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ABSTRACT 

In this thesis, the alternating-direction implicit method (ADI) is investigated in conjunction with the finite- 

difference time-domain method (FDTD) to allow crossing of the Courant-Friedrich-Levy (CFL) stability 

criterion while maintaining stability in the FDTD algorithm. The main reason for this is to be able to use a larger 

numerical time step than that governed by the CFL criterion. The desired effect is a significant reduction in 

numerical run-times. Although the ADI-FDTD method has been used in the literature, most analysis and 

application have been performed on simple three-dimensional cavities. 

This work makes original contribution in two aspects. Firstly, a new modified aitcrnating-dircction implicit 

method for a three-dimensional FDTD algorithm has been successfully developed and implemented in this 

research. This new method allows correct modelling of a realistic physical structure such as a microstrip patch 

with the ADI scheme without causing instability even when the CFL criterion is not observed. However, due to 

the inherent property of this modified ADI-FDTD method, a decreasing 'reflection coefficient is observed using 

this scheme. 

The second and more important contribution this research makes in the field of numerical electromagnetics is 

the development of a new method of simulating realistic complex structures such as geometries comprising 

copper patch antennas on a dielectric substrate. With this new method, for the first time, the ADl-FDTD 

algorithm remains stable while still in violation of the CFL criterion, even when complex structures are being 

modelled. 

However, there is a trade-off between accuracy and computational speed in ADI-FDTD and modified ADI- 

FDTD methods. The larger the numerical time step, the shorter is the simulation run-time but an increase in 

numerical time step causes a degradation in accuracy of numerical results. Comparison between speed and 

accuracy is shown in this thesis and it has to be mentioned here that these values are very much dependent on 
the structure being modelled. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Frequency domain analytical methods have been extensively used [1.1], [2.1] to solve complicated 

microstrip circuits. Generally, when using this approach, the thickness of the microstrip substrate is 

assumed to be much thinner than the shortest wavelength of interest. As a result, there is no field variation 

throughout the thickness of the substrate and this renders it a two-dimensional electromagnetic problem. 
In such a case the microstrip patch is modelled by applying a magnetic wall around it. The fringing fields, 

however, have to be accounted for by using empirically obtained effective patch dimensions and effective 

permittivities. This is also known as the cavity model. Despite these disadvantages, the cavity model is 

simple to implement and gives great physical insight to the circuit operation. The scalar Green's function 

is used to analytically solve this two-dimensional electromagnetic problem with perfect wall boundaries. 

In general, the scalar Green's function solves the following scalar Helmholtz equation : 

V2 G+k2G= g(r-r,, ) (1.1) 

where k is the wavenumber in the medium and the excitation is in the form of a dirac delta function at 

r=r, The Helmholtz equation (1.1) is solved by first expanding the solution in terms of eigenfunctions 

of the homogeneous Helmholtz equation for the appropriate coordinate system with the application of 

perfect boundary conditions. By applying the method of separable variables, an exact solution to the 
differential equation may be found. The solution is generally in the form of a double series Green's 
function for a two-dimensional problem. This method has been widely used to analyse various patch 

circuits [2.1]. This double series Green's function was successfully reduced to a single series summation 
[1.1] by applying the reduced operator method as described in [2.2]. However, this type of solution is 

restricted to only modelling thin substrates. 

To model thick substrates and account for any fringing field effects, a full-wave electromagnetic solution 
is required. There are generally two categories of numerical methods for solving electromagnetic 

scattering problems, namely, frequency domain methods and time domain methods. Frequency domain 

methods include the finite-element method and the method of moments [2.3] while the transmission line 

matrix (TLM) [1.2] - [1.3] and the finite-difference time-domain (FDTD) [1.4] are time domain methods. 
Full-wave frequency domain methods have been used to model various problems, especially those with 
few selected frequency points of interest. This is because, in such methods, the data for the whole 
frequency range are calculated one frequency at a time. However, for wideband solutions, time domain 

methods are generally preferable as a whole spectrum of frequency response can be obtained from a 

single simulation run. By exciting the time domain model with a broad-band Gaussian pulse, for example, 
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and then applying the Fourier transform on the time-domain results, one can get the entire frequency 

range of interest, all in a single simulation run. 

The FDTD method has been extensively used to solve two- and three-dimensional scattering problems 
[1.5] - [1.7]. The author has chosen the FDTD method over other time-domain methods because its 
implementation is straight forward, directly derived from Maxwell's equations. 

1.2 FDTD Method 

The finite-difference time-domain or commonly known as the FDTD method was first proposed by 

K. S. Yee in 1966 [1.4]. The FDTD method is formulated by discretizing the differential form of 
Maxwell's two curl equations over a finite volume and approximating the derivatives with centred 
difference approximation to obtain a second order accuracy in time and space. Appropriate boundary 

conditions are imposed on the source point, conductors and computational boundaries to model the real 

structure. Indeed, FDTD is relatively simple, flexible and easy to implement. However, over the years, 
FDTD applications have been restricted to solving electrically small structures. To obtain accurate results 
for large electrical structures, large amounts of CPU time and memory resources are required. These 

expensive computer resources come from two modelling constraints. 

1. The spatial step, Ah, must be at least 10 to 20 times smaller than the smallest 

wavelength of interest for a negligible dispersion error and 
2. The time step used in the algorithm must satisfy the Courant-Friedrich-Levy (CFL) 

stability condition stated below (and derived in Chapter 2) : 

At :5-I 

where Ax, Ay and Az are the spatial steps, At the time step and v the maximum wave velocity in the media 
being modelled. The implications of the above two constraints are considerable. 

A physical understanding of the CFL stability constraint (1.2) will be explained below with the help of 
Fig. 1.1 which shows an elemental three-dimensional building block in the FDTD mesh. Assume that the 

elemental block is a cube, that is Ax = Ay = Az = Ah. In numerical FDTD, for example, when modelling a 
wave speed, v, the numerical wave takes 3 At to propagate diagonally in the cube; that is, the wave takes 

3 time steps to travel a distance of vr3- Ah. The numerical wave speed is governed by the dielectric 

constant used in the simulation. Therefore, if a bigger time step is used to model wave propagating at the 

same speed, v, the wave will seem to have travelled further than it actually has. This gives rise to errant 
simulation results. Since FDTD is a time-domain method with each time-domain results feeding back to 
the next time-domain algorithm, this error will accumulate and eventually grow as time progresses 
resulting in an unstable system. 
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Ah 

Ah 

Fig. 1.1 : Elemental cube in FDTD mesh 

Another modelling constraint is that not only must the spatial incremental step be small relative to the 

smallest wavelength of interest, but, in order to model an electrically large structure which contains 
discontinuities accurately, the spatial step must also be made fine near the discontinuities. The constraint 
of equation (1.2) above means that the time step has to be small near the discontinuities in order to 

maintain stability in the FDTD scheme. The smaller the time step, the longer is the simulation run-time 
because more numerical iterations are required to represent a finite amount of real physical time. This can 
lead to a prohibitively long simulation run-time. 

One way to model an electrically large structure with fine discontinuities without incurring intensive use 

of memory storage is to sub-divide the computational domain into regions, each with a different mesh 
size; a finer mesh size is used for regions with high irregularity and a larger mesh size for the rest of the 
domain [1.8] - [1.12]. The finer mesh is obtained by further meshing the larger mesh. This process is 

referred to as subgridding. In such a situation, to maintain stability as defined by equation (1.2), either the 

time step corresponding to the smallest mesh size is used for the whole computational domain, or the time 

steps are set separately for each mesh region. For a large object with a highly irregular structure, the first 

method can be computationally expensive in terms of simulation run-time. Using the second method, the 

mesh sizes have to be such that the time steps are integer multiples of one another. Furthermore, space 
and time interpolations at the interfaces of the mesh may be required for accurate simulation. Also, 

numerical dispersion will vary throughout the different mesh sizes. All in all, this makes the 
implementation of FDTD to mesh geometries that vary across a volume, a difficult and time consuming 
task both in implementation and execution. Despite the saving in computer storage, the overall simulation 
run-time will still be long due to the run-time necessary over regions with fine mesh size. 

The key to modelling electrically large structures with fine discontinuities without incurring a huge 

computational burden in terms of simulation run-time is if the CFL stability criterion can be violated 
without causing instability thereby allowing the use of bigger time steps in the simulation. This is realized 
when the alternating-direction implicit (ADI) method is applied on the FDTD algorithm. 

1.3 Finite-difference approximation to derivatives 

Consider a two-dimensional parabolic equation (1.3) below: 

au alu alu 
at =. ý +7 



Introduction 4 

1.3.1 Explicit method 
One finite-difference approximation to (1.3) is 

n+l .nn un nn un + un ul, j ui, j uj+l, j -2 Ij + ui-l, j ul, j+l -2 Ij I, J-l 
At AX2 Ay 2 

where x= lAx, y= jAy and I= nAt . Equation (1.4a) can be written as : 

n+I n' t+ j, 2u�j + u, »-1� un- 2un +un) 
u +At 

uni. 
+ J, J+l J, j 1,1-1 (1.4b) ij -ý UI, j 

ll 
äx 2 AY 2 

and (1.4b) gives the unknown values u at time step (n+I)At in terms of known values u at time step nAt. 
This is known as an explicit method. This explicit method is simple but can be computationally intensive 

because the condition for its validity [2.4], shown below, limits the time step, At that can be used in order 
to maintain stability in the system. 

At :5 1 
2( 

12+ 
-T2) Ax y 

1.3.2 Implicit method 
Another possible finite-difference approximation to (1.3) is 

u n+l I U"+' - 2Un+l + Un+l unJ. j - 2u" + uin-l, j ij - Uo 1+1, j I, j i-l. j 
+4 

Ij 
At 2 Ax2 &x 2 

u n+l - 2un+l + n+l n Un J, j+l j ui. j+l -2 
+j 

ul'j-1 1.1 
2 Ay 2 AY2 

The unknown values u at time step (n+I)At are given in terms of the known values u at time step nAt and 

also the unknown values u at time step (n+I)At. The unknown values u at time step (n+I)At are then 

calculated by solving (M-1)(N-1) simultaneous equations comprising the known values u at time step nAt 

where M is the number of Ax space steps and N the number of Ay space steps. For large values of M and 
N, the simultaneous equations will be solved iteratively. This method is known as the Crank-Nicolson 

implicit method. This implicit method is valid for all values of Ax, Ay and At, that is, there is no 

constraint on the time step used. But it takes considerably more computing power than the explicit 
method as the simultaneous equations may need to be solved iteratively and they involve finding the 
inverse of the matrices containing the equations. 
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1.4 Alternating-direction Implicit procedure 

One crucial point about the FDTD method is that it is a fully explicit method of solving differential 

equations. This means that the iterative field values are calculated from previously known values. As 

mentioned above this method is attractive as it is simple to implement but it is limited to some extent by 

the CFL stability criterion that limits the time step that can be used in the algorithm. Implicit methods, on 

the other hand, have superior stability properties [2.4] where the time step is not limited to any size. 
Unfortunately, an implicit method in two dimensions requires at each time step, the solution of large sets 

of simultaneous equations, which is not always easy to accomplish directly. Morever, when applied in 

conjunction with the three-dimensional FDTD algorithm, this method results in three three-dimensional 

matrices which have to be solved simultaneously. 

The most efficient method to date that incorporates the implicit method is the one first proposed by 

Peaceman and Rachford in 1955 [1.13]. This method requires the line-by-line solution of small sets of 

simultaneous equations that can be solved by a direct, non-iterative method. This is called an alternating- 
direction implicit (ADI) procedure. Peaceman and Rachford tested the ADI procedure by using it to solve 
the heat flow equation with boundary conditions in two space dimensions and compared the solutions 
with known formal solution. The two solutions showed good agreement. The ADI method was also tested 
by Peaceman and Rachford on steady-state problems in two dimensions by solving Laplace's equation in 

a square. The stability of the ADI scheme was also discussed and analysed in their paper. Part of their 

work in the ADI method used to find solutions of an unsteady-state heat-flow in a square is described 
below. 

n+1 n n+l n+l n+l nnn Ul, j - Ui, j ui+l, j " 2ul, j + Uj-j, J ui, j+l_, 2ui. j + ul, j-l. 
At &2 AY 2 

In [1.13], the second order derivative term from (1.3), a2U1C6x2 is replaced by a second order difference 

term evaluated in terms of the unknown values of u, that is implicit in the x-direction, while the other 

derivative, a2 Ula Y2 is replaced by a second order difference term evaluated in terms of known values of 

u. This results in sets of simultaneous equations that can be solved easily without iteration. If the 

procedure is then repeated for a second time step of equal size to the first time step and the difference 

equations are set implicit in they-direction, as shown in (1.6b), then Peaceman and Rachford showed that 
the overall procedure for the two time steps would be stable for any size time step. This means that the 
time step used is no longer restricted by the stability requirement of the system. 

m+2 n+l n+l n+l n+l n+2 n+2 n+2 Ui. j - Ui, j ui+l, j , 2ui, j + Ui-i, j + 
uj j+j - 2ui, j + ul, j-l 

At Ax2 Ay 2 

Since its introduction, the ADI procedure has been broadly used to solve diffusion problems. This method 
was first adapted to solve wave problems in FDTD mesh by T. Namiki [ 1.14]. With the application of the 
alternating-direction implicit procedure on the FDTD method, the well-known CFL stability criterion 
stated in equation (1.2) can now be violated without causing instability. The physical understanding of 
how violation of the CFL criterion will lead to instability of the FDTD system was discussed earlier in 
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section 1.2 and illustrated using Fig I. I. This means that potentially bigger time steps can be used in the 

simulation thereby reducing the overall simulation time. 

In this thesis, the ADI-FDTD method is investigated and a new modified ADI-FDTD method is proposed 
and discussed. The detailed implementation of the ADI-FDTD method with respect to the structure being 

modelled is also presented in this thesis. Numerical simulations of a simple line-fed rectangular 

microstrip patch are used to verify both the ADI-FDTD and the newly proposed modified ADI-FDTD 

methods. A bigger patch with three parasitic patches is also simulated to verify the application of ADI- 

FDTD method on an electrically large object. Where possible, the simulated results are compared with 

results from published literature. 

This thesis is organized as follows. 

Chapter 2: Discusses the theory behind the finite-difference time-domain method, the implementation 

procedures, and compares the simulated results obtained in this research work with those in the published 
literature [1.5]. A new, more efficient method of extracting the reflection coefficient from the simulated 
data is also presented. 

Chapter 3: Presents the theory of the alternating-direction implicit method applied on the FDTD 

algorithm and illustrates the physical interpretation of the ADI-FDTD method. With the help of simulated 
data, the problems encountered when a line-fed rectangular microstrip patch is simulated, are discussed. 
This chapter also explains the implementation of the absorbing boundary condition at the boundary of the 

computational domain which is critical for accurate and correct modelling of the structure, 

Chapter 4: Proposes a new modified ADI-FDTD method to surmount the problem of modelling the 

microstrip patch in chapter 3 using perfect electric wall boundary on the copper patch. The limitation of 
this new method is also discussed. 

Chapter 5: Shows that a different technique of implementing a boundary condition helps eliminate the 

problem encountered in chapter 3. Simulated results for more complex structures are also shown. 

Chapter 6: Concludes the research undertaken by the author and suggests some further work in this field 

of research. 
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CHAPTER 2 

FINITE-DIFFERENCE TiME-DoMAIN METHOD 

2.1 Introduction 

The algorithm of finite-difference time-domain field analysis was first introduced by Kane Yee in 1966 

[1.4] and has been widely used to solve electromagnetic scattering problems. 

2.2 Maxwell's equations In three dimensions 

In a region of space, the time dependent Maxwell's equations are given in the differential form by [2.51 

Faraday's Law: 

L9B =. vxz Jm 
FT 

Ampere's Law: 

ýLD = VX77. - 
at 

is (2.2) 

And the constituent relations are : 

V-D =0 (2.3) 

V-B =0 (2.4) 

In linear, isotropic non-dispersive materials, 

B= uH (2.5) 

and D=cE (2.6) 

In order to account for the magnetic loss in the system, the magnetic current density is given by : 

J. =p H (2.7) 

and similarly the electric current density is : 

Je = uE (2.8) 

E is the electric field vector in volts per metre, D is the electric flux density vector in coulombs per 

square metre, H is the magnetic field vector in amperes per metre, ý is the magnetic flux density vector 

in webers per square metre, J. is the electric conduction current density in amperes per square metre, 

J. is the equivalent magnetic conduction current density in volts per square metre, p is an equivalent 

magnetic resistivity in ohms per metre and a is the electric conductivity in siemens per metre. 
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Combining the assumptions of (2.5) to (2.8) and substituting into Maxwell's curl equations (2.1) and 
(2.2), we obtain: 

vxý - 
P77 (2.9) 

ju p 

ý-E I VXT - 
62 (2.10) 

at c Er 

which govern the propagation of both electric and magnetic fields in any structure. 

Writing out the vector components of the curl operator in (2.10) and (2.9) yields the following six coupled 

equations equivalent to Maxwell's curl equations in a three-dimensional Cartesian coordinate system. 

ýE, j(LHj_ My 
-aE, 

) 
(2.11 a) 

at c cy oz 

LEy aH 
- aEy (2.11 b) 

at az ax 

M= I(aHy aH' 
- aE. 

) 
(2.11 c) at e ax ay 

. 
ýH, 

__L(aE, 
aEy 

- +p (2.12a) 
at u az 

ally 
_L 

aE, ( 
. 

aEz 
+pH Y) 

(2.12b) 
at p az ax 

clH_, I (My 
_ 

aE, 
+pH, 

) 
(2.12c) 

at u ax Cýy 

This system of six coupled partial differential equations of (2.11) and (2.12) forms the basis of the finite- 

difference time-domain (FDTD) numerical algorithm for electromagnetic wave interactions. 

2.3 FDTD algorithm 

The FDTD algorithm solves for both electric and magnetic fields in time and space by solving the six 

coupled Maxwell's curl equations (2.11) - (2.12). A physical model of the fields in a Cartesian grid is 

shown in Fig. 2.1. For programming considerations, the numbering of the spatial location of Z and 

H fields in Fig. 2.1 differ from that in the original Yee's cell. 

As illustrated in Fig. 2.1, the algorithm centres its 2 and WH components in three-dimensional space so 

that every E component is surrounded by four H components and vice versa. Every component of 
71 can now be obtained by the loop integral of Z using the four surrounding E nodal values according to 

Maxwell's curl equation of Z. A similar condition holds for 77. 
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Iz 
Ex(ij+l, k+l) 

y Ey(ij, k+l) 
Ex(i, j, k+ 1) 

:: ýýEýý 
I j, k+ 1) 

x 
Hx( Ez(ij+ I, k) Ez(i+lj+l, k) 

Hy(i- I j, k) E ij, k) Ez(i+ I j, k) 
Hx(ij - I, k Ex(ij+l, k) Hy 

Hz(ij, k) 
Hz(i- I j, k), Ey(*, I, k) Ey(i+ I j, k) 

Hz(i-lj-l, k), - 
Ex(ij, k) 

Hy(i-l. j, k-1) Hx(ij, k-1) > 
Hy(ij, k- 1) 

Hx(ij-l, k-1) 

Fig. 2.1 : Yee's staggered cell 

We note that in the FDTD algorithm, the Z and -H nodes are disjointed by half a space step. In addition, 

calculation of Z and 77 fields are also disjointed by half a time step. This means that the 2 and H_ 

fields are calculated at alternate half time steps. For this reason, this algorithm is called the leapfrog 

method. The leapfrog time-stepping process is fully explicit; that is, the current field values are calculated 

using previously stored field values. As a consequence it is not necessary to solve sets of simultaneous 

equations by involving matrix inversions. 

It is worth noting that continuity of the tangential 2 and -H is automatically maintained across an 
interface of dissimilar materials if the interface is parallel to one of the grid coordinate axes. Change in 

materials is specified using the material permittivity and permeability. These are defined in the FDTD 

equations. 

2.4 Finite difference expression of Maxwell's equations In three dimensions 

Assuming lossless materials, discretizing (2.11) & (2.12) leads to the approximation of Maxwell's curl 

equations in three-dimensions as follows : 

H n+112(ijk) - Hzn+112(ij-l, k) H n+112(ijk) -H n+112 OM-1) 
En+l (ijk) = E" (iik) + z-- yy 

xx AY AZ 

I 
(2.13a) 

At H n+112 (ii, k) -Hn+ 
1/ 2 (ij k-1) H n+I/2(I 

,j, k) -H 
h+I/2 

En+' (iik) = Ey (ijk) +- -x--- -- ---x ZZ (i- 1, i. k) 
(2.13b) 

AZ Ax 

1 
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E n+l 
H n+112 0j, A) -H n+112(i_lj, k) H n+1ý2(jjj) -H , +1/2 (ii- 1, k) 

(ii, k) =E" (ii, k) + 
At 

-yyxx (2.13c) 
zzc AX Ay 

I 

H n+112 (ij, k) n-112(ijk) 
At Ez"(ij+l, k)-E, "(ijk) Eyn(ijk+l) - Ey" 

x, =Hx ,- 
lu 

AY 
:y 

AZ 
y (IJ, k) 

(2.14a) 

H n+1/2 (ijk) (, Jk) 
At Exnfljk+l)-Enfljk) En(i+ljk) - Enfljk) 

y 
Hn-112 xzz (2.14b) 

y 
JU AZ AV 

I 

n+112 n 1/2 (ijk) 
At En(i+ljk) - En(ijk) Enq J+ 1, k) -En (IJ, k) (2.14c) Hz (iik) = Hz- -- .yyx- --- x 

lu 

I 

Ax Ay 

where x= iAx, y= jAy, z= kAz and t= nAt . 

This FDTD algorithm has second order accuracy in both space and time because the central difference 

method is applied on both the space and time derivatives [A. I]. 

2.5 Divergence of FDTD algorithm 

While the FDTD algorithm solves for both electric and magnetic fields in time and space using the 

coupled Maxwell's curl equations, there is no explicit enforcement of the Gauss's Law relations for both 

the electric and magnetic fields as stated in (2.3) and (2.4) for source free regions. It is important that the 
Gauss's Law is observed in the FDTD algorithm. 

The time derivative of the surface integrals of the electric flux density over all the surfaces of a free-space 

Yee cell of Fig. 2.1 is given by [2.5] : 

(ffD - dS [E., (1, J, k) - E., (i - 1, J, k) ] AyAz 

+ 
coa [Ey (1, J, k) - Ey (1, j-1, k) ]&vAz 
at 

+ 'Oa [E, (i, j, k) - E, (i, j, k- 1) ] AxAy 
at 

Using the finite difference expressions of the electric field (2.13a) - (2.13c), the electric field time 
derivatives in (2.15) can be substituted with the magnetic field spatial finite differences in each of the 
RHS term in (2.15) producing: 
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Ay AZ 
AyAz (ff-D-dS= 

Ay AZ 

+ 
AZ AX 

AXAZ 

AZ Ax 

F ., A) - H-ý(Mjýk) y0j, 
+L 

Ax AY 
AxAy 

AX Ay 

(2.16) 
for all time steps. The RIIS terms of (2.16) cancel each other out. Hence, 

0 ffD- 
- d§ = -L 

fffV 
-B dV 

= 

V-D 

Therefore, the time derivative of the net electric flux leaving the surfaces of a cubic Yee cell is zero, 
hence upholding Gauss's Law for the electric field in charge-free space. The same can be shown for time 

derivative of the net magnetic flux leaving the surfaces of a cubic Yee cell. This shows that the FDTD 

algorithm is divergence-frec in source free regions and implicitly enforces Gauss's Law for both electric 

and magnetic fields in those regions. 

2.6 Numerical stability of the three-dimensional FDTD algorithm 

Numerical instability is an undesirable possibility with explicit numerical differential equation solvers 
that can cause the computed results to spuriously increase without limit as time-marching progresses. A 

standard method to analyse numerical stability was presented by von Neumann and Courant, Friedrich 

and Levy [the CFL condition, 2.4]. 

Electromagnetic waves propagating in a finite-difference grid naturally results in the generation of 

numerical wave modes or Fourier modes. In order to maintain stability in the finite-difference time- 
domain system, the spectrum of eigenvalues for these modes due to the numerical space differentiation 

process must be contained within the stable spectrum of eigenvalues determined by the numerical time 
differentiation process. The magnitude of field growth at every time step, called growth factor, is limited 

to a maximum value of unity. If the growth factor is greater than unity, the system will be unstable. 

Without loss of generality, consider a normalised region of space with p=1, e=1, cr = 0, p=0 and 
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c=I where c is the normalized wave velocity in a vacuum. We can re-write Maxwell's equations in a 

more compact form [ 1.7] as: 

jvxp = 
av (2.17) 
c1t 

where 77 + j2 

and i= ý--l 

Unlike compact derivations in most literature, the following derivations for time and space eigenvalues 
have been expanded and explained in detail by the author where necessary to ease understanding. To 

analyse the stability of the numerical representation of (2.17), consider the following pair of eigenvalue 

problems: 

11 V= AtP (2.18) T'Inumerical 

A 
numerical 

XP= AP (2.19) 

where A, represents the eigenvalues due to the numerical time differentiation process and 

As , the eigenvalues due to the numerical spatial differentiation process. 

First, consider the time eigenvalues, from (2.18), 

-n+1/2 -n-112 v-v -n 

At = AIV (2.20) 

Now define a constant growth factor for the numerical solution as a function of space point I 

-n+1/2 -n Vi Vi for all n time steps n-112 Vi Pi 

in order to maintain stability in the FDTD algorithm, I qj : 51 for all possible spatial modes in the grid 

and for all points i. Substituting (2.21) into (2.20) yields 

n- PnI 
qjP qj -n 

At 
= AtV 

or 
pn [qj 

- AlAt qj -1] 0 

qj = 
A, At At 

(2.22) 

F(2 

2 
'ýAt 
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We see that I qj I if AAt is purely imaginary and has a magnitude of I which means 2 

< 
AtAt 

2 :5 +j 

or 
2. 

, :. Ilmag(A, )l <2 
At At 

(2.23) 

All possible spatial modes must have eigenvalues that are within this stable range to ensure stability of the 

algorithm. The spatial eigenvalues can be determined by analysing (2.19) as follows. 

VInumerical X FX- aXInumerical 

V, 

yz 

'Onumerical 

daZ 

numerical 
VY VZ 

(2.24) 

At any time step, the instantaneous values of the electric and magnetic fields distributed in FDTD space 

across the grid can be Fourier-transformed with respect to the grid coordinates to provide a spectrum of 

sinusoidal modes, resulting in plane wave eigenmodes of the grid. Now let the following specify a typical 

mode of this spatial frequency spectrum having k, ky and k: as the x- , y- and z- components of its 

numerical wavevector respectively. 

Then, 

-i (ý. 
I &v + Ay + W, k Az) V, e 

6-V F(i+112, j, k) - 
T(I-112, j, k) 

K 
numerical 

AX 
j(ý,, '&4, J'y+rkAz)[ej(r, &v12) V. e C, j 

AX 

V -te i(W, (1+112)&v+rjAy+rk&) 
_ 

j(W, (1-112)Av4, jAy+rkAz) 
e 

-[j2sin(W, Ax/2)- 
v 

AX 

(2.25) 

(2.26) 

Therefore, 

j2 sin 
(T, Ax/2 (2.27a) 

dex 

numerical 
AX 

j2 sin Ay12 
(2.27b) 

Oy numerical 
AY 

aj2 sin Az/2 
aFz 

numerical AZ 
(2.27c) 
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Let X=2 sin 
(T, Ax/2 

Y= 
2 sin 

(T. Ay12 ) 
and Z=2 sin 

rk, Az/2 
AX AY AZ 

Then combining (2.19), (2.24) and (2.27) gives, 

j 
(! 

j[YV, -ZVYI - ýj[XV, -ZV., 
]+ ! j[XVY - YVj 

)=A, P (2.28) 

or 
y X1 xI=A, V' 0z0 'XI 

VVY 
z 

- VY 
Y -x 0 V, V. - 

-As z-Y Vx 

-Z -As x Vy =0 (2.29) 
Y -X -As. _V:. 

Solving for eigenvalues A, gives 

As 2= 
. 

(X2 
+ y2 + Z2) 

Substituting back X, Y and Z gives 

A2= -4ý + 
sin2 

ýkyAy12) 

+ 
sin 2 ýk.. 

Azlj 
(2.30) 

sI Ax2 AY2 A? 

-2 As - 1: 5 sin p --ý I, for all possible k., ky and k: . we can bound the range of A,: 

Ilmag (A, )1 :921+I+ 
, NX2 Ay 26 =2 

To satisfy the stability condition (2.23) for the arbitrary lattice spatial mode, all the eigenvalues in (2.3 1) 

must lie within the range specified in (2.23) i. e. 

2 (2.32) -XI2 +7+ -A 
Z2 At 

and denormalizing (2.32) by the FDTD wave velocity, where v= l1VIp--- 

At :5111 (2,33) 

Vý-ý + -ýY-T -I A? 

This is generally known as the CFL (Courant-Friedrich-Levy) stability condition. In an inhomogeneous 

region of space, it is difficult to determine a spectrum of A, equivalent to (2.3 1) for all possible lattice 
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spatial modes. For absolute algorithm stability, (2.33) will be good enough as it represents the worst case 

choice of time step, At. If At is selected to be larger than the bound in (2.33), the FDTD numerical 

algorithm will definitely be unstable. This is true as long as the FDTD algorithm is completely explicit. It 

is the aim of this work to investigate the possibility of using the time-step beyond the constraint of (2.33) 

while maintaining stability of the system. Chapters 3 and 4 will discuss two different methods employed 
to achieve this aim. 

2.7 Numerical dispersion of the three-dimensional FDTD algorithm 

Dispersion is defined as the variation of the propagating wave's wavenumber k=2; r /A with angular 
frequency ra = 27rf . The analytical dispersion of physical wave propagation is an inherent property of the 

medium of propagation and is structure dependent. For example, in a microstrip patch circuit, the 

effective permittivity changes as a function of frequency. This gives rise to analytical dispersion. The 

wavenumber of the continuous physical wave, k, is different from Twhich is the waveriumber of the 

numerical sinusoidal travelling wave of angular frequency co that is present in the finite-difference grid. 

This difference between k, analytical wavenumber, and T, numerical wavenumber, gives rise to 

numerical phase and group velocities that are different from the exact values obtained for physical waves. 
This difference gives rise to numerical dispersion and consequently an errant simulation result. Whilst 

analytical dispersion is an inherent characteristic of the microwave structure, numerical dispersion is due 

to discretization of time and spatial steps in the finite-difference algorithm. The variation of the numerical 

wave velocity with wave propagation angle due to numerical dispersion is shown in [2.5]. 

Numerical dispersion can be found by analysing (2.17). Substituting the vector-field travelling-wave 

expression with time dependence: 

F +ry jAy+rs k Az-w n At) (ij, k) = -0 e j(ý, ' &v (2.33) 

into (2.17) results in : 

iz Az 
x 

Fn+1/2 
T n+l (IJ, k) - 

Pn(I, 
J, k) 

-2 -sin 

(IX 

+-sin 
y 

AY) 
+ 

AZ 
sin 

2 
(1, J, k) 

At AX 2. 

) 

AY _2 

(2.34) 

or 

T, Ax 
( Ty Ay ,R 

jwAtl2 
= 

2jsin(o)At/2) 1/2 
I 

-2 sin -+ sin -+- sin xPe 
P"e, j"A 

2) Ay 2 AZ 2 At 

(2.35) 

Comparing (2.35) with (2.28) and (2.30) and denormalizing it to a non-unity wave velocity v, gives us the 

general form of the numerical dispersion relation for the full vector-field FDTD algorithm in three 
dimensions as : 
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- sin CoAt )]2 

VAI t2 
1 

sin 
(TAX 

Ax ý -2)] 
1 

sin 
Ty Ay 

2 

Ay 2 

)l ( W. 
- Az 

sin ý-2 
)] 

(2.36) 

In contrast to the numerical dispersion relation (2.36), the analytical dispersion relation for a plane wave 
in a continuous lossless medium is simply: 

w kx 2+k2+k2 (2.37) 

However, (2.36) will reduce to (2.37) in the limit as At, Ax, Ay and Az all go to zero, that is, if the FDTD 

grid is made very fine. 

As the FDTD grid size increases with respect to the wavelength of propagating waves, the deviation of 

the numerical phase velocity from the exact analytical phase velocity increases until the waves eventually 

cease to propagate. This numerical low-pass filtering effect is inherent in the FDTD grid. Consequently, 

FDTD modelling of pulses with high bandwidth will result in progressive pulse distortion as the high 

spatial frequency components will propagate more slowly than the low spatial frequency components. In 

addition, the very high spatial frequency components with wavelengths less than 2 to 3 cells are 

completely rejected [2.5]. 

2.8 Boundary conditions 

In a finite-difference scheme, the finite-difference mesh has to be of finite extent due to the limitation of 

computer storage capacity. However, in many applications, the media to be modelled are of infinite 

extent. Scattering problems, for example, lead to solutions of fields in an unbounded domain. imposing 

boundary conditions on the finite-difference mesh boundary may give rise to reflections that are not 

representative of the actual physical situation. Consequently, absorbing boundary conditions are applied 

on the mesh boundary, also known as the computational boundary, in order to simulate infinite or very 
large geometries. The algorithm on the truncation planes has to simulate propagation of outgoing waves 

as if they were propagating to infinity. This is accomplished by enforcing an impedance match on the 

computational boundary so that there is no reflection of outgoing waves back into the domain. 

Referring to Fig. 2.1, if the finite-difference mesh terminates on the electric field cell, we can see that all 

components of the electric field on the boundary are tangential to the boundary while the components of 

the magnetic field are normal to it. While the 77 
-field components can be calculated from the respective 

E -field components using equations (2.14), the E -field components cannot be evaluated in the same 

way as this would require H -field components that are outside the mesh. For the structures considered in 

this thesis, the pulses on the microstrip lines will be normally incident on the mesh boundaries. Therefore, 

a simple approximate continuous absorbing boundary condition, where the tangential fields on the mesh 
boundaries obey the one-dimensional wave equation in the direction normal to the mesh wall, will suffice. 
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Engquist and Majda derived a theory of one-way wave equations suitable for absorbing boundary 

condition in Cartesian FDTD grids [1.15]. It was further discussed by Mur in 1981 [1.16] and 
implemented on a finite-difference scheme. 

2.8.1 1 st order Mur boundary condition 
To derive Mur's first approximate absorbing boundary condition, consider TEM wave propagation on a 
lossfree transmission line giving rise to voltage and current as follows : 

V, = Vlcospx + jI, Z,, sin, 8x (2.38) 

Ix = I, Cos x+ 
V' 

sin zo 
(2.39) 

where x is an arbitrary point on the transmission line and I is the load end of the transmission line. In 

order to have no reflection at the boundary, the line must be matched at the boundary, therefore, 

V, 
= zo (2.40) 

11 

where Z,, is the characteristic impedance of the line. 

Then, (2.38) and (2.39) reduce to 

VV COX x1 (2.41) 

Ix I, eJflx (2.42) 

which is a standard equation for one-dimensional propagating wave travelling towards the -x direction. 

Assuming sinusoidal time variation, we have, 

Vx = V, e 
j(, 8x +wt) (2.43) 

Taking time and space derivatives of (2.43) gives 
a V, a V, 
T=jwV, and jflv., 
t 

and equating the V,, terms results in 

I 
-LIDVI (2.44) 

i 16 jw at 

or 
V,, 

-I 
av" 

=0 (2.45) 
&v at 

So, for wave propagating in the -x direction, normal to the absorbing boundary wall, the Mur's first 

approximate boundary condition is: 
OEtangential I OEtangential 

ax v at =0 (2.46) 
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while for wave propagating in the +x direction, 

OEtangential 
+I 

aEtangential 

_0 (2.47) 
&v at 

where Etangential is the E field tangential to the boundary wall and v is the velocity of the propagating 

wave. (2.46) can be discretised so that the field components on the boundary walls are dependent on only 

the field components on and just inside the walls. 

One way to approximate (2.46) is to use forward differencing for both space and time. This results in : 

EtEt Ax (Ex'+' Et xi xo -0 

XO) vAt 
(2.48) 

where the subscript denotes the space step and the superscript, the time step. Rearranging (2.48) gives us : 

E t+l E 
(, vAt + VAt E X0 X0 ý ý, - -Z7 6x 

(2.49) 

(2.49) gives I" order accuracy in the implementation of the Mur's I" approximate boundary condition. 
Another way of applying (2.46), in order to have second-order accuracy in the discretised finite- 

difference mesh, is to impose (2.46) at half space and time steps as follows : 

LEt,, 
gLehal 
xX 

ý ý,, tj,,, 
II aEtangential 

(2.50) 
x-x+1/2 

v at 

It-f+1/2 

I (E W/2 
-E 10+ 1 /2 )=1 

(2.51) I 'o X 
(Exll+/2 

' EXII/2) 
x2 AX vAt 

Since the values at the half grid points and half time steps are not available, it is possible to use a semi- 
implicit approximation: 

Em"' /2 4,1 
(E"+' 

+ E. " (2.52) M 2 '" M) 

and Em"+112 $4, 
! (E n+, +En (2.53) 
2m M) 

This is partially implicit because it uses an unknown value of E at time step (n+I)At. 
Substituting (2.52) and (2.53) into (2.5 1) gives us 

1[1 (Ex i+I + Ext, - E�t+' - Exto 
)] 

=1 
[ýI (Ex i+I +E e+I - E., ,-E., 0 (2.54) 

Ax 2 vAt 21 xo 
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Simplifying (2.54) gives 

(+' -L -1)ýE f(-L - -L) Ex'+' -L + -L E., 
(+ 

-L + Ex, x ,( vAt äx) = vAt AX) (AX vAt , äx vät 
vAt - Ax W or EE1+ 

(E, 
Et (2.55) X0 xi 

( 

vAt + Ax 

)I 
XO) 

where Exorepresents the tangential electric field components on the mesh wall and Exi, the tangential 

electric field components one node inside the mesh wall. Strictly, (2.55) is the absorbing boundary 

condition for wave propagating in the -x direction, i. e. for use on the boundary wall at x=O. In this case, 
E., O, electric field on the x=O wall is to the left of E., j , the electric field one node inside the x=O wall. For 

a wave propagating in the +x direction, although (2.47) shows a change in sign in the one-way wave 

equation, (2.55) can still be applied as the absorbing boundary condition at the boundary wall x=h simply 
because the change in sign in equation (2.47) is equivalent to swapping the electric field positions on the 
boundary wall; in this case, E., O is the electric field on the wall which is to the right of Ej , the electric 

field one node inside the x=h wall. Similar expressions can be derived for other absorbing boundaries, i. e. 

normal to y and z directions. 

Even after applying the absorbing boundary condition, there is some reflection because true wave 

propagation is not one-dimensional and also the wave velocity is not constant but a function of frequency. 

Besides, the normal incidence assumption is not valid for the fringing fields, therefore the side walls 

should be far enough away so that the effects are negligible on the walls. 

2.9 Conductor boundaries 

Conducting ground plane and copper metallization layer can be modelled as perfect electric conductors 
where the tangential electric fields are forced to be zero. It is usual to assume that these layers have zero 

thickness. In order to model the edge of a conductor, tangential E fields are positioned exactly on the 

edge of the conductor. 

2.10 Dielectric boundaries 

The E and H fields in a dielectric region are calculated using equations (2.13) and (2.14) with the 
dielectric constant, c, set to that of the dielectric instead of unity. The field components which lie on a 

dielectric-air interface are the tangential E and the perpendicular H components. To calculate E, and 

Ey at the dielectric-air interface, the average value of c is used in (2.13) [1.6], i. e. 

el + 62 

2 

where c, is the permittivity of the dielectric 

(2.56) 

and 102 ý 1, permittivity of air. 
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Generally, in order to account for fringing field effects at the edge of microstrip patch, the dielectric 

constant to be used is dependent on the relative permittivity of the dielectric as compared to that of air and 
the relation between the width and height of the dielectric below the microstrip patch being modelled. 
Since the fringing field effects are automatically considered in the FDTD simulation, equation (2.56) is 

suffice for use only at the dielectric-air interface. 

(2,14) is still used to calculate normal H, as the value of p does not change across the dielectric-air 

boundary. 

2.11 . Excitation 

A Gaussian pulse has been chosen as the excitation pulse in all investigations in this thesis. This is mainly 
because a Gaussian pulse has a smooth waveform in time and its Fourier transform is also Gaussian in 

shape and centred at zero frequency. This means that by adjusting the width of the Gaussian pulse, the 
frequency response can be obtained from dc to the frequency of interest. An ideal Gaussian pulse will 
have the following expression : 

(2.57) 

and the pulse will be at its maximum at t=t,,. Fig. 2.2 shows a typical Gaussian pulse. 

9(t) 

T 
I 

e .......... 

tý 
Fig. 2.2 : Gaussian pulse 

The choices of T and t,, are subject to two requirements. Firstly, the FDTD grid size, Ax, Ay and Az are 

chosen to be fine enough to model the smallest dimension of the structure. Also, in order to have a good 
spatial or mesh resolution, the grid size is set such that it is at least 1/20 of the shortest wavelength of 
interest. At is then calculated from the CFL stability criterion as given by the bound in (2.33). The 
Gaussian half-width is given by: 

* 
(' * "I 

= g(t) 
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or 

1tto')2 
= T) 

I= to ± (2.58) 

that is, T is the symmetric point from the centre t, point when g(t) drops to I/e of its maximum value. 

The Gaussian half-width in time is then 2T. We know from Fourier Transform method that the 

relationship between the highest frequency of interest, and T in the Gaussian pulse is given by : 

2f.. 

Knowing the highest frequency of interest, T is calculated from (2.59). This is to ensure that the Gaussian 

pulse is narrow enough to have a wide spectrum in order to maintain a substantial value within the 

frequency range of interest. At the same time, the Gaussian pulse has to be wide enough to contain 

enough number of time steps for a good time resolution. More importantly, in order to minimize 

numerical dispersion error, we have found that, the Gaussian half-width, derived in (2.58), must contain 

at least 20 space steps in the direction of propagation. If the Gaussian pulse travels at a speed, v, in the 

direction of propagation, then the equivalent spatial half-width, TV, of the pulse is given by : 

JY = 2Tv 

(2.59) 

(2.60) 

2Tv 
Therefore, to have 20 space steps, -ý-h- ; >- 20 

or 
loAh 

(2.61) 

where Ah is the space step in the direction of propagation. If the half width of the pulse, calculated from 

(2.59) is not wide enough to contain 20 space steps then, the space step has to be reduced. The time step 

At will then have to be re-calculated to ensure that the CFL stability criterion is still satisfied. 

Secondly, t,, must be chosen such that the initial 'turn on' of the excitation will be small and smooth to 

avoid exciting high order modes. In order to have a smooth 'turn on', t,, in all simulations in this thesis is 

set to three times the value of T. 

2.12 Simulation of a line-fed rectangular microstrip patch 

The finite-difference time-domain equations (2.13) & (2.14) are used with the I" order Mur absorbing 
boundary condition to simulate the propagation of a broad-band Gaussian pulse on a line-fed rectangular 

microstrip patch as shown in Fig. 2.3. This microstrip patch circuit was chosen from a paper published by 

Abouzahra et al [1.5]. The finite-difference mesh parameters are chosen to be the same as in that paper to 

allow direct comparison of results. 
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I' order Mur boundary on all z boundaries except ground plane 
Y 

12.448m 

D-'--6.795mm 

e, = 2.2 1.945m T- 
Perfect 2.334mm 
electric wall 

Fig. 2.3 : Line-fed rectangular microstrip patch 
Mesh parameters : 
Ax = 0.389 mm 
Ay = 0.400 mm 

Az = 0.265 mm 

Thickness of substrate :3 Az 

Air space above substrate : 13 Az 
Rectangular microstrip patch : 32 Ax x 40Ay 

Source plane to edge of rectangular patch : 50 Ay 

Monitored reference plane to edge of rectangular patch : 10 Ay 

Microstrip line width :6 Ax 

Total mesh dimensions : 60 x 100 x 16 in i, ýand 1 directions respectively 

Time step At = 0.44 1 ps 
Gaussian half-width T= 15ps 

Time delay t,, = 3T 

Af = 0.2 GHz 

Since the substrate thickness is relatively small compared to the wavelength of interest, up to 20GIIz, we 

can assume that there is no variation of electric field in the vertical direction. Then, to pxcite the dominant 

mode, a Gaussian pulse in time is launched into the source plane, setting off the vertical electric field, 

E: . of the individual cell, Az, throughout the dielectric thickness and across the width of the feed line, 6 

Ax. 

In [1.6], an electric wall source is used for the remaining nodes on the source plane. An unwanted side 

effect of this is that a sharp magnetic field is induced due to the high value of the space derivative of the 

electric field. This results in the distortion of the pulse. To overcome this problem, a magnetic wall is 

simulated on the source plane as was done in [1.5]. Applying image theory, the tangential TI, a node 

inside the source plane is set to be the negative value of the tangential 77 
,a node outside the source 

plane. Then the remaining ! field components on the source plane may be calculated from the finite 

difference equations. However, when waves are reflected back to the source from the microstrip patch, 
the source plane has to be transparent to the waves. To simulate this, the I" order Mur absorbing 
boundary condition is switched on once the excitation is completed. This means that the source plane has 
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to be a reasonable distance away from the edge of the microstrip patch such that the reflected pulse does 

not arrive back at the source plane while the source is still turned on. 

Initially, all fields in the computational domain are set to zero. As time-marching progresses, the 

sequence of the algorithm implemented is as follows : 

vertical electric field is excited with Gaussian pulse below the strip 
71 fields are calculated using (2.14) 

magnetic wall is applied on the source plane on nodes other than the source points 

electric field values are stored for later use in absorbing boundary condition calculation 

fields are calculated using (2.13) 

tangential E fields are set to zero on the metallized copper patch 

tangential 2 fields on the computational boundaries are calculated using the Mur's first 

approximate absorbing boundary condition (2.55) 

The iteration proceeds till the response is close to zero or until there are enough data to meet the 
frequency resolution. 

2.13 Extraction of voltage and current from the FDTD mesh 

In the FDTD simulation, excitation is in the form of the electric field and subsequently, the electric and 

magnetic fields are calculated on the finite-difference mesh using equations (2.13) and (2.14). To extract 

the voltage at the reference plane (electric field reference plane), firstly the vertical electric field 

underneath the microstrip feed-line for each cell is multiplied by the Az to get the voltage for each cell; 

this is repeated throughout the thickness of the dielectric and all these voltages added together give the 

total voltage at the reference plane at a specific x location. In order to get a more accurate result, an 

average total voltage is obtained for the width of the strip. 

To extract the current, the magnetic field is integrated with respect to the mesh size along the dotted path 
as shown in Fig. 2.4. However, the magnetic field reference plane is shifted by half Ay from the electric 
field reference plane. So, to get the current at the same reference plane as the voltage reference plane 
(electric field reference plane), the magnetic field is integrated twice, first along the path of 11-reference 

plane and then along the path Ay behind the H-reference plane (see Fig. 2.4). Assuming linearity, the 

average of the two integrations gives the current at the E-reference plane. 
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Microstrip feed line 

.......... . ... . ..... ........ ....................................... 

-ref plane 
.............. . ..... . ... ..... ........ "J*--, 

-. 11-111-1 - -c- - -. <7z - <, - i 

E-ref plane 

11-ref plane - Ay 

E-field 
11-rield 

Fig. 2.4 : Extraction of electric and magnetic fields 

2.14 Extraction of Sil 

2.14.1 Two runs 
The microstrip patch is a one-port device and therefore its scattering matrix has only one element Si I 
which is the reflection coefficient. The reflection coefficient is given by : 

r= 
Ereflecteil 

(2.62) 
El, 

cident 

In order to obtain the reflection coefficient, the incident and reflected waves must be known. In FDTD 

simulation, however, the calculated electric fields are the total electric f icids. One way to obtain the fields 

separately is to obtain the incident waveform, Ej,,, jd,,,, , by simulating only the microstrip feed-line which 

extends right through to the absorbing boundary. This incident waveform can now be subtracted from the 

total waveform, E,,, t,,, , obtained when simulating the rectangular microstrip patch to yield the reflected 
waveform. The reflection coefficient is then calculated using : 

r- 
Ereflected 

- 
Et,,,,,, - (2.63) Ej, 

cldent 
Ei,, 

Id,, t 

This means that two runs of the FDTD routine are required in order to obtain the reflection coefficient of 
the circuit. This is inefficient and time-consuming. 

2.14.2 Single run 
It is found in this research that by extracting four parameters instead of one from the FDTD simulation of 
the circuit, only a single run is necessary to calculate the reflection coefflcient of the circuit. 
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Consider the voltage and current at any point on a transmission line 

V Icoshyx V + IIZ,, sinhvx (2.64) 

Ix I, coshv x + 
L' 

sinhv x (2.65) 
Z. 

then 
V, 

= Z" 
( Z, + Z,, tanh yx (2.66) 

Ix ZO + Z, tanh yx 

V 
also (VIsinhvx + IIZ,, coshyx), v (2.67) 

aix 11 sinhy x + 
V1 

cosh yxr (2.68) 
& zo 

then at x=0, set as the reference plane at the monitoring point, dividing (2.67) by (2.68) gives 

ÖV. /ex 
= 

ilz, Z� 2 
(2.69) 

all, /IDX V, /zýI Z, 

and from (2.64) and (2.65), with x=0, 

7- Zi (2.70) 

Note that Z, is not the load impedance in the conventional sense but the load impedance at the monitoring 

point as x=0 has been set as the reference plane at the monitoring point. So, Z, is the input impedance at 

the monitoring point and the reflection coefficient at the monitoring point is given by : 

r=Z, - Z,, 
Z, + Z, 

or VFZ-II/Z. l -I VFZ-II/Z. l +I 

Representing (2.72) in the form of (2.69) and (2.70) gives us 

V1, /1, 

Vx al., a ac 
FX//'2'va-x 

r V. /IX + a V, aix /k k 
ax / Lax 

(2.71) 

(2.72) 

(2.73) 

It can be seen from (2.73) that the reflection coefficient of the circuit can be calculated from a single run 

of the FDTD routine if four parameters, namely, V, , I., , aVI& and L91., /vX are extracted from the 

FDTD simulation. 

Ub, ;;: y 
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The derivation above is done for wave propagation in the x-direction. It can be applied to any direction of 

propagation as long as appropriate parameters are extracted. In all simulations in this thesis the direction 

of propagation is in the y-direction while the excited tangential electric field is in the z-direction. 

Therefore, the required parameters are V, , ly jaV, ley and aly Icy . 

2.15 Extraction of Zin 

The input impedance, Zin, of the microstrip patch antenna at the edge of the patch can be calculated from 

the S11(co) extracted in section 2.14 by transforming the reference plane from the monitoring point to the 

edge of the antenna and applying the equation below. 

Zj" =ZI+ 
Slie j2pl 

'( I-Slie J2,81 

) 

(2.74) 

where P is the phase constant on the microstrip and I is the length from the monitoring point to the edge 

of the patch antenna and Z,, is the characteristic impedance of the microstrip line. 

Pi, :y= 50AY 

y= 40Ay 
Pmon2: Y= 35Ay 

Fig. 2.5 : Plan view of the microstrip patch antenna 

Fig. 2.5 shows the plan view of the simulated microstrip patch antenna where the monitoring point is at 
Non, and the input impedance to be calculated is at Pin- By applying equations (2.70) and (2.73), we have 

the input impedance, Zj,, 
_, n,, nj and reflection coefficient, Siljnonj at the monitoring point, Pmoni- In order to 

apply (2.74) to find Zin at Pin, we need to calculate P, the phase constant on the microstrip and Z,, the 

characteristic impedance of the microstrip line. Re-arranging (2.74), we get 

zo = Zin-monl 
I- S11 

mod (2.75) 
I+Sll_monl 

) 

which gives us the characteristic impedance of the microstrip line. In order to calculate 0, the phase 

constant, V, , ly j aVlq and alylc'y are monitored at another point Pinon2 in addition to point P.. j. 

Again, applying (2.73) to the data extracted from point Pmon2p we obtain the reflection coefficient, SI l_mon2- 
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Let 

S11 
MOM - 

Ereflected 

Eicident 

then 

(2.76) 

Sll-mon2 
Ereflected e -J, 6 11 

Ei,, 
ciden, e J-8 11 (2.77) 

Sll_mon, e -J2.8 11 

since the reflected wave at Prnon2 is delayed from PI by a phase length PLI and the incident wave at 

Pn .... 2 is ahead of Pn I by the same amount where LI is the length from PI to P2 which is set at My. 

Let 01 be the phase of S, I at P ,, and 02 the phase of S, I at Pmon2, then (2.77) becomes 

I Sl 1_mon2 
I dol =I Sl I_monl 

I doý e -j2P L, (2.78) 

then 
01 '02 (2.79) 

2L, 

Substituting 6 and Z,, back into (2.74), we get the input impedance of the patch antenna as 

or jo 1'02 L2 

Zj" = Zi, 
MOM 

I- Sll-monl I+ Sll 
monl e L, 

(2.80) 
- I+Sll 

moni 1 
01 . 02 L2 

-)ý. I-Sll-,,, O,,, e L, 

Since the monitoring points chosen are at Pmonl and Pmon2, L, - My and L2 ýI OAy, then (2.80) reduces to 

Z,. 
' = zm 

monl 

1- Sil 
monl 

N, 
+ SI 1 ment eJ2 

(01 - 02) 

- l+Sll-monl 
.( 

1-Sil-mon, e j2 (01 -0 2) 

Equation (2.81) is used to calculate Zin in one simulation. 
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2.16 Results 

10 12 14 16 18 20 

. W-W --- 111-1-- 11111f- -- -I - -- I freq (GHz) 0- 
1%%I. -- 

-20- 

-30- 
Abouzahra's simulation 

-40 
Abouzahra's measurement 

Conventional FDTD 

-50 

Fig. 2.6 : Comparison between simulated and Abouzahra's published results for I S, II 

M. D. Abouzahra et al [1.5] discussed the application of the three-dimensional FDTD method to the 

analysis of planar microstrip circuits, one of which was the line-fed rectangular microstrip patch shown in 

Fig. 2.3. In order to validate the FDTD program, the patch in Fig. 2.3 is simulated using the same mesh 

parameters as in the published paper [1.5] to allow exact comparison. Fig. 2.6 above shows a comparison 
between the published data and the data generated. The simulated result agrees well with Abouzahra's 

simulated results. However, at high frequencies, both Abouzahra's simulated results and the simulated 

results generated in this work shifted slightly towards the lower frequency. The discrepancy between the 

simulated and measured data may be due to an increase in numerical dispersion at high frequencies. 

Furthermore, the results have been obtained in the time-domain and then converted into frequency 
domain by applying Fourier Transform method on the time-domain data. Consequently, a small error in 

the form of truncation error in the time-domain will result in a more significant error in the frequency 

domain. Besides, the experimental data here are assumed to be error-frce which may not be a sound 

assumption. The discrepancy between the simulated data and Abouzahra's measurement may well be due 

to measurement error. The simulated result in Fig. 2.6 was obtained using a single run FDTD method as 
described in 2.15.2 
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02468 10 12 14 16 18 20 
01 ---, . --- -- . 
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Fig 2.7 : Comparison between two-run and single run simulated results 

freq (GHz) 

In order to validate the single run method of obtaining the reflection coefficient for the microstrip patch 

circuit as derived in section 2.14.2, two sets of data are generated, one using the single run method and 
the other using the double-run method. Fig. 2.7 shows a comparison between both sets of reflection 

coefficients. They show exact agreement. Since the single run method is more efficient, all subsequent 

results from this point onwards have been generated using the single run method. 

80- 

40- 

30- 

20- 

10 

0- 

-10- 
7.1 72 73 74 ýA 76 77 7.8 

freq (GHz) 

-23- 

-3D- - Abouzahra's real conv-fdtd real 

-40- ---- Abouzahra's Imag conv-fdtd Imag 

_ED - 

Fig. 2.8 : Comparison between simulated and Abouzahra's published results for Zi,, 
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Fig. 2.8 above shows a comparison of real and imaginary parts of the patch antenna input impedance 

between the simulated and Abouzahra's published results. In Abouzahra's published paper, the microstrip 
is assumed to have a constant characteristic impedance, Z. of 50 0 and an effective permittivity of 1.9 is 

used to calculate the wavenumber,, P. In this research work, these values have been calculated using the 

simulation data as discussed in section 2.15. Due to an inherent dispersive characteristic of the microstrip, 
the effective permittivity is no longer static but changes as a function of frequency. Since a Gaussian 

pulse which contains all the frequencies of interest is used as an excitation, the dispersive nature of the 

microstrip patch due to the inhomogeneous media is automatically incorporated in the full-wave time- 
domain solution provided by FDTD. The variation of the characteristic impedance in the frequency range 

of interest is also accounted for in the simulated data. It is therefore not surprising to see the discrepancy 
between the calculated input impedance and that presented in the published literature [1.5]. 

2.17 Conclusion 

The three-dimensional finite-difference time-domain algorithm for solving numerical electromagnetic 
problems has been introduced in this chapter. The salient features and key cons 

' 
iderations in the 

implementation have been discussed. Following this, the FDTD algorithm in this work has been shown to 

produce results that agree with published results using a new more efficient technique of extracting the 

reflection coefficient. This method of data extraction has been shown to give identical results to the 

conventional approach and removes the necessity of performing two separate simulation runs, therefore 

saving simulation run-time. Another important point is that the input impedance has been calculated 
directly from simulated data which automatically incorporate the dispersive characteristic of the 

microstrip; this removes the need for a-priori knowledge of the line characteristic impedance and 

effective permittivity. Unlike in [1.5], there is no need to assume the characteristic impedance of the line 

and use an effective permittivity to calculate the wavenumber. 
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CHAPTER 3 

ALTERNATING -DIRECTION IMPLICIT 

FINITE-DIFFERENCE TiME-DOMAIN METHOD 

3.1 Introduction 

The FDTD method has been widely used in solving a broad range of electromagnetic problems, The 

accuracy of the simulation can be greatly improved with the use of finer spatial increments, especially 

where there are discontinuities in the structure. This though leads to the requirement of having fine mesh 

sizes in localized areas. In the past, to maintain stability, as defined by the Courant-Friedrich-Levy (CFL) 

criterion in (2.33), the time step used would have to be small. This would lead to a prohibitively long 

simulation run-time if the object was electrically large but had small localized discontinuities, 

In this chapter, the author shows that with the application of the alternating-direction implicit (ADI) 

method on the FDTD, the CFL stability constraint is eliminated [1.14] and therefore a single time step, 
larger than the one allowed by the CFL criterion, can be used for all mesh sizes throughout the model. 
The time step is no longer governed by the stability but by the accuracy required for the simulation. This 

is particularly useful, for example, when modelling a probe-fed circular patch where the probe is 

extremely narrow compared to the diameter of the patch. In order to represent the effective input 

impedance of the probe-fed circular patch accurately, a high FDTD mesh density is applied in the vicinity 

of the probe and the mesh density decreases gradually away from the probe. Another area where the ADI- 

FDTD may be useful is in the modelling of a structure comprising narrow slots or notches. Here, fine 

meshes are required around the slots and notches with a consequent increase in computation time. 

This chapter will discuss the key features in implementation of ADI-FDTD with particular emphasis on 

absorption boundaries. Note that all the finite-difference algorithms from this chapter onwards will be 

expressed such that the electric and magnetic terms are staggered by half a space step as depicted in the 

original Yee cell to enable the derivation of numerical dispersions for the ADI methods. 

3.2 Three-dimensional ADI-FDTD algorithm 

The conventional ADI method has been widely used to solve many diffusion problems. As stated in 

equations (1.6a) and (1.6b) in chapter one, the conventional ADI finite difference equations are split into 

two procedures for a two-dimensional ADI scheme. Correspondingly, a three-dimensional conventional 
ADI method will require the finite difference equations to be split into three procedures, each one 

replacing a spatial derivative with an implicit difference approximation [2.4]. However, unlike in the 

conventional ADI method, in this three-dimensional ADI-FDTD method, the formulation is split into 

only two procedures, each one replacing each spatial derivative in the Maxwell's curl equations with an 
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implicit difference approximation. Procedure I is applied for advancement from nAt to (n+ 1/2 ), &t while 

procedure 2 is used for advancement from (n+ 1/2)At to (n+I)At. 

Equations (3.1) - (3.2) show the numerical formulation for procedure I of the ADl-FDTD method. The 

electric and magnetic fields are spatially staggered as in the conventional FDTD. Examining equation 
(3.1a), one notes that it has a form which is reminiscent of the conventional FDTD as in (2.13a). 
However, whilst all the H-field terms in the MIS of (2.13a) in the conventional FDTD are explicit, i. e. all 

values are known, the H-fields on the RHS of (3.1a) in the ADI-FDTD have two implicit terms which are 
yet to be calculated. The same form runs through all subsequent equations from (3.1 a) to (3.2c), i. e. there 

are two implicit terms in each equation. 

Procedure I 

H "+112(1 ll, "+1/2(1+1/ 2J-1/2, k) +1/2j+1/2, k) 

En+112 
At AY 

x 
(i + 112j, k) = E, " (i + 1/2j, k) + 

2c Hn(! +112jk+112) - Hn(1+112jk-112) 
yy 

AZ 

(3.1 a) 

H"+1/2(/J+1/2, k+1/2) -H "+112(ij + 1/2, k-1/2) xx 

En+112 (ij + 1/ 2, k) = Ey"' (ij + 1/ 2, k) + 
At 

, AZ 
y 2c H"(1+1/2J+1/2, k) - Hn(1-112J+112, k) 

AX 

(3.1 b) 

lin+II2 . Iln+II2 
y (1 + 1/2j, k+ 1/2)_ y (1-1/2jk + 112) 

rn+II2 
At 

' 
är 

1, (ij k +I/2)= En (ijk + 1/2) + 3tZ 7-' H»(ij +I/2, k +1/2) - 11"(IJ-1/2, k + 1/2) 
AY 

(3. lc) 

E. »(IJ+I, k+I/2) - E'(Ijk +1/2) 
----Z 

, -in+ 
1/2 =Hn 

ät AY 

x (ij+112, k+112) x (ij+I/2, k+I/2) - Ep-, E n+112 (ij+112, k+I)_Eyn+112(ij+112, k) y 
AZ 

(3.2a) 

E"(1+112j, k+l) - E"(i+112jk) 

H n+1/2 (i+1/2jk+1/2) = Hn (i+112jk+112) - 
AZ 

yy n+112 n+112 
-iP 

Ez (i+ljk + 1/ 2) - Ez (IJ, k+I/ 2) 

Ax 

(3.2b) 
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En(i+lj+112, k) - En(! J+112, k) y -Y 
H n+1/2 (i+112j+112, k) =H n (i+1/2j+1/2, k) - 

at 
, 

ax 
zz2, u E, "+ 1/2(i + 112J+I, k) - E, "+1/2(1+ 1/2jk) 

AY 

(3.2c) 

Because of the unknown implicit terms on the RIIS, equations (3.1). cannot be solved directly as in the 

conventional FDTD. To solve equations (3.1), the LHS electric fields have to be expressed such that the 

RHS terms are all known values. In other words, the RIIS terms have to be in the form of previously 

calculated values. This can be accomplished by substituting equations (3.2) into (3.1) appropriately; 

specifically, substituting (3.2c) into (3.1a) results in (3.3) below. In equation (3.3), the LIIS forms a tri- 

diagonal matrix of E., when E,, is scanned in the ý direction. The MIS of (3.3) now consists of only 

explicit, known terms. This tri-diagonal matrix is a sparse matrix that can be solved efliciently [2.6]. 

E n+112 (i+112j-l, k)-E.,, "+112(i+112jk) 2+ 
ý, U-c Ay )2 

+ E, "+1/2 (1+1/2j+l, k) 
x it 

.11 
-2 

NTY c Ay 
, 

(Ay 
E 

ý, 
" (i +I/2j, k) -L 

[E" 
(I+lj + 1/2, k) - Ey" (ij + 1/2, A) - Ey" (W J-1/2, k) + En (ij-1 /2, k) 

Ax) yy 

E uAy Ay [II"(i 
+ 112j + 1/2, k) - 11 "(i + 1/2j-1/2, k)] + 

(p 
"(I + 1/2j, k+ 1/ 2) - 11 " (I + 1/2j, k-1/2)] 

zz21 
[Hy 

y 
L 

AI) 

(3.3) 

Ey and E, can be solved in a similar manner with the former resulting in a tri-diagonal matrix when 

scanned in the direction of 1 and the latter in i in procedure 1. Once all the electric fields are computed, 

the magnetic fields can be computed directly using (3.2a) - (3.2c). 

Equations (3.4) - (3.5) show the numerical formulation for procedure 2 of the ADI-FDTD method. Those 

partial derivatives that were replaced with implicit approximations in procedure I are expressed in 

explicit approximations in procedure 2 and vice versa. The switching between the implicit and explicit 

expressions in the two half time steps gives rise to the name alternating-direction. 

Procedure 2 

H. ""1120+112j+112, k) -H "+1/2 (1+ 1/2j-1/2, k) 

E"+' 0+ 1/2j, k) =E "+112 (i+112jk) + 
Ay 

xx 2s Hn+l(i+112jk+112) - H"+1(1+112jk-112) y 
AZ 

(3.4a) 
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H n+112 11 n+112(ij + 1/2, k-1/2) 
x 

(ij + 1/2, k + 1/2) 
x 

n+112 
A AZ 

E "+' (ij + 1/2, k) =E (ij+112, k) + 
At 

,0 
yy 2c H n+l (i+112j+112, k) -H"+' (i-1/2j+1/2, k) 

,Zz 
I Ax 

(3.4b) 

H "+112(i + 1/2j, k+ 1/2) -H "+1/2 (1-1/2jk+1/2) 
yy 

E. ""(ij, k+112)=E.. "+'12 (ijk+112)+ 
At 
A Hn+l ij+1/2, k+1/2)-lix"+'(/J-1/2, k+1/2) 

Ay 

(3.4c) 

E"+' (ij+l, k+112)-E"+' (/Jk+1/2) 

H, n+l (ij+112, k+112) =H, "+112 (ij+1/2, k+1/2)- 
At Ay 

x 2, u E n+1/2 (ij +I/2, k+l) -E n+112(ij+ 1/ 2, A) 
yy 

Az 

(3.5a) 

E'+' (i+II2J. k+1)-E»+' (i+II2jk) 
.x 

Hn+' (i+112jk+112) =H"+112 (i+112jk+112) - 
At 

. yy n+I/2 1/2 2p Er (i+Ijk+112)-E»+ (ijk+I/2) 
-Z Ax 

(3.5b) 

En+' (1+IJ+l12, k)-E'+' (ij+I/2, k) 
-y -- -y 

n+I(i+112j+l12, k)=H»+112 (i+I/2j+1/2, k)- Hz Z n+II2 n+112(l+ -iß 
Ex (1+112j+I, k) -Ex 112jk) 

AY 

(3.5c) 

Again, substituting equation (3.5b) into (3.4a) and collecting the E, terms on the left give rise to equation 
(3.6) below where all the RHS terms are explicit terms, i. e. known values. Repeating the same process 

over equations (3.4) leads to tri-diagonal matrices for E.,,, Ey and E, when the fields are scanned in the i, 

i and ý directions respectively. The full formulation of electric fields in both procedures I and 2 are in 

Appendix B I. 

E; +'(i+112j, k-l)-E, "+'(i+112j, k) 2+ ucAz 
+ En+'(i + 1/2jk + 1) 

1 

141 

1 

E", 1/2 (i+112ik) ucäz 
+ 

(AAi 
+1/2 /2 (ijk. 1/2) 

x) 
[E, »"1/2 (i+Ijk + 1/2) - E, " (ijk + 1/2) - Ez»"/2 (i+Ijk-112) + E"+' 

At EI cýI 
(, uAz) ; 11/2 [lln+I/2 (i+I/2j-1/2, k)] 

- U- (1 + 1/2jk + 1/2) - lly»"12 (i+I/2jk-1/2) (1 + 1/2j + 112, k) - lln+I/2 
At 

[H; 

(3.6) 
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3.3 Physical Interpretation of three-dimensional ADI-FDTD method 

conv-fdtd 

adi-fdtd 
procedure I 

x 

I Iy/2 

adi-fdtd 
procedure 2 

Hz 

Hy 

(n+1/2)At 

Ex 

(n+I/2)At 
Ex 

x 

time 

Fig. 3.1 : Comparison between conventional FDTD and ADl-FDTD 

I ly/2 

Fig. 3.1 above illustrates a physical representation of the ADI-FDTD formulation in comparison to its 

conventional FDTD counterpart. The diagram shows that in the conventional FDTD method, the electric 
field at time step (n+I)At is calculated using the previously calculated electric field at time step nAt and 
the curl of the known (hence explicit) magnetic fields, fly and 11, at time step (n+ V2)At. In the ADI- 

FDTD method, an intermediate electric field is calculated at time step (n+ 1/2)At. In procedure I of the 

ADI-FDTD method, the electric field at time step (n+ V2)At is calculated using, again, the previously 

calculated electric field at time step nAt and the curl of the magnetic fields. However, this time, half the 

curl is performed on the known (explicit) value, i. e. Ify at time step nAt, and the other half of the curl is 

performed on the unknown (implicit) value, i. e. H. at time step (n+ 1/2)At. This is immediately followed on 

by procedure 2 of the ADI-FDTD method; now the known (explicit) value of II,, at time step (n+ Y2), &t 

and the unknown (implicit) value of Hy at time step (n+I)At are used in the curl formulation. The total 

magnetic field over a full time step remains unchanged. Note that although the curl at each half time step 
is separated into two different time instances, it is still performed at a same point in space. 

A further graphical illustration comparing implicit, explicit and ADI-FDTD methods with reference to the 
Runga-Kutta method is shown in Appendix Cl. 

(n+I)At 

nAt 
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3.4 Divergence of ADl-FDTD algorithm 

As in the conventional FDTD algorithm, there is no explicit enforcement of the Gauss's Law relations for 

both the electric and magnetic fields as stated in (2.3) and (2.4) for source free regions in the ADI-FDTD 

algorithm. It is important that Gauss's Law is also observed in the ADI-FDTD algorithm. Although the 

curl operation of the magnetic fields is performed over two half time steps, the total magnetic field over a 
full time step remains unchanged in the ADI-FDTD scheme. Therefore, the ADI-FDTD algorithm will 

still satisfy equation (2.16), i. e. the time derivative of the net electric flux leaving the surfaces of a cubic 
Yee cell is zero, hence upholding the Gauss's Law for the electric field in charge-free space in the ADI- 

FDTD scheme. 

3.5 Numerical stability 

As in chapter two, numerical stability of the ADI-FDTD can be analysed using the standard von 
Neumann and Courant, Friedrich and Levy (CFL) method. Assuming the spatial frequency to be 

kx 9 ky and kz as the x- , y- and z- components of its numerical wavevector respectively, the field 

components can be written as follows. 

E'(i+112, j, k) = E., expf-jrk,, (i+1/2)Ax + ZyjAy + ZkAz]) 
x 

(3.7a) 

E'(i, j+112, k) = En expf-jrkxiAx + Ty(J+112)Ay + T: kAz]) 
yy 

(3.7b) 

E' (i, j, k+I/ 2) = E" exp 
f-j rk, iAx + Ty jAy + T: (k +I/ 2)Az] ) z 

(3.7c) 

Hn(i, j+112, k+112) = Hnexpf-jrkxiAx + Ty(J+112)Ay + T, (k+1/2)Az]) xx 
(3.8a) 

Hn (i + 1/ 2, j, k+I/ 2) = Hn exp j rk, (i + I/ 2)Ax + TyjAy + T, (k + I/ 2)Az] yy 
(3.8b) 

HnQ+ 1/ 2, j+ 1/ 2, k) = H" exp j 
rkx 

Q+ I/ 2)AX + Ty (i +I/ 2)AY + T, kAZI) 
z2 

(3.8c) 

where n, i, j, k, Ax, Ay and Az all have their usual meanings as defined earlier in chapter one. 

3.5.1 2-dimensional ADI-FDTD 
For the sake of simplicity, we consider first the numerical stability of a 2-dimensional TE wave consisting 

of the following fields : 

Procedure I 

12 
(H n+112 (i+I/2, j+I/2) - H"+"2(i+I/2, j-1/2) 

E"+' (i+112J) = E"(i+112, j) + 
ät 

(3.9a) 
2s1 AY 

1 

E n+112 At H"(1+1/2, J+1/2) -Hn (/-1/2, J+1/2) 
(i, j+ 1/ 2) = Ey"O, i+ 1/ 2) ---z -- z (3.9b) 

y 2c Ax 
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En(i+II2, j+II2) - Ey"(1, J+112) y 

Hn+'/2(i+I/2, j+1/2) = Hn(! +112, j+112) - 
A' 

ý 
AX 

x9 n+II2 n+I/2 2p Ex (1+112, j+1) - Ex (i+I/2, j) 
AY 

Substituting (3.7a), (3.7b) and (3.8c) into (3.9) yields the following : 

Ex *GFI = Ex - GFI*H 
At 

2j sin yAy) (3.1 Oa) j 
2cAy 

(ý2 

At xAx) Ey *GFI = Ey + H., ý 
CAX 

2j sin(L2 (3.1 Ob) i 

At At 
(3.1 Oc) Hz *GFI = Hz + Ey ý- 

Ay) 

,u Ax 
2j sin "AX) GFI* Ex2, 

Ay 
2j sin x 

(i 
yi 

L2 (L2 

where GFI is the growth factor in procedure 1. Substituting (3.1 Oa) and (3.1 Ob) into (3.1 Oc) gives : 

(3.9c) 

H: 
At 

2j si, , Ax At 
2j sin xAx) x- 

H, *GFI=H: + 
2cAx 

(iL2--) 

2, u Ax 

(L2 

GFI -I 

-4 

GFI* GFI*H, 
At 

2jsin y Ay At 
2jsin 

Ty AY 
2cAy 2p Ay -2) 

(3.11) GFI-I 

N-12 2 
k,, Ax 

y 
Ay 

H., (GFI - 1) 2 H, sin" - GF12H 
At 

sin (3.12) 
c Ax ý2 )] 

c Ay 2 

)] 

Ay 

z Ay) 
Let 

A, 
and m= -L' sin y Ay 

mx sin 
AX) 

-2 Ax 

ý2- 

Y 
xAx Y 

and dividing (3.12) by H, 

GF12 
2) 

2GFI ++ 
2) 

=0 (3.13) 

(I 

+ -Y, - 

(I 

-.!!,! 
U-"C 

Let a 1+ýHy" and cM 1+ 

then (3.13) becomes 

aGF12 - 2GFI +c=0 (3.14) 
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GFI =I 
±41-ac 

a 

and since 0 :5 sin 
2p 

:51, then ac ; -> I 

GFI 

Procedure 2 

At H , +112 (1 + 1/2, J+1/2) - , n+1/2(1+1/2, J-1/2) 
E n+l (i + 1/ 2, j) =E n+112 (I+112, j) +z 

x AY 
(3.16a) 

Hn+'(1+112, J+112) - 11'+1(1-1/2, J+1/2) 
E; "/2 j+I/2) - 

At (3.16b) 
2c AX 

1 

E""1(1+1/2, J+1/2) - Ey"*'(I, J+II2) 
Y 

H'+'(i+112, j+112) = Hn+1/2(i+1/2, J+1/2) - 
At 

. 
z 2p E"+1/2(1+1/2, j+l) E"+"2(1+1/2, J) 

xx 
AY 

(3.16c) 

Again, substituting (3.7a), (3.7b) and (3.8c) into (3.16) will yield the following 

(T NY y AY HA 
y2 

E" * GF2 = E, AV 
2jsin (3.17a) 

E *GF2=Ey + GFVH, ý 
At 

2j sin x (3.17b) 
y C, &x 

(LXPI) 

Ax At y AY &t 
2jsin xi Ex 2jsin 

i- 
(3.17c) Hz *GF2 =H+ GF2*E 2p Ax 

(LX2 

2, u Ay 

(Z2 

where GF2 is the growth factor in procedure 2. Applying the same technique on procedure 2, we get, 

GF12 
(I 

+ 2GFI + 

(I 

+0 

GF2 =I 
±jvrac-I (3.19) 

c 

Therefore, the total growth factor of procedures I and 2 combined is given by : 

GF =IGFII*IGF21 
E (3.20) C Jc 
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Since the overall growth factor of the 2-dimensional ADI-FDTD is unity, the system is said to be 

unconditionally stable [1.14]. However, if we note carefully, the growth factor (3.20) or the gain of the 
ADI-FDTD system, is exactly unity; potentially any slight increase in the growth factor due to any 
truncation errors may cause the system to go unstable. This 'exact' phenomenon is discussed in more 
detail in [1.17]. 

3.5.2 3-dimensional ADI-FDTD 
To analyse the numerical stability of a three dimensional ADI-FDTD, we apply von Neumann method 

again on the three dimensional ADI-FDTD formulations (3.1) - (3.4). Denoting all the electric and 

magnetic fields as X matrix, procedure I can be written in the form : 

Xn+112 = GFI * X" 

and procedure 2 as 
X"' = GF2*X""12 

The overall growth factor for the proposed scheme is then given by : 

GF =I GFI I*I GF21 

where 

and 

GFI = 

GF2 = 

I 
- 

Mx-My 0 0 -J. Mz J-my 
7y Ny-p -e 

ýY-c Ny-z 

0 1 My -Mz j-Mz o : J. mx 
Nz Nz. p e Nz-c Nz-c 

Mx-Mz 0 1 -j-My J-Mx 0 
Nxg -E 

iTx ýxc Me 

0 
j. Mz -j-My 1 

0 
Mx-Mz 

Nzg Nzp Nz Nzg -c 
-j. Mz 0 j-Mx Mx-My 1 0 
Nxp Nxg Nxp -c Nx 
j-My -j. Mx 0 0 My. Mz I 

- Ny-p Ny-p Ny-p -e 
Ry 

1 0 Mx-M 
0 "j. Mz j-My 

TZ Nz-p -c Nz-E Nve 

Mx-My 1 0 imz 
0 -j-Mx 

Nx-g Nx Nz-e Nz. c 

0 My. Mz I -j-My 
7 

j-Mx 0 
Ny -g -c 

Ry iTy 7e Ty 
-6 

0 j. Mz -j-My I Mx-My 0 
Ny -p Ny -g NY Ny -p -E 

-j-Mz 0 
ýmx 

0 
1 

- 
My. Mz 

Nz-p Nz-g Fz Nz-p -c 
i-my -j. mx 

0 0 Mx. Mz 
* - 

I 
, Nx-p Nx-p ýx 

ve 
RX 

(3,21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 
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where 

! hAh) M 2h 
- X, Y, z h "2 -L' sin( 2 and Nh 1- 1+ 

PC 
h (3.26) 

Ah 

It has been shown [1.18] that the eigenvalues of GF all have magnitudes of unity. Again, with the 
theoretical gain of unity, the three dimensional ADI-FDTD is said to be unconditionally stable. 

3.6 Numerical dispersion 

The numerical dispersion for the ADI-FDTD method can be found by substituting the vector-field 
travelling-wave expression with time dependence shown below into the ADI-FDTD finite-diffcrcnce 

equations . 

E'(i+112, j, k) = Eexp(jo)nAt-jrk, (/+1/2)Av + k-yjAy + k-, kAzl) x 

E"(i, j+112, k) =E exp(jo)nAl-jrk, /&v + Ty(j+112)Ay + TkAz]) 
yy 

Hn (i+112, j+112, k) =H expjjo)nAl-jrk,, (1+1/2)AX + k-y(J+112)AY + WkAz]) 

3.6.1 2-dimensionaIAD1-FDTD 
Again, for simplicity, we investigate the numerical dispersion of a2-dimcnsional TE wave [1.19]. 
Substituting (3.27) into (3.9) (procedure 1) gives : 

_I)n=j 
Al 

sin 
y 

AY) 
e 

jw At/ 2 jwAl/2 in Ex j 
(7Ay) (i2 

jwA112 
_ 1) En y 

( jwW/2 
_n e 1) Hz 

( At )i) 
I/: - 

, Ax)sin( 
XPI k7- 

Lx 

At )( At y 
Ay) 

Jd#At/2 Em sin E" -j sin ex x 
y(p Ay) 

(i2 

and into (3.16) (procedure 2) gives : 

jw, &t 
- 

jwAt12 ny 
Ay) 

=j 
A' J- jivAt/2 (e e Ex 

(7Ay) 
sin 

(i2 

e 

(eimAl -e 
jmAI12 )E' j( 

At ) 
sin x. ý! 

ejwA'Iln y (7c Ax) 

(i2AX) 

(3.27a) 

(3.27b) 

(3.27c) 

(3.28a) 

(3.28b) 

(3.28c) 

(3.29a) 

(3.29b) 

LWy Ay ) 

(e jwAl 
-e 

jwAI/2 )Hn j( At ) 
sin e 

JwAl En j( At ) 
sin e 

jo)AI/2 En (3.29c) - 
Ax) 

rfl Ayj 

(. 

2 
r. 

u AX) 

(1-2 

y 
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Combining (3.28a) & (3.29a), (3.28b) & (3.29b) and (3.28c) & (3.29c) gives rise to the following: 

(ejo A' 
-I) E' ' 2i 

A, 
sin y Ay 

e jw At 2 H, " (3.30a) -Ay 2 

At ) kxAx jwAl n (ej' At 
- I) Ey" ý-c -Ax) sin 

(2) 
(e 

+ I)H: (3.30b) 

(ei"Al - I) Hnf 
At ) 

sin 

wx AX 
e 

jwAl +1) E" - 2j 
( At ) 

sin 
Ay 

e 
JwAl/2 E' (3.30c) 

z ý7-, K; ) 2)y 
Cp 

Ay) 
Y2 

)x 

(3.30) can be simplified to : 

sin 
(W At 

E" = 
)' 

CA sin 
AY 

H" Z 
)Y 

(3.31a) ý72 y 2 

sin 
(W At 

E" = -) Y 
(± At ) 

sin 
kAx 

coý -1111 
) ý-O ( )H, 

' (3.3 1 b) 
2 2 2 

(W At 
sin H. ' 

At T, AX (CO At 
sin CO E" sN-) Y 

) At y 
sin 

TYAY 
Eff ý 

Y) 
(3.3 1 c) 2 AX 2 PAY 2 

or 

(W At At TY AY Y L 
sin 0 sin 2 -AY )( 

E" X 
0 

(W At 
sin 

N-) At AX (0i At 
sin J'L) cos(L 7) 

(L 
E; 0 

2 2 Y 
ýY AY At LZ Y Z,, Ax At xL 

L (a) At (wAt ± [(_ 

iT 
sin A-y 2 co 

) 
sin 2 74AX 

( 4) ) 
sin - 

( 

2 

(3.32) 

Thus the numerical dispersion relation for a 2-dimensional TE wave is given by making the determinant 

of the matrix zero, i. e. 

(WAt 

i 
(± 

-) 
2( 

sin 
WAt I (At)2 

- 
2(ix. 

ýi 

COS2(wAt sin 
ýL ( 

s n 2 2e Ax 2 2 
(3.33) 

(co At 
+ i 

(± 
-) 

I( At)2 
si 2 

('TyAy) 
0 - 

1 

s n 2 - PC 
n rAy) 2 

or 

- T_) 

2(2 2 
2(TXAX 2(01 At) 

+( 
ly 2y 

Ay 1 )2 (w At 
sin Cos 

'y 
sin ' 

Ly (7A 

t 
sin 2 -E-) (3.34) 

Ix 

(± L2 
22 

where c= IlV-pe - 
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Comparing (3.34), the dispersion relation for a 2-dimensional ADl-FDTD with the known numerical 
dispersion relation for a 2-dimensional FDTD : 

212a 
2 

T" AX 2 YAY 2(0)Al 
sin +(71 

L- 
= 

(71 

') 
sin sin (3.35) 

2y(2) 

it can be seen that there is a difference of a factor of cos 2 
(w At) 

in one of the left-hand-side terms, Le. 
(-a2- 

the term with numerical wavenumber T,. The dispersion equation (3.34) was derived from the 2D ADI- 

FDTD equations of (3.9) & (3.16). In procedure 1, (3.9), the 11. field was calculated using explicit Ey and 

implicit E,, while in procedure 2, (3.16) the 11, field was calculated from implicit Ey and explicit E,. 

According to Peaceman and Rachford [1.13], the ADI method remains unconditionally stable so long as 

the two procedures are repeated over the same time step, one after another. Indeed, there is nothing to 

stop us writing out the 2D ADI-FDTD equations with the implicit and explicit terms interchanged. In 

2 At 
such a case, the factor cos 

W) 
will be imposed on the numerical wavenumber k- rather than k.. ý2/Y 

The additional factor in (3.34) means that the variation in the numerical phase velocity due to numcrical 
dispersion for the ADI-FDTD scheme changes in a non-uniform manner, depending on the direction of 

wave propagation, as the time-step, At, is increased. Consider (3.34), where the COS2(4'At factor is 
(E2-) 

imposed on k, For wave propagating in the direction of x, kym 0, then the numerical wave velocity is 

reduced from that of the standard FDTD scheme due to the factor cos 2("'). On the other hand, for 
2 

wave propagating in the direction of y, k, = 0, then the numerical wave velocity in the ADI-FDTD 

scheme is the same as that of the standard FDTD scheme [ 1.19]. 

3.7 Implementation of I't order Mur absorbing boundary condition 

The second approximation of the I" order Mur absorbing boundary condition (2.55) is applied to the 
ADI-FDTD algorithm. The implementation of the absorbing boundary condition Is shown here in two 

ways. The first way is to implement the absorbing boundary condition simultaneously within the tri- 

diagonal matrix when the rest of the fields are calculated and the second way is to implement tile 

absorbing boundary condition recursively after the other internal fields are found by solving the tri- 

diagonal matrix. Although the first way may seem easier to implement, it is indeed an incomplete way. 
Despite this, the author feels it is necessary to describe this incomplete approach and explain why it can 
lead to incorrect results. 

3.7.1 Boundary condition within the tri-diagonal matrix 
The first method is to apply the boundary condition as part of the tri-diagonal matrix so that all fidds 

within the computational boundary are computed when the matrix is scanned through in each direction. 
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To illustrate the implementation of the absorbing boundary condition with the tri-diagonal matrix, the tri- 

diagonal matrix of (3.5) and the I' order Mur absorbing boundary equation (2.55) are repeated below. 

1/2 1/2 
( ý--Uc Ay Y 

1/2 
I+ 

E"' E; + (i+112j-l, k)-E., "+ 0+112jk) 2+ý- (1+112J+I, k) 
xx 

2 

-En (i+112jk) 'u 6A+ (-ýAy- 

y 
(! +Ij+112, k) -EY"(IJ+112, k) -EY" (I+IJ-1/2, k) + Eyll(ij-112, k) Y) [Ey (EA 

t 

+ 

(. 
U, & y2 ('UAY [11"(i+112j+II2, k)-H, "(1+112j-112, k)I -LAil)7 "(i+1/2jk+1/2)-Ilyn(1+1/2jk-1/2)I 

NA LI) [Ily 

(3.36) 

- OiAY 
2 

Let b2+ 
(Nfp 

At 
21: -V 

-, 

I" order Mur absorbing boundary equation is given by: 

En+I = En + 
rýVät « Axý(EI»'»' 

- En (3.37) 01 ý7A7 + AX) 0) 

Now, let Mur-x - 
(vAt 

- Ax) 
ýv& 

+ Ax) 

and re-arranging (3.37), we get 

EO" - (Mur_x . EI""') - Ei' - (Mur_x Eo») (3.38) 

Let all the terms on the right hand side of (3.36) be known as 'rhs' and for the purpose of this Illustration, 

we shall consider only six spatial steps in the y-direction. Now, incorporating (3.38) into the tri-diagonal 

matrix (3.36) gives us a tri-diagonal matrix of the form below. 

1 - Mur x 0 0 0 0- En+112(1+112,0, k)" "Ein 
- (Mur_x. EO')" 

1 b 1 0 0 0 En+"2(1+112,1, k) x rhs at j-1 
0 1 b 1 0 0 n412 Ex (1+ 1 /2,2, k) rhs at j=2 
0 0 1 b 1 0 En+' 12(l+ 1/2,3, k) x rhs at j-3 

(3.39) 

0 0 0 1 b 

1 

n+l 12 Ex (1+ 1 /2,4, k) rhs at j-4 
LO 0 0 0 -Mur x 

- 
1 Ex»" 12 (1+1/ 2,5, k)i L E4n - (Mur x. E; )j 

-5 

The same can be applied for Ey & E, in procedure I and then all the electric fields in procedure 2. 

However, upon close observation of the matrices, one can identify a problem with this method of 
implementation. In procedure 1, only one out of the two normal incident fields at each boundary is 

implemented as a one-way wave equation. In procedure 1, E,,, sees absorbing boundaries at the y-direction 
boundaries, Ey at the z-direction boundaries and E, at the x-d irection boundaries. Then in procedure 2, Ex 

is 'absorbed' at z-direction boundaries, Ey at x-direction boundaries and E, at y-dircction boundaries. 

This is an incomplete implementation as all normal incident fields should see the appropriate absorbing 
boundaries for both procedures I and 2 at each half time step. Therefore, although at first sight it may 

seem simpler to implement the absorbing boundary condition simultaneously within the tri-diagonal 
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matrix, this method can in fact lead to incorrect results. This problem can be resolved if the other half of 
the normal incident fields that are not implemented as a one-way wave equation within the tri-diagonal 

matrix are recursively calculated separately from the tri-diagonal matrix. 

3.7.2 Boundary condition outside the tri-diagonal matrix 
The second method is to initially solve the tri-diagonal matrix for all the fields in the computational 
domain except for those at the boundaries. The field values at the absorbing boundaries are then 

calculated recursively using the field values found from solving the tri-diagonal matrix. These boundary 

field terms, however, have to be taken into account within the tri-diagonal matrix. For consistency, six 

spatial steps in the y-direction are used. This gives rise to only four internal ficids excluding the fields at 
the absorbing boundaries. First, we write the tri-diagonal matrix for the four internal f iclds. 

n+112 b100 Ex (1+ 1 /2,1, k) rhs at j=1 
n+1/2 1b10 Ex 

/2 
(l+ 1 /2,2, k) rhs at j=2 

(3.40) 
01bI E"+' (1+1/2,3, k) rhs at j-3 x 

-0 
01 b-. En+l /2 (1+1/2,4, k)j 

-rhs 
at j= 4_ 

Incidentally, (3.40) is the final tri-diagonal matrix to be solved if the computational boundary Is a perfect 
electric wall boundary. 

To include the fields at the absorbing boundaries, we re-write (3.40) to give : 

n+112 b100 Ex (i+112,1, k) (rhsatj=l) E"+1/2(1+1/2,0, k) 
x 

Ib10E n+1/2(i+1/2,2, k) rhs at j=2 
x /2 (3.41) 01bI E"+' (1+1/2,3, k) His at j=3 x 

-0 
01 b-,. En+l /2 (1+1/2,4, k), 

x 
/2 (1 + x_ (rhs at j= 4) - E"+' 1/ 2,5, k) 

Now, re-arranging the I" order Mur absorbing boundary condition, 

Eo"" /2 = El" - (Mur_x Eo") - (Mur_x E, "*1/2) (3.42) 

Substituting (3.42) into (3.4 1) and re-arranging (3.4 1) to have the n+ 1 /2 terms on the Ll IS gives us 

b+Mur x100" Em+l /2 
x (1+1/2,1, k) (rhs at j= 1) - Et' + (Mur-x. Eo") 
n+112(j+ Ib10 Ex 1/ 2,2, k) rhs at j=2 
n+112 (3.43) 01bI Ex (i + 1/ 2,3, k) rhs at j-3 

L001 b+Mur-XJLExn+l /2(j+ 1/ 2,4. k)j L (rhs at j= 4) - E4" + (Mur-x. Esn) 

The same can be applied for Ey & E, in procedure I and then all the electric fields in procedure 2. With 

this method of implementation, the fields at the absorbing boundaries have to be calculated separately 
from the tri-diagonal matrix. This can be done recursively after the internal fields of the computational 
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domain are obtained. In all simulations using the ADI-FDTD method, the I' order Mur absorbing 
boundary condition is implemented using this technique. 

3.8 Simulated results 

Several different models were simulated to show the application of the ADI-FDTD method. Even though 

the ADI-FDTD method will see its time-saving benefit most in a model where there is a variety of mesh 

sizes, for the purpose of showing the application of the ADI-FDTD method, a regular finite-difference 

mesh has been used in all the following models. This means that the worst case has been modelled when 
the stability factor is increased beyond the CFL constraint. Since in the ADI-FDTD method the time step 
is no longer restricted by the CFL criterion (2.33), the time step At , can be set to be greater than the 

maximum allowed by the CFL criterion modified below by including the stability factor term. 

At stability factor 
(3.44) 

111 
v -72 +7 "r A. 2 y 

where a stability factor of 1.0 implies the maximum At as allowed by the CFL constraint. 

In all structures simulated below, the conductor is treated as a perfect electric wall boundary. The 
dielectric is modelled in the same way as in the conventional FDTD method described in chaptcr 2 and a 
Gaussian source is used for excitation. 

Initially all fields are set to zero. As time-marching progresses, the sequence of the implemented 

algorithm is as follows : 

Procedure 1: 

E fields are calculated by solving the tri-diagonal matrices, one of which Is (3.5) 

tangential E fields are set to zero on the metallized patch 

tangential E fields on the computational boundaries are calculated using the Mur's I st 

order absorbing boundary condition (2.55) 

the vertical electric field is excited with Gaussian pulse below the strip 

H fields are calculated using (3.2) 

electric and magnetic field values are stored for later use in absorbing boundary 

condition calculation and for field calculations in procedure 2 

the time step is incremented by half At 

Procedure 2: 

E fields are calculated by solving the tri-diagonal matrices, one of which is (3.6) 

tangential E fields are set to zero on the metallized patch 
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tangential E fields on the computational boundaries are calculated using the Mur's I st 

order absorbing boundary condition (2.55) 

H fields are calculated using (3.4) 

electric and magnetic field values are stored for later use in absorbing boundary 

condition calculation and for field calculations in procedure I 

the time step is incremented by half At 

To model a cavity, the calculation of the tangential 2 fields on the computational boundaries is left out 
because by solving the tri-diagonal matrix in the form of (3.40), a perfect electric wall boundary on the 

computational domain is automatically assumed. 

3.8.1 Three-dimensional cavity 

Perfect 
electric wa 
boundary 

Fig. 3.2 : Three-dimensional cavity 

A simple three-dimensional cavity, filled with air, and bounded by a perfect electric wall boundary, 

shown above in Fig. 3.2 is used to validate the ADI-FDTD method. 
Mesh parameters : 
Ax = 0.2mm AY = 0.2mm Az'- 0.2mm 

Total mesh dimensions : 60 x 60 x 60 in 1, ý and i directions respectively 

Critical time step At = 0.3851626ps 
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Fig. 3.3 : Comparison bctween convcntional FDTD and ADI-FDTD 

rcsults with stability factor I for a threc-dimensional cavity 

Fig. 3.3 shows the time-domain results for wave propagation in a three-dimensional cavity with perfect 

electric wall boundary. The stability factor used here is 1.0; that is the time step used Is the critical time 

step. It shows good agreement between the results using the conventional FDTD and the ADI-FDTD 

methods. Fig-3-4 shows that the results from the ADI-FDTD are still stable with stability factors 2,5 and 
10 although the effect of numerical dispersion begins to show when stability 5 and 10 are used. However, 

Fig. 3.5 shows that using the conventional FDTD method, increasing the stability factor to 2.0, thus 

violating the CFL stability criterion, immediately causes the results to go unstable. In all cases above, the 

position of the monitoring point is not important as the main aim of these simulations is to show that 

unlike the conventional FDTD method, with ADI-FDTD method, the results rcmain stable even when 
CFL criterion is not observed. More detailed results showing the accuracy of ADI-FDTD results against 
the stability factors used will be shown and discussed in chapter 5. 
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Fig. 3.4 : ADI-FDTD results with stability factors 1,2,5 and 10 

for a three-dimensional cavity 
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Fig. 3.5 : Conventional FDTD results with stability factor 2.0 
for a three-dimensional cavity 

3.8.2 Three-dimensional cavity with inhomogeneous media 

Perfect 
electric we 
boundary 

Fig. 3.6 : Three-dimensional cavity with inhomogcncous media 

In order to model inhomogeneous media, the three-dimensional cavity is partitioned into two sections, 

one with its permittivity set to 64 and the other set to I as shown above in Fig. 3.6. 



Alternating-Direction Implicit Finite-Difference Time-Domain Method 49 

0.08 

0.06 

0.04 

-? 0.02 
E 

-0.02 

-0.04 

-0.06 

-n np 
time (ps) 

con*fdtd 
adi-fdtd St 1 

Fig. 3.7: Comparison between conventional FDTD and AD[-FDTD 

results with stability factor I for a three-dimensional cavity with 
inhomogeneous media 

A comparison between the results generated using the ADl-FDTD algorithm and those generated using 

the conventional FDTD method is shown in Fig. 3.7. Again, the results show very good agreement. 
Fig. 3.8 shows that the results are still stable when using stability factors 2,5 and 10 with the ADl-FDTD 

algorithm. Again, the effects of numerical dispersion begin to appcar when the stability factor is Increased 

beyond 5 
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Fig. 3.8 : ADI-FDTD results for stability factors 1.0,2.0,5.0 and 10.0 

3.8.3 Simulation of a line-fed rectangular microstrio patch 
In order to validate the ADI-FDTD scheme on a more complex structure, a line-fed rectangular microstrip 
patch as shown in Fig. 2.3 is modelled. As can be seen, the results shown here in Fig. 3.9 eventually 
became unstable. This happens even when a stability factor of 1.0 is used in the ADI-FDTD algorithm. 
Since the three-dimensional ADI-FDTD has been validated in homogeneous and inhomogencous media 
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with different dielectric constants, it was suspected that the introduction of the copper strip in the model 

caused the instability. 

2 

1.5 

1 
E 
E 
ýE 0.5 

LU 0 

-0.5 

.1 
time (ps) 

00 

Fig. 3.9 : Line-fed rectangular microstrip patch using ADI-FDTD method 

with stability factor 1.0 

3.8.4 Three-dimensional cavity with a transmission line 
To further examine the stability problem encountered here, the three-dimensional air-fillcd rectangular 

cavity shown in Fig. 3.2 is simulated again. This time, a transmission line that extends between two of the 

computational boundaries is introduced in the cavity, as shown in Fig. 3.10. The transmission line is 

implemented as a perfect electric wall boundary where all the tangential electric fields are set to zero. 

z 

t< y 
x Fig. 3.10 : Three-dimensional cavity with a transmission line 

Fig. 3.11 shows that the AD1-FDTD results are unstable even when a stability factor of 1.0 is used thus 

confirming our initial guess. The fact that this model has all the same parameters as that which produced 
the results in Fig. 3.2 except for the inclusion of a transmission line in the cavity is an Indication that the 

transmission line, i. e. a perfect electric wall boundary within the computation domain, has to be treated 

with care. 
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Fig. 3.11 : Three-dimensional cavity with a transmission line with stability factor 1.0 

3.9 Conclusion 

The two- and three-dimensional ADI-FDTD algorithms for solving numerical electromagnetic problems 

have been introduced in this chapter. The important aspects of this method have also been discussed. The 

detailed technique of implementing the I" order Mur absorbing boundary condition in conjunction with 

the ADI-FDTD scheme has been discussed. 

Following this, the ADI-FDTD with the time steps 2,5 and 10 times the maximum allowed by the CFL 

stability criterion have been successfully implemented on an air-filled three-dimensional rectangular 

cavity and on a three-dimensional rectangular cavity with inhomogeneous media. Both sets of results arc 

stable and agree reasonably well with that produced using the conventional FDTD method. This shows 
that in the ADI-FDTD scheme, the time step used is no longer restricted by the CFL stability criterion but 

by the accuracy required in the model. This is a significant advancement in the field of numerical 

clectromagnetics as simulation run-time can now be reduced without causing instability. 

Nevertheless, there are still some teething problems with regard to implementing ADI-FDTD on complex 

structures as seen when the ADI-FDTD method is applied on a microstrip patch, where the tangential 

electric field on the copper patch is forced to be zero at each time step. Instability occurs even when the 

time step is within the CFL constraint. This happens when a cavity with a transmission line is simulated 

with stability factor 1.0. This shows that the implementation of the transmission line as a perfect electric 

wall boundary causes the instability. 

In the next two chapters, chapters 4 and 5, we examine this in greater detail and propose two approaches 

of overcoming this problem. 
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CHAPTER 4 

MODIFIED ALTERNATING-DIRECTION IMPLICIT METHOD 

4.1 Introduction 

The introduction of the ADI-FDTD method has had a great impact in numerical electromagrictics. For the 
first time, simulation run-times can be speeded up by using a bigger time step in the FDTD algorithm. 
The time step in the numerical algorithm is no longer governed by the CFL stability criterion. In fact, the 

upper most limit of the time step used is restricted only by the Nyquist sampling theory which states that 

sampling must be carried out at a frequency of at least twice the maximum frequency of Interest in order 

to avoid aliasing. Therefore, the upper limit of the time step is an inverse of twice the maximum 
frequency of interest. 

However, as explained in chapter 3, there is a difficulty when the ADI-FDTD scheme is used to model a 

more realistic problem. Initially, as discussed in chapter 3, the ADI-FDTD method was applied to a 

rectangular cavity and the simulated result agreed with that obtained by applying conventional FDTD 

method even when the CFL condition was violated in the ADI-FDTD algorithm. But when the AD[. 

FDTD scheme was used to model a complex geometry such as a microstrip patch antenna, the result went 

unstable even when the time step used was within the constraint of tile CFL stability criterion. To 

overcome this problem, the author proposes a new modified ADI-FDTD method (1.48]. 

In order to exploit the advantageous feature of the ADI method without suffering from instability in a 

three-dimensional model, a factorf, where 0 <f < 1, is introduced [1.20] in the ADI-FDTD routine. A 

very important characteristic of this modification is that it is consistent with physical cons iderat ions. This 

will be illustrated section 4.3 later in this chapter. The modified ADI-FDTD allows us to violate the CFL 

stability constraint in a complex three-dimensional model without causing instability. Furthermore, no 

graded mesh is necessary to maintain stability of the overall system. 

In this chapter, the ADI-FDTD scheme is modified whereby a factorf is introduced as a direct weighting 
factor on the implicit-explicit terms of the ADI-FDTD equations. This method is applied to the Yee's 

staggered cell to solve Maxwell's equations. The growth factor of this method is derived for a three- 

dimensional modified ADI-FDTD. This modified ADI-FDTD method is then used to model a line-fcd 

rectangular patch antenna and the results are discussed. 

4.2 Three-dimensional modified ADI-FDTD algorithm 

Equations (4.1) - (4.4) show the numerical formulation for the modified ADl-FDTD method. The electric 

and magnetic fields are spatially staggered as in the conventional FDTD. Without loss of generality, the 
formulation is carried out for lossless media. The formulations are split into two procedures, procedure I 
is applied for advancement from nAt to (n+ Va )At while procedure 2 Is used for advancement from 
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(n+ 1/2)At to (n+I)At. 

Procedure I 

,,. "+1/2(1 + 1/2j+ 1/2, A) - Ilz"'1/2fl+1/2j-1/2, k) (2-f) 
Ay 

E, n+l /2 0+112jk)= En (i+112ik) + 
At' 
2c Hym (i+1/2jk+1/2) - lly"(1+1/2jk-1/2) 

AL. 

(4.1 a) 

n 
(2-f) 11 

x 
+112(ij + 1/2, k + 1/2) - Il, "+"2(lj+ 1/2. k - 1/2) 

Eyn+112(ij+112, k)=Ey"(ij+112, k)+ 
A' 

'I 
Az 

.0 
2c lln(i+112J+II2, k). Iln(i-112J+II2, A) (f) 

I 

Ax 

I 

(4.1 b) 

lin4l/2 (I+ 1/2j, k+ 1/2) _ ll;,, 
1/ 2(1 

_ 1/2j. k+1/2) 

En+112 "(ijk+112)+ 

(2-f) y 
Ax 

(ii, k+ 1/2) E. 
2c lln (Ij + 1/2. k + 1/2) - Il, #'(/J-1/2. k + 1/2) (f) 

I 

AY 

(4. lc) 

H"+' 12 (ij+1/2, k+ 1/2)= H,, (ij+112, k +1/2) 
At 
TU 

E, n (Ij + 1. k+ 1/ 2) -k+I 
I 

AY 

(2-f) Ey"+ 1 /2 (Ij+ 1/2, k + 1) - Ey"+' 12 (Ij + 1/2.4-) 
AZ 

I 

J, 
(4.2a) 

E, "(I+ 1/2j. k +1) - E, "(1+1/2j, A) 

Hy"+' /2 (i+112jk+112)=Hy"(i+112jk+112)-A' 'IA: 
. Em+112 

10 

2, u E,, "+1/2(1+ljk+1/2) (IJ, k+ 1/2) (2-f) 
Ax i 

(4.2b) 

H"+' /2 (+112! j+112, k)= Hn(1+112J+112, k) 
At 
-lu, 

Eyn(l+ I J+112, k) - Ey"(IJ+112, A) (f 
Ax 

- En+1/2 (1+112j. k) E, ", +112 (1+1/2j + 1. k) (2-f) 
AY 

(4.2c) 

Referring to the equations (4.1), for the electric field terms, in procedure 1, the implicit terms have the 

weighting factor of (2 -f) while the explicit terms havef. The same applies for the magnetic rields terms 

in procedure 1, the implicit terms are weighted by (2 -f) while the explicit terms byf. This is repeated 
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for procedure 2 in equations (4.3) and (4.4). As in the ADI-FDTD, the implicit and explicit terms are 

switched between procedures I and 2. 

Procedure 2 

Il. "+"2(1+1/2j+ 1/2, k) - Ii, "+1/2(1+1/2j- 1/2, k) 

n+l n+112 
At 

(f 
AY 

E, ' (i+112jk)=Exý (i + 1/2j, k) +y, 
Hy'+'(i+112jk+112)-Ilxn+'(i+112jk-112) (2-f') 

I 

Az 

(4.3a) 

11 1 112(ij + -1/2) + 1/2, k + 1/2) 1/2, k 

Ey"+ 1 (ij + 1/ 2, k) = Ey" +1 12 (ij + 1/2, k) + 
At 

, 

(f )I 
A-- 

l'O 

2c I/. "+' (i + 1/2j + 1/2, k) - ll, "+' (1-1/2j + 1/2, k) (2-f) 
Ax 

(4.3b) 

+ 1/2jk + 1/2) - 11; +1/2 (1 - I/ 2j. k + 1/2) (f 

E, "+' /2 k 1/2) 
At 
2c I/, "+' (Ij + 1/2. k + 1/2) - I/, "+' (IJ-1/2, k + 1/2) (2-f) 

Ay 

(4.3 

E. "+'(ij + I, k + 1/2) - E, "+'(Ij. k + 1/2) 

H, n+l (ij + 1/2, k+ 1/2) = Hn+l 12 (IJ+1/2, k+1/2) - 

(2-f) 
I. 

Ay 

I 

2. u 
. 

(f Ey"+112 (Ij+ 1/2. k + 1) - Ey"+112 (Ij+ 1/2. A) 

A. - 

I, 

(4.4a) 

E,, "+'(i + 1/2j, k+ 1) - El + I(I + I/ 2j. k) 

Hyn+l (i+ 1/2jk +1/2)= Hyn+112 (i + 1/2j, k+ 1/2) - 
A' 

(2-f) 
1 

12 

A. - 
,I, 

2p (f) E, "+' (/+Ijk+1/2)-E, "+"2(ljk+1/2) 
Ax 

I- 

(4.4b) 

+Ij+ 1/2, A) - Ey"+'(Ij + 112, k) 

H"+'(+1121J+112, k)=H'+"2(i+112J+II2, k) - 
At 

(2-f) 
I- 

y 
Ax 

I 

2p Exn+112 (1+1/2j+l, k) - g, +112 (1+1/2jk-) (f) 
Ay 

I 

(4.4c) 
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Again, as in the ADI-FDTD method equations (4.1) cannot be solved directly due to the implicit terms 
involved on the RHS. To solve equations (4.1), the LHS electric fields have to be expressed such that the 

RHS terms are all explicit. This is accomplished by substituting equations (4.2) into (4.1) appropriately; 

specifically, substituting (4.2c) into (4.1a) results in (4.5) below, where the LIIS forms a tri-diagonal 

matrix of E, when E, is scanned in the ý direction. The RI IS of (4.5) now consists of only explicit terms. 

2 

E" +1/2 1/2 
VXAY 

(i+112j-l, k)-E, + (i+112jk) 2+ 
(1 (72 Ifi2)] 

+ E, "'112 (I+ 1/2j+ I, k) 

)2 
Ey -E" (i + 1/2j,, k) 

(V'u Ay I+( Ay JE., ' (i+ I J+112, k) - Ey* Q+112, k) -Ey" (I+ I J-112, k) + xt2 

(EAy) (TI 

(T244 

(, 
U4V2) fý 

(1+1/2j. k+1/2)-//. *, (1+1/2jk-1/2)] 
f z)( 

"(i+112J+II2, k). 11"0+112J-112, k)I +(7AA- 
At -f 

F2Tf 

(4.5) 

Similarly, Ey and E, can be solved in this manner. Once all the electric fields are computed, the magnetic 
fields can be computed directly using (4.2a) - (4.2c). The same approach can be applied for procedure 2. 

Equation (4.6) shows the tri-diagonal matrix for E, in procedure 2. The full formulation of electric fields 

in both procedures I and 2 are given in Appendix B2 

E, "*' (I + 1/2jk-1) - E, ""' fl+ 1/2jk) 2+ 'FUCA: 
)2 (772 

+ E, *+' (I+ 1/2j, H) 
( 

At 

1/2 ucAz 
2+ 

(i+ljk+ 1/2) - E, "*lll (ij. k+112) - E, "'lll 041jk. 1/2) + En#jk412)j 
V) 

(T 
-E, + (i+112jk) PC 

-fi2 
[E, 

(! 

At f 

[H; +1/2(i+1/2jk+1/2). Ily'+1/2(1+1/2jk-1/2)I JAZ' ll, "*"2#+1/2j-1/2. A)j + 
(liýtAy 

2 -ýfl 

(Tf )2) 62, 

(4.6) 

4.3 Weighting factor In the modified ADI-FDTD algorithm 

Modified 
adi-fdtd 

procedure I 

Ex 

nAt 
Hy. f12 

Modified 
adi-fdtd 

procedure 2 

(2 -f)12 

ýII- 1 1.4)Lit 
Ex fiz 

(n+I/2)At 

f12 E,, 

/7"' 
Hy. (2 -f )/2 

(n+I)At 

Fig 4.1 : Physical representation of modified ADl-FDTD algorithm 
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Fig. 4.1 above illustrates the physical representation of the modified ADI-FDTD formulation. In the 

modified ADI-FDTD method, an intermediate electric field is calculated at time step (n+ V3)At. As in the 

ADI-FDTD method explained in chapter 3, in procedure I of the ADI-FDTD method, the electric field at 

time step (n+ V2)At is calculated using the previously calculated electric field at time step nAt and the curl 

of the magnetic fields, part implicit and part explicit. In the ADI-FDTD method, the weighting factors for 

the magnetic fields, implicit H,, and explicit fly are the same, i. e. Va for both of them. However, in the 

modified ADI-FDTD the implicit term H, at time step (n+ V2)At is weighted by (2 -f)/2 and the explicit 

term Hy at time step nAt byf/2 where 0 <f < 1. This is immediately followed on by procedure 2; now tile 

known (explicit) value of H,. at time step (n+ I/i)At is weighted byf/2 and the unknown (implicit) value of 

Hy at time step (n+I)At is weighted by (2 -f )/2. The total magnetic field over a full time step remains 

unchanged. 

4.4 Divergence of modified AD[-FDTD algorithm 

As in the ADI-FDTD algorithm, there is no explicit enforcement of the Gauss's Law relations for both tile 

electric and magnetic fields in the modified ADI-FDTD algorithm. Although the curl operation of the 

magnetic fields is performed over two half time steps and the magnetic fields arc weighted di(Tcrcntly at 

each half time step, the total magnetic field over a full time step remains unchanged in the modified ADI- 

FDTD scheme. Therefore, the modified ADl-FDTD algorithm will still result In zero divergence for both 

electric and magnetic flux i. e. the time derivative of the net magrictic/clectric flux leaving the surfaces of 

a cubic Yee cell is zero, thus upholding the Gauss's Law for the magnctic/clectric field In charge-frce 

space in the modified ADI-FDTD scheme. 

4.5 Numerical stability 

The numerical stability of the modified ADl-FDTD can be carried out in the same way as in tile ADI- 

FDTD. Assume the spatial frequency to be T, Ty and T, as the x- , y- and z- components of Its 

numerical wavevector respectively as in equations (3.7) & (3.8). 

4.5.1 2-dimensional modified ADI-FDTD 
For the sake of simplicity, we shall consider first the numerical stability of a 2-dimensional TE wave 

consisting of the following fields : 

Procedure I 

n+1/2(1+1/2, J+1/2) - lln+112 (1+1/2, J-1/2) 
E"+' /2 (1+112, j) = E, "Q+112, j) + 

At (2-f)[11 I--I 
2c AY 

1ý 

(4.7a) 

E n+112 (Ij+112) = Ey"(!, J+112) - 
A,, H, "(i+1/2, J+1/2) ll, "(1-1/2, J+1/2) 

y 2c Ar 

(4.7b) 
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(f)[E"(1+1/2, J+1/2) - Ey' J+1/2) yy 

Hn+112(i+112, j+112) = H"(i+112, J+112) - 
At Ax 

zz2 n+112 
x (1+1/2, j+l) - E"+"2(1+1/2, J) (2 

- f)[-E 
Ay 

x 
li 

(4.7c) 

Substituting the field components in spectral forms, (3.7a), (3.7b) and (3.8c) into (4.7) will yield the 

following: 

*GFI=Ex - GFI*(2-f)*H.. 
At 

2jsin 
iYAY 

(4.8a) Ex 2 2cAy 

E *GFI=Ey +f*H, 
At 

2jsin( 
Tx Ax 

(4.8b) 
Y -2eAx 2) 

At At T AY 
A 

LY 
HZ*GFI=Hz + Ey*f * 

2pAx 
2jsin(IX-26x) - GFI* (2-f)*E, 

2, u Ay 
2jsin 

(2 
(4.8c) 

where GFI is the growth factor in procedure 1. Substituting (4.8a) and (4.8b) into (4.8c) gives : 

At T, AX At 
f 2H, 2j sin . 2jsin 

AX) 
2c Ax 2 

)2pAx (Lx2- 

Hz*GFI=I, z GFI-I 
Ay yAy) (2 _f)2 GFI * GFI * H, 

At 
2j sin 

Ly At 
2jsin 

E 

2c Ay 2 2p Ay 2 
+ GFI-I 

(4.9) 

.' -12 2 
A, ("k-,, Ax II Wý, Ay 

H H.. 
Ax sin(- -2)j (2 - f) 

2 GJ'Fl 2 11: sin : (GFI_1)2 = _f2 
(I )[ 

Ay 

( 

7c -2 

(4.10) 

let mx = 

and dividing (4.9) by H, 

At 
sin 

k. Ax 
and My 

At 
sin y 

Ay 

AX 

(2 

') Ay 

(E 

2 

GFI 2 I+EY2 (2 -f)2 - 2GFI + 

(I 

+ 
kfv2 

f2 0 
uepc 

Let a +E-y(2- f)2 and C. 

(I+ "X2 
f2 

then (4.11) becomes 
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aGF12 - 2GFI +c0 (4.12) 

GFI -I 
±Nrl-ac 

a 

and since ac ý: I GFI -j 
ý-a-c- 

(4.13) 
a 

Procedure 2 
At H n+112 (, + 1/2, J+1/2) - /In+'/2(1+1/2, J-1/2) 

n+112(i+ z E, n+'(i+112, j) = Ex 1/2, j) - 2e Ay 

11 

(4.14a) 

Ey"+' (1, i+I/ 2) = Ey'+' 12(i, J+1/2) - 
At (2_f)[Ii, "+'(i+1/2, J+1/2) /I, "+'(/-1/2, J+1/2) 
A 

11 

(C I b) 

Ey"*' 1+ 1/2, j+I/ 2) - E"+' (1, j+ 1/ 2) 

H"+'(i+112, j+112) =H n+1/2(1+1/2, J+1/2) 
A' 

(2 f)[ 
AX 

I 

2 E"+1/2(1+1/2, j+l) E n+1/2 (1+1/2, J) 
Ay 'I 

(4.14c) 

Again, substituting (3.7a), (3.7b) and (3.8c) into (4.14) will yield the following: 

At Lx Ay ) 
Ex * GF2 = Ex -f*H., 2cAy 

2j sin 2 
(4.15a) 

E *GF2=E + GF2*(2-f)*H, ý 
At 

2jsin 
L 

YY 

(LX2 
(4.15b) xi 

cAx I) 

At Y AY 
H *GF2=H + GF2*(2-f)*Ey 

At 
2jsin f *Ex 2jsin 

L-) 
(4.15c) 

zz 
XAX) j 

2, q Ax 

(i 

-2 2p Ay 

(ý2 

where GF2 is the growth factor in procedure 2. Applying the same technique on procedure 2, we get, 

GF2 2+ (2 _f)2 2GF2 ++f20 (4.16) 

f)2 

(I+LY2 

f2 Let +pC 12-j and d- 

then (4.16) becomes 

b GF2 2- 2GF2 +d=0 (4.17) 
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GF2 -I± 
11 --bd 

b 

and since bd >I 

Now, 

j-, lac- I 
GFI - a 

where 

GF2 -Ij 

Jb-d- I 
b 

a+ 
MY2 

(2 _f)2 

Mx2 (I 
+pe (2 _f)2 

Examining M, and M., we see that 

and GF2 =Ii 
jNf -bd --I 

b 

and cM+ 
"fx2 

f2 

and d- 

(1+442 

f2) 
PC 

Ax 2 mx (At 
2(x2 Ax 

sin 
L 

vx 
sin 

i 

peT2) 
At) 61-8) 

x2 
(ý2 

Therefore, the total growth factor of procedures I and 2 combined is given by : 

GF GFI I GF21 

Va Vb 

V, 
i 

I (TAýx i (L 
2 2 L2 Ay (ý' 

y 2 I+ s n 
v2 x 

2 
f I+ sin 

V2 y 
-2 f 

I 

Ll (E 
( )2 V2 2 AY ) 

(Ey 
21 - sin I+ 

2 vx 2! 
2-f 1+ sin 2 VY 

- (2 . f) 

(4.18) 

(4.19) 
As 0 <f< 1, then I< (2-f) <2 

Therefore (4.19) or the overall growth factor of the modified ADI-FDTD algorithm will always be less 
than unity. Consequently, the newly proposed two-dimensional modified ADI-FDTD method is always 
stable for 0 <f < 1. 

4.5.2 3-dimensional modified ADI-FDTD 
To analyse the numerical stability of a three-dimensional modified ADI-FDTD, we apply tile von 
Neumann method again on the three-dimensional modified ADI-FDTD formulations (4.1) - (4.4). 

Following the same method as in chapter 3 we get GF I and GF2 as shown below: 
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GFI 

I Mx-My . (2 - f) -f 0 0 -j. Mz. f J. My-(2- f) 
Ny Ny-ý -e Ny-c Ny-c 

0 1 My -Mz. (2- f)-f j. Mz. (2- f) 0 -J. Mx. f 
Nz Nz-g -s Nz. e Nz-c 

Mx. Mz. (2- f)-f 0 1 -i-my. f j. Mx. (2- f) 0 
Nx-p -c Nx Nx-E Nx-c 

0 j. Mz. (2- f) -j, My. f 0 Mx. Mz. (2- f)-f 
Nz-A Nz-g Nz. p g 

-j. Mz-f 0 j. Mx. (2- f) Mx. My. (2- f)-f 1 0 
Nx-p Nx. g NxA -c 

j. My. (2- f) -j. Mx. f 0 0 My. Mz. (2- f)-f I 
Ny-p Ny-p Ny-p -c 

Ty 

(4.20) 

GF2 = 

1 0 Mx. Mz. (2- f)-f 
0 -J. Mz. (2- f) J-My-f 

Nz Nz. p -E Nz-c Nz, c 

Mx. My. (2- f)-f 1 0 J-Mz. f 
0 J, Mx. (2- f) 

Nx-p -s Nx Nx-E Nx-c 

0 My Mz. (2- f)-f I -i-My-(2- f) J-Mx-f 
0 

Ny. g -E Ny Ny-E Ny-c 

0 
j. Mz-f -j. My. (2- f) I Mx. My. (2- i)-f 

0 
Ny-p Ny-p TY 

Ny-p -g 

-j. Mz. (2- f) 
0 

j-Mx-f 
0 I MY-Mz-(2- f)-f 

Nz-g Nz-g Nz Nz. p -c 
j-My -f -j. Mx-(2- f) 

0 Mx. Mz. (2- f)-f 
0 1 

Nx-p Nx. g Nx-p -E 
Tx 

(4.21) 

where 

At (khAh ý, m Ih ) 
- sin( Mh 
Ah 2 and Nh =1+ h-x, y, z (4.22) 

PC 

In order to solve the overall growth factor for the three-dimensional modified ADI-FDTD, the following 

assumption is made. 
Overall growth factor, GF = GFI *GF2 = GF2*GFI (4.23) 

The assumption is sound because the procedures are commutative. 
Solving (4.20) and (4.21) using (4.23), we get 

2 

GF 
(6f ) 

(4.24) 

Therefore, the newly proposed three-dimensional modified ADI-FDTD is always stable for 0 <f < 1. 
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4.6 Numerical dispersion 

The numerical dispersion for the modified ADI-FDTD method can be found by substituting the vector. 
field travelling-wave expression with time dependence (3.27) into the modified ADI-FDTD finite 

difference equations . 

4.6.1 2-dimensional modified ADI-FDTD 
Again, for simplicity, we investigate the numerical dispersion of a 2-dimensional TE wave [1.19]. 

Substituting (3.27) into (4.4) (procedure 1) gives : 

jwAI12 
- 

At y 
AY) 

jwAI12 n 
x AY)sin eH (2-f) (4.25a) (e I)E" = -j(ýA 2z 

(e jwAI12 - I)E n=j( At )sin &, Ax 
H" f (4.25b) 

y ýc AD 

(2)2 

jwA112 nj 
Ax) 

yy 

Ay) 
(e J)H 

At ) 
sin xL Enf_ jr 

At ) 
sin x e jwAl/2 En (2-f) (4.25c) 

(L2 
ý-, 

uAy 
) 

(i 

-2 

and into (3.14) (procedure 2) gives : 

jwAt 
( At kyAy 

jwAl/2 f (e -e 
jivAt/2 )E" = -j(-) 

j 
(4.26a) 

xc Ay sinýLT e H" 
5y 

,6 jwAt jwA112 
( At jw n )E" =e AH, (2 f) (e -e sin 

! 
J2 x) (4.26b) y(x 

(ejwA' -e 
jW At /2 )H' =( 

At ) 
ejol& En (2-f) -i( 

At ) 
sin 

& Ay )c 
jai At/ 2 E, " f sin xAx) 

y Cp -Ay )(2 Ax) 2 

(4.26c) 

Combining (4.25a) & (4.26a), (4.25b) & (4.26b) and (4.25c) & (4.26c) gives rise to the following - 

,n 
At Ty AAY 

jwAI 
L 

jwAt/2 Hn (e - I) Ex = -2j(. -eAy) sin 2 
ý) 

e2 (4.27a) 

(ei'Al - I)E" =j( 
At ) 

sin Hn (e jwAI (2-f)+f) (4.27b) y ý7A-X) 
(iX2 

jwAI n=j 
At )( At yAy) JvAt/2 x Ey"(ej'A'(2-f)+f) - 2jý- jex (e - I)H 

z sin 

(iX2ýL) 

,, Y)sin 
- E" 

(, 

u Ax) P &y 

(i2 

(4.27c) 

(4.27) can be simplified to 

Atý yAy) 
rw At y AY 

z (4.28a) sin ý- 2)E, 
" 
, sin 2H Ay 
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sin 
(w At 

En =( 
At ) 

sin 
Ax 

Hn co 
(co At 

+ f jk x 
Y Cc -Ax ) 

(i 
-2 sN (4.28b) 

y 
t At Ax) (co At (co At) jw At /2 At Z), Ay 

nv 
Ay 

En sin Hft sin E" co + (I-f)e sin x 
X2 Sý 2 2! 

)zu 
Ay) 2 

(4.28c) 

or 

sin 
(co At 

0 1 ±L 
2 

0 sin 
(w At ("212 t 

MY M., (co At, 
(1-f)e 

I 

p 

[cos(22 
+ 

Afy 

en 
wat jiwal/2 

Ex [Cos 
+ (1-f)e E; 0 

y 
lln 

sin 
(oj At) 

(4.29) 

Thus the numerical dispersion relation for a 2-dimensional TE wave is givcn by making tile dcterminant 

of the matrix zero, i. e. 

(co At) '(0. ) At f2 -L 
At) 22 ýý ýx)ýCOS ( Co At) 

-f)e 
jo)At/2 

121 

sin sin 
At 

sin 22)+ ý7 2 ý7L2L pe 

(-, 
ý; 2 

+ sin 
(w At 

_L(At)2 sin 
(T., Ay 

0 

(4.30) 
(±L2 

pe 
CAy) 

(i2 

or 

f2( 
I)2 

Sin2 
At 

2+ )2 
2 

ýYAY 2 At) r lcos(ýL- 
+ (I-f)ej"ý12 sin sin AX) 22 Ay) 2 cAt 

2(02 

where c=. 

(4.31) 

Equation (4.3 1) reverts to the numerical dispersion relation for 2-dimensional ADI-FDTD (3.34) when 
f=I as expected. Following the same argument as for (3.34), the implication of (4.3 1) is that numerical 

wave velocity for wave propagating in the direction of x, i. e. ky = 0, is scaled from that of tile standard 

FDTD scheme by the factor 
F 
Cos 

(wAt 
+ (1-f)e 

2, 
which is larger (for 0 <f < 1) than the L2 

factor CoS2(±0LAt in the ADI-FDTD method. On the other hand, for wave propagating in the direction 
(2) 

of y, 0, the numerical wave velocity in the modified ADI-FDTD scheme is the same as that of the 

standard FDTD scheme. 
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4.7 Simulated results 

The newly proposed modified ADI-FDTD method is used to simulate the line-fed rectangular microstrip 

patch. The physical dimension of the patch simulated is shown in Fig. 2.3 in chapter 2. The space steps 

used are Ax = 0.389mm, AY = 0.400mm and Az = 0.265mm and the total mesh dimension is 60 x 100 x 
16 in the x, y and z directions respectively. The patch is excited with a Gaussian pulse. A I" order Mur 

absorbing boundary condition is applied on all the five surrounding walls. A perfect electric wall 
boundary is applied on the ground plane and the copper patch; this is done by forcing the tangential 

electric fields on the copper patch to be zero at all time steps. The dielectric constant, Cr, Is set to 2.2. 
Fig. 4.2 shows the comparison of results from the published literature [1.5] with that from the proposed 
modified ADI-FDTD with stability factor of 2.0, i. e. the time step is twice that allowed by the CFL 

criterion. For this casef is set to 0.9. Fig 4.3 shows another comparison of results, this time a stability 
factor of 3.0 is used andf is set to 0.8. 
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Fig. 4.2: Modified ADI-FDTD with At =2* At critical andf - 0.9 

frcq (G I lz) 

From Fig. 4.2, it can be seen that the magnitude of reflection coefficient, S11, decreases from that when 
the conventional FDTD method is used. As explained in chapter 3, when ADI-FDTD is uscd to model a 
conductor using perfect electric wall boundary, the simulation results grow exponentially as time 
progresses until eventually the system becomes unstable. Unlike in the ADI-FDTD method, in modifled 
ADI-FDTD scheme, the implicit and explicit terms are not weighted equally as shown in (4.1)-(4.4). 
Effectively, ADI-FDTD method is in the form of a predictor-corrector method, the explicit term being the 

predictor term and implicit term the corrector term. The fact that ADI-FDTD result becomes unstable in 

chapter 3 implies that there is a gain in the system. By introducing a weighting factor greater than unity 
on the implicit term in modified ADI-FDTD method, the corrector term is weighted more heavily than the 
predictor term. This 'corrects' the results and maintain stability in the system but the side effect of this is 

a reduction in the magnitude of S11 as expected due to the corrector term being greater than unity. 

Abouzahra's simulation 

05 10 15 20 
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Fig. 4.3 : Modified ADI-FDTD with At =3* At critical andf - 0.8 

4.8 Relationship between attenuation and weighting factor f 

To understand the relationship between the decreasing of S11 magnitude and the weighting factor, f, used, 
the simulation for the line-fed rectangular microstrip patch was run with several different weighting 
factors and the SII plots are as shown below. 

1.2 

\ , Z:: "**". 
0.8 - 

: 

. 

0.6 

0.4 

0.2 

0 5 

- cortv FDTD 
----modADWDMf--O. 9 
....... mod ADWDTD f--0.8 
----- mod AMFDTD t--0.7 

V 'k'f t; 

10 Is 20 
freq (GHz) 

Fig. 4.4: Comparison between conventional FDTD and modified ADI-FDTD results with 
At =2 *At critical andf set at 0.9,0.8 & 0.7. At critical is used with conventional FDTD. 
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The results in Fig. 4.4 show that the attenuation increases as the weighting factor of the explicit term on 

the modified ADI-FDTD, f, is reduced. 
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0 
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freq (GHz) 

Fig. 4.5 : Modified ADl-FDTD results withf set at 0.9 

Fig. 4.5 above shows the ISI II of the line-fed rectangular micrctrip patch simulated with the modified 

ADI-FDTD method with the weighting factor, f, set to 0.9. Fig. 4.6 below shows the results for the same 

patch with the weighting factor set to 0.8. Changing the stability factor and therefore the time-step used in 

the algorithm does not change the attenuation significantly for a particular weighting factor. 
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Fig. 4.6 : Modified ADI-FDTD results withf set at 0.8 
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4.9 Conclusion 

A new modified ADI-FDTD method with the introduction of a factorf has been theoretically derived and 

numerically simulated. From the study of the numerical stability of the scheme, both two- and three- 

dimensional modified ADI-FDTD algorithms are shown to be permanently stable as long as 0 <f < 1. 

The results for a three-dimensional model of a patch antenna are stable even though the CFL criterion has 

not been observed and they compare reasonably well with the published results in terms of the resonant 
frequency points. The copper patch in the modified ADI-FDTD scheme has been modelled as a pcrrect 

electric wall boundary where the tangential electric fields on the patch are set to zero at each time step. 
The same structure, when modelled using the ADI-FDTD where the copper patch is modelled also as a 

perfect electric wall boundary, showed instability. Although the results from the modificd ADI-FDTD 

show a decrease in its S11 amplitude, this technique is easy to implement and it is useful as a quick 

method to obtain accurate resonant frequencies. 

In Chapter 5 we propose a new implementation method of the ADI-FDTD In order to ovcrcome the 

problem of instability without compromising the amplitude of the response. 



CHAPTER 5 

SIMULATING COPPER LAYER IN 

ALTERNATING-DIRECTION IMPLICIT METHOD 

5.1 Introduction 

The introduction of the ADI-FDTD technique has made it possible to speed up simulation run-time of 
large electrical objects even when there are small discontinuities in the model without compromising the 

stability of the system. In this research work, the ADI-FDTD method has been shown to work 

numerically on an air-filled three-dimensional rectangular cavity and on a three-dimensional rectangular 

cavity with inhomogeneous media. To model a transmission line as a perfect electric wall boundary, the 

modified ADI-FDTD has to be implemented instead of the ADI-FDTD to maintain stability. The 

modified ADI-FDTD gives reasonably accurate resonant frequency points although the amplitudes are 

attenuated due to the inherent property of the algorithm. Although the newly proposed modified ADI- 

FDTD scheme is useful for quick numerical analysis of microstrip circuits, for the ADI-FDTD scheme to 

be generically useful, it must be able to model more complex structures including microstrip patches with 

reasonable accuracy both in amplitude and frequency points without going unstable. Indeed, a method of 

modelling a copper patch in conjunction with the ADI-FDTD technique without causing either instability 

or attenuation is desirable. 

In this chapter, a copper patch is modelled in the ADI-FDTD algorithm as a layer of material with a finite 

electric conductivity. The finite-difference equations which include the electric conductivity term are 

presented and results for several simulations are shown and compared with published results and results 

obtained from conventional FDTD method. 

5.2 Three-dimensional ADI-FDTD algorithm with electric conductivity term 

Consider the Maxwell's curl equation for electric field shown in (2.12a) - (2.12c) which include the 

electric conductivity term, a, to account for electric current loss in materials. Equation (2.12a) is repeated 
below for convenience. 

aE, I (aH.. aH, 
a E, Tt -C (-2ý- -Fz- 

The centred-difference finite-difference approximation of (5.1) is given by : 

n+112(ij k) n+112(ij.,, k) +112(ij k) n+1/2 
En+l (iik 

H. -H. 
H 

y" -Hy (ijk-1) 2 aj, k) (ii, k) + 
L' 

- 
(ii, k) E, " +1 

c AY Az 

(5.2) 
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Note that all the fields within the bracket on the right-hand side are evaluated at time step n+ Y2 At. Since 

the electric at n+ V2At is not readily available, it is calculated using the semi-implicit approximation 
below. 

En+112 
E" (i, j, k) + En, " (1, J, k) 

,x (1, i, k) -- -x (5.3) 

Substituting (5.3) into (5.1) gives the following : 

c(ij, k) At 

n 2c E'n +1 (ij, k) =Ex (ij, k) 
c(ii, k) At 

2c 

At 
IH 

n+112(ijk) 
. Hn+112(ij. l, k) lln+112 (ij, k) Il. 

y' 
+ 1/2 (IJk-1) 

+c21.. y 
+ 

a(ij, k) At AY A. - 
2c 

(5.4) 

Applying the same technique on all the electric field calculations in the ADI-FDTD mcthod produces the 

following equations. Note that the At is replaced with At/2 in both procedures I and 2 in the ADl-FDTD 

equations. Also, since magnetic loss is not considered here, the magnetic field equations remain the same 

as in the ADI-FDTD method discussed in chapter 3. 

Procedure I 
(I_ a(i+112jk) Atl" 

E, "' 12 (i+112jk) = E, ", (1+112jk) 4c 

I+ I" (i +I/ 2j, k) At 
4c 

At H, '+"2(1+1/2j+1/2, k)-il, "+1/2(i+1/2j-1/2, k) 

+ 2c Ay 
(i +I/ 2jk) At. Ily (I + 1/2jk + 1/2) - Ily* (I + 1/2j. k-1/2) 

4c 
10 .-A. 

- 

(5.5a) 

a(ij+112, k) At. " 

E n+112 4e 
y 

(ij+112, k) = Ey"Oj+112, k) 
+ 'Ir Q+112, k) At 

4c 
10 

r)I In+ 1/2 oj + At 1/2, k + 1/2) - I-lit +"2(ij + 1/2. k -I/ 2) 

+ 2c Az 

+a 
(ij+112. k) At, 11" (1+ 1/2j+1/2. k) -I/, " (1-1/2j+ 112. k) 

4s AX 

(5.5b) 
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(Ia (ijk + 1/2) At 

E"" 12 (ijk+112) = E"(ijk+112) 4e 

+ a(ijk+112) At 
U 

jj; +1/2(j + "*'l20-1/2j. k+1/2) At 112jk + 1/2) - Ily 

+ 
Te 

Air 

+, 
(ij, k+ 1/2) At. 11,11 Oj+ 1/2. k + 1/2) - /I, " (IJ-112. k + 1/2) 

4c AY 

(5.5c) 

II E"(Ij+l, k+112) - E'(Ijk +1/2) 
-1 -- 2 

H +1/2 n (ij+112, k+112)- 
At AY 

(ij+1/2, k+1/2) =Hx En"12(ij+112, k+l)-Eyn*112(ij+112, A) y 
A: 

(5.6a) 

E"(1+112j, k+l) -E. ', '(1+1/2J. A) x 
Hn+112 (i+1/2jk+1/2) = H" (i+1/2jk+1/2) - yy 2p En+112(i+ljk +1/2) - ER+112(ij. k +1/2) 

Ax 

(5.6b) 

En(i+IJ+112, k) - E"(IJ+112, k) 
yy 

n+112 
At 

Hz (i+1/2j+1/2, k) =H, " (1+1/2j+1/2, k)- z n+1/2 _ Em 1112(1 + 2p Ex 0+112j+l, k) I/ 2J. A) 
Ay 

(5.6c) 

Substituting equations (5.6) into (5.5) appropriately result in tri-diagonal matriccs of E,, E. and E, Tri- 
diagonal for E,, for procedure I is shown below, the rest are shown in Appendix D3 

(3E 

E, "+'(i + 1/2jk - 1) - E' "l(l + 112jk) 2+ 
(I 

+ a(1+112jk)At)j + ER "fl + 1/2j. k + 1) 
4c 

-2 (... FpCAZ (I 
- 

afl+112jk) At. (I + 112jk) 
At 

) 

4c 

n4j/2 En+112 EM+1/2 1/2 
-1/2)+E, "' (ij. k. 112) +(A! 

[Ez 
(i+ljk + 1/2) z (! Jk + 1/2) 3 (I+ljk 

ax) 
(ILIýj [Hn+112 +112 n- 

y A, &y 

) [11. 
(i + 1/2jk + 1/2) - Hy" (I+ 1/2jk-1/2)] + 

('U'&Z' 
1/2 (1+1/2j + 1/2. #j - 1j, ", 1/2 (1+1/2j-1/2. iV] 

(5.7) 
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Procedure 2 

1- a(i+112jk) ät 

(i+II2ik) = En+' 12 (i + 112jk) 4c 

17 ät 
4c 

1 

En+' (ij+112, k) = 

E, ""' (IJ, k+ 1/2) - 

E n+1/2 (ij + 1/ 2, k) 
y 

E, "" /2 (ij, k+ 1/2) 

At ll,,, +112(7 + 1/2j + 112. k) - Il, *"12(1+1/2j -I/2. k) 
TC AY 

+ ol (I + 1/2j, k) At U. " +' (I + 1/2jk + 1/2) - /1; "' 0+ 1/2jk-1/2) 
4e 

arij+112, k) At 
U 

+a 
Q+112, k) At 

4c 

At ll, "+1,12(7j+ 1/2. k + 1/2) - Il, "*1/2(lj+ 1/2. k -1 /2) 
Te A: 

1+ 17 (Ij+112, k)AI Ilm+l (1+1/2j+1/2, A) -lit"' (1-1/2j+1/2.4) 
4c 

(5.8b) 

a(IJk+112)At 
4c 

(IJ, k + 1/2) At 
4c 

At Ily"+112 (I + 1/2j. k + 1/2) - Il; "'2(1 -I/ 2jk + 1/2) 
Ts AT 

(ijk+112)AI 11,0+1 (Ij + 1/2. k + 1/2) - I/, "*' (IJ-1/2. k + 1/2) 
4c Ay 

(5.8c) 

E, ""(/J+I, *+1/2)-E: ""(/J. k+1/2) 

H n+l (ij+112, k+112) =H n+112 (ij+1/2, k+1/2) - 
At Ay 

x 2ju E*"1/2(/j +I/2, k+l) - E; 41/2(/J+1/2, k) 
.v 

ILI 
(5.93) 

I E"" (1+1/2jk+l) -E, "" (1+1/2jh) 
-x 

H"+' (i+112jk+112) =H"+112 (i+1/2ik+1/2)- 
At 

, yy2, u En+112(1+ljk+112)-Etn'112(ij. k+112) 
Ax 

(5.9b) 

E"+1 (I+ lj+ II2, k)-E"" (IJ+1/2, A) YY 
H n+I (i+112j+112, k) =H n+1/2 (i+1/2j+1/2, k)- At 

' 
&V 

0 2ju E, "+1/2(1+1/2J+I, k) - E"*1/2(1+ 1/2jk) 
-x AY 

(5.9c) 
Again, substituting equations (5.9) into (5.8) appropriately result in tri-diagonal matriccs of E,, E. and E, 

Tri-diagonal for E,, for procedure 2 is shown below, the rest are shown in Appendix B3. 
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I (i + 112jk), &t "+'(I + 1/2j. k + 1) E. "+' (I + 112j, k- 1) - E, ", +'(i + 1/2 j, k) 2+ 
ý'u7fAz 

I++E, 
4e 

)I 

2 

--E. "+l'2(i+112j, k) 
ýPCAZ 

a(1+112jk) At 

4e 

+ n+1/2 En+1/2 n +112 Oj. k-112) 
) [E, 

(i+ljk + 1/2) (ijk + 1/2) - E, (i+ljk-112) + E, 
Ax 

(PAZ [Hn+112 +1/2 [11, n 1112 
At y (I + 112jk + 1/2) - H; (i + 1/2jk. 1/2)] + 

(JuA. 2 
0+ 1/2j + 112A) - Il, "+"2 0+ 1/2j-1/2.4)] 

AIAY) 

6.3 Simulated results 

5.3.1 Simulation of a line-fed rectangular microstrip patch 

I" order Mur boundary on all 
boundaries except ground plane 

12.448m 16,00mm 

0.795mm 

Fr = 2.2 1.945m T- 

a= 5.8 xI Cý S/m 2.334mm 

Fig. 5.1 : Line-fed rectangular microstrip patch 

In chapters 3 and 4, the microstrip is modelled as a perfect electric wall boundary where the tangential 

electric fields on the microstrip are forced to be zero at each half time step. This models the copper on the 

microstrip as an ideal conductor with an infinite conductivity. In reality, the copper layer has a finite 

conductivity taken as 5.8 x 107 S/rn which contributes to its finite electric loss In the form of conduction 
current on the copper layer. 

In order to validate the ADI-FDTD program with the added electric conductivity term, ilia rinitc. 

difference time-domain equations (5.5) - (5.6) and (5.8) - (5.9) are used with the I" order Mur boundary 

condition to simulate the propagation of a broad-band Gaussian pulse on a line. fcd rectangular microstrip 
patch as shown in Fig. 5.1. As in chapter 3, the finite-difference mesh parameters are chosen to be the 

same as in the published paper [1.5] to allow direct comparison of results. 

Fig. 5.2 shows a comparison of the time-domain response between the ADI-FDTD and the conventional 
FDTD method when stability factor of I is used in the ADI-FDTD program. With the copper layer 

modelled as a layer of material with finite copper conductivity, a, of 5.8 x1 07 S/m, the results are stable 
when stability factors of up to 8 are used in the ADI-FDTD program. 
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5.3.1.1 Transient response 
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Fig. 5.2 : Comparison between conventional FDTD and ADI-FDTD with stability factor I 
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Fig. 5.3 : Comparison between conventional FDTD and ADl-FDTD with stability factors I to 5 
in steps of I 

Fig. 5.3 shows the comparison between FDTD and ADI-FDTD with stability factors I to 5 in steps or 1. 

The results are completely stable. As the stability factor is increased, the effect of numerical dispersion 
begins to appear in the results as the Gaussian pulse begins to broaden. This effect is shown more clearly 
in Figs. 5.5 and 5.6 where the time responses are magnified for a clearer view orthe transient response. It 

can be seen from Fig. 5.6 that the Gaussian pulse broadens as the time step used Is Increased. Fig. 5.4 

shows a good agreement between the conventional FDTD and ADI-FDTD with stability factor 1. 
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Fig. 5.5 : Slight broadening of pulse in ADI-FDTD with stability factor 2 
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5.3.1.2 Frequency response 
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Fig. 5.7: Comparison of ADI-FDTD with stability I with Abouzahra [1.5] 
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Fig. 5.12: Comparison of conventional FDTD with ADl-FDTD with 

stability factor 5 
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Fig. 5.13 : Comparison of ADI-FDTD with stability factors I to 5 

Fig. 5.7 shows a good agreement between Abouzahra [1.5] simulated data and the ADI-FDTD result using 
stability factor 1. Fig. 5.8 shows very good agreement between the results generated using tile 
conventional FDTD and the ADI-FDTD method with stability factor 1. Fig. 5.9 shows that with stability 
factor 2 the frequency response results still agree reasonably well with the conventional FDTD results but 
for frequency higher than 14GHz, the response begins to shift slightly towards the lower frequency. This 

cffect of numerical dispersion increases with the increase of the stability factor and it is greater at the high 
frequency range. The broadening of the pulse in time-domain causes a compression of the response In the 
frequency domain. Figs. 5.10,5.11 and 5.12 show the comparison between conventional FDTD and 
ADI-FDTD with stability factors 3,4 and 5 respectively. Fig. 5.13 shows the comparison of AD[-FDTD 

results with stability factors I to 5. The Wect of numerical dispersion can be seen clearly. 
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5.3.1.3 Accuracy vs stability factor 

stability factor 
resonance 
at 7.4GHz %error 

resonance 
at 12. OGHz. %error 

resonance 
at 18. OGHz %error 

1 7.4 0 12 0 17.9 0.56 
2 7.4 0 12 0 17.8 1.11 
31 7.4 0 11.8 1.67 2.22 
4 7.35 0.67 11.8 1.6 17.5 2.78 
5 7.2 1 2.7 1 11.6 1 3.33 

_1 
17.3 1 3 89 

Table 5.1 : Percentage errors at resonances 7.4GIIz, l2. OGIIz and 18. OGIlz using ADl-FDTD 

method with stability factors 1,2,3,4 and 5 as compared to the respective resonances using tile 

conventional FDTD method. 

5.3.1.4 Run-time comparison 

Computati nal run-time in minutes 
Stability factor conv-FDTD ADI-FDTID time steps 

1 25.75 58.35 8500 
2 29.283 4000 
3 19.45 2667 
4 14.683 2000 
5 11.67 1600 

Table 5.2 : Run-time comparison using computer with Athlon 1.2G I Iz proccssor 

Table 5.2 above shows that for the microstrip patch circuit, a stability factor greater than 2.0 In ADI. 

FDTD scheme is required to have any time-saving as far as computational run-time is concerned. 

Referring to table 5.1, by using stability factor of 3.0 in the ADI-FDTD, the errors are 1.67% and 2.22% 

at resonant frequencies 12GHz and 18GHz respectively. This allows a time-saving of 24%. Although a 

time-saving of 6.3 minutes in this example may not be significant, a 24% time-saving from 2 days, I. e. 

saving of about half a day of simulation run-time when more complex structures such as a human body or 

a huge aircraft are modelled will prove to be quite beneficial. 

In reality, the % errors for stability factors greater than 3 as shown in table 5.1 may not be tolerable when 
it comes to designing a microstrip patch. It is, however, important to emphasize here that the accuracy of 

the ADI-FDTD method is very much dependent on the structure being modelled. Therefore, when applied 

to other structures, a stability factor of greater than 3 may be used whilst maintaining the accuracy within 

a tolerable range. 

Note that the saving in computational run-time is not directly proportional to the stability factor used as 

computation in the ADI-FDTD method is much more complex than the conventional FDTD and involves 

matrix inversions. 
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5.3.1.5 Input impedance 
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Fig. 5.14 : Comparison between Abouzahra's result and ADI-FDTD with 
stability factor I for real and imaginary parts of input impedance of the 

patch antenna 

Fig. 5.14 shows the comparison between Abouzahra's results and the ADI-FDTD with stability factor I 
for real and imaginary parts of the input impedance of the patch antenna. As discussed in chapter 2, the 
discrepancy between both sets of data is due to the fact that in the published paper, the microstrip is 

assumed to have a constant characteristic impedance, Z,, of 50 Q and an effective permittivity of 1.9 is 

used to calculate the wavenumber, 6, whereas in this research work, these values have been calculated 

using data obtained from the simulation. In this way, the dispersive nature of the microstrip is accounted 
for in the simulated data. 
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Fig. 5.15 : Comparison between conventional FDTD and ADl-FDTD with stability factor I 
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Fig. 5.15 shows a good agreement between the results generated using the conventional FDTD and the 

ADI-FDTD with stability factor 1. Figs. 5.16 shows a comparison between conventional FDTD and ADI. 

FDTD results with stability factors 2. Again, when stability factor 2 and above are used, the data shift 

towards the lower frequency as can be seen in Figs. 5.17,5.18 and 5.19. 
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Fig. 5.16 : Comparison between conventional FDTD and ADl-FDTD with stability factor 2 
for real and imaginary parts of input impedance of the patch antenna 
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5.3.2 Simulation of a line-fed rectangular microstrip patch with three parasitic patches 
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Fig. 5.20 : Line-fed rectangular microstrip patch with thrce parasitic patches 

By modelling the copper patch as a material with an electric conductivity or 5.8 x 107 S/m, we have been 

able to model the line-fed rectangular microstrip patch using the ADI-FDTD method without introducing 

instability or attenuation even when CFL stability criterion is not observed. In order to validate that tills 

technique works on a relatively bigger electrical object, the line-red rectangular patch Is surrounded by 

three parasitic patches. The plan view of the structure is shown in Fig. 5.20 above. The mesh parameters 

and excitation method are the same as that used in chapter 2. Figs. 5.21 - 5.24 show transient responses 
for this patch circuit. 

5.3.2.1 Transient response 
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Fig. 5.21 : Comparison between conventional FDTD and ADl-FDTD with stability factor I 
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Fig. 5.22 : Comparison between ADl-FDTD with stability factors I to 5 in steps or I 

Fig. 5.22 shows comparison between ADI-FDTD with stability factors of I to 5. Again, tile results are 

completely stable. This shows that the ADI-FDTD can be applied successfully on electrically large 

objects and the stability of the system is still maintained when the time step used In the algorithm Is 

greater than the maximum allowable according to the CFL criterion. As tile stability factor Is Increased 

and thus increasing the numerical time-step, the numerical dispersion becomes more significant its 

expected. 
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Fig. 5.23 : Zoomed in comparison between conventional FDTD and ADI-FDTD with stability 
factor I 

Figs. 5.23 - 5.25 show the magnified view of the transient responses of the rectangular microstrip patch 

with three parasitic patches. From Fig. 5.25, it can be seen that the transient response starts to show 

significant inaccuracy in the result when the stability factor is increased beyond 3. This Inaccuracy may 
be due to the fact that the dielectric gap separating the microstrip patches has been modelled with a single 

mesh width. The accuracy of the model and hence the result can be improved by increasing mesh 

resolution in the dielectric gap. 
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Fig. 5.25 : More significant numerical dispersion with stability factors greater than 3 and 
inaccuracy begins to show with stability factors beyond 3 

5.3.2.2 Frequency response 
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Fig. 5.26 above shows the frequency responses from the conventional FDTD and ADl-FDTD with 
stability factor I agree almost perfectly with each other. 
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As mentioned earlier, the inaccuracy in the results start to creep in when the stability factor is greater than 
3. Fig. 5.28 shows that when stability factor 3 is used, the results suffer from only numerical dispersion 

due to the bigger time-step used. However, when stability factor of 4 is used, the result shown in Fig, 

5.29, suffer from both numerical dispersion due to the increased time-step used and the Inaccuracy of tile 

model due to insufficient mesh resolution within the dielectric gap separating the main microstip patch 

and the three parasitic patches. 

5.3.2.3 Input impedance 
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Fig. 5.30 : Comparison between conventional FDTD and ADI-FDTD with stability factor 1 ror 

real and imaginary parts of input impedance for the line-fed rectangular microstrip patch with 
three parasitic patches 
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Fig. 5.31 : Comparison between conventional FDTD and ADI-FDTD with stability factor 2 for 

real and imaginary parts of input impedance for the line-fed rectangular microstrip patch with 
three parasitic patches 

Again, the discrepancy in the amplitude of the input impedance plots shown in Fig. 5.31 is due to the 
insufficient mesh resolution in the dielectric gap between the patches. 
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5.4 Conclusion 

It has been shown in this chapter that modelling the copper layer in ADI-FDTD as a layer of material with 

a finite electric conductivity taken as 5.8 x1 07 S/m keeps the system completely stable even when the 
CFL stability criterion is violated. This is not true when the copper layer is modelled as a perfect electric 

conductor as discussed earlier in chapter 3. 

Using this method of implementing the copper layer, the results for a line-fed microstrip rectangular patch 

show favourable comparison with published results and the results obtained from the conventional FDTD 

method. Tables of accuracy against stability factors used and the run-time comparison between the 

conventional FDTD and ADI-FDTD methods have also been presented. 

To further validate the use of ADI-FDTD method on an electrically large object, the microstrip patch is 

modelled with three parasitic patches adjacent to its three edges. The results show stability when tested 

with stability factors of up to 8. As expected, increasing the stability factor increases the numerical 
dispersion error. 

It has to be mentioned that the sole purpose of modelling this relatively large circuit is to validate the use 

of ADI-FDTD on electrically large objects. As a result, the gaps between the patches have been modelled 
using a single mesh width. This has introduced some errors into the results due to inaccurate modelling of 
the gaps. Nevertheless, the results are still stable with stability factors of up to 8.0. 

In order to model small gaps accurately, a graded mesh should be employed in the computational domain 

where the mesh size is reduced gradually towards the gaps and is maintained small within the gaps. This 
forms part of the suggested further work. 

As in any engineering feat, nothing comes free and in this ADI-FDTD case, there is a trade-off between 

accuracy and simulation run-time. ADI-FDTD allows us to violate the fundamental CFL stability 

criterion without causing instability in the system. By using the ADI-FDTD method instead of the 

conventional FDTD method, potentially the simulation run-time can be significantly reduced. However, 
increasing the time-step also reduces the accuracy of the simulation results. This accuracy is dependent on 
the structure being modelled. Therefore, for certain structures a significant reduction in simulation run- 
time will be possible whilst maintaining the accuracy within the required tolerable range. In addition to 

that, structures containing discontinuities can be modelled using fine mesh size without the constraint of 

using a correspondingly small time step in the simulation. 
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CHAPTER 6 

CONCLUSION AND FURTHER WORK 

6.1 Overall conclusion 

The finite-difference time-domain method has been studied and applied in the Cartesian coordinate 
system for a three-dimensional rectangular microstrip structure. In order to remove the Courant-Friedrich- 

Levy stability criterion that governs the maximum time-step that can be used in the FDTD algorithm to 

maintain the stability of the system, the alternating-direction implicit method is investigated. The main 

contribution of this work has been the new method of simulating the copper layer on a microstrip in a 
three-dimensional Cartesian coordinate system in the ADI-FDTD scheme. This allows the application of 
the ADI-FDTD method to model any three-dimensional structure that consists of copper layers in the 

structure. 

Although the ADI-FDTD method has been used in the literature, most analysis and application have been 

performed on simple three-dimensional cavities, in both homogeneous and inhomogeneous media [1.18] 

and [1.32]-[1.371. Very often two-dimensional models have been used to verify the algorithm [1.28] and 
[1.29], when structures other than the free-space cavities were modelled, such as the parallel-plate 

waveguide model in [1.14], a two-dimensional model was used and a lossy dielectric with electric 

conductivity of 15.0 S/rn was included in the model. On another occasion [1.38] a sheet of an infinite 

ground plane was modelled using an electric conductivity of 20.0 S/m and in [1.25], a monopole with a 
thin dielectric wall with electric conductivity of 4.0 S/m was modelled. 

In [1.26], microstrip resonators and filters were modelled using the ADI-FDTD method in a graded mesh 

and a perfect electric conductor (PEC) boundary condition was applied on the microstrip layer. However, 

when a transmission line was modelled by implementing a perfect electric conductor boundary condition 

on the strip in the ADI-FDTD method as discussed in chapter 3 in this research work, the result was 

unstable. This phenomenon was later confirmed in [1.21] where it was reported that if the tri-diagonal 

solver in the literature [2.6] was used to solve the ADI-FDTD method when modelling a microstrip line, 

the result was not always stable. Subsequently, an alternative mathematical algorithm for solving the tri- 

diagonal matrix in the ADI-FDTD method was reported in [1.21]. 

For the first time, this research work has shown that by simulating the copper layer on the microstrip as a 

material with electric conductivity of 5.8 x 10 7 S/m (which is the electric conductivity of copper) in the 

three-dimensional ADI-FDTD scheme, the numerical results are always stable even when the tri-diagonal 

solver as proposed in [2.6] is used. A different tri-diagonal solver as reported in [1.21] is thus not 
required. It has been shown that the AD-FDTD method can be used to model realistic problems in 

engineering design without the need to put artificially high lossy material to maintain stability. In order to 

exploit the advantageous feature of the ADI-FDTD method, it is important that the ADI-FDTD method 
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can be successfully implemented not only on cavity structures but also on real practical three-dimensional 

structures that may consist of striplines and microstrips. 

Another contribution of this research work is the proposed new modified ADl-FDTD method which 
introduces a factor f in the ADI-FDTD algorithm. Using this new method, microstrip lines can be 

simulated as perfect electric wall boundary where the tangential electric fields on the microstrip are set to 

zero and stability of the system is still maintained. Although the results from the modified ADl-FDTD 

method show a reduction in the amplitude, this technique is easy to implement and it is useful as a quick 

method to obtain accurate resonant frequency points. 

The ADI-FDTD method has contributed enormously in the field of numerical eicctromagnetics. When in 

the past, the computational run-time is restricted indirectly by the CFL stability criterion, now with the 

advent of ADI-FDTD scheme, computational run-time can be significantly cut down to make each 

simulation a realistic, practical solution. However, nothing comes free. There is a trade-off between 

simulation run-time and accuracy of the simulation results. ADI-FDTD gives us the flexibility of using a 
bigger time-step than that allowed by the fundamental CFL stability criterion without causing instability 

in the system. By using the ADI-FDTD instead of the conventional FDTD method, potentially the 

simulation run-time can be reduced. But increasing the time-step also reduces the accuracy of the 

simulation results. This accuracy is dependent on the structure being modelled. Therefore, for certain 
structures a huge reduction in simulation run-time will be possible whilst maintaining the accuracy within 
the required tolerable range. Structures containing discontinuities can be modelled using fine mesh size 

without the constraint of using a correspondingly small time step in the simulation. 

6.2 FurtherWork 

6.2.1 Cylindrical coordinate system 
The ADI-FDTD method can be extended to the cylindrical coordinate system to model three-dimensional 

cylindrical structure such as the probe-fed circular patch. As the diameter of the probe will be much 

smaller than the circular patch, the application of the ADI-FDTD in this structure means that the time-stcp 

used in the algorithm will not be restricted to the mesh size used to model the probe. Although, the 

application of ADI-FDTD on cylindrical coordinate system has recently been reported [1.31], there is yet 
to be any implementation of striplines or microstrips in the cylindrical coordinate system. 

6.2.2 Microstrips with slots and notches 
Now that there is a method of implementing copper layer in the microstrip that is not dependent on the 

accuracy of the tri-diagonal solver in the ADI-FDTD scheme, any three-dimensional structures with 

microstrips, such as stacked array of microstrip antennas can be modelled with narrow gaps, slots and 

notches where these discontinuities can be modelled with high spatial resolution by applying fine mesh 

size without the prohibitive cost in computational time. 
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6.2.3 Graded Mesh 
In order to model small gaps, slots and notches accurately, higher mesh resolution is required around the 

vicinity of these discontinuities. To avoid having fine mesh throughout the whole computational domain, 

the mesh can be graded such that the mesh size gradually decreases as it approaches the discontinuities. 

Since in the ADI-FDTD method, the stability of the system no longer depends on the CFL criterion, the 

same time step within tolerable numerical dispersion, can be applied to the whole computational domain. 
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APPENDIX Al 

2 ND ORDER ACCURACY OF CENTRAL-DIFFERENCE 

APPROXIMATION 

Consider a Taylor's series expansion of u (xi, t) about the time instance tn to the time instance t,, + At/2, 

keeping the space point fixed at xi : 
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Now, the Taylor's series expansion of u (xi, t) about the time instance tn to the time instance t, - At/2, 

keeping the space point fixed at xi is 
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Re-arranging (3), we get, 

( At (t. At At), I aul 

oul 
+ 21 

X, 
2) 

X, 
2)3 itTl 

xo, '. 
At (A 1.4) 

u+ 
At 

u tn _ 
At 

2 2J., 
_ 

(At)' I a3; 1 

At 2)6 at I 
x,. t. 

Taking only the first RHS term of (4), the second term is the error term. Then, 
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where 0 [(AI)2 ] is a shorthand notation for the remainder or error term, which approaches zero as the 

square of the time increment. Equation (5) is referred to as a 2"d order accurate, central-difference 

approximation to the first order time derivative of u. 
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APPENDIX BI 
TRI-DIAGONAL MATRix EQUATIONs FOR 

ADI-FDTD METHOD 
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APPENDix B2 

TRI-DIAGONAL MATRix EQUATIONs FOR 

MODIFIED ADI-FDTD METHOD 
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APPENDix B3 

TRI-DIAGONAL MATRix EQUATIONs FOR 

ADI-FDTD METHOD WITH ELECTRIC CONDUCTIVITY TERM 
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At 

)( 
AlAz 

) 

(B2.1) 

Ey"" 12 (Ij +I/2, k - 1) - Ey"+' 12(ij +112, k) 2+ , u-,, Az 
+ 01 (Ij + 1/2, k) At 

+ Ey"+' 12(ij + 1/2, k + 1) 
it 4c 

)I 

-Eyn (ij + 1/2, k) a (Ij + 1/2, k) 
4e 

2 [E(ij+I, k+112)-E, "(ijk+112)-En, (/J+I, k-1/2) +E, "(Ijk -1/2) 
y') z 

Az [H" (Ij + 1/2, k + 1/2) - Hn (Ij + 1/2, k - 1/2)] L- 
x 

[/I, " (i + 1/2j + 112, k) - I/, ' (I - 1/2j + 1/2, k)] 
At 

) 

(B2.2) 

dt 
E 12(i 12 UCAX)2(l 

+a 
fljk +1/ 2) 

, 4t 4e -1jk+112)-E"+' (ijk+112) 2+ +E"+"2(i+ljk+112) 

2 

=-E"(ij, k+112) 
'PCAX (I 

_a 
(ijk + 1/ 2) At I 

At 

)4c 

+ 
(Ax) 

" 0-1/ 2jk +1) + E., " (i-I 12jk) ] 
ýý) 

[En (i+ 112jk +1) - En (l+ 1/2jk) - E, xx 
[Hy"(1 

+ I/ 2jk + 1/2) -HI/ 2jk + 1/2)] +( OAX2 
) [If,, '(Ij +I/2, k + 1/ 2) - ll, " , (Ij -I/2, k + 1/ 2)] 

(LAt! ) 

y rAtAy j 

(B2.3) 
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Procedure 2 

(2 
E""(i + 112jk - 1) - E, '+'(i + 1/2jk (i + 112jk) At ) 2+ 

Of +, 
4e 

)l 
+ E, ' +'(I + 1/2jk + 1) 

-Exn+112 (I +112jk) 
( ), (I 

-a 
(1+112jk) At 

At 4c 

+(A-' 
[E, "+112(i+ljk+112)-E, '+112(ijk+112)-E, '+112 (i+ljk-112) + E' '+1/2 (ijk-1/2) 

Ar) 

"+1/2 /2 + (I + 1/2j-1/2, k)] [Hn+112 (1+112jk + 1/2) (1 + 1/2j + 112, k) -Hy"+' (i+112jk-112)] 11, 
At y &tAY) 

(B2.4) 

2 

Ey"'(i-lj+112, k)-E"+'(ij+112, k) 2+ 1+ "1 (IJ+112, k)At 
+Eym+'(I+I, J+112, k) 

y 
UEE A-X 

4c 

(f4t )I 

EPI+1/2 (I (ij +I/2, k) At ICA 
yj k) 

At 

Ar) 1/2 + t'-J [E, "+ (i+112J+I, k)-E, '+112 (i+112j. k)-E, "+'12 (i-112J+I, k) + E, "+1/2 (1-1/2jk) 
(y 

(, UAX) "+1/2 -1/2j+1/2, k)] +r, PAX2) [Ii, "+1/2(/J+1/2, k+1/2)-il, '+1/2(ij+1/2, k-1/2)I El ) 
[H, "+112 (1+1/2j+1/2. k) -H, (I ý Al ) 

(B2.5) 

2 
At Es"+'(IJ-I, k+112)-E, ""(Ij, k+112) 2+ UCAY 1+ a(ij+112, k) 

+ En"(Ij + Lk + 1/ 2) 
()( 

4c 

--E, "+"(/+1/2j, k) (I-a(ij+112, k)At 
( 

At 4c 

+(Ay 
[Eyll+1/2(/J+1/2, 

k+l)-E; +I, '2 ; +1/2 (Ij- I /2. k + 1) +E Az) (IJ+112, k)-E ; +'/z (ij - I/ 2. k) 

- 
(-ý Ay [H, "+"2(ij+112, k+112)-H, "+112(IJ-112. k+112 ]+(P'ý'Y2) [11; +1/2(i+1/2jk+1/2)-Ily"+1/2(i-1/2j. k+1/2)I At 

)) 

(-Zl-m i 

(B2.6) 
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APPENDIX Cl 

GRAPHICAL ILLUSTRATION OF 

IMPLICIVEXPLICIT ADI-FDTD METHOD 

A' 

E'+' 

E n+1/2 

E 

At /2 At /2 

Fig. CIA 

time 

Using an explicit method or 2"d order Runga-Kutta method to find electric field at time (n+I)At gives 

E n+1 =En+ At 
d El 
dt 

n+1/2 
where 

ýE 
is the gradient at E"+"2 illustrated in Fig. C1.1 bythegradicntofAA' dtln+1/2 

In electromagnetic fields, 

dEj IVX 
"I 

n+1/2 
(C 1.2) d It 

n+ 112 

Substituting (C 1 
-2) 

into (C 1.1), we get 

En+' = En + 
ät VX Hln+I/2 
9 

A 

A 
B 

(Cl. 3) is the form of the conventional FDTD explicit method. 
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Using an explicit method to find E "112 from E' using forward difference gives: 

E n+1/2 En+ 
At dE 

2 dtý. ý 

where 
dEj is the gradient at E" illustrated in Fig. CIA by the gradient of BB'. 
dt 

n 

Using an implicit method to find E"+1 from E'+112 using backward difference gives: 

At dE E'+112 = E"+1 .T 
ýd 

tI n+I 
dE 

where 
0 

is the gradient at En+1 illustrated in Fig. CIA by the gradient of W. 
dt In+1 

Re-arranging (Cl. 5), 

E1 = E n+1/2 + At dEI 
2 dtln+l 

(CIA) 

(C1.5) 

(C1.6) 

Combining (CIA) and (Cl. 6), we get 

En+l = 
At I-I Pl + 

At dEl 
2 dtln 2d lt., 

+, 
(CI. 7) 

or expressing the time derivative of electric field in (C 1.7) in terms of magnetic field gives us 

En+1 En 
2tVX 

"In + 
At VX "Ll t 

+ 
2e 

explicit implicit 
term term 

(CI. 8) is the form of the Crank-Nicolson FDTD implicit method. 
Expanding (C 1.8) for E, term we get: 

ll, "(i+1/2j+1/2, k) -H: "fl+112j_-112, k) 

E, "+l(i+112j, k)=E, n(i+112j, k) + 
At AY 

h 2s Ul 
Ily" 0+ 1/2j, k+ 1/2) - fly" 0+ 1/2j, k-112) 

Hn+'(i+112J+112, k)-Il: n+'(i+112J-II2, k) (D 
At AY 

+'(i+1/2jk+1/2)-lln+'(1+1/2jk-1/2) 
_y Az 

(C 1.8) 

(CI. 9) 

ADI-FDTD method is in a similar form to (Cl. 9) but splitting it into two separate procedures each for 

successive half time-step iteration. Procedure I&2 are taken from RIIS terms as shown in (Cl. 9). This 

results in the following terms for procedure I and 2 of the ADI-FDTD method, repeated here from (3.1 a) 

and (3.4a) respectively. 
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ýH "+1/2(i+ 112i+112, k) - H.. "+112(i+ I 12j-112, k) 

(i + 112j, k) = Eý', ' (i + 112j, k) + 
At AY 
2c H"(i+ 112jk + 1/2) - H"(i+ 112jk-112) yy 

AZ 

n+II2 i+ Hz 112j + 1/2, k) - Hz ( 1/2j-1/2, k) 

En+' (i. 112jk) =E n+112 (i+112jk) + 
ät 

ý 
AY 

2c n+I n+l(i+112jk-112) Hy (i+112jk+112)-Hy 

AZ 

(C1.1O) 

(Cl. 11) 


