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Abstract 

Platelet activation is a critical physiological event, whose main role is to prevent 

excessive blood loss and repair vessel wall injuries. However, platelet activation 

must be controlled to prevent unwanted and exaggerated responses leading to the 

occlusion of the blood vessel. The endothelial-derived inhibitors prostacyclin (PGI2) 

and nitric oxide (NO) are known to play a critical role in the control of platelet 

activity, although the mechanism underlying their actions remains unclear beyond 

the triggering of cyclic nucleotides signaling pathways. The aim of this study was to 

improve our understanding of platelet regulation by cAMP signaling networks.  

We observed differences in cAMP signaling depending on the agonists used. Using 

phosphorylation of PKA substrates as a marker of PKA activity, it was observed that 

PKA substrates were phosphorylated and dephosphorylated at different time points 

in a unique temporal pattern. Consistent with this observation we found that 

individual PKA isoforms, PKA I and II, were localized in distinct subcellular 

compartments, with PKA I being identified as a lipid raft protein.  Our experimental 

data suggest that the localization of PKA I to lipid rafts is mediated by interaction 

with A-kinase anchoring proteins (AKAPs). Additionally, PKA signaling events were 

reversed when potential PKA type I interactions with AKAPs were disrupted with 

competitive peptides. Using this approach we found that the redistribution of PKA I 

to lipid rafts facilitated the phosphorylation of GPIbβ and the inhibition of von-

Willebrand factor-mediated aggregation. 

Our data also demonstrated for the first time that the chemical disruption of lipid 

rafts increased platelet sensitivity to PGI2, through increased cAMP production and 
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PKA activity. The mechanism by which this occurs may involve sequestering a 

population of adenylyl cyclase 5/6 to a location remote from Gαs.  

In conclusion, data presented in this thesis suggest differential roles of PKA 

subtypes in the regulation of platelet activity.  This involves, at least in part, the 

localisation of PKA I into specific subcellular compartments through an interaction 

with AKAPs. The potential presence of PKAII-AKAP interactions and the 

identification of specific AKAPs will be the main aim of future work.   
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Chapter 1: General Introduction 

1.1 Introduction 

Injury to the blood vessel wall initiates a complex physiological response to rapidly 

repair the damage and prevent blood loss.  This highly complex system, termed 

haemostasis, involves proteins and cells of the blood vessel wall, a group of cryptic 

plasma enzymes and circulating platelets. Platelets are small anucleate cells (0.2 to 

5µM in diameter) derived from bone marrow-residing megakaryocytes, whose only 

known role is to produce platelets and release them to the circulation (Deutsch and 

Tomer, 2006). The major biological role of blood platelets is the initial arrest of 

bleeding at sites of vascular damage thus playing a critical role in haemostasis. The 

dynamics of flowing blood push platelets to the edges of the blood stream, placing 

them in an ideal position to react rapidly and repair any injury in the vessel wall. 

Platelets circulate in a quiescent state maintained by a dynamic equilibrium that is 

imposed by the release of endothelium-derived antithrombogenic substances such 

as nitric oxide (NO) (Furchgott et al., 1984) and prostacyclin (PGI2) (Moncada et al., 

1976). These two inhibitors activate soluble guanylyl cyclase (sGC) and adenylyl 

cyclase (AC) respectively raising cyclic nucleotide levels (Schwarz et al., 2001). 

However, in the case of vascular injury, the equilibrium shifts towards platelet 

activation, but under a controlled manner to prevent occlusion of the blood vessel 

lumen.  

Pathological conditions of the vasculature such as atherosclerosis are thought to 

result in a decrease in the antithrombotic properties of the endothelium (Ruggeri, 
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2002). Moreover, defects in cyclic nucleotide signalling in platelets, either arising 

from a pathological condition or an inherited mutation, have been linked with heart 

diseases (Chirkov and Horowitz, 2007, Van Geet et al., 2009). All these factors result 

in a disruption in the dynamic equilibrium controlling the growth of a platelet plug. 

Consequently, the chances of complete occlusion of the blood vessel increases and, 

depending on the organ affected, results in a stroke or a myocardial infarction. This 

chapter will review current understanding of blood platelets, in particular the 

mechanism of activation and how this is controlled by the cAMP/PKA signalling 

system.  

1.2 Platelet formation 

 Platelets are generated from the cytoplasmic shedding of megakaryocytes in a 

process called thrombopoiesis. Megakaryocytes are large (50-100µM diameter) but 

rare (0.4% of bone marrow cells) cells that reside in the bone marrow. They evolve 

from heamatopoietic stem cells (HSCs) through a process called megakaryopoiesis, 

which involves a series of proliferation, differentiation and maturation stages (Patel 

et al., 2005). Mature megakaryocytes undergo nuclear and cytoplasmic maturation 

followed by formation of membrane extensions called proplatelets. Megakaryocyte 

organelles then travel from the cytoplasm into the peripheral proplatelet 

extensions. At this stage of thrombopoiesis, matured megakaryocytes start 

expressing platelet surface markers such CD42 and GPVI. They then migrate into 

the bone marrow sinusoids where they get released and enter the blood stream 

(Patel et al., 2005). Each megakaryocyte produces approximately 200-5000 

platelets (Italiano et al., 1999, Long, 1998). The average adult produces 1 x 1011 
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platelets per day, which circulate in the blood for approximately 7 to 10 days, to 

maintain a normal platelet count of 150 x 109 to 400 x 109 per litre (Kaushansky, 

2005). Platelet production rate is mainly regulated by thrombopoietin (TPO), a 

glycoprotein produced in the liver, kidneys and the bone marrow. When circulating 

unbound to its c-Mpl receptor on platelets, TPO triggers thrombopoiesis 

(Kaushansky, 2005).  

1.3 Platelet structure 

Platelets circulate in the blood stream in an inactive discoid shape. Upon activation, 

through interaction with the blood vessel wall, the inactive shape of platelets 

undergo fundamental morphological changes featured by transforming into a flat 

spread shape to cover the largest possible part of the injury. In addition, membrane 

protrusions, known as lamellipodia and filopodia, emerge and serve to bind and 

recruit more platelets to the site of the injury (Figure 1.1). The structure of each 

discoid platelet can be divided into a membrane and submembrane area, a sol-gel 

zone, which contains a meshwork of microtubules and actin filaments, and an 

organelle system (Hartwig, 2006).  
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Figure 1. 1: Electron microscopic images of platelet shape change 

(A) Discoid platelets imaged in the low-voltage high-resolution electron scanning 

microscope (LVHR-SEM). The wrinkled appearance of the outside of the cell 

resembles the surface of the brain. (B) A platelet at the early stage of activation 

(early dendritic platelet) imaged by LVHR-SEM. Surface of pseudopods is smooth 

compared with the wrinkled surface of the central body. (C) Early spread platelet. 

The wrinkles of the central body have started to disappear as the cytoplasm is 

spreading to fill the gaps between the pseudopods. (D) A fully spread platelet. 

Images and legend are adapted from figures in reference (White, 2007).    
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1.3.1 Platelet membrane 

The first contact point on platelet surface with the vascular wall is a very dynamic 

structure termed the glycocalyx. It is covered with various adhesive receptors and 

glycoproteins such as GPIb-IX-V and αIIbβ3, which enables platelets to react quickly 

once an injury has been detected. The glycocalyx sits on a lipid bilayer which has 

tiny folds known as the open canalicular system (OCS). This lipid bilayer is 

incompressible and unable to stretch. Therefore, the OCS plays an important role 

by contributing to the extra membrane surface needed for platelet shape change 

and spreading. The OCS also facilitates the entrance of small molecules to platelet 

cytoplasm (White, 1988). Underneath the membrane is a very important 

submembrane area that contains a thin filament system composed of proteins such 

as filamin and cytoplasmic tails of different receptors. This filament system 

facilitates signal transduction downstream platelet receptors by linking them with 

their cytoplasmic substrates and effectors. It also ensures the translocation of 

receptor complexes to the exterior surface of platelets (White, 1987). 

1.3.2 Platelet cytoskeleton 

Platelet cytoskeleton is a network of “rods and girders” that define and maintain 

the discoid shape in resting platelets and facilitates shape change and spreading 

when they are activated (Hartwig and DeSisto, 1991). From the membrane inwards 

the platelet cytoskeleton is composed of a spectrin-based membrane skeleton, 

which directly supports the cytoplasmic side of the membrane, then a microtubule 

coil that lines the perimeter of the platelet disc, and then finally, a firm network of 

crosslinked actin filaments that fills the cytoplasm. Myosin heads lean on actin 
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filaments and render them barbed leaving the other ends, with no myosin on them, 

pointed. The barbed ends are the only place in the cell where actin monomers can 

assemble. The pointed ends, however, has a low affinity towards actin monomers 

and therefore are the actin filament disassembly points (Carlier, 1993). These 

barbed ends are where the cytochalasin compounds bind and inhibit actin filament 

elongation (Hartwig and Stossel, 1979). When platelets encounter a vascular injury, 

they respond rapidly by disassembling the cytoskeleton structure that supports the 

inactive discoid shape and replacing it with a new structure that supports the 

spread active shape to seal off the damage (Hartwig, 2006).     

1.3.3 Platelet organelles. 

Platelets possess several secretory granules that have a very important role in 

establishing a repairing microenvironment at the site of the vascular injury. 

Examples of these granules are the α-granules and the dense granules, which can 

be distinguished according to their contents and their appearance under an 

electronic microscope. α-granules originate from megakaryocytes by homotypic 

fusion of trans-Golgi vesicles as well as heterotypic fusion of these vesicles with 

others obtained through endocytosis (Harrison et al., 1989, Harrison and Cramer, 

1993). Therefore, α-granules contain molecules that have a very wide array of 

functions. An elegant mass spectrometry study identified more than 280 molecules 

in these granules.  Most importantly, they have adhesive molecules such as von 

Willebrand factor, P-selectin and thrombospondin, plasma-derived proteins such as 

fibrinogen, fibrinolytic molecules that are important for clot remodelling such as 

PAI-1 and TAFI in addition to mitogens and growth factors such as IGF-1 and VEGF, 
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which play an important role in wound healing and angiogenesis (Reed, 2004). 

Recently, α-granules have been reported to participate in platelet non-heamostatic 

functions by releasing chemokines and some cytokines, which recruit an immune 

response into the site of the injury (Ren et al., 2008).  

Whereas α-granules contain a very versatile cargo, the contents of the dense 

granules support recruitment of remote platelets and the amplification of platelet 

activatory signal (See 1.4.3). They mainly release small molecules such as serotonin, 

ATP, ADP and Ca++ (Ren et al., 2008) (McNicol and Israels, 1999).  In addition 

platelets also contain a number of more generic granules that are required for 

cellular homeostasis and energy production. 
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1.4 Platelet activation 

When patrolling platelets in the blood lumen encounter a vascular injury, they 

become exposed to pro-thrombogenic extracellular matrix proteins such as 

collagen, von Willebrand factor (vWF) and laminin. These proteins act to arrest 

platelets through the binding of the proteins to various platelet surface receptors.  

Collagen and vWF have the capacity to activate platelets leading the synthesis or 

release of soluble platelet agonists, which act to propagate this activation response.  

These pathways converge on the activation of the key platelet receptor integrin 

αIIbβ3 leading to platelet aggregation, which in turn facilitates the formation of a 

haemostatic plug at the site of the injury (Figure 1.2) (Broos et al., 2011). 
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Figure 1. 2: Platelet adhesion and aggregation on the extracellular matrix (ECM). 

GPIbα-vWF interactions allow GPVI to interact with collagen, which triggers inside-

out signalling leading to the release of soluble agonists such ADP and TxA2 and the 

deployment of remote platelets to the site of the injury. Concomitantly, tissue 

factor (TF) triggers thrombin formation, which also activates platelets. Figure and 

legend are adapted from (Varga-Szabo et al., 2008).   
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1.4.1 Platelet adhesion to the vessel wall  

Under normal conditions and when the vasculature is intact, platelets almost never 

interact with the endothelium. However, at sites of vascular damage, platelets 

come into contact with a wide array of thrombotic components of the extracellular 

matrix (ECM) such as collagen, von Willebrand Factor (vWF), fibronectin and 

laminin to which they adhere. Platelet adhesion is the first step in platelet 

activation and is a coordinated process that involves tethering, rolling, activation 

and then stable adhesion. The outcome of platelet adhesion is the formation of a 

single layer of spread and activated platelets on the site of the injury, which in turn 

start releasing their granules to recruit remote inactive platelets and enlarge the 

growing thrombus (Varga-Szabo et al., 2008, Ruggeri and Mendolicchio, 2007). 

Numerous mechanisms are involved in platelet adhesion depending on the shear 

rate and the adhesive substrate that platelets come into contact with.  

At high shear rate (>1000 s-1) found in small arteries and stenotic vessels, platelet 

adhesion relies largely on the interaction of the A1-domain of vWF (exposed on 

collagen or in ECM) with its receptor GPIb-IX-V (GPIbα), which plays a key role in 

slowing down the fast flowing platelets, which facilitates collagen receptor binding 

(Huizinga et al., 2002). The absence of vWF and GPIbα are associated with von 

Willebrand disease and Bernard-Soulier syndrome, respectively, which confirm 

their importance in haemostasis (Salles et al., 2008, De Meyer et al., 2009). 

At lower shear rate (<1000 s-1) found in veins and larger arteries, interaction of 

platelets with collagen is more favoured. Platelets express several collagen 
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receptors on the surface, with the two best characterised of these are GPVI (Moroi 

et al., 1989) and the integrin α2β1 (Santoro, 1986). The differential role in platelet 

adhesion of these two receptors is a subject of intense debate (Nieswandt and 

Watson, 2003). The structure of GPVI is shown in figure 1.3. Through its 

transmembrane domain, GPVI is physically associated with the FcRγ chain that has 

an immunoreceptor tyrosin-based activation motif (ITAM) for signal transduction 

(Gibbins et al., 1996). Despite its critical role in platelet activation, this receptor has 

a low affinity to collagen and hence cannot, by itself, mediate stable adhesion 

(Verkleij et al., 1998). The reversible interaction between GPVI and collagen is still 

sufficient to induce signalling events activating integrin α2β1, which then through its 

high affinity to collagen stabilises platelet adhesion and allows GPVI to trigger signal 

transduction (Moroi et al., 2000, Watson et al., 2000).  

Recent elegant studies showed the existence of a synergistic cooperation not only 

between α2β1 and GPVI but also between α2β1 and GPIbα (Pugh et al., 2010). 

Despite its proposed inability to mediate stable adhesion on its own, the 

importance of GPVI in platelet activation is evident from experiments performed 

with GPVI-knockout mice whose platelets are unable to mediate stable adhesion 

(Nieswandt et al., 2001). 

The final step in platelet adhesion is the activation of αIIbβ3, through GPVI inside-out 

signalling (See 1.4.2). The activated form of αIIbβ3 mediates platelet firm adhesion to 

the ECM through its interaction with vWF. Furthermore, platelets can adhere to 
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immobilized fibrinogen, thrombospondin, laminin and other adhesive molecules 

(Hindriks et al., 1992, Savage et al., 1996, Jurk et al., 2003). 

Regardless of the agonist, platelet activation proceeds through the interaction of 

the ECM proteins with constitutively expressed receptors. These receptors, once 

ligated, activate signalling cascades that cause several key events to be initiated 

including (a) activation of integrin receptors, (b) shape change, and (c) secretion of 

granules, all of which are required for stable platelet adhesion and aggregation. 

  



Chapter 1 13 

 

 

Figure 1. 3: The structure of GPVI. 

The extracellular part of GPVI is comprised of two immunoglobulin domains which 

are carried by a mucine-like stalk which is rich in α-glycosylation sites. The GPVI 

cytoplasmic tail has a juxtamembrane region that interacts with FcRγ through its 

salt bridge, a basic region, a proline-rich region that attracts Src kinases and a C-

terminal. Figure and legend are modified from (Watson et al., 2005).   
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1.4.2 Platelet signal transduction 

1.4.2.1 Tyrosine kinase-mediated signalling 

This signalling pathway is triggered downstream several platelet receptors such as 

GPVI in response to collagen (Gibbins, 2004a), GPIb in response to vWF (Du, 2007) 

and CLEC2 by podoplanin (Watson et al., 2010). Tyrosine kinase signal transduction 

after activation of blood platelets involves a series of phosphorylation events that 

are spatially and temporally regulated and mediated by a plethora of kinases and 

scaffolding proteins (Figure 1.4).  

Glycoprotein VI exists in platelets as a multi-protein complex in which it is non-

covalently associated with Fc Receptor–γchain (FcRγ) (Gibbins et al., 1997). The 

significance of this receptor in platelet function is well established in the literature 

with some in vivo and ex vivo studies (Kato et al., 2003, Massberg et al., 2003). The 

binding of GPVI to collagen leads to GPVI clustering followed by the 

phosphorylation of the FcRγ at the ITAM by Src-family kinases Lyn and Fyn, which 

are physically associated with the cytoplasmic tail of GPVI by their Src homology 3 

domain (SH3) (Gibbins et al., 1996, Briddon and Watson, 1999). The 

phosphorylation of FcRγ provides a docking site for the Src-homology 2 (SH2) 

domains of Syk, which is phosphorylated and consequently activated (Shiue et al., 

1995). Activated Syk will phosphorylate its adaptor protein LAT (Zhang et al., 

1998a). LAT is the second docking site in this signalling cascade. This docking site 

attracts and activates several kinases such as phospho inositide 3-kinase (PI3K) and 

phospholipase C-γ2 (PLCγ2) (Gibbins et al., 1998, Gross et al., 1999) and as a result 
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places them in a close proximity with their substrates. PI3K generates 

phosphatidylinositol (3,4)-bisphosphate (PIP2) and phosphatidylinositol (3,4,5) tris-

phosphate (PIP3). PI3K activates other downstream enzymes including Akt (PKB), 

integrin-linked kinase (ILK) and PDK1 (Barry and Gibbins, 2002), although their roles 

in platelet activation are still unresolved. Critically the activated PLCγ2 generates 

two important messengers in platelet activation (Quek et al., 1998, Oda et al., 

2000). The first is inositol (1,4,5)-trisphosphate (IP3), which will mediate calcium 

release from intracellular stores, a process that is followed by the opening of 

storage-operated calcium channels allowing the influx of extracellular calcium 

(Varga-Szabo et al., 2009). The second is diacylglycerol (DAG), which activates the 

protein kinase C (PKC). PKC isoforms mediates platelet secretion and integrin 

activation, although the precise roles of individual isoforms remain unclear. In 

summary, tyrosine phosphorylation signal transduction in response to platelet 

activation results in elevation of intracellular calcium and activation of PKC. Both 

outcomes are important for platelet shape change, integrin activation and the 

release of various granule contents to the blood stream (Figure 1.4) (Hathaway and 

Adelstein, 1979, Shattil and Brass, 1987). 
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Upon the cross-linking of GPVI by collagen, the ITAMs of the FcRγ chain are 

tyrosine-phosphorylated by the Src kinases Fyn and Lyn, which are constitutively 

bound to the proline-rich domain of GPVI. Consequently, a Syk-dependent signal is 

triggered, which results in the formation of a LAT signalosome and the activation of 

PLCγ2 with the latter event being supported by Vav and Tec families. PLCγ2 is 

associated with Gads, SLP76 and PIP3. The outcome of PLCγ2 activation is the 

production of DAG and IP3. Figure and legend are modified from (Watson et al., 

2005).  

Figure 1. 4: Signalling cascade downstream GPVI. 
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1.4.2.2 Platelet activation through the activation of G-protein coupled receptors 

Platelets express multiple G-protein coupled receptors, which trigger both 

activatory as well as inhibitory signalling pathways (Offermanns, 2006). 

Heterotrimeric G-proteins are composed of an α subunit that in the resting state is 

bound to GDP and associated with a β and a γ subunit. Upon activation, the α 

subunit-associated GDP is substituted with GTP and concomitantly with the 

dissociation of β and γ subunits. The activation of G-proteins is terminated by 

intrinsic GTPase activity of the α subunit. 

Thromboxane receptors TP, the ADP receptor P2Y1 (Murugappan et al., 2004) and 

thrombin receptors PAR-1 and PAR-4 (Brass, 2003) are all linked to Gq proteins, 

whose main effector is PLCβ2 (Figure 1.5). Similar to PLCγ2, the activation of PLCβ2 

results in the production of IP3 and DAG, which increase intracellular calcium levels 

(Offermanns, 2006). In addition to Gq, TP and PAR receptors are bound to G12/13 

proteins, whose activation result in triggering the calcium-independent Rho/Rho-

kinase pathway, which regulates myosin phosphatase and results in the 

phosphorylation of myosin light chain (MLC) (Brass, 2003, Murugappan et al., 2004). 

The phosphorylation of MLC is thought to be critical to driving platelet shape 

change (Daniel et al., 1984). Moreover, other GPCRs such as P2Y12 are coupled to 

the inhibitory G protein Gi, which inhibits adenylyl cyclase (AC) and as a result 

blocks cAMP production (Dorsam and Kunapuli, 2004). The βγ complex of Gi has 

been reported to activate PI3Kβ, which activates a variety of downstream effectors 

such as Akt (PKB) and Rap1b (Garcia et al., 2010). 
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Figure 1. 5: Platelet signalling pathways induced by GPCRs 

Shown are signalling cascades downstream of TxA2, thrombin, ADP receptors that 

are coupled to G13, Gq and Gi proteins. Signalling downstream these receptors 

results in shape change, integrin activation, granule secretion and aggregation of 

platelets through Ca+2-dependent and independent pathways. Figure and legend 

are modified from (Offermanns, 2006).    
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1.4.2.3 Inside-out signalling and activation of integrin αIIbβ3 

The common outcome of platelet stimulatory signalling pathways is the activation 

of integrin αIIbβ3 in a process termed the inside-out signalling (Ma et al., 2007). The 

main purpose of inside-out signalling events is to change the confirmation of 

integrin αIIbβ3, which under non-activatory conditions is unable to bind its 

substrates fibrinogen and vWF. The inactive conformation of integrin αIIbβ3, which 

keeps the extracellular domains “bent”, is maintained through an interaction 

between the membrane proximal cytosolic regions of α and β subunits. The 

outcome of platelet activatory signalling events is an increase in calcium levels and 

the production of DAG. This activates the calcium and DAG-regulated guanine 

nucleotide exchange factor I (CalDAG-GEFI). This complex activates Rap1b, which 

plays an important role in integrin activation through the formation of “integrin 

activation complex”. This complex contains Rap1b, Rap1b interacting adaptor 

molecule (RIAM) and talin. In its turn talin binds the β subunit of the integrin, which 

leads to the disruption of its interaction with the α subunit and results in a 

conformational change that renders the integrin, in a switchblade-like motion, 

active and capable of binding its substrates (Luo et al., 2007). Another protein that 

has been recently linked with the activation of integrin αIIbβ3 is kindlin3. Impaired 

integrin activation has been proposed to be associated with the absence and 

dysfunction of this protein in mice and in patients, respectively (Moser et al., 2008, 

Malinin et al., 2009). The indispensable role of αIIbβ3 is evident in Glanzmann’s 

thrombasthenia disease where integrin αIIbβ3 is either missing or dysfunctional 

(Bellucci and Caen, 2002). Once “activated” αIIbβ3 is able to bind fibrinogen, which 
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acts as a molecular bridge between platelets facilitating aggregation. The ligation of 

αIIbβ3 triggers a series of signalling events termed outside-in signalling which result 

in secondary secretion and platelet spreading (Shattil and Newman, 2004). 

1.4.3 Amplification of platelet activation 

After the first layer of activated platelets have been formed by directly binding to 

exposed ECM components, remote inactive platelets are recruited to the site of the 

vascular injury to extend the growth of the thrombus. Amplification of platelet 

signalling is an autocrine/paracrine process that involves the release of platelet 

granule cargo such as ADP, fibrinogen and vWF as well as the synthesis of soluble 

agonists such as thromboxane A2 (TxA2).  

Following platelet primary activation, the increase in intracellular calcium combined 

with the activation of PKC drive platelet organelles into the cellular membrane 

where they release their contents through exocytosis, enriching the site of injury 

with a multitude of bio-active molecules. Membrane fusion of platelet granules is 

facilitated by a family of proteins called Soluble NSF Attachment Protein Receptors 

(SNAREs) (Ren et al., 2008). Interactions of two types of SNAREs govern this process 

as membrane target-SNAREs or t-SNAREs attract their matching counterpart 

expressed on the vesicle, which are called vesicle-SNAREs or v-SNAREs (Ren et al., 

2008).  The release of α-granule contents is facilitated by the SNARE syntaxin-4 

(Flaumenhaft et al., 1999) whereas syntaxin-2 act on dense granules (Chen et al., 

2000). As stated previously in section 1.3.3 α-granule secretion provides a localised 

source of fibrinogen and vWF to drive aggregation and a number of other factors 

that promote both wound healing (eg, platelet-derived growth factor) and 
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coagulation (eg, FV and FVIIa). On the other hand, the release of dense granule 

contents such as ADP and serotonin mainly trigger signals downstream of several 

GPCRs, which drive further secretion and aggregation (See 1.4.2.2).  

ADP binds to two GPCRs, P2Y1 and P2Y12, which are coupled to Gq and Gαi 

respectively (Ohlmann et al., 1995, Offermanns et al., 1997). Dense granule-

secreted ADP induces all activation events including Ca++ release, shape change, 

cytoskeleton reorganization, secretion, protein phosphorylation and platelet 

aggregation (Gachet et al., 2006). P2Y1 is involved in shape change and aggregation 

as it was demonstrated on P2Y1 knockout mice, which had defective shape change 

and aggregation in response to low doses of ADP (Leon et al., 1999). P2Y12, on the 

other hand, is responsible for potentiating platelet aggregation triggered by ADP 

through P2Y1, but has no effect on shape change as demonstrated in P2Y12 deficient 

mice (Foster et al., 2001). In putting together, a complementary role for these two 

receptors has been suggested where P2Y12 amplifies the activation process that has 

been initiated by P2Y1 (Jin and Kunapuli, 1998, Gachet et al., 2006).  

Another important secondary platelet agonist is thromboxane A2 (TxA2), which 

plays a crucial role in amplification of platelet activatory signals by acting in 

autocrine and paracrine manner on its TP receptor. TxA2 is produced by activated 

platelets after the activation of phospholipase A2 (PLA2) in response to agonist-

induced calcium mobilisation. PLA2 releases arachidonic acid from membrane 

phospholipids, which is then converted by cyclo-oxygenase-1 (COX-1) into 

prostaglandin cyclic endoperoxides PGG2 and PGH2. In platelets, the latter is 

converted by thromboxane synthase into TxA2 (Samuelsson et al., 1978, Needleman 
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et al., 1976). TXA2 binds to TP receptor, which is coupled into Gαq and G12/13 

proteins inducing platelet shape change, secretion and aggregation (Offermanns et 

al., 1994, Kinsella et al., 1997). TP knockout mice showed impaired platelet 

aggregation (Thomas et al., 1998). 

 

1.4.4 Platelet aggregation 

Platelet aggregation is the ability of platelets to clump together forming a stable 

fibrinogen-rich thrombus at the site of vascular injury. It is a dynamic and a complex 

process that involves platelets with many receptors and their ligands (Jackson, 

2007). Adhesion and aggregation are two faces of the same coin, and like adhesion; 

the mechanism of aggregation to some extent depends on the rheological 

conditions at the site of the vascular injury. There are three proposed mechanisms 

that govern platelet aggregation in vivo. 

Under low shear rates (<1000 s-1) found in venules and large veins, stable 

aggregation takes place after agonist-mediated activation of αIIbβ3, which then 

binds to fibrinogen (Takagi et al., 2002). The closest simulation of these conditions 

in vitro is in flow chambers when platelets are subjected to low shear rates. 

Although in vitro studies suggested the predominance of αIIbβ3-fibrinogen 

interactions on platelet aggregation under these conditions (Savage et al., 1998), in 

vivo studies showed that vWF plays an important role (Brill et al., 2011).   

At shear rate between 1000-10000 s-1, aggregation has been suggested to occur in a 

two-step process. The first step is reversible and is mediated by interactions of vWF 
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on immobilised platelets and GPIbα on free circulating platelets whereas the 

second one is irreversible and is reliant on αIIbβ3 (Kulkarni et al., 2000). At the 

reversible step and under high shear rate, membrane protrusions called membrane 

tethers are formed. Interestingly, the formation of these tethers is independent of 

any platelet activation or any soluble agonists such as ADP, TxA2 or thrombin. They 

are indeed the result of the hemodynamic dragging forces imposed on platelets by 

the high shear rate. A key feature of these tethers is to slow down platelets, which 

not only allows sustained contact with thrombus surface, but also create a 

protective environment for the accumulation of soluble agonists that leads to full 

platelet activation and then the formation of stable aggregates (Brass et al., 2005). 

Several studies in vivo confirmed the presence of a complementary mechanism 

between GPIb-IX-V and αIIbβ3 and their ligands in mediating platelet aggregation 

under these conditions (Suh et al., 1995, Denis et al., 1998, Ni et al., 2000). One 

study showed that thrombus formation in both vWF- and fibrinogen-knockouts was 

impaired but not absent. Interestingly, the same study showed that vWF- and 

fibrinogen-double knockouts were still able to form a thrombus suggesting the 

participation of other players such as fibronectin in this complex process (Ni et al., 

2000).  

Finally, a fully activation-independent mechanism mediated exclusively by GPIbα-

vWF interactions facilitates platelet aggregation in stenotic arteries, where shear 

rate can be more than 10000 s-1, has been reported, although the physiological 

relevance of this is unclear (Ruggeri et al., 2006, Jackson, 2007). All the aggregation 

models under all these different conditions are summarised in figure 1.6.  
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(A) Under low shear rate <1000 s-1, platelet aggregation is predominantly mediated 

by fibrinogen-integrin αIIbβ3 interactions where platelet get activated, change shape 

and then stably form thrombi. (B) Under high shear rate between 1000-10000 s-1, 

platelet aggregation takes place via the distinct two-step process which requires 

membrane tethers and is dependent on both vWF-GPIbα and fibrinogen- integrin 

αIIbβ3 interactions. Stable aggregation under these conditions requires platelet 

activation by soluble agonists. (C) At shear rate of >10000 s-1 aggregation is 

independent of fibrinogen-αIIbβ3 interactions and is exclusively reliant on 

membrane tethers and vWF-GPIbα interaction. Figure and legend are adapted from 

(Jackson, 2007).  

Figure 1. 6: Mechanisms mediating platelet aggregation under different shear rates. 
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1.5 Platelet regulation by the endothelium 

The endothelium is an anti-thrombogenic cell layer that lines the vessel to isolate 

platelets from various thrombogenic components of the extracellular matrix (ECM) 

(de Nucci et al., 1988). Platelets in the circulation remain dormant while the 

endothelium is physically as well as biochemically intact. Spontaneous and 

sustained platelet activation is prevented at all times to avoid the occlusion of 

blood lumen and consequently ischemia. When platelets encounter a vascular 

injury, the endothelium also responds to control, limit or even reverse platelet 

activation in a process called “endothelial thromboregulation” (Marcus and Safier, 

1993). This process is primarily mediated by two endothelium-derived factors (1) 

prostacyclin (PGI2) and (2) nitric oxide (NO).  

1.5.1 The regulation of platelet function by nitric oxide 

NO is a free radical gas that is constitutively released by the endothelium (Ignarro et 

al., 1987) in response to the pulsatile flow of blood. It was first identified as the 

endothelium-derived relaxing factor (EDRF), whose main role is to regulate the 

vascular tone (Furchgott et al., 1984). Shortly after that, Radomski and colleagues 

discovered that NO can inhibit platelet function (Radomski et al., 1987b). 

Furthermore, animal studies confirmed later that NO is the main regulator of 

vascular homeostasis (Huang et al., 1995). For review see (Naseem, 2005).  

NO synthesis is triggered by an enzymatic reaction that mediates the conversion of 

L-arginine in the presence of molecular oxygen into a NO molecule and L-citrulline 

(Radomski et al., 1990). A family of enzymes called nitric oxide synthase (NOS) 
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mediate the synthesis of NO from its precursor (Bruckdorfer, 2005). Three distinct 

isoforms of this enzyme have been identified, inducible NOS (iNOS), neuronal NOS 

(nNOS) and endothelial NOS (eNOS). These isoforms differ in their expression, 

distribution and their regulation. In the vasculature, pulsatile blood flow continually 

activates the calcium-dependent eNOS, which leads to the release of NO into the 

blood lumen where it exerts its effect on platelets and vascular smooth muscle 

cells. 

The ability of NO to target several platelet activatory signalling pathways enables it 

to inhibit different aspects of platelet activation (Schwarz et al., 2001) including 

platelet adhesion (Williams and Nollert, 2004), calcium flux (Cavallini et al., 1996), 

degranulation and aggregation (Tsikas et al., 1999). Not only does NO regulate 

haemostasis, it also plays a protective role in atherosclerosis as it inhibits leukocyte 

recruitment into the activated endothelium, vascular smooth muscle proliferation 

and scavenges lipid radicals (Naseem, 2005). In fact, dysfunctional NO production, 

either arising from eNOS uncoupling or from reduced NO bioavailability, has been 

associated with atherothrombosis (Munzel et al., 2005).  

NO exerts its inhibitory effects on platelet function by diffusing through platelet 

membrane and activating its intracellular receptor soluble guanylyl cyclase (sGC) 

(Figure 1.8). The activation of sGC results in the production of cyclic guanine-

monophosphate (cGMP) from Mg2+-GTP. Intracellular cyclic nucleotide levels in 

platelets are modulated by the hydrolysing activity of a family of enzymes called 

phosphodiesterase (PDE) (Omori and Kotera, 2007). In platelets, cGMP has many 
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effectors such as protein kinase G, phosphodiesterase 3 (PDE3) and ion gated 

channels (Naseem and Roberts, 2011). However, the main effects of NO on platelet 

functions are mediated by PKG, as exemplified by PKG-deficient mice, which 

showed enhanced platelet adhesion and aggregation in vivo and loss of NO 

sensitivity in vitro (Massberg et al., 1999). PKG is a member of the AGC kinase 

family. It is a serine/threonine protein kinase and exists as two isoforms in 

mammalian cells PKG-I and PKG-II (Lohmann and Walter, 2005) with only the 

former expressed in platelets (Antl et al., 2007). PKG modulates platelet function 

through targeting a multitude of substrates in platelets such as VASP (Halbrugge et 

al., 1990), MLC-Kinase (Nishikawa et al., 1984), PI3-Kinase (Pigazzi et al., 1999), PKC 

(Gopalakrishna et al., 1993) and thromboxane A2 receptor (Reid and Kinsella, 2003). 

Phosphorylation of these proteins and others, or potentially enzymes that regulate 

them, are proprosed to modulate platelet activation  (Walter and Gambaryan, 

2009, Schwarz et al., 2001). 

 

1.5.2 The regulation of platelet function by prostacyclin      

1.5.2.1 Prostacyclin synthesis and structure 

Prostaglandin I2 (PGI2) or prostacyclin was discovered by John Vane’s laboratory in 

1976 as a potent vasodilator and a powerful inhibitor of platelet function (Moncada 

et al., 1976). Prostacyclin is a highly labile prostanoid, whose half-life in the blood is 

only about 3 minutes after which it is broken down in the plasma into the 

ineffective 6-keto-prostaglandin F1α, which can be detected in the urine (Dusting et 
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al., 1978). Therefore, PGI2 is normally protected from degradation by its binding to 

serum albumin (Tsai et al., 1991). Moreover, serum albumin enhances the binding 

of PGI2 to its receptor on platelets (Tsai et al., 1991). Not very long after its 

discovery, stable PGI2 analogues were developed to enable the study of the role of 

this compound in various aspects of the vascular system and particularly platelet 

function (Whittle and Moncada, 1985, Armstrong, 1996).  

PGI2 is a member of the prostanoid family of lipids that are synthesised almost in all 

cell types and have various physiological and pathological roles. It is a 20-carbon 

unsaturated carboxylic acid with a cyclopenton ring. The key players in prostanoids 

production (Figure 1.8) are the fatty acid arachidonic acid (AA), and the enzymes 

phsospholipase A2 (PLA2) and cyclooxygenase (COX) (Moncada, 1982b, Parente and 

Perretti, 2003).  

Arachidonic acid, also known as 5,8,11,14-eicosatetraenoic acid, is a C-20 member 

of the polyunsaturated omega-6-fatty acids (ω-6) that is constitutively esterified to 

form part of membrane phospholipids. AA is cleaved from membrane 

phospholipids by PLA2, which is activated in response to increased intracellular Ca+2. 

Firstly, through its cyclooxygenase activity, COX converts AA into prostaglandin G2 

(PGG2). Secondly, the same enzyme, this time through its hydroperoxidase activity, 

mediates the reduction of PGG2 into the unstable prostaglandin endoperoxide H 

(PGH). The outcome of the following step in AA metabolism is determined by the 

type of enzyme expressed in each cell type. For example, in endothelial cells, PGH is 

converted into PGI2 by prostacyclin synthase (PGIS) (Weksler et al., 1977, Moncada, 
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1982a). Prostacyclin is then released from the endothelium to exert its effects on 

neighbouring vascular smooth muscle cells (VSMCs), or on platelets, located on the 

luminal side of the endothelial cells (Armstrong, 1996). In platelets, however, where 

PGI2 synthase is not present, PGH is converted to thromboxane A2 (TxA2) by 

thromboxane A2 synthase (Needleman et al., 1976). In contrast to PGI2, TXA2 is a 

platelet activator and vasoconstrictor (Samuelsson et al., 1978). There is a general 

consensus that platelet-produced TXA2 and endothelium-produced PGI2 work in 

concert to maintain vascular homeostasis. 

The role of COX in prostaglandins’ production is very crucial as evidenced by the 

award of the Nobel prize in Physiology and Medicine to John Vane in 1982 for his 

discovery of the role of aspirin as a COX inhibitor. Aspirin at low dose (75mg), 

irreversibly inhibits COX, which in platelets cannot be replaced for the whole 

lifetime of these enucleate cells whereas the nucleated endothelial cells can still 

produce COX and, as a result, PGI2. This tips the balance between TXA2 and PGI2 

towards the latter, which then results in an antithrombogenic effect. There are two 

isoforms of this enzyme COX-1 and COX-2. The former is, like eNOS, a constitutive 

isoform and is known to play a housekeeping role whereas the latter is, like iNOS, 

inducible and its expression and activity is associated with inflammations and 

infections. Platelets’ exclusive expression of COX-1 is well established (Vane et al., 

1998, Reiter et al., 2001). By contrast, there is a debate about what isoform of COX 

is expressed in endothelial cells (Mitchell and Warner, 2006b) with some reports 

suggesting the presence of COX-2 (McAdam et al., 1999, Parente and Perretti, 
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2003) whereas others argue that COX-1 is the predominant isoform (Mitchell and 

Warner, 2006a, Mitchell et al., 2008).    

The synthesis of PGI2 takes place in the endoplasmic reticulum (ER), where PGIS and 

COX colocalise (Liou et al., 2000). In response to increased intracellular Ca+2, PLA2 

also translocates into the ER, where it releases arachidonic acid from membrane 

phospholipids (Schievella et al., 1995). Similar to NO, PGI2 production is also 

triggered by physiological shear stress through upregulation of PGIS and COX 

enzymes (Frangos et al., 1985). The nonphysiological “turbulent” shear stress found 

at sites of atherogenic lesions, however, is unable to enhance PGI2 production in 

endothelial cells (Topper et al., 1998). Interestingly, activated platelets, through the 

release of arachidonic acid-containing microparticles upon stimulation, have also 

been shown to upregulate COX and, as a result, enhance PGI2 production providing 

a negative feedback loop to control thrombus growth (Barry et al., 1999). 
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Figure 1. 7: Pharmacological interference into Arachidonic acid cascade. 

PLA2 releases Arachidonic acid from membrane phospholipids. Arachidonic acid is 

then oxidised by COX into PGH2 which is then reduced by the same enzyme into 

PGG2. Depending on the cell type, PGG2 is converted into PGI2 and TxA2 by PGI-S 

and TXA-S which are expressed in endothelial cells and platelets, respectively. PGI2 

and TxA2 are quickly degraded into 6-keto-PGF1α and TxB2, respectively. Figure is 

from (Gryglewski, 2008).    
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1.5.2.2 Prostacyclin and the vasculature 

PGI2 is a local hormone that affects proximal environment rather than a 

conventional circulating one that affects distal target cells (Blair et al., 1982). 

Plasma levels of the stable PGI2 metabolite 6-keto-prostaglandin F1α are about 3ng 

per litre (Blair et al., 1982).  After production, it either diffuses to the abluminal side 

of the endothelium causing relaxation of VSMC or is released to the blood lumen 

where it exerts anti-aggregatory effects on blood platelets (Moncada, 1982a, Vane 

and Corin, 2003). Animal studies have shown that PGI2 plays a regulatory role by 

controlling the vasculature’s response to local stimuli such as prevention of 

vasospasm and thrombosis in response to TxA2 (Murata et al., 1997). This means 

that, unlike NO (Huang et al., 1995), PGI2 does not play a role in maintaining 

vascular homeostasis. However, it has been found that PGI2 plays a protective role 

in the vasculature by inhibiting the proliferation and migration of VSMCs and 

maintaining their differentiated state (Fetalvero et al., 2007). Moreover, PGI2 has a 

protective role against atherogenesis, which is evident by its ability to enhance the 

activity of cholesterol-lowering enzymes in VSMCs, inhibit accumulation of 

cholesterol esters by macrophages and sequester the release of growth factors that 

cause thickening of vessel walls (Willis et al., 1986). Clinical studies showed that 

PGI2 deficiency is associated with pathogenesis of vascular diseases such as 

peripheral vascular diseases (PVD) (Group, 2000). Moreover, arterial infusion of 

PGI2 analogues in patients with atherosclerotic lower limb PVD showed significant 

improvements in their health (Szczeklik et al., 1980). In addition, a clinical trial 

showed recently that the use of selective COX-2 inhibitors such as rofecoxib, in 
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patients with genetic predisposition of heart disease, resulted in increased 

thrombosis, onset and progression of atherosclerosis and hypertension (Wang et 

al., 2005).  

1.5.2.3 Prostacyclin receptor 

Unlike NO, it was observed that PGI2 agonists have membrane binding sites on 

target tissues. This was the first clue of the presence of PGI2 receptors through 

which this prostanoid could exert its effects on target cells (Armstrong et al., 1989). 

Human prostacyclin receptor, called the IP receptor, was first cloned from lung 

cDNA library in 1994 (Nakagawa et al., 1994, Boie et al., 1994). IP is a member of 

the prostanoid receptor subfamily, which is a member of the seven 

transmembrane-domain GPCR superfamily (Armstrong, 1996). The PGI2 analogue 

iloprost has the highest affinity to the IP receptor followed by PGI2 then PGE1 

(Nakagawa et al., 1994, Boie et al., 1994).  

The receptor undergoes several post-translational modifications including 

phosphorylation (Smyth et al., 1996, Smyth et al., 1998), isoprenylation (Hayes et 

al., 1999) and glycosylation (Zhang et al., 2001). Mutagenesis studies suggested a 

role for IP glycosylation in membrane translocation, ligand binding and downstream 

signalling (Zhang et al., 2001). A PKC phosphorylation site (serine-328) has been 

identified on human IP receptor (hIP). In HEK293 cells expressing the hIP, basal PKC-

mediated phosphorylation was detected. PKC phosphorylation increased upon 

agonist stimulation of IP and was associated with desensitization mechanisms 

(Smyth et al., 1996, Smyth et al., 1998). Mice mutagenesis studies confirmed that 
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cysteine-414 is the isoprenylation site on the mouse IP receptor. These studies 

showed that isoprenylation is indispensable for cAMP accumulation and inhibition 

of [Ca+2]I mobilisation (Hayes et al., 1999). 

The transmembrane domain of the IP receptor contains a PGI2 binding pocket. This 

binding pocket accommodates the cyclopentane ring at the first to second 

transmembrane domain and the side chain at the seventh transmembrane domain 

(Kobayashi et al., 1997, Kobayashi et al., 2000). hIP receptor is mainly coupled to 

Gαs, which leads to stimulation of AC and consequently production of cAMP 

(Armstrong, 1996). However, in VSMCs it might be coupled to other isoforms of Gα 

proteins, which results in cAMP-independent effects upon agonist stimulation 

(Vane and Corin, 2003). 

As mentioned above, hIP is phosphorylated by PKC at serine-328 and like all GPCRs 

this phosphorylation is associated with receptor desensitization and internalization. 

There are some discrepancies, across different cell types, in reports addressing the 

rate of IP receptor desensitization after agonist binding with one report suggesting 

that it happens within minutes in HEK239 (Smyth et al., 1998) and another 

suggesting that it happens within hours in human fibroblasts (Nilius et al., 2000) 

after agonist stimulation. Internalization kinetics of platelet hIP receptor were 

investigated using [3H]-labelled iloprost (Giovanazzi et al., 1997). This study 

suggests that the IP receptor is internalized in response to preincubation with the 

PGI2 analogue in a time-dependent manner, which results in desensitization to 
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subsequent treatment with the same analogue. IP receptor desensitization has 

been reported to be reversible in vitro (Fisch et al., 1997). 

Interestingly, IP knockout mice were normotensive and had normal bleeding time 

(Murata et al., 1997). This provided strong evidence that PGI2 is not the main 

regulator of vascular homeostasis and maybe rather works on demand when 

required. This is supported by data from the same study suggesting IP-/- mice has 

more tendency to form occlusive thrombi upon vascular injury with FeCl3 compared 

with the mural thrombi in wild type mice. These data are in contrast with others 

obtained from animals lacking endothelial nitric oxide synthase. Those mice were 

hypertensive suggesting a more dominant role for NO in regulating vascular 

homeostasis compared with PGI2 (Huang et al., 1995).  Thus, even though both NO 

and PGI2 are vasodilators and platelet inhibitors it is possible that they play slightly 

different physiological roles allowing complementary and overlapping effects. 

1.6 Platelet inhibition by cAMP/PKA signalling pathway 

Platelet function is regulated by two cyclic nucleotide inhibitory pathways cyclic 

adenosine monophosphate (cAMP) and cyclic-guanosine monophosphate (cGMP) 

pathways (Figure 1.8). These two pathways are physiologically triggered by two 

endothelium-derived platelet inhibitors PGI2 and NO, respectively.  NO and PGI2 

trigger the production of platelet cyclic nucleotides through the activation of 

soluble guanylyl cyclase (sGC) and adenylyl cyclase (AC), respectively. This is 

followed by activation of their respective protein kinases, PKG and PKA which 

induce phosphorylation events modulating different aspects of platelet activation 
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such as calcium mobilisation, adhesion, fibrinogen binding and platelet aggregation  

(Smolenski, 2011, Schwarz et al., 2001). This section will review current findings 

about the regulation of platelet function by cAMP-mediated signalling pathway. 

Comprehensive reviews on cGMP and platelets are available (Schwarz et al., 2001, 

Walter and Gambaryan, 2009).  

cAMP/PKA signal transduction is triggered in platelets under physiological 

conditions by endothelium derived PGI2 and PGE1 which bind to their respective 

Gαs-coupled receptors on platelets (Armstrong, 1996). In addition, in response to 

injury/inflammation adenosine is produced and then binds to its A2A receptor which 

is also expressed on platelets and coupled to Gαs proteins (Johnston-Cox et al., 

2011). Genetic defects in the cAMP/PKA signalling pathway have been linked with 

various hemostasis disorders (Van Geet et al., 2009). For instance, gain of function 

mutations in Gαs proteins result in platelet hypersensitivity to cAMP increasing 

agents whereas other mutations, which result in reduced cAMP levels render the 

platelets hyperactive.  Commercially available forms of different physiological cAMP 

increasing agents can be used as tools to study the whole signalling pathway, 

whereas other nonphysiological agents such as forskolin, a direct AC activator 

(Seamon et al., 1981), and cAMP analogues, direct PKA activators, can be used to 

study only parts of the pathway. 
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Prostaglandins bind to their Gαs-PCRs and activate AC which mediates the 

production of cAMP and activation of PKA. PKA then mediates the phosphorylation 

of different substrates which regulate various aspects of platelet function. NO on 

the other hand diffuses into the cell activating sGC which mediates the production 

of cGMP and the activation of PKG. PKG phosphorylates different substrates some 

of which are also targets for PKA. Question marks (?) represent unknown isoforms.  

Figure 1. 8: Cyclic nucleotide signalling in blood platelets. 
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1.6.1 cAMP synthesis by adenylyl cyclase in blood platelets 

cAMP levels in platelets and in all cell types increase through the activation of 

adenylyl cyclase (AC), which converts ATP into cAMP (Hanoune and Defer, 2001, 

Cooper and Crossthwaite, 2006). Nine AC isoforms have been cloned to date and 

are differentially distributed in a cell type-dependent manner (Hanoune and Defer, 

2001). Low expression levels and unreliability of isoform-specific antibodies 

combined with low levels of mRNA found in platelets, has made definitive 

confirmation of what AC isoforms are expressed in platelets difficult. One review 

suggested the presence of AC isoform 2 along with the ubiquitously expressed 6 

and 7 (Hanoune and Defer, 2001). An elegant platelet transcriptome study 

suggested the potential presence of AC3, 6 and 7, with AC3 is the most abundant 

(Rowley et al., 2011). However, direct confirmation through immunoblotting or 

proteomics is still lacking. 

Different isoforms of AC have distinct regulatory properties and may be 

differentially localised in the cell (Hanoune and Defer, 2001, Cooper and 

Crossthwaite, 2006). For example, AC3 resides in lipid rafts and is negatively 

regulated by Gαi but positively regulated by Ca2+. AC6 and 7 are both negatively 

regulated by Ca2+ and Gαi, but the former is localised in rafts whereas the latter is 

excluded from rafts. All known AC isoforms in platelets are activated by GTP-bound 

Gαs proteins, which are coupled to receptors such as IP, EP, A2A and A2B (Armstrong, 

1996, Johnston-Cox et al., 2011). The AC stimulating activity of Gαs is switched off 

by its intrinsic GTPase activity, which is induced in platelets by regulator of G-

protein signalling 2 (RGS2) (Noe et al., 2010). On the other hand, Gαi activation 
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through Gαi-coupled platelet receptors, like P2Y12 and α2 receptors, will result in 

the inhibition of AC and thus a decrease in cellular cAMP levels (Dorsam and 

Kunapuli, 2004). However, it seems that Gαi does not influence basal cAMP but 

prevents those that are stimulated by Gαs (Dorsam and Kunapuli, 2004).  Thus it is 

likely that this mechanism is designed to reduced cAMP signalling specifically in 

areas of vascular injury, where factors such as ADP could accumulate. 

AC is a transmembrane enzyme that is composed of two transmembrane domains, 

TM1 and TM2, and two cytoplasmic domains, C1 and C2 (Figure 1.9) (Krupinski et al., 

1989). The two transmembrane domains are in tandem and separated by the C1 

domain. The interaction between C1 and C2 domains forms the catalytic core. The 

process of cAMP production from ATP by AC is still poorly understood. Briefly, AC 

has three nucleotide binding sites and one Mg2+ binding site that are required for 

the conversion of ATP into cAMP upon activation. In order to capture the ATP 

molecule, Lys-923 and Asp-1000 on the C2 domain, interact with N-1 and N-6 from 

the purine ring of the ATP molecule (Liu et al., 1997a). Point mutation studies 

revealed that these residues allow the AC to specifically interact with ATP rather 

than GTP (Sunahara et al., 1998). Two Mg2+ ions are, most likely, required for the 

production of one cAMP molecule. The first one facilitates a nucleophilic attack on 

the 3’-hydroxyl group of the ATP molecule, after mediating its deprotonation. A 

second Mg+2 ion helps stabilize a transient ATP conformation that resulted from the 

nucleophilic attack. After that, three residues, Asn1007, Arg1011 and Lys1047 

approach the phosphate moieties in the ATP molecule and mediate the release of a 
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pyrophosphate group and the production of a cAMP molecule (Zimmermann et al., 

1998, Hurley, 1999). 

Forskolin, which is a ditrepene isolated from an Indian plant called Forskohlii, is a 

very potent activator of all types of AC except AC9 (Seamon et al., 1981). Forskolin 

fits into the ventral cleft that forms the catalytic core “gluing” the two cytoplasmic 

domains together and consequently activating the enzyme (Tesmer et al., 1997, Liu 

et al., 1997b). Gαs activates AC through binding to a crevice formed by the outside 

of the C2 domain and the N terminal part of the C1 domain and therefore activates 

the enzymatic activity by linking the two C domains. Gαs does not compete with 

forskolin for the binding to AC but rather works with it synergistically (Tesmer et al., 

1997, Yan et al., 1997). Gαi, on the other hand, binds to a groove whose location 

has been suggested to be psudosymmetrical to that of the Gαs which enables it to 

work in opposition (Tesmer et al., 1997, Yan et al., 1997). 
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ACs have 5 major domains: the NH2 terminus, the first transmembrane cluster 

(TM1, blue cylinders), the first catalytic loop comprised of C1a (red) and C1b (black), 

the second transmembrane domain (TM2, blue cylinders), the second catalytic loop 

containing C2a (orange) and C2b (black). The dimerization of C1a and C2b upon Gαs 

activation forms the catalytic core. Figure and legend are modified from 

(Willoughby and Cooper, 2007).       

Figure 1. 9: The general structure of adenylyl cyclase. 
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1.6.2 cAMP degradation by phosphodiesterases in blood platelets 

Phosphodiesterases (PDEs) are crucial to the control of the cAMP/PKA signalling 

pathway, by acting to terminate signal transduction. They play a critical role in 

regulating the intensity of the cAMP signal as well as its duration. Eleven families of 

those phosphodiesterases have been identified to date (Omori and Kotera, 2007). 

They mediate the degradation of cyclic nucleotides by hydrolyzing the 3'-

phosphoester bond and converting the 3'-cyclic nucleotide into an inactive 5'-

nucleotide (Omori and Kotera, 2007). Three of the eleven PDE isozymes have been 

identified in platelets, including PDE2A, PDE3A and PDE5A (Haslam et al., 1999, Ito 

et al., 1996, Weishaar et al., 1986). PDE2 is a cGMP-stimulated and it has two 

allostreric binding sites for cGMP on the regulatory domain (Stroop and Beavo, 

1991). It has a similar binding affinity for both cAMP and cGMP (Omori and Kotera, 

2007). PDE3, on the other hand, is inhibited by cGMP, which competes with cAMP 

for its binding sites, although it has a higher affinity towards cAMP (Degerman et 

al., 1997). PDE5 is exclusively activated by cGMP and it has a very high affinity for 

the hydrolysis of cGMP (Hagiwara et al., 1984, Ito et al., 1996, Omori and Kotera, 

2007) and acts as a feedback loop for regulating cGMP signalling. 

The exact role and the relative contribution of each PDE isoform to the regulation 

of platelet function are still poorly understood. Manns and colleagues suggest that 

PDE3 has a more dominant role in regulating platelet function. They showed that 

inhibiting PDE3, but not PDE2, leads to inhibition of agonist–induced platelet 

aggregation as well as calcium mobilization. Moreover, inhibition of PDE3 resulted 

in increased PKA activity represented by enhanced phosphorylation of VASP157 
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(Manns et al., 2002). Similar findings were produced by Feijge and colleagues who 

suggested an interesting role for PDE3. They suggest that, in platelets, cAMP is 

persistently produced in a Gαs-independent manner and PDE3 keeps it at a low 

equilibrium level that imposes a low cAMP-regulated threshold for platelet 

activation (Feijge et al., 2004). In the light of the these report there is a growing 

body of evidence suggesting that PDE3 contribute more to platelet regulation than 

PDE2 does. But there is some ambiguity around the regulation of its activity.  

Whereas one report suggests that thrombin activates PDE3 in an Akt-dependent 

manner (Zhang and Colman, 2007), another group suggests that this happens 

through phosphorylation by PKC not Akt (Hunter et al., 2009). However, regardless 

of the mechanism, it would seem logical that platelet agonists would activate PDE3 

as a mechanism to inhibit cAMP signalling and thereby activates platelets. 

The ability of PDE2 and PDE3 to hydrolyze both cGMP and cAMP and to be 

independently regulated by cGMP, allows for crosstalk between both cyclic 

nucleotides in platelets. The crosstalk between cGMP and cAMP in platelets was 

the main interest of many research groups. It has been reported that both cAMP 

and cGMP participate in NO-mediated inhibition of platelet aggregation (Jang et al., 

2002). A more prominent role for cAMP was suggested by Jensen and colleagues, 

who suggest that NO-mediated inhibition of platelet shape change was associated 

with increased cAMP levels and VASP157 phosphorylation; an effect that was 

mimicked only with PDE3 inhibitors but not with cGMP analogues or PDE2 

inhibitors (Jensen et al., 2004). The exact mechanism that triggers the involvement 

of cAMP in NO-mediated inhibition of blood platelets is still not well-established. 
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Work by Murice and Haslam showed that cGMP potentiates cAMP production 

through inhibiting PDE3 in platelets (Maurice and Haslam, 1990). Later the same 

group reported that, in the presence of cGMP, PDE2 plays an essential role in the 

hydrolysis of low cAMP concentrations and limits the increase in cAMP production 

attributed to cGMP-dependent inhibition of PDE3 (Dickinson et al., 1997). Similar 

findings showed that a low concentration of sildenafil combined with NO resulted 

in diminished agonist-induced platelet secretion, which was concomitant with 

increased cAMP levels due to inhibition of PDE3. Increasing the concentration of 

the same PDE5 inhibitor, however, neither had an effect on platelet secretion nor 

on cAMP levels due to activation of PDE2 (Dunkern and Hatzelmann, 2005).  

1.6.3 Protein kinase A in platelets 

 In most cells cAMP has several downstream effectors including the exchange 

proteins activated by cAMP (Epac) (de Rooij et al., 1998), cyclic-nucleotide gated ion 

channels (Nakamura and Gold, 1987) and Protein kinase A.  However, in platelets 

PKA is the only known effectors of cAMP signalling (PKA) (Schwarz et al., 2001).  

PKA is a heterotetramer composed of two inactive catalytic subunits (C) which are 

kept in an inactive state through binding to two regulatory subunits (R). The binding 

of four cAMP molecules releases the C subunits which mediate the kinase activity 

(Figure 1.10) (Potter and Taylor, 1979). Two types of the regulatory subunit have 

been identified RI and RII giving rise to two isoforms of PKA type I (PKA I) and type II 

(PKA II) (Corbin et al., 1975b). PKA I is classically known to be cytosolic whereas PKA 

II tends to localize with organelles and specific cellular structure (Skalhegg and 
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Tasken, 2000). To further add to the complexity, molecular cloning studies 

identified more R isoforms namely RIα, RIβ, RIIα and RIIβ and more C subunits 

namely Cα, Cβ, and Cγ. These isoforms differ in their biochemical and physical 

properties as well as their tissue distribution (Scott, 1991). In platelets, it has been 

reported that PKA types RIβ and RIIβ are the major isoforms expressed in platelets 

(Schwarz et al., 2001). But recent platelet transcriptome studies (Rowley et al., 

2011) suggests that equal RNA levels for Cα and Cβ subunits are present in 

platelets. In addition, they suggest that among all R isoforms, RIIβ has the highest 

RNA levels in platelets followed by RIα and the RIβ. Only traces of RIIα RNA were 

detected under their conditions. The differential role and relative contribution of 

these PKA isoforms to the inhibition of platelet function is still vague and requires 

further investigation. PKA knockout studies are still lacking in platelets, but a 

platelet microRNA study showed that the absence of PKA RII subunit from mouse 

platelets led to significantly diminished activation by a combination of adrenalin 

and PAR4-activating peptide compared to wild type (Nagalla et al., 2011).   
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Figure 1. 10: Activation of PKA by cAMP. 

In its inactive state, PKA consists of two regulatory subunits (R) bound to two 

catalytic subunits (C). Each regulatory subunit has two cAMP binding sites (A and B). 

The binding of four cAMP molecules to the four cAMP binding sites result in the 

release of the catalytic subunits which bind to ATP molecules and consequently 

phosphorylates adjacent PKA substrates. Figure and legend are adapted from 

(Murray, 2008).     
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1.6.4 Protein kinase A structure and activation 

The regulatory subunit (R) of PKA is not only the main receptor for cAMP molecules, 

but  is also a highly dynamic multi-domain protein that can interact with and bind to 

a variety of proteins (Figure 1.11) (Taylor et al., 2005, Taylor et al., 2008). Although 

there are multiple isoforms of the R subunit, they share the same general 

architecture with a dimerization/docking domain (D/D domain) at the N terminus, 

followed by a hinge region that contains an inhibitory site and then two tandem 

and highly homologous cAMP binding domains (CBDs), designated A and B. Each 

CBD has a Phosphate Binding Cassette (PBC) to which the ribose phosphate of the 

cAMP molecule binds (Taylor et al., 2008). Whereas the D/D domain and the CBDs 

are highly conserved in all R isoforms (Canaves and Taylor, 2002), the inhibitor site 

is very variable in length and in sequence (Vigil et al., 2004). The inhibitor site 

contains an autophosphorylation site in RII and a pseudophosphorylation site in RI 

(Martin et al., 2007). The spontaneous binding of the substrate-resembling motif of 

the autophosphorylation site of the RII subunit (Rangel-Aldao and Rosen, 1976, 

Diskar et al., 2007, Zhang et al., 2012) and the allosteric binding of the 

pseudophosphorylation site of the RI (Dostmann and Taylor, 1991, Herberg and 

Taylor, 1993, Diskar et al., 2007) to their C subunits ensure the stabilisation of the 

inactive confirmation of the holoenzyme. 

The catalytic subunit (C), or the kinase core, is comprised of an N-lobe, which is a 

small and very dynamic amino terminal. The N-lobe is followed by a short linker 

connected to a large helical carboxy terminal called the C-lobe, where the catalytic 

machinery and the docking sites sit. The C- and the N-lobe are flanked by a C-tail 
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and an N-tail respectively. The main function of these two tails is to position the 

catalytic core in an active conformation that supports the catalysis (Taylor et al., 

2008).  

In the inactive holoenzyme, the con formation of the R subunits only allows the 

CBD-B to be exposed to cAMP molecules. Upon the binding of a first cAMP 

molecule to this site, a conformational change takes place and results in the 

exposure of the CBD-A, which allows another cAMP molecule to bind. The 

occupation of the CBDs changes the conformation of the R subunit, particularly the 

hinge region, reducing its affinity for the C subunit. This results in dissociation of the 

active site on the C subunit from the inhibitory site on the R subunit and 

subsequent release of the C subunit. The outcome of all these conformational 

changes is an R dimer, which is occupied by four cAMP molecules and two 

catalytically active C monomers. The catalytically active C subunit is now able to 

phosphorylate proximal targets that possess a PKA consensus motif (Arg-Arg-X-

Ser/Thr, Arg-Lys-X-Ser/Thr, Lys-Arg-X-Ser/Thr or Lys-Lys-X-Ser/Thr) (Taylor et al., 

2008). The reassociation of the R and C subunits after activation is a very poorly 

understood process. But it has been reported that proximal phosphatases such as 

calcinerium, which is activated by elevated calcium and is anchored by AKAPs (see 

1.8), might dephosphorylate the RII subunit, a process that is believed to mediate 

the regeneration of the holoenzyme (Oliveria et al., 2007). An AKAP- and 

phosphatase-independent model, however, has been suggested to mediate the 

regeneration of the PKA I holoenzyme. This model suggests that RI binds and 

activates PDE, which in its turn hydrolyses RI-bound cAMP molecules resulting in 
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reassociation with the C subunit and the termination of the signal (Moorthy et al., 

2011). Recently, a cAMP-independent activation of the C subunit has been reported 

in platelets, where stimulation with thrombin or collagen led to the release of the 

PKA C subunit from a complex with NFκB-IκB complex and the phosphorylation of 

PKA substrates (Gambaryan et al., 2010).  

The variability in cAMP affinity provides the individual PKA subtypes with distinct 

biochemical properties. For example PKA I is known to be more sensitive to cAMP 

than PKA II with an activation constant (Kact) of 50-100nM and 200-400nM of cAMP, 

respectively (Cadd et al., 1990, Gamm et al., 1996). These properties combined with 

the differential cellular localisation of PKA I and PKA II are believed to contribute to 

the specificity of the cAMP/PKA signalling pathway, an issue that is yet to be 

addressed in blood platelets.  
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The top figure shows an NMR-solved model of RIα showing its structure and its 

different domains. The bottom figure is a cartoon showing the domain organisation 

of regulatory subunits RIα and RIIβ. Figure and legend are modified from (Taylor et 

al., 2005, Taylor et al., 2008).   

Figure 1. 11: Organisation of the regulatory subunits of PKA. 
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1.6.5 Protein kinase A substrates in blood platelets 

Platelet inhibition induced by PGI2 or any other cAMP elevating agents is thought to 

be mediated by PKA, through the phosphorylation of distinct substrates involved in 

different stages in the process of platelet activation (Table 1.1). This includes the 

inhibition of cytoskeletal reorganization, intracellular calcium elevation and platelet 

secretion (Schwarz et al., 2001). However, the physiological relevance of these 

substrates is unclear as many of the studies have identified the substrate through in 

vitro experimentation.  Nevertheless they do provide a framework with which we 

can begin to examine cAMP/PKA signaling affects platelets. 

1.6.5.1 Cytoskeletal reorganization 

Vasodilator-stimulated phosphoprotein (VASP) was first isolated from platelets in 

1989 (Halbrugge and Walter, 1989) and then later was identified as a common 

substrate for both PKA and PKG (Halbrugge et al., 1990). The main two 

phosphorylation sites on VASP are ser157 and ser239 with PKA having a preference 

for the former and PKG for the latter. PKA-mediated phosphorylation of VASP on 

ser157 causes a mobility shift in SDS-PAGE changing the apparent molecular weight 

from 46 to 50kDa (Butt et al., 1994).  In platelets and other cell types, VASP is 

involved in cytoskeletal reorganization through the regulation of actin bundling and 

polymerization (Reinhard et al., 2001). VASP-deficient mice showed enhanced 

platelet adhesion (Massberg et al., 2004). NO-mediated inhibition of platelet 

adhesion was also impaired in these mice (Massberg et al., 2004). The functional 

relevance of VASP phosphorylation in platelets is still not fully understood. One 

report suggested that cGMP analogue- and NO-mediated phosphorylation of VASP 
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at ser239 is predominantly mediated by PKA (Li et al., 2003). It has been suggested 

that phsophorylation of VASP at ser157 negatively regulates the activation of 

fibrinogen receptor αIIbβ3 (Horstrup et al., 1994). In vitro studies showed that the 

phosphorylation of VASP by PKA leads to the inhibition of actin nucleation as well as 

actin filament bundling (Harbeck et al., 2000). Recently, VASP phosphorylation has 

been branded with a protective role in ischemia-reperfusion injury through its 

inhibition of platelet-neutrophil interactions (Kohler et al., 2011). In addition to its 

phosphorylation by PKA, ser157 has been found to be phosphorylated by Rho kinase 

as well as PKC in response to platelet stimulation with thrombin (Wentworth et al., 

2006). This raises some questions on the reliability of this phosphorylation event on 

its own as a PKA activity marker in platelets. GPIbβ is a subunit of the vWF platelet 

receptor complex GPIb-V-IX. This receptor mediates initial platelet adhesion, 

activation (Andrews and Berndt, 2008) and is also a link between actin filaments 

and membrane glycoproteins (Fox, 1985). PKA phosphorylates GPIbβ on ser166 in 

platelets both basally and in response to cAMP elevating agents; an event that was 

found to be associated with inhibition of collagen-induced actin polymerization, 

platelet binding to vWF and vWF-induce platelet agglutination (Wardell et al., 1989, 

Bodnar et al., 2002). The basal phosporylation of GPIbβ was observed in an elegant 

phosphoproteome study of resting human platelets (Zahedi et al., 2008).    

Another protein that is phosphorylated by PKA in platelets is Filamin-A (Actin-

binding protein (ABP)). Filamin-A is an important component of the membrane 

contractile cytoskeleton and plays a significant role in stabilizing actin filaments. 

Upon platelet activation ABP undergoes proteolytic cleavage induced by calpain, 
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which leads to cytoskeletal reorganization (Hartwig and DeSisto, 1991). The 

phosphorylation of Filamin-A at ser2152 by PKA inhibits this proteolytic cleavage and 

maintains the stability of the cytoskeleton (Chen and Stracher, 1989). Caldesmon is 

another actin-binding protein that mediates the formation of the actin-caldesmon-

myosin complex, and subsequantly enhances the binding of myosin to the 

cytoskeleton upon platelet activation (Hemric et al., 1994). In vitro studies 

identified two phosphorylation sites for PKA on platelet-purified caldesmon 

(Hettasch and Sellers, 1991), but the functional consequence of this 

phosphorylation event is unknown. Several proteins in platelets, involved in 

agonist-induced cytoskeletal reorganization, have been proposed to be substrates 

for both PKA and PKG. Among those proteins is the heat shock protein 27 (Hsp27), 

which upon stimulation leads to actin polymerization (Lavoie et al., 1993). Hsp27 

has two phosphorylation sites. The first one is stimulatory and is targeted by the 

p38 MAP-activated MAPKAPK-2. The other phosphorylation site is inhibitory and is 

targeted by both PKA and PKG (Butt et al., 2001). Although the phosphorylation of 

Hsp27 by PKG has been shown in intact platelets, only in vitro data are available for 

its PKA phosphorylation. LIM and SH3 domain protein (LASP) is an actin-binding 

protein that is phosphorylated by both PKA and PKG at ser146 in human platelets. 

This phosphorylation has been suggested to inhibit LASP binding to F-actin; a 

finding that is yet to be confirmed in platelets (Butt et al., 2003). In vitro studies 

showed that the calmodulin-induced myosin light chain kinase (MLCK) is a dual 

substrate for both PKA and PKG. MLCK phosphorylates MLC, which leads to myosin 

filament formation and contractility that mediate platelet shape change 
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(Schoenwaelder and Burridge, 1999). Cyclic nucleotides-mediated phosphorylation 

of MLCK is believed to decrease its affinity to calmodulin (Nishikawa et al., 1984). 

But these are only in vitro observations that require confirmation in intact platelets.  

 

1.6.5.2 Intracellular calcium mobilization 

Another platelet aspect that is known to be regulated by PKA signaling is the 

elevation of intracellular calcium (Schwarz et al., 2001). Calcium release in platelets 

is involved in various steps of cellular activation such as the activation of integrins, 

shape change and granule secretion (Varga-Szabo et al., 2009). The increase in 

intracellular Ca+2 in platelets comes from two consecutive events, the release from 

intracellular stores (ER) and then the store-operated extracellular calcium entry 

(SOCE) or calcium influx, reviewed in (Varga-Szabo et al., 2009). Inositol-1,4,5-

triphosphate receptors (IP3-R) are Ca+2 permeable channels that operate calcium 

release from the ER. IP3-R are present in 3 isoforms, type I, type II and type III all of 

which are expressed in platelets. PKA has been reported to phosphorylate all IP3-R 

isoforms (El-Daher et al., 2000, Cavallini et al., 1996). However, the functional 

outcome of this phosphorylation is controversial. One report suggested an 

inhibitory effect of IP3-R phosphorylation by PKA (Supattapone et al., 1988), 

whereas another suggested the opposite (Nakade et al., 1994). Transient receptor 

potential channel (TRPC) are the main mediators of SOCE in platelets facilitated by 

the coupling of TRPC with IP3-R, an event that follows the release of intracellular 

calcium  (Varga-Szabo et al., 2009). Seven subfamilies of TRPC have been identified 
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so far, two of them have been found in platelets TRPC1 and TRPC6 (Hassock et al., 

2002). Only TRPC6 has been found to be phosphorylated by PKA but the functional 

consequence of this phosphorylation is not very clear (Hassock et al., 2002).  

 

1.6.5.3 G-proteins and G-protein-coupled receptors 

G proteins or guanyl nucleotide-binding proteins are a family of proteins whose 

main function is to transfer signals, generated at the plasma membrane, from 

receptors (GPCRs) to their respective cellular effectors. They exert their effect 

through their ability to release GDP and exchange it for GTP upon receptor 

activation. G proteins are then switched off as a result of their internal GTPase 

activity. For review see (Neves et al., 2002).  

Rap1b is a small GTPase of the Ras family. The exact role of Rap1b in platelets is not 

fully understood, but platelets from Rap1b -/- mice showed impaired platelet 

aggregation, defective integrin αIIbβ3 activation and prolonged tail bleeding. Rap1b 

is phosphorylated at ser179 by both PKA as well as PKG (Siess et al., 1990, Lapetina 

et al., 1989, Danielewski et al., 2005). The functional outcome of this 

phosphorylation is elusive. Rap1GAP2 was identified as a GTPase-activating protein 

for Rap1b in platelets (Schultess et al., 2005).  Rap1GAP2 is activated by ADP- 

and/or thrombin-induced binding of the 14-3-3 protein. This event is inhibited by 

PKA- and PKG-mediated phosphorylation of Rap1GAP2, which in turn leads to the 

inhibition of Rap1b function in platelets (Schultess et al., 2005, Hoffmeister et al., 

2008). The thromboxane A2 receptor TP is a seven transmembrane domain 
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receptor that is linked to Gq, G12 and G13 proteins (See 1.4.2.2). Signaling through 

G12 and/or G13 proteins is involved in platelet shape change by activating 

RhoA/Rho-kinase pathway which inhibits, MLC phosphatase and leads to an 

increase in MLC phosphorylation (Klages et al., 1999). PKA was found to 

phosphorylate the TP-linked G13 protein in platelets, which blocks the thromboxane 

A2-induced signaling (Manganello et al., 1999). Finally, a role for PKA in switching 

off its own signal has been reported as it phosphorylates and activates the cGMP-

inhibited PDE3 (Macphee et al., 1988, Grant et al., 1988). 

The number of identified platelet PKA substrates is very modest compared with 

that of putative physiological substrates reported in other cells, which now 

numbers 100 substrates (Anja Ruppelt, 2010). In addition, the functional outcome 

of some PKA-mediated phosphorylation events in platelets is still unknown. 

Moreover, the identification of some of these substrates relied on in vitro 

approaches that are yet to be verified in vivo. Furthermore no data exists on which 

PKA isoform targets these individual substrates. A recent phosphoproteomic study 

performed on resting human platelets suggested the presence of 23 putative PKA 

substrates including 12 that have not been reported before the most important of 

which is GPIbα (Zahedi et al., 2008). More work is needed to verify these 

observations and to further investigate the role of PKA basal activity in platelets. In 

addition, similar work is needed to identify more novel PKA substrates under PKA 

stimulatory conditions.  
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Table 1.1: Identified PKA substrates with their molecular weights and the proposed 

outcome of phosphorylation on platelet function.  

PKA Substrate Molecular 
Weight 
(kDa) 

Confirmation  Proposed role of 
phosphorylation 

in platelets 

Reference 
 

Rap1b 22 Platelets Unknown (Lapetina et al., 
1989, Altschuler 
and Lapetina, 
1993) 

Glycoprotein 1b 
β 

24 Platelets Inhibits actin 
polymerisation 
and platelet-vWF 
binding 

(Wardell et al., 
1989, Bodnar et 
al., 2002, Fox et 
al., 1987) 

HSP27 27 In vitro Unknown  (Butt et al., 
2001) 

LASP 37 Platelets Unknown (Butt et al., 
2003) 

Gα13 44 Platelets inhibits TxA2-
induced 
aggregation 

(Manganello et 
al., 1999)  

VASP 46/50 Platelets Inhibition of 
integrin αIIbβ3 

(Halbrugge and 
Walter, 1989) 

Caldesmon 82 In vitro Unknown (Hettasch and 
Sellers, 1991) 

MLCK 100 In vitro Unknown (Hathaway et 
al., 1981) 

TRPC 100 Platelets Unknown (Hassock et al., 
2002) 

ABP 240 Platelets Inhibition of 
cytoskeleton 
reorganisation 
during activation 

(Chen and 
Stracher, 1989) 

IP3R 260 Platelets Unknown (El-Daher et al., 
2000, Cavallini 
et al., 1996) 

PDE3A 110 Platelets Activation of 
PDE3 

(Macphee et al., 
1988) 
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1.7 Compartmentalisation of cAMP/PKA signalling in platelets and other cell types 

The concept of the parallel signalling cascades and the idea of molecules randomly 

floating in a homogenous cytoplasm are now obsolete. A more realistic concept of 

signal transduction describes cellular signalling cascades as a complex web of 

events that are sophisticatedly regulated in time and space. This means that at a 

specific moment of time in the cell, some signals are being initiated, others are 

being reduced or amplified and while others are being terminated. Moreover, 

structurally similar molecules can be anchored to different subcellular 

compartments where they mediate diverse signalling events resulting in different 

biological and functional responses.  

GPCRs are a large family of receptors that is comprised of hundreds of members 

with each cell type expressing a multiplicity of them. Despite the expression of 

many GPCRs in one cell type, each GPCR still triggers a specific signal that regulates 

a specific biological function (Hermans, 2003). A large subset of these GPCRs is 

coupled to Gαs proteins, which activate different isoforms of AC and generate 

cAMP. The simplistic linear cAMP signalling pathway has been replaced by a more 

sophisticated yet realistic one (Steinberg and Brunton, 2001). The proposed system 

of cAMP signalling relies on the presence of an intricate network of signalling 

pathways within which a tight spatial and temporal regulatory mechanism governs 

the propagation and the transduction of a signal along unique branches of this 

network depending on the extracellular stimulus (Steinberg and Brunton, 2001). 

Such a sophisticated model has been suggested after observing that, in some cell 

types, cAMP mediates different biological functions depending on the stimulus. For 
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example, in cardiomyocytes both PGE1 and isoproterenol induce cAMP production, 

but each one of them has a different functional outcome on the cell (Hayes et al., 

1979). Moreover, PKA subsets are confined in different subcellular compartments 

with each subset being activated in response to a distinct stimulus. The specificity 

of any cAMP signal has been attributed to compartmentalisation of different 

components of the cAMP signalling pathway (Pidoux and Tasken, 2010, Zaccolo, 

2011). The first line of cAMP signal compartmentalisation is the plasma membrane. 

The plasma membrane is heterogeneous containing different compartments with 

different lipid and protein composition characterised by raft and non-raft 

microdomains (Simons and Toomre, 2000, Marguet et al., 2006). Some GαsPCRs 

such as βAR as well as some AC isoforms such as AC3 and 6 are localised into lipid 

rafts whereas others are excluded (Willoughby and Cooper, 2007, Pontier et al., 

2008). The differential localisation of receptors and AC, to membrane raft or non-

raft domains, creates physical barriers that can separate distinct cAMP signalling 

networks, which can be simultaneously triggered in a specific cell type (Figure 1.12) 

(Cooper and Crossthwaite, 2006, Willoughby and Cooper, 2007). In addition to the 

physical confinement by lipid rafts, the diffusion of cAMP through the cytoplasm is 

controlled by the hydrolysing activity of specifically localised PDEs resulting in 

distinctively compartmentalised pools of cAMP (Zaccolo and Pozzan, 2002, 

Stangherlin and Zaccolo, 2012). The presence of these pools in many cell types has 

been confirmed by live cell imaging and fluorescence resonance energy transfer 

techniques (FRET) (Zaccolo and Pozzan, 2002). It has been also reported in other 

cell types that specific PDE isoforms are compartmentalised with specific PKA 
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isoforms (Tasken and Aandahl, 2004). For example in platelets, work published by 

Mann et al and Jensen et al who showed that inhibiting different PDE isoforms had 

different impacts on cAMP signalling pathway suggesting nonredundant roles for 

PDE2 and PDE3 and postulating the presence of specific cAMP pools into which 

specific cAMP components are compartmentalised (Manns et al., 2002, Jensen et 

al., 2004). Furthermore, an elegant chemical proteomic study in platelets showed 

recently that triggering GPVI-mediated signalling affect specific localised cAMP and 

cGMP pools with other pools not affected (Margarucci et al., 2011). More work is 

needed to confirm these hypotheses.  

It has been shown in many cell types that the localisation of these cAMP pools also 

dictates the localisation of PKA isoforms (Tasken and Aandahl, 2004). The specific 

compartmentalisation of PKA isoforms has been proposed through observations 

that a particulate or a cytosolic fraction of PKA can be activated in response to 

different stimulus resulting in different outcomes (Brunton et al., 1981, Buxton and 

Brunton, 1986). Further studies using biochemical techniques aimed to study 

protein-protein interaction revealed that PKA is anchored to distinct subcellular 

compartments by a family of proteins called A-Kinase Anchoring proteins (Figure 

1.12) (Carr and Scott, 1992).    
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Different G protein-coupled receptors are physically confined to different 

membrane domains. GPCRs, stimulated by different stimulus, activate proximal ACs 

and generate pools of cAMP. The concentration and the distribution of cAMP 

gradients are determined by PDEs. The physically confined receptors and ACs can 

associate with specific subcellular organelles or the cytoskeleton. These organelles 

can also harbour a specific PKA isoform through its binding to an A-kinase anchoring 

protein. This results in the limitation and the assembly of the cAMP pathway to a 

defined area of the cell where specific PKA substrates reside and can trigger a 

distinct biological effect. Figure and legend are from (Tasken and Aandahl, 2004).   

  

Figure 1. 12: The compartmentalisation of the cAMP/PKA signal. 
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1.8 A-Kinase Anchoring Proteins  

A-kinase anchoring proteins or AKAPs are a family of structurally diverse yet 

functionally similar proteins that mediate the localisation of PKA into a close 

proximity with its substrates as well as signal terminating enzymes (Pidoux and 

Tasken, 2010, Smith et al., 2006). To date more than 50 members of this family 

including splice variants have been identified (Tasken and Aandahl, 2004). The 

important role of AKAPs further involves targeting PKA into specific subcellular 

compartments where cAMP pools, PKA substrates and PKA signal modulating 

enzymes reside. This provides spatial and temporal (spatiotemporal) regulation for 

PKA-mediated signalling events (Tasken and Aandahl, 2004). Each AKAP has a 

unique targeting domain that determines the localisation of the anchored PKA and 

despite the diversity in their structure, they all have a highly homologous PKA-

binding domain (Tasken and Aandahl, 2004). This PKA-binding domain is comprised 

of 14-18 amino acid residues that form an amphipathic helix with hydrophobic 

residues are present on one face and charged ones on the other (Carr et al., 1991). 

The integrity of this amphipathic helix is critical for the binding to PKA (Figure 1.13). 

In fact, proline substitutions resulting in defects in the helical structure of this 

domain, compromises the binding to PKA (Carr et al., 1991). The 

dimerisation/docking domain of the regulatory homodimer of the PKA holenzyme 

has a unique docking site for AKAPs (Gold et al., 2006, Newlon et al., 2001, Leon et 

al., 1997). This docking site is an X-type four helix bundle which results from the 

dimerisation of two antiparallel polypeptides, at the N-terminus of each R subunit, 

in a helix-turn-helix motif (Figure 1.13). The AKAP docking site on PKA I and PKA II 
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are conformationally similar. In PKA II, it starts from residue 1 to 44 on and is 

slightly shifted on PKA I as it starts from residue 12 to 61 of the R subunit (Figure 

1.11) (Leon et al., 1997). According to their affinity to each regulatory subunit of 

PKA, AKAPs are either PKA II-specific or PKA I and PKA II dual-specific (Tasken and 

Aandahl, 2004). Recently, a new entirely PKA I-specific AKAP has been identified 

(Means et al., 2011). RII has higher affinity to AKAPs compared to that of the RI 

(Herberg et al., 2000). 

 

(A) A cartoon showing AKAP properties: 1) a conserved PKA binding domain binds 

PKA, 2) a unique targeting domain targets the complex into a specific subcellular 

compartment and 3) additional binding domains which can bind other signalling 

proteins such as other kinases or phosphatases. (B) An NMR-solved representation 

of the RII 1-45 diemer (yellow, blue and red) and the conserved AKAP amphipathic 

helix (green) which binds PKA. Figure and legend are modified from (Pidoux and 

Tasken, 2010).  

Figure 1. 13: The structure of PKA-AKP complex. 
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Various techniques have been utilised to determine the functional role of PKA-AKAP 

interactions such as the use of inhibitory peptides, siRNA-mediated knockdown, 

expression of mutant AKAPs, generation of mutant mice and expression of 

compartment-specific AKAPs. Inhibitory peptides that can compete with AKAPs for 

binding to the D/D domain of PKA are one of the simplest and most widely used 

tools to determine the functional relevance of PKA-AKAP interactions (Figure 1.15). 

The first peptide to be developed was Ht31 which mimics the PKA binding domain 

of AKAP-Lbc, one of the earliest AKAPs to be characterised (Carr et al., 1991, 

Rosenmund et al., 1994). Ht31 has been shown to disrupt interactions of AKAPs 

with both PKA isoforms (Herberg et al., 2000). In order to delineate the specific 

outcomes of PKA I anchoring as opposed to that of PKA II, scientists have developed 

inhibitory peptides that can specifically block the interactions between either PKA I 

and AKAPs or PKA II and AKAPs. An example of the former is the RI-anchoring 

disruptor or RIAD (Carlson et al., 2006) and of the latter is SuperAKAP-IS (Gold et al., 

2006).   

In addition to their ability to bind and target PKA, AKAPs have been described as 

multienzyme scaffolding proteins. Enzymes such as the phosphotase PP2B (Coghlan 

et al., 1995), PKC (Klauck et al., 1996) and some PDEs (Dodge et al., 2001) have 

been reported to be also anchored by AKAPs. This can potentially create a 

macromolecule that not only regulates cAMP/PKA signal transduction positively but 

also negatively. 
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The presence of AKAPs in platelets has not been confirmed yet. However, some 

reports have already suggested that a spatial regulation mechanism for PKA activity 

might exist in platelets. El-Daher et al demonstrated that PKA substrates are 

differentially distributed in platelets, a finding which suggests that there must be a 

mechanism that facilitates the translocation of PKA into a close proximity with 

these substrates (El-Daher et al., 1996). Another report by the same group shows 

that PKA targets all three isoforms of the IP3-R, which they found to be distributed 

in different subcellular compartments (El-Daher et al., 2000). Chemical proteomic 

and RNA transcriptome data have shown that AKAPs are present in platelets 

(Margarucci et al., 2011, Rowley et al., 2011). However, validation of these findings 

by immunoblotting techniques and establishment of the functional relevance of 

their presence is still lacking.  
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(A) A cartoon showing PKA-I and PKA-II anchored by AKAPs into different cellular 

compartments, where target 1 and 2 are localised, and mediating biological effect 1 

and 2, respectively. (B) Shows how the RI-anchoring disruptor (RIAD) competes with 

the interaction of AKAP with PKA-I which blocks only biological effect 1. (C) Shows 

how SuperAKAP-IS disrupts the interaction of AKAP with PKA-II which blocks only 

biological effect 2. (D) Shows that when using both RIAD and SuperAKAP-IS, it 

blocks both biological effect 1 and 2. (E) Shows the effect of the non-specific PKA-

AKAP disruptor Ht31 which also results in blocking both biological effects 1 and 2. 

Figure is from (Pidoux and Tasken, 2010).  

Figure 1. 14: A schematic illustration of the effect of different PKA-AKAP disrupting 
peptides. 
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1.9 Aims of this study 

Platelet activation is critical for repairing vessel wall injuries and preventing 

excessive blood loss. Modulation of platelet activity, on the other hand, is equally 

important as it prevents unwanted activation and controls the growth of the clot to 

avoid vessel occlusion. Platelets are primarily regulated by PGI2 and NO, which exert 

their effect through cAMP and cGMP signalling pathways, respectively (Schwarz et 

al., 2001, Smolenski, 2011). Compared with platelet activation, very little is known 

about the molecular mechanisms of platelet modulation by cyclic nucleotides. 

cAMP is a second messenger that mediates a large variety of biological effects in 

response to different stimuli. The effects of cAMP are mediated by its main effector 

PKA, which phosphorylates specific substrates localised in different subcellular 

compartments. The specificity of cAMP signalling is achieved in a single cell through 

an intricate network of coexisting pathways that function under a precise spatial 

and temporal control (Stangherlin and Zaccolo, 2012).  

Little is known about the regulation of cAMP/PKA signalling in platelets as opposed 

to other cell types. Platelets, like many other cell types, express different isoforms 

of every component of the cAMP/PKA signalling pathway (Rowley et al., 2011). But 

the differential contribution of these isoforms is very much elusive. Moreover, the 

spatial and temporal regulation of cAMP/PKA signalling cascade in platelets needs 

to be dissected. More work also needs to be done to clarify the precise functional 

role of various established PKA substrates as well as some putative ones, reported 
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in proteomic and transcriptome studies (Rowley et al., 2011, Zahedi et al., 2008), in 

modulating platelet activity. 

We hypothesise that a precise spatiotemporal regulation among different cAMP 

signalling networks is present in platelets in order to achieve an adequate and 

specific inhibitory response. This study aims to investigate the mechanisms that 

govern this spatiotemporal regulation.  

 

The aims of this study were, 

 To characterize and compare the inhibitory dynamics as well as the 

potency of different cAMP elevating agents. 

 To determine the role of platelet lipid rafts in the compartmentalization of 

cAMP signaling in blood platelets. 

 To dissect the differential contribution of each PKA isoforms in platelets. 

 To ascertain the presence of a spatial-temporal regulation of PKA signalling 

through AKAPs. 
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Chapter 2: Materials and methods 

2.1 Materials 

A detailed list of all the buffer composition and equipments which have been used 

throughout the study can be found in appendix I. A list of the main platelet agonists 

and inhibitors used in this study can be found in appendix II. All other general 

chemicals were bought from Sigma Aldrich and Fisher Scientific.   

2.2 Methodologies used in the preparation of human blood platelets. 

2.2.1 Procurement of human blood:  

Blood was obtained by trained phlebotomists from healthy consented volunteers, 

who confirmed they were not taking any medication that interfered or might affect 

platelet function such as aspirin, anti-histamines and some non-steroidal anti-

inflammatory drugs.  

The venepuncture of the ante-cubital vein was performed using a 21G-butterfly 

needle. The first 2ml were discarded to avoid any artificial activation of the 

platelets. Subsequently, blood was collected in 20ml-syringes containing pre-

warmed acid citrate dextrose (ACD) anticoagulant (see appendix I) at a ratio of 1:5.  
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2.2.2 Isolation of platelets from whole blood by lowering of blood pH. 

This method was used throughout the study as an alternative to the classical 

prostacyclin method reported by Vargas et al (Vargas et al., 1982). The “pH 

method” was adapted from Mustard et al  (Mustard et al., 1989), where pH of the 

plasma is reduced to 6.4 thereby preventing platelet activation during 

centrifugation. This method was used to avoid activating PKA signaling cascade 

which would potentially lead to misinterpretation of our data 

Whole blood was centrifuged at 200g for 20 minutes room temperature (RT) to 

obtain platelet rich plasma (PRP). The PRP was transferred into a sterile 15ml 

centrifugation tubes and the plasma pH reduced to 6.4, by the addition of citric acid 

(0.3M) at ratio of 1:50. The PRP was then centrifuged at 800g for 12 minutes at RT 

to obtain platelet pellet and platelet poor plasma (PPP). The PPP was discarded, 

while the pellet was re-suspended in 5ml of washing buffer (see appendix I). The 

resuspended platelets were centrifuged again at 800g for 12 minutes at 20oC to 

remove any residual plasma. The final pellet was resuspended in 1ml of modified 

Tyrode’s buffer (see appendix I). 
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2.2.3 Quantification of platelet numbers. 

Platelet quantification was performed manually using a haemocytometer. Isolated 

washed platelets (WP) were diluted at 1:100 with ammonium oxalate (1%w/v), to 

fix the platelets, and then applied to the double-chambered haemocytometer. The 

addition of a glass cover slip and the resulting confined space holds a defined 

volume of cell suspension 0.1mm above the grids. Platelets were then left to settle 

in the chambers by leaving them at a horizontal position for 10 minutes before they 

were visualized and counted under a converted light microscope (x40 

magnification) (Figure 2.1). Dilution and volume corrections were applied to the 

count which was expressed as platelets/mL. Platelets were then diluted to the 

desired count depending on the experiment. 
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Figure 2. 1: Schematic representation of the platelet count technique. 

(A) An inverted light microscope.  

(B) A diagram representing a haemocytometer  

(C) A diagram representing a single chamber with red circles representing 

where platelets are normally counted. 

(D) A diagram representing a single square containing platelets. 
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2.3 Assessment of platelet functions 

2.3.1 Platelet aggregation 

Platelet aggregation is the final stage of series of chemical and biophysical events 

that take place in platelets after being activated with a specific stimulus. Although it 

can be considered a rather late index of platelet activity, this assay is still one of the 

most sensitive in vitro assays, which determines the functional viability of platelets 

in suspension. Light transmission aggregometery was developed by Born in 1962 

and is based on changes in light scattering through a platelet suspension which is 

detected by a photocell (Born, 1962). It is assumed that when using small volumes 

with stirring that resting platelets are uniformly distributed in suspension. A 

homogenous platelet suspension would scatter the light. However, the addition of a 

platelet agonist activates platelets resulting in the formation of aggregates and 

hence the disruption of the homogeneity of suspension. This allows more light to go 

through the tube depending on the size of those aggregates which in turn is 

dependent on the level of activation. The extent of light transmission is 

proportional to the level of platelet aggregation which is in turn dependent on the 

degree of platelet activation. Prior to aggregation platelets undergo a shape change 

which can be observed on the trace as a momentary decrease in light transmission 

(Figure 2.2). 

Washed platelets (2.5x108platelets/ml) were incubated with stirring (1000rpm) for 

1min at 37oC to allow for temperature equilibration. After the addition of a stimulus 

(collagen, Thrombin or vWF/Ristocetin) platelet aggregation would be monitored 

for 4 minutes with stirring (1000rpm) using a multi-channel Chronolog 
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aggregometer. In some cases platelet were treated with inhibitors such as PGI2 

prior to the addition of the agonist. The aggregometer is calibrated for every 

sample using untreated WP as 0% aggregation and modified Tyrode’s buffer as 

100%. The conditions of the individual experiments are described in detail in each 

of the subsequent chapters. 
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Figure 2. 2: A schematic discription of platelet aggregation assay. 

(A) A schematic representation of the principle of aggregation, adapted from 

(Jackson, 2007). (B) A representative aggregation trace.  
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2.3.2 Measurement of platelet dense granule secretion 

ATP release as a result of platelet activation was chosen to be an index to study 

platelet dense granule secretion. This assay relies on a luminescence reaction of the 

firefly extract luciferin with the enzyme luciferase. This reaction is ATP-dependent 

which is obtained, in this case, from platelets’ dense granules as a result of 

activation (Feinman et al., 1977). The emission of light is detected by a specific light 

path in a Chrono-Log lumi-aggregometer and is translated in real time into a 

developing curve. In addition, aggregation is measured simultaneously so the 

temporal relationship between platelet aggregation and dense granule secretion 

can be evaluated.  

 

Treated or untreated platelets, in aggregation tubes, are pre-incubated with the 

luciferin-luciferase mixture (chronolume; see appendix I) for two minutes, with 

stirring (1000rpm), before the addition of collagen (5 µg/mL). Secretion and 

aggregation levels are then monitored for 4 minutes. Secretion levels are then 

determined by the comparison to an ATP standard.  
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2.4 Methodologies used in the analysis of platelet proteins 

Throughout this study platelet signaling proteins were analyzed by solubilising 

cellular membranes and then separating proteins according to their mass using a 

one-dimential, dissociating and discontinuous polyacrylamide gel electrophoresis 

system followed by different immunochemical detection techniques. 

 

2.4.1. Immunoprecipitation 

Immunoprecipitation is a method used to isolate a protein from a mixture such as a 

cell extract (figure 2.3). An antibody selective for a target protein is added to the 

mixture to form antibody-antigen complexes. The complexes are then precipitated 

by adsorbing the antibodies to an insoluble matrix such as agarose or sepharose 

beads conjugated to protein A or G. The latter two proteins derive from bacteria 

and are stably bound by antibody constant regions. The isolated protein may be 

studied further using SDS-PAGE and Western blotting.  
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2.4.1.1 Immunoprecipitation methodology 

Samples were prepared as described in section 2.4.2.1, with the exception that the 

reactions were terminated by the addition of IP lysis buffer (see appendix I) in the 

presence of protease and phosphatase inhibitor cocktails (1:200). All samples were 

transferred into eppendorfs and put on ice until the beads were ready. 

A 50% (w/v) suspension of either protein A or G sepharose beads in TBS-T was 

prepared (slurry). Equal aliquots of the slurry were either incubated with the 

appropriate amount of the antibody of interest or with the same amount of normal 

IgG control to account for protein-antibody nonspecific bindings. The antibody and 

the slurry were allowed to bind for at least one hour with agitation at 4oC. 

Meanwhile, the cell lysate (300-500μg of proteins) was precleared by incubating 

with the slurry. The beads were then pelleted by centrifugation at 8500g for 1min. 

The supernatant was transferred into a clean eppendorf, to ensure the elimination 

of any potential nonspecific bindings with the beads. The antibody-bound beads 

were then incubated with precleared lysate overnight with agitation at 4oC before   

centrifugation for 1min at 8500g. The resultant supernatant was discarded whereas 

the pellet washed sequentially, once with IP lysis buffer and twice with TBS to 

remove residual proteins. The beads were then boiled in Laemmli buffer to release 

the proteins of interest from the beads (Figure 2.3). The beads were pelleted 

through centrifugation for 1min at 8500g and the liberated proteins separated by 

SDS-PAGE and analysed by Western blotting. 
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Figure 2. 3: A schematic summary of the immunoprecipitation method. 
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2.4.2 Sodium dodecyl sulphate -polyacrylamide gel electrophoresis (SDS-PAGE) 

One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis is 

used to separate charged macromolecules in an electric field. When applied to a 

porous matrix such as a gel it can be used to separate molecules based on their size 

and charge. The main principal of this technique is to combine the properties of 

negatively charged SDS, a polyacrylamide gel and electrophoresis. 

SDS is an anionic detergent that binds and denatures proteins leaving them with 

similar, rod-shaped tertiary structure. Furthermore, it confers equal negative 

charge per unit protein mass (1.4g SDS per 1g protein). This protein binding affinity 

results in neutralizing all positively charged amino acids and giving all peptides a 

constant negative charge at an equal charge/unit length ratio. This allows the 

proteins to migrate from the anode towards the cathode depending on their 

molecular weight. 

SDS-Polyacrylamide Gel Electrophoresis (PAGE), uses a combination of SDS and the 

polyacrylamide gels to separate proteins according to their molecular masses by 

electrophoretic migration. Acrylamide molecules polymerise into long linear chains 

which are cross-linked by bisacrylamide. This polymerisation is accelerated by the 

presence of free radicals. Hence, ammonium persulphate  (APS) is added when 

casting gels as it decomposes to release SO4
- ions. Tetramethylethylenediamine 

(TEMED) is also included to catalyse the decay of APS. The percentage of the 

acrylamide used in these solutions determines the pore size and therefore the 

relative separation of the proteins within the mixture.  
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Throughout this study a dissociating-discontinuous buffer system was used in all 

SDS-PAGE experiments. The dissociating system utilizes the denaturing properties 

of SDS and a reducing agent so proteins can run in a primary structure. The 

discontinuous buffer system depends on loading samples on a low-percentage 

stacking gel at pH 6.8, which allows the proteins to be concentrated and then enter 

the resolving gel all at the same time. Conversely, the resolving gel has higher 

percentage at pH 8.8 to allow protein separation according to size. 

. 

2.4.2.1 Sample preparation for SDS-PAGE      

Sample preparation performed based on the method described by Laemmli 

(Laemmli, 1970), which uses a denaturing agent (SDS) and a reducing agent (2-

mercaptoethanol) in order to lyse the cells and reduce all proteins to their primary 

structure. All platelet samples for SDS-PAGE and immunoblotting were prepared at 

37oC under stirring at (800rpm). In some cases platelets were incubated with EGTA 

(1mM), apyrase (1U/mL) and indomethacin (10µM) to create non-aggregatory 

conditions. When pre-treating samples with reagents that require more than 2 

minutes incubation, they would only be stirred for 30 seconds and then left at 37oC 

for the required incubation time. Platelet aliquots (200μl) were stimulated with 

different agonists and/or inhibitors and the reaction was terminated by the 

addition of an equal amount of x2 laemmli buffer (see appendix I). . Samples were 

then stored at -20oC. Before analyzing those samples by SDS-PAGE and 

immunobloting, they were boiled for 3 minutes to ensure denaturation of all 

proteins. 
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2.4.2.2 Quantification of platelet protein concentrations 

Protein concentration was determined using the Bio-Rad DC Protein Assay kit 

according to the manufacturer’s protocol. It is based on the well-established Lowry 

assay (Lowry et al., 1951) that is applied on detergent-solubilized cell lysates. This 

assay measures the intensity of a characteristic blue colour, at 750nm, that 

develops as a result of a reaction between proteins with copper in an alkaline 

medium and the subsequent reduction of a Folin reagent. The main residues that 

are involved in this interaction are tyrosine and tryptophan residues. The more blue 

colour is produced the more protein there is in the sample.  BSA solutions of 

defined concentrations were used to calculate sample protein concentration. Each 

sample and standard was diluted 1:2 in protein assay buffer (see appendix) and was 

assayed in triplicate in a 96-well plate. Light absorption at 750nm was obtained 

using a multiplate reader.  

 

2.4.2.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis methodlogy 

In this study a 7.5 or 10% polyacrylamide gel were used depending on the protein 

under investigation, (see Appendix). For phospho-PKA substrate as well as tyrosine 

phosphorylation protein profiles, 10-18% gradient gels were used. Each gel is 

composed of acrylamide monomers with cross linking agent (bisacrylamide) to 

enhance the polymerization of these monomers. Furthermore, ammonium 

persulphate (APS) and tetramethylethylenediamine (TEMED) are also added in 

order to initiate and accelerate the polymerization reaction respectively.  A 1.5mm 

resolving gel was poured either directly or with the help of a peristaltic pump. This 
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was followed by direct pouring of the 3% stacking gel. For gradient gels, an aliquot 

of 10% and another for 18% were consecutively poured into the channels of a 

gradient mixer and then were poured using a peristaltic pump that was connected 

to the mixer.  Wells within the gel were loaded with aliquots of protein samples 

(20μg) along with a biotinylated protein standard (see appendix I). Fixed percentage 

gels were subjected to 120V for 90 minutes, while gradient gels were subjected to 

the same voltage but for 2.5 hours. 
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2.4.3 Immunoblotting  

Western blotting is a powerful and commonly used method to indirectly detect and 

quantify a protein or a group of proteins in a mixture (Towbin et al., 1979). This 

involves transferring the proteins from a gel to an adhesive matrix such as 

nitrocellulose or polyvinylidene difluoride (PVDF) membranes under an electric 

field. Once transferred, the membranes are probed with specific primary antibodies 

against target proteins. This is followed by incubation with an enzyme-conjugated 

secondary antibody, usually horseradish peroxidase (HRP). Detection of antigen-

bearing proteins is facilitated by enhanced chemiluminescence (ECL) through which 

a signal can be produced as a result of an interaction between hydrogen peroxide 

and luminol in the presence of horseradish peroxidase. The outcome of this 

interaction is an excited product, which decays to a lower energy state and 

simultaneously luminesces at 425nm that can be captured and visualized on x-ray 

films. 
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2.4.3.1 Western blotting methodology for detection of platelet proteins  

After separation of the protein mixtures by SDS-PAGE, separated proteins were 

transferred into a methanol-pre-activated PVDF membrane at 100V for 2.5 hours. 

The correct order of the gel and membrane in the cassette as well as the 

orientation of the cassette in the tank ensures the migration of the negatively 

charged proteins on the gel towards the anode, which results in their capture by 

the membrane (Figure 2.4).  The membrane was then blocked, to inhibit nonspecific 

protein-membrane interactions, by incubation with bovine serum albumin (BSA; 

10% w/v)  (see appendix I) or skimmed dry milk (5% w/v) in TBS-T for 30 minutes at 

room temperature with agitation . After blocking, the membrane was incubated 

with the primary antibody (1:1000 in 2% BSA/TBS-T unless otherwise is stated) 

overnight at 4oC with agitation. After two TBS-T washing steps, membranes were 

incubated for 1 hour at room temperature with an HRP-conjugated anti-rabbit or 

anti-mouse secondary anti-body (1:10000 in TBS-T). This was followed by six 

washing steps of 15 minutes with TBS-T. When using milk for blocking, the same 

protocol was followed except that all washing steps were carried out with the milk-

based blocking buffer and primary and secondary antibodies were made with 1% 

w/v skimmed dry milk solutions in TBS-T. Membranes were then incubated with 

enhanced chemiluminescence solutions (ECL1 and ECL2; see appendix I) and the 

produced signal was captured on an x-ray film which was visualized using developer 

and fixer solutions (see appendix I). 

In some cases antibodies were stripped by incubating membranes with RestoreTM 

western blotting stripping buffer (Thermo Scientific, UK) with agitation. Here, 
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membranes were incubated for 20 minutes at room temperature, followed by  two 

washing steps, with TBS-T and re-blocking with BSA/TBS-T (10% w/v) for 30 

minutes. Membranes were then reprobed with anti-β-tubulin antibody (1:1000) 

overnight at 4oC to check for equal loading of protein in each lane.    
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Figure 2. 4: A schematic summary of the western blotting method. 

Proteins are first resolved via SDS-PAGE (1), the western blot sandwich is then 

prepared (2), followed by western blot apparatus assembly (3), protein transfer 

then takes place (4) and finally membrane is developed on a photographic film after 

probing the membrane with antibody of protein of interest (5).  
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2.5 Isolation of platelet lipid rafts 

Lipid rafts are dynamic assemblies enriched in cholesterol and sphingolipids 

forming islands of lipids that exist in a liquid-ordered state discrete from the bulk of 

the membrane lipids that exist in a liquid-disordered state. It is well established in 

the literature now that lipid rafts play an important role as platforms of signal 

transduction (Simons and Toomre, 2000). This is fulfilled by bringing different 

signaling molecules, either raft-based or non-raft-based, into close proximity which 

focuses the signal and ensures its specificity. Lipid raft isolation methods exploit 

two essential characteristics of those liquid-ordered membrane assemblies. Firstly, 

lipid rafts are resistant to low temperature non-ionic detergent solubilization. 

Secondly, their relative low density allows them to float into 5-30% sucrose 

gradients following ultracentrifugation (Hooper, 1999). These characteristics were 

used to isolate lipid raft membrane fractions in blood platelets. 
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2.5.1 Lipid raft isolation by sucrose ultracentrifugation. 

This method was adapted from Lee et al (Lee et al., 2006). Platelet samples (450μl; 

1x109 platelets/ml) were treated as described in 2.4.2.1, with the reaction 

terminated by the addition of x2 lipid raft lysis buffer (see appendix I) in the 

presence of protease and phosphatase inhibitor cocktails (1:200). All samples were 

transferred into eppendorfs and placed on ice for 30 minutes to induce 

solubilization. Cell lysates were then transferred into an Ultra-ClearTM tube 

(Beckman Coulter, UK) and a sucrose gradient created. An 80% w/v sucrose solution 

(900µl) was added at the bottom of the tube and mixed with the solubilized cells to 

generate a 40% sucrose layer. A second 30% w/v sucrose solution (5 mL), followed 

by a third 5% w/v sucrose solution (5 mL) were carefully layered sequentially on top 

of the initial layer. All sucrose solutions were made with x1 lipid raft lysis buffer. 

The sucrose density gradient containing platelet lysates were ultracentrifuged at 

200,000g for 18h at 4oC using a SW41-Ti rotor. Twelve fractions of 1ml were then 

removed from the top of the tube (Figure 2.5). These fractions were subjected to 

SDS-PAGE and immunoblotting after the addition of equal amounts of laemmli 

buffer. LAT and β3 were used as markers for lipid rafts and soluble fractions, 

respectively. 
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             Diagram is taken form (Gibbins, 2004b)   

Figure 2. 5: A schematic representation of the lipid raft isolation method. 
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2.6 Determination of cAMP levels 

cAMP levels were determined using a well-established enzyme-immuno assay (EIA) 

kit (Cayman Chemical Company) according to the manufacturer’s protocol. This 

assay is based on the competition between free cAMP and acetylcholinesterase-

conjugated cAMP (cAMP tracer), to occupy a limited number of cAMP binding sites 

on a cAMP-specific rabbit antibody. The amount of free cAMP is variable depending 

on sample treatment whereas the amount of cAMP tracer is constant in every 

assay. Therefore, the amount of cAMP tracer bound to the cAMP rabbit antibody is 

inversely proportional to the amount of free cAMP in the sample. The rabbit 

antibody-cAMP complex, either free or conjugated, binds to a mouse anti-rabbit IgG 

with which the plate has been previously coated.  

cAMP standards, samples, cAMP tracer and the cAMP rabbit antibody are all added 

to the mouse anti-rabbit IgG-precoated plate. The mixture is then left for 18 hours 

to allow the binding. After washing, the acetylcholinesterase’s substrate is added to 

induce an enzymatic reaction that results in a coloured product, which can be read 

between 405-412 nm (Figure 2.6). The intensity of the colour determines how much 

cAMP tracer is bound to the antibody, which is inversely proportional to the 

amount of free cAMP that is competitively bound to the same antibody.   
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Figure 2. 6: A schematic representation of cAMP EIA (courtesy of Cayman 
Chemicals). 
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2.6.1 Sample preparation for cAMP EIA 

Washed platelets were treated as usual and then sample media was removed as 

recommended by the manufacturer to minimize any potential interference with the 

assay.  

Platelets (200μl; 2x108 platelets/ml) were treated with PGI2 (50nM) for 30 seconds. 

Following treatments, samples were transferred into clean eppendorf tubes and 

then centrifuged at 1000g for 10mins. The supernatant was discarded whereas the 

pelleted cells were lysed with 200μl 0.1M HCl for 20 min on ice. The samples were 

centrifuged again at 1000g for 10mins to pellet cell debris. Supernatant was then 

diluted with the EIA assay buffer at a ratio of 1:4. Following sample preparation, 

cAMP standards (0.078-10 pmol/mL) were prepared following the manufacturer’s 

protocol to generate a standard curve. 

In order to increase the sensitivity of the assay, an acetylation protocol was used. 

Since cyclic nucleotides are not immunogenic molecules, cAMP antibodies are 

normally raised against the conjugate and hence their affinity towards free cAMP is 

quite low. However, acetylation of cyclic nucleotides with potassium hydroxide and 

acetic anhydride results in a structure that mimics the immunogenic structure of 

the conjugate and consequently enhances the affinity of the antibody towards 

cAMP molecules.  

All samples and standards were acetylated according to the manufacturer’s 

protocol before carrying out the assay. All wells were read at 405 nm using a 

Thermo Scientific multiplate reader. Raw data were processed then analysed 

according to the manufacturer’s protocol and using their automated analysis tool at 
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www.myassays.com or their computer spreadsheet at 

www.caymanchem.com/analysis/eia. 

 

2.7 Determination of cholesterol concentrations 

Platelet cholesterol concentrations following lipid raft fractionation were 

determined for each fraction using a commercially available cholesterol assay kit 

(Cayman chemical company). The assay relies on an enzymatic reaction that can 

detect both free and esterised cholesterol. Cholesteryl esters are firstly hydrolised 

by cholesterol esterase to free cholesterol. Total free cholesterol is then oxidized by 

cholesterol oxidase to yield hydrogen peroxide and the corresponding ketone. The 

addition of horseradish peroxidase (HRP) in the presence of ADH (10-acetyl-3-7-

dihydroxyphenoxazine), which is a stable and sensitive probe for hydrogen 

peroxide, results in the production of a highly fluorescent resorufin (Amundson and 

Zhou, 1999). The produced fluorescence can be read using excitation wavelengths 

of 530-580 nm and emission wavelengths of 585-595 nm. 

Cholesterol contents of every fraction were determined after preparing cholesterol 

standards. The assay and raw data analysis were carried out according to the 

manufacturer’s protocol and final data were expressed as µM cholesterol.   

  

http://www.myassays.com/
http://www.caymanchem.com/analysis/eia
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2.8 Investigation of potential AKAP-PKA interactions in platelets.   

In order to establish the functional relevance of AKAP-PKA interactions in different 

cellular processes, a number of synthetic peptides has been developed that can 

compete with AKAPs for PKA binding. These peptides contain an amino acid 

sequence that mimic the PKA binding domain of an AKAP allowing them to form an 

amphipathic helix. The permeability of these peptides is normally enhanced 

through attachment with molecular carriers such as polyarginine tails or stearic 

acid. The first peptide to be identified as an AKAP-PKA inhibitor was the Ht31, 

which disrupts interaction of AKAPs with both PKA I and PKA II (Carr et al., 1991). 

Recently more specific peptides have been developed in order to isolate cellular 

processes that are regulated by individual PKA isoforms. Examples of these specific 

peptides is the development of the RI-anchoring disruptor also known as RIAD 

(Carlson et al., 2006) and SuperAKAP-IS (Gold et al., 2006), which target PKA I-AKAP 

and PKA II-AKAP interactions, respectively. Throughout this study both RIAD-Arg11 

and st-Ht31 were used to study the functional relevance of AKAP-PKA interactions 

in blood platelets.  

 

2.8.1 R-I Anchoring Disruptor (RIAD) synthesis and determination of loading 

conditions 

RIAD is an inhibitory peptide than has been developed by Prof. John Scott’s group in 

2006 (Carlson et al., 2006). This peptide binds competitively to the docking and 

dimerization domain of protein kinase A inhibiting the binding of this domain to 

PKA binding domain on an AKAP. This results in uncoupling of the PKA from AKAPs 
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allowing the study of the importance of this interaction. In addition, this peptide is 

highly specific to PKA-I specific AKAPs (AKAP-I) as has been reported by the same 

group (Carlson et al., 2006).  

RIAD was kindly supplied to us throughout this study by Prof. Kjetil Tasken 

(University of Oslo, Norway). The regular peptide (RIAD: LEQYANQLADQIIKEATEK) 

and the scrambled negative control (scRIAD: IEKELAQQYQNADAITLEK) were 

synthesized and tagged with an 11 residue long arginine tail to enhance cellular 

permeability (Nakase et al., 2008). The cellular uptake of the PKA-AKAP inhibiting 

peptide was determined by conjugating the peptide to fluorescein then carrying out 

a standard static adhesion experiment following a well-established protocol 

optimized by our group (Oberprieler et al., 2007). 
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2.8.2 RIAD-Arg11 conjugation with fluorescein  

The peptide was labeled with fluorescein, which is a fluorophore whose absorption 

maximum is at 495nm and emission maximum is at 521nm. Fluorescein was 

conjugated to RIAD at a molar ratio of 5:1 (fluorescein:RIAD). Briefly, the fluorescein 

was firstly dissolved in dimethyl formamide DMF and then the peptide was added 

to the solution. A catalyzing mixture of 0.5 M N,N-diisopropylethylamine (DIPEA) 

and 1M 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 

hexafluorophosphate (HBTU) was added to the DMF-dissolved mixture to catalyze 

the condensation reaction of fluorescein with RIAD. The mixture was then left for 1 

hour at room temperature to allow the conjugation. The DMF was then removed by 

precipitating the peptide with ice-cold ether. The mixture was then freeze-dried 

overnight to remove the residual ether. The peptide was then dissolved with water 

and subsequently used with washed platelets. For platelet visualization method 

please see section 2.10.1. 
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2.9 Data representation and statistical analysis 

Aggregation data with platelet inhibitors were represented as percent inhibition of 

maximum aggregation. 

% inhibition of aggregation= 
                                            

                
      

For Western blotting, a representative blot of three independent experiments was 

shown. In some cases densitometry analysis was carried out on scanned blots using 

Image J software.  

cAMP data were presented as fmol cAMP/107 platelets. In some cases they were 

expressed as percent increase in cAMP over basal levels. 

% increase of cAMP levels= 
                                             

                 
      

Results for experiments that have been carried out at least three times were 

expressed as means  SEM for the number of experiments indicated (n). Data were 

checked for normality and then analysed by t-test or analysis of variance (ANOVA) 

using Statistical Package for Social Sciences (SPSS, version 15) and Microsoft Office 

Exel (2007). Data with p≤0.05 were considered significant.  
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2.10 Supplementary methods  

The following experiments were carried out by Dr. Simbarashe Magwenzi. 

2.10.1 Visualization of RIAD uptake by adhered platelets 

Unstained platelets (5x107platelets/ml) were incubated with the fluorescein-

conjugated peptide (1µM) for different time points at 37oC. Platelets were then 

washed with platelet washing buffer two times. After that, platelets were left to 

adhere for 30 minutes at 37oC on a glass slide. Two washing steps with PBS were 

carried out after incubation, to remove unbound platelets, followed by fixation with 

4% w/v paraformaldehyde for 30 minutes. Slides were then visualized with an 

Olympus 1X71 fluorescence microscope equipped with an XM10 CCD camera 

(Olympus, Japan). Images were captured under an x60 oil emersion objective lens 

and analysed using ImageJ software from the National institute of Health (NIH, 

USA). 

 

2.10.2 Platelet aggregation under flow 

This method was adapted from Kulkarni et al (Kulkarni et al., 2007). Platelets (4x108 

platelets/ml) were incubated with either RIAD-Arg11 or scRIAD-Arg11 (10µM) for 1h 

at 37oC then treated with PGI2 (100nM) for 2min. The platelets were subsequently 

fluorescently labeled with DIOC6 (1µM) at 37oC for 10min and reconstituted with 

autologous washed red blood cells (50% v/v). Reconstituted blood was perfused 

through glass microslide capillary tubes (Camlab; Cambridge, UK), coated with von 

Willebrand’s Factor (vWF, 100µg/mL) for 12h at 4oC and blocked with BSA 
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(10mg/mL) for 1h. Perfusion was carried out at a constant shear rate of 1000s-1 for 

4min followed by flushing with PBS for 4min at equivalent shear to leave only stably 

adherent platelets. Images of adhered platelets were captured under ×60 

magnification of an IX71 fluorescence microscope equipped with an XM10 CCD 

camera (Olympus, Japan) and analysed using ImageJ software (NIH). Data are 

presented as surface area coverage (%), since the software could not fully 

discriminate between single platelets and platelet aggregates (Kulkarni et al., 2007). 
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Chapter 3: Characterization of platelet inhibition by agents that 

activate Protein kinase A 

3.1 Introduction 

Under physiological conditions, platelets circulate in a quiescent state that is 

maintained by the non-thrombogenic environment imposed by the endothelium. 

The undamaged endothelium releases anti-thrombogenic agents into the blood, 

which both limit platelet activation and control their activity once they have 

encountered a vascular injury. The major endothelial-derived anti-thrombogenic 

agents include nitric oxide (NO) (Mellion et al., 1981) and at least two prostanoids 

including prostacyclin (PGI2) (Moncada et al., 1976) and prostaglandin (PGE1) 

(Kloeze, 1970). Prostacyclin has been considered the main physiological cAMP-

dependent platelet inhibitor (Tateson et al., 1977).  

These physiological platelet inhibitors exert their effects by triggering two different 

cyclic nucleotide-dependent signalling pathways, cyclic adenosine monophosphate- 

and cyclic guanine monophosphate-dependent signalling pathways. This thesis will 

particularly focus on the former, which is physiologically triggered in platelets by 

prostacyclin (PGI2) and prostaglandin (PGE1). PGI2 bind to its Gs-protein-coupled 

receptor, the IP receptor. This binding leads to the activation of the transmembane 

embedded adenyl cyclase (AC), which results in the elevation of cAMP 

concentrations (Dutta-Roy and Sinha, 1987). Protein kinase A (PKA) is the main 

effector of cAMP in blood platelets. It is a serine/threonin kinase that 

phosphorylates different target proteins and this leads to the regulation of several 
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aspects in the process of platelet activation (Smolenski, 2011). In this thesis, 

understanding the mechanisms of how the cAMP/PKA signalling system regulates 

platelet function is the overarching aim. To achieve this, a number of different tools 

were used including agents that target the cAMP/PKA signalling cascade at different 

levels. Therefore, it was important to characterise these agents. 

Physiological agents such as PGI2 and PGE1 were used to stimulate the whole 

pathway downstream of different receptors. On the other hand, nonphysiological 

agents such as forskolin and cAMP analogues were used to trigger the pathway 

downstream of GPCR and AC, respectively.  

Therefore, it was very important to characterize each of these agents in terms of 

their ability to activate the cAMP/PKA signalling pathway and inhibit platelet 

function before they were used to study the molecular regulation of this pathway in 

the successive chapters. 
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Figure 3. 1:A schematic representation of cAMP/PKA signalling pathway 

The diagram shows the main elements of this pathway and highlights what part of 

the pathway physiological (PGI2 and PGE1) and nonphysiological (Fsk and cAMP 

analogues) agents activate.   
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Aims and objectives 

The aim of this chapter is to establish the parameters for the tools that would be 

used in future chapters and standardise their conditions. More specifically the 

objectives were to: 

 Characterise the inhibitory effects and the potency of different cAMP/PKA 

activating agents on washed platelets.  

 Characterise the inhibitory dynamics of these agents through producing 

time-course curves. 

 Characterise different PKA activity markers in platelets. This would be 

established using immunoblotting techniques with different antibodies. 
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3.2 Validation of platelet isolation method 

Many studies isolate blood platelets using methods adapted from “prostaglandin 

washing procedure” where platelets are inhibited in PRP with PGE1 (Vargas et al., 

1982). This method produces isolated platelets that are very sensitive to platelet 

activation, probably because it relies on a physiologically relevant inhibitory 

pathway. The prostaglandin washing method could not be used when studying 

cAMP signalling as the added PGE1 leads to activation of the cAMP/PKA signaling 

pathway, which could potentially result in a misinterpretation of the data. Thus, 

throughout this study platelets were isolated by the well-established pH method 

(Mustard et al., 1989). This method relies on lowering the pH of the PRP to 6.4 at 

which platelets cannot be activated. It is a robust and reproducible method for 

isolation of blood platelets. However, it was important to validate this method of 

platelet isolation by assessing the functional and signaling responsiveness of the 

isolated platelets. 

3.2.1 Assessment of platelet functional response 

Washed platelets isolated by the pH method were tested for their functional 

response to collagen. A concentration-dependent increase in light transmission was 

observed starting with a threshold response at 0.1μg/ml and reaching near maximal 

response when using 10μg/ml. All aspects of the platelet aggregation trace could be 

observed including shape change (Figure 3.2). Data from this experiment show that 

platelets isolated by pH method are functional.  
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Figure 3. 2: The responsiveness of washed platelets isolated by the pH method as 
assessed by collagen-induced platelet aggregation. 

WP (2.5x108 platelets/mL) were isolated by the pH method as described in chapter 

2. After prewarming for 2mins, platelets were stimulated with increasing 

concentrations of collagen (0-5μg/mL) and aggregation was monitored for 5min 

under constant stirring (1000rpm) at 37oC using a chrono-log dual channel light 

transmission aggregometer. (A) Shows representative aggregation traces generated 

by aggreo/link computer software (chrono-log, USA). (B) Shows data from 3 

independent experiments with separate blood donors represented as means ± 

SEM.  
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3.2.2 Assessment of tyrosine phosphorylation of platelet proteins in response to 

collagen 

Having established that WPs isolated by pH method were functionally responsive, 

their ability to trigger activatory signaling events had to be examined. A well-

established and a sensitive signaling marker for platelet activation is tyrosine 

phosphorylation of platelet proteins. Here platelets were stimulated with increasing 

concentrations of collagen (0 – 50 µg/mL) and tyrosine phosphorylation in whole 

cell lysates was assessed by SDS-PAGE and immunoblotting. Figure 3.3 shows lightly 

phosphorylated proteins with molecular weights of 27, 30, 40, 60, and 140 kDa and 

a heavily phosphorylated one with molecular weight of 65 kDa under basal 

conditions. Stimulating platelets with collagen leads to a concentration-dependent 

increase in phosphorylation of the basally phosphorylated proteins and the 

appearance of several other bands with apparent molecular weights of 45, 90 and 

100 kDa (Figure 3.3 top panel). The bottom panel shows β-tubulin as an evidence 

for equal protein loading in all lanes.  These data from figure 3.2 and 3.3 suggest 

that washed platelets isolated by the pH method retain their ability to aggregate 

and trigger tyrosine phosphorylation events in response to collagen. The responses 

that we obtained are comparable to those obtained by other people who used the 

classic prostaglandin method of platelet isolation (Hers et al., 2000) (Dhanjal et al., 

2007) (Tomlinson et al., 2007).  
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Figure 3. 3: The responsiveness of washed platelets isolated by the pH method as 
assessed by collagen-induced phosphorylation events. 

WP (5x108 platelets/mL) were isolated using the pH method as described in chapter 

2. Platelets were prewormed for 2mins then stimulated with increasing 

concentrations of collagen (0-50μg/mL) under non-aggregatory conditions for 

90secs. Platelet lysates (20μg/well) were loaded onto a 10-18% gradient 

polyacrylamide gel and then resolved by SDS-PAGE for 2.5h at 120V. Proteins were 

then transferred onto a PVDF membrane for 2.5h at 100V. Membranes were then 

blocked and immunoblotted with anti-phospho-tyrosine mouse antibody (top) 

overnight at 4oC. Following that membranes were stripped and then reprobed with 

anti-β-tubulin mouse antibody (bottom) overnight at 4oC to check for equal loading. 

Blots are representative of two independent experiments with two separate donors 
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3.3 Prostacyclin inhibits collagen-induced platelet aggregation in a dose-

dependent manner 

One of the criticisms of many studies examining cAMP/PKA signalling in platelets is 

the use of unphysiological agents that act as global activators of AC or PKA. One of 

the main aims of this study was to characterise cAMP/PKA signalling networks in 

blood platelets under more physiological conditions in order to better understand 

how the pathway works. Since the main physiological cAMP activating agent 

(Moncada et al., 1976) is prostacyclin it was important to fully characterise its 

effects on a number of aspects of platelet function before examining its 

downstream biochemical pathways. 

In the first instance the inhibitory effect PGI2 could have on a platelet function was 

tested. Increasing concentrations of PGI2 (0-100nM) were preincubated with WP for 

1 min before stimulating with collagen (5µg/mL). A threshold inhibitory effect was 

observed with 10nM giving an inhibitory effect of 6±2%, while 100nM of the 

prostanoid almost abolished the aggregation response with an inhibitory effect of 

88±14% and 50% inhibition was achieved with 49±8nM (Figure 3.4).  
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WP (2.5x108 platelets/mL) were pre-treated with increasing concentrations of PGI2 

(1-100nM) for 1min then were stimulated with collagen (5μg/mL). Aggregation was 

monitored for 4mins under constant stirring (1000rpm) at 37oC using a chrono-log 

dual channel light transmission aggregometer. (A) Shows representative 

aggregation traces generated by aggreo/link computer software (chrono-log, USA). 

(B) A dose response fit showing the relationship between PGI2 concentration and % 

inhibition of aggregation. Data are from 5 independent experiments with separate 

blood donors and expressed as means ± SEM.   

Figure 3. 4: Prostacyclin (PGI2) inhibits collagen-induced platelet aggregation in a 
dose dependent manner. 
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3.4 The inhibitory effect of prostacyclin on platelet aggregation is reversible 

Having confirmed that PGI2 inhibits collagen-induced platelet aggregation, the 

temporal nature of the inhibitory effect was explored. Here PGI2 (100nM) was 

incubated with platelets for increasing time points (0-30min) before stimulating 

with collagen (5µg/mL). PGI2 induced a rapid inhibitory response on platelet 

aggregation with 87±4% inhibition observed just after 15 sec. This level of inhibition 

was maintained for 5 minutes post PGI2 treatment before the inhibitory response 

rapidly decayed such that at 30 min only 17±17% inhibition was observed (Figure 

3.5). These data illustrate a rapid and reversible effect of PGI2 on platelet 

aggregation. In the light of these observations 1min incubation time was selected 

for all aggregation experiments with PGI2. 
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Figure 3. 5: The inhibitory effect of prostacyclin (PGI2) on platelet aggregation is 
reversible. 

WP (2.5x108 platelets/mL) were pre-treated with PGI2 (100nM) for an increasing 

periods of time (0-30min) then were stimulated with collagen (5μg/mL). 

Aggregation was monitored for 4mins under constant stirring (1000rpm) at 37oC 

using a chrono-log dual channel light transmission aggregometer. (A) Shows 

representative aggregation traces generated by aggreo/link computer software 

(chrono-log, USA). (B) Shows data from 3 independent experiments represented as 

% inhibition of aggregation and expressed as means ± SEM (*: p<0.05, **: p<0.01 

when compared with 60 seconds). 
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3.5 Prostacyclin inhibits thrombin-induced platelet aggregation in a 

concentration-dependent manner  

Having characterised the inhibitory properties of PGI2 on platelet aggregation 

induced by the stimulation of an immunoglobulin receptor (GPVI) by collagen, the 

ability of PGI2 to modulate platelet aggregation induced by stimulation of a GPCR 

was tested. In this case the effect of PGI2 on platelet aggregation induced by 

thrombin was examined. 

Consistent with the previous observations with collagen, incubating WP with 

increasing concentrations of PGI2 (0-1000nM) for 1min inhibited platelet 

aggregation induced by thrombin (0.02U/mL) in a concentration-dependent 

manner. We observed a threshold inhibitory effect with 10nM giving an inhibitory 

effect of 18±7%, and 100nM of PGI2 inducing almost complete inhibition of 

aggregation 84±13% (Figure 3.6). The PGI2 concentration that caused 50% inhibition 

at this concentration of thrombin was 52±18nM.  These data confirm the ability of 

PGI2 to inhibit G-protein-mediated platelet aggregation induced by thrombin, which 

suggests that PGI2 targets aspects of platelet function that are common to different 

agonists.   
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Figure 3. 6: Prostacyclin (PGI2) inhibits thrombin-induced platelet aggregation in a 
dose dependent manner.  

WP (2.5x108 platelets/mL) were pre-treated with increasing concentrations of PGI2 

(0.1-100nM) for 1min then were stimulated with thrombin (0.02 U/mL). 

Aggregation was monitored for 4mins under constant stirring (1000rpm) at 37oC 

using a chrono-log dual channel light transmission aggregometer. (A) Shows 

representative aggregation traces generated by aggreo/link computer software 

(chrono-log, USA). (B) Data are represented as a dose response fit showing the 

relationship between PGI2 concentration and % inhibition of thrombin-induced 

aggregation. Data are from 4 independent experiments with separate blood donors 

and expressed as means ± SEM.   
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3.6 Prostacyclin has a more potent inhibitory effect on platelet aggregation than 

prostaglandin E1 

In this experiment the inhibitory effect of PGI2 on thrombin-induced platelet 

aggregation was compared with PGE1. A comparison between these two 

physiological inhibitors was performed on the same donor, on the same day and 

under the same conditions to exclude any experimental or donor variations. 

Furthermore, the same concentration for each of the inhibitors was tested 

successively to minimize any changes in platelet activity over time.  

Consistent with its description as a regulator of platelet function, PGE1 induced a 

concentration dependent inhibition of thrombin induced platelet aggregation. We 

observed a threshold inhibitory effect with 10nM giving an inhibitory effect of 

9±4%, with 1000nM of PGE1 inducing almost complete inhibition of aggregation 

93±4% (Figure 3.7). We next compared these inhibitory effects with those of PGI2. 

In Figure 3.7 two concentration-response curves representing % inhibition of 

platelet aggregation for increasing concentrations of PGI2 and PGE1 are presented. 

The concentration that caused 50% inhibition of aggregation was 52±18nM and 

178±45nM for PGI2 and PGE1, respectively (p<0.05).  This rightward shift in the 

curve representing PGE1 data in comparison to the one representing PGI2 confirm 

that PGI2 is the more potent cAMP-dependent physiological inhibitor when tested 

on thrombin-induced platelet aggregation.  
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Figure 3. 7:Prostacyclin (PGI2) has a more potent inhibitory effect than 
prostaglandin E1 (PGE1) as assessed by platelet aggregation. 

WP (2.5x108 platelets/mL) were pre-treated with increasing concentrations of PGI2 

(0.1-1000nM, Blue fit) or similar concentrations of PGE1 (green fit) for 1min then 

were stimulated with thrombin (0.02 U/mL). Aggregation was monitored for 4mins 

under constant stirring (1000rpm) at 37oC using a chrono-log dual channel light 

transmission aggregometer. Data are displayed as scatter plots with best fits 

showing the relationship between inhibitor concentration and % inhibition of 

thrombin-induced aggregation. Data are from 4 independent experiments with 

separate blood donors and expressed as means ± SEM (*: p≤0.05 when compared 

with PGE1 treatment).  
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3.7 Characterisation of the inhibitory effects of forskolin on platelet aggregation 

In addition to PGI2, the physiological cAMP-dependent platelet inhibitor that was 

mainly used in this study, we also used forskolin as a direct activator of AC.  

Forskolin (Fsk) is a ditrepene that can be isolated from an Indian plant called 

Forskohlii and was first discovered by Seamon et al (Seamon et al., 1981).  Forskolin 

has been used widely as a tool to increase cAMP levels in a receptor-independent 

manner (Seamon et al., 1981). Fsk activates all AC isoforms except AC9 by slipping 

into the ventral cleft of the active domain allowing its two cytoplasmic tails to glue 

together through a combination of hydrophobic and hydrogen-binding interactions 

(Zhang et al., 1997). Throughout this study Fsk was used to characterise global 

cAMP signalling networks compared with that activated by the IP receptor. 

Here the inhibitory effects of Fsk on collagen-induced platelet aggregation were 

characterised and the optimal conditions for its use determined. In the first 

instance, a time-course experiment was performed to determine the optimal 

incubation time and whether any inhibitory effects were reversible. Inhibition by 

Fsk (10µM) peaked at 5min reducing aggregation from 64%, when WP were treated 

with collagen alone, to 25%. This was maintained for up to 15 min before declining 

back to basal by 30 min (Figure 3.8 A). Consequently, 5min incubation was chosen 

as a standard incubation time for Fsk.  

In the second instance, a Fsk concentration-response curve was generated. 

Increasing concentrations of Fsk (0.1-20µM) were incubated for 5min with WP prior 

to addition of collagen (5µg/mL) and aggregation was monitored.  Fsk (2µM) had a 
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threshold inhibitory effect on aggregation causing an 8±2% inhibition, whereas 

10µM showed a more pronounced inhibitory effect causing 51±2% inhibition (figure 

3.8 B). Full inhibition of aggregation was never attained even at the maximal 

concentration tested: Fsk (20µM) caused 67% inhibition. Data from this experiment 

suggest that 5 min incubation with Fsk inhibits collagen-induced platelet 

aggregation in a concentration-dependent and reversible manner. 
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Figure 3. 8: Characterization of the inhibitory effect of forskolin (Fsk) on platelet 
aggregation induced by collagen. 

WP (2.5x108 platelets/mL) were pre-treated with Fsk then were stimulated with 

collagen (5μg/mL). Aggregation was monitored for 4mins under constant stirring 

(1000rpm) at 37oC using a chrono-log dual channel light transmission 

aggregometer. (A) Fsk (10μM) was pre-incubated with WP for increasing time 

points (0-30mins) before stimulating with collagen. Data are from 1 experiment and 

represented as % Light transmission. (B) Increasing concentrations of Fsk (0.1-

20μM) were pre-incubated with WP for 5mins before stimulating with collagen. 

Data are from 4 independent experiments (except 1 and 20μM), expressed as % 

inhibition of aggregation and represented as means ± SEM.  
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3.8 Characterisation of the inhibitory effects of cAMP analogues on blood 

platelets 

In addition to PGI2 and Fsk, we used cell-permeable direct PKA activators that can 

bypass the receptor and AC and therefore wanted to optimise them under our 

conditions. A number of cell-permeable cAMP analogues have been developed that 

can act as direct activators of PKA. They are also often resistant to hydrolysis by 

cytoplasmic PDEs leading to long term activation of PKA. They have been developed 

as a tool to study biological responses that are dependent exclusively on the 

activation of PKA. There is a wide range of these cAMP analogues commercially 

available that vary in their lipophillicity and their specificity towards a specific 

element of the cyclic nucleotide signal transduction. 8-CPT-cAMP is a cAMP 

analogue that is synthesised by adding a chlorophenylthiol moiety to position 8 of 

the cAMP molecule. This compound has been shown to have a high affinity for all 

cAMP binding sites both on PKA I and PKA II (Schwede et al., 2000). But in platelets, 

this compound showed some nonspecific effects on PKG as well as low membrane 

permeability when compared with other cAMP analogues (Sandberg et al., 1991). It 

has been found however that the substitution of a hydrogen atom at position 6 of 

the cAMP molecule with an aromatic ring such as a phenyl ring enhances the 

specificity of cAMP analogues towards PKA as well as their membrane permeability 

(Christensen et al., 2003). Therefore, 8-CPT-6-Phe-cAMP was chosen as an 

activatory cAMP analogue to be used throughout this study.  

To determine the optimal conditions under which this cAMP analogue could be 

used, time-course and concentration response pilot experiments were performed 
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on WP to study its inhibitory effect on collagen-induced platelet aggregation. 

Maximal inhibition of collagen-induced platelet aggregation occurred after 5 min 

incubation with 8-CPT-6-Phe-cAMP (40µM), where aggregation was reduced from 

83% to 33%. This was maintained for 10mins, which was the longest time tested 

and therefore, 5min was considered the optimal incubation time for further 

experiments. In addition, 8-CPT-6-Phe-cAMP (1-100µM) inhibited collagen-induced 

aggregation in a concentration-dependent manner with a threshold inhibitory 

effect at 10µM with 11±3% inhibition and reaching to 77±5% inhibition at 100µM 

(Figure 3.9 B). The chosen concentrations and time points were similar to those 

used by Sandberg et al when they tried similar compounds on platelets (Sandberg 

et al., 1991). The 8-CPT-6-Phe-cAMP concentration that caused 50% inhibition 

under these conditions was 30±6µM. Data from this experiment suggest that 8-CPT-

6-Phe-cAMP can inhibit platelet aggregation induced by collagen in a concentration-

dependent manner. 
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Figure 3. 9: Characterization of the inhibitory effect of the cAMP analogue 8-CPT-

6-Phe-cAMP on platelet aggregation induced by collagen. 

WP (2.5x108 platelets/mL) were pre-treated with 8-CPT-6-Phe-cAMP then were 

stimulated with collagen (5μg/mL). Aggregation was monitored for 4mins under 

constant stirring (1000rpm) at 37oC using a chrono-log dual channel light 

transmission aggregometer. (A) 8-CPT-6-Phe-cAMP (40μM) was pre-incubated with 

WP for increasing time points (0-10mins) before stimulating with collagen. Data is 

from 1 experiment and is represented as % Light transmission. (B) Increasing 

concentrations of 8-CPT-6-Phe-cAMP (1-100μM) were pre-incubated with WP for 5 

min before stimulating with collagen. Data are from 3 independent experiments 

with separate donors, expressed as % inhibition of aggregation and represented as 

means ± SEM.   
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3.9 Characterisation of adenylyl cyclase activity in response to prostacyclin and 

forskolin 

In the next set of experiments we wanted to investigate AC activity for PGI2 and 

other cAMP–elevating agents that were used in this study. The mechanism by 

which PGI2 exert its inhibitory effect is through raising cAMP levels (Tateson et al., 

1977) in response to its binding to the Gs-protein coupled  IP receptor (Kennedy et 

al., 1982). In contrast, Fsk diffuses through the membrane and directly activates AC 

(Seamon et al., 1981). Therefore, assessing AC activity represented by measuring 

cAMP levels is a very important tool in studying cAMP/PKA signalling pathway in 

platelets.  

In this experiment cAMP levels were measured using an EIA-based method in 

response to increasing concentrations of PGI2 and Fsk. Washed platelets maintain a 

basal level of cAMP 198 16 fmol cAMP/107 platelets (n=3), which does not 

decrease with time (data not shown). Stimulating platelets with increasing 

concentrations of PGI2 led to increased AC activity in a concentration-dependent 

manner (Figure 3.10A). PGI2 (10nM) only slightly increased AC activity over basal 

levels producing 222±27 fmol cAMP/107 platelets (p=0.24 compared with basal) 

whereas 100nM, which normally abolishes platelet aggregation (see figure 3.4), 

raised cAMP levels up to 450±31 fmol cAMP/107 platelets (p<0.001 compared with 

basal). The highest concentration of PGI2 we measured was 1000nM which 

produced 691±208 fmol cAMP/107 platelets (p<0.05 compared with basal).  
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After that we stimulated WP with PGI2 (100nM) for increasing time points (0.5-10 

min). Data from this experiment showed that PGI2-mediated AC activity peaked 

after 1 min with 511 fmol cAMP/107 platelets and then started to dip reaching 327 

fmol cAMP/107 platelets after 10 min which was the longest time measured in our 

experiment (Figure 3.10 B, n=2). 

Similar to PGI2, Fsk caused an increase in AC activity in a concentration-dependent 

manner elevating cAMP levels from 198 16 up to 436±59 fmol cAMP/107 platelets 

(p<0.05 when compared with basal) when WP were treated with Fsk (20µM) (Figure 

3.10 C). Data from this experiment confirm that PGI2 and Fsk increase AC activity in 

a dose-dependent manner and the effect of PGI2 on platelet AC activity is 

reversible. 

. 
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Figure 3. 10: Prostacyclin and forskolin induce AC activity in a dose dependent 
manner. 

(A) WP (2x108 platelets/mL) were stimulated with increasing concentrations of PGI2 

(0-1000nM) for 30 sec at 37oC under constant stirring using a chrono-log dual 

channel light transmission aggregometer. Samples were then processed as 

described in chapter 2. Data are representative of 3 independent experiments from 

separate donors and expressed as means ± SEM. (B) As in A except that WP were 

treated with a constant concentration of PGI2 (100nM) for increasing time points 

(0.5-10 min). Data are from 2 independent experiments with separate donors and 

expressed as means. (C) As in A but WP were treated with Fsk (0-20μM) for 5 min. 

Data are representative of 3 independent experiments from separate donors and 

expressed as means ± SEM.   



Chapter 3 129 

 

3.10 Studying PKA-mediated phosphorylation events in blood platelets 

Assessment of PKA-mediated phosphorylation events by immunoblotting is an 

important marker for PKA activity. After increasing the basal activity of AC and 

triggering the production of cAMP by several agents, these cAMP molecules bind to 

an inactive tetrameric PKA holoenzyme. This binding leads to dissociation of the 

catalytic subunit and subsequently phosphorylation of several PKA substrates. 

These phosphorylation events result in blunting various aspects of platelet activity 

(Schwarz et al., 2001).   

In order to assess PKA signalling events in platelets we employed two PKA signalling 

markers. The first one is an antibody that can detect the phosphorylation of the 

cytoskeletal protein VASP at serine157, which is a well-established PKA target in 

platelets (Halbrugge et al., 1990) (Horstrup et al., 1994). This antibody produces a 

band at an apparent molecular weight of 50kDa on SDS-PAGE representing 

phospho-VASPser157. Secondly, we used an antibody that detects a range of PKA-

phosphorylated proteins through its ability to recognise phosphorylated PKA 

consensus sequences (-Arg-Arg-X-Ser/Thr-X) on different cellular proteins. 

Therefore, two cellular markers would be used in studying PKA-dependent 

phosphorylation events phospho-VASPser157 and phospho-PKA substrate protein 

profile.  

Under basal conditions we observed that PKA substrates with apparent molecular 

weights of 16, 44 and 55 were heavily phosphorylated. These bands were always 

present. But other bands such as those at ~35, 70, 130 and 240 were only mildly 
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phosphorylated under basal conditions and their presence depended on the 

transfer as well as the film exposure time (compare figure 3.11, 12, 13 and 14). 

Interestingly we observed that basal phosphorylation was milder when WP were 

left for 60 min between preparation and lysis. 
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Figure 3. 11: Characterization of basally phosphorylated proteins detected by 
phospho-PKA substrate antibody. 

WP (2.5x108 platelets/mL) were isolated using the pH method as described in 

chapter 2. They were then lysed with Laemmli buffer after different time points 

since resuspending with modified Tyrode’s buffer. Platelet lysates (20μg/well) were 

loaded onto a 10-18% gradient polyacrylamide gel and then resolved by SDS-PAGE 

for 2.5h at 120V. Proteins were then transferred onto a PVDF membrane for 2.5h at 

100V. Membranes were then blocked and immunoblotted with anti-phospho-PKA 

substrate rabbit antibody (1:1000) overnight at 4oC. Blot is representative of one 

experiment.  
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3.10.1 Characterisation of PKA phosphorylation events induced by prostacyclin  

Having characterised the effects of PGI2 on AC activity, we next wanted to 

determine the subsequent PKA-mediated signalling events. In this set of 

experiments the effects of PGI2 on the phosphorylation of VASPser157 and other 

proteins, represented by the phospho-PKA substrate protein profile, were 

examined. 

WP were stimulated with increasing concentrations of PGI2 (0-100nM) resulting in a 

concentration-dependent increase in the phosphorylation of different PKA 

substrates (Figure 3.12A, top panel, lanes 1-4). Robust phosphorylation was 

observed when stimulating with 100nM of PGI2 (lane 4). This blot showed an 

increase in the phosphorylation of basally phosphorylated proteins at molecular 

weights of 16, 35 and 240kDa. Furthermore, some new phosphoproteins were 

visible that corresponded to molecular weights of 27, 32, 48 and 66kDa. On the 

other hand, we observed a decrease in the phosphorylation of the band at 44kDa. 

The specificity of this antibody to PKA activity was checked using different 

combinations of PKA inhibitors (Figure 3.12A top panel, lanes 5, 6). The rationale 

behind using combination of different PKA inhibitors is the well documented 

unspecificity of these inhibitors (Murray, 2008). We used the PKA inhibitor KT 5270 

(10µM) in combination with either H89 (20µM) or Rp-8-CPT-6-Phe-cAMPS (500µM). 

Both KT 5270 and H89 act as competitive antagonists for ATP at its binding domain 

on the catalytic subunit of PKA (Engh et al., 1996) (Kase et al., 1987) whereas Rp-

cAMPS compound is an inactive cAMP analogue that can compete with endogenous 

cAMP molecules at the cAMP binding domain on the regulatory subunit (de Wit et 
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al., 1984). The phosphorylation of VASPser157 followed a similar trend and this 

phosphorylation was almost abolished when platelets were pretreated with KT 

5720 and H89 (Figure 3.12 A, middle panel).  Equal loading was checked using β-

tubulin (figure 3.12 A, bottom panel). 

Next we explored the temporal pattern of the phosphorylation of these PKA 

substrates. This was achieved by incubating WP with a constant concentration of 

PGI2 (50nM) for increasing time points (0-60 min). In order to pick up as many 

bands as possible, proteins were transferred using a new transfer system (Trans-

Blot Turbo, Bio-Rad) and films, for this experiment, were overexposed. Data from 

this experiment showed that phosphorylation of different PKA targets followed a 

distinct temporal pattern (Figure 3.12 B).  

The majority of the bands peaked at 5 min but decayed at different time points. For 

example the bands at ~240, 82 and 24 kDa appeared at 15 to 30 sec, peaked at 5 

min and then started to decay until they disappeared after 60 min. Similarly the 

band at 27 kDa peaked at 5 min however it disappeared relatively quicker at 30 

min. Moreover, the band at 35 kDa was slightly phosphorylated basally then it 

peaked at 5 min and started to decay until it got back to basal levels at 60 min. 

On the other hand, the bands at ~66 and 48 kDa emerged and peaked notably 

quickly after 15-30 sec and were maintained for 5 min then started to decay 

gradually until they disappeared after 60 min. 
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In contrast, other bands underwent a rather delayed temporal pattern such as the 

band at 22 kDa which emerged at 1 min, peaked after 5 min and then started to 

decay quickly and disappeared completely at 60 min.  

Surprisingly, the band at 44 kDa, which was heavily phosphorylated under basal 

conditions, started to decay straight after stimulation with PGI2 and reached its 

lowest levels after 30 min and then it went up slightly after 60 min.  

The phosphorylation of VASP also followed a distinct temporal pattern with a rapid 

phosphorylation at 15 sec, a peak at 5 min then a gradual decrease until it got back 

to basal levels at 15 min (Figure 3.12 B, middle panel).  

These data suggest that stimulating platelets with PGI2 triggers PKA-mediated 

phosphorylation events which are temporally regulated. In addition, based on those 

data 1min was chosen to be the optimal stimulating time when studying PGI2-

induced signalling events. 
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Figure 3. 12: Characterization of prostacyclin-induced phosphorylation events in 
blood platelets. 

(A) WP (2.5x108 platelets/mL) were isolated using the pH method as described in 

chapter 2. Platelets were pre-warmed for 2 min then stimulated with increasing 

concentrations of PGI2 (0-100 nM) for 1 min (lanes 1-4). PKA inhibitors (KT 5270: 

10µM, H89: 20µM and Rp-8-CPT-6-Phe-cAMPS: 500µM) were incubated with WP 

for 20 min prior to stimulating with PGI2 (100nM) (lanes 5, 6). (B) As in A, but WP 

were stimulated with a constant concentration of PGI2 (50nM) for increasing time 

points (0.25-60mins). Platelet lysates (20μg/well) were loaded onto a 10-18% 

gradient polyacrylamide gel and then resolved by SDS-PAGE for 2.5h at 120V. 

Proteins were then transferred onto a PVDF membrane for 2.5h at 100V. 

Membranes were then blocked and immunoblotted with anti-phospho-PKA 

substrate rabbit antibody (1:1000) (top panels) overnight at 4oC. Membranes were 

then stripped and reprobed with anti phospho-VASPser157 rabbit antibody overnight 

at 4oC (middle panels). Membranes were finally immunoblotted for anti-β-Tubulin 

mouse antibody (bottom panels) overnight at 4oC to check for equal loading. Red 

arrows indicate bands of interest. Blots are representative of three independent 

experiments with three separate donors.  
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3.10.2 Characterisation of PKA phosphorylation events induced by forskolin and 

cAMP analogues 

Since other nonphysiological cAMP/PKA activating agents were used throughout 

this study, it was important to characterise the signalling events associated with 

these agents. Therefore, in this set of experiments we sought to characterise the 

phosphorylation events induced by the AC activator Fsk and the cAMP analogue 8-

CPT-6-Phe-cAMP. 

Stimulating washed platelets with increasing concentrations of Fsk resulted in dose-

dependent increase in the intensity of phosphorylation of PKA substrates as well as 

VASPser157 (Figure 3.13 A). Phosphorylation peaked with 10µM Fsk and after 5 min 

incubation (Figure 3.13 A, lane 7) which is consistent with the aggregation data 

(Figure 3.8). The phospho-PKA substrate profile was similar to that observed with 

PGI2 with Increased phosphorylation observed with proteins at apparent molecular 

weights of 16, 22, 35, 48, 66, 100 and the basally phsphorylated protein at 240 kDa 

(Figure 3.13 A, see red arrows).  

On the other hand, the time course experiment showed a less obvious temporal 

pattern in the phosphorylation signal when compared with that of PGI2 (See figure 

3.12 B) as only the band at 66 kDa appears to be temporally regulated in this blot. 

This band emerged after 1 min, peaked at 5 min and went down after 30 min 

(Figure 3.13 A top panel).  Similarly to what we observed with PGI2, a decrease in 

the phosphorylation of the basally phosphorylated protein at 44kDa could also be 
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observed (Figure 3.13 A top panel). The phosphorylation of VASPser157 also 

underwent no obvious temporal regulation (figure 3.13 A, middle panel).  

Finally, we looked at the phosphorylation profile induced by stimulating PKA with 

the cAMP analogue 8-CPT-6-Phe-cAMP. We observed that increasing 

concentrations of 8-CPT-6-Phe-cAMP (0-50µM) also caused a gradual increase in 

the phosphorylation signal detected by phospho-PKA substrate and phospho-

VASPser157 antibodies (figure 3.12 B). The phospho-PKA substrate profile was also 

similar to that observed with PGI2 and Fsk with Increased phosphorylation observed 

with proteins at apparent molecular weights of 16, 35, 48, 66, 100 and 240 kDa 

(Figure 3.13 B, see red arrows). 

Data from those experiments show that both Fsk and 8-CPT-6-Phe-cAMP can trigger 

PKA-dependent phosphorylation events similar to that of PGI2. But the temporal 

pattern was less obvious.  
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Figure 3. 13: Characterization of forskolin- and 8-CPT-6-Phe-cAMP-induced 
phosphorylation events in blood platelets. 

WP (2.5x108 platelets/mL) were isolated using the pH method as described in 

chapter 2. (A) Platelets were pre-wormed for 2mins then stimulated with increasing 

concentrations of Fsk (0-20μM) for 1min (lanes 1-5) or they were stimulated with a 

constant concentration of Fsk (10μM) for increasing time points (1-30mins) (lanes 

6-9). (B) As in (A) but platelets were stimulated with increasing concentrations of 8-

CPT-6-Phe-cAMP (0-50µM) for 5min. Platelet lysates (20μg/well) were loaded onto 

a 10-18% gradient polyacrylamide gel and then resolved by SDS-PAGE for 2.5h at 

120V. Proteins were then transferred into a PVDF membrane for 2.5h at 100V. 

Membranes were then blocked and immunoblotted with anti-phospho-PKA 

substrate rabbit antibody (top panel) overnight at 4oC. Membranes were then 

stripped and reprobed with anti phospho-VASPser157 rabbit antibody overnight at 

4oC (middle panel). Membranes were finally immunoblotted for anti-β-Tubulin 

mouse antibody (bottom panels) overnight at 4oC to check for equal loading. Red 

arrows indicate bands of interest. Blot represents one independent experiment.  
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3.10.3 Characterisation of the effect of platelet agonists on PKA-mediated 

phosphorylation events 

In the circulation, platelets are constantly exposed to endothelium-derived 

inhibitors to keep them circulating in a quiescent state. But when platelets 

encounter a vascular injury they come into contact with components of the 

thrombogenic subcellular matrix, whose effect outweights the anti-thrombogenic 

effects of the endothelium and induces platelet activation. 

Therefore, in attempt to mimic what happens in the vasculature, we wanted to 

investigate the effect of platelet agonists such as collagen and thrombin on PKA 

signalling events under basal and PGI2-treated conditions. In this experiment, WP 

were stimulated with collagen (5µg/mL) or with thrombin (0.02 U/mL) under 

nonaggregatory conditions in the presence or absence of PGI2 (50nm). After that, 

the phosophorylation profile of PKA was examined (Figure 3.14). We observed a 

robust increase in the phosphorylation 44kDa phosphoprotein when platelets were 

stimulated with collagen and thrombin alone. Consistently with our data, 

stimulating WP with PGI2 (50nM) led to an increase in the PKA phosphorylation 

profile and a decrease in the phosphorylation of the basally phosphorylated band of 

44kDa. Interestingly, stimulating WP with collagen following the treatment with 

PGI2 had no clear effect on the phosphorylation profile with the exception of the 

band at 44kDa whose phosphorylation increased significantly. Similar treatment 

with thrombin however, had a less significant effect on the band at 44kDa but a 

more pronounced effect on the whole of the PKA phosphorylation profile.   
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Figure 3. 14: The effect of platelet agonists on the phospho-PKA substrate profile. 

 WP (2.5x108 platelets/mL) were isolated using the pH method as described in 

chapter 2. Platelets were pre-wormed for 2 min under nonaggregatory conditions 

then either stimulated directly with platelet agonists (collagen: 5µg/mL or 

thrombin: 0.02 U/mL) for 90 sec or pretreated with PGI2 (50nM) for 1 min before 

they were stimulated with the same agonists under the same conditions. Platelet 

lysates (20μg/well) were loaded onto a 10-18% gradient polyacrylamide gel and 

then resolved by SDS-PAGE for 2.5h at 120V. Proteins were then transferred into a 

PVDF membrane for 2.5h at 100V. Membranes were then blocked and 

immunoblotted with anti-phospho-PKA substrate rabbit antibody overnight at 4oC. 

The blot is representative of two independent experiments with separate donors. 
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3.11 Discussion 

The discovery of cAMP as a second messenger goes back to 1957 (Sutherland and 

Rall, 1958) whereas its role in inhibiting platelets in response to PGE1 was identified 

later in the 1960s (Marquis et al., 1969). After that, prostacyclin was identified as 

the main cAMP-dependent platelet inhibitor (Moncada et al., 1976, Tateson et al., 

1977). The importance of this pathway is exemplified by various pathological 

conditions that are associated with defects in the cAMP signalling pathway such as 

various bleeding disorders and atherosclerosis.  For instance, reduced sensitivity to 

prostacyclin results in platelet hyperactivity, which is a major player in 

atherosclerosis and thrombosis (Van Geet et al., 2009). Conversely, platelet 

hypersensitivity to prostacyclin, attributed to a gain-of-function mutation in a Gs 

protein, gives rise to different bleeding phenotypes (Van Geet et al., 2009). This 

highlights the importance of understanding cAMP signalling networks in platelets, 

which are still after nearly five decades of research poorly understood. Throughout 

this study the main aim was to improve our understanding of cAMP/PKA signalling 

networks in blood platelets. 

Work presented in this chapter aimed to characterise the inhibitory properties of 

various physiological and nonphysiological cAMP elevating agents under our own 

experimental conditions. The first step in this process was selecting an appropriate 

method for isolating platelets. The use of the classic prostaglandin method (Vargas 

et al., 1982) would potentially lead to misinterpretation of data as a result of adding 

prostaglandin to plasma, which would trigger the cAMP/PKA signalling pathway 

leading to residual effects of cAMP and receptor desensitisation.  An available 
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alternative for this method relied on lowering the plasma pH to 6.4 without having 

to add any inhibitors (Mustard et al., 1989). Therefore, it was important to validate 

this method under our conditions. Data from figure 3.2 and 3.3 showed that 

platelets isolated by this method respond normally to agonists by assessing their 

aggregability and signalling responsiveness. 

Since prostacyclin is the main physiological cAMP-dependent platelet inhibitor it 

was chosen to be our tool to explore the cAMP/PKA signalling cascade. We began 

by testing the inhibitory effect of PGI2 on platelet aggregation mediated by different 

agonists. Data from figure 3.4 showed that PGI2 can inhibit collagen-induced 

platelet aggregation in a concentration-dependent manner with 50% inhibition 

achieved with 49±8nM. In addition to inhibiting collagen-induced platelet 

aggregation, we showed that PGI2 can inhibit thrombin-induced platelet 

aggregation with 50% inhibition achieved using 52±18nM (Figure 3.6). These data 

suggest that PGI2 is a universal inhibitor of platelet functions, which is consistent 

with other reports in which the effect of PGI2 was tested on multiple platelet 

agonists (Radomski et al., 1987a) (Fisher et al., 1987). Moreover, a direct 

comparison with PGE1 was made and we found that PGI2 is effective at a lower 

concentration than that of PGE1 (Figure 3.7). The difference in potency between 

these two inhibitors, which supposedly trigger the same signalling pathway and 

were in the past thought to act through the same receptor (Schafer et al., 1979), is 

yet very much elusive. Data from this experiment highlighted the great potency of 

PGI2, which agrees with earlier reports that compared the potency of PGI2 with 

both PGE1 and NO (Radomski et al., 1987a) (Tateson et al., 1977).   
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We also characterised the temporal dynamics of the inhibitory effects of PGI2. Our 

data showed that the inhibitory effect of PGI2 on aggregation is reversible (Figure 

3.4). This is important physiologically as platelets need to retain their ability to 

aggregate when they encounter a vascular injury despite being constitutively 

exposed to PGI2 released from the endothelium (Moncada, 1982b). These temporal 

dynamics fit in with time course experiments carried on PGI2-induced AC activity as 

well as PKA phosphorylation events. 

Our cAMP data showed that both PGI2 and Fsk trigger concentration-dependent AC 

activity. But interestingly, we observed that comparable inhibitory effects of these 

two agents required different levels of cAMP. This was observed when PGI2 (50nM) 

and Fsk (10µM) both induced 50% inhibition of aggregation through production of 

237±39 and 340±29 fmol cAMP/107 platelets, respectively. In addition, we showed 

that PGI2-induced AC activity is reversible although this experiment was only 

performed twice. Despite that, these cAMP data agree with early reports from 

Gorman and colleahues, which suggested that cAMP levels produced by PGI2 

peaked after 30 seconds and were maintained for two minutes then they started to 

decline reaching basal levels within 30 minutes (Gorman et al., 1977). These kinetics 

also agree with our proposed temporal regulation of PKA signalling events (Figure 

3.12). This report also suggests that in contrast to PGI2, elevation of cAMP levels 

induced by PGE1 starts to fall after 30 seconds, which might help interpret our 

observations that PGI2 is the most potent inhibitor of the two prostanoids. But this 

also begs another question that is: why is the temporal regulation of the AC activity 

triggered by two GsPCR different? A possible explanation for this phenomena has 
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been suggested by Zaccolo  and colleagues who suggest that specific PDE isoforms 

are compartmentelised downstream a specific GsPCR (Stangherlin and Zaccolo, 

2012).  

Due to the low number of confirmed PKA substrates in platelets combined with the 

lack of specific phospho-antibodies for these substrates, we only used two different 

markers for PKA activity. The first one was the well-established PKA-mediated 

phosphorylation of VASPser157 (Halbrugge et al., 1990) (Horstrup et al., 1994) 

whereas the other one was phosphorylation of PKA substrate profile. The use of 

phospho-PKA substrate as an additional PKA activity marker not only confirmed 

data obtained from using p-VASPser157 but also allowed us to simultaneously look at 

multiple PKA substrates (Patel et al., 2010, Biton and Ashkenazi, 2011, Moir et al., 

2006), and assess their differential regulation in response to various stimulating 

conditions. Within these experiments, especially the time-course experiments, the 

blots were deliberately overexposed to increase the number of bands. Although the 

majority of the bands were observed across all experiments, a small minority could 

not be observed in some occasions. This could be due to various reasons such as 

variation across different donors, inefficient transfer of proteins onto the PVDF 

membrane or maybe insufficient separation of bands with close molecular weights 

when using small gels. Transfer issues were later overcome by using the new Trans-

Blot Turbo system from Bio-Rad (see figure 3.12 B) after which more bands were 

transferred onto the PVDF membrane and with a better resolution.  
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We showed that PGI2 induced the phosphorylation of VASPser157 and several other 

substrates as detected by the phospho-PKA substrate antibody. The apparent 

molecular weight of most of these substrates was consistent with molecular 

weights reported by others (El-Daher et al., 1996) (Waldmann et al., 1987). The 

temporal regulation of VASP phosphorylation followed a trend that agreed with the 

aggregation data (Figure 3.12). In addition, the phosphorylation of PKA substrates 

was also reversible and in general followed a trend similar to that of phospho-

VASP157. But the temporal regulation for individual bands followed an astonishing 

distinct pattern with bands coming up, peaking and disappearing at different time 

points (Figure 3.12). The reversibility of PKA phosphorylation events in platelets has 

been reported by El-Daher et al although they used a cAMP analogue in their study 

instead of PGI2. Some of their observations were similar to ours  as they suggested 

that most phophosphorylation events peaked within 2.5 min and started to decay 

after 5 min with the exception of the band at 22kDa whose phosphorylation 

persisted for an hour (El-Daher et al., 1996). We observed basal phosphorylation of 

several bands such as those at 16, 44, 55 and 130kDa. Bands with similar apparent 

molecular weights were observed basally by both Sandberg and El-Daher when 

phosphorylation was detected by autoradiograph (El-Daher et al., 1996) (Waldmann 

et al., 1987). The basal PKA activity is important and can be interpreted as a natural 

result of basal AC activity resulting from constitutive exposure of platelets to PGI2 in 

circulation in order to maintain their dormant state. We showed that stimulation 

with PGI2 increased the phosphorylation of the basally phosphorylated proteins in 

addition to some new substrates. The basally phosphorylated band at 44kDa was an 
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exception whose phosphorylation rather went down in response to PGI2 but 

increased in response to platelet agonists (Figure 3.14) which is consistent with 

early reports (Waldmann et al., 1987). This band has been suggested to be inositol 

triphosphate 5`-phosphomonoesterase (Waldmann et al., 1987). Although the 

identity of the phosphoproteins recognised by the phospho-PKA substrate antibody 

is yet to be established, some of the previously-reported PKA substrates in platelets 

match the apparent molecular weights of substrates reported in this study (see 

table 3.1). Mass-spectrometric analysis of those bands can potentially identify and 

confirm their identity. 

The inhibitory properties of other nonphysiological cAMP-dependent agents were 

characterised. These agents allow different parts of the PKA pathway to be 

activated independently and therefore can be used as tools to dissect the 

regulation of the pathway at different levels. Firstly, the inhibitory effects of the 

direct AC activator Fsk, were assessed. Fsk inhibited collagen-induced platelet 

aggregation in a concentration-dependent manner, but with lower potency than 

physiological inhibitors as 50% inhibition was achieved with 10±4µM. Even 20µM of 

Fsk did not completely abolish the aggregation response (Figure 3.8).  Higher 

concentrations of Fsk should be used to achieve full inhibition of platelet 

aggregation. The inhibitory effect of Fsk on aggregation was also reversible, which is 

consistent with early reports when Fsk was first identified (Seamon et al., 1981). Fsk 

also induced PKA-mediated phosphorylation events with a significantly less 

pronounced temporal pattern compared with PGI2 (Figure 3.13 A). It has to be 
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mentioned here that all Fsk time course experiments were performed only twice 

and more experiments are needed to consolidate these findings.  

The inhibitory effects of a cAMP analogue used to directly activate PKA in an AC-

independent manner were also tested. The analogue that we used was derived 

from 8-CPT-cAMP, which has no preference to any PKA isoform (Schwede et al., 

2000). This was important to us in order to avoid biased activation of a specific PKA 

isoform, which would make the comparison with other PKA activators irrelevant. 8-

CPT-6-Phe-cAMP (Biolog, Germany) was the cAMP analogue of choice throughout 

this study mainly for its high membrane permeability attributed to the inclusion of a 

phenyl ring (Christensen et al., 2003). This compound showed a good 

concentration-dependent inhibitory effect with 50% inhibition achieved using 

30±6µM, which only required 5 min preincubation when tested on collagen-

induced platelet aggregation (Figure 3.9). It also stimulated PKA-mediated signalling 

events represented by phosphorylation of PKA substrate profile and VASPser157 

(Figure 3.13 B).      

Data from these experiments showed that the potency of PGI2 is greater than that 

of the other nonphysiological PKA activators tested. These data also suggest that 

PGI2 is more efficient than the other nonphysiological PKA-dependent inhibitors. 

This was observed when comparable inhibitory effects (50%) were achieved with 

lower cAMP levels produced with PGI2 when compared with the concentration of 

the cAMP analogue that was used and the levels of cAMP produced by Fsk. We 

postulate that this is due to temporal and spatial regulation of the IP receptor-
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triggered signal, which directs the signal into specific cellular compartments where 

it is needed the most. We hypothesise that this specificity would be compromised 

when nonphysiological agents were used and hence more cAMP would be needed 

to achieve the same level of inhibition.         

In conclusion, data in this chapter described the inhibitory properties of different 

cAMP/PKA activating agents. The conditions for these agents to inhibit platelet 

aggregation, trigger PKA-mediated signalling and induce cAMP production were 

optimised. We also utilised a new PKA activity marker which is an antibody that can 

detect PKA-phosphorylated proteins. All the parameters that have been optimised 

in this chapter would be subjected to various experimental conditions in successive 

chapters in order to try to unravel spatial and temporal regulation of cAMP/PKA 

signalling networks in blood platelets. 
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Chapter 4: The role of A-kinase anchoring proteins in platelet 

inhibition by cAMP/PKA signalling. 

4.1 Introduction:  

PGI2 plays an important role in controlling the growth of a platelet plug at the site 

of a vascular injury and thereby controls thrombosis. The mechanism by which PGI2 

exerts its biological effects in platelets occurs through elevating intracellular cAMP 

levels (Tateson et al., 1977). Increased cAMP in platelets is associated with 

inhibition of Ca+2 mobilisation (Cavallini et al., 1996), platelet dense granule 

secretion (Feinstein and Fraser, 1975), αIIbβ3 activation, aggregation (Graber and 

Hawiger, 1982) as well as accrual of platelets at the site of a vascular injury (Sim et 

al., 2004). However, the molecular mechanism by which cAMP-regulated molecules 

inhibit platelet function is still poorly understood.  

Protein kinase A (PKA) is the main effector of cAMP signalling in blood platelets. The 

inactive PKA holoenzyme is a heterotetramer composed of two regulatory (R) 

holding two catalytic (C) subunits. Two isoforms of PKA have been identified, PKA I 

and PKA II (Corbin et al., 1975a). These isoforms differ in their regulatory subunits 

(RI and RII). In their turn both R and C subunits exist in different isoforms (RIα, RIβ, 

RIIα, RIIβ, Cα, Cβ, Cγ), which adds to the complexity. In platelets, isoforms RIα, RIβ, 

RIIβ, Cα and Cβ are expressed giving rise to PKA I and PKA II holoenzyme (Rowley et 

al., 2011). However, the differential roles, localisation and the relative contribution 

of these two isoforms to the inhibition of platelet function is still very much elusive. 
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The spatio-temporal regulation of a cellular signal is a relatively new term that has 

emerged to refer to the initiation and termination of a signal at a distinct 

subcellular compartment and at a specific time point. In this “compartment” the 

components of signalling machinery are present in close proximity to focus on 

particular substrates that regulate a specific cellular function. The spatio-temporal 

regulation of cAMP/PKA signalling in other cell types has been attributed to the 

effect of a structurally diverse yet functionally similar family of proteins called A-

kinase anchoring proteins (AKAPs). These AKAPs bind to the D/D domain of the PKA 

regulatory subunits through an amphipathic helix that is characteristic of all AKAPs 

(Carr et al., 1991). The function of AKAPs further involves targeting PKA into specific 

subcellular compartments through a unique targeting domain that is characteristic 

of every AKAP. To date 48 AKAPs have been identified, most of which are PKA II-

specific and the rest are dual-specific (Tasken and Aandahl, 2004). An entirely PKA I-

specific AKAP has been identified recently (Means et al., 2011).  

Spatio-temporal regulation of cAMP/PKA signalling networks is yet to be reported 

in blood platelets. However, early findings by El-Daher et al demonstrated a 

differential distribution of various PKA substrates in different subcellular 

compartments (El-Daher et al., 1996), suggesting potential compartmentalisation of 

signalling. In addition, a recent quantitative chemical proteomic study and an RNA-

seq analysis of human platelet transcriptomes reported the presence of cAMP pools 

and some potential AKAPs in platelets (Margarucci et al., 2011, Rowley et al., 2011). 

While the components of these signalling pools were not identified, these studies 

suggest that compartmentelisation of cAMP/PKA signalling in platelets might exist.  
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The distinct biochemical properties as well as the differential localisation of the two 

PKA isoforms provide the rationale for potential non-redundant roles. However, 

this is yet to be established in blood platelets.  

Aims and objectives 

In this chapter the potential spatio-temporal regulation of cAMP/PKA signalling 

networks in platelets was explored. More specifically the objectives were: 

 To determine the differential localisation of PKA isoforms in platelets. 

 To determine functional relevance of PKA I-AKAP interactions in platelets. 

 To identify a potential subcellular compartment to which PKA I localises in 

an AKAP-dependent mechanism and establish a functional relevance for 

this localisation. 

 To identify a PKA I-specific substrate whose phosphorylation is regulated by 

AKAPs. 

  



Chapter 4 154 

 

4.2 The presence of both PKA isoforms in blood platelets 

To date, two isoforms of PKA have been identified, PKA-I and PKA-II, which are 

distinguished according to their regulatory subunits RI and RII, respectively. In the 

first instance the presence of the two PKA isoforms in platelets was confirmed.  

Increasing amounts of protein (1-40g) from untreated platelet whole-cell lysate 

were separated by SDS-PAGE and immunoblotted for PKA-RI, PKA-RII and PKAc 

using specific antibodies. The blots demonstrate clearly the presence of PKA-RI, 

PKA-RII and PKAc in platelet lysates (Figure 4.1).  The antibody used to probe for RI 

recognises both RIα and RIβ and so we were unable to differentiate the expression 

of the two individual regulatory units. 
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Figure 4. 1:  All PKA subunits are expressed in platelets. 

WP (2-5x108 platelets/mL) were isolated using the pH method as described in 

chapter 2. They were then lysed with Laemmli buffer under basal levels. Platelet 

lysates (1-40μg/well) were loaded onto a 10% polyacrylamide gel and then resolved 

by SDS-PAGE for 1.5h at 120V. Proteins were then transferred onto a PVDF 

membrane for 2.5h at 100V. Membranes were then blocked and immunoblotted 

with anti-PKA RI, anti-PKA RIIβ or anti-PKAc mouse antibodies (1:1000) overnight at 

4oC. Membranes were then stripped and re-probed for anti-β-tubulin antibody. Blot 

is representative of two independent experiment.  
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4.3 PKA isoforms are differentially expressed in platelet lipid rafts 

Having proven the presence of both PKA isoforms in platelet lysate, we next wanted 

to determine their differential localisation into platelet lipid rafts. Lipid rafts are 

areas of the cellular membrane that are enriched in cholesterol and sphingolipids, 

which are distinct from the non-raft parts of the membrane that are enriched in 

glycerophospholipids. Lipid rafts play an important role in signal transduction both 

in platelets and other cell types (Simons and Toomre, 2000, Lopez et al., 2005). 

More specifically lipid rafts have been reported to play a critical role in cAMP 

signalling in numerous cell types (Willoughby and Cooper, 2007). For these reasons, 

platelet lipid rafts appealed to us as a potential cAMP/PKA platelet subcellular 

compartment to explore. 

4.3.1 Validation of platelet lipid raft isolation technique   

Lipid rafts are resistant to solubilisation with a non-ionic detergent, which is why 

they are called the detergent resistant membranes (DRM) (Simons and Toomre, 

2000). In this study, cold extraction of lipid rafts using Triton X-100-based lysis 

buffer followed by sucrose gradient ultracentrifugation was the method of choice 

(see methods for details).  

Initial validation of the methodology included analysis of different lipid raft lysis 

buffers with varying concentrations of Triton X-100 were used to extract platelet 

lipid rafts. LAT was used as a well-established lipid raft marker (Zhang et al., 1998b) 

whereas integrin β3 was used as a non-raft marker. The quality of lipid raft isolation 

using this method and the fore-mentioned markers is normally assessed by the 
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ability to obtain two distinctive populations of LAT, at the buoyant fractions 

between 5-30% and at the heavy fractions 40% of the sucrose gradient, and one 

population of integrin β3 localised at the heavy fractions. Excessive or insufficient 

amounts of the detergent, leads to impaired isolation of lipid rafts and as a result 

the lack of distinctive populations of LAT or β3. Figure 4.2 A shows that 0.065% v/v 

Triton X-100 in the lipid raft lysis buffer was sufficient to solubilise all non-raft 

fractions, but low enough to allow the lipid rafts to remain intact. A population of 

LAT in lanes 4, 5 and 6 can be observed which corresponds to detergent resistant 

fractions and may represent lipid rafts. A second population of LAT can be observed 

in lanes 10, 11 and 12. In addition, a single population of β3 is observed in lanes 10 

to 12 corresponding to detergent-soluble or non-raft fractions. In contrast, the 

distinctive two populations of LAT were less clear, when using 0.045 and 0.1%v/v of 

Triton X-100 in the lysis buffer. To determine which of the fractions were the peak 

raft fraction the concentration of cholesterol in each fraction was measured. 

Fraction 5, which had the highest amount of the raft marker LAT, also had the 

greatest cholesterol content compared with the rest of the fractions (figure 4.2 B). 

From these data 0.065% v/v Triton X-100 in lipid raft lysis buffer was used for the 

isolation of lipid rafts from human platelets.  



Chapter 4 158 

 

 

  



Chapter 4 159 

 

Figure 4. 2: Optimisation of platelet lipid raft isolation technique. 

Washed platelets (1x109 platelets/mL) were lysed with lipid raft lysis buffer 

containing 0.045, 0.065 or 0.1% Triton X-100 for 30 min on ice. Lipid rafts were 

isolated using sucrose gradient ultracentrifugation as described in methods. (A) 

Aliquots of fractions (45µl) were then analysed by 10% SDS-PAGE for 1.5h at 120V 

followed by immunoblotting for 2.5h at 100V. Membranes were then blocked and 

then probed with LAT (1:1000 rabbit) and integrin β3 (1:1000 rabbit) overnight at 

4oC to identify raft and non-raft fractions, respectively. Data are representative of 2 

independent experiments. (B) Cholesterol content of the loaded fractions was 

determined using a fluorescence assay as described in methods. Data are 

representative of 4 independent experiments.   
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4.3.2 PKA isoforms are differentially distributed into platelet lipid rafts 

In many cell types, PKA isoforms are found in distinct cellular locations allowing 

them to perform specific functions in response to distinct stimuli.  In light of the 

critical role that lipid rafts play in regulating cAMP signaling in numerous cell types 

(Tasken and Ruppelt, 2006, Willoughby and Cooper, 2007), we examined the 

presence of PKA isoforms in the these cholesterol and sphingolipid enriched 

microdomains.  

Platelet fractions were isolated by ultracentrifugation and then analysed by SDS-

PAGE followed by immunoblotting. Under basal conditions PKA was distributed into 

two pools, a very small amount was observed in the lipid raft (fraction 5)(Figure 4.3 

A, third panel from top), with the vast majority localised in the non-raft fraction.  In 

contrast, under the same conditions PKA-RII was found exclusively in the non raft 

fraction (Figure 4.3 A, bottom panel). Upon stimulation of platelets with PGI2 

(100nM) there was a significant redistribution of PKA-RI into the detergent-resistant 

fractions (figure 4.3 B, top panel) raising its presence there by nearly two folds 

(p<0.05) (figure 4.3 C). Interestingly, PGI2 stimulation did not redistribute PKA-RII 

into lipid rafts and rather remained exclusively in non-raft fractions. The lipid raft 

marker LAT was detected in fractions 4 and 5 whereas the non-raft marker β3 was 

observed in fractions 10,11 and 12 (figure 4.3 A, top two panels). These data 

suggest that only PKARI is present in lipid rafts, and that its movement is a dynamic 

process that is associated with increased cAMP levels.  
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Figure 4. 3: PKA isoforms are differentially distributed into lipid rafts.  

Platelets (1x109 platelets/mL) were either left untreated (A) or stimulated with PGI2 

(100nM) for 1 min at 37oC (B). Platelets were then lysed with lipid raft lysis buffer 

containing 0.065% Triton X-100 for 30 min on ice. Lipid raft and non-raft fractions 

were then separated by sucrose gradient ultracentrifugation. Aliquots of fractions 

(45µl) were then analysed by 10% SDS-PAGE for 1.5h at 120V followed by 

immunoblotting for 2.5h at 100V. Membranes were then blocked and firstly probed 

with LAT (1:1000 rabbit) and integrin β3 (1:1000 rabbit) to identify raft and non-raft 

fractions, respectively. Membranes were then probed with either PKA-RI (1:1000 

mouse) or PKA-RII (1:1000 mouse). Blots are representative of 4 independent 

experiments. (C) Fold increase of RI levels in lipid rafts normalised against basal 

levels. Data are from 4 independent experiments with 4 separate blood donors and 

are expressed as means ± SEM (*: p≤0.05 compared with basal).  
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4.4 Characterisation of the RI-Anchoring Disruptor (RIAD) 

The spatio-temporal regulation of cAMP/PKA signalling can be mediated by AKAPs 

in numerous cell types (Tasken and Aandahl, 2004).  A major tool used to study the 

biological relevance of AKAPs in other cell types is the use of cell-penetrating 

inhibitory peptides. These peptides mimic the PKA binding domain of AKAPs, and 

competitively block the interaction between PKA R subunits and their AKAPs. 

Numerous AKAP-PKA disruptor peptides have been developed, which differ in their 

specificity towards an individual PKA isoforms (Pidoux and Tasken, 2010).  

In the present study a number of different peptides were used in order to ascertain 

the type of AKAPs present.  The peptide Ht31 was used as an established disruptor 

of dual-specificity AKAPs and PKA.  This was then supplemented by the use of a 

newly developed RI Anchoring Disruptor (RIAD-Arg11), which was specific for PKA I- 

AKAPs (AKAP-I). This peptide was synthesised with a poly-Arg tail, which has been 

shown previously to aid in the cell penetration of peptides (Nakase et al., 2008). 

The scrambled partner (ScrRIAD-Arg11) was used as a negative control to rule out 

nonspecific effects (see Methods for details about peptide and its scrambled 

analogue). 
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4.4.1 Optimisation of conditions for cell penetration of RIAD-Arg11  

An important first step in examining the role of platelet PKA-AKAP interactions was 

to determine the conditions for the use of our PKA-AKAP disrupter.  To be confident 

that the inhibitor peptide was being internalised, RIAD-Arg11 was labelled with 

fluorescein prior to incubation with washed platelets for different time points (5-60 

minutes) at 37oC. Platelets were adhered for 30 min on glass slides before being 

examined by a fluorescence microscope. Here, only platelets that were incubated 

with the peptide for 60 minutes produced a fluorescence signal suggesting that the 

peptide needs 60 minute incubation at 37oC to penetrate the cell (Figure 4.4). 

Shorter incubation times showed no fluorescence suggesting that the peptide was 

not simply interacting with the cell surface. 

From this figure we can conclude that the peptide needs at least 60 minute 

incubation at 37oC before it gets into the cell and in order to observe its functional 

effects on various biological processes. 

 

  



Chapter 4 165 

 

 

Figure 4. 4: Optimisation of RIAD-Arg11 incubating conditions with blood 
platelets. 

Platelets (5x107plts/ml) were left to adhere on glass slides for 30 minutes at 37oC 

after being incubated with fluorescein-conjugated RIAD-Arg11 (1µM) for increasing 

time points (0, 5, 30 and 60 minutes). Platelets were then visualized under an 

Olympus fluorescence microscope. Images are representative of 2 independent 

experiments. Experiment was carried out in collaboration with Dr. Simbarashe 

Magwenzi. 
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4.5 cAMP-mediated inhibition of platelet aggregation requires AKAP-RI 

interactions 

Having established the optimal conditions for use of RIAD-Arg11 with platelets, we 

wished to investigate whether or not the potential interactions of AKAPs with PKA I 

could impact on platelet sensitivity to cAMP-mediated inhibition of platelet 

functions. The rationale for this approach was that if AKAP-PKA I interactions were 

important, then the presence of RIAD-Arg11 would prevent or reduce the inhibitory 

actions of cAMP elevating agents. 

 

4.5.1 Inhibition of platelet aggregation by PGI2 requires AKAP-RI interactions 

Initial experiments were designed to examine whether the inhibitory effect of the 

most physiologically relevant cAMP-dependent platelet inhibitor, PGI2, was reliant 

on AKAP-RI interactions. 

Treating platelets with PGI2 (50nM) caused a 76±3% inhibition of collagen-induced 

platelet aggregation (P<0.001). Pretreating platelets with increasing concentrations 

of RIAD-Arg11 (0.1-10µM) resulted in a concentration-dependent reversal of PGI2-

mediated inhibition of aggregation, although this reversal effect was not complete. 

A significant reversal was observed with 1µM of the RIAD-Arg11 where the 

inhibitory effect of PGI2 dropped from 76±3% down to 44±5% (p≤0.0001 when 

compared with PGI2 alone, figure 4.5). A further decrease in PGI2-mediated 

inhibitory effect was observed when RIAD-Arg11 was used at a concentration of 

10µM but that decrease was not statistically significant when compared with 1µM. 

In control experiments the scrambled analogue of the peptide ScrRIAD-Arg11 (1µM) 
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failed to cause any reversal of the inhibitory effect of PGI2 on collagen-induced 

aggregation (figure 4.5). In further experiments we tested the effects of St-Ht31, as 

another PKA-AKAP inhibitor to cross validate our findings with RIAD-Arg11. St-Ht31 

is a nonspecific PKA-AKAP inhibitor that can disrupts the binding of both PKA I and 

PKA II to AKAPs. Similar to RIAD-Arg11, pretreatment of platelets with St-Ht31 (5µM) 

for 1 hour decreased PGI2-mediated inhibition of platelet aggregation from 76±3% 

to 49±5% (P<0.05, Figure 4.5 B and C).  

Data from this experiment suggest that inhibition of collagen-induced platelet 

aggregation by PGI2 is significantly reversed in the presence of RIAD-Arg11, which 

could be attributable to disruption of AKAP-PKA I interactions.  

The observation that both St-Ht31 and RIAD-Arg11 could reverse the inhibitory 

effect of cAMP on platelet aggregation induced by collagen suggested a role for a 

type 1 AKAP in platelets. Consequently, we focussed our work on the use of RIAD to 

delineate the role of PKA I functions in platelets. 
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Figure 4. 5: RIAD reverses the inhibitory effect of PGI2 on collagen-mediated 
aggregation. 

WP (2.5x108 platelets/mL) were either stimulated with collagen (5µg/mL) or pre-

incubated with (A) RIAD-Arg11 (0.1-10µM), ScrRIAD-Arg11 (1µM) or vehicle for 1 

hour or (B) St-Ht31 (5µM) for 30 min at 37oC. After treatment with peptides, 

platelets were then treated with PGI2 (50nM) for 1 min before stimulating with 

collagen. Aggregation was monitored for 4 min under constant stirring (1000rpm) at 

37oC using a chrono-log dual channel light transmission aggregometer and 

aggregation traces were generated by aggreo/link computer software (Chrono-log, 

USA). (B) Data expressed as means ± SEM of %inhibition of aggregation represent 8 

independent experiments (except RIAD 10µM and st-Ht31 data, N=3) from separate 

donors (* : p≤0.05, *** : p≤0.0001 when compared with PGI2 alone). 
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4.5.2 Inhibition of platelet aggregation by Fsk requires AKAP-RI interactions 

Having established that potential disruption of PKA-AKAP interactions influenced 

platelet sensitivity to PGI2, it was important to determine whether this was specific 

to PGI2 or a more generic effect. Hence the effects of RIAD on Fsk-mediated platelet 

inhibition were examined.  

Treating platelets with Fsk (10µM) caused an inhibitory effect of 53±9% of collagen-

induced aggregation. However, this inhibitory effect dropped to 27±10% (P<0.05 

when compared with Fsk alone) when platelets were pre-incubated with RIAD-Arg11 

(1M) for 1 hour before treatment with Fsk (Figure 4.6). In contrast control 

experiment with ScrRIAD-Arg11 used under the same conditions had no significant 

effect on Fsk-mediated platelet inhibition (Figure 4.6). 

Data from this experiment confirm that the effect of RIAD-Arg11 is not specific to 

PGI2 and suggest that inhibiting platelet aggregation through directly raising cAMP 

levels might also require AKAP-PKA I interactions.  

One possible explanation for the reduced sensitivity to cAMP signalling in the 

presence of RIAD is that the peptide itself stimulates or potentiates platelet 

aggregation. In order to exclude the possibility that RIAD-Arg11 is potentiating 

platelet aggregation rather than reversing the inhibitory effect by PGI2, we tested 

its effect on aggregation with two agonists. Firstly, the influence of RIAD-Arg11 on 

collagen-induced aggregation was tested. RIAD-Arg11 (1µM) did not influence the 

rate or extent of aggregation induced by either high concentration (5µg/mL) or low 

dose (0.25µg/mL) of collagen (Figure 4.7 A, B). Similarly, no potentiating effect was 

observed when the same test was carried out on thrombin (0.02U/mL) (Figure 4.7 
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C). These data suggest that RIAD-Arg11 affects cAMP signalling rather than 

activating or potentiating platelet aggregation by an agonist. 
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Figure 4. 6: RIAD reverses Fsk-mediated inhibition of platelet aggregation. 

(A) WP (2.5x108 platelets/mL) were either stimulated with collagen (5µg/mL) or 

pre-incubated with RIAD-Arg11 (1µM), ScrRIAD-Arg11 (1µM) or vehicle for 1 hour at 

37oC. Platelets were then treated with Fsk (10µM) for 5 min before stimulating with 

collagen.. Aggregation was monitored for 4 min under constant stirring (1000rpm) 

at 37oC using a chrono-log dual channel light transmission aggregometer and 

aggregation traces were generated by aggreo/link computer software (chrono-log, 

USA). (B) Aggregation data were expressed as means ± SEM of 5 independent 

experiments with separate donors (* : p≤0.05 when compared with PGI2 alone). 



Chapter 4 173 

 

 

  



Chapter 4 174 

 

Figure 4. 7: RIAD does not potentiate platelet aggregation. 

(A) WP (2.5x108 platelets/mL) were pre-incubated with RIAD-Arg11 (1µM) or vehicle 

for 1 hour at 37oC then were stimulated with high dose of collagen (5µg/mL). 

Aggregation was monitored for 4 min under constant stirring (1000rpm) at 37oC 

using a chrono-log dual channel light transmission aggregometer and aggregation 

traces were generated by aggreo/link computer software (chrono-log, USA). (B) As 

in (A) except WP were stimulated with low dose of collagen (0.25µg/mL). (C) As in 

(A) except WP were stimulated with thrombin (0.02U/mL). Data are representative 

of 3 independent experiments with 3 separate donors. 
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4.5.3 RIAD-Arg11 has no effect on the inhibitory effect of cAMP analogues on 

platelet aggregation  

PGI2 and Fsk inhibit platelets through the generation of cAMP and activation of PKA.  

In this context it was important to understand how RIAD was influencing this 

signalling cascade. To begin to understand this mechanism the influence of RIAD on 

platelets that are inhibited by cAMP analogues was investigated. 

To achieve this, platelets were pre-treated with 8-CPT-6-Phe-cAMP (25µM) before 

they were stimulated with collagen (5µg/mL). The cAMP analogue induced an 

inhibitory effect of 55±4%. Strikingly, when platelets were pre-incubated with RIAD-

Arg11 (1µM) for 1 hour, the inhibitory effect remained unaltered (54±4%, figure 

4.8).  This data would suggest that RIAD might influence signalling prior to cAMP 

binding to PKA. 
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Figure 4. 8: RIAD does not reverse the inhibitory effect of cAMP analogues. 

Platelets (2.5x108 platelets/mL) were pre-incubated with RIAD (1µM) or vehicle for 

1 hour at 37oC then were treated with 8-CPT-6-Phe-cAMP (25µM) for 5 min before 

stimulating with collagen (5µg/mL). Aggregation was monitored for 4 min under 

constant stirring (1000rpm) at 37oC using a chrono-log dual channel light 

transmission aggregometer and aggregation traces were generated by aggreo/link 

computer software (chrono-log, USA). Data are representative of 3 independent 

experiments and expressed as means ± SEM. 
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4.6 RIAD-Arg11 reverses the inhibitory effect of PGI2 on collagen-induced dense 

granule secretion 

Having determined the effect of RIAD-Arg11 on platelet aggregation, we then 

wanted to examine other platelet functions. Platelet activation involves a 

complicated series of events one of which is the release of dense granule contents. 

The contents of these granules such as ADP play a pivotal role in recruiting dormant 

remote platelets into the site of the injury. Dense granule secretion is one of the 

main platelet activation processes that have been reported to be regulated by 

elevated cAMP levels (Feinstein and Fraser, 1975). In the light of this, we examined 

whether the modulation of platelet dense granule secretion by cAMP requires any 

AKAP-PKA I interactions. 

Stimulating platelets with collagen (5µg/mL) resulted in the release of 

1003±229pmol of ATP. Pre-treatment with PGI2 (50nM) had a profound effect on 

dense granule secretion with ATP levels reduced to 140±87pmol (P<0.0001). 

Consistent with the aggregation data, pre-incubation with RIAD-Arg11 (1µM) for 1 

hour before treating with PGI2, significantly reversed its inhibitory effect on 

collagen-induced dense granule secretion. Here ATP secretion increased to 

545±129pmol of ATP (p≤0.05 when compared with PGI2 alone, figure 4.9). Control 

experiments showed that ScrRIAD-Arg11 (1µM) did not have a significant effect on 

PGI2-mediated inhibition of platelet dense granule secretion under the same 

conditions. 

These data suggest that inhibition of platelet dense granule secretion by PGI2 

require AKAP-PKA I interactions. 
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Figure 4. 9: RIAD reverses PGI2-mediated inhibition of platelet dense granule 
secretion. 

WP (2.5x108 platelets/mL) were either stimulated with collagen (5µg/mL) or pre-

incubated with RIAD-Arg11 (1µM), ScrRIAD-Arg11 (1µM) or vehicle for 1 hour at 37oC. 

Platelets were then treated with PGI2 (50nM) for 1 min before stimulating with 

collagen. ATP secretion was monitored for 4 min under constant stirring (1000rpm) 

at 37oC using a chrono-log Lumi-aggregometer and secretion traces were generated 

by aggreo/link computer software (chrono-log, USA). (B) Secretion data were 

expressed as means ± SEM of 4 independent experiments with separate donors (*: 

p≤0.05).  
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4.7 RIAD-Arg11 does not inhibit PGI2-induced AC activity 

The binding of PGI2 to its Gs-coupled receptor (IPR) activates AC and results in an 

increase in intracellular cAMP levels. The elevated cAMP then binds to and activates 

PKA.  Therefore, it was possible that RIAD was exerting its effects through 

modulating cAMP concentrations and hence it was important to investigate this 

possibility.  

In all platelet preparations, basal concentrations of 87±37 fmol cAMP/107 platelets 

were found. Pre-incubating platelets with RIAD-Arg11 or ScrRIAD-Arg11 (1µM for 

60min) had no significant effect on basal cAMP concentrations which were 70±24 

and 112±11 fmol/107 platelets, respectively (Figure 4.10 A, gray bars). 

Treatment of platelets with PGI2 (50nM) increased cAMP concentrations to 150±52 

fmol/107 platelets (p<0.05 when compared with basal levels). Pre-incubating 

platelets with similar concentrations (1µM) of RIAD-Arg11 or ScrRIAD-Arg11 before 

stimulating with PGI2 did not have a significant effect on cAMP levels which 

remained at 153±38 and 177±25 fmol/107 platelets, respectively (Figure 4.10 A, 

black bars). These data provide a ‘snap-shot” of the effects of the cell penetrating 

peptides on cAMP synthesis.  The experiments were repeated in the presence of 

the PDE3-specific inhibitor milrinone (10µM) (Figure 4.10 B), which allowed the 

examination of total cAMP accumulation over a finite period of time.  Under these 

conditions, PGI2 stimulated cAMP concentrations were significantly higher than in 

the absence of milrinone consistent with the prevention of cyclic nucleotide 

hydrolysis.  The peptides failed to affect cAMP concentration, either basally or that 

induced by PGI2. Thus RIAD-ARg11 has no effect cAMP concentrations under the 
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conditions tested. This is in agreement with its proposed effect as an inhibitor of 

PKA I-AKAP interactions.  
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Figure 4. 10: RIAD does not affect cAMP synthesis. 

(A) For measuring cAMP levels under non-stimulatory (grey bars) conditions, WP 

(2x108 platelets/mL) were pre-incubated with RIAD-Arg11 (1µM), scrRIAD-Arg11 

(1µM) or vehicle for 1 hour then cAMP levels were measured. For measuring cAMP 

levels under stimulatory conditions (black bars), platelets were stimulated with 

PGI2 (50nM) for 30 sec either directly or after pre-incubation with the peptides 

under the same conditions. (B) As in (A) except that platelets were treated with 

milrinone (10µM) for 20 min before stimulation with PGI2. Data are representative 

of 3 independent experiments with different donors and were expressed as means 

± SEM (*: P≤0.05).    
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4.8 PKA-AKAP disruptor peptides diminish PGI2-mediated signalling events 

Having shown that RIAD-Arg11 modulated platelet inhibition by PGI2, it was 

important to try to understand the underlying effects on PKA signalling events. 

PGI2-induced cAMP synthesis results in the activation of PKA, which releases its 

catalytic subunit in response to the binding of cAMP molecules to the regulatory 

subunits. PKAc then mediates the phosphorylation of several cellular substrates 

which blunts various aspects of platelet activation (Schwarz et al., 2001).  

Platelets were stimulated with PGI2 in the presence or absence of RIAD-Arg11 and 

then PKA activity was studied using Western blotting for several PKA signalling 

markers. Firstly, we examined phosphorylation of numerous potential PKA 

substrates in whole cell lysates using phospho-PKA substrate antibody. We found 

that proteins with apparent molecular weights of 55 and 60kDa were mildly 

phosphorylated, while proteins of 16, 44 and 130kDa were heavily phosphorylated 

under basal conditions. Stimulation of AC with PGI2 (50nM) increased 

phosphorylation of basally phosphorylated PKA substrates of 60 and 130kDa and 

induced the phosphorylation of substrates with apparent molecular weights of 24, 

27, 35, 48, 66, 82, 90, 140 and 240 kDa (Figure 4.11 A, top panel, lane 2). The 

majority of these molecular weights are consistent with those previously reported 

by el-Daher et al as proteins phosphorylated in response to cAMP (El-Daher et al., 

1996). In the presence of RIAD-Arg11 (1µM), the phosphorylation of these proteins 

was reduced, but not abolished (Figure 4.11 A, top panel, lane 4). In contrast, the 

treatment of platelets with scrRIAD-Arg11 failed to significantly influence PGI2-

induced phosphorylation of PKA substrates (Figure 4.11 A, top panel, lane 7).  We 
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next compared this to the effects of established PKA inhibitors KT5270 and H89. 

Unlike RIAD-Arg11, these inhibitors had a more profound effect on the phospho-PKA 

profile (Figure 4.11 A, top panel, lane 5). This highlights the difference between 

conventional PKA inhibitors which unspecifically block PKA activity and RIAD-Arg11, 

which only targets PKA I and inhibits its AKAP-dependent activity (Carlson et al., 

2006). 

Furthermore, we looked at the effect of RIAD-Arg11 on individual PKA substrates. 

Treatment of platelets with PGI2 (50nM) induced the phosphorylation of the well-

established PKA substrate VASPser157, which was only slightly reduced by RIAD-Arg11 

(1µM), and unaffected by scrRIAD-Arg11 (1μM) (Figure 4.11, second panel from top). 

Unpublished data from our lab showed that PKA also phosphorylates GSK3α on 

ser21 and RhoA on ser188. RIAD-Arg11 reduced the phosphorylation of GSK3α21 and 

to a lesser extent RhoA188 with the scrambled peptide not having any effect (Figure 

4.11, third and fourth panel from top). Observations made on phospho- GSK3α21 

and RhoA188 need further investigation to be confirmed. In all these samples the 

other unspecific PKA-AKAP inhibitor st-Ht31 did not have a significant effect on any 

of these PKA activity markers.  

Together these data suggest that RIAD-Arg11 decreases platelet sensitivity to PGI2, 

by preventing PKA-mediated phosphorylation of substrate proteins, but not cAMP 

formation, and that PKA-AKAP interactions may play an important role in allowing 

PKA to induce efficient phosphorylation events. 
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Figure 4. 11: RIAD-Arg11 reverses PGI2-mediated signaling events in platelets. 

WP (2.5x108 platelets/mL) were preincubated with RIAD-Arg11 (1µM), ScrRIAD (1µM), St-

Ht31 (2.5µM) or vehicle for 1 hour at 37oC before they were stimulated with PGI2 (50nM) 

for 1 min. Platelet lysates (20μg/well) were then loaded onto a 10-18% gradient 

polyacrylamide gel and then resolved by SDS-PAGE for 2.5h at 120V. Proteins were then 

transferred onto a PVDF membrane using the TurboTM Blotting System (Bio-Rad). 

Membranes were then blocked and immunoblotted with anti-phospho-PKA substrate 

rabbit antibody (1:1000), phospho-VASPser157 rabbit antibody (1:1000), phospho-GSK3αser21 

rabbit (1:1000) or phospho-RhoAser188 (1:1000) overnight at 4oC. Membranes were then 

stripped and reprobed with anti-β-Tubulin mouse antibody (1:1000) overnight at 4oC to 

check for equal loading. The top two blots are representative of three independent 

experiments with three separate donors whereas the rest are representative of 1 

experiment.  
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4.9 Disruption of AKAP-PKA I interactions prevents PKA I translocation into 

platelet lipid rafts  

A major function of AKAPs is to aid in the localisation of PKA into different 

subcellular compartments through their unique targeting domain (Pidoux and 

Tasken, 2010, Tasken and Aandahl, 2004). Data from figure 4.3 suggest that a 

significant amount of PKA I, but not PKA II, tranlocates into platelet lipid rafts upon 

stimulation with PGI2. Therefore, we wanted to investigate a potential role for 

AKAPs in mediating this translocation. This was achieved by treating platelets with 

RIAD-Arg11 under different conditions and examining whether the previously 

observed redistribution of PKA I into rafts was affected. 

In the first instance the ability of RIAD-Arg11 to delocalise the small pool of PKA I 

found in lipid rafts under basal conditions was determined. Platelet lipid rafts were 

isolated by sucrose gradient ultracentrifugation and fractions were analysed by 

SDS-PAGE and immunoblotting. High levels of LAT can be observed in fractions 5 

and 6 which represent detergent-resistant fractions (Figure 4.12, Ai, LAT). 

Consistent with data from figure 4.3, we observed a small amount of PKA-RI in 

detergent-resistant fractions with the majority localised in the soluble fractions 

(figure 4.12, Ai, RI). Treatment of platelets with RIAD-Arg11 (10µM) for 1 hour had 

no significant effect on the basally raft-localised RI (Figure 4.12, Aii and Aiii, RI). 

Importantly, RIAD also did not alter the distribution of LAT or β3 which indicates 

that the peptide is not affecting the fractionation process or raft stability (Figure 

4.12, Aii, LAT). These data suggest that RIAD-Arg11 is unable to delocalise PKA-RI 

that is present in platelet lipid rafts under basal conditions.   
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After that the effect of RIAD-Arg11 on PGI2-mediated PKA I redistribution into lipid 

rafts was investigated. Consistent with data from figure 4.3, treatment with PGI2 

(100nM) led to a significant redistribution of PKA-RI into the detergent-resistant 

fractions, but had no effect on PKA-RII (figure 4.13, Aii). However, pre-incubation 

with RIAD-Arg11 (10µM) for 1 hour blocked any redistribution of PKA-RI into lipid 

rafts (p≤0.05), but had no effect on PKA-RII distribution (Figure 4.13, Aiii). In 

contrast, pre-incubating similar concentrations of ScrRIAD-Arg11 (10µM) with 

platelets under similar PGI2 stimulatory conditions failed to block the redistribution 

of PKA-RI into lipid rafts. Data from these experiments suggest a significant role for 

AKAP-PKA I interactions to facilitate PKA-I redistribution into platelet lipid rafts in 

response to PGI2. 
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Figure 4. 12: RIAD is unable to delocalise PKA-RI from rafts under basal conditions. 

WP (1x109 platelets/mL) were either pre-incubated with RIAD-Arg11 (10µM) for 1 

hour at 37oC or were left untreated. Platelets were then lysed with lipid raft lysis 

buffer containing 0.065% Triton X-100 for 30 min on ice. Lipid raft and non-raft 

fractions were then separated by sucrose gradient ultracentrifugation. Aliquots of 

fractions (45µl) were then analysed by 10% SDS-PAGE for 1.5h at 120V followed by 

immunoblotting for 2.5h at 100V. Membranes were then blocked and firstly probed 

with LAT (1:1000 rabbit) and integrin β3 (1:1000 rabbit) to identify raft and non-raft 

fractions, respectively. Membranes were then probed with either PKA-RI (1:1000 

mouse) or PKA-RII (1:1000 mouse). Blots are representative of 2 independent 

experiments with separate donors.  
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Figure 4. 13: RIAD blocks PGI2-mediated PKA I redistribution into lipid rafts. 

(A) WP (1x109 platelets/mL) were pre-incubated with RIAD-Arg11 (10µM), scrRIAD-

Arg11 (10µM) or vehicle for 1 hour at 37oC before they were stimulated with PGI2 

for 1 min. Platelets were then lysed with lipid raft lysis buffer containing 0.065% 

Triton X-100 for 30 min on ice. Lipid raft and non-raft fractions were then separated 

by sucrose gradient ultracentrifugation. Aliquots of fractions (45µl) were then 

analysed by 10% SDS-PAGE for 1.5h at 120V followed by immunoblotting for 2.5h at 

100V. Membranes were then blocked and firstly probed with LAT (1:1000 rabbit) 

and integrin β3 (1:1000 rabbit) to identify raft and non-raft fractions, respectively. 

Membranes were then probed with either PKA-RI (1:1000 mouse) or PKA-RII 

(1:1000 mouse). Blots are representative of 4 independent experiments. (B) Fold 

increase of RI levels in lipid rafts in response to different treatments normalised 

against basal levels. Data are from 4 independent experiments with 4 separate 

blood donors and are expressed as means ± SEM (*: p≤0.05). 
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4.10 PKA I targets several substrates in platelet lipid rafts 

It has been established in other cell types that AKAP-mediated PKA translocation 

into a specific subcellular compartment has a functional relevance. This involves 

targeting substrates that reside in that compartment (Tasken and Aandahl, 2004). 

In the light of this and after establishing platelet lipid rafts as a PKA spatial 

compartment we wanted to determine whether or not PKA I targets any substrates 

in lipid rafts. 

Platelets were either left untreated or stimulated with PGI2 (100nM) with or 

without RIAD-Arg11 (10µM). Relatively low exposure time of PVDF membranes 

showed that a protein with an apparent molecular weight of 66kDa is basally 

phosphorylated by PKA in platelet lipid rafts (Figure 4.14 B). In response to PGI2, the 

phosphorylation of this protein increased and three different bands with apparent 

molecular weights of 16, 130 and 200kDa were detected (Figure 4.14 C). Pre-

incubation with RIAD-Arg11 (10µM) significantly decreased the phosphorylation of 

these proteins (Figure 4.14 D). Higher exposure time (15 min) of those membranes 

revealed more bands suggesting that more PKA I phosphorylation events might 

occur in rafts. In addition to the fore-mentioned 66kDa protein, overexposure 

revealed that proteins with apparent molecular weight of 130, 55, 35 and 16kDa 

might be basally phosphorylated in rafts by PKA I. Expectedly, overexposure 

showed more potential PKA I targets in lipid rafts compared with low exposure such 

as proteins with apparent molecular weights of 22, 27, 48kDa in addition to an 

increase in phosphorylation of the basally phosphorylated proteins. Similarly a 

decrease in the phosphorylation profile in rafts can be observed as a result of RIAD-
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Arg11 treatment on the overexposed membranes. Taken together these data 

suggest that the relocation of an active form of PKA I to lipid rafts is mediated by an 

AKAP dependent-mechanism. 
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Figure 4. 14: PKA I targets several substrates in lipid rafts in an AKAP-dependent 
mechanism. 

WP (1x109 platelets/mL) were pre-incubated with RIAD-Arg11 (10µM), or vehicle for 

1 hour at 37oC before they were stimulated with PGI2 for 1 min. Platelets were then 

lysed with lipid raft lysis buffer containing 0.065% Triton X-100 for 30 min on ice. 

Lipid raft and non-raft fractions were then separated by sucrose gradient 

ultracentrifugation. Fractions were then analysed by 10-18% gradient SDS-PAGE for 

2.5h at 120V followed by immunoblotting for 2.5h at 100V. Membranes were then 

blocked and firstly probed with LAT (1:1000 rabbit) and integrin β3 (1:1000 rabbit) 

to identify raft and non-raft fractions, respectively. Membranes were then stripped 

and re-probed with p-PKA substrate antibody (1:1000 rabbit). Blots are 

representative of 3 independent experiments. 
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4.11 The role of PKA I-AKAP interaction in regulating platelet activation by vWF 

The phosphorylation of GPIbβ at ser166 by PKA has been shown to result in reduced 

platelet adhesion to immobilised vWF, platelet agglutination and collagen-induced 

actin plymerisation (Wardell et al., 1989, Bodnar et al., 2002). The following set of 

experiments aims to investigate whether PKA I-AKAP interactions play any role in 

the phosphorylation of GPIbβ and whether or not this event regulates platelet 

activation by vWF.  

4.11.1 PKA I-AKAP interactions are required for PGI2-mediated inhibition of vWF-

induced platelet aggregation 

In the first instance we wanted to investigate the effect of RIAD-Arg11 on PGI2-

mediated inhibition of vWF-induced platelet aggregation. Washed platelets were 

stimulated with vWF (20µg/mL) in the presence of ristocetin (0.75mg/mL), which is 

a bacterial glycopeptide that activates the A1 domain of vWF and allows it to bind 

to GPIb (Andrews and Berndt, 2008). This induced an 81±2% aggregation response. 

Preincubation of platelets with PGI2 (50nM) caused an inhibition response of 59±4% 

(P<0.0001). Interestingly, pre-incubating platelets with RIAD-Arg11 (1µM) reduced 

the inhibitory effect of PGI2 to 28±9% (P<0.05, Figure 4.15). Similar treatment with 

scrRIAD-Arg11 (1µM) had no significant effect on PGI2-mediated inhibition of vWF-

induced aggregation. In control experiments, RIAD-Arg11 (1µM) did not potentiate 

vWF-induced aggregation when platelets were stimulated with a low dose 

(10µg/mL) (Figure 4.15 A, right traces). Data from this experiment suggest that PKA 

I-AKAP interactions are required to modulate vWF-induced aggregation by PGI2. 
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Figure 4. 15: RIAD reverses the inhibitory effect of PGI2 on vWF-mediated platelet 
aggregation. 

(A) WP (2.5x108 platelets/mL) were either stimulated with 

vWF(20µg/mL)/Ristocetin(0.75mg/mL) or pre-incubated with RIAD-Arg11 (1µM), 

ScrRIAD-Arg11 (1µM) or vehicle for 1 hour at 37oC. Platelets were then treated with 

PGI2 (50nM) for 1 min before stimulating with vWF/Ristocetin. Traces on the right 

represent control samples treated only with RIAD-Arg11 (1µM) and low dose of vWF 

(10µg/mL)/Risto (0.75mg/mL). Aggregation was monitored for 4 min under 

constant stirring (1000rpm) at 37oC using a chrono-log dual channel light 

transmission aggregometer and aggregation traces were generated by aggreo/link 

computer software (chrono-log, USA). (B) Data expressed as means ± SEM of 

%inhibition of aggregation represent 4 independent experiments from separate 

donors (* : p≤0.05 when compared with PGI2 alone). 
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4.11.2 PKA I-AKAP interactions are required for inhibition of platelets by PGI2 

under flow 

The interaction of platelet GPIb complex with vWF is critical to the capture of 

platelets at sites of vascular injury (Ruggeri and Mendolicchio, 2007). Moreover, 

localization of GPIb-IX-V complex into platelet lipid rafts has been proposed to be 

critical for platelet capture by vWF under shear stress (Shrimpton et al., 2002). In 

addition, GPIbβser166 phosphorylation by PKA was reported to diminish vWF binding 

to GPIb-IX under flow in genetically modified cell lines (Bodnar et al., 2002). Having 

shown that PKA I-AKAPs interaction play a significant role in GPIBβser166 

phosphorylation in lipid raft, we wanted to determine whether these interactions 

play any role in regulating platelet accrual under physiological conditions by 

examining platelet aggregation under flow.   

Under arterial shear (1000s-1), immobilized vWF (100µg/mL) supported adhesion of 

numerous small aggregates that covered 27.4±4% of the vWF-coated surface.  This 

was reduced to 16±4% (p<0.05) by the presence of PGI2 (100nM), demonstrating 

for the first time that PGI2 inhibits platelet aggregation under physiological 

conditions of flow (Figure 4.16, compare control with PGI2).  Treatment of platelets 

with RIAD-Arg11 (10µM) alone did not influence platelet adhesion and accrual under 

flow.  Incubation of platelets with the same concentration of RIAD-Arg11 for 60min 

prior to PGI2, conditions that caused maximal effects in aggregation experiments, 

reversed the inhibitory effects of PGI2, with the level of surface coverage increasing 

to 20.0±2.8% (p<0.05 compared to PGI2 alone) similar to that of control. In contrast, 

pretreatment with scrRIAD-Arg11, surface area coverage remained at 13±5%, no 
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different form PGI2 alone (Figure 4.16). These data indicate that uncoupling of PKA-

RI from platelet AKAPs can increase platelet adhesion and aggregation under flow 

by modulating the inhibitory actions of PGI2. 
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Figure 4. 16: RIAD-Arg11 modulates PGI2-mediated inhibition of platelet arrest 
under conditions of flow. 

Glass microslide capillary tubes were coated for 12 hours at 4°C with vWF 

(100µg/mL) and uncoated surfaces blocked with BSA (10mg/mL) for 1h at 20°C. 

Washed platelets were left untreated (control) or incubated with either RIAD-Arg11 

or scrRIAD-Arg11 (10µM) for 1h at 37oC and treated with PGI2 (100nM) for 1 min 

then stained with DiOC6 (1µmol/L) and reconstituted with autologous red blood 

cells to final concentrations of (2 × 108 platelets/mL) and 50% (v/v) respectively. 

Reconstituted blood was then perfused through coated tubes for 4 minutes at a 

shear rate of 1000s-1. Platelet deposition was viewed by fluorescence microscopy. 

(A) Representative images from random fields of view stretching over a total area 

of 0.1mm2. Scale bar = 20µm. (B) Data are shown as percentage area coverage and 

are means ± SD of 4 independent experiments with separate blood donors. *: 

P<0.05. Experiment was carried out in collaboration with Dr. Simbarashe Magwenzi.  
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4.11.3 PKA I causes phosphorylation of GPIbβ in platelet lipid rafts in an AKAP-

dependent mechanism  

We have shown that PGI2 inhibits vWF-induced platelet activation and that this 

inhibitory effect of PGI2 is partially mediated by PKA I-AKAP interactions. Next we 

sought to investigate whether the phosphorylation of GPIbβ at ser166, which is an 

event associated with platelet inhibition by cAMP increasing agents (Bodnar et al., 

2002), is also regulated by PKA I-AKAP interactions. 

4.11.3.1 Optimisation of anti p-GPIbβ antibody in blood platelets 

In the first instance we wanted to determine the optimal conditions for the p-GPIbβ 

antibody (A gift from Professor Xiaoping Du). We observed heavy phosphorylation 

at basal levels when the antibody was used at 1:500 and 1:1000 (Figure 4.17 A, top 

blot). The heavy basal phosphorylation made it difficult to monitor any changes in 

phosphorylation even in response to treatment with high concentrations of PGI2 

(0.1-10µM) (Figure 4.17 A). Therefore, we tried different dilutions of the antibody 

and we found that 1:20000 was the optimal dilution of the antibody (Figure 4.17 B). 

The basal phosphorylation of GPIbβ166 was reported by Bodnar and colleagues who 

used the same antibody (Bodnar et al., 2002). We observed a clear increase in 

phosphorylation of GPIbβ166 in response to PGI2 (100nM). Importantly, treatment of 

platelets with the PKA inhibitors KT/H89 (10µM/20µM) prior to addition of PGI2 

maintained GPIbβ phosphorylation at basal levels, highlighting that the 

phosphorylation is PKA-dependent (Figure 4.17 B). 
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Having confirmed that PGI2-induced phosphorylation of GPIb was a PKA mediated 

event, we examined the potential role of AKAPs in this process. When we examined 

the effects of RIAD-Arg11 (1µM) in whole cell lysates we observed a modest 

reduction in the phosphorylation of GPIbβ166. This effect of RIAD-Arg11 was modest 

when compared with the effect of PKA inhibitors (KT5270: 10µM/H89: 20µM) 

which reduced the phosphorylation to basal levels. However, the scrambled version 

of the peptide had no effect (Figure 4.17 C). Since this modest effect of RIAD-Arg11 

on GPIbβ phosphorylation was difficult to reproduce and hence quantify, when 

examined in the context of whole cell lysate, we decided to look at this 

phosphorylation event in a specific subcellular compartment.  

4.11.3.2 GPIbβ is a target for PKA I-mediated phosphorylation in platelet lipid 

rafts 

Given the critical importance of GPIbβ to platelet function, and the fact that it has 

been found in lipid rafts (Shrimpton et al., 2002), we examined this receptor as a 

potential target of PKA I signaling in these nanodomains. To investigate the 

importance of PKA localization to platelet-vWF interactions further, we examined 

the phosphorylation of GPIbβ in response to PGI2 in lipid rafts. Under basal 

conditions we found phospho-GPIbβ present in the non-raft fraction, but little 

evidence of phospho-GPIbβ in the lipid raft fractions (Figure 4.18 Ai). However, 

treatment of platelets with PGI2 (100nM) led to a 4.3±0.17 fold increase in 

phosphorylated GPIbβ in raft fractions (P<0.0001). Using matched samples we 

found that this phosphorylation of GPIbβ was associated with the redistribution of a 

pool of PKA-RI into raft fractions (Figure 4.18 Aii).  
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Having confirmed that an active PKA was required for the phosphorylation of GPIbβ 

in these microdomains, we next examined whether PKA-AKAP interactions 

contributed to this event. The experiments were repeated in the presence of RIAD-

Arg11 (10µM) or its scrambled partner. Preincubation of platelets with RIAD-Arg11 

reduced the phosphorylation of GPIbβ166 in the lipid raft fraction (3±0.19 fold over 

basal, P≤0.05, Figure 4.16 Aiii) whereas the scrambled partner had a less significant 

effect (Figure 4.18 Aiv). In the same samples this was associated with the loss of 

PKA I in the same fraction, suggesting the two events are intimately linked. 

To highlight the difference between RIAD-Arg11 which indirectly reduce PKA activity 

as a result of blocking its translocation into rafts and conventional PKA inhibitors 

which directly block PKA activity, we repeated the same experiment but platelets 

were pretreated with a combination of KT5270 (10µM) and H89 (20µM) before 

stimulation with PGI2 (100nM). As expected the PKA inhibitors completely blocked 

GPIbβ phosphorylation in lipid rafts, confirming again that phosphphorylation 

required an active PKA. However, the PKA inhibitors did not affect the PGI2-induced 

PKA I translocation into these nanodomains (Figure 4.18 Av). These data indicate 

that phosphorylation of GPIbβ in lipid rafts is a target for type I PKA that requires 

the translocation of PKA-RI into the same cellular compartment. 
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Figure 4. 17: Phosphorylation of GPIbβ by PKA is partially dependent on PKA I-
AKAP interactions in whole cell lysates. 

(A) WP (2.5x108 platelets/mL) were stimulated with increasing concentrations of 

PGI2 (0.1-10µM) for 1 min. (B) WP (2.5x108 platelets/mL) were either stimulated 

with PGI2 (10, 100nM) alone for 1 min or following incubation with PKA inhibitors 

(KT5270: 10µM/ H89: 20µM) for 20 min. (C) WP (2.5x108 platelets/mL) were pre-

incubated with RIAD-Arg11 (1µM), scrRIAD-Arg11 (1µM) or vehicle for 1 hour then 

stimulated with PGI2 (50nM) for 1 min. PKA inhibitors (KT5270: 10µM/ H89: 20µM 

or KT5270: 10µM/RPcAMPS: 500µM) were incubated with platelets for 20 min 

before stimulating with PGI2 (50nM) for 1 min. Platelet lysates (20μg/well) were 

loaded onto a 10% polyacrylamide gel and then resolved by SDS-PAGE for 1.5h at 

120V. Proteins were then transferred onto a PVDF membrane for 2.5h at 100V. 

Membranes were then blocked and probed with the indicated dilution of anti p-

GPIbβ antibody (Rabbit) overnight at 4oC. Membranes were probed with anti β-

tubulin antibody (1:1000, mouse) to check for equal loading. Blots are 

representative of 2 independent experiments.     
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Figure 4. 18: RIAD inhibits PKA I phosphorylation of GPIbβ in platelets lipid rafts. 

(A) WP (1x109 platelets/mL) were pre-incubated with RIAD-Arg11 (10µM), scrRIAD-

Arg11 (10µM) or vehicle for 1 hour at 37oC before they were stimulated with PGI2 

for 1 min in the presence or absence of PKA inhibitors (KT5270: 10µM/ H89: 20µM) 

for 20 min. Platelets were then lysed with lipid raft lysis buffer containing 0.065% 

Triton X-100 for 30 min on ice. Lipid raft and non-raft fractions were then separated 

by sucrose gradient ultracentrifugation. Aliquots of fractions (45µl) were then 

analysed by 10% SDS-PAGE for 1.5h at 120V followed by immunoblotting for 2.5h at 

100V. Membranes were then blocked and firstly probed with LAT (1:1000 rabbit) 

and integrin β3 (1:1000 rabbit) to identify raft and non-raft fractions, respectively. 

Membranes were then probed with either PKA-RI (1:1000, mouse) or p-GPIbβ 

(1:10000, rabbit). Blots are representative of 3 independent experiments. (B) Fold 

increase of p-GPIbβ levels in lipid rafts in response to different treatments 

normalised against basal levels. Data are from 3 independent experiments with 3 

separate blood donors and are expressed as means ± SEM (*: P<0.05, ***; 

P<0.0001). 
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4.12 Discussion: 

The cAMP signaling cascade regulates several platelet responses including Ca2+ 

mobilisation, (Imai et al., 1983, Feinstein et al., 1983, Geiger et al., 1992) shape 

change (Aktas et al., 2002) and secretion (Feijge et al., 2004), which are associated 

with reduced agonist-induced platelet aggregation (Horstrup et al., 1994) and the 

accumulation of platelets at sites of vascular injury (Sim et al., 2004). These events 

are thought to be regulated through PKA mediated phosphorylation of target 

proteins, although the identity of these proteins remains obscure. Elegant studies 

by El-Daher and colleagues demonstrated the phosphorylation of a number of PKA 

substrates in different cellular compartments (El-Daher et al., 1996). However, it is 

unclear in this report whether these targets are phosphorylated in a PKA-isoform 

specific manner. Furthermore, while PKA is known to induce protein 

phosphorylation in platelets, the physiological importance of its protein targets is 

still unclear. In vitro the enzyme phosphorylates G13, inositol trisphosphate receptor 

(IP3R), vasodilator stimulated phosphoprotein (VASP), actin-binding protein and 

caldesmon, with other potential substrates identified including heat shock 

protein27 (HSP27), myosin light chain kinase (MLCK), phosphodiesterase 3A 

(PDE3A), TxA2 receptor and RhoA (Schwarz et al., 2001). Much of the data regarding 

the role of PKA in platelet function has been gained from in vitro studies, using 

cAMP mimetics that act as global cAMP modulators and bypass receptor mediated 

activation of AC. Therefore, it is still unclear the extent to which the currently 

identified PKA substrates are differentially phosphorylated by each PKA isozyme 

and whether the phosphorylation of the putative substrates are of physiological 



Chapter 4 211 

 

relevance to platelet function. Here, we present evidence of a potentially new 

mechanism by which platelets regulate cAMP-dependent signaling. We show 

differential localization of PKA isoforms into lipid raft fractions, a process that 

maybe mediated by the coupling of PKA to AKAPs. Lipid raft-associated PKA I 

specifically targets and phosphorylates GPIbβ leading to reduced recruitment of 

platelets on to immobilized vWF. 

The present data support a model for the potential compartmentalization of PKA 

signaling. While PKA I and PKA II are both expressed in platelets (Figure 4.1), there 

is evidence of differential localization of these isoforms. Since RIα, RIβ and RIIβ are 

the isoforms that has been reported to be present in platelets (Rowley et al., 2011), 

we used an antibody that can identify both RI isoforms and another one specific for 

RIIβ. We demonstrated the presence of a discrete population of PKA I, but not PKA 

II, in lipid raft fractions (Figure 4.3).  Stimulation of adenylyl cyclase with 

physiological concentrations of PGI2 led to the translocation of more PKA I into rafts 

in response to cAMP, observations that are consistent with previous work showing 

that in T cells PKA I is localized to lipid rafts in response to forskolin and increased 

cAMP (Carlson et al., 2006). Analysis of lipid raft fractions in platelets with an 

antibody that recognizes phosphorylated PKA substrates demonstrated the 

phosphorylation of a number of bands clearly highlighting that this pool of PKA was 

active and that the translocation of PKA I into the rafts may have functional 

implications (Figure 4.14). However, these data raised some important questions, 

firstly, what was mechanism that facilitated the translocation of PKA I to rafts in the 

absence of a palmitoylation sequence in PKA I, and secondly, what was the identity 
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of the PKA substrates in rafts and finally what role did their PKA phosphorylation 

play in platelet inhibition by PGI2.  

We began by focusing on the first question which addresses the potential 

translocation mechanism of PKA I. It is now well established in many cell types that 

A-kinase anchoring proteins (AKAPs), a group of structurally diverse, but 

functionally related proteins, can direct PKA to numerous cellular compartments 

(Tasken and Aandahl, 2004). We used a well-established approach that relies on cell 

permeable peptides that can compete with AKAPs for the binding of PKA. This tool 

has been used consistently by the field experts in order to determine the functional 

relevance of PKA-AKAP interactions in different cellular functions.  Since our data 

indicated that PKA I was more dynamic than PKA II in platelets we concentrated on 

this isoform and used RIAD-Arg11 to specifically uncouple PKA I from potential 

AKAPs. We showed that optimal inhibition of several platelet functions such as 

aggregation, secretion and aggregation under flow by the physiological platelet 

inhibitor PGI2 require PKA I-AKAP interactions (Figures 4.5, 9 and 16). Some of these 

data were reproduced with St-Ht31 (Figure 4.5) which is a dual-specific AKAP 

inhibitor. This is an important control because most PKA I-specific AKAPs are, in 

fact, dual-specifc (Tasken and Aandahl, 2004, Pidoux and Tasken, 2010). 

RIAD was  developed to specifically target type 1 specific AKAPs (Carlson et al., 

2006) and has been used in numerous studies for this effect (Di Benedetto et al., 

2008, Schillace et al., 2011, Means et al., 2011). An arginine tail was attached to the 

C-terminus of this peptide to facilitate its internalization into the cell. The role of 
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poly-arginine tails in delivering impermeable cargo into the cytoplasm is well 

established in the literature (Duchardt et al., 2007, Nakase et al., 2008). Using other 

poly-arginine tails such as the HIV-1 Tat peptide to increase cell permeability of 

other PKA-AKAP disruptors has also been reported (Patel et al., 2010). The 

commercially available dual-specific PKA-AKAP inhibitor St-Ht31 relies on the 

presence of a hydrophobic stearated moiety which enhances its cellular 

internalization (Futaki et al., 2001, Fernandez-Carneado et al., 2005). Despite 

having a poly-arginine tail, a significant amount of time was spent to determine the 

optimal conditions to ensure specificity and internalization of RIAD-Arg11. We used 

fluorescence microscopy after the production of fluorecien-conjugated RIAD-Arg11 

which was used to confirm peptide internalization and determine optimal 

incubation time. Data obtained from these experiments demonstrated that 1 hour 

was the optimal incubation time for the peptide (Figure 4.4 A). These conditions are 

consistent with conditions reported by other groups who used either the same 

peptide (Schillace et al., 2011) or other peptide with similar cellular carriers 

(Faruque et al., 2009). Moreover, consistent data with Fsk, a cell diffusible AC 

activator, confirmed that the effect of RIAD-Arg11 is neither specific to PGI2 nor 

attributable to nonspecific extracellular effects such as competitive binding to the 

IP receptor.  

In order to prove that the effect of RIAD-Arg11 on PGI2-mediated inhibition of 

platelet functions was due to a specific effect on PKA, we carried out a series of 

experiments. Firstly we showed that the peptide did not potentiate platelet 

aggregation induced by collagen, thrombin or vWF (Figures 4.7 and 15) suggesting 
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that the enhanced platelet aggregation we observed occurred through modulation 

of the inhibitory effects of the cAMP/PKA signaling cascade. To further explore 

which part of the signaling pathway was affected we examined cAMP levels and 

phosphorylation events downstream of PKA. Consistent with the proposed 

mechanism of action of these inhibitory peptides of modulating PKA-AKAP 

interactions, RIAD-Arg11 had no effect on basal cAMP or elevation of cAMP levels in 

response to PGI2 in the presence or absence of a PDE3 inhibitor (Figure 4.10). In 

contrast, phosphorylation of multiple PKA substrates was diminished by RIAD-Arg11 

(Figure 4.11). Among the substrates was GSK3α and to a lesser extent RhoA. 

Unpublished data from our lab showed that these two proteins are targeted by PKA 

in platelets. Interestingly, the phosphorylation of the well-established PKA 

substrate VASP (Halbrugge et al., 1990) was not significantly affected by treatment 

with RIAD-Arg11 suggesting that phosphorylation of VASP by PKA is maybe 

independent of PKA I-AKAP interactions. Data were reproduced with st-Ht31 which 

diminished VASPser157 phosphorylation in a dose dependent manner (Figure 4.11). 

Importantly, the uncoupling of PKA I-AKAPs only reduces, but does not abolish 

phosphorylation of multiple PKA substrates, which is on contrast to the general PKA 

inhibitors KT/H-89 which reduced PGI2-stimulation phosphorylation back to near 

basal levels (Figure 3.11). Consistent with these data, we never observed complete 

reversal of PGI2 mediated inhibition of aggregation by RIAD-Arg11. Thus, numerous 

substrates are targeted by PKA I in an AKAP-dependent manner, but that many PKA 

substrates are phosphorylated independently of this mechanism resulting in 

reduced but not abolished sensitivity to PGI2. Similar observations have been made 
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in cardiomyocytes by another group using the same phospho-PKA substrate 

antibody and a poly-arginine conjugated PKA-AKAP disruptor where they showed 

only a reduction rather than a blockage in PKA signaling events after treatment with 

their peptide (Patel et al., 2010). The remaining phosphorylation events in the 

presence of RIAD-Arg11 , that are presumably sufficient to cause partial inhibition of 

aggregation, maybe be targets for non-AKAP associated PKA I or substrates of PKA 

II. These two possibilities are an important area of cAMP/PKA-platelet biology that 

requires further study.  

The role of lipid raft in cAMP/PKA signaling in general is well established in the 

literature (Chini and Parenti, 2004, Willoughby and Cooper, 2007). Work by other 

groups showed the presence of AKAP-dependent redistribution of PKA isofroms 

into lipid rafts (Ruppelt et al., 2007, Schillace et al., 2011). Furthermore, 

unpublished data produced by our group showed differential distribution of PKA 

isoforms into platelet membrane and cytoplasm fractions. These observations along 

with the demonstration that the disruption of PKA I-AKAP influences PGI2 mediated 

modulation of PKA activity, it seemed logical that PKA translocation into a sub-

cellular compartment underpinned many of these observations. Our data 

throughout this study showed for the first time the differential localization of PKA 

isoforms into platelet lipid rafts under basal conditions in addition to further 

recruitment of PKA I into these microdomains in response to stimulation with PGI2 

(Figure 4.3). This PGI2-stimulated redistribution of PKA I into platelet lipid rafts was 

almost completely blocked by RIAD-Arg11 suggesting a role for type 1 AKAPs in this 

translocation (Figure 4.13). In addition, we observed that this PGI2-induced RI 
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translocation into lipid rafts was reversed after 10 minutes (data not shown). 

Therefore, from these data we concluded that redistribution of PKA I into lipid rafts 

in response to increased cAMP was AKAP-dependent. 

Critical to the concept of compartmentalization of PKA signaling is the identification 

of potential specific substrates for PKA isoforms within distinct cellular locations.  

While a number of PKA substrates have been identified in platelets, their 

physiological importance is unclear because the experimental procedures are often 

not representative of the physiological situation and the potential specificity for 

PKA isoforms has never been tested. This latter issue is exacerbated by the lack of 

isoform specific inhibitors. However, by using RIAD to prevent AKAP coupling to 

type I PKA, it provided a tool to partially isolate PKA I signaling. Since only PKA I was 

present and active in lipid rafts, we hypothesized that proteins phosphorylated in 

response to PGI2 in rafts were specific PKA I targets. Overexposure of membranes 

probed with the phospho-PKA substrate antibody showed a range of bands 

between 16 and 240kDa presumably representing proteins phosphorylated either 

basally or in response to strong stimulation with PGI2 in platelet lipid rafts (Figure 

4.14). We chose GPIbβ as a potential target for PKA I in lipid rafts for several 

reasons. Firstly the translocation of GPIb-IX-V complex into platelet lipid raft and 

the significance of this translocation to platelet function have been reported 

(Shrimpton et al., 2002). Secondly, phosphorylation of GPIbβ at ser166 has been 

reported to be PKA-mediated (Bodnar et al., 2002). Consistent with previous data 

we found basally phosphorylated GPIbβ in whole cell lysates (Bodnar et al., 2002). 

Phosphorylation was increased by PGI2 treatment and reduced to basal level by PKA 



Chapter 4 217 

 

inhibitors. Phosphorylation of GPIbβ was diminished slightly after RIAD-Arg11 

treatment (Figure 4.15), although the heavy basal phosphorylation of GPIbβ in WCL 

made it difficult to see a significant effect. However, novel data produced during 

this study provides a new understanding of how phosphorylation of GPIbβ is 

regulated. While GPIbβ is basally phosphorylated in whole cell lysates, this 

phosphorylated form is absent from lipid rafts.  However treatment of platelets 

with PGI2 increased the presence of PKA I and an associated increase in 

phosphorylation of raft GPIbβ. This phosphorylation event was partially yet 

significantly reversed in response to treatment with RIAD suggesting a role for 

AKAPs in this phosphorylation event (Figure 4.16). The remaining phosphorylation 

can be attributed to the basally localized PKA I, which consistently could not be 

removed from rafts by RIAD (figure 4.12). These data showed that preventing PKA I 

translocation to the raft fraction was associated with diminished PKA activity 

represented by reduced phosphorylation of an array of PKA substrates including 

GPIbβ which reside in these nanodomains. Here we report for the first time that 

GPIbβ is phosphorylated in platelet lipid rafts by PKA I. We also suggest for the first 

time a non-redundant PKA I-specific phosphorylation event, which takes place in 

platelet lipid rafts and is dependent on AKAPs. Moreover, we suggest for the first 

time the potential presence of PKA I-AKAP macromolecule that resides in these 

platelet microdomains. Further work needs to be done to identify the AKAP and 

other components of this macromolecule. Similar observations were made in T-cells 

where CSK was identified as a PKA I-specific substrate in rafts whose 

phosphorylation was dependent on the AKAP Ezrin. Knocking down this AKAP in T-
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cells resulted in disrupted cAMP-mediated modulation of immune function (Ruppelt 

et al., 2007). Unpublished data in our lab obtained from carrying out far Western 

blotting experiments suggest the presence of several putative AKAPs in platelets. 

Furthermore, an elegant platelet transcriptome study by Rowley et al suggest the 

presence of significant RNA levels for several AKAPs such as Ezrin, AKAP2, AKAP8, 

AKAP9, AKAP11, AKAP13, Pericentrin, WAVE-1 and AKAP8L (Rowley et al., 2011). A 

chemical proteomic study by Margarucci suggested the presence of AKAP2, AKAP7 

and AKAP9 (Margarucci et al., 2011). 

In the light of reports showing the role of PKA phosphorylation of GPIbβser166 in the 

modulation of platelet agglutination and GPIb-IX-V binding to vWF under flow 

(Bodnar et al., 2002), we wanted to see whether PKA I-AKAPs interactions played 

any part in these functional regulatory effects. We showed that inhibition of 

platelet vWF-induced aggregation by PGI2 was partially and significantly reversed 

after treatment with RIAD (Figure 4.17). We also showed that incubation of 

platelets with PGI2 reduced their ability to tether and adhere to vWF under arterial 

flow conditions, an effect that was reversed by uncoupling of PKA I from its AKAPs 

(Figure 4.18). These results demonstrated the physiological relevance of this AKAP-

regulated phosphorylation event.  

Collectively, data presented in this chapter demonstrate that the loss of PKA I from 

lipid rafts is associated with diminished sensitivity of platelets to its physiological 

inhibitor PGI2 as evidenced by the reduced capacity of the prostanoid to inhibit 



Chapter 4 219 

 

platelet functions and that these effects may be mediated through the interaction 

of PKA with AKAPs. 
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Chapter 5: The role of lipid rafts and actin filaments in cAMP-

dependent platelet inhibition 

5.1 Introduction  

Cholesterol- and sphingolipid-enriched membrane microdomains, known as lipid 

rafts, play an equivocally important yet poorly understood role in signal 

transduction, protein trafficking, endocytosis and exocytosis in various cell types 

(Simons and Toomre, 2000). They are dynamic membrane assemblies that are 

separated from the rest of the membrane phospholipids thanks to the long acyl 

chains of their sphingolipids, which pack together forming membrane-embedded 

gel-like structures. The inclusion of cholesterol in these gel-like structures ensures 

great mobility and rather dynamic characteristics resulting in a liquid-ordered 

phase. Lipid rafts are known to play an enhancing role in a cellular signal by 

concentrating signalling components such as kinases and adaptor proteins 

downstream a specific receptor. This is particularly achieved through clustering of 

receptors located in highly mobile raft microdomains and consequently 

concentrating signalling molecules in a close proximity (Simons and Toomre, 2000, 

Patel et al., 2008).  

In platelets several physiological receptors including GPVI/FcRγ and GPIb-IX-V have 

been reported to reside in lipid rafts, where they may form signalling complexes 

(Bodin et al., 2003, Lopez et al., 2005). It has been suggested that platelet lipid rafts 

play a positive role in different stages of haemostasis and thrombosis such as the 

initial adhesion stage, calcium influx and the generation of thrombogenic 
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microvisicles (Lopez et al., 2005, Bodin et al., 2003). However, the presence of 

inhibitory signalling complexes in lipid rafts is unclear. It could be hypothesised that 

in order to regulate positive signalling events emanating from lipid rafts, inhibitory 

signalling elements must have access to these same compartments. 

In the previous chapter data were presented showing that some elements of the 

cAMP/PKA signalling cascade are recruited to lipid rafts to regulate platelet 

function. Upstream components of the PKA signalling cascade such as several AC 

isoforms, G-proteins and G-protein coupled receptors have also been found to 

localise differentially into lipid rafts (Chini and Parenti, 2004). But, in contrast to 

their proposed signal enhancing role, a rather constraining role has been proposed 

for these liquid-ordered microdomains in G-protein coupled receptor (GPCR) signal 

transduction in several cell types such as cardiomyocytes and HEK293 (Head et al., 

2006, Patel et al., 2008, Pontier et al., 2008). In these reports, disruption of lipid 

rafts with methyl beta cyclodextrin (MβCD) enhanced cAMP synthesis as a result of 

increased association between β2-AR, Gs and AC. However, the role of lipid rafts in 

cAMP synthesis in platelets is unclear. 

Aims and objectives 

In this chapter we sought to investigate the role of platelet lipid rafts as the 

potential first step in the compartmentalisation of cAMP generation as well as 

signalling. Using MβCD as a well-established tool to study the functional relevance 

of lipid rafts, work presented in this chapter aimed to determine how lipid raft 

disruption would: 
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1. Affect platelet inhibition by several PKA activating agents 

2. Affect cAMP synthesis in platelets 

3. Affect PGI2-induced PKA signalling events 

4. Affect the localisation of components of the cAMP/PKA signalling cascade. 
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5.2 Determination of optimal MβCD concentration for aggregation studies 

The most established tool to study the role of lipid rafts in any cellular process is 

the use of β-cyclodextrins such as methyl β-cyclodextrin (MβCD). Cyclodextrins are 

water-soluble cyclic oligosaccharides, which have a hydrophobic cavity capable of 

dissolving hydrophobic molecules and render them hydrophilic (Pitha et al., 1988). 

The ability of β-cyclodextrins to lower membrane cholesterol levels is well 

established yet the mechanism is still unclear. In platelets, it is well documented 

that cholesterol depletion with MβCD reduces platelet aggregation induced by CRP, 

thrombin and collagen (van Lier et al., 2008, Lee et al., 2006). Therefore, a critical 

first step in understanding how lipid rafts affected cAMP signalling, was to establish 

a concentration of MβCD that could disrupt lipid rafts, with minimal effect on 

platelet aggregation in order to retain the ability to monitor the inhibitory effects 

induced by different cAMP/PKA-mediated platelet inhibitors. 

Washed platelets were pre-incubated with increasing concentrations of MβCD (1-

5mM) for 30 min at 37oC and aggregation response was monitored (Figure 5.1). In 

the absence of the cholesterol depleting agent collagen (5µg/mL) induced an 

aggregation response of 80±2%. We observed that high dose of MβCD (5mM) had a 

dramatic effect on collagen-induced aggregation, which was reduced to 12±3% 

(p<0.0001) at which the effect of PKA-mediated platelet inhibitors would be difficult 

to monitor. A lower concentration of MβCD (2.5mM) caused only a small reduction 

in collagen-induced platelet aggregation, where the response was 67±3% (p<0.05). 

Although the reduction in aggregation response was significant, pre-treating 
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platelets with MβCD at 2.5mM still provided a sufficiently robust aggregation 

response to evaluate inhibition by cAMP signalling.  

Having established an optimal dose of MβCD that can only partially inhibits platelet 

aggregation by collagen, it was important to us to confirm that this dose of the 

cholesterol depleting agent is sufficient to disrupt platelet lipid rafts and lower 

membrane cholesterol levels. Therefore, we isolated platelet lipid rafts by sucrose-

gradient ultracentrifugation. The integrity of lipid rafts was determined by assessing 

the presence of the lipid raft marker LAT in its corresponding fractions. In the 

absence of MβCD (2.5mM) a distinct population of LAT located in fractions 4 and 5 

(Figure 5.2A), consistent with intact lipid rafts. However, treatment of platelets with 

MβCD (2.5mM) disrupted the integrity of these fractions, as evidenced by the loss 

of LAT from lipid raft fractions (Figure 5.2 A). In order to confirm this finding, 

cholesterol concentrations were measured in each of the fractions. In untreated 

samples, fraction 5 showed a high cholesterol concentration, 13µM, consistent with 

it being considered the peak raft fraction. Incubation with MβCD reduced the 

cholesterol concentration in fraction 5 to 7µM, indicating that the used 

concentration of MβCD (2.5mM) is sufficient to disrupt platelet lipid rafts. Not only 

did this treatment affect cholesterol concentrations in lipid rafts but also had an 

effect on all the other fractions (Figure 5.2 B). 
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Figure 5. 1: Optimisation of MβCD conditions with platelet aggregation. 

WP (2.5x108 platelets/mL) were treated with increasing doses of MβCD (1-5mM) or 

with vehicle for 30 min at 37oC then stimulated with collagen (5µg/mL). 

Aggregation was monitored for 4 min under constant stirring (1000rpm) at 37oC 

using a chrono-log dual channel light transmission aggregometer and aggregation 

traces were generated by aggreo/link computer software (chrono-log, USA). (A) 

Shows representative traces. (B) Data expressed as means ± SEM of %light 

transmission of aggregation are from 3 independent experiments with different 

donors (* : p≤0.05, *** : p≤0.0001 when compared with collagen alone).   
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Figure 5. 2: Treatment of platelets with MβCD (2.5mM) disrupts lipid rafts and 

lower cholesterol levels. 

Platelets (1x109platelets/mL) were either left untreated or incubated with MβCD 

(2.5mM) for 30 min at 37oC. Platelets were then lysed with lipid raft lysis buffer 

containing 0.065% Triton X-100 for 30 min on ice. Lipid raft and non-raft fractions 

were then separated by sucrose gradient ultracentrifugation. (A) Aliquots of 

fractions (45µl) were then analysed by 10% SDS-PAGE for 1.5h at 120V followed by 

immunoblotting for 2.5h at 100V. Membranes were then blocked and firstly probed 

with LAT (1:1000 rabbit) and integrin β3 (1:1000 rabbit) to identify raft and non-raft 

fractions, respectively. (B) Cholesterol content of the loaded fractions was 

determined using a fluorescence assay as described in methods. Data are 

representative of 1 independent experiment.  

(A) 

(B) 
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5.3 Lipid raft disruption increases platelet sensitivity to cAMP elevating agents 

Having established conditions that could modulate signalling events that relied on 

intact lipid rafts, we examined whether these conditions influenced platelet 

responses to cAMP/PKA. For these experiments, we used a number of different 

tools to trigger different parts of the cAMP/PKA signalling pathway. 

5.3.1 Lipid raft disruption potentiates PGI2-mediated inhibition of platelet 

aggregation 

In the first instance, the integrity of these membrane microdomains on PGI2-

mediated inhibition of platelet aggregation was tested. WP were treated with 

either MβCD (2.5mM) or left untreated and then incubated with PGI2 (1 - 100nM) 

before stimulation with collagen (5µg/ml).  PGI2 caused a concentration-dependent 

inhibition of platelet aggregation with 50% inhibition achieved using 49±10nM. To 

our surprise pre-treatment of washed platelets with MβCD (2.5mM) for 30 min at 

37oC significantly increased their sensitivity to PGI2 as shown by a significant 

reduction in the concentration needed to achieve 50% inhibition, which was equal 

to 13±11nM (p<0.05) (Figure 5.3). To determine whether the effect that we 

observed was due to cholesterol depletion and not any nonspecific effects MβCD 

might have on platelets, we used a MβCD inactive analogue that is α-cyclodextrin 

(α-CD). Under similar conditions, this compound did not cause any increase in the 

inhibitory effect of PGI2. These data suggest that disruption of platelet lipid rafts 

leads to a significant increase in platelet sensitivity to PGI2. 
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Figure 5. 3: MβCD potentiates the inhibitory effect of PGI2 on platelet 
aggregation. 

WP (2.5x108 platelets/mL) were pre-treated with vehicle, MβCD (2.5mM) or α-CD 

(2.5mM) for 30 min at 37oC. Platelets were then either treated with PGI2 (10 or 

50nM) for 1 min followed by stimulation with collagen (5µg/mL) or were directly 

stimulated with the same concentration of collagen. Aggregation was monitored for 

4 min under constant stirring (1000rpm) at 37oC using a chrono-log dual channel 

light transmission aggregometer and aggregation traces were generated by 

aggreo/link computer software (chrono-log, USA). (A) Shows representative traces. 

(B) Shows data plotted as best fits for dose response vs % inhibition of aggregation 

for untreated (blue line) and MβCD-treated (green line). Data are representative of 

4 independent experiments with different donors and are expressed as mean of % 

inhibition of aggregation ± SEM (* : p≤0.05 when compared with untreated 

samples).  
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5.3.2 Lipid raft disruption potentiates forskolin-mediated, but not cAMP 

analogue-mediated inhibition of platelet aggregation 

Having demonstrated that lowering cholesterol levels in platelets increases their 

sensitivity to inhibition by PGI2, we investigated whether the effect was specific to 

PGI2. This was achieved by repeating the experiments with forskolin (Fsk) a direct 

activator of AC that bypasses the IP receptor. A low concentration of Fsk (2µM) 

caused only a threshold inhibitory effect (6±3%) on collagen-induced aggregation. 

This inhibitory effect was enhanced significantly after treatment with MβCD 

(2.5mM) reaching 32±2% (p<0.001). Similarly, treatment of platelets with a higher 

concentration of Fsk (10µM) caused a 39±10% inhibition of aggregation, which was 

increased significantly up to 90±9% (p<0.01) in the presence of MβCD (2.5mM) 

(Figure 5.4 A and B).  

Next the experiments were repeated using 8-CPT-6-Phe-cAMP a cAMP analogue 

and a direct PKA activator, which bypasses AC completely. 8-CPT-6-Phe-cAMP, used 

at two concentrations 12.5µM and 25µM, inhibited aggregation by 34±9% and 

68±3%, respectively. In contrast to the earlier findings with PGI2 and forskolin, in 

the presence of MβCD the levels of inhibition in response to the two concentrations 

of the cAMP analogue remained unchanged at 38±8% (p=0.7) and 74±9% (p=0.5) 

(Figure 5.4 C). Taken together these data could suggest that cholesterol depletion 

affects the cAMP/PKA signalling pathway upstream of PKA and potentially at the 

level of the IPR-Gs-AC complex.  
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Figure 5. 4: MβCD potentiates the inhibitory effect of Fsk on platelet aggregation 
but not 8-CPT-6-Phe-cAMP. 

WP (2.5x108 platelets/mL) were pre-treated with vehicle or MβCD (2.5mM) for 30 

min at 37oC. Platelets were then either treated with Fsk (2 or 10µM) for 5 min 

followed by stimulation with collagen (5µg/mL) or were directly stimulated with the 

same concentration of collagen. Aggregation was monitored for 4 min under 

constant stirring (1000rpm) at 37oC using a chrono-log dual channel light 

transmission aggregometer and aggregation traces were generated by aggreo/link 

computer software (chrono-log, USA). (A) Shows representative traces for Fsk with 

and without MβCD treatment. (B) and (C) Show data for Fsk and 8-CPT-cAMP, 

respectively. Data are from 5 independent experiments with different donors and 

expressed as %inhibition of platelet aggregation±SEM (**: p<0.01, ***: p<0.001 

when compared with MβCD-untreated samples). 
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5.4 Lipid raft disruption enhances PGI2-mediated cAMP synthesis in blood 

platelets 

PGI2 and forskolin exert their anti-platelet effects through the activation of adenylyl 

cyclase and elevations in cAMP levels(Feinstein et al., 1983)(Feinstein et al., 1983). 

cAMP molecules bind to cAMP-dependent protein kinase (PKA) in a cooperative 

manner leading to its activation, which in turn blunts platelet function through the 

phosphorylation of several key proteins. Having shown that lipid rafts potentially 

play an important regulatory role in platelet inhibition by cAMP-elevating agents, 

we then began to dissect the underlying mechanisms by examining the effects of 

MβCD on the activation of the cAMP-signalling cascade.  

We started by examining the effect of MβCD on cAMP synthesis under basal and 

stimulatory conditions. Basal cAMP levels were equivalent to 177±42 

fmol/107platelets. Treatment with MβCD (2.5mM) did not significantly change basal 

cAMP levels, which remained at 125±40 fmol/107platelets (p=0.42, Figure 5.5 A). 

Stimulating platelets with PGI2 (50nM) raised cAMP levels up to 293±60 

fmol/107platelets (p<0.05). This is equivalent to 74±39% increase in AC activity over 

basal levels. Interestingly, pre-treating platelets with MβCD (2.5mM) before 

stimulating with PGI2 (50nM) raised cAMP levels up to 703±65 fmol/107platelets 

(p<0.01 compared with the absence of MβCD) which is equivalent to a 575±198% 

increase over MβCD-treated levels. 

It is possible that the increase in cAMP levels in response to lipid raft disruption 

might be due to dislocation of PDE3 from lipid rafts. To investigate this, we 
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therefore repeated the experiment in the presence of the PDE3-specific inhibitor 

milrinone (10µM). Stimulating platelets with PGI2 (50nM), in the presence of 

milrinone, increased cAMP concentrations from 173±36 to 715±138 

fmol/107platelets (p<0.001). On the other hand, stimulating platelets with the same 

concentration of PGI2 in the presence of MβCD (2.5mM) had a more profound 

effect on cAMP production (p<0.001 compared with the absence of MβCD) raising it 

from 172±27 up to 1780±73 fmol/107platelets (p<0.0001 compared with 

nonstimulated). Data in Figure 5.5 B shows a similar trend as the one observed in 

the absence of milrinone ruling out a PDE3-specific effect for cholesterol depletion. 

These data suggest that cholesterol depletion by MβCD significantly enhanced PGI2-

mediated AC activity.  

To our surprise these observations could not be replicated with Fsk. cAMP levels in 

response to Fsk (2µM) were 595±195 and 609±105 fmol/107platelets (p=0.47) in 

the presence and absence of MβCD (2.5mM), respectively (Figure 5.5 C). 
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Figure 5. 5: MβCD potentiates the inhibitory effect of Fsk on platelet aggregation 
but not 8-CPT-6-Phe-cAMP. 

(A) WP (2x108 platelets/mL) were assayed for their content of cAMP in the absence 

(grey bars) or presence (black bars) of MβCD (2.5mM for 30 min at 37oC) either 

under non-stimulatory conditions or after stimulation with PGI2 (50nM) for 30 sec. 

(B) As in A but in the presence of milrinone (10µM for 20 min). (C) As in A but 

platelets were stimulated with Fsk (2µM) for 5 min. Data are from 3 independent 

experiments with different donors and are expressed as means ± SEM. (*:p<0.05, 

NS: not significant).   



Chapter 5 238 

 

5.5 Lipid raft disruption enhances PKA-mediated signalling events induced by PGI2 

Having established that cholesterol depletion increased AC activity in response to 

PGI2, we sought to determine whether this resulted in enhanced PKA activity as 

evidenced by increased phosphorylation of PKA substrates in whole cell lysates. 

Using an antibody that recognises phosphorylated PKA substrates we found that 

proteins with apparent molecular weights of 55, 90 and 130kDa were mildly 

phosphorylated, while proteins of 44 and 16kDa were heavily phosphorylated 

under basal conditions (Figure 5.6, lane 1, top panel). Treatment of platelets with 

PGI2 (1nM) led to a slight increase in phosphorylation of PKA substrates (Figure 5.6 

A, lane 2, top panel). Robust phosphorylation can be observed with a higher dose of 

PGI2 (50nM) with increased phosphorylation of proteins with apparent molecular 

weights of 44 and 70 and newly phosphorylated bands at 32, 38 and 66kDa (Figure 

5.6, lane 3, top panel).  Treatment of platelets with MβCD (2.5mM) alone caused a 

minor increase in phosphorylation of bands 55 and 38kDa compared to untreated 

cells (Figure 5.6, compare lane 4 and 1, top panel). When MβCD-treated platelets 

were stimulated with PGI2, we observed that phosphorylation of numerous bands 

occurred with lower concentrations of the prostanoid. For example, when using 

PGI2 (1nM), a significantly stronger phosphorylation was observed at 32 and 38kDa 

compared with MβCD-untreated cells. We also observed the phosphoryaltion of the 

band at 66kDa, which was absent at such a low concentration in the absence of 

MβCD (Figure 5.6, compare lane 5 and 2, top panel). In fact the level of 

phosphorylation induced by 1nM of PGI2 in the presence of MβCD was comparable 

to the one observed with 50nM of PGI2 in the absence of the cholesterol depleting 
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agent. A more obvious effect was observed at a higher concentration of PGI2 

(50nM) where treatment with the cholesterol-depleting agent caused a robust 

increase in phosphorylation of 32, 38, 44, 66, 70 and 150 kDa (Figure 5.6, compare 

lane 6 and 3, top panel). Consistent with these data we found that the presence of 

MβCD increased PGI2-mediated VASP157 phosphorylation at all concentrations of 

PGI2 tested (Figure 5.6, middle panel). Data from these experiments suggest that 

MβCD-mediated enhanced platelet inhibition by PGI2 is associated with enhanced 

AC and PKA activity.  
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Figure 5. 6: MβCD enhances PGI2-mediated signalling events in blood platelets. 

WP (2.5x108 platelets/mL) were treated either with vehicle or MβCD (2.5mM) for 

30 min at 37oC. Platelets were then either lysed directly or stimulated with PGI2 (10 

or 50nM) for 1 min before they were lysed with x2 Laemmli buffer. Platelet lysates 

(20μg/well) were then loaded onto a 10-18% gradient polyacrylamide gel and then 

resolved by SDS-PAGE for 2.5h at 120V. Proteins were then transferred onto a PVDF 

membrane for 2.5h at 100V. Membranes were then blocked with 10% w/v BSA in 

TBSTand immunoblotted with anti-phospho-PKA substrate rabbit antibody (1:1000) 

overnight at 4oC (top panel). Membranes were then stripped and reprobed with 

anti phospho-VASPser157 rabbit antibody overnight at 4oC (middle panel). 

Membranes were finally immunoblotted for anti-β-Tubulin mouse antibody 

(1:1000) overnight at 4oC to check for equal loading. Blots are representative of 

three independent experiments with three separate donors. 
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5.6 Disruption of lipid rafts does not affect PKA signalling events induced by other 

PKA activating agents 

Having shown that disruption of lipid rafts enhances PGI2-mediated PKA signalling 

events in platelets we wanted to investigate the effect of MβCD on PKA signalling 

events induced by the direct AC activator Fsk. 

We showed that Fsk-mediated inhibition of platelet aggregation was enhanced 

after cholesterol depletion with MβCD (Figure 5.4). However, we did not observe 

any potentiation in AC activity with Fsk under the same cholesterol lowering 

conditions (Figure 5.5).  We next tested the effect of MβCD on Fsk-mediated 

phosphorylation events. Treatment of washed platelets with Fsk (2 and 10µM) 

induced the phosphorylation of proteins with apparent molecular weights of 35, 48, 

66 and 240kDa, which was detected by the p-PKA substrate antibody. Pre-

incubation of platelets with MβCD (2.5mM) showed no increase in the 

phosphorylation events mediated by PKA but rather a decrease in the intensity of 

phosphorylation with most of the proteins except proteins with apparent molecular 

weight of 16 and 55kDa whose phosphorylation was enhanced upon cholesterol 

depletion (Figure 5.7 A, top panel). Phosphorylation of VASPser157 was also 

unaffected by treatment with MβCD. Therefore, consistent with the AC data, these 

data suggest that disruption of lipid rafts has no significant effects on PKA signalling 

events induced by Fsk.  Incubation of platelets with the direct PKA activator 8-CPT-

6-Phe-cAMP (12.5 µM) increased the phosphorylation of VASPser157 and several 

other proteins (Figure 5.7 B, lane 1, 2). Consistent with the aggregation data, 

pretreatment with MβCD (2.5mM) did not enhance the phosphorylation events 
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induced by 8-CPT-6-Phe-cAMP but rather decreased the intensity of the 

phosphorylation of VASP157 and phospho-PKA substrate profile (Figure 5.7 B, lane 3, 

4). These data suggest that the enhanced sensitivity to PGI2 in response to lipid raft 

disruption is not due to a direct effect on PKA but rather can be attributed to an 

effect on the IP receptor, Gs proteins or AC. 
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Figure 5. 7: MβCD does not affect PKA-mediated signalling events induced by Fsk 
or 8-CPT-6-Phe-cAMP. 

WP (2.5x108 platelets/mL) were treated either with vehicle or MβCD (2.5mM) for 

30 min at 37oC. Platelets were then either lysed directly or stimulated with (A) Fsk 

(2 or 10µM) for 5 min or (B) 8-CPT-cAMP (12.5µM) for 5 min  before they were 

lysed with x2 Laemmli buffer. Platelet lysates (20μg/well) were then loaded onto a 

10-18% gradient polyacrylamide gel and then resolved by SDS-PAGE for 2.5h at 

120V. Proteins were then transferred onto a PVDF membrane for 2.5h at 100V. 

Membranes were then blocked with 10% w/v BSA in TBS-T and immunoblotted 

with anti-phospho-PKA substrate rabbit antibody (1:1000) overnight at 4oC (top 

panel). Membranes were then stripped and reprobed with anti phospho-VASPser157 

rabbit antibody overnight at 4oC (middle panel). Membranes were finally 

immunoblotted for anti-β-Tubulin mouse antibody (1:1000) overnight at 4oC to 

check for equal loading. Blots are representative of two independent experiments 

with separate donors.   
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5.7 Disruption of actin filaments potentiates PGI2-mediated inhibition of platelet 

aggregation 

Components of the cytoskeleton such as actin filaments play an important role in 

membrane topology, exocytosis, shape change and cellular motility (Chang and 

Goldman, 2004, Revenu et al., 2004). There is a strong connection between several 

cytoskeleton components and lipid rafts, which can serve as sites for actin tail 

formation (Pelkmans et al., 2002). The actin cytoskeleton plays a role in maintaining 

the morphology of lipid rafts as well as the localisation of protein signalling 

complexes into these microdomains (Head et al., 2006). In addition, in 

cardiomyocytes, it has been shown that cytoskeleton inhibiting agents such as actin 

filament inhibitors enhance G protein-coupled receptor signalling (Head et al., 

2006).  All of these established findings encouraged us to investigate whether actin 

filament disruption would have similar effects on cAMP/PKA signalling in blood 

platelets. 

To explore the role of the actin cytoskeleton we used cytochalasin D as a well-

established inhibitor of actin polymerisation. Pretreatment of washed platelets with 

Cytochalasin D (10µM) caused a significant increase in PGI2-mediated inhibition of 

collagen-induced platelet aggregation. The 50% inhibition was achieved using 

51±10nM of PGI2, which was reduced to 22±7nM (p<0.05) in the presence of the 

actin polymerization inhibitor (Figure 5.8 A and B).  

To determine whether the observed sensitisation of platelets to cAMP signalling 

was specific to PGI2, the aggregation experiment was repeated in the presence of 
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forskolin, a direct activator of AC and 8-CPT-6-Phe-cAMP.  Fsk (2µM) caused 14±8% 

inhibition of platelet aggregation whereas pretreatment with Cytochalasin D 

increased this inhibitory effect to 61±17% (p<0.05). A higher concentration of Fsk 

(10µM) caused a 46±6% inhibition response which increased after treatment with 

Cytochalasin D up to 81±10% (p<0.05, Figure 5.8 C). The presence of Cytochalasin D 

did not potentiate the inhibitory effect of the direct PKA activator 8-CPT-6-Phe-

cAMP (Figure 5.8 D). These data suggest that disruption of actin polymerization 

enhances the inhibitory effect of cAMP elevating agents on platelet aggregation, 

but had no effect on platelet inhibition induced by direct PKA activating agents.  



Chapter 5 247 

 

  



Chapter 5 248 

 

 

 

 

 

 

 

 

 



Chapter 5 249 

 

Figure 5. 8: The effect of cytochalasin D on inhibition of platelet aggregation by 
PKA activating agents. 

WP (2.5x108 platelets/mL) were pre-treated with vehicle or cytochalasinD (10µM) 

for 10 min at 37oC. Platelets were then either treated with PGI2 (1-100nM) for 1 min 

(A and B), Fsk (2 or 10µM) for 5 min (C) or with 8-CPT-6-Phe-cAMP (12.5 or 25µM) 

for 5 min (D) followed by stimulation with collagen (5µg/mL) or were directly 

stimulated with the same concentration of collagen. Aggregation was monitored for 

4 min under constant stirring (1000rpm) at 37oC using a chrono-log dual channel 

light transmission aggregometer and aggregation traces were generated by 

aggreo/link computer software (chrono-log, USA). (A) Shows representative traces 

for PGI2 in the presence or absence of CytochalasinD. (B), (C) and (D) Show data 

and stats for PGI2, Fsk and 8-CPT-6-Phe-cAMP, respectively. Data are from 4 

independent experiments with different donors and expressed as %inhibition of 

platelet aggregation±SEM (*: p<0.05, when compared with Cytochalasin D-

untreated samples).  
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5.8 Disruption of actin filaments enhances PGI2-mediated cAMP synthesis  

The integrity of the actin cytoskeleton seemed to play a role in determining the 

inhibitory potency of cAMP elevating agents on platelet aggregation. To further 

explore the mechanism underpinning these functional effects, the outcome of actin 

filament disruption on AC activity was examined. In the absence of cytochalasin D, 

PGI2 (50nM) increased basal cAMP levels from 159±15 to 209±25 fmol/107platelets 

(p=0.07, Data not shown). In the presence of cytochalasin D (10µM), PGI2 (50nM) 

increased cAMP levels from 125±14 up to 229±18 fmol/107platelets, respectively 

(p≤0.01, figure 5.9 A, black bars). Examining the concentrations of cAMP under 

these conditions suggested that cyto D had no real effect on cAMP formation in 

response to PGI2. However, this could be slightly misleading because of the 

variability in the basal levels of cAMP between individual donors. To take this into 

account the data was normalised and also analysed as % increase over the basal 

levels.  Using these criteria, PGI2 (50nM) caused a 31±4% (p<0.05 compared to 

basal) increase in cAMP over basal levels in the absence of cytochalasin D. 

However, in the presence of the actin filament disruptor, the same concentration of 

PGI2 induced an 89±24% increase in cAMP levels over basal (p<0.05 when 

compared with PGI2 in the absence of cytoD, (Figure 5.9 A). 

In the presence of the PDE3 inhibitor milrinone (10µM) no difference in basal cAMP 

levels between Cyto D-treated and untreated samples was observed, with 263±49 

and 267±29 fmol/107platelets, respectively (Figure 5.9 B). Stimulation of these 

platelets with PGI2 (50nM) led to a comparable increase in cAMP levels with 
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753±111 and 740±110 fmol/107platelets in the presence and the absence of Cyto D, 

respectively. 

Unsurprisingly, actin filament disruption with Cyto D (10µM) had a very marginal 

effect on PKA signalling events induced by PGI2. These effects can only be observed 

as a mild increase in VASPser157 phosphorylation whereas no clear effect on 

phosphorylation of other PKA substrates was observed (Figure 5.10). 

These data suggest that actin filament disruption with Cytochalasin D result in a 

slight increase in AC activity and PKA phosphorylation events in response to PGI2.  
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Figure 5. 9: The effect of cytochalasin D on PGI2-mediated AC activity. 

(A) WP (2x108 platelets/mL) were assayed for their content of cAMP in the absence 

or presence of Cyto D (10µM for 10 min at 37oC) either under non-stimulatory 

conditions or after stimulation with PGI2 (50nM) for 30 sec. Data are presented as 

means ± SEM of %increase of cAMP levels over basal. (B) As in A but in the presence 

of milrinone (10µM for 20 min) and here data are expressed as means ± SEM of 

cAMP levels. Data are from 4 independent experiments with different donors 

(*:p<0.05, NS: not significant).   
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Figure 5. 10: Cyto D does not affect PKA-mediated signalling events induced by 
PGI2. 

WP (2.5x108 platelets/mL) were treated either with vehicle or Cyto D (10µM) for 10 

min at 37oC. Platelets were then either lysed directly or stimulated with PGI2 (1 or 

50nM) for 1 min before they were lysed with x2 Laemmli buffer. Platelet lysates 

(20μg/well) were then loaded onto a 10-18% gradient polyacrylamide gel and then 

resolved by SDS-PAGE for 2.5h at 120V. Proteins were then transferred onto a PVDF 

membrane for 2.5h at 100V. Membranes were then blocked with 10% w/v BSA in 

TBST and immunoblotted with anti-phospho-PKA substrate rabbit antibody (1:1000) 

overnight at 4oC (top panel). Membranes were then stripped and reprobed with 

anti phospho-VASPser157 rabbit antibody overnight at 4oC (middle panel). 

Membranes were finally immunoblotted for anti-β-Tubulin mouse antibody 

(1:1000) overnight at 4oC to check for equal loading. Blots are representative of 3 

independent experiments with separate donors.   
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5.9 Localisation of IP receptor, AC5/6 and Gαs  

The data presented suggested that disruption of lipid raft and actin filaments 

enhance the inhibitory effect of PGI2 on platelet aggregation induced by collagen. 

This increased effectiveness of PGI2 is associated with elevated AC activity, which 

resulted in increased PKA phosphorylation events. Since no increase in response to 

cAMP analogues was observed it suggested that our observations may occur at the 

IP receptor-Gs-AC level. Therefore, we wanted to investigate the localisation of 

these components and use that to interpret our observations. 

To achieve this aim, platelet lipid rafts were isolated and the localisation of these 

components using antibodies against the IP receptor (A gift from Dr. Lucie Clapp), 

Gαs and AC5/6 (both from Santa Cruz Biotechnology) was determined. However, 

before the experiments could be performed the optimal conditions for each of 

these antibodies were determined. This was particularly important for the AC and 

IP antibodies as this had not been used in platelets previously. 

5.9.1 Immuno-chemical characterisation of the Gαs antibody 

Increasing amounts of whole cell lysates from untreated platelets were used to 

detect Gαs by immunoblotting. We observed a band with an apparent molecular 

weight of approximately 45kDa with only 5µg of protein. The intensity of this band 

increased proportionally with increased protein loading, which also was associated 

with the emergence of other non-specific bands (Figure 5.11 A). Subsequently, 

immunoprecipitation of Gαs from platelet WCL was performed. Pre-cleared platelet 

WCL (500µg protein) was incubated with 1, 2 and 5µg of Gαs antibody attached to 
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protein A-immobilised beads. A small band with apparent molecular weight of 

45kDa could be observed with 5µg of the antibody, but not with lower amounts of 

the antibody or with 5µg of the IgG control (Figure 5.11 B). Data from this 

experiment confirmed the identity of the band detected earlier with 

immunoblotting and also confirmed the presence of Gαs protein in platelets. 
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Figure 5. 11: Characterisation of the Gαs antibody. 

(A) Untreated washed platelets (1x109 platelets/mL) were lysed with x2 Laemmli buffer. 

Platelet lysates (5-80µg) were loaded on a 10% polyacrylamide gel and then resolved by 

SDS-PAGE for 2.5h at 120V. Proteins were then transferred onto a PVDF membrane for 2.5h 

at 100V. Membranes were then blocked with 10% w/v BSA in TBST and immunoblotted 

with anti-Gαs rabbit antibody (1:1000) overnight at 4oC with shaking. (B) WP (9x108 

platelets/mL) were lysed using the IP lysis buffer (see appendix I). Lysates (500µg from 

300µL) were precleared with protein A sepherose beads. Precleared lysates were then 

incubated with increasing amounts (1-5µg) of anti Gαs rabbit antibody (Santa Cruz, see 

appendix I) and one sample was incubated with rabbit IgG control (5µg). Samples were 

then treated as described in 2.4.1.1. Immunoprecipitates were then loaded on a 7.5% 

polacrylamide gel and were resolved by SDS-PAGE for 2.5h at 120V. Proteins were then 

transferred onto a PVDF membrane for 2.5h at 100V. Membranes were then blocked with 

10% w/v BSA in TBST and immunoblotted with anti-Gαs rabbit antibody (1:1000) overnight 

at 4oC with shaking. Blots are representative of one experiment.     
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5.9.2 Immuno-chemical characterisation of the AC5/6 antibody  

In contrast to the Gαs antibody, the AC5/6 antibody was very nonspecific (Figure 

5.12). The suggested apparent molecular weight of the AC5/6 by the manufacturer 

is approximately 132kDa. In the initial immunoblotting experiments using the AC5/6 

antibody at a concentration of 1:1000 showed only one band with apparent 

molecular weight of about 40kDa (Figure 5.12 Ai). Overexposing these blots 

resulted in the emergence of a number of nonspecific bands and we were unable to 

observe any band at 132kDa even with 80µg of protein. Using a higher 

concentration of the antibody (1:200), we did observe a band at around the 

suggested molecular weight (Figure 5.12, Aiv, band indicated by a red arrow). We 

then repeated the same experiment, but this time PVDF membranes were blocked 

with 5% (w/v) skimmed dried milk in TBS-T. Figure 5.12 B shows a significant 

improvement represented by the loss of most of the nonspecific bands. A clear 

band at approximately 140kDa can be observed with different protein loading 

amounts (Figure 5.12 B). It was very important to confirm that this band was 

correspondent to AC5/6 therefore immunoprecipitation of platelet AC5/6 using 

increasing amount of the antibody (1-5µg) was performed. 

Pre-cleared platelet WCL (500µg) was incubated with 1, 2 and 5µg of the AC5/6 

antibody attached to protein A-immobilised beads. Immunoblotting of this 

immunoprecipitate a band with apparent molecular weight of 140kDa could be 

observed with 5µg of the antibody, but not with lower concentrations of the 

antibody or with 5µg of the IgG control (Figure 5.12 C). Data from this experiment 
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showed that AC5/6 is expressed in platelets and can be detected after SDS-PAGE 

and Western blotting at about 140kDa.  

5.9.3 Immuno-blotting characterisation of the IPR antibody 

The IP receptor antibody was a gift from Dr. Lucie Clapp. We characterised the 

antibody with our washed platelets using guidelines that were recommended. 

Platelet whole cell lysate (10-70µg) were separated by SDS-PAGE followed by 

immune-blotting. After probing the PVDF membranes with two different dilutions 

of the antibody (1:500 and 1:200) we observed a band at around 53kDa 

corresponding to the IP receptor (Figure 5.13). 
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Figure 5. 12: Characterization of the anti AC5/6 antibody. 

(A) Untreated washed platelets (1x109 platelets/mL) were lysed with x2 Laemmli 

buffer. Platelet lysates were loaded on a 10% polyacrylamide gel and then resolved 

by SDS-PAGE for 2.5h at 120V. Proteins were then transferred onto a PVDF 

membrane for 2.5h at 100V. Membranes were then blocked with 10% w/v BSA in 

TBS-T and immunoblotted with anti-Gαs rabbit antibody (1:1000) overnight at 4oC 

with shaking. Films were exposed (EXP) to the membranes in the cassette for either 

30 sec or 5 min.  (B) As in A but blocking buffer and antibody dilutions were made 

with 5% w/v and 1% w/v skimmed dried milk in TBS-T, respectively. Membranes 

were finally immunoblotted for anti-β-Tubulin mouse antibody (1:1000) overnight 

at 4oC. (C) WP (6x108 platelets/mL) were lysed using the IP lysis buffer (see 

appendix I). Lysates (500µg from 240µL) were precleared with protein A sepherose 

beads. Precleared lysates were then incubated with increasing amounts (1-5µg) of 

anti AC5/6 rabbit antibody (Santa Cruz, see appendix III) and one sample was 

incubated with rabbit IgG control (5µg). Samples were then treated as described in 

2.4.1.1. Immunoprecipitates were then loaded on a 10% polacrylamide gel and 

were resolved by SDS-PAGE for 2.5h at 120V. Proteins were then transferred onto a 

PVDF membrane for 2.5h at 100V. Membranes were then blocked with 5% w/v 

skimmed dried milk in TBS-T and immunoblotted with anti-AC5/6 rabbit antibody 

(1:200 made with 1% skimmed dried milk in TBS-T) overnight at 4oC with shaking. 

Blots are representative of one experiment.  
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Figure 5. 13: Characterization of the anti IP receptor antibody. 

(A) Untreated washed platelets (6x108 platelets/mL) were lysed with x2 Laemmli 

buffer. Platelet lysates (10-70µg) were loaded on a 10% polyacrylamide gel and 

then resolved by SDS-PAGE for 2.5h at 120V. Proteins were then transferred onto a 

PVDF membrane for 2.5h at 100V. Membranes were then blocked with 5% w/v 

skimmed dried milk in TBS-T and immunoblotted with anti-IP receptor rabbit 

antibody (1:500 and 1:200 dilutions made with 1% skimmed dried milk in TBS-T) 

overnight at 4oC with shaking. Membranes were also washed with the same 

blocking buffer. Membranes were finally immunoblotted for anti-β-Tubulin mouse 

antibody (1:1000) overnight at 4oC. Blots are representative of one experiment.  
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5.9.4 AC5/6, but not Gαs or IP receptor, is partially localised into platelet lipid 

rafts 

Our data suggested that lipid rafts played a key role in the regulation of AC activity 

in platelets. To investigate this in more detail we isolated lipid raft fractions using 

sucrose density ultracentrifugation and the presence of components of the cAMP 

signalling cascade including the IP receptor, Gαs and AC5/6 were examined by 

immunoblotting. Lipid raft fractions were determined using LAT as a well-

established lipid raft marker (Figure 5.14 A, fractions 4 and 5) whereas non-raft 

fractions were identified using the non-raft marker β3 (Figure 5.14 A, fractions 10, 

11 and 12). In order to allow direct comparison on the same gel for different 

treatments, raft fractions were pooled together and run in one lane whereas non-

raft fractions, from the same treatment, were pooled and run in the lane next to it. 

In the first instance we looked at the localisation of AC5/6 in relation to lipid rafts 

(Figure 5.14 B, top panel). Under basal levels we observed a small pool of AC5/6 

partitions in rafts and a larger pool in non-raft fractions. Upon treatment with a 

high concentration of PGI2 (100nM), a smaller amount of AC5/6 was observed in 

raft fractions. No AC5/6 was observed in raft corresponding fractions when WP 

were pretreated with MβCD (2.5mM) mimicking the effects observed with a high 

dose of PGI2.  

After that we looked at the partition of Gαs in lipid rafts (Figure 5.14 B, middle 

panel). Surprisingly, no Gαs was found co-localizing with AC5/6 in platelet lipid rafts. 

Similarly we found no trace of the IP receptor in platelet lipid rafts. We postulate a 
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model where a population of AC5/6, but not Gαs or IP receptor, might be 

sequestered in platelet lipid rafts restricting from participating in the signal induced 

by a low or medium dose of PGI2. And stimulation of platelets with a high dose of 

PGI2 or treating them with MβCD could result in the release of this sequestered 

pool of AC5/6 allowing it to join the other components of the signal outside the 

rafts leading to the enhancement of the signal. These are preliminary observations 

that need to be confirmed using different antibodies. 
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Figure 5. 14: AC5/6 but not Gαs or IP receptor is partially localised in platelet lipid 
rafts. 

WP (1x109 platelets/mL) were either left untreated or stimulated with PGI2 (100nM) for 30 

sec in the presence or absence of MβCD (2.5mM) for 30 min at 37oC. Platelets were then 

lysed with lipid raft lysis buffer containing 0.065% Triton X-100 for 30 min on ice. Lipid raft 

and non-raft fractions were then separated by sucrose gradient ultracentrifugation. (A) 

Aliquots of fractions (45µl) were then analysed by 10% SDS-PAGE for 1.5h at 120V followed 

by immunoblotting for 2.5h at 100V. Membranes were then blocked and firstly probed with 

LAT (1:1000 rabbit) and integrin β3 (1:1000 rabbit) to identify raft and non-raft fractions, 

respectively. (B) Lipid raft fractions (LR) and soluble fractions (S) from different treatments 

were pooled together and loaded on a 7.5% polyacrylamide gel and were analysed by SDS-

PAGE for 2.5h at 120V followed by immunoblotting for 2.5h at 100V. Membranes were 

blocked with 5% (w/v) skimmed dried milk in TBS-T and were then probed with either 

AC5/6 rabbit antibody (1:200), Gαs rabbit antibody or IP receptor rabbit antibody (1:500). 

Blots are representative of 3 independent experiments.   
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5.10 Discussion  

Lipid rafts are important membrane nanodomains whose role in platelet activation 

has become a very attractive area of research (Lopez et al., 2005, Bodin et al., 

2003). While a plethora of work in other cell types, focused on the role of lipid rafts 

in  G protein-coupled receptors (GPCR) (Patel et al., 2008, Pontier et al., 2008), only 

few studies addressed the role of lipid rafts in the signalling of these ubiquitously 

expressed seven-transmembrane spanning receptors in platelets. The main focus of 

these few studies was their role in P2Y1 and P2Y12 receptor signalling (Vial et al., 

2006, Quinton et al., 2005). In the present study, we address for the first time the 

role of platelet lipid rafts downstream the activation of an inhibitory GPCR that is 

the prostacyclin receptor (IP receptor). 

We used methyl β-cyclodextrin (MβCD) as a well-established tool to lower cellular 

cholesterol levels (Zidovetzki and Levitan, 2007). Since we (Figure 5.1), and others 

(Lee et al., 2006, Pollitt et al., 2010), observed that lipid raft disruption abolishes 

platelet aggregation induced by GPVI and GPCR activation in a concentration-

dependent manner, we used MβCD at a concentration that only partially inhibits 

platelet aggregation (2.5mM). This partial inhibition allowed us to examine the 

inhibitory effect of cAMP/PKA-dependent platelet inhibitors. This concentration still 

partially displaced our lipid raft marker LAT from the raft-corresponding fractions as 

shown through Western blotting and lowered cholesterol levels in these fractions 

(Figure 5.2). Throughout this study platelets were incubated with the indicated 

concentration of MβCD for 30 min at 37oC. Concentrations and treatment 



Chapter 5 266 

 

conditions of MβCD that we used are consistent with those used by others in 

platelets (Quinton et al., 2005) (Pollitt et al., 2010, Lee et al., 2006). 

In this study we report for the first time that disruption of lipid rafts by MβCD 

enhances the inhibitory effect of PGI2 and Fsk on platelet aggregation (Figure 5.3 

and 5.4). As a negative control we chose to use an inactive analogue of MβCD, α-

cyclodextrin (α-CD) (Hinzpeter et al., 2007, Agarwal et al., 2011). We chose the use 

of a MβCD inactive analogue as a control as an alternative to cholesterol repletion 

because the latter is likely to increase cholesterol levels above normal, which might 

affect cellular functions (Zidovetzki and Levitan, 2007). We also showed that when 

platelet cytoskeleton was disrupted with cytochalasin D, the inhibitory effect of 

PGI2 was enhanced (Figure 5.8). This outcome of cytoskeleton disruption on 

cAMP/PKA signalling was reported by Head et al in cardiomyocytes and was then 

attributed to a role for the cytoskeleton in localising different elements of the 

cAMP/PKA signalling pathway into lipid rafts (Head et al., 2006). The conditions 

under which cytochalasin D was used in our experiments were consistent with 

those used by others in platelets (Pollitt et al., 2010). Since we could not reproduce 

any of these observations with the direct PKA activator 8-CPT-6-Phe-cAMP, we 

speculated that the disruption of lipid rafts and the cytoskeleton was affecting the 

signalling pathway at the level of the IP receptor-Gαs-AC. 

In the first instance we wanted to confirm the involvement of AC by looking at the 

effect of MβCD and cytochalasin D on its activity by measuring cAMP levels. The 

increased sensitivity of platelets to PGI2 after lipid raft disruption was associated 



Chapter 5 267 

 

with a significant increase in AC activity (Figure 5.5). The increased AC activity upon 

lipid raft disruption was maintained in the presence of the PDE3 inhibitor milrinone. 

Consistent with our observations, an enhanced AC activity after lipid raft disruption 

has been reported downstream of β1AR and β2AR in adult rat ventricular myocytes 

and in HEK293, respectively (Agarwal et al., 2011, Pontier et al., 2008). To our 

surprise the enhanced inhibitory effect of Fsk on platelet aggregation was not 

associated with an increase in AC activity. There are some conflicting reports as to 

whether disruption of lipid rafts increase Fsk-mediated cAMP synthesis. One report 

suggested that in HEK-293 disruption of lipid rafts increased AC activity induced by 

FsK (Pontier et al., 2008). Conversely, another group suggests that in the same cell 

type, the enhancement of AC activity as a result of lipid raft disruption is receptor-

specific and hence no significant increase in AC activity was observed with Fsk in the 

presence of MβCD (DiPilato and Zhang, 2009). The fact that MβCD, by itself, did not 

affect basal cAMP levels under our conditions suggest that an activation of the 

receptor is required in order to see an enhancement in the AC activity, which could 

explain why we did not observe any enhancement in AC with Fsk as opposed to 

PGI2. Although this is consistent with a report published by Allen et al (Allen et al., 

2009), it is in disagreement with another report by Pontier, where they showed a 

significant increase in basal AC activity in response to cholesterol depletion by 

cyclodextrins (Pontier et al., 2008). Therefore, our data suggest that the effect of 

cholesterol depletion on AC activity in platelets is specific to the IP receptor. But, 

the mechanism by which lipid raft disruption enhances Fsk-mediated platelet 

inhibition still requires further investigation.  
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We also observed similar effects on AC activity when the cytoskeleton was 

disrupted with cytochalasin D (Figure 5.9), an effect that was consistent with work 

published by Head et al (Head et al., 2006). This effect on AC activity, however, was 

less pronounced when compared with that observed when platelet lipid rafts were 

disrupted by MβCD. And unlike the MβCD data, the potentiation effect was wiped 

out in the presence of milrinone. We also observed no effect on AC activity when 

Fsk was used in the presence cytochalsin D. This is consistent with Head’s report, 

who also showed no significant increase in cAMP synthesis in response to Fsk in the 

presence of cytochalasin D unlike isoproterenol, which acts through the βAR (Head 

et al., 2006). 

The enhanced PGI2-induced AC activity mediated by cholesterol depletion was 

accompanied by a robust potentiation in PKA-mediated signalling events as 

represented by the phosphorylation of PKA substrate profile and VASPser157 (Figure 

5.6). The effect of the cytoskeleton disruption on PKA signalling events however, 

was only observed with phosphorylated VASPser157 and was less profound than that 

observed with lipid raft disruption (Figure 5.10). The increased PKA activity as a 

result of MβCD treatment was reported before by Calaghan and colleagues, where 

the phosphorylation of two PKA substrates, phospholamban (PLB) and troponin I 

(TnI), in cardiomyocytes was enhanced as a result of treatment with MβCD 

(Calaghan et al., 2008). Another report addressing the effect of cholesterol 

depletion on PKA activity was published by Depry and colleagues where PKA activity 

was measured by Fluorescence Resonance Energy Transfer (FRET) techniques in 
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HEK293 cells was found to be enhanced in response to lipid raft disruption (Depry 

et al., 2011).  

We confirmed throughout this study that disruption of platelet lipid raft with MβCD 

enhances the sensitivity of platelets to PGI2 which was evident with aggregation, AC 

activity and PKA phosphorylation events. We then wanted to further explore the 

mechanism underlying all these interesting observations. Therefore, in the first 

instance the localisation of the IP receptor, Gαs and AC in relation to lipid rafts was 

determined. The lack of reports about specific AC isoforms in platelets in addition 

to the ubiquitousness of AC5 and AC6 (Willoughby and Cooper, 2007) and their 

established localisation in rafts (Ostrom et al., 2002, Ostrom et al., 2000), were the 

reasons why we chose to investigate the localisation of AC5/6 over other AC 

isoforms. The unreliability of commercially available AC antibodies has been a 

major issue that hindered numerous efforts in the AC field and resulted in 

numerous contradictory findings regarding the distribution of AC isoforms, 

expression levels and cellular localisation (Hanoune and Defer, 2001, Willoughby 

and Cooper, 2007, Liu et al., 2008). Under our conditions, we observed a band at 

about 140kDa along with several nonspecific bands when the AC antibody was used 

at a dilution of 1:200 (Figure 5.12). The nonspecificity issue and the need of using a 

high concentration of the same antibody have been addressed by Liu et al (Liu et 

al., 2008). We managed to reduce the number of nonspecific bands significantly 

when membranes were blocked and washed with 5% (w/v) nonfat dry milk in TBS-

T.  
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The inability of commercially available IP receptor antibodies to recognise 

endogenous IP receptor has also been reported (Liu et al., 2008). Therefore, in this 

study we used a non-commercial antibody that was a gift from Dr. Luccie Clapp. By 

using this antibody we identified a band at 53kDa (Figure 5.13) that was similar to 

the one reported by Clapp et al (Falcetti et al., 2010).  

Consistent with numerous reports in other cell types (Ostrom et al., 2002, Liu et al., 

2008, Head et al., 2006), we observed a pool of AC5/6 in platelet lipid rafts and 

another pool in nonraft fractions. However, we were unable to detect any Gαs in 

platelet lipid rafts unlike what has been reported in last two reports referenced 

above. Furthermore, the IP receptor was also absent from these membrane 

domains under our conditions. This is in disagreement with Liu’s report where they 

suggest the presence of a small pool of IP receptor in lipid rafts. However, these 

experiments were performed on exogenous hIP receptor expressed in COS-7 cells. 

Our findings about the absence of IP receptor from lipid rafts are consistent with 

reports confirming the absence of other prostanoid receptors from lipid rafts 

(Ostrom et al., 2002). Further work using different antibodies is required to confirm 

these observations. 

Preliminary data showed dynamic properties for the raft-residing AC5/6 as lower 

levels were noticed in rafts upon IP receptor stimulation with high concentration of 

PGI2. Our data does not explain the functional significance of this movement. But 

data in other cell types report the existence of functional AC6 homodimers as well 

as AC2 and 5 heterodimers (Ding et al., 2005, Baragli et al., 2008). Another possible 
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explanation would be the need of deploying more AC into nonraft membrane 

domains, where we exclusively found the IP receptor and Gαs proteins, in order to 

help producing more cAMP when it is required. It is possible that disruption of lipid 

rafts with MβCD helps mimic this scenario (Figure 5.15). 

The involvement of other AC isoforms such as AC3 in the observations reported in 

this chapter will be the focus of future work. This is supported by reports showing 

its exclusive localisation in lipid rafts in other cell types (Ostrom et al., 2002, Liu et 

al., 2008) and its predominance over other AC isoforms as found in platelet 

trancriptosomes (Rowley et al., 2011).  Also remains to be established is the 

mechanism by which cytochalasin D potentiates the inhibitory effect of PGI2 on 

platelet activity. 
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Figure 5. 15: A schematic figure showing a model of the effect of lipid raft disruption on cAMP/PKA 
signaling in blood platelets. 
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Chapter 6: Conclusions and future directions  

Understanding the molecular basis of the cAMP/PKA signalling pathway has great 

potential to the development of new therapeutic approaches for the treatment of 

Arterial thrombosis. Patients with cardiovascular diseases have shown diminished 

responsiveness to PGI2 leading to platelet hyperactivity (Mueller et al., 1986). 

Furthermore, the great potential of prostacyclin analogues, as vasodilators and 

antiplatelet agents, has been hampered by issues, such as bioavailability and 

receptor desensitisation (2000, Vane and Corin, 2003). Therefore, the dissection of 

the cAMP/PKA signalling cascade in blood platelets and in VSMCs could be of great 

clinical potential as it will help identifying novel therapeutic strategies that can 

more effectively target this pathway and oppose thrombosis. 

The aim of this project was to identify new mechanisms that regulate cAMP and 

PKA signalling networks in blood platelets. We shed a light on the spatiotemporal 

regulation of the cAMP/PKA signalling pathway both at the level of cAMP 

production (signal initiation) and PKA activity (signal propagation). The 

experimental data suggest the presence of two mechanisms for spatiotemporal 

regulation of cAMP signalling in blood platelets. Critical to both of these 

mechanisms are membrane lipid rafts, which might work as physical barriers that 

sequester a population of AC5/6 regulating signal initiation, and at the same time 

are targets for PKA anchoring by A-kinase anchoring proteins (AKAPs), which aids 

signal propagation.  It is possible that these mechanisms are actually integrated 

although there is currently insufficient data to make this conclusion. 



Chapter 6 274 

 

In other cell types, it has been established that the spatiotemporal regulation of the 

cAMP/PKA signalling cascade takes place at both the lateral and the medial part of 

the cell with both parts being compartmentalised into distinct domains (Willoughby 

and Cooper, 2007, Pidoux and Tasken, 2010, Stangherlin and Zaccolo, 2012). This 

system helps isolate distinct cAMP signalling networks which, even if triggered 

simultaneously, can mediate distinct biological responses depending on the stimuli. 

In this project our hypothesis postulates the presence of multiple spatiotemporal 

regulatory mechanisms of cAMP/PKA signalling in platelets.  

Platelets contain several isoforms of AC, although the role of these individual 

isoforms is unclear. To begin to investigate this we concentrated on AC6 as a 

ubiquitously expressed AC form of the enzyme. The loss of AC6 leads to reduced 

PKA activity in murine platelets (Aburima and Naseem – unpublished observations), 

suggesting its importance to platelet function. We provide evidence that platelet 

lipid rafts play a restraining role in cAMP/PKA signalling cascade triggered by PGI2. 

We report for the first time that disruption of lipid rafts by MβCD enhances the 

inhibitory effect of PGI2 and Fsk on platelet aggregation (Figure 5.3 and 5.4). This 

effect was the outcome of enhanced cAMP production and downstream PKA 

activity. We attribute this restraining effect of platelet lipid raft to a physical 

sequestration of a population of AC5/6 such that it is physically delocalised from 

the IP receptor and Gαs thereby controlling cAMP production (Figure 5.15). Our 

findings that lipid raft disruption enhances cAMP/PKA signalling are novel in 

platelets and are in agreement with those reported by others in other cell types 

(Pontier et al., 2008, Agarwal et al., 2011). In their report, Pontier and colleagues, 
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suggest that a pool of both AC6 and Gαs is sequestered in HEK293 lipid rafts away 

from the β2AR. Agarwal, on the other hand, suggest a different mechanism, where a 

subpopulation of not only Gαs and AC but also the β1AR receptor are all in rafts but 

the cAMP signal generated from their interaction is contained within these 

microdomains. 

Disruption of the cytoskeleton, which is also thought to be important to lipid raft 

architecture, with cytochalasin D also increased platelet sensitivity to PGI2 although 

to a lesser degree than observed after lipid raft disruption. To some degree these 

findings are consistent with the observations of Head and colleagues, who observed 

that cytoskeleton plays an important role cardiomyocytes by maintaining the 

integrity of lipid rafts. The loss of cytoskeleton integrity increased cAMP signalling 

by allowing unrestrained interaction between AC6 and the β-adrenergic receptor 

(Head et al., 2006). The complex interactions of IP, Gαs and AC6 in rafts require a 

more detailed characterisation.  

The role of PDE in the compartmentalisation of cAMP signalling was not 

investigated during this project. However, one of the interesting observations was 

that PGI2, (physiological AC agonist) can achieve the same level of inhibition of 

platelet aggregation as Fsk (nonphysiological AC agonist) with lower cAMP 

concentrations. We speculate that PGI2 triggers its cAMP signal through a specific 

network, potentially through specific AC isoforms, that is efficiently directed 

towards effective targets that are important to platelet activity. In contrast, Fsk is a 

global activator of AC and therefore may produce a more diffuse pattern of cAMP 
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synthesis in the platelet. This lack of localised response may require more cAMP to 

be produced globally to target substrates that are required for platelets inhibition.  

More work need to be done to validate this possibility, potentially through isoform 

specific AC knockout mice. We observed a unique temporal pattern for PKA activity 

in response to PGI2, compared to Fsk, when investigated by an antibody that can 

recognise multiple PKA substrates. Such an observation might be attributable to the 

presence of a fine temporal regulation mechanism of PDE activity in platelets. The 

compartmentalisation of cAMP pools in cardiomyocytes has been the main focus of 

Zaccolo and colleagues for about a decade and a significant progress has been 

achieved and helped improve our understanding of the wider context of cAMP 

compartmentalisation. By using FRET techniques this group managed to dissect the 

individual contribution of specific PDEs in shaping gradients of distinct cAMP pools. 

These pools inhibit the free diffusion of cAMP and help ensuring the specificity of a 

cAMP signal generated by a specific stimulus (Zaccolo, 2011). Data from 

cardiomyocytes suggested a small PDE2A activity (1% of total PDE activity) is 

present near the plasma membrane (Mongillo et al., 2006) whereas PDE3A activity 

was suggested to be more widespread and localised intracellularly on internal 

membranes (Mongillo et al., 2004). Since these two PDE isoforms are expressed in 

platelets, it is very tempting to speculate that similar mechanisms occur in platelets. 

Manns and colleagues observed that PDE2 inhibition caused a greater increase in 

cAMP levels when compared with the inhibition of PDE3, but only the inhibition of 

PDE3 enhanced the phosphorylation of VASP157 (Manns et al., 2002). This might 

suggest that, by an unknown mechanism, VASP could be localised with PKA and 
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PDE3 in one distinct cellular compartment. A similar theory was postulated by 

Jensen and colleagues as they provided strong evidence that NO-induced inhibition 

of platelet shape change is mediated by blocking PDE3, but not PDE2 (Jensen et al., 

2004). From their data, they speculate that by inhibiting PDE3, cGMP raises cAMP 

levels in a distinct compartment where PKA and VASP colocalise (Jensen et al., 

2004) and is in agreement with data obtained from cardiac myocytes using FRET. It 

is possible that cGMP production enhances PDE2 activity in a PKA II-containing 

compartment but blocks PDE3 activity in a PKA I-containing compartment 

(Stangherlin et al., 2011). The assignment of a specific PDE isoform to a specific PKA 

isoform is yet to be reported in platelets, but is an attractive area of research. 

It is clear from data presented in this thesis and the work of others that multiple 

PKA isoforms exist in platelets. Until now the locations, activity and molecular 

control of these isozymes have remained elusive. We, here, provide strong 

evidence that PKA isoforms have non-redundant roles and that their differential 

activity in platelets is spatially and temporally regulated by A-kinase anchoring 

proteins (AKAPs). Our evidence can be supported by both early and recent reports 

by others. El-Daher and colleagues reported that PKA substrates are differentially 

distributed in platelets and hence PKA activity is present in different subcellular 

compartments (El-Daher et al., 1996). However, these reports did not address the 

mechanism of PKA localisation or the specific localisation of an individual isoform to 

these domains. To the best of our knowledge, the differential contribution of PKA 

isoforms in platelet inhibition is unidentified. Experimental evidence from this 

project indicates that PKA isoforms are differentially localised to platelet lipid rafts 
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where PKA II is excluded under both basal and PGI2-stimulating conditions whereas 

a population of PKA I is recruited. Moreover, our data suggest that PKA isoforms 

may have specific substrates since a population of GPIbβ, a well-established PKA 

target in platelets, is specifically targeted by PKA I, but not PKA II, in platelet lipid 

rafts in an AKAP-dependent manner. Further we have shown that such an event is 

important for the optimal inhibitory effect of PGI2 on platelets as determined by 

vWF-mediated platelet aggregation and adhesion to vWF under flow. A similar 

scenario has been suggested in T-cells where the AKAP ezrin has been shown to 

mediate the redistribution of PKA I into lipid rafts where it phosphorylates C-

terminal Src kinase (Csk); an event that is required for optimal inhibition of T-cell 

activation (Ruppelt et al., 2007). Although we have not identified a specific AKAP in 

platelets mediating this effect, we have evidence of the presence of three AKAPs 

(Raslan, Tasken and Naseem – unpublished observations). This is consistent with 

recent work published by Rowley and colleagues who reported the presence of 

significant RNA levels of many AKAPs in platelet trancriptomes (Rowley et al., 2011). 

Furthermore, chemical proteomic studies undertaken by Margarucci and colleagues 

reported the potential presence of cAMP scaffolds in platelets.  Within these 

scaffolds they identified multiple AKAPs most of which are consistent with those 

reported by Rowley in platelet transcriptomes (Margarucci et al., 2011).  

Herein, we provide strong evidence that at least two spatial regulatory mechanisms 

simultaneously govern cAMP/PKA signalling in platelets. We suggest that the signal 

starts from the IP receptor and Gαs, which activates unknown isoforms of AC that 

have been made available by exclusion from lipid rafts. We then postulate that PKA 



Chapter 6 279 

 

target different substrates in different subcellular compartments in an isoform- and 

AKAP-dependent manner. We identified platelet lipid raft as one of those 

compartments PKA I redistributes to, and GPIbβ as a PKA I-specific target residing in 

that compartment. This happens in response to platelet stimulation with PGI2 and 

in a mechanism dependent on an interaction between PKA I and an unknown AKAP 

(Figure 6.1).  
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Figure 6. 1: A revised model of cAMP signalling in platelets as established by 
findings presented in this study. 

PGI2 binds the IP receptor activating an unknown isoform of AC. With the help of 

unidentified and compartmentelised PDEs,  cAMP is subsequently formed in 

specific subcellular compartments activating either PKA I or PKA II and 

phosphorylating substrates residing in that compartment. In this study, lipid rafts 

were identified as one of these compartments, where only PKA I was found to be 

localised in an AKAP-dependent manner. AKAP-tethered PKA I Phosphorylates 

GPIbβ, which resides in the same compartment along with other unidentified 

substrates. The AKAP-dependent PKA I phosphorylation of GPIbβ in platelet lipid 

rafts regulates a specific biological function that is vWF-mediated platelet 

activation. More work is still needed to identify the other compartments and their 

components.  
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Future work 

Our understanding of cAMP signalling in platelets is still in its infancy and 

significantly more work is required to understand these processes.  While this study 

has provided a small insight into potential compartmentalisation of AC isoforms, 

clear questions still remain including: 

 To determine whether other AC isoforms reside in lipid rafts such as 

AC3. 

 To verify Rowley’s findings which suggest the expression of AC isoform 3, 

6 and 7 in platelets (Rowley et al., 2011) and determine the differential 

contribution to platelet inhibition by different cAMP elevating agents. 

 To clarify the role of lipid raft in the localisation of AC5/6 and its 

regulators. 

 To investigate whether compartmentalisation of PDEs plays a role in 

shaping cAMP gradients in platelets. 

There is also a considerable amount of knowledge to be gained in the 

understanding of how different PKA isoforms are regulated in platelets. Using 

peptide disruptors of AKAP-PKA interactions as a tool to partially differentiate the 

role of these isoforms was successful to some degree by showing non-redundant 

actions. Using RIAD-Arg11 we tested the hypothesis that is redistribution of PKA I to 

lipid rafts is critical for PGI2-mediated inhibition of platelet activation through 

phosphorylation of GPIbβ. However, at this point the identification of the AKAP(s) 

responsible remains elusive.  Furthermore, the contribution of both anchored and 
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nonanchored PKA II to platelet inhibition by PGI2 needs to be dissected. This may be 

achieved using the other AKAP-PKA II specific disruptor superAKAP-IS (Gold et al., 

2006). 

Having provided strong evidence that AKAP-PKA interactions are important to 

optimally inhibit platelets by various cAMP-elevating agents, the next step must be 

aimed towards the identification of individual AKAPs in platelets. Many approaches 

can be employed to achieve this aim.  

1. RI/RII overlay assay. This simple far Western blotting method is a well-

established procedure that has been routinely used in other cell types to 

identify potential AKAPs (Carr and Scott, 1992). It depends on the fact that 

AKAPs retain their ability to bind recombinant RI or RII after transfer to 

nitrocellulose membrane under denaturing conditions.  

2. Affinity chromatography and mass spectrometry. Platelet whole cell lysate 

will be passed through cAMP-agarose columns, which after elution with 

RIAD or SuperAKAP-IS will be analysed by mass spectrometry to identify 

potential AKAPs. 

3. Immunoprecipitation of both PKA isoforms. This will be followed by mass 

spectrometrical analysis of the coimmunoprecipitated proteins. This 

approach can also be utilised to identify other AKAP binding proteins.  

AKAPs are multienzyme scaffolding proteins, which not only anchor PKA but also 

bind other proteins such as PKC, PDE and some phosphatases forming 

macromolecules that can regulate specific cellular functions (Tasken and Aandahl, 
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2004, Pidoux and Tasken, 2010). The presence of such macromolecules and their 

functional relevance will be determined with the help of mass spectrometry-based 

techniques. 

MEG-01 cell line will be used to implement powerful molecular biology techniques 

such as gene silencing in order to confirm all findings obtained from platelets.
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Appendices  

Appendix I 

Buffer composition and equipment used for methods described in this study. 

 
 

Isolation and preparation of human blood platelets by pH method 

Buffers 

 Acid-citrate dextrose (ACD): Glucose (113mM), Tri-sodium-citrate (29mM), 

NaCl (72mM), citric acid (3mM), pH 6.4 

 Tyrode’s buffer: NaCl (137mM), KCl (2.7mM), MgCl2 (1mM), Glucose 

(5.6mM), NaH2PO4 (3.3mM), HEPES (20mM), pH 7.4 

 0.3M citric acid, pH 6.5 

 Wash buffer: Citric acid (0.036M), EDTA (0.1M), Glucose (0.005M), KCl 

(0.005M), NaCl (0.09M) 

Equipment 

 Butterfly-21 Venisystems ................................. Abbot Laboratories 

 Falcon Tubes (15 and 50ml) ............................. Falcon, Becton Dickinson 

 Centrifuge…………………………………. Universal 320, Hettich 
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Determination of platelet concentration 

Buffers 

 Ammonium oxalate: Ammonium oxalate (1% w/v) in dH2O 

Equipment 

 Improved Neubauer cell counter 

Inverted light microscope 

 

 Measurement of platelet aggregation 

Buffers 

 Tyrode’s buffer: NaCl (137mM), KCl (2.7mM), MgCl2 (1mM), Glucose 

(5.6mM), NaH2PO4 (3.3mM), HEPES (20mM), pH 7.4 

Equipment 

 Aggregation Module-Dual Channel .................. Payton 

 Aggregation cuvettes 

 

Measurement of protein concentration 

Assay kit 

 DC protein assay kit .......................................... Bio-Rad 

Buffers 

 Tyrode’s buffer: NaCl (137mM), KCl (2.7mM), MgCl2 (1mM), Glucose 

(5.6mM), NaH2PO4 (3.3mM), HEPES (20mM), pH 7.4  

 lysis buffer (2x): Tris base (50mM), SDS (4% w/v), pH:6.8 
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Equipment 

 Costar 96-well cell culture plate ...................... Corning Incorporated 

 Multiplate reader with 750nm filter 

 

Measurement of cAMP concentration  

Assay kit 

 Enzymeimmuno Assay (EIA) ............................. Cayman Chemical Company. 

Buffers 

 EIA assay buffer: supplied by manufacturer and constituted with 90mL 

ultrapure water. 

 cAMP Standard: supplied by manufacturer and constituted by addition of mL 

of constituted EIA buffer which gives a cAMP solution of 7500 pmol/mL. 

 cAMP antibody: reconstituted by addition of 6mL of constituted EIA buffer. 

 cAMP AChE tracer: constituted by addition of 6mL of constituted EIA buffer. 

 Wash buffer: supplied by manufacturer and prepared by 400x dilution with 

ultrapure water and contains 0.05% (v/v) Tween-20. 

 Elman’s reagent: supplied by manufacturer and reconstituted by addition of 

20mL of ultrapure water. 

 cAMP Lysis buffer: 0.1M HcL 

 Acetic anhydride 

 KOH: 4M 

 Microplate: 96 wells plate coated with mouse anti-rabbit IgG. 

Equipment 
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 1.5mL eppendorfs  

 Glass aggregation cuvettes 

 Microplate shaker 

 Plate reader with 450nm filter 

 

Isolation of platelet lipid rafts 

Buffers 

 Lysis buffer: Tris-base (20mM), NaCl (100mM),  sodium pyrophosphate 

(60mM), sodium glycerophosphate (20mM), sodium azide (0.02% w/v), 

triton X-100 (0.065%), Protease Inhibitors cocktail, pH 8.0. 

Equipment 

 Thin wall tubes, ultraclear (ultracentrifuge tubes)….Beckman Coulter  

 Ultracentrifuge……………………………………………………….Beckman Coulter 

 

Analysis of platelet proteins 

Sodium dodecyl sulphate -polyacrylamide gel electrophoresis (SDS-PAGE) 

Sample preparation. 

Buffers 

 Laemmli sample buffer (2x): Tris base (50mM), SDS (4% w/v), Glycerol (20% 

v/v), bromophenol blue (trace), 2-mercaptoethanol (5% v/v) pH 6.8 
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Equipment 

 Aggregation Module-Dual Channel .................. Payton 

 Aggregation cuvettes 

 

Method 

Buffers 

 Buffer 1: Tris base (0.5M), SDS (0.4% w/v), pH 8.8 

 Buffer 2: Tris base (1.5M), SDS (0.4% w/v), pH 6.8 

 Ammonium persulphate  (APS): APS (10% w/v) in dH2O 

 Running buffer: Tris base (25mM), Glycine (192mM), SDS (0.1% w/v) 

Equipment 

 Miniprotean 3 Cell ............................................ Bio-Rad (UK) 

 Gradient mixer ................................................. Bio-Rad (UK) 

 Peristaltic pump 

 Butterfly-21 Venisystems ................................. Abbot Laboratories 

 Plastic tubing 

 Biotin-protein ladder ........................................ Cell Signaling Tech. (UK) 
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Immunochemical investigation of platelet proteins 

Immunoprecipitation. 

Buffers 

  lysis buffer containing phosphatase and protease inhibitors: NaCl (150mM), 

Tris base (10mM), EDTA (1mM), EGTA (10mM), Igepal (1% v/v), PMSF 

(1mM), Aprotinin (5ug/ml), Leupeptin (5ug/ml), Pepstatin (0.5ug/ml), 

Na3VO4 (2.5 mM), pH 7.4 

 Tris buffered saline containing Tween (0.1%): NaCl (100mM), Tris base 

(10mM), Tween 20 (0.1% v/v), pH 7.4 

  Laemmli sample buffer (2x): Tris base (50mM), SDS (4% w/v), Glycerol (20% 

v/v), bromophenol blue (trace), 2-mercaptoethanol (5% v/v) pH 6.8 

Equipment 

 Rotator 

 Microcentrifuge  
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Immunoblotting 

Buffers 

 Transfer buffer: Tris base (25mM), Glycine (192mM), methanol (20% v/v) 

 Tris buffered saline containing Tween (0.1%): NaCl (100mM), Tris base 

(10mM), Tween 20 (0.1% v/v), pH 7.4 

 RestoreTM Plus Wester Blot Stripping buffer: from Thermo Scientific 

 ECL 1: Luminol (250mM), p-coumaric acid (90mM), Tris base (1M, pH 8.5), in 

100ml using dH20 

 ECL 2: Tris base (1M, pH 8.5), 64µl of H2O2 (30%), in 100ml using dH2O 

 ECL 1 and ECL 2 were mixed fresh at a ratio of 1:1 before use. 

 Developing solution: diluted 1:5 prior to use in dH2O 

 Fixing solution: diluted 1:5 prior to use in dH2O 

Equipment 

 Hybond-P PVDF membrane ............................. Amersham Pharmacia Biotech 

 Mini Trans-Blot elctroph. transfer cell ............. Bio-Rad (UK) 

 Exposure cassette ............................................ Sigma Ltd (Poole, UK) 

 Hyper film ......................................................... Amersham Biosciences (UK) 

 Microplate shaker 
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Composition of polyacrylamide gels  

Gradient gel compositions for 1.5mm casting plates. 

Compound 3% stacking gel 10% resolving gel 18% resolving gel 

dH2O 4.87ml 1.418ml 0,708ml 

Acrylamide 30% 0.75ml 1.182ml 1.961ml 

Buffer I --- 0.886ml 0.886ml 

Buffer II 1.87ml --- --- 

APS 10% 75μl 18μl 18μl 

TEMED 10μl 2μl 2μl 

 

 

10% gel compositions for 1.5mm casting plates. 

Compound 3% stacking gel 10% resolving gel 

dH2O 4.87ml 6.4ml 

Acrylamide 30% 0.75ml 5.3ml 

Buffer I --- 4ml 

APS 10% 75μl 75μl 

TEMED 10μl 5.3μl 

 

7.5% gel compositions for 1.5mm casting plates. 

Compound 3% stacking gel 7.5% resolving gel 

dH2O 4.87ml 9.9ml 

Acrylamide 30% 0.75ml 6.25ml 

Buffer I --- 6ml 

50% (v/v) glycerol/water --- 1.6ml 

APS 10% 75μl 90μl 

TEMED 10μl 8μl 
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Appendix II 

Main platelet agonists and inhibitors used in this study 

Compound Supplier Solubility Concentration Preincubation 

Indomethacin Sigma 
Aldrich 

Ethanol 10μM 20min 

Apyrase Sigma 
Aldrich 

dH2O 1U/ml 20min 

EGTA Sigma 
Aldrich 

dH2O 1mM 20min 

Forsklin Sigma 
Aldrich 

Ethanol 10μM 5min 

H89 Cayman 
Chemicals 

DMSO 5µM 20min 

PGE1 Sigma 
Aldrich 

Ethanol 1µM 1min 

RIAD A kind gift 
from Prof. 
K Tasken   

dH2O 1μM 60min 

Super AKAP A kind gift 
from Prof. 
K Tasken 

dH2O 1μM 6min 

StHt-31 Promega xxxx 5μM 60min 

PGI2 Cayman 
Chemicals 

Ethanol 50nM 1min 

KT 5720 Sigma 
Aldrich 

Methanol 10μM 20min 

MβCD Sigma 
Aldrich 

dH2O 2.5mM 30min 

Collagen Nycomed 
(Alexix 

Sheild UK) 

xxxx 5µg/ml Not required 

Thrombin Sigma 
Aldrich 

dH2O 0.05U/ml Not required 

vWF (Fanhdi) Grifols dH2O 20µg/ml Not required 

Ristocetin Sigma 
Aldrich 

dH2O 0.75mg/ml Not required 
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Antibody list 

Antibody Company 

Goat Anti-rabbit IgG-HRP Amersham 

Anti-Biotin-protein ladder Cell signalling 

Anti-Gαs (Rabbit polyclonal) Santa Cruz 

Anti-integrin β3 (Rabbit polyclonal) Santa Cruz 

Anti-LAT (Rabbit monoclonal) Upstate 

Anti-mouse IgG-HRP Amersham 

Anti-PKA [RI] (Mouse monoclonal) BD Transduction Labs 

Anti-PKA [RIIβ] (Mouse monoclonal) BD Transduction Labs 

Anti-phospho-PKA substrate (RRXS/T) (Rabbit 
monoclonal) 

Cell Signaling 

Anti-phosphotyrosoine clone 4G10 (Mouse 
monoclonal) 

Upstate 

Anti-phospho-VASP (Ser 157) (Rabbit polyclonal) Cell Signalling 

A cyclase V/VI (Rabbit polyclonal) Santa Cruz 

Anti-β-Tubulin (Mouse monoclonal) Millipore 

Anti-phospho-RhoA (Ser 188) (Rabbit polyclonal) Santa Cruz 

Anti-Phospho-GPIbβ (Ser 166) (Rabbit monoclonal) A kind gift from Prof. 
Xiaoping Du 

Anti-Phospho-GSK3α (Ser 21) (Rabbit monoclonal) Cell signalling 

Anti-IP receptor (Mouse monoclonal) A kind gift from Dr. Lucie 
Clapp 

 

  

 


