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Chapter 1: Introduction to heart failure

Defining heart failure
Heart failure has often been described as acute or chronic in terms of its clinical 

presentation, systolic or diastolic in relation to the timing of the cardiac 

dysfunction, right or left sided depending on whether the pulmonary or the 

systemic veins are congested etc. Heart failure is pathophysiologically defined 

as the inability of the heart to maintain an adequate cardiac output 

commensurate with the metabolic needs of the body while maintaining normal 

left ventricular filling (atrial) pressures. The Task Force for the diagnosis and 

treatment of chronic heart failure (CHF) of the European Society of Cardiology 

has defined CHF in clinical terms, as a syndrome where the patient has 

breathlessness and/or fatigue at rest and/or during exertion or ankle swelling 

and objective evidence of cardiac dysfunction at rest and, where doubt exists, 

some improvement in the symptoms and/or signs in response to treatment. (1)

Epidemiology of heart failure 
Incidence
During the 1980s, the annual age-adjusted incidence of CHF among persons 

enrolled into Framingham Heart Study aged ^45 years was 7.2 cases/1000 in 

men and 4.7 cases/1000 in women. The overall incidence for all ages was 

2.3/1000 for men and 1.4/1000 for women. (2) The Rochester Study reported a 

lower incidence rate. (3) In Europe, the crude incidence of CHF (unadjusted for 

age) is 1-5/1000 population per annum. (4) A Finnish population-based 

surveillance study reported the age-adjusted annual incidence of 4/1000 for 

men and 1/1000 for women in the age group 45-75 years. (5) In general 

practice, the reported unadjusted annual incidence for all ages and both sexes 

was 3.3/1000 in Netherlands 1 and 2.3/1000 in the UK2 . The Hillingdon study 

reported an annual crude incidence of 1.3/1000 for those aged >25 years. (6) 

The annual incidence increases with age. It increased from 0.02/1000 in those 

aged 25-34 years to 11.6 in those >85 years in the Hillingdon study (6) and from

1 Van de Lisdonk EH, Van den Bosch WJHM, Huygen FJA, Lagro-Jansen ALM. Diseases in general 
practice. Utrecht, the Netherlands: Bunge, 1990
2 Royal College of General Practitioners, Office of Population Census and Survey, and Department of 
Health and Social Security. Morbidity statistics from general practice: fourth national study. 1991-92. 
London: HMSO, 1995.



2.8/1000 in those aged 45-64 years to 43.5/1000 in those >75 years in a Dutch 

study. 1

Prevalence
The prevalence of CHF was 24-25/1000 in subjects aged > 45 years in the 

Framingham Heart Study (2) and 7.4-21.2/1000 in other US studies depending 

on the population studied, being higher in the elderly. (3;7-9) The Dutch 

studies1 ' 3 reported a prevalence of about 11/1000 while Swedish, (10) Italian 

(11) and Danish2 studies have quoted much higher prevalence mainly because 

of the higher age of the patients studied. A survey of European secondary care 

reported that of the patients with a death or discharge diagnosis of heart failure, 

about 31% had left ventricular systolic dysfunction (LVSD) alone, 14% valve 

disease alone, 23% LVSD with valve disease (predominantly mitral 

regurgitation) and 32% heart failure with normal ejection fraction (HFNEF), 

although the diagnosis was questionable in a substantial proportion of the last 

group. (12) A survey of European primary care came to similar conclusions. (13) 

The prevalence in general practice in UK is 3.8-13/1000 across all ages.(14) 

The prevalence of CHF and LVSD in a heart failure clinic taking referrals from 

the general population was 23/1000 amongst patients aged > 45 years. 19 The 

prevalence of CHF increases rapidly with age with 15% of over 85s suffering 

with it. (15) About 15% of non-institutionalised patients (aged >70 years) 

developed CHF over six years before they died and 24% of all deaths were 

preceded by CHF. (16) Extrapolating data from several studies, it is likely that 

the true prevalence of CHF and LVSD in Western Europe is about 1-2% of the 

whole population (i.e. about 1-5% of the population aged 25-75 years). In 

addition, about 1-2% has asymptomatic LVSD, 1% has HFNEF and about 2% 

has suspected CHF that is not confirmed by investigation. Thus the total burden, 

of heart failure and/or ventricular dysfunction in the community is about 5%. (15) 

The prevalence in men and women is roughly equal. Men are more likely to 

develop CHF at a younger age and due to ischaemic heart disease (IHD) and 

suffer with asymptomatic LVSD while women suffer more with HFNEF. (15)

1 Lamberts H, Brouwer HJ, Mohrs J. Reason for encounter   and episode and process oriented standard 
output from the Transition Project. Part 1 & 2. Amsterdam: Dept. of General Practice, 1993
2 Wendelboe O, Hansen JF. Prevalence of mild and severe congestive heart failure in the community. 
Heart Failure '95. International Meeting of the Working Group on Heart Failure of the European Society of 
Cardiology, 1995, Amsterdam
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Epidemiology of LVSD
About half of patients with important LVSD are symptomatic but a substantial 

proportion of these develop HF symptoms subsequently. Men are more likely to 

be asymptomatic than women. Asymptomatic patients have a better prognosis 

than symptomatic ones. (17; 18) The commonest presentation of asymptomatic 

LVSD is sudden death. (19)

LVSD is usually due to IHD most commonly myocardial infarction. About a third 

will have extensive coronary disease but no classical evidence of myocardial 

infarction. Less than 10% of LVSD is due to dilated cardiomyopathy, 

constituting a relatively high proportion of LVSD in people aged <50 years. 

(13;20)

The Epidemiology of HFNEF
The epidemiology of HFNEF is more complex. It is more common in older 

women and results from multiple pathologies. (13;20) It appears that 

conventional echocardiography is unreliable in the diagnosis of HFNEF as the 

Doppler criteria are controversial at best. NT-proBNP appears to be useful in 

identifying patients who are at increased risk of cardiovascular events and 

death and who respond to treatment. (21)

Epidemiological studies, mainly of hospital discharge populations, suggest that 

the prognosis of HFNEF is similar to or only slightly better than HF due to LVSD. 

(22;23) However, clinical trials suggest dramatically lower rates of 

hospitalisation with heart failure and death, compared to patients with LVSD. 

(21;24) This may reflect the effects of non-cardiac co-morbidity and mortality, as 

this constitute a higher proportion of events in these patients than for patients 

with LVSD. The prognosis of HFNEF patients included in clinical trials seems 

better than that suggested by epidemiology due to exclusion of patients with 

serious non-cardiac co-morbidity from clinical trial. It also suggests that many of 

the deaths observed in the epidemiological studies would not be prevented by 

trial interventions.

Morbidity and mortality
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Heart failure remains an important cause of morbidity and mortality. A survey of 

heart failure in European primary care suggests that half of patients remained 

moderately or severely symptomatic on therapy with gross impairment of the 

quality of life after discharge, perhaps due to suboptimal treatment in most 

patients. (13) The mortality amongst newly diagnosed patients with heart failure 

may be as high as 20% during index admission. (25;26) The Bromley, (27) 

Hillingdon, (28) Framingham, (2) Rochester, (3) and Olmsted County (29) 

studies all suggest a 1-month survival of 80-85%, dropping to 57-68% at 18 

months. The three-year mortality of patients with new onset heart failure is 

about 60%, with evidence of a small improvement over the last 15 years. (30;31) 

Mortality is biphasic, with a six month mortality of 35-40% presumably reflecting 

a rapid decline in cardiac dysfunction, a high-risk of cardiac arrhythmias and 

sudden death and serious co-morbidities. The mortality is subsequently about 

7% per annum or, if rebased to those still alive at 6 months, 10-15% per annum. 

The calculated median survival of incident heart failure is 2-3 years and of those 

who survive the first year, about 5 years and few patients surviving >10 years. 

(30)

Most deaths in patients with LVSD are cardiovascular. Sudden death occurs in 

about 3% per year due to arrhythmias, acute vascular events or other causes. 

The lifetime risk of sudden death in an asymptomatic LVSD patient may be 

higher than that of symptomatic patients. (32)

Problem in interpreting epidemiology
Epidemiological studies often exclude young patients (e.g. <25 years) and have 

an upper age limit (e.g.75 years). The elderly populations with highest 

prevalence rates may thus be under-represented leading to an underestimation 

of prevalence. The incidence and prevalence averaged over all ages reported in 

a study population cannot be directly applied to the general population as the 

prevalence varies widely across age groups. (4) Prevalence of heart failure is 

often determined using data collected from medical records supplemented by 

direct questioning and/or examination of individuals within the general 

population, drug prescription data analysis, and general practitioner monitoring. 

Hospital discharge codes substantially underestimate hospital events related to 

HF (33)
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Diagnosis of CHF is often difficult. Despite the definition, (1) there are 

considerable uncertainties in its diagnosis. Only about a third to half of the 

patients suspected of having CHF in primary care has the diagnosis confirmed 

in secondary care, (6;34;35) Uncertainties persist even after assessment of 

these patients in secondary care. A survey of US cardiologists indicated that 

they felt that they could diagnose only advanced heart failure with certainty by 

clinical means alone. (36) In the EuroHeart Failure survey programme, a 

diagnosis of heart failure could not made or excluded in 46% of patients seen in 

the hospital. (20) Whether heart failure was the cause of dyspnoea could be 

determined in only 50% of the patients with normal left ventricular ejection 

fraction (LVEF) who were assessed in a heart failure clinic in the UK.(37)

This uncertainty stems from several factors. First, the symptoms and signs of 

heart failure are non-specific. The positive predictive value of these symptoms 

is poor and the inter-observer agreement on the presence of symptoms and 

signs is low, especially amongst the non-specialists and in routine clinic setting. 

(38-42) Many patients with LVSD are asymptomatic. (15) The signs may 

disappear in well treated heart failure even when severe. The relationship 

between symptoms and cardiac dysfunction is poor (43) and symptoms are 

often similar across the different levels of ejection fraction. (44) The relation 

between heart size on chest x-ray and left ventricular function is poor (45) and 

upper lobe venous dilatation is a poor guide to the simultaneous pulmonary 

capillary wedge pressure. (46) Inter-observer agreement on the interpretation of 

pulmonary congestion on chest x-rays is only modest. (47)

Second, cardiac dysfunction is often inadequately quantified. The use of 

transthoracic echocardiography for the documentation of cardiac dysfunction 

and measurement of LVEF for diagnosis of heart failure is far from universal. 

The IMPROVEMENT of Heart Failure Programme reported large variations in 

the likelihood that a physician would request echocardiography for diagnosis of 

heart failure in primary care in Europe. On the whole only 45% of the family 

physicians surveyed would request an echocardiogram in a patient with 

suspected heart failure and almost 20% of patients enrolled did not have an 

echocardiogram. (13) This variation persists even in secondary care. The
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EuroHeart Failure Survey reported that one third of the patients with known or 

suspected heart failure never had an echocardiogram. (20) The suggested 

assessment of cardiac function includes global and regional systolic and 

diastolic and valvular function. In clinical practice, however, the quantification of 

systolic LV function is often restricted to a single estimation of LVEF at rest. 

LVEF was reported in only 39% of the patients who had an echocardiogram in 

the IMPROVEMENT of Heart Failure Programme (13) and less than 213rd of the 

patients in the EuroHeart Failure Survey. (20)

Third, the modality by which LVEF is quantified is not standardised. Though 

echocardiography is the commonest and the recommended modality, contrast 

ventriculography, radionuclide ventriculography (RNVG) and cine magnetic 

resonance imaging (CMRI) are all used. The LVEF measured by these 

different modalities are not interchangeable or comparable. (48) Most (but not 

all) large clinical trials in heart failure and LVSD entered patients on the basis 

of LVEF measured by RNVG. However, LVEF in clinical practice is measured 

on echocardiography. Echocardiography tends to be overestimate LVEF 

compared to RNVG. (48) A proportion of patients whose LVEF is "normal" as 

measured by echocardiography would be diagnosed with LVSD using RNVG. 

Epidemiological studies also have commonly used echocardiography as the 

main method for estimating LVEF. (6;27;34;35;37) Prevalence of LVSD may be 

an underestimate compared to that measured on RVNG, a modality used to test 

benefits of treatments in clinical trials.

Fourth, the method used for estimating LVEF on echocardiography is often not 

robust. Most epidemiological studies measured LVEF from M-mode images. 

(6;27;34;35;37) M-mode echocardiography is acoustic window and operator 

dependent. It assumes an ellipsoid geometry of the LV that does not hold true 

when the LV undergoes progressive dilatation and becomes spherical and/or is 

dyssynchronous. (48) It also assumes that a single segment is representative of 

the entire LV and this is erroneous in patients with wall motion abnormalities. 

Inadequately defined endocardial borders, gain-dependent edge identification 

and variations in transducer position during imaging limit even the Simpson's 

method for measurement of LVEF. These methodological limitations introduce 

errors in estimates of the prevalence of LVSD. CMRI provides the most
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accurate and reproducible measurements of LV volumes and thence the LVEF. 
LVEF by M-mode echocardiography is significantly different from that by CMRI 
with unacceptably wide Bland-Altman range of agreement. (48) Though the 
mean LVEF measured by CMRI and 2D echo using Simpson's rule were similar 
suggesting that 2D echo provides estimates of EF comparable to CMRI, the 
Bland-Altman range for these two modalities reveal wide limits of agreement. 
(48) Estimating LVEF in the presence of atrial fibrillation and bundle branch 
blocks is difficult by any method. Measurement of LVEF by Simpson's rule may 
be impossible in an about half of the acute myocardial infarction patients (49) 
and one third of elderly patients (50) due to poor image quality.

Fifth, heart failure may occur in the absence of significant abnormality of 
conventionally measured LVEF. A number of epidemiological studies have 
suggested that 30-50% of cases of HF have normal ejection fractions. 
(6;13;20;29;51-54) Amongst the patients enrolled in the Euroheart Failure 
Survey whose LVEF was recorded, an LVEF>40% was reported in 49% of the 
males and 72% of the females. But diastolic measurements were seldom 
reported. (20) Thus in these patients with suspected heart failure, normal 
ejection fractions either excluded the diagnosis of heart failure or generated 
significant uncertainty in this diagnosis. This reflects clinical practice where 
diastolic evaluation of ventricles in patients with suspected heart failure is 
seldom undertaken. This reluctance in diastolic evaluation arises from several 
factors. There is a general lack of appreciation of this condition. The 
IMPROVEMENT of Heart Failure Programme reported that almost a quarter of 
the primary care physicians in Europe are unaware of the concept of HFNEF 
and only a third of them differentiated heart failure with from without normal 
ejection fraction. (13) There are doubts surrounding the very existence of 
HFNEF. HF was deemed to be more often a misdiagnosis than a true entity in 
patients with normal ejection fraction as most of these patients have an 
alternative; often non-cardiological cause for their symptoms.(55) The lack of 
observed LVSD in these patients was deemed only to be "apparent" due to the 
transient and thus elusive nature of the LVSD resulting from ischaemia or 
arrhythmia induced regional wall motion abnormalities (56) or the remoteness of 
the measured LVEF from the episode of HF. (52) Studies have confirmed that 
though conventionally measured LVEF is normal in these patients, LV "systolic"

15



function is not. Selective impairment of long-axis systolic and diastolic 

dysfunction at rest that do not manifest as a major impairment of global LV 

systolic function occurs in the absence of depressed LVEF. (57-62) Despite 

these studies, the presence of "pure" diastolic dysfunction has been strongly 

argued for by some authors. Gandhi et al demonstrated a low prevalence of 

LVSD during an acute episode of heart failure and on subsequent follow-up in 

patients with hypertension and acute cardiogenic pulmonary oedema, 

suggesting that transient LV systolic dysfunction is not a common entity and 

transient new or exacerbation of pre-existing diastolic dysfunction may occur. 

(63) Zile et al suggested that diastolic LV dysfunction was so common amongst 

patients with normal LVEF that there was no need to measure diastolic function 

in these patients. (64) Other authors have suggested that stress-induced left 

ventricular outflow tract (LVOT) obstruction may result in symptoms of heart 

failure in these patients. (65) There is lack of universally accepted robust 

diagnostic criteria for diastolic heart failure (DHF). The diagnostic criteria for 

DHF published by The European Study Group on Diastolic Heart Failure in 

1998 (66) was found to be of limited use (67) and thus did not gain widespread 

acceptance. Numerous studies using mitral valve blood flow Doppler showed a 

variable outcome in terms of predictive value for HFNEF. The criteria proposed 

by the European Study Group were fulfilled in only 43% of patients hospitalised 

for HFNEF.(68) The concordance between diagnosis of HFNEF based on 

conventional echocardiographic measure of LV diastolic dysfunction and that 

based on other diagnostic criteria is poor. (69;70) Both E/A ratio and IVRT 

poorly correlate to serum NT-proBNP in patients with HFNEF. (71;72) The 

assessment of LV diastolic function is technically challenging. The conventional 

echocardiographic parameters of diastolic dysfunction are dependent on left 

ventricular pre- and after- load, heart rate, PR interval and QRSd. The E/A is 

often "pseudonormalised" and thus underestimate the condition. About 50% of 

normal E/A are pseudonormal. Valsalva manoeuvre, that unmasks abnormal 

diastolic filling in patients with pseudonormalisation, is rarely undertaken. 

Valsalva is unobtainable in about 40% patients with pseudonormalisation due to 

inability to comprehend instructions or strain adequately. Deep inspiration may 

degrade image quality and limit E and A assessment at peak Valsalva. The 

change in the E/A with Valsalva, decrease with age. There are no cut-offs for 

the decrease in E or E/A ratio to reach a diagnostic threshold. The threshold
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depends upon baseline values for E and A, the quality of Valsalva, degree of 

patient effort etc. The changes with Valsalva manoeuvre is less predictive of 

elevated LV filling pressure when EF is normal. Other measurements of 

diastolic dysfunction like pulmonary venous flow are difficult to obtain and 

accuracy of recordings is highly dependent on skill of the operator and body 

size of the patient. Artifacts from LA motion also affect these measurements.

Rationale for the thesis
The current guidelines recommend assessment of the LV function at rest for the 

diagnosis of heart failure (1) though symptoms of heart failure are often present 

only during exercise and are almost universally induced by it. Conventionally 

assessed resting LVEF may be normal or abnormal in patients with symptoms 

suggestive of heart failure. Resting echocardiography may be adequate in 

confirming the diagnosis if the LVEF is abnormal at rest. But this strategy 

would fail to explain the genesis of the exercise-induced symptoms of heart 

failure in patients with normal resting LVEF. Stress echocardiography may 

potentially unmask global, regional and long-axis systolic LV dysfunction that 

are absent at rest and are likely to be responsible for exercise-induced 

symptoms. It may also demonstrate changes in the severity of abnormalities 

present at rest and provide prognostic information.

Coronary artery disease (CAD) is widely prevalent amongst patients with 

heart failure and normal LVEF (52) and is thus expected to be so amongst 

patients with suspected heart failure. Patients with CAD with and without past 

myocardial infarctions have considerable volumes of myocardium served by 

stenotic coronary arteries. The resting LVEF is often normal in these patients. 

Severe brief ischaemia may cause prolonged but transient LVSD that 

persists after the ischaemic insult itself has resolved, a process termed 

exercise-induced "stunning". (73) Inducible ischaemia per se may present as 

breathlessness that could be misconstrued as a heart failure symptom. 

Exercise may also precipitate isolated diastolic dysfunction by inducing 

ischaemia, (74-81) systolic hypertension, (82-84) and tachycardia. (85) 

Exercise-induced increases in the LVOT gradient may also give rise to heart 

failure symptoms. (86;87) Even though exercise induced ischaemia could 

potentially provoke LV systolic and diastolic dysfunction extensive enough to
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give rise to symptoms of heart failure in patients with normal ejection fraction, 

search for myocardial ischaemia has rarely been undertaken in these patients. 

Ischaemia was systematically evaluated in only 1(n=20) (88) of the 11 studies 

(n=763) reviewed by Choudhury et al (89) and was found to be absent. Studies 

that have reported low prevalence or even the absence of systolic dysfunction 

with or without diastolic impairment have not systematically excluded ischaemia 

as a cause for their symptoms. (63;90;91) Stress echocardiography could 

potentially identify ischaemia and clarify its possible role in the genesis of 

symptoms in these patients.

CAD with and without associated myocardial infarction is common in patients 

with heart failure with reduced LVEF. (92) Stress echocardiography is also 

likely to be helpful in the assessment of the burden of myocardium that is 

dysfunctional but viable (hibernating) and/or is reversibly ischaemic in 

patients with LVSD.

Another potential mechanism for the exercise induced deterioration of LV 

systolic function in patients with heart failure and LVSD is intra-ventricular 

dyssynchrony that is induced or exacerbated with stress. LV dyssynchrony at 

rest is seen in patients with heart failure and LVSD irrespective of the QRSd. 

(93-96) Studies investigating the effects of exercise or pharmacological 

stress on ventricular dyssynchrony have yielded conflicting results. (97-100) 

Indices of dyssynchrony did not change in subjects without heart disease in 

these studies whether the stressor was exercise or dobutamine. In patients 

with heart failure, changes in the dyssynchrony indices in response to stress 

were either absent (97;99) or unreported.(98;100) Stress echocardiography 

could identify these changes

The heart could be stressed during echocardiography using exercise (treadmill 

and upright or supine bicycle ergometry), pharmacology (inotropes like 

dobutamine, arbutamine or enoximone and vasodilators like dipyridamole or 

adenosine) or electricity (pacing). Dobutamine stress echocardiography was 

used for this thesis. Though most physiological, exercise stress 

echocardiography has several disadvantages. Imaging the heart during any 

form of exercise is difficult. Movement and increased rate and depth of
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respiration may render the image quality suboptimal. It is well recognised that 

only 40% of patients tested for CAD, can perform a truly diagnostic exercise test 

(101; 102) This proportion is likely to be even lower in the elderly patients, with 

musculoskeletal or neuromotor problems, general frailty and breathlessness. 

Treadmill exercise, the available form of exercise stress in our setting, has 

additional limitations. The heart cannot be continuously imaged. Thus the time 

of onset of ischaemia and changes in the cardiac function at each level of 

exercise cannot be precisely identified. Myocardial viability, a prognostically 

important component of left ventricular evaluation in patients with heart failure, 

cannot be assessed with exercise stress echocardiography (ESE). British 

Society of Echocardiography Policy Committee does not recommend exercise 

echocardiography for assessment of viability in dysfunctional myocardial 

segments. (103) The end-points of the test are non-echocardiographic i.e. 

attainment of target heart rate, ST-segment changes, development of 

symptoms etc. These changes with exercise occur later in the ischaemic 

cascade than the wall motion changes. (104) Thus ischaemia is detected later. 

And lastly, because ischaemia induced wall motion abnormalities may resolve 

quickly, imaging needs to be completed quickly after the completion of exercise. 

It is recommended that post-exercise imaging be accomplished within 60-90 

seconds of termination of exercise. But even under "study" conditions, this was 

barely achievable and information gained at peak exercise was lost in 

significant proportion of patients with post-exercise imaging. About 34% of new 

RWMA that develop at peak exercise resolve by the time images were acquired 

after exercise and 29% patients would have been missed had imaging been 

performed after exercise alone. (105) More precisely, new RWMA at peak 

exercise resolved at post-exercise imaging obtained within 80 seconds of 

exercise termination in 31% of patients with positive exercise echocardiography. 

There was a significant decrease in heart rate between peak exercise and the 

image acquisition. (106) No new RWMA was however missed when images 

where acquired within the recommended time in another study. (107) These 

problems could be overcome with supine bicycle stress testing. This was not 

available in our setting. Both exercise and dobutamine have a similar accuracy 

for the detection of coronary disease. (107-109)
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As an adjunct to 2-D grey-scale stress echocardiography, colour tissue 

Doppler imaging (cTDI) was used to quantitatively assess global, especially 

long-axis, and regional myocardial function. cTDI is a useful technique that 

provides an objective and reproducible measure of global, regional and 

longitudinal systolic and diastolic function at rest and different levels of stress 

This technique has been extensively used in cardiovascular research and its 

usefulness in the assessment of the LV function has been confirmed both at 

rest and during stress. The application of this technique is discussed in detail 

later.

Aims of the thesis
The principle aim of this thesis is to assess the application of conventional DSE 

supplemented by cTDI in the evaluation of patients with suspected heart failure. 

The reasons for patients declining or being excluded from DSE would be 

recorded to assess the applicability of this imaging technique to a general 

population of patients with heart failure. In particular, the prevalence, both at 

rest and during pharmacological stress, of the global and regional systolic and 

diastolic abnormalities of cardiac function that could cause or contribute to the 

symptoms of CHF in an unselected population of subjects suspected of having 

heart failure would be determined.

Hypotheses
  DSE supplemented with cTDI is likely to be applicable only to a highly 

selected group of patients with suspected heart failure.

  Quantitative echocardiography using cTDI would supplement 

conventional DSE in further unmasking abnormalities not otherwise 

detected.

  In subjects who undergo DSE, it would clarify the prevalence of stress 

induced changes in global, regional or long axis systolic or diastolic 

function in patients with symptoms of heart failure with reduced or normal 

ejection fraction.

  In patients with HFNEF, DSE would detect changes in global, regional or 

long axis systolic or diastolic function that would explain the genesis of 

symptoms in these patients.

  In patients with heart failure and LVSD, DSE would detect changes in 

intraventricular dyssynchrony.
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Chapter 2: Stress echocardiography

Introduction
Wann et al first introduced echocardiography during stress in 1979. (110) It is
based on the principle proposed by Gallagher et al (111) and then by Ross et al 
(112) that during stress-induced ischaemia, the decrement in myocardial 
contractile function is directly related to the decrease in regional subendocardial 
blood flow. 2-dimensional echocardiography, by virtue of its ability to assess 
regional and global contractile function, is an excellent tool for obtaining 
valuable information on cardiac function when combined with any stress- 
producing modality. It is widely available, rapidly performed, and safe without 
radiation and highly versatile test that can be used in variety of environments 
and for a variety of indications.

Methodology
Modalities of stress

The heart can be stressed during echocardiography using exercise (treadmill 
and upright or supine bicycle ergometry), pharmacological agents (vasodilators 
like dipyridamole or adenosine and inotropes like dobutamine, arbutamine or 
enoximone) or electricity (pacing). Exercise and dobutamine are the commonest 
stressors used in clinical practice. Both exercise and dobutamine have a similar 
accuracy for the detection of coronary disease. (107-109) Although both 
exercise and dobutamine induce ischaemia through increasing cardiac work, 
the haemodynamic responses to the two are different. Despite increasing 
contractility, systolic blood pressure does not increase to a major degree 
because dobutamine reduces peripheral vascular resistance. Although both 
stressors can achieve the same heart rate, both systolic blood pressure and the 
rate-pressure product at peak stress are significantly greater with exercise than 
with dobutamine. Dobutamine stress was used for this study.

Vasodilator stress work by the induction of coronary steal with minimal 
haemodynamic effects in the setting of severe or extensive coronary disease. 
British Society of Echocardiography Policy Committee recommends that 
vasodilator stress echocardiography should only be considered when physical 
stress is not possible and there are contraindications to dobutamine (103) 
because its sensitivity to assess mild to moderate CAD is low, it is unable to
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assess myocardial viability and it is contraindicated in asthma and untreated 

conduction abnormalities.

Imaging techniques

Native 2-dimensional transthoracic echocardiography with harmonic imaging is 

routinely used. Parasternal long and short axis and apical 4-chamber, 2- 

chamber and 3-chamber views, optimised for image quality, are recorded. The 

images are acquired in suspended respiration (at end-expiration if possible to 

avoid Valsalva manoeuvre, which can degrade image quality) to minimize 

translational motion. Minimizing depth and using the narrowest sector angle 

attain maximum frame rates. The recommended frame rates are at least 25 

frames per second to be increased to 30 when heart rates >140 beats is 

reached. Gains are adjusted and highest possible transducer frequency is used 

to maximise image resolution. Steep lateral decubitus position minimises apical 

foreshortening. Acquisition and storage of digital loops is standard. Digital 

imaging allows split or "quad-screen" side-by-side displays for comparison of 

regional function at rest and stress and real-time reviews of changes in 

contractility on a frame-by-frame basis. Simultaneous side-by-side display of 

previously acquired loops facilitates acquisition of new images in a comparable 

plane. At least two cardiac cycles is acquired when the patient is in sinus 

rhythm and five in atrial fibrillation. Loops are edited to exclude atrial or 

ventricular premature complexes.

If resting native images are sub-optimal in quality, echocardiographic contrast 

may be used. Left ventricular contrast is used for enhancement of the 

endocardial border. Myocardial contrast is used to directly assess myocardial 

motion, thickening and perfusion. When ultrasound contrast agents are used 

contrast specific imaging modalities is employed (reducing the mechanical 

index to minimise bubble destruction). The best images are recorded several 

cardiac cycles after the appearance of contrast in the LV. When less than 80% 

of the endocardial border is adequately visualised, the use of contrast agents 

for endocardial border delineation is strongly recommended. (113)

Study protocol

During echocardiography dobutamine is injected intravenously via a syringe
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pump using standardised protocol depending on the indication of the test. (103) 

For assessment myocardial ischaemia, dobutamine is infused starting at 10 

mcg/kg/min, with increment of 10 mcg/kg/min every three minutes to a 

maximum of 40 mcg/kg/min. Some studies have used a maximum dose of 50 

mcg/kg/min. If the heart rate response is "inadequate", atropine is administered 

in 0.3 mg increments every 60 seconds until the target heart rate or a maximum 

dose of 1.2 mg is reached. Atropine may also be administered early if heart rate 

has not increased after the 20 mcg/kg/min of dobutamine. Atropine should be 

used to increase the sensitivity of the test in patients whose beta-blocker cannot 

be stopped. It is contraindicated in patients with glaucoma and history of urinary 

retention. For assessment of myocardial viability, dobutamine is infused starting 

at 5 mcg/kg/min followed every five minutes by 10 mcg/kg/min and 20 

mcg/kg/min stages. Further stages at 30 and 40 mcg/kg/min may be used to 

assess a "biphasic" response. The sensitivity of the test for detection of 

ischaemia is reduced in patients on blockers due to its negative inotropic effect. 

(114) Thus, as recommended, beta-blockers were stopped 48 hours before the 

test.

Images are recorded at rest and in the final 60 seconds of every stage of the 

protocol and sometimes during recovery. The British Society of 

Echocardiography Policy Committee recommends acquisition, for detection of 

ischaemia, at baseline, low stress (10% increase in heart rate), intermediate 

stress (70% of the age predicted heart rate), peak stress (85% of the age 

predicted heart rate) and sometimes during recovery. Continuous 

echocardiographic monitoring of ventricular function and out flow tract gradient 

is informative.

Blood pressure and 12-lead ECG monitoring is continued throughout the test. 

Heart rate and rhythm, blood pressure, symptoms and wall motion 

abnormalities are recorded at the end of each stage, during any symptoms and 

at test termination. The persons present at the test include one skilled in 

acquisition and interpretation of the echocardiographic images and one trained 

in haemodynamic and ECG monitoring. All personnel should be trained in basic 

life support. Someone with training in advanced life support should be 

immediately available if needed even if not present during the test. If contrast
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agents are used, patient should be monitored for hypersensitivity reactions.

The end-points for test termination include attainment of target heart rate (THR) 

{85% of (220-age in years)}, decrease in systolic blood pressure >20 mmHg 

below the level recorded at the previous level of test, increase in the systolic 

blood pressure to >240/120 mmHg, new or worsening wall motion or thickening 

abnormalities in at least two adjacent segments, new or worsening wall motion 

or thickening abnormalities with or without ventricular dilatation, intolerable 

symptoms of chest pain or severe breathlessness, >2mm flat or down-sloping 

ST depression or >1mm ST elevation in any lead, recurrent ventricular couplets 

or triplets, single run of non-sustained ventricular tachycardia (defined at >5 

consecutive ventricular ectopics), sustained ventricular tachycardia or new atrial 

fibrillation and finally global reduction in the systolic function

Study analysis and interpretation.

Normal myocardium contracts at rest and increases its contractility and 

thickening during stress. Detection of myocardial ischaemia by DSE is based on 

the principle that motion and thickening of the left ventricular wall decreases 

with stress-induced relative reduction in myocardial blood flow. Myocardial 

viability is diagnosed on the basis that dobutamine at low-dose increases 

contractility in dysfunctional and viable myocardium by activating contractile 

reserve but not in dysfunctional and non-viable myocardium. (115)

During DSE, changes in regional wall motion and thickening and global left 

ventricular volumes, shape and ejection fraction are visually estimated at each 

level of stress by comparing acquired loops side-by-side. Analysis of thickening 

is better than analysis of motion in estimating contractile function as the later 

may be influenced by translation and tethering For systematic description of 

regional contractile function the left ventricular wall has been divided into 

standardised segments. In 1989, the American Society of Echocardiography 

recommended a 16-segment model for LV segmentation. (116) This model 

consists of basal and midventricular segments of the anteroseptal, inferoseptal, 

inferior, posterior, lateral and anterior walls and 4 segments at the apex: 

inferoseptal, inferior, lateral and anterior segments. In 2002, the apical cap, a 

segment beyond the end of the LV cavity was added by the American Heart
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Association Writing Group on Myocardial Segmentation and Registration for 

Cardiac Imaging, as the 17th segment in an attempt to establish segmentation 

standards applicable to all types of imaging and not only echocardiography. 

(117) However, the ASE recommends using the 16-segment model of for 

studies assessing wall-motion abnormalities, as the tip of the normal apex 

(segment 17) does not move. (118) This model was used for this thesis. For 

analysis of regional contractile function, each of the 16 segments of the left 

ventricular wall is designated a semi-quantitative score at each level of stress: 

normal=1, hypokinesia=2, akinesia=3, dyskinesia=4, and aneurysmal 

(diastolically deformed)=5. (116) Wall motion score index (WMSI) is calculated 

by dividing the sum of the scores in each segment by the number of segments 

analysed. WMSI of 1 is normal; higher score indicates wall motion 

abnormalities. WMSI and LVEF are linearly correlated. (119; 120)

The response of the myocardium to dobutamine varies according to its 

contractile state. "Normal" myocardium contracts at rest and increases its 

contractility and thickening at peak stress. Mild hypokinesia is considered 

normal. "Ischaemic" myocardium contracts normally at rest but is hypokinetic, 

akinetic or dyskinetic at peak stress. Dysfunctional but "viable" non-ischaemic 

myocardium (stunned myocardium) is hypokinetic or akinetic at rest, improves 

with low dose of dobutamine and sustains that improvement at high dose. 

Dysfunctional and "viable" but ischaemic myocardium (hibernating myocardium) 

demonstrates a "biphasic" response to dobutamine (the hypokinetic or akinetic 

myocardium improves in contractility with low dose dobutamine stress but then 

worsens with higher dose). This indicates myocardial dysfunction due to 

ischaemia and strongly predicts its recovery following revascularisation. 

Dysfunctional and non-viable myocardium ("scar") is akinetic or dyskinetic at 

rest and does not change with dobutamine stimulation. Whether the 

development of dyskinesia in an akinetic segment represents ischaemia is still a 

matter of debate. It has been suggested that these changes result from 

increase in the wall stress rather than induced ischaemia. The absence of a 

hyperdynamic response at higher doses of dobutamine is also difficult to 

interpret.

Mvocardial substrate for ischaemia heart failure
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Ischaemia affects several aspects of LV function. Foremost of these is 

impairment of systolic contraction of the myocardium. When the balance 

between the normo-contractile and hypo-contractile myocardium is tipped 

unfavourably, the long-axis followed by the global systolic function of the LV is 

impaired. The systolic dysfunction of the myocardium due to ischaemia results 

from such pathophysiological processes as hibernation, stunning, repetitive 

stunning and varying degrees of myocardial scarring and fibrosis. All these 

processes may co-exist in the same ventricle and even within the same region 

of the ventricle. These pathophysiological states of the myocardium respond 

distinctly to dobutamine stimulation.

Myocardial hibernation

Diamond et al, in 1978, were the first to use the word "hibernation" in the 

introduction to an experimental study that demonstrated that post-extrasystolic 

potentiation markedly restored systolic shortening of acutely dysfunctional 

ischaemic myocardium suggesting a preservation of contractile reserve within it 

up to shortly after complete arterial occlusion. This responsiveness was lost 

with time as the myocardium reached a point of non-viability. (121) After 

reviewing the literature suggesting that akinetic LV segments that were 

previously assumed to be fibrotic and non-viable recovered systolic function 

after revascularisation, Rahimtoola et al (122) proposed the concept of 

"myocardial hibernation". It refers to a prolonged sub-acute or chronic stage of 

myocardial ischaemia in which myocardial contractility and metabolism and 

consequently ventricular function are reduced to match the reduced blood 

supply to achieve a new state of equilibrium whereby myocardial necrosis is 

prevented and the myocardium is capable of returning to normal or near normal 

function on restoration of adequate blood supply. (123) This is a state of 

"perfusion-contraction match" where cellular viability is maintained at the 

expense of normal contractile function in the face of chronically reduced oxygen 

supply leading to overall LV dysfunction. (124; 125) Reduced contractility 

reduces oxygen demand thus maintaining viability despite poor perfusion.

Hibernating myocardium is physiologically characterised by hypo-contractility 

with persistent inotropic reserve, reduced resting perfusion (126) (though some 

studies have claimed the contrary) (127-129) and metabolic activity and
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severely impaired vasodilatory coronary flow reserve. During recruitment of 

inotropic reserve with intravenous dobutamine oxidative metabolism and 

glucose utilisation increases as does the perfusion (129; 130) but prolonged 

stimulation may lead to myonecrosis. Restoration of blood flow to chronically 

underperfused myocardium leads to the functional recovery of hibernating 

myocardium.

Myocardial Stunning

Heyndrickx et al, in 1975, described the phenomenon where regional 

mechanical function remained impaired for prolonged periods after short 

episodes of coronary occlusion in conscious dogs. (131) Myocardial stunning, a 

term coined in 1982, (132) is a state of reversible contractile dysfunction that 

results from a short period of interruption of blood flow and persists after 

restoration of normal or near-normal perfusion despite the absence of 

irreversible damage. (133) This was subsequently noted after selective 

subendocardial (134) and exercise-induced ischaemia (135) It may result from 

single or multiple completely reversible ischaemic episode or a single, partly 

irreversible ischaemic episode and exercise, in presence or absence of 

coronary stenosis. Exercise-induced increase in myocardial oxygen demands in 

the face of limited supply (flow-limiting stenosis) is likely to be a common clinical 

scenario in patients with CAD with symptoms of heart failure. This may provoke 

myocardial ischaemia and contractile abnormalities that persist after cessation 

of exercise when demand returns to the resting state. (135; 136) Stunning has 

been demonstrated after exercise, particularly in patients with multi-vessel 

disease. (137; 138) Exercise can induce both ischaemic myocardial dysfunction 

and post-ischaemic myocardial stunning in hypertrophied ventricles in the 

absence of any coronary stenosis. (139)

Stunning is a state of "perfusion-contraction mismatch" where the contraction is 

impaired even though the perfusion is intact. Stunned myocardium has 

persistent inotropic reserve, normal resting perfusion and decreased coronary 

flow reserve. Dobutamine challenge recruits the inotropic reserve without 

deterioration of metabolism and does not produce necrosis even on prolonged 

stimulation.
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Repetitive Stunning

One of the key differences between stunning and chronic hibernation is that 

resting perfusion is intact in stunning but reduced in hibernation. However some 

studies have reported normal resting perfusion in dysfunctional myocardium 

thought to be "hibernating". (127-129;140) An inverse relationship has also 

been demonstrated between the degree of contractile dysfunction and coronary 

reserve. (140) These facts have prompted investigators to postulate that some 

patients thought to suffer with chronic hibernation are actually suffering from 

"repetitive stunning". This is a state of persistent myocardial dysfunction 

resulting from cumulative effect of repetitive brief episodes of ischaemia in 

myocardium (with normal resting perfusion but severely reduced coronary flow 

reserve) that is not capable of increasing its blood flow sufficiently to meet its 

metabolic demands leading to repetitive stunning. Repetitive bouts of 

myocardial stunning can produce a prolonged, reversible depression of 

contractility that mimics myocardial "hibernation". (141)

In ischaemic cardiomyopathy, dysfunctional segments with severely reduced 

(hibernating) and near normal (stunned) resting perfusion may co-exist in the 

same ventricle in humans.(142) Some myocardial regions that are hibernating 

at rest may develop ischaemia during exercise with a subsequent process of 

post-ischaemic stunning superimposed on the baseline hibernating state. This 

phenomenon has been shown in animals. (141) It appears that there is a 

temporal progression from stunning, characterized by (nearly) normal flow (with 

reduced flow reserve), to hibernation, with reduced resting flow. 

Revascularisation of myocardium with adequate perfusion at rest but with 

recurrent ischaemic episodes during stress may successfully reverse persistent 

contractile dysfunction caused by repetitive stunning. (143) The timing of 

functional recovery after revascularisation appears to differ between stunned 

and hibernating myocardium. Stunned myocardium recovery appears to be 

early after revascularisation and more complete, while recovery of hibernating 

myocardium is late and often incomplete.(144)

Myocardial necrosis and scarring

Myocardial necrosis and scarring occur as sequelae of single or recurrent

myocardial infarctions, with loss of functioning myocytes, development of
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fibrosis and subsequent left ventricular dysfunction and remodelling. Atkinson et 

al in 1989, described heart failure due to severe CAD without Ml in 26% of 

consecutive necropsies with ischaemic cardiomyopathy.(145) This suggested 

that LVSD is related to progression of CAD and does not require a distinct 

coronary event, such as Ml with enzymatic elevation. (92) Superimposed on the 

ventricles with irreversibly damaged myocardium is chronic hibernation. The 

balance between perfusion and tissue viability is so precarious in this state that 

this cannot be maintained indefinitely and that myocardial necrosis and 

associated fibrosis will ultimately occur if blood flow is not increased. (146-148) 

Loss of cardiomyocytes by apoptosis, de-differentiation of myocytes, loss of 

contractile components within the remaining myocytes, increased glycogen 

deposit and interstitial fibrosis characterises chronic hibernation. (149) This 

suggests that adaptive changes to chronic hypo-perfusion are incomplete. (147) 

The severity of these changes does not correlate with the degree of 

hypoperfusion and wall motion abnormality. Activation of neurohormonal 

systems in patients with heart failure and CAD lead to direct stimulation of 

interstitial fibrosis that contributes to the pathophysiology of heart failure. (150) 

The extent of fibrosis is the major determinant of postoperative functional 

recovery, (147;151) indicating that there may be a progressive diminution of the 

chance for complete structural and functional recovery after restoration of blood 

flow with time.

Pathophysioloqy of myocardial response to dobutamine
In the early 1970s, it was documented using contrast ventriculography that 

resting wall motion abnormalities may improve with use of inotropic agents 

(epinephrine, isoproterenol, and post-extrasystolic potentiation). (152) This 

improvement was predictive of subsequent improvement with coronary bypass 

surgery. (153-155) Since then several imaging techniques have been used to 

identify ventricles with dysfunctional and viable myocardium and predict 

recovery with revascularisation. Of these, DSE is widely used and has been 

used in this study.

Dysfunctional segments that are hypoperfused or normally perfused exhibit 

contractile reserve with dobutamine (142) though this improvement of 

contractile function is not sustained in the former in keeping with the reduced
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coronary flow reserve. (143) Dobutamine elicits a contractile response in 
hypoperfused dysfunctional segments without precipitating ischaemia by 
concomitant increase in myocardial blood flow. The percentage of increase in 
blood flow during dobutamine infusion in the dysfunctional myocardium 
approached that of normal myocardial regions. (129; 156) However, prolonged 
stimulation by dobutamine of a dysfunctional myocardium is known to 
precipitate ischaemia and even myocardial infarction. (157) Another potential 
mechanism whereby the contractile response may be elicited during 
dobutamine, despite reduced resting myocardial flow, is through the peripheral 
vasodilator effect of dobutamine, which causes reduction in LV size and end 

systolic wall stress by reducing afterload, thus increasing systolic wall 
thickening for the same myocardial blood flow. (158) Low-dose DSE identifies 
this contractile reserve while high-dose DSE identifies inducible myocardial 
ischaemia by direct visualisation of the consequential regional and global 
contractile dysfunction.

Possible clinical role of DSE in suspected heart failure
CAD is common in patients with heart failure. More than 70% of the patients 
with heart failure symptoms and LVSD have underlying CAD. (2;92) Most 
patients will have had a myocardial infarction but perhaps a third will have 
extensive coronary disease but no classical evidence of myocardial infarction. 
(13;20) In a review of 31 studies of HFNEF published between January 1970 
and March 1995, Vasan et al reported that the prevalence of coronary disease 
varied from 5-67%. Studies including patients with a mean age of 55-71 years 
reported a prevalence of 14-67%. (52) CAD is thus likely to be highly prevalent 
amongst patients with suspected HF and play a significant role in the genesis of 
their symptoms. Angina could present as breathlessness. Myocardium 
subtended by critically stenosed arteries is likely to suffer persistent contractile 
dysfunction due to either hibernation or repetitive stunning. (127; 140) Both 
dysfunctional and normal segments may suffer with ischaemia.

Detection and quantification of coronary artery disease 

DSE has been extensively used to diagnose CAD. After a review of 28 studies, 
Geleijnse et al reported mean sensitivity, specificity and accuracy of DSE for a 
total of 2,246 patients as 80%, 84% and 81% respectively. Mean sensitivity
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increased significantly from 74% for single-vessel disease to 86% for double- 

vessel disease and to 92% for triple-vessel disease. (159)

Several studies have shown ESE and DSE to have a similar accuracy for the 

detection of coronary disease. (107-109) Studies directly comparing ESE and 

DSE, reported a sensitivity of 76-85% and 72-86%, specificity 77-94% and 81- 

97% and accuracy of 82-87% and 80-87% for ESE and DSE respectively. 

(108; 160-162) The sensitivities of detecting patients with 3 and multi-vessel 

CAD were also similar (100% and 90% for ESE compared to 100% and 95% for 

DSE). (108) Peak exercise imaging has higher sensitivity and similar specificity 

to post-exercise imaging for detection of CAD. (106)

DSE also fares favourably when compared to single photon emission computed 

tomography (SPECT) in its ability to detect CAD. DSE had similar sensitivity 

(90% vs 96%) but higher specificity (90 vs 71%) compared to SPECT for 

detection of CAD. Diagnostic accuracy of dobutamine and exercise SPECT was 

also similar (90 vs 89%). (163)

Several factors affect sensitivity, specificity and accuracy with which DSE 

detects CAD. False negative tests result from sub-maximal stress, on-going 

beta-blocker therapy, female sex, single vessel disease, intermediate coronary 

stenosis and poor image quality. There are indications that segments visually 

reported to be non-ischaemic on DSE but are subtended by stenosed arteries 

(a false negative result) may fail to develop ischaemia because afterload 

reduction during DSE leads to lower myocardial oxygen consumption. These 

segments thus truly lack induced ischaemia, rather than having unrecognized 

wall-motion abnormalities. (164) False positive tests result from interpreter bias 

towards over interpretation, cardiomyopathies and hypertensive response to 

stress. Wall motion abnormalities in the left circumflex territory tend to be 

underestimated while those in the basal inferior wall and septum (in the 

presence of LBBB and post-cardiac surgery) are overestimated.

DSE in patients with both concentric remodelling has a lower sensitivity than 

observed in other groups. (165) There is a close inverse relation between 

systolic wall stress and systolic function at rest (166) and peak stress. (167) The
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lower metabolic requirements of myocardium exposed to lower systolic wall 

stress at rest and peak stress protects it from developing ischaemia severe 

enough to induce wall motion abnormalities. Thus, patients with low systolic wall 

stress at peak dobutamine have a hyperdynamic response during DSE. In this 

situation, the detection of a new wall motion abnormality may be difficult 

because of tethering effects from adjacent hyperdynamic segments and LV 

cavity obliteration.

Accuracy of DSE when compared to angiographically demonstrated coronary 

stenosis is often affected by the limitations of an angiographic cutoff for 

significant disease, including the variation of the physiologic effect of a stenosis 

based on site, length, and vessel size, as well as over- and under-estimation of 

coronary lesion severity. DSE is a more sensitive marker of ischaemia in lesions 

involving larger (>2.6 mm diameter) vessels than smaller vessels. The 

quantitative angiography parameters associated with ischaemia are a minimum 

lumen diameter of <1 mm diameter, per cent diameter stenosis of >52%, and 

per cent area stenosis of >75%. The minimal lumen diameter is most predictive 

of an abnormal dobutamine stress test. Although the sensitivity for identifying 

multi-vessel disease is high, it is not uncommon to understate the number of 

diseased vessels. This phenomenon occurs when the most critical lesion gives 

rise to test end-points and the test is stopped leaving the less severe lesions 

undetected. Sensitivity analysis is affected by the cut-offs used to define 

"significant" stenosis that has varied between studies. Sensitivity is greatest 

when significant stenosis is defined as a threshold of >70% diameter narrowing 

and falls when significant stenosis is defined as >50% diameter narrowing. The 

presence of cardiomyopathy, microvascular disease, an acute hypertensive 

response to stress, and significant concentric remodelling all affect accuracy 

increasing the likelihood of a false-negative result. The ability to precisely 

identify an obstruction in the LAD exceeds that for the posterior circulation due 

to 1) the greater ease with which the LAD territory is visualised compared to the 

posterior endocardium, 2) the greater amount of myocardium perfused by the 

anterior circulation and 3) because of the overlap between the right coronary 

artery and circumflex coronary artery territories, precise separation of these 

territories has been problematic. Suboptimal stress reduces the accuracy with 

which CAD is detected.
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Detection of viability of dysfunctional myocardium

It has long been observed that revascularisation improves systolic function of 

akinetic segments that were presumed to be non-viable.(123) This is only likely 

if the akinetic segments are pre-operatively viable. Improvement of the 

contractile function of a dysfunctional myocardial segment with restoration of 

perfusion is the only absolute proof of its viability. It is therapeutically useful to 

determine if and how much of a left ventricle consists of dysfunctional and 

viable (hibernating or stunned) as opposed to dysfunctional and non-viable 

(scar) myocardium. This identifies patients with LVSD that are most likely to 

benefit from revascularisation especially surgical as the risks of performing 

surgical revascularisation in patients with severe LVSD vary between 11% and 

16%. (168) Observational studies have suggested that revascularisation offers 

a prognostic advantage in patients with high volumes of hibernating 

myocardium over medical therapy whereas revascularising non-viable 

myocardium may be harmful. (169-176)

In a meta-analysis of 28 studies (925 patients) using low-dose DSE (LDDSE) to 

detect functional recovery of hypo-contractile segments after revascularisation, 

Bax et al (177) calculated a weighted mean sensitivity, specificity, positive 

predictive value (PPV) and negative predictive value (NPV) of LDDSE in 

predicting functional recovery as 82%, 79%, 78% and 83% respectively. The 

same for all 32 studies (using low-dose and high-dose DSE) taken together 

were 81%, 80%, 77% and 85% respectively. From analysis of 18 studies 

involving 563 patients that directly compared DSE with nuclear techniques, the 

sensitivity, specificity, PPV and NPV were 88%, 53%, 63% and 83% for the 

nuclear techniques compared to 76%, 81%, 79% and 79% for the DSE, 

respectively. When the analysis was restricted to 11 studies comparing LDDSE 

and nuclear techniques without stress (thus excluding studies that assessed 

viability and ischaemia) the weighted mean sensitivities of DSE and nuclear 

imaging were 74% and 90%, specificities were 57% and 80%, PPV were 84% 

and 75% and NPV were 69% and 80% respectively. Thus LDDSE has lower 

sensitivity and NPV and higher specificity and PPV compared to the nuclear 

modalities of imaging.
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The difference in the specificity and sensitivity of LDDSE compared to the 

nuclear techniques results partly from the difference in the physiological 

mechanism by which each of the modalities detect myocardial viability. LDDSE 

tests for myocardial contractility, a function that requires the integrity of multiple 

cellular processes. In contrast, nuclear techniques identify viability in the 

myocardium if there is cellular uptake of a tracer. This requires adequate 

perfusion and intact cell membrane function. Positron emission tomography 

(PET), in addition, requires integrity of the biochemical processes that generate 

the high-energy phosphates. When faced with chronic ischaemia, contractility, 

because of the complexity of the process, is likely to be in jeopardy earlier than 

cell membrane function. Thus myocardial segments with systolic dysfunction 

will manifest thallium uptake due to intact cell membrane and adequate 

perfusion but lack inotropic reserve during DSE. Studies comparing DSE and 

PET, have reported dysfunctional segments with preserved metabolic activity 

but no contractile reserve. (178) Thus nuclear modalities are likely to identify 

more myocardium with intact cell membrane as "viable" though the contractile 

apparatus within these cells are in disarray. Restoration of blood supply to this 

"viable" myocardium is unlikely to restore its contractile function. Thus these 

methods are more likely to pronounce viability in dysfunctional segments that do 

not recover with revascularisation.

Several factors contribute to the inaccuracies of DSE in detecting viability. 

Evaluation of the changes in myocardial function before and after 

revascularisation may be suboptimal due to inadequate images. False-positive 

prediction of improvement in function of the hypo- and akinetic segments with 

revascularisation result from the following: 1) The tethering effect of systolic 

contraction of normal segments on non-contractile segments may be interpreted 

falsely as inotropic reserve in these segments 2) Subendocardial infarction 

gives rise to hypokinesia as myocardial thickening occurs mainly a the 

subendocardium. Increased contraction of the normal mid and epicardial 

regions adjacent to these areas may predict functional improvement in these 

segments with revascularisation though that does not occur. 3) Reassessment 

of function after revascularisation may be undertaken too early as recovery may 

occur up to 12 to 14 months after revascularisation. 4) Ischaemia (or necrosis)
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before, during, or after revascularisation may render a segment initially deemed 

viable, non-viable thus resulting in failure of improvement. 5) The balance 

between resting perfusion and the physiological demand of the myocardium 

may be so precarious in long-hibernating segments that they may be viable at 

the time of initial assessment but may have undergone enough morphological 

changes between the initial assessment and revascularisation to render them 

non-viable. 6) Incomplete revascularisation as a result of diffuse atherosclerotic 

disease may prevent improvement. 7) A repeat angiogram is rarely undertaken 

before wall motion is assessed after revascularisation. Graft occlusion shortly 

after complete revascularisation may prevent a segment that was predicted to 

improve from improving. 8) Contractile function of stunned myocardium, like 

hibernating myocardium, improves with LDDSE thus suggesting improvement 

with revascularisation. The improvement of function after revascularisation is 

routinely tested at rest. Stunned myocardium, contrary to hibernating 

myocardium, already has near normal perfusion at rest. Revascularisation thus 

is unlikely to improve their resting function. Function of these segments, 

however, may show improvement if tested under stress. False-negative 

prediction results when a viable segment is deemed non-viable 1) due to 

inadequate inotropic stimulation 2) MBF and coronary flow reserve may have 

been reduced to such a marked degree that inotropic stimulation even a low 

dose induced ischaemia with consequent deterioration rather than improvement 

in function 3) structural changes in the hibernations myocardium is far too 

progressed to allow for an adequate immediate response that could be visually 

observed and 4) resting tachycardia will sometimes render the myocardium 

ischaemic and dobutamine stimulation will only augment ischaemia.

Other factors as different cut-offs for uptake of tracers to define viability, 

inconsistency in the modality used before revascularisation to detect viability 

and after to detect functional improvement, whether the segment in question is 

hypokinetic or akinetic and the duration after which functional recovery is tested 

also affect the sensitivity and specificity of these tests.

Predicting improvement in LVEF with revascularisation

The LVEF is a very powerful predictor of prognosis. Consequently,

improvement in global LVEF with restoration of perfusion may be prognostically
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more important than improvement in regional function. Observational studies 

have consistently showed that LVEF increases after revascularisation in 

patients with contractile reserve demonstrated on LDDSE but not in those 

without. This improvement is seen only in ventricles with significant volume of 

dysfunctional and viable myocardium with contractile reserve. (176; 179) The 

precise proportions of viable segments needed to result in improvement in the 

LVEF differ among the studies. It is currently unclear how much viability is 

needed to result in improvement in the LVEF after revascularization. The 

available evidence suggests that 20-30% of the LV needs to be dysfunctional 

but viable to allow improvement in the LVEF. Few studies have emphasised 

that the extent of viability (i.e. the number of viable segments) determines the 

degree of improvement of LVEF after revascularisation. (179; 180)

Challenges in the interpretation of systolic function with DSE 

DSE has several limitations. Though quality of the images has improved with 

harmonic imaging and contrast echocardiography, this still remains the main 

obstacle in accurate interpretation of DSE. Analysis of cardiac wall motion and 

thickening becomes inaccurate if delineation of the endocardial border is 

inadequate, the same segments are not visualised on multiple views and the 

segments are not seen in the same imaging plane at different levels of stress. 

This may not be possible due to poor acoustic windows. Digitisation and 

simultaneous display of previously acquired loops when acquiring new ones 

have partly solved some of these problems. Interpretation of RWMA is more 

difficult in small LV cavities because of the smaller endocardial circumference 

over which the abnormality can be detected. (165)

The interpretation of DSE is based on a subjective visual analysis of grey-scale 

images. There is a learning curve before an observer can independently 

interpret the images. This means that even proficient echocardiographers 

require special training in order to become expert in stress echocardiography. 

(181) Interpretation is more congruent amongst experienced observers. 

However, there is wide variability in the interpretation of the images even 

among experts in different institutions. (182) This is partly due to institutional 

standards and conventions of interpretation that are not uniform. There is 

substantial regional variation in wall thickening of the normal left ventricle in
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response to dobutamine. This heterogeneity is magnified by dobutamine 

infusion, making differentiation of this normal variation from the variation due to 

coronary artery disease difficult. Lack of uniformity in interpretation of worsening 

wall motion abnormalities in areas with resting abnormalities makes recognition 

of ischaemia in these areas difficult. Each interpreter may have a different 

threshold for identifying wall motion as abnormal, and therefore read with 

various degrees of 'aggressiveness'. Whether a segment that is mildly 

hypokinetic is considered a normal variant or abnormal is observer dependent. 

Mild hypokinesia at rest that becomes severe but not akinesia at peak stress is 

difficult to interpret. Similarly, interpretation of stress-induced dyskinesia in 

akinetic segments at rest is also not clear. These later changes are more likely 

to denote changes in wall stress rather than ischaemia. Detecting inducible wall 

motion abnormalities in some segments e.g. the inferobasal segment is 

particularly difficult. Diagnosis of triple vessel disease can be difficult if new or 

worsening wall motion is taken as an end-point for the test as the most severe 

lesion gives rise to the end-point leaving the other less severe lesions 

undetected. Difficulty in interpretation also arises when the extent of ischaemia 

is small (e.g. mild single-vessel stenosis with collaterals or mild stenosis in the 

presence of a stenosis elsewhere causing limiting symptoms).

Assessment of heart failure with normal ejection fraction 

The cause of exercise intolerance in patients with HFNEF is unclear. Most 

studies on HFNEF have focused LV function at rest though the symptoms are 

often absent at rest and almost universally induced with exercise. Very little is 

known on the effect of stress on LV function in HFNEF. Exercise may induce 

myocardial ischaemia, transient but extensive enough to impair global EF, long- 

axis systolic and/or diastolic function. One other mechanism suggested is an 

impairment of LV diastolic relaxation during exercise. Kitzman et al 

demonstrated a smaller LV end-diastolic volume, a higher LV end-diastolic 

pressure and a rise in the left atrial pressure with exercise in 7 patients with 

HFNEF. The lack of increase in the end-diastolic LV volume with a marked 

increase in LV filling pressures during exercise in these patients suggested 

impaired diastolic relaxation. (183) Similar changes have been reported in 

normotensive patients with normal LVEF without inducible myocardial
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ischaemia and exaggerated SBP response to exercise (83) and in about a third 

of patients with conventional indications for cardiac catheterisation. (184)

Impairment of myocardial relaxation during exercise may result form stress 

induced ischaemia, tachycardia and hypertension superimposed on primary 

myocardial defect of diastolic relaxation. Myocardial ischaemia impairs both 

regional (185;186) and global left ventricular diastolic relaxation (74-81) and this 

occurs earlier than the impairment of systolic contraction. (187) In patients with 

coronary artery disease, ischaemia induced by dobutamine (76;80) and 

exercise,(75) results in a transmitral flow pattern consistent with delayed 

relaxation. Even transient, reversible episodes of ischaemia can impair LV 

relaxation and elevate LV filling pressures.(74) Regional impairment of 

myocardial relaxation of ischaemic segments even when systolic contraction is 

preserved has been seen at rest,(79) after dobutamine stress (188) and 

coronary occlusion. (81) The lengthening rate in LV segments associated with a 

stenosed artery is reduced with stress. (185) Despite the foregoing data, studies 

evaluating the effect of ischaemia in patients with HFNEF are lacking.

Stress-induced tachycardia may worsen ischaemic diastolic relaxation by 

increasing myocardial oxygen demand and decreasing coronary perfusion time 

so that ischaemic diastolic dysfunction might occur even in the absence of 

coronary disease, especially in hypertrophic hearts. This also shortens diastole 

allowing less time for relaxation. This is exaggerated in hypertrophied and 

fibrosed myocardium that is unable to generate a higher rate of diastolic 

relaxation. This prevents relaxation from being complete between beats causing 

the diastolic pressures to increase.(85; 189) This may occur at lower heart rates 

in failing hearts, which contrary to normal hearts, may exhibit a flat or even 

negative relaxation velocity versus heart rate relationship. So, as heart rate 

increases, relaxation rate does not increase or even decreases. (189)

Slower LV relaxation during exercise results from increased LV after-load due 

exaggerated systolic blood pressure response and increased circulating 

angiotensin II that impairs LV relaxation. (82) In hypertensives, a rapid increase 

in SBP at rest (63) or following exercise (183) results in deterioration of LV
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diastolic function without worsening systolic function. Similar changes in 

response to stress have been demonstrated in patients with HFNEF. (84)

DSE has the potential to explore the mechanisms of diastolic dysfunction. 

Though not in routine use, assessment of diastolic echocardiographic indices 

during stress is feasible. (190-194) The mitral inflow indices are often difficult to 

assess and interpret at high heart rates during stress. The fusion of the E and 

the A waves is a major limitation. (191) In addition, factors that change during 

stress e.g. heart rate, preload, after load, QRS duration and PR interval affect 

these parameters considerably making interpretation difficult. As a result, direct 

measurement of myocardial relaxation velocity and the non-invasive measure of 

left atrial pressure using tissue Doppler imaging has largely superseded the 

conventional assessment of the LV diastolic function. These later parameters 

are relatively independent of loading conditions are now in routine use.

Assessment of patients with dyssynchrony

Application of DSE or ESE in the assessment of LV dyssynchrony has been 

tested in a small number of studies. In heart failure patients, exercise can alter 

the magnitude of ventricular dyssynchrony. Assessment of LV dyssynchrony 

under exercise (97; 195) or dobutamine stress (99; 100) is feasible. Lafitte et al 

demonstrated that the mean LV dyssynchrony in patients with normal LVEF 

was not modified with stress. Exercise variably affected LV dyssynchrony. It 

increased, remained stable and decreased in about 34%, 37% and 29% 

patients respectively. These changes varied considerably from patient to 

patient. Patients manifesting changes with exercise most commonly had 

ischaemic cardiomyopathy. (97) Valzania et al tested the effect of dobutamine 

stress on CRT responders with QRSd > 130 ms. The dyssynchrony indices did 

not change from rest to stress irrespective of whether the CRT was "on" or "off1 . 

The measured timings were not corrected for heart rate and the heart rates 

achieved at stress were low. (99)

The other role of DSE in patients with dyssynchrony may its ability to assess the 

burden of dysfunctional but viable myocardium. This may determine response 

to CRT. Hummel et al demonstrated that in patients with ischaemic 

cardiomyopathy the extent of myocardial viability, assessed by myocardial
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contrast echocardiography, predicts acute and long-term improvement in LV 

performance, exercise tolerance, and reduction in LV end-diastolic dimension 

with CRT. (98) Da Costa et al showed that presence of contractile reserve 

independently predicted long-term haemodynamic prognosis and recovery of 

mechanical function in patients who benefit from CRT.(100)

Conclusion
DSE is a versatile tool that has been extensively used for the assessment of left 

ventricular global, regional and long-axis systolic and diastolic function. It would 

potentially be a useful tool in the assessment of patients with suspected heart 

failure.
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Chapter 3: Tissue Doppler imaging

introduction
Since it was first described by McDicken et al in 1992, tissue Doppler imaging 

(TDI) or tissue velocity imaging (TVI) has developed as an echocardiographic 

technique to quantitatively assess the motion of cardiac structures, mainly the 

myocardium. In this thesis this technique was applied at rest and as adjunct to 

DSE to interrogate the myocardium of patients with suspected heart failure. 

What follows is a comprehensive review of literature on the use of TDI in 

patients with heart failure.

Physical principles and Technical considerations

TDI is based on the principle of Doppler shift or Doppler effect. Christian 

Doppler first described this phenomenon in 1842 in relation to light waves as a 

change in frequency and wavelength of the wave for an observer moving 

relative to a source of the wave. In 1845, the Dutch scientist CHDB Ballot tested 

this hypothesis for sound waves. He confirmed that the observed frequency of 

sound waves is higher than the emitted frequency when the source and the 

observer approach and lower when the two recede relative to each other. For 

waves that propagate in a medium, such as sound waves, the velocities of the 

observer and of the source are relative to the medium in which the waves are 

transmitted. The total Doppler effect may therefore result from motion of the 

source, motion of the observer, or motion of the medium.

In Doppler echocardiography the velocities of structures of or within the heart 

are derived from the Doppler shift observed when they (the source of reflected 

ultrasound) move towards or away from a static transducer (the observer). In 

conventional blood pool Doppler echocardiography, the moving objects are 

erythrocytes that reflect low amplitude and high frequency ultrasound. In 

contrast, the ultrasound reflected from the moving cardiac structures (valve 

leaflets, valve annuli, papillary muscles, ventricular and atrial walls etc) is of 

high amplitude (about 40dB higher than that from the erythrocytes) and low 

frequency. For conventional Doppler echocardiography, a high-pass filter 

eliminates the later signals leaving those from the erythrocytes for display. For 

tissue Doppler echocardiography the signals derived from cardiac tissue motion 

are input directly into the autocorrelator without passing through the high-pass
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filter. In addition, lower gain amplification is used to improve the ability to 

measure low velocities. Velocities of 0.1 to 0.2 cm/s (a level associated with 

cardiac tissue motion) can then be detected. This technique is used to measure 

velocity and timing of motion of cardiac structures, their displacement in relation 

to the transducer and their deformation.

The cardiac structures can be interrogated using spectral pulsed Doppler (pTDI) 

or colour-coded Doppler mapping (cTDI). Pulsed Doppler measures velocities in 

one sample volume at a time by spectral analysis. The pTDI is simple to acquire, 

provides high quality records of Doppler profiles and the analysis of velocities, 

acceleration and deceleration of structures is straightforward. However, 

analysis can only be done on-line and only one structure can be interrogated at 

a time. This takes considerable time limiting its use in evaluating regional 

myocardial function during stress echocardiography. Moreover, the inability to 

interrogate all the cardiac structures in the same cardiac cycle makes 

comparison of the measurements difficult. Use of pTDI in differentiating 

subepicardial and subendocardial myocardial velocities is constrained by its low 

spatial resolution. In cTDI each pixel of the Doppler spectrum is colour coded 

according to the velocity of the structure and the direction of its motion. Brighter 

hues correspond to higher velocities (up to the Nyquist limit). Any motion 

towards the transducer is coded red and that away from the transducer is coded 

blue. cTDI samples the velocities of all the pixels in a sector nearly 

simultaneously and display the average velocity by autocorrelation. cTDI offers 

rapid visual estimation of movement of structures, good spatial resolution and 

the ability to measure velocity of multiple structures in the same cardiac cycle. 

Off-line analysis of receded loops is possible allowing sufficient time for regional 

assessment. Velocities measured by pTDI is about 20-25% higher than that 

with cTDI as pTDI measures peak velocities while the cTDI measures modal 

velocities of all pixels within the sector. cTDI and pTDI correlate well at rest and 

stress, but pTDI are greater than cTDI velocities at rest and stress. (196) 

Temporal resolution of the images can be enhanced by increasing the frame 

rates. Frame rates well over 150 Hz can be obtained by minimizing the depth 

and sector angle and increasing the pulse repetition frequency during 

acquisition. cTDI acquired at high frame rates is thus particularly suited for use 

with stress echocardiography.
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The basic data obtained by TDI is velocity. Displacement of the interrogated 

tissue can be derived by temporal integration of velocities. Strain represents the 

degree of relative deformation of the interrogated myocardium and strain rate, 

the rate of that deformation. Strain rate reflects how fast regional myocardial 

shortening or lengthening occurs. It is calculated from myocardial Doppler 

velocities measured at two locations separated by a given distance. Strain rate 

equals the instantaneous spatial velocity gradient and has units of second"1 . 

When the two velocities being measured are different, there is deformation of 

the tissue in-between. Strain is calculated as the time integral of strain rate and 

is a dimensionless quantity. In the long axis it represents shortening fraction, 

and in the short axis, thickening fraction. Deformation imaging is sensitive to 

misalignment between the cardiac axis and the ultrasound beam. 

Measurements also become inaccurate at low frame rates due to inadequate 

resolution of the different peaks of the velocity profile. Thus, the smallest 

possible sector should be used at minimum depth to attain highest possible 

frame rates. This may be best achieved by interrogating a single wall at a time. 

Strain and strain rate are relatively homogeneous throughout the myocardium 

and, compared to tissue velocity imaging, are less influenced by cardiac motion. 

However, the strain and strain rate signals generally show more background 

noise. Myocardial function can be more accurately assessed with strain and 

strain rate imaging. As only velocity imaging was used for this thesis, 

deformation imaging will not be discussed further.

TDI effectively complements conventional echocardiography. The 

measurements are quantitative, relatively independent of perfect image quality, 

are obtainable with minimal disruption/incremental time to standard imaging and 

can be interpreted quickly and objectively. The normal ranges have been 

defined for most groups of patients. Good reproducibility has been reported for 

off-line measurements even by inexperienced observers. (197) The integration 

of simple TDI data improves the accuracy of DSE interpretation by novice 

readers and experienced echocardiographers not formally trained in stress 

echocardiography but not that of expert stress echocardiographers.(198)

Physiological considerations
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LVEF is the most frequently used index of cardiac function. Stroke output 

results from systolic reduction in the LV volumes due to myocardial contraction 

both in the long and short axes. Long axis contraction of the of the ventricle is 

made possible by the orientation of the myocardial fibre bundles that are 

arranged in three layers. The mid-wall myocardial fibres that predominate are 

arranged circumferentially while the subendocardial and subepicardial muscle 

bundles are aligned longitudinally with slight spiral arrangement. The later 

connect the cardiac apex, which is fixed in relation to the chest wall, to the base 

(i.e. atrio-ventricular annulus) that moves towards and away from the apex in 

systole and diastole respectively. The reduction of the systolic volume in the 

minor axis is mediated by radial contraction of the mid-wall myocardial fibres 

(bellow action). The reduction of the systolic volume in the major axis is 

mediated by shortening of the longitudinal fibres (piston action). This systolic 

shortening is associated with a concomitant transverse thickening which then 

also contributes to the reduction in the minor axis volume. The long axis 

normally shortens by 10% to 12% with ejection at the same time as the minor 

axis falls by 25%. (199)

The mitral annular velocity (MAV) and myocardial Doppler velocity (MDV) in the 

long-axis are best measured when scanning from the apical approach as the 

atrio-ventricular ring and the myocardial segments move towards and away 

from the relatively fixed apex in systole and diastole respectively parallel or 

almost parallel to the ultrasound beam. Longitudinal motion has higher 

amplitude and is less affected by rotational and translational cardiac activity. 

These two factors make the measurements at the annulus and the non-apical 

segments from the apical approach, less prone to error and more reproducible. 

(200) Velocities of radial contraction can also be obtained if myocardial 

segments are interrogated in the short-axis views. But these are more difficult to 

interpret as they are more affected by rotational and translational movements of 

the heart. Radial velocities have not measured in this thesis and thus this will 

not be discussed further.

The velocity profile obtained with TDI consists two positive systolic peaks (S-i 

during isovolumic contraction and S2 during ejection phase), a negative early 

diastolic (E) and a negative late diastolic wave (A). The E wave corresponds to
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the early rapid filling phase and the A wave to the late rapid filling phase or the 

atrial contraction. The suffix "m" is used to denote MDV and "a" for MAV. A 

post-systolic velocity in early diastole (PS) is often seen in ischaemic heart 

disease and chronic heart failure. Though the genesis of this wave is uncertain, 

it may reflect the presence of dysfunctional but viable (stunned or hibernating) 

myocardium. The diastolic MAV can be measured almost universally, easily and 

quickly and has lowest interobserver variability compared to other diastolic 

indices. (201) Ea is an index of LV relaxation. Tau, the time constant of 

isovolumic LV pressure decline correlates inversely with peak Ea velocity. (202) 

This correlation is stronger in patients with abnormal versus normal systolic 

function. (192) Aa reflects annular motion away from the apex secondary to 

atrial contraction. There is no correlation between E and A velocities from the 

mitral inflow and the Ea and Aa velocities from the mitral annulus in normal 

subjects. However, the E/A ratio correlates well with Ea/Aa ratio. (203) Another 

index of diastolic function that is routinely derived is the E/Ea ratio (ratio of the 

early diastolic velocity from the mitral inflow and the early diastolic MAV) that 

estimates the LV filling pressure. The correlation between E/Ea and PCWP has 

been well established in various cardiac conditions in sinus rhythm, sinus 

tachycardia and cardiac transplant .(192;193;204;205)

As opposed to the blood flow velocities during diastole as measured from the 

mitral inflow Doppler, the diastolic MAV are relatively independent of left 

ventricular loading conditions. Garcia et al showed a lack of correlation between 

the peak Ea and peak E velocity, suggesting the relative preload independence 

of peak Ea. (206) Sohn et al confirmed the independence of the septal Ea 

(Easep) from the loading conditions in patients with relaxation abnormalities. 

Saline loading and nitroglycerine infusion did not affect Easep velocity and 

EaSep/AaSep ratio in contrast to the E velocity. The Easep and EaSep/Aase p ratio 

inversely correlated with tau. (202) Ea partially corrects the influence of 

relaxation on the transmitral E velocity. (204) Firstenberg et al tested the 

dependence of diastolic MAV on loading conditions in normal subjects. Preload 

altering manoeuvres (lower body negative pressure and saline loading) had no 

significant effect on lateral Ea (Eaiat), whereas Easep was affected in parallel to 

the E wave. The E/A, E/Eaiat or E/Easep did not change. The PCWP correlated 

strongly with E and Easep but weakly with Eaiat and not with E/Easep or E/Eaiat
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ratio suggesting that Easep is preload dependent when relaxation is normal. 

However, this preload dependence decreases with worsening tau. This 
suggests that while Easep is preload dependent when relaxation normal, but 
minimally so when it is impaired. (207) Agmon et al came to similar conclusion 

in patients undergoing haemodialysis. The Easep and Eatat decreased with 
volume depletion in parallel to that in the E velocity. However, the percent 

change in E velocities was higher than the percent change in Eaiat but not Easep . 
The E/Eaiat decreased but not the E/Easep . The Aa at either site remained 
unchanged. (208) In patients with chronic stable angina and LVSD maneuvers 
like Trendelenberg, reverse Trendelenberg and amyl nitrate did not affect the 
Ea. (209)

The Sa, Ea and Aa are positively and non-linearly correlated across a wide 
range of LVEFs. (61;62;210) This relation results from the inter-dependence of 

the systole and diastole. The normal LV contracts to a volume less than its 
equilibrium volume during systole due to the longitudinal shortening and 
"twisting" motion of the LV. This compresses the elastic cardiac elements 
generating potential energy that is stored within the coiled fibres of the 
myocardium. This creates early diastole-restorative forces that produce a 
"suction1 effect that lowers LV pressure and increases early filling. Thus the 
strength and coordination of the previous systole determines early diastolic 
filling velocity. As myocyte contractile function decline, recoil declines as well 

resulting in parallel decrease in the Sa and Ea. Other mechanisms e.g. 
uncoordinated systolic contraction, changes in the extracellular matrix also act 

to impair diastolic function. The Aa is also dependent on ventricular systole. 
(210) The excursion of the mitral annular ring towards the apex during 

ventricular systole stretches the pectinate muscles of the atria. This creates a 
stored potential energy within these muscles and increases the atrial volume, 
creating a suction effect, which draws blood from the pulmonary veins. The 
potential energy generated by this stretch, the amount of movement of the 

annulus away from the apex during early diastole and finally the effect of atrial 
systole to draw the mitral valve ring away from the apex all determine the late 

diastolic velocity.
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There is a considerable degree of heterogeneity of velocities within the 

myocardium. There is a graded reduction in all MDVs from the annulus to the 

apex. This does not represent a graded reduction in contractility from apex to 

base as this gradient is not seen when strain rate is measured. (211) The 

longitudinal motion of the apex relative to the transducer is small resulting in 

very low amplitude velocities making these measurements unreliable. Thus, like 

most investigators, these segments were excluded from the analysis. The 

MDVs measured at the free-walls of the LV (lateral, anterior and posterior) are 

greater than that of the para-septal walls (septum, inferior or anteroseptal) due 

to the predominance of longitudinal myocardial fibres in these walls. (212;213) 

Consequently, in the absence of prominent RWMA the most suitable site for the 

assessment of longitudinal LV systolic function are the free LV wall and the 

lateral end of the mitral annulus. The MDVs at the interventricular septum are 

also affected by the activity of the right ventricle and rotational movements 

probably due to the predominance of circular myocardial fibers in this wall. In 

the parasternal view, velocities are lower in the anteroseptal wall than in the 

posterior wall. The translational motion of the heart within the chest during the 

cardiac cycle is anteriorly directed in systole and posteriorly directed in diastole. 

Velocities related to these motions are superimposed on the intrinsic wall 

velocities, increasing them at the posterior wall, and decreasing them in the 

septum during systole and vice-versa during diastole. These variations of 

regional velocity in the normal heart mandate the use of site-specific normal 

ranges for diagnostic purposes. (214)

Myocardial velocities are age dependent, with higher Sa, Ea and Aa in younger 

patients. (212;215) Mitral annular motion decreases by up to 20% whereas the 

short axis increases by up to 18%, with increasing age in normal adults 

independent of systolic blood pressure, LV wall thickness, heart rate or sex. 

(216) Yip et al reported 18% and 30% decrease in systolic mitral annular 

displacement and Sa respectively with age (210) though this inverse correlation 

may be weak. (217) This relation persists at peak dose dobutamine, in both 

men and women. (218) Studies have consistently reported an inverse relation 

between age and Ea and a direct one between age and Aa both in health and 

cardiac disease. (210;217;219-222) In healthy subjects, age is the most 

important variable affecting Ea, Aa and the E/Ea. (221) Yip et al reported 49%
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and 56% decrease in early diastolic mitral annular displacement and Ea 

respectively, with advancing age. The Aa increased by 25-30%. (210) The 

correlation between age and Ea is stronger than that between age and Sa. (217) 

E/Ea is directly correlated to age. (221) Similar changes are seen in 

hypertensives with LVH though the E/Ea values are slightly higher for each age 

category compared with normal patients. (222) Heart rate affects regional MDV 

(218) but not the MAV. (210)

Global LV function in HFNEF
Sa is reduced in patients with HFNEF compared to healthy controls. (57-62) 

There is a decremental continuum of Sa from normal to HFNEF to HF with 

reduced ejection fraction (HFREF) so that Sa in patients with HFNEF is lower 

than normal but higher than in HFREF. (58;59;61;223;224) However, Kasner et 

al reported similar values of Sasep and Saiat amongst patients with invasively 

confirmed diastolic dysfunction compared to controls. (225) Subnormal Sa and 

reduced AV plane displacement are reported in 38% and 21-33% of patients 

with HFNEF respectively in two separate studies. (58;60) Using pTDI, Sa <7.95 

cm/s separated the HFNEF patients from control subjects with a sensitivity of 

83% and a specificity of 83% in one study. (61) Using pTDI, Sa <5.8 cm/s 

identified HFNEF with a sensitivity of 82%, specificity of 73% and a negative 

predictive value of 98.7%. (223)

Ea velocity in the HFNEF patients is lower than controls. (57;58;61;223) The 

site at which the velocities are measured may influence whether it is reduced in 

HFNEF patients. Kasner et al reported lower Eaiat but not Easep in HFNEF 

compared to controls. (225) Patients with pseudonormal filling, defined as the 

combination of normal mitral inflow variables and prolonged tau (>50 ms), could 

be separated from patients with normal filling patterns by an Ea velocity <8.5 

cm/s and a Ea/Aa ratio <1 with a sensitivity of 88% and specificity of 67%. (202) 

In comparison to controls, the Ea is reduced to a greater extent than Sa in the 

HFNEF patients. (58;61)

In a large cohort of patients with HFREF, conventionally diagnosed DHF, 

asymptomatic diastolic dysfunction (DD) and normal subjects, Yu et al reported 

lower regional systolic and diastolic velocities in DHF patients than in controls.
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The systolic velocity (both regional and the average of the 6 basal segments) in 

the 4 groups was related as follows: HFREF<DHF<DD<controls. The Em (both 

regional and the average of the 6 basal segments) was related as follows: 

HFREF=DHF<DD<controls.(59)

Nikitin et al reported higher E/Ea ratio and similar Ea/Aa ratio in patients with 

HFNEF compared to controls. (57) Kasner et al also reported higher E/Eaiat in 

HFNEF compared to control subjects. An E/Ea ratio >8 was found in 86% of 

HFNEF patients, who showed a significant increase in all diastolic indexes 

compared with control subjects. The EIEa\a{ correlated best with LVEDP. (225)

Assessment of LV filling pressure
E/Ea and invasively determined LVEDP are positively and linearly correlated. In 

patients undergoing cardiac catheterisation for angina or HF, the correlation 

between mean LVDP and Easep is consistently equivalent or better than the Eaiat 

or the two together. The correlation is better in patients with impaired than in 

those with normal LVEF. The E/Easep had the highest predictive accuracy for 

the mean LVDP when all patients were considered. E/Ea (pTDI) >15 had 86% 

specificity (64% positive predictive value) for mean LVDP >15 mm Hg (97% 

negative predictive value for E/Ea <8). (191) In patients who have had heart 

transplants, E/Eiat (pTDI) correlated strongly with the mean PCWP. An E/Ea >8 

identified a mean PCWP >15 mm Hg with a sensitivity of 87% and a specificity 

of 81%. Changes in the mean PCWP were closely reflected in the changes in 

E/Eaiat. A change in E/Ea >2.5 detected a change in PCWP >5 mm Hg, with a 

sensitivity of 77% and a specificity of 75%. There was no relation between 

changes in Ea and corresponding changes in PCWP, suggesting that the 

changes observed in Ea in the patients with transplants reflected the state of 

myocardial relaxation. (205)

Nikitin et al reported a higher 6-site averaged E/Ea (cTDI) in patients with 

HFNEF compared to controls. (57) Eaiat was lower in patients with 

asymptomatic impaired relaxation and symptomatic HF with 

pseudonormalisation, compared to the normals. E/Eaiat was elevated in the 

pseudonormal group compared with the other two groups. The mean PCWP 

correlated significantly with E/Eaiat but not with Eaiat . An E/Ea ratio >10
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predicted mean PCWP >12 mmHg with sensitivity of 91% and specificity of 81% 

and mean PCWP >15 mm Hg, with a sensitivity of 97% and a specificity of 78%. 

(204) Nagueh et al divided patients with several cardiac conditions in sinus 

tachycardia into 3 groups according to the mitral inflow patterns a) fused E and 

A (sub-grouped as A1 if velocity peaked in the first half of the diastolic filling 

period and A2 if it did so in the second half), b) E<A and c) E>A. PCWP related 

weakly to Ea and Aa and strongly with E/Eaiat irrespective of the inflow pattern 

and LVEF. PCWP >12 mmHg was predicted by E/Ealat >10 with sensitivity of 

78% and specificity of 95%, >8 with sensitivity of 87% and specificity of 70% 

and >12 sensitivity of 68% and specificity of 96%. If patients with and without 

tachycardia are taken into account, PCWP >15 mmHg was best predicted by 

E/Ea >10 (sensitivity, 92%; specificity, 80%). (193) In patients with hypertrophic 

cardiomyopathy, the preA LVEDP correlated strongly to E/Ea. The changes in 

LVEDP matched changes in E/Ea. E/Ea £10 had the best combination of 

sensitivity (92%) and specificity (85%) for preA pressure >15 mmHg. (226) 

Amongst patients with atrial fibrillation, Ea correlated with tau and the E/Ea ratio 

correlated with LVDP. The E/Ea S11 predicted LVDP >15 mmHg (sensitivity 

75%; specificity 93%). (227) In patients undergoing clinically indicated cardiac 

catheterisation E/Esep correlated best with pre-A LVDP irrespective of the LVEF 

and the mitral inflow pattern. E/Easep ^9 best discriminated pre-A LVDP >12 

mmHg from normal pre-A pressure (sensitivity, 81%; specificity, 80%). (228) In 

patients with normal or reduced LVEF undergoing right heart catheterisation, 

Rivas-Gotz et al showed that different cutoffs for E/Ea were needed to predict 

mean PCWP >15 mmHg depending on whether the LVEF was <50% or >50%. 

Best sensitivity and specificity were obtained when Ea (pTDI) was measured at 

the lateral annulus. E/Eaiat >11 had a sensitivity and specificity of 85% and 82% 

respectively in patients with LVEF<50%. In subjects with LVEF >50% E/Ea >10 

had a sensitivity and specificity of 79% and 80% respectively. In patients with 

wall motion abnormalities, a stronger correlation between the LVEDP and the 

E/Ea was obtained if the Ea was averaged over 2 or 3 periannular sites.(229) In 

patients with HFREF and HFNEF, PCWP correlated with E/Easep irrespective of 

the LVEF. LVEDP >15 mmHg was identified by E/Easep >11 in the HFNEF 

group (sensitivity, 94%; specificity, 90%; PPV, 94%; NPV, 91%) and by >14 

mmHg in patients HFREF (sensitivity, 71%; specificity,100%; PPV, 100%; NPV, 

39%). (230) Ea is reduced in comparison to normals and the E/Ea relates to
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pre-A LVDP and to LVEDP in patients with aortic stenosis. E/Ea >13 identified 

an LVEDP >15 mmHg (sensitivity, 93%; specificity, 88%) (231) Amongst 

patients with a wide range of LVEF undergoing clinically indicated cardiac 

catheterisation, Hadano et al reported a poor correlation between E/Ea and 

LVEDP and a modest one between E/Ea and PCWP irrespective of the LVEF. 

E/Ea <14 predicted mean PCWP^12 mmHg with 100% sensitivity and 85% 

specificity. (232)

The effect of exercise on E/Ea has been investigated. In healthy subjects all the 

mitral inflow velocities and the MAV increase proportionately with exercise thus 

leaving the E/A, E/Ea and Ea/Aa unchanged.(194) In patients with HFNEF, the 

E, Ea and the E/Ea increased with exercise. E/Ea <15 predicted normal PCWP 

(<20 mmHg) with a sensitivity of 89%. Conversely, in all cases where the E/Ea 

was >15, the PCWP was elevated. An E/Ea >15 during exercise was 

associated with PCWP >20 mm Hg.(233) Dyspnoeic patients with normal LVEF 

and no ischaemia underwent ESE. E/Ea increased with exercise in 35% of the 

patients with resting E/Ea <10 but did not increase in the rest of these patients 

or any patient with E/Ea >10. There was no significant difference in changes of 

mitral inflow indices (E, A, E/A, deceleration time) between groups. Exercise 

duration was significantly shorter in patients whose E/Ea increased with 

exercise and ones with resting E/Ea>10 compared to the one with E/Ea<10 

both at rest and stress.(234) Using invasive measures as standard Burgess et 

al validated exercise induced changes in the E/Ea ratio in subjects with normal 

LVEF. Patients with a normal mean LVDP both at rest and exercise had the 

lowest E/Ea at rest with no change with exercise. Patients with an elevated 

mean LVDP only during exercise had a significant increase in E/Ea from rest to 

exercise. Patients with an elevated mean LVDP at rest had a high resting E/Ea 

with no significant change with exercise. E/Ea correlated with mean LVDP at 

rest and during exercise. An exercise E/Ea >13 had a sensitivity of 73% and a 

specificity of 96% for identification of an exercise mean LVDP >15. Ea and E/Ea 

had a better correlation with exercise capacity. Exercise E/Ea >10 had a 

sensitivity of 71% and a specificity of 69% for prediction of a reduced exercise 

capacity (<8METS).(183)
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Several studies show that the E/Ea ratio is related to the exercise capacity. In 

patients with HFREF the average of Ea measured at the septal and lateral 

annuli (Eaav) and the E/Eaav correlated with peak VO2 . (235) In patients with AF, 

E/Ea is an independent predictor of exercise capacity. Patients achieving <7 

METs had higher E, higher E/Ea ratio and lower Ea than those patients showing 

a peak of >7 METs. (236) In patients with HFREF peak oxygen consumption 

correlates with Eaiat and E/Eaiat but not with conventional Doppler indexes. 

E/Eaiat >11.3 predicts severe exercise intolerance with sensitivity of 88% and 

specificity 86%.(237) In patients with CAD and normal LVEF MAV increased 

and E/Ea decreased with increasing VO2max. VO2max independently predicted 

by Sm and E/Eav . Patients in the lowest VO2 max category had higher E and 

lower Ea velocities resulting in higher E/Ea values. Patients with lower MAV 

reached lower VO2max. (238) Skaluba et al found that TDI was effective in 

predicting exercise capacity in patients irrespective of the LVEF. Resting Ea, 

Ea/Aa and E/Ea correlated with exercise tolerance. The best individual correlate 

of exercise performance was E/Easep and only E/Easep ^10 was an independent 

predictor of reduced exercise tolerance in the multivariate analysis. E/Easep 

>10.6 had a sensitivity and specificity of 85% and 88% respectively in predicting 

exercise capacity of <7 METS. Patients with E/Easep <10 performed better on 

the treadmill than the patients with E/Ea >10. Exercise capacity was similar in 

patients with a normal mitral inflow pattern and those with a slow relaxation 

pattern when E/Ea was <10. In contrast, the subjects with slow relaxation and 

E/Easep ^10 performed nearly as poorly as did the groups with 

pseudonormal/restrictive LV filling patterns. (239)

In patients assessed for suspected HF, E/Ea >15 had 83% sensitivity and 82% 

specificity for confirming the diagnosis in the overall population. E/Ea >15 

predicted presence of HF with 79% sensitivity and 93% specificity in patients 

with normal ejection fraction and 92% sensitivity and 72% specificity in patients 

with reduced ejection fraction. Overall, BNP and E/Ea have similar diagnostic 

accuracy for CHF in this patient population.(240) In patients with suspected HF 

and normal LVEF, E/Eaav of 11.5 (sensitivity, 80%; specificity, 94.3%) E/Eaiat of 

9.8 (83.3% and 88.9%) and E/Easep of 12.7 (76.7% and 91.4%) predicted HF. 

E/Ea ratios and BNP provided similar accuracy for predicting decompensated 

HF. E/Eaav yielded independent additional information to a model based on the
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clinical judgment and BMP level.(241) In patients with new onset acute 
dyspnoea, indeterminate BMP, normal LVEF and no radiological pulmonary 

oedema, average E/Ea >10 was a powerful predictor of congestive HF 

(sensitivity 100% and specificity 78.6%).(242) In chronic hypertensive patients 
with acute dyspnea and normal LVEF the E/Ea >11 precisely predicted the 
diagnosis of HF (sensitivity 77.8%, specificity 100%, and accuracy 89.5%).(243)

Some caution is to be exercised when interpreting estimates of PCWP or 
LVEDP from the TDI. cTDI and pTDI measurements are not interchangeable. 
Though the systolic and diastolic velocities quantified by the two methods 
correlate very well, those measured with cTDI are lower than pTDI. 

Consequently, E/Ea by cTDI is higher than by pTD1.(244) The site of the 
measurement (septal versus lateral) and the LVEF influence Ea and 

consequently the E/Ea ratio. E/Ea is unreliable for predicting LV diastolic 
pressures in healthy subjects and organic mitral valve disease. The Easep and 
Eaiat are lower, the E/Ea^t is higher and E/Easep is similar in patients with 
abnormal septal motion (secondary to LBBB, paced-rhythm, myocardial 
infarction and cardiac surgery) compared to patients with normal septal motion. 
The E/Easep and E/Eaiat correlated well with PCWP in patients with normal 
septal motion but not in patients with abnormal septal motion. In patients with 
abnormal septal motion, TDI methods overestimate PCWP at lower invasive 
PCWP levels and vice versa.(245)

Regional myocardial function

Diagnosis of ischaemia

CAD is characterised by resting and/or inducible regional myocardial
dysfunction. Due to their subendocardial location, the longitudinal muscle
bundles of the LV are highly susceptible to ischaemia resulting in the decrease
of longitudinal velocities very early with onset of ischaemia. TDI, by virtue of its
ability to measure this longitudinal velocity, is a very sensitive tool to detect this

ischaemia.

Regional abnormalities of MAV and MDVs at rest are often seen patients with 

myocardial infarction. Following myocardial infarction, the systolic velocity at 

each mitral peri-annular site reflects the impaired regional contractility of that
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wall. (246;247) The peak systolic amplitude of mitral annular motion is lower at 

all sites compared to the healthy controls. (247)

Gorcsan J III et al tested the potential of cTDI to quantify regional myocardial 

dysfunction in open-chest canine model of coronary occlusion using 

sonicometry as the standard of reference. The peak systolic endocardial 

velocities from cTDI and myocardial shortening velocity and fractional 

shortening from sonomicrometry decreased in the territory of coronary occlusion. 

The peak endocardial velocity was inversely correlated with end-systolic length 

by sonomicrometry during baseline and induction of ischaemia. (248) In porcine 

model, Derumeaux et al demonstrated that a reduction in myocardial blood flow 

assessed by radioactive microspheres mediated by occlusion of the left anterior 

descending artery resulted in a decrease in systolic shortening measured by 

sonicometry and systolic velocity measured by pTDI of the septum. There was a 

significant correlation between the variations of systolic velocity and systolic 

shortening. Following LAD occlusion, the systolic velocity decreased within 5 

seconds and peaked at 1 minute. One minute after reflow, the systolic velocity 

increased reaching positive values corresponding to the hyperemic phase. It 

progressively decreased within 5 minutes of reperfusion as the myocardium 

developed post-ischaemic stunning. (249) In canine model, baseline, 

endocardial velocities were higher than epicardial velocities. Ischaemia caused 

a significant and comparable reduction in endocardial and epicardial systolic 

velocities with the disappearance of the velocity gradient. Systolic velocities 

significantly correlated with segment shortening in both endocardium and 

epicardium during ischaemia and reperfusion. In the first minutes after reflow, 

endocardial velocities showed a greater improvement than epicardial velocities, 

and the velocity gradient resumed although to a limited extent, indicative of 

stunning. (81)

Coronary occlusion in humans led to similar changes in MDVs. Edvardsen et al 

demonstrated a decrease in the Sm and Em in segments supplied by the LAD 

in a response to LAD occlusion during angioplasty. Furthermore, during early 

diastole, the ischaemic segments showed a post-systolic contraction pattern. 

Reversed systolic wall motion during mid systole and marked positive velocity 

during early diastole was thought to indicate myocardial ischaemia. (250) Bach
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et al demonstrated a similar drop in Sm in segments subtended by the 

angioplasty vessels during occlusive balloon inflation. During early reperfusion, 

Sm exceeded baseline values. In regions remote from the treated artery, peak 

Sm increased in the absence of significant stenosis but remained unchanged or 

decreased in the presence of significant stenosis of the associated vessel. (251) 

In a similar study, coronary occlusion during angioplasty resulted in the 

reduction in myocardial velocity in "at risk" segments. Velocity alone had 

sensitivity and specificity of 68% and 65% respectively for identifying acute 

ischaemia in segments that were either normal or abnormal at baseline. In "at 

risk" segments that were visually abnormal at baseline, velocity parameters 

alone failed to distinguish between baseline and occlusive measurements. The 

authors concluded that quantitation of regional deformation rather than motion 

is better in detecting and quantifying acute ischaemic changes in myocardial 

function, especially in segments with pre-existing abnormal function. (252)

These observations encouraged the application of TDI in detection of inducible 

ischaemia in conjunction DSE or ESE. Gorcsan III Jr et al investigated the effect 

of positive and negative inotropy on endocardial velocities. In the canine model, 

the Sm, Em and Am increased with dobutamine infusion without changes in the 

heart rate. Esmolol infusion had an opposite effect. Increase in peak 

endocardial velocity from all sites were significantly associated with changes in 

fractional shortening and regional stroke work measured by sonicometry and in 

global LV performance measured by conductance catheters confirming the 

ability of endocardial velocity to reflect changes in regional contractility. (253) In 

normal human volunteers, MAY and MDVs were sensitive enough to detect 

changes in myocardial contractility even at very low doses of dobutamine 

stimulation. Sa increased significantly with only 1 ug/kg/min of dobutamine and 

progressively thereafter a linear dose-dependent manner suggesting an 

incremental dose-dependent alteration in global and regional LV function. 

These alterations were detected by TDI at doses of dobutamine infusion that 

was lower than where changes were detected by routine measures of wall 

thickening or ejection fraction in the same subjects. (254) Yamada et al reported 

similar progressive increase in Sm with increasing dose of dobutamine in 

normal segments averaging an increment of 148% at peak dose. The base- 

apex gradient in Sm persisted at low dose. There were no differences in the
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velocities recorded at basal or mid segments of the different walls. Ischaemic 

and scarred segments demonstrated a significantly lower Sm in all stages of the 

protocol and the lowest percentage increase in Sm when compared with the 

normal segments. Basal and mid-ventricular ischaemic segments had similar 

Sm and percent increment from rest to peak. The Sm responses of ischaemic 

and scarred segments were similar at low dose. Ischaemic segments were not 

discernible from nonischaemic segments based on Sm at rest or low dose. 

However, the ischaemic segments had a significantly lower Sm at peak dose 

with a tendency to show a lower percentage increase from rest to peak. Sm <12 

cm/s at peak dose identified ischaemic segments with a sensitivity of 86% and 

specificity of 96% for basal and a sensitivity of 81% and specificity of 89% in the 

mid segments. An increment of <90% in Sm from rest to peak, identified 

ischaemic segments from normal segments with a sensitivity and specificity of 

83% and 87%, respectively.(188) Using cTDI, Katz et al demonstrated that at 

peak dobutamine stress velocities of abnormal myocardial segments were lower 

than normal ones. Peak systolic velocity of < 5.5 cm/s had a sensitivity, 

specificity and accuracy of 96%, 81% and 86% for identifying abnormal 

segments irrespective of the segmental sites.(255) The mean peak Sm for the 

hypokinetic and akinetic posterior walls were significantly less than normal 

controls and correlated with percentage of wall thickening. (256) Using pTDI 

and quantitative coronary angiography Rambaldi et al predicted a significant 

proximal RCA stenosis (>50% diameter stenosis) with a decrease and/or <25% 

increase in segmental ejection phase velocities of the RV free wall from the 

10ug/kg/min of dobutamine to peak stress. This had sensitivity of 82%, 

specificity of 78%, positive predictive value of 69%, negative predictive value of 

88% and accuracy of 79%. (257) In addition to decrease in the Sm with 

dobutamine, MVG fails to increase in the ischaemic segments but there is a 

dose-responsive increase in the non-ischaemic segments.(258)

Using visual assessment of wall motion by an expert interpreter as standard 

reference, Pasquet et al tested the power of TDI (cTDI measured in all 

segments and pTDI in basal segments) to detect myocardial ischaemia 

following exercise treadmill testing in patients with known or suspected CAD. 

Scarred segments had lower Sm than normal segments at rest and stress. 

Ischaemic segments had a lower Sm and less increment in velocity than normal

56



segments. The authors concluded that TDI with ESE is feasible and TDI is a 

useful quantitative tool for interpretation of ESE. (259) The same investigators, 

using exercise dual isotope SPECT perfusion imaging to identify abnormal 

myocardial segments, demonstrated that a) resting base-apex gradient of Sm 

persisted at peak exercise and the increment in Sm with stress was similar in 

the basal and mid-segments in normal ventricles, b) segments with rest 

perfusion defects had a lower Sm than normal segments, c) Sm in segments 

with stress-induced perfusion defect were similar to the normal segments at rest 

but lower at peak exercise d) Sm of scars were lower than ischaemic segments 

at rest but similar to them at peak and e) increments in MDV was greater in the 

normal segments than ischaemic and scarred segments but it was similar in the 

later to groups. (260) Dagianti et al, using coronary angiogram as the standard 

reference, demonstrated that Sm at infarct sites were lower than at normal sites 

at rest in patients with remote myocardial infarction. At peak exercise stress in 

patients with multivessel disease, Sm at remote regions was significantly lower 

compared with control subjects. (261) Wilkenshoff et al demonstrated that the 

Sm of the non-apical segments of all the walls increases with exercise stress in 

normal subjects. These increases were not altered with adjustment for heart 

rates. The base-apex gradient persisted in all walls throughout exercise in 

normal individuals. There was a relatively higher percentage velocity increase in 

apical and mid segments compared with basal segments.(214)

Sm responses to exercise and pharmacologic stress appear to be different. At 

least in one study, where the heart rate at peak dobutamine exceeded that after 

exercise, Sm at peak stress in both normal and abnormal segments was greater 

with dobutamine than with exercise. The increase in Sm in relation to changes 

in heart rate induced by dobutamine was greater than by exercise in normal but 

similar in abnormal segments. Sm correlated better with peak heart rate with 

exercise than with dobutamine.(262) The velocity of normal myocardial 

segments increased by 148% when measured by pTDI. (188) When measured 

by cTDI, it increased by 100% at maximum dose of dobutamine and by 107% 

with maximal exercise. (259)

In clinical practice, ischaemia is detected when the Sm at peak stress falls 

below a pre-validated level. These absolute cut-off levels have been derived
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both using velocity ranges from normal populations and using more complex 

mathematical modelling. Absolute cut-off levels are difficult to establish as there 

is an intrinsic heterogeneity of Sm, as discussed earlier and the normal Sm are 

influenced by heart rate and loading conditions at peak stress. However, most 

normal patients develop similar velocities at peak stress, and it is only at the 

extremes of age that haemodynamics and volumes exert important effects on 

normal velocities. (263) Although the velocities of basal and mid-wall segments 

are different at baseline, the relative increases in velocities for each segment 

are the same at peak stress. A less than normal increment in velocity with 

maximal stress is indicative of ischaemia. Moreover, there are some 

suggestions that changes in Sm during ejection do not appropriately reflect 

changes in myocardial contractile dysfunction when ischaemia is severe. 

Though the peak velocities during ejection decrease with moderate ischaemia, 

severe ischaemia and the resulting dyskinesia is reflected in decreased 

velocities in the isovolumic contraction phase rather than during ejection. (264)

Using cTDI, Cain et al derived normal range of velocities at peak stress of each 

non-apical segment from subjects with low probability of coronary disease, 

those with normal wall motion, and those without coronary disease seen on 

angiography. The lower 20th percentile velocity value for each segment was 

identified to establish a lowest cut-off value. The intrinsic heterogeneity of Sm 

precluded the use of a single cut-off level. At peak stress, the lower limits of 

normal in the basal and mid paraseptal segments were 7 and 5 cm/s, 

respectively, whereas in the basal and mid-free wall segments, the lower limits 

were 6 and 4 cm/s, respectively. These cut-off values, detected coronary artery 

disease with 83% sensitivity, 72% specificity and 80% accuracy compared to 

coronary angiogram. The sensitivity, specificity and accuracy were 80%, 74% 

and 77% in the LAD territory, 76%, 64% and 68% in the LCx territory and 56%, 

75% and 66% in the RCA territory. (265) The MYDISE investigators used 

logistic regression models that included systolic velocity at maximum stress, 

age, sex and peak heart rate to predict coronary artery disease with sensitivity 

and specificity of 80% and 80% for LAD territory, 91% and 80% for LCx territory 

and 93% and 82% for RCA territory. Using receiver-operator curves for peak 

Sm as the only discriminator between patients with normal and stenosed 

coronary arteries, they obtained cut-offs of 10.3 cm/s in basal anterior segment
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with sensitivities and specificities of 63% and 60% for LAD disease, 10.8 cm/s 

in basal lateral segment with sensitivities and specificities of 69% and 67% for 

Cx disease and 12.8 cm/s in basal inferior segment with sensitivities and 

specificities of 69% and 67% forRCA disease. (218) On average, peak systolic 

velocity increased >100% in healthy subjects compared with 50-75% in patients 

with coronary disease. Sm at peak stress was found to be a better discriminator 

of disease, than was its change from baseline to maximal stress with 

dobutamine.(218)

Diagnosis of viability

TDI has been used with LDDSE to detect viability in dysfunctional myocardium 

and predict its recovery after revascularisation. Using pTDI, Altinmakas et al 

demonstrated that the Sm of dysfunctional but viable segments increase more 

than the non-viable ones with 10ug/kg/min of dobutamine. An increase of more 

than 35% in segmental velocities predicts functional recovery after 

revascularization with 89% sensitivity and 86% specificity. The sensitivity, 

specificity, the positive and negative predictive value of the pTDI measurements 

was higher, though not significantly, compared to visual assessment alone. 

However, the sensitivity and the negative predictive value significantly 

increased when visual and TDI assessments were combined. (266) Larrazet et 

al reported TDI to be at least as accurate as visual assessment for viability 

detection and more sensitive than it when rest-reinjection TI-201 SPECT was 

considered as the reference. When TDI and visual assessment were combined, 

the agreement between echocardiography and TDI increased further. TDI 

tended to reveal more viable segments than visual assessment. (267) 

Ramabaldi et al compared the accuracy of pTDI with LDDSE for detection of 

myocardial viability confirmed using F18-fluorodeoxyglucose imaging. Sm 

during low-dose and peak-dose dobutamine were significantly higher in viable 

myocardium. An increase in Sm using pTDI at low-dose of 1±0-5cm/s indicated 

viability in that segment while 0±0-5cm/s predicted non-viability. The sensitivity 

and specificity of the pTDI were 87% and 52% and that of LDDSE 75% and 

51% respectively. (268)

Some studies have reported an increased diagnostic accuracy of DSE with 

application of the TDI techniques. This technique increases the accuracy of
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detection of CAD over and above the visual assessment even when used by 

less expert readers.(198) TDI detects impaired regional LV contractility not seen 

on visual analysis of images. (269) The Sm correlate to wall motion scoring 

(259) and independent markers of ischaemia such as SPECT myocardial 

perfusion imaging. (260) However, there are suggestions that the sensitivity for 

detecting the presence of CAD using TDI techniques has not been advanced 

compared with wall-motion evaluation by an expert reader. (164)

Rolejn dyssynchrony
Regional systolic and diastolic synchronicity can be evaluated by TDI 

comparing the time to peak systolic contraction and early diastolic relaxation of 

multiple segments. A number of parameters based on TDI have been proposed 

to evaluate intra-ventricular dyssynchrony. The delay between the onset of 

electrical activation (onset of the QRS complex) and the peak of mechanical 

contraction (the peak systolic velocity either during ejection (Ts) or at any time 

within the cardiac cycle) is measured in each non-apical segment of the left 

ventricular or the free wall of the right ventricular. Intra-ventricular dyssynchrony 

may be measured as the difference in Ts at the basal septal and lateral 

segments, (270) standard deviation of Ts of all non-apical segments, (271;272) 

maximum difference of Ts for 6 basal segments, maximum difference of time to 

peak systolic displacement for 4 segments and maximum difference of time to 

onset of systolic velocity for 6 basal segments. (273) The difference between 

the longest and shortest delays between the onset of the QRS complex and the 

peak systolic velocity measured in each of the 6 basal segments at any time in 

the cardiac cycle has also been measured. (274) Inter-ventricular dyssynchrony 

can be measured as the difference between the Ts at the basal segment of the 

RV free wall and the basal segment of the lateral LV wall or most delayed LV 

segment. (275) Yu et al demonstrated the presence of intra-ventricular systolic 

and diastolic dyssynchrony in patients with heart failure with and without 

prolonged QRS duration. (94)

Tissue Doppler imaging has been extensively used in an attempt to quantify 

intra- and inter-ventricular dyssynchrony and to predict the response to CRT. 

Though several small studies reported the value of mechanical dyssynchrony 

as measured by TDI parameters in predicting response to cardiac
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resynchronisation therapy, (270-272;274;276-279) a large multi-centre clinical 

trial failed to do so. (273) TDI parameters of interventricular delay have not 

been shown to predict the improvement of cardiac function. (271) In patients 

with CHF, the degree of intraventricular and interventricular asynchrony and 

their combination are the best predictive factors of LV functional recovery and 

reversed remodeling after cardiac resynchronisation therapy. (275) Severe 

dispersion of regional Ts has been shown to strongly predict responders of 

reverse remodeling. (271;272) Mechanical dyssynchrony has also been 

demonstrated in nearly half of the patients with normal QRS duration. (94) 

Prevalence of responders of reverse remodeling is lower in patients with 

narrower QRS duration (120-150 ms), possibly due to the less severe 

mechanical asynchrony as reflected by a lower Ts-SD. This has been confirmed 

in larger clinical trail. (280)

Conclusion
Tissue Doppler imaging alone and in adjunct to stress echocardiography has 

application in the assessment of the left ventricle in a wide variety of cardiac 

conditions. As these conditions are commonly prevalent in patients with 

suspected heart failure, TDI with DSE is likely to be useful in evaluating these 

patients.
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Chapter 4: Safety and Applicability of DSE with Tissue Doppler Imaging In an 

Unselected Population of Patients with Suspected Heart Failure.

ABSTRACT

Background: Symptoms suggestive of heart failure (HF) is common in the 

general population. As these symptoms are usually induced by exercise and are 

often absent at rest, cardiac function assessed at rest potentially leaves some 

patients whose cardiac dysfunction occurs only during stress, undiagnosed. The 

feasibility, safety and the applicability of DSE with cTDI in an unselected 

population of patients with suspected heart failure were studied. Method: 548 

subjects referred to a heart failure clinic with suspected heart failure were 

screened. 207 of these underwent DSE with cTDI using standard dobutamine 

atropine protocol. The segmental systolic function, long axis systolic and 

diastolic functions were visually and quantitative assessed. Results: DSE was 

applicable to 436 patients. 274 were referred for DSE that was done on 207 

patients. DSE was feasible in 183 patients. About 27% of the recruited patients 

had to be excluded due to poor image quality. Complications occurred in 6 

patients: transient ST-elevation in 2 and sustained monomorphic VT in 4. The 

reproducibility of the cTDI measurements was good. Systolic and diastolic 

myocardial velocities could be satisfactorily obtained in >90% of the segments. 

Conclusion: From among the heterogeneous population of elderly subjects with 

multiple co-morbidities with suspected heart failure expected in heart failure 

clinic, DSE with cTDI is feasible in only a highly selected group of patients. 

There may be some safety concerns in this group.
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INTRODUCTION

An estimated 5-7% of the Western European population is suspected to suffer 

from heart failure (HF). (15) Multiple cardiovascular pathologies that culminate 

in left ventricular (LV) dysfunction leading to HF are likely to be highly prevalent 

amongst these patients. However, assessment of the LV at rest as 

recommended in the current guidelines for the diagnosis of HF, (1) may not 

adequately elicit these functional abnormalities. This potentially leaves a 

proportion of patients whose cardiac dysfunction occurs only during 

physiological stress giving rise to symptoms, undiagnosed. Additionally, 

valuable diagnostic and prognostic information may be missed in patients with 

and without resting LV dysfunction. Thus evaluation of cardiac function under 

stress could potentially be useful in assessing patients with suspected heart 

failure.

Patients encountered in heart failure clinics are often elderly, infirm with 

musculoskeletal co-morbidities and breathless on exertion, all of which 

significantly limits their exercise capacity. DSE is very well suited for the 

assessment of this population. DSE is reported to be feasible in patients with 

coronary artery disease, (159;281-289) LV systolic dysfunction (290;291) and 

hypertension (292;293) and in the elderly (294-298). These reports are 

retrospective analysis of data obtained on patients who underwent DSE for 

established clinical indications, and selected in terms of their echocardiographic 

image quality, suitability to tolerate the procedure and the absence of 

contraindications. The applicability of DSE in an unselected population with 

multiple cardiovascular and non-cardiovascular co-morbidities is unknown. (159)

The limitations of DSE are its subjective interpretation (182) and dependence 

on image quality (159) and interpreter expertise. (181) Analysis of myocardial 

motion using cTDI could potentially overcome these shortcomings. (198) cTDI is 

used to quantitate the regional and long axis systolic and diastolic function of 

the LV in patients with wide variety of cardiac conditions. However, there is 

limited data on the feasibility of this technique in association with DSE. (299) 

The feasibility, safety and the applicability of DSE with cTDI in an unselected 

population of patients with suspected heart failure was studied.
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METHOD 

Patient selection

Between November 2001 and August 2003, subjects referred to a community- 

based heart failure programme, serving a mixed urban and rural population of 

600,000, with a suspected diagnosis of HF, were screened. Physicians were 

asked to refer any patient in whom the diagnosis of heart failure was being 

considered including those with breathlessness and/or evidence of fluid 

retention or receiving a loop diuretic. The diagnosis of HF was based on clinical 

evaluation by a cardiologist on the basis of the patients' previous and current 

history and physical examination. In concordance with the ESC definition of HF, 

(1) most had previous hospital admissions with acute breathlessness, clinical 

and/or radiological evidence of pulmonary congestion and clinical improvement 

with diuresis. The inclusion criteria were age above 18 years (no upper limit was 

set) and referral for assessment of suspected heart failure. The exclusion 

criteria were refusal or an inability to consent, inadequate echocardiographic 

window, contraindication to DSE (myocardial infarction, unstable angina, 

pulmonary oedema or stroke within the last 2 weeks, angina or arrhythmias 

within last 48 hours, known left main stem stenosis, severe life threatening 

tachyarrhythmias, severe valvular stenosis, implanted pacemakers, 

hypertrophic cardiomyopathy, resting systolic blood pressure >180 mm Hg, 

known sensitivity to dobutamine), advanced malignancy and immobility severe 

enough to constrain acquisition of echocardiographic images. Other 

cardiovascular conditions in which the physician would consider dobutamine 

stress unsafe were also excluded. Patients who had only temporary contra 

indications for stress echocardiography were recalled for testing later. It was 

accepted that not all subjects would be suitable for DSE. However, rather than 

selecting subjects for the study, DSE was offered to all recruited, unless contra- 

indicated. The reason why DSE was deemed inappropriate or not performed 

was documented. Written informed consent was obtained. Medical Ethics 

Committee of the Hull and East Yorkshire NHS Trust approved the protocol.

All subjects underwent routine clinical examination, a 12 lead ECG, chest X-ray, 

pulmonary function test (hand-held spirometry) and a standardised 6-minute 

hall walk. The patient underwent full echocardiographic examination using a 

2.5-MHz phased-array transducer (GE Vingmed Vivid Five scanner, Horten,
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Norway). A standard set of images was acquired at rest. (118) cTD images of 3 

cardiac cycles in 3 apical views (4-chamber, 2-chamber and 3-chamber), were 

stored digitally and reviewed off-line (Echopac 6.3, GE.Vingmed). LV volumes 

were calculated from manually traced endocardia! borders in the apical 4 and 2 

chamber views using the modified Simpson's rule and LVEF was calculated. E 

and A velocity, EOT and IVRT were measured.

Stress echocardiographv

Subjects with adequate echocardiographic windows and without any 

contraindication underwent DSE within 6-8 weeks of referral using a standard 

dobutamine-atropine protocol, 48 hours after stopping beta-blocker.(103) A 

patient had to be free of pulmonary oedema, angina or significant arrhythmias 

for at least 48 hours before the test. The pre-specified end-points were 

attainment of target heart rate (THR) {85% of (220-age in years)} and/or 

evidence of ischaemia i.e. new or worsening regional wall motion abnormality, 

intolerable symptoms of chest pain or severe breathlessness with >2 mm flat or 

down-sloping ST depression or >1 mm ST elevation in any of the leads, 

recurrent ventricular couplets or triplets, single run of non-sustained ventricular 

tachycardia (defined at >5 consecutive ventricular ectopics), sustained 

ventricular tachycardia or new atrial fibrillation. Side effects of dobutamine, 

symptoms with no or minor ECG changes, any other arrhythmias, persistent 

hypotension (reduction in the systolic blood pressure by >20 mm Hg on two 

consecutive recordings) with or without bradycardia or hypertension (systolic 

blood pressure >220 mm Hg) were considered complications of the procedure. 

The test was "feasible" if a pre-specified end-point was reached or the 

maximum dose of dobutamine was reached without reaching an end-point. The 

test was "incomplete" if a test was terminated due to a complication or 

deterioration of image quality. Intravenous atropine was not administered if 

there was a history of glaucoma or urinary retention. If needed, dobutamine 

effects were reversed by a short acting IV beta-blocker, esmolol at a standard 

dose.

Standard images (103) (3 cycles edited to exclude ectopic beats and without 

undue translational motion) in grey-scale with superimposed cTD data were 

acquired at rest and in the final 60 seconds of each stage with breath held in
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expiration under continuous 12-lead EGG and intermittent non-invasive blood 

pressure monitoring. The sector angle and depth were adjusted to achieve 

highest possible frame rates. Imaging was continued 9 minutes into recovery or 

till the ECG-changes at peak stress returned to normal. The loops were digitally 

stored. The 2-D grey scale images were analysed in a quad-screen format and 

the cTD images were analysed using customised software (Echopac TVI, GE 

Vingmed). The mitral inflow and the LVOT were interrogated with pulse-wave 

Doppler at each stage.

Using a 16-segment model of the LV, (118) segmental wall motion was 

classified as "normal", "hypokinetic", "akinetic", or "dyskinetic" based on a 

subjective visual evaluation of endocardial motion and degree of wall thickening. 

Wall motion score (WMS) was assigned to each segment as recommended (1 = 

normal, 2=hypokinesia, 3=akinesia and 4=dyskinesia).(103) Segments with 

'mild' or 'questionable' hypokinesia and those appropriately "hyperdynamic" at 

peak stress was graded normal. Segmental response to dobutamine was 

classified as "normal", "viable", "biphasic", "ischaemic" or "scar".(103) WMSI 

(sum of the wall motion scores of the interrogated segments divided by the 

number of segments interrogated) was calculated at rest, low dose dobutamine 

and peak stress.

The E and A velocities, EOT and IVRT were measured at rest, low dose of 

dobutamine and peak stress. If there was fusion of the E and A velocities at 

peak stress, these were measured at the latest stage (i.e. the highest heart rate) 

at which separate peak velocities could be appreciated. The EOT and IVRT 

were corrected for the heart rate using Bazett's formula {EDTc or IVRTc (msecs) 

= EOT or IVRT (msec)/VR-R interval (sees)} to allow comparison of these 

variables at different heart rates.

In the cTDI mode, the myocardial velocity curves were reconstituted by placing 

a 5 mm sample cursor at mitral annulus and the midpoint of each of the non- 

apical segments of the six walls in the 3 apical views. No tracking algorithm or 

angle correction was used. The systolic myocardial (Sm) and mitral annular (Sa) 

velocity during ejection, early diastolic (Em, Ea) velocity and late diastolic (Am, 

Aa) velocity were measured at rest, 10 mcg/kg/min of dobutamine and peak
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stress. If the diastolic velocities at peak stress were fused, these were 

measured at the highest heart rate at which separate velocities could be 

appreciated. The 6 peri-annular velocities were averaged. (57;58;212) E/Ea was 

calculated from early diastolic transmitral velocity and the averaged mitral 

annular velocity.

Reproducibilitv

A single observer, blinded to the clinical and echocardiographic characteristics 

of the patients, measured the systolic, early diastolic and late diastolic 

myocardial velocities and the time to peak velocity at the mitral annulus and the 

12 non-apical segments twice in 10 randomly selected patients at rest and peak 

stress. Differences in the paired measurements were calculated and reported 

as mean±SD. Confidence limits (95%) of differences were computed and 

expressed as absolute values and percentages of the average values of paired 

velocity measurements.

Patient classification

Patients were allocated into one of three groups dependent on symptoms and

left ventricular ejection fraction (LVEF).

Group 1: LVEF <45% and symptoms of heart failure: 'heart failure-LVSD' (HF-

LVSD) group. One patient, with LVEF <45% and no symptoms of heart failure

(asymptomatic LVSD), was considered in Group 1.

Group 2: LVEF >45% and symptoms of heart failure: "heart failure with normal

ejection fraction" (HFNEF) group.

Group 3: LVEF >45% and no symptoms of heart failure: 'No heart failure' (NoHF)

group.

Statistical analysis

All analyses were performed using commercially available software (SigmaStat 

v 3.5, Systat Software, Inc. San Jose). The continuous variables were described 

as means and standard deviations and the categorical variables as percentages. 

The data was tested for normal distribution using the Kolmogorov-Smirnov 

Normality test. The means between the study groups were compared by 

Student's unpaired t test assuming unequal variance and Mann-Whitney Rank 

Sum test as appropriate. The data at rest and peak stress within each group
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were compared by Student's paired t test and Wilcoxon Signed Rank test as 

appropriate. Multiple groups were compared using ANOVA with post-hoc 

Bonferoni analysis or ANOVA on Ranks. Proportions were compared using the 

Chi-square test. A two-tailed p value <0.05 was considered significant.

RESULTS

Five hundred and forty eight non-consecutive but unselected subjects were 

screened. (Figure 1) Twenty-four (4.4%) patients, who were admitted in hospital 

at referral died before consenting, 14 (2.6%) (median age 86 years) were 

deemed unfit to consent, 58 (10.6%) had contraindication to DSE (the 

commonest being significant valvular lesions) and 16 (2.9%) were not suitable 

for DSE. Of the 436 (79.6%) subjects eligible for the study, 89 (20.4%) (median 

age 82 years) refused consent. Three hundred and forty-seven subjects (63.3%) 

were thus recruited. The attending cardiologists did not refer 73 (21.0%) 

patients due to inadequate echocardiographic windows. Of the 274 subjects 

referred for DSE and the test was done in 207 (75.5 %) subjects. Of these 

patients, 183 patients (feasibility of 88.4%) reached a test end-point.

Feasibility

Sixty-seven referred subjects were excluded from the test. (Figure 1) Patients 

with persistent or permanent atrial fibrillation developed rapid ventricular 

response upon withdrawal of beta-blockers. Though the THR was expected to 

be reached quickly in these patients, it was anticipated that the stress images 

would be uninterpretable. Twelve patients requested test termination within the 

first two levels of dobutamine infusion due to subjective symptoms. Patients 

with resting SBP^180 mmHg despite replacement of the beta-blockers with 

other anti-hypertensives were excluded after two attempts. Eight patients with 

persistent severe heart failure were deemed too unwell for the test. Two 

patients had pacemakers implanted, 1 for CRT and 1 for complete heart block, 

between referral and the test. Two patients were awaiting implantable 

cardioverter defibrillator implantation. One patient was diagnosed with 

bronchogenic carcinoma.

Of the patients who underwent DSE, the test was "completed" in 183 patients 

(feasibility of 88.4%) (THR reached in 27, new RWMA 149, angina with ST-
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segment depression 5 and was inconclusive in 2). The test was prematurely 

terminated in 24 patients: image deteriorated during the test in 9 (4.3%), 7(3.3%) 

developed NSVT without evidence of ischaemia, hypotension in 6(2.9%) and 

hypertension in 2(1%). The 9 patients whose images deteriorated very early in 

the test have been included "DSE not done" group for further analysis.

Baseline characteristics

The clinical characteristics of the study population are described in Table 1. The 

recruited patients were younger, predominantly male and with less valvular 

heart disease than those not recruited. Subjects aged >75 years were less 

frequently recruited (38.6% of those recruited versus 57.7% of the non-recruited, 

p=0.000). The subjects who "completed" DSE were younger, had lower mean 

BMI and a lower prevalence of COPD. Elderly patients completed DSE less 

frequently (33.5% amongst those who did versus 44.9% amongst those who did 

not, p=0.031). Only 28.8% had normal BMI. Chronic and paroxysmal AF was 

present in 19% and 8% respectively in subjects who underwent DSE compared 

to 25% (p=0.26) and 6% (p=0.47) respectively in subjects who did not. There 

were no differences in prevalence of risk factors and medication use between 

the two groups. The prevalence of heart failure symptoms and abnormal LV 

systolic and diastolic parameters was similar in the groups that did and did not 

undergo DSE. (Figure 2)

Response to stress

The response to stress of the 200 patients is shown in table 2. The mean peak 

dose of dobutamine needed to reach an end-point was similar in patients with 

LVSD and those without and in those who did and did not reach THR (29.9±9.2 

ugm/kg/min versus 32.1±7.8 ugm/kg/min respectively, p=0.064), a pre-specified 

end-point (31.3±8.5 ugm/kg/min versus 30±7.6 ugm/kg/min respectively, 

p=0.681) or developed RWMA (31.2±8.4 ugm/kg/min versus 31.3±8.5 

ugm/kg/min respectively, p=0.921). The THR was reached in 83 (41.5%) 

subjects, 22(26.5%) of who were in persistent AF during DSE. The mean peak 

dose of dobutamine in these patients was 31.2±8.5 ugm/kg/min.

Sixteen (8%) patients, all of whom were in sinus rhythm, needed atropine. 

Seven (40%) reached THR (concomitant RWMA in 3, NSVT in 1) and 9 patients
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(new RWMA in 7, non-diagnostic test in 2) did not. Atropine did not affect the 

maximum heart rate (124±15 with versus 124±13 without, p=0.933) or % of the 

THR achieved (95.9±7.8% with and 96.3±10.6% without, p=0.903). The 

proportion of patients achieving THR (44% versus 41%, p=0.849) or a 

diagnostic test (88% versus 92%, p=0.55) with and without atropine was also 

similar. The resting heart rates were higher in the patients who reached THR 

compared to those who did not (79±15 v 74±12, p=0.012). Atrial fibrillation at 

rest was more prevalent in patients who reached THR (27.8% v 13.7%, 

p=0.021). Amongst patients in sinus rhythm, there was no difference in the 

resting heart rates of patients who did and did not reach THR (77±14 v 74±12, 

p=0.120). A diagnostic result was achieved most frequently (34.6%) at 30 

ugm/kg/min of dobutamine followed by 40 ugm/kg/min (32.7%).

Reasons for discontinuation of the test

The reasons for test termination are shown in table 3. Stress induced ischaemia 

was identified in 156 (78%) patients, manifesting as new RWMA in 146 and 

ischaemia on EGG with chest pain in 10.

Major Complications

Six patients (3%), all with new RWMA, had major complications (sustained VT 

and Ml). There were no deaths. Four patients (mean age 74±6 years, 3 male, 

mean LVEF 28±5%, with prior Ml, and with RWMA at peak stress, 2 in sinus 

rhythm and 2 in atrial fibrillation) endured haemodynamically stable self- 

terminating sustained ventricular tachycardia at peak stress. They were 

monitored overnight without any further therapy. . Two patients (75 years (LVEF 

19%) and 79 years (LVEF 33%), males, previous Ml, new RWMA) had transient 

anterior ST elevation with minor increase in troponin but no new Q-waves. They 

were both treated with intravenous heparin and nitrate.

Minor complications

Minor complications (hypotension, hypertension and all other new onset

arrhythmias) were seen in 70 (35%) patients leading to test termination in 15

(7.5%).
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Hypotension was seen in 17 (8.5%) patients (5 had prior Ml, 5 developed 

RWMA). These patients were younger (64±8 years v 69±10 years, p=0.04), had 

higher mean LVEF (56±19% v 46±17%, p=0.02), lower prevalence of LVSD 

(23.5% v 56.3%, p=0.010) and comparable systolic (147±25 mmHg v 140±22 

mmHg, p=0.200) and diastolic (86±10 mmHg v 81±13 mmHg, p=0.150) blood 

pressure compared to those that did not. LVOT gradient increased in 6 patients, 

4 of whom were bradycardic. Hypotension led to test termination in 6 patients 

(all with normal LVEF, 3 of whom had increased LVOT gradient and 

bradycardia). Compared to others with hypotension, these patients were 

younger (57±4 years v 68±8 years, p=0.03) and had higher resting diastolic 

pressure (95.5±3.1 mmHg v 80.6±8.9 mmHg, p=0.001). Three other patients (1 

with bradycardia) had hypotension with increased LVOT gradient (2 reached 

THR and 1 had RWMA). Hypotension was associated with chest pain and 

ischaemia on ECG in 2 patients (both with normal LV function but without new 

RWMA at 80% of THR) and NSVT in 2 patients (normal LV function) at 97% 

and 91% of the THR respectively. Three patients with hypotension needed fluid 

resuscitation and 3 with additional bradycardia responded to atropine alone.

Hypertension (> 220 mmHg) was seen in 14 (7%) patients (all known 

hypertensives) leading to test termination in 2 (1%). The test was terminated for 

ischaemia on ECG in 3, achieving THR in 1 and developing new RWMA in 8. 

Hypertension settled spontaneously after termination of protocol in all except 3 

patients who needed intravenous nitrates.

The commonest dysrrhythmias included ectopic ventricular and supraventricular 

activity. These did not lead to test termination. Induced ventricular 

dysrrhythmias (p=0.461) and AF (p=0.504) were as frequent amongst patients 

who received atropine as those that did not. The mean peak dose of 

dobutamine in patients who developed significant ventricular dysrrhythmias was 

similar to that in patients who did not (31.7±8.2 ugm/kg/min versus 31.1±8.5 

ugm/kg/min, p=0.773). Five patients (3 with LVSD, mean EF 33.2±10.3% and 2 

without LVSD or RWMA at THR) developed AF. Intravenous esmolol was used 

in 4 patients with AF and rapid ventricular rates that did not respond to 

discontinuation of dobutamine. Bradycardia was seen in 4 patients, all in 

association with increased LVOT gradient. All had normal LV systolic function.
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Non-sustained ventricular tachycardia was seen in 18 (9%). The mean peak 

dose of dobutamine (33.9±7.0 ugm/kg/min versus 30.9±8.5 ugm/kg/min, 

p=0.156), the mean ejection fraction (49±14% versus 46±18%, p=0.53) and the 

prevalence of LVSD (44% versus 54%, p=0.42) were similar in patients who did 

and did not develop NSVT. Atropine was administered to one patient. The test 

was terminated in 7(3.5%) patients (1 with AF and 2 with previous Ml one of 

whom had PCI to LAD, 2 with symptomatic hypotension and mean LVEF 

59±6%) before an end-point. Of the other 11 patients (1 with AF, 8 with LVSD: 

mean LVEF 37±13), new RWMA developed below THR in 7 and at THR in 3 

while 1 attained THR without any RWMA. One patient had atropine. The mean 

peak dose of dobutamine was similar in patients who did and did not reach end- 

points (35.5±5.2 ugm/kg/min versus 31.4±9 ugm/kg/min, p=0.244). NSVT was 

terminated in all patients on discontinuation of dobutamine.

Chest pain was induced in 36(18%) patients (22% had known angina, 42% had 

previous Ml and 28% had previous revascularisation). Two had STEMI with 

RWMA below the THR. ST depression led to test termination in 10 patients (5 

developed new RWMA, 2 were hypotensive and 3 hypertensive). Twenty-four 

patients had no ST changes (12 had RWMA below the THR, 10 at THR and 2 

reached THR without any RWMA). Chest pain was as frequent in patients who 

received atropine than those who did not (19% versus 18%, p=0.935). Chest 

pain accompanied the induced AF in 5 patients 2 of who did not show any 

RWMA. Thirty-one patients needed sublingual and 4 intravenous nitrate.

The test was non-diagnostic for inducible ischaemia in 17(8.5%) patients (pre 

mature termination in 15 and test end-point not reached in at maximum dose in 

2). Echocardiographic data of 174 patients could be analysed completely (90 

patients with HF-LVSD, 41 with HFNEF and 43 with NoHF). All subsequent 

analysis pertains to this group of patients.

Reproducibilitv

Overall intraobserver variability of the annular and myocardial velocities at rest 

and stress was low (<10% at rest and <15% at stress) (tables 4). At rest, the 

highest variability of the systolic velocity was seen in the posterior mitral
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annulus, septal basal and middle segments. The highest variability of the early 

diastolic velocity was seen in lateral mitral annulus, lateral basal and posterior 

middle segments. The late diastolic velocity was most variable at the posterior 

mitral annulus, anteroseptal basal and anterior middle segments.

Regional wall motion assessment

2784 segments of the left ventricle were visually scored at baseline, low dose 

and peak dose of dobutamine totalling 8352 observations. (Figure 3) Fewer 

segments could be visually assessed in the HF-LVSD group compared to the 

other two groups at all levels of stress. Fewer segments were assessed at 

stress compared to rest in the NoHF group (p=0.041) but not in the HF-LVSD 

(p=0.686) or the HFNEF (p=0.098) groups. The three segments of the anterior 

wall were the most difficult to score and those of the septal wall the easiest.

Regional myocardial velocities were quantitatively analysed in 2088 segments 

(12-segment model) at baseline and each dose of dobutamine totalling 6264 

observations. Segments could be quantitatively evaluated more frequently than 

visually in all (p<0.01) except the HFNEF group. (Figure 3) Myocardial velocities 

could be measured more frequently in the NoHF group compared to the other 

two groups at low dose (p=0.000) and peak stress (p=0.000) but not at rest 

(p=0.096). The levels of stress did not affect quantitative assessment in the 

HFNEF (p=0.13) and NoHF group (p=0.79) but velocities were measured less 

frequently at peak stress (p=0.000) in the HF-LVSD group. Fewer basal 

segments (p=0.000), but not the mid-segments (p=0.093), could be measured 

at peak stress than at rest and low dose dobutamine in the HF-LVSD group but 

not in the other two. The middle segments could be interrogated less 

successfully than the basal segments at all levels of stress in all the three 

groups. The segments could be interrogated least frequently at all levels of 

stress compared to the others were the middle segment of the anterior wall due 

to inadequate visualisation and that of the anteroseptal wall due to poor 

alignment

Mitral annular velocities were measured at 1044 sites totalling 3132 

observations. It could be measured in 99%, 97.3% and 100% of the instances in 

the HF-LVSD, HFNEF and NoHF groups respectively (p=0.000). Fewer
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observations could be made at peak stress compared to rest and low dose 

(p=0.000) in the HF-LVSD group but not in the others.

The wall motion response to stress could be visually characterised in 94.1% 

segments, 93.4% in the HF-LVSD, 96.8% in the HFNEF groups and 93.2% in 

the NoHF (p=0.004) and least commonly in the anterior wall. The inability to 

assign a response to a segment was due to the failure to score that segment at 

peak stress (p=0.001) in the NoHF group and at all levels of stress in the HF- 

LVSD and HFNEF groups.

Comparison between visual and quantitative assessment 

Segmental wall motion could be estimated both visually and quantitatively on 

91.8%, 94.0% and 95.4% instances in the three groups respectively (p<0.001). 

Neither modality could assess a segment 0.9-1.9% instances; most frequently 

in the HF-LVSD group (ANOVA, p=0.01). (Figure 4A) Fewer assessments were 

made visually only than by TDI only in all, except the HFNEF group. A response 

characteristic to stress could be assigned to 91.0%, 92.7% and 92.6% 

segments both visually and quantitatively in the three groups respectively 

(p=0.39). Neither modality could assign a response characteristic to 1-2.9% of 

segments most frequently in the HF-LVSD group (ANOVA, p<0.05) (figure 4B). 

Larger number of segments was assigned a response characteristic on the 

basis of TDI observations only compared to visual assessment only in the 

normal group.

A segment could not be visually assessed on 333 (5.3%) instances, most 

frequently in the HF-LVSD group (p<0.001) (figure 5 Panel 1A). TDI could 

assess segments on 73% of these attempts. The proportion of observations that 

could not be made visually but could be made quantitatively was similar in the 

three groups (ANOVA, p=0.57). A segment could not be assessed by TDI on 

180 (2.9%) instances; least commonly in NoHF group (p<0.001). (figure 5 Panel 

1B) Of these, higher proportion of observations could be done visually in the 

HFNEF group (ANOVA, p<0.001). A segment that could not be assessed 

quantitatively is less likely to be assessed visually (p<0.001). A response 

characteristic could not be visually assigned to 119 (5.7%) segments. 62% of 

these segments could be assessed by TDI (figure 5 Panel 2A). This was least
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likely in the HFNEF group (p=0.03). A response could be assigned using TDI to 

similar proportion of segments in the three groups (p=0.12). A response could 

not be assigned using TDI to 97 (4.6%) segments; most commonly in the HF- 

LVSD group (p=0.01). (figure 5 Panel 2B) The proportion of these segments 

that could be visually assessed was the highest in the HFNEF group (p=0.003).

Diastolic assessment

E could be measured in all patients at rest and peak stress. The A wave and 

thus the E/A ratio could be measured in 77%, 78% and 93% patients at rest 

(p=0.054) and 69% 76% and 91% patients at stress (p=0.023) in the three 

groups respectively. The proportions were similar at rest and stress (p=ns, rest 

v stress). The failure to measure E/A was exclusively due to AF at rest or 

induced by stress. Of the 136 patients who were in sinus rhythm under stress, 

fusion of the E and A waves was seen in 38(28%) patients all of whom reached 

heart rates higher than 110 bpm. The EOT could be measured in all patients at 

rest and peak stress. IVRT could not be measured in 1 patient in each of the 

heart failure groups.

The averaged Ea could be calculated in all and 98.8% patients with and without 

LVSD at rest and in 97.8% and 98.8% patients at stress. Aa could be calculated 

in all patients in sinus rhythm in both groups (75.6% and 72.2% patients with 

LVSD and 85.7% and 83.3% patients without at rest and stress respectively).

Ea could be measured more sites at rest than at peak stress (96.9% v 90.4%, 

p=0.000 in patients with LVSD and 98.8% v 97.0%, p=0.047 in patients without). 

Amongst the patients in sinus rhythm, Aa could be measured more frequently at 

rest than at peak stress (96.8% v 92.6%, p=0.007) in patients with LVSD but not 

in patients without (100% v 99.8%, p=0.310). Ea and Aa could be measured at 

fewer sites in patients with LVSD compared to those without (Ea: at rest, 

p=0.031; at peak stress, p=0.000; Aa: at rest and peak stress, p=0.000). In 

patients with and without LVSD, Em and Am could be measured in fewer mid 

segments compared to the basal segments at rest and at peak stress (p<0.001 

for all). Em and Am could be measured in fewer segments (both basal and mid) 

at peak stress compared to rest in all patients (p<0.001 for all). Ea/Aa ratio 

could be calculated for fewer annular sites in patients with than those without
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LVSD at rest and at peak stress (p=0.000). Ea/Aa ratios could be calculated at 

fewer annular sites at peak stress compared to rest in patients with LVSD 

(p=0.034) but not in patients without (p=0.310). The average annular E/Ea could 

be measured both at rest and peak stress in 168 patients; 85, 40 and 43 in the 

three groups respectively.

DISCUSSION

To the best of our knowledge this is the only report on the feasibility of DSE with 

cTDI in the assessment of an unselected population of patients with suspected 

heart failure in an ambulatory setting. The study included a heterogeneous 

population of subjects who were mostly elderly with multiple cardiac and non- 

cardiac co-morbidities.

An unselected population of patients with suspected heart failure that can be 

expected in a heart failure clinic were screened. DSE was offered to all 

recruited subjects. Previous studies (159;281-298;300) that have reported 

feasibility of DSE are retrospective analysis of data obtained on patients who 

underwent DSE for established clinical indications, and selected in terms of 

their echocardiographic image quality, suitability to tolerate the procedure and 

the absence of contraindications. Thus the information on the applicability of 

DSE to a heterogeneous population expected in a heart failure clinic is limited. 

About a third of the screened population had to be excluded. Death of 4% of the 

screened patients before recruitment is unsurprising given the high mortality 

(about 20%) amongst newly diagnosed patients with heart failure during index 

admission. (25;26;301) About 10% had contraindication to DSE. Even though 

the contraindications to the DSE in this study were set conservatively, we are 

unaware of any estimate of prevalence of conditions that would preclude DSE in 

this population. The median age of the population screened for this study was 

78 years, a decade higher than that included in most feasibility reports. Except 

for studies in the elderly, (294-298) most feasibility reports include patients who 

are younger than what could be expected in a heart failure population. This 

study accurately represents the population that suffer with heart failure the 

prevalence of which increases rapidly with age (1;15;302) with 15% of people 

over 85 suffering from it. (302) Co-morbidities precluded 3% of the screened 

patients from DSE. About 16% (median age 82 years) did not consent for the
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study. Though the reasons for refusal were not recorded, it could be presumed 

to be due to discomfort of the test, inconvenience, travel and travel costs as 

sighted as reasons in some studies. 3% (median age 86 years) subjects were 

adjudged incompetent of consenting. Impediments to consenting for studies in 

the elderly include impairment of cognition, inability to communicate etc. (303)

After screening, 21% of the subjects were excluded due to poor acoustic 

windows. Some authors have suggested that an inadequate acoustic window 

precludes the performance of successful DSE in only -5% of patients.(288;304) 

This may be an underestimate when applied to an unselected population. (159) 

Our experience matches the estimate that 10-20% of non-selected patients 

have suboptimal endocardial border visualisation even with tissue harmonic 

imaging without contrast. (305) Deterioration of endocardial border definition 

during DSE precluded analysis of images in another 6%. This conforms to 

reports that 0-6% of patients selected for DSE had to be excluded for poor 

image quality. (282;289;298;306)

In the absence of established clinical indication for DSE, patients, especially the 

elderly, were intolerant to subjective symptoms e.g. musculoskeletal pain. Beta- 

blockers were withdrawn 48 hours before the test. This resulted in a higher 

incidence of exclusion due to high ventricular response in patients with 

persistent atrial fibrillation and loss of control over blood pressure.

Complications

The overall incidence of ventricular arrhythmias was higher than previously 

reported (Table 5). Resting regional wall motion abnormality, history of previous 

myocardial infarction and arrhythmias were common in these patients. Only 1 

patient received atropine and the mean peak dose of the dobutamine was 

similar to the rest of the patients. This is consistent with previous reported 

experience that induction of ventricular tachycardia during DSE is not related to 

the addition of atropine (182;307) and is more frequently seen in patients with 

prior history of ventricular arrhythmias or baseline wall motion abnormalities. 

(159) Its relation to the peak dose of dobutamine is also reported to be 

uncertain. (289) Stress induced RWMA was common in these patients 

suggesting that stress induced ischaemia is likely to have precipitated these
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arrhythmias. However ventricular arrhythmias during DSE have not been 

related to inducible RWMA. (289;307) About 44% of the patients with NSVT had 

normal LVEF and no inducible ischaemia. Three-fourth of these patients did not 

have previous Ml or resting RWMA. In these subjects, the arrhythmia may be 

attributed to dobutamine-induced pi-receptor stimulation or reduction in plasma 

potassium. (308)

Beta-blockers were stopped 48 hours before testing. This resulted in lower 

number of non-diagnostic tests (8.5%) compared to previous estimates (10%). 

(287;288) This however, resulted in uncontrolled ventricular rates in patients 

with AF leading to exclusion of some of these patients and increased incidence 

of ventricular arrhythmias especially amongst patients with inducible ischaemia. 

The increased incidence of ventricular arrhythmias, however, did not 

necessitate termination of tests before ischaemic end-points were reached thus 

maintaining the diagnostic yield of the test. Beta-blockers reduce ventricular 

arrhythmias by limiting ischaemia and decreasing the susceptibility of the 

myocardium to the beta-adrenergic effect of dobutamine. (289)

The incidence of hypotension during DSE varies between 5-38% depending on 

the definition used. (288;309-311) The incidence of hypotension in our study 

was considerably lower than that reported by others using comparable cut-offs. 

(309-311) Hypotension led to test termination in 3% patients compared to 0-7% 

in previous reports. Stress-induced hypotension has been associated with older 

age, (296;309;310) higher resting systolic blood pressure in some (309;310) but 

not all studies (296) and symptoms in the younger but not older patients. (296) 

The patients with symptomatic hypotension leading to test termination were 

younger compared to those in whom the test could continue and had higher 

resting diastolic but not systolic blood pressure.

Fewer patients complained of chest pain in our study than previously reported 

(table 5). Ml occurred in 1% patients. Ml is rare during DSE. The higher 

incidence in this study could be related to withdrawal of beta-blocker and the 

troponin based definition of infarction. However it can occur due to intense 

coronary spasm in normal coronary arteries. (284)
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Reproducibilitv of data

Interobserver variability of echocardiographic measurement has been assessed 

using 'real-time' pulsed tissue Doppler in one study. The 95% confidence 

intervals for standard deviations expressed as a percentage of the mean, were 

10-16% for longitudinal velocities and 14-24% for radial velocities. (200) Good 

reproducibility has been reported for off-line measurements of peak systolic 

velocity even by inexperienced observers. (197) In keeping with the latter study, 

the intraobserver variability for mitral annular and regional myocardial systolic 

and diastolic velocities was low.

Feasibility of TDI

Myocardial velocity was obtainable in 95-99% of segments interrogated at all 

stages of the protocol. Myocardial velocities could be most frequently measured 

in the NoHF group reaching success rates of 99% at all levels of stress. Most, 

(188;214;260;312) but not all (299;313;314) studies have reported similar 

feasibility. The lower proportion of analysable segments (90%) in the MYDISE 

study (299) resulted from non-analysable waveforms from the mid-anterior 

septum interrogated in the parasternal long axis view and the four apical 

segments interrogated in apical view. The higher yield of interpretable velocity 

curves in our study resulted from interrogation of the anteroseptal segments in 

the apical long axis view allowing better ultrasound beam alignment and the 

exclusion of the apical segments.

Measurement of regional myocardial velocities was least successful in the HF- 

LVSD group especially at peak stress. A segment could not be assessed either 

visually or quantitatively most frequently in the HF-LVSD group. Interrogation of 

the walls of dilated, spherical, often scarred and dyssynchronous ventricles may 

have resulted in uninterpretable myocardial velocity traces. Despite this 

limitation, success rate for quantitative evaluation of segments was consistently 

higher compared to visual assessment in this group. Both visual and 

quantitative were equally successful in the HFNEF group.

The three segments of the anterior wall were the most difficult to score visually. 

Visualisation of anterior or lateral walls may be suboptimal during 

echocardiography and worsen during stress.(305) The middle segments could
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be quantitative interrogated less successfully than the basal segments at all 

levels of stress in all the three groups. The segments that could be interrogated 

least frequently at all levels of stress were the middle segment of the anterior 

wall due to inadequate visualisation and that of the anteroseptal wall due to 

poor alignment. This mirrors the experience of the MYDISE investigators.(299) 

The success rate of quantitative assessment was consistently higher than visual 

assessment. Depending on the level of stress and the population of patients 

examined, 92-98% of the segments examined could be visually assessed. This 

concurs with the reported proportion of segments that could be scored visually 

(83-97%) in various studies. (214;313;314)

TDI supplemented visual assessment of wall motion quite appropriately. 

Myocardial velocities could be measured in similar proportion of segments (70- 

77%) that could not be visually assessed in all three groups. But as the HF- 

LVSD group had higher absolute number of non-visualised segments, TDI 

seemed to benefit this group the most. Concurrence between the visual scoring 

and myocardial velocity was modest at rest, being the lowest in the HF-LVSD 

group. Published comparison between conventional visual assessment of 

regional wall motion and TDI analysis is lacking.

Diastolic measures

Feasibility of diastolic assessment of the LV during stress is limited by the 

difficulties in the measurement of the diastolic waves and velocities. Fusion of 

the diastolic waves occurs at peak heart rates. Najos-Valencia et al could not be 

designate Em and Am velocities in 1.5% of 756 segments tested at rest and 

21 % at peak stress because of fusion between the E and A waves at peak heart 

rates.(186) Fusion prevented assessment of diastolic function in 40% (257) and 

71% (188) cases in other studies. This problem was avoided by measuring the 

diastolic velocities at the highest heart rates where they could be separately 

measured. Analysis of diastolic velocities at sub-maximal stress seemed to be a 

reasonable approach for diagnosis of stress-induced diastolic dysfunction firstly 

because ischaemia induces diastolic dysfunction occurs earlier than systolic 

(315) and secondly, heart failure patients with exercise intolerance are unlikely 

to achieve maximal heart rates during day-to-day physical activity that make 

them breathless. Interpretation of the patterns of diastolic waves under stress is
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further complicated by the presence of resting changes in relative magnitudes 

of these velocities. The ratio of Ea and Aa may be permanently inverted in 

regions of the myocardium supplied by stenotic arteries.(79) Age, hypertension 

and/or LV hypertrophy may have similar effect. This may conceal the effect of 

stress induced ischaemia on these variables or at least make interpretation 

difficult. The high prevalence of these conditions in patients with suspected 

heart failure could adversely affect the evaluation of diastolic function under 

stress in these patients. The reproducibility of these measurements has been 

reported to be suboptimal and probably less than that obtainable with systolic 

velocity.(299;312) Intraobserver variability in this study was <10% at rest and 

<15% at peak stress.

LIMITATIONS

The subjects underwent DSE as part of a research project. A significant 

proportion of eligible patients that did not consent for a research procedure may 

have done so if it was clinically indicated. DSE was offered to an unselected 

population of patients attending the heart failure clinic a substantial proportion of 

whom would never be considered for DSE in a real-world situation. This led to a 

high exclusion contrary to clinical experience.

CONCLUSION

DSE is feasible in patients with suspected heart failure only when they are 

appropriately selected for the test. DSE is applicable to a small portion of 

patients attending the heart failure clinics. The safety of DSE in an unselected 

population may be a concern. Both systolic and diastolic assessment of these 

patients is feasible using cTDI both at rest and stress and may supplement 

visual interpretation. DSE may have important influence on management of 

these patients but that needs to further assessed.
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Age (years) (meaniSD)
Age (yrs) range (median)
Males (%)
BMI (mean±SD)
Risk factors for CAD
H/0 Smoking (%)
Diabetes (%)
Family history (%)
Hypertension (%)
Obesity (%)
History of
Angina (%)
Revascularisation (%)
Myocardial infarction (%)
Valvular disease (%)
COPD (%)
Drugs
Loop diuretics (%)
ACEI or ARB (%)
Beta-blockers (%)
Aspirin (%)
Wafarin (%)
Spironolactone (%)

Systolic BP (mmHg)
Diastolic BP (mmHg)
Sinus rhythm (%)
QRSd (ms)
RR interval (ms)
Heart rate (bpm)
Echocardiography

IVSd
IVSs
LVPWd
LVPWs
LVIDd (cm)
LVIDs (cm)
LVEDVol (ml)
LVESVol (ml)
EF (mean±SD)

Screened/ not 
recruited 
(n=201)
76±10

42-95 (78)
51.6

27.9±8.2

64.6
14.3
29.1
35.2

-

30.1
10.4
32.4
14.3
11.4

73.8
65.1
66.5
80.6
16.2
12.1

148±28
84±12
70.3

98±20
810±152
78±12

1.3±0.4
1.6±0.6
1.3±0.4
1.7±0.8
5.5±1.2
4.211.3
127±74
80±61
42±15

p value for comparison between the DSE done
**p<0.01, ***p<0.05

Screened/ 
recruited 
(n=347)
71±11*

29-92 (72)
61.4***

28.6±5.8

71.9
19.6
35.2
38.9

-

33.5
11.2
33.4
3.2*

14.9

74.9
66.1
69.8
84.6
19.1
13.8

142±29
86±14
73.5

97±21
812±159

76±15

1.3±0.4
1.610.5
1.310.4
1.710.5
5.6+1.2
4.4+1.4
135180
82158
45116

and not done

DSE done 
(n=200)

69110
42-92 (70)

62.5
27.015.3

77.0
18.5
32.5
32.3
16.4

33.2
11.5
31.0

0
10.1

75.2
68.6
69.1
86.6
18.9
12.6

140126
82116
72.8

101120
8181153

76111

1.310.4
1.610.3
1.310.4
1.710.1
5.611.2
4.411.4
134169
82152
45116

groups. *p<0.

DSE not 
done 

(n=147)
72H1**

29-90 (74)
59.9

29.916.2*

76.9
21.1
38.8
48.3
52.5*

36.3
10.9
36.7
0.7

18.5***

74.8
65.9
70.3
83.8
19.6
15.2

139127
83114
69.6

100H 9
809H49

79111

1.410.5
1.610.1
1.310.5
1.710.6
5.6+1.2
4.3H.4
136H02
81172
46+17

001,

82



Table 4.2. Haemodynamic response to stress.
• OWI-N / in-7\ Normal EFLSVD(n=107) (n=g3)

DSE End-point reached at
40 |jg/kg/min+atropine n (%) 9 (9.3) 6 (6.5)
40 (jg/kg/min n (%) 34 (29.9) 31 (36.6)
30 [jg/kg/min n (%) 34 (34.6) 34 (33.3)
20 (jg/kg/min n (%) 29(25.2) 19(20.4)
10 (jg/kg/min n (%) 1 (0.9) 3 (3.2)
Peak dose of dobutamine 31.1±8.3 31.5±8.7
HR(rest) 77±15 75±13
HR (peak stress) 125±14 123±13
Target HR 129±8 128±9
% of THR reached 96.7±10.3 95.8±10.6 
%ofTHR reached
>100%n(%) 42(39.3) 41(44.1)
> 90 % n (%) 87 (82.2) 70 (83.9)
> 80 % n (%) 99 (92.5) 86 (92.5)
>70%n(%) 107(100.0) 93(100.0)
SBP(rest) 135±24 146±20
SBP (peak stress) 170±26 162+22
DBP(rest) 80±13 84±11
DBP (peak stress) 95±8 89±8

0.623
0.397
0.971
0.524
0.517
0.631
0.531
0.236
0.544
0.860

0.489
0.760
0.798

<0.001 
0.169 
0.016 
0.002
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Table 4.3. Reasons for termination and side-effects observed during DSE.
Reason for complication
termination

NSVTn(%) 7(3.5) 18(9.0)
PVCs n(%) - 64 (32)
PSVCsn(%) - 26(13)
Atrial fibrillation/flutter n(%) - 5 (2.5)
Bradycardia n(%) - 4 (2)
Chest pain without ST depression n(%) - 24 (12)
Dyspnoea n(%) - 3(1.5)
Nausea n(%) - 7(3.5)
Headache n(%) - 2(1)
Shivering n(%) - 1 (0.5)
Dizziness n(%) - 1 (0.5)
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Figure 1 Screened 
548

Ineligible 
112

Refused consent 
89

Eligible 
436

Inadequate
echocardlographic windows 

73 (21.0%)

Feasible 183(88.4%) 
THR without RWMA : 27 
NewRWMAatTHR : 56

(Incl 3 with sustained VT) 
New RWMA below THR : 93 

(lnc!2withSTEMI
1 with sustained VT 
5 with angina + ST depression) 

Angina + ECG change : 5 
Maximum dose : 2

Early termination 24(11.6%)
Deterioration of image : 9*
NSVT without ischaemia :7
Hypotension : 6
Hypertension : 2

General frailty 13 
Spinocerebellar 
degeneration 1 
Malignancy 2

Lost data in storage 
Poor endocardial definition 
Non-identical images 
Incomplete image set

Data Interpretable 
174

6 
6 
7 
5

HF-LVSD 
89

HF-NEF 
41

No HF/No LVSD 
43

No HF/LVSD 
1

'These patients excluded from the final analysis

Critical Aortic Stenosis 26
Mechanical valves 7
AF (uncontrolled VR) 5
Ml within 2 weeks 5
Non-sustained VT 3
Severe hypertension 3
Large pericardial effusion 3
Critical Mitral Stenosis 2
Primpulmonaryhypertension 2
Ascending aortic aneurysm 1
Hypertrophic cardiomyopathy 1

AF (fast heart rate) 20(7.3%) 
Awaiting ICD implant 2(0.7%) 
BiV Pacemakerimplanted 2(0.7%) 
Patientrequest(veryearly) 12(4.4%)

anxiety 3(1.1 %)
back pain 4(1.5%)
breathlessness 3(1.1 %)
hip spasm 2(0.7%) 

Resting Hypertension 11(4.0%) 
Resting Hypotension 9(3.3%) 
P ersistent N YH A 111 sympto m 8(2.9%) 
No Venous access 2(0.7%) 
Metastatic Malignancy 1(0.4%)

Figure 4.1. The journey of the screened patients through the study.
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Figure 4.2. Prevalence of HF symptoms, systolic and diastolic left ventricular 

impairment at rest in the recuited population.
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Figure 4.3. Proportion of segments that could be assessed visually (plain bars) and 

quantitatively (dotted bars) overall, _ at rest, _low dose _ and peak dose I of

dobutamine in the HF-LVSD, HFNEF and No-HF groups.
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Figure 4.4. A: % of instances where a wall motion of a segment could be assessed 

visually only, TDI only and neither. B: % of segments where a wall motion 

response could be assigned visually only, TDI only and neither.* p<0.01, "kp<Q. 05, 

A p=ns versus visual.
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Figure 4.5. Panel 1: A. Instances where TDI could and could not assess segments 
that could not be visually assessed. B. Instances where segments that could not be 
assessed by TDI, could and could not be visually assessed. Panel 2: A. Instances 
where segmental response to stress could and could not be assigned using TDI in 
segments that could not be visually assessed. B. Instances where segmental 
response to stress could and could not assigned visually in segments that could 

not be assessed by TDI.
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Chapter 5: Dobutamine Stress Echocardiography with colour tissue Doppler 

imaging in an unselected population of patients with suspected heart failure.

ABSTRACT

Background: Exercise commonly induces or exacerbates symptoms in subjects 

with suspected heart failure. Guidelines recommend resting echocardiography for 

assessment of cardiac function in these patients. This is likely to miss stress- 

induced left ventricular dysfunction that may be the aetiology of the symptoms in 

patients with normal resting ejection fraction.

Method and results: 209 of 274 patients with suspected heart failure underwent 

DSE with cTDI. DSE was fully analysable in 174 patients (90 with HF and left 

ventricular systolic dysfunction (HF-LVSD), 41 with HF and normal ejection fraction 

(HFNEF) and 43 with no HF (NoHF)) with 89% feasibility. Prognostically significant 

improvement in global, regional and long-axis function was seen in dysfunctional 

ventricles in all three groups. Stress impairment in Ea was seen in the HFNEF but 

not the other groups with associated increase in the E/Ea ratio. The transmitral 

Doppler failed to detect any difference in the diastolic function with stress. LV 

outflow tract gradient increased with stress.

Conclusion: DSE can only be applied to a selected population of patients that are 

referred to a heart failure clinic. It reveals findings that are not seen at rest but may 

have therapeutic and prognostic implications. The increase in the LVEDP with 

stress in patients with HFNEF may explain the exercise intolerance in this group of 

patients. The therapeutic and the prognostic implication of these findings need to 

be tested in outcome studies.
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INTRODUCTION

Resting echocardiography has conventionally been the mainstay of assessment of 

patients with suspected HF.(1) Confirmation of the diagnosis of HF has been 

straightforward in patients with LVSD. However, the diagnosis of HF has been 

difficult to confirm or exclude in an estimated 1-3% of the Western European 

population with symptoms suggestive of HF but normal LVEF at rest. (15) 

Considerable uncertainties in the diagnosis of HF, has been reported in this group 

of patients in primary and secondary. (20;34)

Multiple cardiovascular pathologies that may result in HF may or may not give rise 

to abnormal LV function at rest or affect conventionally measured LVEF. These 

pathologies are likely to be highly prevalent in patients with suspected HF. 

Although symptoms in patients with suspected HF are often absent at rest and 

almost universally induced or exacerbated by exercise, most studies, and indeed 

the current guidelines have focused on assessing cardiac function at rest.(1) This 

strategy may be inadequate in the assessment of patients with suspected HF. 

Resting echocardiography may be sufficient to confirm HF secondary to LVSD, 

but it often fails to suggest an aetiological diagnosis or provide prognostic 

information. On the other hand, the very diagnosis of HF is put to jeopardy in 

the presence of symptoms without abnormal LVEF on resting echocardiography. 

The genesis of symptoms in these patients may be related to transient but 

extensive changes in global or regional systolic or diastolic dysfunction induced 

by exercise. Resting echocardiography potentially leaves a proportion of these 

patients undiagnosed.

Thus evaluation of cardiac function under stress in patients with suspected HF 

could potentially delineate the role of exercise induced stress in the genesis of 

their symptoms. It would potentially identify ischaemia as aetiology of LVSD in 

patients with low LVEF and as the cause of breathless in those without. It would 

detect viability or the lack of it in dysfunctional segments of impaired ventricles. 

It would also unmask changes in LV global or regional systolic or diastolic 

function in response to stress in patient with normal LVEF.
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In the present study the effect of pharmacological stress on the prevalence and 

severity of the abnormalities of cardiac function that could cause or contribute to 

the symptoms of HF in an unselected population of subjects suspected of having 

heart failure was studied. Conventional DSE supplemented by cTDI was used in 
this assessment.

METHOD

Patient selection

All consecutive subjects with a suspected diagnosis of HF who underwent DSE

were included for the study. These patients were selected from a screened cohort

assessed in a community-based heart failure programme as described in Chapter

4. Written informed consent was obtained. Medical Ethics Committee of the Hull

and East Yorkshire NHS Trust approved the protocol.

Patients with LVEF <45% and HF were designated as HF-LVSD group, LVEF 

>45% and HF as HFNEF group and LVEF >45% and no HF as NoHF group. One 

patient, with asymptomatic LVSD was considered in HF-LVSD.

Clinical evaluation
All subjects underwent a routine clinical examination, 12-lead ECG, chest X-ray, 

pulmonary function test (hand held spirometry) and six-minute hall walk. 

Demography, medical and drug history and cardiovascular risk factors were 

recorded. Hypertension was defined as a previous blood pressure recording on two 

separate occasions of >140 mmHg systolic or >90 mmHg diastolic or the ongoing 

prescription of anti-hypertensive medication. Myocardial infarction was defined 

according to World Health Organisation criteria. Ischaemic heart disease was 

defined as a history of myocardial infarction, unstable angina or angiographic 

evidence of >50% stenosis of one or more coronary arteries with or without a past 

history of revascularisation. Patients underwent physical examination, a 12-lead 

ECG, chest X-ray and pulmonary function tests. Body mass index (BMI) >25 was
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considered overweight and that >30 as obese. Airways disease was diagnosed if 
FEV1/FVC ratio was <75%.

A standard echocardiographic examination was undertaken. LV mass, chamber 

volumes and ejection fraction were measured. (118) Left ventricular hypertrophy 

(LVH) was defined as LV mass index >134 gm/m2 in men and >110 gm/m2 in 

women and LVSD as LV ejection fraction of <45%. LVSD was considered 

moderate-to-severe if resting WMSI was >1.6. Diastolic volume index >75 ml/m2 

and systolic volume index >30 ml/m2 were considered abnormal. (118) The E, A, 

EOT and IVRT were measured. LV diastolic dysfunction was defined as per age 

related normal values. (66) Impaired diastolic compliance was defined as E/A>1.7 

and EDT<138 msec. Pseudonormalisation of the E/A ratio was diagnosed in the 

presence of reversed Ea/Aa ratio. The peak systolic velocity was measured using 

the pulse wave Doppler sample volume at the LVOT.

Stress echocardiography

Subjects underwent DSE using standardised dobutamine-atropine protocol 48 

hours after stopping beta-blockers. The image acquisition is described in detail in 

Chapter 4.

Hibernation in >4 or >6 segments of myocardium was considered to be prognostic. 

(172;316) Contractile reserve (CR) was defined as the change in WMSI (AWMSI) 

i.e. the difference between the resting and low dose WMSI. Improvement in WMSI 

>0.2 and 0.4 were considered prognostic. (26;317) CR at low dose was also 

determined as the ratio of number of segments with improved wall motion scores at 

low dose to the number of segments scored at this dose expressed as a 

percentage. The proportion of patients with contractile reserve in at least 25% of 

ventricular myocardium was also determined. (318)

The IVRT and EOT were corrected for heart rate using the Bazett's formula to 

compare observations at rest and peak stress {EDTc=EDT(msec)/VR-R(sec)}. The 

LVOT maximum velocity £2.5 m/sec was considered raised.
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Resting averaged periannular Sa <2.8 cm/sec was considered prognostically 
abnormal. (319) The velocities were considered "abnormal" at rest if it was 

<mean+2SD of published normal value for that segment for that age. (212) At each 
wall ASa (the difference between mitral annular velocity at rest and at low dose of 
dobutamine) was calculated. An increase in the Sa >1 cm/sec from rest to low- 
dose dobutamine in walls with low resting velocities was considered to denote 
"significant viability". (268) A segment was identified being abnormal at peak stress 
if the Sm was £ 5.5 cm/sec. (255) A segment was labelled "normal" if the velocity 
was normal at rest and increased at peak stress, "ischaemic" if velocity decreased 
or failed to increase at higher dose and "scar" if the velocity was abnormal at rest 
and did not change with stress. The response was considered "biphasic" if a 
segment that was abnormal at rest improved at low dose and then worsened at 
high dose. These segments were designated viable and ischaemic.

Ea/Aa<1 was considered abnormal. The mitral inflow pattern was considered 
"pseudo-normalised" if the Ea/Aa ratio was <1 in the presence of a normal E/A ratio. 
E/Ea were calculated. E/Ea at rest, (191;204) and stress (183; 192) was used as an 
estimate of the LVEDP. As velocities measured by cTDI are 20% less than that 
measured by pulse-wave TDI, (320) the measured Ea was corrected to obtain the 
corresponding value in pulse-wave TDI. The E/Ea was then calculated at rest and 
stress using these new values. E/Ea<8 was considered normal, 8-15 was 

intermediate and >15 was high. (193)

Reproducibilitv
As described in Chapter 4.

Statistical analysis
As described in Chapter 4.

RESULT
274 subjects were referred for DSE. DSE was done in 207 (76%). Test end-points 
were reached in 183 (88.4%). (Figure 1) DSE data was completely analysable in 

174 (83.3%) subjects: HF-LVSD group (n=90), HFNEF group (n=41) and NoHF
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group (n=43). All subsequent analysis pertains to these patients. Table 1 describes 
the baseline characteristics of the population.

Resting Echocardiography (Table 2)
The mean LV mass was highest in the HF-LVSD group. WMSI was >1 in 41-49% 
patients without LVSD. The A velocity could not be measured in 24.4%, 21.9% 
and 7.0% patients in the three groups respectively due to AF during imaging 
(p=0.054). LV diastolic dysfunction was common (about 50%) in the three groups. 
6.7% patients of the HF-LVSD group had restrictive LV filling. Low Sa and Ea were 
most prevalent and reversed Ea/Aa was least prevalent in HF-LVSD group.

Systolic function (global) 
WMSI and Sa (figure 2 and 3)
WMSI was higher in the HF-LVSD group compared other groups at rest and all 
levels of stress with no differences between the HFNEF and NoHF groups. WMSI 
improved with low dose dobutamine in the HF-LVSD (2.27±0.49 v 2.01±0.54, 
p=0.001) and NoHF (1.15±0.24 v 1.03±0.11, p=0.005) groups but not in the 
HFNEF (1.15±0.25 v 1.01 ±0.04, p=0.39) group. The Sa in the HF-LVSD group was 
lower than in others both at rest and peak stress with no differences between the 
HFNEF and NoHF groups. The Sa increased with stress in all the three groups. 
The increase in the Sa from rest to peak stress was 2.15±1.60 cm/sec in the HF- 
LVSD group (p=0.018 v normals and p=0.009 v HFNEF), 2.85±1.37 cm/sec in 
HFNEF (p=0.731 v normals) and 2.95±1.75 cm/sec in the normal group (p=0.006, 

Single factor ANOVA).

The prevalence of abnormal WMSI and Sa and its change with stress are 
described in figure 3. Resting WMSI was >1 in 73.6% patients overall, 71.1% of 
whom improved with low dose dobutamine. Of the 82 (47%) ventricles with resting 
WMSI >1.6, 61(74.4%) improved with low dose dobutamine. WMSI decreased by 
>0.2 in 50.0%, 23.5% and 47.6% of the ventricles that were abnormal at rest in the 
HF-LVSD, HFNEF and NoHF groups (p=0.132). It decreased by >0.4 in 32.2%, 
17.6% and 28.6% in the three groups (p=0.132). Normal Sa at rest was least 
frequently seen in the HF-LVSD group (p<0.001). Sa improved in 80.4% of patients
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with reduced velocities at rest, overall. Of the 67.8%, 24.4% and 25.2% walls that 

had low Sa at rest in the HF-LVSD, HFNEF and normal groups, 60.9%, 65% and 

58.5% improved by >1 cm/sec with low-dose dobutamine respectively suggesting 

"significant viability" in these walls.

Systolic function (Regional) 

WMS and Sm (figure 3)

The segmental wall motion response to stress could be characterised in 94.1% 

segments. The rest are excluded from further analysis. Of the dysfunctional 

segments at rest, 41.6%, 54.4% and 94.7% in the HF-LVSD, HFNEF and NoHF 

groups respectively showed viability with low dose dobutamine and 35.8%, 54.4% 

and 93.4% subsequently became ischaemic at peak dose. The rest showed 

sustained improvement. Of the dysfunctional segments at rest, 28.4%, 19.6% and 

1.3% in the HF-LVSD, HFNEF and NoHF groups respectively were scars. Of the 

segments that were normal at rest, 32.9%, 4.7% and 8.3%segments were 

ischaemic in the three groups

Of the patients with WMSI>1 at rest, 57.8% patients in the HF-LVSD group had 

viability in >4 dysfunctional segments compared to 23.5% in the HFNEF group and 

33.3% in the normals (p=0.01). Viability was seen in > 6 dysfunctional segments in 

38.9%, 17.7% and 33.3% patients in the three groups respectively (p=0.239). Of 

the patients with WMSI>1, contractile reserve was seen in 82.2%, 64.7% and 

76.2% patients in the HF-LVSD, HFNEF and normal groups respectively (p=0.253) 

and contractile reserve of > 25% was seen in 42.2%, 17.7% and 14.3% patients 

(p=0.016).

The median number of segments that were normal, reversibly abnormal (i.e. had a 

viable, ischaemic or biphasic response) and irreversibly abnormal (i.e. scarred) 

was 1 (range 0-14), 8 (range 1-16) and 4 (range 0-15) in the HF-LVSD group 

compared to 14 (range 5-16), 0 (range 0-8) and 0 (range 0-5) in the HFNEF group 

and 13 (range 1-16), 1 (range 0-12) and 0 (range 0-1) in the NoHF respectively.
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Sm could not be measured on 181 (2.9%) occasions. The segments without 

response characteristic were excluded. Amongst the segments that were 

dysfunctional at rest, 83.3%, 85.2% and 84.2% in the three groups respectively 

were viable (p=0.892) and 17.9%, 14.8% and 8.9% segments (p=0.071) showed a 

biphasic response. An ischaemic response was seen in 33.7%, 27.9% and 30% of 

the segments that were normal at rest and 5.6%, 5.7% and 6.9% of the segments 

that were abnormal at rest in the three groups respectively.

Mitral Inflow (Figure 4)

E/A became abnormal with stress in 65%, 25% and 36% of the patients (p=0.045) 

who were normal at rest and remained abnormal in 81%, 67% and 73% patients 

(p=0.499) who were abnormal at rest in the HF-LVSD, HFNEF and NoHF groups 

respectively. E/A was pseudonormalised in 29.4%, 56.3% and 62.5% in the three 

groups (p=0.001) at rest and 21%, 71% and 56.4% patients at peak stress 

(p=0.000). The prevalence did not change with stress (p=0.269 in HF-LVSD, 0.225 

in HFNEF and 0.581 in NoHF).

EOT failed to shorten with stress in 34.4%, 43.9% and 30.2% patients in the HF- 

LVSD, HFNEF and NoHF groups respectively. The EDTc increased with stress in 

52.2%, 58.5% and 53.5% (p=0.795, HF-PLVF v normal, p=0.641) patients in the 

HF-LVSD, HF-PLVF and NoHF groups and decreased in the rest. Amongst 

patients with high EDTc at rest, it increased further with stress in 21.7% 28.6% and 

38.9% patients (p=0.486), decreased to above normal range in 13.0%, 14.3% and 

16.7% patients (p=0.948) in the HF-LVSD, HFNEF and No-HF group respectively. 

No one in the NoHF group had low EDTc at rest. Amongst patients with low EDTc 

at rest, it decreased further with stress only in the HF-LVSD group.

IVRT was normal at rest in 47.8%, 65.9%, 58.1% patients in the three groups 

(p=0.135). It failed to shorten with stress in 21.1%, 46.3% and 34.9% patients in 

the three groups (p=0.011, HFNEF v normal, p=0.285). IVRTc increased in 55.0%, 

67.5% and 58.1% patients (p=0.413, HFNEF v normal, p=0.513) in the three 

groups. IVRTc increased to >105 msec in 54.8%, 56.3% and 62.5% patients 

(p=0.878) with resting IVRTc<105 msec in the three groups. Amongst patients with
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IVRTc>105 msec at rest, it decreased to <105 msec in 28.8%, 28% and 14.8% 
patients (p=0.357).

The E/A ratio decreased in the HF-LVSD group but did not change with stress in 

the other two. The IVRTc did not change in the HF-LVSD group but got prolonged 
in the other two. EDTc however did not change with stress in any group.

Mitral annular diastolic velocity (Figure 4 and 5)

The Ea could be measured in all patients at rest. The average peri-annular Ea was 

lower than normal at rest in 24.4%, 4.9% and 2.3% in the three groups respectively 

(p=0.000). Amongst the patients with normal Ea at rest, it decreased with stress in 

20.6%, 69.2% and 42.9% in the HF-LVSD, HFNEF and NoHF group respectively 

(p=0.000, p=0.017 HF-PLVF v NoHF group) and increased in the rest. The Ea 

decreased by >20% in 11.1%, 31.7% and 20.9% patients in the three groups 

respectively (p=0.016, HFNEF v NoHF, p=0.261) while it increased by > 20% in 

61.1%, 9.76% and 30.23% in the three groups respectively (p=0.000, HFNEF v 

NoHF, p=0.02).

Ea/Aa could be measured in >70% patients at rest and peak stress. Ea/Aa was <1 

in 71.4%, 84.4% and 85% patients in the three groups (p=0.171) at rest and 84.1%, 

90.6% 89.7% under stress (p=0.576) (p for rest v stress: 0.086 for HF-LVSD, 0.450 

for HFNEF and 0.526 for NoHF). Of the patients with Ea/Aa>1 at rest, it decreased 

to <1 in 66.7%, 60% and 83.3% (p=0.324) patients in the three groups with stress. 

Ea/Aa increased to >1 with stress in 8.9%, 3.7% and 8.8% (p=0.681) of the 

patients with Ea/Aa<1 at rest, in the three groups.

•

The mean Ea velocity in the HF-LVSD group was lower than HFNEF group that 

was similar to the normal group at rest. At peak stress, Ea in the HFNEF group 

was lower compared to the normal group but was similar to the HF-LVSD group. In 

the HF-LVSD group, Ea and Aa increased with stress and their ratio remain 

unchanged. In the HFNEF group, Ea decreased, Aa increased but their ratio does 

not change. In the normal group, Aa increases but there are no changes in the Ea 

or Ea/Aa. It decreased with stress in the former but not in the later group.
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Left atrial pressure

E/Ea could be measured in 98.9%, 97.6% and 100% patients at rest and 95.6%, 

100% and 100% patients at stress in three groups. 5.4%, 52.2% and 25% of the 

patients that had normal resting E/Ea in the HF-LVSD, HFNEF and NoHF groups, 

had high E/Ea at peak stress. (Figure 4) Among the patients with high E/Ea ratio at 

rest, it remained high at peak stress in 43.3%, 92.2% and 87.6% patients in the 

HF-LVSD, HFNEF and NoHF groups. E/Ea decreased to normal in 46.7%, 7.8% 

and 12.4% patients in the three groups.

At rest, E/Ea HF-LVSD>HFNEF=NoHF (HF-LVSD v HFNEF and NoHF, p=0.000) 

and HFNEF v NoHF, p=0.391) (figure 5). At peak stress, the E/Ea in the HF-LVSD 

group was similar to the other groups (p=0.128 v HFNEF, p=0.206 v NoHF group) 

with HFNEF>NoHF (p=0.002). With stress, E/Ea decreased in HF-LVSD (0.000), 

increased in HFNEF (p=0.002) and remained unchanged in NoHF group (p=0.598)

In the HF-LVSD group, most patients had E/Ea >15 at rest and 8-15 at stress. Most 

HFNEF patients had E/Ea 8-15 at rest and >15 at stress. Most NoHF had E/Ea 8- 

15 at rest and stress. In the HF-LVSD group the prevalence of E/Ea 8-15 increased 

and that of >15 decreased with stress. In the HFNEF group prevalence of E/Ea 

>15 increased with stress. (Figure 6A). More than 70% of the patients in the HF- 

LVSD and HFNEF groups with resting E/Ea<8, worsened with stress compared to 

43% in the NoHF group. All HFNEF and 89% of NoHF patients with resting E/Ea 8- 

15 either remained so or worsened and 39% of HF-LVSD and 11% of NoHF 

patients improved with stress. Of the patients with resting E/Ea ratio >15, 44% 

improved in the HF-LVSD group compared to 8% and 12.5% in the HFNEF and 

NoHF groups (figure 6B).

LVOT gradient
The velocity could not be measured in 1 patient in the HF-LVSD group and 2 in the 

HFNEF group at peak stress. The maximum velocity (Vmax) was £1.5 m/sec in 

2.3%, £2.0 m/sec in 0.6% and > 2.5 m/sec in 0% patients at rest and 36.3%, 14.0% 

and 5.8% patients at peak stress. None, 20.5% and 4.7% of patients in HF-LVSD,
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HFNEF and NoHF had Vmax >2.5 m/sec at peak stress (p<0.001). Vmax 

increased with stress in 87.6%, 97.4% and 100% patients (p=0.016) and increase 

was >20% in 66.3%, 84.6% and 88.4% (p=0.007) in the three groups. The average 

velocity in the HF-LVSD group was lower than both the other groups at rest and at 

peak stress (p<0.05, ANOVA) with no difference between the HFNEF and NOHF 

groups. It increased with stress in all the three groups (p<0.001 for all three 
groups).

DISCUSSION

Evaluation of subjects with suspected heart failure using TDI supplemented DSE 

has identified new or worsening regional, global and long axis systolic and diastolic 

dysfunction. Prognostic volumes of dysfunctional but viable myocardium was found 

not only in those with reduced LVEF but also in those without. The improvement of 

overall LV function, as measured by WMSI, with LDDSE matched these changes. 

The prevalence of hibernating myocardium in patients with HF and LVSD was 

similar to that previously reported. (321;322) These findings may have prognostic 

significance. In medically treated patients with post-infarction LVSD, the extent of 

hibernating myocardium, determined either by the degree of improvement of WMSI 

or by the proportion dysfunctional segments that improve with LDDSE, predicts 

survival. (323) The extent of myocardial hibernation and/or ischaemia determines 

the improvement in LVEF in patients with ischaemic and non-ischaemic 

cardiomyopathy treated with carvedilol (324-326) and bucindolol. (327) In a meta- 

analysis where half of the patients had their viability tested using DSE, 

revascularisation offered a higher prognostic benefit compared to medical therapy 

for patients with chronic CAD and LVSD with viable myocardium while absence of 

viability was associated with no significant difference in outcomes, irrespective of 

treatment strategy. (115) The extent of hibernating myocardium predicts survival, 

improvement in LVEF and functional status after revascularization in chronic 

ischaemic LVSD. (173;176;316-318) Contractile reserve however, did not predict 

outcome in one study. (318) Ischaemia was detected in 35%, 6% and 10% of 

dysfunctional segments in the three groups. Myocardial ischaemia detected by 

DSE was predictive of cardiac death in ischaemic cardiomyopathy treated 

medically after adjustment for LVEF in some (175;323;328) but not all studies.
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(318;329) The prevalence of coronary disease is between 5-67% in patients with 

HFNEF. Studies with higher prevalence of CAD reported higher annual mortality 

rate in contrast to those that excluded patients with coronary disease. 84 Despite 

this high prevalence of CAD, there is paucity of data on the extent of hibernation in 

patients with normal LVEF presenting with symptoms suggestive of heart failure.

The trans-mitral variables of LV diastolic function that either became abnormal or 

continued to remain abnormal with stress were common in all the three groups. 

This is consistent with some (77;80;186) but not all studies. (75;76) The 

interpretation of these changes during DSE is constrained by the influence of 

multiple factors on these variables during various stages of the test. These 

variables are influenced not only by the relaxation properties of the myocardium in 

diastole but also by the pre- and after-load of the ventricle, age and sex of the 

subjects, presence or absence of LV hypertrophy, heart rate, intraventricular 

conduction abnormalities, PR interval etc. During dobutamine stress testing, many 

of these factors are altered depending on the stage of the test making rest-stress 

comparisons difficult. Lowering of after-load due to the vasodilatory effects of low 

dose dobutamine may "truly" improve an abnormal resting diastolic filling pattern. 

Increase in the left atrial pressure due to stress-induced ischaemia may 

pseudonormalise the resting delayed relaxation pattern. These may underestimate 

the prevalence of diastolic abnormality at peak stress. Trans-mitral velocity that 

measures global LV diastolic function may not be altered if only small areas of 

regional dysfunction are induced with stress. Fusion of the E and A waves and 

shortening of the diastolic timings at higher heart rates are additional problems.

Sa and Sm are well-established indices of longitudinal LV global and regional 

systolic function. (213;330;331) Resting Sa <2.8 cm/s predicted survival in patients 

with LVSD. (319) Basal Sm at peak stress of <6 cm/s predicted cardiac death and 

non-fatal infarctions in patients with known or suspected coronary artery disease, 

60% of whom had resting RWMA. (332) Investigators have reported the ability of 

Sm to identify dysfunctional segments with fair degree of accuracy. Sm (cTDI) of 

the non-apical segments of ^ 5.5 cm/sec at peak stress identified visually abnormal 

segments 96% sensitivity, 81% specificity and 86% accuracy irrespective whether
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the segment was basal or mid-wall. (255) Sm (pTDI) <12cm/s distinguished 

ischaemic from non-ischaemic segment with sensitivity and specificity of 86% and 

96% for the basal regions, and 81% and 89% for the mid segments. A percentage 

increase in Sm of <90% from rest to peak identified ischaemic segments from 

normal segments with a sensitivity and specificity of 83% and 87%, respectively. 

(188) TDI is able to detect improvements in the velocity of contraction earlier than 

that possible visually, (254) making it a sensitive tool for detection of viability in 

hypocontractile segments with low dose DSE. (333;334) Rambaldi et al 

demonstrated that improvement of systolic velocity, measured by pTDI, of 1±0-5 

cm/s predicted myocardial viability confirmed with F18-fluorodeoxyglucose-SPECT, 

with a sensitivity of 87% and a specificity of 52%. (268)

Ea, an index of diastolic relaxation at rest (202;335;336) and during sinus 

tachycardia (183) is relatively load independent (193;202;204;209) making it more 

suitable for assessment of such function during DSE. However, this has rarely 

been assessed during DSE. (185; 188) The response of Ea to stress is influenced 

by a number of physiological processes often with opposing effects. Sa and Ea are 

positively and non-linearly correlated across a wide range of LVEFs at rest. (61;62) 

This is due to the inter-dependence of the systole and diastole. During systole, the 

longitudinal shortening and "twisting" motion of the myocardial fibres compresses 

the elastic cardiac elements generating potential energy that is stored within the 

coiled fibres of the myocardium. This creates early diastolic restorative forces that 

produce diastolic recoil that contributes to the Ea velocity. It is thus conceivable 

that inotropic stimulation during dobutamine stress would result in a parallel 

increase in both the Sa and Ea. The lusitropic effect of dobutamine is also likely to 

increase in the Ea velocity. On the other hand, dobutamine stress induced 

ischaemia, hypertension and tachycardia may impair diastolic relaxation and 

reduce Ea. Stress-induced ischaemia impairs both regional (184;185;188) and 

global left ventricular diastolic relaxation (77;80) and this occurs earlier than the 

impairment of systolic contraction. (187) Even transient, reversible episodes of 

ischaemia can impair LV relaxation and elevate LV filling pressures (74) Ischaemia 

induced by dobutamine stress (188) and coronary occlusion (81) causes regional 

impairment of myocardial relaxation of ischaemic segments even when systolic
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contraction is preserved. (79) Stress-induced tachycardia worsens ischaemic 

diastolic relaxation by increasing myocardial oxygen demand and decreasing 

coronary perfusion time. It shortens the diastole allowing less time for relaxation. 

This is further amplified in hypertrophied and fibrosed myocardium that is unable to 

generate a higher rate of diastolic relaxation causing the diastolic pressures to 

increase. (85; 189) Stress-induced elevation of systolic blood pressure, slows LV 

relaxation due to increased afterload with a resultant increase in the LA pressure. 

(82) In hypertensives, a rapid increase in SBP at rest 94 or following exercise (183) 

results in deterioration of LV diastolic function without worsening systolic function. 

Similar changes in response to stress have been demonstrated in patients with 

HFNEF. (84) Sa and Ea increased with stress in HF-LVSD group. This is likely to 

have resulted from the inotropic and lusitropic effect of dobutamine. As Ea was 

measured at submaximal stress to avoid the problem of fusion, significant 

hypertension and tachycardia are unlikely to have affected it. The degree of 

ischaemia at these stages was also likely to be low but probably severe enough to 

impair diastolic but not systolic function. The effect of dobutamine induced 

augmented systole may have overridden the negative effect of low-grade 

ischaemia on Ea resulting in net increase of Ea. On the other hand, Sa increased 

and Ea decreased with stress in the HFNEF patients. The difference in the 

ultrastructural and functional properties of the myocardium between these groups 

(337-344) may have affected this diverse response. The low-grade hypertension 

and tachycardia at submaximal stress, when Ea was measured, may have been 

enough to reduce Ea in the presence of an abnormally relaxing myocardial 

substrate. The effect of ischaemia on diastolic function may also have been 

intensified in the presence of such a substrate.

In the HFNEF group, most patients with high resting E/Ea ratio remained so at 

stress while it worsened in 70% of patients who were normal at rest. The E/Ea 

increased with stress in a substantially more patients in the HFNEF group than in 

the NoHF group. This is consistent with invasive findings of impaired diastolic 

relaxation and a rise in the left atrial pressure during exercise in patients with 

HFNEF. (183)
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In the NoHF group, the E, Ea, Aa increased with stress with no change in the E/Ea 

or Ea/Aa ratios. This response was similar to that of normal subjects. (194)

LIMITATIONS

Pharmacological rather than exercise stress was used in this study. Exercise being 

the most physiological stressor would have been preferable. Supine bicycle 

ergometry was not available. Treadmill exercise, the available form of exercise 

stress in our setting, has several limitations. Only 40% of patients tested for CAD, 

can perform a truly diagnostic exercise test. (101; 102) This proportion is likely to be 

even lower in the elderly patients, with musculoskeletal or neuromotor problems, 

general frailty and breathlessness, that were studied. The heart cannot be 

continuously imaged. Thus the time of onset of ischaemia and changes in the 

cardiac function at each level of exercise cannot be precisely identified. Myocardial 

viability, a prognostically important component of left ventricular evaluation in 

patients with heart failure, cannot be assessed. Ischaemia induced wall motion 

abnormalities may resolve if imaging is not completed quickly after the completion 

of exercise. Even under "study" conditions, about a third of new RWMA that 

develop at peak exercise may resolve by the time images were acquired after 
exercise. About 29% patients may be missed if imaging is performed only after 

exercise. (105) In 31% of patients with positive exercise echocardiography, the 

new RWMA at peak exercise resolved at post-exercise imaging obtained within 80 
seconds of exercise termination. (106) It was envisaged that imaging was unlikely 

to be completed in a significant proportion of the subjects studied within 60-90 

minutes of completing exercise. However, as both exercise and dobutamine have a 

similar accuracy for the detection of coronary disease; (107-109) it was felt that 

DSE would not be inferior to exercise for studying the patients with suspected heart 

failure.

The procedural limitations affecting DSE and cTDI influenced the study. The 

absence of universally accepted gold standard definition of LV diastolic dysfunction 

and the influence of heart rate and loading conditions on the diastolic mitral inflow 

velocities made interpretation if these changes difficult. These variables had to be 

assessed at sub-maximal stress to avoid fusion of the diastolic velocities. This was
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considered reasonable, as these breathless patients are unlikely to achieve age- 

predicted maximal heart rates during daily living. Moreover, sub-maximal stress is 

likely to be adequate to unmask LV diastolic dysfunction as the later is induced by 

ischaemia earlier than systolic dysfunction. The E/Ea measured using cTDI is 

higher than previously reported with pTDI. (20;345) The conversion used (21) may 

be somewhat arbitrary. Without measured NT-proBNP the diagnosis of heart 

failure in patients with normal ejection fraction was clinical.

The study groups were not compared to "true" healthy controls. The mean age of 

the HFNEF and the NoHF groups was similar. A proportion of patients with HFNEF 

who were very elderly may not have been recruited, as seen in other research 

studies, driving down the mean age in this group. The prevalence of diabetes, 

hypertension, COPD and LV hypertrophy all of which may affect diastolic function 

was also similar. This resulted in similar prevalence of resting LV diastolic 

dysfunction in these groups as reflected in the measured echocardiographic 

variables.

The therapeutic and prognostic implications of the findings in this heterogeneous 

group of patients were not tested. However, studies on better-defined populations 

suggest that the implications are likely to be significant.

CONCLUSION
TDI supplemented DSE is feasible only in a very selected group of patients that are 

referred to a heart failure clinic. It reveals information on cardiac function that is not 

identifiable at rest but have diagnostic, therapeutic and prognostic implications. 

DSE may be especially useful in evaluating patients with symptoms suggestive of 

heart failure but normal ejection fractions. The increase in the LVEDP with stress in 

patients with HFNEF may explain the exercise intolerance in these patients. The 

therapeutic and prognostic implication of the data in a heterogeneous group of 

subjects with suspected heart failure needs to be tested in larger outcome studies.
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Table 5.1 Baseline characteristics of the study population

Age (years) (meaniSD)

Age (yrs) range (median)

Males (%)

BMI (mean+SD)

NYHA (I/II/III/IV) (%)

Risk factors for CAD

H/O Smoking (%)

Diabetes (%)

Family history (%)

Hypertension (%)

History of

Angina (%)

Revascularisation (%)

Myocardial infarction (%)

Valvular disease (%)

COPD (%)

Drugs

Loop diuretics (%)

ACEIorARB(%)

Beta-blockers (%)

Aspirin (%)

Wafarin (%)

Spironolactone (%)

Systolic BP (mmHg)

Diastolic BP (mmHg)

6-min walk test (m)

Sinus rhythm (%)

Heart Rate

HF-LVSD 

(n=90)

68±9

43-88(69)

80.0

27.4513.6

1/31/58/0

64.4

18.9

35.5

64.4

61.1

28.9

47.8

8.9

26.7

74.4

67.8

68.8

86.7

8.1

23.3

134±24

80±13

217±139

74.4

76±15

HFNEF 

(n=41)

70±11

42-86(74)

46.3

26.64±4.8

0/27/14/0

63.4

19.5

31.7

63.4

63.4

9.7

29.3

7.3

24.4

75.6

68.3

70.7

87.8

9.7

4.9

148±22

85±11

174±109

78.1

76±14

NoHF 

(n=43)

68±11

46-89(69)

51.2

26.6513.3

43/0/0/0

62.8

13.9

32.5

46.5

23.3

0.0

7.0

9.3

30.2

26.5

44.2

37.2

34.9

0.0
•

0.0

145+18

83±11

363196

90.7

75±13

HFNEF v 

NoHF (p)

0.37

-

0.05

0.99

0.00

1.00

0.79

1.00

0.30

0.00

0.03

0.03

0.95

0.87

0.00

0.08

0.01

0.00

0.11

0.34

0.50

0.47

0.00

0.65

0.69

ANOVA 

(P)

0.51

-

0.00

0.38

0.00

0.98

0.74

0.89

0.12

0.00

0.00

0.00

0.94

0.83

0.00

0.02

0.00

0.00

0.13

0.00

0.00

0.04

0.00

0.09

0.76
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Table 5,2: Resting echocardiographic characteristics

IVSd

IVSs

LVPWd

LVPWs

LVIDd (cm)

LVIDs (cm)
LV mass (gm)

LV mass index
(gm/m2)

LVH n(%)

LVEDVol (ml)

LVESVol (ml)

LVEDVIsmp
LVESVIsmp

LVEDVol high n (%)

LVESVol high n (%)

EF (mean±SD)

WMSI >1 n (%)

WMSi>1.6n(%)

E/A <0.5 (%)

E/A>1.7(%)

EOT long n(%)*

EOT short n(%)*

IVRT long n(%)

Mod-sev MR n(%)

Mod-sev TR n(%)

Mild AS n (%)

Raised PAP n (%)

LVDD %

HF-LVSD 

(n=90)

1.3±0.3

1.5±0.4

1.4±0.5

1.8±0.5

6.4±0.9

5.2±1.0

411 ±178

218±81

54 (60.0)

135±55

92±44

74±31

50±26

38 (42.2)

70 (77.8)

33+9

90 (100)

77 (85.6)

22.1

26.5

14(15.7)

20 (22.2)

48 (53.3)

34 (37.8)

17(18.9)

3 (3.3)

21 (23.3)

55.6

HFNEF 

(n=41)

1 .4±0.4

1.7±0.5

1.3±0.3

1.7±0.3

4.711.1

3.1±1.0

248+114

139±65

22 (53.7)

71 ±26

24+12

39+14

1417

1 (2.4)

2 (4.9)

66±9

17(41.4)

0

9.4

3.1

14 (34.2)

4(9.8)

14(34.2)

7 (17.0)

4(9.8)

2 (4.9)

2 (4.9)

43.9

NoHF 

(n=43)

1.310.4

1.610.4

1 ,2±0.4

1.710.5

5.0±0.9

3.5±0.8

249±95

139±54

23 (53.5)

83±33

34±17*

46±17
19±9**

3(7)

6(13.9)

60±10*

21(48.8)

0

0

2.5

13(30.2)

1(2*3)

18(41.9)

3 (7.0)

2(4.7)

2 (5.6)

2 (5.6)

53.5

HFNEF v 

NoHF (p)

0.31

0.30

0.61

0.81

0.16

0.16

0.95

0.97

-

0.06

0.00

0.06

0.01
-

-

0.00

0.50

-

-

-

-

-

0.18

0.33

0.80

0.82

0.38

ANOVA 

(P)

0.55

0.05

0.38

0.64

0.00

0.00

0.00

0.00

0.69

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.01

0.10

0.00

0.05

0.76

0.00

0.45
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Low Sa %

Low Ea %

High Aa %

Ea/Aa<1 %

Normal E/Ea %

87.8

24.4

2.2

48.9

7.8

31.7

4.9

7.3

65.8

9.8

34.9

2.3

9.3

79.1

16.3

0.70

0.56

0.70

0.35

0.38

0.00

0.00

0.17

0.00

0.32

LVIDd, LV internal diameter in diastole. LVIDs, LV internal diameter in systole. LVEDvol, LV end- 
diastolic volume. LVESvol, LV end-systolic volume. EF, ejection fraction. MR, mitral regurgitation; 
TR, tricuspid regurgitation; AS, aortic stenosis; PAP, pulmonary artery pressure. LVDD, LV diastolic 
dysfunction; EOT, E-wave decelarartion time; IVRT, isovolumic relaxation time; *age dependent cut 
off values.
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Feasible 183(88.4%) 
THR without RWMA : 27 
New RWMA at THR : 56

(Incl 3 with sustained VT) 
New RWMA belowTHR :93 

(lnc!2withSTEMI
1 with sustained VT 
5 with angina + ST depression) 

Angina + ECG change : 5 
Maximum dose : 2

Earlytermination 24(11.6%)
Deterioration of image : 9*
NSVT without ischaemia : 7
Hypotension : 6
Hypertension : 2

Lost data in storage 6
Poor endocardial definition 6
Non-identical Images 7
Incomplete image set 5

Data Interpretable 
174

LVSD
89

No
LVSD 

41

No
LVSD 

43

LVSD
1

AF (fast heart rate) 20(7.3%) 
AwaitinglCDimplant 2(0.7%) 
BiV Pacemaker implanted 2(0.7%) 
Patientrequest(veryearly) 12(4.4%)

anxiety 3(1.1%)
back pain 4(1.5%)
breathlessness 3(1.1 %)
hip spasm 2(0.7%) 

Resting Hypertension 11 (4.0%) 
Resting Hypotension 9(3.3%) 
Persistent NYHA III symptom 8(2.9%) 
No Venous access 2(0.7%) 
Metastat ic Ma lig nancy 1(0.4%)

* These patients excluded from the final analysis

Figure 5.1. The patient journey.
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Figure 5.2. Median, interquartile range, 95% confidence and outlying results for 

wall motion score index and mitral annular systolic velocity in the three groups at 

rest, low dose dobutamine and peak stress.^ p<0.001, ANOVA vs the other 

groups.
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WMSI

Figure 5.3. Pie-chart showing the response of the ventricles to stress in the three 

groups. WMSI and Sa are reported as % of the total number of patients studied. 

Segmental WMS and Sm are reported as % of the total number of segments 

studied. The small % of segments not accounted for include the ones that either 

could not be assessed at rest and/or stress or a response to stress could not be 

determined.

HN-N, normal at rest with normal response to stress (normal). D N-l, normal at 

rest and worsened with stress (ischaemic)D A-l, abnormal at rest and worsened 

with stress (ischaemicjP A-B, abnormal at rest with biphasic response to stress 

(viable and ischaemic)EIO A-SI, abnormal at rest with sustained improvement with 

stress (viable and non-ischaemic)S A-S, abnormal at rest with no change with 

stress (scar).
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Figure 5.4. Changes (first letter denoting the resting and second, the stressed state) 

in the prevalence of the diastolic variable as a % of the total number of patients. H, 

high; N, normal; L, low; D, decreased; I, increased; A, abnormal

114



ET
A

m 1
 J

_

F-
LV

S
O

N
oH

F

E
O

T

H
F

-L
V

S
D

H
F

M
ff

 
N

oH
F 

H
F-

LV
S

O
 H

FN
E

F 
N

oH
F

IV
R

T
* 

*

i 
• 

t

H
F
-
t
V
S
O
 H
F
f
e
:
 
N
o
H
F
 
H
F
-
I
V
S
O
 H
F
N
B
"
 
N
o
H
F

Ea
* * t

j t r
j

v

t 
!

! 
I 

T

iEa
/Aa

ii 1i

* 
i

* * » t 
: J

R 
S 

R 
S 

R 
S 

HF
-LV

SO
 

HF
NE

F

x<
Aa

«

^_
 

4
i *

 
•

M
 

t i
1

R 
S 

R 
S 

R 
S

HF
-LV

SO
 

HF
N6

F 
No

HF

3
 
Y

 
t 

?
 

i
T

 f
 

: 
T

 
•

I 
«

R 
S 

R 
S 

R 
S 

HF
-LV

SD
 

HF
NE

F

R 
S 

R 
S 

R 
S

HF
-LV

SO
 

HF
NE

F

Fi
gu

re
 5

.5
. 

M
ed

ia
n,

 in
te

rq
ua

rti
le

 r
an

ge
, 

95
%

 c
on

fid
en

ce
 a

nd
 o

ut
ly

in
g 

re
su

lts
 fo

r m
itr

al
 in

flo
w

 a
nd

 a
nn

ul
ar

 d
ia

st
ol

ic
 p

ar
am

et
er

s 
in 

th
e 

th
re

e 
gr

ou
ps

 a
t r

es
t a

nd
 p

ea
k 

st
re

ss
.*

p<
0.

00
1 

,^
p<

0.
01

 A
p<

0.
05

, A
p=

ns
. ^

 p
<0

.0
01

 ^
 p

<0
.0

5 
fo

r A
N

O
VA

.



Resting E/Ea <8

Figure 5.6. A. Changes in the prevalence of E/Ea ratios amongst patients with 
resting E/Ea <8, 8-15 and >15 in the three groups. B. Patients with E/Ea <8, 8-15 
and >15 at peak stress as a % of patients with resting E/Ea <8, 8-15 and >15.



Chapter 6: Impaired Diastolic Reserve in Patients with Heart Failure and Normal 
Ejection Fraction. Circ Heart Fail 2009 Oct 30. [Epub ahead of print]

ABSTRACT

Background: The genesis of symptoms in patients with heart failure (HF) and 
normal ejection fraction (HFNEF) is unclear. Most investigations of HFNEF have 

focused on cardiac function at rest though most of these patients are breathless 

only on exercise. Stress induced impairment in systolic or diastolic function could 
result in these symptoms.

Method and results: Forty-one patients with HFNEF and 29 controls underwent 

DSE with cTDI. Regional wall motion score and wall motion score index (WMSI) 

and regional myocardial systolic velocity (Sm) were measured at and peak stress. 

Sa, Ea and Aa were averaged over the 6 peri-annular sites. Sa, but not the Ea, Aa 

or Ea/Aa ratio, was lower and the E/Ea ratio was higher in the HFNEF than 

controls at rest. Global, regional and long axis systolic function did not worsen with 

stress in the HFNEF group. The Ea decreased and the E/Ea increased with stress 

in the HFNEF but not in controls. The 6-minute walk distance was shorter and 

negatively correlated to the E/Ea ratio at rest and stress only in the HFNEF group. 

Conclusion: Impaired diastolic reserve resulted in stress-induced increase in the 

left ventricular end-diastolic pressure (LVEDP) in patients with HFNEF giving rise 

to exercise intolerance.
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INTRODUCTION

The clinical syndrome of heart failure may arise in the absence of any substantial 

abnormality of conventionally measured LVEF. Epidemiological studies suggest 

that up to half of subjects with heart failure have a normal LVEF.(13;29;51-53;346) 

The genesis of the symptoms of HF in the absence of reduced global LV systolic 

function is uncertain and may reflect a great deal of heterogeneity. Misdiagnosis 

may account for a proportion of cases.(55) Transient LVSD may occur due to 

ischaemia or arrhythmia (56) although serial echocardiographic studies have 

suggested that this is rare. (63) Many patients do have subtle forms of LVSD e.g. 

selective impairment of long-axis systolic and diastolic dysfunction at rest that do 

not manifest as a major impairment of global LVEF. (57;58)

Most investigations of HFNEF have focused on cardiac function at rest, yet most 

patients are breathless only on exertion. The pathophysiological basis of the 

exercise induced symptoms and signs in these patients with HFNEF has not been 

well characterised.

DSE is a standardised method of assessing the heart under stress. Using cTDI 

with DSE, global, regional and longitudinal systolic and diastolic function can be 

measured. (193;204) These techniques were used to test the hypothesis that 

stress induced diastolic impairment occurs and might contribute to exercise 

induced breathlessness in patients with HFNEF.

METHOD 

Patient Selection
Patients with a suspected HFNEF were identified from a community-based heart 

failure programme. The diagnosis of HF was based on clinical evaluation by a 

cardiologist on the basis of the patients' previous and current history and physical 

examination in concordance with the ESC definition of HF.(1) Most patients had 

previous hospital admissions with acute breathlessness, clinical and/or radiological 

evidence of pulmonary congestion and clinical improvement with diuresis. The 

patients with pacemakers, severe valvular disease, prosthetic heart valves, 

inadequate echocardiographic window and contraindication to DSE were excluded.
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From a cohort of 200 consecutive patients with suspected heart failure who were 
referred between January 2002 and June 2003, 41 subjects (HFNEF group) were 
identified who matched the study criteria. Twenty-nine other subjects without a 
history of diabetes, hypertension, angina, myocardial infarction, with normal EGG, 
echocardiogram, and whose breathlessness was thought to be due to other 
problems (13 with obesity, 8 with obstructive airways disease, 1 with restrictive 
airways disease, 5 with obesity and obstructive airways disease and 2 with 
undetermined cause) acted as controls (control group). All subjects gave written 
informed consent. The Medical Ethics Committee of the Hull and East Yorkshire 
NHS Trust approved the protocol.

Study protocol

Following clinical evaluation, resting echocardiography the patients underwent a 
DSE supplemented with cTDI using a standard dobutamine atropine protocol. The 
procedure is detailed earlier.

Statistical analysis 

As described earlier.

RESULT
Patients with HFNEF (table 1) had a higher prevalence of hypertension, diabetes 
and previous myocardial infarction and greater use of ACEI or ARB and beta- 
blockers. The mean BMI and the prevalence of obesity were similar in each group. 
The mean FEV1/FVC ratio was higher in the HFNEF group but a similar proportion 
in each group had a ratio <75%. The blood pressure and LVEF were higher on 

average in patients with HFNEF.

Reproducibilitv
The intra-observer variability for all velocities was <10% at rest (Sa: 2.4-8.1%; 
Ea:3.4-8.3%; Aa: 3.3-8.1% and Sm:3.2-9.8%) and 13% at stress (Sa: 2.1-9.3%; 
Ea:2.9-12.7%; Aa: 2.7-6.3% and Sm:4.1-12.4%). The reproducibility of the annular 

measurements was better then that of the myocardial segments.
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Response to stress

No major adverse event occurred during DSE (table 1). The final dose of 
dobutamine was higher in the controls. The blood pressures increased with stress 
in both groups. Intraobserver variability of the measured myocardial velocities 
remained low at rest (<10%) and peak stress (<15%).

The WMSI was similar in both groups at rest and at stress and did not worsen with 
stress in either group (figure 1). Fifty one percent and 59% patients at rest 

(p=0.540) and 68% and 69% patients at peak stress (p=0.952) had WMSI of 1 in 
the HFNEF and control groups respectively (p=0.115 rest v stress in HFNEF and 

p=0.412 rest v stress in controls). The increases in WMSI did not exceed 20% in 
any subject. 96.5% segments in the HFNEF group and 91.6% in controls could be 

assigned a response to stress (p<0.001). Except for a higher prevalence of scars in 
the HFNEF group, the segmental response to stress was similar in the two groups 

(table 1).

Six patients in the HFNEF group and none in the control group had low Sa at rest. 
The Sa (figure 1) was lower in the HFNEF group than the controls at rest and peak 
stress but increased with stress in both groups. Sa increased from rest to stress in 
all subjects with increase of >20% seen in 37/41 (90.2%) and 26/29 (89.7%) in 
HFNEF and controls respectively. The Sa was higher in the controls in all the walls 
at rest and most walls at peak stress. With stress, it increased in all walls in both 

groups (table 2).

The mean Sm for each non-apical segment of the HFNEF group was similar to that 
of the controls at rest and peak stress except those for the inferior basal and 
anteroseptal basal segments that were higher in the controls at peak stress. It 
increased for all the segments of both groups in response to stress (table 2). 

Amongst the segments that could be assessed quantitatively at rest (97.2% in the 
HFNEF and 98.9% in controls) Sm was low in 18.4% and 9.9% segments in the 

HFNEF and controls respectively (p=0.001). Amongst the segments that could be

120



assessed quantitatively at rest and stress, the Sm decreased with stress in 27.6% 

segments in the HFNEF group compared to 28.7% in controls (p=0.727).

The averaged LVOT gradient of the HFNEF group was similar to controls both at 

rest and peak stress and increased with stress in both groups (table 2). The 

highest LVOT gradient recorded were 13.5 and 8.4 mmHg at rest and 52.1 and 

46.2 mmHg at peak stress in the HFNEF and controls respectively. The highest 

increases in the LVOT gradient with stress were 47.7 and 39.7 mmHg in the two 

groups respectively.

Conventional measures of LV diastolic function (table 2) were similar in both 

groups at rest and stress. With stress, the E/A ratio remained unchanged and the 

IVRT and EOT shortened in both groups. The heart rate corrected IVRT increased 

in the HFNEF group but not in controls and EOT did not change in either group. 

Diastolic LV dysfunction at rest was seen in 39% of subjects (14 with slow 

isovolumic relaxation and 2 with restrictive filling pattern) with HFNEF and 52% of 

the controls (15 with slow isovolumic relaxation) respectively (p=0.292).

The changes in the prevalence of the diastolic variables are shown in figure 2. E/A 

decreased with stress by >20% in 26% and 33% patients in HFNEF and controls 

respectively (p=0.53). Amongst the subjects with normal EOT at rest, it increased 

or failed to decrease in 50% in the HFNEF and 42% in controls (p=0.606). 

Amongst the patients with normal IVRT at rest, it failed to decrease in 58% and 

43% in the two groups (p=0.37).

At rest, E/Ea ratio in the HFNEF group was higher than the controls (figure 3). At 

peak stress, the Ea and Ea/Aa were lower and the E/Ea ratio higher in the HFNEF 

group compared to controls. The Ea and Ea/Aa ratio decreased and the Am and 

E/Ea ratio increased in the HFNEF group with stress. In the controls, all the 

variables remained unchanged with stress except Aa that increased.

The Ea decreased by at least 20% in 47.5% and 17.3% (p=0.009) and increased in 

the same amount in 7.5% and 24.1% (p=0.05) in the HFNEF and controls
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respectively. E/Ea ratio increased by > 20% in 72.5% and 31.0% (p=0.001) 

subjects in the two groups respectively. Amongst those whose Ea decreased with 
stress the E/Ea increased in 97.1% patients in the HFNEF group and 58.3% in the 
controls (p=0.001).

The distance walked in 6 minutes was shorter in the HFNEF group compared to 
controls. On univariate analysis, (table 3) E/Ea (p<0.001), Ea (p=0.008), E 

(p<0.001), A (p=0.028) at peak stress; E/Ea (p<0.001), EOT (p=0.045), E 
(p=0.042), A (p=0.014) at rest and age (p=0.003) correlated with the 6 minute walk 
distance.

There was a negative correlation between the distance walked and the E/Ea ratio 
at rest and stress (figure 4) in the HFNEF group.

DICUSSION
This study excludes stress-induced LVSD as a common cause of symptoms in 
patients with HFNEF. Obesity and obstructive airways disease are also unlikely to 
account for these symptoms. Impaired diastolic relaxation provoked by stress 
associated with increased LV end-diastolic pressure (LVEDP) is likely to reduce 
exercise tolerance in these patients.

The symptoms in patients with HFNEF have been attributed to obesity, respiratory 
disease and myocardial ischaemia. (55) This study does not support these 
hypotheses. High BMI and abnormal spirometry were equally prevalent in the 
HFNEF and control groups. Search for myocardial ischaemia, transient but 
extensive enough to impair global LV systolic function has rarely been undertaken 
in these patients. In most studies history of CAD, electrocardiograph^ evidence of 
myocardial infarction or ischaemia and coronary angiography has been used to as 
evidence of ischaemia. (55;89) Ischaemia was systematically evaluated in only 
1(n=20) (88) of the 11 studies (n=763) reviewed by Choudhury et al and was 
found to be absent. (89) Preserved LV systolic function during episodes of 
pulmonary oedema has been reported in hypertensives. (63) Studies have 
suggested exclusive diastolic impairment in patients with HFNEF. (90;91) In our
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HFNEF patients global, regional and long axis systolic function did not worsen with 

stress suggesting that ischaemia-induced systolic dysfunction is an unlikely cause 

of heart failure. The lack of evidence of LVSD in patients with HFNEF may be due 

to the remoteness of its estimation relative to the episode of heart failure. (52) 

Though the LV function was not assessed in relation to an episode of heart failure, 

it is unlikely that these symptoms were due to LVSD, in the absence of stress- 
induced systolic abnormalities.

Impaired LV long-axis systolic function at rest has been reported in HFNEF. 

(57;58;60) Consistent with these studies, the resting Sa was lower in the patients 

compared to controls. Baicu et al (91) argued that the impaired resting long axis 

systolic function reported in these studies (57;58;60) resulted from the inclusion of 

a substantial number of the patients LVEF <0.50 into the HFNEF group. None of 

our HFNEF patients had LVEF <0.50. Contrary to a previous report (59) the Sm of 

most segments in the two groups were similar at rest. The Sa and Sm increased 

during stress in the HFNEF group as in controls suggesting improvement rather 

than a deterioration of the long axis function with stress.

Effect of stress on diastolic function
The changes in the indices of diastolic function in the controls were consistent with 

the effects of exercise on these indices in normal middle-aged subjects. (194) The 

effect of stress on LV diastolic indices has rarely been studied in patients with 

HFNEF. Kitzman et al demonstrated a increase in LV filling pressure with exercise 

in 7 patients with heart failure and preserved systolic function. (183) Similar 

changes have been reported in normotensive patients with normal LVEF without 

inducible myocardial ischaemia and exaggerated SBP response to exercise (83) 

and in about a third of patients with conventional indications for cardiac 

catheterisation. (184) Though these studies did not assess the effect of stress on 

the diastolic indices specifically in patients with HFNEF, our conclusion that stress 

impairs LV diastolic relaxation resulting in an increase in the LVEDP in patients 

with HFNEF is consistent with these findings. The causal relation between exercise 

intolerance and stress induced diastolic impairment seen in our study has also
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been demonstrated in patients with exercise intolerance and normal LV systolic 
function. (184;239)

Mechanisms of stress induced diastolic dysfunction

The diastolic dysfunction induced by dobutamine stress may have resulted from 

ischaemia, increased systolic blood pressure and induced tachycardia. Impaired 

ventricular relaxation may be a manifestation of early ischaemia. Myocardial 

ischaemia impairs ventricular relaxation earlier than systolic contraction. (187) In 

patients with coronary artery disease ischaemia induced by pacing, (78) 

dipyridamole, (77) dobutamine (76;80) and exercise (75) results in a transmitral 

flow pattern consistent with delayed relaxation. Even transient, reversible episodes 

of ischaemia can impair LV relaxation and elevate LV filling pressures. (74) 

Regional impairment of myocardial relaxation of ischaemic segments has been 

seen at rest even when systolic contraction is preserved (79) and after 

dobutamine stress (188) and coronary occlusion. (81)

Stress-induced tachycardia may have worsened ischaemic diastolic relaxation by 

increasing myocardial oxygen demand and decreasing coronary perfusion time. 

Shortening the diastole allows less time for relaxation. This is further amplified in 

hypertrophied and fibrosed myocardium that is unable to generate a higher rate of 

diastolic relaxation causing the diastolic pressures to increase. (85; 189)

Stress-induced elevation of systolic blood pressure, may have contributed. 

Elevated SBP slows LV relaxation due to increased afterload with a resultant 

increase in the LA pressure. (82) In hypertensives, a rapid increase in SBP at rest 

(63) or following exercise (83) results in deterioration of LV diastolic function 

without worsening systolic function. Similar changes in response to stress have 

been demonstrated in patients with HFNEF.(84)

LIMITATION
Pharmacological stress used in this study may differ qualitatively from exercise. 

This choice permitted us to investigate patients who were elderly with poor 

exercise capacity and mobility. The problem of inadequate image quality due to the
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increased rate and depth of breathing after exercise stress was eliminated. The 

lack of diagnostic gold-standard for diastolic heart failure made diagnosis difficult. 

The diastolic blood flow and annular velocities were measured at sub-maximal 

heart rates to avoid the problem of fusion of these velocities at peak stress. This 

strategy was reasonable considering that these breathless patients were unlikely to 

generate maximal heart rates during daily living. The E/Ea ratio measured was 

higher than previously reported. (193;204) This is because myocardial velocities 

measured by cTDI in this study are lower than that measured by pulsed TDI. (196) 

The left atrial diameter measured in the parasternal long axis view may not have 

reflected the true increase in LA size that often occurs in the apico-basal direction 

in patients with HFNEF. The study group was heterogeneous comprising of 

patients with IHD, myocardial infarction, hypertension and diabetes, all of which 

may have influenced LV relaxation. Some of the subjects in the control group had 

obesity and COPD both of which may have affected the LV diastolic function. This 

may have underestimated the difference in the diastolic parameters between the 

groups. The study involved small number of patients and the findings need to be 

confirmed on a larger population.

CONCLUSION
Stress does not commonly induce systolic dysfunction in patients with HFNEF. It is 

unlikely that exercise intolerance is due to global regional or long axis systolic 

dysfunction or other non-cardiac causes. Abnormalities in diastolic function are 

often induced or exacerbated by stress in these patients, whether or not the final 

diagnosis is thought to be diastolic heart failure. Stress-induced impairment of early 

diastolic relaxation with consequent rise in the LVEDP is the likely cause of 

exercise intolerance. This study suggests that cputine stress echocardiography 

may be useful in fully evaluating these patients. However, utility of the test is 

uncertain till it is shown to predict symptoms, morbidity, mortality and effects of 

treatment.
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Table 6.1. Clinical characteristics of the HFNEF and controls.

Age (yrs)

Male n (%)

BMI

Overweight/Obesity n (%)

Current smoker n (%)

Hypertension n (%)

Diabetes n (%)

Previous Ml n (%)

Drug history

Loop diuretics (%)

ACEIorARB(%)

Beta-blockers (%)

Aspirin (%)

Spironolactone (%)

NYHA I Ml I n (%)

Heart rate (bpm)

SBP (mm Hg)

DBF (mm Hg)

FVC (I)

FEV! (l/min)

FEWFVC (%)

FEWFVC <75% n (%)

QRS duration (ms)

6 min walk test (m)

Resting Echocardiography

LA (cm)

LV mass (gm)

LV mass index (gm/m2)

LVH n (%)

EDVsmp (ml)

ESVsmp (ml)

EDVIsmp (ml/m2)

ESVIsmp (ml/m2)

HFNEF (n=41)

70±11

19(46)

26.6±4.2

25(61)

24 (58)

26 (63)

8(19)

12(29)

31 (76)

28 (68)

29 (71)

36 (89)

2(5)

40 (98)

76±14

148±22

85±12

2.7±1.3

2.1+1.0

80±7

16 (39)

95±21

174±109

3.84±0.80

248±115

139±65

25(61)

70.6±26.0

24.5±12.4

39.2±13.8

13.6±6.9

Controls (n=29) p

66±11

17(59)

26.53±3.4

21(72)

16(55)

0(0)

0(0)

0(0)

22 (76)

3(10)

2(7)

24 (83)

0(0)

25 (86)

76±13

135±12

78±8

2.2±0.9

1.6±0.79

71±16

13(45)

94+21

373±100

3.66±0.69

234±92

129±50

13(45)

76.8±23.1

30.0±13.2

41.8±10.8

16.3±6.4

0.14

0.31

0.92

0.32

0.78

<0.001

0.01

<0.001

0.98

O.001

<0.001

0.55

0.23

0.69

0.89

0.01

0.01

0.67

0.09

0.003

0.63

0.90

O.001

0.36

0.59

0.47

0.19

0.31

0.08

0.41

0.11
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EF (%) 66±9 62±8 0.02

Stress Response

Final dobutamine dose
THR

HR reached

% of THR reached, (%)

THR reached n (%)

SBP (mm Hg)

DBP (mm Hg)

Test Termination

THR n (%)

THR+RWMA n (%)

RWMA n (%)

Hypertension n (%)

Hypotension n (%)

NSVT n (%)

Ischaemia n (%)

Pain/Breathlessness n (%)

Segmental Response

Normal (%)

Ischaemic (%)

Scar (%)

29±9

127±9

124±13

98±10

24(59)

176±21

98±11

10(24)

12(29)

6(15)

1(2)

4(10)

5(12)

2(5)

1(2)

82.2

10.2

4.1

34±8

131 ±9

124±13

95±10

14(48)

170±12

97±5

9(31)

4(14)

5(17)

1(3)

5(17)

1(3)

3(10)

1(3)

86.2

7.3

0

0.02

0.14

0.76

0.17

0.39

0.23

0.81

0.54

0.13

0.77

0.80

0.36

0.20

0.38

0.80

0.07

0.10

0.00

CAD, Coronary artery disease; IHD, ischaemic heart disease; NYHA, New York Hear 

Association; ACEI, angiotensin converting enzyme inhibitor; ARE, angiotensin receptor 

blocker; HR, heart rate; THR, target heart rate; FVC, forced vital capacity; FE\A|, forced 

expiratory volume in 1 second, LA, left atrial diameter; EDVsmp, left ventricular end- 
diastolic volume by Simpson's; ESVsmp, left ventricular end-systolic volume by Simpson's; 

EDVIsmp, left ventricular end-diastolic volume index by Simpson's; ESVIsmp, left 
ventricular end-systolic volume index by Simpson's; EF, ejection fraction.
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Table 6.2. The echocardiographic variables at rest and stress in the HFNEF and control 

groups.

REST

HFNEF 

(n=41)

Controls 

(n=29)

P PEAK STRESS

HFNEF 

(n=41)

Controls 

(n=29)

P

Mitral annular systolic velocities (mean±SD)

LMA (cm/s)

SMA (cm/s)

AMA (cm/s)

IMA (cm/s)

PMA (cm/s)

ASMA (cm/s)

Myocardial Segmental

LB (cm/s)

SB (cm/s)

AB (cm/s)

IB (cm/s)

PB (cm/s)

ASB (cm/s)

LM (cm/s)

SM (cm/s)

AM (cm/s)

IM (cm/s)

PM (cm/s)

ASM (cm/s)

LVOT Vmax (cm/s)

LVOT Pmax (mmHg)

5.4±1.7

4.6H .3

5.311.6

5.011.4

5.2±1.5

4.411.4

Velocities

4.112.1

4.6H.3

4.U1.8

5.1H.6

4.511.8

3.911.5

3.0±2.2

3.511.2

2.412.1

3.7H.3

3.2±2.0

3.111.7

109±28

5.0±2.7

6.8H.5

5.2H.1

6.111.5

5.811.3

6.4H.3

5.6H.O

(mean±SD)

5.0H.9

4.9H.2

4.0H.9

5.411.2

5.211.8

4.5±0.9

3.5±2.0

3.311.0

2.711.5

3.811.3

3.811.6

3.211.0

113120

5.211.8

0.00

0.02

0.04

0.01

0.00

0.00

0.06

0.39

0.83

0.30

0.16

0.06

0.27

0.40

0.54

0.78

0.25

0.89

0.51

0.73

8.111.9*

7.4±2.5*

7.9±2.5*

8.112.6*

8.311.8*

7.5±2.3*

6.512.5*

7.6±2.5*

6.6±2.9*

7.7±2.8*

7.2±2.6*

6.8±2.2*

5.2±2.6*

6.2±2.5*

4.7±2.6*

6.2±2.5*

5.9+2.4*

6.3±2.2*

186±73*

15.4112.8*

9.6±1.6*

9.112.1*

8.7±2.6*

8.9±2.0*

9.5±2.0*

8.6H.8*

7.512.1*

8.512.1*

6.7±2.6*

9.112.0*

7.8±2.3*

7.9±2.0*

5.6±2.0*

6.7±2.4*

4.4±2.5**

7.112.6*

6.0±2.8*

6.712.1*

172±52*

14.0±8.9*

0.004

0.01

0.20

0.21

0.01

0.03

0.09

0.13

0.96

0.02

0.31

0.03

0.50

0.45

0.60

0.12

0.93

0.44

0.87

0.62

Diastolic variables median (IQR)

E(cm/s) 68(54-95) 65(53-75) ns

A (cm/s) 77(71-92) 81(68-96) ns

E/A 0.83(0.61-0.94) 0.77(0.6-0.9) ns

IVRTms 102(91-112) 107(82-115) ns

EDTms 235(184-286) 244(194-306) ns

IVRTcms 109(91-134) 114(96-133) ns

EDTcms 267(198-309) 268(226-328) ns

77(65-91)*** 

97(88-114)* 

0.73(0.62-0.84) 
92(69-111)*** 

189(140-265)*** 

127(98-153)* 

257(203-362)

70(54-93)*** ns

97(80-108) ns

0.73(0.56-0.89) ns

82(71-92)* ns

183(153-214)** ns

120(109-135) ns

252(214-298) ns
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L, lateral; S, septal; A, anterior; I, inferior; P, posterior; AS, anteroseptal; MA, mitral 

annulus; B, basal segment; M, middle segment; E, early mitral inflow velocity; A, late mitral 

inflow velocity; IVRT, isovolumic relaxation time; EOT, E wave decelaration time; IVRTc, 

isovolumic relaxation time corrected for heart rate; EDTc, E wave decelaration time 

corrected for heart rate. Rest versus stress: *p<0.0001, **p<0.01, ***p<0.05
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Table 6.3.Correlation of 6 minute walk distance to the clinical and echocardiographic 
parameters

HFNEF

Rest

Age (yrs) -0.4569*** 

BMI 0.0551 

SAP -0.1505 

DAP -0.2159 

LA 0.0649 

LV mass 

index -0.0300 

EDVIsmp 0.2906 

ESVIsmp 0.2877 

EF -0.2318 

FEV1 0.0751

Stress

FEV/FVC -0.2882

WMSI

LVOT

Pmax
E

A

E/A

EOT

IVRT

IVRTc

DTc

Sa

Ea

Aa

Ea/Aa
E/Ea

-0.2585

-0.1980
-0.3249*

-0.4299***

-0.0580

0.3151*

0.0464

-0.0537

0.2004

0.2455

0.2578

0.0895

0.1758
-0.6260****

-0.2578

0.1409
-0.5276****

-0.3950**

-0.1868

0.2452

0.0962

0.1069

0.2761

0.2811
0.4164***

0.3359

0.1617
-0.7621****

Cont

Rest

-0.3020 

0.0285 

0.2296 

0.2308 

-0.0220

0.1246 

-0.1073 

-0.1620 

0.0521 

0.2818

0.0450

-0.2266

0.0076
0.4898***

0.2316

0.3279

-0.2597

0.1045

0.2116

-0.1882

0.2848

0.4212

-0.0421
0.4751***

0.0826

Stress

-0.1425

-0.1096
0.3457

0.3108

0.0824

-0.0311

-0.2735

-0.2490

0.0099

0.2784

0.1934

0.0882

0.0660

0.1904

ALL

-0.3895**** 

0.0200 

-0.0624 

-0.1417 

-0.0648

-0.0553 

0.1821 

0.2281 
-0.2928** 

0.0158

-0.1302
-0.3143***

-0.0734

-0.1644

-0.1745

-0.0126

0.1270

0.0689

0.0223

0.1178
0.4493****

0.3048

0.1911

0.1547
-0.4780****

-0.2902**

-0.0068

-0.2093

-0.1212

-0.1584

0.0542

-0.0858

-0.0839

0.0772
0.4106****

0.5652****

0.2630*
0.3978****

-0.6649****

*p<0.05, **p<0.02, ***p<0.01, ****p<0.001
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Chapter 7: The Effect of Pharmacological Stress on Intraventricular Dyssynchrony 

in Left Ventricular Systolic Dysfunction. Eur J Heart Fail. 2008 Apr; 10(4):412-20.

ABSTRACT

Background: Cardiac resynchronisation therapy (CRT) improves symptoms and 

exercise capacity in many patients with heart failure (HF) who have left ventricular 

systolic dysfunction (LVSD) and markers of dyssynchrony. LV dyssynchrony is 

conventionally measured at rest but the symptoms of heart failure occur 

predominantly on exercise. Induction or exacerbation of dyssynchrony during 

stress might identify additional patients who could benefit from CRT. 

Methods and Results: Seventy-seven patients (47 with QRSd<120 ms and 30 with 

QRSd>120 ms) with heart failure due to left ventricular systolic dysfunction and 22 

normal subjects underwent DSE using colour tissue-Doppler imaging. Left 

intraventricular dyssynchrony was measured as the standard deviation of the time 

to peak velocity from the onset of the QRS (Ts-SD) and the difference between the 

maximum and minimum time to peak velocity (Tscor-diff) in the 12 non-apical 

segments at rest and during peak stress. Timings were corrected for heart rate. 

The mean values of these indices increased with stress in both groups of patients 

but not in control subjects (p<0.001). The prevalence of conventionally-defined 

dyssynchrony also increased with stress.

Conclusion: In patients with heart failure, the severity and the prevalence of 

intraventricular dyssynchrony increase with stress. Whether stress-induced 

dyssynchrony will identify patients who might benefit from CRT awaits further 

research.
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INTRODUCTION

Left ventricular mechanical dyssynchrony is present in 30-50% of patients with 

heart failure and LV systolic dysfunction (LVSD) at rest, depending on the 

population studied and the definition of dyssynchrony applied. (93-96) The optimal 

method for assessing dyssynchrony is unclear. Prolonged QRS duration (QRSd), 

widely perceived as a marker of cardiac dyssynchrony, was a universal entry 

criterion for the randomised controlled trials demonstrating clinical and 

echocardiographic benefits of cardiac resynchronization therapy (CRT). (347;348) 

However, QRSd is a crude indicator of mechanical dyssynchrony (93;95) and 

QRSd prior to implantation and its reduction with CRT are poor predictors of 

therapeutic response. (349) Some non-randomised observations have suggested 

that direct measurement of mechanical systolic dyssynchrony before implantation 

may improve prediction of response to CRT either alone or in addition to QRSd but 

conclusive evidence is lacking. (271;350-354) These studies have considered 

dyssynchrony as a relatively stable phenomenon that neither changes during 

cardiovascular stress nor during prolonged follow-up. (348) The failure of current 

approaches to consistently identify therapeutic response, especially the long-term 

response, may reflect a failure to appreciate the potential for dyssynchrony to be a 

dynamic problem. The possibility that the prevalence and severity of LV 

dyssynchrony change when the ventricle is subjected to stress was investigated.

METHOD 

Patient selection
Inclusion criteria were NYHA class II-IV symptoms despite the use of diuretics and, 

unless not tolerated or contraindicated, treatment with ACE inhibitors or 

angiotensin receptor antagonists and beta-blockers for at least 3 months, LV 

ejection fraction (LVEF) <40% and sinus rhythm. Exclusion criteria were an acute 

coronary syndrome in the previous 6 months, significant valvular abnormality or a 

technically inadequate echocardiogram. The study population was divided into two 

groups: WQRS group (QRSd >120 ms) and NQRS group (QRSd < 120 ms). The 

aetiology of heart failure was considered to be ischaemic if there was evidence of 

previous myocardial infarction or angiographic evidence of >50% stenosis in major 

coronary arteries. Subjects, referred for the investigation of cardiac function, with a
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low probability of ischaemic heart disease, without a history of myocardial infarction, 
diabetes, hypertension, with normal resting EGG and echocardiography and no 
inducible ischaemia on DSE (DSE), acted as controls.

Following a clinical examination and ECG every subject underwent standard 
transthoracic echocardiography followed by DSE. All subjects gave written 
informed consent and the Medical Ethics Committee of the Hull and East Yorkshire 
NHS Trust approved the protocol.

Echocardiographv

A standard set of images was recorded digitally at rest using GE Vingmed System 
V scanner (Horten, Norway) equipped with a 2.5 to 5-MHz phased-array 
transducer and analysed off-line. LV volumes and LVEF were assessed using the 
biplane modified Simpson's rule.

Stress echocardioqraphv

Protocol

As described in Chapter 4.

In the cTDI mode, a sample cursor was placed at the midpoint of each of the 12 
non-apical segments of the lateral, septal, anterior, inferior, posterior and 
anteroseptal walls in the 3 apical views and myocardial velocity curves were 
reconstituted. The onset of the QRS to the peak of the T wave was taken as 
systole. The time to peak systolic velocity (Ts) was measured from the onset of the 
QRS complex to the peak of the myocardial systolic velocity during ejection in each 
of the 12 segments at rest and at peak stress. (271;354) Ts was corrected for 
heart rate (Tscor) using the Bazett's formula (Tscor=Ts/VR-R) to allow comparison 
between the Ts of any segment at rest and at peak stress. (191) Any segment that 
developed the highest positive velocity after systole with low flat velocity profile 
during ejection phase was excluded from the analysis.

Intraventricular dyssynchrony was measured as the standard deviation of the Ts 
and Tscor of all 12 segments (Ts-SD and Tscor-SD) (94;271;272;354) and the

137



maximum difference in the Ts (Tsdiff) and Tscor (Tscordiff) between any two of the 

12 segments. (272) A segment was labelled as "delayed" if the Ts or Tscor was > 

the mean+2SD of controls in that state (i.e. rest or stress). The prevalence of 

systolic dyssynchrony was defined as % of patients with Ts-SD, Tscor-SD, Tsdiff or 

Tscordiff of > the mean+2SD of controls in that state. All timings were calculated as 

the average of 2 to 3 consecutive cardiac cycles. All images were analysed by a 

single investigator (SC) blinded to the clinical characteristics of the patient.

Statistical analysis 

As described before.

Intraobserver variability in the Ts measured at the 12 non-apical segments was 

calculated in a sample of 10 randomly selected patients at rest and at peak stress 

totalling 240 pairs of measurements. It was reported as meaniSD. Confidence 

limits (95%) of differences were computed and expressed as absolute values and 

percentages of the average values of paired velocity measurements.

RESULTS

Between January 2002 and March 2003, 77 patients with heart failure (mean age 

68±9 years, 60 (78%) males) were enrolled (47 (61%) in NQRS group and 30 (39%) 

in WQRS group) (Table 1). Patients were in New York Heart Association class II 

(n=42), III (n=26) and IV (n=9). The QRSd, LV volumes and WMSI at rest were 

higher in the WQRS group. Twenty-two controls (mean age 67±12 years, 14 (64%) 

males) were also enrolled. Controls and patients had similar characteristics apart 

from measures of LV dysfunction. All controls and 31 (40%) patients reached the 

target heart rate (THR), 33 (43%) reached >90%, 8 (10%) reached >80% and 5 

(7%) reached >70% of the THR. There were no major adverse events or limiting 

side effects during the study. Of those with heart failure, 32/77 (41.5%) complained 

of chest discomfort with or without minor ST-segment depression. The heart rate, 

systolic and diastolic blood pressure and the rate-pressure product were higher at 

peak stress than at rest in all three groups (Table 2).

Seamental Time to Peak Velocity (Ts) at rest and during stress
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At rest, Ts could be measured in 261/264 (98.9%) segments in the control group 
compared to 896/924 (97.0%) segments in patients with heart failure (p=0.23). At 
peak stress, Ts could be measured in 260/264 (98.4%) segments in the control 
group and 906/924 (98.1%) in patients with heart failure (p=0.84). The overall 
intraobserver variability (Table 3) was low (range 1.2-5.9% at rest and 1.0-9.6% at 
peak stress). The variability was highest in the basal segment of the anteroseptal 
wall at rest and in the basal segment of the septum at peak stress.

In patients with heart failure, the Ts was delayed in most myocardial segments at 
rest and in all myocardial segments at peak stress compared to controls (Figure 1). 
Ts was shortened in most segments during stress except postero-basal, lateral-mid 
and postero-mid segments where Ts was similar to or delayed compared to resting 
values. Comparing patients with NQRS and WQRS, the mean Ts of each segment 
was similar at rest but at peak stress, the postero-basal, lateral-mid and postero- 
mid segments in the WQRS group were delayed compared to the NQRS (Figure 1).

Correction for heart rate (Tscor) had little effect on the overall pattern (Figure 1). 
The Tscor shortened in all segments with dobutamine stress in controls. It failed to 
shorten in any segment and increased in the mid-segments of the lateral and 
posterior walls in patients with and without wide QRS. At rest, Tscor was delayed 
in 6/264 (2.3%) segments in the control group compared to 73/564 (12.9%) in the 
NQRS (p<0.001) and 81/360 (22.5%) in the WQRS (p<0.001) (p<0.001 comparing 
patient QRS groups). At peak stress, delays were identified in 10/264 (3.8%) 
segments in the control group compared to 215/564 (39.4%) in the NQRS (p<0.001) 
and 163/360 (45.28%) in the WQRS (p<0.001) (p=0.08 comparing patient QRS 
groups). In response to stress, the Tscor lengthened in 44/264 (16.7%) segments 
in the control group compared to 262/564 (46.5%) in the NQRS (p<0.001) and 
172/360 (47.8%) in the WQRS (p<0.001) (p=0.69 comparing patient QRS groups).

Standard Deviation of the Time to Peak Systolic Velocity (Ts-SD) 
Ts-SD uncorrected for heart rate was markedly greater in patients compared to 
control subjects but changed little with stress (Figure 2). However, marked 
differences with stress were observed after correction for heart rate. In the controls,
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Ts-SD and Tscor-SD were 20.3±8.8 and 23.9±11.4 at rest and 22.3±6.7 and 

28.4±7.3 at peak stress. At rest, a Tscor-SD > 46.7 ms (mean+2SD of controls) 

was seen in one control subject and 46 (60%) patients with heart failure (p<0.001), 

21(45%) in NQRS (p=0.004 v controls) and 25(83%) in WQRS (p<0.001 v controls) 

groups (p=0.003 for the difference between NQRS and WQRS groups). At peak 

stress, a Tscor-SD of > 43.0 ms (mean+2SD of controls) was seen in none of the 

controls but 65 (83%) (p<0.0001) patients with heart failure, 36(77%) in NQRS 

(p<0.001 v controls) and 29(97%) in WQRS (p<0.001 v controls) groups (p=0.061 

for the difference between patient QRS groups) (Figure 3).

Maximum Difference Between Segmental Peak Velocities (Ts-diff) 

Ts-diff uncorrected for heart rate was markedly greater in patients compared to 

control subjects and increased with stress especially in patients with WQRS 

(Figure 2). After correction for heart rate, the effects of stress were even more 

marked in patients but not in control subjects. In the controls, Ts-diff and Tscor-diff 

were 62.7±24.4 and 73.6±30.5 at rest and 70.9±22.4 and 88.3±21.8 at peak stress. 

At rest, no (0%) control subject but 47 (61%) patients (p<0.001) had Tscor-diff 

>134.5 ms (mean+2SD of controls). Twenty-three (49%) patients in NQRS group 

(p<0.001 v controls) and 24(80%) in WQRS group (p<0.001 v controls) (p= 0.024 

for the difference between patient QRS groups) had Tscor-diff > 134.5 ms. At peak 

stress, 38 (81%) patients in NQRS group (p<0.001 v controls), 30 (100%) patients 

in the WQRS group (p<0.001 v controls and p= 0.038 comparing patient QRS 

groups) and none of the control subjects had Tscor-diff > 131.8 ms (mean+2SD of 

controls) (Figure 3).

Depending on the TD variable, 95-100% of controls were normal at rest and all 

remained that way at peak stress compared to 8-13% in the NQRS group and 

none in the WQRS group (Figure 4). In 43% of NQRS patients, the TD variables 

were normal at rest and became abnormal at peak stress compared to 20% in the 

WQRS group and none of the controls. 80% of the WQRS patients were 

dyssynchronous at rest and continued to be abnormal at stress compared to 38- 

40% in the NQRS and none of the controls. Depending on the variable, 6-8% of 

patients in the NQRS group and none of the WQRS group improved with stress.
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DISCUSSION

Cardiac dyssynchrony has rarely been studied during stress. This study 

corroborates the reported high prevalence of intraventricular dyssynchrony at rest 

in patients with LVSD irrespective of QRS duration.(93-96) However, during 

pharmacological stress both the prevalence and severity of dyssynchrony increase. 

Since the prevalence of dyssynchrony at rest is lower in patients with QRSd <120 

ms the increase is most evident in this population. The prevalence of stress- 

induced dyssynchrony in these patients approached that observed in patients with 

QRSd >120 ms during pharmacological stress. Indeed, most patients with LVSD 

had dyssynchrony during stress regardless of QRS duration. Stress rarely 

improved dyssynchrony in this study.

Compared to control subjects, the time to peak systolic velocity was greater in 

most myocardial segments at rest and in all segments at peak stress in patients 

with LVSD regardless of QRS duration. Stress shortened the time to peak systolic 

velocity in all segments in healthy subjects and in most segments of patients with 

LSVD. Indeed, when corrected for heart rate, stress shortened the time to peak 

velocity in control subjects but not in patients with LSVD regardless of QRS 

duration. Additional delays in some segments were observed in the latter. The 

lateral and posterior wall segments were particularly prone to delay both at rest 

and during stress in patients regardless of QRSd, as previously reported in patients 

at rest. (272;355) The greater vulnerability of the LV free-wall to dyssynchrony 

presumably reflects an exaggeration of the usual pattern of ventricular activation in 

the presence of a dilated ventricle, greater myocardial mass, slowed intra- 

myocardial conduction and areas of fibrosis and scar. (356)

Studies, investigating the effects of pacing-induced tachycardia, exercise or 

pharmacological stress on ventricular dyssynchrony, have yielded conflicting 

results.(97-100;357) Indices of dyssynchrony did not change in subjects without 

heart disease in these studies whether the stressor was exercise or dobutamine. 

Pacing induced tachycardia augmented LV mechanical dyssynchrony in one study 

of patients with non-ischaemic LVSD. In 65 patients with heart failure studied by
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Lafitte et al (97) , only 22 of whom had QRS <120 ms, the mean values of the 

dyssynchrony indices did not change with exercise stress. Dyssynchrony increased 
in 37% and diminished in 20%. The changes may partly have reflected 
measurement error given the technical difficulties of exercise echocardiography. 
Valzania et al (99) reported a lack of increase in dyssynchrony indices, derived 
from timings not corrected for heart rate, with dobutamine-stress in patients with 
QRSd > 130 ms undergoing CRT. This is consistent with our findings. Neither 
Hummel et al (98) nor Da Costa et al (100) reported the effects of stress on 
dyssynchrony in heart failure patients with wide QRS. Differences in the proportion 
of patients with QRSd <120 ms, the proportion with dyssynchrony at rest, the 
magnitude of change in heart rate, the stressor and the criteria by which 
dyssynchrony is judged to be present may account for some of the differences 
observed. Importantly, CRT appears to maintain its synchronising effect during 
exercise stress. (195)

Pharmacological stress permitted us to investigate patients who were elderly with 
poor exercise capacity and mobility and those with severe heart failure; patients 
that are difficult or impossible to study using exercise stress. (97) Higher heart 
rates may be reached during exercise than with peak dose dobutamine but the 
rapid decline in heart rate after exercise and delays in acquisition are common 
(262) as are the difficulties in obtaining adequate images due to the increased rate 

and depth of breathing.

Patients with LVSD are prone to subendocardial ischaemia whether or not they 
have epicardial coronary disease (324;358) and treatments that decrease 
ischaemia may improve dyssynchrony. (324;359) Stress induced dyssynchrony 
could reflect induction of ischaemia and this could not be discounted as a 
contributing factor. However, in the absence of substantial deterioration of WMSI 
and mitral annular velocity at peak stress, it is unlikely that clinically overt 
ischaemia played a significant role in inducing dyssynchrony in our patients. The 
chronotropic effect of dobutamine may at least partly be responsible. Pacing 
induced tachycardia augments LV mechanical dyssynchrony in patients with non- 

ischaemic LVSD. (357)
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LIMITATION

The mechanism of stress-induced dyssynchrony or its ability to predict the 

response to CRT was not studied. The absence of recent coronary angiograms or 

segmental strain data precludes exclusion of ischaemia as a mechanism. In the 

absence of data on the sequence of electrical activation through the LV at rest and 

stress, we are unable to say whether the stress induced worsening of 

dyssynchrony is due to alteration in the electrical activity as a result of changes in 

the conduction properties or impaired mechanical coupling. The dyssynchrony was 

assessed at heart rates that are unlikely to be reached in elderly patients with 

relatively sedentary life styles and optimally treated with beta-blockers. It is 

uncertain what effects would be produced by a lesser degree of stress. The 

relationship of post-systolic motion induced by stress to dyssynchrony was not 

studied. Segments that developed extreme delay in attaining their highest positive 

velocity were excluded from analysis (36/924, 3.9 %). These would have 

contributed even further to the severity of dyssynchrony on stress.

CLINICAL IMPLICATION

It is far from clear how patients should be selected for CRT. QRS duration 

thresholds and echo dyssynchrony criteria were chosen rather arbitrarily as entry 

criteria for clinical trials based on pathophysiological concepts and observed 

associations in small series of patients. Widened QRS is a marker of more severe 

left ventricular dilatation and dysfunction (12) and may be a marker of 

dyssynchrony mainly because it indicates a sicker ventricle. There is remarkably 

little evidence that echo dyssynchrony is associated with a worse prognosis and 

indeed some evidence that inter-ventricular dyssynchrony is associated with better 

outcome. (348) If QRS duration and dyssynchrony are being used as markers of 

risk rather than of dyssynchrony then NT-proBNP is better than either. (360;361) 

Now that it is known that CRT works for some patients, it is important to find out 

whether current guidelines are appropriate or too restrictive.

Observational studies suggest that CRT may be effective in patients with narrower 

QRS (362;363) whether or not they have mechanical dyssynchrony at rest. Recent
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reports have failed to identify a strong-link between echo dyssynchrony at rest and 

outcome of CRT. (364) One of the many potential explanations for the lack of this 

relationship may be that dyssynchrony is dynamic and changes with stress. If 

stress-dyssynchrony is an appropriate target for therapy stress-echocardiography 

might be considered necessary in order to select patients for CRT. However, if 
stress dyssynchrony is as common as this study suggests, then a strategy of CRT 

implantation in all patients who have persistent major LVSD could be considered a 

more pragmatic approach. These concepts need to be tested in randomised 

controlled trials. This data also suggests that measuring dyssynchrony only at rest 

underestimates its prevalence and fixed setting of the biventricular pacemakers 

may not be physiological in the presence of such dynamicity.

CONCLUSION

Dobutamine-stress induces and exacerbates dyssynchrony in patients with LVSD. 

LV dyssynchrony, unmasked by stress in patients with narrow QRS, could be a 
target for therapy. If so, then most patients with LVSD, regardless of QRS duration 

or evidence of dyssynchrony at rest might benefit from CRT. This hypothesis 

remains to be tested.
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TABLE 7.1. Comparison of Baseline Clinical Characteristics of the Controls and 
Study Groups.

Control N QRS W QRS p value* p value

Age (years) 

Males n (%) 

BMI

QRSd (ms) 

Aetiology

IHD n(%)

DCM n(%)

Hypertension n(%) 

Ml n (%)

Prior revascularisation n (%) 

Diabetes n (%) 

Hypertension n (%) 

Drugs

Diuretics n (%)

ACEI n (%)

ARB n (%)

Beta-blockers n (%)

Spironolactone n (%)

Digoxin n (%) 

Echocardiography

LVIDd (cm)

LVIDs (cm)

LVEDvol (ml)

LVESvol (ml)

EF (%)

WMSI

Sm 
DSE End-point reached at

(n=22)
69 ±12
14 (64)

26. 5 ±5.0
93 ±21

0
0
0
0
0
0
0

0
0
0
0
0
0

4.5±1.0
2.9±1.0
71 ±27
25±14
65±9
1.0±0

5.7±1.6

(n=47)
68 + 9
37 (79)

26.4 ±3.5
98 ±12

36 (77)
9(19)
2(4)

20 (43)
14 (30)
8(17)
13(28)

47(100)
42 (89)
5(11)

42 (89)
8(17)
2(4)

6.3±0.91
5.2+1.0
129±53
89±44
33±9

2.3±0.4
3.3±1.4

(n=30)
69 ±9
23 (77)

26.1 ±4.0
146 ±20

20 (67)
7(23)
3(10)

1 1 (37)
1 1 (37)
9(30)

1 1 (33)

30(100)
25 (83)
5(17)

24 (80)
4(13)
2(7)

6.6±1.0
5.7±0.9
161±56
114±43
29±8

2.6±0.3
2.9±0.9

0.89
0.83
0.72

O.001

0.34
0.66
0.32
0.61
0.53
0.18
0.41

1.00
0.44
0.44
0.25
0.66
0.64

0.08
0.09
0.02
0.02
0.12
0.00
0.14

ANOVA
0.86
0.39
0.78
0.023

-
-
-
-

-
-

-
-
-
-
-
-

O.001
<0.001
O.001
O.001
<0.001
<0.001
O.001
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40 (jg/kg/min+atropine n (%) 2(9) 7(15) 1(3) 0.11 0.26 

40 ug/kg/min n (%) 16(73) 16(34) 8(27) 0.50 0.00 

30 ug/kg/min n (%) 4(18) 17(36) 10(33) 0.80 0.31 

20 ug/kg/min n (%) 0(0) 6(13) 11(37) 0.01 0.00 

10 ug/kg/min n(%) 0(0) 1(2) 0(0) 0.42 0.57 

IHD, ischaemic heart disease; DCM, dilated cardiomyopathy; BMI, body mass 

index; QRSd, QRS duration; Ml, myocardial infarction; ACEI, angiotensin- 

converting enzyme inhibitor; ARB, angiotensin receptor blocker; LVIDd, left 

ventricular internal diameter in diastole; LVIDs, left ventricular internal diameter in 

systole; LVEDvol, left ventricular end-diastolic volume; LVESvol, left ventricular 

end-systolic volume; EF, ejection fraction; WMSI, wall motion score index; Sm, 

mitral annular myocardial velocity; DSE, DSE. Values are mean±2SD unless stated 

otherwise. * p value for comparison of NQRS versus WQRS
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Chattopadhyay
Table 7.3. Intraobserver variability in the Ts measured in the 12 non-apical 
segments at rest and peak stress in a random sample of 10 patients.

REST
Diff in Ts

Segment (Mean±SD)
LB
LM
SB

SM
AB

AM
IB
IM
PB
PM
ASB
ASM

13
10
7

7

8

7

7.

6

8.

8

9.

4

.3±19.5

J±10.3

.6±8.

.3±8.

.0±6.

.4±6.

9±12

.8±5.

2±13

.8±7.

3±18

.3±3.

3

2

8

6

.6

6

.8

5

.3

7

95%

Cl

±12.1

±6.4

±5.1

±5.1

±4.2

±4.1

±7.8

±3.5

±8.6

±4.6

±12.0

±2.4

STRESS

Diff in Ts

% (Mean±SD)

5.1

3.0

2.4

2.3

1.9

1.5

3.3

1.5

3.3

1.9

5.9

1.2

2

7

8.

3

7

5

8.

7

8

6

8

5

.5±2.

.2±6.
8+19

.4±3.

.5±7.

.0±4.

2

7

.1

2

6

8

6±10.9

.4±7.

.3±8.

.1±6.

.0+6.

.2±5.

6

9

6

8

6

95%
f^ 1 O/ 
Ul 70

±1.
±4.

±11

±2.

±4.

±3.

±6.

±4.
+5.

±4.

±4.
+3.

3

2

.8

0

7

0

7

7

5

1

2

5

1.0

3.1

9.6

1.6

3.7

2.4

5.1

3.4

4.0

3.1

3.2

2.6

B, basal; M, middle; L, lateral; S, septal; A, anterior, I, inferior; P, posterior; AS, 
anteroseptal
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Figure 7.1. Segmental time to peak velocity (mean±SE), uncorrected and corrected 
for heart rate, at rest and stress across the groups. Unmarked values, p<0.05 
NQRS and WQRS v controls; p=ns, BlORS and WQRS v controls; p<0.05

#QRS v WQRS.
• Controls + NQR» WQRS. B=basal, M=mid, L=lateral, S=septal, l=inferior, 
A=anterior, P=posterior, AS=anteroseptal.
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* Tscor-SD

Control HQ«S WQRS

Figure 7.3. Percentage of patients with Tscor-SD and Tscordiff of > mean+2SD of 

controls at rest and stress within and across the groups.^ p=0.000 and U p=0.004 

compared to controls.
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Figure 7.4. Percentage of patients in whom the dyssynchrony indices either 

improved or worsened under stress grouped according to whether they were 

normal or abnormal at rest. "A" p<0.05,A p= ns. N-N, normal at rest and stress; N-A, 

normal at rest and abnormal at stress; A-N, abnormal at rest and normal at stress; 

A-A, abnormal at rest and stress.
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Chapter 8: Summary

To the best of our knowledge this is the only report on the feasibility of DSE with 

cTDI in the assessment of an unselected population of patients with suspected 

heart failure in an ambulatory setting. All previous reports on feasibility of DSE are 

based on retrospective analysis of data obtained on patients who underwent the 

test for established clinical indications, and selected in terms of their 

echocardiographic image quality, suitability to tolerate the procedure and the 

absence of contraindications. Thus the applicability of this technique in a truly 

unselected population of patients who attend a heart failure clinic with multiple 

cardiovascular and non-cardiovascular co-morbidities was hitherto unknown. The 

screened subjects were elderly (median age of those not recruited 78 years and 

those recruited 72 years) and reflected the population expected in a heart failure 

clinic. About 20% of the patients screened were ineligible for DSE. High mortality at 

index admission amongst patients admitted with heart failure, inability to consent, 

contraindications to DSE and non-cardiac co-morbidities that would constrain 

acquisition of images resulted in ineligibility. About 20% of the eligible patients 

refused to consent. The discomfort of the test described, inconvenience of 

attending for the test that may not be clinically relevant, general reluctance to join a 

research study, travel and travel costs may all have dissuaded the elderly subjects 

from consenting. Obtaining consent for clinically indicated DSE may be less of a 

problem. Of those recruited, 21% were excluded due to poor acoustic windows 

detected during resting echocardiography and a further 6% had uninterpretable 

studies due to deterioration in image quality during DSE. This conforms to 

published data. About a quarter of the referred patients could not undergo the test. 

Withdrawal of beta-blockers resulted in a higher incidence of exclusion due to loss 

of control over heart failure symptoms, ventricular response in patients with 

persistent atrial fibrillation and blood pressure. This finding is clinically relevant as a 

substantial proportion of patients with suspected heart failure are likely to suffer 

with the latter conditions. Intolerance to subjective symptoms may not lead to early 

termination of clinically indicated test. The test was feasible in 88% of the patients 

who underwent DSE. This compares favourably with published data suggesting 

that DSE is highly feasible in patients appropriately selected for the test.
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The major complication rate (3%) was higher than previously reported. This was 
expected in absence of rigorous selection for the procedure and discontinuation of 
beta-blockers before the test. Safety of DSE would not be an issue if patients are 
appropriately selected. Minor complication rates leading to termination of the test 
conform to published data.

Similar to previous reports, 92-98% of the segments could be visually scored 

depending on the group of subjects and the level of stress. The feasibility of 
longitudinal systolic and diastolic and regional systolic quantitative analysis of the 
left ventricle was higher than some of the previous reports due to methodological 
differences. The apical segments were excluded from analysis. The anteroseptal 
and posterior walls were analysed in the apical rather than the parasternal view. 
Intraobserver variability was low. Segments could be evaluated quantitatively more 
frequently than visually at all levels of stress. 5% of the attempts at visual 
assessment of a segment were unsuccessful, most frequently in the HF-LVSD 
group. TDI could assess segments on 73% of these attempts. The levels of stress 
did not affect regional quantitative assessment in the HFNEF and NoHF group. 
Visual and quantitative analysis was least successful in subjects with LVSD 
especially at peak stress. Despite this limitation, success rate for quantitative 
evaluation of segments was consistently higher compared to visual assessment in 
this group. Both visual and quantitative analysis were equally successful in the 
other subjects. The three segments of the anterior wall were the most difficult to 
score visually. Quantitative analysis was least successfully at all levels of stress at 
the middle segment of the anterior wall due to inadequate visualisation and the 
basal and middle segments of the anteroseptal wall due to misalignment. About 
three fourths of the segments that could not be assessed visually could be 
analysed quantitatively. Mitral annular velocities were measured in 99%, 97% and 
100% of the instances in the HF-LVSD, HFNEF and NoHF groups respectively. 
Fewer observations could be made at peak stress compared to rest and low dose 

in the HF-LVSD group but not in the others.
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The feasibility of the analysis of the diastolic waveforms (conventional and TDI) 

was higher than previously reported. This resulted from the analysis of these 

waveforms at the highest heart rates where they could be separately measured. 
This prevented the problems associated with fusion. Analysis of diastolic velocities 
at sub-maximal stress seemed reasonable for diagnosis of stress-induced diastolic 
dysfunction firstly because ischaemia induces diastolic dysfunction occurs earlier 
than systolic and secondly because heart failure patients with exercise intolerance 
are unlikely to achieve maximal heart rates during day-to-day physical activity that 

make them breathless. Resting variables e.g. age, hypertension, LV hypertrophy, 
ischaemia etc. may alter resting diastolic functions in a way that may conceal the 

effect of stress induced ischaemia on these variables or at least make 
interpretation difficult. The high prevalence of these conditions in patients with 

suspected heart failure could adversely affect the evaluation of diastolic function 

under stress in these patients. The reproducibility of these measurements was 

acceptable.

Depending on the cut-offs used, 32-50% patients of the HF-LVSD, 17-23% in the 
HNEF and 29-48% in NoHF groups had prognostically significant volumes of 

myocardium in ventricles with systolic dysfunction. The systolic annular velocity at 
each wall increased by >1 cm/sec in 61%, 65% ad 59% of the walls with low resting 

velocities in the three groups respectively suggesting viability in these walls. On 
visual assessment, 13%, 82%, 75% of the segments responded normally to stress, 
42%, 10%, 18% were ischaemic and 30%, 4%, 0.3% were scars in the three 
groups respectively. On quantitative assessment, 29%, 56%, 55% of the segments 
responded normally to stress, 26%, 26%, 27% were ischaemic and 4%, 0.6%, 1% 

were scars.

E/A became abnormal with stress in 65%, 25% and 36% of the patients who were 
normal at rest and remained abnormal in 81%, 67% and 73% patients who were 
abnormal at rest in the HF-LVSD, HFNEF and NoHF groups respectively. EOT 

failed to shorten in 34%, 44% and 30% and EDTc increased with stress in 52%, 
59% and 54% patients in the HF-LVSD, HF-PLVF and NoHF groups respectively.
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IVRT failed to shorten in 21%, 46% and 35% and IVRTc increased with stress in 

55%, 67% and 58% patients in the three groups respectively.

Amongst the patients with normal Ea at rest, it decreased with stress in 21%, 69% 

and 43% in the HF-LVSD, HFNEF and NoHF group respectively. It decreased by 

>20% in 11%, 32% and 21% and increased by > 20% in 61%, 10% and 30% in the 

three groups. The mean Ea in the HF-LVSD group was lower than HFNEF group 

that was similar to the normal group at rest. At peak stress, Ea in the HFNEF group 

was lower compared to the normal group but was similar to the HF-LVSD group. In 

the HF-LVSD group, Ea and Aa increased with stress and their ratio remain 

unchanged. In the HFNEF group, Ea decreased, Aa increased but their ratio does 

not change. In the normal group, Aa increases but there are no changes in the Ea 

or Ea/Aa.

Among the patients who had normal resting E/Ea, 5%, 52% and 25% had high 

E/Ea at peak stress in the HF-LVSD, HFNEF and NoHF groups. Among the 

patients with high E/Ea ratio at rest, it remained high at peak stress in 43%, 92% 

and 88% patients in the three groups. At rest, E/Ea HF-LVSD>HFNEF=NoHF. With 

stress, E/Ea decreased in HF-LVSD, increased in HFNEF and remained 

unchanged in NoHF group.

The genesis of the symptoms of HF in the absence of reduced global LV systolic 

function was explored in this study. The changes in the LV global systolic and 

diastolic, and regional systolic function in response to stress were assessed. 

Pharmacological stress did not induce LV global (as assessed by WMSI), regional 

(as assessed by WMS and Sm) and long axis (as assessed by averaged peri- 

annular Sa) systolic dysfunction excluding this as a common cause of symptoms in 

patients with HFNEF. Obesity and obstructive airways disease also did not account 

for these symptoms. Stress impaired diastolic relaxation as evidenced by a 

reduction in the Ea as compared to controls. It also increased E/Ea ratio (an 

echocardiographic surrogate for left atrial and LV end-diastolic pressure). The E/Ea 

ratio at rest and stress correlated negatively with the 6-minute walk distance in the
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HFNEF but not in the control group. On multiple regression analysis, the Ea and E 
at peak stress were found be predictive of the 6-minute walk distance.

This study was undertaken to assess the effect of pharmacological stress on 
intraventricular dyssynchrony in patients with heart failure with and without wide 
QRS duration (defined as 120 msec). Ts could be measured in 97% and 99% of 
segments being assessed at rest and 98% and 98% at peak stress in the HF- 
LVSD group and controls respectively. Ts was delayed in most myocardial 
segments at rest and in all myocardial segments at peak stress in the patients. The 
Tscor shortened in all segments with stress in controls. It failed to shorten in any 
segment and increased in the mid-segments of the lateral and posterior walls in 
patients with and without wide QRS.

The study confirmed the previously reported high prevalence of intraventricular 
dyssynchrony at rest in patients with LVSD irrespective of QRS duration. 
Depending on the parameter used, the prevalence of dyssynchrony increased from 
45-49% at rest to 77-81% at peak stress in the NQRS and 80-83% at rest to 97- 
100% at peak stress in the WQRS patients. The prevalence of dyssynchrony in 
patients with QRSd <120 ms approached that observed in patients with QRSd 
>120 ms during pharmacological stress. Indeed, most patients with LVSD had 
dyssynchrony during stress regardless of QRS duration. Stress rarely improved 
dyssynchrony in this study. The severity of dyssynchrony increased during 
pharmacological stress irrespective of the QRS duration.
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Chapter 9: Conclusions

DSE is feasible in patients with suspected heart failure only when they are 

appropriately selected for the test. About 46% of patients attending the heart failure 

clinic with suspected heart failure are likely to be excluded from undergoing DSE 

due to several reasons. Inadequate imaging windows and contraindications to DSE 

are the commonest causes for exclusion. The proportion of eligible patients who 

refused to or could not consent for the procedure or requested early test 

termination due to subjective symptoms are likely to be lower in a real-world 

situation where more patients are likely to undergo a clinically indicated DSE. The 

safety of DSE in an unselected group of patients may be a concern. This is unlikely 

to be an issue in selected patients. In a selected group of patients with suspected 

heart failure, both global and regional systolic and diastolic assessment is feasible 

during DSE. cTDI both at rest and stress may supplement visual interpretation of 

wall motion.

DSE identified prognostic volumes of hibernating and ischaemic myocardium in 

patients with suspected heart failure who had LVSD. It also unmasked stress 

induced diastolic impairment in patients with normal ejection fraction. The 

therapeutic and prognostic implications of this data were not tested in this thesis 

and needs to be tested larger outcome studies.

It is unlikely that exercise intolerance in patients with HFNEF is due to global, 

regional or long axis systolic dysfunction at rest or other non-cardiac causes. 

Stress does not commonly induce systolic dysfunction in these patients. 

Abnormalities in diastolic function are often induced or exacerbated by stress in 

these patients. Stress-induced impairment of early diastolic relaxation with 

consequent rise in the LVEDP is the likely cause of exercise intolerance. This 

study suggests that routine stress echocardiography may be useful in fully 

evaluating these patients. However, utility of the test is uncertain till it is shown to 

predict symptoms, morbidity, mortality and effects of treatment.
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High prevalence of resting dyssynchrony was detected in patients with LVSD 
irrespective of the QRS duration. Dobutamine-stress induced and exacerbated 
dyssynchrony in these patients. It unmasked dyssynchrony especially in patients 
with LVSD and narrow QRS complexes. The prevalence and severity of 
dyssynchrony detected in patients with LVSD and narrow QRS duration under 
stress approaches that of patients with LVSD and wide QRS duration. LV 
dyssynchrony, unmasked by stress in patients with narrow QRS, could be a target 
for therapy. This hypothesis remains to be tested.

Thus, DSE identified left ventricular dysfunction not apparent at rest that could be 
therapeutic targets e.g. the hibernating and/or ischemic myocardium and 
dyssynchrony. It could be a useful diagnostic tool in evaluating patients with 
HFNEF both to detect stress-induced ischemia masquerading as breathlessness 
and/or impairment of diastolic relaxation. It may allow selection of patients for 
cardiac ^synchronisation therapy. The diagnostic, therapeutic and prognostic 
implication of these findings will only be evident when tested in larger outcome 

studies.
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APPENDIX A 

Additional figures

Figure 1. The 16-segment model of the left ventricle, as recommended by the 
American Society of Echocardiography for interpretation of regional wall motion. 
The lateral and septal (left: apical 4-chamber view), the anterior and inferior 
(middle: apical 2-chamber view) and antero-septal and posterior (right: apical 3- 
chamber view) walls of the left ventricle are divided into 3 segments each (basal, 
middle and apical). The apical segments of the anteroseptal and posterior walls are 
excluded from analysis.
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Figure 2. Typical myocardial and annular velocity pattern seen with cTDI. S^ 
systolic velocity during isovolumetric contraction corresponding to the QRS 
complex; S2 : systolic velocity during ejection phase seen after the QRS complex; E: 
early diastolic velocity seen after the T-wave; A: late diastolic velocity seen after 
the P-wave. PSM: post systolic velocity.
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Figure 3: Apico-basal gradient in velocity from annulus to apex in the same wall. 
The systolic myocardial velocity increases and the diastolic velocities decrease 
from the annulus to the apex in a typical normal left ventricular wall. Annulus: 
yellow; basal segment: light green; middle segment: red; apical segment: deep 
green
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Figure 4. Stress-induced impairment in early diastolic myocardial relaxation as 
measured at the septal annulus in a patient with HFNEF.
cTDI at the septal annulus shows reversal of Ea/Aa ratio at rest (upper panel). The 
Sasep and Aasep increased but the Easep halved at sub-maximal stress (lower panel) 
suggesting stress-induced abnormal myocardial relaxation without significant 
systolic impairment.
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IHI

Figure 5. Appearance of LV Dyssynchrony with Stress in a patient HF with LVSD. 
At rest (upper panel), the Smiat (green) and Smsep (yellow) reach their peak nearly 
simultaneously i.e. there is almost no difference in the time from the onset of the 
QRS complex to the peak Sm in these two opposing segments. At peak stress 
(lower panel), the Smiat reaches the peak later than Smsep i.e. the difference 
between the times from the onset of the QRS complex to the peak systolic 
velocities in the two segments increase. Post-systolic velocity (open-arrow) 
becomes evident in the septal segment.

198



Chattopadhyay

Velocity (TV!) , range: -I* AZ - + 16 43 (W: 
Traceno: 8 8

Figure 6. Uninterpretable cTDI curves at the anterior and inferior annuli in a patient 
with ventricular trigemminy. The auto-calibration of the EGG amplitude during 
acquisition resulted in very small sinus complexes. The three beats that were 
automatically captured were the 3 larger amplitude ectopic beats. In the process, 
the interim smaller sinus beats were also acquired leading to several 
Uninterpretable waveforms.
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Figure 7. Uninterpretable cTDI curves at the lateral wall in a patient whose EGG 
electrode disconnected during acquisition.
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