
THE UNIVERSITY OF HULL 

 

 

 

 

Identification and Functional Characterization of the Mitochondrial 

Adenine Nucleotide Carriers of Trypanosoma brucei 

 

 

 

being a Thesis submitted for the Degree of Doctor of Philosophy 

in the University of Hull 

 

by 

 

Carmen Priscila Pena Diaz, 

Licenciada en Biologia 

 

March 2011 



Abstract 
 
 
The Mitochondrial Carrier Family encloses a group of transmembrane proteins that 

transport metabolites across the mitochondrial inner membrane.  The ADP/ATP 

carrier is the most widely studied MCF protein.  It catalyzes the counter exchange of 

ADP for ATP in the mitochondrion of all eukaryotes.  In the genome of the 

kinetoplastid parasite Trypanosoma brucei, three putative ADP/ATP carrier 

sequences (MCP5, MCP15 and MCP16) and one GDP/GTP (MCP13) entries were 

analyzed by sequence analyses and phylogenetic reconstruction.  AACs 

phylogenetic reconstruction proved a strong association with yeast, funghi and plant 

clades, whilst separates from those AACs and from metazoans.  MCP13 groups 

with GGCs, seems to be present only on lower eukaryotes and do not seem to 

present any homologues in metazoans.  Gene deletion studies were performed to 

assess the roles of MCP5, MCP15, MCP16 and 13.  A conditional double knockout 

cell line, with an inducible myc-tagged rescue copy was constructed for MCP5, 

which proves the essentiality of the protein for the parasite.  Growth curves of the 

mutant cell line proved a growth defect phenotype in various carbon sources 

conditions.   Mitochondrial ATP production assays were performed in the mutant cell 

line, in presence and absence of the inducible protein, using permeabilized cells 

with digitonin that confirmed the ADP/ATP transport activity of the carrier.  For in-

vitro activity assays, the carriers were cloned and expressed in Escherichia coli and 

Spodoptera frugiperda, solubilised and reconstituted into liposomes.  Unfortunately, 

the reconstitution was unsuccessful and the conditions and methodologies are 

discussed.   
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2D BN/SDS-PAGE  Two-Dimensional Blue Native/ SDS- Polyacrylamide Gel 

Electrophoresis 
31P-NMR   Nuclear Magnetic Resonance with Phosphorus 31 

AAB  ATP Assay Buffer 
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ADP Adenosine diphosphate 
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ANT  Adenine Nucleotide Transporter 

ASCT  Acetate: Succinate CoA Transferase 

ATP Adenosine Triphosphate 

ATR  Atractyloside 

BKA  Bonkretate or Bonkrekic acid 

BLA  Blasticidin 

BLE  Phleomycin 

BSF Bloodstream form 
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DAPI 4',6-diamidino-2-phenylindole 

dCTP Deoxy-Cytidine Triphosphate 
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ET  Ethanolamine Phosphate Cytidyltransferase 
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HAT    Human African Trypanosomiasis 

HYG  Hygromycin 

IFA  Immunofluorescence Microscopy 

IgG   Immunoglobulin G 

IPTG    Isopropyl-beta-D-thiogalactopyranoside 

K-Pi Potassium Phosphate 

KDH  2-Ketoglutarate Dehydrogenase 
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KOH   Potassium Hydroxide 

LB  Luria-Bertani Medium 

MCF   Mitochondrial Carrier Family 

MCP   Mitochondrial Carrier Protein 

MEM-Pros   Minimum Essential Medium with Proline 

MOI  Multiplicity of Infection 

MOPS   3-(N-morpholino)propanesulfonic acid 

MPglu    MEM-Pros + 5mM glucose 

mRNA    Mitochondrial Ribonucleic Acid 

mtDNA   Mitochondrial Deoxyribonucleic Acid 

MTP       Mitochondrial Transition Pore 

NAD+ Nicotinamide Adenine Dinucleotide Oxidized 

NADH Nicotinamide Adenine Dinucleotide Reduced 

NADH-FRD  NADH-Dependent Fumarate Reductase 

NADP+ Nicotinamide Adenine Dinucleotide Phosphate oxidized 

NADPH Nicotinamide Adenine Dinucleotide Phosphate reduced 

NEO   Neomycin 

Ni-NTA   Nickel-Nitriloacetic Acid 

NMP  Normal MEM-Pros 

O.D.   Optical Density 
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OXPHOS   Oxidative Phosphorylation 
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PCR    Polymerase Chain Reaction 
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PEP    Phosphoenolpyruvate 
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Chapter I.  Introduction 

1. Trypanosoma brucei and Sleeping Sickness  

Trypanosoma brucei is the causative agent of Sleeping Sickness or Human African 

Trypanosomiasis (HAT). It is a fatal disease for which no suitable treatment has 

been found and affects around 300,000 people (WHO, 2010). Around 16,000 new 

cases are still reported every year by the World Health Organization (WHO). 

Trypanosoma brucei is represented by three sub-species: i.e. T.b. gambiense and 

T.b. rhodesiense, both are human infective and cause what is known as West 

African and East African Sleeping Sickness, respectively (Kennedy, 2004; Rodgers, 

2009). A third sub-species of the parasite T. b. brucei, causes Nagana in cattle, 

which represents a major agro industrial problem in Northern Africa, due to 

economical losses in the region (WHO, 2010).   

 

The clinical manifestations of Sleeping Sickness vary according to the different 

forms of the disease: West African Sleeping Sickness is a chronic disease that lasts 

from months to years, whereas East African Sleeping Sickness has an acute course 

of weeks to months duration (Rodgers, 2009).  90% of Sleeping Sickness cases 

reported belong to the West African type, with the remaining 10% to the East African 

variation (Simarro et al., 2008). The progress of Sleeping Sickness can be divided 

into two different stages. The first stage of the disease, also called the 

haemolymphatic stage, shows symptoms like fever, headaches and lymph nodes 

enlargement. The infection may also invade tissues like spleen, heart and liver, 

before reaching the central nervous system (CNS), where stage 2 of the disease 

commences (Rodgers, 2009). Stage 2 of Sleeping Sickness is characterized by the 

presence of parasites in the cerebrospinal fluid and the start of the disease-typical 

symptoms, including lethargy, sensory disturbance, confusion, disrupted sleeping 

patterns and coma (Steverding, 2008). For T. b. gambiense, stage 2 of the 

infections might appear months or even years after initial infection, whereas stage 2 

of T. b. rhodesiense-related Sleeping Sickness might manifest weeks to months 

after initial infection, and distinction between stage 1 and 2 might not be evident 

(Steverding, 2008; Rodgers, 2009; Barrett et al., 2007).  

 

1.1. Drug treatments for Sleeping Sickness 

The four drugs mainly used for the treatment of Sleeping Sickness are Pentamidine, 

Suramin, Melarsoprol and Eflornithine (Barrett et al., 2007). The efficacy of these 
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drugs depend on whether the infection has reached the CNS or is still in the 

haemolymphatic stage 1 (Rodgers, 2009). Pentamidine is used to treat stage 1 of 

T.b. gambiense-related Sleeping Sickness.  Suramin, a drug used since the 1920s 

is limited to the early stages of the disease because of its inability to cross the 

blood-brain barrier, and it is used to treat the stage 1 of T.b. rhodesiense infections 

(Kennedy, 2004; Barrett et al., 2007). Both Pentamidine and Suramin cause severe 

secondary effects on the host. Eflornithine was developed in the 1980s as an anti-

cancer drug and was registered in 1990 as a treatment for T.b. gambiense 

infections in the CNS-stage of Sleeping Sickness. Adverse effects are also related 

with Eflornithine therapy, but are usually reversible. Typical side effects are 

gastrointestinal problems, unusual bleeding and weakness, pancytopenia, 

thrombocytopenia and convulsions (Rodgers, 2009; Simarro et al., 2008). 

Melarsoprol is an organic arsenical and is the only drug available that can be used 

to treat both T.b. gambiense and T.b. rhodesiense infections in stage 2 of the 

disease (Barrett et al., 2007; Rodgers, 2009). Nevertheless its side effects are also 

severe: tachycardia, convulsions, coma and heart failure have been reported 

(Barrett et al., 2007; Rodgers, 2009). It is painful to administer, destroys veins after 

several applications and causes an overall mortality rate of 5% (Bacchi, 2009; 

Kennedy, 2004). The high toxicity of the mentioned drugs is one of the main 

problems related to the treatments, along with emerging drug resistance (Barrett et 

al., 2007; Simarro et al., 2008; Rodgers, 2009; Steverding, 2008).  

 

The pattern of resistance to the drugs is related to their mode of action on the 

trypanosome biology, as well as on their route of entry into the parasite.  

Pentamidine and its diamidines structural analogues, enter the parasite mainly 

through the P2 transporter (aminopurine transporter), HAPT1 (high-affinity 

pentamidine transporter) and LAPT1 (low-affinity pentamidine transporter) (de 

Koning, 2001a; de Koning, 2001b).  Although its mode of action is not completely 

clear, the di-cationic structure of Pentamidine has been reported to bind polyanionic 

molecules in the cell, where it interacts with nuclear and kinetoplast DNA (Simpson, 

1986; Mathis et al., 2007).  Pentamidine has also been reported to inhibit plasma 

membrane proteins, such as Ca2+-Mg2+ ATPases (Benaim et al., 1993). In-vitro cell 

assays observed an initial accumulation of the synthetic diamidines DB75 and 

DB820 (Pentamidine analogues) in the mitochondrion of T. brucei immediately after 

the drug enters the cell, where it exerts a detrimental effect on the kinetoplast 

(Mathis et al., 2007; Wilson et al., 2008). DB75 has also been found to collapse 

mitochondrial membrane potential and inhibit the F1F0-ATPase (Lanteri et al., 2008). 



 3

Once this effect takes place, these compounds seem to accumulate in the 

acidocalcisomes (Mathis et al., 2006).  Pentamidine resistance of T. brucei has 

been related to substrate affinity loss of the P2 (aminopurine transporter) transporter 

(Barrett et al., 1995; Lanteri et al., 2006).   Suramin, a hexacharged polysulphonated 

napthylamine, enters the parasite via receptor-mediated endocytosis once it is 

bound to serum proteins, particularly LDL (low-density lipoprotein) (Voogd et al., 

1993; Coppens et al., 1987; Vansterkenburg et al., 1993). As expected from a very 

charged molecule, it is incapable to cross membranes, therefore its inability to cross 

the brain blood barrier and its subsequently inefficacy in the treatment of stage 2 of 

Sleeping Sickness.  Although its mode of action is not completely clear, it has been 

hypothesized that Suramin inhibits glycosomal enzymes (Marché et al., 2000; 

Hanau et al., 1996).  Resistance to Suramin does not seem to be common in the 

field whereas it has been observed in laboratory conditions and in animals infected 

with Trypanosoma evansii (El Rayah et al., 1999; Barrett et al., 2007).  The 

resistance to Suramin has been hypothesized to be dependent on a trypanosomal 

Suramin-metabolism or a host drug-extrusion system similar to the one registered 

for the P-glycoprotein (de Koning, 2001a; Sanderson et al., 2009).   

 

Eflornithine (difluoromethylornithine or DFMO) is one of the two drugs commonly 

used for the treatment of T.b. gambiense –related stage 2 of Sleeping Sickness.  

Eflornithine site of entry was debated for years, and two possible mechanisms were 

suggested: 1) the drug enters the parasite via passive diffusion in bloodstream form 

cells (Bitonti et al., 1986), whereas 2) the entry of the drug is mediated through 

active transport, which exhibited a Michaelis-Menten-type of uptake kinetics in 

procyclic forms of T. brucei (Phillips and Wang, 1987).  However, the nature of the 

transporter remained unclear until very recently. The transporter was elucidated 

when RNAi of the TbAAT6 gene (amino acid transporter 6) developed resistance to 

the drug (Vincent et al., 2010)  Eflornithine acts as an irreversible inhibitor of 

ornithine carboxylase, an enzyme that catalyzes the decarboxylation of ornithine for 

the formation of putrescine in the pathway of synthesis of polyamines (Bacchi et al., 

1983).  Inhibition of ornithine carboxylase leads to the accumulation of S-adenosyl-

L-methionine, which is condensed with putrescine for the subsequent formation of 

spermidine (Byers et al., 1991).  Eflornithine inhibits both the ornithine carboxylase 

from trypanosomas and humans as well, with the only difference that the human 

enzyme has a faster turnover rate than the one found in T.b. gambiense, therefore 

making it less susceptible to the drug (de Koning, 2001a).  The difference between 

T.b. rhodesiense and T.b. gambiense susceptibility to Eflornithine was also found to 
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be related to a higher turnover, as well as a higher specific activity of the ornithine 

carboxylase found in T.b. rhodesiense (Iten et al., 1997).   

 

Melarsoprol (or MelB) is a lipophilic arsenical-based compound by far the most toxic 

of all the 4 mainstream drugs used for the treatment of Sleeping Sickness; its use is 

limited to the stage 2 of T.b. rhodesiense infections (Barrett et al., 2007). It is the 

only arsenical –based compound (melaminophenyl arsenical) still in use for the 

treatment of Sleeping Sickness; older arsenical-based compounds used in the early 

20th century are not licensed for their use in humans, and only one, MelCy, has 

approval for veterinary treatment (de Koning, 2001a).  It has been observed that T. 

brucei and T. evansii strains resistant to soluble melaninophenyl arsenicals present 

impaired transport activity of the P2 transporter (aminopurine transporter), therefore 

accounting the drug entry into the cells via mediated transport (Carter and Fairlamb, 

1993). Moreover, a pentamidine resistant strain lacking HAPT1 (high-affinity 

pentamidine transporter) was also resistant to soluble melaminophenyl arsenical 

compounds (Bridges et al., 2007). However there is controversy amongst 

melaminophenyl arsenical-resistant T. brucei strains that displayed sensitivity to 

Pentamidine, which is also transported into the cell through the P2 and HAPT1 

transporters (Barrett et al., 2007). Therefore, an alternative route of entry had to 

account for the drug entry in the cells, that was either a different transporter to those 

described for Pentamidine, or a completely different mechanism. The activity of 

Melarsoprol as observed in in vitro studies has been suggested to move across 

membranes through passive diffusion, due to its largely lipophilic structure, which 

makes it different to older and aqueous-soluble arsenical compounds, which might 

make use of Pentamidine transporters for their entry in the cell (Scott et al., 1997).   

The drug may enter the cells by passive diffusion and mediated transport (Scott et 

al., 1997; de Koning, 2001a).  Melarsoprol site of toxicity in the cell is still largely 

uncertain.  Fairlamb et al. (1989) suggested that trypanothione, the glutathione 

version in trypanosomas, mediated the toxicity of cyclic arsenicals in the parasite.  

Other authors suggested that Melarsoprol inhibited glycolysis, although this 

hypothesis was contradicted when ATP concentrations were found to be stable after 

drug-mediated parasite lysis (Van Schaftingen et al., 1987).   

 

The controversies regarding drug treatments for Sleeping sickness are mostly 

related to the extent of toxicity of the drugs for the host, together with the emerging 

resistant-strains in the field. The therapies are administered in high concentrations 

in order to avoid rapid resistant emergence, which does not improve the cytotoxic 
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effects on the host.  Pentamidine is administered daily at a concentration of 4 mg/kg 

for 7-10 days (Barrett et al., 2007).  Whereas the drug displays in vitro IC50 values of 

approximately 10nM and kills the parasites over a period of three days under these 

conditions, in vivo concentrations of the drug are several orders of magnitude higher 

(Miezan et al., 1994; Barrett et al., 2007).  Suramin is administered in 5 doses, via 

intravenous injection at concentrations of approximately 80 mg/kg, every 3-7 days, 

over a period of 4 weeks (Voogd et al., 1993). These concentrations contrast with 

the in vitro concentrations needed to kill the parasites (only 1 g/kg) in a 24-hours 

exposure assay (Barrett et al., 2007).  Eflornithine is administered via intravenous 

injection, every 6 hours for 14 days, at a concentration of 100 mg/kg (Barrett et al., 

2007).  The reason the treatment with Eflornithine requires such frequency is that 

the half-life of the drug is approximately 3.3 hours in the host’s plasma (Haegele et 

al., 1981).  Melarsoprol, on the other hand, is administered once a day for 10 days, 

via intravenous injection, at a concentration of 2.2 mg/kg (Pepin and Mpia, 2006).  

 

Despite the efforts, drug-resistant strains are still found in the field, particularly 

regarding the drugs used in stage 2 of the disease. In order to address this, several 

trials of combination therapies have been performed to reduce the risk of developing 

drug resistance and further allow lower drug doses, thereby reducing the severity of 

the side effects. The use of Nifurtimox, a drug used for the treatment of American 

trypanosomiasis (caused by Trypanosoma cruzi), in combination therapy trials with 

Eflornithine and Melarsoprol seems to be the new available alternative (Steverding, 

2008; Simarro et al., 2008; Rodgers, 2009; Priotto et al., 2009; Jeganathan et al., 

2011).  Nifurtimox is a toxic nitrofuran that once metabolized into nitrile derivatives 

by the parasite, displays high cytotoxicity for both parasite and host cells (Hall et al., 

2011). Other studies have focused on the combination of Suramin with known 

antibiotics such as minocycline as an alternative to treat early stages of CNS 

parasite invasion in mice (Amin et al., 2008).  In 2007, a promising new drug 

effective for the treatment of stage 1 of Sleeping Sickness, called diamidine 

pafuramidine (DB289), a Pentamidine analogue, had finished phase III trials. 

However its severe side effects, e.g. liver toxicity and renal insufficiency- caused the 

program to be discontinued (Wenzler et al., 2009; Steverding, 2010). Encouraging 

results were observed in a trial with Fexinidazole, a nitroimidazole compound from 

the family of metronidazole, a widely used antibiotic with apparently acceptable 

toxicity levels.  The treatment in vitro and in vivo (in mice) of T.b. gambiense and 

T.b. rhodesiense with fexinidazole, eliminated the parasites even at late stage 2 of 

the infection (Torreele et al., 2010).  Also the pyrazole sulphonamide compound 
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named DDD85646, which acts as a N-myristoyltransferase inhibitor, has proved 

effective in eliminating the parasite in vitro and in vivo (in mouse models), indicating 

another future opportunity for therapy (Frearson et al., 2010).  

 

Some of the most encouraging results regarding advances in drug therapies are the 

ones observed in the drug research for Trypanosoma cruzi (Clayton, 2010). 

Amongst the various compounds in the outlook for treating Chagas disease are 

biphosphonates (Hudock et al., 2006; Sanz-Rodríguez et al., 2007) and a range of 

ergosterol biosynthesis inhibitors (EBI) (Urbina et al., 2002; Urbina et al., 2004; 

Urbina, 2009; Urbina, 2010; Paniz-Mondolfi et al., 2009; Oldfield, 2010), 

representatives of the most forward-looking efforts in the race against 

trypanosomiasis in the last decades.   

2. The kinetoplastid parasite Trypanosoma brucei  

Trypanosoma brucei is a parasitic protozoan of the order Kinetoplastidae, which 

also includes Trypanosoma cruzi, the causative agent of American Trypanosomiasis 

and the Leishmania species (which cause visceral and cutaneous Leishmaniasis) 

(Simpson et al., 2006; Balmer et al., 2011). Trypanosoma brucei belongs to the 

genus Trypanozoon, altogether with Trypanosoma evansii (which affects camels, 

horses, bovids and dogs) and Trypanosoma equiperdum (which infects horses) 

(Hoare, 1972; Gibson, 2003). Other trypanosoma species, like Trypanosoma 

congolense, T. simiae and T. godfreyi, from the subgenus Nannomonas, are 

parasites of a wide range of ungulate animals, and therefore represent a group of 

agricultural importance due to the great economical losses related to livestock 

infections (Gibson, 2003; Adams et al., 2010).  Trypanosoma vivax, from the genus 

Dutonella also infects a wide range of livestock (Adams et al., 2010; Osorio et al., 

2008).  All the species described above are known pathogens to animals and are 

transmitted by salivarian route (except T. cruzi which is transmitted through faecal 

route) (Hoare, 1972).  It is noteworthy to mention that the taxonomy of the 

Trypanosoma species is still an area of debate, since new molecular techniques for 

taxonomical identification have modified old parameters of classification.  An 

interesting example of this was the use of markers such as glyceraldehyde 

phosphate dehydrogenase for phylogenetic studies between species of the order 

Kinetoplastidae, once the sequencing of several of their genomes was completed a 

few years ago (Hamilton et al., 2004).  
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2.1.  The cell cycle of Trypanosoma brucei 

Trypanosoma brucei is transmitted between mammalian hosts by an insect vector, 

i.e. the Tsetse fly, a member of the Glossina genus (Steverding, 2008). When the 

Tsetse fly takes an infected blood meal, the procyclic form (epimastigote) of the 

parasite divides by binary fission in the midgut before migrating to the salivary 

glands, where it subsequently differentiates into infective metacyclic trypomastigotes 

(Figure 1). Metacyclic trypomastigotes are transmitted into new mammalian hosts 

when the fly feeds again. Once in the mammalian bloodstream, the parasite is long 

and slender and divides until it has reached a parasitemia peak, followed by 

differentiation into the non-dividing short-stumpy form (Matthews, 2005). The 

parasite is able to survive in the host bloodstream through antigenic variation, by 

expressing a repeatedly changing coat of Variable Surface Glycoproteins (VSGs) 

(McCulloch, 2004). The life cycle is completed when a fly bites an infected host, 

ingesting the parasites in its blood meal, after which they begin to divide again in the 

midgut (Matthews et al., 2004). 

 

 

Figure 1. Schematic representation of the Trypanosoma brucei life cycle. After 

entering the mammalian bloodstream, the metacyclic trypomastigote form of the 

parasite (a) differentiates into the long-slender form (b), which is capable of division 

by binary fission. Division arrest takes place once parasitemia reaches a peak, and 

the parasite subsequently differentiates into the short-stumpy form (c). The short-



 8

stumpy form trypanosome migrates to the fly midgut, where it differentiates into the 

procyclic form (d). The procyclic form is also capable of division by binary fission, 

like the long-slender bloodstream form. The procyclic form subsequently 

differentiates into the epimastigote form (e), which migrates to the Tse-tse fly 

salivary glands for their final differentiation into the infective metacyclic 

trypomastigote form (f). Infection of another mammalian host with metacyclic 

trypomastigote parasites completes the life cycle. 

http://www.ilri.org/InfoServ/Webpub/fulldocs/Ilrad90/Trypano.htm 

 

The most striking changes in the morphology of the parasite throughout its life cycle 

are evident in the mitochondrial structure, the endocytic system and the 

glycosomes. When the fly ingests an infected blood meal, the short-stumpy 

bloodstream forms in the fly mid-gut rapidly change into procyclic forms, whereas 

the long-slender bloodstream form parasites die (Vickerman, 1985).  These two 

stages, the long-slender and the short-stumpy bloodstream forms coexisting in one 

host is a phenomenon known as pleomorphism (Fenn and Matthews, 2007).  The 

morphological changes are known to be triggered by temperature and pH changes, 

as well as the presence of citrate/cis-aconitate (Czichos et al., 1986). These signals 

are related to the presence of a group of carboxylate transporters on the cell surface 

identified as PAD proteins (proteins associated with differentiation) (Dean et al., 

2009).  The cell body length increases, particularly noticeable at the posterior end of 

the cell, after the kinetoplast; the mitochondrion relative volume increases from 5 to 

25% and displays discoid cristae, rather than the tubular structure of the 

bloodstream form mitochondrion; the glycosomes become bacilliform-like structures; 

and the VSG (Variable Surface Glycoprotein) coat is replaced by the procyclin 

glycoproteins on the cell surface (Vickerman, 1985; Roditi and Clayton, 1999).  The 

morphological changes of the short-stumpy bloodstream form into procyclic form 

take place within 24 hours after the ingestion of the infected blood meal, in the 

endoperitrophic space, at the posterior part of the fly midgut (Sharma et al., 2009; 

Vickerman, 1985).  All the changes described above translate into a metabolic shift 

of carbon source usage from the glucose-rich environment of the bloodstream of 

mammal host to the amino acid-rich fly gut (Overath et al., 1986). The development 

of the mitochondrion is key for the parasites to perform this metabolic shift (Brown et 

al., 1973). 
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The procyclic form parasites then migrate to the ectoperitrophic space of the midgut 

of the fly, where they continue to divide and eventually, after 9-14 days after initial 

infection, a series of changes commence in the morphology of the parasite’s cell 

body (Vickerman, 1985; Gibson and Bailey, 2003).  The mitochondrion volume 

starts reducing in volume, the cell body elongates and cell division ceases (Sharma 

et al., 2009).  These parasite forms are known as proventricular mesocyclics due to 

the fact that they migrate forward towards the proventriculus of the fly, and seem to 

be the form that further migrates towards the salivary glands of the fly, for their 

subsequent transformation into epimastigote forms (Vickerman, 1985). 

Differentiation into epimastigotes is achieved via an asymmetric division that 

produces two different types of daughter cells: a long and a short epimastigote cell.  

The most striking feature of this difference is the presence of a very short flagella in 

the short epimastigote, and the fact that the long epimastigote cell dies (Sharma et 

al., 2008). 

 

Little is known about the signalling that induces the migration towards the salivary 

glands and the differentiation into epimastigote and metacyclic forms (Roditi and 

Lehane, 2008; Sharma et al., 2009).  The epimastigotes are the main replicative 

form found in the salivary glands of the fly.  One of the structural traits of this stage 

is the loss of the procyclin coat, which is replaced by BARP proteins (brucei alanine-

rich proteins) (Urwyler et al., 2007). Epimastigotes division seems to require the 

attachment to the epithelial cells’ microvilli, via the flagellum of the parasite 

(Vickerman et al., 1988).  The differentiation of the epimastigote into pre-metacyclic 

form occurs meanwhile the cells are attached to the epitelium (Tetley and 

Vickerman, 1985). Pre-metacyclics can still divide and conserve the epimastigote 

coat, whereas the fully developed metacyclic trypomastigote cannot divide and 

display a VSG coat (Vickerman, 1985; Tetley and Vickerman, 1985; Fenn and 

Matthews, 2007). Only metacyclic forms are found freely detached in the salivary 

glands.  The metacyclic trypomastigote is the infective form that enters the mammal 

host bloodstream. 

 

Once the metacyclic trypomastigote enters the bloodstream of the mammal host, it 

swiftly re-starts its cell cycle and undergoes division (Matthews et al., 2004), with a 

concomitant initiation of the elaborate VSG coat that confers them antigenic 

variation (Barry and McCulloch, 2001).  This process establishes the change into 

the long-slender proliferative form of the parasite. The differentiation of long-slender 

forms into short-stumpy forms seems to be correlated to the increase in cell density, 
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and involves arrest of the cell cycle, as short-stumpy forms are non-dividing forms of 

the parasite (Reuner et al., 1997).  The signalling is believed to be triggered by a 

molecule that accumulates as the cell density increases, and was called SIF 

(stumpy induction factor) (Vassella et al., 1997).  The stumpy-form growth arrest has 

been hypothesized to function as a means to control the parasite growth in the 

mammal host, which otherwise would eliminate the host very rapidly, impeding the 

trypanosoma the completion of its life cycle (Tyler et al., 2001). 

 

2.2. Cell biology of Trypanosoma brucei 

All members of the Kinetoplastidae order present certain common structural and 

physiological features that characterize them as such. Amongst the most interesting 

features of these organisms is perhaps the presence of a modified peroxisome, 

known as the glycosome. It owes its name to the fact that it contains the first 6-7 

enzymes of the glycolytic pathway, which are normally found in the cytosol of all 

other eukaryotes (Opperdoes and Borst, 1977). Next to glycolysis, other metabolic 

pathways were identified in the glycosomes, such as the pentose phosphate 

pathway, purine salvage and pyrimidine synthesis, ether-lipid biosynthesis and 

peroxide catabolism pathway (Heise and Opperdoes, 1999; Duffieux et al., 2000; 

Opperdoes, 1984; Hammond et al., 1985; Zomer et al., 1999; Hannaert et al., 

2003a; Tielens and Van Hellemond, 1998; Colasante et al., 2006b). The glycosome 

was classified as a peroxisome due to its prototypical peroxisomal features (Michels 

and Opperdoes, 1991). The glycosome lacks DNA of its own, entailing the need to 

import all of its proteins from the cytosol. This import mechanism depends on 

conserved targeting signals, similar to those found for peroxisomal proteins from 

other eukaryotes (Hart et al., 1987; Dovey et al., 1988). The biogenesis of the 

glycosome depends on members of the peroxin (PEX) protein family (or its 

homologous in trypanosomes), which are the key to peroxisome biogenesis in other 

eukaryotes (de Hoop and Geert, 1992). The evolutionary origin of the glycosome is 

still uncertain, and different hypotheses have been proposed in the past. Ever since 

the glycosome was discovered, the phylogenetic relationship between 

trypanosomes and other species has been investigated, leading to a number of 

different hypothesis (Simpson et al., 2006; Opperdoes and Michels, 2007). It was 

found recently that some of the trypanosome enzymes are rather similar (in 

sequence and in function) to enzymes only found in phototrophic organisms 

(Hannaert et al., 2003b; Simpson et al., 2006; Opperdoes and Michels, 2007). Since 

then it has been widely accepted that the glycosome might have an endosymbiotic 
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origin, similar to the endosymbiotic origin of other organelles like the mitochondrion, 

but with additional loss of the organellar DNA (Michels and Opperdoes, 1991; 

Vickerman and Coombs, 1999; Hannaert et al., 2003a; Hannaert et al., 2003b; 

Opperdoes and Michels, 2007). Nevertheless, the protein import mechanism used 

by glycosomes, as well as peroxisomes and glyoxysomes, has not been found in 

any prokaryote organism known to date, suggesting an independent evolution 

(Hannaert et al., 2003a). 

 

Trypanosomes are known to transcribe their mRNAs polycistronically.  Long mRNA 

precursors (polycistrons) are processed into separated mRNAs, via trans-splicing 

and polyadenylation (Campbell et al., 2003; Walder et al., 1986). Trans-splicing is 

the process through which a spliced leader (SL), a 39-nucleotide small nuclear 

RNA, is added as a cap to the 5-‘terminus of an mRNA (Parsons et al., 1984; 

Walder et al., 1986). This feature relegates gene expression regulation to post-

transcriptional levels (Vanhamme and Pays, 1995). At this point mature, differences 

in mRNAs concentration have been detected, and 3’UTR (untranslated regions) 

have been shown to regulate mRNA stability (Hotz et al., 1997).  The only genes 

known to express monocistronically in trypanosomas are those encoding VSGs 

(variant surface glycoprotein) in the metacyclic trypomastigote.  VSGs are present 

on the coat of the metacyclic and the bloodstream-forms, conferring them antigenic 

variation during infection of the mammal host (McCulloch, 2004; Alarcon et al., 

1994). Trypanosomas make use of RNA polymerases (RNAP) I, II and III.  RNAPI, 

like in most eukaryotic cells, is in charge of the transcription of rRNA genes 

(Campbell et al., 2003).  However, it also performs a unique task: it transcribes the 

procyclins and the VSG genes (Rudenko et al., 1991).  The promoter sites for rRNA, 

VSGs and PARP (procyclin acidic repetive protein) have been characterized 

(Vanhamme et al., 1995; Brown et al., 1992; Janz and Clayton, 1994).  RNAPII is in 

charge of the transcription of housekeeping genes (e.g., tubulin, actin and hsp 

genes) and splice leader RNA genes (Campbell et al., 2003).  However, promoter 

sites for RNAPII are somewhat rare.  A bidirectional RNAPII promoter was 

described for the chromosome I Leishmania major (Martinez-Calvillo et al., 2003).  

Another characterized RNAPII promoter is that of the spliced leader (Gilinger and 

Bellofatto, 2001).  Very few basal transcription factors have been described in 

trypanosomes; most of them related to the transcription of the spliced leader 

(Martínez-Calvillo et al., 2010), and only one basal transcription factor, universal for 

all three RNAP (Ruan et al., 2004).   
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 Another interesting attribute of trypanosomes is the presence of a single tubular 

and cristae-devoid mitochondrion in each cell, which runs elongating from the 

posterior to the anterior part of cell (Matthews, 2005; Matthews et al., 2004). This 

mitochondrion bears a unique structure, the kinetoplast, which contains highly 

compacted mitochondrial DNA composed of mini and maxi DNA circles (Liu et al., 

2005; Klingbeil et al., 2001; Guler et al., 2008). The kinetoplast is structurally linked 

to the basal body of the flagellum by a protein complex that transverses the cell 

body and the mitochondrial membranes and is attached to the microtubule 

cytoskeleton (Liu et al., 2005). Kinetoplast pre-RNAs undergo a unique transcription 

and editing process, i.e. the insertion and deletion of hundreds of urydilates and the 

formation of novel initiation and termination codons, before processing into the final 

mRNAs (Stuart and Panigrahi, 2002; Campbell et al., 2003). Mitochondrial DNA 

replication in trypanosomatids is strictly cell-division associated due to the presence 

of only one mitochondrion per cell (Liu et al., 2005).  

 

An organelle of metabolic importance in trypanosomes is the acidocalcisome. These 

organelles are single membrane bound, electro-dense, acidic reservoirs of Ca2+, 

PPi, poly phosphate (poly P), Mg2+, K+, Na+ and Zn2+ (Moreno and Docampo, 2009). 

Acidocalcisomes are known to possess several proton pumps, ion exchangers and 

aquaporins, and have been proposed to actively participate in storage, 

osmoregulation, pH homeostasis, and metabolism modulation (Docampo et al., 

2005; Rohloff et al., 2004; Montalvetti et al., 2004; Urbina et al., 1999; Acosta et al., 

2004).  The ATPases found in acidocalcisomes membranes belong to the plasma 

membrane calcium ATPase family (PMCA), without the classic calmodulin-binding 

domain that characterizes this group of membrane proteins (Docampo et al., 2005). 

Vacuolar-type H+ -ATPase and H+ -PPase activities, as well as Na+/H+ and Ca2+/H+ 

ion exchangers, have also been identified in these organelles (Scott et al., 1998; Hill 

et al., 2000; Vercesi et al., 1994; Vercesi and Docampo, 1996).  

 

The presence of pyrophosphate (PPi) in the acidocalcisomes of trypanosomes has 

been hypothesized to play a pivotal role in the regulation of the intermediary 

metabolism of these parasites. Several proteins like hexokinase, pyruvate 

phosphate dikinase, enolase and various enzymes from the metabolism of sterols 

seem to be regulated and/or inhibited by pyrophosphate (Hudock et al., 2006; 

Quiñones et al., 2007; Caceres et al., 2003; Acosta et al., 2004; Urbina et al., 1999).    
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2.2.1. Metabolic pathways in the glycosome of Trypanosoma brucei 

As mentioned above, the glycosomes bear the first 6-7 enzymes of the glycolytic 

pathway, which will be discussed in detail in the next section. Some of the other 

metabolic pathways in the glycosomes of trypanosomas will be summarized in this 

section. One of these is the pentose phosphate pathway (PPP), a metabolic 

pathway for the production of NADPH that utilizes metabolite oxidation for reductive 

biosynthesis (Voet and Voet, 1995).  NADPH is an important role in the production 

of reductive power, which is crucial for the parasite survival against the host’s 

defence system (Duffieux et al., 2000). The first of the enzymes that constitutes this 

pathway, glucose-6-phosphate dehydrogenase is exclusively found inside the 

glycosomes, whereas 6-phosphogluconolactonase, the second enzyme of the 

pathway, displays a dual localization between cytosol and glycosomes (Duffieux et 

al., 2000).  These results allocated the first part of the PPP, the oxidative PPP, 

inside the glycosomes, a localization that is not unique to trypanosomes, as the PPP 

has also been reported in mammalian peroxisomes (Hannaert et al., 2003a; 

Antonenkov, 1989). Proteomic analysis on the glycosomal proteins of T. brucei 

allocates 6 enzymes of the PPP in the glycosomes, with all of them (except glucose-

6-phosphate dehydrogenase) displaying a PTS-1 targeting signal (Colasante et al., 

2006b). Whereas the 6 first enzymes of the PPP are present in the glycosomes of 

the procyclic form of the parasite, only 2 of them could be detected in the 

glycosomes of the bloodstream form of T. brucei (Colasante et al., 2006b). Although 

the presence of the pentose phosphate pathway in peroxisomes is not exclusive to 

trypanosomes, other pathways found in the glycosomes are, i.e. pyrimidine 

synthesis, purine salvage and gluconeogenesis (Hannaert et al., 2003a).   

 

The pyrimidine synthesis pathway has been described in detail for Trypanosoma 

cruzi (Gao et al., 1999; Nara et al., 2000).  The 6 genes coding for the pathway in T. 

cruzi, T. brucei and Leishmania are displayed in an operon-like cluster, a unique 

case in trypanosomes (Gao et al., 1999; Opperdoes and Szikora, 2006).  In 

metazoans, the enzymes that constitute the pyrimidine biosynthetic pathway, are 

fused to form multifunctional proteins, and can their genes can be found as pyr1-2-3 

and pyr5-6, and pyr4 as a monofunctional protein (Opperdoes and Szikora, 2006).  

In trypanosomas, the genes are separated and expressed as single functional 

proteins, except for pyr5-6.  This multifunctional protein is found in the glycosomes 

of T. cruzi, T. brucei and Leishmania (Gao et al., 1999; Colasante et al., 2006b; 

Opperdoes and Szikora, 2006).  
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The purine salvage pathway, mainly represented by hypoxanthine-guanine 

phosphoribosyltransferase (HGPRTase), adenine phosphoribosyltransferase 

(APRTase) and inosine 5’ monophosphate dehydrogenase, is found in the 

glycosomes of the procyclic form of Trypanosoma brucei, whereas in the 

bloodstream form only the first two of the above-mentioned enzymes have been 

detected by proteomics analysis (Colasante et al., 2006b).   However, in-silico 

analysis detected a PTS-1 signal for APRTase (Opperdoes and Szikora, 2006).  

Other related enzymes like adenylate and guanylate kinases are also found in the 

glycosomes of T. brucei procyclic form (Colasante et al., 2006b). 

 

Another pathway that is found partially in the glycosomes is the biosynthesis of 

ether-lipids. Dihydroxyacetonephosphate acyltransferase and alkyl 

dihydroxyacetonephosphate synthase have been identified as glycosomal, and have 

been characterized in Trypanosoma brucei and Leishmania mexicana (Opperdoes, 

1984; Zomer et al., 1999; Colasante et al., 2006b; Opperdoes and Szikora, 2006; 

Lux et al., 2000).  These enzymes catalyze the first steps of the pathway of alkyl 

(ether) lipids biosynthesis, important precursors of phospholipids and plasmalogens, 

as well as the formation of glycosylphosphatidyl inositol (GPI) anchors. GPI anchors 

are involved in the attachment of several membrane proteins to lipid bilayers, with a 

key role in assembly the coat of procyclins and VSG coats, in the procyclic and in 

the bloodstream forms of the parasite, respectively (Ferguson, 1997; Acosta-

Serrano et al., 1999; Field et al., 1991).  GPI anchors in trypanosomas are attached 

via a specific , -unsaturated ether linkage to the outer-leaflet of the plasma 

membrane (Zomer et al., 1999).   

 

Another important pathway of the lipid metabolism in trypanosomes is the synthesis 

of sterols. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the first step in the 

isoprenoid synthesis and was first characterized for Trypanosoma cruzi. In T. cruzi, 

this enzyme displayed a dual localization between glycosomes and mitochondria 

(Concepcion et al., 1998), whereas for Trypanosoma brucei the opposite was 

observed (Heise and Opperdoes, 2000).  However, the localization of this enzyme 

has been controversial, and now is widely accepted that HMGR is not localized to 

the glycosomes (Pena-Diaz et al., 2004; Vertommen et al., 2008; Ginger et al., 

2010).  Nonetheless, mevalonate kinase, 5-diphosphomevalonate carboxylase, 

isopentenyldiphosphate isomerase and squalene synthase/farnesyl transferase 

have been found to bear a PTS-1 targeting signal, which would localize them in the 

glycosomes of trypanosomas (Opperdoes and Szikora, 2006).  Despite the facts 



 15

that there are differences in targeting signals between the different Trypanosoma 

and Leishmania species, as well as contradicting reports regarding enzyme 

localizations, it is now widely accepted that the metabolic steps between the 

phosphorylation of mevalonate to the formation of squalene are indeed localized in 

glycosomes (Ginger et al., 2010; Ferella et al., 2008).  This pathway has attracted a 

lot of attention in recent years, particularly in Trypanosoma cruzi. T. cruzi is 

incapable of using the cholesterol from the mammal host, which forces it to 

synthesize its own sterols, making this pathway a promising drug target against 

Chagas disease (Urbina et al., 2004).  

 

Peroxisomes are known to harbour -oxidation of fatty acids in a wide range of cells 

and their metabolism is quite important in the production of ATP (Voet and Voet, 

1995). However, ATP production from fatty acid metabolism does not seem to occur 

in trypanosomatids (van Hellemond and Tielens, 2006). After the sequencing of the 

genome, -oxidation of fatty acids has been hypothesized to occur between 

glycosomes and mitochondria, despite the very little experimental characterization 

evidence found for the branch in the glycosomes (Wiemer et al., 1996; Berriman et 

al., 2005; Opperdoes and Szikora, 2006).  Since then, evidence towards the de 

novo synthesis of fatty acids has been addressed (particularly in bloodstreams 

forms) with the concomitant localization of this pathway in the mitochondrion of T. 

brucei (Stephens et al., 2007; Guler et al., 2008; van Hellemond and Tielens, 2006). 

 

A unique characteristic of the glycosomes of Trypanosomatids is the absence of 

catalase, known as a classic marker for peroxisomes in other eukaryotic cells. 

Instead of catalase, trypanosomes display a unique thiol-based peroxidase-type 

cascade: the trypanothione system (Muller et al., 2003). Trypanothione is a bis- 

glutathionylspermidine conjugate that participates in the elimination of ROS species 

in trypanosomes (Fairlamb et al., 1985).  Dual localizations (glycosomal and 

cytosolic) have been identified for a trypanothione peroxidase in T. brucei and T. 

cruzi, whereas trypanothione reductase (TR), presents an exclusively cytosolic 

localization in T. brucei. (Wilkinson et al., 2002; Hillebrand et al., 2003; Opperdoes 

and Szikora, 2006),  

 

3. The glycosome, the mitochondrion and the intermediary metabolism 

Glycolysis is a universally conserved metabolic pathway present in virtually all cells, 

through which glucose is oxidized for ATP generation. The glycolytic pathway 
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consists of 10 enzymatic steps, in which there is a net gain of 2 ATP moles for every 

mole of glucose that enters the pathway. In virtually all eukaryotic cells, glycolysis 

takes place in the cytosol. Its final product, pyruvate, is then taken up by the 

mitochondria, where it is decarboxylated and condensed with a cofactor: 

Coenzyme-A, leading to the formation of Acetyl-CoA. This energy-rich intermediate 

is the precursor for the Tri-Carboxylic (TCA) Cycle (Voet and Voet, 1995). Under 

aerobic conditions, the mitochondrion provides ATP to the cell through oxidative 

phosphorylation. Because energy production from glucose breakdown involves 

oxidation, the passage of redox power has to be done through molecules that 

require recycling: e.g. NAD+ and NADP+. The TCA cycle has amphibolic functions, 

by providing substrates to other pathways for synthesis as well as oxidizing 

intermediates from glucose metabolism (Voet and Voet, 1995). 

 

Trypanosoma brucei is an extracellular parasite in the mammalian and the insect 

hosts; these environments are rather different, representing a metabolic challenge 

for the parasite. Trypanosomes perform “aerobic fermentation”, a process through 

which final products of the anabolic pathways are not the most oxidized forms, but 

rather some of its intermediates (Cazzulo, 1992; Tielens and Van Hellemond, 1998; 

Hannaert et al., 2003a). Amino acids have been described as their main carbon and 

energy source, especially proline, which is actively taken up by the cell, but in-vitro 

studies have described glucose to be the preferred carbon source of these parasites 

(Lamour et al., 2005). 

 

The energy metabolism of bloodstream form trypanosomes relies mainly on the 

formation of pyruvate from glucose, as this is the major carbon source in the 

mammalian bloodstream (Coustou et al., 2008). Since only the first 7 glycolytic 

enzymes are compartmentalized in the glycosome (Figure 2), the last intermediate 

in the organelle is 3-phosphoglycerate, which is transported to the cytosol for the 

pathway to continue (Opperdoes and Borst, 1977; Hannaert et al., 2003a). NADH is 

re-oxidized by the combined action of a glycosomal glycerol-3-phosphate shuttle 

and mitochondrial alternative oxidase (Kohl et al., 1996; Tielens and Van 

Hellemond, 1998; Michels et al., 2006). The mitochondrion of the bloodstream form 

lacks several key components and enzymes of the TCA cycle, and is regarded as 

“not functional”. The final product of the glycolytic pathway, i.e. pyruvate, is formed 

in the cytosol and is excreted into the culture medium. In contrast to bloodstream 

forms, procyclic forms depend mainly on mitochondrial metabolism for their energy 

generation: after pyruvate is formed in the cytosol, it is transported into the
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Figure 2.  Schematic representation of T. brucei bloodstream form energy 

metabolism. Abbreviations: FBP: fructose 1,6 bisphosphate;  DHAP: 

dihydroxyacetone phosphate; G-3-P: glycerol-3-phosphate; 1,3BPGA: 1,3 

bisphosphoglycerate; 3-PGA: 3-phosphoglycerate; PEP: phosphoenolpyruvate, UQ: 

ubiquinone.  Enzymes catalyzing reactions:  1, hexokinase; 2, glucose-6-phosphate 

isomerase; 3, phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6, 

glycerol-3-phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde 

dehydrogenase; 9, phosphoglycerate kinase; 10, phosphoglycerate mutase; 11, 

enolase; 12, pyruvate kinase; 13, glycerol-3-phosphate oxidase; 14, alternative 

oxidase. 
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Figure 3. Schematic representation of key energy metabolism pathways from T.

brucei procyclic form.   Acetate, succinate, L-alanine and CO2 are excreted products.

Dashed lines represent steps that are supposed to happen under cultured

conditions. Abbreviations:  AA: amino acid; OA: 2-oxoacid; FBP: fructose 1,6
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mitochondrion, where it is subsequently condensed with coenzyme-A (see Figure 

3). The formed acetyl-CoA is degraded to acetate by an acetate:succinate CoA 

transferase, producing ATP in this reaction (Van Hellemond et al., 1998). In the 

procyclic form, all of the TCA cycle enzymes are expressed, suggesting a fully 

functional and active TCA Cycle. However, different experiments conducted by 

several research groups indicate the contrary. Studies of an aconitase knockout cell 

line revealed that depletion of this enzyme, which catalyzes the isomerisation of 

citrate into isocitrate, presents no lethal growth phenotype in the procyclic form (van 

Weelden et al., 2003). 

 

In fact, the aconitase knockout cell line produces the same metabolic end products 

as the wild type cell line. Further, carbons derived from glucose do not enter the 

TCA cycle, and low-carbohydrate conditions do not result in a shift of the 

fermentative process towards a complete oxidation of the intermediates to CO2 (van 

Weelden et al., 2005b; Lamour et al., 2005). Finally, in absence of both glucose and 

bisphosphate;  DHAP: dihydroxyacetone phosphate; G-3-P: glycerol-3-phosphate; 

1,3BPGA: 1,3 bisphosphoglycerate; 3-PGA: 3-phosphoglycerate; PEP: 

phosphoenolpyruvate; PPi, pyrophosphate; Pi: inorganic phosphate; SuccCoA: succinyl 

CoA; CoASH:  Coenzyme A; GLU: glutamate.  Enzymes catalyzing reactions: 1, 

hexokinase; 2, glucose-6-phosphate isomerase; 3, phosphofructokinase; 4, aldolase; 5, 

triose-phosphate isomerase; 6, glycerol-3-phosphate dehydrogenase; 7, glycerol 

kinase; 8, glyceraldehyde dehydrogenase; 9, phosphoglycerate kinase; 10, 

phosphoglycerate mutase; 11, enolase; 12, pyruvate kinase; 13, phosphoenolpyruvate 

carboxykinase; 14, pyruvate phosphate dikinase; 15, glycosomal malate 

dehydrogenase; 16, glycosomal fumarase; 17, NADH-fumarate reductase; 18, malic 

enzyme; 19, alanine aminotransferase; 20, pyruvate dehydrogenase complex; 21, 

acetate:succinate CoA transferase; 22, unknown enzyme; 23, succinyl CoA synthetase; 

24, citrate synthase; 25, aconitase; 26, isocitrate dehydrogenase; 27, 2-ketoglutarate 

dehydrogenase complex; 28, succinate dehydrogenase (complex II); 29, mitochondrial 

fumarase; 30, mitochondrial malate dehydrogenase; 31, rotenone-insensitive NADH 

dehydrogenase; 32, glycerol-3-phosphate oxidase; 33, alternative oxidase; 34, F0/F1 

ATP synthase; 35, proline dehydrogenase; 36, pyrroline-5-carboxylate dehydrogenase; 

37, glutamate dehydrogenase; 38, acetyl-CoA:glycine C-acetyl transferase; I, II, III and 

IV, respiratory chain complexes. 
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glycerol, proline is consumed 2-fold the “normal” rate with CO2 production altered 

accordingly, but succinate excretion does not change, which implies a recycling of 

carbons into biosynthetic pathways (van Weelden et al., 2005b). 

 

The following important question arises: if the TCA cycle does not function as a 

cycle for energy production, why are all of its enzymes then expressed in the 

procyclic form of the parasite? The simple answer seems to be that different parts of 

the TCA cycle are required for the function of other metabolic pathways. For 

example, the succinate/succinyl Co-A cycle, which is responsible for ATP 

generation via the conversion of succinate to acetate (Figure 3), involves part of the 

TCA cycle (Van Hellemond et al., 1998; Besteiro et al., 2005; Van Hellemond et al., 

2005). Also the production of succinate from malate, and the concomitant 

reoxidation of the formed NADH via NADH:fumarate reductase, requires some of 

the TCA cycle enzymes (Figure 3). Furthermore, the mitochondrial degradation of 

proline and glutamate to succinate, involves several TCA cycle enzymes, i.e. -

ketoglutarate dehydrogenase and succinyl CoA synthetase (van Weelden et al., 

2005b; Van Hellemond et al., 2005; Besteiro et al., 2005). It has been further 

proposed that the TCA cycle intermediary product acetyl Co-A functions as a 

regeneration intermediary, that might exit the mitochondrion most likely as either 

citrate or malate, again requiring some part of the TCA cycle (Van Hellemond et al., 

2005).  Finally, part of the TCA cycle is also required for gluconeogenesis in 

procyclic form T. brucei, especially when the parasite is cultured in the absence of 

glucose (van Weelden et al., 2005b; Van Hellemond et al., 2005).  

 

4. Oxidative phosphorylation versus substrate-level phosphorylation 

Procyclic form trypanosomes cultured in presence of glucose and amino acids have 

been described previously to depend on oxidative phosphorylation for the 

generation of ATP. Oxidative phosphorylation requires the presence of an active 

electron transport chain for the maintenance of a proton motive force, which in turn 

allows the F1/F0- ATP synthase (complex V) to perform oxidative phosphorylation. 

This process seems however to be incomplete in procyclic form trypanosomes, 

which would account for the excretion of succinate by these parasites (Tielens and 

Van Hellemond, 1998).  

 

The origin of the excreted succinate was cause of controversy amongst researchers 

for many years (Turrens, 1999; Tielens and Van Hellemond, 1999). The main site of 
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succinate production was initially thought to be mitochondrial, through the activity of 

succinyl-CoA synthetase and a NADH-dependent fumarate reductase (Tielens and 

Van Hellemond, 1998; Turrens, 1989). With the discovery of glycosomal fumarate 

reductase activity in procyclic form trypanosomes, additional experiments were done 

which demonstrated that the bulk (approximately 80%) of excreted succinate was 

produced in the glycosomes, whereas the remaining succinate resulted from 

mitochondrial fumarate reductase activity (Coustou et al., 2005; Besteiro et al., 

2002). The succinate produced in the glycosomes originated from the oxidation of 

glycolytic phosphoenolpyruvate (PEP), which had been re-imported into the 

organelle (Figure 3). PEP is subsequently converted into malate by the combined 

action of phosphoenolpyruvate carboxy kinase (PEPCK) and malate dehydrogenase 

(MDH), with concomitant regeneration of NAD and the production of ATP. 

 

Later, after further studies of the mitochondrial NADH-FRD, additional aspects of the 

intermediary metabolism of T. brucei were elucidated. Using labelled D-[1-13C] 

glucose and RNA interference-mediated depletion of the glycosomal NADH-FRD, 

labelled succinate could be detected in the culture medium. This result indicated 

transfer of carbons from the glycosome into the mitochondrion, most probably 

through malate, which in turn would be converted into succinate by the 

mitochondrial fumarase and NADH-FRD. The formation of succinate in the 

mitochondrion is essential for the maintenance of the redox balance in this organelle 

(Coustou et al., 2005). Another role for the succinate produced in the mitochondrion 

would be the production of acetate through ASCT. This acetate is mainly produced 

in the mitochondrion and has recently been described as an important precursor for 

lipid biosynthesis in T. brucei (Rivière et al., 2009). 

 

The production of succinate as one of the main metabolic end products led to a 

further evaluation of the importance of oxidative phosphorylation for the energy 

metabolism of procyclic form T. brucei. It was initially thought that the F1/F0- ATP 

synthase (complex V) was mainly responsible for the production of ATP in procyclic 

form T. brucei. However this assumption was rejected after inhibition studies 

revealed that F1/F0- ATP synthase activity is not always essential for trypanosome 

survival: procyclic form trypanosomes grown in the presence of glucose did not 

show any growth defects in the presence of oligomycin, even at 10-fold higher 

concentrations then normally would be required for the maximum inhibition of F1/F0- 

ATP synthase (Coustou et al., 2003). However, when comparing glucose-grown 

procyclic form T. brucei with glucose-depleted ones, the difference in sensitivity to 
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oligomycin proved to be 1000-fold. This remarkable difference in oligomycin 

sensitivity led to the hypothesis that oxidative phosphorylation is only important for 

ATP production in the absence of glucose (Coustou et al., 2003; Lamour et al., 

2005; Verner et al., 2010). This hypothesis was later confirmed by experiments 

showing that the addition of oligomycin to procyclic form T. brucei grown in culture 

media without glucose, indeed resulted in growth arrest and cell death (Lamour et 

al., 2005; Besteiro et al., 2005).  

 

Depletion (RNA interference) of the F1/F0- ATP synthase in bloodstream form T. 

brucei was found to be lethal, suggesting an important role of the F1/F0- ATP 

synthase in this life cycle stage of the parasite (Schnaufer et al., 2005). Bloodstream 

forms depend mainly on glycolysis for energy generation and are not depending on 

OXPHOS for energy production. It was therefore proposed that the F1/F0- ATP 

synthase might be involved in other (than ATP production) roles in bloodstream form 

T. brucei.  

 

If the ATP production in glucose-grown procyclic-form T. brucei does not primarily 

depend on oxidative phosphorylation, which metabolic pathway is then the main 

source of ATP? This question was answered by the RNAi-directed depletion of 

pyruvate kinase (PYK), which was found to be lethal for glucose-grown procyclic 

form T. brucei.  Pyruvate kinase catalyzes the cytosolic conversion of PEP into 

pyruvate, with the concomitant production of ATP via substrate-level 

phosphorylation (Figure 3). The cytosol as main ATP production site of glucose-

grown procyclic-form T. brucei is further in agreement with previous oligomycin 

inhibition studies of the F1/F0- ATP synthase (Coustou et al., 2003). Also other 

experiments reinforced the hypothesis that substrate-level phosphorylation is the 

main route for ATP production in these parasites. For example, ATP production 

could be measured when isolated procyclic form mitochondria were incubated with 

ADP and different substrates, i.e. succinate, -ketoglutarate, and glycerol-3-

phosphate, respectively (Allemann and Schneider, 2000).  However, repeating the 

experiment with isolated mitochondria from a -ketoglutarate dehydrogenase (KDH) 

depleted RNAi cell line, resulted in complete ablation of -ketoglutarate-dependent 

ATP production (Figure 3). Moreover, when doing similar ATP-production 

experiments with mitochondria isolated from a succinyl CoA synthetase (SCoAS) 

RNAi cell line, not only no ATP was produced when using -ketoglutarate as a 

substrate, but the SCoAS depletion also appeared to be lethal (Bochud-Allemann 
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and Schneider, 2002). Both KDH and SCoAS are apparently responsible for the 

mitochondrial ATP production via substrate-level phosphorylation (Figure 3) 

(Bochud-Allemann and Schneider, 2002; Van Hellemond et al., 1998). Next to KDH 

and SCoAS, also acetate:succinate CoA transferase (ASCT) activity was shown to 

make a significant contribution to mitochondrial ATP production by substrate-level 

phosphorylation (Figure 3). All together, these findings suggest a preference of T. 

brucei for the substrate-level phosphorylation of succinate rather than its oxidative 

phosphorylation. 

 

ASCT activity results further in the formation of acetate, which next to succinate is 

the second main end product excreted in the culture medium of procyclic form T. 

brucei (Coustou et al., 2005; Van Hellemond et al., 1998). Acetate excretion has 

also been observed in bacteria. Excretion of this metabolic intermediate occurs only 

when the TCA cycle is not operating as a cycle or when the carbon overflow 

exceeds the cellular capacity to metabolize it completely. Once the bacterial culture 

exits the log-phase and nutrients become depleted, scavenging of carbon sources 

takes place and the “acetate switch” is turned on. This “acetate switch” allows the 

bacterial cell to shift from a log-phase type of growth to a lag-phase type of growth 

during which acetate is re-assimilated (Wolfe, 2005). A similar feature has also been 

observed in trypanosomes: acetate that has been produced in the mitochondrion by 

ASCT is further transported into the cytosol where it is subsequently converted into 

acetyl-CoA by acetyl-CoA synthetase (AceCS). Acetyl-CoA can be used again for 

the de-novo biosynthesis of lipids. RNAi of AceCS in procyclic form T. brucei proved 

to be lethal for the parasite, indicating that mitochondrial acetate production and its 

transport into the cytosol is essential for parasite survival (Rivière et al., 2009).  

 

5. Gluconeogenesis in Trypanosoma brucei 

Many authors have proposed gluconeogenesis as a means for the procyclic form of 

T. brucei to use amino acids for the de novo synthesis of hexoses in glucose-

depleted conditions (Hannaert et al., 2003a; Ginger et al., 2010; Coustou et al., 

2008).  For gluconeogenesis to occur, two key metabolic steps must take place: 1) 

the conversion of pyruvate into PEP (in cytosol) and 2) the conversion of fructose-

1,6 biphosphate into fructose-6-phosphate (in glycosomes).  The first step requires 

a pyruvate carboxylase, an enzyme that has not been found in T. brucei, for the 

production of oxaloacetate, which would be subsequently converted into 

phosphoenolpyruvate by the activity of a phosphoenolpyruvate carboxykinase 
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(PEPCK) (Voet and Voet, 1995).  However, malate has been proposed as the 

substrate of a cytosolic malate dehydrogenase for the production of oxaloacetate in 

cytosol (Coustou et al., 2008; Vernal et al., 2001; Aranda et al., 2006); and PEPCK, 

would subsequently convert oxaloacetate into PEP (Hunt and Kohler, 1995; 

Coustou et al., 2008). Alternatively, malate can act as the substrate of the malic 

enzyme for the production of pyruvate in cytosol (Coustou et al., 2008).  The second 

step is catalyzed by the activity of fructose-1,6 biphosphatase.  This last enzyme 

has been found in the genome of T. brucei, T. cruzi and Leishmania, and its 

sequence displays a PTS-1 targeting signal, which would localize it inside the 

glycosomes (Berriman et al., 2005; Opperdoes and Szikora, 2006).  In Leishmania 

major, elimination of fructose-1,6 biphosphatase renders amastigotes incapable of 

proliferating inside macrophages, an environment where glucose is not readily 

available (Naderer et al., 2006). The probability of gluconeogenesis in T. brucei was 

brought to attention when RNAi on the malic enzyme resulted lethal for the procyclic 

form of the parasite in absence of glucose (Coustou et al., 2008).  Inhibition of 

PEPCK and mitochondrial succinate dehydrogenase, or F1/F0-ATP synthase also 

resulted detrimental for cell survival under glucose-depleted conditions (Ebikeme et 

al., 2010).  The aforementioned evidence implies that both PEPCK and malic 

enzyme are used by procyclic form T. brucei under glucose-depleted conditions 

(Coustou et al., 2008).  Fructose-1,6 biphosphatase activity has not been detected 

in bloodstream or procyclic forms of T. brucei cultured in presence of glucose 

(Hannaert et al., 2003a).  

 

6. The Mitochondrial Carrier Family 

The overview of intermediates transport across organelles in T. brucei suggests the 

need for a regulated transport system for the metabolism to function. Malate 

translocation from glycosome to mitochondrion; the transfer of acetate from 

mitochondrion to cytosol for the synthesis of acetyl CoA; proline catabolism; 

substrate-level phosphorylation for ATP production inside the mitochondrion, are 

examples of pathways that require intermediates to be transported between cellular 

compartments. This intermediates traffic between cellular compartments has been ill 

defined in most metabolic studies in Trypanosoma brucei. 

 

The mitochondrial inner membrane of Trypanosoma brucei is thought to be 

impermeable for several metabolites (Schneider et al., 2007), implying the presence 

of specific membrane-bound transporters. Such transporters are essential for the 
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maintenance of the mitochondrial and cellular redox balance, and most of the above 

described mitochondrial pathways in T. brucei require the transport of metabolites 

between the mitochondrion and other cellular compartments, i.e. the glycosomes 

and the cytosol. Until recently, the only information available about T. brucei 

mitochondrial metabolite transporters was what could be deduced from metabolic 

studies (van Weelden et al., 2005a; Schneider et al., 2007). In 2006, the molecular 

and functional characterisation of MCP6 was reported - the first mitochondrial 

metabolite transporter identified for trypanosomes and a novel member of the 

mitochondrial carrier family (Colasante et al., 2006a). More recently, 26 different T. 

brucei genes were identified with significant sequence similarity to metabolite 

transporters of the Mitochondrial Carrier Family (Colasante et al., 2006b; Colasante 

et al., 2009). 

 

The Mitochondrial Carrier Family (MCF) consists of a number of structurally and 

functionally related group of membrane proteins that are involved in the transport of 

metabolites across the inner mitochondrial membrane (Aquila et al., 1987; Palmieri 

and Klingenberg, 2004; Millar and Heazlewood, 2003). These proteins have been 

widely described in yeast, fungi, plants and several mammalian systems, including 

humans. The MCF proteins (Figure 4) exhibit several conserved features such as: 

1) their length in 300-450 amino acids; 2) they exhibit the conserved amino acid 

repeat Px(D/E)x2(K/R)x(K/R)x20-30(D/E)Gx4-5(W/F/Y)(K/R)G (with x representing any 

aminoacid); 3) they possess a tripartite structure, consisting of three homologous 

sequence repeats of about 100 amino acid residues each, folded into two trans 

membrane helices and linked by a short helix on the matrix side; 4) they present 

basic pI that ranges between 9-10;  5) they are believed to operate as homodimers; 

and 6) their N- and C-terminals ends are oriented towards the mitochondrial inter 

membrane space (Bogner et al., 1986; Aquila et al., 1987; Walker and Runswick, 

1993; Kunji, 2004; Palmieri and Klingenberg, 2004; Colasante et al., 2009; Saraste 

and Walker, 1982; Millar and Heazlewood, 2003). 
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Figure 4. Schematic model for transmembrane domains structure in MCF proteins. 

Trans-membrane helices are denoted in uppercase (H).  Conserved motif starts at 

the end of each odd-numbered trans-membrane helix and finishes 20-30 residues 

after the amphipathic helices that intercalate between trans-membrane helices (h1-

2, h3-4, h4-5).  

 

MCF proteins have been classified into 6 functional groups, according to the 

substrate they translocate: i.e. nucleotides, phosphate, carboxylic acids, amino 

acids, protons and iron (Palmieri, 2004; Palmieri et al., 2006; Kunji and Robinson, 

2006; Colasante et al., 2009).  It was initially believed that mitochondrial metabolite 

transport occurred through counter-exchange, as no net accumulation was 

observed, and therefore osmolarity was maintained in the organelle (Klingenberg, 

1976). With the accumulation of data from the analysis of many MCF proteins in 

different species, it was noted that they are able to function through different 

mechanisms like uniport, symport, and antiport, and in an electron neutral, proton-

compensated or electrophoretic way (Palmieri et al., 2000).  

7. The ADP/ATP carrier and its discovery 

About 50 years ago it was assumed that ATP was produced during oxidative 

phosphorylation in mitochondria and was subsequently transported by the ATP 

synthase across the mitochondrial membrane.  Therefore it was also unclear how 

this organelle obtained its endogenous ADP pool, as no exchange had been 

described for such process. Mitochondrial metabolism accounts for a great deal of 

energy production for the cell, as the final steps of carbohydrates oxidation take 

place in this compartment for the ultimate production of ATP. This energy-rich 

molecule must be carried towards other cell compartments, as it is not membrane-

permeable. It was not until 1968 that the actual counter-exchange between cytosolic 
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ADP and mitochondrial ATP was described, and the ADP/ATP carrier was 

discovered (Klingenberg, 1976; Klingenberg, 2008).  

 

 

 

This mitochondrial ADP/ATP exchange activity was proposed to be a strict 1:1 

counter-exchange of ADP for ATP (that virtually excluded AMP transport), is 

determined by the membrane potential, and involves substantial conformational 

changes via a “ping-pong”-type mechanism also called Single-Binding Centre-Gated 

Pore (SBCGP) mechanism (Pfaff and Klingenberg, 1968; Krämer and Klingenberg, 

1977; Krämer and Klingenberg, 1982). This mechanism was defined by studying the 

binding of the ATP/ADP carrier to its best-known inhibitors (Figure 5): i.e. atractylate 

and bongkrekic acid (Bruni et al., 1964a; Bruni et al., 1964b; Henderson and Lardy, 

1970). Atractylate (ATR) binds to the intermembrane-facing side of the carrier, 

whereas bongkrekic acid (BKA) binds to the matrix-facing side (Figure 6). This way 

the ATP/ADP carrier could be fixed in one of two possible states: with ATR binding 

to the intermembrane side, the carrier is locked in its “c” state (c for cytosolic), 

whereas with BKA binding to the mitochondrial matrix side, the carrier is locked in its 

“m” state (m for mitochondrial). These transition states were referred to as “ground 

states” and proved to be the same sites to which the substrates would bind 

(Klingenberg, 2008; Klingenberg et al., 1995). The binding sites of the inhibitors and 

Figure 5. Chemical 

structures of atractyloside 

and carboxyatractyloside. 

Data taken from PubChem 

Compound. 



 28

their mechanisms were a discussion point for many years, as other research groups 

had different points of view on the subject. 

 

 

 

Figure 6. The Single-Binding Center-Gated Pore Mechanism (SBCGP) as proposed 

by Klingenberg.  The substrates bind sequentially to the same site in a “ping-pong” 

type of mechanism. 

Atractyloside is a glucoside naturally occurring in nature, and is produced by a toxic 

thistle called gummiferin (Atractylis gummifera) (Bruni et al., 1964a). Another 

compound found in the same plant, i.e. carboxyatractyloside (CAT), also acted as 

an inhibitor of the carrier, but with a higher binding affinity (Danieli et al., 1972; 

Luciani et al., 1971). A third compound found in the bacteria Burkholderia gladioli 

proved to have similar inhibitory properties. This compound, i.e. bongkrekic acid, is 

a tri-carboxylic acid that inhibits the ADP/ATP carrier in a different manner as ATR 

(Henderson and Lardy, 1970). ATR was found to inhibit the carrier in a quasi-

competitive manner to ADP. This is in contrast to CAT, which acts as an 

uncompetitive inhibitor to ADP (Vignais et al., 1966). BKA presented a slightly more 

complicated mode of action. It inhibited ADP-binding in a quasi-competitive manner, 

but unlike ATR, this inhibition was time, temperature and pH dependent.  This 

observation led to the conclusion that BKA had to diffuse across the membrane in 

order to bind to its site of action (Klingenberg and Buchholz, 1973). It was further 

noted that BKA increased both the binding and the apparent affinity for ADP to a Kd 
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10 times smaller than without any inhibitor present (Weidemann et al., 1970). The 

addition of BKA after ADP increased the binding of the latter, but not when added 

before ADP. These results are all in agreement with the binding of BKA to the 

mitochondrial side of the AAC, resulting in the locking of the ADP-side on the 

mitochondrial intermembrane space side (Klingenberg and Buchholz, 1973). 

 

The binding of BKA to the ATP/ADP carrier was proposed to work in one of two 

possible models. The first model, also called “single site reorientation mechanism” 

(synonymously used as SBCGP mechanism), suggested that the BKA and ADP 

binding sites are the same and that BKA is capable of displacing the latter from its 

site upon addition. In this model, BKA binds exclusively from the inside of the 

membrane (Klingenberg and Buchholz, 1973). The second model suggested the 

presence of an alternative or allosteric site for the binding of BKA (different from that 

of ADP), which forms a ternary complex of AAC-ADP-BKA and increases the 

binding affinity of the natural substrate (Lauquin and Vignais, 1976; Weidemann et 

al., 1970). Although this “dual site allosteric mechanism” seemed to be the most 

plausible in terms of binding affinity of ADP in the presence of BKA, Klingenberg 

argued that this system was flawed based on two key observations. First, the 

allosteric mechanism seemed to be true only in the presence of high concentrations 

of ADP (50μM). When concentrations 10 times lower were used, the majority of 

sites re-oriented only with BKA, “locking” the carrier in “m state” on the outer side 

and making the site inaccessible for ADP. Second, double labelling experiments 

with 3H (for the endogenous nucleotide pool) and 14C (for the outer ADP pool) 

showed that internal nucleotides remained attached to the carrier in the presence of 

BKA, in which most of the binding sites are oriented towards the “m state” on the 

outer side of the membrane (Klingenberg, 2008). Other groups argued that real 

initial velocities were not taken into account by the “ping-pong” mechanism 

proposed by Klingenberg, as well as the energized state of the mitochondrion, which 

changes the Km and Vmax for both ATP and ADP. These data further suggested the 

formation of a ternary complex, i.e. two adenylate molecules bound to the 

homodimer of the ATP/ADP carrier (Duyckaerts et al., 1980; Barbour and Chan, 

1981). 

  

Studies using combinations of inhibitors showed that the addition of BKA prior to 
35S-CAT inhibits partially the binding of the latter, meanwhile displacing 35S-ATR 

uncompetitively when added after (Klingenberg et al., 1971). In the case of both 

CAT and BKA being mixed with mitochondria at the same time, CAT was not 
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removed, even though BKA remained attached to its site, which is in accordance 

with the model that establishes different binding sites for each of these inhibitors 

(Block et al., 1980). Contraries argued that this was due to unspecific uptake of BKA 

in mitochondria by attesting that when 35-S CAT was bound, 3H-BKA could not bind 

to its site. This would agree with the mutual displacement model and the ADP-

binding dependence of these compounds in the SBCGP mechanism (Klingenberg, 

2008). 

 

The latest mathematical model for ATP/ADP exchange takes into account several 

structural and kinetic properties of the transporter, as well as the effect of the 

membrane potential and the pH of the surrounding environment where the carrier is 

embedded (Metelkin et al., 2006).  This model is based on a homodimeric structure 

of the ADP/ATP carrier and takes into account the possible anisotropy of the carrier 

binding sites by making allowances for differences in binding of the different 

adenylates (Brandolin et al., 1980). The model suggests further that: (1) the binding 

of ADP and ATP is independent of each other, although it supports the 1:1 

stoichiometry of the reaction as proposed by Kramer and Klingenberg (1982); (2) 

the pH influences the exchange rate of the carrier (Klingenberg and Rottenberg, 

1977); and (3) under uncoupled conditions, ADP leaves the mitochondria due to its 

dependence on membrane potential (Metelkin et al., 2006). 

8. The ADP/ATP carrier mode of transport  

Early studies of the ADP/ATP carrier revealed that ADP/ATP transport across the 

inner mitochondrial membrane is electrogenic in nature (Klingenberg and 

Rottenberg, 1977; Wulf et al., 1978; LaNoue et al., 1978).  Electrogenic transport 

refers to the transport of one or two ions coupled by a symport or antiport, involving 

the movement of net charge at molecular level (Nicholls and Ferguson, 2002).  

 

The distinction between net charge movement at a molecular level and the overall 

neutrality of charge of total ion movement must be made based on the physical 

properties of the membrane, i.e. their low electrical capacitance.  The separation of 

very small quantities of charge across a membrane cannot take place without the 

building of a large membrane potential (ψ). Charge balances across the 

mitochondrial inner membrane have classically been studied with the aid of 

ionophores, antibiotics or synthetic molecules that are capable of functioning as 

mobile ion carriers. Examples of these molecules are valinomycin, nigericin, 

gramidicin and FCCP.  Their use depends on the study performed, whether charge, 
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protons or both are needed to observe ion flux across membranes.  Valinomycin is 

an uncharged ionophore that catalyzes the uniport of Cs+, Rb+, K+ or NH4+. It 

complexes with an ion and diffuses across the membrane, after which the ion is 

released, therefore carrying the charge across membrane. Nigericin is an example 

of a proton carrier, due to the fact that it looses a proton when it binds a cation. The 

formed complex is then able to diffuse across the mitochondrial membrane, with no 

net charge change in the process.  FCCP, on the other hand, acts as a 

protonophore or uncoupler, and its net transport involves both protons and charges. 

FCCP crosses the membrane in its protonated form, after which the H+ is released 

and the protonated acid of the uncoupler is reacquired (Nicholls and Ferguson, 

2002).   

 

The electrical nature of the ADP/ATP transport catalyzed by AAC was studied with 

the aid of ionophores. ADP/ATP transport implies the transport of an H+ across the 

membrane in order to counterbalance the net charge change involved in the ATP4-

/ADP3- counter-exchange across the mitochondrial inner membrane. When 

mitochondrial preparations were studied in the presence of valinomycin and in a K+-

free medium, ATP entered mitochondria with a H+ and left it with a K+. When the 

experiment was performed in presence of 150mM KCl, ATP entered with a K+ and 

left it with a H+.  Similarly, when using FCCP, the H+/ATP ratio was approximately 1, 

in either K+-free or 150mM KCl buffer. These results were in accordance with an 

electrogenic transport for ATP, where H+ transport would not necessarily be linked 

to the ATP/ADP carrier itself (i.e. co-transported) but it would be required for 

organelle electroneutrality (LaNoue et al., 1978; Wulf et al., 1978; Nicholls and 

Ferguson, 2002). 

9. Structure-function relationship of the ADP/ATP carrier 

9.1. The role of Cardiolipin 

The interaction of the ADP/ATP carrier with other mitochondrial membrane proteins 

has been described to be strongly related to the complex structure it forms with 

cardiolipin (Claypool et al., 2008; Claypool, 2009; Zhang et al., 2002; Mileykovskaya 

and Dowhan, 2009). Cardiolipin (CL) is a widely distributed phospholipid, found in 

virtually all organisms. In eukaryotic cells, it is predominantly found in the 

mitochondrion. Cardiolipin bears an unusual structure (Figure 7), with 2 glycerol 

chains attached to 2 acyl chains each (Schlame, 2008). 
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Figure 7. Schematic representation of the cardiolipin structure: the two phosphatidyl 

moieties are linked via a glycerol to four acyl-chains. 

The interaction of cardiolipin with the ADP/ATP carrier was first described by 

Klingenberg (Riccio et al., 1975b). He and his co-workers acknowledged the fact 

that once the carrier was “solubilised” with certain detergents, especially anionic 

detergents like SDS or DOC, it would loose its active conformation in an irreversible 

way. Other groups also noticed this when trying to reconstitute the ADP/ATP carrier 

for transport assays. 31P NMR and electron spin resonance studies revealed the 

presence of 6 cardiolipin molecules per molecule of solubilised carrier (3 per 

monomer), and that their excision with phospholipase A (PLA) would render the 

transporter inactive (Beyer and Klingenberg, 1985; Drees and Beyer, 1988; Nury et 

al., 2005). 31P NMR indicated further the presence of other phospholipids, i.e. 

phosphatidylcholine (PC), phosphatidyl-ethanolamine (PE), phosphatidylinositol (PI) 

and phosphatidic acid (PA), in solubilised and purified ADP/ATP carrier preparations 

(Hoffmann et al., 1994; Epand et al., 2009). All of the studies propose that the 

interaction of the carrier with CL is rather strong. 

 

To achieve an optimally functioning ADP/ATP carrier for in vitro reconstitution 

studies, different acid phospholipids were tested. Both phosphatidic acid (PA) and 

phosphatidylserine (PS) were tested along with CL, with the latter being the most 

efficient of all for the reconstitution of ADP/ATP carrier activity. Upon addition of CL 

to liposomes, it was noted that CL significantly increased the transport activity of the 

ADP/ATP carrier and that an optimum was reached in the process (Heimpel et al., 

2001). It was further noted that the natural ADP/ATP carrier from beef heart 

mitochondria required less cardiolipin for optimal transport activity than the 

recombinant carrier from Neurospora crassa, which was overexpressed in E. coli. 
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The recombinant Neurospora crassa ADP/ATP carrier isolated from E. coli contains 

lower CL levels, which would explain the observed difference in CL requirement. 

Crystallographic studies of the ADP/ATP carrier from beef heart mitochondria 

confirmed further the presence of 3 CL molecules per protein monomer and a strong 

interaction between the helices and the monomers as well, which would contribute 

to the stable structure of the dimer (Beyer and Klingenberg, 1985; Nury et al., 2005). 

Knockout studies of cardiolipin synthase in yeast revealed that the resulting 

knockout strain cdr1 was temperature-sensitive and had an impaired growth 

phenotype on non-fermentable sources (Jiang et al., 2000). Nevertheless, the 

amount of ADP/ATP carrier per weight of mitochondria did not differ from that 

observed for the WT. When isolated and reconstituted into liposomes, no ADP/ATP 

exchange activity was found without the addition of 8% cardiolipin, and even then 

the transport activity never reached the same level as that of the WT. These 

experiments confirmed that CL is crucial for the maintenance of transport activity of 

the ADP/ATP carrier (Heimpel et al., 2001; Klingenberg, 2009).  

 

The precise sites for CL attachment were determined by electron spin resonance 

studies (Drees and Beyer, 1988). These studies revealed that negatively charged 

groups from the lipid molecules (head groups) do interact with positively charged 

amino acids on the protein surface. These observations were corroborated by partial 

crystallographic studies performed on the bovine heart muscle AAC, showing that 

the amino acids which interact with CL indeed have a polar character (Nury et al., 

2005).  

 

Further proof was provided when analyzing the S. cerevisiae AAC (C73S) mutant. 

This strain is capable of growth on glycerol, but the isolated mutant ADP/ATP carrier 

failed to show any transport activity when reconstituted into liposomes (Hoffmann et 

al., 1994). Upon the addition of cardiolipin, activation of transport activity was 

observed. Specific chemical modifications on the structure of cardiolipin revealed 

further that not only the negative charges are necessary for the molecule to activate 

the S. cerevisiae AAC, but that removal of the CL acyl-chains resulted in significant 

loss (approximately 90%) of transport activity (Hoffmann et al., 1994). It was 

assumed that the ability of the S. cerevisiae AAC (C73S) mutant to grow on glycerol 

was because the C73 residue did not interfere with the ability of the carrier to be 

expressed or translocated into the mitochondrial membrane. Once embedded in the 

membrane, the carrier is in close proximity to CL and correspondingly active. 
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However, after solubilisation of the AAC, CL was easily lost, resulting in inactivation 

of the AAC carrier.   

9.2. ADP/ATP carrier assembly: monomers or dimers? 

The notion of an oligomeric state of the ADP/ATP carrier dates its origin to the 

inhibition studies performed with ATR, CAT and BKA. Evidence for a dimeric form of 

the protein was found both in mitochondria and in reconstituted proteoliposomes. 

Sucrose gradients and gel filtration experiments revealed that 35S-CAT formed a 

complex with protein-detergent (TX-100) micelles in an estequiometric balance, 

implying a dimeric association of the ADP/ATP carrier (Riccio et al., 1975a; 

Hackenberg and Klingenberg, 1980). Later, a chimeric tandem-repeated 

homodimeric ADP/ATP carrier was expressed in an AAC-depleted strain of S. 

cerevisiae. This chimeric ADP/ATP carrier managed to rescue the growth 

phenotype of this strain by allowing it to grow to WT levels in medium containing the 

non-fermentable carbon source glycerol. Additionally, active OXPHOS could be 

measured in the presence of glycerol (Hatanaka et al., 1999). Also other studies 

supported the idea that the ADP/ATP carrier is only active as a homodimer, with 

some of them even proposing an important role of CL in the interaction of the two 

ADP/ATP carrier monomers (Krämer and Klingenberg, 1980; Hackenberg and 

Klingenberg, 1980; Beyer and Klingenberg, 1985; Epand et al., 2009).   

 

The previously explained SBCGP mechanism is based on the assumption that the 

carrier works as a homodimer. However, recent studies have challenged this view. 

Projected electron density maps of two-dimensional AAC3 crystals from S. 

cerevisiae, revealed that the carriers do not form a 12-helix bundle, as it would be 

expected from a homodimer structure consisting of two 6-helices monomers (Kunji 

and Harding, 2003). Furthermore, co-expression studies were performed using two 

different copies of the AAC: one copy which is sensitive to chemical inhibition (WT 

AAC2) and a second copy (mutated AAC2), which is not sensitive to chemical 

inhibition. The chemical-insensitive (mutated) AAC2 version was achieved by 

substituting all 4 cysteines for alanines: these cysteines have previously been 

proposed to be important for dimerization of the ADP/ATP carrier. Both the WT 

AAC2 and it mutated copy version were co-expressed in the S. cerevisiae KO 

(aac2cdr1) strain DNY1, which lacks both functional AAC1 and AAC2. Liposomes 

were prepared and fused with mitochondrial membranes to perform transport 

assays in the presence of MTSES, a sulfhydryl reagent. The results revealed that 

the co-expression of both sensitive and insensitive AAC did not hamper the overall 
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ADP/ATP exchange activity of the carrier, leading to the conclusion that the carrier 

works in its monomeric form instead of being associated in dimers (Bamber et al., 

2007a).  Similar results were obtained by co-expressing differentially tagged carriers 

and attempting to purify them by affinity chromatography (Bamber et al., 2007b). 

 

The use of a cysteine-less mutant in the above-described experiments is however 

debatable. Several studies revealed that these cysteines, especially C73 as studied 

in the above-mentioned C73S mutant of S. cerevisiae AAC2, are important in the 

maintenance of a stable carrier structure, including that of the homodimer, therefore 

weakening the monomer hypothesis (Claypool, 2009).  It is evident that the homo- 

or dimeric structure of the AAC is still a matter of debate.   

10. The ADP/ATP carrier and Oxidative Phosphorylation 

As stated earlier, the ADP/ATP carrier catalysis the exchange of cytosolic ADP for 

mitochondrial ATP. Its connection to oxidative phosphorylation (OXPHOS) places it 

as the last member of this machinery. The importance of the ADP/ATP carrier in 

OXPHOS was first observed in a natural respiration-deficient yeast mutant called 

pet9, which is an AAC2 (R96H) mutant (Adrian et al., 1986; Lawson et al., 1990). 

Although AAC2 is the main ADP/ATP carrier expressed in WT Saccharomyces 

cerevisiae, a KO strain for both AAC 1 and 2 was constructed. The resulting S. 

cerevisiae strain DNY1 was unable to grow on the non-fermentable carbon source 

glycerol, indicating a reduced OXPHOS capacity. Mutated ADP/ATP carriers were 

expressed from plasmids, and mutagenesis was performed on amino acids residues 

that had aroused interest in all the ADP/ATP carriers studied at the time: i.e. the R 

triads found in the RRRMMM motif, and the 4 positively charged amino acids K38, 

R96, R204, and R294, which are 100% conserved in all the carriers studied to date 

(Nelson et al., 1993). Mutations of the individual arginine residues rendered the 

mutant strains unable to grow on glycerol. Furthermore, their OXPHOS activities 

were 40 times less that of the yeast containing the WT AAC, suggesting an 

important role of the ADP/ATP carrier in oxidative phosphorylation (Müller et al., 

1996). Reconstitution of the mutated AACs into liposomes and subsequent transport 

assays confirmed that these AACs were indeed affected in their ADP/ATP exchange 

activity (Heidkamper et al., 1996). 

11. Function of the ADP/ATP carrier in the mitochondrial respiratome 

Early mitochondrial respiration studies stated that the components of the respiratory 

chain, particularly the soluble ones, i.e. cytochrome c and ubiquinone, behaved in 



 36

mammalian mitochondrial preparations as a “pool” (Kroger and Klingenberg, 1973; 

Gupte and Hackenbrock, 1988b; Gupte and Hackenbrock, 1988a). It was postulated 

that the two smallest components of the respiratory chain acted as mobile electron 

carriers between diffusible respiratory complexes, which is also described as the 

“random-collision model” (Chazotte and Hackenbrock, 1988). 

 

With new insights in the respiration process, a different model was proposed. 

Inhibition studies in yeast revealed that titration of NADH-dehydrogenase and 

cytochrome c oxidoreductase with antimycin, did not result in a sigmoid-type 

inhibition curve, as would have been expected if mobile “pools” would exist. The 

observed inhibition was independent of the substrate used for the respiration 

experiments, suggesting that both cytochrome c and ubiquinone in yeast were not 

available in freely diffusible pools under physiological conditions. These experiments 

suggested further that the respiratory chain works as a single large complex unit, a 

so-called substrate-channelling complex that improves the rate of respiration 

(Boumans et al., 1998). The stoichiometric associations of the respiratory chain 

complexes I-IV in bovine heart mitochondria was assessed with the aid of 2D 

BN/SDS-PAGE and enzyme assays (Schägger and Pfeiffer, 2001). The obtained 

results confirmed the existence of supercomplexes, also called “respirasomes”. 

Additional studies revealed further that the CoQ mobile pool is in equilibrium with 

protein-bound CoQ (Genova et al., 2008). This equilibrium was found to be 

dependent on metabolic conditions that could shift the electron transfer mode 

between substrate-channelling and random diffusion (Genova et al., 2008; Piccoli et 

al., 2006). 

 

Recent lipid-protein interactions studies strengthened the 

supercomplex/respirasome model. Especially the observed strong interaction of 

cardiolipin with several members of the respiratory chain resulted in additional 

structural evidence for this model (Claypool et al., 2008; Mileykovskaya and 

Dowhan, 2009). In cardiolipin-defective yeasts, the structural integrity of the 

supercomplexes is lost. Also the behaviour of the cytochrome c pool was found to 

be impaired. These observations are consistent with the lack of a substrate-

channelling structure in cardiolipin-defective yeasts (Pfeiffer et al., 2003; Zhang et 

al., 2005). In mammalian cells, Barth syndrome is a condition caused by a mutation 

of the TAZ gene, which is responsible for the remodelling of the cardiolipin fatty acid 

composition. Lymphoblasts from Barth syndrome patients have been found to 

display reduced supercomplex organization, particularly of the I1III2 supercomplex, 
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as well as a lack of inclusion of complex IV in the main structure (McKenzie et al., 

2006).   

 

The respiratory chain complex formation does not necessarily include the AAC as a 

main component. However, recent 2D BN/SDS-PAGE analysis of aac2, cdr1 and 

aac2cdr1 yeast KO strains indicated that the ADP/ATP carrier indeed structurally 

interacts with the respirasome (Claypool et al., 2008). In WT yeast, a clear structural 

relationship was found between AAC2 and the III2IV complex. In the aac2 mutant, 

however, an increased complex III2IV/ III2IV2 ratio was found when compared to the 

WT. This ratio increased even further in the aac2cdr1 double mutant. As 

expected, the complex IV activity decreased accordingly in the different AAC KO 

strains (Claypool et al., 2008), suggesting an important role of the AAC in 

respirasome activity. Physical association of AAC2 with the cytochrome c reductase 

(cytochrome bc1)/cytochrome c oxidase (COX) supercomplex was recently 

demonstrated for yeast (Dienhart and Stuart, 2008). 

12. Other roles besides energy production: The Mitochondrial Permeability 

Transition Pore 

The mitochondrial inner membrane forms, under certain conditions, a large 

nonspecific pore called the Mitochondrial Permeability Transition Pore (MPTP). 

Formation of the MPTP is initiated by Ca2+, and is inhibited by cyclosporine A and 

the withdrawal of Ca2+ (Haworth and Hunter, 1979; Hunter and Haworth, 1979; 

Crompton and Costi, 1988; Zoratti and Szabò, 1995). The MPTP has been very well 

studied, particularly in mammalian heart mitochondria where its role in ischemia 

reperfusion damage and apoptosis is striking (Crompton, 1999). The Voltage Gated 

Anion Channel (VDAC) in the outer mitochondrial membrane, cyclophilin D (CyP-D) 

in the mitochondrial matrix, and the ANT (the mammalian version of the AAC) in the 

inner mitochondrial membrane, represent the core complex of the MPTP (Figure 8) 

(Halestrap and Brenner, 2003; Zoratti and Szabò, 1995; Brustovetsky et al., 2002; 

Crompton et al., 1988; Broekemeier et al., 1989). The proposed function of this core 

complex is to establish contact points between the inner and outer mitochondrial 

membranes (Ohlendieck et al., 1986; Moynagh, 1995). Also other proteins (see 

Figure 8) can be associated with this complex, like for example hexokinase (HK), 

glycerol kinase (GK), and the mitochondrial benzodiazepin receptor (mBr).  
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Figure 8.  Model of the mitochondrial permeability transition pore.  Hexokinase 

(HK), glycerol kinase (GK) and the mitochondrial benzodiazepin (mBr) receptor bind 

to the VDAC-ANT-CyP-D complex in the contact sites of mitochondria. Ca2+ can 

interact with CL bound to the ANT. Image taken from Vyssokikh and Brdiczka 

(2003). 

 

Klingenberg observed that the ADP/ATP carrier could open reversibly as an specific 

channel in the presence of elevated levels of Ca2+ (Brustovetsky and Klingenberg, 

1996). This change in transport function is mainly driven by Ca2+, which binds to 

ANT-associated CL. As mentioned before, CL plays a key role in ADP/ATP carrier 

function. Moreover, in absence of adenylates, AAC inhibitors would cause an efflux 

of K+ (Panov et al., 1980). Channel opening could be reversed by the addition of 

ADP and BKA, but not by CAT (Brustovetsky and Klingenberg, 1996). Both CAT 

and ATR induced opening of the channel, implicating that the carrier must be locked 

in the c-state in order to aid in the mitochondrial permeability pore (Halestrap and 

Brenner, 2003; Crompton, 1999).  Klingenbergs studies were performed with 

purified AAC, which omitted the possibility of cyclophilin D in the preparations; 

therefore cyclosporine A did not inhibit the channel activity. Similar Ca2+-dependent 

channel activity was also observed by other groups using AAC-containing liposomes 

filled with different substrates (Rück et al., 1998; Brustovetsky et al., 2002).  

 

Mitochondrial permeability transition (MPT) has been described as a mitochondrial 

dysfunction arising from Ca2+ overload (Crompton, 1999).  Ca2+ enters the 

mitochondrion via a Ca2+-uniporter and exits by counter exchange with Na+, through 

the Na+/Ca2+-antiporter. The in general slow cycling of these ions is driven by the 

membrane potential (Crompton and Heid, 1978). Ca2+ has been shown previously to 

have regulatory roles in the activity of different mitochondrial enzymes such as 

pyruvate dehydrogenase, -ketoglutarate dehydrogenase and isocitrate 
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dehydrogenase (McCormack et al., 1990).  When Ca2+ accumulates inside the 

mitochondrion under pathological conditions, cell damage is not triggered until the 

mitochondrial adenylate ratio collapses, leading to: (1) opening of the MPTP, (2) the 

efflux of Ca2+ from the mitochondrion, and (3) subsequent loss of the mitochondrial 

membrane potential.  

 

The presence of ANT in the MPTP complex suggested a role of this carrier in MPT. 

Recent studies performed with ANT1/ANT2 KO mice revealed however that MPT 

still could take place in the absence of these carriers, leading to the initial conclusion 

that both ANT1 and ANT2 are not essential for MPT (Kokoszka et al., 2004). This 

conclusion was contradicted by other observations showing that the MPTP in the 

ANT1/ANT2 KO mice was less sensitive to Ca2+, and was not regulated by either 

ADP or ATP (Kokoszka et al., 2004). This suggests that ANT is involved in MPT, 

and the earlier contradiction results were explained with the hypothesis that maybe 

another MCF protein could have taken on part of the role of ANT in the 

ANT1/ANT2 KO mice (Halestrap, 2004; Palmieri, 2004). This MCF protein has 

not been identified yet, and the exact role of ANT in MPT remains still elusive. 

  

13. Aims of the PhD project 

The putative transport function of a particular MCF protein can be predicted from its 

amino acid sequence by (1) determining its sequence similarity to functionally 

characterised MCF proteins of other eukaryotes, (2) determining its phylogenetic 

relationship to other known MCF proteins, and (3) the presence of specific “contact 

points”, i.e. meaning particular conserved amino acids, in the MCF protein sequence 

which are involved in the binding of specific substrates (Section 5 of the 

Introduction). However, it has been demonstrated that it is not possible to reliably 

predict substrate specificity from the deduced amino acid sequences alone. 

Mitochondrial carrier family proteins were further shown to be highly divergent. 

Therefore, the most important tools for functional characterisation of MCF proteins 

are still metabolic studies of knockout cell lines and the in vitro reconstitution in 

liposomes followed by metabolite transport assays.  

 

The ADP/ATP carrier plays a key role in the energy metabolism of virtually all 

mitochondriate eukaryotes, and as is evident from this Introduction, it represents the 

best-characterized MCF protein to date. A similar important role is also anticipated 

for any ADP/ATP carrier found in Trypanosoma brucei. Major aims of this Ph.D. 
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project were (A) the identification of putative T. brucei nucleotide carriers, i.e. 

ADP/ATP and GDP/GTP carriers, and (B) the determination of their physiological 

roles in trypanosomes.  

 

The objectives to be achieved were: 

 Identify ADP/ATP and GDP/GTP-exchanging MCF proteins in T. brucei, and 

subsequently analyse their sequences by molecular and phylogenetic tools.  

 Determine the expression of identified ADP/ATP and GDP/GTP carriers at 

the RNA and protein level, and in different life cycle stages of T. brucei. 

 Determine the subcellular localization of the identified ADP/ATP and 

GDP/GTP carriers in different life cycle stages of T. brucei. 

 Generate stable knockout cell lines for the identified putative ADP/ATP and 

GDP/GTP carriers in procyclic form T. brucei, and determine the 

physiological consequences of the gene knockouts.  

 Express the putative ADP/ATP and GDP/GTP carriers in different 

heterologous systems, followed by solubilization and purification of these 

MCF proteins for their subsequent reconstitution in liposomes.  

 Determine the substrate specificity of the putative ADP/ATP and GDP/GTP 

carriers and their kinetic parameters. 
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Chapter II.   Materials and Methods 

Part I. Biological material and cell culture conditions 

Procyclic form Trypanosoma brucei PCF449 strain was used as parental cell line for 

the subsequent production of knockout and expression cell lines, and it is regarded 

as “wild type” cell line (WT) in this work.  PCF449 originated from the 927 T. brucei 

procyclic form cell line, by stable transfection with the pHD449 construct (BLE 

resistance), bearing the tetracycline repressor (Biebinger et al., 1997) for controlled 

tet-inducible expression.  PCF449 was cultured in MEM-Pros media (Overath et al., 

1986), supplemented with 10% (v/v) heat-inactivated foetal calf serum (FCS) and 

7.5mg/L hemin.  Bloodstream form 449 (BSF449) was cultured in HMI-9 media 

(Hirumi and Hirumi, 1989), supplemented with 10% (v/v) heat-inactivated FCS.  The 

formulations for the media are shown in the Appendix. 

 

Part II. Sequence alignment and phylogenetic analysis 

II.1. Identification of putative MCF protein-encoding genes 

T. b. brucei open reading frames (ORFs) encoding putative MCF proteins were 

identified through reciprocal database searches using the program BLASTP (v2.2.9: 

http://www.ncbi.nlm.nih.gov/blast) and the kinetoplastid genome databases 

available for T. b. brucei, T. cruzi, and Leishmania major (http://www.genedb.org). 

The amino acid sequences of previously identified and functionally characterised 

MCF proteins from higher eukaryotes (http://www.ncbi.nlm.nih.gov) were used as 

queries (Millar and Heazlewood, 2003; Picault et al., 2004; Palmieri et al., 2006; 

Wohlrab, 2006).  

II.2. Sequence analysis and phylogenetic reconstruction 

All sequences used for sequence alignment and phylogenetic reconstruction were 

retrieved through NCBI (http://www.ncbi.nlm.nih.gov/).  

  

Sequences were aligned with ClustalW2 

(http://www.ebi.ac.uk/Tools/clustalw2/index.html) (Thompson et al., 1994) and the 

results were edited by hand using Se-Al v2.0a11 

(http://tree.bio.ed.ac.uk/software/seal/), an alignment editor and/or ClustalX-2.0.12 

(http://www.clustal.org/) (Larkin et al., 2007). The pair-wise distances, neighbour-

joining trees and consensus trees were obtained using the phylogeny platform 

programs (Protdist, Neighbour-Joining and Consense) from Mobyle@Pasteur 
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(http://mobyle.pasteur.fr/cgi-bin/portal.py) (Néron et al., 2009). Consensus trees 

were edited using SplitsTree4 v.4.11.3 (Huson and Bryant, 2006).  Only bootstraps 

values above 50% are shown.  All software used for these analyses are freeware. 

 

The phylogenetic tree based on human MCP sequences was constructed using the 

PHYLIP program package v3.6a of J. Felsenstein 

(http://evolution.genetics.washington.edu). Pair-wise sequence distance matrices 

were calculated using the program PROTDIST (Dayhoff and Orcutt, 1979). 

Unrooted phylogenetic trees were constructed from distance matrices using the 

Neighbour-Joining method of Saitou (Saitou and Nei, 1987). The final phylogenetic 

tree was drawn with SplitsTree v4.8 (Huson, 1998). The statistical relevance of the 

resulting phylogenetic tree was assessed with the SEQBOOT program of the 

PHYLIP programme package by bootstrap re-sampling analysis generating 1000 

reiterated data sets. The resulting bootstrap values, expressed as percentage, were 

added manually to each node. Only bootstrap values above 55% are shown.  

 

The GeneDB (http://www.genedb.org) accession numbers for the putative T. b. 

brucei MCF protein-encoding genes are listed in Table 1, Chapter II. The Genbank 

(gb), EMBL (emb) and Swissprotein (sp) accession numbers for the human MCF 

(SLC25A) genes are: SLC25A1, gb|AAH04980; SLC25A2, gb|AAO31753; 

SLC25A3, gb|AAH00998; SLC25A4, gb|AAA51736; SLC25A5, gb|AAA51737; 

SLC25A6, gb|AAG01998; SLC25A7, gb|AAA85271; SLC25A8, gb|AAC51336; 

SLC25A9, gb|AAC51367; SLC25A10, gb|AAH07355; SLC25A11, gb|AAC28637; 

SLC25A12, gb|AAH16932; SLC25A13, gb|AAH06566; SLC25A14, gb|AAG29584; 

SLC25A15, emb|CAC83972; SLC25A16, sp|P16260; SLC25A17, emb|CAA73367; 

SLC25A18, gb|AAG22855; SLC25A19, gb|AAH01075; SLC25A20, gb|AAV38345; 

SLC25A21, emb|CAC27562; SLC25A22, gb|AAH19033; SLC25A24, gb|AAH14519; 

SLC25A25, gb|AAH89448; SLC25A26, gb|EAW65451; SLC25A27, gb|AAD16995; 

SLC25A29, gb|EAW81695; SLC25A30, gb|AAI32740; SLC25A31, gb|AAH22032; 

SLC25A32, gb|AAH21893; SLC25A33, gb|AAH04991; SLC25A34, gb|AAH27998; 

SLC25A35, gb|AAI01330; SLC25A36, gb|EAW79012; SLC25A37, gb|AAI32800; 

SLC25A38, gb|AAH13194; SLC25A39, gb|AAH01398; SLC25A40, gb|AAH27322; 

SLC25A42, gb|AAH45598; SLC25A43, gb|AAH19584; SLC25A44, gb|AAH08843; 

SLC25A45, gb|EAW74380; SLC25A46, gb|AAH17169. 
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GeneBank (gb), EMBL (emb) and SwissProtein (sp) accession numbers used in 

MCP5 analysis:  Trypanosoma brucei MCP5 gb|AAC23561; Trypanosoma cruzi 

gb|EAN90413.1; Leishmania major emb|CAJ07106.1; Leishmania amazonensis 

gb|AAO32064.1; Neurospora crassa emb|CAE75740.1; Schizosaccharomyces 

pombe emb|CAA19176.1; Saccharomyces cerevisiae sp|P18239.2; Pichia jadinii 

emb|CAB88028.1; Arabidopsis thaliana gb|BAH19937.1; Zea mays 

gb|ACG24998.1; Sorghum bicolour gb|EER89687.1; Solanum lycopersicum 

gb|AAB49700.1; Solanum tuberosum sp|P25083.1; Drosophila melanogaster 

gb|AAB23114.1; Anopheles gambiae sp|Q27238.2; Aedes aegypti gb|EAT43748.1; 

Marsupenaeus japonicus gb|ABN04118.1; Bombyx mori gb|AAO32817.1; 

Harpegnathos saltator gb|EFN81827.1; Ictalurus punctatus gb|ADO29492.1; 

Schistosoma japonicum emb|CAX71878.1; Xenopus laevis gb|AAH43821.1; Danio 

rerio gb|AAI54239.1; Rana rugosa dbj|BAA36513.1; Bos taurus gb|DAA13433.1; 

Ovis aries gb|ACC93604.1; Callithrix jacchus XP_002763405.1; Mus musculus 

gb|AAF64471.1; Homo sapiens ANT SCL25A4 sp|P12235.4.  

 

Accession numbers used in MCP15 sequence and phylogenetic analysis: 

Trypanosoma brucei MCP15 gb|AAZ12901.1; Trypanosoma cruzi mitochondrial 

carrier protein (putative) gb|EAN87637.1; Leishmania infantum ADP/ATP carrier-like 

protein emb|CAM65622.1; Leishmania major ADP/ATP carrier-like protein 

emb|CAJ07014.1; Leishmania braziliensis ADP/ATP carrier-like protein 

emb|CAM41671.1; Ajellomyces dermatitidis gb|EEQ78320.1; Tetrahymena 

thermophila ADP/ATP carrier protein 1 gb|EEQ78320.1; Arthroderma gypseum 

gb|EFQ98049.1; Zygosaccharomyces rouxii emb|CAR29621.1; Neocallimastix 

frontalis hydrogenosomal ATP/ADP carrier gb|AAN04660.1; Drosophila 

melanogaster ANT2A gb|AAF47956.1; Drosophila melanogaster ANT2B 

gb|AAO41648.1; Schizosaccharomyces japonicus Anc1 gb|EEB06978.1; 

Toxoplasma gondii gb|EEB04619.1; Bos taurus 25 member 6 sp|P32007.3; Ovis 

aries SLC25A6 gb|ACC93605.1; Lepeophtheirus salmonis ADP/ATP carrier protein 

3 gb|ACO12488.1; Homo sapiens SLC25A5 gb|AAH68199.1; Saccharomyces 

cerevisiae Aac3p tpg|DAA07205.1; Arabidopsis thaliana AAC3 NP_194568.1. 

 

Accession numbers used in MCP16 sequence and phylogenetic analysis: 

Oikopleura dioica emb|CBY13776.1; Neocallimastix frontalis gb|AAN04660.1; 

Drosophila melanogaster stress-sensitive B, isoform A NP_511109.1; Drosophila 

melanogaster stress-sensitive B, isoform B NP_727450.1; Drosophila melanogaster 

stress-sensitive B, isoform C NP_727448.1; Drosophila melanogaster stress-
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sensitive B, isoform D NP_727449.1; Callithrix jacchus ADP/ATP translocase 4 

XP_002745417.1; Rana rugosa dbj|BAA36507.1; Xenopus tropicalis SLC25A5 

emb|CAJ82932.1; Bos taurus 25 member 31 sp|Q2YDD9.1; Ixodes scapularis 

gb|EEC13826.1; Talaromyces stipitatus gb|EED20116.1; Trypanosoma cruzi 

ADP/ATP carrier putative 1 gb|EAN90730.1; Trypanosoma cruzi ADP/ATP 

translocase putative 2 gb|EAN90731.1; Leishmania infantum ADP/ATP 

mitochondrial carrier-like emb|CAM66663.1; Leishmania major ADP/ATP 

mitochondrial carrier-like emb|CAJ03149.1; Leishmania braziliensis ADP/ATP 

mitochondrial carrier-like emb|CAM37567.1; Neurospora crassa gb|EAA33965.1; 

Candida dubliniensis emb|CAX41441.1; Leishmania major 1 emb|CAJ07106.1; 

Tetrahymena thermophila ADP/ATP carrier protein 1 gb|EAR94678.1; 

Lepeophtheirus salmonis ADP/ATP carrier protein 3 gb|ACO12488.1; Schistosoma 

japonicum emb|CAX78321.1; Arabidopsis thaliana ADP/ATP translocase-like 

gb|AAM65037.1 

 

Accession numbers used in MCP13 sequence and phylogenetic analysis (all 

sequences putative GDP/GTP carriers, except for Saccharomyces cerevisiae 

Ggcp1): Pichia pastoris XP_002492471.1; Saccharomyces cerevisiae 

tpg|DAA11666.1; Talaromyces stipitatus XP_002484981.1; Pyrenophora tritici-

repentis XP_001934060.1; Penicillium marneffei XP_002149192.1; 

Schizosaccharomyces japonicus XP_002172029.1; Leishmania infantum 

XP_001462754.1; Leishmania braziliensis XP_001561578.1; Leishmania major 

XP_822265.1; Trypanosoma cruzi XP_810620.1; Trypanosoma brucei MCP13 

XP_951572.1.   

 

II.3. Homology-based modelling  

The 3D structures of the T. b. brucei MCF proteins were predicted by homology-

based modelling using the previously determined crystal structure-based 3D models 

of the bovine mitochondrial ADP/ATP carrier for threading. Protein Data Bank (PDB) 

accession numbers of these models are 1okc (Pebay-Peyroula et al., 2003) and 

2c3e (Nury et al., 2005). The programs used for modelling were SWISS-MODEL 

(Schwede et al., 2003; Arnold et al., 2006) and CPHmodels 2.0 available at the 

CPHmodels-2.0 Server (www.cbs.dtu.dk/services/CPHmodels) using standard 

parameter settings. The obtained 3D structure models were viewed and edited 

using PyMOL (W.L. DeLano, The PyMOL Molecular Graphics System (2002), 

accessible at http://www.pymol.org). 
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Part III. Knockout and expression constructs cloning in trypanosomes 

III.1. Design of gene knockout constructs  

Open reading frames in T. brucei procyclic form 449 (PCF449) were replaced by 

homologous recombination using antibiotic resistance cassettes. The replacement 

constructs consist of a backbone of pBlueScript SK II, modified to bear a specific 

antibiotic resistance cassette that will be expressed once inserted in the genome.  

The recombination event will make use of selected target 5’ and 3’ untranslated 

regions (UTR) to recombine in the sequence of interest. Two antibiotic resistance 

cassettes are required to “knockout” a single T. brucei gene, due to diploidy of this 

parasite (Neomycin (NEO) and Blasticidin (BLA) resistance cassettes were used for 

the construction of the knockout (Voncken et al., 2003). MCP5, MCP13, MCP15 and 

MCP16 UTR sequences were chosen from GeneDB, using IDs Tb10.61.1810, 

Tb927.2.2970, Tb927.8.1310, Tb927.7.3940, respectively. Oligos were designed 

(refer to Appendix for a full list of oligos) to specifically amplify UTRs target 

sequences by PCR. The PCR products were cloned into pGEM-T-easy vector 

(Promega) and subcloned into the different NEO and BLA replacement constructs. 

5’ UTRs were cloned using SacI/SpeI restriction sites, whereas BamHI/ApaI 

restriction sites were used for the 3’UTR. The final constructs were linearized by 

digestion with SacI/ApaI restriction enzymes, and used for transfection of PCF449 

Trypanosoma brucei strain. 

 

III.2. Expression of myc-tagged MCPs in procyclic form Trypanosoma brucei  

The complete ORFs of the identified MCF protein encoding genes were amplified 

from genomic DNA of T. b. brucei strain Lister 427 by PCR, using sense and 

antisense oligonucleotide primers containing unique restriction enzyme sites (e.g. 

BamHI, HindIII, and HpaI) for subsequent cloning into the different T. b. brucei 

expression vectors. The PCR products were initially cloned into the pGEM-T Easy 

TA cloning vector (Invitrogen) and their DNA sequences determined (Eurofins 

Medigenomix, Martinsried, Germany). Using the added unique restriction sites, the 

MCF genes were subsequently cloned into the T. b. brucei expression vectors 

pHD1700 and pHD1701 (Colasante et al., 2006). Tetracycline-inducible expression 

from these vectors results in the expression of a double (2x) Myc-tagged 

recombinant protein: for pHD1700 a carboxy-terminal 2xMyc-tag is added to the 

expressed protein, whereas for pHD1701 an amino-terminal 2xMyc-tag is added. 
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The constructs were transfected into procyclic-form T. b. brucei 449 for further 

immunolocalisation studies. T. b. brucei procyclic cell lines expressing recombinant 

GIM5 (glycosomal membrane protein (Lorenz et al., 1998) or chloramphenicol acetyl 

transferase (cytosolic localisation (Colasante et al., 2007) using the expression 

vectors pHD1700 and pHD1701, were used as controls to show that subcellular 

protein targeting is not affected by the vectors used (results not shown). 

 

MCP5, 13, 15 and 16 open reading frames (ORFs) were cloned into the pHD1700 

and 1701 vectors for inducible expression in Trypanosoma brucei PCF449, using 

HindIII and BamHI restriction sites (Colasante et al., 2006; Colasante et al., 2009). 

Protein expression from pHD1700 and pHD1701 vectors results in the addition of a 

myc tag at the n-terminus of the protein. The constructs further contain a 

Hygromycin resistance cassette and a tetracycline-inducible promoter (Colasante et 

al., 2006; Colasante et al., 2009). The constructs were linearized by NotI digestion 

prior to transfection.  

 

III.3. Trypanosome transfection and selection of clones 

2x107 cells of procyclic form T. brucei were used for each transfection. Parasites 

were centrifuged at 2000xg for 10 minutes at room temperature and washed twice 

with cold Zimmerman’s Post Fusion Medium (ZPFM 132mM NaCl, 8mM KCl, 8mM 

Na2HPO4, 1.5mM K2HPO4, 1.5mM magnesium acetate, 90mM calcium diacetate, 

pH 7.0 (Clayton et al., 1990)). Cells were resuspended in 0.5mL of ZPFM and 

placed in electroporation cuvettes (4mm) altogether with the DNA to be transfected 

(10g, NotI digested). Parasites were electroporated 3 times at 1500V, and 

incubated overnight in MEM-Pros medium at 28°C without selective antibiotic for 

recovery. After recovery, cells were plated in 24-well culture plates using serial 

dilutions in MEM-Pros medium (Beverley and Clayton, 1993). Serial dilutions were 

performed in titer plates as follows: 0, 1:10, 1:30, 1:60.  Depending on the antibiotic 

resistance cassette, clones were selected with 15g/mL G418 (NEO), 50g/mL 

Blasticidin (BLA), 50 g/mL Hygromycin (HYG), or 10 g/mL Puromycin (PUR) for 

10-14 days, at 28°C.   
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Figure 1. Schematic representation of the KO strategy of MCPs in PCF449 

Trypanosoma brucei. The insertion of the resistance cassette by homologous 

recombination adds a restriction site (BamHI* site) that produces a band shift 

through Southern blotting. All values in the chart are relative. 
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Part IV. Assessment of KO approach:  PCR and Southern blot analysis 

IV.1. PCR for KO assessment 

PCR was used to assess the proper insertion of the KO constructs in the loci of 

interest.  For that purpose, an oligo was designed upstream of the 5’ UTR target 

sequence used for the KO.  PCR was performed using this oligo as a forward primer 

and the reverse primer from the NEO or BLA cassette.   

 

IV.2. Genomic DNA isolation 

Genomic DNA (gDNA) was isolated from logarithmic phase procyclic form 

Trypanosoma brucei cultures.  5x107 cells were centrifuged at 2000xg for 10 

minutes at room temperature, washed twice with PBS and finally obtained in a pellet 

after centrifugation.  The pellet was resuspended in 0.5 mL gDNA lysis buffer (10 

mM Tris-HCl, pH 8.0, 200mM NaCl, 5mM EDTA, 0.2% (w/v) SDS) and was 

incubated with 2U RNase and 1U Proteinase K for 30 minutes.  Protein was 

subsequently “salted out” of the preparation with 250mL ice-cold 5M NaCl and the 

sample was centrifuged at 20000xg for 15 minutes at room temperature.  The 

supernatant was placed in a fresh 1.5mL tube, mixed with 700mL pure isopropanol 

and incubated on ice for 10 minutes. The gDNA (pellet) was obtained after 

centrifugation at 20000xg for 10 minutes, washed twice with 70% ethanol and 

allowed to air dry.  The final pellet was resuspended in 10mM Tris-HCl, pH 8.0. The 

concentration of gDNA was measured spectrophotometrically in an Eppendorf 

BioPhotometer.  

 

IV.3. Southern blotting  

Southern blotting was performed essentially as described in Sambrook et al. (1989) 

with slight modifications. DNA Electrophoresis was carried out in an agarose gel 

system (0.8% (w/v) agarose in 1X TAE buffer). For each sample 10g of genomic 

DNA was used digested with BamHI. The agarose gel was run in 1X TAE buffer at 

15 V constant overnight. Before capillary blotting, the agarose gel was processed as 

follows: 1) Depurination with 250mM HCl for 10 minutes at room temperature with 

gentle agitation; 2) denaturation (1.5M NaCl, 0.5M NaOH) for 25 minutes at room 

temperature with gentle agitation and; 3) neutralisation (1.5M NaCl, 0.5M Tris-HCl, 

pH 7.5) for 30 minutes at room temperature with gentle agitation. Capillary blotting 

unto Hybond-N+ (Amersham™, GE Healthcare) was set up by placing the 

membrane in contact with the gel, topped by 2 consecutive Whatman paper sheets 
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and paper towels.  Transfer was allowed to take place overnight at room 

temperature. The membrane was placed in a UV cross-linking chamber at 0.120 

J/cm2. 

 

IV.4. Northern blotting  

RNA from 2x108 T. brucei cells was isolated using the Qiagen  RNEasy® Mini kit. 

The RNA concentration was assessed through spectrophotometry. Northern blotting 

was performed as described by Sambrook et al. (1989) with slight modifications. 

The RNA gel contained 0.9% (w/v) agarose, 20mM MOPS, pH 7.0, 2.2M 

formaldehyde. The RNA was mixed with the sample preparation solution (2L 10X 

MOPS (200mM MOPS, 80mM Na-Acetate, 10mM EDTA), 3.5L formaldehyde, 

10L formamide, 1L EtBr (1mg/mL stock), 1L RNA loading dye) and heated at 

65C for 15 minutes. 5L RNA molecular weight standard ladder (Invitrogen™) was 

treated the same way as the sample. The gels were ran overnight in 20mM MOPS, 

8mM Na-Acetate, 1mM EDTA (1X MOPS) at 20V. The next day the gel was blotted 

by capillarity to a Nylon membrane in presence of 10X SSC (0.15M Na2Citrate, 1.5M 

NaCl) overnight. The membrane was submitted to UV-crosslinking at 0.120 J/cm2 

after overnight blotting. Afterwards, it was pre-hybridized and hybridized under the 

same conditions as the Southern blot, at 65C. The probe was also prepared the 

same way, using ORF as template. 

 

IV.5. Probe preparation 

The hot probe was prepared by PCR, by incorporation of labelled [32P]-dCTP 

(PerkinElmer, Inc.) into the PCR product. For Southern blot analysis 3’UTRs were 

used as probes. The PCR mix was prepared as follows: 20mM Tris-HCl pH 8.3, 

20mM KCl, 5mM (NH4)2SO4 (TrueStart™ PCR buffer, Fermentas); 1.5mM MgCl2; 

0.5M Fw primer; 0.5M Rev primer; 0.1mM dATP; 0.1mM dGTP; 0.1mM dTTP; 

0.05g DNA template, 1U TrueStart™ Hot Start DNA Taq polymerase (Fermentas). 

Pre and hybridization steps took place in a 65C hybridization oven. 10mL of 

hybridization solution (5X SSC: 0.075M Na2Citrate, 0.075M NaCl, 5X Denhardt’s, 

0.5% (w/v) SDS, 100g of denatured salmon sperm DNA) was used for every blot. 

Pre-hybridization was performed for at least 30 minutes before adding the probe. 

The probe was denatured at 95C for 10 minutes and snapped cool on ice before 

overnight hybridization with the blot. The next day, the blots were washed 3 times as 

follows: 2X SSC, 0.1% (w/v) SDS for 10 minutes at 60C; 1X SSC, 0.1% (w/v) SDS 
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at 60C for 15 minutes; and 0.1X SSC 0.1% (w/v) SDS at room temperature for 10 

minutes. The blots were exposed to X-ray film at -80C in an autoradiography 

cassette. 

 

Part V. Expression of MCPs in heterologous systems 

 

V.1. Expression of his-tagged MCPs into different strains of Escherichia coli  

Open reading frames (ORFs) of MCP5, 13, 15 and 16 were amplified by PCR and 

cloned into the pGEM T-easy vector (Promega), according to manufacturer’s 

instructions. The ORFs were subcloned into different expression vectors: pTrcHis A 

& C (Invitrogen), pET16b (Novagen), pac28 (Kholod and Mustelin, 2001) and 

pIvex2.4 (Roche) (refer Appendix for restriction sites and oligos information). 

 

The constructs were transformed into E. coli BL21(DE3), Codon Usage, 

Rossetta2(DE3)pLysS, Tuner(DE3)pLysS and Rossetta_gami2(DE3)pLysS strains 

for inducible expression with IPTG.  Rossetta® and Tuner® strains were obtained 

from Novagen (Novy et al., 2001). Single colonies were inoculated into LB media 

with 100g/mL ampicillin (for pTrcHis A&C, pET16b and pIvex2.4 vectors), 30g/mL 

Kanamycin (with pac28 vector) and additional 25g/mL Chloramphenicol when 

using Codon Usage, Rossetta2(DE3)pLysS, Tuner(DE3)pLysS strains and 

Rossetta_gami2(DE3)pLysS strains. Precultures were grown overnight at 37°C at 

250 r.p.m.  Precultures were used in a 1/20 dilution in LB media and further grown 

at 37C at 250 r.p.m. Once the cultures O.D. reached 0.48-0.5, they were induced 

with 1mM IPTG. Induction was allowed for 4-6 hours and 1mL aliquots of culture 

were taken every hour for growth curve purposes.  

 

V.1.1 Auto-induction in Escherichia coli 

The auto-induction approach (Studier, 2005) was used to express MCP5, 13 and 16 

in Rossetta2(DE3)pLysS strain of Escherichia coli. 5mL of LB in presence of 

25g/mL Chloramphenicol, were inoculated in the morning of day 1 using single 

colonies freshly obtained from agar plates. Depending on the construct transformed 

in the host strain, 100g/mL ampicillin and/or 30g/mL kanamycin were added to 

the cultures. Culture was allowed to grow at 37C at 250 r.p.m. 8-10 hours later, a 

similar LB pre-culture (5mL) was set up using 1:100 dilution from the previous 

culture and was allowed to grow overnight. On day 2 the procedure was repeated: 
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1:100 dilution of the overnight culture in 5mL LB. 8-10 hours later, 10mL of MDG 

medium (25mM Na2HPO4, 25mM KH2PO4, 50mM NH4Cl, 5mM Na2SO4, 2mM 

Mg2SO4, 0.5% (w/v) Glucose, 0.25% (w/v) Aspartate) were inoculated with a 1:50 

dilution of the morning culture. The MDG culture was grown in strong shaking 

overnight at 37C.  Autoinduction was set up the next morning using a 1:100 dilution 

of the overnight culture on ZYM-5052 medium (1% (w/v) Tryptone, 0.5% (w/v) Yeast 

extract, 0.05% (w/v) Glucose, 0.2% (w/v) Lactose, 0.5% (v/v) Glycerol, 2mM 

MgSO4, 25mM Na2HPO4, 25mM KH2PO4, 50mM NH4Cl, 5mM Na2SO4) and was 

allowed to grow in constant shaking at 28C for 26 hours. 

V.2. MCPs heterologous expression in insect cells. Baculovirus expression 

system. 

The system BAC-to-BAC from Invitrogen® was used for expression in insects cells 

(Invitrogen, 2009). All procedures were performed according to the manufacturer’s 

user manual. The method involves the cloning of the gene of interest in an 

expression vector (pFastBac HT) with a n-terminal his-tag sequence; the construct 

is then transformed into an E. coli DH10Bac strain bearing a bacmid in which the 

expression vector will recombine and disrupt a lacZ gene inserted as a marker. 

Subsequently the positive bacmid is isolated for its further transfection into the Sf21 

cell line (insect cell) to produce viral particles and to express the protein.   

 

The pFastBAC HTA, B or C constructs were transformed into DH10Bac using a 

modified transformation procedure with a recuperation time of 5 hours before plating 

on LB plates containing ampicillin, gentamicin, tetracycline, IPTG and Xgal. Positive 

big, white colonies were screened after 48 hours at 37°C incubation.  The colonies 

were further subcultured and grown in LB media for midiprep isolation of the 

bacmid.  

 

The purified bacmid (1μg) was transfected into Sf21 cells using Cellfectin® reagent 

on 6-wells plates. The transfected cells produced viral particles after 4-7 days; this 

first viral stock called P1 was the medium harvested after centrifugation of the 

infected cells. This stock could be amplified for maximum viral number (P2) by re-

infection in Sf21 cells. Expression assays were performed using a MOI (multiplicity 

of infection) of 0.5 and cells were harvested after 72 hours of infection.   
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Part VI. Protein preparation, detergent solubilization and reconstitution into 

liposomes 

E. coli cultures were centrifuged at 3000xg to separate cells from the medium. The 

pellet was resuspended in 5mL buffer K (50mM Potassium phosphate, pH 7.5; 

0.1%TX-100) or buffer T (50mM Tris-HCl, pH 7.5, 50mM KCl, 0.1% (v/v) TX-100) 

with 2 mg lysozyme and incubated on ice for 2 hours. 2-5 U DNAse was added to 

clear the lysate and was incubated for 1 hour on ice. The lysate was passed through 

a French Press 2 times and centrifuged at 5000xg for 15 minutes at 4C. The 

supernatant was used for protein purification. 

  

VI.1. Protein solubilization under denaturing conditions using guanidinuim 

chloride 

Protein sample was equilibrated to 6M Guanidinium Chloride (GC) by incubation on 

ice for 1 hour, followed by centrifugation at 16000xg for 10 minutes. The 

supernatant was dialized overnight against 5M urea, in order to eliminate the 

guanidinium salt. The same sample was further dialyzed with buffer T (50mM Tris-

HCl, pH 7.5, 50mM KCl, 0.1% (v/v) TX-100) and centrifuged at 16000xg for 10 

minutes, separating this fraction into supernatant and pellet. 

 

VI.2. Protein solubilization using sarkosyl  

In order to solubilize the protein with sarkosyl, a modification of the protocol used by 

Fiermonte et al. (1993) was performed. After separating soluble fraction from pellet, 

most of the protein was found in the latter.  This fraction was dissolved in 1.5% (w/v) 

sarkosyl in buffer K (50mM potassium phosphate, pH 7.5; 0.1% (v/v) TX-100) and 

incubated overnight at 4C in gentle agitation.  Sample was centrifuged at 15000xg 

for 15 minutes and supernatant was separated from pellet. The supernatant fraction 

was used for TALON® purification.  

 

VI.3. Protein preparation from insect cells cultures 

Cultures of 35mL with a density a 1-1.5x106 cell/mL were used for each protein 

purification step.   The cells were centrifuged at 700xg and washed once with PBS.  

The cell pellet was resuspended in 5mL lysis buffer (50mM NaPi pH 7.8, 10mM β-

mercaptoethanol, 10% (v/v) glycerol) and passed through a One-Shot® machine at 

0.7kpsi.  The lysate was centrifuged at 700xg for 10 minutes at 4°C to separate cell 
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rest and nuclear fractions.  The supernatant was further spun down at 8000xg for 10 

minutes at 4°C to further separate the mitochondrial fraction (pellet with the 

expressed protein of interest).  This mitochondrial fraction was further solubilised 

with 0.3% (w/v) sarkosyl in  buffer 1 (50mM Tris-HCl, pH 7.6, 50mM KCl, 2% (w/v) 

TX-100) for no longer than 5 minutes, to further centrifuge at 20000xg for 10 

minutes at 4°C. The supernatant was used immediately for purification. 

 

VI.4. Protein purification 

VI.4.1 Protein purification from E. coli through TALON chromatography  

The solubilised protein sample was loaded into a column (3 x 0.5cm) with 1mL of 

TALON® (Clontech Laboratories, Inc.) resin equilibrated with buffer K (50mM 

Potassium phosphate, pH 7.5; 0.1% (w/v) TX-100), with or without sarkosyl, 

depending on the treatment the protein had received for solubilisation. The unbound 

protein fraction was collected and beads were washed twice with 2 ml of buffer K.  

The protein was eluted with 2mL of buffer K, 200mM imidazole.  

 

VI.4.2 Protein purification from E. coli and insect cells using Ni-NTA 

chromatography  

500uL Ni-NTA (Qiagen) beads were equilibrated with buffer TK (50mM Tris-HCl, pH 

7.6, 50mM KCl, 2% (w/v) TX-100).  The sarkosyl-solubilised lysate was mixed with 

the beads and the purification was performed through batch method with 

centrifugation steps of 700xg at 4C. The unbound protein fraction was collected and 

3 washes were performed with buffer TK and one last wash with buffer TK, 10mM 

imidazole.  The protein was eluted with 500L buffer TK, 150mM imidazole. 

  

VI.5. MCPs reconstitution into liposomes for activity assays 

Various conditions were tested for the reconstitution of the carriers into liposomes.  

The main protocol is presented here and the combinations/changes of the 

mainstream protocol will be extended in Chapter VI. 
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VI.5.1 Liposomes preparation 

VI.5.1.1 Extrusion method 

Egg yolk phosphatidylcholine (PC) was dissolved in water to a concentration of 

0.9mg/mL.  An extrusion syringe ensemble (Avanti Polar Lipids, Inc) consisting of a 

mini-extruder and two Hamilton® syringes was set up to prepared the liposomes. 

The phospholipid solution was loaded into one of the syringes and passed through 

the extruder 11 times from one syringe to the other.  The membrane inside the 

extruder was 100nm pore size. The liposomes clarified by the end of the procedure. 

VI.5.1.2 Sonication method 

Egg yolk phosphatidylcholine (PC) was dissolved in water to a concentration of 

0.9mg/mL.  The mix was sonicated using on ice for 10 minutes, at 50% output. The 

liposomes clarified by the end of the procedure.    

 

VI.5.2 Reconstitution 

VI.5.2.1 Palmieri’s method 

5-10 g of purified protein was mixed with 1.3% (v/v) TX-114, 0.1mg/mL extruded 

phospholipids, 50mM ADP, 400g cardiolipin and 10mM MOPS, pH 7.0 in a final 

volume of 700L. The proteoliposomes were formed and filled with ADP by passing 

the mix 24 times through an Amberlite XAD-2 column (3cm X 0.5cm) equilibrated 

with 0.9mg/mL egg yolk phospholipids (not extruded), 0.5g/L cardiolipin, 50mM 

ADP, 10mM MOPS, pH 7.0. In order to eliminate the ADP outside the liposomes, 

the sample was passed through a Dowex AG1-X8 column (3cm X 0.5cm) 

equilibrated with 10mM MOPS, pH 7.0, 30mM sucrose and eluted with 1mL of the 

same buffer.  

VI.5.2.2 Klingenberg’s method 

The liposomes were solubilized with C10E5 in a PC/detergent ratio of 1.4 (Heimpel et 

al., 2001) and subsequently mixed with the purified protein in a PC/protein ratio of 

200.  Cardiolipin was added to the mixture in a range of concentrations, from 1 to 

12% (w/w) (mg cardiolipin/mg PC).  The buffer of choice (Pipes, Tris-HCl, K-Pi), 

H2O, salts (KCl, NaCl or Na2SO4) and ADP (20mM final concentration) were 

subsequently mixed with the PC/detergent/protein solution to a volume of 0.7mL. 

For the formation of the proteoliposomes, the sample was passed through a Bio-

beads column (10 x 0.3cm) equilibrated with the 10mM buffer of choice, 20mM ADP 
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and 0.4mg/mL cardiolipin (Klingenberg et al., 1995; Krämer and Heberger, 1986). 

The proteoliposomes were eluted from the column with 1mL 10mM buffer pH 7.0, 

30mM salt or 50mM sucrose (when testing absence of salts).   

 

External ADP was eliminated from the proteoliposomes by passage through a 

Sephadex G-75 column (30 x 0.3cm) equilibrated with 10mM buffer pH 7.0, 30mM 

salt or 50mM sucrose (when testing absence of salts).  The proteoliposomes were 

eluted with 2mL of the same buffer.   

 

VI.5.3 Transport assay with reconstituted liposomes 

VI.5.3.1 Palmieri’s method 

The transport assay was started by adding 5mM ATP to the proteoliposomes in a 

mix of cold and 3H-labelled ATP (PerkinElmer).  The reaction was performed in time 

points of 0, 1, 2 and 5 minutes. The reactions were stopped at each time point with 

30mM pyridoxal 5’ phosphate (Sigma-Aldrich®) and 10mM bathophenanthroline 

(Sigma-Aldrich®).  The mix was subsequently loaded into a Dowex AG1-X8 column 

(3cm X 0.5cm) equilibrated with 10mM MOPS, pH 7.0, 30mM sucrose, to eliminate 

non-specific radioactivity from the proteoliposomes.  The proteoliposomes were 

eluted with 1mL of 10mM MOPS, pH 7.0, 30mM sucrose, and were placed in 

scintillation vials with 10mL of EcoScint RX for counting of 3H. 

  

VI.5.3.2 Alternative method 

The transport assay was performed by adding ATP to the proteoliposomes, in a mix 

of cold and hot ATP (3H-labelled) in a range from 1mM to 20mM ATP. 1ml of 

proteoliposomes was used for the assay, from which aliquots were taken at time 

intervals that ranged from 15 seconds to 2 minutes.  Samples were quickly mixed 

with 1g BKA and 2g CAT; immediately loaded into a Sephadex G-75 column (30 

x 0.3cm) equilibrated with 10mM buffer, pH 7.0, 30mM salt or 50mM sucrose; and 

eluted with 2mL of the same buffer.  The eluated proteoliposomes were mixed with 

10mL EcoScint RX (National Diagnostics, Inc) in a scintillation vial and counted for 
3H.  
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VI.6. Transport assays in Escherichia coli 

The transport assays with whole E. coli cells were performed according to Tjaden et 

al. (1998) with slight modifications. The assay was performed after bacterial 

expression of MCP5 by auto-induction. The cells were centrifuged at 3000xg for 10 

minutes to eliminate media and washed with buffer A (20mM Tris-HCl, pH 7.2; 

225mM sucrose; 20mM KCl; 10 mM KH2PO4; 1mM MgSO4) to be finally 

resuspended in the same buffer to a 1:2 relation of the original culture.  

 

For each time point of the assay 100L cells were mixed with 2.5L 3H ATP and 

“cold” ATP (0 - 10mM) and buffer A to a final volume of 200L. The reactions were 

incubated at 30C, for time intervals from 15 seconds to 2 minutes and were rapidly 

placed on nitrocellulose filters in a vacuum filter. The filters were washed quickly 

with excess of buffer A and placed in scintillation vials containing 10mL of EcoScint 

RX (National Diagnostics, Inc) for scintillation counting. 

 

Part VII.  Visualization methods 

VII.1. Antibody production 

For the identification of MCP5, two peptide antibodies were produced. The amino 

acid sequences for the two peptides used for immunisation are derived from the 

respective N-terminal (N-term) and C-terminal (C-term) ends of MCP5. Peptide 

synthesis and the immunisation of rabbits were performed by EZBiolab (USA). The 

synthesized peptides ' DKKREPAPKLGFLEE ' (amino acids 3-17 of MCP5 for the 

N-term peptide antibody) and ' VDALKPIYVEWRRSN ' (amino acids 293-307 of 

MCP5 for the C-term peptide antibody) were coupled to keyhole limpet hemocyanin 

(KLH) and used for the immunization of two rabbits per peptide. Immunisation was 

initiated by injection of 1.0 mg of the KLH-coupled peptides emulsified in complete 

Freund’s adjuvant, after collection of 2 ml pre-immune serum for each rabbit. The 

first injection was followed by 3 subsequent boosts in weeks 2, 4 and 7, 

respectively, with 0.5 mg of KLH-coupled peptides emulsified in incomplete Freund’s 

adjuvant. The final antisera were collected in week 9, after determination of the 

MCP5 antibody titers for the different raised MCP5 peptide-antisera: i.e. 1:1,536,000 

for the N-term MCP5 antisera and 1:1,192,000 for the C-term MCP5 antisera 

(determined by EZBiolab, USA). 
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Whole lysates of T. brucei procyclic form were used in order to test the antibodies 

by Western blot.  Serial dilutions of the antibodies were prepared in order to detect 

the proteins, in the following range: 1:10000, 1:8000, 1:5000, 1:2500, 1:1000, 1:500 

and 1:100.  Western blots using pre-immune sera were performed as controls. 

 

VII.2. Immunofluorescence microscopy of Trypanosoma brucei MCPs 

Immunofluorescence was performed as described by Voncken et al. (2003). 

Procyclic T. brucei cells were centrifuged at 2000xg for 10 minutes, resuspended in 

5mL MEM-Pros media with MitoTracker® stain (1:10000 dilution) and incubated at 

28C for 20 minutes. The cells were washed twice with fresh MEM-Pros medium, 

and resuspended in 1mL of MEM-Pros media for subsequent incubation at 28C for 

30 minutes. After elimination of the medium, the cells were diluted in 0.4% (w/v) 

formaldehyde in PBS for fixing.  Incubation took place for 18 minutes without 

shaking, after which the cells were washed 3 times with PBS and finally 

resuspended in PBS. The cells in PBS were transferred to each square of chamber 

glass slide, and allowed to settle and attach to the poly-lysine coat for 30 minutes at 

room temperature. The slides were further incubated with 0.2% (v/v) TX-100 in PBS 

for 20 minutes before washing 3 times with excess of PBS. The blocking was 

performed with 0.5% (w/v) gelatin in PBS for 30 minutes. Afterwards, the primary 

antibody was added (1:100 dilution) in PBS/gelatin and incubated for 60 minutes 

before washing 3 times with excess of PBS. Further blocking was performed with 

150-200L of PBS/gelatin in each chamber for 5 minutes. The slides were then 

incubated with secondary antibody (1:500 dilution) in PBS/gelatin for 60 minutes in 

the dark.  Excess antibody was washed 2 times with PBS. DAPI staining 

(100ng/mL) was performed in PBS/gelatin by incubation for 15 minutes before 

washing 2 times with excess of PBS.  Slides were allowed to air-dry, before adding 

10L of embedding solution (90% (v/v) glycerol/PBS) to seal each chamber with a 

cover slide. 

When MitoTracker® was not used as mitochondrial marker, rabbit anti-LPDH 

(dihydroxylipoamide dehydrogenase) was used as a mitochondrial marker of T. b. 

brucei (Schoneck et al., 1997). Cells were examined using a Leica DM RXA digital 

deconvolution microscope, and images were recorded with a digital charge-coupled-

device camera (Hamamatsu). 
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VII.3. SDS-PAGE and Western Blotting 

SDS-PAGE was performed following the Laemmli method (Laemmli, 1970).  

Samples were prepared in Laemmli buffer (0.0625M Tris-HCl pH 6.8, 0.1% (v/v) -

mercaptoethanol, 0.1% (w/v) EDTA, 0.1% (v/v) glycerol) and heated at 95°C for 5 

minutes.  Denaturing 12% polyacrylamide gels (0.375M Tris-HCl pH 8.0, 0.1% (w/v) 

SDS, 0.1% (w/v) APS for the Running gel; and 0.125 M Tris-HCl pH 6.8, 0.1% (w/v) 

SDS, 0.1% (w/v) APS, 4% polyacrylamide, for the Stacking gel) were used to run 

samples. Gels were ran at 20mA/gel until front reached the end of the gel.  

 

For Western blotting, samples were separated by SDS-PAGE and transferred to 

nitrocellulose or PVDF membranes at 100 V for 45 minutes in buffer 48 mM Tris, 39 

mM Glycine, 20% (v/v) methanol, pH 8.3. Membranes were blocked with Tris-

buffered saline (TBS) buffer, containing 5% (w/v) skimmed dry milk, 0.1% (v/v) 

Tween 20, in agitation at room temperature for 1 hour.  Subsequently, membranes 

were incubated with primary antibody (see Table 1) in TBS buffer, 5% (w/v) 

skimmed dry milk, 0.1% (v/v) Tween 20, for 1 hour at room temperature.  Antibody 

was washed 3X with excess TBS buffer, for 10 minutes each wash.  Secondary 

antibody incubation and washes were performed in similar condition to the primary 

antibody.  Protein detection was performed using ECL detection kit (Amersham™, 

GE Healthcare) for further film exposure. 

 

Antibody Manufacturer Type Made in Target  Dilution  Technique 

Anti-c-myc Roche Monoclonal 

(clone 9E10) 

Mouse c-myc-tag 

sequence 

1:2000 WB, IFA 

Anti-nterm EZBiolab Polyclonal 

(peptide 

antibody) 

Rabbit MCP5 n-

terminus 

1:1000 WB, IFA 

Anti-cterm EZBiolab Polyclonal 

(peptide 

antibody) 

Rabbit MCP5 c-

terminus 

1:1000 WB, IFA 

 

Anti-aldolase C.Clayton’s 

lab 

Polyclonal  Rabbit  Aldolase 1:10,000 WB, IFA 

Anti-Rabbit 

IgG HRP-

linked 

Amersham Polyclonal Donkey Rabbit IgG 1:1000 WB 

Anti-Mouse 

IgG HRP-

linked 

Amersham Polyclonal Sheep Mouse 

IgG 

1:1000 WB 

Anti-Mouse Molecular Polyclonal Goat Mouse 1:500 IFA 
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IgG-Cy3 Alexa 

Fluor® 488 

Probes IgG 

Anti-Rabbit  

IgG-Cy3 Alexa 

Fluor® 488 

Molecular 

Probes 

Polyclonal Goat Rabbit IgG 1:500 IFA 

ANT (H-188) Santa Cruz 

Biotechnology, 

Inc. 

Polyclonal Rabbit  Amino 

acids 45-

233 of 

human 

ANT1 

1:2000 WB 

Table 1. Antibodies used for the detection of proteins in Western blot (WB) and 

Immunofluorescence microscopy (IFA) experiments. 

 

Part VIII.  Phenotype assessment methods 

VIII.1. Growth curves in MEM-Pros (NMP), MEM-Pros in glucose-depleted FCS 

(GDMP) and MEM-Pros glucose supplemented (MPglu). 

 

MEM-Pros medium (Appendix) was used for all the cell culture of trypanosomes.  

The media was completed by the addition of 10% (v/v) heat-inactivated foetal calf 

serum (FCS), 7.5mg/L hemin and 5000U Penicillin/Streptomycin. Three versions of 

MEM-Pros were used for growth curve purposes. NMP stands for Normal MEM-

Pros; GDMP (Glucose Depleted MEM-Pros) was prepared by incubating the FCS 

with glucose oxidase and catalase prior to completing the media.  MPglu was 

prepared by addition of 5mM glucose.  

 

The growth curves were set up with 5x105 cells/mL of both mcp5/MCP5-nmycti and 

PCF449 Trypanosoma brucei.  The mcp5/MCP5-nmycti cell line was tested both 

uninduced and induced with tetracycline. Cells were counted everyday (24, 48, 72 

and 96 hours) and culture aliquots were taken for RNA isolation, metabolite 

measurements and Western blot analysis.  

 

For metabolite measurements, 1mL of culture was precipitated with 100L 35% (v/v) 

perchloric acid and incubated on ice for 10 minutes. The sample was further 

neutralized with 150L 0.2M MOPS/5M KOH and centrifuged at 20000xg for 10 

minutes to eliminate the precipitated protein.  The deproteinized samples were 

stored at -80°C for further analysis.  Proline, glucose, acetate and succinate were 

measured in these samples.   
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For western blot analysis, 2x105 cells/L were used as dilution factor in Laemmli 

buffer.   

 

Carbon sources consumption and metabolites production data was normalized into 

[metabolite] and/or [carbon source]/106 cells in culture.  Each set of normalized data 

was submitted to One-way ANOVA (Analysis of Variance) test (Currell and 

Dowman, 2005).  Where significant differences were observed (p<0.05), the Holm-

Sidak method for control group (pair-wise) was used to determine significance 

between KOs and PCF449 profiles (control).  The statistical analysis was performed 

using SigmaPlot 11 © 2008, Systat Software, Inc.  

 

VIII.2. Determination of carbon sources consumption  

VIII.2.1 Proline 

20L of sample was mixed with 100mL 3% sulfosalicylic acid, 200L acetic acid, 

200l proline reagent (25mg/mL ninhydrine, 60% acetic acid, 2.4M phosphoric acid) 

and 80L H2O and incubated at 100°C for 1 hour.  Sample was mixed with 500L 

toluene and vortexed to extract the upper organic phase with the proline.  Top 

phase was separated and further diluted in toluene for O.D. measuring at 520nm. 

   

VIII.2.2 Glucose 

Reaction mixes were prepared in 1mL final volume of 25mM Tris-HCl pH 7.5, 2mM 

MgSO4, 5mM ATP, 0.72mM NADP+, 1U glucose-6-phosphate dehydrogenase 

(G6PDH), 1U hexokinase (HK), using 50mL sample.  O.D. at 340nm was measured 

before and after addition of HK for measurement of NADPH (6220 M-1 molar 

extinction coefficient) as presented in the following equation: (Boehringer-

Mannheim, 1973). 

 

   HK      G6PDH 

Glucose + ATP  G-6-P + ADP  6-phosphonoglucolactone + NADPH            eq.1 
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VIII.3. Determination of metabolites excretion 

VIII.3.1 Succinate 

Succinate was measured using a Succinic Acid assay kit from Megazyme®.  

Reaction mixes were performed as described by manufacturer’s kit instruction. O.D. 

was measured at 340nm to assess the disappearance of NADH, as presented in the 

following equation: 

 

     SCS 

Succinate + ATP + CoA  succinyl-CoA + ADP + Pi 

         PK 

ADP + PEP  ATP + pyruvate 

   L-LDH 

Pyruvate + NADH + H+  L-lactate + NAD+                                                        eq. 2 

 

VIII.3.2 Acetate  

Acetate was measured using an Acetic Acid assay kit from Megazyme®.  Reaction 

mixes were performed as described by manufacturer’s kit instruction.  O.D. was 

measured at 340nm to assess the disappearance of NADH, as presented in the 

following equation: 

                            AK 

Acetic acid + ATP  acetyl-phosphate + ADP 

   PTA 

Acetyl-phosphate + CoA  acetyl CoA + Pi 

                   PK 

ADP + PEP  pyruvate + ATP 

      D-LDH 

Pyruvate + NADH  NAD+ + D-Lactic acid                                                          eq. 3    

 

VIII.4. Mitochondrial ATP production assay 

The mitochondrial ATP assay was performed according to Schneider et al. 

(Schneider et al., 2007) with modifications.  Cells (trypanosomes) were obtained 

from a 72-hours grown culture and washed with SoTE buffer (20mM Tris-HCl pH 

7.5, 2mM EDTA, 0.6M Sorbitol), to be further resuspended in SoTE at a 

concentration of 1x108 cells/mL. Permeabilization of whole cells was performed with 

0.008% (w/v) digitonin, allowing the detergent to permeabilize the cells for 5 minutes 

at room temperature, followed by immediate centrifugation at 8000xg for 5 minutes 

at 4°C.  The supernatant was eliminated and pellet was washed twice with SoTE.  
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The final pellet (mitochondrial fraction) was resuspended in 0.750mL AAB (ATP 

Assay Buffer; 20mM Tris-HCl pH 7.4, 15mM KH2PO4, 0.6M Sorbitol, 5mM MgSO4) 

per every 1x108 cells initially used.   

 

100L of mitochondria were used for the assay.  The mitochondrial ATP production 

was started by addition of 67M ADP and 5 mM substrate.  The different substrates 

tested were: succinate, -ketoglutarate and glycerol-3-phosphate. The presence of 

different inhibitors was tested in the ATP production assay: antimycin (25mg/mL), 

FCCP (5mM), malonate (10mM), rotenone (15mM) and carboxyatractyloside (CAT) 

(4g/mL).  All inhibitors were purchased from Sigma-Aldrich®. The samples to be 

tested with inhibitors where incubated with the drug 10 minutes prior to starting the 

reaction with ADP and substrate.  Once started, the reaction was allowed to take 

place for 30 minutes at room temperature.  

 

The reaction was stopped by addition of 5L 35% (v/v) perchloric acid and 

incubating for 5 minutes on ice.  The precipitated protein was eliminated from the 

sample by centrifugation 15000xg for 5 minutes at 4°C.  The supernatant was 

placed in a fresh eppendorf tube and neutralized with 20L of 1M Tris/1M KOH 

solution.   

 

Luciferase activity was measured in the sample using ATP Bioluminescence Assay 

Kit CLS II (Roche®).  For the assay, 5L of sample were mixed with 45 L AAB and 

50L of luciferase reagent and placed in luminometer for RLU (Relative Light Units) 

measurement.  
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Chapter III.  Mitochondrial Carrier Family inventory of Trypanosoma brucei 

brucei: identification, expression and subcellular localization. 

 

1. Introduction 

Like mitochondria from higher eukaryotes, the mitochondria of Trypanosoma brucei 

are thought to be impermeable to several metabolites (Schneider et al., 2007), 

implying the presence of specific membrane-bound transporters. Such transporters 

are required for the maintenance of the cellular redox balance, and most of the 

known or postulated T. brucei mitochondrial pathways require the transport of 

metabolites between the mitochondria and other cellular compartments, i.e. the 

glycosome and the cytosol. The only information available about T. brucei 

mitochondrial metabolite transporters is what can be deduced from metabolic 

studies (van Weelden et al., 2005; Schneider et al., 2007). Recently, the molecular 

and functional characterisation of MCP6 was reported - the first mitochondrial 

metabolite transporter identified for trypanosomes and a novel member of the 

mitochondrial carrier family (Colasante et al., 2006).  

 

The mitochondrial carrier family (MCF) is defined as a large and diverse group of 

structurally related proteins that are located in the mitochondrial inner membrane 

and mediate the transport of a wide range of metabolic intermediates (see Chapter 

1). Conserved sequence features of MCF proteins can be used to identify proteins 

of unknown function as members of the mitochondrial carrier family (Millar and 

Heazlewood, 2003; Picault et al., 2004; Palmieri et al., 2006; Wohlrab, 2006). All 

MCF proteins exhibit a canonical sequence structure consisting of three tandem 

repeats of about 100 amino acids, containing each two transmembrane (TM) alpha-

helices connected by a hydrophilic loop and a conserved signature sequence motif 

(Saraste and Walker, 1982; Aquila et al., 1987). Using the conserved sequence 

features of MCF proteins, the genome of Saccharomyces cerevisiae was predicted 

to encode 34 MCF proteins (Palmieri et al., 2006), whereas the Dictyostelium 

discoideum (Satre et al., 2007), Arabidopsis thaliana (Millar and Heazlewood, 2003; 

Picault et al., 2004) and human (Wohlrab, 2006) genomes were predicted to encode 

31, 58 and 67 MCF proteins respectively. So far, the functional characterization of 

MCF proteins, by metabolic studies of knockout and mutant cell lines or by in vitro 

reconstitution in liposomes and transport assays (Palmieri et al., 2006), has been 

exclusively done for those identified in multicellular eukaryotes and yeast 



 101

(Opisthokonta). Virtually nothing is however known about MCF proteins from 

organisms in other eukaryotic branches. Functional and structural knowledge of 

mitochondrial carrier proteins derived from widely divergent organisms such as 

trypanosomes, and their comparison across evolution, may give valuable insights 

into conserved amino acid residues and sequence motifs important for the structure 

and transport function of MCF proteins. Furthermore, the identification and 

functional characterisation of T. b. brucei transporters involved in the shuttling of 

metabolites between the mitochondria, glycosomes and cytosol is of key importance 

for full understanding of the remarkable compartmentalisation of the energy 

metabolism in these parasites.  

 

Analysis of the genome databases (http://www.genedb.org) from T. b. brucei strain 

TREU92 (Berriman et al., 2005), Trypanosoma cruzi strain CL Brener (El-Sayed et 

al., 2005) and Leishmania major strain Friedlin (Ivens et al., 2005), allowed the 

identification of different genes encoding putative MCF proteins with significant 

homology to known mitochondrial carrier proteins from higher eukaryotes. In this 

chapter, the molecular analysis of MCF protein-coding genes from T. b. brucei is 

described. Their putative transport function is predicted by sequence analysis, 

phylogenetic reconstruction and homology-based modelling. We further analysed 

the expression of the different MCF genes at the mRNA level in both bloodstream-

form and procyclic-form T. brucei, and confirmed the mitochondrial localization of 

the encoded MCF proteins in procyclic-form T. b. brucei by immunofluorescence 

microscopy.  

 

2. Results 

2.1. Identification of putative T. b. brucei mitochondrial carrier family proteins  

 

Amino acid sequences of previously identified and functionally characterized 

mitochondrial carrier family (MCF) proteins from other eukaryotes were used as 

BLASTP queries to identify putative MCF protein-coding genes in the genome 

sequence database of Trypanosoma brucei brucei strain TREU927 

(http://www.geneDB.com). In total 26 genes coding for 24 different T. b. brucei MCF 

proteins (TbMCP1-24) could be identified and are listed in Table 1.  
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TbMCP GeneDB ID kDa pI 
Human  
homologue  

Id/Sim   
(%) 

Yeast 
homologue  

Id/Sim     
(%) 

Transport function supported by 

Similarity (BLASTP) 
Phylogenetic 
Reconstruction  

Conserved signature and 
CP residues (see Fig. 3) 

1 Tb09.211.3200 35.7 9.63 
SLC25A17 
(PMP34) 

28/49 
P40556 
(YIA6) 

25/45 ATP (human) 
ATP (SLC25A17: 
PMP34) 

Unclear, conserved ‘W’ at 
pos. 3 M2a 

2 Tb11.01.5960 38.0 9.65 
SLC25A32 
(MFT) 

25/43 
P40464 
(FLX1) 

26/45 
Folate (human) 
FAD (yeast) 

ATP (SLC25A17: 
PMP34) 

unclear 
conserved ‘W’ at pos. 3 M2a 

3 Tb09.211.2370 33.2 9.11 ? - ? - - 
no clustering w. spec. 
SLC25A 

- 

4 Tb10.70.2290 78.0 9.49 
SLC25A16 
(GDC) 

42/59 
P38702 
(LEU5) 

32/52 CoA (human/yeast) CoA CoA 

5a 
b 
c 

Tb10.61.1810  
Tb10.61.1820  
Tb10.61.1830 

34.1 9.72 
SLC25A4 
(AAC1) 

53/69 
P18239 
(ANT2) 

64/78 ADP/ATP (human/yeast) ADP/ATP 
ADP/ATP, conserved 
‘RRRMMM’ in M3a 

6 Tb927.4.1660 42.2 9.30 
SLC25A25 
(APC)  

30/48 
P18239 
(ANT2) 

30/47 
ATP-Mg/Pi (human) 
ATP/ADP (yeast) 

ATP-Mg/Pi 
ATP-Mg/Pi, conserved ‘A’ at 
pos. 3 in M3a 

7 Tb10.61.0610 35.9 9.79 
SLC25A19 
(TPC) 

26/45 
Q12251 
(unknown) 

25/44 
thiamine pyrophosphate 
(human) 

thiamine 
pyrophosphate 

thiamine pyrophosphate  

8 Tb10.406.0470 42.4 9.20 
SLC25A3 
(PTP) 

42/58 
P40035 
(PIC2) 

40/58 phosphate (human/yeast) phosphate 
Phosphate, conserved ‘V’ at 
pos. 6 in M3a 

9 Tb11.02.2960 29.9 9.47 
SLC25A45 
(CAC) 

33/53 
Q12289 
(CRC1) 

34/50  
carnitine/acylcarnitine 
(human/yeast) 

ornithine carnitine/acylcarnitine 

10 Tb11.03.0870 34.0 8.85 
SLC25A15 
(ORNT) 

31/48 
Q12375 
(ORT1) 

31/52 ornithine (human/yeast) carnitine/acylcarnitine ornithine 

11 Tb09.211.1750 34.3 9.29 
SLC25A3 
(PTP) 

53/66 
P40035 
(PIC2) 

42/61 phosphate (human/yeast) phosphate 
Phosphate,  conserved ‘V’ at 
pos. 6 in M3a 

12 Tb10.389.0690 33.1 9.88 
SLC25A11 
(OGC1) 

28/46 
Q06142 
(DIC1) 

22/41 
2-
oxoglutarate/dicarboxylate 
(human/yeast)  

2-
oxoglutarate/dicarboxy
late 

2-oxoglutarate/dicarboxylate  

13 Tb927.2.2970 34.0 9.74 ? - 
P38988 
(YHM1) 

46/66 GDP/GDP (yeast) 
no homologue found 
in human 

- 

14 Tb10.389.0340 37.4 9.93 
SLC25A44 
(unknown) 

23/39 ? - 
Function SLC25A44 
unknown 

groups with 
SLC25A44 

- 

15 Tb927.8.1310 36.9 8.32 
SLC25A5 
(AAC2) 

30/45 
P18239 
(ANT2) 

27/47 ATP/ADP (human/yeast) ATP/ADP 
ADP/ATP: CP II, III 
partial ‘RRRMM’ motif (M3a) 

16 Tb927.7.3940 36.3 8.72 
SLC25A31 
(AAC4) 

23/40 
P18239 
(ANT2) 

24/39 ATP/ADP (human/yeast) 
branches close to  
thiamine 
pyrophosphate 

unclear 

17 Tb927.3.2980 31.1 8.50 
SLC25A37 
(MFRN) 

31/48 
P10566 
(MRS3) 

31/48 iron  (human/yeast) iron 
iron 
conserved ‘S’ at pos. 9 in 
M2b 
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18 Tb927.8.3330 37.7 
10.2
6 

? - ? - - 
no clustering w. spec. 
SLC25A 

- 

19 Tb927.8.4440 40.3 7.56 
SLC25A44 
(unknown) 

24/41 ? - 
Function SLC25A44 
unknown 

groups with 
SLC25A44 

- 

20 Tb10.61.2510 33.0 9.94 
SLC25A26 
(SAMC) 

36/50 
P38921 
(PET8) 

32/46 
S-adenosylmethionine 
(human/yeast) 

S-adenosylmethionine CPI, III 

21 Tb11.01.5040 35.1 9.74 
SLC25A29 
(CACL) 

28/42 ? - 
carnitine/acylcarnitine-like 
(human) 

branches close to   
carnitine/acylcarnitine 

carnitine/acylcarnitine 

22 Tb11.01.5950 38.7 9.54 
SLC25A32 
(MFT) 

28/46 
P40464 
(FLX1) 

28/47 
Folate (human) 
FAD (yeast) 

ATP (SLC25A17: 
PMP34) 

unclear 
conserved ‘W’ at pos. 3 M2a 

23 Tb927.5.1550 34.1 9.61 
SLC25A36 
(PNC) 

27/45 
EDN64801 
(RIM2) 

29/49 
pyrimidine nucleotide  
(human/yeast) 

pyrimidine nucleotide 
or FAD 

unclear 
‘F’ at pos. 3 M2a 

24 Tb927.8.5810 32.9 8.49 
SLC25A29 
(CACL) 

36/52 
Q12375 
(ORT1) 

32/55 
carnitine/acylcarnitine-like 
(human) 
ornithine (yeast) 

carnitine/acylcarnitine ornithine 

 
Table 1. MCF protein inventory of Trypanosoma brucei brucei. T. b. brucei MCF protein (TbMCP) sequences were retrieved from 

www.genedb.org, and human (SLC25A) and Saccharomyces cerevisiae MCF protein sequences from www.ncbi.nlm.nih.gov.  Abbreviations: 

kDa, kilodalton; pI, isoelectric point; Id, identity; Sim, similarity; CP, contact point; w. spec., with specific; ?, no specific homologue found.  
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Reciprocal database searches and sequence analysis confirmed that the identified 

T. b. brucei proteins are indeed members of the mitochondrial carrier family: all 

TbMCPs show significant amino acid similarity (39%-78%) to known human 

(SLC25A) and S. cerevisiae MCF proteins, all contain six transmembrane (TM) 

helices, and all consist of three semi-conserved protein domains of about 100 amino 

acids, each of which harbours a canonical MCF signature sequence motif (Millar 

and Heazlewood, 2003; Picault et al., 2004; Palmieri et al., 2006; Wohlrab, 2006). 

The calculated isolelectric points (IP) of the identified TbMCPs are basic with an 

average of about 9.3 (Table 1), which is characteristic for MCF proteins (Millar and 

Heazlewood, 2003; Picault et al., 2004; Palmieri et al., 2006; Wohlrab, 2006). The 

only deviation is found for TbMCP19, which has a significant lower predicted IP of 

about 7.6 (Table 1). The calculated molecular weights (MW) of virtually all identified 

TbMCP proteins vary between 30 and 42 kDa (Table 1), which is within the size 

range of MCF proteins from other eukaryotes (Millar and Heazlewood, 2003; Picault 

et al., 2004; Palmieri et al., 2006; Wohlrab, 2006). The only exception here is 

TbMCP4, for which a calculated MW of about 78 kDa is predicted (Table 1). 

 

The TbMCPs are nearly all encoded by single copy genes. The exception is 

TbMCP5, for which 3 identical neighbouring gene copies, Tb10.61.1810 

(TbMCP5A), Tb10.61.1820 (TbMCP5B), and Tb10.61.1830 (TbMCP5C), exist in the 

T. b. brucei genome (Table 1). The distribution of the TbMCP-coding genes is about 

proportional to the sizes of the 11 megabase-sized chromosomes (Melville et al., 

2000): most of the genes are situated on the largest chromosomes, 8-11, whereas 

medium-sized chromosomes 2-5 and 7 each contain only one TbMCP gene, and no 

TbMCP-coding gene was found on the smallest chromosomes, 1 and 6. No 

evidence was found for clustering of TbMCP-coding genes on the T. b. brucei 

genome, except for the above-mentioned TbMCP5A-C genes.  

 

For all 24 TbMCPs, highly conserved orthologous genes could be identified in the 

genome databases (http://www.genedb.org) of the two related Kinetoplastids, 

Trypanosoma cruzi strain CL Brener and Leishmania major strain Friedlin (see 

Table 2). In the T. cruzi genome, two copies were found for most MCP genes. This 

is expected, since the T. cruzi strain CL Brener strain is known to be a hybrid, with 

many genes being present as two allelic versions in the genome database (El-

Sayed et al., 2005; Arner et al., 2007). In the Leishmania major genome, most of the 

orthologous MCF protein-coding genes are present as 1-3 copies; exceptionally, 

LmMCP12 is present as 8 identical and in tandem arranged copies (Table 2).
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TbMCP T. b. brucei  T. cruzi  Exp L. major  Exp 

1 Tb09.211.3200 
Tc00.1047053510663.64  
Tc00.1047053510737.30 

1.8e-71 
2.9e-71 

LmjF35.3330 1.3e-67 

2 Tb11.01.5960 
Tc00.1047053511725.134  
Tc00.1047053511725.140 

4.5e-82          
3.2e-56 

LmjF32.1110      
LmjF32.1120 

6.5e-50     
5.3e-48 

3 Tb09.211.2370 Tc00.1047053508461.284 1.7e-96 
LmjF35.3990           
LmjF35.3330 

3.1e-27     
2.1e-21 

4 Tb10.70.2290 
Tc00.1047053508659.18  
Tc00.1047053510291.14 

2.7e-219        
7.1e-219 

LmjF36.0510 4.1e-167 

5a,b,c Tb10.61.1810/20/30 
Tc00.1047053506211.160  
Tc00.1047053511289.70 

4.8e-149        
2.1e-148 

LmjF19.0200  
LmjF19.0210 

5.4e-133     
5.4e-133 

6 Tb927.4.1660 Tc00.1047053504057.140 1.1e-135 LmjF34.3060 1.1e-86 
7 Tb10.61.0610 Tc00.1047053511365.80 8.0e-124 LmjF19.1110 1.0e-99 

8 Tb10.406.0470 Tc00.1047053509551.30 6.4e-51 
LmjF35.4430           
LmjF35.4420           
LmjF05.0290 

1.8e-47     
5.4e-46     
9.0e-45 

9 Tb11.02.2960 
Tc00.1047053504131.190  
Tc00.1047053504125.50 

3.3e-102 
4.2e-102 

LmjF16.0200           
LmjF25.0210 

2.5e-32   
9.7e-24 

10 Tb11.03.0870 Tc00.1047053504109.70 1.1e-117 LmjF25.0210 2.8e-97 

11 Tb09.211.1750 Tc00.1047053509551.30 4.2e-150 
LmjF35.4430           
LmjF35.4420 

9.0e-140 
1.2e-135 

12 Tb10.389.0690 
Tc00.1047053503939.20  
Tc00.1047053509805.190 

3.7e-103 
7.7e-103 

LmjF18.1260 
LmjF18.1265 
LmjF18.1270           
LmjF18.1275          
LmjF18.1280 
LmjF18.1285 
LmjF18.1290 
LmjF18.1300  

4.8e-86 
1.7e-83 
4.4e-83 
4.4e-83 
4.4e-83 
4.4e-83 
4.4e-83 
3.9e-84   

13 Tb927.2.2970 
Tc00.1047053508737.150  
Tc00.1047053509127.50 

4.8e-94   
1.3e-93 

LmjF02.0670 4.8e-86 

14 Tb10.389.0340 
Tc00.1047053506359.70  
Tc00.1047053503521.39 

3.3e-95   
1.1e-94 

LmjF18.1000 5.1e-76 

15 Tb927.8.1310 
Tc00.1047053510835.24  
Tc00.1047053506401.304 

6.1e-78 
1.0e-77 

LmjF07.0530 1.0e-77 

16 Tb927.7.3940 Tc00.1047053511249.10 5.5e-93 LmjF14.0990 2.9e-63 

17 Tb927.3.2980 
Tc00.1047053508153.630  
Tc00.1047053510315.20 

7.4e-89 
1.5e-88 

LmjF29.2780 1.7e-74 

18 Tb927.8.3330 Tc00.1047053509769.90 5.3e-79 LmjF23.1370 5.9e-67 

19 Tb927.8.4440 
Tc00.1047053508989.20  
Tc00.1047053509569.110 

1.4e-124 
3.8e-124 

LmjF10.1020 7.3e-90 

20 Tb10.61.2510 
Tc00.1047053511283.124  
Tc00.1047053506525.130 

1.9e-58   
1.7e-57 

LmjF32.0110 1.0e-37 

21 Tb11.01.5040 
Tc00.1047053510359.69  
Tc00.1047053506755.74 

1.3e-82 
1.3e-82 

LmjF09.1270 7.7e-63 

22 Tb11.01.5950 
Tc00.1047053511725.140 
Tc00.1047053511725.134 

5.6e-84 
4.8e-62 

LmjF32.1110           
LmjF32.1120 

1.4e-70 
1.2e-62 

23 Tb927.5.1550 
Tc00.1047053506739.80  
Tc00.1047053510819.100 

1.6e-102 
4.2e-102 

LmjF15.0120 6.9e-94 

24 Tb927.8.5810 
Tc00.1047053510603.90 
Tc00.1047053509109.114 

8.9e-109 
6.3e-108 

LmjF16.0200 1.5e-82 

Table 2. Orthologous TbMCP genes in T. cruzi and L. major. T. cruzi and 

Leishmania protein sequences were retrieved from www.genedb.org. Abbreviation: 

Exp, expectation (probability)
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2.2. BLASTP analysis and phylogenetic reconstruction 

 

The putative transport function of the identified TbMCPs was predicted by using 

different approaches. Reciprocal BLASTP database searches and phylogenetic 

reconstruction were used to determine the similarity of the identified TbMCPs to 

functionally characterised MCF proteins from other eukaryotes. Substrate 

specificities have been determined for the majority of human (SLC25A) and S. 

cerevisiae MCF proteins, either by in vitro proteoliposome-based transport assays 

using purified MCF proteins, or by genetic and physiological experiments pointing to 

a particular subset of substrates (Palmieri, 2004; Palmieri et al., 2006; Wohlrab, 

2006). Based on the type of transported substrate, MCF proteins can generally be 

divided into 6 functional groups: nucleotide, inorganic phosphate (Pi), carboxylic 

acid, amino acid, proton, and iron carriers (Kunji and Robinson, 2006; Palmieri, 

2004; Palmieri et al., 2006; Wohlrab, 2006). Highly similar MCF proteins were found 

to transport identical or similar substrates (Millar and Heazlewood, 2003; Picault et 

al., 2004; Palmieri et al., 2006; Wohlrab, 2006).  

 

BLASTP database searches using the identified TbMCPs as queries resulted in the 

retrieval of homologous MCF proteins for all TbMCPs with significant E-value scores 

ranging between e-23 and e-114 (not shown). Table 1 shows the similarities found 

between the TbMCP queries and the retrieved human (SLC25A) or S. cerevisiae 

MCF protein sequence top hits. Of the 24 identified TbMCPs, 20 were found to 

show significant amino acid sequence similarity to specific human and S. cerevisiae 

MCF proteins. Eleven of these sequences (Table 1) were found to be of the 

nucleotide transport type; the most conserved members were TbMCP5A-C, showing 

78% amino acid similarity to the S. cerevisiae ADP/ATP carrier ANT2 and 69% 

similarity to the human ADP/ATP carrier SLC25A4 (AAC1). Five TbMCPs could be 

assigned to the amino acid transport group, including one S-adenosylmethionine 

carrier (TbMCP20) and four putative carriers for carnitine/acylcarnitine or ornithine-

like substrates (TbMCPs 9, 10, 21 and 24). In addition, TbMCP8 and TbMCP11 

belong to the inorganic phosphate transport group, both showing 58%-66% 

sequence similarity (Table 1) to inorganic phosphate carriers from S. cerevisiae 

(PIC2) and human (PTP).  
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TbMCP12 could be assigned to the carboxylate transport group, with 41%-46%; 

sequence similarity (Table 1) to S. cerevisiae and human oxoglutarate and 

dicarboxylate carriers. Finally, TbMCP17 could be assigned to the iron transport 

group, having 48% sequence similarity (Table 1) to iron carriers from yeast (MRS3) 

and humans (MFRN). For the remaining 4 TbMCPs, no specific transport function 

could be predicted. TbMCPs 14 and 19 showed substantial similarity to the human 

MCF protein homologue SLC25A44 (without known transport function), and 

TbMCPs 3 and 18 could not be assigned to any particular group because they had 

similar, low scores for various MCF proteins from different groups (Table 1).  

 

The BLASTP-predicted functions of the 24 TbMCPs were next assessed by 

phylogenetic reconstruction. The resulting neighbor-joining (NJ) tree is shown in 

figure 1 and includes, in addition to the TbMCPs, 43 different human (SLC25A) MCF 

protein sequences. For the largest MCF transport group, i.e. the nucleotide carriers, 

at least 6 different subgroups (Figure 1, marked solid green) can be distinguished: in 

each subgroup, one or more SLC25A proteins were shown previously to transport a 

specific nucleotide or nucleotide-related substrate (Palmieri et al., 2006; Wohlrab, 

2006). TbMCP5 and TbMCP15 cluster specifically with the human ADP/ATP 

carriers SLC25A4 (AAC1) and SLC25A5 (AAC2), which is in agreement with their 

BLASTP-predicted transport function (Table 1). Concurrence of BLASTP-based 

function prediction and phylogenetic clustering was also observed for other 

TbMCPs, including TbMCP1 (SLC25A17: ATP carrier), TbMCP4 (SLC25A16: 

Coenzyme A carrier), TbMCP6 (SLC25A25: ATP-Mg/Pi carrier), TbMCP7 

(SLC25A19: thiamine pyrophosphate carrier), and TbMCP23 (SLC25A36: 

pyrimidine nucleotide carrier) (Table 1). The functional predictions for TbMCP2 and 

TbMCP22 are contradictory and change depending on the database and method 

used (see Table1). For example, BLASTP analysis suggests that, when using the 

human MCF proteins for comparison, TbMCP2 and TbMCP22 are rather similar to 

the folate carrier SLC25A32, whereas BLASTP searches against yeast MCF 

proteins suggests that they are more similar to the flavin (FAD) carrier FLX1. 

Phylogenetic reconstruction, meanwhile, suggests that both TbMCPs are more 

related to the ATP carrier SLC25A17 (PMP34) then to the folate carrier SLC25A32 

(Fig. 1). In summary, the rather strong divergence of the TbMCP2 and TbMCP22 

sequences prohibits similarity-based functional assignment.  
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Fig. 1. Neighbour-joining tree showing the evolutionary relationship between 

TbMCPs and 43 human (SLC25A) MCF proteins. Bootstrap values above 50% are 

indicated at the relevant nodes. Coloured balloons are used to mark the major 

functional MCF subgroups: green, nucleotide carriers; pink, amino acid carriers; 

blue, inorganic phosphate carriers; yellow, dicarboxylate/oxoglutarate carriers; and 

orange, iron carriers. Blue text boxes represent MCF subgroups for which no T. b. 

brucei homologues could be identified. Question marks indicate TbMCPs for which 

no transport function could be predicted.  

 

The phylogenetic analysis divided the amino acid carriers into 4 different subgroups 

(Figure 1, marked pink). Two of these, the carnitine/acylcarnitine carriers and 

ornithine carriers, are evolutionary very closely related, whereas the S-

adenosylmethionine and the glutamate/aspartate carriers are more divergent (Fig. 

1). The Neighbour-Joining tree grouped TbMCP10 and TbMCP24 with the 

acylcarnitine/carnitine carrier SLC25A45, whereas TbMCP9 grouped with the 

ornithine carrier SLC25A15 (Fig. 1). This result is in contradiction with the BLASTP 

results, which suggested the reverse assignment (see Table 1). This contradiction is 

most probably caused by the recent branching and close evolutionary relationship of 

the carnitine/acylcarnitine and ornithine carrier subgroups (Fig. 1), which in 

combination with the divergence of the T. b. brucei sequences could prohibit the 

assignment of a specific carnitine/acylcarnitine or ornithine transport function. The 
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putative amino acid carrier TbMCP20 groups confidently with the human S-adenosyl 

methionine carrier SLC25A26, in agreement with its BLASTP-predicted transport 

function (Fig.1, Table 1). Branching of TbMCP21 close but prior to the 

carnitine/acylcarnitine transporter subgroup (Fig. 1) and its sequence similarity to 

the human carnitine/acylcarnitine-like carrier SLC25A29 (Table 1) suggests that this 

MCF protein may transport a carnitine-related substrate.  

 

In agreement with the BLASTP results, TbMCP8 and TbMCP11 grouped with the 

inorganic phosphate transporter SLC25A3, TbMCP12 with the oxoglutarate 

(SLC25A10) and dicarboxylate carriers (SLC25A11), and TbMCP17 with the iron 

transporter SLC25A37 (Fig. 1). TbMCP14 and TbMCP19 clustered with SLC25A44, 

a human MCF protein without known function, while TbMCP16 branched closely to 

the thiamine pyrophosphate transporter subgroup. Clustering of TbMCPs 14, 16 and 

19 within the nucleotide carrier part of the phylogenetic tree (Fig. 1) suggests that 

these MCF proteins are most probably involved in the transport of nucleotides or 

nucleotide-related substrates.  

 

2.3. Homology-based modelling of TbMCPs 

 

The molecular structure of the Bos taurus mitochondrial ADP/ATP carrier was 

recently resolved by x-ray crystallography (Pebay-Peyroula et al., 2003; Nury et al., 

2006). The crystallographic model can be used to predict a three-dimensional 

structure for other similar MCF proteins, as has been done previously for the yeast 

mitochondrial citrate transport protein (Walters and Kaplan, 2004) and MCF proteins 

of the slime mould Dictyostelium discoideum (Satre et al., 2007). We used a similar 

homology-modelling approach for the 24 TbMCPs. As shown in Figure 2, a 

satisfactory modelling of the backbone structure could be obtained for 19 of them, 

confirming the remarkable structural conservation of MCF proteins (Pebay-Peyroula 

et al., 2003; Nury et al., 2006). The modelled MCP protein structures all display the 

typical barrel-shaped structure, as observed previously for the bovine mitochondrial 

ADP/ATP carrier (Pebay-Peyroula et al., 2003; Nury et al., 2006). Nevertheless, 

many structural differences could be
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Fig. 2. Top view of 3D protein structures obtained after homology-based modelling 

of TbMCPs. The models all display the conserved barrel-shaped structure of MCF 

members. TbMCPs were modelled using SWISS-MODEL and CPHmodels, and the 

3D-structures 1okc and 2c3e for threading. The obtained 3D-structures were viewed 

and edited with PyMOL. The modelled 3D protein structure (1okc) of the bovine 

mitochondrial ADP/ATP carrier (Nury et al., 2006; Pebay-Peyroula et al., 2003) is 

shown for comparison. Red arrows point to structural deviations such as 

unstructured loops.  

 

observed, including unstructured loops or beta sheet regions (see Fig. 2). For the 

TbMCPs 1, 2, 12, 17 and 22, no homology-based structure models could be 

predicted, presumably because these MCF sequences are too dissimilar to that of 

the Bos taurus mitochondrial ADP/ATP carrier. 

 

2.4. Conservation of MCF signature sequences  

 

A hallmark of MCF proteins is the canonical signature sequence 

Px(D/E)x2(K/R)x(K/R)x20-30(D/E)Gx4-5(W/F/Y)(K/R)G (x = any amino acid residue) 

found in each of the three semi-conserved repetitive protein domains (Saraste and 

Walker, 1982; Aquila et al., 1987). Protein structure studies suggested that the 
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signature sequence contributes to the typical barrel shape of mitochondrial carrier 

proteins (Pebay-Peyroula et al., 2003; Nury et al., 2006). The first part of the motif, 

‘Px(D/E)x2(K/R)x(K/R)’, is located at the carboxy-terminal ends of the odd-numbered 

TM helices H1, H3 and H5, whereas the second part, ‘(D/E)Gx4-5(W/F/Y)(K/R)G’, is 

located 20-30 amino acids downstream, after the amphipathic helices h1-2, h3-4, 

and h5-6 (see Fig. 3).  

 

 

Fig. 3. Schematic representation of the conserved tripartite MCF protein structure. 

The six transmembrane helices are labelled H1-6, whereas the hydrophilic loops, 

connecting the 2 transmembrane domains found in each repeat (repeat 1-3), are 

labelled h1-2, h3-4 and h5-6, respectively. The first part of the canonical signature 

sequence motif, Px(D/E)xx(K/R)x(K/R), located at the end of the odd-numbered 

transmembrane helices, is labelled M1a, M2a, and M3a. The second part of the 

canonical signature sequence motif, (D/E)Gxn(K/R)G, located at the end of each 
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hydrophilic loop, is labelled M1b, M2b, and M3b. Substrate contact points are 

located downstream of the second part of the signature sequence and are labelled 

CPI, CPII and CPIII.  TbMCPs (this paper) and related MCF protein sequences from 

human (SLC25A) and S. cerevisiae were aligned using ClustalW, and the alignment 

was manually edited using Se-Al v2.0a11. For each of the different functional 

transporter subgroups only those parts of the alignments containing the conserved 

signature sequences (identical signature sequence residues are marked red) and 

the amino acid residues present in each of the contact points (boxed grey) are 

shown. Signature sequence residues deviating from the canonical signature 

sequence, but found in all members of a specific carrier subgroup, are boxed black. 

Putative substrates for each of the carrier subgroups are indicated.  

 

The conservation of signature sequences of TbMCPs was analysed using human 

(SLC25A) and S. cerevisiae MCF homologues for comparison (Fig. 3). The first part 

of the signature sequence (Fig. 3: motifs M1a, M2a, and M3a) is highly conserved in 

virtually all TbMCPs, although some remarkable differences - substitutions and 

rearrangements - were observed. These differences were either unique for specific 

TbMCPs, or conserved in all MCF sequences within a specific transporter subgroup 

(Fig. 3). For example, in virtually all MCF proteins a highly conserved proline is 

found at the start of the signature sequence motifs M1a, M2a, and M3a. This amino 

acid causes a flexible kink in the protein backbone shortly before the even-

numbered TM helices H2, H4 and H6 (Fig. 3) and has been proposed to enable the 

transition between an ‘open’ and ‘closed’ pore-like state of MCF proteins (Johnston 

et al., 2008). The proline residue is conserved in all TbMCP signature sequences 

except for TbMCP5A-C, where it has been substituted by a serine in motif M2a (Fig. 

3). This substitution is however not restricted to TbMCP5, since a similar 

substitution has been reported for several other ADP/ATP carriers, including S. 

cerevisiae ANT2 (P18239, Fig 3) (Nury et al., 2006; Yohannan et al., 2004).  

 

Another characteristic amino acid found in the first part of the signature sequences 

of virtually all MCF proteins is the acidic amino acid residue, either an aspartic acid 

or glutamic acid, located at position 3 of the motifs M1a, M2a, and M3a (Fig. 3). In 

some MCF proteins, however, this acidic residue has been substituted by a non-

similar amino acid, in one or even more signature sequences of the same MCF 

protein. In case of ATP-Mg/Pi, FAD or ATP carriers, the substitution is conserved 

amongst all members of the respective carrier subgroups (Fig. 3). For example, the 
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M2a motifs of both the FAD and ATP carriers invariably contain a non-polar 

aromatic amino acid (either tryptophan or phenylalanine) at position 3, whereas in 

the M3a motifs of the ATP-Mg/Pi transporters this aromatic amino acid has been 

replaced by a non-conserved neutral amino acid (Fig. 3). Similar amino acid 

substitutions were also found for TbMCPs 1, 2, 6, and 22; they support the 

BLASTP- and phylogeny-based assignment of these TbMCPs to their respective 

carrier subgroups. 

 

Also other canonical signature sequence amino acids were found to be substituted 

in a carrier-subgroup-dependent manner. Virtually all MCF proteins contain a 

positively charged amino acid, either a lysine or an arginine, at position 6 of the 

M1a, M2a and M3a motifs (see Fig. 3). The phosphate carrier subgroup is an 

exception: they have a conserved non-polar valine instead. The characteristic valine 

is indeed found in the M3a motifs of TbMCP8 and TbMCP11, supporting the 

assignment of these MCF proteins to the phosphate carriers (Fig. 3). 

 

Another deviation from the canonical MCF signature sequence is found in the first 

part of the M1a motifs of all sequence members of the ATP/ADP, Coenzyme A and 

ATP-Mg/Pi carrier subgroups (Fig. 3). Whereas most other MCF proteins contain a 

conserved lysine or arginine at position 6 of the M1a motif, in these subgroups it is 

found at position 4 instead, adjacent to the conserved acidic amino acid residue 

(aspartic acid or glutamic acid) located in position 3. A similar spatial 

rearrangement, i.e. from ‘Px(D/E)x2(K/R)x(K/R)’ to ‘Px(D/E)(K/R)x(K/R)’, is found in 

TbMCPs 4, 5, 6 and 15, supporting their assignment to these carrier subgroups (Fig. 

3). 

 

In contrast to the first part of the sequence signature, the second part of the 

signature sequence, ‘(D/E)Gx4-5(W/F/Y)(K/R)G’, is less conserved (Fig. 3: M1b, 

M2b, and M3b). The first two amino acids of the motif, i.e. ‘(D/E)G’, are not well 

conserved and the number of amino acids (x) between the ‘(D/E)G’ and the 

‘(W/F/Y)(K/R)G’ part of the motif also varies. The final glycine of the motif, which 

allows flexibility of the loop that links the two helices (Nury et al., 2006), is however 

highly conserved, as is the aromatic residue at position 7 (Fig. 3). 

 

2.5. Conservation of proposed substrate contact points 

 



 114

Sequence analysis revealed the presence of several conserved residues 

downstream of the canonical signature sequences (see Fig. 3). Structural studies of 

the bovine ATP/ADP carrier showed that some of these amino acids are located in 

the substrate-binding pocket, and they were proposed to play a key role in the 

recognition of, and discrimination between, different substrate classes (Kunji and 

Robinson, 2006; Robinson and Kunji, 2006). In total, 3 different substrate-contact 

points were proposed, called CPI, CPII and CPIII, with the first amino acid of each 

substrate-contact point located six amino acids downstream of the conserved 

glycine residue that marks the end of each signature sequence motif (Fig. 3) (Kunji 

and Robinson, 2006; Robinson and Kunji, 2006). These substrate-contact points 

were reported to be conserved in MCF proteins from different eukaryotes 

transporting similar substrates (Kunji and Robinson, 2006; Robinson and Kunji, 

2006). Contact point II in particular was proposed to play an important role in 

substrate discrimination: it is defined by a conserved amino acid (AA) pair for each 

substrate type: i.e. ‘G(IVLM)’ for nucleotide carriers, ‘(R/K)Q’ for phosphate carriers, 

‘R(QHNT)’ for dicarboxylic acid carriers, ‘R(D/E)’ for amino acid carriers, and ‘MN’ 

for iron carriers (Kunji and Robinson, 2006; Robinson and Kunji, 2006).  

 

In the majority of TbMCPs, the conserved amino acid pair at CPII agrees with the 

transport function predicted by BLASTP and phylogeny (Fig. 3, Table 1). For 

example, the putative phosphate carriers TbMCPs 8 and 11 contain the expected 

‘RQ’ pair at CPII, while the putative iron carrier TbMCP17 contains the expected 

‘MN’ pair. Also, the predicted T. b. brucei amino acid carriers, TbMCPs 9, 10, 20, 21 

and 24, contain the expected ‘R(D/E)’ pair at CPII (Fig. 3). Comparison of CPII AA 

pairs for the putative T. b. brucei nucleotide carriers revealed that only the ADP/ATP 

carriers TbMCPs 5 and 15, the ATP-Mg/Pi carrier TbMCP6, and the Coenzyme A 

carrier TbMCP4 contain the expected ‘G(I/M)’ sequence (Fig. 3). For the other 

nucleotide carriers (the putative T. b. brucei folate (TbMCP23), ATP (TbMCP1, 2, 

22), and thiamine pyrophosphate (TbMCP7) carriers), the CPII AA pair is less 

conserved (Fig. 3). A similar deviation of the CPII rule is observed for the putative 

carboxylate carrier TbMCP12, which contains a conserved ‘R’ at the first position of 

CPII, while the second amino acid residue is highly variable, as has been observed 

previously for other carboxylate carriers (Kunji and Robinson, 2006; Satre et al., 

2007).   
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2.6. Remarkable features of the kinetoplastid mitochondrial carrier family 

inventory 

Analysis of the T. b. brucei, T. cruzi and Leishmania mitochondrial carrier family 

inventories revealed some remarkable deviations in comparison with those 

previously reported for other eukaryotes (Millar and Heazlewood, 2003; Picault et 

al., 2004; Palmieri et al., 2006; Wohlrab, 2006). Most notable is the lack of 

sequences similar to the uncoupling protein (UCP), an essential MCF protein 

member found in virtually all eukaryotes (Echtay et al., 2002; Palmieri, 2004). 

Extensive sequence analysis of the different kinetoplastid genome databases by a 

variety of database analysis programs, and using a large number of different UCP 

sequences from a wide range of eukaryotes as query, failed to identify any possible 

trypanosome or Leishmania UCP (Table 1, Fig. 1). Thorough analysis of the 

kinetoplastid genome databases failed further to identify two other MCF members, 

i.e. the citrate (tricarboxylate) carrier and the glutamate/aspartate carrier (Table 1, 

Fig. 1). Genes encoding these prototypical MCF proteins have been identified 

previously for all other, eukaryotes studied so far (Millar and Heazlewood, 2003; 

Picault et al., 2004; Palmieri et al., 2006; Wohlrab, 2006). 

 

Another observation is that virtually all identified TbMCPs obey the expected size 

rule of about 300-400 amino acids (Table 1). None of the identified TbMCPs 

contains an N-terminal extension with EF hand calcium-binding motifs or sequence 

repeats. These features have been reported previously for a large number of MCF 

proteins from other eukaryotes (Millar and Heazlewood, 2003; Picault et al., 2004; 

Palmieri et al., 2006; Wohlrab, 2006). The only deviation from the canonical MCF 

protein length is found for TbMCP4, which has a calculated MW of about 78 kDa, 

approximately twice the size of an average MCF protein (Table 1). TbMCP4 

contains 12 TM domains and 6 signature sequence motifs, double the number 

expected for a standard MCF member (not shown). BLASTP analysis showed that 

the first part (residues 100-400) of TbMCP4 shows significant sequence similarity 

(59%) to GDC, the Grave’s disease carrier from mammals (Fiermonte et al., 1992) 

and its Saccharomyces cerevisiae homologue Leu5p (Prohl et al., 2001); in 

contrast, the second part of TbMCP4 was not clearly homologous to a particular 

human or yeast MCF protein. The MCP4 proteins from T. cruzi and L. major had the 

same structure as TbMCP4 (Table 2), ruling out a sequence assembly mistake. The 

only other eukaryotic organism with an MCF protein of this type (large, without EF-

hand calcium-binding motifs or substantial sequence repeats) is Ostreococcus tauri, 
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a unicellular alga and the smallest free-living mitochondriate eukaryote known so far 

(Derelle et al., 2006). BLASTP analysis of the Ostreococcus tauri genome database 

with TbMCP4 revealed the 676-AA protein CAL55012, which has 47-51% similarity 

to the T. brucei, T. cruzi and L. major MCP4s. 

 

2.7. Subcellular localisation of TbMCPs  

The majority of MCF proteins characterised so far are in the mitochondrion, with the 

exception of a few which were found to be associated with the membranes of other 

intracellular compartments like peroxisomes (Nakagawa et al., 2000; van Roermund 

et al., 2001; Palmieri et al., 2001). We have previously shown that myc-tagged 

TbMCP6 has a dual subcellular localisation depending on the life-cycle stage of T. 

b. brucei: in procyclic-form trypanosomes it is predominantly found in the 

mitochondria, whereas in bloodstream-form trypanosomes it is mainly localised in 

the glycosomes (Colasante et al., 2006). To determine the subcellular localisation of 

the remaining TbMCPs, we expressed, in procyclic-form trypanosomes, 

recombinant versions carrying either a carboxy- or amino-terminal 2xmyc-tag. 

Expression of the myc-tagged TbMCPs was confirmed by western blot analysis (not 

shown) and the subcellular localisation determined by immunofluorescence 

microscopy (Fig. 4). 18 of the 24 identified TbMCPs could be expressed; and all 

were found in the mitochondria, co-localising with the mitochondrial marker protein 

dihydroxylipoamide dehydrogenase (Fig. 4). For TbMCPs 1, 9, 18, 20, 21 and 24, 

either no viable clones could be obtained after multiple transfection attempts, or, if a 

viable clone was obtained, no expression of the tagged protein was detected (not 

shown). In case these TbMCPs could only be expressed in bloodstream forms, we 

repeated the experiments in that stage, but again either no viable clones could be 

obtained or no expression of the recombinant 2xMyc-tagged protein was found (not 

shown).  



 117

 

 

 

 

 

A 



 118

Fig. 4. Immunofluorescence microscopy of procyclic-form T. b. brucei cell lines 

expressing myc-tagged TbMCPs (green) (A). The mitochondria were stained red 

with an antibody directed against the T. b. brucei mitochondrial marker protein 

lipoamid-dehydrogenase (LPDH), while nucleus and kinetoplast DNA were stained 

blue with DAPI. Overlays (merge) are shown to visualize the overlap (co-

localisation) in the staining patterns.  B) Upper panel: Myc-tagged TbMCP6 in 

procyclic-form T.b. brucei, showing mitochondrial localization as shown by merge 

with the mitochondrial marker LPDH (red). Lower panel: Myc-tagged TbMCP6 in 

bloodstream-form T.b. brucei showing glycosomal localization, confirmed by the 

merge with aldolase signal (red).  Note the difference in staining pattern, which 

demonstrates mitochondrial localization for all the carriers shown in A.   
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Table 3. Quantitative comparison of TbMCP mRNA levels in procyclic-form and 

bloodstream-form Trypanosoma brucei brucei. Signal recognition particle (SRP) 

(Michaeli et al., 1992) mRNA-levels were used as internal standard (procyclic-

form/bloodstream-form mRNA ratio set to 1.00). Abbreviations: P, procyclic-form; B, 

bloodstream-form; P/B, procyclic-form/bloodstream-form mRNA level ratio; ND, not 

detectable.   

 
 

2.8. Expression of TbMCP mRNAs 

It has been shown previously that many proteins are differentially expressed 

(developmentally regulated) at the mRNA level in the two main replicating life cycle 

stages of T. b. brucei, i.e. the bloodstream-form and the procyclic-form (Brems et 

al., 2005). Northern blot analysis was used to assess whether a similar differential 

expression is also found for the TbMCPs. For 22 of the TbMCP genes we detected 

TbMCP GeneDB ID P/B 

1 Tb09.211.3200 0.98

2 Tb11.01.5960 0.94

3 Tb09.211.2370 1.02

4 Tb10.70.2290 0.92

5a,b,c Tb10.61.1810/20/30 1.72
6 Tb927.4.1660 1.04
7 Tb10.61.0610 1.41
8 Tb10.406.0470 ND 
9 Tb11.02.2960 1.00
10 Tb11.03.0870 1.48
11 Tb09.211.1750 2.78
12 Tb10.389.0690 2.69
13 Tb927.2.2970 0.98
14 Tb10.389.0340 0.96
15 Tb927.8.1310 1.22
16 Tb927.7.3940 1.62
17 Tb927.3.2980 ND 
18 Tb927.8.3330 0.97
19 Tb927.8.4440 0.74
20 Tb10.61.2510 1.60
21 Tb11.01.5040 0.87
22 Tb11.01.5950 0.93
23 Tb927.5.1550 1.22
24 Tb927.8.5810 1.49

SRP Tb11.02.3070 1.00
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a single mRNA band of the expected size for both bloodstream-form and procyclic-

form T. b. brucei (not shown). No signal could be detected for TbMCP8 (inorganic 

phosphate carrier) and TbMCP17 (iron carrier), in either bloodstream-form or 

procyclic-form T. b. brucei, indicating that mRNAs from these genes are absent or 

present at levels below the detection limit of the used method. Quantitation (Table 3) 

revealed that only TbMCP11 (inorganic phosphate carrier) and TbMCP12 

(oxoglutarate or dicarboxylate carrier) are differently expressed at the mRNA level, 

with roughly 2-fold more mRNA in procyclic-form than in bloodstream-form T. b. 

brucei (Fig. 5). The up-regulation of both TbMCP11 and TbMCP12 expression in 

procyclic-form T. b. brucei was also seen in a comparative transcriptome analysis of 

bloodstream-form and procyclic-form T. b. brucei TREU 927 (Brems et al., 2005).   

 

                                                           

 

Fig. 5. Northern blot analysis of TbMCP11 and TbMCP12 showing differential 

expression in bloodstream-form and procyclic-form T. b. brucei. 20 µg total RNA 

isolated from bloodstream-form (b) and procyclic-form (p) was loaded per lane. The 

complete open reading frames of TbMCP11 and TbMCP12 were used as 

hybridization probes. The T. b. brucei signal recognition particle (SRP) RNA was 

used as a loading control (Michaeli et al., 1992). 

3.  Discussion 

 

Putative carrier functions were predicted for 20 of the 24 identified TbMCPs by using 

a combination of methods: reciprocal BLASTP analysis (Table 1), phylogenetic 

reconstruction (Fig. 1), and analyses of conserved function-related amino acid 

residues in signature sequences motifs and proposed substrate contact points (Fig. 

3). The expression of TbMCPs in bloodstream-form and procyclic-form T. b. brucei 

was confirmed by the presence of detectable mRNA levels in both life-cycle stages 
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(Table 3), and their mitochondrial localisation was confirmed by 

immunofluorescence microscopy (Fig. 4). Using the information obtained, a basic 

mitochondrial map can be drawn showing the predicted MCF protein transport 

activities, in relation to a subset of T. b. brucei mitochondrial pathways that require 

metabolite exchange across the mitochondrial inner membrane (Fig. 6). In procyclic-

form T. b. brucei mitochondria the Krebs cycle is not involved in cellular energy 

(ATP) generation, although a complete set of Krebs cycle enzymes and a functional 

respiratory chain are present (van Hellemond et al., 2005). Instead, procyclic-form 

trypanosomes gain most of their ATP by substrate-level phosphorylation during the 

mitochondrial degradation of amino acids, particularly proline (Bringaud et al., 2006; 

Bochud-Allemann and Schneider, 2002). The ATP generated has to be exported 

from the mitochondrion to supply cytosolic energy-consuming biosynthetic 

pathways. The best-studied and most conserved member of the mitochondrial 

carrier family is the ADP/ATP carrier, which plays a vital role in the maintenance of 

the mitochondrial ADP/ATP ratio (Aquila et al., 1987; Klingenberg, 2008). ATP 

generated in the mitochondrial matrix is exported via this carrier to the cytosol in 

exchange for ADP, which serves as a substrate for further mitochondrial 

phosphorylation reactions. Up to 4 different ADP/ATP carriers have been found in 

eukaryotes examined so far; each plays a somewhat different role in the cellular 

energy metabolism (Klingenberg, 2008). T. b. brucei also has multiple putative 

ADP/ATP carriers, TbMCP5A-C and TbMCP15, most similar to human AAC1 and 

AAC2, respectively (Table 1). Whether TbMCP16 functions as a third type of 

ADP/ATP carrier is unclear at this point, as its predicted ADP/ATP transport function 

is supported by BLASTP analysis, but not phylogenetic reconstruction (Table 1, Fig. 

1).  

 

Mitochondrial ATP synthesis from ADP and inorganic phosphate (Pi) requires the 

replenishment of Pi in the mitochondrial matrix. The T. b. brucei MCF protein 

inventory shows four TbMCPs that could function in this way (Table 1). The first two, 

TbMCPs 8 and 11, are highly similar to known inorganic phosphate carriers from 

human (PTP) and yeast (PIC2), which were previously shown to co-transport Pi and 

protons into the mitochondrial matrix (Palmieri, 2004). The two other putative 

candidates for mitochondrial Pi import are TbMCP6 and TbMCP12 (Table 1, Fig. 6).   
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Fig. 6. Schematic representation of predicted TbMCP transport functions in the 

procyclic-form T. b. brucei mitochondrion. Not all relevant mitochondrial metabolic 

pathways are shown. TbMCPs are represented by black boxes. Respiratory chain 

complexes are boxed grey. Abbreviations: I/III/IV, complex I/III/IV of the respiratory 

chain; Pi, inorganic phosphate; mtDNA, mitochondrial DNA; IDH, NADP-dependent 

isocitrate dehydrogenase; SCS, succinyl-CoA synthetase; ?, transporter unknown. 

 

The closest human homologue of TbMCP6, the ATP-Mg/Pi carrier APC, was 

previously shown to function in the mitochondrial import of Pi in exchange for ATP-

Mg generated in the mitochondrion (Fiermonte et al., 2004). However, transport 

assays with functionally reconstituted recombinant TbMCP6 failed to reveal any 

ATP-Mg/Pi carrier function (Colasante et al., 2006). Moreover, depletion of TbMCP6 

in procyclic-form T. b. brucei inhibited trypanosome growth and replication of the 

mitochondrial (kinetoplast) DNA, suggesting a possible role of TbMCP6 in 

mitochondrial nucleotide import (Colasante et al., 2006).  

 

Malate is an important metabolic intermediate in the energy metabolism of procyclic-

form T. b. brucei (van Weelden et al., 2005; Bringaud et al., 2006). Metabolic studies 

suggested that malate has to be exported from the mitochondrion for 

gluconeogenesis purposes or that cytosolic malate, generated in the glysocomes, 
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has to be imported into the mitochondrion for its subsequent oxidation to succinate 

(van Weelden et al., 2005; Bringaud et al., 2006). In human cells and yeast, two 

different MCF proteins were experimentally shown to be involved in malate 

exchange across the mitochondrial inner membrane: the oxoglutarate carrier, which 

predominantly exchanges malate for 2-oxoglutarate, and the dicarboxylate carrier, 

which exchanges malate for an inorganic compound such as inorganic phosphate or 

sulfates (Palmieri, 2004). Only TbMCP12 grouped with oxoglutarate and 

dicarboxylate carriers from humans and yeast (Table 1), suggesting a putative role 

for TbMCP12 in mitochondrial malate/2-oxoglutarate exchange and maybe also in 

malate/Pi exchange (Fig. 6).  

 

The oxoglutarate carrier has further been proposed to be involved in the 

maintenance of the cellular redox balance by transferring redox equivalents across 

the mitochondrial inner membrane as part of the isocitrate/oxoglutarate shuttle 

(Palmieri, 2004). This shuttle plays an important role in the provision of cytosolic 

NADPH for biosynthetic purposes, and requires, in addition to the oxoglutarate 

carrier, the presence of a NADP-dependent cytosolic isocitrate dehydrogenase and 

a citrate carrier (see Fig. 6). The citrate or tricarboxlate carrier is involved in the 

exchange of a tricarboxylate (citrate or isocitrate) against either another 

tricarboxylate, or a dicarboxylate (malate), or phospohoenolpyruvate (Palmieri, 

2004). Extensive database searches failed to reveal a tricarboxylate carrier in any of 

the kinetoplastid genomes analysed. This is unexpected since procyclic-form 

trypanosomes previously were proposed to be dependent on the export of 

mitochondrial citrate for cytosolic fatty acid biosynthesis (van Hellemond et al., 

2005). It is therefore possible that another TbMCP is capable of transporting 

tricarboxylates. Recently, a novel di-tricarboxylate carrier protein (DTC), has been 

reported for Arabidopsis thaliana (Picault et al., 2002). DTC showed significant 

sequence similarity to both di- and tricarboxylate carriers and was shown to be able 

to transport both di- and tricarboxylates. BLASTP searches using the A. thaliana 

DTC sequence as query against the T. b. brucei genome database retrieved 

TbMCP12 as top hit (48% similarity). Since this is the only putative carboxylate 

carrier predicted, it is possible that it can transport tricarboxylates. Alternatively, the 

kinetoplastid mitochondrion may contain another, non-MCF tricarboxylate 

transporter. The function could be fulfilled by homologues of sideroflexin1 (SFNX1), 

a mitochondrial membrane protein that previously has been shown to transport 

citrate (Azzi et al., 1993; Fleming et al., 2000). BLASTP analysis revealed the 

presence of a SFNX1 homologue in the T. b. brucei genome database (not shown).  
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Another important metabolic function of the mitochondrion is the catabolism of fatty 

acids via the mitochondrial beta-oxidation pathway. For that purpose, long chain 

fatty acids have to be imported into the mitochondrion (Kerner and Hoppel, 2000). 

Prior to mitochondrial import, an acyl-CoA thioester is formed through the activation 

of the fatty acid by cytosolic coenzyme A (CoA). Next, the acyl-group of this CoA-

ester is transferred to carnitine and the resulting acylcarnitine transported across the 

mitochondrial inner membrane via the acylcarnitine/carnitine carrier in exchange 

with carnitine (Kerner and Hoppel, 2000; Palmieri, 2004). In the mitochondrial 

matrix, the acyl group is finally transferred to CoA, and the acyl-CoA formed is 

degraded via the -oxidation pathway to short chain fatty acids or acetyl-CoA units. 

The T. b. brucei MCF protein inventory showed three putative acylcarnitine/carnitine 

carriers, TbMCPs 9, 24 and 21, according to BLASTP similarity searches (Table 1). 

However, phylogenetic reconstruction suggested that TbMCP9 is evolutionary more 

related to the human ornithine carrier SLC25A15 then to the human 

acylcarnitine/carnitine carrier SLC25A5 (Fig. 1). The ornithine carrier plays a central 

role in the urea cycle, connecting the cytosolic and mitochondrial part of this 

nitrogen (urea) disposal pathway. Metabolic studies have shown that the ornithine 

carrier is involved in the exchange of cytosolic ornithine against mitochondrial 

citrulline, but it can also exchange basic amino acids like lysine or arginine against 

protons (see (Palmieri, 2004) and references therein). BLASTP similarity searches 

initially identified TbMCP10 as a putative T. b. brucei ornithine carrier (Table 1). 

Phylogenetic analysis, however, suggested that TbMCP10 is more related to the 

acylcarnitine/carnitine carriers (Fig. 1). The most probable explanation for this 

contradiction is that the acylcarnitine/carnitine and ornithine carriers of humans and 

yeast are evolutionary very closely related, whereas the corresponding TbMCPs are 

rather divergent, prohibiting a reliable functional assignment by phylogenetic 

reconstruction.  

 

The T. b. brucei mitochondrion contains metabolic pathways requiring specific 

coenzymes and cofactors. For example, Coenzyme A is needed for the activation of 

fatty acids in the mitochondrial matrix for -oxidation (see above) or is used for the 

preservation of energy in energy-rich compounds like acetyl-CoA and succinyl-CoA 

and concomitant ATP generation via oxidative decarboxylation and substrate level 

phosphorylation. The coenzyme thiamine pyrophosphate (TPP) is required for the 

proper function of several enzymes involved in the oxidative decarboxylation of 

pyruvate (pyruvate dehydrogenase E1) and alpha-ketoglutarate (alpha-ketoglutarate 
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dehydrogenase). The cofactor flavin adenine dinucleotide (FAD) fulfills many 

functions: as a redox carrier in mitochondrial oxidative phosphorylation (FADH2), as 

a prosthetic group in succinate dehydrogenase and pyruvate dehydrogenase (E3), 

and as a coenzyme for mitochondrial acyl-CoA dehydrogenase (-oxidation). All 

these coenzymes and cofactors have to be imported from the cytosol into the 

mitochondrion. TbMCPs 2, 4, 7 and 22 are putatively involved in the exchange of 

mitochondrial coenzymes and cofactors. TbMCP4 and TbMCP7 are highly similar 

and evolutionary related to the CoA and thiamine pyrophosphate carriers, 

respectively, suggesting a role of these TbMCPs in mitochondrial coenzyme import 

(Table 1, Fig. 1). Possible candidates for mitochondrial FAD import are TbMCPs 2 

and 22, which are similar to the yeast FAD carrier FLX1 (Table 1, Fig. 1). 

 

In addition to lacking of a prototypical MCF citrate carrier, kinetoplastid genomes 

seem not to have an identifiable homologue of the uncoupling protein (UCP). UCPs 

are responsible for the free-fatty-acid-mediated transport of protons across the 

mitochondrial inner membrane (Echtay et al., 2002; Palmieri, 2004). An influx of 

protons through UCPs into the mitochondrial matrix dissipates the proton gradient 

built up by the respiratory chain, and as a result heat is produced. This feature of 

UCPs was initially thought to be mainly important for non-shivering thermogenesis in 

newborn, and in cold-acclimated and hibernating, animals (Echtay et al., 2002; 

Palmieri, 2004). However, UCPs were also found in non-thermogenic tissues of 

animals (Costford et al., 2007) and more importantly, also in non-mammalian 

organisms like plants and protozoa (Haferkamp, 2007), suggesting another function 

for UCPs. More recent experimental evidence suggests that UCPs can modulate the 

coupling between mitochondrial respiration and ATP synthesis, and are involved in 

defence against reactive oxygen species (Skulachev, 1996; Sluse and 

Jarmuszkiewicz, 2002; Sluse et al., 2006): the UCP-mediated influx of protons into 

the mitochondrion decreases the extent of reduction of the electron carriers, and 

prevents over-reduction of the respiratory chain; this latter could eventually lead to 

the formation of reactive oxygen species (ROS) that could damage DNA and 

proteins in the mitochondrion. The lack of identifiable UCP homologues in the T. b. 

brucei, T. cruzi and Leishmania genomes, suggests that kinetoplastid parasites 

must posses an alternative mechanism to avoid the formation of damaging ROS in 

their mitochondria. Fungi, bacteria, plants and other protozoa contain in addition to 

UCPs an alternative oxidation system, the alternative oxidase (AOX). This system 

decreases ROS production by removing the excess of reducing equivalents and 

transferring them directly to oxygen (Maxwell et al., 1999; Siedow and Umbach, 
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2000; Jarmuszkiewicz, 2001; Umbach et al., 2005). T. b. brucei, T. cruzi and 

Leishmania  indeed have an AOX, and a role for it in the defence against ROS was 

proposed (Fang and Beattie, 2003). RNA depletion experiments revealed that AOX 

is essential for T. b. brucei survival (Chaudhuri et al., 2006).  

 

In this chapter an overview is provided of the MCF protein inventory of the early-

branching kinetoplastid parasite T. b. brucei. Sequence analysis provided insight 

into the evolution and conservation of these MCF proteins, and resulted in the 

prediction of putative transport functions for most of the 24 identified TbMCPs. The 

predicted transport functions will be analysed further by biochemical characterisation 

including the functional reconstitution of TbMCPs in liposomes and determination of 

their specific transport function by metabolite transport assays. 
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Chapter IV . Identification and Functional characterization of MCP5 

1. Introduction 

Reciprocal BLASTP analysis resulted in the identification of 26 T. brucei genes, 

coding for 24 different putative proteins with significant sequence similarities to 

known MCF proteins from higher eukaryotes (Chapter III). Aim of this chapter is the 

functional characterisation of MCP5, the most conserved member of the T. brucei 

MCF protein inventory, with 78% amino acid similarity to the S. cerevisiae ADP/ATP 

carrier ANT2 and 69% similarity to the human ADP/ATP carrier SLC25A4 (AAC1). 

MCP5 is the only T. brucei MCF protein that is present in more than one genomic 

copy, i.e. MCP5A, MCP5B and MCP5C, respectively (Colasante et al., 2009). The in 

chapter III predicted ADP/ATP exchange function of MCP5 was further assessed at 

the sequence level by a more in-depth analysis of its specific substrate-binding 

amino acid residues and the identification of other sequence motifs that are 

conserved in all functionally characterised ADP/ATP carriers. Also the evolutionary 

relationship of MCP5 to known ADP/ATP carriers from other eukaryotes was further 

investigated by phylogenetic reconstruction. The presence of a specific gene in a 

genome does not automatically implicate that this gene indeed is expressed. 

Expression of MCP5 was analysed in the two different life-cycle stages of T. brucei, 

i.e. the bloodstream-form and the procyclic-form, at both the RNA (northern blotting) 

and protein level (western blotting). Majority of the MCF proteins found in other 

eukaryotes are mitochondrial, although some of them are located in other organelles 

(Palmieri et al., 2001; Colasante et al., 2006). The subcellular localisation of MCP5 

in the different life-cycle stages of T. brucei was determined by immunofluorescence 

microscopy. To assess the physiological role(s) of this putative ADP/ATP carrier in 

the T. brucei energy metabolism, a stable MCP5 knockout cell lines were generated. 

These cell lines were further analyzed regarding their substrate consumption and 

metabolic end product formation, and their ability to exchange ATP and ADP at the 

mitochondrial level.  

 

2. Results and Discussion 

2.1. Sequence analysis and phylogenetic reconstruction of T. brucei MCP5  

Next to the observed sequence similarities to prototypical MCF proteins, MCP5 also 

contained all of the conserved sequence features characteristic for MCF proteins, 

including the multiple presence of the conserved signature sequence 

Px(D/E)x2(K/R)x(K/R)x20-30(D/E)Gx4-5(W/F/Y)(K/R)G (with x representing any amino 
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acid; Figures 1 and 2), which is the hallmark of MCF proteins (Aquila et al., 1987; 

Saraste and Walker, 1982). The first half of this signature sequence can be found at 

the end of each odd-numbered trans-membrane helix, whereas the second half is 

located 20-30 amino acid residues downstream of the amphipathic helices that 

intercalate between trans-membrane helices H1/H2, H3/H4, and H5/H6 (Colasante 

et al., 2009). Another conserved sequence motif, which is only found in ADP/ATP 

carriers, is the “RRRMMM” sequence located at the end of the 5th transmembrane 

domain (Müller et al., 1996; Adrian et al., 1986). The presence of this motif in MCP5 

is a strong indication that this MCF protein functions as an ADP/ATP carrier. 

 

Sequence alignment of MCP5 with other known AACs, including those of the related 

kinetoplastids T. cruzi and Leishmania, and prototypical MCF protein 

representatives from other eukaryotic classes, i.e. yeasts, plants, arthropods, fish, 

amphibians and mammals, revealed significant sequence similarities with values 

ranging between 64-78% for ADP/ATP carriers from human and yeast (Colasante et 

al., 2009).  

 

Recent studies proposed a number of conserved amino acid residues in MCF 

proteins that are essential for the binding of specific substrates. These conserved 

residues have been called substrate “contact points” accordingly (Colasante et al., 

2009). In MCF proteins, three different contact points (I-III) have been predicted 

from crystallographic and modelling studies of natural and mutant MCF proteins 

during substrate binding (Robinson and Kunji, 2006).  

 

The first set of amino acids involved in substrate binding, called “contact point I”, is 

found at the end of the first signature sequence, and is represented by an arginine 

(R), threonine (T) and asparagine (N) residue (Figure 2). Mutation analysis of yeast 

AAC2 indicated that the conserved amino acid residues in contact point I are 

essential for transport function. In particular the mutation of the positively charged 

amino acid residue R96 in yeast AAC2, rendered this ADP/ATP carrier incapable of 

performing ADP/ATP exchange (Müller et al., 1996). The second set of amino acids 

involved in substrate binding, called “contact point II”, is found at the end of the 

second signature sequence, and is represented by a glycine (G182 in yeast AAC2) 

and an isoleucine (I183 in yeast AAC2). These amino acids were previously shown 

to be required for transport activity in other MCF proteins such as the oxoglutarate 

carrier (OGC) and the uncoupling protein (UCP), but are also conserved in 

ADP/ATP carriers (Robinson and Kunji, 2006). 
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Figure 1. Schematic representation of MCP5 showing the conserved sequence 

structure of MCF proteins. Transmembrane helices are shown as H1-H6. The first 

half of the signature sequence, found at the end of the odd numbered 

transmembrane helices, is indicated with M1a, M2a and M3a, and its amino acid 

residues are shown red. The second half of the signature sequence, found at the 

end of the odd numbered transmembrane helices, is indicated with M1b, M2b and 

M3b, and its amino acid residues are shown in blue. The amphipatic helices, which 

separate the two halves of each signature sequence, are indicated as h1-2, h3-4, 

and h5-6, respectively. Contact points are shown in yellow. Both the N- and C-

terminal ends of MCP5 are facing the mitochondrial intermembrane space.  
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Figure 2. Sequence alignment and conserved MCF sequence features of MCP5 and selected ADP/ATP carriers from other eukaryotes. The 

different halves of the conserved signature sequences M(1-3)a and M(1-3)b are indicated (in rectangles). The conserved amino acids in contact 

points I, II and III are shown in blue. Amphipatic helices, are indicated as h1-2, h3-4, and h5-6. 
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Contact point III is represented by a single conserved amino acid, i.e. an arginine 

(R), which is conserved in all ADP/ATP carriers. This positively charged amino acid 

residue has been studied in yeast AAC2 by changing it to an alanine (R294A). This 

mutation affected the OXPHOS dramatically, and resulted in low ADP/ATP 

exchange activity as well as a changed exchange mode in the isolated carrier 

(Müller et al., 1996; Heidkamper et al., 1996). All “contact point” residues required 

for substrate binding and ADP/ATP exchange are conserved in MCP5, and 

strengthens the assumption that MCP5 functions as an ADP/ATP carrier. 

 

Phylogenetic reconstruction was used as a complementary approach for the 

prediction of transport function. Previously published sequence and phylogenetic 

analyses revealed that the MCP5 sequence is highly similar to and forms a reliable 

(supported by high bootstrap values) phylogenetic distinct group with the human 

ADP/ATP carrier SLC25A4 (see Introduction; Colasante et al., 2009). Here we 

performed a more in-depth phylogenetic analysis by also including ADP/ATP 

carriers from related kinetoplastids and representative ADP/ATP carrier sequences 

from other eukaryotes, i.e. those from yeasts, plants, arthropods, fish, and 

amphibians. The resulting neighbor-joining tree is shown in Figure 3. MCP5 

specifically clustered with putative MCF proteins from Trypanosoma cruzi and 

different Leishmania species, suggesting a common origin for the kinetoplastid 

metabolite transporters. 

 

Another interesting observation is the apparent separation of the ADP/ATP carriers 

in two predominant clades (Figure 3). The first clade includes the AACs from yeast 

and plants, whereas the second contains all other metazoan AACs. A similar 

distribution of AACs in at least two distinct clades has previously been published 

(Löytynoja and Milinkovitch, 2001). The kinetoplastid AACs clustered specifically 

with AACs found in the first clade, suggesting a common origin with those from 

yeast and plants. Such phylogenetic relationship, especially with plant sequences, 

has previously been observed for other T. brucei proteins. It has been proposed that 

kinetoplastids evolved via a temporary symbiotic association with a photosynthetic 

microorganism, which resulted in the acquisition (horizontal transfer) of several 

plant-related genes (Michels and Opperdoes, 1991; Hannaert et al., 2003a; 

Hannaert et al., 2003b).  
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Figure 3.  Neighbour-joining consensus tree including MCP5 and representative 

AAC sequences from yeast, plants, arthropods, mammals, fish and amphibians.  

Only bootstraps values higher then 50 are shown at each node. This NJ consensus 

tree was constructed using the Protdist and Neighbour-Joining programs available 

on Mobyle@Pasteur, and edited using Splitstree4. 
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MCP5 is the only identified MCF protein that is present in more than one gene copy 

in the genome of T. brucei (Colasante et al., 2009). Genome sequence analysis 

indicated 3 identical, in tandem-arranged MCP5-encoding genes in the T. brucei 

genome: annotated as MCP5a, 5b and 5c, respectively. Next to MCP5a-c, two other 

MCF proteins were identified with significant sequence similarity to prototypical 

ADP/ATP carriers, i.e. MCP15 and MCP16. Their sequence similarities to known 

AACs are however much lower than those found for MCP5 (Colasante et al. 2009). 

Phylogentic analysis and sequence comparison revealed that MCP5 is more similar 

to MCP15 than to MCP16 (Colasante et al. 2009). The presence of multiple putative 

AAC-encoding genes in T. brucei is not unexpected. Virtually all eukaryotes contain 

multiple genes coding for ADP/ATP carriers (AACs). For example, the unicellular 

yeast S. cerevisiae genome contains 3 similar (but non-identical) genes coding for 

different ADP/ATP carrier isoforms, i.e. AAC1, AAC2 and AAC3 (Adrian et al., 1986; 

Kolarov et al., 1990). Functional studies and mutation analysis revealed that these 

ADP/ATP carriers play different physiological roles in S. cerevisiae (Lawson et al., 

1990; Gawaz et al., 1990; Kolarov et al., 1990; Drgon et al., 1991). Also in 

multicellular eukaryotes, like mammals and humans, multiple non-identical AAC-

encoding genes are found whose expression can be tissue-specific and their 

physiological function is location-dependent (Powell et al., 1989). The divergence of 

AACs into multiple tissue-dependent isoforms is most probably a direct 

consequence of the evolution to multicellular life forms (Löytynoja and Milinkovitch, 

2001).  

 

2.2. Expression of MCP5 in procyclic form Trypanosoma brucei 

MCP5 peptide antibodies were raised to facilitate subsequent expression (western 

blotting) and immunolocalisation studies. The amino acid sequences for the two 

peptides used for immunisation are derived from the respective N-terminal (N-term) 

and C-terminal (C-term) ends of MCP5 (Figure 4). Peptide synthesis and the 

subsequent immunisations in rabbits were performed by EZBiolab 

(www.ezbiolab.com).  
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Figure 4. Amino (N)-terminal and carboxy (C)-terminal MCP5 peptide-sequences 

(boxed red) used for the immunisation of rabbits. 

The suitability of the raised polyclonal rabbit antisera was tested on whole lysates of 

procyclic form T. brucei 449 (PCF449). The western blotting results are shown in 

Figure 5. The antiserum directed against the N-term peptide was found to be very 

specific and detected only a single protein band with an approximate molecular 

weight of 32 kDa (Figure 5, lane 1). The observed molecular weight is agreement 

with the calculated weight of MCP5, i.e. 34 kDa. For the C-term peptide antiserum, a 

second high molecular weight band was found, which is regarded as a non-specific 

cross-reaction of this antiserum (Figure 5, lane 2). The obtained results indicated 

that in particular the N-term peptide antiserum is suitable for the subsequent 

detection of MCP5. Control experiments with the different pre-immune sera did not 

show any detectable bands after western blotting (results not shown), emphasising 

the specificity of the raised antisera.  

 

 

 

The raised N-term peptide antiserum was subsequently used to determine the 

MCP5 expression (protein) levels in the two different life cycle stages of the 

parasite, i.e. PCF449 and bloodstream form (BSF449) T. brucei. The western 

blotting results shown in Figure 6A revealed that MCP5: (1) is also expressed in 

BSF449, and (2) is about 4 times more abundant in PCF449 then in BSF449.  

 

Figure 5. Western blot analysis of T. brucei 

PCF449 using MCP5 N-term (lane 1) and C-term 

(lane 2) antibodies.  
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The expression of MCP5 at the mRNA level was assessed by northern blot analysis. 

For both PC449 and BS449 T. brucei, a single cross-reacting mRNA band was 

found after hybridisation with the MCP5 DNA probe (Figure 6B). 

                                       

Figure 6. Analysis of MCP5 expression at the protein (A) and mRNA (B) level in 

PCF449 and BSF449 T. brucei. (A) For western blot analysis, 2x106 T. brucei cells 

were loaded per well, and MCP5 was detected with the raised N-term peptide 

antibody (1:1000 dilution). (B) For northern blot analysis, 10g of total RNA was 

loaded per well and hybridised with the full-length MCP5 DNA sequence as probe.  

 
The size of this cross-reacting mRNA is approximately 1.5 kilobases (kb), which is in 

agreement with (i.e. larger than) the expected minimum MCP5 mRNA size of 0.9 kb 

plus additional 5’ and 3’ untranslated (UTR) mRNA regions. Quantification revealed 

that the MCP5 mRNA is only slightly more abundant, approximately 1.2 times, in 

PCF449 when compared to BSF449. This is in agreement with previously published 

MCP5 mRNA quantification data showing similar minor differences in the BSF449 

and PCF449 mRNA expression profiles (Chapter 3, Table 3: Colasante et al., 2009). 

 

Comparison of the obtained MCP5 expression data revealed a significant 

inconsistency between MCP5-expression at the mRNA (1.2 times) level and the 

expression of this protein at the protein (4 times) level. In contrast to most 

eukaryotes, trypanosome transcription is polycistronic, with expression control 

taking place at the posttranscriptional level (Imboden et al., 1987; Ben Amar et al., 

1988; Gibson et al., 1988). As a consequence, differences in transcription levels do 

not necessarily correlate to differences in correspondingly translated protein.  

 

The observed differences in MCP5 expression between BSF449 and PCF449 is 

further indicative for the substantial differences in mitochondrial ATP production in 

the two T. brucei life cycle stages. In BSF449 T. brucei, majority of the ATP is 

produced via glycolysis, with little or none mitochondrial ATP production, while in the 

PC449 most of the cellular ATP is produced in the mitochondrion (Tielens and Van 
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Hellemond, 1998; Hannaert et al., 2003a; Chaudhuri et al., 2006; Michels et al., 

2006; Tielens and van Hellemond, 2009). Accordingly, more MCP5 is required in the 

procyclic-form mitochondrion in order to facility its substantial ADP/ATP exchange, 

and making mitochondria-produced ATP available to the rest of the cell. Why 

BSF449 mitochondria do require MCP5 at all, is unclear at this point. One possible 

explanation could be that the apparent “non-functional” mitochondria in 

bloodstream-form trypanosomes (see Section 4, Introduction) still require minimal 

levels of ATP for the maintenance of its proton motive force (pmf), which again is 

essential for the conservation of the mitochondrial integrity. The most important 

facilitator of the mitochondrial pmf is the F0F1-ATPase found in the mitochondrial 

inner membrane. RNAi-directed depletion of this F0F1-ATPase in BSF449 resulted in 

cell death (Zíková et al., 2009). This result indicates an important role of the F0F1-

ATPase in bloodstream-form mitochondria, most probably via the generation of an 

essential pmf and the concomitant consumption of mitochondrial ATP, which needs 

to be replenished with cytosolic ATP by an ADP/ATP carrier, here MCP5.  

 

2.3. Subcellular localization of MCP5 

Virtually all MCF proteins characterised so far are mitochondrial, although some of 

them have been discovered in other cellular compartments, which are different from 

the mitochondrion. For example, Ant1p of yeast has been found exclusively in 

peroxisomes, although it displays all conserved sequence features of a true 

“mitochondrial” MCF protein (Palmieri et al., 2001; Lasorsa et al., 2004). Ant1p was 

found to transport ATP into the peroxisomal matrix in exchange for cytosolic AMP, 

and is suggested to play a key role in peroxisomal lipid biosynthesis (van Roermund 

et al., 2001; Palmieri et al., 2001). MCP6, a recently identified putative ATP-Mg2+-Pi 

carrier of T. brucei, showed an even more complex subcellular distribution: in the 

bloodstream form of T. brucei it was found predominantly in the glycosome (i.e. 

peroxisome), whereas in the procyclic form of the parasite it displayed a 

predominantly mitochondrial localization (Colasante et al., 2006). It is evident from 

the above-mentioned examples that the apparent mitochondrial localisation of MCF 

proteins has to be determined experimentally for each of them.  

 

The subcellular localisation of MCP5 was initially determined by 

immunofluorescence microscopy in a PCF449 MCP5-nmycti cell line, which had 

been obtained after transfection of PCF449 T. brucei with the plasmid pHD1701-

MCP5. The resulting cell line PCF449 MCP5-nmycti allows the inducible expression 
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of a recombinant N-terminal myc-tagged version of MCP5.  That this cell line indeed 

expresses MCP-nmyc in a tetracycline-dependent fashion was confirmed by 

western blotting (Figure 7). After induction with tetracycline, a cross-reacting (anti-

myc antibody) protein band was observed with the expected molecular weight of 36 

kDa. Whereas, no expression was observed in the absence of tetracycline, 

indicating a tight control of the tetracycline inducible promoter.   

 

 

 

The immunofluorescence microscopy results for the analysis of the PCF449 MCP5-

nmycti cell line are shown in Figure 8. Labelling of MCP5-nmyc with the myc-

antibody revealed a tubular staining pattern, which is typical for mitochondria of T. 

brucei. Co-labelling with MitoTracker, an established marker for mitochondria, 

revealed a similar staining pattern, which coincides (panel D, Figure 8) with that of 

the myc-antibody. This result indicates that MCP5 has an exclusive mitochondrial 

localisation.  

 

 

 

The mitochondrial localisation of MCP5 was further assessed in “wildtype” PCF449, 

using the raised MCP5 N-term and C-term peptide antibodies. The obtained 

Figure 7. Western blot analysis of the PCF449 MCP5-

nmycti cell line, using a commercial myc-tag antibody 

(1:1000 dilution). The minus (–) indicates non-induced 

trypanosome cells, whereas the plus (+) indicates 

trypanosomes, which have been induced with tetracycline 

(1g/ml). 2x106 trypanosomes have been loaded per lane.

Figure 8. Immunofluorescence 

microscopy of the PCF449 MCP5-

nmycti cell line. MCP5-nmyc (panel 

B: green) was detected with a 

commercially available myc-

antibody, where as MitoTracker 

(panel A: red) was used for the 

labelling of the mitochondrion. DAPI 

(panel C: blue) was used for DNA 

staining.  The overlay (panel D: 

merge) is shown in yellow. 
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immunofluorescence microscopy results are shown in Figure 9. For the C-term 

peptide antibody, a staining pattern was observed which was more or less similar to 

the one observed for the MCP5-nmycti cell line and using the myc-antibody (Figure 

8).  

However, additional particulate structures were stained by the C-term peptide 

antibody, next to the expected tubular mitochondria-staining pattern as found for the 

MitoTracker. This result is not unexpected, since the C-term peptide antibody 

recognises an additional non-specific protein band during western blotting (Figure 

5), explaining the additionally stained particulate structures. For the N-term peptide 

antibody, a rather distorted staining pattern was found, with no indications of 

mitochondrial staining (Figure 9). 

 

Figure 9. Immunofluorescence microscopy of PCF449, using the raised MCP5 N-

and C-term peptide antibodies. N- and C-term peptide antibody staining is shown in 
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green (panels B), MitoTracker staining is shown in read (panels A), and DNA 

staining with DAPI is shown in blue (panels C).  The overlays of MitoTracker 

staining pattern with those of the N-term or C-term peptide antibody are shown 

panel D.  

 

This result can be explained by the structural differences of the MCP5 protein during 

western blotting and immunofluorescence microscopy. During western blotting, 

MCP5 is fully denatured and completely accessible to the antibody. This is different 

for immunofluorescence microscopy, where the protein is more or less in its natural 

folded conformation. As a consequence, the N-myc epitope could be “hidden”, and 

not be accessible for the N-term peptide antibody. The presence of an excess of 

antibody could subsequently result in non-specific reactions with other proteins, 

explaining the unexpected (distorted) staining pattern observed for the N-term 

peptide antibody during immunofluorescence microscopy. 

 

 

Figure 10. Immunofluorescence microscopy of BSF449 T. brucei, using the raised 

MCP5 C-term peptide antibody. Staining with the MCP5 C-term peptide antibody is 

shown in green (panel B). MitoTracker (panel A, red) was used for the labelling of 

the mitochondrion, and DAPI (panel C, blue) was used for DNA staining. The 

overlay (merge) is shown in yellow. 

 
Western blot analysis revealed earlier that MCP5 is also expressed in the 

bloodstream-form of T. brucei (Figure 6). The subcellular localisation of MCP5 in 
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BSF449 was determined using the raised MCP5 C-term peptide antibody. The 

MCP5 N-term peptide antibody was not used since it previously resulted in aberrant 

staining patterns (Figure 5). The result for the immunofluorescence microscopy with 

the MCP5 C-term peptide antibody is shown in Figure 10, and revealed that MCP5 

is exclusively mitochondrial in bloodstream-form T. brucei. In conclusion, MCP5 is 

mitochondrial in both PCF449 and BSF449 T. brucei. 

2.4. Generation of the conditional MCP5 knockout cell linemcp5/MCP5-

nmycti  

Gene deletion or gene replacement through homologous recombination is an 

established technique for the functional characterization of proteins in T. brucei 

(Clayton, 1999). The same technique was used here for the deletion (knockout) of 

the different MCP5-encoding genes in the genome of procyclic-form T. brucei. 

MCP5 is expressed from 3 identical, in tandem organised gene copies on 

chromosome 10 of T. brucei.  In order to facilitate a complete aberration of GIM5 

expression, all 3 MCP5-encoding genes had to be replaced in a single 

recombination event. The 5’-UTR and 3’-UTR, required for the homologous 

recombination event, were chosen upstream of the first MCP5-encoding gene and 

downstream of the third MCP5-encoding gene, respectively. Initially, it was 

attempted to generate a conventional double knockout cell line. However, no viable 

clones could be obtained after many attempts, suggesting that MCP5 is essential for 

parasite survival. The lack of viable clones when using the conventional double 

knockout approach has been observed for other essential genes in T. brucei (Ajioka 

and Swindle, 1996; Mottram et al., 1996).  

 

          

 

Figure 11. Schematic representation of the conditional double-knockout strategy. 

An ectopic tetracycline inducible gene copy of the target gene is introduced into the 
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T. brucei genome. Upon tetracycline addition, expression is induced from the 

ectopic gene copy. Each allele of the target gene(s) is replaced by different 

antibiotic resistance cassettes, i.e. for neomycine (NEO) and for blasticidin (BLA), 

through homologous recombination. 

 

In case of an essential gene a different approach is used: i.e. the generation of a 

conditional double knockout cell line by the introduction of an ectopic tetracycline-

inducible copy of the gene in the genome, prior to the elimination of the targeted 

alleles. This rescue copy of the targeted gene can be turned on or off by the addition 

or withdrawal of tetracycline (Clayton, 1999). A schematic representation of the 

conditional double knockout strategy is shown in Figure 11. Trypanosomes are 

diploid and require two sequential rounds of homologous recombination with 

different antibiotic selection markers to obtain a complete knockout of a gene 

(Clayton, 1999). 

 

The above-described PCF449 MCP5-nmycti cell line was used as a starting point for 

the generation of the conditional double knockout cell line mcp5/MCP5-nmycti. 

After the 2 sequential homologous recombination events, using the NEO and BLA 

knockout plasmids, respectively, three different cell lines (clones) were obtained: i.e. 

mcp5/MCP5-nmycti 5-1, 5.2 and 5-4. To confirm the proper insertion of the 

respective antibiotic resistance-cassettes in the intended MCP5 target locus, we 

analysed these putative mcp5/MCP5-nmycti cell lines by Southern blotting and 

PCR. 

 

For Southern blot analyses, genomic DNA (gDNA) was isolated from PCF449 and 

the different mcp5/MCP5-nmycti cell lines, and subsequently digested with the 

restriction enzyme BamHI. A BamHI restriction site is normally not present in the 

natural MCP5 triad locus, but a single BamHI restriction site is present in the NEO 

and BLA antibiotic cassettes used for the gene replacement (Figure 12A). 

Consequently, successful homologous recombination and gene replacement will 

introduce an additional BamHI site in the former MCP5 triad loci (Figure 12A, 

indicated with an asterisk). The introduction of an additional BamHI site into the 

former MCP5 triad loci will result in specific cross-hybridising gDNA bands of known 

size (Figure 12A). The results of the Southern blot analyses are shown in Figure 

12B.  
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As expected, a single cross-hybridising band with a size-length of 13.0 kbp was 

found for the “wildtype” cell line PCF449 (Figure 12B). Also for the putative 

mcp5/MCP5-nmycti double knockout cell lines 5-1 and 5-4, a single cross-

hybridising band with the expected size-length of 0.6 kbp was found, which 

indicated a successful MCP5 gene replacement in these cell lines. 

                              

 

Figure 12. Southern blot analysis of BamHI digested genomic DNA isolated from 

the putative mcp5/MCP5-nmycti cell lines (5-1, 5-2, 5-4) and the “wildtype” PCF449 

cell line. A schematic representation of the MCP5 target locus indicating the 

available BamHI restriction sites is shown in (A). The additional BamHI site, which is 

introduced through replacement with the different antibiotic resistance cassettes, is 

indicated with an asterisk. All indicated kb values are relative. (B) Southern blotting 

results for the different mcp5/MCP5-nmycti cell lines and PCF449. The Southern 

blot was probed with the 5’-UTR of MCP5. 

 

However, for the putative mcp5/MCP5-nmycti cell line 5-2 cell line, two cross-

hybridising bands were found with size-lengths of 13.0 and 0.6 kbp, respectively 

(Figure 12B). This hybridisation pattern suggested that the 5-2 cell line most 
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probably represents a MCP5 half knockout (with only one allelic MCP5 triad 

replaced), instead of the intended double knockout (with both allelic MCP5 triads 

replaced).  

 

The successful replacement of all MCP5 gene triads in the genomes of the 

mcp5/MCP5-nmycti cell lines 5-1 and 5-4 was further confirmed by PCR analysis. 

For this purpose, a forward primer was designed that specifically binds to a DNA 

sequence upstream of the intended 5’UTR recombination target region (Figure 13, 

panel 1). PCR amplification with this primer, in combination with either the NEO or 

BLA reverse primers, or the control MCP5 5’UTR reverse primer, would result in 

specific PCR products of a known size. The results of the PCR analysis are shown 

in Figure 13 (panel 2). The MCP5 5’-UTR control PCRs showed the expected single 

PCR product in all cell lines.  For the mcp5/MCP5-nmycti cell lines 5-1 and 5-4, all 

of the observed BLA and NEO PCR products were of the expected size: 1,200 bp 

and 1,500 bp PCR products were found for the respective BLA and NEO reverse 

primers, in combination with the upstream MCP5 5’UTR forward primer. As 

expected, the same BLA and NEO PCR products were not found for the wildtype 

PCF449 cell line, which was used as a control.  

 

Figure 13. PCR assessment of the putative mcp5/MCP5-nmycti cell lines 5-1 and 

5-4.  A schematic representation of the PCR strategy is shown in panel (1). The 

PCR results are shown in panel (2). PCR was performed with the designed forward 

primer, recognising a sequence upstream of the MCP5 5’-UTR target region used 
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for homologous recombination, and different reverse primers selective for: (A) the 

BLA resistance cassette; (B) the NEO resistance cassette; or (C) the 5’UTR of 

MCP5. Genomic DNA isolated from the mcp5/MCP5-nmycti cell lines 5-1 and 5-4, 

and the wildtype PCF449 cell line was used as a template for PCR.  

 
The obtained mcp5/MCP5-nmycti cell lines 5-1 and 5-4 were further analysed by 

western blotting, using the commercial myc-tag antibody and the raised MCP5 N-

term and C-term peptide antisera. Purpose of this analysis was to show that the 

obtained conditional double knockout cell lines (A) indeed lack the natural MCP5, 

and (B) still express the myc-tagged MCP5 rescue copy in the presence of 

tetracycline. The results are shown in Figure 14. Western blot analysis with the 

raised N-term (Figure 14A) or C-term (Figure 14C) peptide antisera confirmed that 

both the mcp5/MCP5-nmycti cell lines 5-1 and 5-4 (lane 1 and 2, respectively) 

indeed lack the natural MCP5 protein, whereas in wildtype PCF449 (lane 3) MCP5 

still can be detected. The western blotting results confirmed further the presence of 

recombinant myc-tagged MCP5, with the expected molecular weight of 36 kDa, in 

both mcp5/MCP5-nmycti cell lines. This recombinant myc-tagged MCP5 was 

recognised by both the raised N-term or C-term peptide antisera (Figures 14A and 

14C, lanes 1 and 2), and the commercial myc-tag antibody (Figures 14B and 14D, 

lanes 1 and 2).  
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2.5. Functional characterization of the mcp5/MCP5-nmycti cell line: analysis 

of mitochondrial ATP production. 

The ADP/ATP carrier exchanges mitochondrial ATP with cytosolic ADP in a 1:1 ratio 

(Klingenberg, 2008). If a mitochondrion lacks this exchange, the transport of ATP 

into the cytosol will be hampered. This principle can be used to study ATP 

production and the exchange of this molecule in isolated mitochondria. Since the 

isolation of functional T. brucei mitochondria is rather problematic, due to their 

tubular structure and tight association with the cytoskeleton, an alternative and more 

reproducible method is used. This alternative method is based on the enrichment of 

mitochondria by the permeabilization of whole cells with digitonin, followed by 

extensive washing in order to eliminate the cytosol and other non-mitochondrial 

organelles, prior to the assays (Schneider et al., 2007).  

Figure 14. Western blot analysis of the 

mcp5/MCP5-nmycti cell lines 5-1 

(lanes 1) and 5-4 (lanes 2), and 

PCF449 (lanes 3) T. brucei. The raised 

MCP5 N-term (panel A) and C-term 

(panel C) peptide antisera, and a 

commercial myc-tag antibody (panels B 

and D) were used for analysis. 2x106 T. 

brucei cells were loaded per well. 
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Figure 15.  Mitochondrial ATP production in wildtype PCF449, and induced (+) and 

non-induced (-) mcp5/MCP5-nmycti cell lines, using different metabolic substrates.  

The different substrates were incubated with mitochondria in absence or presence 

of the ADP/ATP carrier inhibitor carboxyatractyloside (CAT). ATP production in 

PCF449 mitochondria with succinate as substrate is set to 100% (indicated with 

asterisk). 

 

During the assays, different mitochondrial substrates and various inhibitors were 

added to the enriched T. brucei mitochondria together with ADP and Pi, and the 

production of ATP was measured by using a luciferase-based ATP detection kit (see 

Materials and Methods for more details). The different substrates and inhibitors 

used, enable the discrimination between ATP produced during oxidative 

phosphorylation (OXPHOS) or substrate-level phosphorylation (SUBPHOS) in the 

mitochondrion of Trypanosoma brucei (Schneider et al., 2007). The results obtained 

in various experiments are summarised in the Figures 15 and 16.  
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Both succinate and ketoglutarate have to be imported into the mitochondrion for 

subsequent ATP production. This in contrast to glycerol-3-phosphate, which is 

oxidised on the outside of the mitochondrion and involves the combined action of a 

glycerol-3-phosphate dehydrogenase in the mitochondrial intermembrane space, a 

mitochondrial inner membrane bound alternative oxidase, and part of the 

mitochondrial respiratory chain for ATP production (Figure 25). 

 

Initially, PCF449 mitochondria were tested to demonstrate the functionality of the 

assay. Addition of the different metabolic substrates to these “wildtype” mitochondria 

resulted in the concomitant production and export of ATP (Figure 15). Almost similar 

amounts of ATP were produced on the first two substrates, i.e. succinate and 

ketoglutarate, whereas significantly less ATP was formed with glycerol-3-phosphate 

as a substrate: i.e. approximately 65% of the ATP produced with succinate or 

ketoglutarate. As expected, addition of the specific ADP/ATP carrier inhibitor CAT 

resulted in a complete ablation of the mitochondrial ATP export, in case of succinate 

or ketoglutarate as metabolic substrate. Also in case of glycerol-3-phosphate, a 

significant 85% reduction in ATP production was found after the addition of CAT, in 

comparison to succinate and ketoglutarate. The observation of some remaining ATP 

production from glycerol-3-phosphate, even in the presence of CAT, can be 

explained by de possibility that the mitochondrial preparations still contains some 

phosphoglycerol kinase (PGK) activity (Allemann and Schneider, 2000). PGK can 

convert glycerol-3-phosphate into glycerol, with the concomitant production of ATP 

via substrate-level phosphorylation. 

 

Comparison of the ATP production-values obtained for PCF449 with those obtained 

from the induced mcp5/MCP5-nmycti cell line revealed that all values were virtually 

similar (Figure 15). However, for the non-induced mcp5/MCP5-nmycti cell line a 

more than 90% decrease in ATP production was observed for both succinate and 

ketoglutarate, when compared to PCF449. For glycerol-3-P, no significant 

differences were found in ATP production for mitochondria from PCF449 and the 

induced and non-induced mcp5/MCP5-nmycti cell lines. 

 

From these observations two important conclusions could be drawn. The first 

conclusion is that MCP5 is responsible for most, i.e. more then 90% of the ADP/ATP 

exchange in the T. brucei mitochondrion. The remaining ADP/ATP exchange activity 

must also be due to ADP/ATP carrier activity, since addition of CAT to the non-



 156

induced mcp5/MCP5-nmycti mitochondria resulted in a complete ablation of 

ADP/ATP exchange activity (Figure 15). This residual ADP/ATP exchange activity 

could be explained by: (A) the presence of residual recombinant MCP5-nmyc in the 

non-induced mcp5/MCP5-nmycti cell line, with protein levels below the western 

blotting detection limit (see Figure 17), or (B) the presence of other ADP/ATP 

carriers in the T. brucei mitochondrion, like for example MCP15 or MCP16 (Chapter 

VI).  

 

The second conclusion that could be drawn from these results is that the 

recombinant myc-tagged version of MCP5, which has been used as a rescue copy 

during the knockout procedure, is fully functional in terms of ADP/ATP exchange. 

The major decrease in ATP production (read ADP/ATP exchange) in the MCP5 

knockout mitochondria could be fully reversed to wildtype levels by the induced 

expression of this recombinant version (Figure 15).  

 

The mitochondrial ATP production was further assessed in the presence of specific 

metabolic inhibitors: i.e. the electron transport chain inhibitors rotenone (inhibits 

Complex I), malonate (inhibits Complex II), and antimycin (inhibits Complex III), and 

the ionophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). FCCP 

is in general used to specifically inhibit oxidative phosphorylation-related ATP 

production, via the dissipation of the mitochondrial proton gradient, which again is 

required for the production of ATP through the mitochondrial ATP-synthase. ATP 

that can be formed in the presence of excess FCCP is in general considered to be 

the result of substrate-level phosphorylation (SUBPHOS). The other mentioned 

inhibitors allowed the discrimination of the different parts of the electron transport 

chain that contribute to oxidative phosphorylation (OXPHOS).  

 

The observed ATP production values in “wildtype” PCF449 mitochondria incubated 

with the different inhibitors (Figure 16) were similar to those previously reported by 

other research groups (Bochud-Allemann and Schneider, 2002; Allemann and 

Schneider, 2000), confirming the reproducibility of the used mitochondrial ATP-

production assays. Addition of the different electron transport chain inhibitors and 

the ionophore FCCP resulted in the complete ablation of ATP-production when 

succinate was used as a metabolic substrate. This was expected since ATP 

generation via succinate is completely dependent on oxidative phosphorylation 

(Figure 25).  
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Figure 16. Mitochondrial ATP production in wildtype PCF449, and induced (+) and 

non-induced (-) mcp5/MCP5-nmycti cell lines, using different metabolic substrates.   

The different substrates used and ADP/Pi were incubated with mitochondria in 

absence or presence of various inhibitors, which inhibit different parts of the 

mitochondrial energy metabolism. ATP production in PCF449 mitochondria with 

succinate as substrate is set to 100%. 

 

In the case of ketoglutarate, however, different degrees of inhibition were found 

depending on the inhibitor used. During mitochondrial ketoglutarate catabolism, ATP 

can be generated by either OXPHOS or SUBPHOS (Chapter 1, Figure 3). Addition 

of FCCP, which specifically inhibits OXPHOS, resulted in an approximately 60% 

decrease of ATP-production, and indicated that the remainder of the mitochondrial 

ATP produced is most probably the result of SUBPHOS. More or less similar 

decreases in ATP production were also found after addition of the electron transport 

chain inhibitors antimycin and rotenone (Figure 16). Addition of malonate decreased 

the mitochondrial ATP production even further. Malonate specifically inhibits 

Complex II, including its succinate dehydrogenase (SDH) activity. As a 

consequence, the substrate succinate will accumulate in the mitochondrion. 

Accumulation of succinate again inhibits the ketoglutarate degradation pathway with 

less ATP produced via SUBPHOS, which occurs during the conversion of succinyl-
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CoA to succinate (Figure 25). This feedback inhibition would be responsible for the 

observed additional decrease in ATP-production in the presence of malonate, when 

compared to antimycin and rotenone. A similar decrease in mitochondrial ATP 

generation was previously observed after RNAi of SDH (Bochud-Allemann and 

Schneider, 2002) . 

 

When using glycerol-3-phosphate as a metabolic substrate, a 40% reduction in ATP 

production was observed in the presence of FCCP, reflecting the amount of ATP 

generated by OXPHOS. In the mitochondrion, glycerol-3-phosphate is converted to 

dihydroxyacetone phosphate by a FAD-dependent glycerol-3-phosphate 

dehydrogenase located in the mitochondrial inter membrane space. The resulting 

electrons are directly transferred to the electron carrier ubiquinone, which 

subsequently donates them to the alternative oxidase or to complex III in the 

mitochondrial inner membrane. As a consequence, the electrons will bypass the 

respiratory Complexes I and II (Kohl et al., 1996).  As expected, addition of 

antimycin (Complex III inhibitor) to “wildtype” mitochondria resulted in a significant 

decrease (>90%) of ATP production when using glycerol-3-phosphate as a 

substrate (Figure 16). Unexpectedly, also the addition of rotenone (inhibitor of 

Complex I) and malonate (inhibitor of Complex II) resulted in a significant inhibition 

of the ATP generation from glycerol-3-phosphate. Rotenone was found previously 

not to inhibit the glycerol-3-phosphate-based ATP production in T. brucei (Alleman & 

Schneider, 2000). 

 

2.6. Functional characterization of the mcp5/MCP5-nmycti 5-1 cell line: 

analysis of growth in different culture media. 

As indicated in section 2.4, we were unable to generate a conventional (without 

MCP5 rescue copy) double knockout cell line in PCF449, which suggested that 

MCP5 is essential for the survival - i.e. growth - of the parasite. Instead, a 

conditional mcp5/MCP5-nmycti 5-1 cell line was generated, enabling the depletion 

of a N-myc tagged version of MCP5 after withdrawal of tetracycline. The growth of 

this cell line was analysed using three different culture media, i.e. normal Mem-Pros 

(NMP), glucose-depleted Mem-Pros (GDMP), and glucose-supplemented MEM-

Pros (MPglu), respectively. NMP, the standard MEM-Pros medium (Overath et al., 

1986), contains 5 mM proline and approximately 0.2-0.3 mM glucose, which is 

derived from the glucose present in the added 10% (v/v) foetal calf serum (FCS). 

The GDMP medium also contains 5mM proline, but has essentially been depleted 
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for glucose by enzymatic conversion (Chapter II). In contrast, MPglu is similar to 

NMP medium that has been supplemented with 5 mM glucose.  

 

The simple reason for testing these different culture media is the observed capability 

of T. brucei to produce ATP either in the mitochondrion and/or the cytosol (last part 

of glycolysis), depending on the available carbon/energy source. For example, the 

exclusively mitochondrial substrate-level phosphorylation of proline, and the 

concomitant production of ATP, necessitates a functional ADP/ATP exchanger for 

the provision of mitochondrial ATP to the rest of the cell. For glucose the situation 

will be different, since part of the required ATP is generated in the cytosol (Figure 

25), an as such is available for the rest of the cell. In the presence of glucose it is 

expected that T. brucei will most probably be less dependent on the mitochondrial 

provision of ATP, and consequently will be less dependent on the ADP/ATP 

exchanger for survival. 

 

For growth experiments, mcp5/MCP5-nmycti 5-1 cultures were initiated at the 

same initial cell density and were grown in the presence (induced: MCP5-nmyc 

expressed) or absence (non-induced: MCP5-nmyc depleted) of tetracycline. 

Western blot analysis was used to confirm the depletion of MCP5-nmyc after 

withdrawal of tetracycline. The “wildtype” PCF449 cell line acted as a reference for 

the different growth experiments. 
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Figure 17. Growth curves for PCF449, and the induced (+) and non-induced (-) 

mcp5/MCP5-nmycti cell lines in NMP (A). The cultures were subcultured at 48 

hours with GDMP at this point of the curve. Panel (B) shows western blotting 

analysis of culture samples taken every 24 hours from the above-mentioned 

mcp5/MCP5-nmycti cultures, using the myc-tag antibody. Panel (C) shows northern 

blot analysis of the same culture samples, with 10 g of total RNA in each lane and 

the full length MCP5 DNA sequence was used as a probe for hybridization. 
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For the first experiment, cultures were initiated on standard NMP medium 

(containing low concentrations of glucose), with subsequent sub-culturing on GDMP 

(contains no glucose) after 48 hours. The obtained growth curves are shown in 

Figure 17A. Culture samples of the induced and non-induced mcp5/MCP5-nmycti 

cell lines were further analysed for the presence of the myc-tagged MCP5 protein 

(Figure 17B) and its corresponding messenger mRNA (Figure 17C). 

 

Western blot analysis revealed that the myc-tagged MCP5 protein level in the non-

induced mcp5/MCP5-nmycti cell line clearly decreased upon withdrawal of 

tetracycline at the start of the culture and was completely depleted, i.e. below the 

western blotting detection limit, after 96 hours of culture (Figure 17B).  As expected, 

the myc-tagged MCP5 protein levels in the induced mcp5/MCP5-nmycti cell line 

remained constant in the presence tetracycline for the duration (i.e. 120 hours) of 

the growth experiment.  

 

When comparing the growth curves, a substantial decrease in growth-rate was 

observed for the non-induced mcp5/MCP5-nmycti 5-1 cell line, when compared to 

the “wildtype” cell line PCF449 (Figure 17A). This decrease became even more 

prominent after sub-culturing of these cell lines from standard NMP medium to 

GDMP medium. These results indicated that the depletion of MCP5 had a 

substantial negative effect on T. brucei growth, especially under glucose-depleted 

conditions. However the apparent “total” MCP5 depletion (Figure 17B, 96 hours) did 

not result in cell death, as would have been expected from the previous failed 

attempts to generate a conventional MCP5 double knockout (i.e. mcp5/mcp5) T. 

brucei cell line. This inconsistency could be explained by the possibility that still 

some myc-tagged MCP5 protein is present in the non-induced mcp5/MCP5-nmycti 

5-1 cells, which is below the detection limit of the used myc-tag antibody during 

western blot analysis. This explanation is based on the assumption that very low 

amounts of MCP5 can keep the non-induced mcp5/MCP5-nmycti 5-1 cell line 

viable. The presence of very low amounts of MCP5 protein in non-induced 

mcp5/MCP5-nmycti 5-1 cultures 96 hours after tetracycline withdrawal is supported 

by northern blot analysis, which revealed the presence of low levels of MCP5-

encoding mRNAs at that time point (Figure 17C, 96 hours non-induced).  
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Figure 18. Growth of wildtype PC449 and the induced and non-induced 

mcp5/MCP5-nmycti cell lines on different culture media, i.e. NMP, GDMP and 

MPGlu, respectively. 
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Expression of myc-tagged MCP5 in the induced mcp5/MCP5-nmycti cell line 

resulted in an only partial restoration of “wildtype” growth (Figure 17A). There are 

two possible explanations for this unexpected result: (A) the added N-term myc-tag 

could affect the transport function of MCP5, or (B) the myc-tagged MCP5 version is 

actually 2-3 fold over-expressed (not shown) when compared to the expression of 

the native MCP5 in the wildtype, and this abundance of a putative ADP/ATP carrier 

could negatively affect the function the mitochondrion. Which of these explanations 

is correct will be further discussed in section 2.9 of this Chapter.  

 

Figure 19.  Western blot analysis of tetracycline-induced (+) and non-induced (-) 

mcp5/MCP5-nmycti cell lines, grown on NMP (normal MEM-Pros), GDMP 

(glucose-depleted MEM-Pros) and MPglu (glucose-supplemented MEM-Pros), and 

using the raised N-term and C-term MCP5 peptide antibodies.  2x106 trypanosomes 

were loaded per well.  

 

When growing trypanosomes in culture, metabolic adaptation(s) might influence the 

growth rate of the cell line in response to a change in culture conditions. Sub-

culturing from NMP to GDMP medium, as has been done for the first experiment 

(Figure 17A), might introduce such a change in growth rate. To reduce the possible 

culture medium-induced changes to a minimum, we decided to pre-adapt the 

induced mcp5/MCP5-nmycti 5-1 and PCF449 cell lines to the different culture 

media, before performing the growth experiments.  

 

This time, the growth experiment was performed on the 3 different culture media 

mentioned above. The obtained growth curves are shown in Figure 18, and the 

corresponding western blots, analysed with both the commercial myc-tag and raised 

MCP5 N-term peptide antibody, are shown in Figure 19. The western blot results 

confirmed the depletion of the myc-tagged MCP5 in the non-induced mcp5/MCP5-

nmycti cell line (myc-tag panels in Figure 19). 
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Similar to the first experiment (Figure 17), a distinct difference was observed 

between the growth of the non-induced mcp5/MCP5-nmycti cell line and the growth 

of the reference cell line PCF449 (Figure 18). The growth of the non-induced 

mcp5/MCP5-nmycti cell line was significantly more affected on both the glucose-

depleted GDMP medium and low-glucose NMP medium, when compared to its 

growth on the glucose-rich MPGlu medium. The presence of high glucose 

concentrations (5mM) in the MPGlu medium apparently compensates partly for the 

MCP5 knockout-induced growth defect. “Wildtype”-growth was only partial or even 

not all restored after expression of myc-tagged MCP5 in the induced mcp5/MCP5-

nmycti cell line (Figure 18). The same result was found in the previous experiment 

(Figure 17), and will be further discussed later on in this chapter.   

 

2.7. Functional characterization of the mcp5/MCP5-nmycti 5-1 cell line: 

analysis of substrate-consumption in different culture media 

 

Analysis of substrate-consumption and end product-formation in the different culture 

media could give important clues regarding the effect of the MCP5 knockout on the 

energy metabolism, and the physiological role of MCP5 in T. brucei. Both glucose 

and proline have been described as primarily consumed carbon/energy sources for 

ATP production in procyclic-form T. brucei (Lamour et al., 2005; Coustou et al., 

2008).  The overall consumption of proline during growth of the different T. brucei 

cell lines in NMP, GDMP and MPglu medium respectively, was analysed. All three 

used media contain equal amounts of proline (5mM), whereas the initial glucose 

concentrations are different. The results are shown in Figures 20, 21 and 22 for 

NMP, GDMP and MPglu medium, respectively. The proline consumption rates (mM 

proline consumed per 106 cells) found for the different cell lines and culture media 

are shown in Figure 23.  

 

Comparison of the proline consumption by the different cell lines grown in NMP 

revealed some significant differences (Figures 20 and 23). The final proline 

concentration found after 96 hours of growth in NMP medium was 3-fold higher in 

the non-inducedmcp5/MCP5-nmycti cell line than for the wildtype cell line PCF449 

(Figure 20). When taking into account the reduced growth of the non-

inducedmcp5/MCP5-nmycti cell line, proline consumption in this cell line had 

almost halved at 96 hours when compared to PCF449 (Figure 23).  
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Figure 20.  Consumption of proline by non-induced mcp5/MCP5-nmycti (A), 

induced mcp5/MCP5-nmycti (B), and PCF449 (C) cell lines during growth in NMP 

medium. The corresponding growth curves () are shown for comparison.   
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As expected, proline consumption did somewhat increase in the induced 

mcp5/MCP5-nmycti cell line when compared to the same but non-induced cell line 

(Figures 20 and 23). This result confirmed the previously observed partial 

restoration of the wildtype proline metabolism. Overall, these results indicated that 

the knockout of the putative ADP/ATP exchanger MCP5 apparently has a significant 

effect on the mitochondrial proline metabolism, but apparently does not ablate it 

completely. 

 

Surprisingly, no significant differences in proline consumption (expressed in mM 

proline consumed per 106 cells) were found when the different cell lines where 

grown in the essentially glucose-free GDMP medium (Figures 21 and 23). The 

previously observed differences in growth rates of the different cell lines in GDMP 

medium (Figure 18) were also found in this experiment (Figure 21).   
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Figure 21. Consumption of proline by non-induced mcp5/MCP5-nmycti (A), 

induced mcp5/MCP5-nmycti (B), and PCF449 (C) cell lines during growth in GDMP 

medium. The corresponding growth curves () are shown for comparison.   
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Figure 22. Consumption of proline (grey bars) and glucose () by non-induced 

mcp5/MCP5-nmycti (A), induced mcp5/MCP5-nmycti (B), and PCF449 (C) cell 

lines during growth in MPGlu medium. The corresponding growth curves () are 

shown for comparison.   
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Figure 23.  Proline and glucose consumption (mM substrate consumed per 106 cells) of the 

wildtype PCF449, and induced (+) and non-induced (-) mcp5/MCP5-nmycti cell lines, grown 

in different culture media for 96 hours.  Panels A, B and C represent proline consumption 

rates on NMP, GDMP and MPglu mediums, respectively.  Glucose consumption rate in 

MPglu is shown in panel D. Carbon sources consumption data was normalized into [carbon 

source]/106 cells in culture.  Each set of normalized data was submitted to One-way ANOVA.  

Where significant differences were observed (p<0.05), the Holm-Sidak method for control 

group was used to determine significance between KOs and PCF449 profiles (control).  
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We finally tested the MPGlu medium, which contained both 5mM proline and 5mM 

glucose. Comparison of proline consumption by the different cell lines grown in 

MPGlu revealed some significant differences (Figures 22 and 23). For both the 

induced and non-induced mcp5/MCP5-nmycti cell lines, the proline consumption 

per cell was identical, although halved when compared to that of the wildtype 

PCF449 cell line (p<0.001). For glucose consumption, however, no differences 

could be observed when comparing the different cell lines (p=0.600) (Figures 22 and 

23). Overall, these results indicated that in particular the mitochondrial proline 

metabolism is affected.  

 

2.8. Functional characterization of the mcp5/MCP5-nmycti cell line: analysis 

of end product formation.   

 

The two main metabolic end products of “wildtype” PCF449 are succinate and 

acetate, which are both excreted into the culture medium. Succinate is the end 

product of both the glycosomal degradation of glucose and the mitochondrial 

degradation of proline (Chapter I: Figure 3). This succinate will be further referred to 

in this Chapter as “total” succinate, since we cannot discriminate between the 

succinate formed in the glycosome and/or the mitochondrion. Acetate, however, 

originates from glucose and is only produced in the mitochondrion (Chapter I: Figure 

3). The formation of these end products was analysed in the same culture medium 

samples as used for the above-discussed substrate consumption analyses.  

 

We initially analysed substrate consumption and end product formation in glucose-

depleted GDMP medium, which only contained proline as a carbon/energy source. 

Comparison of the total succinate production by the different cell lines grown in this 

medium revealed no significant differences between the non-induced mcp5/MCP5-

nmycti (MCP5-depleted) cell line and the wildtype PCF449 cell line (p=0.104) (Figure 

24). On a similar scale, no substantial changes could be observed for the cellular 

proline consumption (p=0.614) (Figure 23) or acetate formation (0.444) (Figure 24), 

when comparing the same cell lines.  
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Figure 24. Production of succinate and acetate (mM formed per 106 cells) of the wildtype 

PCF449, and induced (+) and non-induced (-) mcp5/MCP5-nmycti cell lines, grown in 

different culture media for 96 hours.  Succinate production in NMP, GDMP and MPglu 

medias is shown in panels A, B and C, respectively.  Acetate production in the 

aforementioned medias is shown in panels D, E and F, respectively. Metabolites production 

data was normalized into [metabolite]/106 cells in culture.  Each set of normalized data was 

submitted to One-way ANOVA.  Where significant differences were observed (p<0.05), the 

Holm-Sidak method for control group was used to determine significance between KOs and 

PCF449 profiles (control).   
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Figure 25. Schematic representation of key energy metabolism pathways from T. 

brucei procyclic form.   Acetate, succinate, L-alanine and CO2 are excreted 

products.  Dashed lines represent steps that are supposed to happen under cultured 

conditions. Abbreviations:  AA: amino acid; OA: 2-oxoacid; FBP: fructose 1,6 

bisphosphate;  DHAP: dihydroxyacetone phosphate; G-3-P: glycerol-3-phosphate; 
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1,3BPGA: 1,3 bisphosphoglycerate; 3-PGA: 3-phosphoglycerate; PEP: 

phosphoenolpyruvate; PPi, pyrophosphate; Pi: inorganic phosphate; SuccCoA: 

succinyl CoA; CoASH:  Coenzyme A; GLU: glutamate.  Enzymes catalyzing 

reactions: 1, hexokinase; 2, glucose-6-phosphate isomerase; 3, 

phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6, glycerol-3-

phosphate dehydrogenase; 7, glycerol kinase; 8, glyceraldehyde dehydrogenase; 9, 

phosphoglycerate kinase; 10, phosphoglycerate mutase; 11, enolase; 12, pyruvate 

kinase; 13, phosphoenolpyruvate carboxykinase; 14, pyruvate phosphate dikinase; 

15, glycosomal malate dehydrogenase; 16, glycosomal fumarase; 17, NADH-

fumarate reductase; 18, malic enzyme; 19, alanine aminotransferase; 20, pyruvate 

dehydrogenase complex; 21, acetate:succinate CoA transferase; 22, unknown 

enzyme; 23, succinyl CoA synthetase; 24, citrate synthase; 25, aconitase; 26, 

isocitrate dehydrogenase; 27, 2-ketoglutarate dehydrogenase complex; 28, 

succinate dehydrogenase (complex II); 29, mitochondrial fumarase; 30, 

mitochondrial malate dehydrogenase; 31, rotenone-insensitive NADH 

dehydrogenase; 32, glycerol-3-phosphate oxidase; 33, alternative oxidase; 34, 

F0/F1 ATP synthase; 35, proline dehydrogenase; 36, pyrroline-5-carboxylate 

dehydrogenase; 37, glutamate dehydrogenase; 38, acetyl-CoA:glycine C-acetyl 

transferase; I, II, III and IV, respiratory chain complexes. 

 

However, in MPGlu medium, which contained an excess of both glucose and 

proline, an inversion of the succinate production profile was observed: 

approximately 7-fold less succinate was produced in non-induced mcp5/MCP5-

nmycti cell line compared to the wildtype cell line and the induced mcp5/MCP5-

nmycti cell line (p=0.01). In contrast to succinate, no substantial changes could be 

observed for the cellular acetate formation (p=0.089) (Figure 24). Proline 

consumption, however, was found reduced (approximately 60% less) for both the 

induced and non-induced mcp5/MCP5-nmycti cell lines, in comparison to the 

wildtype PCF449 cell line (p<0.01). The induced mcp5/MCP5-nmycti cell line 

produced as much succinate in this medium as for the wildtype PCF449 cell line, 

confirming the complementation of the ADP/ATP exchange activity by expression of 

N-myc tagged MCP5. 
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Figure 26.  Schematic representation of procyclic from T. brucei energy flux 

depending on the carbon source used for energy production.  Pathway shown in 

blue represents products from the metabolism of proline.  Pathway shown in red 

represents products from glucose metabolism.  Final excretion products are shown 

in the respective colours.  

 

 

Comparison of the succinate produced by the different cell lines grown in NMP 

medium, which contained low levels of glucose (0.2-0.3mM) next to an excess of 

proline (5mM), revealed that in the non-induced mcp5/MCP5-nmycti cell line 

approximately 6 times more succinate is produced per cell when compared to the 

wildtype PCF449 cell line (p=0.006). Similar to the observations for the other tested 

media, also in NMP medium no significant differences were found in cellular acetate 

production of the wildtype PCF449 cell line and the induced and non-induced 

mcp5/MCP5-nmycti cell lines (p=0.658) (Figure 24). 
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It is evident from the results described above, that especially the production of the 

end-product succinate seems to be affected in the MCP5-depleted mcp5/MCP5-

nmycti cell line. The measured succinate is the sum of the succinate produced in 

both the mitochondrion and the glycosome (Figure 24, (Besteiro et al., 2002)). 

Published metabolic studies and gene knockout/depletion experiments with 

procyclic-form T. brucei indicated that the glycosome is the predominant site for 

succinate production. The main key intermediate in this process is 

phosphoenolpyruvate (PEP), which is derived from the glycolytic (partly glycosomal) 

degradation of glucose (Figures 25 and 26). The PEP produced in the cytosol is 

proposed to re-enter the glycosome, where it plays an important role in the recycling 

of glycosomal NAD+ via a NADH-dependent fumarate reductase (Besteiro et al., 

2002). This process further leads to the concomitant production of glycosomal ATP 

via a glycosomal phosphoenolpyruvate phosphokinase (PPDK). Re-entry of PEP 

into the glycosome was shown to be dependent on the activity of a cytosolic 

pyruvate kinase, which apparently acts as a kind of “switch” between the glycosomal 

and mitochondrial metabolism (Besteiro et al., 2005). The second main site of 

succinate production is the mitochondrion. This succinate is derived from the 

mitochondrial oxidation of -ketoglutarate, which involves several TCA-cycle 

enzymes (Figure 25). Succinate will subsequently be oxidized by the mitochondrial 

succinate dehydrogenase (SDH) complex of the respiratory chain (Tielens and Van 

Hellemond, 1998). Different gene knockout/depletion studies revealed that the 

depletion of the SDH complex was only lethal for T. brucei in the absence glucose. 

This, and other results, confirmed that in the presence of glucose, majority of the 

succinate is produced in the glycosome (Besteiro et al., 2002; Coustou et al., 2008; 

Ebikeme et al., 2010).    

 

For our experiments, it is not possible to discriminate between the different sources 

of succinate, unless specific NMR-based carbon-labelling experiments would be 

performed in combination with the generated knockout cell lines (Ebikeme et al., 

2010; Besteiro et al., 2002; Coustou et al., 2003; Lamour et al., 2005; Coustou et 

al., 2008). 

 

Using the above-described model (Figure 25, (Lamour et al., 2005)), hypotheses 

were made in order to explain some of our observations. The first important 

observation made was the fact that succinate was still produced in the MCP5-

depleted T. brucei cell line when grown in glucose-depleted GDMP medium (Figure 

24). In this medium, T. brucei had to rely completely on proline as the sole source 
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for its energy metabolism. However for medium containing an excess of glucose, i.e. 

MPGlu, the results are reversed and revealed a significantly decreased succinate 

production in the same cell line. This difference in succinate production must be a 

direct consequence of the MCP5-depletion and is apparently dependent on the 

presence of glucose.  

 

It is logic to assume that impairment of the major mitochondrial ADP/ATP exchange 

route, i.e. depletion of MCP5, will lead to a substantial accumulation of ATP in the 

mitochondrion and concomitant lack of available ADP. As a consequence, all ADP-

requiring processes, like for example mitochondrial OXPHOS and SUBPHOS, will 

eventually become inhibited. Inhibition of OXPHOS will most probably result in a 

significant accumulation of NADH and the subsequent inhibition of all NAD-requiring 

processes like the mitochondrial proline degradation pathway. Thinking further along 

this line, it is anticipated that the succinate production in the mitochondrion will be 

decreased: remember, mitochondrial succinate production from proline is also 

dependent on the availability of sufficient ADP and NAD+. Consequently, for the 

MCP5-depleted cell line most of the measured succinate has to be derived from the 

glycosome and its associated cytosolic metabolism, i.e. the formation of the key 

intermediate PEP and its re-entry into the glycosome.  

 

Inhibition of OXPHOS in the MCP5-depleted cell line has also direct consequences 

for the glycosomal metabolism. Maintenance of the glycosomal redox balance was 

previously shown to be essential for trypanosome survival (Ebikeme et al., 2010). 

Recycling of the glycosomal NADH to NAD+ is dependent on different NADH-

consuming enzyme reactions in the glycosome, and the so-called glycerol-3-

phosphate/dihydroxyacetone phosphate (G3P/DHAP) redox shuttle (see Figure 25). 

This G3P/DHAP redox shuttle was previously shown to be essential for T. brucei 

and involves the combined action of a mitochondrion-associated glycerol-3-

phosphate dehydrogenase and either the mitochondrial electron transport chain 

(OXPHOS) and/or an alternative oxidase (Figure 25). It is conceivable to assume 

that in the MCP5-depleted cell line the G3P/DHAP redox shuttle will also be 

inhibited. Consequently, the glycosomal redox balance will be completely dependent 

on the precise balance of the NADH producing step (i.e. step 8, Figure 25) and the 

NADH-consuming steps (i.e. step 15 and 16, Figure 25) in the glycosome itself.  

 

In excess glucose, which is most probably used as the main carbon/energy source 

in MPGlu medium, a significant decrease of succinate production is observed for the 
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MCP5-depleted cell line. Following the above-described scenario, the production of 

less succinate in this cell line, in the presence of an excess of glucose, was not 

unexpected: to maintain the glycosomal redox balance in the MCP5-depleted cell 

line, less succinate had to be made in this organelle in order to avoid the depletion 

of NADH. This would further implicate that instead of succinate, malate would be the 

major intermediate leaving the glycosome. Part of this malate could be further 

converted to pyruvate by malic enzyme activity in the cytosol. Whether the MCP5-

depleted cell line indeed excretes more malate and/or pyruvate into the culture 

medium has not (yet) been determined.  

 

In case of proline as the sole carbon/energy source (i.e. GDMP medium), a 

succinate production is still observed in the MCP5-depleted cell line. As assumed 

above, majority of this succinate will be most probably produced in the glycosome. 

Consequently, one of the metabolic intermediates formed during the mitochondrial 

degradation of proline, has to leave the mitochondrion and enter the glycosome for 

further degradation to succinate. Using the above-described model, it is most likely 

that this metabolic intermediate is malate (Figure 25, (Lamour et al., 2005)). Malate 

was previously suggested to act as a metabolic intermediate between glycosomes 

and mitochondria of T. brucei under glucose-depleted conditions (Coustou et al., 

2008; Aranda et al., 2006). The substrate proline will initially be converted to 

ketoglutarate (producing 2 moles NADH per mol of proline), which is subsequently 

converted to malate by reversal of part of the TCA cycle (costing 2 NADH). In that 

way the redox balance in mitochondrion would be maintained, i.e. 2 NADH 

produced versus 2 NADH consumed, for which no functional electron chain is 

required as is the case for the MCP5-depleted cell line.  

 

Once in the cytosol, malate would be serve as a substrate for two possible 

enzymatic steps with concomitant production of PEP (Figure 27) (Aranda et al., 

2006; Leroux et al., 2011).  We propose PEP as a key intermediary based on 

various assumptions: 1) PEP re-entry in the glycosome would ultimately produce 

succinate in this organelle, as observed in our results; 2) PEP as a substrate to 

PEPCK would result in the production of ATP in the glycosome, which is needed for 

synthesis purposes inside this organelle; and 3) PEP is an important intermediate of 

gluconeogenesis. Gluconeogenesis was previously proposed to take place in T. 

brucei, although its contribution to the overall metabolic flux has not been measured 

yet (Coustou et al., 2008; Michels et al., 2006; Hannaert et al., 2003b).  
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Figure 27.  Schematic representation of the mcp5/MCP5-nmycti cell line 

mitochondrial carbon flux in glucose-depleted conditions. Pathway in blue 

represents the WT carbon flux in glucose-depleted conditions.  Dashed lines 

represent steps hypothesized to compensate for carbon redirection out of the 

mitochondrion.  Abbreviations: cMDH: cytosolic malate dehydrogenase; mMDH: 

mitochondrial malate dehydrogenase; cME: cytosolic malic enzyme; PEPCK: 

phosphoenolpyruvate carboxikinase; PPDK: pyruvate phosphate dikinase; PPi: 

pyrophosphate; Pi: inorganic phosphate.  

 

Comparison of the acetate values found for the induced and non-induced 

mcp5/MCP5-nmycti cell lines and the wildtype PCF449 cell line, revealed no 
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differences in the acetate produced by these cell lines. The main key intermediate in 

the production of acetate is again PEP (see above and Figures 25 and 26), which is 

derived from the glycolytic (partly glycosomal) degradation of glucose. PEP is 

converted to pyruvate by the action of the cytosolic PYK (see Figure 25, step 12). 

Pyruvate can subsequently enter the mitochondrion, where it is finally converted to 

acetate with the aid of a mitochondrial acetate:succinate CoA-transferase: this 

enzyme transfers the energy-rich CoA group from  acetyl-CoA to succinate, 

resulting in the formation of succinyl-CoA and acetate, and the subsequent 

production of ATP by SUBPHOS (Van Hellemond et al., 1998; Rivière et al., 2004). 

This mitochondrion-derived acetate was shown recently to be essential for the de 

novo biosynthesis of lipids in T. brucei: in that case acetate is transported from the 

mitochondrion to the cytosol, where it is again converted to acetyl-CoA by a 

cytosolic acetyl-CoA synthetase and the consumption of cytosolic ATP (Van 

Hellemond et al., 1998; Rivière et al., 2004; Rivière et al., 2009). The formed acetyl-

CoA is subsequently used for the production of phospholipids and neutral lipids in 

the cytosol.  

 

As discussed above, depletion of MCP5 would have a substantial inhibitory effect on 

all ADP-requiring mitochondrial metabolic pathways. Correspondingly, an inhibition 

of the mitochondrial acetate production was expected upon depletion of the 

mitochondrial ADP/ATP exchanger MCP5. However, this seemed not to be the 

case: no differences in acetate production were found when comparing the different 

cell lines. A possible explanation for this unexpected result could be the possible 

presence of another (non-mitochondrial) acetate-producing pathway in T. brucei, 

which has to be independent of the mitochondrial succinate-producing metabolism. 

The existence of such an alternative acetate-producing pathway has previously 

been proposed, although not yet characterised (van Hellemond et al., 1998). 

 

2.9. Further discussion of inconsistencies and unexpected results 

Comparison of the growth curves (section 2.6), substrate consumption and end-

product formation profiles (sections 2.7 and 2.8), and mitochondrial ATP-production 

(section 2.5) of the different cell lines grown in various culture media, resulted in the 

discovery of some inconsistencies/unexpected results, which requires further 

discussion.  
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The most prominent inconsistency was found with respect to the growth curves and 

the observed mitochondrial ATP production, which is used as an indicator for 

ADP/ATP exchange activity. During growth experiments on different culture media 

(section 2.6, Figures 17 and 18), invariably only a partial complementation was 

found when comparing the growth of the induced mcp5/MCP5-nmycti cell line 

(expressing N-myc tagged MCP5) to that of the “wildtype” PCF449. In section 2.6, 

two possible explanations were given for this unexpected incomplete restoration of 

“wildtype”-level growth: (A) the added N-term myc-tag could affect the transport 

function of MCP5, or (B) the myc-tagged MCP5 version is actually over-expressed 

(2-3 fold) when compared to the expression of the native MCP5 in the wildtype (not 

shown), which could negatively affect the function of the mitochondrion. The results 

obtained for the mitochondrial ATP-production experiments in section 2.8 however 

discredited both explanations: when comparing the mitochondrial ATP-production 

(i.e. ADP/ATP exchange function) of the induced mcp5/MCP5-nmycti cell line to 

that of the “wildtype” PCF449 cell line, no differences were found regarding the total 

ADP/ATP exchange capacity of these mitochondria when using either succinate or 

ketoglutarate as metabolic substrates. This suggested that the recombinant N-myc 

tagged MCP5 protein was fully functional, and could restore the observed 

mitochondrial ATP-production deficit to wildtype levels in the mcp5/MCP5-nmycti 

cell line upon induction. 

 

However, as discussed in Chapter I, ADP/ATP-carriers do not only exchange 

mitochondrial ATP for cytosolic ADP, but are also involved in the regulation of other 

important mitochondrial processes. The involvement of ADP/ATP-carriers in the 

regulation of mitochondrial metabolism is indicated by the observed interactions of 

these nucleotide exchangers with important mitochondrial complexes, like for 

example the mitochondrial permeability transition pore and the various OXPHOS 

complexes (Chapter I: sections 10, 11 and 12). Protein interaction has been 

suggested between ADP/ATP-carrier monomers (homodimer conformation: Chapter 

I, section 9), with other MCF proteins, and with different proteins of the MPTP and 

OXPHOS complexes (Chapter I, sections 11 and 12). Further, insertion or deletion 

mutations of either the amino- or carboxy-terminal ends of the ADP/ATP-carrier 

were recently reported to affect its function (Iwahashi et al., 2008; Clemencon et al., 

2008). Its therefore conceivable that an amino- or carboxy-terminal sequence 

extension of the ADP/ATP-carrier, which is the case for the N-myc tagged MCP5 

used in these experiments, could possibly lead to defects in protein interaction, but 

apparently not in ADP/ADP exchange function.  
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Another unexpected result was the observation that the MCP5-depleted (non-

induced mcp5/MCP5-nmycti) cell line did not grow better in glucose-supplemented 

MPGlu medium than in glucose-depleted GDMP medium (Figure 18). It was 

anticipated that the MCP5-depleted cell line, which is hampered in its ability to 

export ATP from the mitochondrion, would compensate for its cytosolic ATP deficit 

by a major redirection of its metabolism (in the presence of excess glucose) towards 

the glucose-dependent glycosomal pathway with concomitant synthesis of cytosolic 

ATP. Remember, this ATP is normally derived from proline degradation in the 

mitochondrion (Figure 25). As expected, proline consumption was significantly 

reduced in the MCP5-depleted cell line to approximately 50% of the wildtype 

PCF449 levels. However, substrate consumption analysis revealed that glucose 

was consumed at the same rate in the MCP5-depleted cell line as in the “wildtype” 

PCF449 cell line. Further, no significant differences in succinate (product of glucose 

and proline metabolism) or acetate (product of proline metabolism) production were 

found when comparing the different cell lines grown in MPGlu medium. Depletion of 

the mitochondrial ADP/ATP carrier MCP5 did apparently not lead to the expected 

increase in glucose consumption of the MCP5-depleted cell line grown in glucose-

supplemented MPGlu medium. The only explanation for this unexpected result 

would be the occurrence of a complete shift of glucose and proline catabolism to the 

glycosome and the cytosol, thereby omitting the respective mitochondrial parts of 

the degradation pathways (Figure 25). This, however, would again require a non-

mitochondrial acetate-producing pathway in T. brucei, which has to be independent 

of the mitochondrial succinate-producing metabolism. As discussed previously, such 

pathway has not yet been characterised in this parasite (Van Hellemond et al., 

1998). 

 

The lack of significant difference in the formation of succinate by the uninduced 

mcp5/MCP5-nmycti when compared to the wildtype is another inconsistency in the 

present work.  Taking into account that the production succinate in the 

mcp5/MCP5-nmycti cell line when grown in NMP did show a significant difference, 

this result is somewhat surprising.  Although the possibility of experimental error 

cannot be discarded, the only difference between NMP and GDMP is the very little 

concentration of glucose found in the FCS of the media.  If the adaptation of the KO 

cell line to the GDMP (where no glucose from FCS can be found) modulates the 

metabolite excretion pattern in a different way to those cultures in which a very small 

concentration of glucose can be obtained, remains to be elucidated.  
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3. Conclusion 

Sequence analysis, phylogenetic reconstruction, gene knockout studies and 

mitochondrial ATP production assays with digitonin-permeabilized T. brucei cells 

indicated that MCP5 functions as a mitochondrial ADP/ATP carrier in this parasite. 

The observed inability of N-myc tagged MCP5 to complement the growth defect in 

the MCP5 knockout cell line, indicated that MCP5 is not only essential for the 

mitochondrial exchange of ADP/ATP, but that this AAC is most probably also 

involved in the regulation of other essential cellular processes through its interaction 

with other proteins. It is therefore hypothesized that the knockout of MCP5 might be 

redirecting carbons out of the mitochondrion in order to compensate for the deficit of 

the mitochondrial ADP/ATP carrier in T. brucei procyclic form.  
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Chapter V . Study of the ADP/ATP-exchange function of MCP5: protein 

expression, purification, and reconstitution into liposomes. 

 

1. Introduction 

The classical approach to study the transport function of MCF proteins consists of 

the isolation/purification of the respective metabolite carrier through affinity column 

chromatography, its reconstitution into liposomes, and the subsequent 

determination of its substrate specificity and transport kinetics via metabolite 

transport assays (Krämer and Klingenberg, 1977; Klingenberg et al., 1995; Palmieri 

et al., 1995). Key to this approach is the provision of a suitable in vitro membrane-

like environment, which allows the MCF protein to arrange itself into its proper 

functional conformation and be capable of performing transport. This in vitro 

membrane-like environment, i.e. the liposome, forms a closed compartment, which 

is conveniently used to study the exchange of metabolites into and out of this 

compartment and enables the quantification of this transport process.  

 

In this Chapter, a similar approach is described which was used for the study of the 

ADP/ATP exchange function of T. brucei MCP5. For this purpose, recombinant 

versions of MCP5 were expressed in various well-established heterologous 

expression systems, i.e. different Escherichia coli strains and the Spodoptera 

frugiperda Sf9 insect cell line. The recombinant MCP5 protein, either expressed in 

the prokaryotic E. coli or the eukaryotic S. frugiperda system, was isolated and 

purified from their respective hosts by using a range of techniques, including His-tag 

directed affinity chromatography, differential detergent extraction, and classical 

column chromatography. Once the MCP5 protein was isolated, it was subsequently 

reconstituted into liposomes, again by using different techniques. In an alternative 

approach, recombinant MCP5 protein was expressed in an E. coli strain, followed by 

in vivo metabolite transport assays, thereby omitting the isolation and reconstitution 

steps used in the classical approach.  

 

Unfortunately, this Chapter described approaches that were only partially 

successful. Aim of this chapter was to give an overview of the many different 

techniques that have been tried for assessment of the ADP/ATP transport function 

of T. brucei MCP5. This information will be useful for future functional reconstitution 

attempts. 
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2. Results and Discussion 

2.1. Heterologous expression of MCP5 in the prokaryotic E. coli system 

Escherichia coli strain BL21 is one of the most common prokaryotic strains that are 

used for protein heterologous expression (Sorensen and Mortensen, 2005). The first 

expression trials were performed in E. coli strain BL21(DE3), using the commercially 

available pTrcHis expression vector (Invitrogen). IPTG-inducible expression from 

this vector is driven by the Ptrc promoter and will lead to the addition of a 6xHis-tag 

to the N-terminal end of the expressed protein. We initially used standard conditions 

for the expression of His-tagged MCP5. However, after many attempts, no 

expression of His-tagged MCP5 could be observed, even after changing all possible 

expression conditions, including the use of different culture media, the culture of E. 

coli strain BL21(DE3) at different (lower) temperatures, and the use of different 

IPTG concentrations.  

 

This failure to express any T. brucei MCP5 protein in the commonly used E. coli 

strain BL21(DE3) lead to the hypothesis that the MCP5 gene maybe contained DNA 

codons that were rare in the used E. coli BL21(DE3) strain, therefore hampering its 

expression (Sharp and Li, 1987). To assess this possibility, a codon table was 

generated for T. brucei MCP5 (and other T. brucei MCF proteins), which was 

compared to those from other proteins that could readily be expressed in E. coli, like 

for example the Saccharomyces cerevisiae ADP/ATP carrier PET9.  Codon-usage 

analysis was performed using the Graphical Codon Usage Analyzer 2.0 (Fuhrmann 

et al., 2004). The outcome of this analysis indicated that the MCP5 sequence 

indeed contained most of the codons available for each of the amino acids in the 

genetic code, including a few which are less commonly used in E. coli (Figure 1). 

For example, the 6 different DNA codons coding for arginine (R) were all present in 

the MCP5 DNA sequence, whereas in E. coli only 2 out of 6 arginine codons are 

commonly used.  

 

Since some of the DNA codons used in the T. brucei MCP5 sequence could cause 

the observed expression problems, various other E. coli strains were tested for the 

expression of MCP5, including the Rossetta2(DE3)pLysS (Novagen®), 

Tuner(DE3)pLysS (Novagen®) and Rosetta-gami(DE3)pLysS (Novagen®) strains. 

These strains bear the pRARE plasmid, which codes for additional tRNAs codons 

that are usually rare (Novy et al., 2001). Next to the different E. coli protein 

expression strains, also various plasmids harboring different promoters were tested. 
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Figure 1. DNA codon usage analysis of the T. brucei MCP5 sequence, using the 

Escherichia coli DNA codon usage table for comparison. Residues in fuchsia and 

red represent codons with <50% or <20% adaptiveness of the host organism’s 

protein production, respectively.  Analysis was performed using the Graphical 

Codon Usage Analyzer 2.0 platform.   

 

Western blotting revealed that some MCP5 could be expressed to very low levels 

(just above the detection limit for western blot analysis) within one hour of induction 

with IPTG. Shortly after, the E. coli cells would stop growing and eventually the 

culture would lyse (results not shown). Apparently, E. coli is not able to cope with 

the expression of T. brucei MCP5, both under standard conditions, which were 

successfully used for the expression of MCF proteins from other eukaryotes, and in 

the special E. coli Rosetta strains, which should compensate for the somewhat 

deviating DNA codon-usage of T. brucei proteins. These results indicated an 

additional problem, i.e. that the expression of T. brucei MCP5 might be toxic for E. 

coli.  
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Since it was possible to produce very low levels of T. brucei MCP5, but impossible 

to keep the E. coli cells long enough alive to isolate sufficient amounts of the 

protein, a different expression approach was tried: the so-called auto-induction 

procedure (Studier, 2005). This auto-induction procedure is based on the principle 

that protein expression is only induced upon shift of the E. coli culture from glucose 

metabolism to lactose metabolism. At the beginning of the auto-induction procedure, 

the E. coli expression strain is grown on glucose-containing medium (i.e. the non-

induced condition), which will allow the selection of stable growing bacterial clones 

that are not affected by the possible leakage of toxic (i.e. MCP5) protein products. 

The obtained stable growing E. coli culture is subsequently transferred to a medium 

containing a low concentration of glucose and an excess of lactose as 

carbon/energy source. Upon depletion of the glucose, the E. coli cells will switch 

from glucose metabolism to lactose metabolism, which subsequently will lead to the 

induction of protein (i.e. MCP5) expression by lactose. Since the induction is 

triggered by lactose itself and not by IPTG, the concentration of the inductor 

reaching/entering the cells is controlled by a natural permease activity (Studier, 

2005). Accordingly, the induction is much slower that when the membrane-soluble 

IPTG is added to the cells. A further advantage of this method is that the induction 

will start at higher cell densities: this will aid the large-culture expression of “toxic” 

proteins that only can be expressed in small cellular quantities, which is apparently 

the case for T. brucei MCP5. 

 

 

 

 

 

 

 

Figure 2. Western blot analysis showing the expression of T. brucei MCP5 in E. coli 

Rossetta2(DE3)pLysS, followed for 18 hours of culture in auto-induction medium. 

40mg of total cell protein was loaded per well. A commercial His-tag antibody was 

used for the detection of the His-tagged MCP5 protein. 

 

 

A typical result found for the auto-induced expression of T. brucei MCP5 in E. coli 

Rossetta2(DE3)pLysS is shown in Figure 2. Western blot analysis of the different 

culture samples taken in time revealed a maximum expression of T. brucei MCP5 at 
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15 hours of culture in the auto-induction medium. This result indicated that 

expression of His-tagged MCP5 is possible under these (auto-induction) conditions, 

although the quantity of total expressed MCP5 is still rather low. Despite the fact 

that MCP5 was able to express under the aforementioned conditions, the cell 

culture harboring the His-tagged MCP5 fails to grow further after auto-induction 

commences (Figure 3), a clear sign of the toxic effect this carrier has on E. coli cells. 

 

Figure 3. Growth curves for cell cultures of auto-induced E. coli 

Rossetta2(DE3)pLysS expressing His-tagged MCP5 () or the same E. coli strain 

but now containing an empty pET16b expression vector as control (o). 

 

2.2. Heterologous expression of MCP5 in the eukaryotic S. frugiperda system 

 

Several groups dealing with the biochemical characterization of membrane proteins 

from higher eukaryotes have recently reported misfolding issues and/or absence of 

post-translational modifications in commonly used prokaryotic heterologous 

expression systems that hampered the final functional reconstitution and activity of 

these proteins in liposomes (Heimpel et al., 2001; Wagner et al., 2006). Instead, 

some laboratories used different yeasts for the study of certain membrane proteins 

(Yadava and Ockenhouse, 2003; Cai and Gros, 2003), whereas others preferred to 

use insect cell lines for the expression of membrane proteins (Madeo et al., 2009). 

Especially the insect cell expression system based on ovarian cell lines of the Fall 

Armyworm Spodoptera frugiperda, was found to be suitable for the expression of 
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“functional” MCF proteins. This expression system not only provides sufficient 

quantities of recombinant protein, but also allows the proper folding of the 

expressed proteins and eventual post-transcriptional modifications. More recently, 

successful expression and reconstitution was reported for an MCF protein from eel, 

i.e. the citrate carrier CIC, using the S. frugiperda insect cell line Sf9 for the 

expression of this protein (Madeo et al., 2009).  

 

Recombinant expression of proteins in S. frugiperda insect cell lines is based on 

site-specific transposition of the MCP5-containing expression cassette into a 

baculovirus shuttle vector or bacmid (Autographa californica multiple nuclear 

polyhedrosis virus or AcMNPV), which can be propagated in E. coli cells. The 

resulting recombinant virus is then used for the transfection of different ovarian cell 

lines from Spodoptera frugiperda, i.e. Sf9 or Sf21, respectively. A simplified scheme 

showing an overview for the production of recombinant proteins using the insect 

cells baculovirus-infection system is shown in Figure 4.  

 

 

Figure 4.  Schematic representation for the production of recombinant proteins 

using the insect cells baculovirus-infection system.  pFastBac™ vector and the 

DH10bac™ vector are the major components of the baculovirus insect dell 

expression system kit developed by Invitrogen. 
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After the initial standardization of the required expression conditions, we were able 

to express low but sufficient quantities of T. brucei MCP5 protein using the S. 

frugiperda insect cell line Sf9. A representative western blot analysis is shown in 

Figure 5. For comparison, other T. brucei MCF proteins were expressed to multi-fold 

higher cellular concentrations than MCP5 when using S. frugiperda Sf9 and similar 

expression conditions. For example, T. brucei MCP12 was produced to 13-fold 

higher cellular concentrations than MCP5 (results not shown: C. Colasante, 

personal communication). This result indicated that MCP5, even when expressed in 

a eukaryotic heterologous expression system, could not be expressed to high 

cellular levels. Its unclear at this point, what causes this inherently low expression of 

the T. brucei MCP5 protein. 

 

 

2.3. Purification of His-tagged MCP5 using affinity chromatography 

 

The next step in the functional characterization of MCP5 was the solubilization and 

purification of this ADP/ATP carrier for its subsequent reconstitution into liposomes.  

Solubilization of membrane proteins refers to the removal and replacement of the 

natural membrane lipids, in which the proteins are embedded, by a detergent that at 

the same time keeps the protein in solution (Seddon et al., 2004).  By definition, a 

protein is regarded to be soluble if it remains in the supernatant after 

ultracentrifugation at 100,000xg for 1 hour (Staudinger and Bandres, 2003).  

 

Most MCF proteins can be solubilized in the presence of mild non-ionic detergents, 

such as Triton X-100 and Triton X-114 (Palmieri et al., 1995; Riccio et al., 1975b; 

Figure 5.  Western blot analysis showing the 

expression of T. brucei MCP5 in S. frugiperda 

Sf9. 2x106 cells were loaded per well, and a 

commercial His-tag antibody was used for the 

detection of His-tagged MCP5. �



 198

Riccio et al., 1975a; Krämer and Heberger, 1986). Multiple solubilization 

experiments revealed that the recombinant His-tagged MCP5 protein, whether 

expressed in different E. coli strains or S. frugiperda SF9, could not be solubilized in 

Triton X-100 and Triton X-114, even not in relatively high concentrations of these 

mild detergents (results not shown). These unexpected results indicated that more 

stringent conditions were required for the solubilization of the MCP5 protein.  

 

More stringent solubilization conditions can be achieved by using either ionic-

detergents or chaotropic agents like for example guanidinium-HCl (Creighton, 

1990). Disadvantage of the application of more stringent solubilization conditions is 

that partial or complete unfolding (denaturation) of the protein occurs, which 

requires a subsequent re-folding (renaturation) step in order to achieve an active 

protein suitable for transport assays (Creighton, 1990).  

 

We first tested the use of the chaotropic salt guanidinium-HCl as a more stringent 

solubilization condition. Experiments revealed that this chaotropic salt could only 

partially dissolve the bacterial expressed His-tagged MCP5 protein (results not 

shown). The with guanidinium-HCl solubilized MCP5 protein required a subsequent 

5M urea dialysis step in order to eliminate the chaotropic salt and to keep the 

protein in solution for the final Ni-NTA or TALON affinity column chromatography 

purification step. Lowering of the urea concentrations below 5M resulted in 

immediate precipitation (aggregation) of MCP5. Unexpectedly, during Ni-NTA or 

TALON affinity column chromatography, His-tagged MCP5 was found exclusively in 

the effluent, suggesting that the protein could not bind to the affinity column 

matrices. Also the substitution of urea with various detergents did not result in an 

increased binding of the His-tagged MCP5 protein to the different affinity matrices. 

These results suggested that the N-terminal 6xHis-tag of MCP5 is not “available” for 

binding to the affinity matrices used for the final purification step. Why this is 

happening, is unclear at this point.  

 

We finally resorted to the use of different ionic detergents instead, i.e. the 

polyoxyethylene detergent Brij 60, n-dodecyl--D-maltoside (DDM), and lauryl-

sarcosine sulfate (Sarkosyl). A summary of the tested solubilization/purification 

conditions for recombinant His-tagged MCP5 (E. coli and Insect cells) and natural 

MCP5 (T. brucei PCF449) is shown in Table 1. Both Brij 60 and DDM failed to 

completely solubilize MCP5 (results not shown). Sarkosyl has previously been 

reported as an effective ionic detergent for the solubilization of some MCF proteins 
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(Fiermonte et al., 1993; Heimpel et al., 2001; Frankel et al., 1991). Solubilization of 

recombinant 6xHis-tagged MCP5 with increasing concentrations of Sarkosyl 

revealed that the protein was completely solubilized (i.e. present in the supernatant 

fraction after high-speed centrifugation) in detergent concentrations of 0.5% w/v and 

above. The corresponding western blot analysis is shown in Figure 6.  

 

During the solubilization experiments with Sarkosyl, two important observations 

were made. The first observation relates to the stability of the His-tagged MCP5 

protein in the presence of this detergent: after extended incubations with 0.5% (w/v) 

Sarkosyl or alternatively shorter incubations but with higher (>0.5%) Sarkosyl 

concentrations, a rapid degradation of the protein was observed.  

 

 

Carrier Expression 
method 

Solubilized with Affinity 
matrix used  

Elution 
with 

Result

MCP5 E. coli 0.5% TX-100 (w/v) Talon® 200mM 
imidazole 

Not solubilized 
No binding 

MCP5 E. coli 0.5% TX-114 (w/v) Talon® 200mM 
imidazole 

Not solubilized 
No binding 

MCP5 E. coli Brij60 -  Not solubilized 
MCP5 E. coli 5M Guanidinium-HCL/ 5M 

Urea 
Talon® 200mM 

imidazole 
No binding 

MCP5 E. coli 1.5% (w/v) Sarkosyl 
(overnight incubation, 
4°C) 

-  Protein 
degraded prior 
purification 

MCP5 E. coli 5M Urea/2% (w/v) 
Sarkosyl (inclusion bodies 
isolation) 

Ni-NTA 200mM 
imidazole 

No binding 

MCP5 E. coli 2% Sarkosyl (w/v) Ni-NTA 200mM 
imidazole 

No binding 

MCP5 E. coli 0.5-1% DDM -  Not solubilized 
MCP5 Insect cells Up to 2% (w/v) TX-100 -  Not solubilized 
MCP5 Insect cells  TX-114 -  Not solubilized 
MCP5 Insect cells 0.5% (w/v) Sarkosyl/ 

2% (v/v) TX-100 
Ni-NTA 200mM 

imidazole 
Partially 
purified 

MCP5 T. brucei  
PCF449 
 

Extraction 1% (w/v) TX-
114 

CM Sephadex 
C-50 

200mM 
NaCl 

Partially 
purified 

 

Table 1.  Summary of the tested solubilization/purification conditions for 

recombinant His-tagged MCP5 (E. coli and Insect cells) and natural MCP5 (T. 

brucei PCF449). Ultracentrifugation was performed after solubilization to assess the 

solubility of the protein (supernatant contained the detergent solibilised protein).   
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Figure 6. Solubilization of recombinant 6xHis-tagged MCP5 expressed in S. 

frugiperda SF9 with increasing concentrations of the ionic detergent Sarkosyl. After 

incubation with Sarkosyl, samples were ultracentrifuged (138000xg) and separated 

into supernatant (s: soluble) and pellet (p: insoluble) fractions. Detergent 

percentages are indicated in w/v.   His-tagged MCP5 was detected using the His-tag 

antibody.  

 

An example of Sarkosyl-directed protein degradation can be seen in Figure 6. When 

comparing the western blot results for 0.7% (w/v) and 1.5% Sarkosyl (w/v), a 

prominent smear of smaller His-antibody cross-reacting protein products was found 

below the main MCP5 protein band at the higher Sarkosyl concentration, indicating 

protein degradation. Prolonged incubation (> 1hour) with Sarkosyl eventually 

resulted in total lost of His-tagged MCP5 (results not shown). 

 

The second important observation made during the Sarkosyl solubilization 

experiments was the significant increased detection of the His-tagged MCP5 protein 

with increasing Sarkosyl concentration. This phenomenon could also be observed in 

Figure 5: although solubilization experiments contained the same amount of protein 

at their start, an increased detection of His-tagged MCP5 protein was found. This 

result indicated that the N-terminal end of MCP5, which contains the 6xHis-epitope, 

became more and more accessible for the His-antibody with increasing Sarkosyl 

concentrations.   

 

To avoid substantial Sarkosyl-directed degradation of His-tagged MCP5 protein 

during the further Ni-NTA affinity chromatography procedure, up to 2% (w/v) Triton 

X-100 was added to the solubilized protein. The presence of excess Triton-X100 

(2% w/v) over Sarkosyl (0.5% w/v) was previously reported to prevent Sarkosyl-

directed degradation of MCF proteins (Madeo et al., 2009). Addition of Triton X-100 

(2% w/v) to the Sarkosyl-solubilized MCP5 protein fraction was indeed found to 

prevent further degradation of MCP5 (results not shown). Accordingly, all 
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subsequent Ni-NTA affinity chromatography steps were performed in presence of 

2% (w/v) Triton X-100 (no Sarkosyl) in order to keep the protein soluble and to allow 

it to bind to the affinity matrix. Western blot analysis of the different protein fractions 

obtained during Ni-NTA chromatography of recombinant His-tagged MCP5 

expressed in Sf9 insect cells, revealed that: (A) MCP5 now was able to bind to the 

Ni-NTA affinity matrix, and (B) that during elution with 200mM imidazole, only part of 

the protein could be eluted (Figure 7).  

 

 

 

 

 

 

Figure 7.  Western blot analysis of the different protein fractions obtained during Ni-

NTA chromatography of recombinant His-tagged MCP5 expressed in S. frugiperda 

SF9. A commercial His-tag antibody was used for the detection of the protein. 

Legend: (1) cleared lysate after 2% (w/v) Sarkosyl treatment; (2) effluent containing 

the unbound protein fraction; (3) wash step to further remove unbound protein; (4) 

elution with 200mM imidazole; (5) Ni-NTA beads after elution with 200mM 

imidazole.   

 

The partial elution of His-tagged MCP5 from the Ni-NTA affinity matrix, even at a 

very high concentrations of imidazole (up to 200mM), suggested that this protein is 

not only bound to the matrix via its His-tag. It is most probably also associated with 

the Sepharose matrix of the Ni-NTA column, which is not uncommon for 

hydrophobic proteins. That MCP5 is rather hydrophobic explained the requirement 

of a strong anionic detergent, i.e. Sarkosyl, for its solubilization. A similar behaviour 

was reported for the AAC from beef heart mitochondria when it was first solubilized 

and isolated (Riccio et al., 1975b).  

 

2.4.  In vivo transport assays in Escherichia coli Rossetta2(DE3)pLysS 

 

As indicated in the introduction of this Chapter, two different approaches were used 

to determine the transport characteristics of the ADP/ATP carrier MCP5. The first 

approach is based on the expression of recombinant His-tagged MCP5 protein in E. 

coli Rossetta2(DE3)pLysS followed by in vivo metabolite transport assays in the 
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same strain. This approach was previously shown to be successful for the functional 

characterisation of different ADP/ATP carriers from other eukaryotes (Tjaden et al., 

1998). It is based on the important fact that E. coli does not possess any ADP/ATP 

carriers: consequently measured ADP/ATP exchange activity would be solely due to 

the activity of the expressed eukaryotic ADP/ATP carrier. Transport activity requires 

the proper folding and insertion of the expressed ADP/ATP carrier in the E. coli 

membrane, which is apparently feasible (Tjaden et al., 1998). Further advantage of 

this approach is that the more troublesome isolation and reconstitution steps, used 

in the classical approach, will be omitted.  

 

The in vivo transport assay in E. coli is based on the import of radioactive labeled 

substrates, i.e. 14C or 32P-labeled ADP and ATP, into those E. coli strains that 

express a functional eukaryotic ADP/ATP carrier. After a timed incubation of these 

cells with the various radioactive substrates, the cells were separated from the non-

incorporated substrate through rapid filtration or centrifugation (Tjaden et al., 1998). 

Measurement of the in E. coli incorporated radioactive substrates enables the 

quantification of ADP/ATP exchange.  

 

As discussed in section 2.3, His-tagged MCP5 could be readily expressed, although 

at a low level, in the Escherichia coli Rossetta2(DE3)pLysS strain. We used the 

same E. coli strain for performing the in vivo transport assays. However, after many 

attempts, no ADP/ATP exchange could be observed even after varying all possible 

parameters. Major problem appeared to be the substantial lyses of the MCP5-

expressing E. coli cells during the transport assay. The protocol is based on a Pi 

buffer for the transport assay (incubation step) and the subsequent removal (wash 

steps) of non-incorporated radioactive substrates (Tjaden et al., 1998).  To exclude 

eventual osmotic problems, iso-osmotic buffers were used instead, but again 

without success.  

 

One possible explanation for the observed lyses could be that expression of His-

tagged MCP5 resulted in “leakage” of the E. coli cells, which became detrimental 

upon transfer of the cells from the culture medium to the assay buffer. During the 

auto-induction experiments a significant decline in growth was observed upon 

induction with lactose (Figure 3). Such reduction in growth is usually a trait observed 

in E. coli cells that over-express a particular protein. However, in our case, MCP5 

was always expressed at rather low cellular levels, excluding the possibility that 

over-expression is the cause of a reduced growth. Furthermore, over-expression of 
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MCP15 and MCP16 in E. coli Rossetta2(DE3)pLysS (Chapter VI) and MCP12 

(personal communication with Dr. C. Colasante) in E. coli BL21(DE3), did not 

substantially affect cell growth. This observation is in agreement with the leakage of 

the E. coli cells and their subsequent lyses, possibly caused by the expression of 

MCP5. 

 

2.5. Reconstitution of His-tagged MCP5 into liposomes and transport assays 

 

This section summarizes the greater part of all the reconstitution work performed 

with MCP5. Unfortunately, the functional reconstitution of MCP5 in liposomes 

appeared to be “impossible”, at least with the conventional and well-established 

methods that seemed to work well for MCF proteins isolated from other eukaryotes.  

 

The reconstitution of a metabolite transporter into liposomes refers to the integration 

of this protein into an enclosed artificial membrane-bound compartment, the so-

called liposome, so that transport can occur only through the transport activity of this 

protein. The different reconstitution protocols used for the integration of MCP5 into 

liposomes and the subsequent transport assays were mainly based on methods 

previously published by Palmieri (Palmieri et al., 1995) and Klingenberg (Krämer 

and Klingenberg, 1977; Klingenberg et al., 1995; Heimpel et al., 2001). These 

methods were reported to be successful for the reconstitution of various MCF 

proteins from other eukaryotes. The protocols used for our work with MCP5 were 

essential the same or minimal modifications of these published methods. A 

schematic representation of the protocol used for the reconstitution of MCP5 is 

shown in Figure 8, whereas an overview of different attempted reconstitution 

conditions is shown in Table 2. 

 

The artificial liposome membrane should resemble the natural membrane in that is 

formed by a particular mix of phospholipids, which permits the proper arrangement 

of the protein structure in order to perform transport (Seddon et al., 2004; Suzuki 

and Takeuchi, 2008). In most of the published protocols, egg yolk 

phosphatidylcholine (PC) was used as the main phospholipid for reconstitution 

(Klingenberg et al., 1995; Palmieri et al., 1995). Also asolectin, a mix of soybean 

phospholipids, and E. coli polar lipids were found to enable a successful 

reconstitution of several MCF proteins (Noël and Pande, 1986; Hutson et al., 1990; 

Rück et al., 1998; Kasamo, 1990; van der Giezen et al., 2002). A number of 
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reconstitution studies indicated a further important role of cardiolipin for the 

successful reconstitution of ADP/ATP carriers (Chapter I). The presence of 

cardiolipin during reconstitution is essential for the stability of the ADP/ATP carrier 

and its ADP/ATP exchange activity (Krämer and Klingenberg, 1980; Heimpel et al., 

2001; Klingenberg, 2009). The different phospholipids and variable mixtures of 

these, used for the functional reconstitution of MCP5, are shown in Table 2. 

 

Virtually all of the reconstitution experiments were performed with freshly isolated 

6xHis-tagged MCP5 protein in order to minimize its degradation once it was 

solubilized from the membrane. Prolonged storage of the isolated His-tagged MCP5 

protein, on either ice or at -20oC, invariably resulted in protein degradation, even in 

the presence of a broadband protease inhibitor mix (results not shown). In some 

cases, the cells or mitochondrial fractions were pre-incubated with the ADP/ATP 

carrier inhibitors ATR or CAT prior to the solubilization and isolation of MCP5. Both 

ATR and CAT were found to stabilize the structure of the beef heart AAC and 

protected it from rapid proteolytic degradation when solubilized out of its natural 

membrane environment (Riccio et al., 1975b; Riccio et al., 1975a; Klingenberg et 

al., 1978; Klingenberg et al., 1995). The formed ATR/AAC or CAT/AAC complexes 

further prevented the possible unfolding of the beef heart AAC, making it more 

stable for longer time periods. Since ATR-binding has been shown to be competitive 

to ADP, the addition of excess substrate would remove this inhibitor upon 

reconstitution, at which point the ADP/ATP carrier would be stabilized by its 

integration into the liposomal membrane (Krämer, 1986). 
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Figure 8. Schematic 

representation of His-tagged 

MCP5 reconstitution into 

liposomes. 1) The phospholipids 

are prepared by extrusion/or 

freeze-thawing/or sonication in 

order to obtain unilamellar 

liposomes. 2) The liposomes are 

solubilized with detergent and 

mixed with the purified protein and 

the internal substrate  (shown in 

red, step 3) and subsequently 

loaded into Bio-beads columns for 

cyclic detergent removal, and 

formation of the proteoliposomes 

(4). 5) The sample is then cleaned 

of the external substrate by 

passage through Dowex or 

Sephadex G-75 columns.   

�
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PL PL solubilization Buffer Salts Reconstitution matrix Clean-up column 1 Clean-up column 2

PC 1-1.3 % (v/v) TX-114 MOPS pH 7.0 10-30mM KCl Amberlite XAD-2 Dowex AGI-X8 Dowex AGI-X8 

PC/CL 1-1.3 % (v/v) TX-114 MOPS pH 7.0 - Amberlite XAD-2 Dowex AGI-X8 Dowex AGI-X8 

PC/CL 1-1.3 % (v/v) TX-114 Tris-HCl pH 7.5 10-30mM KCl Amberlite XAD-2 Dowex AGI-X8 Dowex AGI-X8 - Sephadex G75 

PC/CL C10E5 Tris-HCl pH 7.5 - Biobeads® Sephadex G75 Sephadex G75 

PC/CL C10E5 Tris-HCl pH 7.5 10-100mM KCl Biobeads® Sephadex G75 Sephadex G75 

PC/CL C10E5 Tris-HCl pH 7.5 - Amberlite XAD-2 Sephadex G75 Sephadex G75 

PC/CL C10E5 Tris-HCl pH 7.5 10-100mM KCl Amberlite XAD-2 Sephadex G75 Sephadex G75 

PC/CL C10E5 Tris-HCl pH 7.5 10-50mM Na2SO4 Amberlite XAD-2 Sephadex G75 Sephadex G75 

PC/CL C10E5 Tris-HCl pH 7.5 10-50mM Na2SO4 Biobeads® Dowex AGI-X8 - Sephadex G75 Sephadex G75 

PC/CL C10E5 Pipes pH 7.0 - Biobeads® Sephadex G75 Sephadex G75 

PC/CL C10E5 Pipes pH 7.0 10-50mM KCl Biobeads® Sephadex G75 Sephadex G75 

PC/CL C10E5 Pipes pH 7.0 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

PC/CL C10E5 Tricine pH 7.0 - Biobeads® Sephadex G75 Sephadex G75 

PC/CL 1-1.3 % (v/v) TX-114 Tricine pH 7.0 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

PC/CL C10E5 Tricine pH 7.0 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

Asol/CL 1-1.3 % (v/v) TX-114 Tris-HCl pH 7.5 - Amberlite XAD-2 Dowex AGI-X8 - Sephadex G75 Sephadex G75 

Asol/CL 1-1.3 % (v/v) TX-114 Tris-HCl pH 7.5 10-50mM KCl  Amberlite XAD-2 Dowex AGI-X8 - Sephadex G75 Sephadex G75 

Asol/CL 1-1.3 % (v/v) TX-114 Tris-HCl pH 7.5 10-50mM KCl  Biobeads® Sephadex G75 Sephadex G75 

Asol/CL C10E5 Tris-HCl pH 7.5 10-50mM KCl  Amberlite XAD-2 Sephadex G75 Sephadex G75 

Asol/CL C10E5 Tris-HCl pH 7.5 10-50mM KCl  Biobeads® Sephadex G75 Sephadex G75 

Asol/CL C10E5 Tris-HCl pH 7.5 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

Asol/CL C10E5 Pipes pH 7.0 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

Asol/CL 1-1.3 % (v/v) TX-114 Tricine pH 7.0 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

Asol/CL C10E5 Tricine pH 7.0 10-50mM Na2SO4 Biobeads® Sephadex G75 Sephadex G75 

Table 2. Summary of protocols used for MCP5 reconstitution into liposomes.  PC= phosphatidylcholine from egg yolk; CL=cardiolipin; Asol=asolectin; C10E5= 

pentaethylene glycol monodecyl ether. Where dashes appear denotes one or other reagent used, except the salts, where it represents the concentration range.  

Slashes imply combination of reagents.  
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Another important parameter taken into account during the reconstitution of MCP5 

was the previously reported requirement for particular ions at certain concentrations 

in the reconstitution mix, which seemed to be crucial for the establishment of an 

effective ADP/ATP exchange activity (Krämer, 1986). High ionic strength is 

regarded as an important factor in the solubilization process, but chlorides and 

phosphates seemed to be detrimental for the exchange activity (Krämer and 

Kürzinger, 1984; Krämer, 1986). Also the presence of magnesium decreased the 

ADP/ATP exchange activity considerably due to binding of this ion to ATP, 

preventing its entry into the binding pocket of the AAC (Krämer and Kürzinger, 1984; 

Krämer, 1986). A recent publication on the effect of chloride ions above 

concentrations of 150mM revealed a reduced ATP/ADP exchange activity due to 

binding of this negatively charged ion to the positive amino acid residues involved in 

substrate binding (Krammer et al., 2009) Different ions were tested in the 

reconstitution of MCP5, at variable concentrations (see Table 2 for more 

information). Further, next to Tris-HCl as buffer, also tricine and pipes buffers were 

tested for the functional reconstitution of MCP5, although several publications 

indicated that the choice of buffer was not critical for the successful reconstitution of 

most carriers (Palmieri et al., 1995). Whenever a particular buffer was chosen for 

reconstitution, the same buffer would also be used during the purification of the 

MCP5 protein in order to minimize sudden physical changes in their environment.  

 

Also the choice of detergent, which is used for the solubilization of the phospholipids 

prior to liposome formation, seemed to have an influence on the ADP/ATP 

exchange activity after reconstitution (Figure 8, step 2). For example, Palmieri and 

his co-workers used mainly Triton X-114 for the solubilization of phospholipids: 

invariably at a same concentration, i.e. 1.3% (v/v) (Palmieri et al., 1995; Fiermonte 

et al., 1993; Palmieri et al., 2000; Marobbio et al., 2002; Vozza et al., 2004; Palmieri 

et al., 2001; Todisco et al., 2006; Palmieri et al., 2006; Fiermonte et al., 2009; 

Iacopetta et al., 2010; Castegna et al., 2010). This is in contrast to Klingenberg and 

his co-workers, who reported that TX-100 and TX-114 both could not be used for 

phospholipid solubilization and the subsequent reconstitution of recombinant 

Neurospora crassa AAC expressed in E. coli: instead they used the detergent C10E5 

in a specific PC/detergent ratio to accomplish a successful reconstitution and 

transport (Heimpel et al., 2001). Some other groups used mainly TX-100 to 

solubilize the phospholipids prior to the functional reconstitution of ADP/ATP carriers 
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(Geertsma et al., 2008). For solubilization of phospholipids and following 

reconstitution of MCP5 different detergents were used, i.e. TX-114 and C10E5, at 

variable concentrations  (see Table 2 for further information). The detergent TX-100 

was omitted from these experiments due to its previously observed failure to 

solubilize MCP5 (discussed in section 2).   

 

The next two critical steps in the reconstitution of MCP5 were the formation of 

liposomes (contains no protein) and the subsequent formation of MCP5-containing 

proteoliposomes (Figure 8, steps 3 and 4). Phospholipids were solubilized as 

described above and indicated in Table 2, and were either extruded across a 100nm 

membrane or sonicated on ice for 10 minutes; both methods were previously shown 

to produce unilamellar membrane liposomes, which are required for the functional 

reconstitution of MCF proteins (Suzuki and Takeuchi, 2008; Hope et al., 1986).    

 

The formation of the MCP5-containing proteoliposomes is based on a partial re-

solubilization of the extruded or sonicated liposomes, which results in micelles that 

allow the insertion of the proteins into the liposome structure. The slow removal of 

the detergent will ensure the closure of the proteoliposome with the MCF protein 

arranged on its surface. This process is called micelle-vesicle transition, and is 

essential for the formation of proteoliposomes (Ollivon et al., 2000). The different 

affinity matrices used for the removal of detergent during MCP5 reconstitution 

experiments are indicated in Table 2. In most cases, polystyrene beads (Biobeads) 

were used which are optimal for the removal of low “critical micelle concentration” 

(cmc) detergents. The phospholipid/detergent ratio is determined by the cmc of the 

detergent used, with cmc defined as the minimal detergent concentration required 

for micellar formation (Ollivon et al., 2000; Seddon et al., 2004). Detergents were 

most effectively removed by a method called “cyclic detergent removal”, i.e. the 

repeated passage (15-20x) of the proteoliposome/detergent mix over Biobeads® 

columns (Krämer, 1986; Krämer and Heberger, 1986; Klingenberg et al., 1995; 

Ollivon et al., 2000). The phospholipid/protein ratio used for the formation of 

proteoliposomes was also a key factor in the procedure: Klingenberg and his co-

workers generally use a PC/protein ratio of 200 (Heimpel et al., 2001), whereas 

other authors used fixed volumes of phospholipid mixtures without establishing the 

phospholipid/protein ratios (Madeo et al., 2009).  

 

Another essential prerequisite for the measurement of ADP/ATP exchange in 

proteoliposomes is the presence of ADP in the lumen, and the presence of its 
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counter ion, in this case radioactive labeled (3H) ATP, on the outside of these 

artificial vesicles (Figure 9, steps 2 and 3). During proteoliposome formation, ADP is 

included in the reconstitution mix in order to act as an internal substrate for the later 

measurement of ADP/ATP exchange. To facility this exchange, ADP has to be 

removed from the outside of the formed proteoliposomes and has to be replaced by 

the radioactive counter ion, i.e. 3H-ATP. If ADP/ATP exchange takes place, 3H-ATP 

will be imported into the proteoliposomes in counter exchange with luminal ADP. In 

order to quantify this transport, non-imported 3H-ATP has to be removed from the 

outside of the liposomes. Removal of external ADP and non-imported 3H-ATP is 

accomplished by ion exchange chromatography. The different ion-exchangers used 

for this purpose are shown in Table 2. Initially Dowex AGI-X8 was used to both 

remove external ADP after the formation of MCP5 proteoliposomes and the removal 

of non-imported 3H-ATP after the transport assay. However, control experiments 

with protein-free liposomes revealed that the binding capacity of Dowex AGI-X8 was 

insufficient and resulted in the presence of 3H-ATP in the first eluate, which normally 

contains the proteoliposomes. Instead several other ion-exchangers and also 

different molecular sieves were tested. The best result for the removal of non-

incorporated 3H-ATP was obtained with Sephadex G75 (results not shown) (Krämer, 

1986; Palmieri et al., 1995). Sephadex G75 is a molecular sieve, which will separate 

the smaller molecules (substrates) from the larger particles (proteoliposomes) on a 

migration rate basis, without any electrostatic interactions intervening. Accordingly, 

Sephadex G75 was used for the removal of both ADP and 3H-ATP during the 

different MCP5 reconstitution steps and following transport assays (Table 2).
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Figure 9.  Schematic 

representation of the transport 

assays for MCP5 reconstituted 

into liposomes.  ADP-filled 

proteoliposomes are mixed with 
3H-ATP (ADP in red, 3H-ATP in 

pink, step 1) and transport (step 

2) is allowed to take place for 2 

minutes (step 3).  Time points 

are taken from the reaction and 

the samples are stopped with 

CAT and BKA (shown in dark 

blue and purple, step 4), before 

loading them into clean-up 

columns (step 5) for the 

elimination of non-transported 

substrate.  Once external 

substrate is eliminated, the 

sample is placed in scintillation 

counter for determination of 3H-

ATP. 
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The actual presence of substrate in the lumen of the proteoliposomes was 

confirmed by a control experiment in which ATP was used as the internal substrate 

during liposome formation. Any external ATP was removed by ion exchange 

chromatography as indicated in table 2. Release of ATP, upon the addition of Triton 

X-100 to a final concentration of 0.1% (v/v), was measured by a hexokinase-coupled 

enzyme assay. As shown in Table 3 significant amounts of ATP were released upon 

addition of the detergent. This result indicated that the formed liposomes indeed 

contained substrate, as expected. Taking into account that the final concentration of 
3H-ATP in each time point aliquot was between 0.02-0.04 mol/mL, the design was 

set up to force the reaction towards the counter-exchange of internal ADP for 

external 3H-ATP.  Table 3 also shows discrepancies in the amount of internal 

substrate found in the proteoliposomes depending on the detergent used for the 

solubilization of MCP5.  Another reason to discard DDM as a detergent for the 

solubilization of His-tagged MCP5 was the apparent inefficiency of the Bio-beads to 

eliminate this detergent completely from the sample, which would have hampered 

even further the stability of the newly formed proteoliposome. 

 

Liposome Protein treatment ATP concentration after TX-100 

solubilization 

No protein - 0.797 mol/mL 

His-tagged MCP5  200mM TX-100 0.400 mol/mL 

His-tagged MCP5  200mM DDM 0.120 mol/mL 

Table 3.  ATP concentrations measured in liposomes prepared under different 

conditions.  ATP concentrations were measured using a spectrophometrically-

assessed hexokinase coupled assay for the production of NADPH at 340nm (see 

Materials and Methods, Chapter II). 

 

The presence of MCP5 in the proteoliposomes was confirmed by western blot 

analysis. The results shown in Figure 10 confirm the presence of His-tagged MCP5 

in the final proteoliposomes used for the subsequent transport assays. 
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2.6. Further Discussion 

Despite testing of all possible known variables (see Table 2), no ADP/ATP 

exchange activity could be detected upon the reconstitution of His-tagged MCP5 

into proteoliposomes. Unfortunately, a similar negative result was also found for the 

functional reconstitution of MCP12 - a putative dicarboxylate carrier of T. brucei with 

significant sequence similarities to functionally characterized dicarboxylate carriers 

from other eukaryotes (Chapter III; personal communication Dr. C. Colasante). Also 

for MCP12, no dicarboxylate exchange could be detected upon liposome 

reconstitution and subsequent transport assays. For reconstitution of MCP12, 

essentially the same reconstitution protocols and conditions were used as described 

in this Chapter. However, mitochondrial metabolite transport assays for digitonin-

permeabilised MCP12 double knockout cell lines of T. brucei confirmed the 

predicted di/tricarboxylate exchange function of MCP12 (personal communication 

Dr. C. Colasante). These results indicated that a yet unknown factor is hampering 

the successful reconstitution of T. brucei MCF proteins.  

 

One of the common traits of the different functionally characterized MCF proteins is 

the presence of a 6xHis-tag at the N-terminal ends of these proteins. Our first 

thought was therefore that the added His-tag maybe affected the metabolite 

exchange function of the tested MCF proteins. However, this assumption was 

immediately discarded, since mitochondrial ATP production experiments and 

substrate/end product analyses of wildtype and knockout cell lines confirmed that 

the His-tagged versions of these MCF proteins were fully functional (Chapter IV for 

MCP5; personal communication Dr. C. Colasante for MCP12). This was further 

supported by the observation that removal of the His-tag from MCP12 did not lead 

to a restoration of the dicarboxylate-exchange activity upon reconstitution (C. 

Colasante, personal communication).  

Figure 10. Western blot of His-tagged MCP5 

reconstituted into liposomes. Detection was 

performed using His-tag antibody.  
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The other common trait of the analyzed MCF proteins is that they normally exist and 

function in the mitochondrial inner membrane of T. brucei. The only reconstitution 

condition, which has not taken been taken fully into account during our 

reconstitution experiments, is the lipid composition of the MCP5-containing 

proteoliposome. All of our reconstitution experiments have been done in either egg 

yolk PC or Asolectin (Table 2). The artificial liposome membrane should however 

resemble the natural membrane in order to permit the proper arrangement of the 

MCF protein structure in order to perform transport (Seddon et al., 2004; Suzuki and 

Takeuchi, 2008). However, nothing at all is known about the lipid composition of the 

T. brucei mitochondrial inner membrane. The only information available relates to 

the total phospholipid composition of trypanosomes. Phospholipid analysis of T. 

brucei cells indicated that PC and PE together represent approximately 70% of the 

total phospholipid composition in these parasites (Patnaik et al., 1993). This ratio is 

rather similar to the one found for mammalian cell lines, where PC represents 

approximately 40-50% and PE approximately 20-50% of total membrane 

phospholipid (Vance, 2008). However, the observed similarities in total PE and PC 

concentrations between T. brucei and other eukaryotes, does not exclude the 

possibility that the lipid composition of the T. brucei mitochondrial inner membrane 

could be different from that of other eukaryotes.  

 

Another important observation is the prominent difference in mitochondrial structure 

and mitochondrial inner membrane organization when comparing trypanosomes and 

other (mostly higher) eukaryotes. For example, T. brucei contains only a single 

mitochondrion, which extends along the whole cell body (Matthews, 2005), whereas 

other eukaryotes often contain multiple and more ovoid- or short tubular-shaped 

mitochondria. Procyclic form Trypanosoma brucei presents an active mitochondrion, 

largely rich in cristae. Cristae play a key role in the structural and functional 

organization of the mitochondrial inner membrane (Zick et al., 2009). Such a unique 

spatial organization of the single mitochondrion in procyclic form T. brucei implicates 

the presence of specific micro-domains in the mitochondrial membrane, which 

probably interact differently with the surrounding mitochondrial intermembrane 

space and the cytosol, depending on the position of that particular part of the 

mitochondrion in the cell. This organization of micro-domains in other organisms is 

mainly directed by the presence of specific phospholipids in these domains 

(Claypool et al., 2008; Claypool, 2009). The most prominent of these phospholipids 

is cardiolipin, which was shown previously to be essential for the formation of 
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functional super-complexes in the mitochondrial inner membrane, like for example 

the discussed “respirasomes” in Chapter I (Mileykovskaya and Dowhan, 2009; 

Schlame and Ren, 2009). Depletion of cardiolipin was shown to result in 

disorganization of these super-complexes (Claypool et al., 2008).  Next to 

cardiolipin, also its precursor, phosphatidylglycerol (PG) and the phospholipid 

phosphatidylethanolamine (PE) have been reported to play a key role in the 

maintenance of mitochondrial structures, which in turn determine mitochondrial 

function (Gohil et al., 2005; Trotter et al., 1993; Ostrander et al., 2001; Lasch et al., 

2003). 

 

The mitochondrial membrane structure and lipid composition (and correspondingly 

the function of the mitochondrial membrane as a whole) are apparently tightly 

linked. Taking this into account, it is safe to assume that the lipid composition of the 

T. brucei mitochondrial inner membrane is different from that of other eukaryotes. 

This assumption is further supported by the rather hydrophobic character of MCP5, 

as was discovered during the purification of MCP5 by Ni-NTA affinity 

chromatography. A similar behaviour was also observed for MCP12 during its 

purification by Ni-NTA affinity chromatography (personal communication Dr. C. 

Colasante). This strong hydrophobic character was not observed for MCF proteins 

from other eukaryotes. The increased hydrophobicity of T. brucei MCF proteins 

would most probably be compensated by specific changes in the phospholipid 

composition of its mitochondrial membrane environment.  

 

Biological membranes are per definition asymmetric, with important differences in 

lipid composition between the inner and outer leaflets of the lipid bilayer (Devaux 

and Morris, 2004; Devaux, 1991). In general, biological (and mitochondrial inner) 

membranes are more negatively charged on the inside due to the more abundant 

presence of negatively charged phospholipids, i.e. PE, in the inner leaflet of the lipid 

bilayer (Devaux, 1991). This phospholipid-directed charge difference creates a 

membrane potential, which is essential for many membrane-bound processes, 

including the insertion and orientation of membrane proteins (Ostrander et al., 2001; 

Pfanner and Geissler, 2001). The most important pre-requisites for a successful 

reconstitution and subsequent measurement of transport activity of MCF proteins 

are their proper folding, and insertion and correct orientation in the proteoliposomal 

membrane.  
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Western blotting analysis indicated the presence of MCP5 in the generated 

proteoliposomes (Figure 10). However, it remained unclear whether MCP5 was 

properly inserted in the membrane or maybe remained in the lumen. It further 

remained unclear whether MCP5 was properly orientated in the proteoliposome 

membrane. The above-described differences in lipid composition and related 

membrane potential do not exist in artificially generated liposomes. Kramer and his 

co-workers described in 1986 an approximately 50/50 distribution of inside-out and 

right-side orientated AAC in proteoliposomes (Krämer, 1986). Such a 50/50 

orientation of MCP5 would result in a rather futile counter-acting exchange, which 

might not be visible as transport activity during experiments with proteoliposomes. 

More recently, Klingenberg stated that the AAC re-orientates itself upon contact with 

its substrate, in this case ADP (Klingenberg, 2008). In case of a substrate-directed 

orientation of MCP5 in the proteoliposomal membrane, this orientation could change 

upon the decrease and/or depletion of the internal or external substrates with as a 

result a transport in the opposite direction. This transport would again not be visible 

if this exchange, and the reversal of this exchange, would occur at very high 

speeds. 

 

2.7. Conclusion 

The classical route of in vitro reconstitution and transport assays unfortunately did 

not lead to the confirmation of the proposed (Chapter IV) ATP/ADP exchange 

function of T. brucei MCP5. This result was somewhat unexpected since a His-

tagged recombinant version of this MCF protein could be successfully expressed in 

both bacteria and insect cells, could be purified by Ni-NTA affinity chromatography, 

and most probably could be reconstituted in liposomes. Several observations made 

during the many different expression, solubilization, purification and liposome 

reconstitution experiments suggested however that the MCP5 protein is different 

from other prototypical ADP/ATP carriers: especially its inability to be solubilized by 

conventional mild non-ionic detergents and its very low cellular expression levels in 

different heterologous hosts are remarkable. This and other observed differences 

are important for future trypanosome-specific adaptations of the “standard” 

reconstitution protocol, which is apparently successful for MCF proteins from other 

eukaryotes.  
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Chapter VI . Sequence analysis and functional characterization of the putative 

ADP/ATP carriers MCP15 and MCP16, and the putative GDP/GTP carrier 

MCP13 

 

1. Introduction 

 

Next to MCP5, two other MCF proteins were identified with significant sequence 

similarities to prototypical ADP/ATP carriers, i.e. MCP15 and MCP16 (discussed in 

Chapters III of this thesis; Colasante et al. 2009). The presence of multiple putative 

ADP/ATP carrier-encoding genes in T. brucei is not unexpected. Virtually all 

eukaryotes contain multiple genes coding for ADP/ATP carriers (AACs). For 

example, the genome of S. cerevisiae contains 3 similar genes coding for different 

ADP/ATP carrier isoforms, i.e. AAC1, AAC2 and AAC3 (Adrian et al., 1986; Kolarov 

et al., 1990). More recently, another but less conserved AAC was discovered in S. 

cerevisiae, i.e. Sal1p.  Knockout studies revealed that Sal1p could take over the role 

of AAC2 in yeast (Chen, 2004). Functional studies and mutation analysis in S. 

cerevisiae revealed further that each of the identified ADP/ATP carriers do play a 

different physiological role (Lawson et al., 1990; Gawaz et al., 1990; Kolarov et al., 

1990; Drgon et al., 1991). Also in multicellular eukaryotes, like mammals and 

humans, multiple ADP/ATP carrier-encoding genes are found whose expression can 

be tissue-specific and their physiological function location-dependent (Powell et al., 

1989). The divergence of AACs into multiple tissue-dependent isoforms is most 

probably a direct consequence of the evolution to multicellular life forms (Löytynoja 

and Milinkovitch, 2001).  

 

Reciprocal BLASTP searches and sequence analysis lead further to the 

identification of another remarkable MCF protein in T. brucei, i.e. MCP13 (Chapter 

III; Colasante et al. 2009). This MCF protein was not categorized as an ADP/ATP 

carrier, but showed significant sequence similarity to GGC1, the GDP/GTP carrier of 

S. cerevisiae. GGC1 is the first and only GDP/GTP carrier described to date, and 

homologues were so far only found in other yeasts and fungi, like Aspergillus and 

Neurospora (Vozza et al., 2004). The absence of such a GDP/GTP carrier in higher 

eukaryotes, like plants and metazoans, was explained by the fact that higher 

eukaryotes possess a mitochondrial GTP-producing succinyl-CoA ligase (Vozza et 

al., 2004). This enzyme is involved in the tricarboxylic acid (TCA) cycle and 
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catalyses the conversion of succinyl-CoA to succinate with the concomitant 

production of mitochondrial GTP. Yeast and fungal mitochondria only produce ATP, 

therefore necessitating the import of GTP from the cytosol. This import is apparently 

catalysed by a GDP/GTP carrier, i.e. Ggc1p in S. cerevisiae (Przybyla-Zawislak et 

al., 1998). Knockout of GGC1 resulted in a defective iron regulation in yeast. It was 

suggested that this GDP/GDP-carrier was involved in the biogenesis of Fe-S 

clusters in mitochondria: in particular the iron-sulfur (Fe-S) cluster formation by 

Isu1p, which requires GTP, was affected by the knockout of GGC1 (Amutha et al., 

2008). Isu proteins play a key role in the mitochondrial assembly of Fe-S clusters 

(Gerber et al., 2004). Fe-S clusters are essential cofactors required for the function 

of different mitochondrial and cytosolic proteins, like for example aconitase, 

ferredoxin and various proteins of the respiratory chain (Amutha et al., 2008; 

Stehling et al., 2009). Also the mitochondrion of T. brucei has been reported to be 

involved in the assembly of Fe-S clusters (Long et al., 2008b; Long et al., 2008a). 

Similar to yeast, trypanosomes also lack a mitochondrial GTP-producing succinyl-

CoA ligase, therefore necessitating the presence of a GDP/GTP carrier in the 

mitochondrial inner membrane, here probably MCP13.   

 

The main aim of this Chapter was the functional characterisation of (A) the putative 

ADP/ATP carriers MCP15 and MCP6, and (B) the putative GDP/GTP carrier 

MCP13.  For the functional characterisation of these MCF proteins, a similar 

approach was used as described for MCP5 in the Chapters IV and V of this thesis. 

The predicted exchange functions of MCP15, MCP16 and MCP13 were further 

assessed by a more in-depth sequence analysis and phylogenetic reconstruction. 

Expression of these different MCPs in the bloodstream-form and the procyclic-form 

of T. brucei was analysed at the RNA level by northern blotting, whereas the 

subcellular localisation of the MCF proteins was determined by immunofluorescence 

microscopy. The different physiological role(s) of these putative ADP/ATP and 

GDP/GTP carriers was assessed by the generation of stable knockout cell lines in 

procyclic-form T. brucei. Finally, first steps were made towards the determination of 

their specific transport function by in vitro reconstitution in liposomes and 

subsequent transport assays.  
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2. Results and Discussion 

2.1. Sequence analysis of MCP13, MCP15 and MCP16 

 

Sequence analysis revealed that MCP15 displayed significant sequence similarities 

to prototypical ADP/ATP carriers from higher eukaryotes, with 45% and 47% 

similarity to human ANT and yeast AAC, respectively (Colasante et al., 2009). A 

more in-depth sequence analysis revealed that the different substrate contact points 

(CPI-III), previously shown to be conserved in all ADP/ATP carriers (Colasante et 

al., 2009), were only partially conserved in MCP15 (Figure 1). For example, MCP15 

contained the rather deviating “SxxxVxxxH” motif (with x representing any amino 

acid) instead of the expected CPI sequence motif “RxxxTxxxN” that is conserved in 

all functionally characterised AACs. CPII of MCP15 is only partially conserved: the 

“GI” amino acid duet, that has previously been proposed to provide a hydrophobic 

binding pocket for ADP in all ADP/ATP carriers, was replaced by a semi-conserved 

“GS” sequence motif in MCP15. Of the three different substrate contact points in 

MCP15, only CPIII, i.e. represented by a positive-charged arginine (R) residue, 

appeared to be conserved (Figure 1). Next to the substrate contact points, also the 

“RRRMMM” motif, which so far has been regarded as the hallmark of all ADP/ATP 

carriers, appeared to be slightly modified in MCP15, revealing a “RRRMMI” motif 

instead. The replacement of the hydrophobic methionine (M) residue at position 6 of 

the motif with the similar hydrophobic isoleucine (I) residue can be regarded as a 

conserved substitution, suggesting that the “RRRMMI” motif in MCP15 most 

probably functions in a similar way as the conserved “RRRMMM” motif found in 

other prototypical ADP/ATP carriers. Based on the (for a major part) conserved 

prototypical AAC sequence features and its significant homology to MCP5, it can be 

safely assumed that MCP15 most probably functions as an ADP/ATP carrier. 

 

MCP16, on the other hand, appeared to be more divergent. Sequence analysis 

(Figure 2) revealed that MCP16 displayed an overall sequence similarity of 32% to 

both human and yeast AACs, which is significantly lower then found for MCP15 

(Colasante et al., 2009). Instead of the expected “RRRMMM” motif, the less 

conserved  “SRRMQL” motif was found in MCP16: the positively charged arginine 

(R) residue at position one of this motif has been replaced by an uncharged but 

polar serine (S) residue, whereas the hydrophobic methionine (M) residue at 

position five has been replaced by a positively charged glutamine (Q). 
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Figure 1. Sequence alignment of T. 

brucei MCP15 and putative ADP/ATP 

carriers from other species.  The first 

(M1a, M1a and M3a) and second part 

(M1b, M2b and M3b) of the mitochondrial 

carriers’ canonical motif are shown in 

rectangles.  Substrate contact points 

(CP) are shown in blue. 
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Figure 3. Sequence alignment of T. brucei 

MCP16 and putative ADP/ATP carriers from 

other species.  The first (M1a, M1a and M3a) 

and second part (M1b, M2b and M3b) of the 

mitochondrial carriers’ canonical motif are 

shown in rectangles.  Substrate contact points 

(CP) are shown in blue. 

�
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Such non-conserved changes in the “RRRMMM” motif were previously shown to 

negatively affect OXPHOS activity. Mutation of the first R (R252I) in the “RRRMMM” 

motif of yeast AAC reduced OXPHOS activity to less than 50% of the wildtype 

version (Müller et al., 1996; Heidkamper et al., 1996).  

 

The 3 positive charges amino acids in the “RRRMMM” motif has been proposed to 

be responsible for the neutralization of the 3 negative charges of ADP during 

ADP/ATP exchange (Heidkamper et al., 1996). Similar to the “RRRMMM” motif, also 

MCP16 contained in total 3 positive charged amino acids in its “SRRMQL” motif 

(Figure 2). Comparison of the MCP16 substrate contact points with those of known 

ADP/ATP carriers revealed some substantial differences. MCP16 contained the 

rather deviating “LxxxAxxxE” motif instead of the “RxxxTxxxN” CPI motif that is 

conserved in all functionally characterised AACs. For CPII, a more conserved 

substitution was found: the in prototypical ADP/ATP carriers conserved “GI” duet 

was in MCP16 replaced by two similar hydrophobic residues, i.e. alanine (A) and 

valine (V), respectively (Figure 2). The canonical positively charged arginine (R) 

residue in CPIII appeared not be conserved at all, and was in MCP16 replaced by 

the hydrophobic amino acid valine (V). Regarding the substantial substitution of 

amino acids in the different substrate contact points, and other deviations from 

conserved sequence features of ADP/ATP carriers, its unlikely that MCP16 will 

function as a prototypical ADP/ATP carrier. 

 

Comparison of MCP13 with the yeast GDP/GTP carrier Ggc1p and related 

homologous sequences from other yeasts and fungi resulted in the prediction of 

putative substrate contact points for GDP/GTP carriers (Figure 3).  The substrate 

contact points CPI and CPII, represented by respectively the sequence motif 

“YxxxQxxxK” and the amino acid duet “RN”, were both found to be conserved in 

MCP13 and other homologous GGC sequences (Robinson and Kunji, 2006).  Also 

CPIII was found to be conserved among all putative GDP/GTP carriers: in yeast and 

fungal sequences a conserved threonine (T) residue was found, whereas in MCP13 

and other kinetoplastid GGC homologues a conserved substitution was observed, 

i.e. the in yeast and fungi conserved threonine residue was in kinetoplastid 

sequences replaced by a similar serine (S) or phenylalanine (F) residue (figure 3).  
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Figure 3. Sequence alignment of T. brucei MCP13, S.cerevisiae Ggc1p, and 

putative GDP/GTP carriers from yeasts and fungi.  The first (M1a, M1a and M3a) 

and second part (M1b, M2b and M3b) of the mitochondrial carriers’ canonical motif 

are shown in rectangles.  Substrate contact points (CP) are shown in blue.  
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Phylogenetic reconstruction was subsequently used as a complementary approach 

to support the predicted exchange functions for MCP15 and MCP16. A similar 

phylogenetic analysis was performed as described in Chapter IV of this thesis. The 

resulting neighbor-joining tree is shown in Figure 4. The putative phosphate carriers 

MCP8 and MCP11 (Chapter III) and the putative ATP-Mg/Pi carrier MCP6 were 

included as references in this phylogenetic analysis, and, as reported previously, 

formed distinct functional groups during phylogenetic reconstruction (Chapter III; 

Colasante et al. 2009). Further, MCP5 clustered specifically in a single clade with 

different AACs from yeasts and plants, suggesting a common origin of these 

ADP/ATP carriers (see Chapter IV for further discussion). Similar to the results 

found in Chapter IV, also insect and metazoan ADP/ATP carriers appeared to form 

a separate evolutionary clade.  

 

Unexpectedly, neither MCP15 nor MCP16 were found in either of these clades: 

instead, a novel clade was found which contained both MCP15 and MCP16, 

together with putative ADP/ATP carriers from other related Kinetoplastidae, like 

Trypanosoma cruzi and different Leishmania species. This result indicated a 

common origin of these MCF proteins, and further suggested that this particular 

clade branched off prior to the separation of the plant and fungi AACs on one hand 

and the metazoan and insect AACs on the other hand. Within this clade, MCP15 

and MCP16 were found in two separate groups, suggesting an independent 

evolution of these MCF proteins. The grouping of MCP15 and MCP16 in a different 

clade than MCP5 suggested possible differences in ADP/ATP (or other substrates) 

exchange function.  

 

Phylogenetic analysis revealed further that MCP13 was exclusively found present 

within a distinct clade, which included yeast GGC1 and other putative GDP/GTP 

carriers (predicted by sequence similarity) from yeasts and fungi (Figure 4). The 

grouping of MCP13 within the GDP/GTP carrier clade is supported by a high (100%) 

bootstrap value. Within the observed GDP/GTP-carrier clade, two distinct groups 

were found: MCP13 grouped specifically with putative GDP/GTP carriers from 

related Kinetoplastidae, whereas the yeast and fungal GDP/GTP carriers were 

found in the other group. The observed separation into two different groups of 

GDP/GTP carriers is further supported by the different CPIII sequences found in the 

kinetoplastid group and the yeast and fungi group, respectively.   
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Figure 4. Neighbor-joining tree 

showing the evolutionary 

relationship between selected 

nucleotide and phosphate 

carriers from kinetoplastids 

with those of other species. 

Bootstraps values >50 are 

shown at each node. The NJ-

Tree was constructed using 

Mobyle@Pasteur and its 

included Protdist and 

Neighbor-Joining programs.  

The consensus tree was 

constructed on the same 

platform, whereas the final tree 

was edited using SplitsTree V. 
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2.2. Expression of MCP13, MCP15 and MCP16, at the mRNA level   

 

Expression of MCP13, MCP15 and MCP16, in the different life cycle stages of T. 

brucei, i.e. the procyclic- and the bloodstream-form, was exclusively assessed at the 

mRNA level, since there were no antibodies available for the immuno-detection of 

these MCF proteins.  

 

 

 

Figure 5.  Northern blot analysis of T. brucei PCF449 and BSF449 total RNA. The 

respective open reading frames of MCP13, MCP15 and MCP16 were used as a 

DNA probe for detection. 10g total RNA was loaded for each sample.  

 

The results of the northern blot analysis are shown in Figure 5. For each of the 

tested MCPs, a single cross-reacting mRNA band was found with approximate size-

lengths of 2.5kb (MCP13), 2.0kb (MCP15) and 1.5 kb (MCP16), respectively. The 

observed size-lengths are in agreement with (i.e. larger than) the expected minimum 

mRNA size corresponding to the open reading frame plus additional 5’ and 3’ 

untranslated (UTR) mRNA regions. Quantification revealed that there are no 

significant differences in expression (at the mRNA level) of the different analysed 

MCPs, when comparing PCF and BSF T. brucei (results not shown). This result 

suggested that the analysed MCPs are equally important, and probably expression 

to the same level (careful assumption), in both life cycle stages. Remarkable are the 

rather low mRNA quantities observed for MCP15, in comparison to the more 

abundant mRNA found for MCP13 and MCP16.  
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2.3. Subcellular localization studies of MCP13, MCP15 and MCP16.   

Due to the lack of specific antibodies, the subcellular localization of the analysed 

MCPs had to be determined by the generation of specific T. brucei cell lines, i.e. 

MCP13-nmycti, MCP15-nmycti, and MCP16-nmycti, respectively. Expression of the 

different myc-tagged versions of these MCPs was induced by the addition of 

tetracycline to the respective recombinant T. brucei cell lines: the expression of the 

recombinant myc-tagged protein products was subsequently confirmed by Western 

blot analysis (Figure 6). As expected, no myc-tagged proteins could be detected in 

the non-induced T. brucei cell lines, indicating a tight regulation of the promoter and 

operator used for inducible expression in these cell lines. Upon addition of 

tetracycline, single cross-reacting proteins were found in each of the cell lines 

(Figure 6). The molecular weights of the expressed MCF proteins were as expected: 

36kDa for MCP13, 40kDa for MCP15, and 38kDa for MCP16 (taking into account 

the molecular weight of the added myc-tag).  

 

                      

Figure 6. Western blot analysis showing the tetracycline-inducible expression of 

myc-tagged MCP13, MCP15 and MCP16 proteins in procyclic-form T. brucei. (-) 

induced; (+) induced with tetracycline.  

 

The subcellular localization of the different myc-tagged proteins was subsequently 

determined by immunofluorescence microscopy using a commercial myc-tag 

antibody. The obtained results (Figure 7) revealed exclusive mitochondrial 

localization for all 3 tested MCPs.   
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Figure 7. Immunofluorescence microscopy of different procyclic-form T. brucei cell 

lines respectively expressing myc-tagged MCP13, MCP15, or MCP6 (Myc, green).  

MitoTracker (red) was used as a mitochondrial marker, whereas DAPI was used to 

stain DNA (blue). Overlays are shown in the panels marked “Merge”.�
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2.4. The generation of MCP13, MCP15 and MCP16 knockout cell lines  

For the generation of the respective MCP13, MCP15 and MCP16 procyclic-form 

knockout cell lines, the same gene replacement technique was used which was 

proven successful for the generation of the previously discussed MCP5 double 

knockout cell line (Chapter IV). In contrast to MCP5, the in this section targeted 

MCPs are all single copy genes (Chapter III).  

 

Similar to MCP5, we first attempted to generate conventional (no rescue copy) 

double knockout cell lines. However, no viable clones could be obtained after many 

attempts for either MCP13 or MCP16, indicating that these MCPs are essential for 

the survival of procyclic-form T. brucei. This in contrast to MCP15, for which a 

conventional double-knockout cell line could be obtained without any detrimental 

effect on trypanosome growth (not shown). This result indicated that MCP15 is 

apparently not essential for the survival of PCF T. brucei. The generated MCP15 

double knockout cell line is hereafter called: mcp15. Southern blot analysis 

confirmed that the obtained mcp15 cell line indeed lacked the MCP15-encoding 

gene: the observed hybridisation pattern indicated the replacement of the original 

MCP15 gene, i.e. the two diploid alleles, with the two different antibiotic resistance 

cassettes (Figure 8: panel B).  

 

 

Figure 8.  Southern blot analysis of (A) the conditional MCP13 half-knockout cell 

linemcp13/MCP13/MCP13-nmycti, (B) the conventional MCP15 double knockout 

cell line mcp15, and (C) the conditional MCP16 half-knockout cell line 

mcp16/MCP16/MCP16-nmycti. Each lane contains 10g genomic DNA digested 

with BamHI.  The respective 3’UTRs of MCP13, MCP15 and MCP16 were used as 

DNA probes.  

 

 

As indicated above, no viable clones could be obtained after many attempts for 

either MCP13 or MCP16. After transfection with the various knockout-constructs, 
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viable cells could be observed after selection with the different antibiotics: however 

they invariably did not grow and ultimately died after prolonged cell culture. This lack 

of growth made it impossible to collect sufficient cell material for further analysis. 

 

Like for MCP5 (Chapter IV), we instead attempted the generation of conditional 

knockout cell lines for both MCP13 and MCP16. The previously generated MCP13-

nmycti and MCP16-nmycti cell lines were used as a starting point for this approach. 

Viable MCP13 and MCP15 half-knockout cell lines could be isolated, i.e. 

mcp13/MCP13/MCP13-nmycti and mcp16/MCP16/MCP16-nmycti, respectively. 

Southern blot analysis confirmed the true nature of the obtained MCP13 and 

MCP16 half-knockout cell lines (Figure 8: panels A and C, respectively): in both 

cases the natural MCP13 or MCP16 gene-containing genomic DNA fragments 

(BamHI digested) could still be observed next to the apparent replacement of one of 

the natural gene copies with the antibiotic resistance gene (represented by the low 

molecular weight hybridising genomic DNA band).   

 

The obtained mcp13/MCP13/MCP13-nmycti and mcp16/MCP16/MCP16-nmycti 

half-knockout cell lines were subsequently used for the knockout of the remaining 

MCP13 or MCP16-encoding alleles. Unfortunately, it appeared to be impossible to 

obtain any “growing” conditional MCP13 or MCP16 double knockout cells: after 

transfection and subsequent antibiotic selection, viable cells could be observed by 

microscopy. These cells however were severely impaired in their growth, and 

invariably died after a fortnight of cell culture.  

 

That the observed (surviving but not growing) cells indeed were of the expected 

genotype (i.e. mcp13/MCP13-nmycti or mcp16/MCP16-nmycti) was subsequently 

confirmed by PCR analysis. Southern blot analysis could not be used due to the 

lack of sufficient cell material. For the PCR analysis, the same approach was used 

as for the assessment of the mcp5/MCP5-nmycti cell lines: i.e. the use of a 

specifically designed 5’-UTR forward primer, located upstream of the 5’UTR used 

for recombination, in combination with a reverse primer targeting the different 

antibiotic resistance cassettes (see Chapter IV). One example of such PCR analysis 

is shown in Figure 9. In case of the mcp13/MCP13-nmycti cells, the second gene 

replacement round was performed with the NEO-construct. PCR analysis of two of 

the different (not growing but surviving) mcp13/MCP13-nmycti clones confirmed 

that the second gene replacement round, using the NEO-knockout construct, was 
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indeed successful. In panels A and C of Figure 9, a PCR product was found of the 

expected size, i.e. approximately 2.0 kb, which indicated that he NEO-resistance 

cassette had properly recombined into the locus of the remaining MCP13 allele, 

thereby replacing it. 

 

                 

 

Figure 9. PCR assessment of the different mcp13/MCP13-nmycti clones: PCR was 

performed with the designed forward primer, recognising a sequence upstream of 

the MCP13 5’-UTR target region used for homologous recombination, and the 

reverse primer selective for the NEO resistance cassette (lanes A and C). For the 

control PCR (lanes B and D), a primer set was used specific for the 5’UTR of 

MCP13. Approximately 2-4x104 cells were used as starting material for the PCR. 

 

 

 Figure 10. Northern blot analysis of two conditional mcp13/MCP13/MCP13-nmycti 

half-knockout clones (A and B), grown in the presence (+) or absence (-) of 

tetracycline; the conventional mcp13/MCP13 half knockout cell line (lane C); and 

“wildtype” PCF449 (lane D). The MCP13 open reading frame was used as DNA 

probe for detection. The ~2.5Kb mRNA band represents the natural MCP13 gene, 

whereas the ~1.0Kb mRNA band represents rescue copy.  
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The inability to obtain growing MCP13 and MCP16 conditional knockout cell lines 

was rather unexpected. Possible explanations for this phenomenon could be that 

(A) the used (inducible) rescue copy of the respective MCPs was not functional or 

(B) that the used rescue copy was sufficiently not expressed to the appropriate level 

required for cell survival. The later explanation was assessed by Northern blot 

analysis. For this purpose, the obtained MCP13 and MCP16 half-knockout cell lines 

had to be used, since the double knockouts cell lines provided insufficient cell 

material for RNA isolation and detection. An example of such a Northern blot 

analysis is shown in Figure 10. Northern blot analysis of total RNA from the wildtype 

PCF449 cell line (Figure 10, lane D) or the conventional mcp13/MCP13 half-

knockout cell line (Figure 10, lane C) revealed the expected single 2.5kb hybridising 

mRNA band (compare to Figure 5). Comparison revealed further that remarkably 

less MCP13 mRNA was detected for the mcp13/MCP13 half-knockout cell line 

when compared to the wildtype PCF449 cell line (approximately half mRNA signal). 

This result indicated that the MCP13 half-knockout was successful, leading to a 

concomitant reduction in MCP13 mRNA. Comparison of the northern blot results, 

obtained for the different induced and non-induced conditional 

mcp13/MCP13/MCP13-nmycti half-knockout cell lines, confirmed the substantial 

over-expression of MCP13-nmycti upon induction with tetracycline (Figure 10). 

MCP13-nmycti mRNA is present in the induced mcp13/MCP13/MCP13-nmycti cell 

lines approximately 4-5-fold the natural MCP13 mRNA (Figure 10). The observed 

abundance of the MCP13-nmycti mRNA indicated that sufficient “rescue” MCP13 is 

present during the second gene-replacement round. This conclusion is based on the 

assumption that (A) the measured mRNA quantity is representative for the amount 

of expressed protein, and (B) that the added myc-tag does not negatively affect the 

function of MCP13.  

 

Similar observations were made during the many attempts to generate a conditional 

MCP16 double-knockout cell line. PCR analysis of the surviving but not growing 

mcp16/MCP16-nmycti cells confirmed that the second gene replacement round, in 

this case using the BLA-knockout construct, was indeed successful. In panels A and 

C of Figure 11, a PCR product was found of the expected size, i.e. 2.0 kb, which 

indicated that he BLA-resistance cassette had properly recombined into the locus of 

the remaining MCP16 allele, thereby replacing it. 
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Figure 11. PCR assessment of the different mcp16/MCP16-nmycti clones: PCR 

was performed with the designed forward primer, recognising a sequence upstream 

of the MCP16 5’-UTR target region used for homologous recombination, and the 

reverse primer selective for the BLA resistance cassette (lanes A and C). For the 

control PCR (lanes B and D), a primer set was used specific for the 5’UTR of 

MCP13. Approximately 2-4x104�cells were used as starting material for the PCR. 

 

The inability to generate viable and growing double-knockout cell lines for MCP13 

and MCP16 indicated that these MCPs are essential for the survival of procyclic-

form T. brucei, and implicated putative important roles of these MCF proteins in the 

mitochondrial metabolism of the parasite.  

 

In contrast to MCP13 and MCP16, conventional MCP15 double-knockout cell lines 

could be generated without any negative effect on growth and survival of T. brucei 

(growth curves not shown). This result suggested a non-essential role of MCP15 in 

the mitochondrial metabolism of T. brucei, at least under laboratory culture 

conditions. A similar phenotype was also observed after the knockout of the AAC1 

and/or AAC3 isoforms in S. cerevisiae, suggesting that these ADP/ATP carriers are 

not essential for mitochondrial oxidative phosphorylation and the concomitant 

survival of yeast (Drgon et al., 1992; Smith and Thorsness, 2008; Drgon et al., 

1991). This in contrast to the knockout of S. cerevisiae AAC2, which had a 

detrimental effect on growth and survival of this yeast (Drgon et al., 1992; Smith and 

Thorsness, 2008; Drgon et al., 1991).  Both AAC1 and AAC3 were further incapable 

of rescuing the AAC2 knockout-related growth phenotype in this organism, 

indicating different physiological roles of these AACs in S. cerevisiae. In analogy, 

different physiological roles can also be assumed for the putative ADP/ATP carriers 

MCP5 and MCP15 of T. brucei: MCP5 is essential for cell growth and survival of the 

procyclic-form parasite, whereas MCP15 is apparently not essential. The role of the 

putative ADP/ATP carrier MCP16 is unclear at this point.  
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2.5. Expression, purification and functional reconstitution of MCP13, 15 and 

16. 

As pointed out in Chapter V, the classical approach to study the transport function of 

MCF proteins consists of the isolation/purification of the respective metabolite 

carrier through affinity column chromatography, its reconstitution into liposomes, 

and the subsequent determination of its substrate specificity and transport kinetics 

via metabolite transport assays (Krämer and Klingenberg, 1977; Klingenberg et al., 

1995; Palmieri et al., 1995). Similar to MCP5, a large number of different 

approaches were tested for the expression, isolation and functional reconstitution of 

MCP13, MCP15 and MCP16, respectively (see Chapter V for more information).   

 

 

 

Figure 12. Western blot analysis of (A) E. coli Rossetta2-(DE3)-pLysS strains 

expressing His-tagged MCP13, MCP15 and MCP16, respectively, and (B) the S. 

frugiperda insect cell line Sf9 expressing His-tagged MCP16. A commercial His-

antibody was used for detection.  

 

The first step in this approach was the expression of His-tagged MCP13, MCP15 

and MCP16 proteins in different heterologous systems. Similar to MCP5, both 

MCP13 and MCP16 could only be expressed in the E. coli Rossetta2(DE3)pLysS 

strain by using the previously discussed auto-induction procedure (Studier, 2005). 

However, in contrast to MCP5, MCP15 could be readily expressed in the same E. 

coli strain using conventional induction with IPTG instead. The corresponding 

western blot analysis results are shown in Figure 12. For MCP13 and MCP15, a 

single protein band with the expected molecular weight, i.e. approximately 36 kDa 

for MCP13 and 40 kDa for MCP15, was observed after detection with the His-tag 

antibody, whereas for MCP16, an unexpected double protein band was detected. 
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The reason for the appearance of a double His-tagged protein band during 

expression of MCP16 in E. coli Rossetta2(DE3)pLysS is unclear at this point, 

although a specific proteolytic cleavage of this protein in heterologous E. coli host 

could not be excluded. Instead MCP16 was expressed in the S. frugiperda cell line 

Sf9. Western blot analysis using the His-tag antibody revealed a single protein band 

of the expected molecular weight, i.e. 39 kDa.  

 

The next step in the functional characterisation approach was the detergent 

solubilization and isolation of the His-tagged MCP13, MCP15 and MCP16 proteins 

with the aid of Ni-NTA affinity chromatography. The different tested conditions for 

detergent solubilization and affinity purification are summarised in Table 2. As is 

clear from this table, most of the conditions used for isolation of these MCPs were 

similar to those previously used for the successful isolation of His-tagged MCP5 

(see Chapter V for more information). 

 

MCP Expressed 
in 

Detergent used for 
solubilisation 

Affinity Matrix used 
for Purification 

Elution with Result

MCP13 Bacteria Up to 0.5% (w/v) TX-
100 

Talon® 200mM 
imidazole 

Not binding 

MCP13 Bacteria Extraction 1% (w/v) 
TX-114 

CM Sephadex C-50 50mM NaCl Partially 
purified 

MCP13 Bacteria 2% (w/v) Sarkosyl Talon® 200mM 
imidazole 

Partially 
purified 

MCP13 Bacteria 0.5% (w/v) Sarkosyl Ni-NTA 200mM 
imidazole 

Partially 
purified 

MCP15 Bacteria 0.5-2% (w/v) Sarkosyl Talon® 200mM 
imidazole 

Partially 
purified 

MCP16 Bacteria 0.5-2% (w/v) Sarkosyl Talon® 200mM 
imidazole 

Partially 
purified 

MCP16 Bacteria Urea/0.5% Sarkosyl 
(w/v)/ 2% (w/v) TX-
100 (inclusion bodies 
isolation) 

Ni-NTA 200mM 
imidazole 

Partially 
purified 
 
 

MCP16 Insect cells 0.5% (w/v) Sarkosyl/ 
2% (w/v) TX-100 

Ni-NTA 200mM 
imidazole 

Partially 
purified 

 

Table 2.  Summary of the different conditions used for solubilization and purification 

of MCP13, MCP15 and MCP16. After solubilization, an ultracentrifugation step was 

performed to assess the solubility of the protein.   

 

The solubilisation and His-tag directed affinity purification a number of observations 

were made: (1) MCP13 was mostly present in inclusion bodies after expression in E. 

coli Rossetta2(DE3)pLysS and was found to be rather insoluble in non-ionic 

detergents: its solubilisation required the use of the strong anionic detergent 

Sarkosyl; (2) Over-expression of MCP15 and MCP16 did not lead to inclusion body 

formation: consequently they could be more easily solubilised with milder 
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detergents; (3), MCP15 and MCP16 were found to be degradation-resistant after 

solubilisation with Sarkosyl, whereas MCP13 (and MCP5, Chapter V) was rapidly 

degraded in the presence of this detergent; and (4) His-tagged MCP13, MCP15 and 

MCP16 protein could be completely eluted from the Ni-NTA affinity matrices when 

using 200mM imidazole: this was not possible for the previously characterised His-

tagged MCP5  protein (Chapter V). 

 

As indicated in table 2, all of the 3 analysed His-tagged MCPs could be partially 

purified after Ni-NTA affinity chromatography. Once the protein was eluted from the 

chromatography column, it was reconstitution immediately in order to further prevent 

further denaturation or degradation of the isolated proteins. Experiments revealed 

that repeated freeze-thawing of the isolated MCP preparations inevitable lead to 

protein degradation (results not shown). The protocols used for the reconstitution of 

MCP13, MCP15 and MCP16 are essentially the same as the ones described for 

MCP5 in Chapter V. Liposomes were generated with PC dissolved in the presence 

of variable concentrations of cardiolipin. ADP was used as the internal substrate for 

MCP15 and MCP16, whereas GDP was used in the case of MCP13  (Chapter II). 

For the formation of proteoliposomes, PC was dissolved with TX-114 or C10E5, 

mixed with the isolated His-tagged protein and the internal substrate, and passed 

through Biobeads columns in a cyclic manner until the detergent was completely 

removed. 14C-ATP (MCP15 and MCP16) or 14C-GTP (MCP13) was used as the 

external substrate for the assessment of transport activity.  

 

Unfortunately, no exchange activity could be observed in any of the reconstitution 

experiments and subsequent transport assays. Please refer to Chapter V for further 

discussion and possible explanations for this lack of exchange activity after 

reconstitution of the different MCPs. 

 

3. Further Discussion  

Of the identified putative ADP/ATP carriers, it was MCP15 that showed the highest 

sequence similarity (32%) to MCP5 (Chapter III). Similar to MCP5, most of the 

conserved sequence features present in known AACs from other eukaryotes were 

also conserved in MCP16, although a few minor deviations were found for this MCF 

protein. Both sequence analysis and phylogenetic reconstruction predicted an 

ADP/ATP exchange function for MCP15. The above-described MCP15 double 

knockout experiments revealed that this MCF protein was not essential for the 
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survival of procyclic form T. brucei. This in contrast to MCP5: the generation of a 

conventional MCP5 knockout appeared to be impossible, indicating that this 

ADP/ATP exchanger indeed is essential for the survival of procyclic-form T. brucei. 

Intriguingly, the lack of MCP5 could not be compensated by the presence of MCP15 

(Chapter III). This finding suggested that MCP5 and MCP15 do not have the same 

physiological roles in procyclic-form T. brucei, although both most probably function 

as mitochondrial ADP/ATP exchangers. This lack of complementation can also be 

explained in a different way. An important indication for this explanation is the 

detection of very low MCP15 mRNA levels in both procyclic-form and bloodstream-

form T. brucei. One of the most important questions we have at the moment is 

whether MCP15 is expressed at all at the protein level. This question can yet not be 

answered due to the lack of a suitable MCP15 antiserum. It is further conceivable 

that MCP15 is not expressed or essential in the studied life stage of T. brucei, or is 

not expressed or essential due to the present laboratory culture conditions. This 

could however be different in another life cycle stage of the parasite (not studied 

here) or under different culture conditions. For that reason, it is important to 

determine what triggers the expression of MCP15 and under what conditions it 

becomes essential for trypanosome survival. One possible way to assess whether 

MCP15 is essential at all would be the passage of the procyclic-form T. brucei 

MCP15 double knockout parasites through its hosts, i.e. the Tsetse fly, with 

subsequent analysis of its survival rate.  

 

The other predicted ADP/ATP carrier, i.e. MCP16, is rather divergent from MCP5 

and MCP15, and lacks many of the conserved sequence features found in 

prototypical ADP/ATP carriers (section 2.1). Especially the absence (or non-

conserved deviation) of the canonical “RRRMMM” motif, the hallmark of all AACs, 

raised doubts regarding the predicted function of a mitochondrial ADP/ATP 

exchanger. The alternative sequence motif present in MCP16, i.e. “SRRMQL”, 

resembled more that of ATP-Mg/Pi carriers, although the overall amino acid 

sequence of MCP16 is more similar to known ADP/ATP carriers (Colasante et al., 

2006). Other indications for an ATP or ADP binding function were found during the 

analysis of the different substrate contact points. CPI and III, both conserved in 

MCP5 and MCP15 (Colasante et al., 2009; Kunji and Robinson, 2006), have been 

proposed to complex with ADP in order to “neutralize” its charges (Heidkamper et 

al., 1996; Kunji and Robinson, 2006). Especially CPII, represented by the amino 

acid duet G-[IVLM] was found to be widely conserved in AACs, most probably due 

to its role in the formation of a hydrophobic binding pocket for the diterpenoid ring of 
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ADP. The same CPI amino acid duet is however also conserved in all nucleotide 

transporters. The conserved amino acid duet has used as a differentiation key for 

nucleotide carriers and other MCF subgroups like for example keto-acid and amino 

acid carriers (Kunji and Robinson, 2006). The conservation of these signature 

sequences in MCP16, and the lack of the canonical “RRRMMM” motif, suggests a 

putative role of this MCF protein as a nucleotide carrier (Chapter II; Colasante et al., 

2006). This putative mitochondrial nucleotide-exchange role is apparently essential 

for the survival of procyclic form T. brucei, since no MCP16 double knockout cell 

lines could be generated at all. 

 

Both sequence alignment and phylogenetic reconstruction predicted that T. brucei 

MCP13 most probably functions as a GDP/GTP carrier. GDP/GTP carrier-encoding 

genes are only found in yeast and fungi, and so far have not been found in any 

metazoans or plants. Apparently, such GDP/GTP carriers are also present in some 

protozoa, at least in this case in some members of the Kinetoplastidae (this 

Chapter). Genome database analysis revealed that in all of the kinetoplastid species 

of which the genome sequence has been determined to a larger extend, only a 

single gene could be identified with significant sequence similarities to Ggc1p: the 

functionally characterised S. cerevisiae GDP/GTP carrier (Vozza et al., 2004). As 

discussed in the introduction, the S. cerevisiae GDP/GTP carrier was found to be 

essential for iron homeostasis and the biosynthesis of Fe-S clusters, which act as 

essential co-factors for several important proteins in the mitochondrion and the 

cytoplasm (Amutha et al., 2008). The presence of such a mitochondrial GDP/GTP 

carrier in Kinetoplastida, and the absence of mitochondrial GTP succinyl-CoA 

ligases in the same protozoa, indicated that such a mitochondrial GDP/GTP 

exchanger is most probably essential for their survival. The inability to generate any 

MCP13 double knockout cell lines is in agreement with such an essential role in 

procyclic-form T. brucei.  

 

4. Conclusion 

Unfortunately, the classical route of in vitro reconstitutions and transport assays did 

not result in the confirmation of the different predicted ATP/ADP, GDP/GTP or 

nucleotide exchange functions, leaving the precise transport functions and 

associated physiological roles of MCP13, MCP15 and MCP16 yet answered. 
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Chapter VII.  General Discussion and Conclusions 

 

The ADP/ATP carrier is the mitochondrial ATP gateway out of the mitochondrion. 

This protein in Trypanosoma brucei is represented by MCP5, and its role was 

proved by sequence analysis, phylogenetic reconstruction, gene knockout studies 

and mitochondrial ATP production assays with digitonin-permeabilized T. brucei. 

 

In a mitochondrion the size of the one in the procyclic form of Trypanosoma brucei, 

seems obvious that the AAC must be quite ubiquitous and abundant. MCP5 

depletion from the procyclic form of the parasite seems to be deleterious, as 

observed by the impossibility to obtain a conventional knockout. This conditional 

knockout would loose the repression of its tetracycline rescue copy, just a few days 

after depletion. Moreover, the carbon consumption and metabolites production 

profiles present a shift in the fermentative process that not just confirms the 

redirection of carbons out of the mitochondrion, but also implies alternative 

pathways that produce ATP for cellular processes as well as the maintenance of the 

redox and energy balance inside the glycosome and the mitochondrion. 

 

It has been proved that glucose remodels the energy metabolism of these parasites 

and, it is apparent that in-vitro conditions the parasite prefers the carbohydrate to 

proline when in presence of both (Coustou et al., 2008).  In this remodelling, glucose 

is mainly metabolized via glycosome, re-entering the organelle for PEPCK and 

PPDK activity, and the ultimate production of succinate (Ebikeme et al., 2010; 

Coustou et al., 2008). It is also widely accepted that the TCA cycle does not function 

as a cycle and that its main function does not mainly imply energy generation (van 

Weelden et al., 2005).  Despite some inconsistencies in the statistical significance of 

the excretion of succinate profile for GDMP, the data for succinate production in the 

MCP5 KO grown in NMP and MPglu, suggest a shift in the metabolites excretion 

pattern that seems to be modulated by the presence of glucose.  The fact that 

succinate is still produced under low-glucose conditions raises the question to 

whether this succinate is produced in the mitochondrion or the glycosome.  Since in 

our experimental design, there is no way of determining the site of origin of this 

metabolite, no final conclusions can be derived. However, the fact that there is no 

MCP5 in the uninduced MCP5 KO, leads to think that a redirection of carbons might 

be taking place in the cell, as there would be no way for the mitochondrial 

metabolism to continue if there is no flux of the ATP produced in the organelle. We 

propose that the only way the carbons can be redirected in the mitochondrion, 
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without the ultimate production of succinate inside this organelle (which would be 

impaired because of the ATP/ADP blockage) is through the TCA cycle in reverse 

mode, towards the formation of malate, and its subsequent export into the cytosol.  

An ideal methodology in order to determine the site of origin of the succinate in the 

cell would be the use of radioactively labelled proline, for the subsequent detection 

of excretion products through 13C NMR spectroscopy (Coustou et al., 2008). 

 

The other hypothesis produced out of these results is the highly possible implication 

of gluconeogenesis. Since there is no glucose in the media the parasite has an 

absolute requirement to continue glycosomal pathways functioning, as well as the 

maintenance of the redox balance.  Also, the parasite requires carbohydrates for the 

production of sugar nucleotides involved in the remodelling of GPI anchors, 

essential for procyclins production.  

 

The KO growth curves in presence of glucose reveal the mutant cell line consumes 

as much glucose as the WT, whereas its growth rate is never achieved, even when 

in presence of an active rescue copy of the transporter.  This growth arrest might be 

structurally related to the rescue copy of MCP5.  The conditional KO bears an active 

rescue copy with a myc-tag in its n-terminus, which might be involved in protein 

interactions signalling that cannot be attained.  The ADP/ATP carrier has been 

characterized in various protein complexes, structurally interacting with proteins and 

lipids.  As discussed before a mitochondrion the size of the one found in procyclic 

form T. brucei must be interacting with other structures for the efficient transport of 

metabolites and intermediates. The structural changes that the myctag might attain 

could result in a lack of recognition in protein-protein interactions key for signalling, 

independently of the protein activity.  This behaviour could also result in probable 

microenvironments for the AAC, for protein-protein interaction and channelling to 

occur.  This phenomenon makes sense in such a big mitochondrion where diffusion 

of substrates would ablate rapid metabolic shifts, therefore making very feasible the 

existence of membrane microdomains that gather known protein complexes for 

channelling (Zhang et al., 2002). This has been proved in other organisms, from 

yeast to humans and particularly involving the AAC, in view of its very important 

metabolic energy-providing role as well as in apoptosis and programmed cell death 

(Beutner et al., 1996; Vyssokikh et al., 2001; Crompton, 1999; Chiara et al., 2008).   

 

The structural differences of the mitochondrion of procyclic form T. brucei also 

indicate towards the composition of its membranes, very important data for the 
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future reconstitution of the carriers into liposomes. Although the activity of the AAC 

in this work was demonstrated via mitochondrial assays, the ultimate assay to 

demonstrate the carrier’s activity requires an isolated purified protein. This implies 

that a substantial change in the methodological approach for the assessment of the 

isolated carried must be undertaken.  Klingenberg (2001) demonstrated that the 

AAC from Neurospora crassa expressed in Escherichia coli presented challenges 

for reconstitution.  Moreover, drastic results could be obtained depending whether 

different strains of the same bacteria were used.  These data posses as an example 

of the great amount of factors involved in the reconstitution process, many of which 

are determined from the production of the protein itself.  The appropriateness of the 

insect cells for the expression of eukaryotic membrane proteins, particularly 

mitochondrial carrier proteins, has been demonstrated before (Madeo et al., 2009).  

However, the approach did not seem suitable for the AAC of Trypanosoma brucei.  

As stated before, the composition and structure the mitochondrion of Trypanosoma 

brucei has never been studied.  Several factors like phospholipid composition and 

redox state of the proteins might be playing a key role in the functional insertion of 

proteins in the membrane of this mitochondrion that are unknown to date.   

 

All the points raise in the above paragraph imply the need to work with the 

mitochondrial membranes of T. brucei itself.  The use of T. brucei originated 

material would solve the need for futile tryouts of conditions that otherwise might 

take excruciating efforts to bare results, without mentioning that there is very little 

evidence of the active state of the protein.  This approach can be overtaken in two 

possible ways: 1) isolating mitochondrial-enriched fractions, by differential 

centrifugation, followed by continuous or discontinuous isopycnic gradients.  These 

mitochondrial-enriched fractions may be used as starting material for the 

reconstitution process.  The reconstitution process here would be a “fused-

membranes” approach, and has been done in the past by other authors (van der 

Giezen et al., 2002).   2) Using T. brucei mitochondrial-enriched fractions for 

purification of the natural protein, under native conditions.  Although the main 

purification method that Klingenberg used for the isolation of the AAC from beef 

heart mitochondria (Klingenberg et al., 1995), i.e. hydroxyapatite chromatography, 

does not seem to be effective for MCP5 (results not shown), other chromatography 

methods like hydrophobic chromatography (phenyl or octyl sepharose 

chromatography) in combination with gel filtration chromatography, might serve the 

purpose of protein isolation from the parasite.  It is however known that natural 

protein purification is a very difficult and unpredictable process, that might take 
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years to achieve as well as implies the need for great amounts of staring material to 

achieve detectable concentrations of protein useful for subsequent reconstitution. 

 

Although the protein-protein interactions described to date for known AACs mostly 

involve members of the respiratory chain and components of the Mitochondrial 

Transition Pore, as well as some very well documented affiliation with the 

phospholipid cardiolipin, it should not be discarded the possibility that MCP5 might 

be interacting with other MCF proteins as well.  The relationship with the phosphate 

carrier (Traba et al., 2009) has been documented in yeast, but the since 

Trypanosoma brucei mitochondrion differs greatly from those organelles in other 

species, this possibility might be even wider.  MCP15 and MCP16 have not had a 

role attained yet, but the possibility of their involvement in procyclic form T. brucei 

metabolism should not be discarded.  MCP16 particularly, with its high divergence 

from classic AACs, as well as the impossibility to obtain a double KO of this protein, 

place it in a very special place regarding metabolic regulation and/or signalling.  

Although this role remains to be evidenced, it opens great possibilities for metabolic 

pathway regulation, in the procyclic form and other life stages of the parasite. 
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Appendix 

 

1. MEM-Pros (Minimum Essential Medium for procyclic Trypanosomes) 

 g/10L 

CaCl2 x 2H2O 2.65 

KCl 4.0 

MgSO4 x 7H2O 2.0 

NaCl 68.0 

NaH2PO4 x H2O 1.40 

HEPES 71.40 

L-Arg-HCl 1.26 

L-Cys-Cys 0.24 

L-Gln 2.92 

L-His-HCl x H2O 0.42 

L-Ile 0.52 

L-Leu 0.52 

L-Lys 0.73 

L-Met 0.15 

L-Phe 1.0 

L-Thr 0.48 

L-Try 0.10 

L-Tyr 1.0 

L-Val 0.46 

L-Pro 6.0 

Adenosin 0.12 

Ornithin-HCl 0.10 

  

  

Components are dissolved in 4 L ultra-pure H2O.  pH is adjusted to 7.4 with NaOH.  

100 mL MEM non-essential amino acids, 100 mL MEM-vitamins and 0.1 g Phenol 

Red are then added to the preparation.  pH is measured again and the media is 

brought to 10 L volume with ultra pure H2O.  After filter-sterilizing, the media is 

divided in 450 mL aliquots in sterile glass bottles and placed at 4°C.   
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2. Hemin stock preparation 

250 mg hemin are dissolved in 100mL NaOH and autoclaved.  Stock is kept at 

4°C.   

 

3. HMI-9 medium.  Bloodstream trypanosomes culture media. 

g/10L  

Iscove’s modified Dulbecco’s medium 176.6 

Sodium carbonate 30.24 

Hypoxanthine 1.36 

Sodium pyruvate 1.10 

Thymidine 0.39 

Bathocopper sulfonate 0.28 

 

Components are mixed and brought to pH 6.3.  The media is filter-sterilized, divided 

in 400 mL aliquots in sterile glass bottles and kept at -20°C.  Before use, the 

medium is completed with 40 mL FCS, 5mL 150mM L-Cysteine solution, 5 mL 

0.14% β-mercaptoethanol solution and 5 mL Penicillin/Streptomycin stock (5000 

U/mL, 5mg/mL).   
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4. Oligos used for all cloning procedures in this work 
 
 
oHU Oligo name Sequence Construct designed for Gene or target region Restric. Site

20 5prsacMCP25koFor agggtgagctctttcacacgtattgacgggaacaaatgagtg KO constructs 5’ UTR MCP15 SacI

21 5prSpeMCP25koRev acctgcaactagtctgtccctctgctcatagccccgcattc KO constructs 5’ UTR MCP15 SpeI

22 3prBamMCP25koFor ctcaccaggatcccttgtgtgtgatgggtcctgtgctgag KO constructs 3’ UTR MCP15 BamHI

23 3prApaMCP25koRev ccttgggcccgagacaaggcgacgaagaacagaacagg KO constructs 3’ UTR MCP15 ApaI

31 5prSacTbcp5koFor agggtgagccgttctcagaagtgacttctgtcgcc KO constructs 5’ UTR MCP5 SacI

32 5prSpeTbcp5koRev acctgcaacagtcatcttttttcttgtagccacg KO constructs 5’ UTR MCP5 SpeI

33 3prBamTbcp5koFor ctcaccaggatccgtgccgttgctggtttttatttg KO constructs 3’ UTR MCP5 BamHI

34 3prApaTbcp5koRev ccttgggcccctcctcaggcacagccttaccgtttt KO constructs 3’ UTR MCP5 ApaI

46 MCP27_5UTR_FOR ccgagctcacgtaactacagagtgtttccggttgctgtct KO constructs 5’ UTR MCP16 SacI

47 MCP27_5UTR_REV cgcactagtactcgccgagatctgaattgatgacagat KO constructs 5’ UTR MCP16 SpeI

48 MCP27_3UTR_FOR atgggatccagttgttagtcgccgcatgcaactcactgatt KO constructs 3’ UTR MCP16 BamHI

49 MCP27_3UTR_REV tatagggcccgatcatcaagacttgtacgcactatcga KO constructs 3’ UTR MCP16 ApaI

50 25_forw_NdeI_orf taacatatggttggtggcgatggtgaggagcccgggct pET16b (his-tag expression) MCP15 orf NdeI

51 25_rev_BamHI_orf tatggatcctcaggagccggtaaaaaccacatatagag pET16b (his-tag expression) MCP15 orf BamHI

52 27_forw_NdeI_orf tatcatatggatcacgatcaactatagactctccc pET16b (his-tag expression) MCP16 orf NdeI

53 27_rev_BamHI_orf taggatccgaactgcatcgccatttctgggccgtttag pET16b (his-tag expression) MCP16 orf BamHI

106 cp5_sacI_fw atgagctcagatgacggataaaaagcgg ptrcHisA (his-tag expression) MCP5 orf SacI

107 cp5_ecorI_rev acgaattcctaattcgatctgcgccact ptrcHisA (his-tag expression) MCP5 orf EcoRI

108 cp13_sacI_fw atgagctcagatgtcatccgaacacgcacc ptrcHisA (his-tag expression) MCP13 orf SacI

109 cp13_ecorI_rev acgaattcttaatgccgaaccacccctct ptrcHisA (his-tag expression) MCP13 orf ecoRI

110 cp25_sacI_fw atgagctcagatggttggtggcgatggtga ptrcHisA (his-tag expression) MCP15 orf SacI

111 cp25_ecorI_rev acgaattctcaggcagccggtaaaaacca ptrcHisA (his-tag expression) MCP15 orf EcoRI

112 cp27_sacI_fw atgagctcagatggatcacgatcaactatac ptrcHisA (his-tag expression) MCP16 orf SacI

113 cp27_ecorI_rev acgaattcctaaacggcccagaaatggcg ptrcHisA (his-tag expression) MCP16 orf EcoRI

114 cp5_sacI_fw_new tatgagctcatgacggataaaaagcgg ptrcHisA (his-tag expression) SacI

115 cp25_sacI_fw_new tatgagctcatggttggtggcgatggtga ptrcHisA (his-tag expression) SacI
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116 mcp27_fw_bamHI_o aatggatccgaatggatcacgatcaactatacgactct ptrcHisC (his-tag expression) MCP16 orf BamHI

117 mcp27_rv_hindIII ccgaagcttctaaacggcccagaaatggcgatgc ptrcHisC (his-tag expression) MCP16 orf HindIII

118 mcp13_fw_BamHi_o aatggatccgaatgtcatccgaacacgcaccggtg ptrcHisC (his-tag expression) MCP13 orf BamHI

119 mcp13_rv_EcorRi_o cgcgaattcttaatgccgaaccacccctcttttt ptrcHisC (his-tag expression) MCP13 orf HindIII

120 forw_mcp13_pcr tatgggatcgctacaagcacaacaacat upstream 5'utr target region MCP13 5’UTR (upstream) -

121 forw_mcp5_pcr gcattgtttcacccgttttcaggttctcagaagt upstream 5'utr target region MCP5 5’UTR (upstream) -

122 forw_mcp25_pcr cttaaggtgtcatattggtttgctgcaggggcct upstream 5'utr target region MCP15 5’UTR (upstream) -

123 forw_mcp27_pcr gtggacgtaactacagcgagatgttcattgttaccgg upstream 5'utr target region MCP16 5’UTR (upstream) -

124 13_3utr_apaI_rev tatgggcccattaacgtaccccctccctc KO constructs MCP13 3'UTR ApaI

125 13_3utr_bamhI_fw tctggatccgaggatcaagtcatgtgatacga KO constructs MCP13 3'UTR BamHI

126 13_5utr_sacI_fw catgagctccgcatacgtgtgagtgtgtgac KO constructs MCP13 5'UTR SacI

127 13_5utr_speI_rev cgcactagttcacgtgctgaacgatcccttccttt KO constructs MCP13 5'UTR SpeI

128 5_ef tctgaattcatgacggataaaaagcgggaaccg pac28 (his-tag expression) MCP5 orf EcoRI

129 5_hr ttgaagcttctaattcgatctggccactccac pac28 (his-tag expression) MCP5 orf HindIII

130 13_bf gacggatccatgtcaccgaacacgcaccggtggta pac28 (his-tag expression) MCP13 orf BamHI

131 13_sr gcggtcgacttaatgccgaaccacccctctt pac28 (his-tag expression) MCP13 orf SalI

132 5_pIvex_bHI_rv aatggatccctaattcgatctgcgccactccac pIvex2.4 (his-tag expression) MCP5 orf BamHI

133 5_pIvex_NotI_fw aatgcggcgcacggataaaagcgggaaccggcc pIvex2.4 (his-tag expression) MCP5 orf NotI

134 13_pIvex_NotI_fw tatgcggccgctcatccgaacacgcaccggtggtag pIvex2.4 (his-tag expression) MCP13 orf NotI

135 13_pIvex_BHI_rv tagggatccttaatgccgaaccaccctctt pIvex2.4 (his-tag expression) MCP13 orf BamHI

177 pFASTBacHT For cggattattcataccgtcccaccatc pFastBac HT 

178 pFASTBacHT Rev caagtaaaacctctacaaatgtggtatgg pFastBac HT 

182 pUC/M13fw cccagtcacgacgttgtaacagg Bacmid insert detection  

183 pUC/M13rv agcggataacaatttcacacagg Bacmid insert detection 

 TbCP5-BamHI-Rev gcttgcaggatccattcgatctgcgccactccacataaatgg pHD1701 (myc-tag expression) MCP5 orf BamHI

 TbCP5a-HindIII-For ggacggaagcttaccatggcggataaaaagcgggaaccgg pHD1701 (myc-tag expression) MCP5 orf HindIII

 TbCP5a-NdeI-For ggacttcatatgacggataaaaagcgggaaccgg pET16b (his-tag expression) MCP5orf NdeI

 TbCP13-HpaI-For ggacgggttaacatggcatccgaacacgcaccggtggtagc pHD1700 (myc-tag expression) MCP13 orf HpaI

 TbCP13-BamHI-Rev gcttgcaggatccatgccgaaccacccctcttttttcc pHD1700 (myc-tag expression) MCP13 orf BamHI

 TbCP25-HindIII-For ggacggaagcttaccatggttggtggcgatggtgaggag pHD1701 (myc-tag expression) MCP15 orf HindIII
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 TbCP25-HpaI-Rev gcttgcagttaacggcagccggtaaaaaccacatatagagtgac pHD1701 (myc-tag expression) MCP15 orf HpaI

 TbCP27a-BamHI-Rev gcttgcaggatccaacggcccagaaatggcgatgcagttccag pHD1701 (myc-tag expression) MCP16 orf BamHI

 TbCP27a-HindIII-For ggacggaagcttaccatggatcacgatcaactatacgactctccc pHD1701 (myc-tag expression) MCP16 orf HindIII
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