName>

</Customer>
</BilIto>
<Payment CUR = IIEUROII>

<RateStamp> bst0407032001ssrf </RateStamp>
</Payment>
<Shipto SCODE = 1I0SEA4411>

<Customer REFNO = "eIec3293402stetll CONCODE = "21">
<FirstName>Johnson</FirstName>
<LastName>Will</LastName>

</Customer>·
<Extralnfo>Return Customer</Extralnfo>

</Shipto>
</Order>

Figure 3.1: An Example of XML Data
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3.3.2 Specification of Semantic Component Model

Semantic component model is based of an unordered, node labelled, rooted tree.

More formally, consider a graph T = (VG, VT, v-. EG, labelnode,nid, LT)·

• Vc is the set of element nodes and VT is the set of text nodes. Vv E VT, v

has no outgoing edge. u; is root of the XML data tree, where there exists

a path from Vr to V, V'llE VcUVT. It implies that Vr has no incoming edge.

Each node V E Vc U VT is labelled through the function labelnode over the

set of terms, LT. The label of a node V E Vc is referred to the tag name.

The label of V E VT is referred to a distinguish keyword contained in the

corresponding text. Quotation mark in future figures is used to distinguish

the label of VT.

• Each edge e, e EEc, is a parent-to-child edge, denoting the parent-child

relationship. The parent node is denoted as vel" and the child node is

denoted as Vee. A path is a sequence.of edges starting from the node Vi to

the node Vi, denoted as e., eH1, ... , ei· A node Vi is ancestor of Vi iff a

path to Vi goes through Vi.

• The order among siblings is ignored due to the observation that the order

will cause semantic information loss when computing the similarity value

between two documents. An example is given in Section 3.4.3.

An example XML document is listed in Figure 3.1, and its data tree is shown

in Figure 3.2. The value of text node is not shown in Figure 3.2. In the rest

of this chapter, an XML document is denoted as DT. Let LDT denotes the

set of tag and attribute names in a document DT. In the rest of the section,

the heuristic 'rule of generating semantic components is firstly presented, then
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Figure 3.2: An XML Data Tree

three specific definitions on path component, attribute component, and content

component used in semantic component model is proposed and discussed.

We observe the fact that the nodes. without any direct attribute nodes or

content nodes are mostly utilised to clarify the structure of an XML document.

Their semantic information is less important compared with the nodes having

attributes or content, in which the essential contextual information of such a node

is described in detail. Therefore, only the significant semantic information in the

document needs to be preserved when modelling an XML document as a series

of semantic components. In this chapter, a semantic component is generated

only at a certain node Vi which has attributes or content nodes. It implies that

attribute component or content component may be empty when a node does not

have any attributes or content nodes, and the nodes without any attribute nodes

or content nodes are not eligible for semantic component generating. Thus the

semantic information in these nodes are lost. Nevertheless, in the next section

the semantic loss of these nodes can be recaptured when computing the similarity

among semantic components similarity.
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Definition9.1 Path Component Given a node Vi in an XML document

tree DT, the path component p!;?T of the node Vi is defined as an ordered sequence

of tag names from root to node Vi, denoted as

p!;?T = (va, VI, ... , Vi)' Vk E L,k E [L.i]
DT

PV~T describes the structural information on how a node Vi is nested in an

XML document. Given the node VI and the node vP' VI is nested in vp when b-p

"tVI, vp E P;:'T.

Example 3.1 Consider, for example, in Figure 3.2. The PgJstomer of node

"Customer" in the "Shipto" element is {Order, Shipto, Customer}. It means the

node "Customer" is nested in a node "Shipto", which is further nested in a node

"Order" .

Definition 9.2 Attribute Component Given a node Vi in an XML docu-

ment tree DT, the attribute component A£T of the node Vi is defined as a set of

its attribute names, and denoted as

A~T = {aO,al, ... ,al},ak E L,k E [L.l]
DT

Example 3.2 Consider, for example, in Figure 3.2. The Ag~stomer of node

"Customer" in the "Billto" element is {MEBREF}. It means the node "Cus-

tomer" have only one attribute, called "MEBREF". Contrasting to the path

component, the order in the attribute component is ignored in further similarity

computing algorithms.

Definition 9.9 Content Component Given a node Vi in an XML doc-

ument tree DT, the content component Ct:_T of the node Vi is defined as a set

of the tag names of its direct descendants, whose direct descendants are content

51



(text node) in the data model, and is denoted as

C~T = {Co, Cl, ... , er}, Ck EL' k E [L.r]
DT

Example 3.3 Consider, for example, in Figure 3.2. The cg~,stomer of node
"Customer" ill the "Shipto" element is {FirstName, LastName}. More impor-

" tantly, the duplicate element names are not omitted in the content.

Definition 3.4 Semantic Component (SC) Given a node Vi in an XML

document tree DT, a semantic component of node Vi is uniformly defined as a

record with three fields:

Semantic Component{
path component: structural information
attribute component: context~al information
content component: contextual and content information

}

An XML document is later modelled into a series of semantic components,

denoted as

When an XML document consists of only a root node, t = O. The order in DT

is also ignored to support the isomorphic tree similarity and the tree inclusion

similarity.

Example 3.4 Consider, for example, in Figure 3.2. The semantic compo-

nent of node "Customer" nested in the "Shipto" element is {(Order, Shipto,

Customer), {REFNO, CONCODE}, {FirstName, LastName}}. The semantic

component of node "Payment" is ((Order, Payment), {CUR}, {RateStamp}).

The complete list of semantic components of Figure 3.2 is shown in Table 3.1.
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SC Components

SCI {(Order), {SEQNUM}, {}}

SC2 {(Order, BillTo), {BCODE}, {}}

SC3 {(Order, Billto, Customer), {MEBREF}, {FirstName, LastName}}

SC4 {(Order, Payment), {CUR}, {RateStamp}}

SC5 {(Order, Shipto), {SCODE}, {ExtraInfo}}

SC6 {(Order, Shipto, Customer), {REFNO, CONCODE}, {FirstName, LastName}}

Table 3.1: List of Components of Figure 3.2

3.4 Semantic Component Similarity

After an XML document is modelled as a series of semantic components, the doc-

ument similarity problem is further turned into a semantic component similarity

problem. To accurately compute the similarity, the algorithms should:

• compute the linguistic similarity between the tag names. This characteristic

targets to the linguistical accuracy of clustering.

• preserve the semantic of the semantic components. This characteristic tar-

gets to the semantical correctness and accuracy of clustering.

• provide an acceptable computational complexity. This characteristic tar-

gets to the tradeoff between the computational efficiency and accuracy of

clustering.

To meet the above requirements, two algorithms are presented in this sec-

tion. The first one is to compute the degree of the similarity between two path

components and the second one is to uniformly compute the similarity value be-

tween two attribute components (respectively, content components). A weight
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mechanism is also proposed to flexibly combine these similarity values in differ-

ent contextual models. The semantic component similarity is formally defined as

follows: given two semantic components, SC£Tm = ( p!:Tm, A~Tm, C£Tm) and

seDTl (DDTl ADTl eDTl) Tl "1' b seDr, d seDTl' d fi dVj = .rVj , vs 'Vj le simi arity etween Vi m an Vj IS e ne

as:

SCSimilar-ity(SC£Tm, SC~Tl) = Weight(PathSimilarity(p!:Tm, p~Tl)

AttrSimilarity(A~Tm, A~Tl),

ContSimilarity( C£Tm , C~Tl)) (3.1)

3.4.1 Name similarity

The metric of computing the name similarity between tag names is firstly dis-

cussed. This metric is mainly focused on the linguistic similarity among the terms

which are used to define element tag names (i.e. attributes, content etc.). This

kind of similarity has been broadly utilised in many applications, such as infor-

mation retrieval, information extraction, text classification, word sense disam-

biguation, example-based machine translation, etc. In this chapter, the WordNet

[Fe198]API which returns the synonym set is utilised to support the purpose.

Additionally, the terms in an XML document in order is pre-processed to elimi-

nate abbreviated words which can not be processed by WordNet. For example,

"MEMREF" is normalised to "reference".

The algorithms are given in Algorithm 3.1 and Algorithm 3.2. The name

similarity value is denoted as ()name in the rest of the chapter. The computational

complexity is connected with the number of synonyms of a certain word. Con-

sider, for example, in the algorithm, NameSimilarity(Bill, Invoice) returns 0.9 if
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input : ei , e2: the names of two elements. {3: the base ontology

similarity value, the default value is 0.9. 8: the search depth,

the default maximum value is 4.
output: (}name: the name similarity value

if el = e2 then

I return 1.0
else

lSetsyn ~ the synonym set of e2;

(}name ~ VocabularySimilarity (el, Setsyn, 1, (3);

return (}name

Algorithm 3.1: NameSimilarity

(3 in Algorithm 3.1 is set to 0.9, NameSimilarity(Allocate, Ship) returns 0.81, and

NameSimilarity(FirstName, Order) returns O. In the rest of the chapter, all the

default values are based on the experience of processing XML documents.

3.4.2 Path Component Similarity .

The path similarity metric is carried out on the fact that a path component de-

scribes the detailed information of how an element is nested in an XML document

due to its order (Definition 3.1). The structural similarity between two nodes are

therefore captured by computing the path component similarity. In this thesis,

it is connected with:

• Given the name similarity value (}name, if (}name is greater than the threshold

value (Tname), it is defined that a matching point is reached. If not, a gap

is obtained.

• The path alignment is then connected with the gaps between continuous

matching points.
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input : e: an element name. Setsyn: a synonym set. 8: the

search depth, the default maximum value is 4. {3: the

base vocabulary similarity value, the default value is 0.9
output: (}vocabulary: the vocabulary similarity

if 8 s 4 then

if e E Setsyn then

I return (30;
else

SetSynnew f- 0;
for each Si E Setsyn do

lSetsi f- the synonym set of Si;

SetSynnew f- SetSynnew U Setsi;
'VocabularySimilarity(e, SetSynnew, 8+ 1, (3);

To match the above two requirements,' a heuristic algorithm for path com-

ponent similarity is given in algorithm 3.3. The computational complexity is

O(mn), where m and n stand for the individual lengths of two path sequences.

else

L return 0;

Algorithm 3.2: VocabularySimilarity

Consider for example, in Figure 3.3. Though the two path components have

the same matching points, however, PI is better than P2 for there is no gap

between matching points in g while there exists one gap in P2• Thus the al-

gorithm has a subtle weight mechanism not only for the name similarity but

also for the structuralsimilarity when comparing two path sequences. Moreover,

though the nodes without any attribute nodes or content nodes are not eligible

for semantic component generation, their semantics are thus partly re-captured
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input : PVi,PVj: the path components; penalty: a penalty value

for mismatching of tag names; Tname: the threshold

value, default value is 0.6.
output: (}path: the path sequence similarity value.

m f- LEN(PvJ;

n f- LEN(PvJ;

Initialise an m-by-n array Smxn to zero;

r, t f- 0;

for r f- 1 to m do

for t f- 1 to n do

lS(r, t) f- MAX(S(r-1, t) + penalty, S(r, t-1~) + penalty,

S(r-1, t-1) + Select ( PVi(r), PVj(t), Tname»),

(}path f- S(m, n)/ MAX(m, n);

return (}path

Algorithm 3.3: PathSimilarity

when computing the path similarity because they are encoded within the path

components.

3.4.3 Attribute( Content) Component Similarity

the similarity between attribute( content) components is motivated by the fact

that edit distance is not sufficient to detect the similarity between attribute (re-

spectively content) components. For example, given two XML fragments,

< PDATEDAY = ·'02"MONTH =" Feb"Y EAR = "1998" / > (PDATEd

and

< PDATEMONTH =" May" DAY = "12"YEAR = "2003" / > (PDATE2)
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input : el, e2: element names. Tname: the threshold value, de-

fault value is 0.6
output: value: selected name similarity value

if ((value ~ NameSimilarity (el, e2, 8, 13)}> Tname} then

I return value;
else .

L return 0;

Algorithm 3.4: Select

Alignment Similarity

PI: OrderlShipto/FirstName
OrderlShipto/LastN ame

0.67

P 2: OrderlS hipto/Consumer
Order/BiIlto/Consumer 0.6

Figure 3.3: Path Alignment Weight

They are different localisations of an certain XML document on payment date

and contain the same semantic information. But if edit distance algorithm

[FMM+02, Dun03] is utilised to compute the similarity, the semantic information

is ignored. To maximally prevent semantic information loss, an efficient algorithm

is proposed in Algorithm 3.5. The computational complexity is O(mn), where

m and n stand for the individual size of two attribute (respectively, content)

components.

Consider, for example. Given two attribute components, AVi = {Send, Payment},

AVj = {Bill, Ship} and Tname 0.6, ACSimilarity(Avi, AVj) = 0.9. We observe that

the edit distance algorithms output 0 since the order is indispensable. Consider

again the above two pay date fragments, APDATEl = {DAY, MONTH, YEAR}
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input : A( C)Vi' A( C)Vj: attribute( content) components
output: ()ae: attribute( content) similarity value

m+- LEN(A(C)vJ;

n +- LEN(A(C)vJ;

for r +- 1 to m do

for t +- 1 to n do

if ((value +- NameSimiZarity (A(C)Vi(r), A(C)vj(t)}}

> Tname} then

lcount +- count + 1;

()ae+- ()ae+ value;

para +- Max(count, m, n);

return ()ae/para;

Algorithm 3.5: ACSimilarity

and APDATE2 = {MONTH, DAY, YEAR}. ACSimilarity(APDATE1, APDATE2) =

1.0 when Tname is set to 0.6.

3.4.4 Semantic Component Similarity

The semantic component similarity is finally inspected on the basis of the above

two algorithms. This technique is motivated by the fact that the most impor-

tant semantic information of an XML document is reflected by the nodes that

have either attribute nodes or content nodes. Definition 3.4 shows that the se-

mantic information of a certain node Vi is preserved in its semantic component

(P.!?T, A£T, C~T). When generating the final result, a weight mechanism is pro-

posed to combine the path similarity and the attribute( content) similarity to

obtain the final similarity value. In this chapter wP' Wa, and We are respec-
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input : SCVi, SCVj: two semantic components; WP' Wa, We:

weight value.
output: Ose: SC similarity value.

Opath f- PathS imilari ty (Pvp PVj);

if Ai = 0 or Aj = 0 then
lOatH f- -0.1;
else

if C, = 0 or Cj = 0 then
I Oeant f- -0.1;
else

Ose f- (wp X Opath +Wa x Oattr+ We X Ocant);

return Ose;

Algorithm 3.6: SCSimilarity

tively used to represent the weight values for PVi, Avi, and CVi where wP' Wa,

weE [0,1]AWp ~ Wa ~ We. By using the weight mechanism, we can flexibly

adjust how the three sequences are combined. The complete algorithm is given

in algorithm 3.6.

Example 5. Consider, for example, given two semantic components in Ta-

ble 3.2, if given wp = 1.0, Wa = 0.9, We = 0.8, SCSimilarity( SCv;, SCVj) =
(wp x PathSimilarity( {Order, Billto, Customer}, {Order, Shipto, Customer})

+ WaX ACSimilarity( {MEBREF}, {REFNO, CONCODE}) + WcX ACSimilar-

ity( {FirstName, -LasrName}, {FirstName, LastName} ))/3 = (l.Ox l.0 + Ox 1.0

+ Lx 1)/3 = 0.67.
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SCI path = (Order, Billto, Customer) SC2 path = (Order, Shipto, Customer)

attribute = MEBREF attribute = REFNO, CONCODE

content = FirstN arne, LastNarne content = FirstN arne, LastNarne

Table 3.2: An Example of Two Semantic Components

<litem>
</order> Document I

-c/componen c-
</transaction> Document 2

<order> <transaction>
<item id="78932 "> <com ponent id="sfe932">
<nam ee-jucier-c/nam e> -eritilec-ax letree<ititle>
-cnurn ber>24</n urn ber> <man ufact uree-bm w</m an ufacture>

<litem> -cnurn ber>2</n urn ber»
<item id="12397"> -c/com ponent»
<namee-toaster-c/nam e» <com ponent id="dks397">
<m an uf'act urextefalc/m an ufact ure» -ctitlee-brake-c/title»
en urn ber» 71 <In um ber» -cnurn ber> 71 <In urn ber>

Figure 3.4: Two Sample XML Documents

3.5 Clustering Schemaless XML Documents

3.5.1 Document Similarity

Given two XML documents.Dj; = (SCq ,SCr2, ... , SCrnJ and DTt = (SCt!,

SCt2, ... , SCtn) The similarity between DTr and DTt) is formally defined as:

DocSimilarity(DTr, DTt) =

(3.2)
l~i~m,l~j~n

The approximate tree inclusion and the isomorphic tree similarity are also

supported in the algorithm. A complete algorithm is listed in Algorithm 3.7.

The computational complexity is O(mn), where m and n stand for the number

of semantic components in two documents.

Example- 6 Consider, for example, in Figure 3.4. Two sample documents are
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input: DTi' DTj: two XML documents. TSC: se threshold value.

Tinclusion: tree inclusion threshold value, default value is

0.9. range: tree inclusion range, its default value is 0.05
output: (}doc: document similarity value

m ~ LEN(DTJ;

n ~ LEN(DTJ;

count ~ 0;

uniset ~ 0;
unicount, (}inclusion~ 0;

for r ~ 1 to m do

f lag ~ false;

for t ~ 1 to n do

if ((value ~ SCSimitar~t'Y (DTi(r), DTj(t))) > TSC)

and (flag = false) and (t fj. uniset) and value ~ Tinclusion

then

(}inclusion~ (}inclusion+ value;

unicount ~ unicount + 1;

uniset ~ uniset U {t};

flag ~ true;
(}doc ~ (}doc + value;

count ~ count + 1;

k ~ Min(m, n);

if unicount E [(1 - range) x k, (1 + range) x kJ then

L return Tinclusion/un'icount

(}doc ~ (}doc/Max(count, m, n);

return ((}doc);

Algorithm 3.7: DocSimilarity
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given as follows:

and

DT2 = {SG21, SG22}(DT2)

Let SGll = {(order, item), {id}, {name, number}}, SG12 = {(order, item),

{id}, {name, number, manufacture}}, SG21 = {(transaction, component), {id},

{title, number, manufacture}}, SG22 = {(transaction, component), {id}, {title,

number}} and given wp = 1.0, Wa = 0.9, We = 0.8 and TSC = 0.72, Tname = 0.6,

Tinclusion = 0.9. DocSimilarity(Dn,DT2) is (0.688 + 0.73 + 0.778 + 0.688 )/4 =

'0.721. Moreover, we can discern that DTI and DT2 are isomorphic trees when

comparing their data trees.

3.5.2 Clustering an XML Document Collection

Given a collection of XML documents, D={ DT1, DT2, ... , DTn} and the similarity

matrix Mnxn={miilmii = DocSimilarity(, DTi' DTj), 1 ~ i,j ~ n} The XML

documents with similar semantic should be clustered together by analysing the

similarity matrix M. Once these documents are grouped together, the benefit is

obvious: the speed of data retrieving can be increased because range of a certain

query can be dramatically decreased only to semantically applicable documents.

The algorithm is given in Algorithm 3.8.

After the similarity matrix of the XML document collection is generated, a

hierarchical clustering technique [Dun03] is utilised to group these XML docu-

ments on the basis of .the matrix. In a hierarchical classification, the data are

not partitioned into a particular number of clusters at single step. Instead the

classification consists of a series of partitions which may run from a single clus-

ter containing all individuals, to n clusters each containing a single individual.

63



input: D: an XML document collection
output: M: similarity matrix

n ~ LEN(D);

for i~ 1 to n - 1 do

lfor j ~ i+1 to n do

L M(i,j) = DocSimilarity (DTil DTJ;

return M

Algorithm 3.8: SimilarityMatrix

However, a hierarchical clustering technique suffers from its quadratic complexity

"Seenas its main weakness. In general, hierarchical clustering has been considered

as the best quality clustering approach, and "offline" clustering XML documents

as a preparation step is acceptable in most systems. In this thesis, the foucs are

not on the complete hierarchy but only of certain partitions obtained from it.

3.6 Experimental Results

In order to evaluate the performance of the semantic component decomposi-

tion and clustering, several experiments are performed. 100 XML documents

are collected from the Internet and 100 schemaless documents are generated by

specialised designed program. The above real world documents and synthesised

documents are then randomly mixed to set up a general data environment. On

the basis of the data sets, the execution time of semantic component decomposi-

tion and the clustering accuracy are evaluated. The computing environment is a

Celeron 400MHZ machine with 128MB memory.
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Figure 3.5: Entire Storage Time

Number of Documents Size in Total(KB) Time(ms)

80 14,238 2,444

120 23,924 4,928

150 36,321 7,261

200 59,114 26,548

Table 3.3: Semantic Component Decomposition Time
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3.6.1 Performance of Semantic Component Decomposition

In this experiment, the execution time of the semantic component decomposi-

tion when storing an XML document into a local storage system is investigated.

Four different data sets are initialised and each data set contains 80, 120, 150

or 200 documents. Two criteria are essential to evaluate the performance of

semantic component decomposition: the reasonable computing time concerning

the resource provided and the number of semantic components with respect to

the number of individual nodes in a document. Two experimental results are

obtained: (1) the semantic component decomposition time; and (2) the entire

. storage time. The experimental result on semantic component decomposition is

listed in Table 3.3 and the entire storage time is in Figure 3.5. The storage time

increases slightly when semantic component decomposition is involved but is still

within the acceptable range.

The relationship between the number of SCs and the number of nodes in an

XML document is also evaluated. A semantic component is treated as a unit when

computing in the clustering algorithm. Thus, efficiently generating a number of

semantic components with respect to the number of nodes is vital to the accuracy

and efficiency of clustering. The experimental result is shown in Figure 3.6. The

number of semantic components is less than 30% of the number of nodes in an

XML document. Consequently, the efficiency of computing is guaranteed.

3.6.2 Performance of Clustering Efficiency and Accuracy

In this experiment, the accuracy of clustering schemaless XML documents is

investigated. Firstly, the documents are manually classified into 1 clusters and

these clusters are constructed as "ground truth". Secondly, the algorithms are
-

executed to automatically group the documents. Finally, by specifying the various
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cut-off values, the different number of clusters is generated. By comparing with

the manual results, the accuracy of the algorithms can thus be defined. Figure 3.7

and Figure 3.8 respectively are the preliminary results for 120 and 200 documents.

Three various values for We are experimented in each data set.

According to Figure 3.7 and Figure 3.8, the accuracy of clustering degrades

when the number of documents in a collection increases. However, this problem

can be partly solved when a statistical pre-processing mechanism is applied, Le.

pre-dividing a large document collection into small groups based on a statistical

analysis of the words used in a certain domain. Also the accuracy of clustering

degrades when the value of We is decreased. This shows that the direct descendant

is an important part of a node's semantics which SC well preserves and the

weight mechanism maximally preserves the semantic information within an XML

document.
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3.7 Summary

In this chapter, the comprehensive study on clustering schemaless documents

is reported. Approximate modelling the semantic of an XML document is the

key part of schemaless XML document clustering. The unique feature on the

detection of tree inclusion and tree isomorphic renders previous approaches in-

applicable. The proposed algorithms make the computing of similarity among

XML documents practical. Extensive experimental results using both real and

synthesised documents has demonstrated the effectiveness of the proposed meth-

ods. The tradeoff among various parameters is also investigated in the chapter.

The proposed method offers opportunities in optimising information retrieval,

document classification, and data mining.
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CHAPTER4

Holistic XPath Evaluation

You can never solve a problem on the level on which it was created.

- Albert Einstein

·XML in data representation and exchange in large-scale scientific and commer-

cial applications has become pervasive. Substantial research efforts have been

made to provide efficient indexing and querying mechanisms to retrieve data from

XML-formatted data. The ViST approach, proposed by Wang et al. [WPFY03],

is an initiative and advanced [RM04] index method for querying XML data by

tree structures. However, ViST suffers from the following three shortcomings.

(i) Semantic flaw problem caused by ViST's inherent structure-encoded sequence

model. That is, an XML document which semantically satisfies an XML query

may not be returned; (Ii) False answer (alarm) problem, i.e., documents which do

not satisfy a query may be wrongly returned. Additional time-consuming refine-

ment or post-processing phase has to be called to eliminate false query answers

[WM05]; (iii) ViST cannot guarantee the linear size complexity of structure-

encoded sequences. In the worst case, its space complexity reaches O(n2) (where

n is the total number of nodes in an XML data tree).

Inspired by the promising indexing and querying performance of ViST among

the rest of the approaches in the literature, and meanwhile to overcome its short-

comings, in this chapter, another efficient and novel geometric sequence mech-
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anism [WFS05],which transforms XML documents and XPath queries into the

corresponding geometric datal query sequences, is proposed. XML querying is

thus converted to finding non-contiguous geometric subsequence matches. The

proposed approach ensures correct (i.e., without semantic false) and fast (i.e.,

without the costly post-processing phase) evaluation of XPath queries, while at

..the same time guaranteeing the linear space complexity. The significant perfor-

mance improvement of the proposed approach is demonstrated through a set of

experiments on both synthetic and real-life data. The main contributions of this

chapter are summarised as follows.

.• XML documents and XPath queries are transformed into geometric se-

quences. Twig matches can be found by performing subsequence matching

on the set of sequences. Together with a set of stacks proposed to efficiently

accelerate the query steps, the proposed method finds all the answers with-

out semantic false and false alarms, without performing post-processing

phase. Moreover, the algorithms depend only on B+ Tree index structure,

which is well-supported by DBMS.

• Geometric sequence model also guarantees the linear complexity of the total

size of geometric sequence in the number of nodes in the XML data trees.

The length of a geometric sequence is proved to be 2n - 1 where n is the

number of nodes in an XML tree.

4.1 Motivation

With the advent of XML as a standard for data representation and exchange on

the Web, indexing and querying XML documents becomes increasingly impor-
-

tant for current and future data-centric applications. Substantial research efforts
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[CSF+Ol], [Gru02], [GW97], [MS99] have been conducted to structurally index

and retrieve data from XML documents.

The first problem of retrieving data from XML documents is how to deal with

specific queries containing constraints related to the content of the documents.

Providing a uniform index structure [WPFY03] for both the structure and content

"information of an XML document is therefore desirable. More importantly, the

mechanism should be preferably implemented using some well-supported DBMS

data structures like B+ Thee.

The second problem is that a query compatible to XPath is modelled as

-a tree, referred to as a twig, and can be complicated when wildcards "*,, and

self-or-descendent axis("j /") are presented (for example, Q5 in Table 4.9). To

match such a complex query against a document tree without corresponding

preprocessing mechanism is equivalent to the tree inclusion problem and has

been proved to be NP-complete [AHU74].

Previous research efforts have been devoted to twig pattern matching for

several years. XISS [LMOl] is the first to break twig pattern query into binary

twigs, and "stitch" the binary twigs (Le. two nodes with parent-child relationship)

together to obtain the final results. State-of-the-art mechanisms, Le. structural

join [CTZZ02], holistic twig join [NND02], have been proposed to stitch root-to-

node paths together by using specially designed stacks. Additionally, some index

structures, such as XR-Thee [JLW03]and Xls-Tree [NND02], have been proposed

to optimise the above twig join operations. However, the performance of all the

above mechanisms suffers from the time-consuming Join operations.

Wang et al. proposed a novel ViST mechanism [WPFY03], which transforms

both XML documents and XPath queries into structure-encoded sequences so

that the twig .pattern matching problem is converted to subsequence matching
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problem. The advantage of this approach is that it does not need to break down a

twig pattern into root-to-leaf paths and process them individually, thus avoiding

the heavy join operations to join intermediate results. This method improves

all the previous searching mechanisms significantly. However, ViST has sev-

eral major shortcomings. Firstly, its structure-encoded sequence model does not

.. uniquely transform an XML document into an strucuture-encoded sequence and

can cause the semantic false problem. That is, an XML fragment which semanti-

cally matches a query may not be returned. ViST may also return false answers

(false alarms) because its encoding method can not fully maintain the structures

of XML data trees. Time-consuming refinement phase or post-processing phase

has to be called to eliminate the false answers. Although Wang et al. [WM05]

further proposed a way to eliminate the post-processing phase with O(n2) total

size complexity (where n is the total node number in a data tree), it depends on

specialised index structure to find sibling-cover in the trie and remove the false

answers, in which the semantic false problem still exists. Finally, in the worst

case, the total size of structure-encoded sequence is O(n2) when a document is a

unary tree.

To overcome the above three problems, in this chapter, another encoding

mechanism is introduced to transform XML documents and XML queries into

geometric sequences. The objective is to ensure correct (Le. without seman-

tic false) and fast (Le. without the post-processing phase) evaluation of XPath

queries, while at the same time guaranteeing the linear size complexity of the

sequence. This approach enables us to achieve better storage and query perfor-

mance than ViST and- the conventional mechanism.
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Figure 4.1: An Example of XML Document in Tree Structure

4.2 The Problems with ViST

As proposed in [WPFY03], a structure-encoded sequence is derived from a prefix

traversal of an XML document, in format of a sequence of (symbol, prefix) pairs,

(aI, PI)' (a2' 'P2), ... , (an, Pn), where ai represents a node in the XML docu-

ment tree (ala2 ... an is the pre-order sequence) and Pi is the encoded path from

root to ai. In the same spirit, XML queries are converted into structure-encoded

query sequences in which "*,, and "I I" are explicitly encoded. Querying XML

is equivalent to finding non-continuous subsequence matches in ViST. The cor-

responding structure-encoded sequence of the XML document example in Figure

4.1 is illustrated in Table 4.1. Let Tstr denote the structure encode sequence.

Tstr = (A, £) (B, A) (D, AB) (vi, ABD) (E, AB) (V2' ABE) (F, AB)

(V3' ABF) (B, A) (D, AB) (V4' ABD) (K, AB) (vs, ABK) (J, A) (V6'

AJ)

Table 4.1: Structure-Encoded Sequence of the XML Document in ViST Approach

The problem of false answers (a.k.a false alarms) arises immediately in ViST

in which an XML document is represented by a structure-encoded sequence.

For example, given a query Q2: IAIB[.IE][.IK], its tree structure is shown in
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Figure 4.3(b), and its corresponding structure-encoded query sequence is shown

in Table 4.2. The underlined non-continuous subsequence in TStr marks a result

(matching). However, it is a false answer since the structure expressed in Q2

does not exist in the XML document example. This kind of queries is defined as

non-existence false in this chapter.

Q2str = (A, e) (B, A) (E, AB) (K, AB)

Table 4.2: Structure-Encoded Sequence of Q2

Q3str = (A, e) (B, A) (E, AB) (B, A) (K, AB)

Table 4.3: Structure-Encoded Sequence of Q3

Consider, for another example, Q3 shown in Figure 4.3(c), its structure-

encoded sequence is shown in Table 4~3. In ViST, Q2 and Q3 may return the

same results because Q2 is a subsequence of Q3. This kind of query pairs is

defined as non-equivalence false in this chapter. It implies that refinement phase

or post-processing phase has to be called to eliminate the false answers in these

two cases. However, the process may not be always trivial.

Moreover, ViST has a serious semantic flaw in transforming XPath queries

into structure-encoded sequences. Suppose an XML fragment is presented:

< A >< B >< K >< C >< IC >< I K >< I B >< lA>

and its corresponding structure-encoded sequence:

FragStr =< A,e >< B,A >< K,AB >< C,ABK >

If Q: I A[./BI IC][I IK] is transformed into a structure-encoded query sequence

and evaluated against this fragment:

QStr =< A,e >< B,A >< C,ABII >< K,AII >
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An XMI. Document An XPath Query

Figure 4.2: A Semantic False Query Evaluation in ViST

'There is no such subsequence matching of QStr in Fragstr since K appear after C

in ViST, as shown in Figure 4.2. However, Q semantically matches the fragment.

This flaw can hardly be fixed in ViST because the order among the items in a

structure-encoded sequence is indispensable in ViST. This semantic flaw of ViST

is defined as semantic false in this chapter.

4.3 Proposed Method

To overcome the shortcomings of ViST, in this section, a geometric-encoding

mechanism, which transforms XML documents/queries into geometric data/query

sequences, is proposed. Further enhancement to the proposed geometric encoding

approach is also described.

4.3.1 Mapping XML Documents into Geometric Data Sequences

An XML document is firstly modelled as an ordered, node labelled, rooted tree.

More formally, consider a graph T = (VG, VT, v-, EG, labelnode, nid, ET)'

Va is the set of element nodes and VT is the set of text nodes. Vv E VT, v has

no outgoing edge. u; is the root of the XML data tree, where there exists a path

from Vr to V, Vv E VaU VT. Moreover, it implies that Vr has no incoming edge.
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ABDvIDBEv2EBFv3FBABDv4DBKv5KBAJV6JA

Table 4.4: A Sequence Representation of the Example XML Document

Each node V E Ve U Vr is labelled through the function labelnode over the set of

terms, Er. The label of a node V E Ve is referred to as the tag name. The label

of V E Vr is referred to as a distinct keyword contained in the corresponding text.

Quotation mark is used in future figures to distinguish the label in Vr.

Each edge e, e E Ee, is a parent-child edge, denoting the parent-child rela-

tionship. The parent node is denoted as vep' and the child node is denoted as Vec.

A path is a sequence of edges starting from the node Vi to the node Vi, denoted

as ei, ei+1, ... , ei. A node Vi is ancestor of vi iff a path to vi goes through Vi. The

order among the sibling nodes is distinguished. Each node is assigned a unique

nid number for indexing and querying purpose. TVi refers to the subtree induced

by node Vi. Figure 4.1 shows an example of the data model. The solid edges

represent Ee. The dashed edge denotesa edge e, vep EVe, and VecE Vr. The

quoted string represents a label of a node V E Vr·

An XML document is then transformed into a sequence by pre-order travers-

ing the above XML data tree, recording a node's parent when backtracking. For

the example in Figure 4.1, its sequence representation is shown in Table 4.4.

To clearly represent a sequence, the above sequence is slightly modified to

indicate the start (s), intermediate( i), end (e) positions of a specific node which

appears multiple times in the sequence. The modified sequence representation is

shown in Table 4.5. Let Teeo denote the modified sequence, and f: T -t Teeo. It is

easy to prove that f is a bijection between Teeo and T. In the rest of the chapter,

the modified sequence is defined as geometric sequence. Later in Section 4.4 it

is proved that those extra symboli and symbole only require trivial processing in

77



QI Q2 Q3

(al (b) (c)

Figure 4.3: Example of Query Sequences in 'free Form

,both indexing and querying process.

TOeo=AsBsDsVlDeBiEsV2EeBiFsV3FeBeAiBsDsV4DeBiKsvsKeBeAiJsv6JeAe

Table 4.5: A Geometric Sequence Representation of the Example XML Document

4.3.2 Transforming XPath Quer~ into Geometric Query Sequence

A query compatible to XPath is modelled as a tree, as shown in Figure 4.3. The

core of evaluating an XPath query at an XML document is finding all the answers

of such a twig pattern matching the constraints (axes, nested structure, terms

etc.) of the query. Moreover, a query can be complicated when wildcards "*,, and

self-or-descendent axis( "I I") are presented. When transforming an XPath query

into a geometric query sequence in a similar way of mapping XML documents

into geometric sequences, all the information in the XPath query is preserved.

We show this by using example queries Ql, Q2, and Q3 in Table 4.6. Their tree

structures are shown in Figure 4.3.

Consider the example query Q2: IA/B[./E][./K], its tree structure is shown in

Figure 4.3(b). When it is transformed into a geometric query sequence, informa-

tion needing to be preserved are: (1) A is parent of B, and (2) B is parent of both

E and K. Using the proposed method, Q2 is transformed into a geometric query
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Path Expression Geometric Query Sequence

Ql: I A[B/D][I IK] Qlceo: As s, o, DeP BeP A/I tc, x, Ae
Q2: I A/B[·/E][·/K] Q2ceo: As s, s, EeP e. x, KeP Bl Ae

Q3: I A/B[E] /following-sibling.: B/K Q3ceo: As e.e. EeP Bl Ai s, tc, Kl Bl Ae

Table 4.6: List of Ql, Q2, and Q3 in Geometric Query Sequences

sequence: As e, Es EeP Bi x, Kl Bl Ae, where p implies that the upcoming

item is parent of the current item. Any internal node is followed by its parent;

or parent, in the geometric sequence. However, a E; may be followed by B, in

real data sequence not Be. This issue can be easily solve by defining Bi equals

to Be when determining the parent relationship. If p is not explicitly stated, the

relationship is ancestor-descendant ("I/") by default.

Similarly, for query Ql: I A[B/D][I /KJ, its tree structure is shown in Figure

4.3(a). When it is transformed into geometric sequence, information needing to

be preserved are: (1) D is a child node of B which, in turn, a child node of A

and (2) K is a descendant of A. As stated in previous section, ViST may incur

semantic false when transforming Ql into structure-encoded query sequence since

there is no explicit information of the relationship between K and B (D) stated.

In this case, "u" is added to a specific node which has at least two child nodes

and meanwhile "I I" is involved. Ql is transformed into a geometric sequence:

As s, o, Dl Bl Aiu «, «, Ae as shown in Table 4.6, where u signifies that

semantic uncertainty may occur in the upcoming item.

After an XPath Query is transformed into a geometric query sequence, query-

ing XML documents is equivalent to finding (under the guidance of flag' p' and/or

'u') non-contiguous subsequence matches in the corresponding geometric data se-

quences. For query Q1, the underlined non-contiguous subsequence matching in
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Table 4.5 marks a correct matching (Le. the example document satisfies the

query).

Consider now how the proposed geometric encoding mechanism avoids the

semantic false problem presented by ViST. The geometric datal query sequence

of the XML fragment and the query (Figure 4.2)is as follows:

To match QCeo against Fragceo, when evaluating Ar, the range information of

As is resumed. It implies that K; is searched within the range of As instead of

Be in Fragceo, starting with which, Ks, K; and Ae are founed. Section 4.4 will

introduce an elegant stack mechanism. to implement the method.

4.3.3 Numbered Geometric Sequence

Furthermore, consider the fact that in an XML document, the same element

names may appear several times. Given the data tree in Figure 4.1 and query Q2

in Figure 4.3(b), Q2 should return no result. However, in Table 4.6, Q2ceo does

not provide enough information to eliminate the second Be, which implies that a

result would be returned if the second Be is included.

TGeonum. = A1sB1sD1s v1D1eBliE1s v2E1eB1iF 1sV3F 1eB1eAliB2sD2s V4D2eB2iK1s

VSK1eB2eAliJ 1sV6J1eA1e

Table4.7: Numbered Geometric Sequence Representation of XML Document

To tackle this problem, the basic geometric-encoding data sequence is en-

hanced by numbering each (repeated) item, so that a geometric sequence is se-

quence of symbolnumber(Slile)' Table 4.7 gives a numbered geometric data sequence.
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Note that the geometric query sequence is not numbered. There is then no such

subsequence matching in TGeowc-«: Additionally, for each query sequence having

syrnboli, only the first one in TCeo is chosen on the basis of the fact that the rest

syrnboli is redundant in querying process. Moreover, for queries having the same

child nodes in branches, it is equal to find all the non-decreasing subsequence

matching in geometric sequence for all the nodes with the same names. "*,, is

handled as a range query as the same to ViST. If p is not explicitly stated in

geometric sequence model, "I I" is then default and not instanced on the basis of

the fact that "I I" only represents ancestor-descendant relationship. By contrast-

ing to ViST's instance step, resource-consuming prefix checking and range query

steps connected with "I I" are eliminated in the geometric sequence model.

The correctness of querying XML through numbered geometric datal query

sequence matching can be proved based on the following theorems.

Theorem 1. Let D and DCeonum denote an XML document and a geometric

data sequence respectively. D can be uniq'l!-elytransformed into DCeonum' and vice

versa, denoted as DCeonum¢:} D.

Proof. D -+ DCeonum: Since pre-order traversal sequence is unique in a tree, D

can be uniquely transformed into DCeonum'

DCeo~um -+ D: (1) a text node, v E VT in XML data tree is followed by

its parent; in geometric sequence since a node has exactly one text node in an

XML data tree; (2) each continuous subsequence between syrnbolis and syrnbolie

uniquely denotes a subtree Tsymbol in XML data tree since i is unique to a certain

symbol; and (3)any internal node, v E Vc, is followed by its parent; (respectively

parente) since it have (respectively have no) sibling nodes. 0

Theorem 2. Let Q and QCeo denote an XML document and a geometric data
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sequence respectively. Q can be uniquely transformed into Qaeo, and vice versa,

denoted as Qaeo {::}Q.

Proof. Structural bijection can be inducted from Theorem 1. Semantic bijection

can be inducted from Section 3.2. o

Theorem3. Let G(·, .) denote the geometric sequence and =c denote conforming-

to-constraints relationship. 'i/Vi,Vj E Q, GQ(Vi,Vj) =c GD(Vi,Vj) ifQ =c D.

Proof. Qaeo {::}Q and Daeonum {::}D can be inducted from Theorem 2 and The-

o

In the sequence data model of an XML data tree, the length of the sequence

of an XML document in worst case is 2n - 1, where n denotes the number of

nodes in the XML data tree.

Theorem 4. The length of numbered geometric sequence is O(n).

Proof. Since each node records its direct parent when backtracking, it means each

node Vi E Va with fan out FOi appears FOi + 1 times and each node Vi E VT

appears once since it has one fan in edge and zero fan out edge. Let the total

number of edges be m, the total number of internal nodes be IVai, the total

number of leaf nodes be IVTI. The length of a geometric sequence is no longer

than El~~I(FOi+ 1) + IVTI, where El~~I(FOi+ 1) is the number of internal

nodes appearing in the sequence, IVT I is the number of leaf nodes appearing in

the sequence. It is known that Ei~~'FOi = m = n - 1 in a tree, and IVai + l\ttl
= n. The length of the sequence is thus no longer than El~~'FOi + IVai + IVTI

= 2n - 1. o
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4.4 Holistic Sequence Matching

To accelerate XPath evaluation, the challenge of the geometric model is to (i)

avoid the semantic false problem, (ii) eliminate the false answers without re-

finement or post-processing phases, and (iii) provide a linear storage complexity

mechanism to reduce the size of index. In section 4.3, the total size of num-

bered geometric sequence is proved to be O(n). In this section, we demonstrate

the subsequence matching can find all the correct answers without refinement or

'post-processing phase which is inevitable in ViST.

4.4.1 Index Structure

A hierarchicalindexing structure similar to ViST with some modifications is used.

Each item in a geometric data sequen~e is in form of (symbolnumber(slile»). Items

in a geometric sequence are first put into a trie-like structure. Then each node

in the trie is assigned two extra elements "preorder" and "size", where "preoder"

is the pre-order traversal position of the node in the data tree, and "size" is

used for dynamic scope allocation purpose, whose detail study can be found in

the next chapter. To build the index structure, each node in the trie, in format

of (symbolnumber(Slile)' preorder, size), is firstly inserted into a sequence B+ Tree

index (Le. SB-Index) using its symbol(slile) as the key. For all the nodes with the

same symbol(slile), they are inserted into a position B+Tree (Le. PB-Index) using

its preorder as the key. Figure 4.4 illustrates the index structure used.

4.4.2 Holistic Geometric Sequence Matching Algorithm

To accelerate XPath evaluation steps with SB-Index and PB-Index, an elegant

stack mechanism, which includes two different sets of stacks: a number of se-
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Key: symb"I.(sfileJ Key: prtorder

Figure 4.4: Index Structure: SB-Index and PB-Index

-quence stacks and a status stack is proposed. Sequence stacks maintain a list

of candidate items from a geometric data sequence that may contribute to the

. matching of a geometric query sequence. Status stack traces the identifiers of all

the sequence stacks which have accommodated the candidate items found from

the data sequence. The top value of the status stack gives the identifier of the

current active sequence stack, denoted 'using active! d. For simplicity, Stackid is

used to denote the sequence stack of identifier id, and seqnum to represent the

identifier of the last occupied sequence stack so far, where initially seqnum = O.

The matching of query sequence against the geometric data sequence is based

on the fact that a subsequence between symbols and sumbol; denotes a subtree.

Suppose a geometric query sequence qi~l q~:2 ... q::"m and a geometric data

sequence dlnuml,vl d2num2,V2 ••• dnnumn,Vn' where (m :::;n), Vx(l :::;x :::;m) (vx =

slile) 1\ (Lx = plul ), and Vy(l :::;y :::;n) (Vy = slile) 1\ numy E N are presented.

Starting with the empty stacks, the two sequences are scanned across from left

to right. When equal symbols are encountered (Le., qx = dy and Vx = Vy) in q!::",

and dy '" the following situations are considered.
numYI"Y

[Case 1] (vx = Vy = s)
seqnum is increased by 1 to prepare a new sequence stack for storing can-
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input: SB-Index: index of symbol names; PB-Index: index of (pre-
order, size) labels; QGeo = QCeop •.•, QCeolen:XML query in geometric
sequence format; j: the jth point in QCeo; range: in format of (preorder,
size); status: status stack. len: length of XPath query sequence.
output: all the matchings of QCeo in the XML data
if j ~len then

if s is in QCeoj then

L seqnum ~ seqnum+ 1;
status. push( seqnum);

if u is in QCeoj then

I
resume range of corresponding symbols, say (n', size');
GeoMatching(n', size',j + 1, status);

else
T ~ All the matchings of QCeoj in SB-Index;
R ~ All the matchings of Tin PB-Index satisfying range;
active - status. topt);
for each rk E R do

if stackactive.isemptyO or s is in QCeoj then
I stackactive.push(rk);
else

lif rk.number = stacka~tive.topO.number then
L stackactive.push(rk),

if rk = stackactive.topO then
Assume range of rk is (n', size');
if size' ~ len - j then

statusnew = status;
if p is in QCeoj and satisfy parent constraint then

statusnew· popf);
if i is in QCeoj+1thenI GeoMatching(n', size',j + 1, statusnew) //pc;
elseL GeoMatching(n', size',j + 1, statusnew) //ad;

elseL output a matching of QCeo;

else
if e is in QCeoj then
L statusnew'popO;
GeoMatching(n', size',j + 1, statusnew);
if i or e is in QCeoj then
L skip to rh, where rh.n ~ (rk.n + rk.size)

stackactive.popO;

Algorithm 4.1: GeoMatching
85



didate item(s). dYnumy,s is pushed into the sequence stack Stackseqnum, and

then push seqnum into the status stack, indicating that the corresponding

sequence stack accommodates a candidate matched item. It is the current

active sequence stack.

[Case 2] (vx = Vy = e) or (vx = Vy = i)

We check whether dYnumy,e has the same numy as the candidate items in

the sequence stack Stackactiveld. Note that activeld is the top value from

the status stack.

If they are matched (i.e., the same), dYnumy,Yy is pushed into Stackactiveld,

and pop the top item from the status stack when (vx = Vy = e), im-

plying that a subtree whose starting/ending nodes specified in this active

StackactiveI d is found.

When corning across q~i in the query sequence, the search pointer in the

data sequence is shifted backward to dYnumy,s to avoid the semantic false

problem (as specified in Section 4.3).

If there is a mismatch between the two numbers, the recursive backtracking

procedure is triggered. The idea is to go back to the subtree-starting node

(i.e., the node with a subscript s flag) in the current active stack, and re-

start the search of the data sequence for a similar symbol with subscript

s but with a larger num than before. To do this, all the candidate items

detected before will be popped out of the corresponding sequence' stacks,

signifying an unsuccessful match. Meanwhile, the status stack and seqnum

will be resumed. to the states when to re-start the matching of the subtree-

starting node in the data sequence.

For ease -of explanation, the evaluation of query Q2 over the data tree in
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Figure 4.1 is exemplified. Detailed algorithmic description can be found in

the Algorithm 4.11. Figure 4.5 gives a snapshot of the stacks used during the

evaluation.

Firstly, Als, Bls, and EIs from the geometric data sequence are pushed into

sequence stack Stacks, Stack2, and Stack3 (Step 1, 2, and 3, as shown in Figure

4.5(a)). The status stack contains (1, 2, 3) after EIs is pushed into Stack3. When

meeting E:, Ele is pushed into Stack3 since active! d=3, and then pop 3 out of

the status stack as a subtree between EIs and Ele is found in the data tree (Step

4). Since p in E: implies that the next matching item B, should be its parent,

. according to Table 4.7 Bli in the data sequence satisfies this constraint, and

thus push it into Stack2 (according to the top value in the status stack which

is 2 = active!d). Similarly Kls and Kle are pushed into Stacks (according to

seqnum=4) to match K, and K: in the query (Step 6 and 7). Now the status

stack contains (1 2). To look further for the parent of K:, i.e., Be, B2e is the

only possibility in the data sequence. However, its number 2 does not conform to

the number 1 in Stack2 (Step 8, as shown in Figure 4.5(b)). Hence, a mismatch

happens, and backtracks the matching process to Bls in Stack2. Note that B2i is

not pushed into Stack2 due to the same reason, as shown in Figure 4.5(c). After

Bi, is popped out of Stack2, the next and only item that satisfies B, in the query

is B2s (Step 10, as shown in Figure 4.5(d)). However, there does not exist any

Es in the data sequence after B2s. Therefore, the matching process returns no

result for Q2.

The stack mechanism answers the previous question why additional symboli

and sumbol; (Case 2) do not require extra computing efforts during the query

process 2.

1pc denotes parent-child relationship and ad denotes ancestor-descendant relationship.
2Parent-child relationship is determined without level information since each symbole is
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Figure 4.5: An Example of Stack Status Avoiding Non-existence Query
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stack.,

Figure 4.6: Stack Status Avoiding Non-existence Query in OptGeoMatching

Path Expression Geometric Sequence

Ql: / A[B/D][/ /K] QI0ptGeo: As DeP BeP Ai U «, Ae
Q2: / A/B[./E][./K] Q20ptGeo: EeP e. KeP Bl Ae

Q3: / A/B[E]!following-sibling::B/K Q3OptGeo: EeP Bl Ai s, KeP Bl Ae

Table 4.8: List of Ql, Q2, and Q3 in Optimised Geometric Query Sequences

4.4.3 Optimisation

Observing that the performance of evaluating XPath queries over XML docu-

ments is significantly affected by the lengths of geometric query sequences, the

subsequence matching algorithm is further improved on the basis of optimised

geometric query sequence transformation. The rationale behind is that instead

of keeping pairs of nodes like B, and Be in a query sequence, one of them can be

removed without loss of semantics while performing subsequence matching.

Here,..a geometric query sequence transformation rule with an aim to minimise

the length of the query sequence is proposed. That is: removing all the symbols

unless it connects with a symbolr. 3 Examples of the optimised XPath query

sequences after transformation are listed in Table 4.8.

Interestingly, the transformed query subsequences enable us to perform query

evaluation in a bottom-up manner, since the subsequence matching starts from

followed by its parent; or parent, in the geometric sequence model.
3Recall in Section 4, symbol~ signifies that the range information of symbols is resumed so

as to cope with the semantic false problem.
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a symbole• For example, given the query Q2 : jAj Bj[.j EH.j K] in Figure 4.3 and

its optimised geometric query sequence: E~ B, K~ B~ Ae, the evaluation process

starts from E, instead of As. In comparison, the matching algorithm described

in the previous subsection exhibits the top-down flavour.

To facilitate the optimised geometric subsequence matching, the stack mech-

anism is improved accordingly, where only one set of stacks called symbol stacks

are involved. Stacksymbol is used to denote the stack which accommodates items

having symbol.

Given an optimised geometric query sequence qi~l q~:2 ... q!;vm and a geo-

-metric data sequence dlnuml,vl d2num2,V2... dnnumn,Vn' where (m ::; n), 'v'x(l ::; x ::;

m) (vx = slile) 1\ (lx = ulpl ), and 'v'y(l ::; y ::; n) (Vy = slile). Starting with

the empty stacks, the two sequences are scanned across from left to right. When

two equal symbols encounter (Le., qx = dy and Vx = v.y) in qxlx and dvx Ynumy, Vy ,
the following situations are considered.

[Case 1] (vx = Vy = s)

dYnumy,. is pushed into the symbol stack Stackdy.

[Case 2] (vx = Vy = e)

There exist two possibilities. 1) When the top item of Stackdy has a sub-

script intermediate flag i, we check whether dYnumy,i has the same numy as

this top item. If they are the same, dYnumy,i is pushed into Stackdy; oth-

erwise a mismatch happens and backtracks the process. That is, all those

candidate items, which lie between dYnumy,e and the top item in Stackdy,

are popped out of the corresponding symbol stacks including this top item,

and the process continues to re-search these candidate items in the data

sequence.
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2) When the top item of Stackdy has a subscript end flag e, we check

whether dYnumy,; has the same numy as this top item. If they are not the

same, dYnumy,; is pushed into Stackdy; otherwise a mismatch happens and

triggers the above backtracking process.

[Case 3] (vx = Vy = i)

We check whether dYnumy,i has the same numy as the top item in Stackdy.

If they are the same, it is pushed into Stackdy; otherwise, a mismatch

happens, and triggers backtracking process.

Note that when encountering q~i in the query sequence, the search pointer

in the data sequence is shifting backward to dYnumy,8 to avoid the semantic

false problem (as specified in Section 4.3).

To illustrate the optimised geometric subsequence matching procedure, let's

take query Q2 as the example. A snapshot of the symbol stacks is given in Figure

4.6. Detailed algorithmic description can be found in the Algorithm 4.2. Firstly,

Ele is pushed into StackE (Step 1). Since p is in E~ in the query sequence, the

only item in Table 4.7 that satisfies the parent-child constraint is Bli, and is thus

pushed into StackB (Step 2). Kle is further pushed into Stacki; (Step 3). As p

is in K~, B2e is the only possible parent item. However, its number 2 does not

conform to the number 1 of the top item Bli in StackB (Step 4). Thus B2e cannot

be pushed into StackB, and a mismatch happens. The algorithm backtracks to B,

and re-starts the search of the data sequence from B2i, returning no satisfactory

query answer in the end.
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input: SB-Index: index of symbol names; PB-Index: index of
(preorder, size) labels; QGeo = QCeol' ..• , QCeolen: XML query in
geometric sequence format; j: the jth point in QCeo; range: in format of
(preorder, size); len: length of XPath query sequence.
output: all the matchings of QCeo in the XML data
if j ~len then

if u is in QCeoj then

I
resume range of corresponding symbols, say (n', size');
OptGeoMatching(n', size',j + 1);

else
T +- All the matchings of QCeoj in SB-Index;
R +- All the matchings of T in PB-Index satisfying range;
for each rk E R do

if stacksymbol.isemptyO or s is in QCeoj thenI stacksymbol.push(rk);
else

if rk.number = stacksymbol.topO.number and i is in QCeoj
thenL stacksymbol.push( rk);
if rk.number = stacksymbol.topO.number and e is in QCeoj
and i is in stacksymbol.topO then
L stacksymbol.push(rk);
if 1'k.n'umber /= stacksymbol.topO.number and e is in QCeoj
and e is in stacksymbol.topO then
L stacksymbol.push(rk);

if 1'k = stacksymbol.topO,then
Assume range of rk is (n', size');
if size' 2': len - j then

if p is in QCeoj and parent constraint is satisfied then
if i is in QCeoHl then
I OptGeoMatching(n', size',j + 1) / fpc;
elseL OptGeoM atching( n', size', j + 1) / / ad;

else

lOptGeoM atching( n', size', j + 1);
if i or e is in QCeoj then
L skip to rh, where rh.n 2': (rk.n + rk.size)

stacksymbol.pop();

else -
L output a matching of QCeo;

Algorithm 4.2: OptGeoMatching
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T: title; A: article; AU: author; I: inproceedings; N: namerica; P: payment;

PE: personref; PER: person; 0: open.auction; C: closed.auctions;

CA: closed auction; B: bidder; BU: buyer;-

XPath Queries Data Sets

Q1: IIT[textO="On views and XML"] DBLP

Q2: I I A[·I AU[textO="Dan Suciu"]][./ AU[textO="Tan"]] DBLP

Q3: 1*1II/ AU[textO="Peter Buneman"l/following-sibling::AU DBLP

Q4: I/NI*/P[textO="Cash"] XMARK
-
Q5: /1* /0[./B/PE[@PER="personO"]][./B/PE[@PER="person23"]] XMARK

Q6: IIC/CA/BU[@PER="personll"l/following-sibling::BU XMARK

Table 4.9: List of XPath Queries

4.5 Experimental Results

The proposed sequence matching mechanism, OptGeoMatching, is implemented

in C++. ViST, and a classical indexing and querying mechanism, XISS [LM01],

is also implemented for comparison purpose. XISS breaks down the queries into

binary twigs and "stitches" them together to obtain the final results. ViST

treats both XML documents and XML queries as sequences and obtains the final

results by using subsequence matching phase to get preliminary results and post-

processing phase to eliminate false answers. The strings are encoded as they are

in ViST and use substring matching algorithm to detect the prefix matching.

The B+Tree library in Berkeley DB provided by Sleepycat software was used.

All the experiments are carried out on a Pentium III 750MHZ machine with

512MB main memory: Disk pages of 8k is used for Berkeley B+Tree index. To

evaluate both the efficiency and scalability of the proposed method, the experi-

ments are performed on both real-world datasets and synthetic datasets.
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4.5.1 Experiments on Real-World Datasets

Data Sets

For the experiments, public XML databases DBLP [Ley]and the XML bench-

mark XMARK [BCF+] are used.

• DBLP is popularly used in benchmarking XML indexing methods. In the

version used in this study, it has 3,332,130 elements and 404,276 attributes,

totally 130,726KB data. The maximum depth of DBLP is 6. The average

length of geometric sequence is 39.

• XMARK is widely used in benchmarking XML indexing mechanism with

complex nesting structure. In the version used in this study, it has 1,666,315

elements and 381,878 attributes, totally 115,775KB. The maximum depth

of XMARK is 12.

Performance of Query Processing

6 queries are evaluated on the DBLP and XMARK, and their results are

compared with ViST and XISS. Table 4.9 lists 6 different queries for DBLP and

XMARK, respectively.· The experimental results of using the proposed method,

ViST and XISS are shown in Table 4.10.

Q1 is a simple query, "find all the titles with 'On views and XML"'. Tur

geometric sequence model performs slightly better that ViST because there is no

instantiation step in geometric sequence model which is inevitable in ViST.

Q2 and Q3 are relatively complex queries, respectively, "find all the articles

written by 'Dan Suciu' and 'Tan'" and "find the authors co-writting inproceed-

ing papers with 'Peter Buneman"'. This time, the geometric sequence model

outperforms eViST because (1) there is no need to perform substring matching
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in validating and instancing structure-encoded query sequences. The substring

matching increases the disk I/O since enormous data is retrieved from the index;

(2) there exists no post-processing phase in the proposed method; (3) most im-

portantly, OptGeoMatching performs bottom-up query evaluation strategy. Since

the number of the nodes with specific authors' names are comparatively small

"and their ranges are narrow, it can therefore achieve significant increase in XPath

evaluation performance.

" Q6 is a query which should return no result since there exists only one buyer

in one closed auction. The structure expressed by Q6 is a kind of false alarm .

.Again, without exception, the geometric sequence model is significantly faster

than ViST because there is no answer during the subsequence matching in the

proposed method. It is safe to conclude that there is no such structure existing

in XMARK file, while time-consuming refinement phase has to be called by ViST

to eliminate enormous false answers.

4.5.2 Experiments on Synthetic Data

Datasets

To evaluate the extensibility of the proposed method, several synthetic datasets

are generated. In the experimental environment, there are totally 30,000 docu-

ments with 20 different symbols. The maximum depth of the datasets is 16, and

maximum fan-out of a node is set to 4. 8KB disk page for B+ Tree index and 8-

byte integer for pre-order number are still used. Geometric sequences are directly

generated instead of documents.

Performance of Query Processing

The length of queries are set t03, 5, 6, 7, 8, 9, 10, 12, and 14 respectively.

All the queries are non-existence queries. To focus on the impact of refinement
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Query Proposed Method (s) ViST (s) XISS (s)

Q1 2.81 2.94 7.22

Q2 7.14 13.33 319.28

Q3 17.49 69.82 612.13

Q4 7.86 9.12 467.26

Q5 12.27 18.13 392.85

Q6 9.73 39.20 729.21

-Table 4.10: XPath Evaluation Performance: Proposed Method vs. ViST and

XISS

or post-processing phase in ViST, queries with content constraints are not used

since the bottom-up OptGeoMatching is naturally more superior than top-down

. ViST. Queries related to semantic false are also not used since ViST can not

handle these queries at all. In the scalability test, the performance of ViST

depends on distribution of nodes which are chosen as ancestors or descendants

in the queries, referred to as selectivity .. The high selectivity of both ancestors

and descendants generates a considerable number of false answers in ViST if

non-existence queries or non-equivalence queries are executed, implying that the

query performance of ViST degrades in these cases.

In order to demonstrate the extensibility and stability of the proposed method,

the above 30,000 documents are divided into 4 different categories on the basis

of the distribution of nodes chosen as ancestors or descendants in the queries.

• Dataset! (12,000 documents): low selectivity of ancestors and descendants

• Dataset2 (5,000 documents): high selectivity of ancestors and low selectiv-

ity of descendants
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• Doiaset- (4,000 documents): low selectivity of ancestors and high selectiv-

ity of descendants

• Dctaset.; (9,000 documents): high selectivity of ancestors and descendants

The results are shown from Figure 4.7 and Figure 4.14. The proposed method

performs slightly better than ViST in Dataset! because the post-processing phase

is trivial in datasetl. However, for the rest of the three datasets, the proposed

method performs significantly better than ViST since refinement phase requires

enormous efforts to eliminate the false answer. Contrasting to ViST, the pro-

posed method performs stably in these three datasets. Even content constraint is

not involved in the synthetic data experiments, OptGeoMatching demonstrates

significant disk I/O performance improvement comparing with ViST since top-

down ViST is uncertain of its descendants and has to search its full range for

correct answers. In contrasting to top-down ViST, OptGeoMatching performs a
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bottom-up subsequence matching and only needs to search a more specific range

where an ancestor node may exist. Finally, to demonstrate the scalability of both

geometric model and ViST, datasetl, ..., dataset4 are mixed and the query length

is fixed to 7. The result is shown in Figure 4.15.

"4.6 Summary

In this chapter, an efficient mechanism for accelerating XPath evaluation steps

based on the proposed geometric sequence is reported. A top-down holistic sub-

sequence matching algorithm and a bottom-up holistic subsequence matching

algorithm are proposed on the basis of a novel geometric sequence model for

XML documents. According to the experiments, the proposed mechanism can

significantly improve the current best approach ViST, finding all the correct an-

swers without refinement or post-processing phase with linear size complexity

of geometric sequence and guaranteeing the completeness of XPath evaluation

without semantic false.
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CHAPTER 5

Self-Adaptive Labelling Scheme

The art of progress is to preserve order amid change and to preserve change

amid order.

- Alfred North Whitehead

To fully evolve XML into a universal data representation and exchange format,

the capability of modifying XML documents is indispensable. This chapter pro-

poses a novel self-adaptive scope allocation scheme [SFSW04] for labelling dy-

namic XML documents. It is general, light-weight and can be built upon existing

data retrieval mechanisms. Bayesian inference is used to compute the actual

scope allocated for labelling a certain node based on both the prior information

and the actual document. Through extensive experiments, the proposed Bayesian

allocation model can practically and significantly improve the performance of the

conventional fixed scope allocation models.

5.1 Introduction

It is increasingly expected that XML [ABSOO]will become the de facto standard

of the Web, ultimately replacing HTML. An XML document consists of data

enclosed by user defined tags, and its nested tree structure is described by DTD.

Figure 5.1 shows an example of an XML document and Figure 5.2 illustrates the
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corresponding DTD.

To allow efficient querying of XML data, each node in the XML data tree is

typically given a unique label, such that given the labels of two nodes, whether

one node is an ancestor of the other can be determined. Till now, many indexing

structures have been proposed to process structural queries efficiently based on

certain coding schemes [LMOl, NND02, WPFY03]. [LMOl] "stitches" the binary

twigs to obtain final results based on range labelling scheme. [NND02] improves

[LMOl] by using a stack-based algorithm to efficiently join root-to-leaf paths.

[WPFY03] treats both document and query as sequences, and matches the query

as a whole unit when querying.

The capability of modifying XML documents arises another important aspect

to XML indexing: how to support dynamic data insertion, deletion, and update

with corresponding index structure. Cohen et al. [CKM02] firstly proposed a

dynamic labelling scheme for XML documents to support updating operations.

The children of a node v have the label concatenated with the string s attached

to their incoming edge. Given s(l)=O; to obtain s(i+1), the binary number

represented by s(i) is increased 1 and if the representation of s(i)+ 1 consists of

all ones, its length is doubled. The problem with this approach is that the size

of labelling will grow fast with the increase of degree of the nodes because of its

dependency on the fan..out of a node.

State-of-the-art research efforts [LM01, WPFY03, WJLY03] have been pro-

posed to cope with the problem of allocating scope for dynamic XML documents.

[LM01;WJLY03] considered to give some extra scope while allocating the labels.

But as for how much to allocate, they did not address it. [WPFY03] considered

to allocate scope for each node on the basis of the probability of its occurrences

from statistical information. The deficiency is that the probability of allocating
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<prices>
. <book>

<title>Algorithms<ltitle>
<information>
<source>bstore2.example.com<lsource>
<price>31.99<1price>

<linformation>
</book>
<book>
<titte>Data on the Web<ltitle>
<information>
<source>bstore2.example.com<lsource>
<price>34.95<1price>

<linformation>
<author>Serge Abiteboul<lauthQr>
<author>Peter Buneman<lauthor>
<author>Dan Suciu<lauthor>

</book>
<book>
<title> TCPIIP lIIustrated~itle>
<information>
<sou rce>bstore2.example.com<lsou rcee-
<price>65.95<1price>

<linformation>
<author>W. Richard StevenS<lauthor>

</book>
<lprices>

Figure 5.1: An Example of an XML Document
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<!ELEMENT prices (book")
<!ELEMENT book (title?, information- , author")
<!ELEMENT information (source, price»
<!ELEMENT author (#PCDAT A»
<!ELEMENT price (#PCDAT A»
<!ELEMENT source (#PCDAT A»
<!ELEMENT title (#PCDAT A»

Figure 5.2: An Example of DTD

space for a certain node is fixed and is considered as a constant. To summarise,

-these methods are not self-adaptive to real document environment where the

probability of a node's occurrence varies in difference XML documents.

In this chapter, the conventional scope allocation scheme is significantly im-

proved by using Bayesian inference technique. Combining the prior information

(i.e DTD and statistical information) and the actual documents, better perfor-

mance in scope allocation for dynamic XML documents is achieved. Bayesian

Allocation Model (BAM), a general, self-adaptive scope allocation model is pro-

posed to address the above important challenges for dynamic XML data. It is

general, light-weight and can be adapted to existing data retrieval mechanisms

[CTZZ02, NND02, KYUOl, ZND+Ol, Gru02, WPFY03, LMOl]. The scope al-

located for each node depends on the probability it will be updated. Thus a

better performance than the traditional allocation methods when updating can

be guaranteed.

5.2Bayesian Allocation Model

Notations: Let u be a node in a DTD, which has t child nodes. Let nodeiupe,

denote the type of the ith child node (1 :::;i :::;t), which occurs Xi times under

the node u -in corresponding XML document. E!=l Xi = z, where z equals to
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the total number of children under node u. Assume all sibling nodes of different

nodetupe, occur independently with probability (Ji' Let iii denote estimators of (Ji,

which can be obtained from semantic of the XML document or the statistics of

a sample dataset. Let n denote the range scope allocated for the z nodes under

node u. In the chapter, n = c x z, where c denotes the range enlarging factor.

5.2.1 Scope Allocation. Overview

-The scope allocation scheme works as follows; 1) parse DTD to obtain prior

information for each name type; then during the breadth first traversal of an

.. XML document, embed the tree into a complete K-ary tree, 2) root node of an

XML document is put in level 0 and labelled 1 in the complete K-ary tree; 3) for

each non-leaf node, calculate the number of children, denoted as z, and the types

of its children, denoted as t; 4) allocate scope for each child node using Bayesian

allocation model in lth level below its parent, satisfying 1 ~ pogk(C x z)l, c

denotes a range enlarging factor; 5) repeat 3) and 4) till breadth-first traversal

finishes.

5.2.2 Bayesian Allocation Model

Self-adaptive Bayesian allocation model is proposed to allocate scope for dynamic

XML documents on the basis of K-ary tree and Breadth-First Traversal. Pre-

allocating scope for dynamic XML data is a natural solution. The core of Bayesian

allocation model is on efficiently allocating scope for each node in actual dynamic

XML documents in a self-adaptive manner.

Bayesian allocation model The core of the work is on estimating probabil-

ity (Ji. In ViST [WPFY03], Haixun Wang et al. calculate (Ji only from available

DTD or statistics from sample set of XML documents, and consider (Ji as a con-
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stant, which is fixed without considering the actual documents. The objective

is self-adaptively allocating dynamic scope for each node according to its actual

probability in each document, not just using a fixed constant probability, which

is simply calculated from DTD or sample set of datasets.

The proposed Bayesian allocation model considers (}i as a random variable

not a constant, and chooses a proper prior distribution for (}i, which reflects the

observer's beliefs about the proper value (}i may take, and then updates these

,beliefs on the basis of the actual data observed. Thus estimators of (}i can accord

with the real world data in a self-adaptive manner. To summarise, the heuristics

guiding the allocation model is that the more child nodes of nodeujpe; a node u

has, the more likely for these child nodes being updated.

Given a node u with t children in a DTD. Each of them occurs Xi times, i

= (1, ..., t), in the corresponding XML document. Xi may be zero in an actual

XML document if a certain node is optional in DTD. Assume 1) all sibling nodes

of different nodetupe, occur independently with probability (}i ( i= l , ..., t) and

2) the probability of data insertion/deletion on these nodes occurs according to

the same probability. Thus, given scoperange n for the z nodes in an XML

document, if (}i (i = 1, ..., t) for the z nodes is known, a natural idea is allocating

scope for each node type according to probability (}i. For instance, if all the sibling

nodes with nodetsrpe, occur Xi times under a node u, and update probability is

(}i, then we allocate ~ for each node with nodeisrpe«,

In general the Bayesian allocation model is based on the following hypothesis

below:

• Sibling nodes of different nodetupe; occur independently with probability (}i

(i=l, 2, ..., t), where t denotes the node name types in the correspond DTD.

And all data insertion/deletion/update on the nodes of different nodetsrpe,
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occurs independently with the same probability ()i .

• ()i is a random variable, 7r(()i) is used to denotes prior distribution of ()i ,

which reflects the beliefs about what values parameters ()i may take. It is

assumed that ()i is a beta(ai' (3i) distribution

Whether or not using prior distribution in statistical inference is not only a

problem of mathematical technique but a problem of philosophy [Ber85] as well.

Thus the necessity of using prior distribution here is not discussed, using it by

the way of Bayesian inference theory. However, how to choose prior distribution

is another problem. Beta distribution is chosen as prior distribution because: 1)

density curve of beta distribution is plane curve when a » 1, f3 > 1, and 0 ~

value of beta distribution ~ 1, matching the definition of probability. Thus Bi,
prior information of ()i, is considered as mean value of beta distribution, which

means that the probability of node, occurs around Bi is greater than in other zone,

matching the hypothesis; 2) from lemma 1 posterior distribution ()ilxi is also a

beta distribution which is convenient to compute the posterior estimators of ()i.

Using other prior like norm distribution will result in complicated monte carlo

simulations and the computational complexity. In fact, using beta distribution

as prior distribution of parameter ()i in binomial distribution is very common in

practice ..[Ber85].

Theoretical proof In this model sample information of ()i is considered as

occurrence times Xi under a certain node u since it is assumed that a node

with nodetupe, occurs with same probability ()i in the hypotheses. From the

Hypotheses Xi observes binomial distribution, denoted as b(z, ()i). The updating

procedure is performed using Bayesian theorem, which states that the posterior

distribution ()ilxi, representing the beliefs on the observed data, is proportional

to the product of the prior distribution and the likelihood function.
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The following two lemmas are proved for the correctness of the Bayesian

allocation model:

Lemma 1. Assume 7r((}i) is betaica, f3i) (O:i » 1,f3i > 1), and sample infor-

mation variable Xi f"V b(z, (}i) (binomial distribution) with parameter (}i. Thus,

the posterior distribution function p((}ilxi) is also a beta(o:;, f3:) distribution, and

beta(O:i, f3i) is called conjugate prior distribution. The following result is obtained:

'where

Proof: Given

and its density function

. because Xi is binomial distribution, density function of Xi given parameter (}i

is:

Thus, according to Bayesian theorem posterior distribution of (}i is:
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where
k; = r(ai + Xi)r(,Bi + z - Xi)

r(ai +,Bi + Z)

hence:

and:

where
A' - ai + ,Bi
t - ai +,Bi + Z

Ai reflects on the importance balance between prior information and sample in-

formation.

Lemma 2. Assume prior distribution 7r(Oi), sample information Xi and square

loss function L(dilOi) is given. The Bayesian estimators of Oi, d7r(Xi), is the

expectation (or mean value) of posterior distribution 7r(Oilxi) which is written as:

Proof: The posterior risk of any decision function di = d(Xi) given square

loss function is :

obviously the function value is minimised iff:
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From Lemma 1

In this model it is assumed that E(()i) = iii which means that the prior probability

of node i occurs around iii is greater than in other zone. And from lemma 1

posterior expectation of ()i is obtained. E(()ilxi) is then used as estimators of ()i

according to Lemma 2.

Let Ai = 0.5, which implies that importance of prior information is the same as

that of sample information. Let ()~denote estimators of ()i given prior information

iii. From Lemma 1 and Lemma 2, we have:

(5.1)

Eq(5.1) proves that the prior information and sample information both contribute

to the final probability a node will be updated, which is better than ViST allo-

cation method which only utilises prior information only.

5.3 Algorithms

The above process of allocating scope in a complete K-ary tree with Bayesian al-

location model is called Bayesianization in this chapter. After a brief description

of how to compute the prior information from DTD, Algorithm 5.1 and Algo-

rithm 5.2 which describe the labelling process that combines with the Bayesian

theorem are presented in detail. Figure 5.3 gives an example of the proposed

Bayesian allocation model. How to compute these Pi (i=1, 2, 3, ...) is shown in

the following section.
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1< R: range of siblings >1

/ II \
typename, tyepname, tyepname, typename,
(m.• R*p) (m+Rtp]. R*P2) (m+R*(p)+P2). R*P3) (m+R*(p)+P2+P3). R*P4)

Figure 5.3: An Example of Bayesian Allocation Model

-5.3.1 Prior Information

Prior information about the occurrence probability of all the children below a

node u in DTD, denoted by PDTDu' is defined as follows:

where t is the number of different child nodes u has. Each PCi' i = 1, 2, ...,t,

can be computed from DTD Table 5.1, which defines the proportion of the scope

among the different cardinality based on the authors' experience. However, Table

5.1 can also be generated based on the actual users' observation or experience.

For example, the value 0.08 at (?, +) in Table 1 specifies the proportion

relationship 0.08:1 between child node type with "?" and child node type with

"+". AI~o the proportion 1.25:1 between child node type with "+" and the one

with "*". Thus we have 0.08:1:0.8 having three child nodes with type "T"; "+"
and "*". Notice that the data in Table 5.1 can be calculated from the statistic

information of the sample XML documents.

Actually, Table 5,.1 reflects the belief on prior information. (alb) is trans-

formed into (a,b) to minimise the computational complexity. Consider, for ex-

ample, given <!ELEMENT book (title?, information+, author")'>, the propor-

tion among these three nodetypes is 0.08:1:0.8, to normalise, Ptitle? = O.08~~~O.8 =
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* + ?

* 1 0.8 10

+ 1.25 1 12.5

? 0.1 0.081

Table 5.1: Prior Information on the Cardinality Proportion

0.043, Pinformation+ = 0.08+
1
1+0.8= 0.532 and Pauthor* = 0.081·f+0.8 = 0.425. There-

fore, PDTDbook = (0.043, 0.532, 0.425).

5.3.2 Algorithms

As in Algorithm 5.1 and Algorithm 5.2, the specific Bayesian allocation model is

light-weight and self-adaptive for each node in the XML document tree. The time

complexity of the algorithms is O(n), depending on the number of the nodes in a

tree, and the space complexity is linear as well. It implies that the algorithm guar-

antees both time and space complexity efficiency while allocating self-adaptive

scope for each node, which is not provided by the previous methods. The perfor-

mance results are shown in section 5.4.

Consider, for example, given <!ELEMENT book (title?, information+, author

*», we get PDTDbook = (0.043, 0.532, 0.425). If in an actual XML document,

a node named "book" has 1 "title" child node, 2 "information" child nodes,

however, 10 "author" child nodes. Suppose the range enlarging factor. is 100,

thus these 13 child nodes are allocated a scope 13*100= 1300 (n = c x Z, section

2). Thus their actual probability should be <0.0599 = ((0.043 + 1~)/2), 0.4198 =
((0.532 + 123)/2),0.5971 = ((0.425 + ~~)/2) >, and the scope allocated for each

node are 0.0599*1300= 77 for "title" node, 0.4198 * 1300= 545 for "information"

nodes, and 0.5971 * 1300 = 776 for "author" nodes. Notice that the allocation
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input : T: Data tree of XML document; Queue: queue of

nodes; PDTD: the DTD prior distribution generated
output: BAM Allocated Document

while !Queue. empty() do

u +- Queue.fetchf);

list +- listofchildren (u );

z +- numofchildren(list);

t +- typeofchildren(list);

BayesInference(p DTDu' Z, t, list);

Queue.insert (list);

Algorithm 5.1: Bayesianization

input : PDTDu: prior information of node u; z: number of

child nodes; t: number of child node types, list: list

of nodes.
output: BAM allocated scope 'of u

level = [log, (c X z) 1;
n = klevel;

for i +- 1 to t do
PDTDu·+xi/z

Pi +- 2

subrtuiqe; +- n x Pi;

for j +- 1 to z in list do

l
sulrrangenodej +- subramqe, / ti;

seqnumnodej +- (E~-lsubromqe, +
""j-l J,._ )L...tl SUVI angenodej ;

Algorithm 5.2: BayesInference
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Figure 5.4: Insert ratio. vs. Failure ratioc: C=50

scopes of these three nodes accord to their actual occurrence probability.

5.4 Performance Experiments

5.4.1 Experiments

The experiments were conducted on a PC with Pentium III CPU 1.2GHZ and

512 MB main memory. The proposed method Bayesian allocation model and the

conventional fixed allocation scheme for comparison purpose are implemented.

The synthetic XML documents are generated using Sun XML instance generator

[Sun03] utilising various DTDs, i.e. ACM Sigmod Record DTD [ACM], and

public XML benchmark database XMARK [BCF+].

Update performance
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Th focus is on studying the update performance in dynamic XML documents.

200 XML documents with maximum depth 8 for experiments are generated. Five

different experiments are performed with different range enlarging factors. In the

experiments, respectively setting the range enlarging factor c = 50, 75, 100, 125

and 150 for these documents in the set of experiments. An allocation scheme

similar to ViST and the proposed allocation scheme tailored to ViST are imple-

mented. In ViST, it allocates scope for each type of child nodes directly from

DTD without constructing trie-like tree. However, for comparison purpose, the

trie-like tree is physically constructed, and then BAM is applied to allocate scope

for each node in the trie-like tree.

In the experiments, m nodes are randomly chosen from the generated datasets.

Suppose each node, (i = 1, ..., m) has t different node name types. Firstly

the prior information for each node, from the corresponding DTD is obtained,

denoted as PDTDnode' = (P1, P2, ... , Pt). Then t independent beta distribution are•
used to generate t random numbers, denoted as (1'1, 1'2, ... , rt). It is proved that

° ~ 1'1,1'2, ... , rt < 1. Thirdly the insertion/deletion probability for each node type

are generated: Pi = ; ,where s = 2:~=1ri, which obeys the hypotheses and is fair

to both ViST and ViST with BAM when the probability of insertion/deletion is

concerned. Finally the position a node should be inserted/deleted are randomly

generated.

It is defined that a "failure" occurs when a position has been allocated during

inserting, and an "overflow" when pre-allocated space for a certain node is used

up. During the experiments, the "failure" times are recorded. Eq(5.2) and eq(5.3)

are presented to clarify the experimental results shown in Figure 5.8.
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{

I,
failureratio = .

hmes failu.re

timesinsert '

when "overflow" occurs,
(5.2)

otherwise.

. timeSinsert
'lnSertmtio = S

pace free
(5.3)

Notice that BAM improves at least 49.34% comparing to the conventional

ViST method, for the scope allocated for each node accords to the probability it

would be updated, which further depends not only on the prior information, i.e.

statistical information from sample datasets, but combining the actual probability

of its occurrence as well. Especially, when the probability of inserting/deleting a

node in an XML document is much greater than the average prior information,

BAM performs much more better than ViST method.

5.5 Summary

In the chapter, a general self-adaptive labelling scheme for dynamic XML docu-

ments is studied. Bayesian allocation model can easily be adapted to the state-of-

the-art data retrieval methods to provide support for dynamic XML documents.

Through the experiments, it is demonstrated that the proposed model can effi-

ciently support updating for the dynamic XML documents, at least 49.34% better

than the conventional methods, while not affecting their original query speed.

120



CHAPTER 6

Conclusion

What we call the beginning is often the end. And to make an end is to make a

beginning. The end is where we start from.

- Thomas Stearns Eliot

Previous chapters have discussed in detail the fundamental mechanisms of accel-

erating data retrieval steps in XML documents. In this chapter, the work that has

been done and the major theoretical results obtained are summarised. Several

promising research directions are discussed afterwards.

6.1 Prototype

A prototype implementation has been developed in order to test some of these

ideas, and to demonstrate the practical use of these three interconnected tech-

niques. The prototype made use of the B+'free library in Berkeley DB provided

by Sleepycat software and the WordNet package. Part of the results are analysed

in Matlab. One limitation of the prototype is that it needs some manual process-

ing to transform XPath queries. Another limitation is that the optimised cut-off

value is set by the user's knowledge.

The prototype architecture is shown in Figure 6.1. The data is firstly clustered

(Chapter 3) and is divided into a certain number of clusters with a optimised cut-
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Figure 6.1: Prototype Architecture

3 Files: 1."",\. 2 .... 1. 1.k
Generating cOIIIpOnent:sfor 1.,...1
234.239s
Generating COIIIpOnentsfor 2.,...\
348.6985
Generating coowponents for 3.,...\
489.5455
Matrix is in 1. txt

Figure 6.2: Prototype: Screenshot of Clustering
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Figure 6.3: Prototype: Screenshot of Indexing

off value. Each cluster is then pumped into the indexing process. In certain case

the data can be directly indexed without the clustering process. The indexing

process (Chapter 4 and Chapter 5) indexes the clusters and generates the cor-

responding index for each cluster. When a query is issued, the querying process

consults to index and find the answers. When the data is updated, the indexing

process (Chapter 5) updates the index accordingly. Several figures show how the

prototype works: Figure 6.2 shows the prototype is clustering three synthetic

XML files and the similarity matrix is stored in a file called "1.txt". The clus-

tering is processed in Matlab using the cut-off value 0.85. Figure 6.3 demos a

screenshot of the trie index structure which is core of Chapter 4. Figure 6.4 shows

a result of intensive updating operations using different enlarge constants; Odd

lines show the failure ratio of the traditional method. Even lines show the failure

ratio of the proposed BAM.
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Figure 6.4: Prototype: Screenshot of Updating
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6.2 General Review of Work and Conclusion

As the World Wide Web is gradually becoming one of the most important com-

munication media, there is an exponential increase in the amount of 'electronic

data which are in a web-compliant format such as HTML [RHJ99], SGML. The

emergence of XML [W3COO]has remarkably facilitated the above electronic data

publication by providing a simple syntax for data which is both machine- and

human-understandable. Though introduced in a document community, XML

is quickly gaining popularity in data representation and exchange on the Web

[Suc98]. With such growing importance of XML in data representation and ex-

change in large-scale scientific and commercial applications, substantial research

efforts have been made to provide efficient querying mechanisms to retrieve data

from XML-formatted data, which is core of efficiently managing XML large vol-

umes of XML data. However, due to its fundamentally different tree data model

and query languages, the study of retrieving data from XML documents is inad-

equate.

This thesis has thus focuses on examining the problems of accelerating data

retrieval steps in XML documents, which is an essential part of current XML

research efforts. This thesis uses a divide-and-conquer strategy: Chapter 3 (di-
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vide step) discusses an accurate clustering mechanism [SW03] to group similar

schemaless XML documents based on a new semantic component model. This

technique uses only 30% information of an XML document and can guarantee

almost 90% correctness of the clustering results according to the experiments.

Chapter 4 (conquer step 1) proposes a novel and efficient querying method which

evaluates a twig query as a whole unit without semantic false and false alarms

based on a novel pre-processing mechanism for both XML documents and queries.

This technique initiatively and theoretically transforms both an XML document

and an XPath query into geometric document sequence and geometric query

sequence with space complexity O(n) . According to the experiments, the perfor-

mance of retrieving data from XML documents is increased 23.75% on average.

Chapter 5 (conquer step 2) presents a robust allocation method [SFSW04] to

support update functions in dynamic XML documents based on a new alloca-

tion model. This technique self-adaptively combines both prior information from

either DTD or sample XML documents and the actual XML documents when

pre-allocating space for a node. According to the experiments, this technique de-

creases the update failure ratio for at least .49.34% comparing to the conventional

fixed allocation scheme.

6.2.1 Review of Chapter 3 and Conclusion

Data clustering has been widely recognised as a powerful data mining technique

and contributes to a number of areas of research including data mining, statistics,

machine learning, spatial database, biology and markets [Dun03]. Chapter 3 dis-

cusses the problem of how to accurately cluster schemaless XML documents based

on their semantics. The focus in this thesis is accuracy. Accurately grouping sim-

ilar schemaless XML documents is a preparation step (divide step) to efficiently
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index and query XML data in Chapter 4. A novel semantic component model

is proposed to model the semantic implied in an XML document. According to

the experiments, the number of the semantic components generated is less than

30% of the nodes of an XML document. However, it provides a subtle method to

grasp the implicit semantic expressed in an XML document and minimises the

loss of semantic information due to the trade-off between computational efficiency

and semantical accuracy, enabling us to devise a set of heuristic algorithms to

compute the degree of semantic similarity among a collection of schemaless XML

documents. Algorithm DocSimilarity presents a heuristic mechanism to solve

the problem of isomorphic tree and tree inclusion detection, which can not be

achieved using the traditional edit distance algorithms. Regarding accuracy, a

hierarchical clustering technique is utilised to construct final clusters based on the

similarity matrix generated. We argue that "offline" clustering XML documents

using a hierarchical clustering technique as a preparation step is acceptable in

most systems because hierarchical clustering has been considered as the best qual-

ity clustering approach. According to the experiments, the semantic component

model guarantees almost 90% correctness of the clustering results.

To summarise, this thesis demonstrates that the semantic component model

and the corresponding heuristic algorithms can be utilised to accurately construct

clusters for data-centric XML data.

6.2.2 Review of Chapter 4 and Conclusion

Efficient XML data retrieval is an essential part of current XML research and

plays an important role in managing a large volume of XML documents as well

as many other XML applications. In Chapter 4, the problem of retrieving data

from XML documents by using XPath queries is studied. A novel mechanism
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called geometric sequence model to transform both XML documents and XPath

queries into geometric sequences is proposed. In this thesis, it is theoretically

proved in Theorem 4 that the geometric sequence model uniquely transforms

an XML document into a numbered geometric document sequence, and strictly

guarantees the linear size complexity (Le. 2n - 1, where n stands for the number

of nodes in a document tree) of the document sequence. This model also trans-

forms an XPath query into a geometric query sequence (Le. not numbered) and

preserves all the essential axes information using additional markup characters

(Le. 'p' and 'u') with the same space complexity. The XPath evaluation problem

is thus turned into a subsequence matching problem and theoretically proved in

Theorem 1, 2 and 3. This new model enables us to devise two join- and false-free

algorithms: GeoMatching and OptGeoMatching based on an index structure us-

ing the trie data structure, which is fully connected with the clusters generated

in Chapter 3. GeoMatching maintains a status stack and a set of sequence stack

during the process of top-down evaluating a geometric query sequence. OptGeo-

Matching considers to reduce the length 'of the geometric query sequence which

is an important factor in evaluating an XPath query, and maintains a set of

symbol stacks during the process of bottom-up evaluating a geometric query se-

quence. Regarding efficiency,while both XML documents and XPath queries are

transformed into sequences, the algorithms can significantly accelerate the data

retrieval steps in XML documents when XPath queries are either content-related

or structure-centered. When XPath queries are related to the content, bottom-

up OptGeoMatching can be utilised to evaluate because content constraints can

greatly reduce the nt,lmber of nodes being searched. Otherwise, top-down Geo-

Matching can be used if XPath queries are not concerned on the content. Com-

paring to the conventional methods, OptGeoMatching significantly improves the

performance of data retrieval steps in both real world data and synthetic data
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at least 23.75% on average, and decreases the I/O requests at least 31.29% on

average.

To summarise, this thesis demonstrates that the geometric sequence model

and its two stack-based algorithms (top-down GeoMatching and bottom-up Opt-

GeoMatching) can support XPath query evaluation in XML document more ef-

ficiently than the conventional methods.

6.2.3 Review of Chapter 5 and Conclusion

To fully evolve XML into a universal data representation and exchange format,

"the capability of modifying XML document is indispensable. In Chapter 5, the

problem of supporting update operations in XML documents is addressed. A

new allocation model called Bayesian Allocation Model for the index structure

generated in Chapter 4 is introduced. The Bayesian allocation model is based on

the complete k-ary tree data structure and Bayesian inference, a technique inten-

sively used in Statistics and Artificial Intelligence, The focus is to self-adaptively

support update functions in an XML document. Chapter 5 theoretically proves

the correctness of the Bayesian allocation' model with a corresponding labelling

scheme on the basis of level traversal of a complete k-ary tree. It also theoret-

ically demonstrates that the Bayesian allocation model finds the best balance

between prior information (Le. sample information of DTDs) and posterior in-

formation (Le. real-world XML documents), and works self-adaptively since the

space quota allocated for a certain node has been considered on the basis of both

prior information and posterior information. According to the experiments, the

proposed Bayesian allocation model decreases the update failure ratio for at least

49.34% comparing to the conventional fixed allocation scheme. Additionally, it

can be applied as a general method for most of the index structures.
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To summarise, this thesis demonstrates that the Bayesian allocation model

is an efficient step in supporting update functions in XML documents and a

well-designed supporting step in XML data retrieval process.

XML employs a tree data model and new query languages. These require new

mechanisms to support efficient XML data retrieval purpose. This thesis thus

presents advanced and novel solutions to the interconnected document clustering,

query processing and document updating problems, which are core of current

fCMLresearch, and achieves the original goal: accelerating data retrieval steps in

XML documents.

6.3 Future Research Directions

In this section, several future research directions in the area of XML research are

proposed. The end of this thesis marks a new beginning of some opportunities.

XML Applied in Sensor Network A.sensor network consists of sensor nodes

with a short-range radio and on-board processing capability. The purpose

is to process some high-level sensing tasks in a collaborative fashion, and is

periodically queried by an external source to report a summary of the sensed

data (Le. in XML format)/tasks. Sensor network poses the following chal-

lenges since standard DBMS assumptions about the reliability, availability,

interface, and requirements of data sources do not apply to sensors. First

of all, sensor network is dynamic and mobile. How to accelerate the per-

formance of processing and querying streaming data (Le. data in an XML

format that is seen only once in a fixed order) generated by sensors in real-

time remains open. We have some initial results in processing streaming

data [DGGR02, MSHR02, FLBC02, PC03, GGR03, Gz03, ABB+04]. Sec-
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ondly, sensors in a sensor network is physically distributed and connected

through the network. To query distributed sensors is like the evaluation of

an XPath query on a single XML document that has been fragmented across

multiple sites [1001, BKK+Ol, Suc02, DNGS03]. Further improvements are

still in need.

Security and Privacy in XML Documents Security and privacy is currently

one of the biggest concerns in XML research because the original specifi-

cations of its underlying technologies did not even mention security which

targets to guarantee availability, integrity, confidentiality, authentication,

and accountability. Researches in the aspects of a secured XML envi-

ronment are still in a preliminary stage. Therefore, many critical prob-

lems remain open. Several specification for XML data have been pro-

posed [W3COla, W3C02b, W3C02a, OAS04], and some research efforts

have been carried out on the issues of managing secure XML documents

[AFOO,CAYLS02, CFGR02, FJ03, BFD+04, FCG04]. First of all, there

is no known index that support secure XML documents. If such an index

were available, an XPath query could be efficiently processed by probing

the index. However, to achieve a secure and encrypted environment, fur-

ther work is in need to support such purpose. Secondly, if such an index

could be achieved, how to fully exploit XPath filtering technique or other

advance techniques to enhance the performance of evaluating both static

and streaming XML data remain open.

XML Evolution and Versioning Web is a quickly evolving information source

and makes the data accessing a difficult task. Researches in accessing dy-

namic XML data in a dynamically evolving Web environment are inad-

equate. Some preliminary research efforts have been proposed to tackle
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these problems [TIHW01, CKM02, CTZZ01, CTZZ02, CVZ+02, CTZ02].

However, there are still issues waiting for better solutions. First of all,

there is no ideal storage solution for multi-version XML management sys-

tem to avoid duplicate storage of shared fragments. To ensure consistency

(Le. link consistency, content consistency etc.) in dynamic XML data is

still open. Secondly, if there were solutions for consistency problem, ad-

vanced techniques for efficient data retrieval purpose should be developed

(Le. an advanced consistency-preserved indexing mechanism). The core

of this problem is how to query multi-version XML documents of the same

document. Thirdly, since data mining is an essential task for both academia

and industry, how to support data mining in a multi-version XML document

environment and maintain logical and physical correctness is still open.
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