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Abstract: 

Colorectal cancer is one of the most common forms of malignancy with 35,000 new 

patients diagnosed annually within the UK. Survival figures show that outcomes are 

less favourable within the UK when compared with the USA and Europe with 1 in 4 

patients having incurable disease at presentation as of data from 2000.  

Epidemiologists have demonstrated that the incidence of colorectal cancer is highest 

on the industrialised western world with numerous contributory factors. These range 

from a genetic component to concurrent medical conditions and personal lifestyle. In 

addition, data also demonstrates that environmental changes play a significant role 

with immigrants rapidly reaching the incidence rates of the host country. 

Detection of colorectal cancer remains an important and evolving aspect of 

healthcare with the aim of improving outcomes by earlier diagnosis. This process 

was initially revolutionised within the UK in 2002 with the ACPGBI 2 week wait 

guidelines to facilitate referrals form primary care and has subsequently seen other 

schemes such as bowel cancer screening introduced to augment earlier detection 

rates. Whereas the national screening programme is dependent on FOBT the 

standard referral practice is dependent upon a number of trigger symptoms that 

qualify for an urgent referral to a specialist for further investigations. This process 

only identifies 25-30% of those with colorectal cancer and remains a labour intensive 

process with only 10% of those seen in the 2 week wait clinics having colorectal 

cancer.  

This thesis hypothesises whether using a patient symptom questionnaire in 

conjunction with knowledge discovery techniques such as data mining and artificial 
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neural networks could identify patients at risk of colorectal cancer and therefore 

warrant urgent further assessment. Artificial neural networks and data mining 

methods are used widely in industry to detect consumer patterns by an inbuilt ability 

to learn from previous examples within a dataset and model often complex, non-

linear patterns. Within medicine these methods have been utilised in a host of 

diagnostic techniques from myocardial infarcts to its use in the Papnet cervical smear 

programme for cervical cancer detection. 

A linkert based questionnaire of those attending the 2 week wait fast track colorectal 

clinic was used to produce a ‘symptoms’ database. This was then correlated with 

individual patient diagnoses upon completion of their clinical assessment. A total of 

777 patients were included in the study and their diagnosis categorised into a 

dichotomous variable to create a selection of datasets for analysis. These data sets 

were then taken by the author and used to create a total of four primary databases 

based on all questions, 2 week wait trigger symptoms, Best knowledge questions and 

symptoms identified in Univariate analysis as significant. Each of these databases 

were entered into an artificial neural network programme, altering the number of 

hidden units and layers to obtain a selection of outcome models that could be further 

tested based on a selection of set dichotomous outcomes. Outcome models were 

compared for sensitivity, specificity and risk. Further experiments were carried out 

with data mining techniques and the WEKA package to identify the most accurate 

model. Both would then be compared with the accuracy of a colorectal specialist and 

GP 

Analysis of the data identified that 24% of those referred on the 2 week wait referral 

pathway failed to meet referral criteria as set out by the ACPGBI. The incidence of 

those with colorectal cancer was 9.5% (74) which is in keeping with other studies 
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and the main symptoms were rectal bleeding, change in bowel habit and abdominal 

pain. The optimal knowledge discovery database model was a back propagation 

ANN using all variables for outcomes cancer/not cancer with sensitivity of 0.9, 

specificity of 0.97 and LR 35.8. Artificial neural networks remained the more 

accurate modelling method for all the dichotomous outcomes. 

The comparison of GP’s and colorectal specialists at predicting outcome 

demonstrated that the colorectal specialists were the more accurate predictors of 

cancer/not cancer with sensitivity 0.27 and specificity 0.97, (95% CI 0.6-0.97, PPV 

0.75, NPV 0.83) and LR 10.6. When compared to the KDD models for predicting the 

same outcome, once again the ANN models were more accurate with the optimal 

model having sensitivity 0.63, specificity 0.98  (95% CI 0.58-1, PPV 0.71, NPV 

0.96) and LR 28.7. 

The results demonstrate that diagnosis colorectal cancer remains a challenging 

process, both for clinicians and also for computation models. KDD models have 

been shown to be consistently more accurate in the prediction of those with 

colorectal cancer than clinicians alone when used solely in conjunction with a 

questionnaire. It would be ill conceived to suggest that KDD models could be used 

as a replacement to clinician- patient interaction but they may aid in the acceleration 

of some patients for further investigations or ‘straight to test’ if used on those 

referred as routine patients.  
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1.1 Epidemiology 

Colorectal cancer remains one of the most common forms of malignancy, with over 

1 million individuals being affected worldwide  [1] Specifically within the United 

Kingdom colorectal is the second most common form of malignancy with 

approximately 35,000 new patients being diagnosed annually. [2-5]  

 

 It has been shown that survival from the disease within the UK is less favourable 

compared with the USA and other European Countries [2, 3, 6, 7]. Whilst causative 

factors may range from fewer doctors per capita to healthcare expenditure, the time 

of presentation has been demonstrated to play a significant role. A study in 2000 

demonstrated that 1 in 4 patients presenting with colorectal cancer had incurable 

disease at diagnosis[2, 4, 8, 9]  

The incidence of colon cancer is at its highest in the industrialised western world 

with epidemiological studies focusing on the identification of factors that influence 

the risk of an individual acquiring colorectal cancer. Whilst there is a genetic aspect 

to developing colorectal cancer and an increased prevalence amongst certain medical 

conditions a number of dietary and lifestyle factors have also been identified and 

proven to modify risk.  

 

International data demonstrates that colorectal cancer is highly sensitive to 

environmental changes with immigrants rapidly reaching the incident rates of the 

host country [3-5] [6]  
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1.2 Colorectal Pathology 

1.2.1  Benign Colonic Pathology 

  

Polyp is a term used to clinically describe any elevated tumour and covers a variety 

of histologically different tumours. They occur either individually, in small numbers 

or can be found ‘carpeting’ the colon in conditions such as Familial Adenomatous 

Polyposis (FAP). Whilst the term polyp can encompass a clinical description it is the 

histological conformation of the polyp that is important as they can be subdivided 

into inflammatory, metaplastic, harmartomatous and neoplastic variants. 

 

Specifically focusing on the neoplastic variant once again gives rise to further sub 

classification of adenomatous polyps which vary from tubular adenomas to the 

villous adenoma. Both of these variants differ in their symptomatology and also the 

potential risk for colorectal cancer. The tubular adenoma is generally identified 

incidentally through investigations for colonic bleeding and has a risk of malignancy 

that increases as the size of the polyp itself increases, a 1cm diameter tubular 

adenoma carrying a 10% risk of colorectal cancer. Villous adenomas tend to present 

with slightly different symptoms, usually those of diarrhoea, mucous and potentially 

hypokalaemia. Tumours of this variety carry a 15% chance of carcinoma if they are 

greater than 2cm in size. 

 

The specific incidence of these polyps in the general population is difficult to 

estimate but autopsy studies have been performed to try and assess their prevalence 

[7] [8] [9]. Willians et al is the only UK study and examined 365 cases in which the 

colon was examined for hyperplastic / metaplastic polyps and neoplastic adenomas. 
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It found a general prevalence of 36.87% in men and 28.74% in women, values that 

may be higher in society today. Similar rates have been found in studies from 

Norway and the USA. 

 

The rate at which a neoplastic polyp undergoes malignant transformation was 

examined retrospectively by Stryker [10] et al in the Mayo Clinic over a period of 6 

years. They examined 226 cases where polyps > 10mm were observed and obtained 

a mean follow up period of 108 months and demonstrated a 37% increase in size and 

at 5 years a 2.5 % transformation to invasive cancer. Further follow up at 10 and 20 

years illustrated rates of 8% and 24% respectively for cancerous change 

 

Those with a history of polyps and who have undergone excision are at higher risk of 

further polyps when compared with an individual who has never been diagnosed 

with polyps [11-13] [14] 
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1.2.2 Inflammatory Bowel Disease 

 

The term inflammatory bowel disease encompasses two different entities, 

specifically ulcerative colitis and Crohn’s disease. The first association between IBD 

and colorectal cancer was documented by Crohn and Rosenberg [15] in 1925, an 

association which nowadays is widely accepted.  Ten to fifteen percent of all deaths 

in those with IBD is due to colorectal cancer [16] with the age at diagnosis of CRC 

being 15-20 years earlier when compared to the general population [17] Ulcerative 

colitis is universally accepted as increasing risk for the development of colorectal 

cancer with and is demonstrated in the meta-analysis by Eden et al [17] . The risk of 

developing colorectal cancer in those with UC increases with time and rates of 1.6% 

at 10 years, 8% at 20 years and 18% at 30 years having been quoted.  Disease 

distribution of UC has also been shown to influence risk of development of CRC 

when compared with the general population, proctitis 1.7 times the risk, left sided 

colitis 2.8 times and pancolitis 14.8 times [18, 19]. More recent data have shown 

Crohn’s disease patients to be at increased risk also [20]  
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1.2.3 Diverticular Disease 

 

Diverticular disease is a benign condition that typically is acquired and affects the 

distal colon. Whilst it is not confined to these areas and can, in rare cases be found 

congenitally in cases of meckel’s diverticulae, approximately 95% affects the 

sigmoid colon. The diverticulae are a herniation of the mucosa through the 

muscularis propria and while the specific aetiology of this condition is unknown the 

theories are that increase intraluminal pressure and weakness within the colonic wall 

can lead to herniation or that defective collagen consistency or defective muscular 

structure may lead to weakness. Primarily it is a disease of western society and it is 

hypothesised that diet is a prime contributing factor with its incidence increasing 

markedly with an ageing population.  

 

Clinically its presentation can vary widely, presenting with generalised abdominal 

pain, alteration in bowel habit, bleeding PR, diverticulitis and complications of 

diverticular disease. These symptoms and the population that diverticulosis is 

commonly found in can make distinguishing it from someone with a colonic cancer 

difficult. 
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1.2.4 Haemorrhoids  

 

Haemorrhoids in the general population are very common and can in many cases be 

the cause of unnecessary individual anxiety. These vascular cushions become 

symptomatic when inflamed, enlarged, prolapsed or thrombosed and it is at these 

times that individuals generally seek medical advice. While common the specific 

aetiology is poorly understood, many authors concur that low fibre diets and 

straining at defecation increases pressure resulting in engorgement of the 

haemorrhoidal cushion, primarily through reduced venous return. The typical ‘bright 

red’ appearance of haemorrhoidal bleeds and the arterial pH support the theory that 

haemorrhoidal bleeding is actually arterial in origin. Anatomically the dentate line is 

the division between internal and external haemorrhoids and histological differences 

being evident in the epithelial covering, internal having columnar and external 

having squamous. The relation to the dentate line is also important in the 

innervation, and thus the potential discomfort caused. Symptomatically the 

difference between internal and external haemorrhoids that can be appreciated on 

clinical evaluation, with external haemorrhoids predominantly causing trouble with  

anal hygiene and redundant skin tags.   
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1.3 Risk Factors for Colorectal Cancer 

1.3.1 Non Modifiable 

 

1.3.1.1 Age related 

 

Ninety percent of colorectal cancers are classed as sporadic in their occurrence, 

making the risk of developing the disease at a young age very low, increasing in later 

years. It is generally accepted that the development of colorectal cancer is from a 

pre-existing adenoma within the colon wall [21] [22]. The incidence of adenoma 

formation also increases with age, one in three people having at least one adenoma at 

the age of 60 years. Studies have examined the natural progression of these lesions, 

demonstrating the progression to adenocarcinoma to be slow, taking up to 10years in 

some instances [10] with small, flat adenomas progressing somewhat faster. Other 

inherent factors in the progression of these lesions are size, number, histological type 

and also the presence of epithelial dysplasia.  
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1.3.1.2 Genetic 

 

The remaining 10% of cancers can generally be attributed to two main hereditary 

conditions, Familial Adenomatous polyposis (FAP) and Hereditary non-polyposis 

colorectal cancer (HNPCC). FAP is caused by a mutation of the Adenomatous 

polyposis coli (APC) gene and leads to the development of multiple polyps within 

the bowel between 10 and 30 years of age, histologically identical to sporadic 

occurrences it is the sheer volume of polyps within the colon almost guarantees 

developing colorectal cancer by the age of 40 years. HNPCC is a dominantly 

inherited condition resulting in an alteration in a mismatch repair gene, diagnosed 

using Amsterdam Criteria with affected individuals at risk of developing colorectal 

cancer predominantly in the proximal colon and in the absence of multiple polyps 

[23, 24]. The most common germline defects in HNPCC are mutations in the 

nMLH1 and hMSH2 genes, essential in the nucleotide mismatch repair system and 

have also been associated with the development of extra colonic tumours. In addition 

to these genetic conditions the personal or family history of colorectal cancer or 

adenomatous polyps increases the risk of developing colorectal cancer and is 

modified by the age and number of family member affected, specifically first degree 

relatives. [23] . 
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1.3.1.3 Inflammatory bowel diseases 

 

Those patients with ulcerative colitis carry an increased risk of developing colorectal 

cancer, up to ten times higher than those in the general population [18] with Crohn’s 

disease being implicated in recent evidence as a risk factor also. [25] Diseases of the 

endocrine system are also linked to an increased risk of colorectal cancer, 

specifically those with Diabetes mellitus who have 1.3-1.5 times increased risk [26] 

and also those with acromegaly who have a 2.5x increased risk [27] Both conditions 

are thought to increase risk via excessive levels of insulin like growth factor (IGF) 

stimulating the proliferation of colonic mucosa.  
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1.3.2 Modifiable 

 

1.3.2.1 Diet 

 
 

1.3.2.1.1 Vegetables and Fruit 

 

A number of studies have examined the role or fruit and vegetable consumption in 

relation to colorectal cancer but findings have been limited. [28] [29] [30]. A follow 

up study in Sweden showed that low fruit and vegetable consumption in women had 

an associated relative risk of 1.65[31] however this conflicted with a larger study in 

both men and women that did not show any relationship [32] . Raw, green and 

cruciferous vegetables have been shown, when consumed , to lower the risk of colon 

cancer [28] [30], and a meta-analysis [33, 34]  demonstrated a relative risk of 0.48 
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1.3.2.1.2 Vitamins 

 

The ACS cancer prevention study II did not show multivitamins to reduce risk of 

colorectal cancer when used as a baseline marker however, reported use of vitamins 

10 years earlier did show a relative risk of 0.71 [35]. A further study in 2002 had 

shown a lower risk in men who took vitamin E [36] supplements and higher 

selenium levels in serum have been associated with a lower risk of colonic polyps 

[37] 

 

 

 

 

1.3.2.1.3 Meat 

 

The association between meat and colorectal cancer has been variable. The Cancer 

Prevention study II showed no difference in the risk of colorectal cancer death in 

men or women when comparing the uppermost and lower most quintiles [35] . More 

recent data from three western society studies suggest that fresh and processed meat 

are each associated with an elevated risk [38] [39] [40] . More recent studies have 

suggested causal agents within meat as an explanation, such as Haeme, Nitrosation 

and O6 carboxymethyl guanine [41] [42] [43] . 
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1.3.2.1.4 Calcium and Vitamin D 

 

Most studies addressing the role of calcium and vitamin D in colorectal cancer have 

shown a reduced risk or no association. [44] [45] [46] [47] Interestingly, a high 

serum vitamin D level had a reduced risk of adenoma only when in association with 

calcium supplements [48]  

 

 

 

1.3.2.2 Exercise 

 

There is a high, consistent association with a reduced risk of colon cancer in those 

undertaking physical activity [49] [50] [51] .  This is attributed to physical activity 

stimulating peristalses thus reducing the time that faecal matter is in contact with the 

epithelium. Conversely rectal cancer does not seem to be modified by exercise. 

 

 

 

1.3.2.3 Obesity 

 

Obesity in association with reduced physical activity increases the risk of developing 

colorectal cancer by 2 [49] [51] [50] [52] . Data from the Framingham study showed 

that waist size rather than BMI was a better predictor for lifetime risk of colorectal 

cancer [53]  
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1.3.2.4 Alcohol 

 

Both colon and rectal cancer have been shown to have a dose response relationship 

to alcohol [54] [30].  This is thought to be due to the inhibition of DNA repair [55] 

,formation of DNA adducts through Acetaldehyde or the associated deficiency of 

nutrients [56] [57]  

 

 

 

1.3.2.5 Smoking 

 

The association between smoking and colon cancer is thought to be through 

microsatellite instability colon cancer [58, 59] and tumours with the loss of MLHI 

expression [60]  
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1.4 Presentation of Colorectal Cancer 

 

It is necessary to recognise the cancers within the colonic tract present with different 

symptoms depending upon their level.   

 

1.4.1 Rectal Bleeding 

 

Significant challenges are faced when trying to identify patients with symptoms 

indicative of colorectal cancer and who thus require urgent investigation. Studies 

have shown consultation rates up of four -- sixteen per thousand patients a year in 

primary care presenting with bleeding per rectum, [61] [62] [63] [64] abdominal pain 

[65]  and alterations in bowel habit [66] . Within the community, these symptoms are 

very high when compared to the actual incidence of colorectal cancer. 

Approximately 19% of patients within general practice reported rectal bleeding in 

the previous year [64]  and it is estimated that 97% of these will not have colorectal 

cancer [67]. The prevalence of altered bowel habit and abdominal pain within the 

community are even higher [68] thus less specific at predicting colorectal cancer. 

Studies undertaken in the late 1990’s aimed to determine the predictive value of 

rectal bleeding in the community for colorectal cancer [63]. This concluded that 

painless rectal bleeding, alteration in bowel habit and dark red bleeding; factors 

previously attributed to a higher risk of colorectal cancer are present in many people 

within their studied community. 

Patients with no anal symptoms but who suffer from rectal bleeding are 3 to 4 times 

more likely to have cancer as opposed to those who have anal symptoms alone [69] 

and this finding is independent of any alteration in bowel habit. In patients who have 
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symptoms of rectal bleeding, bright red rectal bleeding is less predictive as opposed 

to blood mixed with stool. Whilst this combination of symptoms has been shown to 

be of more diagnostic value when compared to other attributes, it is of little 

diagnostic aid [70]. Studies in primary care both in Australia and England have 

shown a 10% prevalence of cancer within the general community [70] [71]  The 

studies made further suggestions that all those over 40 with rectal bleeding should be 

referred for further specialist consultation. Symptoms of rectal bleeding and finding 

a palpable rectal mass are generally indicative of rectal cancers [72] 
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1.4.2  Alteration in Bowel Habit 

 

Along with rectal bleeding, patients commonly notice changes in their bowel habit. 

Whilst there can be numerous causes for an alteration in an individual’s habit of 

defecation studies have shown a fivefold increase in the risk of cancer when 

combined with rectal bleeding than if either symptom occurred on its own. [70] [69] . 

Increased frequency of defecation along with a change in bowel habit to loose 

motions has demonstrated a cancer prevalence of one in seven with those tending 

toward constipation having a prevalence of 1 in 36 [73, 74] One particular study 

found that all patients with colorectal cancer presented with alteration in the bowel 

habit and rectal bleeding [73] giving a positive predictive value of 9.2% as opposed 

to 0% in those with rectal bleeding and no alteration in bowel habit. This study also 

showed a higher predictive value of colorectal cancer in those with rectal bleeding 

with no perianal symptoms when compared with those with perianal symptoms. No 

predictive value was found in the dark or bright red rectal bleeding. . More than 90% 

of those with rectal and sigmoid cancers have alteration in bowel habit resulting in 

loose stool or an increased frequency of defecation. 
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1.4.3 Abdominal Pain 

 

The presence of abdominal pain remains an imprecise diagnostic marker. When 

associated with rectal bleeding and alteration in bowel habit two studies have 

demonstrated a reduction in the probability of cancer [69, 70] with only one study 

showing it to be of benefit in the diagnosis of serious disease. 

 

 

1.4.4 Iron Deficiency Anaemia 

 

The presence of iron deficiency anaemia with a haemoglobin below 10 g can be 

found in a large proportion of patients with colorectal cancer type of presentation 

[74] [75-78] [79] and 50% of these individuals will have no symptoms or clinical 

signs.  
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1.5 Diagnosis of Colorectal Cancer 

 

The diagnosis of colorectal cancer is histological; however this tissue diagnosis 

usually requires a colonoscopy which is not without risk. Given this a number of 

other diagnostic tools are used to facilitate the identification of those likely to have 

positive findings at colonoscopy. These range from simple FOB tests to invasive 

procedures. 

 

 

1.5.1  FOB tests 

 

These tests are simple and non-invasive, requiring a series of stool samples from the 

individual following adherence to specific pre-test instructions. They are used as part 

of the UK screening programme as well as being more widely available. Most FOBT 

testing is undertaken with a guaiac based test such as the Haemoccult 2 which have a 

sensitivity of 40-60% and specificity of 90-98% dependent on dietary adherence of 

the individual before taking the test and rehydration of the sample prior to laboratory 

analysis.[80]. 
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1.5.2 Flexible Sigmoidoscopy 

 

Flexible sigmoidoscopy utilises fibre optic technology and is commonly used for 

evaluation of the distal colon. Whilst not the ‘gold standard’ it is relatively easier to 

undertake, generally without full bowel preparation and in some areas by non-

medical personnel [81-86]thus making its availability greater. As an assessment tool 

it holds a valuable place, detecting 7 adenocarcinomas and 60 high risk adenomas 

per 1000 examinations [87]. Given the distribution of colonic malignancies flexible 

sigmoidoscopy can effectively be used to identify 80% of colonic cancers and both 

detect and remove 70% of adenomas [88]. Whilst not as extensive as a full 

colonoscopy, flexible sigmoidoscopy carries with it as an endoscopic procedure, 

risks of morbidity and mortality, even though they are very small. [89-91]  
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1.5.3 Colonoscopy 

 

Colonoscopy uses the same technology as flexible sigmoidoscopy, allowing the 

endoscopist to visualise the whole colon and in some instances intubate the terminal 

ileum. As with flexible sigmoidoscopy it has the benefit of tissue sampling at time of 

test, thus allowing histological diagnosis as well as providing the option of 

therapeutic treatment in the form of polypectomy, EMR or EMD. [92-99] The 

sensitivity of colonoscopy for adenomas ranges from 90% for large to 75% for 

smaller lesions [100] and its sensitivity for detecting colorectal cancer is greater than 

90%. Whilst a more accurate investigation it does however have some negative 

aspects such as a higher rate of morbidity and mortality as compared with flexible 

sigmoidoscopy and an increased cost. The cost implication is generally attributed to 

the length of the procedure, necessity for sedation and thus monitoring and the 

expertise required to perform the test but there is also the need to provide the patient 

with full bowel preparation prior to undertaking the procedure, a factor that needs to 

be carefully evaluated in some individuals. 
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1.5.4 Radiological Imaging 

 

The use of radiological procedures in the evaluation of the colon remains popular 

with modern techniques augmenting older practices. Double contrast barium enemas 

are of use in fully evaluating the colon in those unable to tolerate endoscopic 

techniques. While full bowel preparation may be required prior to the procedure 

being undertaken there is greater tolerance of the insufflation and contrast and there 

is little need for sedation. There are drawbacks to this method however as direct 

visualisation of the colonic mucosa is not obtained, as such the test has a lower 

sensitivity and specificity than colonoscopy detecting only 48% of polyps >10mm 

[101] with some studies identifying ‘miss rates’ of cancer up to 22.4% [102, 103]. 

An alternative to DCBE and colonoscopy in individuals not deemed fit is that of 

Virtual colonoscopy, a technique that utilises modern CT images in conjunction with 

intravenous contrast and CO2 insufflation per rectum to image the colon. Using 

complex software the images are able to be formatted allowing the intraluminal 

mucosa to be reconstructed in 3D. Studies have shown it to be accurate in detecting 

polyps >10mm in size although there is variation in the percentage accuracies based 

on seniority of reporting radiologist/technician and complexity of the scan. [104] 

[105-111] 

 

 

 

 

 

 



38 
 

1.6 Staging of Colorectal cancer 

 

Staging of colorectal cancer is currently done via the TNM classification system 

developed by the American Joint committee on Cancer, assessing tumour depth, 

node status and metastatic disease  [112]. This is commonly used in conjunction with 

the Dukes classification system, classifying the disease into A, B (B1, B2) [113], C1, 

C2 and D [114]. 

  

The TNM classification allows the disease to be staged (ranging from 0- 4) with 

various subdivisions based on TNM status. All of these classification systems are 

used to allow clinical planning of treatment and to aid in the overall prognosis of the 

disease. 
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1.7 Treatment of Colorectal Cancer 

 

The preoperative staging of colorectal cancer is important as this affects the 

treatment pathway, more significantly at present with rectal cancer however with the 

use of preoperative chemoradiotherapy or short course radiotherapy.   

 

1.7.1 Preoperative treatment 

 

Specifically in rectal cancer there has been an increased use of pre-operative 

oncological treatments to optimise the patients before any surgical intervention is 

undertaken. This is in the form of short course radiotherapy or combined 

radiotherapy and chemotherapy which, has been shown in numerous studies to 

improve patient outcome and survival but is associated with slightly higher post-

operative morbidity [115-120] [121]. The benefits of pre-operative chemotherapy in 

patients with colon cancer have not been fully evaluated at this time however there 

are on-going studies assessing the benefits of this in the patient cohort.  
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1.7.2 Surgical Treatment 

 

Surgery is the mainstay treatment option for cancers of the colon and rectum with 

many approaches to the segmental resection of the colon. Surgical techniques vary 

between Open and Laparoscopic approaches, with studies demonstrating no 

oncological difference between the two [122] [123] [124].  

TME dissection of rectal tumour has been shown to have improved oncological 

outcomes[125] [126] and is the widely accepted approach for the removal of rectal 

tumours.  TEMS procedures have been used in the treatment of small rectal tumours 

[127] [128] [129] although this has been in limited cases and the long term outcomes 

have not been assessed by a large study at this time.   

The specific operation that is undertaken is dependent on numerous factors such as 

stage of disease, patient co-morbidities and location of tumour. The operations can 

either be curative in intent or palliative, resecting the necessary amount of colon or 

rectum to ensure good vascularity in the remnants for anastomosis. Above the 

peritoneal reflection commonly performed procedures are right hemicolectomy, 

extended right hemicolectomy, left hemicolectomy and sigmoid colectomy. Below 

the peritoneal reflection for tumours of the upper, mid and at times lower rectum an 

anterior resection is performed, ensuring the distal remnant is of sufficient length to 

allow a healthy anastomosis. Should this not be the case then abdomino perineal 

excision of the rectum can be performed, this non-sphincter saving procedure leaves 

the individual with a permanent end colostomy. If palliation is considered then it 

may be appropriate to defunction the patient and leave the tumour in situ thus 

relieving any obstruction that may be occurring but reducing the operative morbidity 

and mortality.    
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1.7.3 Adjuvant treatment 

 

Post-operative treatment is determined by the histological stage of the specimen in 

association with the radiological staging of the disease. Stage I disease has a 95% 5 

year survival [130] however the presence of lymph node involvement (Stage III 

disease) reduced 5 year survival to between 30-60% with surgery alone. This 

survival rate can be improved by 10-15% with the addition of chemotherapy, for 

which there are many combinations however the main stay remains 5-FU based 

treatments [131] . 

The role of chemotherapy in Stage II disease is becoming more popular, especially if 

there are adverse prognostic factors within the specimen such as vascular invasion. 

Trials have shown an improved survival rate [131] with the use of chemotherapy in 

this cohort however the risks and benefits in this treatment group need discussing on 

an individual patient basis. 
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1.8 Referral Pathways 

1.8.1 Introduction  

 

Referral pathways for those suspected of having colorectal cancer range from direct 

primary care referrals including both 2 week wait and routine OPD referrals, 

interspeciality referrals due to incidental findings during the investigation of other 

complaints, acute referrals generated from emergency admissions and referrals from 

screening programmes. 
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1.8.2 Presentation from primary care 

 
 

1.8.2.1 2 Week wait referrals 

 

In 2002 guidelines were published by the Association of Coloproctology of Great 

Britain and Ireland at the request of the Department of Health. The aim of this 

guidance was to assist those in primary care to refer the most appropriate individuals 

under the ‘2 week wait’ process assisting in allowing everyone with suspected cancer 

to be seen by a specialist within two weeks. By defining the criteria it was important 

to ensure that only those at high risk of colorectal cancer would be identified and 

therefore referred on the urgent two-week basis. Key facts highlighted in this process 

were that whilst patients with lower gastrointestinal symptoms are recommended to 

be referred for prompt investigation in hospital there is no evidence that a delay of 

two or three months after the onset of symptoms is likely to adversely affect the 

outcome [132] [133]. Adverse outcomes of investigating all of those with vague 

symptoms have also been explored on a physical and psychological level [134] 

[135]. 
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Whilst patient symptoms are of importance other attributes have also been shown to 

aid in the diagnosis. 85% of colorectal cancers are in the age group of those over 60 

with only 1.5% being in those less than 40 years of age. This variation in prevalence 

of the different age groups alters the management of these individuals, with those 

over 60 possibly being investigated with more subtle symptoms than someone under 

40. 

 

The development of guidelines remains important due to the high prevalence of 

rectal bleeding within the community [136] [64] [137] previous studies have shown 

an increased risk of cancer and rectal bleeding occurs in association with alteration 

in bowel habit of giving a predictive value of 12% for colorectal cancer [73]  

  

The risk of cancer in patients suffering from rectal bleeding varies in accordance 

with their population. The prevalence within the community is one in 700, in 

primary care this increases to 1 in 30 and for those in hospital surgical clinics one in 

16  

 

It was suggested that 85 to 90% of all patients with symptoms present in table 1 

presenting via the two-week wait referral system would be positive for colorectal 

cancer. The ACPGBI at the time also emphasised the importance of identifying those 

at low risk of rectal cancer who experienced symptoms as defined in table 2. It was 

felt that these individuals could be observed and referred as routine patients to 

specialist services. 
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Table 1.1: Department of Health higher risk criteria 

 

 

Criteria Age threshold 

Rectal bleeding with a change in bowel habit to 
loose stools and/or increased frequency of 
defecation persistent for 6 weeks 

All Ages 

Change in bowel habit as above without rectal 
bleeding and persistent for 6 weeks 

Over 60 Years 

Recta bleeding persistently without anal 
symptoms 

Over 60 years 

A Definite palpable right sided abdominal mass All Ages 

A definite palpable rectal mass All Ages 

Unexplained iron deficiency anaemia 

    Below 11g/dl in men 

    Below 10g/dl in women 

 

All Ages 

Post menopausal women 
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Table 1.2:  Low risk criteria (ASGBI guidelines) 

 

 

Criteria Age Threshold 

Rectal Bleeding WITH anal symptoms All Ages 

Rectal bleeding with an obvious external 
cause for bleeding on simple examination of 
the perineum. E.g. an anal fissure, 
thrombosed or external pile and rectal 
prolapse   

All Ages 

Transient changes in bowel habit, particularly 
to harder stools and/or decreased frequency of 
defecation 

All Ages 

Abdominal pain as a single symptom 
WITHOUT other high 
risk/age/symptoms/sign profiles, an 
abdominal mass, an iron deficiency anaemia 
or intestinal obstruction 

All Ages 
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If patients presented to the GP with any of these symptoms they could then be 

referred to a hospital specialist and seen within a set two-week time period. This 

particular referral pathway became known as the ‘2 week wait’ and, as with most 

guidelines has been subject to revision since its introduction. The most recent 

alteration occurred in 2005 with the introduction of the 31/62 pathway [138] 

The aim of the guidelines and pre determined referral criteria was to 'identify up to 

90% of patients with colorectal cancer[139]. This figure of 90% however, over the 

years that the system has been in place has not been emulated in clinical practice. 

Recent studies have demonstrated that only 10% of patients referred under the two-

week wait criteria have colorectal cancer, with a review article examining the subject 

finding an average of 10.3% when comparing six different studies [142][141]this 

accounts for only approximately 30% of those with the disease [140] approximately 

one quarter of those with colorectal cancer continue to present acutely with the 

disease, with the remainder presenting via alternative routes[141]. Reasons for the 

variation in rates of presentation are multiple; some have advocated that pressure 

within a primary care setting, with an average of seven minutes per consultation 

makes accurate referral of only high risk individuals unachievable. Other factors that 

must be taken into account are patients themselves, some failing to seek medical 

advice for their symptoms until they present to acute services and others who find it 

too embarrassing [142-144]. 
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1.8.2.2 Routine OPD referrals  

 

There are several variations in the approach to the 2WW process, the more 

traditional being dedicated clinic time, in which patients are reviewed by a 

consultant, one of their team or a nurse specialist. Following such a consultation and, 

based on patient history and clinical signs further investigations may be undertaken. 

At this point, unless a definitive sign is found at examination, a rectal lesion for 

example that can be biopsied in an outpatient setting, a further delay will occur prior 

to definitive histological diagnosis. This, as already alluded to, may not clinically 

bear any significance to outcome of disease, but will undoubtedly have some 

psychological implications for the individual [145]. 
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1.8.2.3 Straight to test 

 

The above scenario has evolved quite significantly over recent years with a ‘push’ 

towards a ‘straight to test’ situation. These new routes of access have taken many 

different guises, but all have an underlying theme of diagnostic test at first hospital 

visit. Policies adopted range from the use of dedicated 2 week wait clinics, where 

medical staff not only take a thorough history and examine the patient but also 

undertake an endoscopic examination at this first instance (generally a flexible 

sigmoidoscopy). Whilst not the ‘gold standard’ the benefits of a flexible 

sigmoidoscopy will be examined further later in this chapter. This method is not far 

from the traditional referral route and, allows clinical evaluation by a hospital 

specialist as well as a potentially diagnostic examination to occur simultaneously. 

Whilst remaining labour intensive and somewhat costly in terms of resources (the 

need for dedicated sessions in endoscopy and the trained staff) it is beneficial in 

reducing anxiety and definitive diagnosis of a range of conditions, not only 

colorectal cancer.  

 

The use of non-medical screening for 2WW referrals has been evaluated by 

Hemingway et al  [140]. This particular method utilised a pre-determined protocol, 

based on the ACPGBI guidelines and agreed by both specialists within the hospital 

and the local primary care Services. (Table 1.3) 
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Table 1.3: Non medical screening of 2WW patients  

 

Presenting Symptoms Age Diagnostic Intervention 

Rectal bleeding with 

change in bowel habit 

for at least 6 weeks 

All Ages Same day fibre optic 

sigmoidoscopy and barium 

enema 

Colonoscopy, CT 

Colonography 

Rectal Bleeding 

without anal symptoms 

Recommended over 60 

  Discretionary over 45 

Fibreoptic Sigmoidoscopy 

Change in bowel habit; 

increased frequency 

and/or looser stools for 

at least 6 weeks 

Over 60 Barium Enema 

CT Colonography 

Colonoscopy 

Palpable abdominal 

mass 

All Ages USS / CT Scan 

Palpable intraluminal 

rectal mass 

All Ages Sigmoidoscopy and biopsy 

Unexplained Iron 

Deficiency Anaemia  

  HB <11g/dl in men 

  Hb <10g/dl in post 

menopausal women 

All Ages Barium Enema, CT 

colonography, 

Colonoscopy 
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The outcome of the above interventions achieved 95% of all diagnoses, not just 

colorectal cancer within a 31 day period from initial referral and reduced the number 

of patient clinical consultations. Interestingly, and as has been shown in previous 

examples the detection rate of colorectal cancer in this population was 12%.  

A novel but somewhat more expensive route of referral was assessed by 

Maruthachalam et al, using direct access colonoscopy from primary care as part of 

the 2ww assessment process [146]. They utilised the DOH high risk criteria in 

conjunction with a specialised proforma to allow GP’s to refer patients directly for 

colonoscopy or for an urgent out patient appointment. The study demonstrated a 

reduction in time of diagnosis to 14 days from point of referral and a high level 

(98%) of patient satisfaction but cancer detection rates were comparable to more 

traditional 2ww referral routes. Whilst both a reduction in time to diagnosis and high 

level of patient satisfaction may reduce patient anxiety there is no evidence to 

support a reduction from 31 to 14 days has any benefit to patient survival. This is 

compounded by the associated risks of mortality and morbidity that go with 

colonoscopy and the overall expense of this referral process.     

 

Whilst the above alternative methods for patient access to rapid access services are 

aimed at improving performance, all appear to have a similar rate of detection. The 

use of flexible sigmoidoscopy, a procedure that is regarded as being quicker and 

generally less technically demanding than colonoscopy is, for these reasons easier to 

access. Whilst it may only (on average) reach the splenic flexure, statistically this 

should detect over 70% of colon cancers [147] and can be used to detect and remove 

70% of adenomas [148]. It, like colonoscopy however is associated with risks of 
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mortality and morbidity, even if they are small. The ‘gold standard’ test for colonic 

evaluation is without doubt colonoscopy. It is however also the most expensive 

method and carries with it risks of mortality and morbidity considerably higher than 

flexible sigmoidoscopy.  

 

Taking the above information into account and examining the evidence from the 

numerous trials that have evaluated the 2WW process since its creation in 2000 there 

appears to be a constant theme throughout. 10% appears to be the recurrent level of 

colorectal cancer detection with this particular route of referral, a far cry from the 

original 90% detection rate [139].A great amount of research and one can only 

presume resources have gone into the improvement of this practice but these figures 

remain around the same mark. The utilisation of alternative techniques in increasing 

the speed of diagnosis appears to have altered little other than achieving pre-set 

government targets. Taking this as point in case alternative methods of detection 

have been evaluated and in certain cases put into practice as illustrated below. 
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1.8.3 National Bowel Cancer Screening programme 

The philosophy of early patient identification is one that remains important for any 

malignancy, and whilst the 2 week wait may not have achieved its 90% target other 

methods of early cancer identification have been explored. The most recent of these 

is the Bowel Screening Programme, something that will be explored in further detail 

later in this chapter. Whatever method used in this process is however dependent on 

two main factors, One being patient participation, something without which stops 

any process before it has started, the second being the identification of factors 

pertaining to risk for colorectal cancer. 

 

Mandel et al. [80, 149]  demonstrated a high level of screening compliance with a 

reduction in mortality at 18 years, improved survival and detection of cancer at an 

earlier stage. Studies undertaken in both Denmark [150] and the UK [151, 152] also 

demonstrated a survival advantage with community screening using FOBT. This 

investigation forms the backbone of the recently introduced UK screening 

programme on a biennial basis in those individuals between the ages of 60 and 69 
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1.8.4 Non two week wait colorectal cancer detection 

 

An increased urgency in investigation of those referred via the 2WW system has led 

to an increase in demand for primary diagnostic tests such as flexible sigmoidoscopy 

or colonoscopy. Whilst these investigations may duly be warranted by the 

individuals concerned, due to the method of referral all must be undertaken within a 

pre defined timescale, leading to a diagnosis at 31 days from referral. With only 10% 

of these cases having colorectal cancer, in the region of 25-30% of all colorectal 

cancers over a year, 70% of colorectal cancers will present via alternative routes, and 

thus have to access these scarce resources in an alternative manner. Bowel cancer 

screening is one method of reducing deaths from colorectal cancer within the UK 

and is currently being rolled out. The aim is to detect bowel cancer at an early stage 

[153]  and is supported by a 16 percent reduction in death by colorectal cancer. 

Currently the process of bowel cancer screening is underway with all those aged 

between 60 and 69 being invited to participate on a two yearly basis via letter and 

information booklet. This will be followed by a Faecal Occult Blood test which has 

been quoted in some literature to have a 60% compliance rate [150] and as high as 

81% in others . For polyps ≥ 1 cm, sensitivity estimates range from 13 to 31% [154] 

[155]. Unlike sensitivity, the specificity of Hemoccult II is relatively good, ranging 

from 98–99% in large screening studies [155-158]. If a patient has a positive FOB 

test then they will proceed to further diagnostic tests. This process, whilst of benefit 

albeit to a small age range has some negative aspects, specifically the psychological 

anguish faced by those with a positive FOB and normal colonoscopy, leaving the 

individual and in some cases GP’s wondering how best to further investigate this 
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finding. These criticisms apart there is the undoubted positive aspect of earlier 

cancer detection as some of those who agree to screening will harbour a colorectal 

cancer and be asymptomatic from it, thus this modality of cancer detection is likely 

to grow in popularity over time. 
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1.8.5 Success of the 2ww system 

1.8.5.1 How the two-week wait criteria have worked 

 

Since its introduction in 2000 the two-week wait pathway has been intensively 

monitored with waiting times and diagnostic delay being comprehensively audited 

[159] . Not ignoring the benefits of early cancer detection, this process and pressure 

is only on clinics but also on diagnostic services within the hospital setting. With the 

detection rate of 10% the economic benefit of the system must be questioned. In 

addition to this further pressure was added in 2005 with the diagnostic and treatment 

targets 31/62 days respectively [138]. Chohan et al demonstrated that 92% of those 

with colorectal cancer presented with symptoms that have filled the high risk criteria 

[160]. The appropriateness of those referred under the two week rule has at times 

been questioned [161, 162]. Discrepancies have also been illustrated between referral 

letters and symptoms elicited within clinics [163]. 

 

Detailed analysis of referral criteria were undertaken by Flashman et al in which they 

reviewed all patients diagnosed with cancer in a 1 year period, a total of 249 

individuals. 41% of their cases were assessed in the two week wait clinics which on 

analysis proved to be a statistically higher diagnostic yield as opposed to routine 

clinics. They further showed that 39% of all those referred under 2 week wait criteria 

failed to fulfil at least one of the high risk criteria [164]. Although this study was 

carried out shortly after the introduction of the two week wait rule it highlights the 

fact that more than 50% of cancers in that institution still presented via alternative 
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routes, something that has been demonstrated in studies carried out since this time. 

Promisingly, however, as far as the high risk guidelines perform they found that 85% 

of all cancers presenting to outpatients had at least one of the high risk criteria. The 

point outlined above probably represents the main failing of the 2 week wait system, 

not the fact that the formulated guidelines are inappropriate, but rather that the 

implementation and use of these guidelines has been flawed in some respects. 

Perhaps improved adherence to the criteria within a primary care setting can address 

this problem [67, 165]. 
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1.8.5.2 Effect on Survival  

 

Whilst it is generally accepted that the two-week wait criteria have assisted in the 

identification of those with colorectal cancer the relationship of those to overall 

survival has not been ascertained. One study has shown more advanced disease to be 

more likely in those referred under the two-week wait system [163]. A review 

evaluating the impact of intensive follow-up on long-term survival reported a mean 

of 24 months following surgery for a relapse to occur [166]. Walsh et al did not 

demonstrate any statistically significant medium-term survival benefit in those 

patients presenting via the acute pathway[167]. In a similar study Bevis et al, who 

studied referral source in relation to stage of disease found that whilst a significant 

delay was recorded in time to see a specialist and initiation of treatment, no 

association with advanced disease or reduction in curative surgery was found [168]. 

 

Whether the two week wait system has grossly affected outcome in colorectal cancer 

may be unclear but it has provided primary care with a dedicated rapid access point 

to specialist hospital services. This however does come at a cost and, whilst open to 

abuse from certain quarters is a route of referral that is constantly under review, with 

additional methods of detection, such as bowel cancer screening programmes 

coming into operation. 
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1.8.6 Alternative detection methods 

 

Alternatives to both screening and the 2WW system have been under evaluation 

since the late 1990’s, one particular area of study has been the use of patient 

questionnaires. Logically this would seem a sensible avenue to explore, given the 

detection rate of the 2WW system and a paper by Selvachandran evaluated the 

accuracy of this method [169]. They assess all hospital referrals from primary care 

with distal colonic symptoms and provided these patients with a questionnaire to 

complete prior to hospital attendance, grading each according to a weighted scoring 

system (known as the Selva score). The patient questionnaire was extensive and 

probed not only a history of patient symptoms but also family history relevant to 

colorectal cancer as already explained earlier in this chapter. Whilst some of the 

questions were similar to the ACPGBI guidelines on the whole the questionnaire was 

more comprehensive in relation to a true patient history. They demonstrated that the 

patient questionnaire, in correlation with a weighted numerical scoring system 

allowed accurate assessment of all referrals from primary care, prioritising those 

with symptoms indicative of colorectal cancer. Whilst this pathway has not been 

widely accepted into clinical practice it highlights that a system able to 

comprehensively assess all colorectal referrals and prioritise those at risk of 

colorectal cancer is achievable. A more recent study undertaken in Leicestershire 

further assessed the feasibility of the afore mentioned scoring system and compared 

it to the 2WW system in practice. The showed that the scoring system, when used 

with a cut off value of 70 had a similar sensitivity but greater specificity in detecting 

colorectal cancer when compared with the 2WW system [170]. 
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Evidence has clearly shown that the 2WW pathway has been unable to reach its 

intended target of 90% detection of those with colorectal cancer. Whether this is due 

to system abuse, patient history at initial presentation or an inherent wish for all 

patients to be seen as soon as possible is unclear. What has been shown is that with 

all the monetary investment and time that is ploughed into the 2WW system, the 

detection rate has remained a constant and, furthermore little has changed in terms of 

patient outcome. It would be correct to assume that the concept is very genuine but 

one has to question whether this concept has been somewhat muddied by political 

interference and the dreaded word ‘targets’. The notion of litigation within the 

medical sector is also something that has increased exponentially over the past 

decade and it would be ignorant not to assume that this has not played a role in both 

patient referral and investigation requests 

 

What has been demonstrated by studies is that the use of patient targeted 

questionnaires can increase the sensitivity and maintain a comparable specificity to 

the current system. Obtaining a sensitivity and specificity of 100 percent is, in all 

practical terms an impossible feat to obtain but it should be possible to increase 

current practice levels utilising the afore mentioned targeted questionnaires. Whilst 

the concept of a weighted, questionnaire based patient scoring system may appear 

unattractive to clinicians, the available evidence at this time illustrates that it is an 

area worthy of further investigation. No system will achieve perfection, but with 

advances in technology and novel techniques in data exploration and analysis it 

should be possible to develop a system that achieves an improved sensitivity and 

specificity compared to current practice 
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1.9 Data Mining 
 
 
 

1.9.1 Introduction 
 

Over the past two decades there has been a rapid increase in the amount of medical 

data available for research. This can be attributed not only to advances in new 

molecular genetics techniques such as protein identification genomic sequencing but 

also due to the increased use of computerised technology within hospital setting. 

Digitisation of medical information such as blood results, radiological investigations 

and patient information have resulted in vast quantities of data specific to patient 

care being available for research. Whilst this data exists its rate of accumulation is 

far greater than the rate of interpretation for research purposes. 

In order to utilise this information as effectively as possible new techniques within 

medicine have been developed such as data mining, text mining and knowledge 

management. Whilst these processes are used effectively in government and business 

settings [171-174] the uptake from a medical point of view has been somewhat 

slower. 

Data mining is primarily a knowledge discovery process, analysing given set of data 

in order to identify potentially novel and useful patterns [175]. Techniques utilised 

range from Bayesian models to artificial neural networks and are used to illustrate 

patterns within the data that are unknown and unrecognised to the users [176, 177] 

Whilst data mining is an important component in the analysis of the status previously 

unrecognised patterns it can be used in conjunction with text mining, with an aim to 

extract information from textual data documents [178, 179] and also as part of 

generalised knowledge management [179]  
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Since the advent of the first computer there has been an array of systems built for 

engineering, business decision making and medical diagnoses [180]. The primary 

drawback to the vast majority of these systems is the manual acquisition of 

knowledge which, is an exceedingly labour-intensive and time-consuming process. 

These systems also draw heavily on human experts for data analysis. To try to 

address this somewhat lengthy process machine learning has been developed to 

acquire this knowledge automatically. This process has been defined as "any process 

by which a system improves its performance." [181] something which in medical 

fields would be classed as data analysis and primarily done using Bayesian statistics. 

 

Data is omnipresent and whilst the amount of data that is collected can to the human 

eye appear overwhelming within a substantial quantity of it lies valuable 

information. The extraction of this information, given the colossal amount of 

variables is something that requires the assistance of an automated computational 

process. The technique of data mining is primarily about problem solving by 

analysing data already present within a database. The process searches the 

characteristics within the data set allowing distinguishing characteristics to be 

extracted. It is a process of discovering data patterns leading to a meaningful 

outcome measure. The ultimate goal of data mining is prediction, usually consisting 

of three distinct stages, and initial exploration, model building and deployment. 

 

Exploration of data combines data preparation and some preliminary feature 

selection. This process may involve the cleaning of data, transformation of data and 

selection of subsets. Depending upon the nature of the problem further analyses may 
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be required using a variety of statistical and graphical methods allowing 

identification of the most relevant variables and to provide information on the 

complexity and nature of the models. Following appropriate data exploration various 

data mining models can be considered, the most appropriate model being chosen 

based on outcome prediction. A variety of techniques exist to achieve this step many 

based on competitive evaluation of models, a process essentially of comparing the 

same data set on numerous different models and comparing the performance. These 

techniques include bagging, boosting, stacking and meta-learning. Following 

successful modelling, deployment of the appropriately identified data mining 

techniques is undertaken. This applied to a virgin data set and is utilised to generate 

predictors of expected outcome. The most important difference between data mining 

and exploratory data analysis and data mining focuses more on application than on 

the basic underlying phenomena. Data mining is therefore less concerned with the 

identification of relations between variables, focusing more on the production of a 

solution that can be utilised in the generation of accurate predictors. A black box 

approach is therefore generally accepted utilising not only traditional techniques but 

also techniques such as artificial neural networks 
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1.9.2 Neural Networks  
 

McCulloch and Pitt in the 1940s [182] were the first to exploit computational 

mathematical models, consisting of a single neurone utilised to construct a network 

able to analyse basic Boolean logical functions. While a fundamentally important 

step these networks in conjunction with very early designs computers were too 

inflexible to be used as cognitive models. Most current neural networks have 

learning rules arising from statistical correlation analysis and gradient descent search 

procedures. In addition, work by Hebb [183] using learning rules that incrementally 

modify the connection weights based on the ON/OFF allocation to the two 

connected nodes is still used with some modifications.  

It was not until the 1950s when Rosenblatt, a psychologist [184] added to the 

development of ‘artificial neural networks’ viewing the brain as an associate of 

learning stimuli and trying to simulate this electronically. To achieve this he 

postulated a new class of networks based on the ‘perceptron’ neural model and 

utilising association learning rules based on descent gradients, in its simplest form 

three layers of designated cells. Learning is undertaken as source material in the first 

layer of cells connected ‘randomly’ to the central otherwise known as ‘association’. 

The output response is not only influenced by positive neuronal association but also 

from inhibitory association as the result of a lack of input. This process enabled 

Rosenblatt to demonstrate that such runs have the ability to not only generalise but 

were also capable of learning, using pre-entered data. This method of learning 

further subdivided into two categories, forced learning and competitive learning. 

Forced learning utilises a specific pattern of inputs to activate a particular response, 

allowing the neurone to grow in strength with recurrent cycles of exposure, 

ultimately to the point where the response neurone is activated appropriately. 
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Competitive learning conversely utilises the continued activation of association units 

whilst various responses gain in strength. This allows for increased sensitivity to 

particular input types.  

 

The further development of Neural Networks with ADALINE (adaptive linear 

neurone) followed by multiple network ADALINE’s known as MADALINE 

(multiple adalines) by Hoff and Widrow took the concept further [185, 186]. These 

methods differed from Rosenblatts work by using a simple neural element in 

addition to developing the least mean square supervised learning procedure. 

 

The theory of associated memory in the 1970s was once again an important step in 

the development of neural networks. This theory is based on the stored pairing of 

patterns, the presentation of one pattern evoking the associated pattern therefore 

allowing the content to be regarded as addressable. Further work with linear 

associated models allowed within the network's output is preventing infinite growth 

as the model strives to identify a solution. 

 

Further modelling of networks was undertaken by Fukushima [187, 188] based on 

biological visual systems. These feed forward networks learn through both 

supervised and unsupervised methods, utilising connected layers such that vague 

features can be recognised and thus cumulatively combined into an identifiable 

output object. Such methods are used routinely for the recognition of handwriting. 
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Werbos,  [189] with the development of the back propagation algorithm made one of 

the most important developments in neural network research. This algorithm has the 

ability to adjust the weights in a multi layer feed forward network. The technique has 

since been described further and is vital in the use of artificial neural networks to 

solve nonlinear problems [190-192]. 

 

The structure of a NN was distinguished by Rumelhart and McClelland [193] as: 

• a set of processing units 

• a state of activation for each  unit  

• connections between units, defined by a weight that effects the output signal 

• a propagation rule  

• an activation function 

• an external input 

• a learning rule 

• a working environment  

 

Within the network, units can be further defined as input units (i.e. receive input data 

from external source), hidden units (input and output signals are ‘hidden’ within the 

network) and output units. Units are connected such that the total input is ‘weighted’ 

via a mathematical rule before a ‘threshold’ is reached and the unit fires in either a 

linear, semi-linear, sigmoid or hyperbolic tangential function. 
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1.9.2.1 Network Topology 

 

Connection patterns within networks fall into two categories, the Feed-Forward 

network where data is processed over multiple layers in a forward direction only 

with no feedback connections and the Recurrent network where feedback 

connections are used. The Perceptron and Adaline networks constitute feed forward 

networks whereas recurrent networks have been presented by Anderson and 

Hopfield [194, 195] . 
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1.9.2.2 Network training 

 

Training of networks can be either by a priori knowledge or providing teaching sets 

of data and allowing the network to evolve and thus alter the weights according to 

the learning rule. This can be undertaken in a supervised or unsupervised manner 

depending on whether the input and output data is provided or simply input data 

inserted. Training and adjustment of weights is then undertaken, commonly using a 

variant of Hebbian learning or occasionally using the delta or Widrow-Hoff rule.  
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1.9.2.3 Network types 
 
 

1.9.2.3.1 Multilayer feed forward networks 

These networks have a number of layers, with the hidden layers taking input from 

the previous layer and sending it directly to the following layer (see diagram). No 

connections exist within the layers and the activation is related to the outcome of the 

function attributed to the unit based on the weighted inputs. 

𝑦𝑘(𝑡+1) = 𝐹𝑘�𝑠𝑘  (𝑡)�= 𝐹𝑘 ��𝜔𝑗𝑘  
𝑗

(𝑡) 𝑦𝑗 (𝑡) + 𝜃𝑘(𝑡)� 

.  

Back-propagation learning rules can be applied to allow the network to adjust the 

weights within the hidden layer and this improves the functionality of the network. 

Whilst this rule can be applied to networks of any number of layers it has been 

shown that provided the activation functions are non linear, only one layer of hidden 

units is required [196, 197]. 

                                      

     Feedforward Network 
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1.9.2.3.2 Recurrent networks 

 

Recurrent networks differ from feed forward networks as they allow connections 

between the hidden units. These can be based on reaching a stable point (attractor 

based) or ones where a learning rule is used after each propagation is performed. 

Examples of this type of network are the Jordan Network [198] where output unit 

values are fed back into the input layer as ‘state units’ and the Hopfield Network 

[195] which consist of a set of interconnected neurones which update their activation 

values asynchronously and independently of the other neurones with binary 

activation values. 
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1.9.2.3.3 Radial Basis Function Networks 

 

These networks use a radial base function to measure the distance between unit 

points and the centre resulting in a Gaussian function [199-201]. The hidden layer of 

units models the bell shaped response surface and as the functions are non-linear, 

more than one hidden layer is unnecessary. Whilst these networks have the 

advantage of modelling nonlinear functions with only one hidden layer they require 

the number of radial units to be decided initially with the centres and deviations 

being set. 

 

1.9.2.3.4 Self Organising Feature Map (SOFM) 

These networks are designed for unsupervised learning [200, 202, 203] allowing 

them to recognise clusters of data and relate these clusters to each other. They only 

have two layers, an input layer and output layer, also known as a topological map.  
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1.9.2.4  Effect of Hidden Units 

Variation in the number of hidden units is undertaken to identify the best fitting 

network for the input and output data. A large number of hidden units however can 

impede the ability of the network, causing ‘overtraining’. This is an effect whereby 

the network trains itself to fit the ‘noise’ of the training data rather than 

approximating it, resulting in a high error rate when the network is used with the test 

set. 

 

 

1.9.2.5  Effect of Hidden layers 

There is no ‘hard and fast’ rule regarding the number of hidden layers required in a 

neural network. Linear models and even mildly non-linear models have been shown 

to have better generalisation with no hidden layers [204]. Auer has also advocated 

the use of a single layer of weight in association with a parallel delta rule on grounds 

that it is a more realistic alternative in the modelling of biological circuits [205]. 

Conversely Sontag suggest two hidden layers in multi-layered perceptron’s with 

Heaviside/step/threshold functions and one hidden layer in MLP’s with a variety of 

non-linear activation functions are a more appropriate modelling method. [197].    
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1.9.3 Decision Trees 

 
The origins of decision trees can be traced back to the late 1950s and the work of 

Hunt, Quinlan and Breiman [206-208]. A decision tree has three main components: 

nodes, arcs and leaves, nodes containing a feature attribute, arcs being labelled with 

a feature value and the Leaf labelled with a class or category. Most decision trees use 

a top-down algorithm i.e. from the branch to the leaf. In addition a technique used as 

pruning is used to simplify decision tree by removing useless information. The 

structure of the decision tree allows it to be easily converted to a classification rule 

Amongst symbolic learning and rule induction techniques learning by example is 

shown to be the most promising approach for data mining. The concept behind this 

technique is the application of an algorithm that tries to best describe numerous 

classes within a training example. The ID3 decision tree algorithm [209] and the 

more recent variation C4 .5 [210] are the most widely utilised symbolic learning 

techniques. These methods use a decision tree and attempt to classify all objects 

correctly; finding the attribute the most appropriately splits data into different classes 

of information uncertainty. Once all attributes have been used the algorithm displays 

the results as a decision tree. Whilst these techniques may not be as powerful as 

neural networks or support vector machines with their accuracy they are more 

efficient and produce outcomes that are easier to interpret. 
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1.9.3.1 Classification of machine learning techniques 

Classification of the five main paradigms of machine learning occurred in 2004 

[176]. These five categories were probabilistic and statistical models, symbolic 

learning and rule induction, neural networks, evolution based models and analytical 

learning and fuzzy logic. 

 

Statistical Models 

Probabilistic models and techniques have the strongest foundation of all methods for 

data analysis. The statistical analysis using popular techniques such as regression or 

multidimensional scaling commonly used with the medical research and in papers 

that have utilised data mining techniques previously have been used as benchmarks 

for comparison.  

 

 

Bayesian classification  

With its roots in pattern recognition research, the Bayesian model [211] is likely to 

be the most popular probabilistic model utilised in medical research. Used to classify 

objects into predefined groups utilising specific features it defines the likelihood of 

each class, each feature and each feature giving each class-based on training data. 

Using these predetermined probabilities when a new instance is encountered the 

model attempts to classify it accordingly [212]. Variants of this model exist, 

specifically one called naive Bayes. In this variant all features are deemed mutually 
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independent in each class. Whilst Bayesian models have been widely used in 

medical data mining, research involving the models has been developed in more 

recent years. One such model is called a support vector machines [213] which uses 

statistical learning to identify and model the best separates classes within the data. 

This particular technique has been shown to perform well in document classification 

[214] and is also being used in medical research to classify disease states or identify 

specific diagnoses utilising patient information. 

 

 

Evolution based algorithms are analogous to Darwinian survival of the fittest and 

analogies of other natural processes. Genetic algorithms [215] are based on genetic 

principle, with population data undergoing a set of operations known as crossover 

and mutation. Crossover is a process aimed specifically at exploitation while 

mutation is aimed at exploration of the data. As with the Darwinian theory of 

evolution, there is a continuous filtering process selecting better solutions followed 

by repetition of the above sequence in order to produce a further generation, with 

selection of the best solution undertaken once again. Such algorithms are of great use 

in medical research being one of the most robust techniques for feature selection due 

to their global search capabilities. 
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Analytical learning utilises logical rules on which it performs reasoning in order to 

search for proofs. These proofs can then be arranged into more complex rules in 

order to solve similar problems. Whilst these traditional learning systems rely upon 

computing rules generally there is no distinction between the values and classes in 

the real world. This has been tackled by proposing fuzzy Logic Systems, allowing 

true or false values operate over numbers from 0 to 1[216]. 
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1.9.3.2 Methods of evaluation 

 

It is necessary to thoroughly evaluate any data mining system before it is put into 

practice. In cases of limited data availability estimating system accuracy is difficult 

to undertake [217] . Several methods are used for the evaluation process including 

bootstrap something, cross validation, holdout sampling and leave one out [218, 

219]. Each of the above methods has both strengths and weaknesses, many studies 

have compared in terms of their accuracy.  

The bootstrap method takes an independent and random sample from the original 

data set. These samples were then used to train the system allowing fresh data (in the 

remaining samples) to be used to test the system [219].  

Cross validation randomly divided the data into X subsets all of roughly equal size, 

generally this is 10 subsets and a process called ' tenfold cross validation ' is 

undertaken. In this process training and testing is undertaking with 10 iterations, nine 

subsets of data used for training and the 10th remaining subsets used for testing. This 

process is performed in rotation with the accuracy of the system being the average 

accuracy over 10 cycles. 

The holdout method splits the dataset into two subsets, the training set and the 

testing set. Generally speaking two thirds of the data is put forward as the training set 

with the remaining third being used for testing. Once trained the system will use the 

testing set to predict the outcome and accuracy  determined by comparison with the 

real output value. Leave one out is a variant of cross validation whereby the original 

dataset is split into multiple subsets of equal size. . Training is undertaken for N 
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iterations and as before n -1 instances are used for training purposes, the remaining 

used for testing. As before the accuracy is the average over the N cycles. 

 

Studies have compared the accuracy of the above methods however the ability to 

implement them should be taken into account. The easiest method to implement is 

that of holdout sampling however the training set and testing steps are not mutually 

independent. With up to one third of the data being removed from training the 

efficiency of this technique has been questioned [217] . The most unbiased method 

has been shown to the leave one out [220, 221] but its estimations have high 

variances and this is more pronounced with a small dataset. Independent comparison 

of all methods showed tenfold cross validation to be the most appropriate model 

selection. 
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Rule induction 

Rule induction systems are based on a process of if -- then rules, if X then Y 

For an example to be correctly predicted by the above rule, its attributes must fulfil 

the ‘if’ conditions. 

 

 

 

Decision tree induction 

Decision trees are constructed by choosing the most informative attribute of each 

step. Construction stops are when all data examples in a specific node are of the 

same class. This mode is known as a leaf and is labelled by the value of the class 

variable. Ideally each leaf has one class name label however some leaves may be 

empty if no training examples have attribute values leading to it all can be labelled 

by more than one class name. The most important feature for handling noisy data is a 

mechanism known as tree pruning. This is aimed at producing decision trees that do 

not over fit potentially erroneous data. Unreliable parts of the tree are eliminated 

therefore increasing classification accuracy of the tree on unseen cases. Techniques 

pruning are based on expected/predicted classification accuracy or expected 

classification error[210].  
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Instance-based learning  

 

Algorithms of this type require specific instances in order to perform classification 

tasks. These differ from the rule induction method which uses generalisations based 

upon if -- then rules. Instance-based learning on occasion is referred to as a lazy 

learning algorithm as they save part or the entire training set postponing inductive 

generalisation until the time of classification. They are based on the assumption that 

similar instances have similar classifications. As an algorithm they are derived from 

nearest neighbour classifier algorithms. In these algorithms all attributes are treated 

as a dimensional within a space with examples and specific points within this space.  
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1.9.4 Uses of Data Mining 

 

Recent years have seen an increase in the use of artificial neural networks and 

support vector machines within the medical field. The use of data mining techniques 

within health care is augmented by their predictive power. Algorithms have the 

ability to learn from prior examples within a clinical dataset; they then have the 

ability to model often complex nonlinear relationships between variables. Such 

patterns may very well be unclear when other analytical techniques are undertaken. 

The most extensively used data mining technique in the medical field is that of 

classification, used to analyse various signals and their relationship with diseases or 

symptoms. Neural networks have been utilised to classify outcome in post-operative 

colorectal cancer patients [222] and also to classify lung sounds in two distinct 

categories to assist diagnoses [223] data mining has also been used to extract 

diagnostic rules for breast cancer data [224] and also to identify new medical 

knowledge [225]. 

This process utilises patient data and corresponding diagnoses, allowing data mining 

techniques to diagnose outcome in new cases. This is undertaken using a predefined 

set of examples with known classifications. Each example is described by a fixed 

collection of features (known as attributes) each attribute can be discreet or 

continuous data. To correctly classify new cases different data mining processes can 

take different approaches. Sets of symbolic rules to generalise training cases can be 

constructed, and further analysed for accuracy when used to predict outcome in each 

separate data cohort. 
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1.9.4.1   Data Mining in Medicine 

 

The last decade has seen exponential increase in the use of data mining techniques in 

the field of medicine [226]. Initial studies into the use of artificial neural networks 

and medical purposes centred on the diagnosis of myocardial infarction[227]). 

Subsequent prospective studies have illustrated the ability of new networks to be 

able to outperform alternative computer packages statistical techniques and 

clinicians achieving sensitivities and specificity in excess of 95% [228]. Artificial 

neural networks have subsequently been both in the assessment of protein function 

[229, 230] used as supportive systems in the diagnosis of gastrointestinal bleeding, 

GORD [231], pancreatitis [232], obesity[233], pulmonary emboli[234], tuberculosis 

and cancer outcome. Within medical fields neural networks have further been 

utilised in imaging recognition[235], Cardiology [236, 237], Gastroenterology [238] 

Histopathology and cytology [239, 240]. The ability of neural networks at data 

recognition has also led to the development of their use in analysis of waveforms 

such as electrocardiograms, electromyograms and electro encephalograms. A further 

area within medicine that artificial neural networks have proven their worth is that of 

outcome prediction with the associated strengths and weaknesses of such 

practice[241]. The use of such techniques has been examined in many medical fields 

such as cardiac surgery [242-244], colorectal surgery [245, 246], anaesthesia [247] 

,breast cancer [248-251] and oncology [252] .  
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The use of logistical regression has since the early 1990’s been utilised in outcome 

prediction in a host of surgical specialities. Copeland’s initial work [253] , based on 

the weighting of input factors followed by logistical regression analysis has been 

modified, initially be Prytherch to formulate the P possum model [254] and 

subsequently by a number of surgical specialities [255, 256]. Whilst the validation of 

these scoring systems has been addressed in a number of studies it consistently over 

compensates for mortality and morbidity in numerous circumstances. 

 

Neural networks have been used in intensive care setting with cardiology patients to 

try and predict mortality in outcome. With the continued increase in delivery costs 

the state of rationing within the health system specifically with expensive services 

the ability of the physician to identify patients who would benefit most from 

treatment courses is important. This not only optimises outcome for individuals but 

equally reduces costs across the board and along with it wastage. 

 

The first use of artificial neural networks in the area of chest pain was in 1989 [257]. 

It analysed 174 patients with anterior chest pain using a multi-layered network and 

categorised them into one of three diagnostic groups, high-risk low risk and non-

cardiac. Another application utilised was based on a retrospective analysis of 356 

patients admitted to the cardiac ICU. 120 of these had myocardial infarctions and the 

network was trained utilising back propagation on half of the patients with and 

without myocardial infarctionss prior to being tested on the remainder of the patients 
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who had not been exposed. Sensitivity for this procedure was 92% and the 

specificity  96% [228] [258]. Prior to this study the most accurate computer aided 

method of diagnosing myocardial infarction was 88% sensitivity and 74% specificity 

[259] A further study was undertaken independently analysing two types of network, 

one maximum likelihood and the other a least squares method.. Sensitivity 

specificity and accuracy were in the region of 86 to 80%. Further prospective 

analysis of 320 patients presenting with acute chest pain compared the diagnostic 

accuracy of the physician with that of the neural network. This demonstrated the 

physician's accuracy of sensitivity 78% specificity 85% and the network had a 

sensitivity of 97% and specificity of 96% respectively [227]. 

  

Possibly the most well known commercially available medical use for neural 

networks it the Papnet cervical smear programme. [260] This network has the ability 

to constantly assess cells taken from the cervix and assess for signs of precancerous 

or cancerous change. This has the benefit of allowing greater numbers of smears to 

be assessed and, in conjunction with clinical lab staff assessment allows more 

accurate assessment than human assessment alone. As with most cancers this is 

important as the early detection of cervical cancer allows prompt treatment and 

results in an almost 100% chance of cure.  

Artificial Neural Networks have also been analysed in the prediction of cancer 

survival in both breast and colorectal cancer [245, 261]. In the case of colorectal 

cancer an improvement in predicting mortality was achieved with a neural network 

when compared to clinical estimation (90% vs. 79%). Similar work in breast cancer 
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using backpropogation proved a more accurate predictor of survival compared to 

clinical evaluation alone. 

Further studies have evaluated the potential of Artificial Neural Networks at making 

a correct diagnosis. Fraser et al used radial base function networks to diagnose 

myocardial infarction, achieving sensitivities of 85.7% and specificity of 86.1%, 

results suggesting that this technique can accurately be used in clinical diagnosis 

[262]. Another study from Sweden trained and assessed a Neural Net in assessing an 

MI by examining the ECG and compared the results with an experienced 

cardiologist. Results demonstrated that in all but the most obvious MI the neural 

network was better at identifying abnormalities than the cardiologist [263]. 

Chu et al have utilised ANN techniques in the creation of a system to aid in 

managing those who present with GI bleeding to hospital. Pre-determining a set of 

input criteria they proceeded to assess the ability of a range of data mining and ANN 

algorithms in obtaining the correct diagnosis. Their results showed that whilst most 

of the computer models were effective, the RandomForest, a form of decision tree 

model proved to be the most accurate. [264] . 

 

The above examples demonstrate that these ‘black box’ methods of data analysis are 

able to draw valid and accurate conclusions to clinical scenarios. What they also 

show is that the outcome is dependent on the data used to train the model and the 

data model itself. This was demonstrated most effectively by Chu, proving that 

whilst all of the algorithms were effective in prediction there was one that was more 

effective. Accepting the above points then means that it is necessary to carefully 
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collect data in the first instance, ensuring that you collate all variables that are 

deemed relevant to the outcome and then assess them in multiple data mining 

algorithms, a process facilitated with programmes such as WEKA [265]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

1.10 Summary of Introduction 

 

As explained in chapter one, the current technique for identifying those with 

colorectal cancer, the 2WW system, whilst providing a rapid access service only 

detects between 25 and 30 % of colorectal cancers, only 10 % of those seen via this 

pathway.  Many alternatives in modality of assessment once referred have been 

explored such as telephonic triage, straight to test or the ability of the GP to send 

straight to colonoscopy. Once again, these improvements show similar detection 

rates, even though they do reduce patient waiting time. The basis of the 2WW 

system is a set of high risk criteria, identified by a panel of experts to be the most 

accurate way of a primary care physician identifying someone at risk of colorectal 

cancer. Evidence shows that these criteria, whilst indicative of colorectal cancer are 

also found in a wide range of other benign conditions, which are more prevalent in 

the community. There has been evidence to show that the use of a weighted scoring 

system can assist in increasing the diagnosis of those with colorectal cancer but this 

as yet has not been widely accepted or put into practice. 

 

Data mining techniques are of benefit to medical practice and studies have shown 

that they can be accurate in both image assessment, prediction of survival and 

clinical diagnosis.  Utilisation of this technique has been shown to be of clinical use 

in acute GI bleeding, facilitating diagnosis and destination of referral. Current high 

risk patient selection uses information obtained via the GP. By its nature this is 

second hand upon reaching the hospital and, as shown in studies already mentioned, 
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variations in GP interpretation of patient symptoms exist. Using the above data 

mining techniques, in conjunction with a pre-formulated questionnaire to explore the 

potential of creating an algorithm that is more accurate than the current process in 

identification of those with colorectal cancer or polyps would be worthy of 

assessment. The benefits of a successful algorithm are not only more accurate patient 

identification but on a wider spectrum would reduce the number of unnecessary 

‘urgent’ appointments thus freeing up clinical staff to undertake alternative duties. 
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1.11 Hypothesis 

The use of data knowledge discovery databases within industry and other medical 

areas indicates that it has functional uses in the detection of patterns within datasets 

that are not visible via standard statistical techniques. This may prove to be 

beneficial in the detection of patients with colorectal cancer therefore the aims of this 

thesis will be to: 

 

1. Establish a prospective database of patient symptoms with basic 

demographic data and diagnostic outcome 

2. Assess the data for referral patterns, symptoms associated with 

adenocarcinoma and symptoms associated with polyps as well as 

distribution of diagnoses within the data. 

3. Construct a logistical regression model for the data, assessing the accuracy 

of fit 

4. Using ANN, experiment with the datasets and different outcome 

classifications to determine the optimum model for outcome classification, 

altering the hidden layers and units. 

5. Using DM techniques, model the data further to assess whether alternative 

methods provide a more optimal modelling technique for the data. 

6. Compare the above techniques with that of two primary care physicians and 

2 post CCT Colorectal surgeons. 
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2 Methods 

 

2.2 Prospective Data Collection 

The author (JC) gained approval from the local Ethics Committee and approval 

within the trust. All patients who were attending the ‘2ww’ outpatient clinics at 

Castle Hill Hospital over a 12 month period were identified and invited to participate 

in the completion of an internal symptom questionnaire (Appendix A). The 

questionnaire is a linkert based questionnaire that covers most of the common 

symptoms that are seen in patients with colorectal carcinoma as per 1.1.4 with the 

addition of further information. Data collection was facilitated with the assistance of 

the colorectal nurse specialists (JE and MB) who aided clinic attendees in the 

completion of the questionnaires where necessary. 

 

Only patients attending the ‘2ww’ clinics were included in this data collection as 

they were deemed to have fulfilled the current referral criteria for this route. The 

collected data was entered into an Access database (Microsoft, Seattle USA) and 

Excel spread sheet (Microsoft, Seattle USA).   

 

Those attending clinic were then investigated as per local practice via Colonosocpy, 

BE, CT or MRI to determine the cause of their symptoms before attending a surgical 

outpatient clinic for review by one of the Colorectal consultants (JEH, JG, JRTM, 

RB, KC) or one of their team. All investigation results were reported or undertaken 

by appropriately qualified medical personnel working for Hull and East Yorkshire 

NHS trust. The diagnosis made at this clinic was taken as the final diagnosis and was 
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retrieved and correlated with the completed questionnaire. Where available the 

Haemoglobin of the patient at time of referral was also recorded 

Once correlation of the questionnaire to the diagnosis was completed the data was 

anonymised by the author with each dataset given a unique reference number.   
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2.3 Referral pattern analysis 

 

In October 2006 the 2ww referral pathway for suspected lower GI cancers was 

changed to facilitate earlier diagnosis or discharge. This resulted in dedicated 2ww 

referral clinics led by the colorectal specialist nurses (JE, MB and MH). These 

clinics comprise of initial clinical assessment and examination followed by flexible 

sigmoidoscopy at this initial visit. Following initial assessment and flexible 

sigmoidoscopy further investigations were initiated as clinically indicated prior to 

the patietns being reviewed by a consultant with all results.  

Data collected from this study was analysed, looking at outcomes such as fulfilment 

of referral criteria, rates of anaemia, factors associated with polyps and factors 

associated with adenocarcinoma. 
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2.4 Data Cleaning  

 

All data from the 777 patients was included in the study. As stated in 2.1 data was 

anonymised with only basic demographic data being included. Data was coded in a 

binary fashion where it was dichotomous. The final diagnosis was coded into the 

following data sets: 

 

Table 2.1: Table demonstrating data sets and binary outcomes 

  

The categorising of outcome diagnosis was undertaken to increase the breadth of 

models to be assessed given the variation in diagnoses commonly seen in those 

referred via the 2ww pathway. The classification ‘Urgent’ included patients with 

Cancer, Polyps, and IBD. The classification Normal / Abnormal related to those with 

any pathology other than haemorrhoids, this group included those with conditions 

such as cancer, polyps, inflammatory bowel conditions and diverticular disease.. 

 

 

 1 0 

Cancer/NoCacer Cancer Not Caner 

CancerPolyp/ Not Cancer or Polyp Not Cancer or Polyp 

Urgent/NonUrgent Urgent Non urgent 

Normal/Abnormal Normal Abnormal 
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Further sets of data were created for model analysis by varying the number of input 

variables. Input variables were adjusted based on: 

 

1. All variables 

2. ‘2ww’ based variables 

3. Variables based on univariate analysis (V2T) 

4. Variables selected on clinical knowledge 

Each set of outcomes was then modelled with each set of input variables. 
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2.5 Neural Network Design 

 

All data sets were taken by the author (JC) and entered into Artificial Neural 

Network software (Alyula Neurointelligence. USA). A multi-layered feed forward 

network was selected for experimenting with back-propagation for error reduction 

and learning. Outcome target measures were set and data was processed within the 

software package ensuring that its format was compatible for further analysis.  

Experiments were then undertaken on each dataset to evaluate the optimal 

architecture of the ANN. This was performed by altering the number of hidden units 

and hidden layers. A maximum of 2 hidden layers were used in modelling with the 

number of hidden units varying according to the number of input variables. A 

logistic (Sigmoid) activation function was used in modelling with the 5 best models 

being assessed further. Data was divided into a test, validation and training set for 

analysis with outcomes being assessed for sensitivity, specificity and Risk.   
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2.6 Data Mining Methods 

 

Using WEKA explorer and experimenter (WEKA), data sets were converted by the 

author to the necessary .arff format. This software uses JAVA code and is available 

on a general user licence. It is a powerful piece of software allowing analysis of data 

models based on a number of different model classifiers, ranging from simple linear 

regression to complex decision trees.  

 

 All datasets were then run through the software using the following classifiers in the 

experimenter: 
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Table 2.2: WEKA Classifiers 

 

Key     
     
     
1 .ZeroR  28 Grading 
2 OneR  29 LogitBoost 
3 BayesNet  30 MultiBoostAB 
4 NaiveBayes  31 MultiClassClassifier 
5 NaiveBayesUpdateable  32 MultiScheme 
6 Logistic  33 ConjunctiveRule 
7 MultilayerPerceptron  34 DecisionTable 
8 RBFNetwork  35 DTNB 
9 SimpleLogistic  36 JRip 
10 SMO  37 NNge 
11 SPegasos  38 PART 
12 VotedPerceptron  39 Ridor 
13 ADTree  40 BFTree 
14 IB1  41 DecisionStump 
15 IBk  42 FT 
16 KStar  43 J48graft 
17 LWL  44 LADTree 
18 AdaBoostM1  45 LMT 
19 AttributeSelectedClassifier  46 NBTree 
20 Bagging  47 RandomForest 
21 ClassificationViaClustering  48 RandomTree 
22 ClassificationViaRegression  49 REPTree 
23 CVParameterSelection    
24 Dagging    
25 Decorate    
26 END    
27 FilteredClassifier    
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2.7 Analysis of Methods 

 

2.7.1 Comparison of Methods 

Outcome data from this analysis was compared using the t test for significant 

difference in outcome prediction, with the most accurate models being further 

assessed in the explorer GUI 

 

2.7.2 Comparison with specialists 

Data from 100 respondents in an anonymous form was provided to two independent 

practicing primary care physicians (GP1 and GP2) and two post CCT Colorectal 

surgeons (C1 and C2). All variables recorded were provided from the study 

questionnaires. The assessing GP’s and Colorectal Surgeons assessed the 

questionnaires and were invited to identify those likely to have colorectal cancer 

based on questionnaire data. The responses were collected by the author (JC) and 

compared to the optimal data mining model.  
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2.8 Statistical Analysis 

All statistical analysis was undertaken using either SPSS17 (SPSS inc, Chicago, Il) 

or the WEKA software by the author (JC). 

Univariate analysis was be performed on basic demographics using descriptive 

statistics and frequencies and 2x2 contingency tables for Chi squared analysis. 

Analysis of the variables with an outcome of Adenocarcinoma was undertaken using 

logistical regression analysis by the author using Hosmer and Lemenshow’s χ2, 

Nagelkerke’s χ2 and the Wald statistic for variable association with output. 

 

Graphical display of demographic data was performed illustrating distribution of Hb 

levels and the distribution of actual outcomes within the study population. Further 

graphical analysis of models was be performed with ROC curves. 

 

The sensitivity, specificity, PPV, NPV and LR of each model was calculated and 

tabulated where appropriate. 

 

Comparison of models was undertaken with t tests and chi squared analysis. All tests 

were undertaken with a p <0.05. 
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Results 
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3 Results 

 

3.2 Patients 

 

Data was collated over the 12 month study period from July 2007 to July 2008. A 

total of 1212 patients were referred via the 2ww pathway, 777 completed the 

questionnaire successfully. A further 100 samples were collected for testing of 

models independently. Analysis was undertaken assessing referral patterns, 

Symptoms commonly found in those with adenocarcinoma, symptoms commonly 

found in those with polyps and the role of anaemia in the identification of those with 

colorectal cancer. 

 

3.2.1 Univariate analysis 

 

Mean age  67 years Range 20-96 

Sex Distribution  57% Male  

 

Frequencies are demonstrated in Table 3.1  
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Table 3.1: Symptom frequency 

 Yes No 

PR Bleeding 382 (49%) 395 (51%) 

Dark Red 731 (64%) 46 (36%) 

Bright Red 440 (57%) 337 (43%) 

On Motion 690 (89%) 87 (11%) 

On Toilet Paper 458 (59%) 319 (41%) 

Mixed with stool 650 (84%) 127 (16%) 

More than once in 6 weeks 486 (63%) 291 (37%) 

Mucous PR 616 (80%) 161 (20%) 

Pus PR 769 (99%) 8 (1%) 

Alteration in Bowel Habit 240 (31%) 537 (69%) 

Change in 12 months 731 (94%) 46 (6%) 

Constipated 601 (77%) 176 (23%) 

Loose Stool 451 (58%) 326 (42%) 

Diarrhoea 559 (72%) 218 (28%) 

Straining at defecation 624 (80%) 153 (20%) 

Complete Evacuation 275 (35%) 502 (65%) 

Urgency 483 (62%) 294 (38%) 

Pain at defecation 681 (88%) 96  (12%) 

Incontinence 701 (90%) 76 (10%) 

Abdominal Pain 415 (53%) 362 (47%) 

Lethargy 544 (70%) 233 (30%) 

SOB at activity 666 (86%) 111 (14%) 

SOB on stairs 684 (88%) 93 (12%) 
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Change in Weight 548 (71%) 229 (29%) 

Loss of Weight 595 (77%) 182 (23%) 

Loose Clothing 680 (88%) 97 (12%) 

Increased Weight 739 (95%) 38 (5%) 

Increased Appetite 751 (97%) 26 (3%) 

Decreased Appetite 638 (82%) 139 (18%) 

Aspirin 700 (90%) 77 (10%) 

Painkillers 682 (88%) 95 (12%) 

Polyp 752 (97%) 25 (3%) 

Ca Colon 773 (99.5%) 4 (0.5%) 

Ca Elsewhere 754 (97%) 23 (3%) 

Family Polyp 759 (98%) 18 (2%) 

Family Ca Colon 704 (91%) 73 (9%) 

Family Ca Elsewhere 660 (85%) 117 (15%) 

Relative polyp 775 (99.7%) 2 (0.3%) 

Relative Ca Colon 729 (94%) 48 (6%) 

Relative Ca Elsewhere 730 (94% 47 (6%) 

Crohns / UC 766 (99%) 11 (1%) 

Family Hx IBD 752 (97%) 25 (3%) 

Smoker 611 (79%) 166 (21%) 

Ex Smoker 480 (62%) 297 (38%) 

 

 

 



105 
 

There was a significant association between lower GI adenocarcinoma and the 

following variables following χ2 : 

 

 

• Blood mixed with stool  χ2 = 13.1   p<0.01 

• Mucus PR   χ2=  5.2  p<0.05    

• Alteration in bowel habit  χ2= 15.59 p<0.01 

• Loose stools   χ2=  12.87 p<0.01 

• Abdominal pain  χ2= 10.8 p<0.01 

• Decreased weight  χ2= 5.1  p<0.05 

• Ex smoker   χ2= 4.79 p<0.05 

 

Table 3.2: Significant variables at Univariate analysis – used as V2T group for 

model analysis 

 

 

These variables were isolated into a single data set and assessed against all models. 
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3.2.2 Referral Patterns 

 

Using the Referral pathway (fig 3.1) as the optimal model the route of referral of 

each patient was examined to assess local compliance with referral guidance. 

 

From the 777 referred as 2ww patients 174 (24%) failed to meet the high risk referral 

criteria as published [139]. 

 

 

Figure 1: Diagram of referral pathways for those with lower GI symptoms  

 

 

 

Further analysis was performed on those who did fulfil the high risk criteria to assess 

the number who met each measurable criterion and determine the number of polyps 

and cancers identified within each of those groups (table 3.3) 
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Table 3.3: Table demonstrating frequency of Cancer / Polyps found based on 2WW 

referral statements. 

 

 Total 

number 

 number 

Rectal bleeding with a change in 
bowel habit to looser stools 
and/or increased frequency of 
defecation persisting for more 
than 6 weeks 

 

163 

Adenocarcinoma 16 

Polyp 18 

Change in bowel habit as above 
without rectal bleeding persisting 
for more than 6 weeks (over 60) 

 

123 

Adenocarcinoma 10 

Polyp 12 

Rectal bleeding without anal 
symptoms (over 60) 

 

286 

Adenocarcinoma 36 

Polyp 27 

Hb <11g/dl in men*  

54 

Adenocarcinoma 1 

Polyp 8 

Hb <10g/dl women* (post 
menopause) 

 

44 

Adenocarcinoma 5 

Polyp 4 

* Not all patients had recorded Hb 
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3.2.3 Symptoms associated with Adenocarcinoma 

 

The dataset of those patients with a diagnosis of Colorectal Adenocarcinoma was 

analysed to assess the frequency of symptoms associated with this diagnosis. A total 

of 74 Adenocarcinomas were diagnosed in the study, accounting for 9.5% of the 

group. This level is in keeping with the findings in other studies of the percentage of 

patients referred via the 2ww pathway who have an underlying adenocarcinoma. 
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Table 3.4: Frequency of symptoms in those with diagnosis of Adenocarcinoma  

 

 

Demographics (n=74) 

Mean age   
    

70 years   
(range 39-89) 

Males    
    

46          (62%) 

  

Rectal Bleeding 
    

50 (68%) 

 Bright Red 
        

35 (70%) 

 Dark Red 
        

15 (30%) 

  

Change in Bowel Habit
    

50 (68%) 

 Constipation 
        

17 (34%) 

 Diarrhoea 
        

16 (32%) 

 Loose stool 
        

17 (34%) 

  

Abdominal Pain 
   

35 (47%) 

Weight Loss  
    

28 (38%) 

Anaemic per guidelines
     

6(8%) 

NEITHER rectal bleeding 
NOR CIBH  

11 (15%) 
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Figure 2: Hb levels in those diagnosed with adenocarcinoma 
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3.2.4 Symptoms associated with polyps 

 

Table 3.5: Table demonstrating frequency of symptoms in those found to have 

colonic polyps  

 

Demographics (n=89)  

Mean age   67 years 
 (range 23-92) 

Males   
   

44 (50%) 

  

Rectal Bleeding  
   

51 (57%) 

Bright Red  
       

38 (43%) 

Dark Red  
       

5 (6%) 

  

Change in Bowel Habit  
  

56 (63%) 

Constipation  
       

20 (36%) 

            Diarrhoea  
       

18 (32%) 

Loose stool  
       

18 (32%) 

  

Abdominal Pain  
   

42 (47%) 

Weight Loss  
  
  

27 (19%) 

Anaemic per guidelines  
  

6 (7%) 

NEITHER rectal bleeding NOR 
CIBH  

11 (13%) 
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3.2.5 Disease Distribution within cohort 

 

 

Figure 3: Chart demonstrating frequency of diagnoses in those referred to 2ww 

clinic 

Graph showing distribution of diagnoses 
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Logistical Regression analysis 

 

Logistical regression is a statistical method modelling data with a dichotomous 

categorical outcome variable (i.e. binary) and input variables that are either 

continuous or categorical. It enables the transformation of the data using a 

logarithmic function thus creating the effect of a linear relationship that is necessary 

for regression modelling [266]. As illustrated in fig 3.4 the logistic regression 

equation is similar to a linear regression equation, but in logarithmic terms. 

 

Figure 4: logistic regression equation 

 

𝑃(𝑌) =  
1

1 + 𝑒−(𝑏𝑜+𝑏1𝑋1+𝑏2𝑋2+⋯….𝑏𝑛𝑋𝑛+𝜀𝑖)
 

 

Data was analysed using logistical regression and tested for accuracy of fit using 

Hosmer and Lemenshow’s Chi squared R2
L and Nagelkerke’s R2

N. The contribution 

in the model of each independent input variable was assessed with the Wald statistic. 

Modelling was undertaken using SPSS 17.0 using the Forced entry model [267] to 

reduce the influence from any random data variation therefore provide more 

replicable results 

Table 3.6: Table demonstrating accuracy of logistical regression model 
 

Chi Squared -2 Log likelihood 

Nagelkerke R 

Square 

Hosmer and 

Lemeshow Chi S 

116.54  45 df         Sig <0.01 372.179a .298 1.29. 8df.   Sig .829 
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Table 3.7: Table demonstrating weighting of each variable in logistical 

regression analysis 

 

 
 

Variables in the Equation 

  
B S.E. Wald df Sig. Exp(B) 

 Male(1) -.796 .299 7.080 1 .008 .451 

PRBleeding(1) -.489 .747 .428 1 .513 .613 

DarkRed(1) -1.395 .635 4.827 1 .028 .248 

BrightRed(1) -.143 .639 .050 1 .823 .867 

OnMotion(1) .488 .505 .936 1 .333 1.629 

ONToiletPaper(1) -.074 .453 .026 1 .871 .929 

Mixedwithstool(1) -1.278 .450 8.067 1 .005 .279 

Morethanoncein6weeks(1) .488 .440 1.230 1 .267 1.630 

MucousPR(1) -.594 .354 2.809 1 .094 .552 

PusPR(1) -3.685 1.385 7.077 1 .008 .025 

AlterationinBowelHabit(1) .026 .478 .003 1 .957 1.026 

Changein12months(1) .485 .739 .431 1 .512 1.625 

Constipated(1) .319 .534 .357 1 .550 1.376 

Loosestool(1) .093 .430 .047 1 .829 1.097 

Diarrhoea(1) .601 .387 2.408 1 .121 1.823 

Strainingatdefecation(1) -.330 .498 .440 1 .507 .719 

Completeevacuation(1) .405 .317 1.634 1 .201 1.499 

Urgency(1) .253 .370 .466 1 .495 1.288 

Painondefectation(1) 2.838 .883 10.335 1 .001 17.074 

incontinence(1) -.133 .546 .060 1 .807 .875 

abdominalpain(1) -.199 .312 .405 1 .525 .820 

lethargy(1) -.020 .383 .003 1 .959 .980 

SOBonactivities(1) -.221 .541 .167 1 .683 .802 

SOBonstairs(1) -.580 .579 1.001 1 .317 .560 

ChangeinWt(1) 1.314 1.110 1.403 1 .236 3.723 
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LossofWt(1) -2.563 1.109 5.337 1 .021 .077 

Looseclothing(1) -.035 .503 .005 1 .944 .965 

IncWt(1) -1.568 1.193 1.728 1 .189 .208 

AppetiteInc(1) .629 1.190 .280 1 .597 1.876 

AppetiteDec(1) .156 .422 .137 1 .711 1.169 

Aspirin(1) -.062 .538 .013 1 .909 .940 

Painkiller(1) .296 .520 .324 1 .569 1.344 

Polyp(1) 19.486 6616.913 .000 1 .998 2.901E8 

CAColon(1) 19.283 18982.887 .000 1 .999 2.369E8 

Cancerelsewhere(1) .481 1.151 .174 1 .676 1.617 

FamilyPolyp(1) -.480 1.175 .167 1 .683 .619 

FamilyCaColon(1) .906 .808 1.256 1 .262 2.474 

FamilyCaElsewhre(1) -.234 .458 .262 1 .609 .791 

RelativePolyp(1) 17.309 25782.017 .000 1 .999 3.291E7 

RelativeCaColon(1) 19.100 4854.938 .000 1 .997 1.973E8 

RelativeCaElsewhere(1) 1.297 .878 2.179 1 .140 3.657 

CrohnsUC(1) 18.317 10418.510 .000 1 .999 9.017E7 

FamilyHxIBD(1) .637 1.208 .278 1 .598 1.891 

Smoker(1) -.059 .372 .025 1 .874 .942 

ExSmoker(1) -.096 .322 .088 1 .766 .909 

Constant -93.212 34654.905 .000 1 .998 .000 
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3.3 Artificial Neural Networks 

 

For a detailed review of Artificial neural networks please refer to sections 1.3.2, a 

brief summary follows. Artificial Neural Networks (ANN) are computer based 

models that are able to model data by computing weights between variables and use 

internal algorithms to learn from  errors within the analysis thus improving 

efficiency. 

 

For these experiments a Multi-layered Feed forward network was selected with back 

propagation for error reduction. Alyuda Neurointelligence 2.2 software (Alyuda, 

California, USA) was used to assist the author in the design and testing of the 

different ANN models. This is an industrial software package, used by both the 

research community and multinational corporations such as Boeing and NASA. It is 

very versatile and, unlike other software or trial packages is able to analyse data sets 

with more than 200 cases. 

 

The number of hidden layers and units was varied per dataset. A maximum of two 

hidden layers was used in model selection to try and avoid any ‘over fitting’ of the 

data. An Exhaustive search pattern was employed when assessing models allowing 

exploration of all topologies within the defined number of layers and units. The 

number of hidden units within the model was varied depending on the number of 

input variables and a logistic activation function was used for data analysis with a 

cross entropy network error function. The accept level was >0.5 and reject level 

<0.5. Output data was binary and related to the defined values within the data set 

being assessed. 



117 
 

3.3.1 Comparison of networks 

 

Attributes were selected by the author as stated in table 3.2. Three of the four groups 

were based on best knowledge and the remaining attribute selection was based on 

Univariate analysis outcomes per section 3.1. 

 

 

Data was analysed using ANN software. Following reprocessing of the data multiple 

experiments were undertaken to assess the optimal design of the network. This 

involved the variation of hidden layers and nodes to find the optimal network design. 

A comprehensive record of outcomes from this process can be seen in appendix 1. 

The best performing network design was then trained, validated and tested on the 

data using 500 iterations with comparisons done between two different algorithms; 

Quick Propagation and Online back propagation. The same process was undertaken 

for all data sets for each outcome variation. Results of this analysis are documented 

below. 
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3.3.1.1   All Variables 

 

Using the 46 attributes related to the dataset assessment of different network designs 

was undertaken. Variation in the number of hidden units and layers was as below: 

 Hidden layers:  1-2 

 Hidden units:  

  Layer 1: 7 - 115 

  Layer 2: 4 - 76 

Network designs, covering all possible combinations of units and layers per each 

outcome measure were assessed and verified with the top 10 networks compared for 

sensitivity, specificity, PPV, NPV and LR as per tables 3.8-3.11 
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3.3.1.1.1  

 

Table 3.8: Top 10 neural networks and accuracy at modelling prediction for all 

variables against outcome Urgent / Not Urgent 

 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 46-98-1 BP .63 .86 .11 .98 4.8 

OBP .57 .86 .01 .98 4.3 

2 46-94-1 BP .88 .96 .79 .98 26.2 

OBP .44 .88 .23 .95 3.8 

3 46-93-1 BP .93 .96 .77 .99 24.6 

OBP .74 .88 .18 .98 6.1 

4 46-9-1 BP .76 .92 .52 .97 10.1 

OBP .8 .88 .18 .99 6.6 

5 46-10-1 BP .75 .87 .08 .99 5.6 

OBP .66 .87 .12 .98 5.2 
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3.3.1.1.2  

 

Table 3.9: Top 10 neural networks and accuracy at modelling prediction for all 

variables against outcome Normal / Abnormal 

 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 46-61-

4-1 

BP .65 .68 .75 .57 2.1 

OBP .56 .75 .93 .22 2.3 

2 46-72-

4-1 

BP .63 .66 .76 .51 1.9 

OBP .81 .72 .70 .82 2.9 

3 46-99-

4-1 

BP .64 .66 .73 .56 1.9 

OBP .89 .78 .79 .90 4.4 

4 46-70-

5-1 

BP .64 .68 .77 .53 2.1 

OBP .86 .68 .61 .89 2.7 

5 46-51-

5-1 

BP .63 .69 .79 .50 2.1 

OBP .89 .69 .63 .92 2.9 
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3.3.1.1.3  

 

Table 3.10: Top 10 neural networks and accuracy at modelling prediction for all 

variables against outcome Cancer / Not Cancer 

 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 46-70-1 BP .88 .94 .43 .99 16.5 

OBP .90 .96 .62 .99 24.3 

2 46-77-1 BP .89 .94 .48 .99 16.9 

OBP .85 .95 .55 .99 18.8 

3 46-89-1 BP .90 .97 .6 .99 35.9 

OBP .90 .96 .66 .99 26.2 

4 46-23-

2-1 

BP .5 .91 .14 .98 5.9 

OBP .88 .95 .59 .99 21.3 

5 46-45-

2-1 

BP .66 .94 .41 .97 11.1 

OBP .92 .93 .31 .99 13.5 
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3.3.1.1.4  

 

Table 3.11: Top 10 neural networks and accuracy at modelling prediction for all 

variables against outcome Cancer or Polyp / Not Cancer or polyp 

 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 46-61-

4-1 

BP .66 .82 .22 .96 3.7 

OBP .68 .92 .69 .91 8.2 

2 46-51-

5-1 

BP .71 .92 .71 .92 9.04 

OBP .58 .83 .34 .93 3.66 

3 46-99-

4-1 

BP .58 .83 .34 .93 3.66 

OBP X .77 0 1 x 

4 46-61-

5-1 

BP .62 .84 .34 .94 3.89 

OBP .77 .92 .71 .94 10.2 

5 46-7-1 BP .63 .80 .13 .98 3.2 

OBP .82 .89 .59 .96 7.9 

  X= Incalculable 
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3.3.1.2 2ww selected variables 

 

Using the 18 attributes related to the dataset assessment of different network designs 

was undertaken. Variation in the number of hidden units and layers was as below: 

 Hidden layers:  1-2 

 Hidden units:  

  Layer 1: 3-45 

  Layer 2: 2-36 

1548 network designs, covering all possible combinations of units and layers per 

each outcome measure were assessed and verified with the top 10 networks as per 

tables3.12-3.15 
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3.3.1.2.1  

 

Table 3.12: Top 10 neural networks and accuracy at modelling prediction for 2ww 

selected variables against outcome Urgent / Not Urgent 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 18-5-5-

1 

BP .42 .85 .02 .99 3.0 

OBP X .79 0 1 X 

2 18-43-1 BP X .85 0 1 X 

OBP .79 .87 .17 .99 6.5 

3 18-31-1 BP .66 .86 .04 .99 4.8 

OBP .78 .90 .40 .98 8.5 

4 18-30-1 BP .82 .90 .37 .98 8.6 

OBP .85 .87 .15 .99 6.8 

5 18-19-1 BP .53 .86 .07 .98 3.9 

OBP .87 .88 .24 .99 7.7 

  X= Incalculable 
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3.3.1.2.2  

 

Table 3.13: Top 10 neural networks and accuracy at modelling prediction for 2ww 

variables against outcome Normal / Abnormal 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 18-6-

15-1 

BP .75 .72 .74 .72 2.6 

OBP .58 .71 .87 .32 2.1 

2 18-6-

20-1 

BP .63 .69 .80 .40 2.1 

OBP .65 .66 .74 .56 1.9 

3 18-23-

23-1 

BP .65 .68 .75 .56 2.0 

OBP .59 .78 .92 .61 2.8 

4 18-32-

25-1 

BP .64 .67 .57 .55 1.9 

OBP .66 .72 .80 .55 2.3 

5 18-31-

29-1 

BP .64 .66 .74 .55 1.9 

OBP .57 .81 .95 .21 3.0 
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3.3.1.2.3  

 

Table 3.14: Top 10 neural networks and accuracy at modelling prediction for 2ww 

variables against outcome Cancer / Not Cancer 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 18-4-2-

1 

BP .35 .92 .23 .95 4.5 

OBP .33 .90 .02 .99 3.5 

2 18-30-

2-1 

BP .54 .92 .24 .97 7.2 

OBP .50 .90 .04 .99 5.4 

3 18-10-

4-1 

BP .70 .95 .51 .97 14.13 

OBP 0 .90 .0 .99 0 

4 18-17-

6-1 

BP .68 .93 .29 .98 9.8 

OBP 1 .90 .02 .1 10.7 

5 18-9-9-

1 

BP .55 .93 .40 .96 8.6 

OBP .66 .90 .05 .99 7.3 
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3.3.1.2.4   

 

Table 3.15: Top 10 neural networks and accuracy at modelling prediction for 2ww 

variables against outcome Cancer or polyp / Not Cancer or polyp 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 18-27-

5-1 

BP .73 .82 0.25 0.98 4.3 

OBP .67 .89 0.58 0.92 6.1 

2 18-32-

15-1 

BP .71 .83 0.28 0.97 4.3 

OBP X .78 0 1 x 

3 18-12-

20-1 

BP .67 .83 0.27 0.96 3.9 

OBP X .79 0 1 x 

4 18-43-

5-1 

BP .67 .83 0.29 0.96 4.0 

OBP .61 .91 0.67 0.88 6.7 

5 18-23-

6-1 

BP .69 .85 0.4 0.95 4.8 

OBP .68 .87 0.5 0.94 5.4 

  X= Incalculable 
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3.3.1.3    Selected variables through best knowledge 

 

Using the 22 attributes related to the dataset assessment of different network designs 

was undertaken. Variation in the number of hidden units and layers was as below: 

 Hidden layers:  1-2 

 Hidden units:  

  Layer 1: 3-55 

  Layer 2: 2-36 

1908 network designs, covering all possible combinations of units and layers per 

each outcome measure were assessed and verified with the top 10 networks as per 

tables 3.16 – 3.19 
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3.3.1.3.1  

 

Table 3.16: Top 10 neural networks and accuracy at modelling prediction for 2ww 

selected variables against outcome Urgent / Not Urgent 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 22-6-

31-1 

BP .66 .88 .21 .98 5.6 

OBP .82 .89 .28 .98 7.6 

2 22-42-

31-1 

BP .86 .98 .77 .98 23.5 

OBP .90 .93 .61 .98 16.8 

3 22-13-1 BP .75 .78 .16 .99 6.1 

OBP .90 .95 .69 .98 18.4 

4 22-48-

2-1 

BP .84 .88 .18 .99 7.1 

OBP .89 .90 .36 .99 9.3 

5 22-46-

4-1 

BP .88 .91 .42 .99 10.0 

OBP .90 .91 .43 .99 10.4 
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3.3.1.3.2  

 

Table 3.17: Top 10 neural networks and accuracy at modelling prediction for 2ww 

variables against outcome Normal / Abnormal 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 22-39-

9-1 

BP .87 .81 .82 .86 4.6 

OBP .85 .71 .68 .87 3.1 

2 22-28-

29-1 

BP .77 .78 .80 .74 3.5 

OBP .83 .77 .78 .83 3.7 

3 22-53-

10-1 

BP .86 .84 .85 .85 5.4 

OBP .71 .74 .79 .66 2.8 

4 22-3-

15-1 

BP .70 .68 .71 .66 2.1 

OBP .62 .67 .78 .48 1.9 

5 22-37-

19-1 

BP .70 .71 .76 .64 2.5 

OBP .88 .76 .74 .89 3.6 
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3.3.1.3.3  

 

Table 3.18: Top 10 neural networks and accuracy at modelling prediction for 2ww 

variables against outcome Cancer / Not Cancer 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 22-42-

2-1 

BP .61 .91 .10 .99 7.1 

OBP 1 .91 .12 1 11.8 

2 22-53-

2-1 

BP .88 .90 .72 .99 31.6 

OBP .81 .91 .12 .99 9.6 

3 22-32-

4-1 

BP .64 .91 .12 .99 7.5 

OBP .92 .96 .64 .99 25.7 

4 22-36-

4-1 

BP .87 .97 .74 .98 32.8 

OBP .87 .93 .37 .99 14.1 

5 22-44-

4-1 

BP .54 .91 .12 .98 6.1 

OBP 1 .92 .28 1 14.2 
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3.3.1.3.4  

 

Table 3.19: Top 10 neural networks and accuracy at modelling prediction for 2ww 

variables against outcome Cancer or polyp / Not Cancer or polyp 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 22-4-1 BP .68 .84 .33 .95 4.3 

OBP .29 .84 .58 .61 1.8 

2 22-28-

6-1 

BP X .78 0 1 X 

OBP X .78 0 1 X 

3 22-6-8-

1 

BP X .78 0 1 X 

OBP X .78 0 1 X 

4 22-8-6-

1 

BP X .78 0 1 X 

OBP X .78 0 1 X 

5 22-45-

12-1 

BP X .78 0 1 X 

OBP X .78 0 1 X 

  X= Incalculable 
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3.3.1.4 Univariate selected variables 

 

Using the 7 attributes, selected due to Univariate analysis the assessment of different 

network designs was undertaken. Variation in the number of hidden units and layers 

was as below: 

 Hidden layers:  1-2 

 Hidden units:  

  Layer 1: 1 - 18 

  Layer 2: 1 - 12 

234 network designs, covering all possible combinations of units and layers per each 

outcome measure were assessed and verified with the top 5 networks as per tables 

3.20-3.23 
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3.3.1.4.1  

 

Table 3.20: Top 10 neural networks and accuracy at modelling prediction for 

Univariate selected variables against outcome Urgent / Non Urgent 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 7-14-4-

1 

BP .65 .88 .23 .97 5.6 

OBP .72 .87 .11 .99 5.9 

2 7-4-6-1 BP .58 .87 .18 .97 4.6 

OBP 1 .85 .01 1 7.1 

3 7-15-8-

1 

BP .70 .91 .18 .99 8.1 

OBP 73 .86 .10 .99 5.5 

4 7-14-

11-1 

BP .60 .87 .16 .98 4.8 

OBP .77 .86 .60 .99 5.7 

5 7-12-

12-1 

BP .68 .86 .10 .99 5.2 

OBP .73 .86 .10 .99 5.5 
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3.3.1.4.2  

 

Table 3.21: Top 10 neural networks and accuracy at modelling prediction for 

Univariate selected variables against outcome Normal / Abnormal  

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 7-6-9-1 BP .62 .62 .70 .53 1.6 

OBP .57 .70 .88 .29 1.9 

2 7-10-

10-1 

BP .65 .60 .61 .63 1.6 

OBP .58 .70 .88 .60 1.9 

3 7-8-6-1 BP .62 .60 .55 .57 1.6 

OBP .58 .71 .88 .30 2.0 

4 7-15-

11-1 

BP .60 .59 .58 .50 1.4 

OBP .58 .70 .87 .32 1.9 

5 7-11-

12-1 

BP .60 .59 .68 .50 1.4 

OBP .58 .71 .89 .29 2.0 
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3.3.1.4.3  

 

Table 3.22: Top 10 neural networks and accuracy at modelling prediction for 

Univariate selected variables against outcome Cancer / Not Cancer  

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 7-1-1 BP X .90 0 1 X 

OBP X .90 0 1 X 

2 7-2-1 BP X .90 0 1 X 

OBP X .90 0 1 X 

3 7-3-1 BP X .90 0 1 X 

OBP X .90 0 1 X 

4 7-4-1 BP .33 .90 .01 .99 3.5 

OBP X .90 0 0 X 

5 7-5-1 BP X .90 0 0 X 

OBP X .90 0 0 X 

 X= Incalculable 
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3.3.1.4.4  

 

Table 3.23: Top 10 neural networks and accuracy at modelling prediction for 

Univariate selected variables against outcome Cancer or polyp / Not Cancer or polyp 

 

Order Design Method Sensitivity  Specificity  PPV NPV LR 

1 7-1-10-

1 

BP .52 .81 .23 .94 2.8 

OBP X .78 0 0 x 

2 7-9-1 BP .65 .81 .18 .97 3.5 

OBP .31 .86 .62 .63 2.3 

3 7-10-1 BP .74 .81 .15 .98 3.9 

OBP .24 .79 .22 .80 1.1 

4 7-11-1 BP .73 .81 .19 .98 4.0 

OBP X .78 0 1 X 

5 7-13-1 BP .71 .81 .19 .97 3.8 

OBP X .78 0 1 X 

  X= Incalculable 
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3.4 Data Mining 

 

Data mining was undertaken using the WEKA platform by the author (JC). Data was 

cleaned as per the method. Each experimental dataset was assessed using the 

experimenter function using the classifiers as listed in table 3.24. Each variation in 

dependent variables was analysed with each listed classifier to identify the optimal 

model for this data. Classifier outcomes were compared using t tests for significant 

differences in correctly predicting outcome against the baseline classifier (ZeroR). 

Detailed results of this analysis can be seen in tables 3.25-3.28. The top 5 classifiers 

were then assessed further, examining the sensitivity and specificity of the model at 

predicting the dependent variable when tested. Model comparisons are illustrated 

below in tables 3.29-3.32.  The numbers in the variables column relates to the name 

of the classifier used (listed in table 3.24). 
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Table 3.24: Table illustrating WEKA classifiers 

 

Key     
     
     
1 ZeroR  28 Grading 
2 OneR  29 LogitBoost 
3 BayesNet  30 MultiBoostAB 
4 NaiveBayes  31 MultiClassClassifier 
5 NaiveBayesUpdateable  32 MultiScheme 
6 Logistic  33 ConjunctiveRule 
7 MultilayerPerceptron  34 DecisionTable 
8 RBFNetwork  35 DTNB 
9 SimpleLogistic  36 JRip 
10 SMO  37 NNge 
11 SPegasos  38 PART 
12 VotedPerceptron  39 Ridor 
13 ADTree  40 BFTree 
14 IB1  41 DecisionStump 
15 IBk  42 FT 
16 KStar  43 J48graft 
17 LWL  44 LADTree 
18 AdaBoostM1  45 LMT 
19 AttributeSelectedClassifier  46 NBTree 
20 Bagging  47 RandomForest 
21 ClassificationViaClustering  48 RandomTree 
22 ClassificationViaRegression  49 REPTree 
23 CVParameterSelection    
24 Dagging    
25 Decorate    
26 END    
27 FilteredClassifier    
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Table 3.25: Table comparing accuracy of WEKA classifiers as predictors (1) 

 

Dataset V2T   2ww 

Outcome 
CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent 
/ Non 
Urgent 

  
CA/ 
Polyp/
N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent / 
Non 
Urgent 

1 78.6 90.5 52.3 85.7   78.6 90.5 52.2 85.7 

2 78.6 90.5 57.2 85.7   73.7 86.5 61.3 81.1 

3 78.6 90.5 52.1 85.7   76.4 88.9 56.4 84.4 

4 78.4 90.5 52.1 85.7   77.8 89.1 58.4 85 

5 78.4 90.5 59.3 86.1   77.8 89.1 58.4 85 

6 78.3 90.5 58.3 85.9   74.7 87.1 58.1 82.7 

7 77.4 89 58.4 85.9   75 87.3 55.8 82.6 

8 78.2 90.3 58.6 85.4   77.6 89.3 56.8 84.6 

9 78.2 90.5 58.2 85.7   78.4 90.2 61.2 85.6 

10 78.6 90.5 56.2 85.7   76.9 89.4 58.9 85.1 

11 78.6 90.5 57.1 85.7   76.9 89.4 58.9 85.1 

12 78.6 90.4 58.2 85.6   78.6 90.5 52.3 85.7 

13 78.7 90.3 59.3 85.8   79.2 90.3 61 85.7 

14 69.7 83.4 54.5 77.5   69.7 87.2 51.3 79.7 

15 77.1 88.5 58.2 84.8   69.3 86.8 51.7 79.5 

16 78.5 90.4 58.1 85.3   73.5 88.9 55.6 82.6 

17 78.6 90.5 58.8 85.7   78.6 90.5 61.4 85.7 

18 78.7 90.5 58.6 85.9   78.6 90.5 62.5 85.5 

19 78 90.4 57.9 85.7   78.6 90.5 60.2 85.7 

20 78.3 90.4 57.9 85.7   76.7 90.3 54.6 85.4 

21 58 62.7 52.5 60.8   55.5 53.4 50.3 54.5 

22 78.6 90.5 58.2 85.5   75.2 88.3 57.3 83.4 

23 78.6 90.5 52.3 85.7   78.6 90.5 52.3 85.7 

24 78.7 90.5 58.8 85.7   78.8 90.3 59.8 85.4 

 

 = Statistically worse at the 0.05 
level compared to ZeroR 

 = Statistically better at the 
0.05 level compared to ZeroR 
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Table 3.26: Table comparing accuracy of WEKA classifiers as predictors (2) 

 

 Dataset V2T   2ww 

Outcome 
CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent 
/ Non 
Urgent 

  
CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent / 
Non 
Urgent 

26 77.4 90.5 56.7 85   78.2 90.5 60.4 85.7 

27 78.6 90.5 52.1 85.7   78.6 90.5 61.5 85.7 

28 78.6 90.5 52.3 85.7   78.6 90.5 52.3 85.7 

29 78.4 90.5 58.6 86   77.9 90.2 62.1 84.9 

30 78.6 90.5 56.3 85.7   78.6 90.5 61.2 85.7 

31 78.3 90.5 58.3 85.9   74.7 87.1 58.1 82.7 

32 78.6 90.5 52.3 85.7   78.6 90.5 52.3 85.7 

33 78.6 90.5 52.8 85.7   78.6 90.5 60.4 85.7 

34 78.6 90.5 56.9 85.6   78.1 90.5 61.2 85.7 

35 78.9 90.5 58.4 85.6   78 90.4 63 84.8 

36 77.9 90.5 58.4 85.3   78.7 89.6 61.4 84.5 

37 68.3 82.7 52.1 77   80.1 84.1 52.2 78.9 

38 77.3 89.8 59.1 85.7   73.1 88.9 55.8 83 

39 78.2 90.3 57.9 85.5   79.2 90.1 58.8 85.2 

40 77.7 90.4 57.8 85.2   78.6 90.5 54.8 85.5 

41 78.6 90.5 52.9 85.7   78.6 90.5 61.5 85.7 

42 77.7 90.5 59.9 86.3   73 87.1 55.6 80.3 

43 77.4 90.5 56.7 85   78.3 90.5 60.4 85.7 

44 78.4 90 59.5 85.8   78.3 88.8 60.8 84.6 

45 78.2 90.5 57.6 85.4   78.1 90.1 61.1 85.6 

46 78.6 90.5 56.6 85.7   77.7 89.8 57.3 85.1 

47 77.3 88.8 58.3 85.1   75.4 89.6 53.9 84.2 

48 76.6 88 58.1 84.4   69.8 86.5 52.1 78.5 

49 78 90.4 57.9 85.5   78.4 90.4 51.8 85.7 

 

 = Statistically worse at the 0.05 
level compared to ZeroR 

 = Statistically better at the 
0.05 level compared to ZeroR 
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Table 3.27: Table comparing accuracy of WEKA classifiers as predictors (3) 

 

Dataset Best Knowledge    
All 

Outcome 
CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent 
/ Non 
Urgent 

  
CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent / 
Non 
Urgent 

1 78.6 90.5 52.3 85.7   78.6 90.5 52.3 85.7 

2 73.7 86.5 61.3 81.1   73.8 86.5 61.3 81.1 

3 76.4 88.5 56.4 84.5   76.4 88.5 56.4 84.5 

4 76.9 90.8 58.9 85.1   75.1 90.7 57.4 85.5 

5 76.9 90.8 58.9 85.1   75.4 90.7 57.4 85.5 

6 74.9 87.5 57.7 82.7   73.3 85.4 57.4 81.8 

7 74.7 87.5 56.1 81.8   74.1 87.7 57.6 81.8 

8 77.5 90.3 58.4 85.4   77.9 90.5 52.3 85.6 

9 78.4 90.4 61.4 86.5   78.3 90.6 61.4 86.5 

10 77.3 90.2 59.7 86.1   76.3 89.5 59.4 84.8 

11 76.9 88.3 58.1 83.8   74.4 87.6 57.8 81.9 

12 78.6 90.5 52.2 85.7   78.6 90.5 52.3 85.7 

13 79 90.1 62.6 86.1   78.5 90.2 62.2 86.3 

14 72.1 88.3 56.1 80.7   72.1 86.7 56.6 81.3 

15 71.9 88.1 56.2 80.5   71.9 86.7 56.1 81.3 

16 76.9 89.1 59.2 82.6   74.5 88.5 56.3 83.2 

17 78.6 90.5 61.2 85.7   78.6 90.5 61.1 85.7 

18 79.2 90.5 62.4 85.6   79.2 90.5 62.3 85.5 

19 78.6 90.5 60.2 85.7   78.6 90.5 60.1 85.7 

20 76.6 90.3 54 85.3   76.8 90.3 53.1 85.2 

21 54 51.5 49.1 52.9   56.2 56.4 49.4 56.8 

22 75.8 87.8 58.1 83.8   75.9 88.1 57.1 83.5 

23 78.6 90.5 52.3 85.7   78.6 90.5 52.3 85.7 

24 79.1 90.6 60.6 86.3   77.8 90.8 59.7 86.1 

 

 = Statistically worse at the 0.05 
level compared to ZeroR 

 = Statistically better at the 
0.05 level compared to ZeroR 
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Table 3.28: Table comparing accuracy of WEKA classifiers as predictors (4) 

 

 Data
set Best Knowledge   

All 

Outc
ome 

CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent 
/ Non 
Urgent 

  
CA/ 
Polyp
/N 

Ca / 
No 
Ca 

Norm / 
Abnor 

Urgent / 
Non Urgent 

26 78.2 90.5 60.4 85.6   78.4 90.7 59.8 85.5 

27 78.6 90.5 61.5 85.7   78.6 90.5 61.5 85.7 

28 78.6 90.5 52.3 85.7   78.6 90.5 52.2 85.7 

29 78.4 90.8 64.1 86.3   78.1 90.8 61.6 86.3 

30 78.6 90.5 61.2 85.7   78.6 90.5 61.1 85.7 

31 74.9 87.5 57.7 82.7   73.3 85.4 57.3 81.8 

32 45.3 60.5 52.3 85.7   78.6 90.5 52.3 85.7 

33 78.6 90.5 60.4 85.7   78.6 90.5 60.2 85.7 

34 78.2 90.4 61.1 85.8   78.1 90.4 60.8 85.8 

35 78.1 90.1 63.5 83.3   78 90 62.9 82.5 

36 78.8 90.6 63.2 84.5   78.3 90.6 62.1 84.6 

37 70.7 84.3 51.6 79.1   71.1 84.5 51.9 79.2 

38 70.9 89.3 54.2 82.4   70.5 88.5 54.2 81.8 

39 78.6 90.4 55.4 85.4   78.6 90.7 59.5 85.4 

40 78.6 90.5 61.5 85.7   78.6 90.4 55 85.6 

41 78.6 90.5 61.5 85.7   78.6 90.5 61.5 85.7 

42 73.1 87.1 55.8 81.4   70.1 87.6 56.7 80.8 

43 78.3 90.7 60.3 85.6   78.1 90.9 59.8 85.6 

44 78.4 88.9 62.1 84.6   77.5 88.9 61.7 84.3 

45 78.2 90.6 61.6 86.4   78.3 90.7 61.5 86.4 

46 77.4 90.7 56.9 85.1   76.5 90.7 57.1 85.2 

47 76.5 90.1 54.9 84.8   77.1 90.4 55.2 85.3 

48 71.2 86.9 54.4 80.1   70.7 85.3 53.5 78.2 

49 78.5 90.4 51.5 85.7   78.4 90.4 51.3 85.7 

 

 = Statistically worse at the 
0.05 level compared to ZeroR 

 = Statistically better at the 0.05 
level compared to ZeroR 
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3.4.1 Model comparison 

 

3.4.1.1   

 

Table 3.29: Top 5 WEKA models demonstrating predictive accuracy for data 

outcome Cancer / No Cancer. 

 

 Variables % CC Sensitivity  Specificity  PPV NPV LR 

1 All 42 88.4 .34 .92 .23 .95 4.3 

2 All 25 90.86 .62 .91 .11 .99 7.1 

3 All 24 90.34 .45 .90 .06 .99 5.0 

4 Jc 4 89.6 .18 .91 .03 .98 1.9 

5 Jc 5 89.7 .42 .92 .22 .97 5.4 
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3.4.1.2   

 

Table 3.30: Top 5 WEKA models demonstrating predictive accuracy for data 

outcome Cancer or polyp / No Cancer or polyp. 

 

Outcome 
B 

Variables % 
CC 

Sensitivity  Specificity PPV NPV LR 

1 2ww 37 72.4 .33 .81 .29 .74 1.8 

2 2ww 13 79.8 .60 .81 .17 .96 3.1 

3 Jc 18 79.2 .65 .79 .07 .99 3.1 

4 All 18 78.9 .63 .79 .03 .99 2.9 

5 Jc 24 79.1 .58 .80 .09 .98 2.8 
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3.4.1.3   

 

Table 3.31: Top 5 WEKA models demonstrating predictive accuracy for data 

outcome Urgent / Not Urgent 

 

 

Outcome 
C 

Variables % 
CC 

Sensitivity  Specificity  PPV NPV LR 

1 Jc 9 86.4 .62 .91 .12 .99 6.7 

2 All 45 86.5 .67 .87 .10 .99 5.1 

3 All 29 86.4 .61 .87 .13 .99 4.7 

4 All 13 85.0 .42 .87 .14 .97 3.3 

5 V2T 42 86.0 .55 .87 .15 .98 4.4 
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3.4.1.4   

 

Table 3.32: Top 5 WEKA models demonstrating predictive accuracy for data 

outcome Normal / Abnormal 

 

Outcome 
D 

Variables % 
CC 

Sensitivity  Specificity  PPV NPV LR 

1 Jc 29 63.1 .63 .63 .371 .54 1.7 

2 Jc 35 62.4 .62 .62 .72 .52 1.7 

3 Jc 36 62.6 .63 .62 .69 .55 1.6 

4 2ww 18 61.2 .60 .63 .76 .45 1.6 

5 Jc 13 61.9 .62 .61 .69 .51 1.6 
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3.4.2 Assessment of ‘best fit’ 

 

The top 5 overall models in predicting outcome for each data set are illustrated 

below.  

 

3.4.2.1   

 

Table 3.33: Best performing KDD models for Cancer / Not Cancer 

 

 Model Topology Sensitivity Specificity LR 

1 ANN with all 
variables  

46-89-1 BP .90 .97 35.8 

2  ANN with best 
knowledge 
selected variables 

22-36-4-1 BP .87 .97 32.8 

3 ANN with best 
knowledge 
selected variables 

22-53-2-1 BP .88 .97 31.6 

4 ANN with all 
variables 

46-89-1 OBP .90 .96 26.2 

5 ANN with best 
knowledge 
selected variables 

22-32-4-1 OBP .92 .96 25.7 

 

 

 

 

 



149 
 

3.4.2.2    

Table 3.34:  Best performing KDD models for Cancer or polyp / Not Cancer or 

polyp 

 

 Variables Model Sensitivity Specificity LR 

1 ANN with all 
variables 

46-61-5-1 BP .77 .92 10.2 

2 ANN with all 
variables 

46-51-5-1 BP .71 .92 9.04 

3 ANN with all 
variables 

46-61-4-1 OBP .68 .91 8.2 

4 ANN with all 
variables 

46-7-1 OBP .82 .89 7.9 

5 ANN with 2ww 
selected variables 

18-43-5-1 OBP .61 .90 6.7 
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3.4.2.3   

Table 3.35: Best performing KDD models for Urgent / Non Urgent 

 

 

 Variables Model Sensitivity Specificity LR 

1 ANN with all 
variables 

46-94-1 BP .88 .96 26.2 

2 ANN with all 
variables 

16-93-1 BP .93 .96 24.6 

3 ANN with best 
knowledge 
selected variables 

22-42-31-1 BP .86 .96 23.5 

4 ANN with best 
knowledge 
selected variables 

22-13-1 OBP .90 .95 18.4 

5 ANN with best 
knowledge 
selected variables 

22-42-31-1 
OBP 

.90 .93 14.8 
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3.4.2.4   

 

Table 3.36: Best performing KDD models for outcome Normal / Abnormal 

 

 

 Variables  Model  Sensitivity Specificity LR 

1 ANN with best 
knowledge 
selected variables 

22-53-10-1 BP .86 .84 5.4 

2 ANN with best 
knowledge 
selected variables 

22-39-9-1 BP .86 .81 4.6 

3 ANN with all 
variables 

46-99-4-1 OBP .89 .79 4.4 

4 ANN with best 
knowledge 
selected variables 

22-28-29-1 
OBP 

.83 .77 3.7 

5 ANN with best 
knowledge 
selected variables 

22-37-19-1 
OBP 

.88 .76 3.6 
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3.5 Specialist comparison 

 

100 independent datasets were provided to two GP partners (GP1 + 2) and two 

post CCT hospital specialists in Colorectal Surgery (Sp1 + 2) for assessment. The 

information provided was per patient response to questionnaires thus the same level 

of detail as the KDD models received. The requested outcome for this analysis was 

simply Adenocarcinoma or Not Adenocarcinoma. No further information was 

provided to the assessors. The age and sex distribution within this cohort was similar 

to the main group, mean age was 66 years (range 23-90) and number of males within 

cohort was 48 (48%).    

  

 

 

 

 

 

 

 

 

 

 

 

 

 



153 
 

Figure 5: ROC curve comparing accuracy of GP’s with Colorectal Specialists at 

predicting outcome
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Table 3.37: Table demonstrating accuracy of clinicians in identifying those with 

lower GI cancer from questionnaire data 

 

 

Specialist % 

Correct 

Sensitivity Specificity 95% 

CI 

PPV NPV LR 

Gp1 62 0.12 0.95 .42-.83 .63 .62 2.5 

Gp2 68 0.15 0.95 .53-.90 .63 .68 3.2 

Sp1 81 0.26 0.97 .60-.96 .75 .82 10.0 

Sp2 82 0.27 0.97 .60-.97 .75 .83 10.6 
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3.5.1 Comparison of Clinicians with Models 

 

Assessment of the models against the specialists was performed using the same data 

that had been provided to the Clinical assessors. As the clinical assessment had been 

to solely predict the presence of a lower GI cancer the only dataset assessed was Set 

A (outcome Cancer / Not Cancer). 
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Table 3.38: Comparison of all clinicians and the top 5 KDD models 

 

 
Specialist % 

Correct 

Sensitivity Specificity 95% 

CI 

PPV NPV LR 

Gp1 62 0.12 0.95 .42-

.83 

.63 .62 2.5 

Gp2 68 0.15 0.95 .53-

.90 

.63 .68 3.2 

Sp1 81 0.26 0.97 .60-

.96 

.75 .82 10.0 

Sp2 82 0.27 0.97 .60-

.97 

.75 .83 10.6 

Model 1 93 0.55 .97 .58-

.99 

.62 .95 16.8 

Model 2 93 0.13 1 .34-

.79 

1 .92 X 

Model 3 93 0.13 1 .34-

.79 

1 .92 X 

Model 4 94 .43 .98 .44-

.91 

.6 .95 19.9 

Model 5 95 .63 .98 .58-

1 

.71 .96 28.7 
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Figure 6: ROC curve comparing top 5 KDD models and clinicians at accuracy of 
prediction 
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Discussion 
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4 Discussion  

 

4.1 Assessment of Referral patterns 

 

This thesis has confirmed that the proportion of patients referred via the 2ww 

pathway with colorectal cancer is approximately 10%. Univariate analysis using Chi 

Squared showed blood mixed with stool, mucus pr, alteration in bowel habit, loose 

stools, abdominal pain, decreased weight and ex-smoker to be significantly 

associated with colorectal adenocarcinoma (p<0.05) which are all symptoms that 

would clinically be associated with an increased suspicion of colorectal malignancy. 

Previous studies have shown abdominal pain, change in bowel habit and occult 

blood in the stool to be the most common presenting symptoms in colorectal cancer 

[268]. Rectal bleeding has been found to be present in up to 25% of cases of colon 

cancer [269] [270] with variation in quantity and colour. 5 demonstrated an 

incidence of 17.5% of colorectal adenocarcinoma in a series of patients 50 years old 

and younger.  

 

In total 164 patients (21%) of those in this cohort failed to meet any of the 2ww 

criteria as defined for urgent colorectal assessment. This is a significant number of 

individuals being assessed on an urgent basis with the associated utilisation of 

resources, not only clinical but radiological and managerial resources to ensure that 

the 31/62 breech date timeline is complied with. Similar percentages have been 

found in other studies evaluating the success of the 2 week wait process, Leung et al 

found 15% of referrals over a 12 month period in the West midlands to fail to meet 

referral criteria [271] and Smith et al found 49.6% of referrals to their colorectal 



160 
 

practice failed to conform to the guidelines[272]. Similar service evaluations in 

Cambridge  [160]  found 27% of 2WW referrals failed to meet the criteria, however 

of those with colorectal adenocarcinoma only 8% failed to meet the criteria. 

 

The use of anaemia as an accurate surrogate for lower GI cancer appears, certainly in 

this study to be a poor prognostic indicator. Only 8% of those with a colorectal 

malignancy were found to be anaemic per the current guidelines. Whilst it may be an 

important factor to consider it does not appear to be an accurate prognostic indicator 

in identifying those with a lower GI malignancy. Gastrointestinal blood loss remains 

the most common cause of iron deficiency anaemia in men and postmenopausal 

women with 5-10% attributed to colonic carcinoma [79] [273] [274] [275] [276] with 

numerous other pathologies identified on endoscopic evaluation. 
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4.2 Reflection of KDD methods 

 

The use of data mining software such as WEKA provides the user with a powerful 

tool in the search for patterns within the data set. This can be explored with an array 

of different classifiers which incorporate methods of attribute selection. Whilst it 

may seem logical that a data mining classifier such as a decision tree would be useful 

in determining a pathway for the identification of those with a lower GI 

adenocarcinoma they did not perform well within this cohort. It is possible that the 

data was too ‘noisy’ for the machine learning tools to define an accurate model for 

prediction or that there were insufficient actual cases of lower GI cancer within the 

cohort for these classifiers to make an accurate prediction. Previous studies 

comparing decision trees with ANN and logistical regression for diagnosing gastro-

oesophageal reflux also found the performance of decision trees to be inferior to 

ANN although they failed to hypothesise as to reasons for this[231].    

 

Whilst the classifiers used within this study are all suitable for the data as it was 

presented to the e software, it may be that an alternative method of attribute selection 

or an alternative scale for the data would have improved the model performance but 

within the e confines of this work these potentially infinite transformations were not 

explored further.  
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4.3 Reflection on ANN techniques 

 

Artificial Neural networks have been used in a number of fields of medicine with 

generally positive results and the outcome of this study correlates with this. The 

variability in the design of the networks made them very adaptive to the data cohort 

with the various combinations of hidden units and layers. Specific to colorectal 

cancer work has been done to assess the validity of outcome prediction for those 

with colorectal cancer based on pre, peri- and post-operative factors including 

histological staging[245]. This demonstrated a higher predictive accuracy with 

neural networks for both death and survival when compared to the prediction of 

clinicians. Similar studies have been performed using variants of Neural Networks 

such as the partial Logistic neural network (PLANN) [246] which allowed the 

creation of a web based survival prediction environment with the option of multiple 

online users. 

 

The input data obtained from the patient questionnaires is quite complex in relation 

to the diagnosis related to the symptoms of the patients. While it appeared that the 

WEKA classifiers did not manage to find clarity within this a number of the neural 

networks evaluated managed to predict outcome to a high standard. The neural 

network performance was of a high standard and accuracy with a larger number of 

attributes for selection when compared with models containing fewer attributes.  

Whilst it is generally accepted that 10 times as many datasets are required as 

attributes, something that this study complied with it is plausible that had the dataset 

contained more patient episodes then model refinement could have been furthered. 
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4.4 Reflection on comparison model 

 

The kind participation of two GP partners and colorectal consultants and their 

assessment of the test cases allowed the top performing models to be assessed with a 

‘virgin’ set of data. When comparing the clinicians and GP’s it was interesting to see 

the correlation in predictive accuracy between the clinical specialists, something that 

makes logical sense and is appropriate for their area of expertise.  

 

One major drawback of this assessment of acumen is the lack of realism; primarily 

that an error in this model does not relate to a negative outcome in a patient.  It is not 

realistic to suggest that such specificity would be a positive clinical attribute 

therefore the clinical index of suspicion that would instigate further appropriate tests 

is likely a lot lower than predicting the likelihood of a lower GI malignancy. In 

addition to this it is not only lower GI malignancy that is an important clinical 

finding; the majority of the other diagnoses seen within the cohort are in need of 

diagnosis and in some cases treatment. 

 

Overall in the comparisons between the Neural network models, GP’s and clinicians 

it was interesting to see just how accurate the Neural networks were in their levels of 

prediction. All of the neural networks performed better than their human 

counterparts in terms of percentage correct, sensitivity and specificity, PPV and 

NPV.  This consistent level of performance may make the use of neural networks 

feasible as a screening tool in determining which patients should be ‘fast tracked’ 

and which should be seen on a slightly less urgent basis therefore not focusing 

resources inappropriately. 
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4.5 Overall assessment of Study 

 

The study was able to compare a variety of KDD methods in the search for the most 

accurate model in terms of predicting the diagnosis of those referred as a 2ww 

patient. All of the models were based on the accuracy of the data provided in the 

patient’s response to the questionnaires. While this information was transformed into 

a binary response it cannot be ignored that ‘change in bowel habit’ for example can 

mean one thing to one person and something completely different to another. 

Notwithstanding this fact, this is the same sort of clinical information that is 

provided by the patient to either their GP or Hospital specialist therefore remains the 

foundation for the basis of further clinical investigation.  

 

Within the literature there are a few studies that have assessed prediction of 

colorectal cancer utilising both patient consultation questionnaires with scoring 

systems [169] and a smaller study from our unit that assessed the predictive capacity 

of neural networks for colorectal cancer found them to be of a higher predictive 

accuracy to clinicians although the training and validation sets were small compared 

to the number of variables assessed [277]. This study has corroborated the accuracy 

of neural networks at predicting those to be found with a colorectal malignancy 

compared to both alternative KDD classification methods and clinicians. This has 

been undertaken using robust methods of development, both of the neural networks 

and all appropriate KDD classifiers. 
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In terms of model development, a cohort of patient and their responses who all have 

a lower GI malignancy may have improved the accuracy of some of the KDD 

classifier models but it would not have been consistent with the environment that the 

model would be used in.  

 

The use of alternative outcome measures in the model design process was an 

important part of the development. As already alluded to there is a large amount of 

pathology within patients referred via the 2ww pathway despite the main diagnosis 

only being found in 10% of  cases. The ability to identify patients with a number of 

conditions and assess them on an urgent basis may be beneficial, not only in this 

dataset but in general for all patients referred from primary to secondary care. The 

best neural network model assessing outcome as Urgent / Non urgent had a 

sensitivity of 0.88 and specificity of 0.96. Once again the performance of the model 

deteriorated as the number of attributes used in its development was reduced. 
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4.6 Justification of methods 

 

4.6.1   

The 2ww referral pathway is the foundation for most urgent referrals from primary 

care with lower GI symptoms [139]. It was conceived in 2002 based on levels of 

evidence available at the time. These levels ranged between B (Fairly strong 

evidence) and D (Weak evidence) however there have been a number of subsequent 

studies undertaken to assess the accuracy of this referral pathway, all showing a 

similar low detection rate for colorectal cancer [162, 278-280]. 

 

Predictive accuracy is dependent on three primary components: 

1. Predictive power of prognostic variables 

2. Amount and quality of the data 

3. Ability of method to capitalise on the prognostic indicators 

These components require careful consideration prior to the conception of any 

predictive modelling task as they determine the suitable coding of variables, the 

collation of data, selection of models and based on the models how to measure 

model success. Within this study the majority of variables were Boolean in coding 

thus there was no requirement to collapse data into pre-determined categories as is 

commonly encountered. 
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Traditional statistical techniques for analysis of categorical data include logistical 

regression which makes linear assumptions between input variables and outcome. 

Such methods utilise the following function: 

𝐺 = 𝑏 + 𝑥1 + 𝑥2 𝑒𝑡𝑐 

The result of this function is then used to predict survival within this model.  

 

Alternative methods in KDD include data mining methods have been established for 

many years and have been used in a wide variety of situations [281] [282-284]. They 

incorporate many techniques, including ANN and decision trees in the process of 

exploring data. They have the benefit of active learning from the input data and 

allow large data sets to be analysed to find a model that best fits the ‘problem’ 

 

Medical problems are invariably complex and such tools have been used in various 

medical fields to improve rates of detection / prediction. Whilst there remains a 

conceptual issue with these methods when taken in conjunction with traditional 

statistical techniques they do enable the multidimensionality of the data to be 

assessed and thus may provide answers to complex problems that would not be 

available by more standard methods 
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4.6.2 Advantages of Data Mining Techniques 

 

Predictive modelling within medicine is more commonly based on regression 

analysis, a more traditional statistical technique therefore, as outcome measures are 

categorical, binary logistical regression is frequently used. Whilst this method of 

modelling is widely accepted and can be performed with relative ease on numerous 

software packages, with statistical theory to validate the model fit, they depend on a 

linear relationship between input variables and outcome.  

 

Data mining techniques differ in these assumptions and theoretically should offer 

advantages in complex modelling when compared to statistical approaches. They 

presume nonlinear relationships between variables and allow relationships between 

units to be arbitrary therefore permit the discovery of ‘rules’ that may not be 

apparent with more traditional methods. It is this ability of the KDD process that 

makes the technique worthy of assessment when modelling complex clinical 

outcomes.  
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4.6.3 Limitations of Data Mining techniques 

 

The primary limitation with data mining techniques is the apparent lack of 

transparency within the model. It is conceptually difficult to gain insight into how 

the model uses the input data to derive an output value. Certain methods are less 

obscure than others, decision trees for example allowing a schematic flow diagram to 

illustrate the data pathway. Others however have a ‘black box’ approach, such as 

ANN whereby unless the user undertakes feature extraction, a complex and time 

consuming approach to deriving the intricacies of the model, the method used to 

apply weights to attributes remains unknown. This conceptual lack of clarity is likely 

the main reason for hesitancy in the use of these methods more frequently. 

As with statistical methods the risk of ‘over fit’ is present in data mining 

methodology. There are a number of techniques that are used to avoid over fitting 

data to the model  such as cross validation, bootstrapping and data splitting [217, 

219, 285]. It is recognised and accepted that to accurately assess the predictive 

performance of the model a data set that was not part of the model-building process 

must be used. This, as is similar in regression analysis makes modelling small 

datasets difficult as over fitting can increase model error thus enforce erroneous 

conclusions.    
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4.7 Are KDD techniques viable in the identification of those with CRC? 

 

Despite best efforts in early detection colorectal cancer remains difficult to diagnose 

based on clinical symptoms alone. This is likely attributable to numerous factors 

such as stage of disease, location of tumour and patients themselves to identify a 

few. Efforts are on-going to increase the detection rate of those with colorectal 

cancer at an earlier stage within the UK in the form of the national screening 

programme and FOB screening [148, 151]. Whilst very sensitive this compliance in 

the screening population is variable [151, 153] likely due to the method by which the 

individual provides the samples. In addition to the above, the use of flexible 

sigmoidoscopy in a mobile setting is being evaluated to optimise detection rates of 

colorectal cancer within the general population[286] [287]. 

 

Notwithstanding above, Colonoscopy remains the gold standard method of diagnosis 

[13, 288, 289] for colorectal cancer and it is not within the bounds of this study to 

compare KDD methods to colonoscopy, nor was it the aim to compare these 

techniques with screening tools. The aim was to optimise the referral pattern in those 

who attended their primary care physician with symptoms and were referred onto 

secondary care for further assessment, attempting to classify those who needed more 

urgent assessment and as such potentially assist in the more appropriate distribution 

of resources. 

  

In this study KDD methods varied in their ability to predict patients with colorectal 

cancer. These ranged from the best model accurately predicting 95% of those within 

the dataset with sensitivity 0.63 and specificity 0.98. 
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In studies assessing prediction it is important to ensure the sample studied is 

sufficiently large to safeguard reliability. As such the ration of input variables to 

outcomes should be 10:1 [217] as failure to achieve this level has resulted in unstable 

models being created. In this study, all models explored had an appropriate ratio of 

input and output variables. 

 

The use of KDD has a broad spectrum across all fields of medicine. The most 

commonly used method to date has been that of ANN with studies showing 

comparability, if not some degree of superiority to traditional techniques. [290] [291] 

[236] [292] [237]. The nonlinearity and ability of ANN to learn has made their use 

attractive when trying to stratify and predict outcomes in the field of medicine. 

Studies assessing outcomes of mortality and morbidity following cardiac surgery 

have been undertaken with positive results [242]  

 

Alternative KDD methods used, specifically in the field of medicine include fuzzy 

logic classification systems such as PROAFTN [293] which has been applied to 

assist in diagnosing bladder tumours and acute leukaemia. Fuzzy KNN classifiers 

have been used and have been shown to produce a more robust model of prognostic 

markers than logistic regression and MLP’s [294]. Fuzzy rule generation in 

conjunction with breast cancer datasets has been used with accuracy rates of 97% 

[295] [296]. 
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The clinical environment in which a predictive system is used is the primary 

determinate of the model and its classification cut off point. In clinical settings such 

as this study’s model the optimal system is one that has a small number of false 

positives and no false negatives. This will result in preference being given to model 

sensitivity at the cost of specificity. Whilst there is no theoretical guidance as to how 

the ideal cut off point in an ANN is chosen it may be possible to alter the number of 

cut off points in the ROC curve but studies looking at this have shown minimal gain 

[297]). 
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4.8 Limitations 

The use of KDD is reliant upon the quality of information entered into the 

database for analysis. Whilst the data entry within this study was a direct 

reflection upon the answers given by patients regarding their symptoms it is 

feasible that the questionnaire may have been too complex. The initial 

questionnaire had been validated within a cohort of patients within the 

department however some additions were made prior to the distribution of the 

questionnaire for use within this study to try and increase the amount of data 

received. It is feasible that the addition of extra questions may have misled or 

confused those completing the questionnaire thus reducing its reproducibility. 

It is accepted that once any changes had been made to the questionnaire this 

should once again have been tested and validated on an independent cohort of 

patients both prior to and on attendance at a clinic to ensure that the answers 

were reproducible. Whilst this technique in itself may, due to human nature 

result in some anomalies it would allow the rigorous testing of the 

questionnaire and increase its validity within the setting of this study.  
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4.9 Conclusion 

 

The complexity of medical diagnosis remains challenging both to the physician and 

computation models. Risk prediction remains central to a clinician’s ability to 

successfully perform their duties, be it in a primary care setting, secondary or tertiary 

care. An array of tests and tools are at the disposal of those in a hospital setting, 

allowing the investigation of those deemed to be at increased risk of a condition. 

Clinicians use clinical evidence in conjunction with experience to initiate further 

investigations however there is variation in experience depending on the 

specialisation of the clinician.  

 

This study has shown that the use of KDD tools as an adjuvant to clinical acumen 

can prove beneficial in identifying patients with lower GI pathology therefore 

expedite their diagnosis and treatment. While it would be ill-conceived to suggest 

that such computer models can replace physician-patient interaction further work 

assessing the feasibility of models such as the ones in this study directing patients 

‘straight to test’ are worthy of consideration for both 2ww pathway patients and 

those referred in the low risk groups.  
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Appendix A 

Bowel Symptom Questionnaire 
We would be grateful if you could complete the following questions regarding 

symptoms you may have experienced recently. 

Once completed please sign the bottom as evidence of consent as explained on 
the information sheet 

 
1)Have you had any bleeding from your bottom 

 
- Was this dark red 

 - Was this bright red 
 - Was it on your motion 
 - Was it on the toilet paper 
 - Was it mixed with your motion 
 

 
Yes         No  
 
Yes         No     
Yes         No    
Yes         No     
Yes         No     
Yes         No     
 

2) Has this happened more than once in 6 weeks 
                         - If yes, how often? 
 

Yes         No     
 

3) Have you passed any mucus / slimy stuff from 
your bottom? 
                         - If yes, how often? 
 

Yes         No     

4) Have you passed any pus from your bottom in the 
past 6 weeks? 
                         - If yes, how often? 

Yes         No     
 

5) Has your bowel habit changed in the past few 
months? 
            - If Yes, how many times a day do you open 
them? 
 
            - If No, has it changed in the last 12 months  
  - Are you more constipated 
  - Are your motions looser than normal 
  - Have you had any diarrhoea 

Yes         No     
 
 
Yes         No     
Yes         No     
Yes         No     
Yes         No     

6) Do you have to strain to open your bowels? 
 

Yes         No     
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7) When you open your bowels do you feel as if you 
have completely emptied them? 
 

Yes         No     
 

8) Have you had any urgency when opening your 
bowels? 

Yes         No     
 

9) Do you have any pain when you open your 
bowels in the past 6 weeks? 
 

Yes         No     
 

10) Have you had any ‘accidents’ when opening your 
bowels recently? 
 

Yes         No     
 

11) Have you have any abdominal pain in the past 6 
weeks? 

Yes         No 
     

12) Have you felt more tired than usual recently? Yes         No 
     

13) Have you recently found yourself short of breath 
doing activities that previously caused you no 
problems? 
 

Yes         No     
 

14) Do you get Short of Breath walking up stairs? Yes         No     
 

15) Has your weight been stable in the past 6 
months? 
        
            - Have you lost any weight recently?    
            - Are your clothes looser fitting than before? 
            - Have you gained any weight recently? 

Yes         No     
 
Yes         No     
Yes         No     
Yes         No     
 

16) Has your appetite: 
 Increased 
 Decreased 

 
Yes         No     
Yes         No     
 

17) Do you take regular Aspirin Yes         No     
 

18) Do you take regular Painkillers Yes         No     
 

19) Have you ever had: 
 
 - Polyps in your bowel 
 - Bowel Cancer 
 - Cancer elsewhere 

 
 
Yes         No     
Yes         No     
Yes         No     
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20) With reference to your immediate family 
(mother, father, brother and sister), have they ever 
had: 
 - Polyps in the bowel 
 - Bowel Cancer 
 - Cancer elsewhere 

 
 
Yes         No     
Yes         No     
Yes         No     
 

             -If so who and at what age? 
 
 
 
21) With reference to other family members        
(aunts/uncles/cousins), have they ever had: 

- Polyps in the bowel 
 - Bowel Cancer 
 - Cancer elsewhere 

 
 
Yes         No     
Yes         No     
Yes         No     
 

             -If so who and at what age? 
 
 
22) Have you ever been diagnosed with 
Inflammatory Bowel Disease (Ulcerative Colitis / 
Crohns) 

Yes         No     
 

23) Has anyone in your family ever been diagnosed 
with Inflammatory bowel disease  

Yes         No     
 

             -If yes, what relationship? 
 
 
24) Do you Smoke? Yes         No     

 
25) Have you ever Smoked? Yes         No     
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