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Abstract 
 
 

Many areas of the planet lack the infrastructure required to make accurate and 

timely estimations of rainfall. This problem is especially acute in sub-Saharan 

Africa, where a paucity of rain recording radar and sufficiently dense raingauge 

networks combine with highly variable rainfall, a reliance on agriculture that is 

predominantly rain fed and systems that are prone to flooding and drought. 

Satellite Rainfall Estimates (SRFE) are useful as they can provide additional 

spatial and temporal information to drive various downstream environmental 

models and early warning systems (EWS). However, when operating at higher 

spatial and temporal resolutions SRFE contain large uncertainties which 

propagate through the downstream models. 

 

This thesis uses the TAMSAT1 SRFE algorithm developed by Teo (2006) to 

estimate the rainfall over a large, data sparse and heterogenous catchment in 

the Senegal Basin. The uncertainty within the TAMSAT1 SRFE is represented 

using a set of ensemble estimates, each unique but equiprobable based on the 

full conditional distribution of the recorded rainfall, produced using the TAMSIM 

algorithm, also developed by Teo (2006). The ensemble rainfall estimates were 

then used in turn to drive a Pitman Rainfall-Runoff model of the catchment 

hydrology. 

 

The use of ensemble rainfall estimates was shown to be incompatible with the 

pre-calibrated parameter values for the hydrological model. A novel approach, 

the EnsAll method, was developed to calibrate the hydrological model which 

incorporated each individual ensemble member. The EnsAll calibrated model 



showed the greatest skill when driven by the ensemble rainfall estimates and 

little bias. A comparison of the hydrographs produced from TAMSIM ensemble 

rainfall estimates and that from an ensemble of perturbed TAMSAT1 estimates 

showed that the full spatio-temporally distributed method used by TAMSIM is 

superior to a simpler perturbation method for characterizing SRFE uncertainty. 

 

Overall, the SRFE used were shown to outperform the rainfall estimates 

produced from the sparse raingauge network as a hydrological model driver. 

However, they did demonstrate a lack of ability to represent the large 

interseasonal variations in rainfall resulting in large systematic biases. These 

biases were observed propagating directly to the modelled hydrological ouput. 
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1 
Introduction 

 

1.1 - Satellite Rainfall Estimation and Hydrological Modelling 

 

Rainfall estimation is most accurately and timely performed using ground 

instrumentation - such as raingauges or radar – however, in many areas of the 

planet – such as sub-Saharan Africa – large regions are covered only by sparse 

raingauge networks and often with no rain recording radar. Satellite Rainfall 

Estimates (SRFE) offer a substitute for the ground instrumentation, able to 

estimate rainfall at a high spatial and temporal resolution at real-time or near 

real-time, but these estimates contain high uncertainties that need to be 

measured and characterised. The use of ensemble estimates of rainfall 

provides a useful method of representing the uncertainty in the SRFE which can 

then be used as a direct input for downstream applications, such as crop yield 

or hydrological models. When using a deterministic hydrological model, driven 

by an ensemble input, an appropriate calibration of the parameters needs to be 

established. 

 

Gebremichael and Hossain (2010) described how the terms “satellite rainfall” 

and “surface hydrology” have been well established over decades of research, 

yet the combination of the two, which was termed “satellite rainfall applications 
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for surface hydrology”, was a relatively new topic. Although Gebremichael and 

Hossain (2010) acknowledged that SRFE have been used to drive models 

representing surface hydrology processes, the two fields have only marginally 

intersected during their development. 

 

The connection of the two fields and the development of the new topic led 

Gebremichael and Hossain (2010) to propose a series of questions pertinent to 

this new discipline:  

 

1. Which SRFE is best for a specific application? 

2. What is the optimum SRFE resolution for a specific application? 

3. How much uncertainty is there within the SRFE and how does this 

propagate to the surface hydrology application? 

4. Where can data be acquired for research and operational applications? 

5. How are SRFE developed and how do they vary from one another? 

 

While each of the five questions posed are important to this field, the focus of 

this thesis is an attempt to address the third question: the issue of quantifying 

SRFE uncertainty and the impact it has on modelling the hydrology of a river 

basin. 

 

SRFE contain significant uncertainties, principally because they rely upon an 

indirect relationship between rainfall and the data recorded by the satellite, most 

often thermal infrared imagery of cloud top temperature, or microwave back 

scatter. This leads to three main uncertainties in any SRFE:  
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1. When it is raining 

2. Where it is raining 

3. How much it is raining – i.e., the rain rate 

 

The full extent and implications of SRFE uncertainty are discussed in Chapters 

2 and 3, but the Tropical Applications of Meteorology using SATellites 

(TAMSAT) method provides an example of how the three types of uncertainty 

emerge within a SRFE. Dugdale et al. (1991) described how TAMSAT 

estimates rainfall using a calibrated relationship between the temperatures of 

cloud tops – as recorded by Meteosat thermal infrared (TIR) sensors – and 

rainfall – as recorded by ground raingauges. In order to do so it has to makes 

two assumptions: 

 

1. All clouds are convective 

2. All convective clouds are raining 

 

These assumptions come from the area-time integral (ATI) method that informs 

the TAMSAT rainfall estimation, which relies on a statistical relationship 

between cold cloud duration, coverage and areal rainfall (Kebe et al. 2004). 

 

The use of ensemble estimates provides an effective way of characterising and 

representing the uncertainty in rain fields. A notable experiment in this area is 

the Hydrological Ensemble Prediction Experiment (HEPEX), led by the National 

Oceanic and Atmospheric Administration (NOAA) (Schaake et al., 2007).  The 
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goal of HEPEX is to produce an end-to-end system that accounts for all the 

uncertainties inherent within streamflow forecasting. A conceptual diagram of 

one possible system is shown in Figure 1.1. 

 

 

Figure 1.1 – A conceptual diagram of a possible end-to-end meteorological-hydrological 

ensemble streamflow system. The system allows for all sources of uncertainty to be 

accounted for (from Schaake et al., 2007). 
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Although HEPEX is not explicitly aimed at the use of SRFE - the weather-

climate ensembles shown in Figure 1.1 are derived from forecasts using 

satellite and radar data, amongst other sets of data which include SRFE 

(Schaake et al., 2007) – the principles and the processes shown in Figure 1.1 

are useful for informing research into the use of SRFE in hydrological modelling 

and accounting for uncertainties. 

 

The production of an ensemble estimate requires the use of a stochastic 

element, where for a rainfall estimate the uncertainty is measured and a random 

element is used to produce a multitude of estimates from within these bounds of 

uncertainty. A major advantage of the ensemble approach is that it produces 

estimates of rainfall that resemble a deterministic estimate allowing for an 

almost direct application to a downstream model, often designed to operate 

using a single, deterministic input.  Ensemble inputs provide an easy and useful 

method of demonstrating the propagation of input uncertainty in a hydrological 

model, as each can be applied as a separate input and an ensemble of model 

outputs can be extracted (Bellerby and Sun, 2005, Germann et al., 2007). 

 

The simplest method of producing an ensemble estimate of rainfall is to perturb 

the estimation at each timestep by an amount drawn from a distribution 

reflecting the uncertainty. This can be achieved by using either an additive 

method, and/or a multiplicative method, where the deterministic estimate is 

altered by randomly applying the perturbing factor. For the purpose of this 

thesis, all such methods are referred to as perturbation methods. 
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The major issue with perturbation methods is that they are only capable of 

representing the third facet of the main sources of uncertainty previously 

detailed for SRFE – the rain rate – and a perturbation method is unable to 

account for intermittencies in the rainfall field. In addition, an ensemble estimate 

produced using a perturbation estimate is dependent on a deterministic 

estimate. An alternative approach for producing ensemble SRFE is the use of a 

fully spatio-temporally distributed stochastic approach, such as Bellerby and 

Sun (2005), Teo (2006) and Teo and Grimes (2007), which allow for a full 

representation of the spatial and temporal intermittencies in the rainfall field as 

well as uncertainty about the rainfall rate. These methods are based on the full 

conditional distribution of the rainfall in respect to the input data, and therefore 

are independent on the deterministic SRFE. 

 

Although there have been previous studies into the impacts of input uncertainty 

on hydrological models, many have been limited to stochastic perturbations, of 

a given magnitude, of the input, without attempting to fully characterise the error 

(McMillan et al., 2011). Given the complex, non-linear, nature of rainfall and 

hydrological models, such an approach is not sufficiently detailed, and a critical 

research priority must be for a full analysis of rainfall input uncertainty (McMillan 

et al., 2011).  

 

Vrugt et al. (2008) provide a good example of how past attempts to bridge the 

gaps between SRFE and hydrological modelling have fallen short, despite best 

intentions. The Differential Evolution Adaptive Metropolis (DREAM) method was 

used to determine Bayesian statistics about the model parameters when being 
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driven by rainfall inputs that characterised the input error. The input error was 

characterised using multipliers on individual storm events.  

 

Hong et al. (2006) used the Precipitation Estimation from Remote Sensed 

Information using Artificial Neural Network – Cloud Classification System 

(PERSIANN-CSS) algorithm to drive the HyMod hydrological model. The input 

uncertainty was characterised by calculating error bounds at 10 rainfall intensity 

bands, and producing ensemble members from within these bounds.  Although 

the rain intensity-dependent error approach employed is an improvement on a 

simpler multiplier method, such as Vrugt et al. (2008), it still does not 

adequately reflect the uncertainty within SRFE as it only addresses rainfall rate 

uncertainty. 

 

The approach of using perturbation methods to try and characterise input 

uncertainty, as used by Vrugt et al. (2008) and Hong et al. (2006), is, as 

suggested by McMillan et al. (2011), not adequate. Although it simulates 

possible uncertainty inherent in estimating rainfall rate, and total input volume, it 

cannot simulate the uncertainties inherent in estimating both the timing of 

rainfall and its location. 

 

Bellerby and Sun (2005) presented a fully spatio-temporally distributed 

stochastic ensemble approach for characterising uncertainty in a multi-platform 

SRFE but, although suitable for such a use, the ensemble outputs were never 

used to drive a downstream application. Using a similar method, Teo (2006) 

and Teo and Grimes (2007) demonstrated that the TAMSIM algorithm could 
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successfully characterise the full range of uncertainties within a SFRE. The 

approach produced ensemble representations of the rainfall field at daily 

timesteps which represented uncertainty around the location, timing and rate of 

rainfall. The ensemble outputs were used to drive a crop yield model, 

demonstrating the influence of the propagation of input uncertainty. This thesis 

proposes the use of the TAMSIM algorithm to produce ensemble rainfall input to 

drive a hydrological model, and assess how this full characterisation of 

uncertainty propagates through the model. 

 

As highlighted by Gebremichael and Hossain (2010) studies have often 

focussed on one aspect of the field when looking at satellite rainfall applications 

for surface hydrology. For example, Hossain et al. (2004) characterised the 

retrieval and sampling errors within passive microwave (PM) derived products, 

and applied this to the TOPMODEL hydrological model which was only 

calibrated using a basin average of the rainfall recorded by raingauges. 

Although this approach demonstrates how SRFE uncertainty can be 

characterised and applied to a surface hydrology model, it does not consider 

the surface hydrology facet of the field as the study did not attempt to separate 

the sensitivity of TOPMODEL to the error, from its sensitivity to its input-

parameter interactions. 

 

The key issue that continues to separate the two fields of satellite rainfall 

estimation and hydrology is a matter of assumptions. Vrugt et al. (2008) 

suggested that a traditional approach to hydrological model calibration makes 

the assumption that both input and output data are free from uncertainty, and 
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that any errors are due to parameter set selection. Similar assumptions are 

made in the approach to hydrometeorology, with the assumption being that all 

uncertainty is within the SRFE, and any error in the hydrological model is 

negligible. 

 

The use of ensemble inputs for the same temporal period is likely to have an 

influence on the calibration of a hydrological model, with input uncertainties 

potentially interacting with model structure and parameter uncertainty in 

complex and non-Gaussian ways. The traditional approach to calibration of a 

hydrological model uses the minimisation of one or more error scores (objective 

functions), against a single deterministic input, and for the use with ensemble 

inputs there remains an unanswered question of what constitutes an 

appropriate calibration. This thesis demonstrates how calibration against 

deterministic estimates of rainfall, for the study period, produce 

parameterisations of the Pitman model that are not suitable for use with 

ensemble inputs, and proposes the EnsAll parameterisation that incorporates 

each individual ensemble member – this parameterisation showed superior 

performance to the alternative methods and little bias. 

 

1.2 – Using Satellites to Estimate Rainfall in Africa 

 

SRFEs are becoming increasingly important in rainfall monitoring and prediction 

in Africa.  The African continent poses a particular problem to many fields, in 

that many regions face severe insecurity in regards to food provision and water 

resources - which are likely to increase with predicted climatic changes 
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(Commission for Africa, 2010) – and driven by variations in rainfall.  Such 

extreme events in rainfall can lead to devastating floods and droughts, such as 

the ‘Horn of Africa’ drought which struck the eastern Sahel region in 2011 

(Hillier and Dempsey, 2012). 

 

Although Early Warning Systems (EWS) are in place to help predict and 

manage potential humanitarian disasters resulting from the extreme variations 

in rainfall, such as the Famine Early Warning Systems Network (FEWSNET) 

(Hillier and Dempsey, 2012), they rely on timely and accurate rainfall estimation.  

This second issue, one of data availability, is another significant challenge 

facing those working in Africa, with Washington et al. (2006) describing the 

provision of ground instrumentation recording rainfall in Africa as historically 

poor, with few radar and sparse raingauge networks. 

 

To fill this void many researchers have turned to using SRFE, as these can 

provide increased spatial and temporal resolution, and can be provided in near 

real-time. Examples of services that provide daily or dekadal (10-day total) 

rainfall estimates for the whole of Africa are the Climate Prediction Centre 

(CPC) and TAMSAT, both of which are freely accessible on the internet (Teo, 

2006). 
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1.3 – Thesis Aims 

 

The main aims of this thesis can be summarised as: 

 

1. Characterising the SRFE uncertainty over a large, data sparse, 

heterogenous area, using a fully spatio-temporally distributed stochastic 

ensemble method. 

 

2. Investigating how this uncertainty in the SRFE propagates through as 

uncertainty in a hydrological model. 

 

3. Investigating how the use of ensemble rainfall inputs interacts with the 

calibration of a hydrological model. 

 

In addressing the three aims above, there exists a number of research 

questions that require addressing in order to inform the research. Principal 

amongst these are:  

 

a) To what extent do the ensemble SRFE reproduce the characteristics of 

the rainfall fields for the study area? 

 

b) How does the uncertainty in the SRFE manifest – error, spatial bias, 

temporal bias? 

 

c) How can a hydrological model be best calibrated for use with ensemble 

rainfall inputs? 
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d) With an appropriate calibration, which of the sources of uncertainty are 

evident in the hydrological model output when driven by the ensemble 

rainfall inputs? 

 

e) How does the use of a fully spatio-temporally distributed method of 

uncertainty characterisation compare to a perturbation method for 

modelling input uncertainty in a hydrological model? 

 

f) What influence does using ensemble rainfall inputs have on the 

hydrological model calibration and behaviour? 

 

1.4 – Experimental Process and Thesis Plan 

 

The choice of study area, data and methods that are used in this thesis position 

the experimentation directly in their operational context. The double Kriging, 

TAMSAT1 and TAMSIM methods have been tested and validated, 

experimentally and for the Gambian catchment, in Teo (2006) and this thesis 

does not seek to reproduce this, rather it seeks to use those methods in an area 

where they might be used operationally. The study area chosen is large, 

heterogeneous and very sparsely covered by ground instrumentation used to 

measure rainfall, which will produce an abundance of uncertainties that can be 

measured. It should be noted that the data used will not provide the best 

representation of the methods employed – this has been the domain of previous 

studies – the aim of this thesis is to characterise the uncertainty in a SRFE and 

investigate how it propagates through a downstream application, not to show 
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how well a SRFE performs as a driver for the model, which has been previously 

shown (see Chapter 2). The choice of study area and data will deliberately 

stretch the methods adopted to the limits of their performance, as they might be 

when used operationally in sub-Saharan Africa. 

 

Chapter 3 will detail the sources of raw data and these are summarised below:  

 

 Raingauge data from 81 gauges across the Senegal Basin area for the 

period covering 1986-1996. 

 

 Discharge data from seven discharge stations, providing mixed coverage 

for the period 1986-2005. 

 

 Cold Cloud Duration (CCD) data covering the study area for the periods 

above, extracted from Meteosat thermal infrared (TIR) data, at a daily 

timestep with a spatial resolution of 0.05°. 

 

The experimental process of this thesis can be seen summarised in Figure 1.2. 

This details the stages from the collection of the raw raingauge data, and its 

interpolation into a grid that is compatible with the satellite CCD data collected. 

The satellite data is calibrated using the interpolated raingauge data to produce 

a TAMSAT1 deterministic estimate of rainfall, and a TAMSIM (using the SIMU 

programme) stochastic ensemble estimate of rainfall. The rainfall estimates, 

from the raingauge and satellite data, are used as an input for a lumped 

hydrological model, both to drive it and to calibrate it. 
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Figure 1.2 – Flow chart demonstrating the process used in this thesis, the main steps, 

and the methods employed. Blue boxes indicate the input data, green boxes the main 

steps and methods, whilst the brown box indicates the output. 

 

The remainder of this thesis demonstrates the fulfilment of the process above. 

Chapter 2 investigates the literature associated with the emerging field of 

satellite rainfall applications for surface hydrology (Gebremichael and Hossain, 

2010), focussing particularly on issues regarding the influence and propagation 

of input uncertainty on hydrological modelling when using SRFE. 

 

Chapter 3 discusses the issues raised in this thesis in their geographical context 

and the Sahel region. The chapter looks broadly at the pressing need for 

accurate environmental models in the area, and in turn the requirement for 

timely rainfall estimations to drive these models – the role of uncertainty is 
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explored, highlighting the importance of accurate and proper uncertainty 

characterisation, its clear communication and the implications for risk 

management. The Senegal Basin study area, and the Bakoye catchment within 

it, are explored focussing on the physical attributes and climate of the area, and 

discussing previous relevant studies in the region. Finally the raw data available 

to the thesis is described, showing how it reflects the physical characteristics 

previously detailed. 

 

Chapter 4 focuses on the spatial interpolation of the raingauge data and the 

double Kriging (DK) method used to do this, demonstrating how the method is 

superior to ordinary Kriging (OK), both in its ability to account for fractional 

rainfall fields but also in its ability to better match the initial raingauge data at 

individual gauge locations, and also as an average for the Bakoye catchment. 

 

Chapter 5 highlights the SRFE methods used, showing the calibration of the 

both the TAMSAT1 and TAMSIM methods and their use in generating daily 

rainfall fields for the Senegal Basin, and the Bakoye catchment average rainfall 

estimates.  

 

Chapter 6 demonstrates the hydrological modelling methods used for the thesis, 

describing the Pitman lumped conceptual rainfall-runoff (CRR) model and the 

Shuffled Complex Evolution (SCE-UA) method used to automatically calibrate it. 

It is shown how the automatic calibration method significantly increases the 

performance of the Pitman model using a rainfall estimate produced from the 

raingauge data. 
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Chapter 7 describes TAMSIM’s ability to reproduce the underlying spatio-

temporal distributions of the rainfall (as described by the DK raingauge fields) 

by observing the 200 ensemble members produced. Its performance is 

described at both gauge-pixel (pixels that contain at least one raingauge) and 

Bakoye catchment scale. The performance of the TAMSIM ensemble SRFE is 

compared against the TAMSAT1 deterministic SRFE, finding that not only is it 

able to demonstrate the full bounds of uncertainty, but also when taken as a 

whole the ensembles perform better at modelling the underlying rainfall field. 

The main sources of uncertainty within the SRFE are explored, showing that the 

estimates display significant spatial and temporal biases. 

 

Chapter 8 demonstrates the outcome from the process shown in Figure 1.2, 

using the TAMSIM ensemble SRFE to drive an optimised Pitman model of the 

Bakoye catchment: the ensemble output discharge data used to produce 

hydrographs that show the bounds of the 95% confidence envelope for 

discharge which fully reflects the influence of the input uncertainty on the 

Pitman model. It is seen that the spatial biases in the TAMSIM ensemble 

estimates have been compensated for by the calibration, but significant 

temporal biases have been directly propagated into the Pitman model output. 

The discharge envelopes are compared to those produced by a simpler 

perturbation method on the TAMSAT1 data, highlighting the inadequacy of this 

method in fully characterising the propagation of input uncertainty. The chapter 

introduces the EnsAll method for calibrating a lumped CRR hydrological model 
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for use with an ensemble input, demonstrated how the method outperforms all 

the alternatives and shows little overall bias. 

 

Chapter 9 focuses specifically on the influence of the input uncertainty on the 

calibration of the variable parameters in the Pitman model, and on the resulting 

behaviour of the model. The individual calibrations from the TAMSIM ensemble 

SRFE are investigated closely, observing the relationships between the spread 

of parameter values on model behaviour and performance. It was found that the 

uncertainty within the input had little influence on the calibration of the 

parameter values, but there was some evidence for equifinality in the model 

behaviours. 

 

Chapter 10 discusses the key issues encountered by this thesis, critically 

evaluating the analyses undertaken and highlighting the key results and their 

implications on the research field. Suggestions are made for appropriate 

avenues of future research. 

 

Finally, Chapter 11 concludes the thesis, discussing the major findings.



 
Chapter 2 – Satellite Rainfall Applications in Hydrological Modelling 

18 
 

2 
Satellite Rainfall Applications in 

Hydrological Modelling 

 

2.1 – Introduction 

 

In Chapter 1, the field of satellite rainfall applications for surface hydrology was 

introduced along with a demonstration for the need for a holistic approach to 

research into the influence of uncertainty, as highlighted by Gebremichael and 

Hossain (2010). This chapter breaks the field down into its component features 

and investigates the current state of uncertainty research in each facet. 

 

2.2 – Dealing with Input Uncertainty in Hydrological Models 

 

The issue of observation uncertainty, in particular input uncertainty, is an often 

neglected element of hydrological model uncertainty analysis (Vrugt et al., 

2008, Baldasarre and Montanari, 2009). Vrugt et al. (2008) described this issue 

within the field of hydrology where the common approach to modelling assumes 

that the primary source of uncertainty is associated with parameter values, and 

the model calibration, resulting in neglecting the influence of uncertainty within 

the rainfall input. Baldasarre and Montanari (2009) agreed with the sentiments 
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of Vrugt et al. (2008), suggesting that few attempts have been made to assess 

the influence of observation uncertainty as it is often regarded as negligible 

compared to model structure or parameter uncertainty. Moradkhani et al. (2005) 

stated that often the uncertainties associated with inputs, outputs and model 

structure are ignored, and assumed to be associated with model parameter 

uncertainty. 

 

Michaud and Sorooshian (1994b) suggested that the influence of rainfall error 

on hydrological models is undetermined, with some studies showing very little 

significance and others showing very marked effects on the modelled output – 

although by reducing the raingauge density over a catchment, it was found that 

spatial sampling error alone could contribute up to 50% of the difference 

between the observed and modelled discharges. 

 

Hughes (1995) suggested the sources of uncertainties in hydrological models 

are:  

 Erroneous data inputs 

 Poor interpretation of model results 

 Inadequate or inappropriate modelling of catchment processes 

 Inadequate modelling of the spatial variability of runoff generation from 

rainfall 

 Inadequate representation of the spatial variability of the rainfall input 

 Inadequate representation of the temporal variability of the rainfall input 

 Inadequate representation of the parameter values. 
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From the list provided by Hughes (1995), three of the potential sources of 

uncertainty in hydrological models can be attributed to the rainfall input, and 

these can be grouped as input uncertainty, composed of three components:  

 

1. Temporal – differentiating between when it is raining and when it is not 

2. Spatial – differentiating between areas where it is raining and where it is 

not 

3. Rate – the intensity of rainfall where raining 

 

A common approach to representing the input uncertainty in hydrological 

models is to use a perturbation method, where the rainfall estimated at each 

timestep is perturbed within set bounds, usually a multiplier or an additive 

factor. Examples of studies that have employed a perturbation method can be 

seen in Butts et al. (2004), Vrugt et al. (2008) and Montanari and Baldasarre 

(2013). 

 

The studies listed above vary in nature, for example Butts et al. (2004) 

randomly perturbed each estimate by the addition of a value chosen from a 

normal distribution with a mean of zero and a standard deviation equal to 50% 

of the rainfall estimate for that timestep, producing an ensemble of 200 

estimates. Montanari and Baldasarre (2013) perturbed the estimates obtained 

by the average of raingauge measurements by adjusting the weighting given to 

each gauge in the production of the estimate.  The method demonstrated by 

Vrugt et al. (2008) was more complex, instead applying multipliers based on the 

identification of individual storm events.  Both Butts et al. (2004) and Montanari 
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and Baldasarre (2013) found the representation of input uncertainty showed 

little influence on simulated discharges, yet Vrugt et al. (2008) showed their 

method acted to remove systematic biases in the rainfall estimates. 

 

Butts et al. (2004) highlighted that there was a requirement for a more complete 

representation of the uncertainty within the radar rainfall estimate used, with a 

full characterisation of the spatial and temporal uncertainties. This can be said 

of each of the methods above, and for all conventional perturbation methods 

that can only characterise the rainfall rate aspect of rainfall input uncertainty. 

When using areal averages of rainfall it is tempting to do this, as ultimately all 

three components of the rainfall uncertainty will be expressed as a rainfall rate 

for the timestep over that area, but the methods are limited by their inability to 

fully represent the complex nature of rainfall. This was highlighted in McMillan et 

al. (2011) who described the requirement for a comprehensive analysis of the 

uncertainty due to the complex, non-linear nature of rainfall as a critical 

research need. In reference to SRFE, Hossain and Anagnostou (2004) 

suggested that simple additive methods of characterising input uncertainty are 

insufficient to understand the propagation of the uncertainty through a 

hydrological model. 

 

The spatial distribution of rainfall has been shown to be important to 

hydrological modelling, with Azimi-Zonooz et al. (1989) arguing that the 

accurate determination of storm locations within a watershed is necessary for 

hydrological modelling, particularly in the case of localised storm and flood 

forecasting. Using a lumped model, Sivaplan et al. (1997) showed that 
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heterogeneity in rainfall inputs has a significant influence on modelled 

discharges. The spatial and temporal variability of rainfall was also highlighted 

as an issue needing to be properly addressed by hydrological modellers by 

O’Connel and Todini (1996). In a study observing the influence of spatial 

resolution and sampling error in the MIKE SHE distributed hydrological model, 

Shah et al. (1996) found that the spatial variability of rainfall was particularly 

influential on the modelled discharge during dry periods, as soil moisture was 

sensitive to the spatial distribution of precipitation. 

 

A study by Xuan et al. (2009) directly applied rainfall forecasts produced by a 

numerical weather prediction (NWP) model to a distributed hydrological model. 

They used data from a raingauge network to correct storm locations in the 

ensembles and found that this improved the modelling of the discharge. Lee et 

al. (2012) also observed the importance of spatial distributions of rainfall on 

hydrological modelling, by modelling scenarios displaying different temporal and 

spatial distributions of the rainfall field and applying them to a distributed 

hydrological model. 

 

Tsai et al. (in press 2012) noted that the requirement to account for the spatial 

distribution of convective rainfall, which displays a high degree of spatio-

temporal heterogeneity and uncertainty, is particularly acute when it is the key 

driver for runoff. They also added that the majority of studies focus on the 

impacts of temporal variations to the detriment of the impacts of the spatial 

variations of model inputs. Using a reservoir model they demonstrated how the 
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inclusion of spatial distributions of rainfall improved the performance of a semi-

distributed model, when modelling the impacts of typhoons in Taiwan. 

 

Hong et al. (2006) demonstrated a spatio-temporal method of characterising 

rainfall uncertainty within a SRFE. The method worked by binning data from the 

PERSIAN-CSS SRFE into spatial aggregation, temporal aggregation and 

rainfall rate categories, and providing a reference error value in a contingency 

table for each bin – the contingency table was then used to produce ensemble 

rainfall estimates. The method was adopted by Moradkhani et al. (2006) to 

further investigate the propagation of the input uncertainty on the conceptual 

Hydrological MODel (HyMOD), using a sequential data assimilation (SDA) 

method to account for all sources of error in hydrological modelling – in 

comparison to parameter, the input uncertainty showed a wider range of 

uncertainty. 

 

Although the method employed by Hong et al. (2006) and Moradkhani et al. 

(2006) does make account of some spatial and temporal details of rainfall 

uncertainty and better represents the uncertainty of the input over the fixed 

perturbation approach, ultimately it still amounts to applying a multiplier to the 

estimates. This method cannot fully represent the uncertainty within the input – 

for example, it is unable to predict rainfall where the original SRFE predicts 

none and vice versa. 

 

There remains a pressing research requirement for a study into the influence of 

the full spectrum of uncertainties within SRFEs on the modelling of hydrological 
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systems (McMillan et al., 2011). The TAMSIM algorithm introduced by Teo 

(2006) and Teo and Grimes (2007) provides the opportunity to do this as it fulfils 

the requirements specified, in that it allows for the characterisation of temporal, 

spatial and rainfall rate uncertainties, both in rainfall retrieval and sampling. 

 

2.3 – Satellite Rainfall Estimation 

 

The study area, like much of sub-Saharan Africa and especially the Sahel 

region, lacks extensive coverage of ground instrumentation for the estimation of 

rainfall in real-time. As part of the World Meteorology Organisation’s (WMO) 

World Weather Watch (WWW) raingauge network, Africa has 1,152 stations, 

giving a raingauge density of 1 per 26,000km2 – eight times lower than the 

WMO’s own specified minimum recommendation (Washington et al., 2006).  

 

Washington et al. (2006) also suggested that the actual situation is worse than 

this as many of the stations are intermittent in transmitting data, especially in 

central Africa where large areas are essentially unmonitored. This is supported 

by NOAA (2010), where out of 1,000 raingauges available to the African Rainfall 

Estimation (RFE 2.0) project, usually less than 500 are used on any single day 

due to lack of transmission or erroneous data. It has been found that the 

situation in sub-Saharan Africa regarding raingauge coverage has deteriorated 

over recent decades (Ali et al., 2005). 

 

The probable reason for this lack of ground instrumentation, in the form of 

raingauge and weather radar systems, is the considerable financial and 
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technological investment that is required to install and operate these networks 

(Anagnostou et al., 2010). 

 

The Senegal Basin study area is not atypical to the situation described above. 

As is shown in Chapter 3, the Bakoye catchment part of the study area has a 

raingauge density of 1 gauge per 7,000km2 – relatively high given the African 

average provided by Washington et al. (2006). In contrast, Teo and Grimes 

(2007) studying the Gambia region close to the Senegal Basin used a gauge 

network averaging 1 gauge per 500km2. 

 

Given this lack of ground instrumentation, satellite data has been increasingly 

used to fill the data gap and currently constitutes the only viable method of 

providing data for use in hydrological studies for many areas of the Earth 

(Anagnostou et al., 2010).  

 

SRFEs have been made since the 1970s, with observations made in either the 

visible (VIS), thermal infrared (TIR) and passive microwave (PM) spectrums 

(Anagnostou et al., 2010). VIS sensors are able to provide information of the 

density of droplets in a cloud by measuring the cloud albedo. TIR sensors 

measure the temperature of cloud tops and this can be used to infer rainfall 

using a statistical relationship between the cloud top temperature and rainfall, 

exploiting the fact that tropical rainfall is dominated by convective storms 

comprising of high-top cumulonimbus clouds. PM sensors measure the long-

wave radiation re-emitted from water droplets and the shortwave radiation 

scattered by ice crystals – direct indicators of rainfall. Due to the nature of the 
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sensors PM retrieval is restricted to low polar orbits, which provide limited areal 

coverage but high spatial resolution. TIR and VIS sensors can be mounted on 

satellites in geostationary orbits, which are higher and provide greater spatial 

coverage over a fixed point but often sacrifice the spatial resolution available at 

lower orbits. Table 3.1 shows a list of current satellites that contribute towards 

the WMO’s Global Observing System (GOS).  

 

There are efforts to improve the satellite coverage for rainfall retrieval, for 

example the Global Precipitation Measurement (GPM) will significantly 

decrease the sampling intermittencies from PM sensors. GPM is an 

international mission that will involve a large constellation of PM sensors in 

Low-Earth orbits (LEO), giving global coverage at a temporal resolution of 3-6 

hours and a spatial resolution of 100km (Hossain and Anagnostou, 2004). At 

the centre of the constellation is a core satellite which will carry the first space-

borne Dual-frequency Precipitation Radar (DPR) which will monitor precipitation 

in 3-dimensions – it is due for launch in 2014 (NASA, 2013). 
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Geostationary Operator Sensors Sector 

GOES-15 NOAA VIS/TIR East Pacific 

GOES-14 NOAA VIS/TIR West Atlantic 

GOES-13 NOAA VIS/TIR West Atlantic 

GOES-12 NOAA VIS/TIR West Atlantic 

Meteosat-10 EUMETSAT VIS/TIR East Atlantic 

Meteosat-9 EUMETSAT VIS/TIR East Atlantic 

Meteosat-8 EUMETSAT VIS/TIR East Atlantic 

INSAT-3E ISRO VIS/TIR Indian Ocean 

Meteosat-7 EUMETSAT VIS/TIR Indian Ocean 

INSAT-3C ISRO VIS/TIR Indian Ocean 

Kalpana-1 ISRO VIS/TIR Indian Ocean 

Electro-L N1 RosHydroMet VIS/TIR Indian Ocean 

FY-2D CMA VIS/TIR Indian Ocean 

INSAT-3A ISRO VIS/TIR Indian Ocean 

FY-2E CMA VIS/TIR Indian Ocean 

FY-2F CMA VIS/TIR West Pacific 

COMS-1 KMA VIS/TIR West Pacific 

Himawari-6 JMA VIS/TIR West Pacific 

Himawari-7 JMA VIS/TIR West Pacific 

    
Low Earth Orbits Operator Sensors Sector 

DMSP-F15 DoD VIS/TIR/PM Early Morning Orbit 

DMSP-F17 DoD VIS/TIR/PM Early Morning Orbit 

DMSP-F13 DoD VIS/TIR/PM Early Morning Orbit 

DMSP-F16 DoD VIS/TIR/PM Early Morning Orbit 

NOAA-17 NOAA VIS/TIR/PM Morning Orbit 

DMSP-F18 DoD VIS/TIR/PM Morning Orbit 

NOAA-16 NOAA VIS/TIR/PM Morning Orbit 

Meteor-M N1 RosHydroMet VIS/TIR/PM Morning Orbit 

MetOp-A EUMETSAT VIS/TIR/PM Morning Orbit 

MetOp-B EUMETSAT VIS/TIR/PM Morning Orbit 

FY-3A CMA VIS/TIR/PM Morning Orbit 

Soumi-NPP NASA VIS/TIR/PM Afternoon Orbit 

NOAA-19 NOAA VIS/TIR/PM Afternoon Orbit 

FY-3B CMA VIS/TIR/PM Afternoon Orbit 

NOAA-18 NOAA VIS/TIR/PM Afternoon Orbit 

DMSP-F14 DoD VIS/TIR/PM Afternoon Orbit 

NOAA-15 NOAA VIS/TIR/PM Afternoon Orbit 

 

Table 3.1 – Table showing current meteorological satellites that contribute towards the 

WMO’s GOS, their types of orbits, operators, types of sensors carried and sectors 

covered. For satellites in low earth orbits, the sector refers to the time the platform 

crosses the equator during daylight in a sun-synchronous orbit (WMO, 2013). 
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Of the principal sensors used for rainfall retrieval, PM data is more desirable as 

it provides physical observation of rain areas as related hydrometeors interact 

with the upwelling microwave radiation, however, these sensors need to be 

positioned in polar LEO and thus only a few observations (6-10) of a limited 

region can be obtained each day (Tadesse and Anagnostou, 2009, Dinku et al., 

2010).  Even if the rainfall retrieval error was zero, the intermittence in coverage 

leads to sampling error which is the dominate source of uncertainty in low orbit 

SRFE (Bell et al., 1990). The ability of PM sensors to accurately measure 

rainfall is influenced by the land surface of the observation region, with certain 

land surfaces interfering with the signals (Dinku et al. 2007). Amongst these are 

land surfaces associated with arid and semi-arid regions (Morland et al. 2001), 

which is of particular importance to this thesis - Chapter 3 argues that a 

significant proportion of the study area can be classified as arid and/or semi-

arid. 

 

TIR data can be collected from a geosynchronous orbit able to make continuous 

observation of a wide area, but cannot directly observe rainfall, rather collecting 

information on storms based on the temperature of cloud tops – with the 

assumption that colder cloud tops are most likely to be representative of areas 

of rainfall (Tadesse and Anagnostou, 2009, Dinku et al., 2010). As TIR data is 

available at higher spatial (4km) and temporal (1/2 hourly) intervals, it can be 

used to fill the spatial and temporal gaps in PM rainfall retrieval (Tadesse and 

Anagnostou, 2009). 
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Many modern SRFE algorithms take advantage of the different types of sensors 

available, combining the data to cover the shortfalls in each. An example is the 

Tropical Rainfall Measuring System (TRMM) Multisatellite Precipitation Analysis 

(TMPA) which merges PM and TIR data where available, and covers the 

sampling intermittencies from PM sensors using a PM calibrated TIR estimate 

of rainfall (Huffman et al., 2010). 

 

SRFEs are utilised for many purposes, including providing driving inputs for 

hydrological and crop yield models (Teo, 2006, Teo and Grimes, 2007), nd 

informing global atmospheric circulation models (Arkin and Meisner, 1987) and 

Early Warning Systems (EWS) – drought, famine and disease (Verdin et al. 

2005).  Skees and Collier (2008) highlighted the use of satellite weather data as 

a useful check for weather indexes, used to inform microinsurance schemes for 

the data poor regions of the Sahel. 

 

For many applications of hydrological modelling it is desirable to have rainfall 

estimates provided in fine temporal timesteps, and for distributed models a 

reasonably high spatial resolution is required. There is also a desire for the 

capability of providing real-time, or near real-time estimates. Bellerby et al. 

(2000) suggest that for meteorological and hydrology purposes, a product at a 

temporal scale of one day or less and a spatial scale of 25km or less would be 

invaluable. 
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Examples of methods of SRFE that fulfil these criteria above are:  

 

 The Tropical Rainfall Measuring System (TRMM) – The Multi-

Satellite Precipitation Analysis (TMPA) - TMPA can produce global 

rainfall estimates at 3-hour timesteps at a spatial resolution of 

0.25°x0.25°. For real-time TMPA estimates, rainfall estimates derived 

from several PM and TIR measuring platforms are combined by using 

PM estimates where available, and using PM calibrated TIR estimates to 

fill in gaps (Huffman et al., 2010). 

 

 The African Rainfall Estimation (RFE 2.0) – The RFE 2.0 combines 

rainfall estimates from three satellite platforms (two PM making four 

passes each a day, and one TIR taking half-hour measurements), 

weighted to ground raingauge data to produce a daily rainfall estimate for 

Africa at 0.1°x0.1° pixel resolution (NOAA, 2010). 

 

 The Climate Prediction Centre morphing method (CMORPH) – This 

method produces global estimates of rainfall at half-hour resolution, 

using a combination of PM and geostationary TIR satellite data. The 

method uses the temporal resolution of the TIR data to calculate the 

passage of rainfall for the period between LEO satellite passes collecting 

PM data, producing a rainfall estimation derived from the higher-quality 

PM alone (Joyce et al., 2004). 
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 Precipitation Estimation from Remotely Sensed Information using 

Neural Networks (PERSIANN) – The PERSIANN method processes 

TIR and ground data through an artificial neural network to produce 

rainfall estimates. The relationships can be updated using spatio-

temporally limited ground-based data as it becomes available (Hsu et al., 

1996). A Cloud Classification System (CSS) has been added to the 

PERSIANN method to improve rainfall estimates (Hong et al., 2004). 

 

 Tropical Applications of Meteorology from SATellites (TAMSAT) – 

The TAMSAT method has a long operational history in sub-Saharan 

Africa and has proven successful in this context (Teo and Grimes, 2007). 

The method produces estimates of rainfall for sub-Saharan Africa at 

0.05°x0.05° pixel resolution. The only satellite input is TIR cloud top 

brightness and rainfall is derived by calibrating a simple linear 

relationship between cloud top temperature and rain, locally (Dugdale, 

1991). Although the publically available TAMSAT products, produced by 

the TAMSAT team, University of Reading, are only in dekadal time-steps, 

the methodology provided by Teo and Grimes (2007) expanded the 

algorithm to produce daily rainfall estimates.  

 

2.4 – Satellite Rainfall Uncertainty Characterisation 

 

The previous section detailed the necessity for producing SRFE and highlighted 

some of the techniques and the existing products available. However, SRFE 

contain uncertainties inherent in their generation and often these uncertainties 
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are large. Any uncertainty in the rainfall input for a hydrological model is likely to 

propagate through to its output and to assess the impact of this it is necessary 

to quantify and represent the scale of these uncertainties.  This section looks at 

some of the major sources of uncertainty in SRFE, with a focus on the TAMSAT 

method in particular, and explores the methods that have been previously 

employed to measure and represent them.  

 

Rainfall generators have been developed to generate ensemble products from 

single inputs - either single satellite sensors or satellite rainfall estimates 

themselves (using a delta approach). The full conditional simulation from 

multiple satellite sensors requires the implementation of techniques to cater for 

discontinuities at sensor coverage boundaries, but these are still in 

development (Bellerby, 2012). However, methods have been demonstrated for 

use with SRFE derived from single sensors, such as TAMSAT. TAMSAT is 

ideal for use with this study area as it has a long operational history in sub-

Saharan Africa and has previously been used with a full spatio-temporally 

distributed uncertainty characterisation method, in TAMSIM (Teo, 2006).  

 

The only satellite information required by TAMSAT is the Meteosat TIR cloud 

brightness data, processed into CCD values at given cloud top temperature 

thresholds. To estimate rainfall from this data TAMSAT uses an area-time 

integral (ATI) that assumes that the areal rainfall is proportional to the CCD and 

cloud coverage over the observation area, when a sufficient number of storms 

are aggregated over space and time (Kebe et al. 2004). The method therefore 

has to make two assumptions about the relationship between it and real rainfall:  
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1. All cold clouds are convective 

2. All convective clouds are raining 

 

This works well for areas where the dominant rainfall type is convective – which 

is the case for the study area and the wider Sahel region, as detailed in Chapter 

3.  The TAMSAT1 method, introduced by Teo (2006) and Teo and Grimes 

(2007) for daily SRFE estimation, maintains these assumptions in its operation 

and as a result this will lead into two major sources of uncertainty in the 

resulting SRFE.  First, not all cold clouds are convective, for example high 

altitude cirrus clouds can be recorded as raining. Second, the method will miss 

low level storms that have warm clouds. In addition, the calibrated relationship 

is non-stationary, both spatially and temporally, and likely to be non-linear, all 

contributing to the uncertainty in the SRFE (Nikolopolous et al., 2010). Vicente 

et al. (1998) states that the relationship between cloud-top temperature and 

rainfall rates can vary between storm types, the season, location and the land-

surface, amongst many other contributory factors. 

 

A review by Hossain and Anagnostou (2006) found that due to the variety of 

methods for producing SRFE, using different sensor platforms and algorithms, 

the methods developed to quantify and characterise the uncertainty within them 

were just as varied, adding that many were limited to the errors involved in large 

spatio-temporal resolutions. An example is Hong et al. (2006), which modelled 

the uncertainty in an aggregated estimate based on the resolution of the 

aggregation used.  
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If SRFE are to be used effectively as rainfall inputs in hydrological models then 

the errors inherent need to be accurately characterised, but that 

characterisation also needs to fully reflect the complexity of the error structure 

of rainfall fields at a scale useful for dynamic surface hydrological processes 

(Hossain and Anagnostou, 2006, Nikolopolous et al., 2010). Bellerby and Sun 

(2005) highlighted how SRFE were often aggregated to lower spatio-temporal 

resolutions to avoid the large uncertainties associated with using the higher 

resolutions, but this means that much of the spatial information cannot be used. 

For use with modelling dynamic surface hydrological processes, such as runoff 

or flood forecasting, the more uncertain higher resolution data is more desirable 

as it provides the spatio-temporal information required (Bellerby and Sun, 

2005), but to ensure that these uncertain products are useful to the downstream 

applications, the uncertainties need to modelled fully, accurately and in a way 

where they can be translated to the downstream applications and propagation 

of the uncertainties can be measured (Bellerby and Sun, 2005, Hossain and 

Anagnostou, 2006, and Nikolopolous et al., 2010). 

 

Probabilistic Ensembles 

 

The use of probabilistic ensemble weather forecasts was shaped by the work of 

Lorenz (1963, 1969), whose research informed the meteorological community 

about the concept of chaos theory – the atmosphere is a complex, non-linear 

system and subject to small perturbations that over time cause forecasts to 

diverge, and to cover the possible divergences ensemble sets of forecasts are 
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produced, each unique but equally plausible within the bounds of possibilities 

(Slingo and Palmer, 2011). For use with a rainfall estimate, a stochastic weather 

generator is used to produce an ensemble set of rain fields, each consistent 

with the statistics of the observed rain field and containing a random element 

based on measured uncertainty. This makes each ensemble representation of 

the rain field unique yet equiprobable. 

 

The use of ensemble estimates is a useful and relatively recent method of 

characterising the uncertainty within a rainfall estimation. Examples of their use 

can be found for interpolated raingauge estimates (Clark and Slater, 2006), 

estimates from weather radar stations (Germann et al., 2007) and for SRFE 

(Bellerby and Sun, 2005, Teo, 2006, Hossain and Anagnostou, 2006, Teo and 

Grimes, 2007). Germann et al. (2007) highlighted how probabilistic ensemble 

approaches allowed the propagation of the input uncertainty to be effectively 

examined and, possibly most importantly, in a way that is easy to understand 

for end users. 

 

There have been several studies into the stochastic generation of the spatial 

and temporal variation of rainfall which could be applied to SRFE. Notably, 

amongst these are the Modified Turning Bands (MTB) model in the trilogy of 

papers Mellor (1996), Mellor and O’Connell (1996) and Mellor and Metcalfe 

(1996), and in the model presented by Lanza (2000). 

 

Three methods have been developed for characterising the uncertainty in high-

resolution SRFEs using probabilistic ensemble approaches:   
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 The method of Bellerby and Sun, 2005 (BS05) – The method 

described by Bellerby and Sun (2005) produced equiprobable ensemble 

realisations of the rainfall field, by combining a pixel by pixel derived 

conditional distribution with a modelled spatio-temporal covariance 

structure. The technique was tested on a multiplatform, TIR/PM, TRMM 

product (Bellerby and Sun, 2005). 

 

 SREM2D – SREM2D is a multi-dimensional error model that produced 

ensemble representations of rain fields. The method uses nine 

parameters of error to produce the equiprobable ensembles and was 

tested on a TIR only, and a multiplatform, TIR/PM, SRFE. SREM2D also 

used high resolution radar data to simulate satellite data with errors 

rather than simulating the errors from satellite data themselves (Hossain 

and Anagnostou, 2006). 

 

 TAMSIM - The TAMSIM method operates by combing two stochastically 

generated fields, a rain/no-rain ‘indicator’ field, and a no-zeros’ rainfall 

field, to produce equiprobable ensemble rainfall fields that allow for 

spatial intermittency of rainfall. The underlying spatial correlation of the 

raingauge rain field is determined and maintained in each ensemble 

using a variogram approach (Teo, 2006, Teo and Grimes, 2007). 
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Of the methods above, BS05 and TAMSIM both function is similar ways 

incorporating a full conditional distribution in regards to the input. SREM2D 

instead uses a delta method. 

 

Each of the methods detailed above uses a stochastic ensemble generation 

approach for characterisation of the rainfall field.  This allows the ensembles to 

be used as inputs in an deterministic hydrological model, in turn producing an 

ensemble of model discharges that characterise the propagation of the SRFE 

input uncertainty (Bellerby and Sun, 2005). The use of ensembles also allows 

for the upscaling of uncertainties to lower spatial resolution, which is useful for 

inputs in lumped or semi-distributed hydrological models (Teo and Grimes, 

2007). 

 

2.5 – Hydrological Modelling and Calibration 

 

The list of types of uncertainty in hydrological models, provided by Hughes 

(1995) and shown in Section 2.2, suggested that input uncertainty, as 

composed of three components, is a major contributing factor to the overall 

uncertainty in the modelling of catchment discharge. Section 2.2 investigated 

the literature regarding input uncertainties in hydrological models, but this is not 

the only significant form of uncertainty that needs to be addressed – Hughes 

(1995) also suggested that model structure and model calibrations are 

significant contributing factors.  
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There are numerous types of hydrological models and calibration methods. An 

in-depth review of the current state of the field can be found in Wheater (2002), 

and more recently in Pechlivanidis et al. (2011) - both describing different model 

structures, classifications, calibration methods, sensitivity analyses and 

uncertainty measurements. Pechlivanidis et al. (2011) describes four main 

types of hydrological models:  

 

 Metric Models (based on physically recorded data from the catchment) 

 Conceptual Models (with parameters calibrated against input-output 

data) 

 Physics-based Models (based on experimentally determined 

relationships) 

 Hybrid Models (elements of at least two of the above) 

 

The ideal hydrological model would be a fully physically based model - which 

Pechlivanidis et al. (2011) refers to as a metric model - with parameters defined 

by data collected in the field or observed remotely (Wagener et al., 2001). 

However, such data is often limited and even when available the model would 

still not be able to represent the heterogeneity of the study catchment (Beven, 

1989).  

 

A physics-based model, using largely known definite physical relationships, is 

also limited by the requirement to make assumptions, and simplified averages, 

of largely unknown boundary conditions and the use of simplified empirical 

relationships (Nash and Sutcliffe, 1970). 
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As such the majority of hydrological models used can be defined as conceptual 

rainfall-runoff (CRR) models, which Wagener et al. (2003) described as 

complying to two criteria: 

 

1. The structure of the model is determined before the modelling is 

conducted (i.e., the data does not define the model structure). 

 

2. Some, if not all, of the parameters in the model are not based on direct 

measurement of the study catchment. 

 

As CRR models have parameters that are not able to be defined by actual 

measurements they must be calibrated against observed data (Wheater et al., 

1993, Wheater, 2002). Chapter 3 details the data available for the study 

catchment, the Bakoye catchment, and it is clear that there is insufficient data 

available to operate a physical-based model.  Therefore a CRR model would be 

the most suitable choice for the catchment and will be the focus of this section. 

 

A hydrological model can be defined as the combination of its structure and the 

calibration of its parameters (Wagener et al., 2003), and this thesis uses this 

definition.  The remainder of this section is split into first reviewing the structures 

of hydrological models and second, reviewing some of the ways to calibrate the 

variable parameters.  
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Hydrological Model Structure 

 

In the broadest sense there are three main types of CRR structure - lumped, 

distributed and semi-distributed. Beven (2008) defined a lumped model as one 

that treats the catchment as a whole, averaging the values and variables over 

the whole area, whilst a distributed model is one that allows for spatial 

variations of the values and variables. A semi-distributed model operates by 

combining a series of lumped models to operate as a single model covering a 

larger area (Boyle et al., 2001). 

 

Of the three basic structures, distributed models are the most sophisticated and 

closer to the idealised ‘physics-based’ models. However these models require 

significant spatial data to be calibrated at a distributed level and this is often not 

possible (Stisen et al., 2008). Ajami et al. (2004) described some of the issues 

with distributed models, highlighting that their use is likely to cause a significant 

increase in the amount of parameters needing to be calibrated – this not only 

increases the computational time of modelling, but also the uncertainty as little, 

if not no, distributed discharge date is available for calibration at that scale. This 

has led to the argument that despite their ambitions, distributed models are 

complex CRR models rather than the physically based models they are 

designed to be (Refsgaard and Abbott, 1996, Grayson and Bloschl, 2001). The 

lack of ground spatial data available for this study means that the use of a 

distributed hydrological model is likely to produce significant uncertainties 

because of the paucity of calibration and validation data, although Stisen et al. 

(2008) demonstrated how the distributed MIKE SHE model could be used 
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effectively for modelling discharge of the Bakoye catchment, using multiple 

sources of remotely sensed spatial data.  

 

Semi-distributed models have previously been used successfully in semi-arid 

and African contexts (Ajami et al., 2004, Hughes et al., 2006, Wilk et al., 2006). 

Boyle et al. (2001) described semi-distributed models as an attractive 

alternative to both lumped models and fully distributed models, as they utilise 

the strengths of both whilst bypassing some of the weaknesses. Ajami et al. 

(2004) found that a semi-distributed model offered marginal improvement in 

final outlet discharge modelling, over a lumped model, but not enough to justify 

the additional complexity and resulting increase of uncertainty – although it did 

allow for the modelling of the interior of the catchment.  

 

The goal of this thesis is to show how the uncertainty of SRFE inputs 

propagates through the hydrological model. As such a distributed model would 

not be suitable as it would introduce additional complexity that would require 

extensive measurement to separate the uncertainty from the hydrological 

modelling from the uncertainty in the SRFE.  A semi-distributed model is also 

not suitable as the discharge data which is unaffected by dam processes is 

unavailable for the extra level of modelling. Given the limitations in spatial data 

available, and the need to minimise uncertainty associated with the hydrological 

model itself, the best structure to use is a lumped one. This is a similar view to 

that taken by Perrin et al. (2003), where it is seen as a logical first step to 

monitor how processes work at a catchment scale before trying to model in 

more detail. 
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Lumped Model Structure 

 

There are numerous lumped hydrological models in common use, each 

representing the conceptual relationship between rainfall and runoff in different 

ways, and in varying degrees of complexity.  There have been hundreds of 

hydrological response models developed due to the complexity of the rainfall-

runoff process, and each has merits and flaws (Choi and Beven, 2007). 

 

A study by Seiller et al. (2012) produced ensemble runoff to represent model 

structure uncertainty by using the same rainfall input through twenty different 

lumped hydrological models with different structures. The complexity of the 

models varied widely, with numbers of parameters between 4 and 10, and 

stores between 2 and 7.  

 

Some examples of lumped models are: 

 

 TOPMODEL (Beven and Kirkby, 1979) – a lumped model with 3 stores 

and 7 variable parameters, but incorporates a distributed element for flow 

routing. 

 The TANK model (Sugawara, 1979) –  a model with 4 stores (“tanks”) 

and 7 variable parameters. 

 IHACRES (Jakeman et al., 1990) – a model with 7 variable parameters 

and three stores. 
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 MODHYDROLOG (Chiew and McMahon, 1994) – full model has 19 

variable parameters and 5 stores but can be simplified. 

 PE-P (Abulohom et al., 2001) – a single store, 5 parameter model run at 

a monthly timestep. 

 HyMOD (Wagener et al., 2001) – a model with 4-buckets, split between 

fast-flow route with 3 stores and a single slow-flow bucket, and 6 variable 

parameters. 

 GR4J (Perrin et al., 2003) – a 2-bucket model with 4 variable 

parameters. 

 Pitman Model (Grimes and Diop, 2003) – a 2-bucket model with 11 

variable parameters (originally a monthly discharge model by Pitman 

(1973), and adapted for daily discharge by Grimes and Diop (2003)). 

 

Perrin et al. (2003) suggested that increasing the model complexity through 

increasing the number of variable parameters could lead to 

overparameterisation, resulting in a loss of model efficiency, demonstrating that 

4 variable parameters were optimum for the GR4J model. Chiew and McMahon 

(1994), studying a model with a possible 19 variable parameters, found that 9 or 

fewer variable parameters were required for accurate daily streamflow 

prediction, and even less for temperate catchments. 

 

Additional information can be incorporated into a lumped model to improve its 

performance, for example Beven and Kirkby (1979) developed the TOPMODEL 

that incorporates a distributed representation of channel routing using 

measurement of the catchment topography. 
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The Pitman lumped CRR model (Pitman, 1973) has been successfully used 

across Africa, in areas similar to the study area, climatically and in land cover 

(Wilk et al., 2006, Hughes et al., 2006, and Andersson et al., 2006), and has 

also been used to model the Bakoye Catchment (Hardy et al., 1989, and 

Grimes and Diop, 2003). Further discussion regarding the Pitman model can be 

found in Chapter 6. 

 

Hydrological Model Calibration 

 

As stated by Wagener et al. (2003), a hydrological model is the sum of its 

structure and the calibration of its variable parameters.  As discussed earlier, 

ideally the parameter values would be set through direct measurement in the 

field of the processes they represent (Wagener et al., 2003). The data for this is 

most often lacking, and although it can be substituted to some extent by remote 

sensing (Stisen et al., 2008), almost all models require some parameters to be 

calibrated against observed data (Wheater et al., 1993). 

 

The methods of calibration are wide ranging and often dependent on the 

desired outcome, or the role of a particular model e.g. floods forecasting. A full 

and comprehensive review of hydrological modelling calibration can be found in 

Beven (2008), particularly in Chapter 6.  

 

There are two principal approaches to hydrological model calibration – manual 

and automatic (Wagener et al., 2003). Manual calibration can be favoured by 
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hydrologists, where an expert with extensive working knowledge of a catchment 

can manipulate the model parameters to produce a satisfactory hydrograph 

(Boyle et al., 2001). However, such extensive ground knowledge of the Bakoye 

catchment is not available, and a manual approach would be too subjective to 

be suitable for a quantitative study of uncertainty propagation.  

 

An automatic calibration approach typically works by minimising an objective 

function, which is an error score produced when comparing the modelled output 

data with recorded data. The parameter set that produces the lowest score from 

the objective function is said to be the ‘optimal’ set. Gan et al. (1997) suggested 

that the parameter sets produced by an automatic calibration procedure 

performed on a CRR are unlikely to be uniquely optimal and depend on:  

 

1. The optimisation method/algorithm used 

2. The objective function chosen to minimise 

3. The calibration data – length and quality 

4. The model structure 

 

At the heart of hydrological model calibration is a philosophical debate that it 

would be inappropriate not to acknowledge at this stage – as it should be at the 

heart of further research in this area. It is borne out of the issues raised above, 

such that whilst an automatic and deterministic calibration approach will 

produce a set of parameters and a hydrograph that statistically fits the data 

better, an experienced hydrologist may wish to reject the approach as they 

believe the fitted hydrograph is not the best (Boyle et al., 2001). This argument 
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led Beven (2006) to propose the ‘equifinality’ approach to model calibration 

through the Generalised Likelihood Uncertainty Estimation (GLUE) method (see 

Freer et al. 1996, Beven, 2006, Beven, 2008, amongst others). 

 

The philosophical debate discussed by Beven (2006) is one at odds with the 

traditional scientific approach of discovering the best description of reality 

possible, and in hydrological modelling this is the goal to find the ‘optimal’ 

model. Equifinality on the other hand does not implicitly reject the idea of an 

optimal model, but rather accepts a reality where with the current state of the art 

the discovery of one, single, best model might not be possible. Beven (2006) 

claims it takes a post-modern approach which acknowledges that there may 

exist several model structures and several parameters sets that will equally 

represent the catchment response. As all model structures are extreme 

simplications of natural systems (Beven, 1989), then all model structures will be 

subject to error and, as an extension, any parameter set will also be subject to 

errors (Beven and Binley, 1992). This is a view supported by Sevenjie (2001), 

that the hydrological laws are simply laws of averaging and that any parameters 

are a function of that averaging. 

 

In response to this, the GLUE methodology was developed and introduced by 

Beven (1989) and also Beven and Binley (1992). GLUE uses a sensitivity 

analysis of the variable parameters of a defined model structure to produce 

multiple sets of parameter values, each of which has survived a set ‘behavioural 

threshold’ likelihood rejection levels based on its representation of the 

catchment. The surviving parameter sets are then assigned a new, relative 
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likelihood score.  This ‘fuzzy’ approach allows for the use of hydrological models 

(structure and calibration) which previously were rejected for not being optimal, 

despite their error score being close to the optimal model – these may represent 

the catchment behaviours in a different way (Beven, 2006). 

 

An example of the criticism aimed at GLUE can be found in Thiemann et al. 

(2001), specifically highlighting the elements of “user defined” values, for 

example the ‘behavioural threshold’.  Thiemann et al. (2001) argued that such 

values are subjective, proposing that a Bayesian based approach is superior 

and more rigorous. Beven (2006) acknowledges these criticisms and suggests 

that it is, again, a matter of philosophy. 

 

Given the goals of this thesis, and the significant additional complexity that a 

GLUE method would introduce, an optimal model based approach is the most 

suitable. However, the merits of the equifinality thesis should be acknowledged 

and should form the composition of further research in this field. A further 

discussion of automatic calibration methods and the methodology used in this 

thesis can be seen in Chapter 6. 

 

Additional sources of uncertainty in hydrological models 

 

In addition to the types of uncertainty discussed previously in this Chapter, there 

are other sources which influence the accurate modelling of catchment 

discharge. The influence of observation data uncertainty has been discussed in 
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Section 2.2 but only in the context of precipitation input uncertainty. However, 

the driving input is not the only source of observation data. 

 

As discussed previously, the calibration of parameters is often performed by 

minimising an objective function when comparing recorded output and modelled 

output data, commonly discharge. Di Baldassarre and Montanari (2009) 

highlighted the influence that uncertainty within the recorded discharge may 

have on hydrological modelling – these uncertainties emerge from inaccuracy in 

the measuring instruments and unsteady flows during measurements, when 

using a traditional velocity-area method. 

 

Many hydrological models, including the Pitman model, incorporate 

evapotranspiration data as part of the modelling process. This too is a potential 

source of uncertainty. A discussion of the sources and value of 

evapotranspiration data for hydrological modelling can be seen in Chapter 3. 

 

Hughes (1995) also highlighted poor interpretation of output data as a source of 

uncertainty. This is most likely to be an issue when using a manual calibration 

technique, but should not be viewed as a source of uncertainty when using an 

automatic calibration method (any uncertainty here can be classified as 

parameter or structural uncertainty). 

 

In addition to each of the above, it is also likely that uncertainty within the 

measurement of rainfall by the raingauges will also have a cascading effect on 

the modelling process. The uncertainties of raingauge measurements can be 
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large, with Nespor and Sevruk (1998) suggesting that the influence of wind 

alone on a raingauge measurement was on average between 2% and 10%. A 

full analysis of raingauge measurement error is not proposed as part of this 

thesis, but a conservative estimate of the errors in the order of up to 10% 

should be considered when observing the data used in this thesis 

 

Although each of these sources of uncertainty discussed are legitimate, they 

are likely to be minor and any attempts to quantify them and their influence is 

beyond the scope of this thesis. In essence the uncertainty from each will be 

regarded as negligible but with a note of caution against such an assumption. 

 

2.6 - Summary 

 

This chapter has argued that when SRFE are used to drive a hydrological 

model there are a multitude of sources of uncertainty that need to be 

addressed, principal amongst those being input uncertainty, model parameter 

uncertainty and model structure uncertainty. It is inappropriate to consider any 

of these sources of uncertainty as negligible or trivial in regards to the final 

output, and it should be anticipated that they will interact with each other in 

complex and non-Gaussian ways. 

 

Whilst model parameter and model structure uncertainties have been widely 

researched, with established methods of measuring, managing and minimising 

them, the influence of input uncertainty has often not been investigated in full 

detail. Previous studies have focussed on representing the uncertainty within a 
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rainfall input by using perturbation methods which only alter the rainfall rate. 

They have not fully characterised the spatio-temporal distribution of uncertainty 

within the estimates, and this was highlighted by McMillian et al. (2011) as a 

critical research need. 

 

The main aim of this thesis is to demonstrate a methodology for characterising 

the full spatio-temporal distribution of uncertainty within a SRFE, for use as a 

driver for a hydrological model, showing how this uncertainty propagates 

through the model when using traditional hydrological modelling methods for 

reducing and measuring model parameter and structure uncertainties. The 

thesis demonstrates not only that this method can be successfully implemented 

for a sparsely gauged region, but that the method is superior in representing 

uncertainty compared to simpler perturbation methods.
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3 
Study Area and Context 

 

3.1 – Introduction 

 

The previous chapter has described the general literature around satellite 

rainfall estimation and the use of SRFE in hydrological modelling.  The need for 

SRFE was highlighted, especially in areas with a paucity of ground 

instrumentation recording rainfall – such as radar and raingauges. This chapter 

will expand upon this with a strong focus on the Sahel region of Africa, within 

which the Senegal Basin and Bakoye catchment study areas belong.  The dire 

necessity for improved uncertainty characterisation, measurement of 

propagation and better communication of the uncertainties is also a focus. 

 

The second half of this chapter will take a close look at the Senegal Basin and 

Bakoye catchment study areas, focussing on the aspects that may have an 

influence on the experiments in this thesis, as well as looking at the raw data 

available and how these relate to the study area characteristics ascertained. 
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3.2 – The Problem in Context 

 

The variability of rainfall in the Sahelian region of Africa is a major factor in food 

and water resource security for the area. In semi-arid regions, of which the 

Sahel is typical, rainfall displays great temporal and spatial variability over 

several temporal periods (Ali et al., 2003). As agriculture is almost completely 

rain-based crops (Ali et al., 2003), the region is sensitive to this variability and 

the Commission for Africa report (2005) listed extreme weather events as one 

of the main reasons why food insecurity is still prevalent, and is potentially a 

reason why Sultan et al. (2005) found that the Sahel was the only region in the 

world where food production per capita had reduced in the previous twenty 

years. 

 

The availability of water, and therefore rainfall, is vital to the agriculture of the 

region. Nicholson (1993) showed how the Sahelian rainfall can vary, with 

drought conditions prevalent in the 1980s, after two decades of high rainfall, 

though more recent studies have suggested that rainfall is again increasing and 

the drought becoming less persistent (Nicholson, 2005). 

 

The Commission for Africa (2010) claimed that climate change is expected to 

have a particularly damaging effect on the African continent, with the following 

possibilities: 

 

 Expansion of deserts 

 Increase of floods and droughts 
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 Reduced crop yields and availability of agricultural land 

 Increased food insecurity and malnutrition 

 Increased prevalence of severity of disease, like Malaria 

 Damage to land and property from environmental disasters 

 Damage to biodiversity and ecosystems 

 

The Commission for Africa (2010) suggested that a high proportion of Africa’s 

agricultural land is dependent on rainfall alone, largely due to a lack of irrigation, 

and this is particularly important as many African economies are dependent on 

agriculture and are therefore vulnerable to impacts of climate change. 

 

The Sahel area of Africa is experiencing climate change that is likely to put 

strain on the water resources (Andersen et al., 2001).  This strain on the water 

resources could lead to political and humanitarian issues on the area, and 

Andersen et al. (2001) describes the region as a potential conflict area because 

of attempts to manage the resources, such as large irrigation schemes and dam 

construction.  Climate change, along with urbanisation, poverty and inequality, 

is listed as a possible reason for future conflict in Africa by the Commission for 

Africa (2010). 

 

Vorosmarty et al. (2010) analysed the potential threats surrounding the world’s 

fresh water resources, using rivers as a focus, in regards to risks to human 

water security and also the biodiversity of the rivers, from influences of human 

activities like anthropogenic climate change, land use changes and 

industrialisation.  The potential threats were weighted against nations’ ability to 
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invest in engineering works to maintain or improve the water security, without 

damaging the biodiversity of the rivers.  The study found that the Sahel region 

was an area with a high risk to its human water security and to its biodiversity. 

 

However, any study into the possible future effects of rainfall variability could 

never demonstrate the impact it has as effectively as the unfolding disasters 

that are all too evident, with the real outcomes of people being displaced or 

dying from thirst, famine or disease. This reality became all too prominent 

during the Horn of Africa drought that affected Ethiopia, Uganda, Kenya, 

Somalia and Djibouti in 2011, as low rainfalls resulted in water shortages and 

crop failures (Water Aid, 2012). 

 

The “A Dangerous Delay” Report 

 

The “A Dangerous Delay” report (Hillier and Dempsey, 2012), jointly published 

by Save the Children and Oxfam in 2012 (referred to henceforth as ADD12), 

highlighted the Horn of Africa drought as the worst hunger crisis this century, 

but one that was utterly avoidable. ADD12 stated that the drought represents 

the latest in what it described as a systematic failure of the international system, 

where early warning of the drought was given but not heeded and acted upon. 
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Figure 3.1 – Timeline showing the unfolding of the Horn of Africa drought in 2011, 

detailing the timing of early warning alerts and the delivery of aid (ADD12, source given 

as OCHA Financial Tracking Service). 

 

The unfolding of the events of the Horn of Africa drought in 2011 can be seen in 

Figure 3.1. The early warning alerts for a crisis first came in August 2010, 

mainly due to the predictions of changing weather patterns linked to La Nina, 

which were increased in November as the winter rains were predicted to be 

poor. The predictions were correct and a drought began to unfold, and the early 

warning systems also warned of a failure of the March to May rains, suggesting 

that even average rains would result in famine conditions. 

 

It was not until the drought had taken grip, causing famine conditions to 

develop, that the international community responded. The report shows that a 

window of opportunity to take preventative action existed between November 

2010 and March 2011, but the actual emergency response did not reach 
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capacity until April 2011, months after several declarations of emergency had 

been issued.  

 

The conclusion of the report was that the international response to the disaster 

was too late, and when it did arrive it was still too small. The crisis affected 13 

million people and estimates of those who died in the crisis are given between 

50,000 and 100,000, with half of those under the age of five. On top of this there 

was widespread malnutrition, and with a quicker response many of the deaths 

and displacements could have been avoided. 

 

In short, the report showed that the delay unnecessarily cost lives.  A major 

contributor to this was misunderstanding and miscommunication of the 

uncertainty when using EWS, and thus failing to convince governments and 

agencies to act. The solution proposed by ADD12 was to produce a risk matrix 

of probability of a risk and the impact of that risk, with a specified threshold that 

would trigger an emergency response – in order to do this the uncertainty of an 

EWS forecast needs to be quantified to establish the probability of the risk. 

 

Early Warning Systems (EWS) and Uncertainty 

 

The ADD12 report showed how EWS are useful for forecasting possible 

droughts, famines and other crises. However, although the EWS were found to 

be wholly correct in their predictions of the Horn of Africa, the uncertainties 

within the EWS were poorly understood and communicated to governments and 

agencies responsible for acting upon the warnings. 
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The EWS that was highlighted in ADD12 was the Famine Early Warning 

Systems Network (FEWSNET), administered by the United States Agency for 

International Aid (USAID) and incorporating several private institutions and US 

government agencies, such as the United States Geological Survey (USGS), 

the National Aeronautics and Space Administration (NASA), the National 

Oceanographic and Atmospheric Administration (NOAA) and the United States 

Department of Agriculture (USDA). 

 

A key component of FEWSNET is drought monitoring, for which it utilises 

several satellite data products for early detection for indication of drought, 

including the Normalised Difference Vegetation Index (NDVI) and Satellite 

Rainfall Estimates (SRFE) (Verdin et al., 2005). Flood risk also poses a threat to 

food security in Africa and FEWSNET uses SRFE to monitor potential flood 

hazards, although this has proven more difficult due to a paucity of ground data 

required to replicate more conventional methods (Verdin et al., 2005). 

 

A major factor in dealing with uncertainties in EWS is communicating them 

clearly, and putting in place guidelines for action based on uncertain forecasts. 

A good example of this is demonstrated in Braman et al. (2012), which 

examined the Early Warning, Early Action (EWEA) strategy. EWEA works from 

medium and long range flood forecasts and puts in place low cost efforts that 

are not wasted if the forecast proves inaccurate – such as training local 

volunteers and deploying non-perishable relief items. Braman et al. (2012) 
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showed that the EWEA strategy was effective using the West African floods of 

2007 and 2008 as a case study. 

 

The Origin of Uncertainty 

 

To understand why governments and agencies delayed action in response to 

uncertainty within EWS, the understanding of what is meant by uncertainty must 

be clearly defined, from the point of view of the scientific field and that more 

general accepted in the public arena. 

 

The Collins English Dictionary gives the definition of ‘uncertain’ and thus 

‘uncertainty’ as:  

 

“not able to be accurately known or predicted; not able to be depended on; 

changeable” – (Collins, 2012, page 619) 

 

It is hardly surprising that when faced with an ‘uncertain’ EWS alert that a 

government or agency would be reluctant to act upon it, given the generally 

accepted definition claims that it cannot be depended upon. However, in the 

scientific field, this is not what is meant when referring to uncertainty. Beven 

(2008) briefly defines uncertainty in the context of an environmental model 

simply as the risk of it being wrong. 

 

This is a problem that permeates the public perception of science that goes 

beyond the field of hydrometeorology, and the issue of uncertainty in 
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environmental models. May (2011) described how, due in part to the way 

science is communicated or used in education, it is often seen to be ‘certain’, 

yet in reality and within the scientific community it is seen as organised 

scepticism – the public perception of science does not admit debate or 

uncertainty. 

 

Palmer and Hardaker (2011) took this further and claimed that any prediction 

that does not acknowledge the existence of uncertainty has no basis in science 

at all, highlighting the pressing need for the use of probabilistic methods and for 

improved ways of communicating uncertainty, especially in terms of decision 

making. Smith and Stern (2011) suggested that scientists have an important 

role in the decision making process, where instead of just presenting results the 

community should engage and converse with policy-makers regarding 

uncertainty – in this role the most immediate aim of the scientist is not to 

actually reduce uncertainty, but to quantify it and communicate it more clearly. 

 

Beven (2008) suggested that uncertainty is a concept applicable to 

environmental models that is often underplayed or misunderstood and 

highlights the issues of quantifying and communicating this risk - the problem of 

researchers not adequately communicating the uncertainty of their model 

predictions derives from the fact that it tends to confuse decision makers, and 

many go so far as to ignore the uncertainty in their models by not reporting 

them or even not attempting to calculate them. 
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Beven and Feyen (2002) noted that identifying ways to best visualise and 

present uncertainty was a key question to be answered in the field of 

hydrological modelling. This can be applied to the field of environmental 

modelling, yet in order to be able to do that the uncertainty needs to be properly 

defined and quantified beforehand. 

 

Gourley and Vieux (2006) claimed that to calculate the uncertainty in an 

environmental model prediction, the uncertainty of a number of areas needed to 

be individually determined. These areas are given as:  

 

 Model inputs 

 Boundary and initial conditions 

 Model parameters 

 Model representations of physical processes 

 Model numerical formation, and 

 Observations of the system behaviour. 

 

These areas of uncertainty above affirms the view of Beven (2008) that an 

environmental model’s uncertainty comes from the uncertainty within the input, 

and the model’s structure (which encompasses the next four points). 

Observations of the system behaviour are used to evaluate the model output, 

for example in a hydrological model this might be recorded river discharge data 

– these are often used to calibrate the model parameters so any uncertainty 

within the observations will contribute to the model structure error. A simplified 
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schematic of the sources of uncertainty in a hydrological model can be seen in 

Figure 3.2. 

 

 

Figure 3.2 – A schematic showing the main sources of uncertainty in a hydrological 

model (from Vazquez et al., 2009). 

 

It is logical that the more an environmental model is based on reality, derived 

from the physical properties of the system it purports to represent, the better the 

output will be. However, such ‘physics’ or ‘physical’ models require a large 

quantity of high resolution data about the system in order to operate (Wagener 

et al., 2001). Grayson et al. (2002) highlighted the relationship between data 

availability, model complexity and the performance of an environmental model, 

suggesting that an optimum model complexity exists which captures the full 

detail availability but without extrapolating to finer spatio-temporal resolutions. 

Figure 3.3 shows this relationship. 

 



 
Chapter 3 – Study Area and Context 

62 
 

 

Figure 3.3 – Schematic demonstrating the relationship between data availability, model 

complexity and the predictive performance of an environmental model, showing where 

the optimum model complexity exists (from Grayson et al., 2002). 

 

What Grayson et al. (2002) and the schematic in Figure 3.3 demonstrate is that 

the model input is not only a source of uncertainty, but also dictates the 

complexity that the model structure itself can take. In the context of EWS 

models for sub-Saharan Africa, their performance and development, including 

any attempts to quantify and reduce the uncertainty within them, is intrinsically 

linked the data available to drive them. 

 

The State of Data Availability in Sub-Saharan Africa 

 

Although the EWS models used in sub-Saharan Africa make use of a multitude 

of data sources, both ground based and remotely sensed, one of the most 
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important data inputs required, in particular for drought or flood monitoring, is a 

real time measurement of rainfall. 

 

Ground measurements of rainfall in Africa have historically been very poor, with 

almost no precipitation radars available and most regions being covered by only 

sparse networks of raingauges (Washington et al., 2006). 

 

 

Figure 3.4 – The global distribution of raingauges that are part of the World 

Meteorological Organisation’s (WMO) World Weather Watch (WWW) Regional Basic 

Synoptic Network (RSBN) in 2003. Each raingauge station is colour coded dependent 

upon its reporting rate (from Washington et al., 2006). 

 

Figure 3.4 shows the distribution of raingauge stations that form part of the 

World Meteorological Organisation’s (WMO) World Weather Watch (WWW) 

network. It is clear that compared to much of the rest of the world, sub-Saharan 

Africa is far less densely covered, and of those raingauges covering the region 
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many report less than 50% of the time. This pattern can also be seen in Latin 

America. 

 

In 2003 the raingauge density of the Regional Basin Synoptic Network (RBSN) 

for Africa was just 1 gauge per 26,000km2, far below the WMO’s own guidelines 

(Washington et al., 2006).  

 

Washington et al. (2006) attributed a lack of investment in both data recording 

infrastructure, and in the scientists necessary for its operation, as reasons for 

this situation, stressing that there is a lack of (though increasing) political will to 

improve data acquisition due to more pressing concerns. 

 

Numerical weather predictions (NWP) could potentially offer an alternative but 

require ground data in order to be calibrated, with current efforts focussed on 

mid-latitudes resulting in a loss of predictability for areas in the tropics 

experiencing convective rainfall (Washington et al., 2006). 

 

Recently the 2002-2008 African Monsoon Multidisciplinary Analyses (AMMA) 

has increased the density and reliability of the raingauges in Sahelian West 

Africa (Greatrex, 2012), but there still exists only a sparse network. 

 

The Trans-African Hydro-Meteorological Observatory (TAHMO) is an ambitious 

project that aims to install 20,000 raingauges across sub-Saharan Africa, 

increasing the gauge network density to 1 gauge per 30km (Hut and van der 

Giesen, 2010, TAHMO, 2012).  To achieve this each station would cost less 
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than $US200, reporting automatically using the mobile telecommunications 

network and sited in schools, incorporating them into local educational projects. 

To date the project has produced the acoustic disdrometer, each costing less 

than $US10 to produce and records rainfall using a microphone, reporting the 

data via the mobile telecommunication network:  it has been successfully tested 

in Tanzania (TAHMO, 2012). 

 

Despite the ambitions of the TAHMO project and the progress made via the 

AMMA project, there still exists a paucity of ground recorded rainfall for sub-

Saharan Africa and a requirement for an alternative method of collecting real 

time rainfall data to drive environmental models and EWS.  

 

Satellite Rainfall Estimates (SRFE) 

 

As discussed earlier in this chapter, the FEWSNET EWS uses SRFE as an 

input for both its drought monitoring and flood monitoring models (Verdin et al., 

2005). The benefit of using SRFEs are that they can be retrieved at real-time, or 

near real-time, and can show a greater spatial resolution than estimates derived 

from a sparse raingauge network alone (Hardy et al., 1989). 

 

There are two main sources of satellite data for use in producing SRFE (Dinku 

et al., 2010) –  

 

 Thermal-Infrared Imagery (TIR) 

 Passive Microwave (PM) 
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TIR imagery is often based on geostationary platforms and SRFE using this 

data will infer rainfall location and rate based on an indirect statistical 

relationship between cloud top temperature and rainfall, whilst PM sensors are 

able to directly record the location and rate of rainfall but are based on platforms 

in lower, polar orbits resulting in a coarser temporal resolution (Dinku et al., 

2010). 

 

SRFE estimates have proven successful as an input in several different types of 

environmental models, including Malaria EWS monitoring (Grover-Kopec et al., 

2005), crop water monitoring (Verdin and Klaver, 2002), crop yield models 

(Reynolds et al., 2000) and hydrological modelling (Grimes and Diop, 2003, 

Andersen et al., 2002, Sandholt et al., 2003). 

 

However, when operating at high spatio-temporal resolutions the indirect 

relationships used by SRFE result in high levels of uncertainty (Bellerby and 

Sun, 2005). The indirect relationship between rainfall and the satellite data 

available is often calibrated using ground instrumentation and climatic data, but 

these relationships are non-stationary – temporally and spatially – and non-

linear (Nikolopolous et al., 2010).  As already shown, sub-Saharan Africa has a 

paucity of ground instrumentation available to calibrate (and validate) SRFE, 

further increasing the uncertainty. 

 

Teo (2006) and Teo and Grimes (2007) demonstrated how the uncertainty 

within the TAMSAT SRFE can be characterised using a stochastic ensemble 
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approach. Each ensemble rainfall estimate was a unique yet equiprobable 

realisation of the rainfall field, as established using a sparse historic raingauge 

network for calibration. The full ensemble of SRFEs was used to drive the 

Generalised Large Area Model (GLAM) crop yield model. 

 

 Teo and Grimes (2007) demonstrated that a stochastic ensemble approach 

could be used to successfully characterise the uncertainty within a SRFE, and 

showed how this can be applied to a crop yield model, such as those utilised by 

EWS in sub-Saharan Africa. Hydrological models are a significant component of 

EWS, for drought and flood monitoring, and also make significant use of SRFE. 

The TAMSIM method developed by Teo (2006) has yet to be applied to a 

hydrological modelling context and this is a significant aim of this thesis. 

 

 

3.3 – Description of the Study Area 

 

The Sahel is a region of sub-Saharan African that lies in a belt across the 

continent, from the Atlantic Ocean to the Red Sea. The name derives from the 

Arabic word for coast, or shore, as it appears as a ‘coastline’ against the 

expanse of the Saharan desert, a 5,400km stretch across east to west, varying 

in thickness across the continent. In total it crosses the borders of 12 countries 

– Senegal, Mauritania, Mali, Burkina Faso, Algeria, Niger, Nigeria, Chad, 

Sudan, South Sudan, Ethiopia and Eritrea. 

 

The main method for identifying whether a region falls within the Sahel is 

through observation of physical features, such as the climate, soil types and the 
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vegetation cover (Koechlin, 1997). Koechlin (1997) describes the principal 

characteristics Sahelian regions display, and these are summarised below –  

 

Climatic Characteristics 

 

The climate of the Sahel is largely driven by two air currents. The Harmattan is 

dry and dusty, flowing north-east to east between December and March, whilst 

the Saint Helen anticyclone flows south-west to west and is humid. The two air 

flows cause the Intertropical Front (ITF) to fluctuate, driving the transitions 

between the wet and dry seasons. The wet season usually falls between April 

and October but varies locally. 

 

Soil Characteristics 

 

The Sahel is dominated by three major soil types:  

 

 Dune Soils 

 Soils richer in fine particles, over a bedrock of granite, metamorphic or 

sandstone geologies 

 Soils on a hardpan 

 

Most of the soils in the Sahel are thin and often compact, allowing for little 

permeability and promoting surface runoff. 
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Vegetation Characteristics 

 

The vegetation of the region ranges from herbaceous shrubs to steppe or 

savannah like flora. Only in the southern most regions of the Sahel would 

woodland and forest plants be found. 

 

Koechlin (1997) also proposed splitting the Sahel into four further sub-regions 

and these have been summarised in Table 3.1. 

 

Sub-region Annual Rainfall (mm) Length of Wet Season 

(months) 

Vegetation 

Sub-desert sector 

 

200-250 2 or less Herbaceous to shrub 

steppe 

Sahelian sector 

 

200-550 2-4 Steppe, shrubby, wooded 

Sub-Sahelian sector 550-700 4-5 Steppe to savannah 

transition 

North Sudanese sector 750-1000 5-6 Wooded savannah, hard 

grasses 

 

Table 3.1 - Characteristics of Sahelian sub-regions (after Koechlin, 1997) 

 

The extent of the West African savannah associated with the Sahel is shown in 

Figure 3.4. The characteristic shape of the Sahel can be seen, with it forming a 

band from west to east, with the Sahara forming the northern boundary (taken 

as the limit of cultivation), and the southern boundary being the start of the 

forested environment. 
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Figure 3.5 - The boundaries of the West African savannah (Jones and Wild, 1975) 

 

Climate   

 

As shown by Koechlin (1997), and in Table 3.1, the Sahel region displays a 

large gradient in rainfall, with little rainfall towards the north, and far greater 

rainfall in the south. This distribution of rainfall is shown in Figure 3.6, where the 

mean annual rainfall at the northern boundaries is as low as 100mm, whilst it 

exceeds 1600mm in the south. 

 

Jones and Wild (1975) noted that the rainfall in the area is characteristically 

aggressive, falling in intense storms. This is particularly marked in the northern 

areas. Various studies have shown high rainfall intensities, including 52mm.hr-1 

in Senegal, over 200mm.hr-1 in Ghana and a peak intensity of 290mm.hr-1 in 

Nigeria (Jones and Wild, 1975). 
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Figure 3.6 - Isohyets of mean annual rainfall (mm) for the Western Sahel (after Jones and 

Wild, 1975) – The Bakoye catchment is outlined in red and the Oualia gauging station is 

highlighted by the green dot. 

 

As well as the steep north-south gradient for mean annual rainfall, the same 

gradient is evident in regards to the initiation and length of the wet season. 

Figure 3.7 shows the gradient – for the Sahel region, the north has a short, 

three month wet season beginning in July, and the south largely a 6 month wet 

season, beginning in April (Jones and Wild, 1975). 
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A 

Figure 3.7 – Map showing the extent of the wet season across West Africa, showing the 

month the wet season begins and the number of months where mean rainfall is >50mm 

(after Jones and Wild, 1975) – The Bakoye catchment is outlined in red and the Oualia 

gauging station is highlighted by the green dot. 

 

As would be expected, the mean annual rainfall and length of the wet season 

has an effect on the ability to grow crops. Figure 3.8 shows the length of the 

growing season across Western Africa – again this shows a large north-south 

gradient, rapidly increasing southwards.  
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Figure 3.8 - The length of the growing season, in days, across Western Africa (after 

Jones and Wild, 1975) – The Bakoye catchment is outlined in red and the Oualia gauging 

station is highlighted by the green dot. 

 

The length of the growing season is linked to the relationship between potential 

evapotranspiration (PET) and rainfall, where over the entire year in the Sahel 

the PET exceeds the mean annual rain, but during the growing season the 

rainfall is intense enough to create an excess (Jones and Wild, 1975). 

 

Jones and Wild (1975) suggested that the Sahelian growing season can be 

categorised into five distinct periods: 
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1. Preparatory period – rainfall is below PET but sufficient for cultivation 

2. First intermediate period – rainfall close to PET, sufficient for sowing and 

some growth 

3. Humid period – rainfall exceeds PET 

4. Second intermediate period – rainfall close to PET 

5. Reserve period – PET exceeds rainfall, growth dependent on soil 

moisture reserves 

 

From north to south the humid period increases in length, along with the overall 

growing season length, yet the other stages decrease in length (Jones and 

Wild, 1975). 

 

Similarly the influence of the climate has an input on the natural vegetation of 

the region, and a generalised map of the vegetation zone across West Africa 

can be seen in Figure 3.9. 

 

It can be seen from the maps in Figure 3.6 to 3.9 that the Bakoye Catchment 

straddles many climatic areas, in terms of mean annual rainfall, length of wet 

season and vegetation zones. The majority of the catchment falls within the 

area where the wet season can be expected to begin in June and last for four 

months, and has a mean annual rainfall between 400-800mm.  Vegetation is 

varied across the catchment, with growing seasons lasting 80 days in the north, 

and over 160 days in the south, and the catchment is almost equally divided 

between the Northern Guinea, Sudan and Sahel vegetation zones. 
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Figure 3.9 – Map showing the generalised vegetation zones across West Africa (after 

Jones and Wild, 1975) – The Bakoye catchment is outlined in red and the Oualia gauging 

station is highlighted by the green dot. Northern Guinea – savannah. Sahel – wooded 

steppe. Southern Guinea – relative moist undifferentiated savannah. Sudan – relatively 

dry undifferentiated savannah. 

 

Geology and Soil 

 

Jones and Wild (1975) showed there to be a difference between the north and 

the south in regards to rock types. The rocks of the south are dominated by 
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granites, and granite-derived metamorphic rocks, yet the north is largely 

unconsolidated sands. Some areas in Mali, Senegal and Mauritania have large 

areas of rocks associated with marine conditions, including conglomerates, 

sandstones and clays. The lack of base-rich primary and volcanic rocks in the 

region was highlighted. 

 

 

Figure 3.10 - Generalised soil type distributions across the West African savannah (after 

Jones and Wild, 1975) – The Bakoye catchment is outlined in red and the Oualia gauging 

station is highlighted by the green dot. 
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Figure 3.10 shows the generalised soil type distributions across the region. 

Jones and Wild (1975) suggested that the climate and vegetation have a 

greater influence on the soil type than the parent material. The land surfaces 

are predominantly from the late Cenozoic, with some older early Cenozoic 

areas, with the soils having undergone several cycles of deposition and erosion, 

resulting in the evidence of significant transportation and mixing. Younger 

surfaces are restricted to the proximity of major rivers. 

 

It can be seen in Figure 3.10 that the soil distributions broadly shows a north-

south gradient in the same way as the mean annual rainfall. Jones and Wild 

(1975) saw this as a possible relationship, suggesting that the climate drives the 

leaching and weathering rates, resulting in shallower soil profiles in the north. 

The lack of vegetation towards the north also exposes the surface to heavier 

erosion. In addition there is the potential for feedbacks from the land surfaces 

that can define and/or reinforce the rainfall gradient in the Western Sahel 

(Taylor and Lebel, 1998). 

 

The Bakoye catchment itself shows significant heterogeneity of soil types 

across its extent, with red/brown arid type soils in the north (corresponding with 

the Sahel vegetation zone in Figure 3.9), tropical ferruginous soils in the south 

and east, and weakly developed rocky soils in the west. 
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Topography 

 

The Bakoye catchment also displays significant heterogeneity in topography 

across its extent, as demonstrated in Figure 3.11 which shows the elevation 

across West Africa as available from the National Geospatial-Intelligence 

Agency (NGA, 2006). 

 

Figure 3.11 – Map showing the topography of West Africa – The Bakoye catchment is 

outlined in red and the Oualia gauging station is highlighted by the green dot (Elevation 

data from NGA, cited 2006). 

 

The elevation across the West African region can be seen to vary between 

highlands in the south, largely within Guinea and Mali, with lowlands to the 

north and west, particularly along the course of the River Senegal and the 

Gambia where the elevation is almost wholly below 250m. The Bakoye 
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catchment shows significant variations, the south and east are mountainous 

areas, and the height decreases towards the north. Most of the catchment is 

above 250m elevation, but falls rapidly towards the outlet at the Oualia gauging 

station. 

 

Natural Hazards 

 

The Sahel region is prone to drought and is often held as an example of the 

dangers of environmental disaster, especially after the devastating drought that 

persisted between 1968 and 1974 (Rain, 1999). Berry (1975) showed that 

during this period, the Agades station in Niger recorded mean annual rainfalls 

half the amount of the 50 year average between 1922 and 1972. 

 

Similar droughts have occurred prior to the 1968-1974 event, such as in 1913 

and 1940 (Berry, 1975). Balme et al. (2006) suggested that the Sahel region 

had actually been in a state of drought from the late 1960s to the mid 1990s, 

with intense peaks in 1972-1974 and 1983-1985. Most recently, the East 

African Sahel was gripped by the Horn of Africa drought as described by 

ADD12 and discussed in Section 3.2. 

 

Overall the 1990-2002 rainfall for the Sahel was 20% below the 1950-1969 

average, and 8% below the 1950-1989 average (Balme et al., 2006). 

 

Although the region is prone to drought it is also prone to flooding. The risk of 

flooding in West Africa is highlighted in Braman et al. (2012), showing that the 
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region is under increased risk because of development upon floodplains during 

the long drought period, and the International Panel for Climate Change (IPCC) 

predictions for more intense rainfall events for the region. In recent years there 

has been an increase in flooding in the West African regions, as shown in 

Figure 3.12 

 

 

Figure 3.12 – Chart showing the increase in the number of annual floods in West Africa 

between 1970-2008 (from Braman et al., 2012). 

 

The Commission for Africa Report (Commission for Africa, 2010) highlighted the 

expansion of deserts, or desertification, as a hazard facing the Sahel region.  

Using a 3,200 year record of dust and proxy precipitation data from West Africa, 

Mulitza et al. (2010) found that the relationship between Sahelian dust 
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generation and rainfall became decoupled around 1700AD, with the arrival of 

commercial agriculture in the region, which may be contributing to the observed 

desertification trend over the last four centuries. 

 

 

Figure 3.13 – Chart showing the rainfall anomalies across the Sahelian zone (from 

Conway, 2009). 

 

The Sahelian region is currently in a multidecadal period of drought, which 

began at the start of the 1970s (Conway, 2009) – this can be seen in the rainfall 

anomaly chart in Figure 3.13. It is not certain whether this is due to natural 

cycles – the area has experienced similar periods several times since the last 

glacial period – or due to anthropogenic climate change (Conway, 2009).  

 

The theory that desertification was occurring in the Sahel emerged from the 

prolonged drought that afflicted the region after the 1960s, with the prevailing 

thought being that mismanagement of the land had caused a climatic shift 

(Giannini et al., 2008). Since the mid 1980s however, there was growing 

evidence that the droughts were driven by changes in the global pattern of sea 
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surface temperatures (SST), and the rains have somewhat recovered with 

‘greening’ evident in the region (Giannini et al., 2008). 

 

With strong evidence for a link between warmer ocean temperatures and 

Sahelian drought (Giannini et al., 2008), it stands to reason that with the 

predictions for anthropogenic climate change that future warmer oceans will 

lead to a drier Sahel, and desertification.  However, Giannini et al. (2008) 

suggested that recent observation and re-greening in the region contradict this 

trend and theory, whilst Hein et al. (2011) noted that remote sensing techniques 

have failed to detect wide-spread degradation of vegetation in the Sahel that 

would be indicative of desertification. 

 

The picture of desertification and possibilities for the future are unclear and 

highly complex. Land degradation and farming plays a part in complex ways 

(Conway, 2009), but the evidence points to a stronger link between droughts 

and SST (Giannini et al., 2008). Conway (2009) shows that the main driver for 

Sahelian droughts from SST is the difference in temperatures between the cool 

North Atlantic and a warmer South Atlantic, but it appears that the South 

Atlantic may have been cooling since the 1990s, and the North warming due to 

climate change – this would lead to an increase of rainfall in the region.  

 

3.4 – Previous Studies relating to the Bakoye Catchment 

 

There have been five previous studies of the Bakoye Catchment that are 

relevant to this study, details of which can be found in Hardy et al. (1989), 
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Andersen et al. (2002), Grimes and Diop (2003), Diop and Grimes (2003), and 

Stisen et al. (2008). A summary of each is provided below –  

 

Hardy et al. (1989) 

 

The study described in Hardy et al. (1989) was one of the early applications of 

the TAMSAT CCD method to drive a manually calibrated Pitman lumped CRR 

model of the Manantali and Gourbassy catchments, upstream sub-catchments 

of the Senegal Basin. 

 

The study found that the Pitman model performed comparatively well compared 

to the model driven by raingauge data, with the benefit of being produced in 

near real-time. The study acknowledged the requirement for further research, 

including on other catchments but also acknowledged the implications of 

hydrological model calibration when using the SRFE. 

 

Andersen et al. (2002) 

 

Andersen et al. (2001) described the calibration and validation of a MIKE SHE 

distributed and physically based hydrological model of the Senegal Basin. The 

same model was used but with remotely sensed data to drive it in Andersen et 

al. (2002), including a TAMSAT CCD estimate of rainfall to fill in areas that were 

more than 25km away from a recording raingauge station.  The study found that 

the use of the TAMSAT rainfall did not improve the performance of the overall 

model but there was some improvement at smaller scales, which could be 
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further improved as the additional spatial information provided by TAMSAT 

estimates would allow a higher resolution to be used for future modelling. 

 

Grimes and Diop (2003) 

 

The study described in Grimes and Diop (2003) compared the performance of 

TAMSAT estimates to inputs from a NWP model incorporating satellite data and 

a mean of the raingauges within the catchment, when used to drive a pre-

calibrated Pitman lumped CRR model. Included as part of this study was a 

modelling of storm types and the influence of the African Eastern Waves 

(AEWs). The study found that a NWP model utilising satellite data, with a 

contemporaneous calibration can outperform raingauge data alone for driving a 

hydrological model, and this can be further improved by including information on 

storm types and wave phases. 

 

In addition the study also found that inclusion of a relatively complex modelling 

of PET in the Pitman model - using remotely sensed NDVI data - did not 

improve the modelling of the catchment. 

 

Diop and Grimes (2003) 

 

The study described by Diop and Grimes (2003), a companion paper to Grimes 

and Diop (2003) summarised above, investigated the influence of the AEWs on 

the Bakoye Catchment, and the modelling of rainfall and hydrology. 
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Produced by instabilities in the African Easterly Jet, AEWs form and travel 

westwards over North Africa, into the Atlantic and are linked to the formation of 

tropical cyclones there. For the region of the Senegal Basin and the Bakoye 

catchment they are significant in that they are key drivers of convection, and the 

rainfall that results.  The study found that the highest levels of rainfall and CCD 

occurred on the leading edge of the waves, with minima in the trough behind, 

however the relationship was complex and showed significant inter-annual 

variation indicating the influence of other meteorological factors. As stated 

above, Grimes and Diop (2003) showed that the inclusion of wave phase and 

storm type classification in the modelling process improved performance. 

 

Stisen et al. (2008) 

 

The study described by Stisen et al. (2008) looked at using remote sensing data 

to drive a MIKE SHE distributed hydrological model of the Senegal Basin, 

including six sub-catchments, one of which being the Bakoye catchment. 

Rainfall data for the study was produced using TAMSAT CCD estimates. 

 

The study concluded that remotely sensed data could provide a valid means of 

driving a distributed hydrological model for a large river basin, and that by 

comparing data for a single sub-catchment and previous studies, a distributed 

approach outperformed less sophisticated lumped methods, especially in the 

robustness of the calibration. 
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The Current Picture 

 

It would appear from the studies above that the picture of using SRFE to drive a 

hydrological model for the Bakoye Catchment is mixed.  Hardy et al. (1989) and 

Grimes and Diop (2003) both showed that TAMSAT rainfall estimates can be 

used effectively to drive a lumped hydrological model of a sub-catchment of the 

Senegal Basin, and Stisen et al. (2008) demonstrated that TAMSAT could also 

be used effectively with a distributed model of the larger basin area. However, 

Andersen et al. (2002) suggested that the TAMSAT rainfall did not improve the 

performance of the model at the catchment level.   

 

Diop and Grimes (2003) showed that by introducing the modelling of storm type 

and wave phases to the modelling of rainfall from satellite data, the 

performance when driving a lumped model was improved.  None of the previous 

studies have attempted to model the uncertainty within the SRFE and how it 

influences and propagates through the hydrological model. 

 

3.5 – The Available Data 

 

This section will examine the datasets that have been made available to this 

thesis, plus the additional sources of data to supplement it. The section will also 

investigate the data in relation to the climatic conditions discussed earlier in this 

chapter.  The main sources of data available were: 

 

 Historic Raingauge Data 
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 Historic Discharge Data 

 Historic Satellite Data 

 

Additional sources of data available which have been used are: 

 

 Climatic Potential Evaporation Data 

 Digital Elevation Model Data 

 

The Raingauge Data 

 

Data from 81 raingauge stations are available, recording the period between 

1986 and 1996, at a daily timestep. Figure 3.14 shows the locations of each of 

the raingauges available, and their percentage of recording coverage between 

1986 and 1996. 

 

Coverage of the raingauges is generally good, with an all-over average of 

77.71%. 22 stations have data recorded for 100% of the period, 48 stations 

have over 75% and 67 stations have at least 50% coverage. Only 4 stations 

record data for less than 25% of the period. Ideally, stations that show such a 

poor record of coverage would be excluded from the dataset, but due to the 

already sparse nature of the data all stations were included. 
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Figure 3.14 – Map showing the extent of the study area and location of the 81 raingauge 

stations. The percentage of recording coverage provided by each station is shown for 

the period between 1986 and 1996, with green stars indicating those stations that provide 

100% coverage. The extent of the Bakoye catchment is outlined in red. 

 

Table 3.2 shows the mean annual rainfall for each year of the study taken from 

all 81 stations, with each station having been weighted depending on the 

number of days it has recorded data that year. The table also shows the 

average coverage for each year. 
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Year 
Weighted Mean 

Rainfall (mm.yr-1) 
Coverage (%) 

1986 592.95 88.44 

1987 580.63 84.93 

1988 689.89 80.13 

1989 686.37 76.66 

1990 528.82 73.73 

1991 549.60 76.86 

1992 503.41 68.51 

1993 521.41 71.81 

1994 715.75 79.61 

1995 681.77 78.38 

1996 635.54 75.70 

Total 6686.14   

Mean 607.83 77.71 

 

Table 3.2 – Mean annual rainfall for each year taken from all the 81 raingauge stations for 

the period between 1986 and 1996, and the mean recording coverage of the stations for 

that period. 

 

 

Figure 3.15 – Chart showing the deviation from the 1986-1996 rainfall mean for each year 

of the study period, for all the raingauge stations. 
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Table 3.2 and Figure 3.15 show the characteristics of the mean annual rainfalls 

from all the raingauge stations for the period between 1986 and 1996. The 

years 1986 and 1987 show average rainfalls that are below the mean for the 

period, and this could be attributed to a prolonging of the 1983-1985 drought 

conditions described previously (Balme et al., 2006).  There is another 

prolonged period of below average rainfall between 1990 and 1993, with the 

rest of the period showing above average rainfall. 1994 is the wettest year from 

the record, with a mean annual rainfall of 715mm, which is 108mm above the 

mean. 

 

Figure 3.16 – Map showing a spline interpolation of the mean annual rainfall for all the 

raingauge stations in the Senegal Basin for the period 1986-1996. The extent of the 

Bakoye catchment is highlighted in red, and the Oualia gauging station is highlighted by 

the green dot. Although the interpolation contains areas of significant extrapolation and 

error, it does give a good impression of the rainfall gradient across the region. 
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Figure 3.16 shows a spline plot of the mean annual rainfall from the gauges 

across the Senegal Basin area. The mean annual rainfall region (607mm) lies 

between the dark-brown and dark-green bands. 

 

There are 13 raingauge stations from the record that can be said to be 

associated with the Bakoye Catchment. These 13 stations will form a sub-set 

for use in determining the seasonal variations of rainfall over the Bakoye 

catchment.  The mean annual rainfalls for the study period, determined from 

these stations, are shown in Table 3.3, along with the average recording 

coverage. 

 

Year 
Weighted Mean Rainfall 

(mm/yr) 
Coverage (%) 

1986 772.59 100.00 

1987 621.84 99.98 

1988 892.78 69.23 

1989 848.17 76.92 

1990 694.74 76.92 

1991 760.27 76.92 

1992 660.88 59.58 

1993 723.25 58.29 

1994 940.01 74.35 

1995 814.75 75.01 

1996 768.36 62.82 

Total 8497.64   

Mean 772.51 75.46 

 

Table 3.3 – Mean annual rainfall for each year taken from all the Bakoye catchment sub-

set of raingauge stations for the period between 1986 and 1996, and the mean recording 

coverage of the stations for that period. 
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Figure 3.17 – Chart showing the deviation from the 1986-1996 rainfall mean for each year 

of the study period, for the Bakoye catchment sub-set of raingauge stations. 

 

Table 3.3 and Figure 3.17 show the characteristics of the mean annual rainfall 

for the Bakoye catchment, based on a sub-set of 13 raingauge stations. The 

general pattern is similar to that of the wider Senegal Basin, with dry periods 

between 1986-87 and 1990-93, with 1994 being the wettest year. However, the 

rainfall in 1986 is slightly more than the mean for the period, and 1996 slightly 

below – a deviation from the pattern seen for the whole of the Senegal Basin.  

 

Overall the catchment has a higher mean annual rainfall than the Senegal Basin 

as a whole, which is expected as the Bakoye catchment predominantly lies 

towards the climatologically wetter, southern end of the Basin. This can been 

seen in Figure 3.16, with significant areas of the catchment covered by bands of 

rainfall above the mean annual rainfall for the Senegal Basin (607mm).  

However, this might be skewed because the wetter regions of the Bakoye 
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catchment are more densely gauged than the drier northern areas, which lie in 

areas of mean annual rainfall below the overall mean, likely to result in 

overestimation of rainfall for the catchment from the gauges here. 

 

The River Discharge Data 

 

The available river discharge data is from seven discharge stations, with various 

periods of coverage between 1986 and 2005. 

 

 

 

Figure 3.18 – Map showing the locations of the river discharge stations of the Senegal 

Basin and the associated catchment extents. The Oualia station records the output from 

the Bakoye catchment. The numbers show the percentage of discharge for each 

catchment in relation to discharge of the Bakel station (for 1998-2001) (from Stisen et al., 

2008).  
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Figure 3.18 shows the locations of the discharge stations and their associated 

upstream catchments. From 1987 the discharge from the Manantali outlet is 

controlled by the dam located there, and the discharge data shows little 

correlation with rainfall calculated from raingauges within its catchment. As the 

discharge from Manantali accounts for 43% of that recorded by the Bakel 

station (Stisen et al., 2008), it would be expected that the output from the dam 

would have significant impact on the discharge downstream, and this is 

reflected in the data for Kayes and Bakel.  

 

The sub-catchments of Mankana and Dakka, upstream of Manantali, do not 

cover enough area to be represented by a sub-set of raingauges, so the 

influence of the dam at Manantali cannot be assessed, but it is anticipated to be 

significant. 

 

Of the catchments, the Gourbassa and Bakoye catchments are the best suited 

for modelling, both being free from the influence of the Manantali dam. Both 

have a similar output, 20% of the Bakel discharge for Gourbassa, and 18% in 

the case of Bakoye, yet the Gourbassa catchment is the smaller.  This is an 

issue, as there are five raingauge stations that can be associated with the 

Gourbassa Catchment (with periods of only two stations recording), and 13 

associated with the Bakoye Catchment – this makes the Bakoye catchment the 

most suitable catchment to model. 

 

Although data is available for the period 1986-2005 for the Oualia station which 

sits at the outlet of the Bakoye Catchment, raingauge data is only available for 
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the period 1986-1996. Figures 3.19 and 3.20 show the characteristics of the 

mean annual discharge for the Bakel and Oualia stations respectively. 

 

 

Figure 3.19 – Chart showing deviation of mean annual discharge for the Bakel station 

from the mean annual discharge for the period 1986-1996. 

 

 

Figure 3.20 – Chart showing deviation of mean annual discharge for the Oualia station 

from the mean annual discharge for the period 1986-1996. 
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The patterns shown in Figures 3.19 and 3.20, in the main, resemble the 

variations from mean annual rainfall shown both for the Senegal Basin area in 

Figure 3.15, and the Bakoye catchment in Figure 3.17. There are dry periods in 

1986-87 and 1990-93, and the discharges for 1994 reflect the fact that the 

raingauge stations indicated that it was the wettest year of the record. However, 

1989, which is a relatively wet year according to the raingauge stations shows 

below average discharge. 

 

Interestingly, 1996 displayed below average rainfall over the Bakoye catchment 

yet above average discharge. It is clear that the relationship between a simple 

average of raingauge measurements and catchment discharge is likely to be 

non-linear, non-stationary (both temporally and spatially) and uncertain at best. 

In absence of a more accurate alternative, the raingauge and discharge station 

data will be assumed to be free of error and uncertainty, although this is clearly 

not the case. 

 

Satellite Data 

 

The third important dataset available to the study was the satellite data, in the 

form of ‘Cold Cloud Duration’ (CCD) data, produced by the Tropical Applications 

of Meteorology using SATellites (TAMSAT) research group, Department of 

Meteorology, University of Reading.  

 

The CCD method employed by the TAMSAT group utilises the 10-13μm infra-

red channel of the Meteosat satellites to capture cloud top temperatures at 
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quarter-hourly intervals. For each 0.05° pixel a value is produced for the amount 

of time that pixel records temperatures below specified thresholds for each day.  

That value is the pixel’s daily CCD value. 

 

The database provided includes data for the whole of sub-Saharan Africa for 

the period of 1983-2010, at daily timesteps at a resolution of 0.05°. It is provided 

for the temperature thresholds of -20°c, -30°c, -40°c, -50°c and -60°c. 

 

Seasonality in the Data 

 

There is a large seasonality displayed across the region, as described by Jones 

and Wild (1975), with much of the Senegal Basin area within the region where 

the wet season can be expected to begin in June and last for four months. 

 

The seasonality expected is seen in the data, as shown in Figure 3.21. The vast 

majority of the rainfall falls between June and September, with peak rainfalls in 

August which accounts for 31% of the annual rainfall.  The period between June 

and September accounts for 88% of the annual rainfall. There are still 

reasonably significant rainfalls in May and October, but these are still only 4% 

and 7% of the annual total. 
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Figure 3.21 – Chart showing the monthly proportions of the yearly total of CCD and 

rainfall for the period 1986-1996 for the Senegal Basin Area. 

 

The same pattern is seen in the CCD data, although there is a spike of cold 

cloud in May which does not seem to correspond with rainfall. The June to 

September period accounts for 75% of the annual CCD total. Figure 3.22 shows 

the monthly proportions of CCD and rainfall plotted together, showing a good 

correspondence between the two datasets.  

 

Figures 3.21 and 3.22 show the seasonality displayed by the data, matching the 

expected climatology for the region, and the close relationship between the 

CCD and raingauge derived rainfall data.  The main rainfall period begins in 

May and ends in October, with the vast majority of rainfall between June and 

September. Ideally, the wet season would be taken as May to October, but due 

to the poor correlation between CCD and rainfall in May this month will be 
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excluded. Still, the defined wet season of June to October accounts for 95% of 

the rainfall recorded by the raingauge stations. 

 

 

Figure 3.22 – Scatter plot showing the relationship between the monthly CCD and rainfall 

proportions of the annual total for the period 1986-1996 for the Senegal Basin area. 

 

Climatic Potential Evapotranspiration Data 

 

In a similar way to ground instrumentation for rainfall, the Senegal Basin area 

does not contain the infrastructure for recording evapotranspiration rates at high 

spatial or temporal resolution. For use in this thesis, monthly climatic derived 

values are used, taken from the Food and Agriculture Organisation of the 

United Nations (FAO), available from FAO (2009) – the values used are from 

the nearest point available to the Oualia gauging station. 

 

The climatic monthly averages of reference evapotranspiration are determined 

by the FAO (2009), using the Montieth-Penman method, which is outlined in 
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Allen at al (1998). In a review of different methods of evaluating climatic 

evapotranspiration data, the CGIAR-CSI (2009) found that the Montieth-

Penman method outperformed the others, the details of which can be seen in 

Figure 3.23. These findings were similar to Batchelor (1984) which 

demonstrated that the method was superior in most practical situations. As can 

be seen in Figure 3.23, the Montieth-Penman does not have the spatial 

resolution of the other methods but as a lumped value was used this is not 

relevant. The Montieth-Penman has the additional benefit of being available for 

download without the need for additional processing. 

 

The Montieth-Penman method makes assumptions that could be a source of 

uncertainty in hydrological modelling. As a climatic representation of 

evapotranspiration it lacks the temporal resolution of the model, and cannot 

account for annual variations from the climatic average. It is also unable to 

account for antecedent conditions, which Taylor and Lebel (1998) suggested 

could be significant on the amount of soil moisture, evapotranspiration and 

feedbacks to rainfall amount. The Montieth-Penman method makes the 

assumption of global homogeneity in crop types, described as being 0.12m in 

height, with a surface resistance of 70s.m-1 and an albedo of 0.23 (Allen et al., 

1998) – obviously this assumption is incorrect and the heterogeneity of 

vegetation has been shown across the Bakoye catchment in Figures 3.8 and 

3.9. 
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Figure 3.23 – Comparison of methodologies for producing reference climatic 

evapotranspiration data (from CGIAR-CSI, 2009). 

 

Some attempts can be made to mitigate these issues, such as smoothing the 

data into dekadal time steps, but this is unlikely to significantly improve the 

quality of the data. Remote sensing has been used to improve the spatial and 

temporal resolution of evapotranspiration data, and Courault et al. (2005) 

provided an overview of the techniques, broadly categorising them into four 

types: 

 

1. Direct empirical methods, for example those based on TIR images 

2. Residual methods of the energy budget using remotely sensed data with 

physical parameters 

3. Deterministic models such as Soil-Vegetation-Atmosphere-Transfer 

(SVAT) 
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4. Vegetation index methods used as adjustments to the initial data 

 

Stisen et al. (2008) attempted to improve the temporal resolution of remotely 

sensed evapotranspiration values by modifying them with satellite derived 

Normally Distributed Vegetation Index (NDVI) data – the NDVI data was 

available at daily time steps with a spatial resolution of 6km, and was used as 

an indicator of Leaf Area Index (LAI). The approach by Stisen et al. (2008) was 

similar to that used by Grimes and Diop (2003) which incorporated daily NDVI 

data to adjust the FAO climatic estimates, finding no improvement to the model.  

Baret and Guyot (1991) found that NDVI was highly sensitive to soil optical 

properties, particularly in areas of low vegetation, showing that other methods 

outperformed NDVI – it is possible that the approach by Grimes and Diop 

(2003) was correct but the NDVI data used was not suitable for the Bakoye 

catchment. 

 

Courault et al. (2005) suggested that the methods of perturbing climatic 

estimates based on remotely sensed data were unlikely to estimate the spatial 

and temporal variations of evapotranspiration with a high degree of accuracy. 

Despite this and although Grimes and Diop (2003) found that a more 

sophisticated method of incorporating PET into the model did not improve 

performance – and indeed initial tests performed for this thesis found similar 

results – their use of such methods cannot be excluded from future research 

and disregarded, especially with the use of a distributed hydrological model and 

more research is required in this area. 
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Digital Elevation Data 

 

The digital elevation data used for the thesis is taken from the National 

Geospatial-Intelligence Agency (NGA, 2006). The elevation data for West Africa 

can be seen earlier in this Chapter in Figure 3.11. 

 

 3.6 – Summary 

 

This chapter has demonstrated how the Sahel region is an area that faces 

many problems, from food insecurity, drought and famine, to flooding and 

desertification due to climate change, amongst others. Many agencies have 

attempted to assist the area’s development and help to mitigate and limit the 

impacts of disasters if they do occur. 

 

A key component to the success of these efforts are the environmental models 

that are used to inform EWS, but these rely on timely and accurate 

measurements of precipitations which, when compared to other areas of the 

globe, are scarce. SRFE have been shown to improve the spatial and temporal 

resolution of the precipitation data available to environmental models in the 

Sahel but these can be highly uncertain, and there is a requirement to 

accurately measure this uncertainty, characterise it in a way that is applicable to 

an environmental model, and clearly communicate it in a way that can be 

understood by decision makers. 
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The Senegal Basin and the Bakoye catchment within it are typical of the Sahel 

region, and pose a challenge for producing SRFE. The precipitation data from 

ground recording instrumentation is particularly sparse, and the region displays 

significant heterogeneity in terms of climate, land cover and geology. This 

makes the need for accurate uncertainty characterisation even more urgent for 

SRFE in this area. 

 

The following three chapters detail the methodology adopted for this thesis.  

Chapter 4 demonstrates how the point raingauge network was interpolated into 

a continuous grid.  Chapter 5 describes the TAMSAT1 method of producing a 

deterministic SRFE, and the TAMSIM algorithm for characterising the 

uncertainty using a fully spatio-temporally distributed stochastic ensemble 

method. Chapter 6 demonstrates the Pitman lumped CRR model used for the 

hydrological modelling part of the thesis, and the SCE-UA technique used to 

optimise the variable parameters.
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4 
Methodology – Spatial Interpolation 

 

4.1 – Introduction 

 

This chapter is the first of three methodology chapters and details the methods 

used in the spatial interpolation of the point raingauge data. This is a necessity 

in order to make the data directly compatible and comparable to the satellite 

data which is aggregated at 0.5º pixels.  The method chosen to perform the 

spatial interpolation was the double Kriging (DK) method introduced by 

Barancourt et al. (1992). 

 

4.2 – Spatial Interpolation and the Double Kriging (DK) Method 

 

In order to calibrate the satellite data using historical raingauge data one of two 

approaches must be taken – either calculate point values from the satellite pixel 

averages, or produce pixel averages of the raingauge data (Grimes et al., 

1999). For this thesis, the latter approach has been adopted and therefore it is 

necessary to produce daily average rainfalls for the Senegal Basin at an 

appropriate pixel size, and the DK method of Barancourt et al. (1992) has been 

chosen to compute the pixel averages from the raingauge data. 
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Kriging is a linear interpolation method common to geostatistics, although it has 

been used widely across many and varied disciplines, for example estimating 

the proportion of shading across large photovoltaic cells (Di Piazza and Di 

Piazza, 2009) and even graphical character animation (Courty and Cuzol, 

2010), which highlights its versatility. 

 

Kriging is a popular approach for the spatial interpolation of rainfall fields and its 

usefulness has been demonstrated for a variety of applications, including 

hydrological modelling (Sun et al., 2000), climate studies (Duchon et al., 1995; 

Pardo-Iguzquiza, 1998), pollution modelling (Shen et al., 2012), producing 

large, gridded datasets (Jeffrey et al., 2001; Haylock et al., 2008; Hofstra et al., 

2009), designing raingauge networks (Pardo-Iguzquiza, 1998; Campling et al., 

2001), producing reference fields for error characterisation (Kirstetter et al., 

2010) and calibration of remote sensing techniques (Grimes et al., 1999). It has 

been found to outperform other methods for spatial interpolation of rainfall, 

including inverse-distance (Dirks et al., 1998), Theissen Polygon (Dirks et al., 

1998; Goovaerts, 2000) and multi-quadratic interpolation (Syed et al., 2003) – 

although Dirks et al. (1998) and Syed et al. (2003) both suggest that for small 

catchments with a dense network, the benefits of Kriging are negligible 

compared to simple methods especially when considering the additional 

computational expense. Dirks et al. (1998) added that the benefits of Kriging are 

more fully realised when the study was sufficiently large to exploit the full extent 

of the semi-variogram. 
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Kriging is not without its limitations and Hofstra et al. (2009), on spatial 

interpolation in general, suggested that the network density, spatial 

characteristics of the variable and the complexity of the terrain all have an effect 

on the accuracy of the interpolation. 

 

With Kriging there is a tendency for interpolated values to converge upon the 

mean, described in Haylock et al. (2008) as a smoothing of extreme events, 

where the Kriging interpolation was found to be smoothing the peaks and 

troughs of the gauge data. Maidment et al. (in press 2012) also observed this 

effect with block Kriging but suggested that in this case it is likely to be 

physically correct, with high values representing a ‘direct hit’ over the gauge 

when rainfall elsewhere in the pixel is lower, and vice versa. Only by 

experimental testing could this be proven or otherwise, and this would require a 

dense network of gauges at sub-pixel level (Maidment et al., in press 2012). 

 

In the pursuit of more realistic realisations of precipitation fields, several 

variations of the Kriging methodology have been developed. Goovaerts (2000) 

explored some of these methods for incorporating secondary information, in this 

case elevation data in the form of a DEM, into the algorithm. The techniques 

were linear regression, simple Kriging (SK) with linear mean, Kriging with 

external drift and ordinary Kriging (OK), and it was found that the algorithms 

incorporating the secondary information outperformed OK (Goovaerts, 2000). 
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This method of Kriging with the incorporation of a secondary data set is 

commonly referred to as co-Kriging, with examples of the secondary data being 

DEM data (Goovaerts, 2000) and radar rainfall data (Azimi-Zonooz et al., 1989). 

 

The main issue with the Kriging methods commonly used in spatial interpolation 

of rainfall is the inability to represent the fractional coverage of rainfall, resulting 

in an inaccurate representation of the rainfall field: with overestimation outside 

the rain field and underestimation within (Barancourt et al., 1992; Seo,1998). To 

address this issue, both Barancourt et al. (1992) and Seo (1998) suggested 

similar methods involving the use of two Kriged random fields, 1) an indicator 

field showing which areas are “rainy” or “non-rainy”, and 2) a rainfall field 

representing the rainfall amount for areas designated as “rainy”. 

 

The double Kriging method (DK) introduced by Barancourt et al. (1992) allows 

for separate representation of the different spatial characteristics of rainfall 

occurrence and rainfall amount (Maidment et al., in press 2012), which is 

particularly useful when working with higher spatial and temporal resolutions. 

Maidment et al. (in press 2012) noted that when a rainfall field is not primarily 

fractional, a DK methodology is unnecessary – the example being dekadal 

rainfall in the wet season of Uganda where there was little zero rainfall in the 

data. Referring to the technique as combined Kriging (CK), Symeonakis et al. 

(2009) used DK to interpolate a relatively dense network of Global 

Telecommunication System (GTS) gauges and compared it against satellite 

estimates, finding that in most instances the DK estimates performed better but 

offered little advantage over the satellite estimates that were easier to obtain. 
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Teo (2006) used a cross-validation method, sequentially removing a single 

raingauge point from the Kriging method for each timestep, to assess the 

capabilities of both DK and OK for determining point estimates. Using numerous 

skill measures, the DK method outperformed OK, the latter was found to reduce 

the heterogeneity of intermittent rainfall fields. 

 

The Double Kriging (DK) Method 

 

The DK method was first described in Barancourt et al. (1992). For this thesis 

the KrigeRain algorithm (Greatrex, 2009) was used to conduct the DK on the 

raingauge data from the study area, and this section provides a summary of the 

DK method and the functionality of the KrigeRain algorithm. The description of 

the method in Teo (2006) should be seen for a full methodology and 

background. 

 

The DK method involves the production and combination of two random fields 

(RF) which together produce a fractional mean areal rainfall field. The two RFs 

required are –  

 

1. a binary ‘indicator’ rain/no-rain field of thresholded rainfall probabilities - 

  . 

 

2. a ‘no-zero rainfall’ field showing the variability of rainfall with the zero 

values removed -  . 
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Equation 4.1 

               

 

Equation 4.1 shows the combination of the two RFs outlined above, where    is 

the DK product of the two RFs and   is a pixel location. The remainder of this 

section is divided into first summarising the generation of the Indicator ( ) field, 

and then summarising the generation of the no-zero rainfall ( ) field. 

 

Generation of  , the Indicator Field   

 

In order to produce daily fractional mean areal rainfall field it is necessary to 

determine which areas are likely to be raining, and which are not.  In the DK 

method of Barancourt et al. (1992) this was achieved by using a binary 

indicator, rain/no-rain, RF of thresholded rainfall probabilities. 

 

Equation 4.2 

              
     

               
  

 

The production of the binary field is shown in Equation 4.2.         is the 

probability of rainfall at pixel  , produced by OK of the binary rainfall state of the 

raingauges.    represents the probability threshold which is determined for each 

day so that the resulting field will produce the same proportion of raining pixels 

as the proportion of raingauges recording rain for that day. If the probability of 

rainfall for a pixel is above the threshold it is assigned a rainy status, 1, and if it 

is below it is assigned a non-rainy status, 0. 
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Generation of  , the ‘No-Zero Rainfall’ Field  

 

With the indicator field representing the areas that are likely to be raining or not 

raining, it is then necessary to produce a rainfall field showing the rainfall 

volumes at each pixel.  The resulting field needs to produce a total volume of 

rainfall across the field that is in line with the total volume of rainfall suggested 

by the raw raingauge data.  The DK method described of Barancourt et al. 

(1992) used a ‘no-zero rainfall’ method to produce this field. 

 

The ‘no-zero rainfall’ field,  , is produced by OK of the raingauge data only for 

raingauges that record positive rainfall, for each day, for the entire study area. 

The resulting rainfall field obviously shows much greater rainfall volumes than 

an OK produced rain field from all of the raingauge data, but when combined 

with the ‘indicator’ field the total volume is reduced to a more representative 

amount. 

 

4.3 – Implementation of the DK Method 

 

4.3.1 – Introduction 

 

This section details the implementation specifics for the double Kriging (DK) 

method for the spatial interpolation of the daily rain field for the Senegal Basin. 

4.3.2 shows the calibration using the historic raingauge data, and 4.3.3 part 
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demonstrates how DK daily rain field relates to the original gauge data. This 

section concludes in 4.3.4. 

 

4.3.2 – Calibration 

 

The daily raingauge data covering the Senegal Basin area, for 1986 to 1996, 

was spatially interpolated using the DK method detailed above.  The process 

was performed using the KrigeRain V1.1 algorithm for the R environment 

(Greatrex, 2009).  

 

Chapter 3 looked at the raw raingauge data and showed that the likelihood of 

rain and the rainfall amount was heterogeneous over the region, and because 

of this it is impossible to represent the true nature of the rain field statistics with 

a stationary and ergodic rain field. Goovaerts (2000) showed how secondary 

information, incorporated into the Kriging process, can be an effective way of 

producing a non-stationary, non-ergodic underlying rain field, but with the 

paucity of raingauges available it is unlikely that sufficient detail would be 

available to fully represent the heterogeneity. However, considering the above 

limitations, it is reasonable to compromise and treat the spatial characteristics of 

rainfall occurrence and amount as stationary and ergodic – represented by 

climatological variograms. 

 

The ideal situation would be the generation of variograms that describe each 

individual storm event, but in reality it is unusual for sufficient data to be 

available to do this and climatological variograms are a reasonable alternative 
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(Grimes and Pardo-Iguzquiza, 2010). With data used in this thesis there was 

not enough sufficient coverage, and/or enough positive rainfall in the record to 

produce climatological variograms for each month, so a wet season variogram 

was used instead. There was insufficient positive rainfall to produce a dry 

season variogram. 

 

Figures 4.1 and 4.2 show the standardised experimental variograms and the 

fitted climatological variograms for the wet season. In comparison to other 

studies, the nugget effect in the indicator variogram is relatively modest – Teo 

(2006) produced nuggets of 70-80% of the sill, suggesting that this showed 

intermittencies at a scale smaller than the gauge network could detail. The 

nugget effect here of 37% could suggest that such intermittencies are less 

prevalent for this region, but could be a result of the bin size selected. 

 

The climatological variograms were generated after experimental variograms 

were produced, and the parameters adjusted to produce a suitable modelled 

variogram. Figures 4.3 and 4.4 shows an example of experimental variograms - 

demonstrating the selection of a suitable binsize.  The binsize was required to 

be narrow enough to reflect the relationship over distance, yet not be so narrow 

that the relationship becomes noisy. For both the no-zero and indicator 

variograms a binsize of 25km was selected. 
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Figure 4.1 – Wet season climatological Indicator variogram for the daily Senegal Basin 

rainfall field. Range is defined as the distance where the semivariance is 95% of the sill. 

 

Figure 4.2 - Wet season climatological no-zero rainfall variogram for the daily Senegal 

Basin rainfall field. Range is defined as the distance where the semivariance is 95% of 

the sill. 
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The experimental variograms shown in Figures 4.3 and 4.4 were also used to 

set the maximum extent of the variograms, this being the distance where the 

relationship begins to degrade and becomes noisy. Figures 4.5 and 4.6 are 

plots showing the number of station pairs over distance, which were also used 

in the selection of a maximum extent distance – the maximum distance should 

be set before the number of pairs becomes too low. For both the no-zero and 

indicator variograms, this maximum extent was set at 600km. Although at that 

distance both fields retain a reasonable number of station pairs, it is at this 

distance where the variograms clearly start to degrade. 

 

 

Figure 4.3 – Experimental ‘no-zero’ variograms generated by KrigeRain using different 

binsize settings. 
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Figure 4.4 – Experimental ‘indicator’ variograms generated by KrigeRain using different 

binsize settings. 
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Figure 4.5 – Chart showing number of station pairs at distance for ‘no-zero’ rain field. 

 

Figure 4.6 – Chart showing number of station pairs at distance for ‘indicator’ rain field. 
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Four different methods of variogram modelling were tested – Spherical and 

Exponential, as well as Double Spherical and Double Exponential (Double 

Spherical and Double Exponential are shown here in a development stage). 

Figures 4.7 and 4.8 show the variograms fitted with each of these methods – for 

both the Exponential fit was selected. 

 

Figure 4.7 – The ‘no-zero’ rain field variogram fitted using different modelling methods. 
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Figure 4.8 – The ‘indicator’ rain field variogram fitted using different modelling methods. 

 

4.3.3 - Validation 

 

In order assess the reliability of the DK estimates it is necessary to compare the 

values against the point raingauge data, as well as estimates derived from OK 

to provide a comparison. It should be noted that the DK and OK estimates 

represent block average values, whilst the raingauges are point values, so a 

direct comparison is not possible in this instance.  The validation was conducted 

at both gauge-pixel and catchment scales.  
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Comparison of Gauge, OK Rain fields and DK Rain fields at Gauge-Pixel Scale 

 

For the comparison, all days where all raingauges recorded zero rainfall were 

removed from the record, as their inclusion would only provide trivial results. 

Similarly, days where all raingauges recorded rainfall were removed as in these 

cases the rain field would not be fractional and the DK method would behave 

identically with the OK method, although there were no days recording 100% 

rainfall in this dataset. R2 was used as a measure of fit between the data sets. 

 

 

Figure 4.9 – Charts showing comparison between point raingauge and Kriging estimates 

for the block average of pixels containing that raingauge. The chart on the left shows 

comparison with OK and the chart on the right shows the comparison with DK. The solid 

black line indicates the 1:1 relationship. 

 

Figure 4.9 shows the comparison between the point raingauge data and the 

block estimates for the pixels containing gauges, for both OK and DK. The R2 

values for both methods indicate that DK more closely resembles the raingauge 

rainfall, with a score of 0.52, compared to the score for OK of 0.36. DK was also 
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able to predict the fractional field better and was able to match correctly a 

pixel’s rainfall status with that of the corresponding raingauge in 86.4% of 

cases.  

 

 

Figure 4.10 – Frequency distribution of raingauge values and block average estimates for 

DK and OK. Frequency includes values for zero rainfall that are not shown on the chart, 

these were Gauge = 72.7%, DK = 69.4% and OK = 4.1%.  

 

The frequency distributions of rainfalls are shown in Figure 4.10, and it 

demonstrates a lack of comparison between the raingauges and block 

averaged estimates for DK and OK. DK does compare well in the frequency of 

rainfall with raingauges (72.7% zero rainfall for raingauges, 69.4% for DK), yet 

the main distribution of rainfall peaks at 12mm, much higher than the raingauge 

peak of 2mm. The raingauge data is also more spread, with 4.7% of the rainfall 

above 25mm, whilst both OK and DK predicted 1.6% of the rainfall to be above 

25mm. 
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This is consistent with the findings of Haylock et al. (2008) and Maidment et al. 

(in press 2012) who noted that when using block Kriging, grid cell values will 

display a different distribution to point values, with the tendency of block values 

to converge around the mean rainfall value. 

 

Comparison of Gauge, OK Rain fields and DK Rain fields at Catchment Scale 

 

As previously mentioned, the point raingauge values make for a poor 

comparison with the block average Kriged estimates. Catchment average 

values for the Bakoye catchment would provide a better comparison and Table 

4.1 shows this.  For the Kriged estimates, the catchment average was 

determined by the mean of the all the pixels within the Bakoye catchment 

boundary – for those pixels through which the boundary intersects, the pixel 

was split into 100 0.05ºx0.05º pixels and weighted depending on the percentage 

of the smaller pixels within the catchment boundary. To compare the catchment 

average estimates of rainfall to the raingauge data, an area weighted Gauge 

Average estimate was produced using Thiessen Polygons, each adjusted to 

account for orographic effects. 

 

Table 4.1 and Figure 4.11 compare the catchment average rainfalls from the 

Gauge Average and DK data at various temporal scales.  It is seen in Table 4.1 

that the DK estimates rainfalls that generally of greater volume than the Gauge 

Average, however if the possible error within each of the estimates were to be 

considered, the two cannot be distinguished. For example, Nespor and Sevruk 

(1998) suggested that wind-induced error alone can cause errors of up to 10%, 
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and applying such an error to the Gauge Average estimate would position the 

DK catchment estimate well within those bounds. Similarly, the DK method is 

not without error, both from cascading effects of the raingauge error and error 

from the interpolation method. Using 10% as a conservative estimate on the DK 

estimate would also put the Gauge Average estimate within those bounds of 

error, and when considering both together there is significant overlap.  

 

  

Gauge Average Rainfall 

(mm) DK Rain (mm) 

Total 7289.94 7798.91 

Mean 662.72 708.99 

1986 665.16 726.77 

1987 562.38 595.34 

1988 844.20 805.87 

1989 680.03 772.00 

1990 495.89 637.99 

1991 672.73 683.09 

1992 565.60 598.98 

1993 660.21 635.16 

1994 799.96 851.95 

1995 685.42 763.98 

1996 658.36 727.78 

 

Table 4.1 – Table showing the total Bakoye catchment average rainfall, mean annual 

Bakoye catchment average rainfall and yearly wet-season totals for the Gauge Average 

estimate and the daily DK rain fields. 

 

Figure 4.11 shows how the annual wet season totals vary across the period. 

The DK catchment average resembles the Gauge Average estimate in regards 

to the interannual variation of rainfall, and closely matches the totals – slightly 
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estimating more rainfall in most years but indistinguishable with a conservative 

estimate of error of 10% applied to each.  

 

 

Figure 4.11 – Chart showing the annual Bakoye catchment average rainfall totals for the 

wet seasons of 1986-1996, for the Gauge Average estimate and the DK daily rain fields. 
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Figure 4.12 - Charts showing comparison between Bakoye catchment averages for the 

Gauge Average estimate and the Kriged estimates. The chart on the left shows 

comparison with OK and the chart on the right shows comparison with DK. The 

comparisons shown use all data from the wet seasons, 1986 to 1996. The solid black line 

indicates the 1:1 relationship. 

 

As with the comparisons shown in Figure 4.9, the comparisons in Figure 4.12 

also show that the DK method is superior, with an R2 score of 0.83 compared to 

the score for OK of 0.55. Both OK and DK show significantly better comparisons 

with the raingauges over a catchment average than against individual pixel-

point comparisons. 

 

Figure 4.13 shows the frequency distribution of rainfall over the catchment 

average for the raingauge, DK and OK estimates. This shows a much stronger 

correlation than the frequency distribution shown in Figure 4.11, especially 

between the Gauge Average estimate and that for the DK catchment average.  

All three catchment averages peak at 2mm rainfall, but the OK produces far 
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more low level rainfall at the expense of zero rainfall, and rainfall of 11mm or 

more. 

 

 

 

Figure 4.13 – Frequency distribution of Bakoye catchment average raingauge values and 

catchment average estimates of DK and OK. Zero rainfall values are included in the 

frequency but not shown on the chart, these were Gauge = 19.5%, DK = 19.3% and OK = 

2.9%. 

 

Influence of Spatial Resolution 

 

The sections above have demonstrated the implementation of the DK method 

for the Senegal Basin for the generation of daily rain field, which are block 

Kriged to a spatial resolution of 0.5° and compared to point rainguage data. It is 

unreasonable to assume block averaged DK rainfall estimates will correlate 

directly with point data because of the effects of block average, as described by 

Maidment et al. (in press 2012).  It was possible to produce daily rain field at a 

finer spatial resolution for the data available (0.05°), and the difference in the 
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rainfall characteristics have been used to observe the effects of spatial 

resolution on the block averaging of the DK rain fields. 

 

 

Figure 4.14 – Frequency distributions of raingauge data and block average values of DK 

rainfall at 0.05° and 0.5° pixel resolution. Zero rainfall is included in the frequency but not 

shown, these are Gauge = 72.7%, 0.05° = 69.6%, and 0.5° = 69.4%. 

 

Figure 4.14 shows the frequency distribution of rainfall estimates for 0.05° 

resolution DK estimate, compared to the point value raingauge values and the 

0.5° resolution estimates. It is clear that the influence of the spatial averaging by 

block Kriging has a more significant effect on the rainfall estimate than the 

difference in spatial resolution, but a slight skewness to lower rainfall values 

exists in the distribution when compared to the 0.5° resolution estimate and this 

is more in line with the raingauge values. 
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Table 4.2 shows the catchment average wet season rainfall estimates for the 

Bakoye catchment, using both the 0.5° and 0.05° pixel resolution estimates. 

Like the distribution of rainfall seen in Figure 4.14, there is little difference 

between the two estimates, especially when compared to the difference to the 

catchment average rainfall produced by the average of the raingauges. 

 

  DK 0.5° Rain (mm) DK 0.05° Rain (mm) 

Total 7798.91 7905.31 

Mean 708.99 718.66 

1986 726.77 723.19 

1987 595.34 630.04 

1988 805.87 805.88 

1989 772.00 776.51 

1990 637.99 637.61 

1991 683.09 695.48 

1992 598.98 607.19 

1993 635.16 656.65 

1994 851.95 868.14 

1995 763.98 780.77 

1996 727.78 723.85 

 

Table 4.2 – Table showing the catchment average wet season rainfall estimates for the 

DK rain fields, block averaged to different spatial resolutions, for the Bakoye catchment. 

 

It has been shown in Figure 4.14 and Table 4.2 that the spatial resolution used 

for the block Kriging of the DK estimate has little influence over the distribution 

of the rainfall and the totals. Although there are slight difference these are 

insignificant in comparison to the difference between point estimates of rainfall – 

from the raingauges – and areal averages. 
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4.4 - Summary 
 

The observed raingauge data has been used to obtain the mean daily rainfall 

for the Senegal Basin region at an aggregated Meteosat pixel resolution of 0.5º 

x 0.5º. A DK method was used so that not just the rainfall amount, but also a 

rainy/non-rainy status could be determined for each pixel. The rainfall over the 

Senegal Basin region is dominantly fractional, with not a single day in the record 

where all functional gauges reported rainfall, and the DK method showed that 

86.4% of the pixel estimates for pixels containing a gauge, showed the same 

rainfall status of the gauge. The DK estimates compared favourably with the 

OK, showing far better correlation with the point raingauge values. 

 

The method presented in this chapter, and results derived from it, are suitable 

for use in the calibration of TAMSAT and TAMSIM, but they could be improved. 

A co-Kriging technique, such as those described by Goovaerts (2000), could be 

employed to incorporate secondary data into the method. This data could be a 

DEM of the area to account for the effects of the topography described in 

Chapter 3, or for this catchment, it could prove beneficial to account for the 

large rainfall gradient across the catchment. 

 

However, the effect of any of these improvements will be limited, just as the 

method described in this chapter is, by the paucity of data available for the 

study, especially for the Bakoye catchment area which contains just 13 

raingauges for over 86,000km2.  This lack of raingauges required the method to 

be applied to a much wider region in order to produce the necessary variograms 

– an area that displays a greater rainfall gradient than that for the catchment 
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area alone. Ideally the method would have been employed with a denser set of 

raingauges focussed around the Bakoye catchment, as this would have likely 

produced a better correlation between the raingauges and the DK estimates.
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5 
Methodology – Ensemble 

Representation of Satellite Rainfall 

Uncertainty 

 

5.1 – Introduction 

 

This chapter is the second of the methodology chapters and details the 

methods used to produce a deterministic satellite rainfall estimate (SRFE), and 

the methods for characterising the uncertainty within that estimate. The method 

used to produce a deterministic SRFE was TAMSAT1, and TAMSIM was used 

to characterise the uncertainty. Both methods were introduced by Teo (2006) 

and Teo and Grimes (2007). 

 

5.2 – TAMSAT1 

 

Of the available SRFE methods summarised in Chapter 2, the expanded 

TAMSAT method of Teo and Grimes (2007) was used to produce daily SRFE 

for the Senegal Basin.  The method, known as TAMSAT1, was introduced in 

Teo (2006) and has some important advantages over the other methods making 
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it suitable for this area, namely its ability to be calibrated locally using historic 

raingauge networks, its requirement for only a single TIR satellite input and the 

long operational history of the method in sub-Saharan Africa. In addition, the 

TAMSIM algorithm for characterising the uncertainty has been previously 

successfully presented in Teo (2006) and Teo and Grimes (2007) – a significant 

advantage of using TAMSAT1. 

 

Previous studies have shown that global SRFE that incorporate PM inputs show 

greater skill in estimating rainfall for Africa, over those that only use TIR and/or 

raingauges for more complex, mountainous terrain (Dinku et al., 2007 & 2010). 

However, the use of PM sensors has limitations for certain types of land surface 

which are often mistaken for raining areas (Dinku et al., 2010). In the study by 

Dinku et al. (2007) the dekadal TAMSAT estimate was found to outperform all 

of the more sophisticated, multi-sensor SRFE, largely attributed to its use of a 

regional calibration as opposed to a global calibration.  The algorithms that 

make use of PM data have yet to be calibrated for the semi-arid regions of 

Africa, and such a task is complicated as it would require a large volume of 

ground data that is unlikely to be available (Morland et al., 2001). 

 

As TIR based SRFE generally rely upon an indirect relationship between cloud 

top temperature and actual rainfall, the rainfall estimations contain significant 

uncertainties, principally in three aspects: 

 

1. Temporal - When it is raining  

2. Spatial - Where it is raining 
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3. Rate - How much it is raining 

 

The TAMSAT method, and TAMSAT1, is subject to these uncertainties and 

therefore there is a requirement for an accurate and appropriate method to 

characterise this uncertainty, in such a way that can be translated into 

downstream applications. 

 

The TAMSAT1 method has been selected for the generation of a deterministic 

SRFE for the Senegal Basin area, at a daily time-step. Teo and Grimes (2007) 

introduced the TAMSAT1 method, an extension of the TAMSAT method, to 

produce daily rainfall estimates. This section provides a summary of the 

method, a comprehensive methodology can be found in Teo (2006). The 

method implemented here is a modification to that of Teo (2006), in that it does 

not include a representation of the DK error which was sacrificed to allow for a 

more accurate method of modelling the gamma distribution of no-zero DK 

rainfall at gauge-pixels plotted at    bins. 

 

The TAMSAT method, as described in the previous section, uses a locally 

calibrated relationship between cloud top temperature and the historic 

raingauge record. A full description of the method can be found in Milford and 

Dugdale (1990). TAMSAT uses a Cold Cloud Duration (CCD) technique, where 

Meteosat TIR data is used to obtain cloud top temperatures at 15 minute time-

steps with cloudy pixels below a specified temperature threshold assumed to be 

rainy – cold clouds are associated with high topped cumulonimbus clouds, 

synonymous with convective rainfall.  The total period in a day that a pixel is 
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below the threshold is its CCD, or   . For TAMSAT the CCD represents the 

total period below the threshold for a given dekad and is used to calculate a 

dekadal estimate of rainfall,    . 

 

Equation 5.1 

     
          

 

    

    
  

 

Equation 5.1 shows the simple linear relationship used to generate the dekadal 

estimate of rainfall,    , using the TAMSAT method. The values for the 

parameters   and    are calibrated by plotting CCD values against DK rainfall 

values for pixel’s containing at least one raingauge (gauge-pixels). 

 

The linear relationship used in Equation 5.1 has been found to be successful at 

dekad scale (Dinku et al., 2007), but is too simplistic to represent the more 

spatially and temporally varied nature of daily rainfall.  Of particular importance 

is the representation of the fractional nature of the rainfall field which is greater 

at smaller time-steps. In order to address these issues Teo (2006) developed 

the TAMSAT1 method and found that it outperformed the original TAMSAT 

method for estimation of daily rainfall fields for the Gambia region. Equation 5.2 

shows the calculation of daily rainfall,   at pixel location   in its simplest form, 

and is expanded below. 

 

Equation 5.2 
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Equation 5.2 shows the principal of TAMSAT1, where the rainfall is the product 

of the probability of rainfall at   ,  , and the mean rainfall at    with the zero 

values removed,  .  The calculation of   is shown in Equation 5.3 and the 

calculation of   is shown in Equation 5.4. 

 

Equation 5.3 

   
 

           
 

 

The parameters    and   are found by plotting the probability of rainfall from the 

DK gauge-pixels against   , and fitting the relationship using logistic 

regression. The probability of rainfall at     ,   , is excluded from the fit and 

the actual probability is used instead.  

 

Equation 5.4 

           

 

In Equation 5.4,   is the mean rainfall at   , derived from gamma fits of no-zero 

DK rainfall at gauge-pixels plotted at    bins, using a maximum likelihood 

method (n.b. – the original method in Teo (2006) used a method of moments 

fit). The shape and rate functions of each gamma distribution are modelled to 

   so that a linear relationship between mean rainfall and     is produced, 

when   is equal to the product of the shape and rate functions. This linear 

relationship is expressed in Equation 5.4. 
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The combination of Equation 5.2 with the components shown in Equations 5.3 

and 5.4 allows the calculation of      to be expanded into its complete form, as 

seen in Equation 5.5. 

 

Equation 5.5 

       

 

           
         

      

       

       
  

 

The calibration of the parameters required by Equation 5.5 is detailed in Section 

5.4. The rainfall characteristics generated by the TAMSAT1 method are also 

used in the TAMSIM method of producing stochastic ensemble rainfall sets, as 

detailed in Section 5.3. As can be seen in Equation 5.5, TAMSAT1 does not 

produce a fractional rain field, with small amounts of rainfall simulated at    

 . Corrections can be applied, for example Teo (2006) applied a Large Domain 

Zeros (LDZ) check that set the entire rain field to zero rain on days where 95% 

of the pixels recorded zero CCD. This produced more realistic looking rainfall 

estimates, but made them less optimal in regards to point errors. 

 

5.3 – TAMSIM 

 

The TAMSIM method was used for the characterisation of the uncertainty within 

the TAMSAT1 SRFE, described in the previous section.  As well as having 

already been successfully implemented and validated for use with the 

TAMSAT1 method, for generation of Gambian daily rain fields (Teo, 2006, Teo 

and Grimes, 2007), it has some distinct advantages over other methods. 
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Importantly, TAMSIM retains the geostatistical properties of the raingauge 

derived rainfall field and allows for the generation of fractional rainfall fields. As 

the Senegal Basin shows a large rainfall gradient (see Chapter 3), it is important 

that the ensemble rain fields are able to distinguish between the areas where it 

is raining and the areas where it is not.  

 

With the uncertainty within the SRFE characterised, it needs to be translated to 

a downstream application to measure the extent of propagation. In Teo (2006) 

and Teo and Grimes (2007) this was a crop yield model, and for this thesis this 

will be a hydrological model. 

 

The remainder of this section presents a methodology for the TAMSIM 

algorithm, as introduced by Teo (2006) and Teo and Grime (2007), where a 

comprehensive methodology can be seen. 

 

In its simplest form the equation governing TAMSIM is the same as Equation 

4.1, the Equation used for DK from Barancourt et al. (1992). In this case, the 

two RFs,      and     , are generated using sequential sequencing techniques 

outlined below. The TAMSIM algorithm is thus divided into two separate 

algorithms that calculate the two necessary RFs:  

 

1. Sequential Indicator Simulation (sIs) – produces a binary rain/no-rain 

‘indicator’ field demarcating the areas that are rainy and those that are 

not. 
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2. Sequential Gaussian Simulation (sGs) – produces a rainfall field by 

simulating rainfall amounts for the pixels identified as rainy during sIs. 

 

This section will look at the sIs and sGs stages separately before demonstrating 

how TAMSIM combines them. 

 

Sequential Indicator Simulation (sIs) 

 

The first stage of the TAMSIM algorithm is the sIs that produces a binary RF of 

rain/no-rain areas.  Before running it requires a calibration of the probability of 

rainfall at each specified CCD bin and this is derived using Equation 5.3, in the 

same way as for TAMSAT1.  The method also uses a simple Kriging (SK) 

method and this requires a variogram of the indicator residuals to be produced. 

More details of the TAMSIM calibrations can be found in Section 5.4. 

 

Figure 5.1 shows a schematic taken from Teo and Grimes (2007) detailing the 

steps taken by sIs to produce the indicator RF, for a theoretical nine cell grid. 
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Figure 5.1 – Schematic from Teo and Grimes (2007) showing the steps required for the 

operation of the sIs algorithm on a theoretical nine cells system. The steps are (i) input 

initial CCD values for each pixel. (ii) CCD values are substituted with the probability of 

rain at that CCD using Equation 5.3. (iii) Independent seed pixels are selected and given a 

rain/no-rain status via Bernoulli trail. (iv) Residuals are calculated for each of the seed 

pixels by subtracting the probability of rain for that pixel from the binary rainfall status it 

was assigned. A random path is determined for the remaining pixels A-G. The residuals 

are used to produce a residual value for pixel A using simple Kriging (SK). (v) The 

residual value for pixel A is added to the probability of rain for the pixel for its total 

probability of rainfall. (vi) Pixel A is assigned a rain/no-rain status, based on the 

probability of rainfall at that pixel’s CCD value, and is added to the set of seed pixels. (vii) 

Steps iii-vi are repeated until each pixel is assigned a rainfall status.  

 

Sequential Gaussian Simulation (sGs) 

 

After producing the indicator RF via sIs, TAMSIM then uses this field to start the 

sGs stage to estimate rainfall for each pixel designated as raining.  This step 

requires a distribution of rainfall to be modelled for each specified CCD bin, and 
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this was done by modelling a gamma distribution by fitting to CCD-binned no-

zero DK rain data, in the same way as described for TAMSAT1. The shape and 

rate functions are then modelled in a way to produce a linear fit of mean rainfall.  

In addition, sGs requires a variogram of no-zero rainfall residuals to be 

produced.  Further details of the calibration can be found in Section 5.4. 

 

Figure 5.2 shows a step-by-step schematic of the sGs process, taken from Teo 

and Grimes (2007). 

 

 

Figure 5.2 – Schematic from Teo and Grimes (2007) showing the steps taken by the sGs 

algorithm, for the same theoretical nine cells system shown in Figure 5.1. (i) CCD values 

for pixels designated as raining by sIs are inputted. (ii) Independent seed pixels are 

selected and allocated Gaussian residual values. A random path is assigned for the 

remaining pixels A-C. (iii) A Gaussian residual value is calculated for pixel A by SK of the 

seed pixels. (iv) A final residual value is assigned to Pixel A by sampling within the SK 

bounds, and is added to the set of seed pixels. (v) Steps iii and iv are repeated until all 

pixels are assigned a Gaussian residual value. (vi) The Gaussian residuals are back-

transformed and added to the original estimate for that pixel’s CCD value, providing an 

estimate of rainfall for that pixel. 
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Combining the Field – Producing Ensembles 

 

By combination of a single sIs field and a single sGs field the TAMSIM algorithm 

will produce a single ensemble representation of a probable rainfall field.  The 

algorithm produces a set of equiprobable ensemble members by combining the 

two fields, saving computational time by running the sGs algorithm multiple 

times for each sIs realisation. 

 

5.4 – Implementation of TAMSAT1 and TAMSIM 

 

5.4.1 – Introduction 

 

This section looks at the implementation of the TAMSAT1 algorithm, its 

calibration, production of a deterministic estimate of the rainfall field and the 

validation of that field. The TAMSIM algorithm shares much of the same 

calibration procedure as TAMSAT1, and the necessary extensions for TAMSIM 

are also detailed here. 

 

Both the TAMSAT1 and TAMSIM rainfall fields were produced using a modified 

version of the Genrain (SIMU) algorithm in the Matlab environment, written by 

Teo (2006) and provided by Dr David Grimes, Department of Meteorology, 

University of Reading. 
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5.4.2 – Calibration 

 

The TAMSAT1 and TAMSIM algorithms were detailed in Sections 5.2 and 5.3. 

The calibration of TAMSAT1 can be split into three stages:  

 

 Determination of the optimal temperature threshold 

 Determining the probability of rainfall at CCD 

 Determination of positive rainfall rate at CCD 

 

Determining the optimal temperature threshold 

 

A suitable temperature threshold (T) needs to be identified for determining the 

Cold Cloud Duration (CCD) for each pixel of the satellite image – the threshold 

being the temperature below which a cloud can be said to be rainy. The 

TAMSAT CCD data is provided at 0.05°x0.05° pixel resolution, but as it was not 

possible to complete the test at this resolution it was necessary to aggregate 

the data to 0.5°x0.5° pixels to match the pixels representing the DK rain fields.  

This was taken as the mean CCD of every pixel within corresponding DK pixels. 

 

The most suitable temperature threshold was selected by directly comparing the 

CCD data with the indicator field from the DK data, for gauge-pixels only – 

those pixels which contain at least one raingauge.  Table 5.1 shows a 

contingency table used as part of the calibration, where Z is the rainfall of a DK 

gauge-pixel and    is the CCD at the same gauge-pixel at a particular 

temperature threshold.  The calibration was conducted for daily rainfall and 
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CCD, using only the wet season data. Ideally an individual calibration would be 

performed for each month, however due to the paucity of data available only a 

single calibration was conducted for the whole wet season. Similarly, because 

of the large area used for the study, zonal calibrations would have been useful 

but not possible in this circumstance. 

 

  DT=0 DT>0 

Z=0 n11 n12 

Z>0 n21 n22 

 

Table 5.1 – Example contingency table for the selection of a temperature threshold for 

TAMSAT CCD (T) (after Teo, 2006). 

 

The selected temperature threshold is the one that best satisfies the selection 

criteria outlined by Milford and Dugdale (1990) and Grimes et al. (1999), which 

can be summarised as:  

 

Criteria 1 = 
        

        
 >> 1 

Criteria 2 =  
   

   
 ≈ 1 

 

The TAMSAT CCD data is provided at temperature thresholds of -20°C, -30°C, 

-40°C, -50°C and -60°C. 

 

Table 5.2 shows the calibration data for the Senegal Basin area for the study 

period, at each available temperature threshold.  A ‘hit’ is when a gauge-pixel 

shows either both zero rainfall and zero CCD, or positive rainfall and positive 
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CCD. All other cases are ‘misses’.  The best performing temperature threshold 

is -60°C, where 65.35% of the gauge-pixels showed a hit. This is similar to that 

determined by Teo (2006) for the Gambia region, where the -60°C was selected 

for each month of the wet season, except for August where -50°C was used. 

 

CCD Threshold 

(°C) 
  DT=0 DT >0 Total Criteria 1 Criteria 2 % correct 

-20 

Z=0 34573 34261 

103696 1.29 0.25 53.45 

Z>0 8611 20851 

    DT =0 DT >0 Total 
   

-30 

Z=0 41305 27951 

103696 1.53 0.40 57.58 

Z>0 11080 18401 

    DT =0 DT >0 Total 
   

-40 

Z=0 46921 22801 

103696 1.73 0.59 60.64 

Z>0 13510 15964 

    DT =0 DT >0 Total 
   

-50 

Z=0 52783 17588 

103696 1.94 0.93 63.52 

Z>0 16441 13088 

    DT =0 DT >0 Total 
   

-60 

Z=0 58625 11600 

103696 2.14 1.73 65.35 

Z>0 20098 9138 

 

Table 5.2 – TAMSAT temperature threshold calibration table, where z represents DK 

rainfall at gauge-pixels and DT represents the CCD at gauge-pixels at specified threshold. 

 

Determination of Probability of Rain at CCD 

 

The calibration of probability of rain at CCD was conducted by comparing DK 

and CCD gauge-pixel data. The DK was converted to a binary rain/no-rain field 

and the CCD data was binned to nearest CCD hour (  ). The probability of rain 
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at each CCD hourly bin was calculated from the DK gauge-pixel data, and 

modelled by fitting using logistic regression.  As shown in the methodology in 

Section 5.3, it is necessary to estimate the empirical constants of b0 and b1, 

when –  

 

   
 

   
              

 

where   is the sample probability of rainfall at   . 

 

The empirical constants b0 and b1 are then used to model   using the equation 

– 

   
 

               
 

 

As there were too few values corresponding to DT>8, these were excluded from 

the fit.  As the probability of rain at DT=0 is much less than at DT>0, this too was 

excluded from the fit, and the actually probability of rain at DT=0 was used 

instead.  The fitted relationship between the probability of rain and CCD is 

shown in Figure 5.3. 
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Figure 5.3 – Chart showing the modelled relationship between probability of rain and 

CCD at hourly bins (DT). 

 

Determination of Positive Rainfall Rate at CCD 

 

To determine the rainfall rate at CCD for use in the TAMSIM algorithm the DK 

gauge-pixel data, with zero rainfall values removed, was compared against the 

CCD gauge-pixel sorted into hourly bins. A gamma distribution was fitted to the 

rainfall at each of these hourly bins. 

 

Teo (2006) used a method of moments technique for fitting the gamma 

distributions, but for this thesis a maximum likelihood technique was used 

instead as it provides a better fit for the distributions. The simple representation 

of DK error used by Teo (2006) was not directly transferable to the maximum 

likelihood method used in this thesis and has not been included. 
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The shape and rate parameters from each of the modelled distributions were 

fitted to produce modelled parameter values for the TAMSIM algorithm. For 

values of DT>7 hours there was not enough data to produce a suitable 

distributions so these values were excluded from the fit, as was DT=0 where the 

actual parameters were used. 

 

 

Figure 5.4 – The fitted α (shape) and β (rate) parameters for generation of gamma 

distributions of rainfall at DT.  

 

The shape parameter, α, was modelled by using a linear fit, shown in Figure 

5.4. The rate function, β, was fitted using a logarithmic regression of the 1/rate 

values, also shown in Figure 5.4. By using a logarithmic regression fit it was 

possible to produce a linear mean for rainfall,     against CCD, consistent with 

TAMSAT, when: 
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The relationship between modelled mean rainfall against CCD is shown in 

Figure 5.5. 

 

 

Figure 5.5 – Fitted mean rainfall at DT. Mean rainfall at DT=0 is not included in the fit and 

the mean is derived from the actual mean. 

 

5.4.3 – Validation of the TAMSAT1 SRFE 

 

A deterministic SRFE has been produced for the Senegal Basin, for the wet 

seasons of the study period (1986-1996), using the TAMSAT1 method. The 

daily rain fields produced were clipped to the Bakoye catchment to produce a 

catchment average TAMSAT1 estimate for use in the Pitman model. The 

TAMSAT1 method was validated for the Bakoye catchment by comparing the 

characteristics of the catchment average TAMSAT1 estimate to the catchment 

average DK estimates. Table 5.3 shows the totals of these catchment average 

rainfalls at various temporal scales. 
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  DK Rain (mm) TAMSAT1 Rain (mm) 

Total 7798.91 7227.58 

Mean 708.99 657.05 

1986 726.77 628.28 

1987 595.34 641.72 

1988 805.87 726.89 

1989 772.00 636.52 

1990 637.99 685.87 

1991 683.09 649.99 

1992 598.98 657.55 

1993 635.16 617.84 

1994 851.95 697.28 

1995 763.98 676.27 

1996 727.78 609.36 

 

Figure 5.3 – Table showing the total catchment average rainfall, mean annual Bakoye 

catchment average rainfall and yearly wet-season totals for DK and TAMSAT1 daily rain 

fields. 

 

 

 

Figure 5.6 – Bar chart showing the annual Bakoye catchment average rainfall totals for 

the wet seasons of 1986-1996, for raingauge data, the DK and TAMSAT1 daily rain fields. 
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Table 5.3 and Figure 5.6 compare the catchment average rainfalls for the DK 

and TAMSAT1 rainfall estimates for the entire 11 year period (wet seasons 

only), and for each individual wet season. The TAMSAT1 catchment averages 

estimate a lower level of rainfall than the DK catchment averages, although 

even using a conservative estimate of error (due to raingauge measurement 

and interpolation errors) of 10% the three estimates of rainfall show significant 

overlap and could be said to be indistinguishable. However, the TAMSAT1 

catchment averages also fail to reproduce the interannual variation evident in 

the DK catchment averages – this is caused by the use of a climatic calibration, 

which will cause smoothing of interannual variability and introduces a 

systematic bias for years of anomalous rainfall. 

 

Figures 5.7 and 5.8 compare the distributions of catchment average rainfalls for 

the TAMSAT1 estimate and the DK estimate. TAMSAT1 does not produce a 

fractional rainfall field and as such does not model any zero rainfall in the 

record. This results in greater frequency of low level rainfall, especially 1.5-

2.5mm. 
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Figure 5.7 – Frequency distribution of catchment average DK and TAMSAT1 rainfall for 

the Bakoye catchment. Zero rainfall is excluded from the distribution (DK = 19.3%). 

 

 

Figure 5.8 – QQ distribution plot showing quantile rainfalls for DK Bakoye catchment 

average rainfall and TAMSAT1 Bakoye catchment average rainfalls (dashed line) and a 

modelled 1:1 relationship (solid line). 
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5.4.4 – Implementation of TAMSIM 

 

In addition to the calibrated relationships above, the TAMSIM algorithm requires 

three further steps for implementation. These are –  

 

 Generation of indicator residuals and variogram 

 Generation of no-zero rainfall residuals and variogram 

 Parameters required for generation of ensembles 

 

Generation of Indicator Residuals and Variogram 

 

The calculation of residual values at each gauge-pixel is required for the 

generation of the residual variogram, the parameters of which are a key 

requirement for the TAMSIM algorithm.  The residual for each gauge-pixel is 

binary rain status of the pixel (0 = no rain, 1 = rainy), minus the probability of 

rain at the corresponding CCD hourly bin.  The residual values at each gauge-

pixel are then used to generate a variogram using KrigeRain in the same way 

as demonstrated in Chapter 4.  Figure 5.9 shows the residual indicator 

variogram and its parameters. 
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Figure 5.9 – Residual ‘indicator’ variogram and parameters for use in the TAMSIM 

algortithm. 

 

Generation of No-Zero Rainfall Residuals and Variogram 

 

To generate a no-zero residual variogram it is necessary to first calculate 

residuals values for no-zero rainfall at gauge-pixels.  For each gauge-pixel no-

zero rainfall value, the probability of that rainfall occurring on the gamma 

distribution of the corresponding CCD hourly bin is found, and the residual is 

then calculated by applying that probability to an inverse normal distribution, 

with a mean of zero and standard deviation of 1.  As with the indicator residuals 

the residuals are used to generate a residual variogram using KrigeRain. The 

residual no-zero variogram is shown in Figure 5.10. 
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Figure 5.10 – Residual ‘no-zero’ variogram and parameters for use in the TAMSIM 

algorithm. 

 

Parameters Required for Producing Ensembles. 

 

TAMSIM produces individual ensemble members by combining an indicator 

field with a no-zero rain field. A description of the methodology has been given 

in Section 5.3.  Teo (2006) showed that at least 200 ensemble members were 

required for the mean and variance to converge in experimentations, so 200 

ensembles were produced.  It is not necessary to produce unique indicator 

fields and no-zero fields for each individual ensemble member, as fields can be 

combined to produce unique realisations. For this thesis 50 indicator fields and 

4 no-zero rain fields were produced, for a total of 200 unique yet equiprobable 

ensemble rain fields. A validation and analysis of TAMSIM can be found in 

Chapter 7. 
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5.5 - Summary 

 

This chapter has shown the methodologies for TAMSAT1, used to produce a 

deterministic SRFE for the Senegal Basin. It has shown its calibration and 

implementation for the region, and a catchment average estimate has been 

calculated for the Bakoye catchment which is used as an input to drive the 

Pitman lumped CRR model (as demonstrated in Chapter 6). The Bakoye 

catchment average TAMSAT1 estimate has been validated against the DK 

catchment average for the Bakoye catchment, finding that it compares 

favourably in regards to the volumes of rainfall, but fails to fully reflect the 

interannual variability of rainfall – likely a result of the use of a climatic 

calibration. 

 

To characterise the uncertainty within the TAMSAT1 estimates, the TAMSIM 

algorithm was used, and Section 5.3 provided the methodology. Section 5.4 

showed how TAMSIM was calibrated and used to produce 200 unique, yet 

equiprobable realisations of the daily Senegal Basin rain field. 

 

Chapter 6 is the final of the three methodology Chapters and demonstrates the 

methodology for the Pitman lumped CRR model, and its calibration using the 

Shuffled Complex Evolution (SCE-UA) method. The characteristics of the 

TAMSIM ensemble SRFE are assessed in Chapter 7, and the propagation of 

the uncertainty they reflect is detailed in Chapters 8 and 9.
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6 
Methodology – Hydrological 

Modelling 

 

6.1 – Introduction 

 

This chapter is the final of three methodology chapters and details the methods 

used for the hydrological modelling of the Bakoye catchment. The model used 

was the Pitman model, a lumped conceptual rainfall-runoff (CRR) model, with 

11 adjustable parameter values. The calibration was carried out using an 

automatic optimisation algorithm, the Shuffled Complex Evolution model 

implemented at the University of Arizona (SCE-UA).  

 

6.2 – The Pitman Model 

 

The Pitman model is a lumped CRR model introduced by Pitman (1973), and 

has been used widely across Africa with success in applications involving water 

resources assessments (Middleton et al., 1981, Hughes, 1995). The 

unmodified, monthly model has 2-buckets and 12 parameters. 
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Hughes et al. (2006) applied a modified Pitman model to the Okavango Basin in 

south-west Africa, modelling 24 sub-catchments using raingauge and TRMM 

SRFE as rainfall inputs to drive the models at a monthly timestep. Hughes et al. 

(2006) found that the calibrated Pitman models could represent catchment 

response to SRFE satisfactorily for periods outside the calibration period, 

claiming that other CRR models were unlikely to perform significantly better 

than the Pitman model, but no others were tested. 

 

The Pitman model, modified to model daily rainfall instead of monthly, was used 

to model the catchment response of the upstream sub-catchments of the 

Senegal Basin to TAMSAT SRFE in Hardy et al. (1989) and Grimes and Diop 

(2003). Both studies found the Pitman model performed well with both a 

raingauge rainfall estimate and the TAMSAT estimate.  Grimes and Diop (2003) 

applied the Pitman model to the Bakoye catchment itself. 

 

The modified daily Pitman model used by Grimes and Diop (2003) has been 

used in this thesis. With previous studies having successfully applied the 

Pitman model to the region and the actual study site, it has been shown to 

perform well in these conditions. Additionally the previous studies can provide a 

suitable comparison to the model outputs produced. 

 

Methodology 

 

The Pitman model is a lumped CRR model, first developed by Pitman (1973), 

modified to run at a daily timestep. This model was used in Grimes and Diop 
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(2003) and was provided through personal correspondence with David Grimes 

(2009). The model is summarised in Figure 6.1. 

 

 

Figure 6.1 – The Pitman Model (from Grimes and Diop, 2003). (Key terms – P 

(Precipitation Input), I (Interception Storage, Imax = maximum storage), W (Soil Moisture, 

Wmax = maximum storage), G (Groundwater), Ei (Evaporation from Interception Storage), 

Es (Evaporation from Soil Moisture), Ep (Potential Evaporation), Z (Infiltration Rate Zmin 

and Zmax = minimum and maximum rates), Qq (Quick, or surface flow rate), Qq1 (Quick 

flow of rainfall rate exceeding Zmax), Qq2 (Quick flow from saturated soil), Qb (Baseflow 

rate), Q (Total discharge flow rate, sum of appropriately lagged Qq and Qb). i and h are 

empirical values. 

 

The Pitman model shown in Figure 6.1 requires only daily rainfall and potential 

evaporation as an input and its operation at a daily timestep can be summarised 

as – 

 

 Rainfall (P) added to the surface store (I) and allowed to evaporate (Ei) 
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 The remaining water infiltrated to the soil moisture (W), unless the 

maximum threshold (Imax) is exceeded, in which case the excess runs off 

as surface flow (Qq1) 

 Water in W either percolates (Qp) to the groundwater store (G), or 

evaporates (Es). If the maximum threshold of the soil moisture store 

(Wmax) is exceeded then the excess rainfall runs off as surface flow (Qq2). 

 Water stored in G flows out at a specified rate (Qb) 

 Lagged combined surface flow (Qq) and baseflow (Qb) are summed for 

the daily discharge (Q) 

 

For the calibration of the Pitman model there are eleven variable parameters, in 

addition to the daily inputs and a value corresponding to the catchment area.  

These parameters, and an initial set of parameter values, provided by David 

Grimes (personal correspondence, 2009), can be seen in Table 6.1. 

 

Although the initial parameter set provided in Table 6.1 provides a suitable 

starting point for calibration, it should be noted that it does not allow for the full 

complexity of the model to be utilised. The value provided for h, being 0, does 

not allow for any percolation from the soil moisture store to the groundwater 

stores, restricting the model to operating as a 1-bucket model. Although this 

may suit the catchment, the calibration will allow for the Pitman model to 

operate as a 2-bucket model and use its full complexity. 
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Parameter Description Value Units 

Zmin Minimum infiltration rate 0 mm.day
-1
 

Zmax Maximum infiltration rate 23 mm.day
-1
 

Wmax Storage threshold of Soil Moisture 460 mm 

Wmin Storage threshold below which no percolation occurs 0 mm 

Imax Storage threshold of Interception Storage 1 mm 

h Empirical constant used to calculate percolation rate 0 mm.day
-1
 

i Empirical constant used to calculate percolation rate 2   

GL Recession time constant for baseflow (G0 = 1/GL) 3 days 

TL Contant used for calculation of the surface flow 11 days 

Qq Lag Lag for surface (quick) flow 1 days 

Qb Lag Lag for baseflow 1 days 

 

Table 6.1 – Table showing the variable parameters in the Pitman model to be calibrated, 

and an initial set of parameter values provided by David Grimes (personal 

correspondence, 2009). 

 

6.3 - The Shuffled Complex Evolution method implemented at 

the University of Arizona (SCE-UA) 

 

A popular method of automatic optimal calibration is the Shuffled Complex 

Evolution (SCE) method implemented at the University of Arizona (Duan et al., 

1993). Duan et al. (1993) details the SCE algorithm, based around four 

components – 

 

1. A mix of deterministic and probabilistic approaches 

2. Clustering 

3. A systematic evolution of a complex of points within the parameter 

space, towards improvement 
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4. Competitive evolution 

 

SCE is a global optimisation method in that it is able to examine the entire 

parameter space, identify the areas of local minima and narrow down the 

search before refining the final optimal parameter set (Duan et al., 1993), as 

opposed to a local minima optimisation method that is dependent on a suitable 

initial set of parameters (Wang et al., 2010). The method has been shown to be 

successful at estimating reliable optimal parameter sets for complex CRR 

models (Duan et al., 1994), and outperforming other global optimisation 

techniques available at the time (Duan et al., 1993). 

 

The method is widely used and still found to perform well. Wang et al. (2010) 

found that of three global optimisation methods, SCE was the most robust 

although all the methods produced similar outcomes. There have been efforts to 

improve the technique, such as the Shuffled Complex Evolution Metropolis 

(SCEM) (Vrugt et al., 2003) which adapted the Monte Carlo Markov Chain 

(MCMC) method within the model, and the Shuffled Complex with Principal 

Component Analysis (SP-UCI) (Chu et al., 2010), however, the core principals 

of the original algorithm have been retained. 

 

Another adaption of the original SCE-UA algorithm was demonstrated by Yapo 

et al. (1998) with the Multi-Objective Complex Evolution (MOCOM-UA) global 

optimisation method, which fits the parameters by calibrating to more than one 

objective function. A similar method was applied to the MIKE SHE distributed 

model in Madsen (2003). Although this method could potential produce a 
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hydrograph that better reflects the recorded discharge, it is likely to prove 

computationally expensive, and not provide a single measure of goodness-of-fit 

for use in comparisons which the SCE-UA can provide. 

 

Methodology 

 

As previously stated, the SCE-UA method was implemented at the University of 

Arizona and introduced in Duan et al. (1993). It is a global optimisation method 

that has been widely used for hydrological model calibration and shown to be 

robust (see above).  This section provides a summary of the algorithm, a full 

methodology can be found in Duan et al. (1993). 
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Figure 6.2 – Flow chart showing the main steps required for shuffled complex evolution 

(from Duan et al., 1993) – The CCE algorithm can be seen in Figure 6.3. 
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Figure 6.3 – Flow chart of the Competitive Complex Evolution (CCE) strategy, part of the 

SCE algorithm shown in Figure 6.2 (from Duan et al., 1993). 
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The flow charts shown in Figures 6.2 and 6.3 describe the full method of the 

SCE algorithm and the incorporated Competitive Complex Evolution (CCE) 

strategy. The SCE process can be summarised as: 

 

1. Set up the algorithm – decide number of complexes to use and number 

of points in each complex 

2. The algorithm generates a sample within the reasonable space 

3. The points sampled are ranked depending on model performance and 

stored in an array 

4. The space is partitioned into complexes of equal points 

5. Each complex is evolved according to the CCE strategy detailed below, 

and shown in Figure 6.3 

6. The complexes are shuffled according to model performance 

7. Check whether the model performance has reached the convergence 

criteria. If not, the algorithm returns to step 3. 

 

The CCE strategy can be summarised as:  

 

1. Initialise the algorithm – decide on number of iterations to run 

2. Weights are assigned to each point via a triangular probability distribution 

3. Randomly select ‘parent’ points according to the distribution in Step 2, 

and store in an array 

4. ‘Offspring’ points are generated from the parent points by attempting 

improve the model performance, keeping those offspring points that 

show improvement 



 
Chapter 6 – Methodology – Hydrological Modelling 

166 
 

5. The parent points are replaced by the offspring points and rank in order 

of performance 

6. Repeat the iterations of Steps 2-4 by the specified number 

7. Return to SCE algorithm 

 

6.4 – Calibration of the Pitman Model using SCE-UA 

 

The previous sections have shown the methodologies used for the hydrological 

modelling of the Bakoye catchment, detailing the Pitman CRR model and the 

SCE-UA algorithm that was used to calibrate the 11 variable parameters.  

 

A sensitivity analysis could have been run on the Pitman model before 

calibration to determine those parameters that have the most influence on the 

calibration, which would help reduce the computational time of the SCE-UA 

algorithm, however, there was no prior knowledge of the physical properties of 

the parameters and the Bakoye catchment and it was sensible to allow all 

parameters to be included in the optimisation, with appropriately wide 

parameter spaces. 

 

The SCE-UA algorithm used was the SCEoptim package in the R environment, 

written by Andrews (2012), and provided under open license. 

 

As far as possible the default parameters within the SCEoptim algorithm were 

used, however, it was necessary to adjust them in order to ensure that the 
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algorithm converged upon the optimal parameter set, or as close to within 

sensible limits, without excessive computational expense.  

 

The calibration was tested using an input composed of the mean values of the 

raingauges associated with the Bakoye catchment, as detailed in Chapter 3. 

The algorithm performed within the bounds of the minimum and maximum set 

for each parameter - the use of wider bounds resulting in processing times over 

ten times longer, with little benefit. 

 

In order for the algorithm to consistently converge upon the optimal parameter 

set the numbers of complexes required was increased from 5 to 50 – it should 

be noted that increasing the number of complexes is the main source of 

computational expense and a balance needs to be struck between 

computational time and the robustness of the final calibration (Madsen, 2003).  

By using 50 complexes the impact of the initial parameter values bore little 

relevance on the final result. By increasing the convergence threshold from 1e-5 

to 1e-2, the computation time was significantly decreased without significant 

loss of final error value. 

 

The objective function used was the RMSE of daily recorded discharge and the 

daily modelled discharge. The equation for the RMSE is shown in Equation 6.1, 

where     is the recorded discharge, and   
   is the modelled discharge, for a 

given timestep: 
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Equation 6.1 

       
       

    
   

 
 

 

The SCE-UA was found to significantly improve the performance of the Pitman 

model in comparison with the default parameters shown in Table 6.1, and this 

can be seen in hydrographs, using a calibration for all eleven years when driven 

by the Gauge Average rainfall estimate (an area weighted estimate prodced 

using a Thiessen Polygon method, and adjusted for orographic effects) . An 

example of the hydrograph from the 1988 wet season is shown in Figure 6.4. 

 

The hydrograph in Figure 6.4 show the effect of calibrating the variable 

parameters in the Pitman model, using the SCE-UA algorithm. It is clear that the 

modelling of discharges using SCE-UA calibrated parameters significantly 

increases the fit of the hydrograph, both visually and quantitatively. The RMSE 

values for both modelled outputs for the 11 year period are 80.92m3.s-1 for the 

calibrated model, and 157.61m3.s-1 for the model using the default parameters. 
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Figure 6.4 – Hydrograph showing the actual and modelled discharge from the Pitman 

model for the Bakoye catchment, for 1988. The dashed line shows the recorded 

discharge, the solid red line is the modelled discharge, driven and calibrated by the 

Gauge Average estimate of rainfall for the period 1986-1996, and the solid green line is 

the modelled discharge, driven by the Gauge Average estimate and using the default 

parameters. 

 

To allow interannual comparison, and also comparison with studies on other 

catchments, the RMSE error will be converted into a percentage of the mean 

daily discharge of the observed period. In this case, the errors are 123% of 

mean daily discharge for the calibrated model, and 239% of mean daily 

discharge when using the default parameters. 
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6.5 - Summary 

 

This chapter has demonstrated the Pitman lumped CRR model and the SCE-

UA method that has been used to optimised the parameter values. A starting 

set of default parameters have been used and the SCE-UA was used to alter 

the values of the parameters, minimising the RMSE for daily discharges. The 

final error is expressed as a percentage of the mean daily discharge for the 

calibration period to allow more direct comparison between periods under 

different conditions. 
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7 
Validation of the Ensemble 

Representation of the Daily Senegal 

Basin Rain Field 

 

7.1 – Introduction 

 

The TAMSAT1 method and the TAMSIM algorithm were described in Chapter 

5, detailing their calibration and implementation.  As shown, the TAMSAT1 and 

TAMSIM algorithms have been calibrated against a historic raingauge network 

covering the Senegal Basin for the period between 1986-1996, using the wet 

season data only. Finally, an ensemble realisation of the Senegal daily rain 

field, consisting of 200 unique yet equiprobable members, has been produced 

and the Bakoye catchment averages calculated. 

 

This chapter will address two of the key questions posed in Chapter 1 of this 

thesis. It will firstly investigate the capability of the TAMSIM algorithm to 

reproduce the daily Senegal rainfall field by comparing it to the underlying DK 

rainfall field – both at gauge-pixel and catchment average scales. Secondly, the 

main forms of uncertainty will be observed, including the extent of error, spatial 

biases and temporal biases. 
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7.2 – Daily Senegal Basin Rain Field 

 

The daily wet season (June-October) rainfall fields for the Senegal Basin have 

been generated using TAMSIM for the period between 1986 and 1996. Specific 

details concerning the implementation have been highlighted in Chapter 5.  The 

ensemble rain fields produced by TAMSIM should, individually and combined, 

reproduce the statistical characteristics of the DK rain field at both gauge-pixel 

and catchment scale. 

 

The performance of the ensemble rainfall fields can be assessed by comparison 

with the underlying DK rainfall field at gauge-pixel scale (pixels that contain at 

least one raingauge), both as a collective and at individual gauge-pixels. 

 

Rainfall Characteristics at Gauge-Pixel Scale 

 

In order to assess the TAMSIM it is necessary to first determine that the rainfall 

fields for the ensembles retain the statistical properties of the DK obtained 

gauge-pixel rainfall fields. 
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Figure 7.1 – Frequency distribution chart showing the distributions of all the ensemble 

rainfall and the DK rainfall, at gauge-pixels. Zero rainfall is included in the frequency, but 

not shown (Ensembles = 70.8%, DK = 69.4%) 

 

Figure 7.1 shows the frequency distribution of rainfall for all of the ensemble 

rainfall fields and the distribution of rainfall for the DK obtained rainfall field, for 

gauge-pixels. Both distributions show a very similar frequency of zero rainfall 

(70.8% for TAMSIM, 69.4% for DK), and similar distribution of rainfall, both 

showing most rainfall in the 12mm bin. It is beyond the bounds of this thesis to 

provide a full, comprehensive analysis of all the sources of error in the DK 

estimate, such as raingauge measurement and interpolation errors, but a 

conservative estimate can be taken at 10% of the rainfall volume. At this 

magnitude there would be significant overlaps between the distributions of the 

DK rainfall estimates and the ensemble estimates. This suggests that over 200 

ensembles, the TAMSIM model is adequately reproducing the statistical 

properties of the DK obtained rainfall field. 
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To assess whether individual ensemble members were also displaying the 

same statistical properties, five ensembles members were chosen randomly to 

compare with the DK obtained rainfall fields. Figure 7.2 shows the frequency 

distribution of the five ensemble rainfall fields, in comparison with the DK 

obtained field. It shows a similar pattern to the distribution of all the TAMSIM 

rainfall shown in Figure 7.1, suggesting that each individual ensemble member 

is consistent with the statistical properties of the DK obtained rainfall. 

 

 

Figure 7.2 – Frequency distributions of five randomly chosen ensemble rainfall fields and 

DK obtained rainfall field, at gauge-pixels. Zero rainfall was included in the distribution 

but now shown (Ens30 = 71.5%, Ens56 = 71.1%, Ens69 = 70.8%, Ens98 = 71.0%, Ens184 = 

71.0% and DK = 69.4%). 

 

The distribution of the rainfall estimates were also compared using Quantile-

Quantile (QQ) plots. These plots are shown in Figure 7.3.  Each of the 

ensembles displays a similar pattern, with the TAMSIM generated rainfall 

showing lower rainfall values than DK when comparing quantiles throughout the 
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plot.  However, there is a close match between 10 and 25mm rainfall but a poor 

match at the low and high end of the plots. 

 

 

Figure 7.3 – QQ distribution plots showing DK and sample ensemble rainfall at gauge-

pixels. 

 

Rainfall Characteristics at Catchment Average Scale 

 

For use as an input driving the Pitman lumped CRR model, daily averages of 

rainfall needed to be calculated from each ensemble member for the Bakoye 
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catchment, as described in Chapter 5. The catchment average rainfall estimate 

can be assessed by comparison with a catchment average determined from the 

underlying DK rainfall field, and its skill can be compared with the deterministic 

TAMSAT1 estimate, for all the ensembles together, individual ensemble 

members, and a mean of all the ensemble estimates. 

 

Figures 7.4 and 7.5 show the frequency distributions of rainfall at Bakoye 

catchment scale, for TAMSIM, the five randomly selected ensemble members 

and DK obtained rainfall. Interestingly, when averaged over the Bakoye 

catchment scale, the proportion of zero rainfall is much lower for TAMSIM 

generated rainfall fields (3.6%), than for DK obtained rainfall (19.3%).  This is 

caused by the amount of uncertainty for rainfall at CCD=0 in the TAMSIM 

calibration – there is a 19% probability of rainfall at CCD=0, so even when the 

whole Bakoye catchment shows CCD=0, it is likely that TAMSIM will estimate 

rainfall somewhere within the catchment. 
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Figure 7.4 – Frequency distribution showing the distributions of all the ensemble rainfall 

fields and the DK obtained rainfall field, at the Bakoye catchment scale. Zero rainfall is 

included in the distribution but not shown (Ensembles = 3.6%, DK = 19.3%). 

 

 

Figure 7.5 – Frequency distribution of five randomly chosen ensemble rainfall fields and 

DK obtained rainfall fields at Bakoye catchment scale. Zero rainfall is included in the 

distribution but not shown (Ens30 = 3.7%, Ens56 = 4.0%, Ens69 = 3.5%, Ens98 = 3.0%, 

Ens184 = 4.0%, DK = 19.3%). 
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The QQ plot in Figure 7.6 shows the DK and combined TAMSIM quantile 

rainfalls at catchment scale.  The TAMSIM rain fields are producing more low 

level rainfall than the DK rain fields at catchment scale, and less high level 

rainfall.  However, the mean rainfall appears to occur at the same quantile for 

both rain fields. 

 

 

Figure 7.6 – QQ distribution plot showing the quantile rainfalls for DK Bakoye catchment 

average rainfall and combined TAMSIM Bakoye catchment average rainfall. 

 

The TAMSIM data shows a close match with TAMSAT1 at the Bakoye 

catchment scale for rainfall between 2.5mm and 15mm, but the relationship 

breaks down for rainfall >15mm (Figure 7.7). 
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Figure 7.7 – QQ distribution plot showing the quantile rainfall for TAMSAT1 Bakoye 

catchment average rainfall and TAMSIM Bakoye catchment average rainfall. 

 

The ability of the TAMSIM algorithm to estimate rainfall at the catchment scale 

can be compared to that of the deterministic TAMSAT1 estimate by using 

measurements of relative skill, in comparison with the estimate produced by the 

underlying DK daily rain field.  Three skills scores were used for the quantitative 

assessment, Root-Mean-Squared-Error (RMSE), the coefficient of 

determination (R2), and Bias (BIAS), as defined below: 

 

Equation 7.1 
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Equation 7.2 

   
    

       
   

          
   

 

 

Equation 7.3 

     
       

   
   

 
 

 

where   is the number of daily rainfall estimates in the dataset,    is the DK 

daily catchment rainfall estimate,   
  is the SRFE daily catchment rainfall 

estimate (either TAMSAT1, or TAMSIM) and    is the mean of the DK daily 

catchment rainfall estimates. 

 

The skill scores were applied to the TAMSAT1 estimate, the collective of 

TAMSIM ensemble estimates (SIMAll) and the mean of the ensemble estimates 

(SIMMean), for the period between 1986 and 1996, and for each individual year 

between. The results can be seen in Table 7.1. 
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Period Method RMSE R2 BIAS 

All 
TAMSAT1 3.94 0.31 0.34 
SIMAll 4.59 0.51 0.41 

SIMMean 3.94 0.31 0.41 

1986 
TAMSAT1 3.89 0.36 0.64 
SIMAll 4.57 0.56 0.68 
SIMMean 3.94 0.35 0.68 

1987 
TAMSAT1 3.60 0.38 -0.30 
SIMAll 4.31 0.64 -0.25 
SIMMean 3.62 0.37 -0.25 

1988 
TAMSAT1 4.39 0.34 0.52 
SIMAll 5.04 0.52 0.61 
SIMMean 4.40 0.34 0.61 

1989 
TAMSAT1 4.45 0.33 0.89 
SIMAll 4.97 0.49 0.92 
SIMMean 4.41 0.33 0.92 

1990 
TAMSAT1 2.91 0.38 -0.31 
SIMAll 3.78 0.64 -0.25 
SIMMean 2.91 0.37 -0.25 

1991 
TAMSAT1 3.85 0.28 0.22 
SIMAll 4.48 0.49 0.30 
SIMMean 3.81 0.28 0.30 

1992 
TAMSAT1 3.71 0.31 -0.38 
SIMAll 4.33 0.54 -0.27 
SIMMean 3.66 0.30 -0.27 

1993 
TAMSAT1 3.64 0.28 0.11 
SIMAll 4.29 0.51 0.16 
SIMMean 3.63 0.27 0.16 

1994 
TAMSAT1 4.59 0.35 1.01 
SIMAll 5.19 0.57 1.06 
SIMMean 4.60 0.35 1.06 

1995 
TAMSAT1 3.90 0.31 0.57 
SIMAll 4.61 0.49 0.66 
SIMMean 3.94 0.31 0.66 

1996 
TAMSAT1 4.14 0.23 0.77 
SIMAll 4.75 0.39 0.85 
SIMMean 4.16 0.24 0.85 

 

Table 7.1 – Table showing comparison skill scores for Bakoye catchment rainfall 

estimates from TAMSAT1, all of the TAMSIM ensembles (SIMAll), and the mean of the 

TAMSIM ensembles (SIMMean), the whole 11 year study period, and for individual years 

(wet season data only). 

 

The skill scores shown in Table 7.1 portray a mixed picture. In terms of R2, the 

TAMSIM ensembles outperform the TAMSAT1 estimate, but TAMSAT1 shows 

a better fit in terms of RMSE and less bias, for the whole 11 year period. 

Generally, and as would be expected, the mean of the TAMSIM ensembles 

shows similar error scores to TAMSAT1, and the same bias as the whole 

TAMSIM ensemble estimates. In regards to bias, overall the SRFE slightly 



 
Chapter 7 – Validation of the Ensemble Representation of the Daily Senegal Basin Rain Field 

182 
 

underestimates in comparison with the DK estimate, but overestimates in 

1987,1990 and 1992 – each anomalously dry years. 

 

Reliability of Ensemble Estimates 

 

The reliability of ensemble estimates can be assessed using the forecast 

reliability method detailed by Toth et al. (2003). The reliability plots use a 

threshold on the ensemble data, and bins the data for each day into percentage 

of ensemble members above the threshold. For each bin the percentage of 

days that show recorded data above the threshold is calculate and plotted 

against the binned ensemble data. A reliable ensemble set will show a 1:1 

relationship on the plot, for example if 40% of ensembles estimate rainfall above 

5mm, than there should be a 40% chance of rainfall occurring above 5mm on 

that day. 

 

Figure 7.8 shows reliability plots for the catchment average TAMSIM SRFE, 

compared to the DK catchment average rainfall estimate, for three threshold 

levels – low rainfall (25th percentile from the DK rain), mean rainfall and high 

level rainfall (75th percentile). The TAMSIM ensembles show good reliability at 

mean and high level rainfall, but poor reliability at the low level rainfall threshold 

– this is most likely due to the known problem that SRFE have with estimating 

trace levels of rainfall. 
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Figure 7.8 – Forecast reliability plots showing the catchment average TAMSIM SRFEs 

compared to the DK catchment average rainfall estimate. The top-left chart shows values 

>0.4mm (the 25th percentile of the DK rainfall), top-right shows values >7.4mm (the 75
th

 

percentile of the DK rainfall) and the bottom chart shows values >4.6mm (the mean daily 

DK rainfall). The dashed lines show the 1:1 relationship. 

 

Variogram Replication 

 

It has been shown that both the ensembles as a whole and each individual 

ensemble retain similar statistical properties to the DK rain field, at pixel and 

catchment scales. However, one area of concern is that TAMSIM does not 

reproduce the geostatistics in regards to the modelled climatological 

variograms. Figures 7.9 and 7.10 show the indicator and no-zero rainfall 

variograms generated by the gauge-pixel data from Ensemble 30. 
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Figure 7.9 – Modelled wet-season climatological ‘indicator’ variogram generated from 

Ens30 gauge-pixel data. 

 

 

Figure 7.10 – Modelled wet-season climatological ‘no-zero’ variogram generated from 

Ens30 gauge-pixel data. 
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The two modelled variograms shown in Figures 7.9 and 7.10 show little 

resemblance to the modelled variograms shown for the DK in Chapter 4, 

derived directly from the raingauge data.  Table 7.2 and 7.3 compare the 

parameters between the modelled variograms for the DK rain fields, the residual 

variograms used for TAMSIM, and the variograms generated from each of the 

sample ensemble members. 

 

 

Nugget Sill Range (km) 

From Gauges 0.37 0.71 183.02 

Residual 0.00 1.27 146.15 

Ens30 0.09 1.03 112.52 

Ens56 0.09 1.02 113.30 

Ens69 0.07 1.04 110.57 

Ens98 0.10 1.03 117.27 

Ens184 0.10 1.02 112.92 

 

Table 7.2 – Table showing the modelled ‘indicator’ variogram parameters for variograms 

from the gauges, the residual variogram, and variograms generated from the sample 

ensemble members. 
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  Nugget Sill Range (km) 

From Gauges 0.50 0.51 50.79 

Residual 0.00 1.16 92.56 

Ens30 0.11 1.06 105.30 

Ens56 0.04 1.12 100.60 

Ens69 0.05 1.11 101.64 

Ens98 0.07 1.11 106.71 

Ens184 0.09 1.09 109.80 

 

Table 7.3 – Table showing the modelled ‘no-zero’ variogram parameters for variograms 

from the gauges, the residual variograms, and variograms generated from the sample 

ensemble members. 

 

From Tables 7.2 and 7.3 it can be seen that the variogram parameters for each 

of the sample ensemble members are relatively consistent. Both the indicator 

and the no-zero variograms for the Ensemble members also show a low 

nugget, much lower than the gauge derived variograms.  The Ensemble 

variograms also show greater similarity to the residual variogram, especially in 

the case of the no-zero transforms, and this is not unexpected as the residual 

variogram is used directly in the generation of the variograms.  However, it is of 

concern that each individual ensemble rain field does not reproduce a 

variogram more reflective of the geostatistics shown by the raingauges – this is 

most likely a result of TAMSIM being unable to reproduce the rainfall gradient 

across the region using a single calibration. 

 

 

 

 



 
Chapter 7 – Validation of the Ensemble Representation of the Daily Senegal Basin Rain Field 

187 
 

7.3 – Influence of Uncertainty on the Estimates 

 

The sections above have demonstrated the ability of the TAMSIM algorithm to 

reproduce the rainfall characteristics of the daily Senegal rainfall field, at both 

gauge-pixel and catchment average scale. It has been previously stated that the 

types of uncertainty with a SRFE are likely to emerge from errors in estimating 

where it is raining, when it is raining, and the rainfall rate. These can be 

observed in the ensemble estimates as spatial biases and temporal biases, in 

addition to error.  

 

Spatial Bias 

 

The spatial biases within the TAMSIM ensemble estimates can be seen by 

observing the rainfall distributions at gauge-pixel scale for individual raingauges. 

In order to show this, five raingauges were randomly selected from the whole 

record and the TAMSIM pixel rainfall for each gauge compared to the DK 

obtained pixel average for that gauge – the frequency distributions shown in 

Figure 7.11 to 7.15, with the raingauges ordered from most northerly to most 

southerly. 
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Figure 7.11 – Frequency distribution of TAMSIM rainfall fields and DK obtained rainfall for 

the Aero-Lao gauge-pixel. Zero rainfall is included in the distribution but not shown 

(TAMSIM = 76.2%, DK = 91.1%). 

 

Figure 7.12 – Frequency distribution of TAMSIM rainfall fields and DK obtained rainfall for 

the Renerou gauge-pixel. Zero rainfall is included in the distribution but not shown 

(TAMSIM = 74.3%, DK = 81.6%). 
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Figure 7.13 – Frequency distribution of TAMSIM rainfall fields and DK obtained rainfall for 

the Thiel gauge-pixel. Zero rainfall is included in the distribution but not shown (TAMSIM 

= 74.3%, DK = 84.3%). 

 

Figure 7.14 – Frequency distribution of TAMSIM rainfall fields and DK obtained rainfall for 

the Guene-Gore gauge-pixel. Zero rainfall is included in the distribution but not shown 

(TAMSIM = 67.7%, DK = 63.4%). 
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Figure 7.15 – Frequency distribution of TAMSIM rainfall fields and DK obtained rainfall for 

the Oualia gauge-pixel. Zero rainfall is included in the distribution but not shown 

(TAMSIM = 65.1%, DK = 50.0%). 

 

It can be seen from Figures 7.11 to 7.15 that the TAMSIM rainfall fields do not 

recreate the rainfall statistics at individual gauge-pixel level. However, this 

manifests itself differently for each gauge, for example at the Aero-Lao gauge-

pixel (in the drier, northern part of the Senegal Basin), TAMSIM overestimates 

the distribution of rainfall with the DK rainfall estimate showing a greater 

proportion of zero rainfall (TAMSIM = 76.2%, DK = 91.1%). In contrast, for the 

Oualia gauge-pixel (in the wetter, southern part of the Senegal Basin), TAMSIM 

underestimates the rainfall distribution, with the DK estimate showing less zero 

rainfall (TAMSIM = 65.1%, DK = 50.0%).  This same north to south variation 

can be observed by comparing the QQ plots for the sample gauge-pixels 

(Figure 7.16). 
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Figure 7.16 – QQ distribution plots showing quantile rainfall at sample gauge-pixels for 

DK rain fields and combined TAMSIM rain fields. 

 

The QQ plots in Figure 7.16 show that out of the sample gauge-pixels, the 

Guene-Gore pixel shows the best match between the TAMSIM quantile rainfalls 
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and the DK quantile rainfalls. This matches the distributions of rainfall shown in 

Figure 7.11 to 7.15.   

 

The reliability of the ensembles can also be observed at gauge-pixel scale, 

using the TAMSIM ensemble and DK data from pixels containing the selected 

raingauge stations used previously. The reliability plots for these are shown in 

Figures 7.17 to 7.21, ordered from most northerly to most southerly. Along with 

each reliability plot is a bar chart showing the number of samples in each bin, 

the low number of samples for the 40, 50, 90 and 100% bins generally contain 

very few samples and this causes a lot of the noise in the charts. 

 

 

Figure 7.17 – Forecast reliability plots showing the TAMSIM SRFE compared to the DK 

catchment average rainfall estimate for the pixel containing the Aero-Lao raingauge 

station. The chart shows values >1.4mm (the mean daily DK rainfall). The dashed lines 

show the 1:1 relationship. The bar chart on the right shows the number of samples in 

each bin. 
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Figure 7.18 – Forecast reliability plots showing the TAMSIM SRFE compared to the DK 

catchment average rainfall estimate for the pixel containing the Renerou raingauge 

station. The chart shows values >2.7mm (the mean daily DK rainfall). The dashed lines 

show the 1:1 relationship. The bar chart on the right shows the number of samples in 

each bin. 

 

 

Figure 7.19 – Forecast reliability plots showing the TAMSIM SRFE compared to the DK 

catchment average rainfall estimate for the pixel containing the Thiel raingauge station. 

The chart shows values >2.2mm (the mean daily DK rainfall). The dashed lines show the 

1:1 relationship. The bar chart on the right shows the number of samples in each bin. 
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Figure 7.20 – Forecast reliability plots showing the TAMSIM SRFE compared to the DK 

catchment average rainfall estimate for the pixel containing the Guene-Gore raingauge 

station. The chart shows values >5.3mm (the mean daily DK rainfall). The dashed lines 

show the 1:1 relationship. The bar chart on the right shows the number of samples in 

each bin. 

 

 

Figure 7.21 – Forecast reliability plots showing the TAMSIM SRFE compared to the DK 

catchment average rainfall estimate for the pixel containing the Oualia raingauge station. 

The chart shows values >7.1mm (the mean daily DK rainfall). The dashed lines show the 

1:1 relationship. The bar chart on the right shows the number of samples in each bin. 

 

The reliability plots of Figures 7.17 to 7.21 demonstrate how the heterogeneity 

of the Senegal Basin area influences the reliability of the TAMSIM ensembles, 

clearly showing that the relationship between CCD and rainfall is non-stationary 
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across the regions and TAMSIM is unable to capture this. The pixels further to 

the north of the region overestimated the occurrence of rainfall in the 

ensembles, which was clear for the pixels containing the Aero-Lao and Thiel 

raingauges, but for the pixel containing the Oualia raingauge the probability of 

rainfall in the ensembles was underestimated – consistent with the pattern seen 

in the distributions of rainfall previously observed. 

 

A likely cause of this is the TAMSIM being less able to reproduce the rainfall 

gradient that transects the Senegal Basin. With only a single calibration of 

TAMSIM to represent the entire catchment, it is unlikely that the TAMSIM model 

is able to reproduce the different rainfall characteristics across the catchment, 

and would not be an appropriate approach if more data was available. This is 

demonstrated by those pixels within the drier regions overestimating rainfall 

amount and occurrence and vice versa. 

 

Temporal Bias 

 

To compare the TAMSIM data with the DK data at catchment scale, daily 

catchment average rainfalls were calculated for each ensemble member. Table 

7.3 shows the totals for the catchment average rainfalls at various temporal 

scales. 

Table 7.4 and Figure 7.22 compare the total Bakoye catchment average 

rainfalls for the daily DK rain fields and the mean daily TAMSIM rain fields, at 

various temporal scales, and it is clear that the TAMSIM ensemble estimates of 
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rainfall are not able to reflect fully the interannual variations of rainfall in the 

same way as the DK estimate. 

  DK Rain (mm) TAMSIM Mean Rain (mm) 

Total 7798.91 7116.43 

Mean 708.99 646.95 

1986 726.77 623.46 

1987 595.34 633.14 

1988 805.87 712.89 

1989 772.00 630.76 

1990 637.99 675.50 

1991 683.09 637.74 

1992 598.98 640.83 

1993 635.16 610.81 

1994 851.95 690.01 

1995 763.98 663.51 

1996 727.78 597.77 

 

Table 7.4 – Table showing the total catchment average rainfall, mean annual catchment 

average rainfall and yearly wet-season totals for DK and TAMSIM mean daily rain fields. 
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Figure 7.22 – Chart showing the annual Bakoye catchment average rainfall totals for the 

wet seasons of 1986-1996, for the DK daily rain fields and the mean TAMSIM daily rain 

fields. 

 

If it is assumed that the bias calculated for the TAMSIM ensemble estimates for 

the whole 11 year study period is a result of spatial bias, it is possible to adjust 

the bias for each wet season to remove the influence of the spatial bias – 

leaving the systematic bias during years of anomalous rainfall. Figure 7.23 

shows the bias anomalies for each wet season in the record and it is clear that it 

shows a similar pattern to the rainfall anomalies seen in the raingauge data, as 

shown in Figure 3.17. 
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Figure 7.23 – Chart showing the bias anomalies for each wet season, as deviated from 

the BIAS calculated for the whole 11 year study period, for the TAMSIM ensemble 

catchment average rainfall estimates.  

 

7.4 – Conclusions 

 

The Senegal Basin daily rainfall fields, produced by the TAMSIM algorithm have 

been analysed at various spatial and temporal scales, including at gauge-pixels 

and catchment scales. The ensemble estimates of rainfall have been assessed 

as a collective, from a sample individual ensemble members, and as a mean of 

all the members.  At catchment scale, the algorithm’s performance has been 

directly compared to a deterministic estimate of rainfall produced by the 

TAMSAT1 method. 
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Overall, the algorithm has performed well in estimating the daily rainfall field, for 

both the collective of the ensembles and for each individual ensemble member. 

The distribution of rainfall values closely matches that estimated by the DK rain 

field at both gauge-pixel and catchment scale. These relationships are 

replicated when looking at individual ensemble members. 

 

Of particular note from the results is the systematic biases that exist within the 

SRFE, when compared to the DK gauges based rainfall estimation. Teo (2006) 

noted that TAMSAT1 and TAMSIM both showed biases for years with 

anomalous rainfall, and this is also evident with the data for the Senegal Basin. 

In all there are four types of bias that can be said to exist in the data:  

 

1. Overall bias – both TAMSAT1 and TAMSIM are shown to estimate lower 

volumes of rainfall than the underlying DK rain field, but are 

indistinguishable within the bounds of conservative error estimates. 

 

2. Bias due to local variations in rainfall – there are biases in the catchment 

rainfall estimates for the Bakoye catchment due to local variations in 

rainfall, in respect to the overall Senegal Basin from which the calibration 

is derived. 

 

3. Bias due to intraseason variations – it is clear that the relationship 

between CCD and rainfall is not stationary over the wet season and 

these variations will result in biased estimates for periods where the 

relationship has altered. 
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4. Bias due to interannual variations – the majority of the years in the study 

period do not demonstrate rainfall close to the mean for the period, and 

for these years there exists systematic bias in the estimates. The SRFE 

overestimates rainfall for dry years and vice versa. 

 

The bias resulting from sources 2 and 3 are particularly marked in this thesis 

due to the paucity of raingauge data available. With a denser network it would 

have been possible to focus the calibration of the SRFE on data collected in 

and around the Bakoye catchment. With a denser network it would have been 

possible to use finer temporal resolutions for calibrations, such as the monthly 

calibrations adopted by Teo (2006) and Teo and Grimes (2007). Greatrex 

(2012) demonstrated how regional calibrations could be adopted into the 

method, subdividing the region into fairly homogenous zones and calibrating 

separately for each but still producing a single rainfall field. The addition of more 

extensive ground data in the manner above would reduce the biases, possibly 

significantly so, but not remove it completely – thus it is important to understand 

how the bias in the SRFE propagates to downstream applications. 

 

The systematic bias caused by interannual variations of rainfall deviating from 

the mean over the calibration period may be reduced somewhat with additional 

ground data, but as it was evident in the study by Teo (2006) it is likely to be 

significant even for areas with a dense network. To reduce this it is likely that an 

additional data set would be required, such as sea surface temperature (SST) 

would need to be incorporated into the study – this is discussed in Chapter 10. 
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For production of daily catchment estimates of rainfall - which will be used to 

drive the Pitman lumped CRR model - the TAMSIM estimates performed 

favourably compared to the TAMSAT1 showing a better fit in regards to the R2 

score. 

 

Chapter 8 demonstrates how the catchment averages of the TAMSIM ensemble 

SRFE can be used to show the propagation of the uncertainty through the 

Pitman lumped CRR model, and showing how a fully spatio-temporally 

distributed stochastic ensemble approach is superior to a simpler perturbation 

method for this application.
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8 
The Influence of SRFE Input 

Uncertainty on Hydrological Model 

Output 

 

8.1 – Introduction 

 

Chapter 7 demonstrated how significant uncertainties exist within the TAMSAT1 

satellite rainfall estimate (SRFE) of the daily rain fields for the Senegal Basin. 

These uncertainties have been characterised and represented by an ensemble 

of 200 unique yet equiprobable rainfall estimates using the TAMSIM algorithm, 

from which catchment averages were calculated for use as an input in a lumped 

conceptual rainfall-runoff (CRR) model.  The lumped CRR model used was the 

Pitman model calibrated using the Shuffled Complex Evolution (SCE-UA) 

method - details of both can be seen in Chapter 6.  

 

The use of ensemble representations of uncertainty allows for a simple way of 

representing the uncertainty in the input, as each can be used as an individual 

estimate of the rainfall and applied in turn as a rainfall input in the model.  The 
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distribution of the ensemble of modelled outputs, in this case discharges, can 

be said to show the bounds of uncertainty of the output with regard to the input 

uncertainty. However, the influence of uncertainty within the hydrological model 

itself, in particular in the form of model structure and parameter uncertainty, and 

the way that the SRFE uncertainty interacts with them, cannot be ignored. To 

this end, before the influence of the uncertainty within a SRFE can be measured 

propagating through the Pitman model a suitable set of parameter values must 

be established for use with ensemble inputs. 

 

The EnsAll parameterisation is introduced as a new method for calibrating a 

deterministic hydrological model for use with ensemble rainfall inputs. The 

method incorporates each ensemble member in turn - looping the recorded 

discharge data and resetting the initial conditions at the end of each 11 year 

period. This method of parameterisation was shown to outperform all the 

alternative methods, with little overall bias, and showed similar levels of 

performance when compared to outputs from calibrations against each 

individual ensemble input. 

 

This chapter addresses three of the key research questions outlined in Chapter 

1. Section 8.2 details the performance of the Pitman model driven by the 

TAMSIM ensemble rainfall estimates when calibrated by different rainfall 

estimates, showing that a calibration method that incorporates each of the 

TAMSIM ensemble estimates (EnsAll) is the most favourable option. Section 

8.3 describes in detail the performance of the Pitman model using the EnsAll 

parameterisation, detailing the envelope hydrographs representing the 
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propagation of the uncertainty as shown by the TAMSIM ensemble SRFE, 

demonstrating that biases within the SRFE are directly passed on resulting in 

biases in the discharge output. Section 8.4 will demonstrate how the TAMSIM 

ensemble SRFE are superior in representing the full range of input uncertainty 

when compared to a simpler perturbation approach. Finally, Section 8.5 

concludes the chapter. 

 

8.2 – Ensemble Parameterisation of the Pitman Model 

 

The Pitman lumped CRR model is a deterministic model, which is designed to 

operate when driven by a single rainfall input, and models a single discharge 

output for each timestep. For calibration using the SCE-UA algorithm a 

deterministic estimate of rainfall is required to drive the Pitman model, whilst the 

parameter values are adjusted to match the deterministic output against the 

recorded discharge data. The TAMSIM approach to characterising SRFE 

uncertainty produces a group of ensemble rainfall inputs that each resemble a 

deterministic input that can be used to drive the Pitman model, and although a 

parameter set can be produced for each individual ensemble this is not 

appropriate for operational purposes, especially if ensemble inputs are to be 

used to forecast discharges.  There is a requirement to determine a single 

parameter set that can be said to be optimal for the data, and transferable 

between the ensembles and temporal periods. 

 

The Pitman model was calibrated against several available deterministic 

estimates of rainfall using SCE-UA, and each calibrated parameter set is 
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referred to as a parameterisation henceforth when used with the TAMSIM 

ensemble estimates: 

 

 EnsStart – Calibration of the Pitman model provided by David Grimes 

(personal correspondence, 2009). This parameter set was also used as 

the initial parameter set in the SCE-UA calibrations. 

 EnsGA – Calibration against the Gauge Average estimate (an area 

weighted estimate using a Thiessen Polygons method with an 

adjustment for orographic effects). 

 EnsDK – Calibration against the catchment average of the DK rainfall. 

 EnsTAM1 – Calibration against the TAMSAT1 estimate. 

 

In addition to the deterministic estimates the Pitman model was calibrated using 

rainfall inputs using the Bakoye catchment average TAMSIM ensemble 

estimates:  

 

 EnsMean – Calibration against the daily mean of the 200 TAMSIM 

ensemble estimates. 

 EnsAll – Calibration against each of the 200 TAMSIM ensemble 

members in turn, effectively a 2,200 year record with the recorded 

discharge looped and the stores reset to 0 at the end of each 11year 

period. 

 

The relative performance of each parameterisation when driven by the TAMSIM 

ensemble estimates can be seen in Figure 8.1. It is evident that the EnsAll 
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calibration displays the best performance, with a mean RMSE of 133.91% of the 

mean daily recorded discharge. Both the EnsMean and EnsTAM1 

parameterisation show poor transferability when driven by different TAMSIM 

ensemble estimates, which is most likely a result of overparameterisation. 

 

 

Figure 8.1 – Chart showing the relative performances for different parameterisations of 

the Pitman model, when driven by the TAMSIM ensemble estimates for the Bakoye 

catchment, 1986-1996. 

 

The influence of the parameterisation of the modelling of discharge can be seen 

in Figure 8.2, which compares the EnsAll and EnsMean outputs for the 1992 

wet season. 
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Figure 8.2 – Envelope hydrographs showing the modelled discharges for the 1992 wet 

season, from both the EnsMean (red) and the EnsAll (blue) parameterisation. The 

TAMSAT1 deterministic discharge is shown by the dashed green line. The envelopes 

show the 95% confidence bounds from the modelled discharges. 

 

From Figure 8.2 it is clear that the EnsMean modelled discharges do not show a 

good representation of the propagation of the SRFE uncertainty as it 

propagates through the Pitman model, as the parameter uncertainty within the 

Pitman model is high and interacting with the input uncertainty to produce a 

wide envelope of modelled discharges. For the late wet season the EnsMean 

discharges become entirely uncoupled from the TAMSAT1 deterministic 

estimate. A similar pattern is seen for each year of the record. 

 

To assess the performance of each parameterisation when the Pitman model is 

driven by the TAMSIM ensemble estimates, the Pitman model was calibrated 

using each ensemble individually. The collected output from the 200 
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parameterisations is referred to as EnsInd and is used as a proxy for the 

optimal model.  Table 8.1 shows performance statistics for each of the 

parameterisation methods derived from the SRFE. 

 
Calibration 

Regime 
RMSE (%) R2 BIAS (%) 

1986-1996 

EnsTAM1 114.42 1.10 24.34 

EnsInd 85.65 0.57 3.83 

EnsMean 116.68 1.63 -163.61 

EnsAll 89.08 0.52 0.80 

 

Table 8.1 – Table showing performance statistics for the parameterisations derived from 

the SRFE, comparing them to the EnsInd output. The table shows values for wet season 

data only. RMSE and BIAS shown as percentages of the mean daily discharge for the 

period. 

 

The values in Table 8.1 show that the Pitman model performs best when 

calibrated to each individual ensemble, as in EnsInd, although the performance 

of the EnsAll model is similar. EnsAll actually shows a less biased output than 

the EnsInd output over the 11 years of the study period. EnsTAM1 and 

EnsMean both perform very poorly and display high biases. 

 

8.3 – The Propagation of Input Uncertainty through the Pitman 

Model 

 

The previous section analysed the available parameterisations that can be used 

for the Pitman model when driven by the TAMSIM ensemble estimates, 

showing that calibrations against deterministic estimates based on the SRFE 

are not suitable for this purpose. The EnsAll parameterisation incorporates each 
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individual ensemble member in a single record and provides a robust calibration 

of the Pitman model, which outperforms each of the alternative methods. EnsAll 

was also shown to be comparable to the optimal proxy, EnsInd. 

 

With the EnsAll parameterisation shown to be the optimal method available it 

can be used to model the envelope hydrographs for each year of the record, 

displaying the 95% confidence discharge envelope of the modelled discharges 

between the 2.5th percentile and the 97.5th percentile for each day. These are 

shown in Figures 8.3 to 8.13. 

 

Figure 8.3 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1986 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. (Note – 1986 represents the first year of 

the modelling and is therefore subject to the ‘charging period’) 

 

Figure 8.3 shows the 95% confidence discharge envelope for the 1986 wet 

season for the period 1986-1996. Due to the nature of the dry season in the 

region there appears to be little influence of a charging period in the 
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hydrograph, and the TAMSAT1 estimate (blue line) closely follows the recorded 

discharge (dashed black line). Between July and October the discharge 

envelope roughly lies equally above and below the TAMSAT1 estimate, but 

TAMSAT1 becomes decoupled after October dropping to the lower end of the 

envelope. From the raingauges 1986 displayed rainfall close to the mean for the 

period, 592.95mm and 607.83mm respectively. The discharge from the 

TAMSAT1 and TAMSIM estimates show little bias. 

 

Figure 8.4 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1987 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 

 

The raingauges in 1987 showed rainfall below the mean for the period for the 

Senegal Basin region. For the gauges associated with the Bakoye catchment 

this was particularly significant, with rainfall 150mm below the mean for the 

year, being the driest year in the record. The hydrograph shows significant bias, 

the Pitman model overestimating the discharge throughout the wet season. The 
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bias is such that most of the recorded discharge is below the bounds of the 

modelled uncertainty. 

 

 

Figure 8.5 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1988 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 
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Figure 8.6 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1989 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 

 

Both 1988 and 1989, shown in Figures 8.5 and 8.6, displayed above average 

rainfall to similar degrees. This was more significant in the Bakoye catchment 

gauges.  The deterministic and ensemble modelled discharges show little bias, 

with 1988 being a particularly close match with the recorded discharge, yet the 

timing of the peak discharge in the 1989 wet season is late. 
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Figure 8.7 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1990 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 

 

 

Figure 8.8 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1991 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 
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Figure 8.9 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1992 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 

 

 

Figure 8.10 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1993 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 
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Figure 8.7 to 8.10 show the hydrographs for the period 1990 to 1993, a period 

that displayed consistently below average rainfall for both the whole Senegal 

Basin area and the Bakoye catchment. There is some bias evident in 1990, with 

an overestimation of the discharge by the models, but a close match with the 

recorded discharge for the rest of the years in this dry period.  

 

 

Figure 8.11 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1994 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 
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Figure 8.12 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1995 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 

 

 

Figure 8.13 – Hydrograph showing the 95% confidence discharge envelope (in red) for 

1996 for the Bakoye Catchment, driven by the TAMSIM ensemble SRFE using the EnsAll 

parameterisation. The solid blue line shows the deterministic TAMSAT1 discharge, and 

the dashed line shows the recorded discharge. 
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The final three years of the period all displayed above average rainfall for the 

gauges in the Senegal Basin area, yet 1996 is slightly below average over the 

Bakoye catchment. Each of the years, 1994-1996, showed bias in the discharge 

modelling, each underestimating the recorded discharge with significant periods 

where the recorded discharges lays above the modelled uncertainty bounds.  

 

Performance Measures for the TAMSIM driven Pitman Model 

 

The hydrographs show how the TAMSAT1 SRFE for the Senegal Basin area, in 

particular the Bakoye catchment average, can be a poor representation of the 

reality when modelled through the Pitman model. Even when representing the 

range of uncertainties, there are significant periods where the daily recorded 

discharge lies outside of the 95% confidence envelopes. For the entire 11 year 

period this accounts for 57.0% of days, and 40.1% of days when just accounting 

for the wet season.  The occurrences occur mainly in years where the mean 

rainfall is either significantly greater or less than the mean for the whole.  For 

example, 1987 was an exceptionally dry year and on 71.2% of the days the 

recorded discharge was outside the envelope for the wet season. Although this 

thesis does not provide for a full accounting of the error present in the process, 

there should be a consideration of influence of observation error in the 

discharge measurements when analysing the hydrographs in Figures 8.3 to 

8.13. Di Baldassarre and Montanari (2009) found that discharge observations 

could contain errors up to 25%, and by applying an estimate of observation of 

up to 25% the number of days where the observed discharges falls outside of 



 
Chapter 8 – The Influence of SRFE Input Uncertainty on Hydrological Model Output 

218 
 

the modelled envelope could be reduced to 50.1% in total and to 28.3% for wet 

season only. 

 

There is a relationship between the number of days where the recorded 

discharge lies outside the envelope and the mean daily discharge, as shown in 

Figure 8.14, with wet seasons with a lower mean daily discharge showing less 

overlap between recorded discharge and the envelope – this is most likely due 

to the large bias in the SRFE (and therefore the Pitman model output) for 

anomalously dry years, overestimating in such years. 

 

 

Figure 8.14 – Plot showing the mean daily discharge for each of the wet seasons between 

1986 and 1996, and the percentage of days where the recorded discharge is either 

greater or lower than the modelled 95% confidence envelope of Pitman model modelled 

discharges, for the Bakoye catchment. 
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Figures 8.15 and 8.16 show the distributions of daily modelled discharges from 

the TAMSIM ensemble driven Pitman model, compared to the distribution of the 

daily recorded discharge from the Oualia gauging station, for wet season data 

only. The modelled discharge distributions shows no zero discharge during the 

wet seasons, which is consistent with the lack of zero rainfall within the 

TAMSIM estimates compared to the DK rainfall estimate. For positive discharge 

the modelled discharges produce more lower level discharge >0 to 100cumecs, 

but less higher discharges, especially >500cumecs. 

 

 

Figure 8.15 – Probability distributions of daily wet season discharges for the Bakoye 

catchment for the period 1986-1996 for the Pitman models driven by the TAMSIM 

ensemble estimates. The distribution of the recorded discharge is shown in grey and the 

modelled discharges in black. 
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Figure 8.16 – QQ distribution plot showing the distribution of modelled wet season 

discharges from the EnsAll parameterised Pitman model against the recorded discharge, 

when driven by the TAMSIM ensemble estimates for the Bakoye catchment, 1986-1996. 

 

The ability of TAMSIM to produce ensemble rainfall estimates that were 

consistent with the rainfall characteristics was assessed in Chapter 7 using a 

forecast reliability method. The same method can be used to check the 

ensemble discharge outputs, and this can be seen in Figure 8.17. Although the 

ensembles show little reliability when thresholded at a low discharge level (the 

25th percentile of recorded discharge), they show a high level of reliability when 

thresholded at mean recorded discharge, and especially so at the 75th 

percentile level. This is a similar pattern to that observed with the rainfall 

estimates and shows that TAMSIM is a very reliable method for recreating 
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rainfall characteristics for rainfall above trace level, and that this is passed on 

through the Pitman model with some evidence that the reliability has been 

strengthened further. 

 

 

 

Figure 8.17 – Forecast reliability plots for daily wet season discharges for the Bakoye 

Catchment for the period 1986-1996 for the Pitman model driven by the TAMSIM 

ensemble estimates. The plot on the top-left shows values >23cumecs (the 25
th

 percentile 

of the recorded discharge), the top-right shows values >202cumecs (the 75
th

 percentile of 

the recorded discharge), and the bottom plot shows values >153cumecs (the mean daily 

discharge of the recorded discharge). The dashed lines show the 1:1 relationship. 

 

The final way to observe the performance of the TAMSIM ensemble estimate 

driven Pitman model is to calculate performance statistics, for the entire 11 year 
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study period, and also for each individual wet season. The statistics can be 

seen in Table 8.2. 

 

  RMSE (%) R2 BIAS (%) 

1986-1996 89.08 0.52 0.80 

1986 102.13 1.97 -52.73 

1987 250.12 7.47 -177.86 

1988 68.15 0.51 10.63 

1989 105.58 1.14 -37.50 

1990 108.17 2.26 -68.30 

1991 73.65 0.61 2.44 

1992 81.80 1.56 -32.09 

1993 94.84 0.65 -9.80 

1994 73.99 0.54 41.27 

1995 70.20 0.53 32.43 

1996 68.59 0.53 31.23 

 

Table 8.2 – Performance statistics for the TAMSIM ensemble estimate driven Pitman 

model for the whole 11 year study period, and for each individual wet season. RMSE and 

BIAS are presented as a percentage of the mean daily discharge for each period. 

 

The Influence of SRFE Bias on the Pitman Model 

 

Chapter 7 demonstrated that TAMSIM was able to characterise the rainfall 

characteristics for the daily Senegal rainfall field for the 11 year study period, 

but it was also shown that the rainfall field displayed significant spatial and 

temporal biases. The Pitman model has been used to model the hydrology in 

the Bakoye catchment, an area that itself is affected by significant heterogeneity 

in rainfall gradient. At its outlet the TAMSIM ensembles were shown to 

underestimate the rainfall volumes compared to the underlying DK rain field, 

and that this was a pattern seen in areas in the southern area of the Senegal 

Basin, and the relationship changes with rainfall overestimated in the drier 
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north. The catchment average estimates for the TAMSIM ensemble rainfall 

inputs were shown to be biased against the DK field, slightly underestimating 

the rainfall in comparison – this can be attributed to the spatial biases in the 

estimates. More significantly, the TAMSIM ensembles showed significant 

interannual biases, with the method struggling to account for the large variations 

of rainfall displayed by the catchment. 

 

The EnsAll parameterisation of the Pitman model showed the least bias when 

compared to the recorded discharge, with a BIAS of 0.8% of the mean daily 

discharge. This suggests that the spatial bias in the TAMSIM SRFE is not 

transferred to the Pitman model output as it pervades the entire rainfall input 

and the SCE-UA calibration is able to compensate. The inability of TAMSIM to 

estimate the interannual variations fully, however, has been observed 

propagating through the model.  Figures 8.18 to 8.20 show the relationship 

between the TAMSIM estimate bias, the EnsAll model bias and the error in the 

EnsAll model. 
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Figure 8.18 – Chart showing the relationship between the BIAS within the TAMSIM rainfall 

estimates and the resulting BIAS from the EnsAll parameterised Pitman model – the BIAS 

score is from all ensemble members. 

 

 

Figure 8.19 – Chart showing the relationship between the BIAS within the TAMSIM rainfall 

estimates and the mean RMSE from the EnsAll parameterised Pitman model – the BIAS 

score is from all ensemble members. 
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Figure 8.20 – Chart showing the relationship between the BIAS within the EnsAll 

parameterised Pitman model and the mean RMSE from the same model – the BIAS score 

is from all ensemble members. 

 

It is clear from the charts shown in Figures 8.18 to 8.20 that the propagation of 

the bias is not direct. Although the propagation of the bias does appear to be 

roughly linear between TAMSIM and the EnsAll, it is not straightforward - an 

unbiased TAMSIM rainfall estimate can be expected to result in a discharge 

output with a BIAS of around -60cumecs. An unbiased discharge output is likely 

to be produced by a TAMSIM estimate with a BIAS of 0.7mm.  The best 

performing models are driven by rainfall estimates showing a BIAS of 0.7mm. 

 

The TAMSIM SRFE were shown in Chapter 7 to have a mean BIAS of 0.41mm 

over the 11 year period, as overall TAMSIM underestimates rainfall in relation to 

the DK rain field. This is overall BIAS influences the calibration of the Pitman 

model, as it is calibrated against the biased estimate which explains why the 

unbiased Pitman model exists when driven by a positively biased TAMSIM 
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estimate. This compensation for the overall underestimation of the rainfall by 

TAMSIM results in an overestimation of the discharge even when the rainfall 

estimate is lower than the DK estimate – for years when the TAMSIM 

overestimates the rainfall, this bias is magnified by the Pitman model.  

 

The charts shown in Figures 8.18 to 8.20 appear to be skewed by the data from 

the 1987 wet season that displayed particularly poor correlation with the 

recorded discharge.  It is tempting to remove this year from the analysis but 

there is no reason to assume that the data for that year is incorrect – it is likely 

that it is limitations in the model processes that are the cause and it represents 

an issue likely to be faced by such methods when applied to contemporary 

data. In actuality, similar patterns remain visible even without the representation 

of the 1987 data. It is not clear why the modelling of the 1987 wet season was 

so poor, however the Bakoye average rainfall from the raingauges in 1987 

showed a far greater deviation from the mean for the period than for the whole 

catchment, and it is possible that this has been lost since the DK stage of the 

process. 
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Figure 8.21 – Chart showing the yearly BIAS anomaly for the modelled discharges for the 

Pitman model, driven by TAMSIM ensemble estimates for the Bakoye catchment, 1986-

1996 (in white), and the BIAS anomaly for the TAMSIM rainfall estimates (in grey). 

 

Figure 8.21 shows the BIAS anomaly for each wet season and it affirms the 

biases that were observed from the envelope hydrographs of Figure 8.3 to 8.13. 

It also shows that there is a good comparison between the interannual biases in 

the TAMSIM rainfall estimates and the biases in the Pitman modelled 

discharges, suggested a direct propagation. However, 1986 and 1989 show 

biases in opposite directions. 

 

8.4 – Comparison with a Perturbation Method 

 

The potential benefits of a method of representing rainfall uncertainty such as 

TAMSIM over a simpler perturbation method were discussed in Chapter 2, 

Section 2.2. Although the common perturbation methods vary in complexity and 
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direct relationship with the rainfall statistics, they generally only vary the amount 

of rainfall in each timestep and do not account for occurrences when the rainfall 

estimation fails to predict rainfall, or predicts rainfall when there was none. The 

TAMSIM method is able to do this, as has been demonstrated in the section 

above. 

 

To demonstrate how a perturbation method will characterise rainfall uncertainty 

differently from a full spatio-temporal distribution approach, the TAMSAT1 daily 

rainfall values were randomly perturbed to produce a set of 200 ensemble 

representations of rainfall. Although different ranges of values were tested, a 

perturbation of up to 50% of the daily rainfall value produced an uncertainty 

range of a similar magnitude to TAMSIM. 

 

The hydrographs shown in Figures 8.22 to 8.31 compare the 95% confidence 

discharge envelopes using the EnsAll parameterisation, when driven by the 

TAMSIM ensemble SRFE inputs, and an ensemble input based on perturbing 

the TAMSAT1 estimate by a randomly selected value from a uniform distribution 

equal to 50% of the rainfall estimate (plus and minus). 
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Figure 8.22 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1987, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.23 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1988, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.24 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1989, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.25 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1990, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.26 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1991, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 

 



 
Chapter 8 – The Influence of SRFE Input Uncertainty on Hydrological Model Output 

234 
 

 

Figure 8.27 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1992, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.28 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1993, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.29 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1994, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.30 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1995, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green). 
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Figure 8.31 – Hydrograph showing the 95% confidence discharge envelopes modelled by 

the Pitman model for the Bakoye catchment in 1996, driven by TAMSIM ensemble SRFE 

(shown in red) and an ensemble of up to 50% perturbed TAMSAT1 estimates (shown in 

green).  

 

Although the perturbation method adopted for this test was a non-sophisticated 

method and was not based on any measured statistics of uncertainty, the 

hydrographs in Figures 8.22 to 8.31 do demonstrate the predicted principle that 

a perturbation method is not fully characterising the uncertainty within the 

TAMSAT1 rainfall estimate.   

 

By comparing the two envelopes in each hydrograph, TAMSIM shows that the 

uncertainty bounds within the TAMSAT1 SRFE are not symmetrical. This is an 
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assumption of the 50% perturbation method, which displays an envelope that 

often exceeds the maximum values predicted by TAMSIM, yet does not predict 

the lowest flows, especially for the months of August and September. 

 

Section 8.2 demonstrated how TAMSIM was able to account for the temporal 

non-stationarity of the relationship between CCD and rainfall, which was 

particularly evident in the 95% confidence discharge envelopes after October of 

each year.  The perturbation method is dependent on the TAMSAT1 

deterministic estimate, so makes the assumption that as the rainfall rate 

decreases, so does the uncertainty – which is propagated into the discharge 

output uncertainty. This is not the reality, as it has been seen that estimates 

become relatively more uncertain and unreliable for lower discharges. TAMSIM 

produces ensemble estimates that are independent of the TAMSAT1 

deterministic estimate, and for the period after October for each year the 

uncertainty envelopes are wider, and from Figures 8.3 to 8.13 there were even 

some signs that the envelope and the deterministic estimate were becoming 

decoupled. 

 

8.5 – Conclusions 

 

The Pitman model was calibrated using several estimates of rainfall and each 

parameterisation was tested for use with the TAMSIM ensemble estimates. The 

EnsTAM1 and EnsMean parameterisations showed particularly poor 

transferablility with use with ensemble inputs, but a calibration that incorporated 

each ensemble member in turn, EnsAll, showed the best performance of all the 
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parameterisations, with little bias evident over the entire 11 year period when 

driven by the TAMSIM estimates. The EnsAll parameterisation was used to 

model the ensemble discharge output from the Pitman model, and the output 

used to produce the 95% confidence discharge envelopes for each year of the 

record. 

 

The influence of the input uncertainty on the Pitman model can be seen to be 

great, with wide 95% confidence discharge envelopes visible in the hydrographs 

of Figures  8.3 to 8.13, and 40.3% of days in the wet season seeing the 

recorded discharge falling outside of these uncertainty bounds , and even with 

consideration of up to 25% of observation error in the discharge data this was 

only reduced to 28.8% - although the impact of this error propagating into model 

parameter has not been considered and could be significant.  This is not 

unexpected as the data available for the calibration of TAMSAT1 was extremely 

limited, and therefore the SRFE produced contained wide uncertainties, for all 

three forms – spatial, temporal and rate. The cause of the mismatch between 

the 95% confidence discharge envelopes and the recorded discharge is likely to 

be bias resulting from anomalous years of rainfall, which, as a result of the large 

interannual variations of rainfall in the regions, is almost every year. From 

Figure 3.17 it can be seen that for the Bakoye catchment only three of the 11 

years in the study displayed rainfall near the mean value for the period. 

 

The bias within the TAMSIM SRFE is propagated directly to the Pitman model, 

although due to interactions with the automatic calibration approach, the EnsAll 

parameterised Pitman model favoured SRFE that display a positive bias. This 
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further erodes the performance of the Pitman model for years that display less 

rainfall than the mean for the period. 

 

The results for 1987 also show that local variations of the rainfall, relative the 

catchment as a whole, have been lost. In 1987 the raingauges associated with 

the Bakoye catchment showed that the area displayed lower rainfall than the 

entire Senegal Basin, and this has been lost by assumptions of heterogeneity 

inherent in the process – resulting in the poor representation of the 1987 wet 

season discharges. 

 

The TAMSIM algorithm has been shown to produce a more complete portrayal 

of the uncertainty than a basic perturbation method.  As TAMSIM is able to 

account for all forms of uncertainty within the TAMSAT1 SRFE rather than just 

an adjustment of the rate of rainfall, it is able to fully account for the uncertainty 

caused by the non-stationary nature of the calibration, importantly in a way that 

was independent to the TAMSAT1 SRFE itself. This becomes most evident for 

the late wet season period from October each year, where the envelope 

produced by the perturbation method narrows significantly when compared to 

the TAMSIM modelled envelope. In addition the TAMSIM envelope shows signs 

of independence from the TAMSAT1 deterministic estimate, which the 

perturbation method does not as its envelope is symmetrical around TAMSAT1, 

and the magnitude of uncertainty is dependent on the rain rate. 

 

It is anticipated that when the presented methodology is repeated for a 

catchment with greater data resources, where monthly climatic calibrations can 
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be calculated for TAMSAT1 and TAMSIM, the influence of the above effect will 

become less visible. The non-stationarity of the calibration will logically be less 

within a single month than over a highly variable 5 month wet season, however, 

it is still a cause of uncertainty and had this test been performed on such a 

catchment then this benefit of TAMSIM may have been missed. 

 

It is suggested that when accounting for the influence of SRFE input uncertainty 

on downstream models that the use of perturbation methods are inadequate, 

and this has been demonstrated in this chapter. Only a fully spatially and 

temporally distributed method, that uses a full conditional distribution in respects 

to the input data, and not the deterministic estimate itself, to account for input 

uncertainty is appropriate. This thesis has only investigated the influence of the 

TAMSIM ensemble SRFE on a lumped CRR model, and there remains a 

pressing research need for an investigation into the influence of full SRFE 

uncertainty characterisation on distributed models – this is likely to be more 

complex than for a lumped model structure. 

 

The EnsAll method of parameterisation has been introduced in this chapter and 

was shown to outperform all the alternative methods for calibrating the Pitman 

model for use with ensemble inputs. However, the method still requires 

validation against an independent dataset – this can be done using the 1997-

2005 discharge data from the Oualia gauging station, using TAMSIM SRFE 

produced for the period using the 1986-1996 calibrations. This would be the 

next logical step for expanding this research. 
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9 
The Influence of Ensemble Rainfall 

Input on the Calibration of the 

Pitman Model 

 

9.1 – Introduction  

 

The previous chapter demonstrated how the uncertainty associated with the 

TAMSAT1 SRFE propagated through the Pitman lumped CRR model, using 

ensemble input and output datasets, and plotting 95% discharge confidence 

envelopes, using the EnsAll parameterisation which was shown to be the 

optimal calibration for use with the TAMSIM ensemble estimates. This chapter 

further investigates the influence of the uncertainty on the calibration of the 

Pitman model, with a particular focus on the model behaviour and the 

relationship between model performance, behaviour and the parameters 

selected. 

 

Section 9.2 observes the model behaviour under different calibrations and 

different rainfall inputs. Section 9.3 takes a closer look at the EnsInd parameter 

sets, observing the relationships between the parameter values selected and 

the model behaviour and performance. Section 9.4 concludes the chapter. 
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9.2 – Pitman Model Behaviours 

 

This section looks at the various calibrations of the Pitman model, observing 

their relative performance, and how the different inputs impact on the 

performance and behaviour of the model. It will compare the performance of the 

Pitman model using the four deterministic rainfall records, calibrated for the 

1986-1996 study period.  

 

  RMSE as % of mean daily discharge 

  Gauge Average DK TAMSAT1 EnsMean 

1987-1996 128.03 108.32 112.49 106.79 

 

Table 9.1 – Table showing the 11 year calibration for the four rainfall inputs for the period 

1987-1996. 

 

The RMSE as % of mean daily discharges are shown in Table 9.1 for the period 

of 1987 to 1996. The recorded and modelled discharges for 1986 were included 

as part of the calibration but excluded from calculation of the errors, as the 

modelled discharges from 1986 will be influenced by the initial conditions of the 

Pitman model – although this was observed to be negligible in Chapter 8. The 

best performing Pitman model was driven and calibrated using the daily mean 

of the TAMSIM ensemble members, the EnsMean input, but the performance of 

the DK driven and calibrated Pitman model showed comparable performance. 

The TAMSAT1 driven and calibrated Pitman model outperformed the Gauge 

Average driven and calibrated Pitman model, suggested that the additional 
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information provided by the satellite data improves the hydrological modelling of 

the Bakoye catchment. 

 

  RMSE as % of mean daily discharge 

 Annual 

Gauge 

Average DK TAMSAT1 EnsMean 

1987 84.21 152.71 344.67 368.23 

1988 92.98 67.34 61.85 61.28 

1989 62.83 223.30 153.09 171.68 

1990 186.44 87.11 149.13 162.29 

1991 82.95 72.40 86.87 90.41 

1992 87.61 75.96 100.68 120.27 

1993 207.43 103.02 118.02 122.18 

1994 112.29 102.10 94.98 87.95 

1995 111.96 80.16 80.51 72.76 

1996 83.76 72.59 89.51 80.64 

Mean 111.06 103.67 127.93 133.77 

 

Table 9.2 – Table showing the RMSE as % of mean daily discharge for each rainfall 

record, separated into annual sections. 
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  RMSE as % of mean daily discharge 

 Wet Season 

Gauge 

Average DK TAMSAT1 EnsMean 

1987 55.49 101.42 227.50 242.89 

1988 61.80 44.30 40.58 40.29 

1989 41.31 148.08 101.4862 113.82 

1990 123.63 57.37 97.93 106.54 

1991 58.76 48.48 58.26 60.64 

1992 72.57 50.50 67.07 80.14 

1993 136.79 67.93 77.78 80.49 

1994 76.46 69.52 64.48 59.71 

1995 75.54 54.08 54.39 49.13 

1996 56.47 48.92 60.28 54.29 

Mean 73.95 69.06 84.98 88.79 

 

Table 9.3 – Table showing RMSE as % of mean daily discharge for each rainfall record, 

separated into wet season sections. 

 

Tables 9.2 and 9.3 show the error for each input when the discharge records 

are split into annual and wet season sections.  The DK rainfall input shows the 

best performance at wet season scale, as well as annually. TAMSAT1 and 

EnsMean show comparable performance at both scales but are out-performed 

by Gauge Average estimate. The SRFE driven models, although showing 

superior skill over the entire period, actually show inferior performance 

compared to the Gauge Average estimate driven models when considered at 

annual, or wet season periods. It is likely this is because of the systematic 

biases in the SRFE caused by anomalous years of rainfall, meaning the SRFE 

perform well compared to a long term mean but do not have sufficient flexibility 

to account for shorter term variations. 
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Model Behaviour and Performance 

 

Table 9.4 shows the proportion of modelled discharge originating from ground 

water from the Pitman model when calibrated and driven using different 

deterministic estimates, for 1986-1996. 

 

  

Proportion of Modelled Discharge originating from Ground Water 

(%) 

  

Gauge 

Average DK TAMSAT1 EnsMean 

1986-1996 0.00 0.00 2.54 0.81 

 

Table 9.4 – Proportions of modelled discharge originating from ground water as 

modelled by the Pitman model, calibrated for different rainfall inputs for the period 1986-

1996. 

 

For the period 1986-1996, when calibrated against deterministic estimates of 

rainfall, the Pitman model does not model a significant proportion of ground 

water flows, essentially operating as a single-bucket model (Table 9.4).  
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Figure 9.1 – Chart showing the proportion of EnsInd outputs against the proportion of 

modelled discharge originating from ground water displayed by each model. 

 

 

Figure 9.2 - Relationship between model performance as represented by RMSE as 

percentage of mean daily actual discharge, and model behaviour as represented by 

proportion of modelled discharge originating from ground water, for the EnsInd 

parameterisations. 
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Figure 9.1 shows the spread of model behaviours displayed by the EnsInd 

Pitman models, and Figure 9.2 shows the relationship between the model 

behaviour and model performance for the EnsInd Pitman models. Although a 

significant proportion of the models show zero ground water flow, or ground 

water flows as <0.5% of the overall discharge, there is a distribution amongst 

the remaining models, peaking at around 3.5% of the overall discharge. 

 

There is a suggested relationship between model behaviour and performance, 

as shown in Figure 9.2, where models that allow for some ground water flow 

tend to display a better performance than those that allow for none, and that 

when expressed as a simple linear relationship model performance increases 

as the proportion of ground water increases.   

 

When observing the model behaviour for the ensemble driven Pitman models 

under different calibration regimes, it is clear that ground water flows again only 

play a marginal role in determining the final modelled discharge. The EnsTAM1 

outputs show a mean of 1.7% ground water flows from the TAMSIM ensemble 

estimates, and the EnsAll outputs result in <0.005% ground water flows for 

each ensemble. The EnsMean outputs, which were the most erratic and worst 

performing, showed ground water flows up to 5%, but over 75% were <2.5%. 
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9.3 – Variability of Parameter Values for an Ensemble Driven 

Pitman Model 

 

This section investigates closely the individual parameter values for each 

calibration and how these relate to the model behaviour and performance, 

highlighting those parameters that are the most influential. The values for each 

adjustable parameter, as described in Chapter 6, are observed in turn, showing 

the distribution of calibrated values within the available parameter space. 

 

The operation of the Pitman lumped CRR model has been described in Chapter 

6, detailing each of the adjustable parameters and their purpose within the 

model. For convenience the basic functionality of each parameter will be 

described here also. 

 

Zmin 

 

The Zmin parameter is the minimum infiltration rate from the interception store to 

the soil moisture store. 
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Figure 9.3 – Plot showing the box-whisker distribution of Zmin parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.4 – Plot showing the relationship between the Zmin parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.5 – Plot showing the relationship between the Zmin parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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The variation of the Zmin parameter between the EnsInd calibrations is minimal, 

with most values <0.1mm.day-1, which is also evident for the other calibrated 

values.  The variation of Zmin values does not appear to influence the proportion 

of modelled discharge from ground water, and does not appear to influence the 

model performance.  As the values do not vary greatly, this suggests that Zmin is 

an important parameter determining model performance. 

 

Zmax 

 

The Zmax parameter controls the maximum rate of infiltration from the 

interception store to the soil moisture store. 

 

The Zmax parameter varies between 10 and 30mm.day-1 within the EnsInd 

outputs, and these values are similar to the other calibrated values. There 

appears to be a relationship between higher values of Zmax and a greater 

proportion of modelled discharge originating from ground water, as seen in 

Figure 9.7 – this is likely because the soil moisture store is being filled quicker 

and more water is available to pass to the ground water store. 

 

Figure 9.8 shows that the variation of the Zmax parameter value does not appear 

to influence model performance, and the cluster of calibrations between 23 and 

25mm.day-1 suggest that Zmax is influential to model performance. 
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Figure 9.6 – Plot showing the box-whisker distribution of Zmax parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.7 – Plot showing the relationship between the Zmax parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.8 – Plot showing the relationship between the Zmax parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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Wmax 

 

The Wmax parameter controls the maximum storage capacity of the soil moisture 

store. 

 

 

Figure 9.9 – Plot showing the box-whisker distribution of Wmax parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.10 – Plot showing the relationship between the Wmax parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.11 – Plot showing the relationship between the Wmax parameter values and 

model performance, for the Pitman lumped CRR model of the Bakoye Catchment for the 

period between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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The Wmax parameter shows some variation throughout the whole of the 

available parameter space, but a significant cluster of values between 200 and 

300mm.  Figure 9.10 shows that there is little relationship between the value of 

Wmax and the proportion of ground water in the modelled discharge. Figure 9.11 

shows that there is variation in model performance within the cluster of values 

and that when the calibration has selected values beyond that, the model 

performance ability decreases. The clustering of values implies that Wmax is 

influential on the model performance. 

 

Wmin 

 

The Wmin parameter values controls the threshold that below which no water 

can percolate from the soil moisture store to the ground water store, and as 

such it would be reasonable to assume that the greater the Wmin value, the less 

ground water will contribute to the final modelled discharge. 
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Figure 9.12 – Plot showing the box-whisker distribution of Wmin parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.13 – Plot showing the relationship between the Wmin parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.14 – Plot showing the relationship between the Wmin parameter values and 

model performance, for the Pitman lumped CRR model of the Bakoye Catchment for the 

period between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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There is a considerable amount of variation between the ensembles in regards 

to the calibrated Wmin values, with the majority of values between 400 and 

800mm (Figure 9.12). The mean value from the ensembles is over 600mm, 

above the cluster of Wmax values, meaning the threshold for percolation is 

beyond the maximum capacity of the store therefore restricting the model’s 

ability to model ground water. 

 

Figure 9.13 shows that the expected relationship between the proportion of 

ground water flows and the value of Wmin does exist but is not very strong, likely 

because of the restrictions above. The variation of Wmin values does not have a 

relationship with model performance and as there is no significant clustering of 

values it is likely that the value of Wmin is not influential on the final modelled 

discharge. 

 

Imax 

 

The Imax parameter is the maximum capacity of the interception store and 

therefore restricts the potential evapotranspiration from the model. 

 

The Imax value shows almost no variation between the EnsInd calibrations and 

the values from other calibrations, with the model preferring to minimise the 

value as small as possible – the majority of values are <0.1mm (Figure 9.15). 

This restricts the amount of rainfall immediately lost by evapotranspiration. 
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The lack of variation means that there is little relationship between the varying 

values and model behaviour and performance, but does suggest that Imax is 

influential to the model performance. 

 

 

Figure 9.15 – Plot showing the box-whisker distribution of Imax parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.16 – Plot showing the relationship between the Imax parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.17 – Plot showing the relationship between the Imax parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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h 

 

The h parameter is a constant that is used to calculate the percolation rate 

between the soil moisture store and the groundwater store. It is reasonable to 

assume that the greater the value of h, the greater the proportion of ground 

water flows, but this is restricted by values of other parameters (such as Wmin). 

 

 

Figure 9.18 – Plot showing the box-whisker distribution of h parameter values chosen by 

automatic calibration of the TAMSIM ensemble members within the available parameter 

space, for the Pitman lumped CRR model of the Bakoye Catchment between 1986 and 

1996. The dot marks the mean value from the ensembles. Values selected by automatic 

calibration against the deterministic rainfall estimates are shown for comparison. 
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Figure 9.19 – Plot showing the relationship between the h parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.20 – Plot showing the relationship between the h parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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The values for h are reasonably equally distributed throughout the parameter 

space available for the EnsInd calibrations, with a mean close to 5mm.day-1, in 

the centre of the space (Figure 9.18). Surprisingly there is very little correlation 

between the value of h and the proportion of the modelled discharge originating 

from ground water (Figure 9.19), and a slight improvement of model 

performance as h increases can be seen in Figure 9.20, although with no 

significant clustering of values h is not influential on model performance, but this 

is likely because of the high values of Wmin observed. 

 

i 

 

The i parameter value is used in conjunction with the h value to calculate the 

percolation rate between the soil moisture store and the ground water store, 

and therefore should be similarly related to model behaviour and performance. 

 

As expected, i displays a similar pattern to h in regards to spread of values and 

relationship between the values and model behaviour and performance, as 

seen in Figures 9.21 to 9.23.  The influence of i is restricted by the high Wmin 

values that inhibit the periods where percolation can occur. 
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Figure 9.21 – Plot showing the box-whisker distribution of i parameter values chosen by 

automatic calibration of the TAMSIM ensemble members within the available parameter 

space, for the Pitman lumped CRR model of the Bakoye Catchment between 1986 and 

1996. The dot marks the mean value from the ensembles. Values selected by automatic 

calibration against the deterministic rainfall estimates are shown for comparison. 

 

 

Figure 9.22 – Plot showing the relationship between the i parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 
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Figure 9.23 – Plot showing the relationship between the i parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 

 

GL 

 

The GL parameter is a recession time constant for baseflow (ground water 

flow), and would be expected to display a similar pattern to that displayed by h 

and i as its influence is curtailed by the limitations to percolation imposed by 

Wmin. 

 

Indeed, it is evident from Figures 9.25 to 9.26 that the EnsInd calibrated values 

of Gl are equally distributed throughout the available parameter space, and that 

the variations show little impact on either model behaviour or performance. 
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Figure 9.24 – Plot showing the box-whisker distribution of GL parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.25 – Plot showing the relationship between the GL parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.26 – Plot showing the relationship between the GL parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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TL 

 

The TL parameter is a constant used in the calculation of the quick flow (surface 

flow).  

 

 

Figure 9.27 – Plot showing the box-whisker distribution of TL parameter values chosen 

by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.28 – Plot showing the relationship between the TL parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

 

Figure 9.29 – Plot showing the relationship between the TL parameter values and model 

performance, for the Pitman lumped CRR model of the Bakoye Catchment for the period 

between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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The small variation of TL values from the EnsInd calibrations, similar to the 

values from the other calibrations, suggests that the TL value is influential to the 

model performance (Figure 9.27). The lack of variation results in little 

relationship between the variation of values of TL and model behaviour and 

performance (Figure 9.28 and 9.29). 

 

Qq Lag 

 

The Qq Lag parameter is a simple lag of the quick flow (surface flow) by 

timesteps, in this case days. 

 

  

Figure 9.30 – Plot showing the box-whisker distribution of Qq Lag parameter values 

chosen by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.31 – Plot showing the relationship between the Qq Lag parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

 

Figure 9.32 – Plot showing the relationship between the Qq Lag parameter values and 

model performance, for the Pitman lumped CRR model of the Bakoye Catchment for the 

period between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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The majority of the EnsInd calibrations showed a Qq Lag of 1 day (Figure 9.30), 

but there is some variation up to 2 days. Figure 9.31 shows that the higher Qq 

Lag displays lower proportions of ground water flows, suggesting that the model 

is attempting to compensate, probably at the end of the wet season. Figure 9.32 

also suggests that there is a slight degradation in model performance as the 

values increase. 

 

Qb Lag 

 

The Qb Lag parameter is a simple timestep (days) lag on the base flow (ground 

water flow).  Any influence of this parameter on model performance is dictated 

largely by values of Wmin, h and i, which control the amount of rainfall reaching 

the ground water store. As seen above, the Wmin values have constricted 

percolation to the ground water store, so the influence of Qb Lag is likely to be 

slight. 

 

There is little to be seen in Figure 9.33 to 9.35 as regards to the possible 

contribution of the Qb Lag on the performance of the Pitman lumped CRR 

because of the restrictions from the high values of Wmin. 
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Figure 9.33 – Plot showing the box-whisker distribution of Qb Lag parameter values 

chosen by automatic calibration of the TAMSIM ensemble members within the available 

parameter space, for the Pitman lumped CRR model of the Bakoye Catchment between 

1986 and 1996. The dot marks the mean value from the ensembles. Values selected by 

automatic calibration against the deterministic rainfall estimates are shown for 

comparison. 
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Figure 9.34 – Plot showing the relationship between the Qb Lag parameter values and the 

proportion of modelled discharge from ground water, for the Pitman lumped CRR model 

of the Bakoye Catchment for the period between 1986 and 1996, calibrated to individual 

TAMSIM ensemble members. 

 

 

Figure 9.35 – Plot showing the relationship between the Qb Lag parameter values and 

model performance, for the Pitman lumped CRR model of the Bakoye Catchment for the 

period between 1986 and 1996, calibrated to individual TAMSIM ensemble members. 
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9.4 – Conclusions 

 

This chapter has investigated the influence of SRFE uncertainty on the 

calibration, performance and behaviour of a hydrological model.  The TAMSIM 

algorithm has been used to produce 200 ensemble realisations of the daily 

Senegal Basin rain field, each unique yet equiprobable within the bounds of 

uncertainty when using the TAMSAT1 method for producing a SRFE. For each 

ensemble member a rainfall input was produced and used to calibrate a Pitman 

lumped CRR model of the Bakoye catchment for the period 1986 to 1996. 

 

Using the proportion of modelled discharge originating from ground water as a 

proxy for model behaviour, the majority of the Pitman calibrations resulted in 

only a minor fraction of the total discharge as having originated from 

groundwater flows. Of the deterministic Pitman models, the TAMSAT1 driven 

and calibrated Pitman model showed the greatest proportion of ground water 

flows but this was still only 2.52% of the total discharge. 

 

For the EnsInd calibrations of the Pitman model to each of the 200 TAMSIM 

ensemble inputs, the calibrations were also biased towards model behaviours of 

very little or no ground water flows. The highest proportion of ground water in 

modelled discharge was 25%, but the vast majority of the models showed <5% 

and most 0%. Despite this, there is evidence that a greater proportion of ground 

water modelled by the Pitman model does produce a better model performance 

(Figure 9.2). 
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The relationship between model behaviour and model performance observed in 

the EnsInd calibrations is contradictory, with the calibrations overwhelmingly 

favouring a set of parameters that produce minimal or no ground water flows, 

yet those that do show a greater proportion of ground water flows have a 

tendency towards superior performance. Observation of the relationship 

between model behaviour and parameter values suggests that the proportion of 

ground water is largely dependent on the Wmin parameter, which controls the 

minimum threshold of water stored in W, the soil moisture bucket, before 

percolation can begin between the soil moisture store and the ground water 

store. The calibration of Wmin is not dependent on the parameter selected for 

Wmax, and both have the same parameter space available - in numerous cases 

the Wmin threshold was greater than the Wmax maximum storage for the bucket, 

resulting in the inability of water to transfer into the ground water store. This can 

be seen as a flaw in the Pitman model and the calibration method selected, yet 

the parameter spaces were wide and the calibration method was sufficiently 

open for it to select parameter values that allowed for percolation and it 

favoured not doing so. This could be tested fully by replacing the numerical 

calibration of Wmin with a proportion of the Wmax value instead, and observing 

whether the SCE-UA algorithm still opts for a restricted calibration – initial tests 

have shown no improvement in model performance. 

 

In terms of the impact of uncertainty within the SRFE on the calibration of the 

Pitman model, this appears to be quite limited. The calibration of the 

parameters that had the most influence on the model performance are 

reasonably consistent throughout the EnsInd calibrations. This would indicate 
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that the majority of the spread of discharges seen in the hydrograph envelopes 

of Chapter 8 has originated from variations in the input and not because of 

variations between the hydrological models. 

 

The model behaviours do suggest an element of equifinality that the SCE-UA 

cannot reflect. The SCE-UA algorithm has been seen to be consistent in 

selecting optimal sets of parameters, especially for those parameters that have 

been shown to be influential for the performance of the model, but some 

variability in the parameters show greater proportions of ground water flows with 

increased model performance. This suggests that there are parameter sets 

which allow greater proportions of ground water flow, with comparable 

performance, that could be used for the Pitman model. A possible solution to 

this would be to perform recalibration of the EnsInd models using a modified 

Pitman, where the Wmin value is a proportion of Wmax, rather than a set value in 

the parameter space – although initial tests have shown no improvement in 

model performance, there may be differences in model behaviour.
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10  
Discussion 

 

10.1 – Key Results 

 

The main aim of this thesis was to demonstrate how a fully spatio-temporally 

distributed stochastic ensemble method could be used to characterise 

uncertainty within a satellite rainfall estimate, and how the ensembles produced 

could be used to drive and calibrate a deterministic hydrological model using 

traditional hydrological methods. The thesis used the Senegal Basin as its study 

area and daily rainfall estimates were produced using the TAMSAT1 method, 

calibrated using a sparse raingauge network. The uncertainty within the 

deterministic TAMSAT1 estimate was characterised using the TAMSIM method, 

and 200 unique yet equiprobable rainfall estimates for the 1986-1996 study 

period were produced. 

 

It would be prudent here to highlight the benefits of using satellite data to 

estimate rainfall for use as a driver for hydrological modelling. This thesis has 

not used the full spatial distribution afforded by the method, which could be 

achieved with the use of a distributed, or semi-distributed hydrological model, 

however, the additional information provided by the SRFE can be seen to 

improve the hydrological modelling of the Bakoye catchment when compared to 
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an estimate from the raingauges. Table 9.1 shown in the previous chapter 

showed the relative skill of each Pitman model, driven and calibrated by the 

same input, showing that both the model using the TAMSAT1 estimate and the 

mean of the TAMSIM ensembles displayed superior performance over the 

Gauge Average estimate driven model. There was little evidence from observed 

hydrographs that the use of the SRFE allowed for better prediction of peak 

discharge timings, although Figure 10.1 shows an example which demonstrates 

the potential of SRFE to improve discharge estimation. 

 

The use of SRFE also provide additional information for areas or periods where 

no gauge data is available. The use of historic raingauge data for the calibration 

of the TAMSAT1, TAMSIM, and Pitman model methods allows for the 

production of rainfall and discharge estimates for time periods outside this 

calibration period, even if no ground recorded rainfall data is available. 
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Figure 10.1 – Hydrograph showing the 1992 wet season for the Bakoye catchment. The 

recorded discharge is shown by the dashed line. The modelled output from the Pitman 

model calibrated and driven by the Gauge Average estimate for the period 1986-1996 is 

shown by the solid red line. The modelled output from the Pitman model calibrated and 

driven by the TAMSAT1 estimate is shown by the solid green line. 

 

The ground-based rainfall retrieval data was extremely limited, comprising of 81 

raingauges, and for the Bakoye catchment that was modelled, the raingauge 

density was 1 gauge per 7,000km2. In addition, the Senegal Basin area 

displayed significant heterogeneity in climate, topography, geology and other 

physical factors. This seriously hampered the strength of the calibration of the 

spatial interpolation of the raingauge data, the TAMSAT1 method and the 
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TAMSIM algorithm, resulting in a wet season climatic calibration having to be 

adopted for each when a monthly calibration would have been preferred. 

 

Teo (2006) found that because TAMSAT1 relied upon a climatic calibration 

based on historic raingauge data it displayed significant bias in years of 

anomalous rainfall – underestimating in years of heavy rainfall and 

overestimating in drier years. This was also found to be the case for the 

Senegal Basin, which was particularly marked due to the high degree of 

interannual variation of rainfall for the region and within the study period. The 

same was true for TAMSIM. 

 

The TAMSIM ensembles were shown to be able to reproduce the spatial and 

temporal distributions of rainfall, as well as the fractional nature of the rainfall as 

displayed by the DK rain fields. However, the TAMSIM ensemble rain fields 

were not able to reflect the significant rainfall gradient across the Senegal Basin 

region, showing overestimation of rainfall in the drier north, and underestimation 

in the wetter south.  The full analysis of the performance of the TAMSIM 

algorithm to reproduce the underlying DK rain field is shown in Chapter 7. 

 

It was found that the Pitman model calibrated using the TAMSAT1 input was not 

transferable for use with the TAMSIM ensemble inputs, neither was a calibration 

against the daily mean of the TAMSIM ensembles. A calibration of the Pitman 

model was performed using an input that incorporated all of the ensemble 

members, essentially a 2,200 year record of rainfall and discharge data. This 

proved to be computationally expensive but did produce a calibration for the 
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Pitman model, that when driven by the ensemble members showed good 

transferable performance and little overall bias.  

 

The output from the TAMSIM ensemble driven Pitman model was used to 

model the propagation of the input uncertainty through the Pitman model, and 

95% confidence discharge envelopes were produced for each wet season in the 

study period, showing the bounds of the uncertainty. The bounds showed that 

the TAMSIM algorithm could not reflect the full uncertainty in the TAMSAT1 

calibration, with the interannual variations in rainfall resulting in considerable 

biases, with 40.3% of days in the wet seasons 1987-1996 showing the recorded 

rainfall outside of the uncertainty bounds modelled. 

 

However, TAMSIM displayed skill in representing uncertainty due to the non-

stationary nature of the calibration of TAMSAT1 over the wet season, with the 

bounds better representing the recorded discharges for each year after the 1st 

October, displaying independence from the deterministic estimate. 

 

Despite the evident bias associated with interannual variations of rainfall, the 

fully spatio-temporally distributed method of TAMSIM was shown to be superior 

to the more established perturbation method. TAMSIM has the significant 

advantage of modelling uncertainty independent of the deterministic estimate, 

which the simple perturbation method could not, resulting in the reflection of 

uncertainty bounds that were not symmetrical and occasionally decoupled 

altogether as in the case above (Chapter 8).  
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Finally, it was shown that the influence of the input uncertainty on the calibration 

of the Pitman model was minimal. The review in Chapter 9 showed the 

relationship between parameter values and model behaviour and performance 

when the Pitman model was calibrated against the individual ensemble 

members. For those parameters that were shown to be influential to the 

performance there was little variation across the calibrations, indicating that an 

optimal set of parameters, or a small distribution of parameter values, was 

appropriate for use with all the ensemble members.  

 

Model behaviour across the calibrations was fairly consistent with the majority 

of the calibrated models preferring to limit the amount of discharge that 

originated from ground water. It is not clear whether this was an issue with the 

model structure, related to the way the Wmin value is determined in an automatic 

calibration method, but the SCE-UA had sufficient freedom to model higher 

proportions of groundwater if this improved performance.  However, there was 

significant variation in the performances to point to equifinality in the method, 

with some models showing improved performance with greater proportions of 

groundwater. 

 

10.2 – Issues and Recommendations 

 

The results from this thesis, as summarised above, demonstrate the ability of 

the TAMSIM algorithm to fully characterise the uncertainty within a TAMSAT1 

SRFE in a way that can be applied to a hydrological model to show the 

propagation of that uncertainty. It has also demonstrated the principle that the 
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full spatial and temporal characterisation of the uncertainty, within the bounds of 

the underlying DK rain field, is superior to a simpler perturbation method. 

 

Systematic Bias and Interannual Variations in Rainfall 

 

The major issue that emerges from this thesis is the same as that observed by 

Teo (2006), with significant bias evident in the TAMSAT1 estimate for 

anomalous years of rainfall. This is particularly important for the Bakoye 

catchment where it could be said that out of the 11 years in the study period, 

only 3 years displayed rainfall close to the mean for the period (see Figure 

3.17). The bias can be seen in the hydrographs of Figures 8.3 to 8.13, where 

the 95% confidence discharge envelopes overestimate discharge for the drier 

years of 1987 and 1990, and underestimated discharge for 1994, 1995 and 

1996. 

 

The impact of the bias in TAMSAT1 on the Pitman model is greater than Teo 

(2006) found it to have on the GLAM crop yield model, indicating that 

hydrological models are more sensitive to these variations – the GLAM model 

was not so affected by overestimations of rainfall.  Of particular concern is how 

even with the full characterisation of the input uncertainty, the TAMSIM 

ensemble SRFE were still influenced by the bias, and the 95% confidence 

discharge envelopes did not contain the recorded discharge for 40.3% of the 

days in the wet season – this leads to the conclusion that because of the bias 

caused by the significant interannual variations in rainfall the TAMSIM algorithm 
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is not able to capture fully the true bounds of uncertainty within the TAMSAT1 

estimate. 

 

The manner in which the bias within the SRFE propagates through the Pitman 

model was interesting and not straightforward. Although the transfer of the bias 

was seen to be linear in nature, models that produced less biased modelled 

discharges were actually driven by positively biased rainfall estimates – and 

these were also the best performing models. This is a result of the SCE-UA 

compensating for the spatial bias in the Bakoye catchment estimates, and also 

due to the commonly known issue where automatic calibrations, which 

minimises a single objective function, tend to be biased in favour of peak flows. 

One way to reduce this would be to use a multi-objective approach (Yapo et al., 

1998, Madsen, 2003, Shaffii and Smedt, 2009) – if the additional computational 

expense was considered acceptable.   

 

The results suggest that in the current form, the use of a TAMSAT1 driven 

Pitman model with a single calibration are limited in their applications for 

discharge forecasting in the Senegal Basin area, and that the TAMSIM 

algorithm is insufficient in accounting for all of the uncertainty, in respect to bias. 

In order to change this situation some element of bias correction needs to be 

introduced to the process. 

 

Teo (2006) made suggestions for how the systematic bias in the TAMSAT1 

estimate could be reduced: 
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 Incorporate real-time raingauge data if available (Grimes et al., 1999). 

 Incorporate real-time recalibration of the TIR rainfall retrieval relationship 

using PM data (Todd et al., 1999, 2001). 

 Incorporate NWP model fields into the process (Grimes et al., 2003). 

 

It is unlikely that a sufficiently dense raingauge network which reports timely, 

accurately and predictably will be in place for the incorporation of real-time 

raingauge data into the process, either to perform recalibration or merging into 

the estimate – although the ambitious aims of the TAHMO project, if fulfilled, 

could change this situation (Hut and van der Giesen, 2010, TAHMO, 2012). 

 

As discussed in Chapter 2, the use of PM in the region is limited due to issues 

of rainfall retrieval over arid and semi-arid land surfaces (Morland et al., 2001). 

The principle of using PM data to calibrate other SRFE methods was shown in 

Adler et al. (2000), which described how the TRMM product could be used as a 

“flying rain gauge”. If PM rainfall retrieval could be adequately calibrated for arid 

and semi-arid land surfaces then the incorporation of this data could be 

significant, especially in light of the planned GPM project (Hossain and 

Anagnostou, 2004, NASA, 2013). 

  

Grimes and Diop (2003) and Grimes et al. (2003) showed how NWP model 

fields could be incorporated into SRFE to improve them. For the Senegal Basin 

the use of Sea Surface Temperatures (SST) could be particularly useful as an 

indicator for seasonal rainfall prediction, due to the evidence of a relationship 

between Atlantic Ocean SST and drought as detailed in Giannini et al. (2008) 
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and Conway (2009). The use of predictors such as EAW (Grimes and Diop, 

2003), and SST could provide a useful method for reducing the bias in the 

estimates. 

 

Another solution relevant to using ensembles of hydrological predictions is to 

apply a post-processing technique to adjust for bias, as detailed in Andel et al. 

(2013), as part of HEPEX. These post-processing techniques are used to adjust 

the ensemble outputs from hydrological models, in order to correct for the sorts 

of biases observed in this thesis and to improve the skill of the forecasts. Such 

an approach could be applied to the modelled discharges to correct for the bias, 

rather than to the SRFE input. 

 

If the method described by this thesis were to be used for operational purposes 

for at near real-time estimations of discharge, then the use of an adjustable 

calibration of the hydrological model could be used as observational data 

became available. Moradkhani et al. (2005) demonstrated how an ensemble 

Kalman filter algorithm could be used to assimilate the observation data into a 

hydrological model to improve its calibration. 

 

Choi and Beven (2007) used ‘seasonal’ calibrations of the TOPMODEL 

hydrological model, and clustered the calibrations into groups – each 

representing different hydrological conditions, acknowledging that the behaviour 

of the system may vary as the conditions change. A similar approach could be 

applied by splitting the data into monthly periods and applying the best 

performing parameter set to each antecedent month, and predicting discharge 
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using all parameter sets (adopting the one that best fits at the end of the month) 

– this would allow the hydrological model to respond to bias in the SRFE and 

adjust for it. 

 

This poses another solution to the poor modelling of the interannual variation of 

rainfall, one which – much like the equifinality thesis of Beven (2006) – is a 

matter of philosophy. Much has been published on the nature of hydrological 

models, and the effects of the spatial and temporal averaging involved in their 

operation. For example, O’Connell and Todini (1996) suggested that the field of 

hydrological modelling could be better described as an art rather than a science 

due to the lack of understanding into the effects of heterogeneity and how it is 

best managed. Although the field has significantly moved on since, Stisen et al. 

(2008), suggested that the lack of understanding of physical processes involved 

in catchments is so great, even models regarded as ‘physical’ are actual 

conceptual in nature. 

 

The model used in this thesis, the Pitman model, is a conceptual model. There 

was no knowledge of the physical processes in the catchment, and although the 

calibrations shown in Chapter 9 produced reasonably consistent model 

behaviours, it was not possible to show whether those model behaviours are 

reflective of the reality – it is most likely not and any relation is probably a result 

of coincidence. In this regard the model is conceptual to the extent that the 

stores and transfers within it reflect real world processes in name only, and 

would be best thought of as a ‘black-box’ model where the internal operations 

are merely a means to an end: the final output. 
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In light of this, and with regards to the emerging field of satellite rainfall 

applications for surface hydrology (Gebremichael and Hossain, 2010), it is 

necessary for a researcher/operator to assess what is the most important 

aspect of their modelling work – accurate rainfall estimation for input into a 

hydrological model or accurate discharge estimation as an output from the 

hydrological model. It may not be apparent that the two are exclusive, it seems 

plausible that accurate rainfall estimation is more likely to produce accurate 

discharge estimation. 

 

If it was to be taken that the most important element of the satellite rainfall 

applications for surface hydrology field was the accurate modelling of output 

from the surface hydrology model, it can be assumed therefore that when used 

in a conceptual hydrological model the rainfall input itself can be thought of as 

conceptual. This is not an unreasonable assumption considering the poor 

understanding between the physical relationship between cloud top temperature 

and rainfall, and the average over space and time. Ultimately, this thesis could 

be said to have been a study of the relationship between CCD and discharge. 

Indeed, initial tests in this area show that whilst not achieving the same levels of 

performance as the rainfall estimate, a crude method of producing a mean of 

the CCD for the Bakoye catchment (multiplied by a factor of 5 to replicate 

values in the order of rainfall volumes), and using this to drive a calibrate the 

Pitman model in the same method as described in Chapter 6, a skill score of 

131.0% RMSE of mean daily discharge can be achieved The TAMSAT1 driven 

and calibrated model achieved a score of 112.5%, and Figure 10.2 compares 
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the hydrographs produced by both methods for the 1989 wet season showing 

close comparison – in fact the crude CCD estimate outperformed the TAMSAT1 

estimate in 5 of the 11 wet seasons, and produced a better mean score for wet 

seasons (84.59% compared to 84.98% for TAMSAT1), suggesting it is better 

able to reproduce interannual variations of rainfall. It is a possibility that with 

some careful consideration into appropriate hydrological model structure a 

reasonable estimate of discharge could be modelled directly from the CCD 

data, although care must be taken that this model structure does not merely 

replicate similar processes to SRFE algorithms. 

 

 

Figure 10.2 – Hydrograph showing the 1989 wet season modelled for the Bakoye 

catchment. The dashed line shows the recorded discharge. The solid red line shows the 

modelled output from a Pitman model driven and calibrated by a catchment mean of CCD 

multiplied by a factor of five for the period 1986-1996. The solid green line shows the 

modelled discharge from the modelled discharge from a Pitman model driven and 

calibrated by the TAMSAT1 estimate for the period 1986-1996. 
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In practical terms, although it is still desirable to strive for accurate, unbiased 

SRFE, if a researcher was to accept that the input was conceptual, the bias 

caused by interannual variations could be managed by using a set of 

calibrations that cover the range of variations, selecting the most appropriate for 

the conditions of each particular season. Such a method requires an 

acceptance of equifinality in the modelling of the system, and would operate in a 

similar manner to the GLUE methodology (Beven, 2006). 

 

Performance of the Pitman model 

 

Several authors, including Blackie and Eales (1985) and Michaud and 

Sorooshian (1994a) have suggested that distributed models perform better than 

spatially lumped models, such as the one used in this thesis. Blackie and Eales 

(1985) claimed that due to assumptions made about homogeneity, the use of 

lumped models should be limited to small catchments only.  The Bakoye 

catchment studied here is a large catchment and displays large heterogeneity in 

many factors across its extent, however, the Pitman model and the SCE-UA 

algorithm proved worthy for their use in this application, which when driven by 

TAMSAT1 in the Bakoye catchment resulted in an error of 112.49% of the mean 

daily discharge, for the period 1986-1996. This sounds high, but with the paucity 

of the data available it is unlikely that major improvements could be achieved. 

For comparison, the MIKE SHE model used by Stisen et al. (2008) for the same 

catchment, in the period 1998-2001, produced an error of 97% - this was using 

a more sophisticated, distributed hydrological model and a TAMSAT SRFE, 
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based on a similarly sparse raingauge network. Although the model used in 

Stisen et al. (2008) clearly shows a better performance than the Pitman used in 

this thesis, the MIKE SHE was used to model a smaller 4 year period, which did 

not display the same degree of interannual variation as the 1986-1996 period – 

in particular without any years of below mean discharge. It is likely that much of 

the improved performance seen in the model of Stisen et al. (2008) is due to the 

reduced impact of the systematic bias in the SRFE as the rainfall record used 

showed less anomalous years.  

 

However, as TAMSAT1 and TAMSIM have produced daily rainfall fields that are 

fully distributed, it is only logical that the next step in this research would be to 

apply the same TAMSIM ensemble set to the MIKE SHE distributed model for 

the Bakoye catchment, for the period 1986-1996. The focus of this should be to 

investigate the impacts of the spatial variations of the rainfall modelled by the 

individual ensemble estimates, but also the influence of the TAMSAT1 bias on 

the MIKE SHE for a period that demonstrates greater variations in rainfall. 

 

It is likely that a single model structure may not be appropriate for transferable 

uses between catchments. For example, the Pitman model and the MIKE SHE 

model structures have both been shown to operate adequately for the Bakoye 

catchment, but neither may be the optimal structure for representing the 

catchment. Mwakalila et al. (2001) demonstrated how the data available for a 

semi-arid catchment could be used not only to drive and calibrate a hydrological 

model, but also to determine the most suitable structure for the model using a 

Data-Based Mechanistic Modelling (DBM) approach. Such a method is 
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transferable between catchments by being flexible enough to alter model 

structures to suit each catchment, and the data available. 

 

Further Sources of Uncertainty 

 

A weakness of the method presented in this thesis over the original study of 

TAMSIM in Teo (2006) and Teo and Grimes (2007) is that there is no 

accounting for the uncertainty as part of the DK method. This was sacrificed in 

order to improve the method used to fit the gamma distributions at each CCD 

bin – for completeness however, a method for incorporating the DK error into 

the uncertainty characterisation should be reinstated. Pardo-Iguzquiza et al. 

(2006) detailed a method for calculating the error in a DK method, and the 

KrigeRain algorithm (Greatrex, 2009) produces error fields for each timestep. 

 

Di Baldassarre and Montanari (2009) demonstrated a method for incorporating 

an analysis of uncertainty originating from the discharge observation data, and 

for a full analysis of uncertainty within the entire process a similar method could 

be incorporated. 

 

Communicating the Uncertainty 

 

This thesis has demonstrated how ensemble discharge estimates can be used 

to produce 95% confidence discharge envelopes, showing the bounds of 

uncertainty within the TAMSIM ensemble SRFE when used to calibrate and 

drive a Pitman lumped CRR model. Although this is a method of demonstrating 
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the scope of uncertainty in a clear and visible way, it is insufficient for 

communicating the relationship between uncertainty and the implications for 

drought or flood forecasting. 

 

Webster and Jian (2011) described how uncertainty could be communicated 

using the idea of risk, where: 

 

risk = (probability of an event) x (cost) 

 

Using the equation provided by Webster and Jian (2011) it is possible to 

incorporate the 95% confidence discharge envelopes as a measure of the 

probability of an event – in this example, a flood. If it assumed that flooding will 

occur beyond a pre-determined discharge threshold, and higher thresholds 

represent larger, higher cost, floods, the severity of risk can be communicated 

to decision makers. 

 

Using the output from the EnsAll for the 1988 wet season, the following 

thresholds were established. 

 

 Discharge > 500cumecs = minor flooding 

 Discharge > 750cumecs = average flooding 

 Discharge > 100cumecs = major flooding 

 

Each threshold would be weighted and multiplied by the proportion of ensemble 

outputs estimating discharges above the specified threshold, so that the risk is 
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scored between 0 and 100 (with a score of 100 when all ensembles estimate 

major flooding). Figure 10.2 shows the risk as it alters over the 1988 wet 

season. 

 

 

Figure 10.2 – Chart showing an example of the communication of flooding risk as a 

combination of cost and probability of event, as described by Webster and Jian (2011), 

using the EnsAll ensemble output for the Bakoye catchment in the 1988 wet season. 

 

The chart shown in Figure 10.2 shows how the TAMSIM driven Pitman 

ensemble outputs can be used to communicate risk, with the proportions of 

ensembles used to calculate the probability of an event and weighting it against 

the relative cost of that event. This would allow decision makers to set risk 

thresholds for action, and as Webster and Jian (2011) suggest, implement 

programmes that act to reduce the cost of the event and bring the risk down 

below the threshold – it is unlikely that it would be possible to reduce the 

probability of the event. 
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The above example is simplistic in its nature and does not represent any 

physical costs of flood risk associated with the Bakoye catchment, but does act 

as an example of the principle of the use of ensemble SRFE in the 

determination of risk and their potential usefulness for driving EWS. Future 

research in this area would be best focussed on developing a more 

comprehensive characterisation of uncertainty, incorporating the additional 

sources detailed previously, for an area with a more extensive historic 

raingauge network. The study should build a risk model based on the model 

outputs, such as that described above, and be validated against past flood 

events with known costs.
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11 
Conclusions 

 

The previous chapter has discussed the major findings of this thesis and the 

major issues that have been encountered, before making suggestions of 

directions in which future research could be focussed. This chapter summarises 

the main conclusions from the thesis. 

 

The TAMSIM method was shown to be able to reproduce the characteristics of 

the daily Senegal rainfall field at both gauge-pixel and catchment average scale 

– much in the same way as was demonstrated by Teo (2006) and Teo and 

Grimes (2007). Significantly, the reliability plots of Figure 7.8 demonstrated that 

TAMSIM produced rainfall estimates that were reliable against the DK rainfall 

field, for rainfall above trace rainfall levels. 

 

Whilst unbiased as a whole, the TAMSIM SRFE showed significant spatial and 

temporal biases. Spatially, the single calibration of the algorithm was shown to 

be unable to reproduce the rainfall gradient that pervades the Senegal Basin, 

and the rain fields overestimated the rainfall for gauge-pixels in the drier north of 

the region, and underestimated in the wetter south. For the catchment average 

for the Bakoye catchment this resulted in an underestimation of the rainfall input 

compared to the DK estimate, for the whole 11 years of the study period. 
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Probably more significantly, the temporal biases caused by interannual 

variations in rainfall were large, with TAMSIM unable to model the wide 

variations in rainfall between years – the result was large biases for anomalous 

years of rainfall which for the study period was most of the years. 

 

Several parameterisations were tested on the TAMSIM ensemble estimate 

driven Pitman model, demonstrating that the choice of input influences the 

modelled discharge. This is because the SRFE uncertainties interact with the 

hydrological model uncertainties, and the latter need to be mitigated for. A new 

parameterisation (EnsAll) which incorporated each of the individual TAMSIM 

ensemble estimates in an effective 2,200 year record, provided the optimal 

parameterisation for use with the ensembles, with the modelled discharge 

showing little overall bias over the study period.  

 

The 95% confidence hydrograph envelopes shown in Figures 8.3 to 8.13 

showed the spread of error in the TAMSIM rainfall inputs, propagating into the 

output of the EnsAll parameterised Pitman model. Significant periods of the 

record for the 11 year study period showed the recorded discharge outside of 

the envelope – this is due to the temporal systematic bias in the TAMSIM 

rainfall inputs during years of anomalous rainfall. 

 

The spatial bias is consistent throughout the record and as such its impact on 

the modelled discharges is minimal as the SCE-UA calibration compensates for 

the slight underestimation of rainfall.  However, the biases caused by the 

interannual variations of the rainfall total cannot be compensated against and 
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propagate directly to the modelling of discharge by the Pitman model. In 

addition, because of the compensation for the spatial bias the EnsAll 

parameterised Pitman model performs better for some biased inputs than an 

unbiased estimate. 

 

Chapter 8 demonstrated how the TAMSIM method of characterising uncertainty 

in a SRFE – a fully spatio-temporally distributed stochastic ensemble approach 

– is better able to model the influence of input uncertainty on the Pitman model 

than a simpler perturbation method. This was highlighted in the envelope 

hydrographs of Figures 8.22 to 8.31. In particular TAMSIM is able to show the 

non-symmetrical error distribution and represent the intraseason temporal 

biases.  The effects of the latter point can be reduced by using a calibration of 

TAMSIM at a finer temporal scale, such as monthly, and it is unlikely this effect 

would be noticeable using such a calibration – this thesis has highlighted that 

the calibrated relationship between CCD and rainfall is non-stationary over time 

and TAMSIM is able to reflect this but a perturbation method is not. 

 

Finally, Chapter 9 showed that the relationship between hydrological model 

calibration and behaviour, when driven by ensemble inputs, is a complex one. 

The majority of the calibrations favoured a model behaviour displaying a smaller 

proportion of final discharge originating from groundwater flows, in favour of 

surface flows – this was despite observations of the relationship between model 

behaviour and performance suggesting otherwise. This is a significant hint 

towards equifinality within the Pitman model, where a change of structure and 

calibration will produce a different behaviour in the model but similar 
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performance. Overall the calibrations against each individual TAMSIM 

ensemble member were seen to be similar, especially for those parameters that 

were observed to be more significant to the performance of the Pitman model.
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