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Abstract 

The relationships between hyperthermia, dehydration and oxidative stress have been 

thoroughly studied separately within the literature both in vitro and in vivo. However, no in 

vivo attempts have been made to manipulate the hydration status of individuals to 

investigate the resulting changes in oxidative and cellular stress during and after exercise in 

hyperthermic conditions and what effect these changes may have on exercise performance. 

 

The purpose of the first experiment was to investigate the effects of exercise-induced 

dehydration with and without hyperthermia on oxidative stress. Seven healthy male trained 

cyclists (mean ± SD) age: 36 ± 6 yrs, height: 177.4 ± 6.5 cm, weight: 72.8 ± 7.0 kg, and 

power output (PO) at lactate threshold (LT): 199.3 ± 19.0 Watts (W) completed 90 min 

cycling exercise at 95% LT followed by a 5 km time trial (TT) in four conditions: 1) 

euhydration in a warm environment (EU-W, control), 2) dehydration in a warm 

environment (DE-W), 3) euhydration in a thermoneutral environment (EU-T), and 4) 

dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9°C; T: 23.0 ± 1.0°C). 

Whole blood oxidised glutathione (GSSG) increased significantly post exercise in 

dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, whole 

blood total glutathione (TGSH) and plasma thiobarbituric acid reactive substances 

(TBARS) tended to increase post exercise in dehydration trials (p = 0.08 for both). 

Intracellular monocyte heat shock protein 72 (HSP72) concentration was increased (p = 

0.01) while intracellular lymphocyte HSP32 concentration was decreased for all trials (p = 

0.02). Exercise-induced dehydration led to an increase in GSSG concentration while 

maintenance of euhydration attenuated these increases regardless of environmental 

condition. Additionally, evidence of increased cellular stress (measured via HSP) was 
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found during all trials independent of body mass loss and environment. Finally, total 

distance covered during 90 min and PO during both 90 min and 5 km TT performance were 

reduced during only the DE-W trial, likely a result of combined cellular stress, 

hyperthermia and dehydration. These findings highlight the importance of fluid 

consumption during exercise to attenuate thermal and oxidative stress during prolonged 

exercise in the heat. 

 

The purpose of the second experiment was to investigate the effect of prolonged exercise-

induced dehydration with and without hyperthermia on cellular and oxidative stress 

markers in untrained individuals, to serve as a comparison to the results of the first 

experimental chapter. Seven untrained male university students (mean ± SD) age: 21 ± 3 

yrs, height: 181.1 ± 9.2 cm, weight: 76.8 ± 8.8 kg, and PO at LT 100.0 ± 13.0 W, who were 

unacclimatised to heat, participated in this study. Subjects completed the same 

experimental protocol as outlined in experimental chapter one, in warm (33.9 ± 1.0°C) and 

thermoneutral (22.9 ± 1.0°C) environments. Whole blood GSSG increased an average of 

32% (p < 0.01) as a result of prolonged exercise, however unlike the trained subjects of 

experiment one, there was no effect of body mass loss on GSSG (p = 0.63). Similarly, 

intracellular monocyte HSP72 concentration increased 14% (p < 0.01) as a result of 

prolonged cycling regardless of body mass loss and environmental heat stress, analogous to 

subjects in experiment one. While there were no significant changes as a result of hydration 

or environment, a relationship was found between GSSG concentration and body mass loss 

(r
2
 = 0.5, p = 0.05), while HSP72 was correlated with body temperature and levels of heat 

storage (r
2
 = 0.5, p = 0.01). Similar to the trained individuals in experiment one, PO during 

the 90 min (7%, p < 0.01) and TT (14%, p < 0.01) were decreased while thermoregulation 
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was impaired during DE-W only. These results demonstrate the increased level of stress in 

untrained subjects as a result of exercise and highlight the importance of participation in 

recommended physical activity to aid in positive cellular adaptations leading to superior 

antioxidant defences to aid in disease prevention. 

 

In light of the findings from the first experimental chapter that dehydration can 

significantly influence oxidative stress in trained subjects, the purpose of the third 

experimental chapter was to compare pre-exercise hyperhydration with plain water (W) or 

water with glycerol (G) to no hyperhydration (C) on markers of oxidative stress prior to 

and after a 90 min TT. Seven trained male cyclists and triathletes (age: 28 ± 8 yrs, height: 

178.4 ± 7.8 cm, and mass: 73.2 ± 9.6 kg) covered as much distance as possible during a 90 

min cycle after G, W or C. Blood was collected pre ingestion (PRE), post ingestion/pre 

exercise (PI), immediately post exercise (PE) and 1 hour post exercise (1HR) and analysed 

for whole blood TGSH, GSSG, and plasma levels of lipid hydroperoxides (LOOH) and 

protein carbonyls (PC). TGSH concentration increased post exercise in W and C (p < 0.01) 

while PC concentration increased post exercise during C only (p = 0.03). Additionally, 

GSSG concentration was greater PI and PE in C compared to G (p = 0.05, and p < 0.01, 

respectively), likely due to the inferior amount of fluid retained during C compared to the G 

and W trials. Therefore, it appears that both pre exercise hyperhydration with ad libitum 

fluid ingestion during exercise is sufficient to attenuate rises in exercise-induced oxidative 

stress. 

 

The novel findings presented in this thesis indicate fluid ingestion plays a vital role in 

providing cellular protection from oxidative stress. These results suggest that individuals 



xiv 

participating in prolonged exercise should consume adequate fluid during exercise to avoid 

dehydration, matching fluid intake with body mass loss. Additionally, individuals who wish 

to hyperhydrate prior to exercise may enhance their ability to delay dehydration and thus 

enhance their cellular protection from oxidative stress. 
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General Introduction 

Exercising for prolonged periods can lead to dehydration (Sawka et al., 2007) and oxidative 

stress (Steinberg et al., 2006), both of which are believed to have a negative impact upon 

performance. Many researchers have reported that as little as a 1-2% reduction in body 

mass can negatively impact exercise performance (Cheuvront et al., 2003) and cognitive 

function (Maughan, 2003), however others have found as much as 7% can be tolerated 

(Sharwood et al., 2004). Dehydration leads to a decrease in plasma (PV) and total blood 

volume (Coyle and Gonzalez-Alonso, 2001), a decrease in stroke volume and an increase 

in heart rate (HR) (Gonzalez-Alonso et al., 2000) as well as increased core temperature 

(Tc) (Montain and Coyle, 1992) and decreased time to fatigue (Montain et al., 1998). 

 

On a cellular level, dehydration causes hyperosmolality and cellular shrinkage which can 

lead to insulin resistance, catabolism, and increased cellular susceptibility to oxidative 

damage and apoptosis (Schliess and Haussinger, 2002). Oxidative stress, resulting from the 

production of free radicals can also lead to apoptosis (Mattson, 2006) as well as oxidation 

of lipids, proteins, and DNA (Powers and Jackson, 2008). Accumulation of oxidised 

proteins and DNA leads to failure of normal cell function (Fisher-Wellman and Bloomer, 

2009) which in turn causes an inflammatory response and cell death (Mattson, 2006). 

While dehydration impairs cellular function, hyperhydration and hypoosmotic swelling has 

been shown to protect cells from heat and oxidative stress (Schliess and Haussinger, 2002) 

and attenuate DNA damage (Martins and Meneghini, 1994). Newly emerging research has 

shown that fluid intake during recovery from dehydration can attenuate oxidative stress 

(Paik et al., 2009). The authors found a significant increase in malondialdehyde (MDA), a 

by-product of lipid peroxidation during dehydration trials that was significantly attenuated 
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with rehydration, demonstrating that adequate hydration can counteract oxidative damage. 

This may be important with regards to pre-exercise hydration status and the ability of 

euhydration to attenuate oxidative stress. 

 

Cellular protection from free radicals comes from endogenous and exogenous antioxidant 

systems. The foremost endogenous non-enzymatic antioxidant in the body is glutathione. 

During normal resting conditions glutathione is found in the reduced (GSH) state. During 

exercise, in order to combat peroxidation, GSH is oxidised by glutathione peroxidase (GPx) 

to GSSG and then reduced back by glutathione reductase (GR). This cycle is continuous, 

with the goal of maintaining the levels of GSH in order to counter the oxidative stress. 

During times of high oxidative stress, increased amounts of GSSG and decreased amounts 

of GSH will be found with no change in total glutathione (TGSH) (Laaksonen et al., 1999, 

Sen et al., 1994b). Further cellular protection is provided by heat shock proteins (HSP), 

ubiquitous stress molecules expressed both extra- and intra-cellularly to aid in response to 

heat stress, oxidative stress, or other forms of cellular damage (Kalmar and Greensmith, 

2009). There are numerous families of HSP; of particular interest are HSP 70 and HSP 32. 

HSP 70 aids in the clearance of damaged proteins and refolding of denatured proteins, as 

well as saving cells from activated death pathways (Kalmar and Greensmith, 2009). The 

effects of hydration status on HSP expression have not been thoroughly studied. However, 

in human hepatocytes it has been shown that moderate hyperosmolality, as a result of 

dehydration, blocks the heat induced expression of HSP 70, causing impaired protein 

synthesis and thermotolerance (Kurz et al., 1998). Additionally, while dehydration can 

block HSP 70 induction, hyperhydration and the ensuing hypoosmotic swelling has been 
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shown to increase HSP 70 induction (Kurz et al., 1998). Therefore it is clear how important 

hydration status can be to thermotolerance and cellular protection via HSP 70 expression.  

 

HSP 32 is expressed in a wide range of tissues as a result of oxidative stress (Otterbein and 

Choi, 2000) and provides anti-inflammatory and anti-apoptic cellular protection (Kalmar 

and Greensmith, 2009). HSP 32 has not been studied widely in exercising subjects and no 

data exist linking HSP 32 expression to hydration status. Since HSP 32 is induced as a 

result of oxidative stress, it is inferred that dehydration would result in increased expression 

of HSP 32.  

 

With the emerging evidence that dehydration and hyperthermia can result in cellular 

damage via oxidative stress, and the body’s ability to maintain cellular function during 

states of euhydration, it is important to understand the relationship of hydration status on 

oxidative stress. The findings of the proposed research will aid in our understanding of the 

potential effect of hydration and training status on oxidative stress during prolonged 

exercise in extreme environmental conditions. 
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Chapter 2: Review of Literature 

Because the topic of the current thesis is rather novel and no research exists linking all 

aspects of the work herein, it was difficult to decide how to lay out the literature review. 

However, because the main focus of this thesis is oxidative stress, this topic will be 

thoroughly reviewed first, including the mechanisms of oxidative stress and resulting 

damage during varying durations of exercise. This will be followed by a review of heat 

shock proteins, which are intrinsically linked with both oxidative stress and hyperthermia. 

Next the physiological changes that occur as a result of exercise in hyperthermic 

environments, including the resulting dehydration and prevention of dehydration and 

hyperthermia will be discussed. Finally, the last section of this review will focus on 

detailing the limited research to date linking oxidative stress, dehydration and 

hyperthermia, demonstrating the rationale for the following research. 

 

2.1. Oxidative Stress 

Oxidative stress results from an increased production of pro-oxidant radicals (ROS) and a 

concomitant failure of the body’s antioxidant defences to neutralise these threats (Halliwell 

and Gutteridge, 2007). During resting conditions there is a delicate balance between pro- 

and anti-oxidants that aid in the body’s maintenance of homeostasis (Halliwell and 

Gutteridge, 2007). Exercise tips the cellular environment towards the pro-oxidant as a 

result of increased oxygen uptake and cellular metabolism, resulting in greater ROS 

production (Halliwell and Gutteridge, 2007). If not neutralised, the ROS produced can lead 

to lipid and protein peroxidation as well as DNA oxidation. 
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Oxidative stress is highly correlated with many human conditions, which in turn is highly 

correlated with lifestyle characteristics, including aerobic fitness. Many of these conditions 

result from failures in the antioxidant defence system. For example, basal levels of 

oxidative stress are greater in the sedentary population compared to their trained 

counterparts (higher production of ROS and a decreased ability to neutralise the radicals) 

due to a sedentary lifestyle (Alessio, 1993, Miyazaki et al., 2001). Similarly, during 

exercise in sedentary individuals, markers of lipid peroxidation, protein oxidation (Falone 

et al., 2010), and DNA damage (Niess et al., 1996) are increased, while antioxidant activity 

(such as the glutathione system) is decreased (Douris et al., 2009, Falone et al., 2010) 

compared to trained individuals. This increase in ROS production and oxidative stress puts 

sedentary and untrained individuals at a higher risk for disease development (Ceriello and 

Motz, 2004). 

 

While exercise-induced oxidative stress has long been regarded as detrimental to exercise 

performance and health, current understanding of the paradigm has revealed a hormetic 

effect of exercise-induced oxidative stress. It is believed that the stress incurred as a result 

of a mild bout of exercise infers favourable adaptations and protection for subsequent, more 

severe bouts of exercise or other stress (Ji et al., 2010). Additionally, the ROS produced as 

a result of exercise and metabolism potentially serve as important cellular signalling 

mechanisms (Powers et al., 2010) and neutralising these ROS with exogenous antioxidants 

can potentially cause as much damage as the radicals themselves (Powers and Jackson, 

2008). 
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It is well documented that ROS are continuously produced as a result of cellular 

metabolism. The most biologically active ROS produced by muscles are superoxide (O2
-
∙) 

and hydrogen peroxide (H2O2), while other major reactive species in cells include the 

hydroxyl radical (∙OH), nitric oxide (NO) and peroxynitrite (ONOO
-
). The production of 

these radicals and their ability to cause damage can be attenuated by various endogenous 

and exogenous antioxidant defence systems, as well as exercise training. A brief 

description of these radicals is detailed below, indicating where the radical is produced and 

how it reacts with cellular components, resulting in further radical production and possibly 

cellular damage (Figure 2.1). 

 

 
Figure 2.1. Production of reactive oxygen (ROS) and nitrogen (RONS) species and the role 

of endogenous antioxidants. Superoxide (O2
-
∙) which is formed under conditions of 

increased oxygen demand and metabolism is converted to hydrogen peroxide (H2O2) by 

superoxide dismutase (SOD) within mitochondria. H2O2 can then be rapidly removed by 

glutathione peroxidase (GPx), which is most commonly found in red blood cells or by 

catalase, which is found exclusively in peroxisomes. If not neutralised by antioxidants, O2
-
∙ 

and H2O2 can form the hydroxyl radical (OH∙) via the Haber-Weiss and Fenton reactions, 

respectively. OH∙ is highly reactive and will combine with un-neutralised nitric oxide 

radicals (NO∙) to form the powerful oxidant peroxynitrite (ONOO∙). If left un-quenched, 

OH∙, NO∙, and ONOO∙ can result in lipid peroxidation, protein peroxidation, DNA damage, 

and cell death via apoptosis and necrosis. Adapted from Newsholme et al. (2011). 
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Superoxide (O2
-
∙) 

Superoxide (O2
-
∙) is an anion that is formed as an intermediate in biochemical reactions. It 

is relatively membrane impermeable, but has a relatively long half life, which allows for 

diffusion within the cell (Powers and Jackson, 2008). Although superoxide is generally 

considered unreactive compared with other radicals, it can react with nitrous oxide and may 

possibly become protonated to produce hydroperoxyl radical (HO2), which may allow for 

the transfer of superoxide across membranes (Powers & Jackson, 2008). Superoxide can act 

to reduce biomaterials such as cytochrome C, or oxidise others such as ascorbate and still 

yet, can be dismutated by superoxide dismutase (SOD) which provides a major source of 

another ROS, hydrogen peroxide, in the cells (Powers and Jackson, 2008). 

 

Mitochondria have been widely believed to be the dominant source of superoxide, with the 

major sites of generation mainly due to a “leak” between complexes I and II of the electron 

transport chain (ETC) (Muller et al., 2004), specifically in type II fibres, which leak two to 

three times more ROS than type I fibres (Anderson and Neufer, 2006). Early researchers 

concluded that superoxide is produced at rates greater than 50 or 100 fold during aerobic 

exercise and that 2-5% of oxygen consumed was reduced to form superoxide (Boveris and 

Chance, 1973). However, recent research suggests mitochondria may not be the dominant 

source of ROS during exercise (Jackson et al., 2007) and the estimated amount of 2-5% 

oxygen consumption to superoxide formation is actually only increased 2 to 4 fold during 

exercise (St-Pierre et al., 2002), much lower than originally estimated. 
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Hydrogen Peroxide (H2O2) 

Hydrogen peroxide (H2O2) is formed from the dismutation of superoxide by SOD as well 

as a number of enzyme systems (Powers and Jackson, 2008), by microsomes and 

peroxisomes (Droge, 2002), and xanthine oxidase (Sachdev and Davies, 2008). There is 

also good evidence for the generation of H2O2 directly by the mitochondria (Sachdev and 

Davies, 2008), but this has yet to be substantiated. H2O2 is stable and has a relatively long 

half life (Powers and Jackson, 2008). The cytotoxicity of H2O2 is mainly in its ability to 

form the hydroxyl radical. While H2O2 is unable to oxidise DNA or lipids directly (Powers 

and Jackson, 2008), it can inactivate some enzymes, usually by oxidation of essential thiol 

groups (Halliwell and Gutteridge, 2007). Exposure of cells to large doses of H2O2 can 

cause inhibition of glycolysis by oxidising glyceraldehyde-3-phosphate dehydrogenase 

resulting in ATP depletion (Halliwell and Gutteridge, 2007). 

 

Hydroxyl Radicals (OH∙) 

Hydroxyl radicals (OH∙) are highly reactive with a strong oxidising potential (Powers and 

Jackson, 2008) and will react with almost every type of molecule found in living cells 

including sugars, amino acids, phospholipids, nucleotides, and organic acids (Halliwell and 

Gutteridge, 2007). Reactions involving OH∙ illustrate an important principle in radical 

chemistry: reactions of a free radical with a non-radical species produces a different free 

radical, which may be more or less reactive than the original radical (Halliwell and 

Gutteridge, 2007). Radicals produced by reactions with OH∙ are usually less reactive 

because OH∙ is such an aggressive species (Halliwell and Gutteridge, 2007). OH∙ radicals 

damage molecules close to their site of generation (Powers and Jackson, 2008) and their 

reactivity is such that it is virtually impossible to prove their existence other than by 
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detecting the presence of products of their reactions. Because they are so highly reactive, 

OH∙ radicals are not membrane permeable (Powers and Jackson, 2008). Many of the 

hydroxyl molecules that are produced come from the metal ion-dependent break-down of 

hydrogen peroxide (H2O2), also known as the Fenton reaction (Cheng et al., 2002). The 

·OH has also been postulated to be formed by the interaction between superoxide and nitric 

oxide (Cheng et al., 2002) and has also been implicated as a mediator of 

ischaemia/reperfusion injury, as well as playing a direct or indirect role in diseases such as 

hepatitis, stroke, Parkinson’s disease, aging, and Alzheimer’s disease (Cheng et al., 2002). 

 

Nitric Oxide (NO) 

Nitric oxide (NO) is a major signalling molecule found in neurons and the immune system. 

It is a small molecule and diffuses rapidly through both water and membranes, allowing it 

to easily pass from one cell to the next (Brown and Borutaite, 2002). NO is continuously 

produced by skeletal muscle by nitric oxide synthetases and this production increases with 

muscular contraction (Balon and Nadler, 1994). 

 

NO itself, at physiological concentrations, is relatively unreactive (Ignarro, 2000), 

however, it may be converted to a number of reactive nitrogen species. The most reactive 

of these species being peroxynitrite (ONOO
-
), which can oxidise/nitrate other molecules or 

decay to produce other damaging species (Brown and Borutaite, 2002). NO causes cell 

death by a variety of mechanisms that are still not clearly defined, but include energy-

depletion necrosis and oxidant-induced apoptosis (Brown and Borutaite, 2002) as well as 

DNA damage (Nguyen et al., 1992). 
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Peroxynitrite (ONOO
-
) 

Peroxynitrite is a powerful oxidant formed by the inevitable reaction of NO and SO (Pacher 

et al., 2007) and is the primary reaction when both are present (Powers and Jackson, 2008). 

Although peroxynitrite is a strong oxidant, it reacts at a relatively slow rate and can diffuse 

through cell membranes (Pacher et al., 2007). Peroxynitrite’s limited reactivity makes it a 

selective oxidant, which increases its influence over biological processes (Pacher et al., 

2007). Peroxynitrite mediates the oxidative modifications of lipid cell membranes and 

lipoproteins (Rubbo et al., 2009). Many biomolecules are oxidised and/or nitrated by 

ONOO
-
 including protein tyrosine residues, thiols and unsaturated fatty acids. One very 

important aspect of peroxynitrite-mediated lipid peroxidation is that during the process, OH 

and NO radicals are formed which can further initiate lipid peroxidation (Rubbo et al., 

2009). 

 

As can be seen from the review of free radicals, the primary target of many radical attacks 

is on the cellular wall, leading to lipid peroxidation. If the by-products of lipid peroxidation 

are not neutralised they can lead to further damage of cellular components, including 

proteins and DNA. Accordingly, the following section will detail the mechanisms and 

consequences of lipid, protein and DNA damage. 

 

2.1.2. Lipid Peroxidation 

Lipid peroxidation causes impairment of membrane functioning and changes in fluidity, 

which allows proteins within the membrane to be more directly attacked (Halliwell and 

Chirico, 1993). This attack impairs essential membrane functions through inactivation of 

membrane-bound receptors and enzymes (Powers and Jackson, 2008) as well as increasing 
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nonspecific permeability to ions such as calcium (Halliwell and Chirico, 1993) which can 

lead to cell death (Orrenius et al., 1989). Lipid peroxidation can also contribute to the 

development of atherosclerotic lesions in blood vessels (Halliwell and Chirico, 1993). 

 

Lipid peroxidation has three major stages including initiation, propagation and termination. 

Lipid peroxidation is initiated by an attack on a fatty acid or fatty acyl side chain resulting 

in the abstraction of a hydrogen proton (H
+
) (Halliwell and Chirico, 1993). The greater the 

number of double bonds in the fatty acid, the easier it is to remove an H
+
. This is why 

polyunsaturated fatty acids are more susceptible to free radical attack than 

monounsaturated fatty acids or saturated fatty acids (Halliwell and Chirico, 1993). 

Propagation of lipid peroxidation can continue for the conversion of hundreds of fatty acid 

side chains into lipid hydroperoxides (LOOH) (Halliwell and Chirico, 1993). The length of 

propagation depends upon many factors including the lipid-protein ratio in the membrane, 

the fatty acid composition, the oxygen concentration and the presence of a chain-breaking 

antioxidant (Halliwell and Chirico, 1993). The most important of such chain-breaking 

antioxidants is α-tocopherol (vitamin E) (Halliwell and Chirico, 1993). Other chain 

breaking antioxidants include vitamin C (ascorbate) and beta-carotene. 

 

LOOH have been long believed to play a role in human disease (Esterbauer, 1993) and 

indeed both MDA and 4-hydroxynonenol (4-HNE) formation have been implicated in 

many disease states such as atherosclerosis (Leonarduzzi et al., 2005), ischaemia 

(Braughler and Hall, 1992), arthritis (Morquette et al., 2006), diabetes (Slatter et al., 2000) 

and Alzheimer’s (Galasko and Montine, 2010); however the exact influence of LOOH and 

their decomposition products in human disease still needs further elucidation. One of the 
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major roles of lipid peroxidation in disease is the potential for MDA and particularly 4-

HNE to modify proteins which can provoke immune responses (Dalle-Donne et al., 2006) 

and inhibit protein and DNA synthesis (Esterbauer et al., 1991). While the literature on the 

effects of exercise on lipid peroxidation is robust, the results are equivocal and require 

further elucidation because whilst exercise of varying intensities and durations have been 

shown to increase or have no effect on lipid peroxidation, there appears to be no pattern.  

 

Measuring lipid peroxidation is usually accomplished by measuring losses of unsaturated 

fatty acids, amounts of primary peroxidation products and second hand products (Halliwell 

and Chirico, 1993) because few lipid peroxidation products can be produced in pure form 

(Esterbauer, 1993). LOOH are produced as the primary by-product of polyunsaturated fatty 

acid peroxidation (Esterbauer, 1993) and decompose to form unstable end products such as 

MDA and 4-HNE, conjugated dienes, and isoprostanes, while second hand products 

include hydrocarbon gases such as pentane or ethane (Urso and Clarkson, 2003).  

 

MDA can be measured by high performance liquid chromatography (HPLC), 

spectrophotometry, spectroflurescence or the most common method, the thiobarbituric acid 

(TBARS) assay. Research measuring lipid peroxidation via the TBARS assay is highly 

equivocal with exercise of varying durations and intensities eliciting both increases and null 

findings (Atalay et al., 1997, Falone et al., 2010, Groussard et al., 2003, Ilhan et al., 2004, 

Jammes et al., 2004, Jammes et al., 2009, Laaksonen et al., 1999, Michailidis et al., 2007, 

Miyazaki et al., 2001, Morillas-Ruiz et al., 2005, Nikolaidis et al., 2006, Rahnama et al., 

2007, Sen et al., 1994b, Steinberg et al., 2007, Steinberg et al., 2006, Tanimura et al., 2010, 

Vider et al., 2001). It should be noted, however, that the use of the TBARS assay has been 
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criticised by many researchers for being non-specific to MDA (Oh-ishi et al., 2000). 

Despite the mixed results received using the TBARS assay it is continually used because it 

is relatively cost effective and easy to conduct. 

 

Lipid Peroxidation and Exercise 

The majority of studies investigating the effects of exercise on lipid peroxidation primarily 

utilise the TBARS assay or direct measurements of MDA and short duration exercise of 

less than 30 min, such as graded exercise tests (GXT) to exhaustion. Of these studies in 

untrained individuals, the majority have noted increases in MDA or TBARS post exercise 

(Ashton et al., 1998, Jammes et al., 2009, Laaksonen et al., 1999, Michailidis et al., 2007, 

Sen et al., 1992, Steinberg et al., 2007, Steinberg et al., 2006), while few have found no 

change (Groussard et al., 2003). However, it is interesting to note that although Groussard 

et al. (2003) did not find significant results immediately post exercise, a significant increase 

was found after 20 min of recovery time. Investigations utilising trained individuals seem 

to be equivocal with some authors noting increases post GXT (Falone et al., 2010, Munoz 

Marin et al., 2010, Vider et al., 2001), while others have found no change as a result of 

GXT (Alessio et al., 2000, Quindry et al., 2003, Rahnama et al., 2007). Additional 

investigations utilising LOOH and F2-Isoprostanes (FIP) also indicate increases post GXT 

(Ashton et al., 1998) and after a 50 min run (McAnulty et al., 2005). 

 

Few studies have utilised a moderate to prolonged duration protocol (60-90 min) to 

investigate changes in lipid peroxidation as a result of exercise. Two investigations 

measuring TBARS have found opposite results, with one noting significant increases from 

90 min cycling at ~60% VO2max (Borsheim et al., 1999) and one finding no significant 
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changes from 90 min cycling at 70% VO2max (Morillas-Ruiz et al., 2005). These opposing 

findings may result from differences in training status, as Borsheim et al. (1999) utilised 

untrained participants, noting increased stress, while the trained participants of Morillas-

Ruiz et al. (2005) did not have an increase in oxidative stress. Additionally, Rush and 

Sandford (2003) found no significant changes in LOOH as a result of a 90 min cycle at 

50% VO2max, while Quindry et al., (2003) found a similar result when participants ran for 

60 min at LT-10%. Due to the limited availability of research utilising moderate duration 

protocols and the equivocal results from those that do, it is difficult to discern the effects of 

this exercise duration on lipid peroxidation markers. The two studies that have utilised long 

duration protocols (>2 hrs) have found a significant increase in MDA as a result of a half or 

full marathon (Knez et al., 2007) and significant increases in FIP after an ultramarathon 

(Skenderi et al., 2008). Similarly, a study utilising trained cyclists completing a mountain 

cycle race also found significantly increased MDA as a result of the 178 km ride (Tauler et 

al., 2006), which took a mean of 283 min to complete. 

 

Research focusing on the effects of high intensity exercise on lipid peroxidation appears to 

be equivocal, similar to the effects of aerobic exercise on lipid peroxidation. Bloomer et al., 

(2005) used cross trained men to investigate the effects of 30 min squatting at 70% one 

repetition maximum (1RM) on MDA finding no change in MDA content after the exercise. 

Similarly, these same authors conducted a study using 12 resistance trained men to 

investigate the effects of sprinting exercise and an extended bout of squatting (40 ± 2 reps). 

Neither exercise intervention significantly increased MDA concentrations, however, they 

noted a tendancy for MDA to decrease as a result of both exercise modes (Bloomer et al., 

2006). Contrarily, 30 min cycling at LT (Sen et al., 1994b) and sustained contractions of 
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the thumb abductor muscle at 50% of maximal voluntary contraction have resulted in 

augmented TBARS and LOOH (Alessio et al., 2000, Steinberg et al., 2006). Differences in 

these responses may be due to the training status of the subjects, as those studies that found 

increases in TBARS used high intensity trained individuals, but those that had no 

significant increases used subjects specifically trained toward the mode of exercise used. 

 

It may be of particular interest to athletic populations to understand how multiple days of 

exercise can influence lipid peroxidation; however, few studies have been conducted to 

elucidate this relationship. The first study by Vigue et al. (1993) used untrained subjects 

cycling 90 min at 65% VO2max for three consecutive days, finding no significant change in 

LOOH and, in fact, noted a non significant decrease. Similarly, Tanimura et al. (2001) 

found no significant changes in TBARS concentration from three consecutive days of 

cycling 60 min at 75% VO2max. However, Shing et al. (2007) found a significant increase in 

MDA as a result of a single day of interval cycling followed by a 30 km time trial for the 

two consecutive days after. Additionally, the authors (Shing et al., 2007) noted a significant 

cumulative effect of the three days of exercise. 

 

Recently, researchers have focused on investigating the impact of exercise training on lipid 

peroxidation because of the implied health benefits and possible reduction in disease. Few 

studies have done so, but those that have, found positive benefits of the training (Goto et 

al., 2003, Miyazaki et al., 2001). Miyazaki et al. (2001) utilised a 12 week training program 

consisting of a 60 min run at 80% VO2max, five days per week, in nine untrained men. They 

found that while exercise augmented the concentration of plasma TBARS, this increase 

was less after the training program. Additionally, the subjects had lower basal TBARS 
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levels after the training program. Similarly, Goto et al. (2003) used a 12 week training 

program consisting of either mild, moderate or high intensity exercise for 30 min per day, 

five to seven days per week, in 26 untrained men (split between the three training loads). 

The authors noted that mild and moderate exercise training tended to decrease the 

production of MDA post exercise and that interestingly, the high intensity training resulted 

in augmented MDA production after the training program. While it appears that training 

can improve the body’s ability to counteract the oxidative load of exercise, high intensity 

training can hamper this adaptation, therefore exercise should be of a mild intensity. 

However, because there is little data and these investigations used only MDA rather than 

multiple markers, it is difficult to make definitive conclusions regarding exercise training 

and lipid peroxidation. 

 

2.1.3. Protein Oxidation 

Protein oxidation by ROS occurs on many amino acids in two main sites: the backbone and 

side chains. A wide range of different radicals can be formed from the attack of a radical on 

a protein because of the varied configurations of amino acid side chains which offer up 

many sites to be attacked (Hawkins and Davies, 2001). A major pathway of protein 

oxidation is the abstraction of a H
+
 by a hydroxyl radical from amino acid residues forming 

carbon-centred radicals (protein carbonyls (PC)). In addition to proton abstraction, radicals 

can add electrons, transfer electrons, and rearrange structures leading to the formation of 

additional radicals. The primary fate of carbon-centred free radicals is to undergo further 

reactions with oxygen leading to the formation of alkyl, peroxyl, and alkoxyl radicals 

(Hawkins and Davies, 2001), which can continue the process of protein oxidation by 

producing more carbon-centred radicals (Stadtman, 2001), which may lead to DNA 
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damage (Morin et al., 1998). Protein oxidation can ultimately lead to loss of protein 

function and thus accumulation of oxidised proteins in human tissue, a phenomenon that 

has been shown to have a linear relationship with age (Stadtman and Berlett, 1997). 

Accumulation of oxidised protein has also been indicated in many disease states including 

atherosclerosis, Alzheimer’s and Parkinson’s diseases, muscular dystrophy, diabetes, and 

rheumatoid arthritis (Dalle-Donne et al., 2003, Stadtman, 2001) with augmented levels in 

diseased populations compared to healthy, un-diseased counterparts (Stadtman and Berlett, 

1997).  

 

The most commonly used method for assessing protein oxidation is to measure plasma PC 

content, using assays based on the methods of Levine et al. (1994). The data on the effects 

of exercise on PC formation is limited and thus the relationship between exercise and PC 

formation is not fully understood. When increases are found, PC values are elevated 

immediately post exercise (Bloomer et al., 2007a), peaking at four hours post exercise 

(Michailidis et al., 2007) and remaining elevated for up to 24 hours post exercise (Bloomer 

et al., 2005, Michailidis et al., 2007). Similar to lipid peroxidation, the literature is 

abundant with investigations utilising short term exercise to evaluate the resulting PC. Of 

the authors who have employed GXT to induce increased PC production one has found an 

increase (Alessio et al., 2000) and one has found no change (Falone et al., 2010). This 

might be due to the training status of the individuals used. While Alessio et al. (2000) the 

utilised untrained participants only, Falone et al. (2010) used both trained and sedentary 

participants. Alessio et al. (2000) found a 67% increase in PC formation after GXT in their 

subjects while Falone et al. (2010) found increases in the untrained subjects only. Other 

authors have used submaximal exercise of 30-60 min to induce changes in PC, with 
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equivocal results. While only one author has noted no change from 30 min of cycling at 

70% VO2max (Bloomer et al., 2005), this same research group found an increase from both 

30 min and 60 min of cycling at 70% VO2max, with greater augmentation resulting from 

longer duration (60 min > 30 min) (Bloomer et al., 2007a). Additionally, PC formation was 

increased up to 32% from 45 min steady state cycling at 70% VO2max followed by a bout to 

exhaustion at 90% VO2max (Michailidis et al., 2007, Nikolaidis et al., 2006). These 

discrepant findings likely result from the differences in training status of the individuals, as 

the individuals in Bloomer et al. (2005) were cross trained compared to the endurance 

(Bloomer et al., 2007a) or untrained (Michailidis et al., 2007, Nikolaidis et al., 2006) 

individuals of the other studies. It may be that cross training, which includes both high 

intensity exercise and endurance training, better prepares these individuals to face the 

oxidative challenge of shorter duration exercise. 

 

Data on prolonged exercise is much the same, with two studies noting significance after 90 

min (Morillas-Ruiz et al., 2005) as well as 60 and 120 min (Bloomer et al., 2007a) in 

trained subjects. After 90 min of cycling exercise at 70% VO2max, Morillas-Ruiz et al. 

(2005) found a 15% increase in PC content. Similarly, Bloomer et al. (2007a) investigated 

the effects of 60 or 120 min of cycling at 70% VO2max finding an increase in PC content 

after both exercise durations, however PC content was augmented to a greater extent as a 

result of the longer duration exercise. To the author’s knowledge, only one study conducted 

in humans has investigated the use of a long duration protocol on PC content, utilising 

trained cyclists competing in a 172 km mountain stage bike ride with a mean finishing time 

of 238 min (Tauler et al., 2006). The authors noted a 40% increase in PC formation as a 

result of the cycling bout.  



21 

 

Aside from short duration protocols, high intensity exercise has been the most explored 

avenue of research with regards to PC formation as a result of exercise. One short, high 

intensity bout of cycling exercise has been used to induce changes in PC post exercise, with 

the authors noting an increase of 111% in plasma PC concentration from a Wingate test 

(Bloomer et al., 2007b). This same study also noted significant increases in PC formation 

(74%) as a result of 15 squat repetitions at 70% of 1RM. Similarly, Bloomer et al. (2005) 

found a significant increase in PC formation as a result of 30 min of continuous squatting at 

70% 1RM. Finally, Alessio et al. (2000) found a 12% increase in PC formation as a result 

of 10-12 min of intermittent maximal voluntary contractions. However, not all studies have 

found increases in PC from high intensity exercise. Bloomer et al. (2006) using resistance 

trained men performing six 10 sec sprints with 3 min resting periods followed, 14 days later 

by 6 ± 1 sets of 40 ± 2 reps of squats, did not find a significant change in PC formation post 

exercise. The authors did note that while not significant, the sprint exercise increased PC 

more than the squatting exercise (Bloomer et al., 2006). 

 

Finally, there appears to be no effect of training programs utilised to increase endurance 

capacity upon the formation of exercise-induced PC. Miyazaki et al. (2001) employed a 12 

week endurance training program consisting of 60 min running at 80% VO2max five days 

per week, while Rahnama et al. (2007) employed a less intensive 20-40 min at 70-75% 

VO2max three days per week for eight weeks. Neither of the studies found any significant 

changes in PC content as a result of the GXT completed before and after training, nor did 

they find any changes in the formation of PC as a result of the training programs. 
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2.1.4. DNA Damage 

It has been assumed that the most biologically significant target of oxidative damage is 

DNA (Halliwell, 2000) . It is estimated that for every 10
12

 oxygen molecules entering a cell 

in a day, 1 in 200 damages DNA (Aust and Eveleigh, 1999). Estimates suggest an average 

of at least a few hundred oxidative DNA lesions occur in each cell per day (Niess, 2005). 

Oxidation of DNA can result in damage to all four bases (guanine, thymine, adenine, and 

cytosine) as well as the sugar deoxyribose (Aust and Eveleigh, 1999) and is often measured 

through the formation of strand breaks or chromosomal alterations (Halliwell and Aruoma, 

1991). DNA damage by oxidative stress does not involve direct attack of O2 or H2O2 upon 

the DNA (Halliwell and Aruoma, 1991); however DNA can be attacked directly by other 

ROS, primarily the hydroxyl radical and peroxynitrite. Reactions of the hydroxyl radical 

with DNA leads to a wide variety of damage to all four bases as well as deoxyribose with 

the latter leading to the formation of carbon-centred radicals that can undergo further 

oxidation (Aust and Eveleigh, 1999). Peroxynitrite preferentially reacts with guanine 

resulting in the formation of 8-hydroxydeoxyguanosine (8OHdG) which can undergo 

secondary oxidation by peroxynitrite (Aust and Eveleigh, 1999). DNA damage by 

oxidation is considered a potential pathophysiological factor in the development of cancer 

(Niess, 2005, Valko et al., 2004) although no direct link between the detection of oxidative 

DNA damage and cancer exists to date (Aust and Eveleigh, 1999). 

 

DNA damage is most often assessed by measuring oxidised DNA by-products, generally 

with gas chromatography or mass spectroscopy. These methods require hydrolysis of the 

samples before analysis, which has been criticised because it may lead to artifactual 

increases in the oxidation products (Aust and Eveleigh, 1999). Additionally, samples can 
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be analysed using HPLC technique, although this method also utilises hydrolysis prior to 

sample analysis. Another draw-back of using HPLC is that only quantification of damage 

and not identification of where the damage is located in the sample is possible (Aust and 

Eveleigh, 1999). Measurement of 8OHdG and similar by-products via enzyme linked 

immunosorbent assay in urine and plasma/serum is also frequently utilised to quantify 

DNA oxidation, however it has been suggested that this method is only semiquantitative 

(Dizdaroglu et al., 2002). Finally, measurement via single gel electrophoresis (the COMET 

assay) may provide a more comprehensive picture of oxidative damage because it can 

measure both damage and repair (Collins et al., 1997). A variety of modes and intensities 

have been used to analysed DNA oxidation as a result of exercise, however the data are 

limited and equivocal, therefore conclusions about exercise and DNA oxidation are 

difficult to make. 

 

Short term protocols, utilising trained and untrained subjects completing GXT, both cycling 

and running, have shown no significant increases in DNA damage measured via the 

COMET assay (Niess et al., 1996) or in urine measured by enzyme linked immunosorbent 

assay (Sumida et al., 1997). Additionally, a 30 min bout of cycling exercise at 70% VO2max 

in cross trained subjects did not result in a significant increase in DNA damage in serum 

(Bloomer et al., 2005). However, one study employing a 60 min cycle at 70% VO2max in 

trained subjects did lead to a significant increase in the formation of 8OHdG as measured 

in urine (Orhan et al., 2004). Data from moderate duration exercise are limited and 

equivocal with one study finding a 19% increase in 8OHdG in urine post 90 min of cycling 

at 70% VO2max (Morillas-Ruiz et al., 2005), while another found no changes after a 20 km 

run (Sumida et al., 1997). To the author’s knowledge, only one previous study has 
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investigated the effects of long duration exercise on DNA oxidation (Tsai et al., 2001). The 

authors utilised endurance-trained men to complete a 42 km marathon finding a significant 

rise in 8OHdG in urine immediately post race. Additionally, this elevation in 8OHdG in 

urine was sustained for the subsequent 24, 48, 72 hours through one week after exercise. 

 

Similar to other durations of exercise, the effect of multiple days of exercise on DNA 

oxidation is limited and appears equivocal. Viguie et al. (1993) employed three consecutive 

days of cycling for 90 min at 65% VO2max, which resulted in no significant increases in 

DNA oxidation, and in fact the authors noted a non-significant decline in 8OHdG. Contrary 

to these findings, two other studies using multiple days of exercise have found significant 

increases in DNA oxidation as a result (Almar et al., 2002, Radak et al., 2000). Almar et 

al., (2002) used eight trained cyclists to complete both a four day and three week stage race 

separately, finding significant increases in the formation of 8OHdG in urine after the first 

day of the four day race and after the first week of the three week race period, but no 

significant changes after these. Similarly, Radak et al., (2000) measured urinary 8OHdG in 

five ultra-endurance trained males completing a four day ultramarathon consisting of 93 

km, 120 km, 56 km, and 59 km on days one through four, respectively. The authors noted a 

significant rise in urinary 8OHdG after the completion of day one, but no further increases, 

and in fact found decreases for the remainder of the race with significantly lower values on 

day four than any other exercise day. These results tend to suggest that after the initial bout 

of exercise, the body is able to adapt and manage oxidative stress that would otherwise 

result in DNA damage. 
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Studies employing high intensity protocols to investigate the formation of DNA oxidation 

by-products appear to have similar results regardless of the actual modes of exercise. 

Bloomer et al. (2005) used cross-trained men performing 30 min of continuous squatting 

exercise at 70% 1RM to investigate DNA oxidation. While the values approached 

statistical significance, the authors did not find any significant increases in serum 8-OHdG. 

The same authors then used resistance trained men performing 15 reps of squats at 70% 

1RM and a 30 sec Wingate and were unable to induce any changes in plasma 8OHdG, 

similar to their previous work (Bloomer et al., 2007b). 

 

Few studies have investigated the effects of training on the formation of DNA oxidation 

by-products, but the few that have find similar results. Goto et al. (2003) used a 12 week 

training program consisting of either mild (25% VO2max), moderate (50% VO2max) or high 

intensity (75% VO2max) exercise for 30 min per day, five to seven days per week in 26 

untrained men (split between the three training loads). The authors noted that mild and 

moderate exercise training tended to decrease the production of 8OHdG post exercise and 

that interestingly the high intensity training resulted in a significant increase in plasma 

8OHdG production after the 12 week training program. Okamura et al. (1997) used 10 well 

trained distance runners completing an eight day running camp that consisted of training 

runs of 30 ± 3 km per day for the whole eight days. The authors noted significant increases 

in urinary 8OHdG after the eight days of training compared to a three day control period; 

however they did not find a significant difference in lymphocyte DNA damage from one 

day post compared to pre training camp (Okamura et al., 1997). Finally, Poulsen et al. 

(1996) trained 23 men for 8-11 hours per day, six days per week for 30 days finding a 33% 

increase in urinary 8OHdG compared to pre training values, however 11 of the men were 
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smokers, who had a larger increase compared to the non-smokers likely skewing the data. 

As a whole it appears exercise training can increase the production of DNA damage 

markers if the exercise intensity is high compared to mild or moderate.  

 

Summary 

Taken together, all of the research linking exercise to the production of oxidative stress by-

products appears to indicate that oxidative stress is augmented as a result of exercise, 

although the duration and intensity appears to play a key role. Similarly, the training status 

of the individuals may also be very important in determining the resulting stress. Because 

of the varying protocols, markers measured and methods to do so, further research is 

warranted to identify the underlying cause of the oxidative stress during exercise and to 

establish stronger links between the modes, durations and intensities that may cause the 

oxidative stress. 

 

2.2. Antioxidant Defences 

Rather than measuring the by-products of oxidative stress, some researchers choose to 

measure oxidative stress via quantification of redox balance (antioxidant activity). The 

body utilises both endogenous and exogenous antioxidant systems which quench free 

radicals and defend against oxidative stress and damage. Endogenous antioxidants, such as 

glutathione, catalase, and superoxide dismutase, among others are the body’s in house 

defence systems, while exogenous antioxidants such as vitamins C and E are consumed in 

the diet and utilised by the body. Because this thesis employs the measurement of the 

glutathione system, this will be discussed in detail below; however the neutralisation of 



27 

radicals by the other antioxidant defences such as catalase, superoxide dismutase, and 

vitamins C and E are highly important and reviewed extensively elsewhere (Herrera and 

Barbas, 2001, Mates et al., 1999, Peake, 2003). 

 

2.2.1. Glutathione 

The foremost endogenous non-enzymatic antioxidant in the body is the glutathione system. 

Glutathione provides the cell with multiple lines of defence against cellular insult by 

scavenging for free radicals (particularly the hydroxyl radical, for which there is no known 

enzymatic defence (Bains and Shaw, 1997)) and reducing many of the damaging by-

products of oxidative stress (Maher, 2005). During normal resting conditions glutathione is 

found in the reduced (GSH) state, the majority of which is found in the cytoplasm of the 

cell where it is synthesised (Maher, 2005). Additional pools of GSH can be found in the 

nuclei and the mitochondria, however the concentration of these pools are independent of 

that in the cytoplasm (Maher, 2005). 

 

GSH is bio-synthesised from glutamate, cysteine, and glycine (Maher, 2005) (see Figure 

2.2). Oxidised glutathione (GSSG) is formed by the reduction of H2O2 at the expense of 

GSH which is catalysed by glutathione peroxidase (GPx). GSSG can be reduced by 

glutathione reductase (GR) back to GSH where it is free to aid in further cellular protection 

(Maher, 2005).The distribution of glutathione enzymes throughout the body is not uniform, 

with greater concentrations of GPx found in the brain compared to other tissues such as the 

liver and heart (Maher, 2005). Because of this discovery, much current research has 

focused on linking GSH depletion to aging (Jones et al., 2002), ischaemia/stroke injury 

(Arthur et al., 2004) and Parkinson’s (Halliwell, 2001).  
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Figure 2.2. Glutathione (GSH) recycling reaction. GSH is bio-synthesised from glutamate, 

cysteine, and glycine. Oxidised glutathione (GSSG) is formed from the reduction of H2O2 

at the expense of GSH which is catalysed by glutathione peroxidase (GPx). GSSG is 

reduced by glutathione reductase (GR) back to GSH where it is free to aid in further 

cellular protection. 

 

Glutathione can be measured in blood as well as tissue. While blood measurements of 

glutathione are usually made in the plasma, the concentration of GSH and GSSG in plasma 

is negligible (0.5%) compared to the concentration in erythrocytes (99.5%) (Gohil et al., 

1988, Serru et al., 2001). Changes in blood glutathione are mostly reported as decreases in 

GSH and increases in GSSG, with no change in TGSH (Sen, 1999). Increases in TGSH 

have rarely been reported post exercise, as with Sen et al. (1994), who found increases in 

TGSH post 30 min of cycle ergometry at 70% VO2max but not during 30 min of cycling at 

50% VO2max. The authors concluded that increases in TGSH may be due to efflux of GSSG 

from other tissues besides the blood. Increases in TGSH could also be due to training 

status, as individuals with higher training status may be better conditioned to maintain 
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adequate GSH levels during exercise (Leeuwenburgh et al., 1997). Tissue (skeletal muscle, 

myocardium and liver) measurements of glutathione are usually measured in rats, where 

most researchers have found a decrease in glutathione in skeletal muscle (Duarte et al., 

1993), myocardium (Sen et al., 1994a), and liver (Sen et al., 1994a) post exercise, likely 

due to increase in superoxide production (Duarte et al., 1993). Typical resting 

concentration of GSH and GSSG are ~500 µmol/l and ~70 µmol/l in the whole blood, 

respectively (Serru et al., 2001), while TGSH concentration is typically 3.5 µM/g Hb in red 

blood cells (Matsubara and Machado, 1991). Resting GSH concentrations tend to decrease 

with age (Matsubara and Machado, 1991, Serru et al., 2001), with less of a decline in aging 

and exercise in females compared to males (Ilhan et al., 2004, Wang et al., 2003). 

 

Glutathione deficiency has been linked with many disease states including Alzheimer’s and 

Parkinson’s diseases (Vina et al., 2004, Sian et al., 1994), cancer (Balendiran et al., 2004), 

cardiovascular disease (Emdin et al., 2005), and both type I and type II diabetes (Yoshida et 

al., 1995) amongst others. The underlying aetiology of glutathione deficiency has been 

linked in many cases to genetic malfunctions (Dahl et al., 1997); however deficiency can 

also result from lifestyle choices (Leeuwenburgh and Ji, 1995, Liu et al., 1996, Madrigal et 

al., 2001). While genetic GSH deficiency is irreversible, models of GSH depletion via 

immobilisation have been utilised in rats to investigate the implications during exercise. 

Leeuwenburg and Ji (1995) demonstrated that GSH deficiency was associated with 

decreased GPx activity, which further inhibits the body’s ability to recycle GSH. Similarly, 

Sen, Atalay, and Hanninen (1994) induced glutathione deficiency in rats, ~50% in blood, 

liver and lung and 80-90% in skeletal muscle in heart, to test the effects on endurance 

exercise. Time to exhaustion was decreased by 50% in the glutathione deficient compared 
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to non-deficient rats. The authors concluded that GSSG levels at rest are a strong predictor 

of post-exercise levels, whereby individuals with a favourable glutathione status at rest 

maintained a more favourable redox status following exercise-induced oxidative stress. In 

contrast to these findings, a recent bed rest study in humans indicated a trend for 

glutathione synthesis rates to increase as a result of 35 days of bed rest (Agostini et al., 

2010); however because of the limited human data on glutathione depletion, further 

research is needed to make conclusions about the impact of sedentary 

lifestyle/immobilisation on glutathione levels in humans. 

 

Endurance exercise training has been shown to improve glutathione protection against 

oxidative stress in rats (Kihlstrom, 1990, Leeuwenburgh et al., 1997) and humans (Douris 

et al., 2009, Elokda and Nielsen, 2007). Kihlstrom et al. (1990) showed endurance swim 

training on rats provided enhanced protection of the heart by way of elevated GSH levels 

and a more efficient NADPH supply system to the heart. Likewise, Leeuwenburgh et al. 

(1997) trained rats by running for two hours per day, five days per week, for 10 weeks. The 

authors found a substantial (62%) increase in GPx activity and increased GSH in the 

skeletal muscle, with no changes in blood GSH levels. In humans, the data on the effects of 

training on the glutathione system in humans is very limited. Two studies have shown 

enhanced glutathione protection as a result of superior aerobic fitness (Douris et al., 2009, 

Ortenblad et al., 1997) while others have shown directly the  effects of training on the 

glutathione system (Elokda and Nielsen, 2007, Miyazaki et al., 2001). Elokda and Nielsen 

(2007) mimicked cardiac rehabilitation exercise (40 min/day three days/week for six 

weeks) consisting of aerobic training, circuit weight training, or a combination of both. The 

authors found that training increased resting levels of GSH and decreased resting levels of 
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GSSG and the effects were greater in the combination of aerobic and circuit weight training 

compared to the exercises alone. Similarly, 12 weeks of running for 60 min at 80% VO2max 

five days per week increased GPx activity by 12% (Miyazaki et al., 2001). Assessing 

individuals of varying fitness levels, Douris et al. (2009) found individuals who practiced 

martial arts for one hour per day twice a week for at least four years had increased resting 

GSH and decreased resting GSSG while being better able to respond to an acute bout of 

oxidative stress compared to their sedentary counterparts. Finally Ortenblad et al. (1997) 

found increased GPx activity in the resting muscle of jump trained athletes compared to 

untrained subjects. These results seem to suggest that exercise training of varying 

intensities and modes can increase the efficiency and function of the glutathione system, 

likely leading to a decrease in exercise-induced oxidative stress and potential for disease 

development. 

 

2.3. Oxidative Stress and Heat Shock Proteins 

While heat shock proteins (HSP) are traditionally viewed as proteins which are 

ubiquitously expressed during times of stress such as during exercise, exposure to extreme 

environmental temperatures, or sickness and disease, recent work has indicated that HSP 

are intrinsically linked with oxidative stress (Kalmar and Greensmith, 2009), thus the 

author decided to measure HSP concentration in the studies described in this thesis. While 

there are numerous families of HSP, of particular interest to this thesis are the 70 

kiloDalton (HSP70) and 30 kiloDalton (HSP30) families, thus only these will be discussed 

with regard to their induction and function during prolonged exercise similar in nature to 

that of the studies in this thesis. While not directly relevant to this thesis, other families of 
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HSP have been linked with the oxidative stress response and are thoroughly reviewed 

elsewhere (Morton et al., 2009). 

 

2.3.1. HSP70 

The inducible isoform of the HSP70 family, HSP72, is expressed at low levels during non-

stress situations (Locke et al., 1991) and acts to facilitate proper protein folding (Beckmann 

et al., 1990), as well as saving cells from activated death pathways (Moseley, 1997). 

During times of stress, HSP72 manages denatured proteins, provides cytoskeleton 

stabilisation (Moseley, 1997), and eradicates damaged proteins (Kalmar and Greensmith, 

2009). Long-term protection is provided by HSP72 to vital tissues by way of both increased 

thermotolerance (Landry et al., 1982) and heat acclimation (Sandstrom et al., 2008).  

 

Traditionally, HSP’s were thought to only be induced by heat shock. Early research 

focused on the passive induction of HSP in the fruit fly (Ritossa, 1962, Tissieres et al., 

1974) while more recently only two investigations have focused on induction of HSP72 via 

passive hyperthermia in human skeletal muscle (Morton et al., 2007) and peripheral blood 

mononuclear cells (PBMC’s) (Lovell et al., 2007). Through 90 min of in vitro heat shock of 

PBMC’s at 37-41˚C, Lovell et al. (2007) were able to show that the concentration of 

HSP72 between temperatures was not different, however the induction of HSP72 appeared 

to be temperature-dependent. Heat shock of 37-39˚C resulted in the greatest induction 4 

hours post, while heat shock of 40-41˚C resulted in an immediate increase. This may 

indicate more of an immediate protective response earlier in the recovery period from a 

higher temperature of insult (Lovell et al., 2007). Furthermore, the resulting expression of 

heat shock at 37˚C may indicate a lower threshold for HSP induction than previously 



33 

thought (Lovell et al., 2007). Also in 2007, Morton et al. investigated the use of passive 

heating similar to exercise and rationalised that because exercise can result in hyperthermia 

and increased HSP72 expression (Febbraio and Koukoulas, 2000, Kim et al., 2004, Morton 

et al., 2006), passive heating to similar levels should also induce HSP72 expression. 

Subjects were passively heated for 60 min in a tank of water at 45˚C resulting in an 

increase of 3.6˚C in muscle and 1.5˚C in core temperature, respectively. Although these 

values were nearly identical to those found during exercise in their previous study (Morton 

et al., 2006), the authors did not find any significant changes in HSP72 expression in the 

skeletal muscle, suggesting that the elevated Tc and muscle temperatures during exercise 

are not the sole stressors responsible for induction of HSP72 expression. 

 

Expansion on the traditional view of HSP being induced only by heat shock has led to 

copious amounts of research into other potent stressors, such as exercise and oxidative 

stress (see Figure 2.3). Many investigations employ exercise modes involving near 

maximal or electrically-stimulated muscle contractions and downhill treadmill running that 

result in augmented HSP72 expression (Paulsen et al., 2007, Shima et al., 2008), likely due 

to their ability to induce muscle damage and an inflammatory response (Peake et al., 2005). 

Less strenuous and likely non-damaging exercise modalities have also been employed, 

resulting in equivocal findings (Febbraio and Koukoulas, 2000, Febbraio et al., 2002, 

Fehrenbach et al., 2000a, Fehrenbach et al., 2005, Fehrenbach et al., 2000b, Watkins et al., 

2007). 
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Figure 2.3. Relationship between oxidative stress and heat shock protein (HSP) expression. 

Glutathione (GSH) depletion results in the expression of HSP32 and 27 with HSP32 

resulting in the production of antioxidants (see Figure 2.4 for more detail) while HSP27 

aids in the maintenance of the cellular GSH pool. Oxidative stress and protein misfolding 

and denaturation result in HSP70 expression which plays a critical role in cell survival by 

refolding or degradation of damaged proteins, prevention of apoptic cell death and 

production of nitric oxide (NO) which provides anti-inflammatory protection. Adapted 

from Kalmar and Greensmith (2009). 

 

While cycling to exhaustion (~190 min) at 63% of VO2peak lead to an increase in HSP72 

mRNA (Febbraio and Koukoulas, 2000) and 4-5hours of cycling at 40% Wmax resulted in a 

200% increase in muscle HSP72 protein and mRNA (Febbraio et al., 2002) in 

normothermic environments, other authors have failed to find significant changes in HSP72 

from 60 min of cycling at 75% VO2max in either a normo-or hyperthermic environment 

(Watkins et al., 2007). These equivocal findings likely resulted from the differences in 

duration. Indeed, HSP72 expression has been shown to be both duration and intensity 

dependent (Fehrenbach et al., 2005). Fehrenbach et al. (2005) compared four exercise 

modalities on the induction of HSP72 expression and found that marathon running (260 + 

39 min at 65% VO2max) led to the greatest HSP72 concentration when compared to a long 

run (120 min at 60% VO2max), interval training (10 x 1000 m at 88% VO2max), and 
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continuous running (60 min at 75% VO2max). The authors (Fehrenbach et al., 2005) also 

investigated two differing intensities of running, 60% VO2max vs. 80% VO2max. Exercise 

times for both runs were identical to each other (23.7 ± 7 min); however the HSP72 

expression was greater during the 80% VO2max intensity. 

 

Additionally, the training status and gender of subjects must be taken into account when 

comparing HSP72 expression. Morton et al. (2008) demonstrated elevated HSP72 in the 

skeletal muscle of trained vs. untrained subjects whilst Fehrenbach et al. (2000) showed 

lower HSP72 levels in monocytes of trained subjects. These differences may lie in the 

different tissues studied (muscle vs. blood) and the fact that these have yet to be correlated. 

The benefit to a higher training status is the heightened HSP72 response to stressors 

(Fehrenbach et al., 2000a, Fehrenbach et al., 2000b, Magalhaes et al., 2010) and possibly 

increased protection and/or survivability of muscle cells (Yamada et al., 2008). 

 

2.3.2. Heme Oxygenase (HSP32) 

Heme oxygenase or HSP32 exists in two isoforms (HO-1), which is highly inducible, and 

HO-2 which is constitutively expressed (Gozzelino et al., 2010). HO-1 functions to degrade 

free heme, which is toxic to cells because of its participation in the Fenton reaction, to 

carbon monoxide, biliverdin, and ferritin (Soares and Bach, 2009). Biliverdin is then 

converted to the cytoprotective antioxidant bilirubin (Clark et al., 2000) (see Figure 2.4). 

This process allows for prevention of programmed cell death (Seixas et al., 2009) as well as 

providing cytoprotection against a variety of diseases and reestablishment of homeostasis 

after insult (Soares and Bach, 2009). 
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Figure 2.4. The elimination of free haeme by heme oxygenase-1 (HO-1 or HSP32) 

produces biliverdin, carbon monoxide (CO) and iron (Fe). Biliverdin is converted by 

biliverdin reductase to the antioxidant bilirubin while Fe is stored by ferritin H chain (FtH). 

All three products of free haeme catabolism are cytoprotective. Adapted from Gozzelino et 

al. (2010). 

 

HO-1 is commonly referred to as HSP32 because of its supposed induction by heat shock, 

though few human studies indicate a direct link between heat shock alone and HSP32 

expression (Nakabe et al., 2007). In fact, HSP32 expression has been shown to decrease 

following heat shock (Grasso et al., 2003). Exercise is known to be a potent inducer of 

HSP32 (Fehrenbach et al., 2003a, Niess et al., 1999, Thompson et al., 2005) and this 

appears to be duration dependent (Fehrenbach et al., 2003a). Fehrenbach et al. (2003) 

employed three different exercise modalities to induce an increase in HSP32 concentration: 

a continuous run to exhaustion at 110% LT, a half marathon (90.3 + 12.8 min at ~105% 

LT), and 6 sets of 10 repetitions of eccentric quadriceps contractions. The authors found the 

half marathon resulted in the greatest increase in HSP32 expression compared to 

continuous running and eccentric exercise, which had very little to no change in HSP32 

expression. Similar results were found from Niess et al. (1999) and Thompson et al. (2005). 

In Niess et al. (1999) nine endurance trained men completed a half marathon run. The 
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authors found a significant increase in HSP concentration in monocytes and lymphocytes 

three hours after the run and noted that trained individuals express lower basal levels of 

HSP32 compared to their untrained counterparts (Niess et al., 1999). Similar results can be 

seen from Thompson et al. (2005) whose participants completed a 75 min run at 75% 

VO2max to induce HSP32 expression. The authors found a 2-fold increase in HSP32 mRNA 

expression and protein in lymphocytes two hours post exercise, confirming the results of 

Niess et al. (1999). Little else is known about the effects of exercise on HSP32 induction. 

However, Markovitch, Tyrrell and Thompson (2007) showed that a prior bout of 

intermittent exercise (60 min at 65-100% VO2max) followed by an ex-vivo challenge of 

H2O2 caused a reduced upregulation of HSP32. This result could be indicative of post-

exercise immuno-suppression or positive adaptive changes as a result of the prior exercise 

bout (Markovitch et al., 2007). 

 

2.4. Physiological Effects of Exercise in Hyperthermic Environments 

As previously discussed above, oxidative stress is believed to be augmented by 

hyperthermic environments, both passively and during exercise. This is likely due to an 

increase in metabolic rate resulting in augmented ROS production. Additionally, reductions 

in the efficacy of antioxidant defences as a result of heat stress may play a role (Ozturk and 

Gumuslu, 2004). Most importantly, hyperthermic exercise can result in dehydration, which 

has been indicated in augmenting oxidative stress (Paik et al., 2009). Therefore it is 

necessary to explore some of the physiological changes that occur during prolonged 

exercise in hyperthermic environments that may lead to these perturbations. 
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Prolonged exercise in normothermic environments can lead to mild hyperthermia with 

increased heart rate (HR), core temperature (Tc) and skin temperature (Ts) (Nassis and 

Geladas, 2002). This is exacerbated in hyperthermic environments when thermoregulation 

is impaired (Ely et al., 2010, Tatterson et al., 2000). Increased HR during hyperthermic 

exercise is widely believed to result from augmented sweat rates and blood volume 

redistribution which can decrease plasma and blood volume (Montain and Coyle, 1992). 

These changes can result in decrements in stroke volume, whereby HR must be increased 

in an effort to maintain cardiac output (Gonzalez-Alonso et al., 1997, Gonzalez-Alonso et 

al., 2000). While HR is often higher during exercise in hyperthermic compared to 

normothermic environments (Nybo et al., 2001, Tucker et al., 2006), this appears to be 

dependent on hydration status as there are often no differences in HR between these two 

environments when dehydration is not a factor (Altareki et al., 2009, Buono and Wall, 

2000, Ely et al., 2010, Tatterson et al., 2000, Wimer et al., 1997). 

 

Contrary to this, Tc and Ts are often augmented as a result of exercise in hyperthermic 

environments independent of hydration status (Altareki et al., 2009, Ely et al., 2010, Nybo 

et al., 2001), although others have noted no significant differences between the two 

environments (Buono and Wall, 2000, Tatterson et al., 2000). It is important to note that the 

methodology of many investigations conducted in hyperthermic environments manipulate 

the hydration status of their participants and because dehydration has been shown to 

increase Tc in a linear fashion (Montain and Coyle, 1992), the results of these 

investigations may be confounded, and will be addressed in the next section. 
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2.4.1. Dehydration and Thermoregulation 

The impairment of thermoregulation during exercise in hyperthermic environments often 

results from lack of adequate fluid intake, and thus dehydration. Dehydration during 

endurance exercise causes a cascade of cardiovascular strain-inducing events 

(cardiovascular drift), which begins with dehydration and a loss of body water from the 

extracellular fluid. This loss in body water causes a decrease in plasma volume (PV) which 

in turn results in a decrease in total blood volume. In order to compensate for this loss in 

blood volume and to maintain adequate blood flow to the exercising muscles, HR is 

increased (Nadel et al., 1980). This increase in HR without a concomitant increase in blood 

volume results in a decrease in stroke volume, which will ultimately result in a decline in 

cardiac output  if increased HR does not augment venous return (Gonzalez-Alonso et al., 

2000). The decrease in blood volume due to dehydration also inhibits the body’s natural 

heat dissipation ability by decreasing sweat rate in an effort to conserve body water, which 

in turn causes Tc to steadily climb until fatigue occurs (Gonzalez-Alonso et al., 2008). 

 

Hypohydration and dehydration have been shown to cause an increase in Tc during 

exercise in both normothermic (Armstrong et al., 2006) and hypertherthermic environments 

(Barr et al., 1991, Buono and Wall, 2000, Gonzalez-Alonso et al., 1997, Ishijima et al., 

2009, Montain and Coyle, 1992). This Tc increase has been shown to rise in a linear 

fashion with increasing amounts of dehydration (Montain and Coyle, 1992, Sawka et al., 

1985) and if not corrected, this increase in Tc will continue until fatigue. The magnitude of 

Tc elevation ranges from 0.1˚C to .25˚C for every percent of body mass lost (Montain and 

Coyle, 1992, Sawka et al., 1985), augmenting the thermal strain on the exercising body, 

which also follows a linear pattern (Sawka et al., 1985). Heat acclimation is generally 
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believed to decrease the occurrence of cardiovascular strain, however even heat-acclimated 

subjects have demonstrated a linear relationship between dehydration and Tc that will lead 

to fatigue (Sawka et al. 1983, Sawka, et al. 1985). While the leading theory details that Tc 

is affected mostly by levels of dehydration, the research groups of Dr. Noakes are highly 

critical of this concept, citing results of multiple marathon races where the winning athletes 

rarely consume fluid matching sweat losses (becoming dehydrated), yet these individuals 

finish races with the fastest times and high Tc. The authors also conclude those at greatest 

risk for heat injury are individuals who maintain high metabolic rates during exercise, when 

maintaining optimum hydration may not even help (Noakes et al., 1991).  

 

Additionally, while contemporary research indicates there is a critical level of Tc that 

determines when fatigue will occur during exercise, a study by Pugh et al. (1967) seems to 

contest this. Tc taken post race on 47 runners completing a marathon shows that attainment 

of a Tc of > 40˚C does not necessarily cause fatigue. Seven of the finishing runners had Tc 

> 40˚C while all of those who did not complete the course had Tc < 40˚C. This indicates 

that athletes who were overcome by fatigue had lower Tc than those who finished the race. 

Unfortunately, this appears to be one of the only studies to report Tc > 40˚C, most likely 

due to the limits set by many human subject review boards and ethics committees.  

 

In uncompensable heat stress, when thermoregulation is not possible, increasing levels of 

dehydration and Tc leads to the attainment of a critically high Tc and ultimately fatigue. 

Nielsen et al. (1993) concluded that core temperature per se, rather than circulatory failure, 

is the limiting factor during endurance exercise in hyperthermic environments. Many 

authors suggest there is a critical level for Tc and that once this level is attained individuals 



41 

will fatigue (Cheung and McLellan, 1998, Gonzalez-Alonso et al., 1999b, Nielsen et al., 

1993). Gonzalez-Alonso et al. (1999b) concluded that trained individuals in laboratory tests 

seem to fatigue at a relatively consistent Tc of 40
˚
C despite differing Tc pre-exercise, while 

in untrained individuals the Tc at exhaustion ranges from 38-40
˚
C. The differences between 

trained and untrained individuals can be attributed to the difference in their fitness levels, 

as individuals who are more highly trained have higher sweat rates and heat dissipation 

ability (Nadel et al., 1974, Shvartz et al., 1974) as well as lower resting Tc and higher Tc 

temperature tolerated at fatigue (McLellan, 2001, Mora-Rodriguez et al., 2010). 

 

Maintenance of sweating during hyperthermic exercise is critical to maintenance of Tc. 

Strenuous exercise in hot climates increases the body’s dependence on evaporative cooling 

which can lead to large volumes of body water lost through sweating (Sawka et al., 2001). 

In order to naturally dissipate heat from the body during exercise, skin blood flow and 

sweat rate must increase (Montain and Coyle, 1992). Several authors have found that sweat 

rates are reduced when body water losses are not prevented with fluid ingestion (Buono and 

Wall, 2000, Sawka et al., 1983, Sawka et al., 1985), while sweat rates are maintained when 

fluid is consumed (Hamilton et al., 1991). Similarly, skin blood flow is decreased (Buono 

and Wall, 2000, Sawka et al., 1985) while skin temperature is augmented (Gonzalez-

Alonso et al., 1999a, Kavouras et al., 2006, Marino et al., 2004) during dehydration. 

However the relationship between dehydration, sweat rates, skin blood flow and skin 

temperature is not well understood. In an effort to better understand this relationship, 

Montain and Coyle (1992) studied 7 trained cyclists completing 2 hours of cycling at 65% 

VO2max while receiving no fluids, drinking 80% of fluid loss (Gatorade), or receiving a 

plasma volume expanding solution (dextran) intravenously. The authors found an increase 
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in skin blood flow from fluid replacement, but not from increased plasma volume 

demonstrating that fluid ingestion attenuates hyperthermia by increasing skin blood flow 

and sweat rates thus preserving heat transfer from the core to the periphery during exercise. 

 

2.4.2. The Impact of Dehydration and Hyperthermia on Exercise Performance 

While the effects of dehydration and hyperthermia on the thermoregulatory system are 

undeniable, the effect they have on exercise performance is more contentious. While 

hyperthermia alone has been shown to degrade aerobic exercise performance (Abbiss et al., 

2010, Altareki et al., 2009, Ely et al., 2010, Tatterson et al., 2000, Tucker et al., 2006), 

there appears to be no effect of hyperthermia alone on high intensity exercise performance, 

although the data is limited (Cheuvront et al., 2006). Investigations on hyperthermia in 

tandem with dehydration, however, are less equivocal and indicate these two phenomena 

serve to heavily degrade exercise performance (Ebert et al., 2007, Ganio et al., 2006, 

Kavouras et al., 2006, Nybo et al., 2001). 

 

The investigations into hyperthermia and exercise performance have utilised time trial 

protocols of varying lengths and times, ranging from 4 km and 390 sec (Altareki et al., 

2009) to 100 km and 181 min (Abbiss et al., 2010). It appears that duration of protocol does 

not influence performance as Altareki et al. (2009) showed PO and time to completion 

were diminished in the heat compared to cool conditions (35˚C vs. 13˚C, respectively) for a 

4 km TT, while using a much longer protocol of 100 km resulted in similar decreases in PO 

and time to completion in the heat compared to cool conditions (34˚C vs. 11˚C, 

respectively) for Abbiss et al. (2010). Varying times have also resulted in performance 

decrements with 15 (Ely et al., 2010), 30 (Tatterson et al., 2000) and approximately 50 min 
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(Tucker et al., 2006) resulting in a mean decrement of 17% in total work performed, a 

decrease of 6.5% in PO and a decline of 2.4 W/min, respectively.  

 

From these investigations it is clear that hyperthermia alone results in serious performance 

decrements without the addition of dehydration. From further research we can see that 

superimposition of dehydration during hyperthermic exercise results in a 72% decrease in 

time to exhaustion following dehydration without rehydrating (Kavouras et al., 2006), a 

70% decrease in time to exhaustion in after pre-warming (Marino et al., 2004) and a 50% 

decline in GXT performance after dehydration/rehydration (Nybo et al., 2001). 

Additionally, Ebert et al. (2007), in an effort to determine if dehydration could provide a 

performance advantage, rationalised that a decline in weight (i.e. dehydration) would aid 

cyclists in performing uphill cycling trials. Subjects completed 2 hours of cycling at 53% 

maximum aerobic power followed by a hill climb at 88% maximum aerobic power 

simulated by an 8% incline on a treadmill. While subjects did indeed lose body mass (1.9 

kg), this resulted in a decrease in power, which equated to a 29% decline in performance, 

leading the authors to conclude that dehydration does not aid in simulated hill climb 

performance, but degrades performance as previously found. 

 

The common denominator in the majority of these studies is a significant augmentation in 

heat storage (HS) during the hyperthermic trials, which likely led to anticipatory reductions 

in power output in order to pace appropriately and maintain thermoregulatory homeostasis 

(Abbiss et al., 2010, Tucker et al., 2004). While the literature concerning dehydration and 

hyperthermia is vast and equivocal, many believe and conclude that both are detrimental to 
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performance; however more research, particularly more applicable to sporting performance 

is required to better understand the paradigm. 

 

2.5. Glycerol Ingestion and Prevention of Hyperthermia and Dehydration 

Because of the impairments to thermoregulation and exercise performance that dehydration 

causes, many researchers have utilised substances such as glycerol as the most common 

intervention for increasing/maintaining cellular water content. Glycerol is a naturally 

occurring alcohol that is used clinically to treat oedema (Frank et al., 1981), but is also used 

as a hyperhydrating agent because of its ability to create an osmotic gradient (Nelson and 

Robergs, 2007). Roughly 80% of glycerol is metabolised to glycerol 3-phosphate in the 

liver with the remainder occurring in the kidneys (Frank et al., 1981). Approximately 70% 

of glycerol 3-phosphate is oxidised to form dihydroxyacetone phosphate, which can be 

readily converted into glyceraldehyde 3-phosphate which can proceed through glycolysis or 

gluconeogenesis (Stryer, 1995). The remaining ~30% can combine with free fatty acids to 

form triglycerides (Robergs and Roberts, 1997) (Figure 2.5). 
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Figure 2.5. The metabolism of glycerol. Glycerol is metabolised to glycerol 3-phosphate 

by glycerol kinase to form glycerol 3-phosphate. Glycerol 3-phosphate is then oxidised by 

glycerol 3-phosphate dehydrogenase to form dihydroxyacetone phosphate, which can be 

readily converted into glyceraldehyde 3-phosphate (G3P) by triosphosphate isomerase. 

G3P can then proceed through glycolysis or gluconeogenesis. The remaining glycerol 3-

phosphate can combine with free fatty acids (FFA) to form triglycerides. 

 

Following ingestion, glycerol is rapidly absorbed via passive diffusion primarily in the 

intestines and is evenly distributed among the intra- and extracellular compartments (Lin, 

1977). Glycerol is then absorbed intracellularly in the tubules of the kidneys (Warburton et 

al., 2000), creating an osmotic gradient whereby additional consumption of water will 

result in greater total body water, thus creating a hyperhydrated state (Nelson and Robergs, 

2007). Normal plasma glycerol concentration is approximately 0.05-0.1 mmol/l (Lin, 

1977), while post ingestion glycerol levels in the blood can increase up to ~16 mmol/l 

(Montner et al., 1996) . As the level of glycerol in the blood increases glycerol will begin to 

appear in the urine (Kruhoffer and Nissen, 1963). In order to maintain hyperhydration, 

glycerol and additional fluid must be continually ingested; failure to continue this regimen 

will result in a decrease in plasma glycerol concentration as a result of metabolism (Bortz 

et al., 1972) and urinary excretion (Nelson et al., 2010) leading to diminished ability to 

maintain hyperhydration. 
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Unfortunately, the literature is lacking data on the optimal dosage and ingestion period for 

glycerol hyperhydration. According to Nelson and Robergs (2007), the most commonly 

used glycerol dosage is 1.0 g/kg BM with ~21.4 ml/kg of additional fluid, typically water. 

However, the dosage of glycerol ranges from 0.5 g/kg to 1.5 g/kg (Goulet et al., 2006, 

Hitchins et al., 1999, Riedesel et al., 1987) with additional water ingestion of 20 ml/kg to 

26 ml/kg (Anderson et al., 2001, Goulet et al., 2006, Hitchins et al., 1999, Latzka et al., 

1997, Magal et al., 2003, Marino et al., 2003, Riedesel et al., 1987). While glycerol dosage 

is typically prescribed based on kg of body weight, some researchers choose to prescribe 

dosages based on amounts of lean body mass or total body water. Additionally, ingestion 

time periods have varied as much as the actual dose of glycerol, with exercise beginning 

anywhere from 30 – 210 min after ingestion (Coutts et al., 2002, Goulet et al., 2006, Goulet 

et al., 2008, Latzka et al., 1997, Marino et al., 2003, Riedesel et al., 1987, Wingo et al., 

2004). 

 

The primary aim of the majority of glycerol research is focused on its hyperhydration 

properties. The use of glycerol and water beverages prior to prolonged exercise, often in 

hot environments, in an effort to increase and maintain total body water through exercise 

has been highly investigated. Additionally, research has focused on the thermoregulatory 

and cardiovascular advantages provided by pre-exercise glycerol hyperhydration.  

 

Pre-exercise Glycerol Hyperhydration 

The rationale behind employing pre-exercise glycerol hyperhydration is to increase PV 

(Warburton et al., 2000). In doing so, blood volume and venous return (Watt et al., 2000) 

will be preserved, which might provide positive cardiovascular changes and aid in 
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thermoregulation (Nelson and Robergs, 2007). However, results of pre-exercise glycerol 

hyperhydration research investigating changes in fluid retention, thermoregulatory and 

cardiovascular changes have been equivocal. 

 

It is quite clear that glycerol hyperhydration results in increased body mass (Goulet et al., 

2008, Magal et al., 2003, Montner et al., 1999) and commonly decreases urine output 

(Anderson et al., 2001, Goulet et al., 2006, Hitchins et al., 1999, Lyons et al., 1990, Marino 

et al., 2003, Montner et al., 1999, Wingo et al., 2004) compared to placebo; however these 

alterations do not always translate to positive changes in renal and blood parameters.  

Doses of glycerol varying between 1.0-1.2 g/kg in 20-26 ml/kg of water have led to 

significant increases in body weight and decreases in urine output. While urine output 

decreases, increased fluid retention rates have only been seen in a few studies from glycerol 

loads of 1.0-1.2 g/kg increasing fluid retention between 500-1000 ml (Coutts et al., 2002, 

Freund et al., 1995, Montner et al., 1999, Riedesel et al., 1987) leading to 6-7% increases in 

PV (Coutts et al., 2002, Freund et al., 1995, Hitchins et al., 1999); however others have 

presented no changes in fluid retention rates or PV changes (Latzka et al., 1997) from pre-

exercise glycerol hyperhydration. It has been suggested that non-significant findings with 

regard to fluid retention and glycerol hyperhydration likely result from an insufficient fluid 

intake or hydration period prior to exercise (Nelson and Robergs, 2007). 

 

One of the main objectives in manipulating pre-exercise hydration values for researchers is 

to provide positive cardiovascular changes during exercise. While few authors have noted 

pre-exercise glycerol hyperhydration decreases HR during exercise in the hyperthermic 

(Anderson et al., 2001) and moderate (Montner et al., 1996, Montner et al., 1999) 
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environments, many others have failed to find a difference (Goulet et al., 2006, Goulet et 

al., 2008, Lyons et al., 1990, Marino et al., 2003, Scheadler et al., 2010, Wingo et al., 

2004). While many studies have focused on HR changes from glycerol ingestion, few have 

investigated the direct impact of glycerol on cardiovascular parameters such as stroke 

volume and cardiac output. Latzka et al. (1998) found a decrease in stroke volume (14%) as 

a result of treadmill walking at 55% VO2max after glycerol hyperhydration (1.2 g/kg and 

29.1 ml/kg BM) while also noting no change in cardiac output even with an increase in HR. 

In contrast, Montner et al. (1996) found an increase in stroke volume after hyperhydration 

(1.2 g/kg and 26 ml/kg BM) during cycling at 61% Wmax but only as a result of continued 

glycerol ingestion during exercise. These discrepancies most likely result from differing 

exercise protocols, variations in environmental conditions, subjects’ heat acclimation 

status, and whether or not the participants were allowed subsequent fluid ingestion during 

exercise.  

 

The primary goal of pre-exercise glycerol hyperhydration for maintenance of 

thermoregulation is to increase fluids in the vascular space (Convertino, 1987) thus 

improving skin blood flow and heat dissipation (Nelson and Robergs, 2007). Findings by 

Anderson et al. (2001) support this paradigm, where glycerol hyperhydration attenuated the 

rise in Tc during 90 min of cycle exercise at 98% LT. These results are supported by those 

of Montner et al. (1998) who found glycerol ingestion significantly lowered exercise Tc 

compared to placebo during 110 min of cycling exercise at 44% VO2max. However, these 

results appear isolated, as the majority of the research has found no aid to thermoregulation 

with glycerol ingestion (Goulet et al., 2006, Goulet et al., 2008, Lyons et al., 1990, Marino 

et al., 2003, Scheadler et al., 2010, Wingo et al., 2004). It is likely that the equivocal 
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findings may result from differences in study design, subject fitness/heat-acclimation status 

and additional fluid intake/beverage temperature during exercise thus this area warrants 

further investigation.  

 

2.6. Effects of Hyperthermia and Dehydration on Oxidative Stress 

As the primary focus of this thesis was to investigate the effects of dehydration on 

oxidative stress during hyperthermic exercise, it is important to summarise the current 

literature linking hyperthermia, dehydration and oxidative stress. As has been detailed 

previously (section 2.4), the addition of environmental heat stress both passively and during 

exercise can increase the stress levels of the participants. Accordingly, a few authors have 

investigated the impact of hyperthermia alone on oxidative stress (Laitano et al., 2010, 

McAnulty et al., 2005, Ohtsuka et al., 1994). Ohtsuka et al. (1994) used a 10 min passive 

heating protocol in 42˚C hot water bath to induce a significant decrease in red blood cell 

GSH concentration and GPx activity and a significant increase in red blood cell TBARS. 

Similarly, Laitano et al. (2010) used a 75 min exposure to a hot water-perfused body suit to 

increase Tc by 2˚C to measure resting and exercise-induced changes in glutathione. The 

authors found an increase in whole blood GSSG concentration as a result of passive heating 

while the addition of exercise exacerbated these findings, whereas whole blood GSSG 

concentration was not affected by exercise without hyperthermia. Importantly, the authors 

noted these findings were independent of changes to hydration status because participants 

were allowed to ingest fluid ad libitum which maintained euhydration (as assessed by 

changes in BM). Similar results were found from an investigation by McAnulty et al. 

(2005) who had six male athletes run on a treadmill in 35˚C conditions at 50% VO2max until 

they reached a Tc of 39.5˚C (~50 min). The authors found increased levels of plasma FIP 
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and LOOH as a result of exercise, however only FIP concentration was augmented by the 

hyperthermic exercise compared to normothermic exercise. However, it is very important 

to note that the authors of this study failed to take into account the hydration status of the 

subjects, who had become dehydrated by ~3%, which may have played a role in the 

significant findings. 

 

Indeed dehydration has been shown both in vitro (Martins and Meneghini, 1994, Saha et 

al., 1992) and in vivo (Paik et al., 2009) to affect oxidative stress. Hypoosmolality has also 

been shown to attenuate DNA damage by hydrogen peroxide in Chinese hamster 

fibroblasts (Martins and Meneghini, 1994), while liver cell shrinkage induced by 

hyperosmolality creates some oxidative stress as indicated by an increasing GSSG 

excretions (Saha et al., 1992). To the knowledge of the author, only one study exists that 

has aimed to investigate the effects of dehydration on oxidative stress. Paik et al. (2009) 

utilised a pre-exercise dehydration protocol consisting of exercise and passive hyperthermia 

in 10 moderately trained men. Following dehydration, subjects either remained dehydrated 

or were euhydrated with water or carbohydrate beverage. The authors also included a 

control group who did not undergo the dehydration protocol. Following rehydration, 

participants ran to exhaustion at 80% VO2max on a treadmill (time to exhaustion ranged 

from 28-42 min). Blood parameters were measured pre dehydration, post dehydration, post 

rehydration, and post exercise. The authors found increased MDA concentration, total 

antioxidant capacity and DNA damage as a result of the dehydration protocol alone. What 

is interesting is that the authors noted no increase in MDA concentration after rehydration 

prior to exercise. It must be noted, however that the authors used heat as a means for 

dehydrating subjects and this may have confounded their results. 
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In light of the findings of Paik et al. (2009), it appears that hydration status prior to and 

during exercise may play a role in attenuating the resulting oxidative stress. This would 

rationalise the use of substances such as glycerol prior to exercise to increase body water. 

Because glycerol is distributed evenly intra- and extracellularly, this would likely pull 

water into the cells, maintaining cell integrity in an effort to provide a “buffer” before 

stress, which fluid consumption during exercise would likely maintain. 

 

While it is well known how hyperthermia and exercise can affect HSP expression, the 

effects of hydration status on HSP72 and HSP32 expression, specifically during exercise, 

have not been thoroughly investigated. However, to the author’s knowledge no human 

research exists linking these topics. In fact only one study examining the effect of hydration 

on HSP72 expression exists. In cultured rat hepatocytes Kurz et al. (1998) showed that 

moderate hyperosmolality as a result of dehydration blocks the heat induced expression of 

HSP72, causing impaired protein synthesis and thermotolerance. Conversely, while 

dehydration can block HSP72 induction, hyperhydration and hypoosmotic swelling can 

increase HSP72 induction (Kurz et al., 1998). Because HSP32 has not been studied widely 

in exercising subjects, no data exist linking HSP32 expression to hydration status. As 

HSP32 is induced as a result of oxidative stress and hydration status can have an impact 

upon cellular susceptibility to oxidative damage, it is inferred that dehydration would result 

in augmented expression of HSP32. 

 

In summary, while the effects of hyperthermia and dehydration have been thoroughly 

investigated and demonstrate a severe threat to homeostasis, and while in vitro work 
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demonstrates these two phenomena can adversely affect the body’s ability to cope with 

oxidative stress, properly controlled in vivo work is lacking. Therefore this thesis aims to 

clarify the relationship between hyperthermia, dehydration and oxidative stress during 

prolonged exercise.
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3. General Methodologies 

This chapter describes the general procedures that were performed in the studies outlined in 

the following experimental chapters. The first two experiments were conducted in a 

greenhouse with temperature (dry bulb) and relative humidity controlled by the author. 

Average thermoneutral conditions were 22.2 ± 0.0˚C and 41.4 ± 3.3%, while average warm 

conditions were 33.4 ± 0.4˚C and 43.2 ± 2.9% for temperature and relative humidity, 

respectively. For experiment three, all trials were completed in an environmental chamber 

(Model SSR60-20H, Design Environmental Ltd, Wales, UK) controlled via computer at a 

temperature of 35˚C and relative humidity of 40%. Temperature sensors were calibrated 

before all experiments. 

 

The protocol employed in the first two experimental chapters was designed as a fixed 

intensity exercise for a prolonged duration. Exercise intensity was prescribed based on each 

individual’s lactate threshold (LT) because it has been shown to be more accurate for 

predicting endurance exercise performance compared to maximal oxygen uptake (VO2max) 

(Coyle et al., 1988, Yoshida et al., 1987). Following the initial bout of exercise was a 5 km 

TT for additional acute stress and for assessment of performance. The protocol was 

designed to maximise dehydration and stress while trying to standardise the amount of 

work performed by each participant. During the third experimental chapter subjects were 

asked to cover as much distance as possible during a 90 min ride that was self-paced to 

reflect real cycling training and performance. The experimental protocols for all three 

chapters were designed to result in maximal stress and fatigue without participants 

becoming exhausted (where they would hypothetically be unable to continue exercising). 

Although the exercise protocol for the first two experiments was prescribed at a fixed 
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intensity, subjects were able to deviate from this intensity by slowing down/speeding back 

up during the conditions that were extremely taxing to their system, ultimately making the 

protocol self-paced; we allowed this and preferred it over the participants ceasing exercise, 

therefore I accept this as a possible limitation to the first two studies. 

 

3.1. Subjects 

The participants for each experiment performed in this thesis were healthy male subjects, 

aged between 18 and 45. Subjects for the first and third experiments were considered well 

trained cyclists and triathletes recruited from local clubs, while subjects for the second 

experiment were considered healthy, but untrained university students, partaking in no 

organised physical activity. Before undertaking the various experimental procedures each 

subject was informed of the procedures and risks involved in participation and 

subsequently all gave informed consent in written and verbal format. Each subject was 

screened medically and ethical approval for each of the experimental procedures contained 

within this thesis was obtained from the Department of Sport, Health and Exercise Science 

Ethics Committee at the University of Hull. Subjects were required to be free of any 

musculoskeletal injury or any acute or chronic illness and were not taking any 

medication/supplementation that would affect the variables measured in this thesis 

(including vitamin supplements, ergogenic aids and anti-inflammatory medications). 

Because smoking and caffeine consumption have the potential to affect HSP and oxidative 

stress markers (Krisko et al., 2005, Varma et al., 2010, Whitham et al., 2006), all 

participants were non-smokers and were asked to refrain from caffeine consumption for 24 

h prior to and during all experimental conditions. Additionally, subjects were asked to 

refrain from alcohol consumption and exercise for 24 hours prior to testing. 
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3.2. Anthropometric Data 

Body mass (kg) and height (cm) were used as subject descriptive data and were measured 

using digital scales accurate to ± 100 g (TANITA WB-100 Yiewsley, UK) and Holtain 

Stationmaster (Holtain Ltd, Crymych, Dyfed) respectively. 

 

3.3. Preliminary Fitness Assessment 

For experiments one and two, all subjects underwent initial LT testing on an SRM cycle 

ergometer (Schoberer Rad Mebtechnik, Konigskamp, Germany) using an incremental 

protocol starting. For the trained cyclists, this protocol began at 100 W, while for the 

untrained participants the protocol began at 50 W. The protocol increased 20 W every 4 

min until exhaustion (~30 min) for all participants. Capillary blood samples were collected 

every 2 min into lithium heparinised microvettes (Microvette CB300, Sarstedt, Numbrecht, 

Germany) and analysed using a blood lactate analyser (YSI 2300 STAT, YSI Inc, Yellow 

Springs, OH). Lactate threshold was calculated using the Dmax method (Cheng et al., 

1992). Following completion of the LT test and a rest period (10-20 min), subjects 

completed a 5 km time trial (TT) familiarisation where they were instructed to complete the 

5 km distance as quickly as possible. Subjects were able to visualise their distance covered 

and PO; however they were blinded to their elapsed time. This protocol was used for the 

first two experiments; however the fitness status of participants in experiment three was not 

assessed because the protocol was self-paced rather than at a fixed power output, as were 

the two previous studies. Participants of all three experiments completed detailed training 

logs indicating their fitness status. 
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3.4. Hydration Status Assessment 

Upon arrival to the laboratory and prior to exercise, hydration status of subjects was 

assessed using urine (UOsm) and serum (SOsm) osmolality (collected via venipuncture, see 

section 3.6) measured by freeze-point depression method (Advanced Instruments Model 

3320, Advanced Instruments Inc, Massachusetts, USA). Additional time points for 

assessment of UOsm and SOsm are highlighted in their respective chapters. 

 

3.5. Thermoregulation Measurement 

While it was not originally an intention of this thesis to observe the effects of thermal strain 

on oxidative stress markers, only Tc was measured during the initial experiment. However, 

after further research it became clear that there may be a link between thermal stress and 

oxidative stress; therefore the author deemed it necessary to add measurement of skin 

temperature (Ts) during experiments two and three. Tc was measured using rectal 

thermometers (Grant Instrument, Cambridge, UK) inserted by the participants 10 cm past 

the anal sphincter. Ts was measured using four skin thermistors (Grant Instrument, 

Cambridge, UK) placed on the chest, lateral bicep, medial thigh and lateral calf on the left 

side of the body. Skin thermistors placement was measured individually to ensure 

positioning directly on muscles, avoiding placement on bone or tendon. Signals from both 

the rectal thermometer and skin thermistors were received by a data logger system (Squirrel 

1000, Grant Instrument, Cambridge, UK). Ratings of perceived exertion (RPE) (Borg, 

1970), thermal sensation (Gagge et al., 1969), and sweating sensation (Hostler et al., 2009) 

along with heart rate (HR), Tc and Ts were measured at 5 min intervals. 
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Mean Ts was calculated using the following equation (Ramanathan, 1964): 

         arm   chest         thigh   calf   

where Tarm is arm temperature, Tchest is chest temperature, Tthigh is thigh temperature, and 

Tcalf is calf temperature.  

 

Mean body temperature (Tb) was calculated using the following equation (Colin et al., 

1971): 

                           

 

Heat storage (HS) was calculated using the following equation (Adams et al., 1992): 

                    
      

  
 

where 0.965 is the specific heat of body tissues in Wh
-1

°C
-1

kg
-1

, BM is body mass in kg, 

ΔTb is change in mean body temperature, and Ad is body surface area in m
2
 (Dubois and 

Dubois, 1989). 

 

Physiological strain (PSI) was measured using the following equation (Moran et al., 1998): 

        
  a     b

         b
 

  a     b

        b

 

where Tca is the post exercise Tc, Tcb is the pre exercise Tc and HRa is the post exercise 

HR and HRb is the pre exercise HR. 
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3.6. Blood Collection 

While the author would have preferred to cannulate participants, allowing for serial blood 

sampling, this was not possible due to University ethics restrictions. Therefore, venous 

blood samples were drawn by standard venipuncture technique from an antecubital vein 

into K3EDTA (HSP72, HSP32, TBARS, glycerol, and glucose), sodium citrate (TGSH and 

GSSG), lithium heparin (PC, LOOH, haematocrit, and haemoglobin), and clot activator 

serum (SOsm) vacuette tubes (Vacuette®, Greiner Bio-one, UK). For HSP analysis, whole 

blood was sampled from K3EDTA tubes prior to their centrifugation. For attainment of 

serum, vacuettes were stored for at least 30 min at room temperature then centrifuged at 

3000 x g after which supernatants were collected and subsequently stored at -80˚C for later 

analysis. Plasma was collected following identical procedures; however, vacuettes were 

centrifuged after collection. 

 

During the first two experimental studies, blood samples were collected at the following 

time points: pre exercise, post 90 min, and post TT; however due to collection issues, 

missing samples, and budgetary constraints, only samples from pre exercise and post TT 

were analysed for HSP72, HSP32, TBARS and whole blood glutathione (HSP32 was not 

analysed during the second experiment because the antibody was unavailable from any 

manufacturer for an undetermined length of time). During the third experimental study, 

blood was sampled pre ingestion, post ingestion/pre exercise, post exercise and one hour 

post exercise. Ideally the author would have liked to have a further blood sample at four 

hours post exercise as PC concentration has been shown to increase up to this point 

(Michailidis et al., 2007); however because of cost and because the subjects had already 

spent 5 hours in the lab we found it impractical to ask them to remain a further two hours. 
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Due to the reported lack of specificity in the TBARS marker (Oh-ishi et al., 2000), this was 

not analysed in the third study and in its place blood was analysed for LOOH and PC 

content, which are considered to be more accurate and reliable markers of oxidative stress. 

Additionally, because the levels of HSP did not have a remarkable response to changes in 

hydration or environment and because of the expense involved in the analysis, the author 

decided to opt for additional measures of oxidative stress instead of HSP analysis for the 

third experiment. 

 

3.7. HSP72 and HSP32 Assay 

Numerous experimental methods exist to measure HSP72 and HSP32. The literature 

acknowledges that flow cytometric detection of HSP’s is a rapid, easy, accurate and 

quantitative method, which is more sensitive than western blotting (Bachelet et al., 1998). 

It is for these reasons that flow cytometry was used to determine intracellular 

concentrations of HSP72 & HSP32. Of the peripheral blood mononuclear cells (PBMCs), 

lymphocyte HSP72 expression at rest and changes during exercise have been shown to be 

negligible (Fehrenbach et al., 2000b). Monocytes appear to be the most sensitive of the 

PBMCs and express the greatest amount of HSP72 & HSP32 in response to exercise and 

heat stress (Fehrenbach et al., 2003a, Fehrenbach et al., 2000b), while HSP32 has been 

shown to protect lymphocytes from oxidative stress (Speit et al., 2000), and therefore 

investigation of HSP32 is necessary in these cell populations. 

 

For analysis of intracellular HSP72 and 32, whole blood (100 µl) from EDTA tubes was 

transferred into 2 ml red blood cell lysing buffer (Erythrolyse, Item No: BUF04B, AbD 

Serotec, Oxford, UK). Cells obtained after red cell lysis were fixed and permeabilised 
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(Leucoperm, Item No: BUF09B, AbD Serotec, Oxford, UK) then IgG1 (HSP72 FITC, Item 

No: ADI-SAB-600FI-200, Enzo Life Sciences, Exeter, UK) or IgG2b (HSP32 PE, Item No: 

ADI-SAB-602PE-F, Enzo Life Sciences, Exeter, UK) monoclonal antibody or 

corresponding negative control (HSP72: SPA-810, HSP32: OSA-111, Enzo Life Sciences, 

Exeter, UK) was added to a final concentration of 100 µg/ml and then incubated for 30 min 

in the dark. Samples were then washed with phosphate buffered saline before analysis on a 

BDFACSCalibur (BD Biosciences) with mono- and lymphocytes gated by forward/side 

scatter properties. Mean fluorescence intensity (MFI) was then calculated using 

CELLQuest software (BD Biosciences) with a total of 25,000 cells counted. Final HSP 

values were calculated from the difference in pre and post exercise MFI. Gating strategies 

are shown in Figure 3.1. 
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Figure 3.1.Typical flow cytometry profiles, showing a) forward scatter/side scatter and 

gated neutrophils, monocytes, and lymphocytes and b) fluorescence intensity of monocytes 

incubated with isotype matched negative control (solid) and anti-hsp72 (line) antibodies. 

 

3.8. Blood Measure of Oxidative Stress 

3.8.1. Glutathione  

Blood glutathione status has been reported to accurately indicate the redox status in the 

body (Veskoukis et al., 2009). Immediately after collection of sodium citrate treated blood 

a 2 ml aliquot was mixed with 8 ml of freshly prepared 5% meta-phosphoric acid (Sigma-

Aldrich Company Ltd., Dorset, England) to facilitate removal of proteins that can interfere 

with the reaction and to preserve the amount of GSH present when the samples are 

collected. This mixture was transferred to 1.5 ml eppendorf tubes, stored on ice for 15 min, 

then centrifuged at 13,000 x g and 4˚C for 15 min. The supernatant was collected and 
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stored at -80
˚
C for later analysis of TGSH and GSSG using a commercially available kit 

(Total Glutathione Detection Kit, Assay Designs, Item No: ADI 900-160, Enzo Life 

Sciences, Exeter, UK). The average inter- and intra-assay coefficients of variation for 

GSSG quantification were 1.74% and 1.77%, respectively, for all three experiments. 

 

For determination of TGSH previously prepared blood (50 µl, described above) was diluted 

to 1:40 in assay buffer solution and transferred to a 96 well plate. A standard curve was 

produced from serially diluting 50 µl assay buffer and 50 µl GSSG standard. All wells were 

treated with a mixture containing 5,5’-dithiobis-2-nitrobenzoic acid (DTNB, Ellman’s 

reagent) and 10 µl of glutathione reductase to form a chromagen (5-thio-2-nitrobenzoate 

(TNB)), the concentration of which was measured every minute for 10 min at 405 nm in a 

microplate reader (Biotek Synergy HT-R, Biotek Instruments, Vermont, USA). This 

procedure was replicated for determination of GSSG after the samples were first treated 

with 1 µl of 2M 4-vinylpyridine (Sigma-Aldrich Company Ltd., Dorset, England) to block 

any free thiols from completing the reaction, thus overestimating the actual concentration 

of GSSG. At the same time 6 µl of 2M 4-vinylpyridine solution was added to 300 µl GSSG 

for standard curve determination. GSSG standards and samples were incubated at room 

temperature for 1 h and analysed identical to the TGSH samples. All standards and samples 

were analysed in triplicate with the mean reported. The average inter- and intra-assay 

coefficients of variation for TGSH quantification were 3.24% and 3.25%, respectively, for 

all three experiments. 
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3.8.2. TBARS 

TBARS was measured for the first two experiments using a commercially available kit 

(ZeptoMetrix, Helvetica Health Care, Item No: 0801192, Geneva, Switzerland). An aliquot 

(100 µl) of previously prepared plasma was added to 100 µl of sodium dodecyl sulfate 

(SDS) solution and 500 µl of thiobarbituric acid solution. Samples were incubated for 1 h 

at 95˚C after which time they were cooled to room temperature and centrifuged at 3000 x g 

for 15 min. Supernatant was collected and added to a 96 well plate and read at 532 nm in a 

microplate reader. A malondialdehyde (MDA) standard curve was constructed and TBARS 

concentration was calculated by interpolation from this standard curve. Results are 

expressed in MDA equivalents. All standards and samples were analysed in duplicate. The 

average inter- and intra-assay coefficients of variation for TBARS quantification were 

2.00% and 1.91%, respectively, for all three experiments. 

 

3.8.3 Protein Carbonyls 

Because of the reported lack of specificity in the TBARS assay, in the final study the 

author decided to replace the analysis with a more accurate measure of oxidative stress. 

Therefore, protein carbonyl content was measured using a commercially available kit 

(Protein Carbonyl Assay Kit, Item No: 10005020, Cayman Chemical, Cambridge 

Bioscience, Cambridge, UK). Previously prepared lithium heparinised plasma sample (200 

µl, described in 3.6) was added to an eppendorf tube with 800 µl of dinitrophenylhydrazine 

(DNPH) serving as the sample tube while 200 µl of the same plasma was added to 800 µl 

of 2.5M hydrochloric acid (HCl) serving as the control tube. All tubes were incubated in 

the dark at room temperature for one hour, while being briefly vortexed every 15 min. An 

aliquot (1 ml) of 20% trichloroacetic acid (TCA) was added to each eppendorf and 
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vortexed. All tubes were incubated on ice for 5 min then centrifuged at 10,000 x g for 10 

min at 4˚C followed by a wash in 10% TCA, 5 min incubation on ice and centrifugation at 

10,000 x g for 10 min at 4˚C. The supernatant was discarded and the pellet resuspended in 

1 ml of a 1:1 mixture of ethanol/ethyl acetate and vortexed thoroughly, then centrifuged at 

10,000 x g for 10 min at 4˚C. This step was repeated two more times followed by 

resuspension of the pellet in 500 µl of guanidine hydrochloride. After vortexing, tubes were 

centrifuged a final time at 10,000 x g for 10 min at 4˚C. An aliquot (200 µl) of supernatant 

from each sample and control tube was added to a 96 well plate and read in a microplate 

reader at an absorbance of 360 nm. All samples and standards were analysed in duplicate.  

 

Protein carbonyl concentration was calculated using the following equation: 

               
  

        
 

      

      
 

where CA is the average absorbance of the controls subtracted from the average absorbance 

of the samples and 0.011 µM
-1

 is the extinction coefficient of DNPH, 500 µl/200 µl gives 

the concentration of protein carbonyls in the original sample. The inter- and intra-assay 

coefficients of variation for PC quantification were 2.12% and 2.14%, respectively. 

 

3.8.4 Lipid Hydroperoxides 

Similar to above, because TBARS has been found to be non-specific to MDA, the author 

substituted its measurement with a more sensitive marker of lipid peroxidation. Therefore, 

lipid hydroperoxides concentration (LOOH) was measured using a commercially available 

kit (Lipid Hydroperoxide Assay, Item No: NWK-LHP01, Northwest Life Science 

Specialities, LLC, AMS Biotechnologies, Abingdon, UK). The assay is based on the 
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reaction of LOOH with ferrous iron to form ferric iron which forms a chromagen at a 

measurable absorbance of 560 nm. While the measurement of LOOH by assay kit has 

commonly been criticised because LOOH are unstable in the presence of reducing metals, 

this kit corrected for this, as well as the presence of any H2O2 by treating samples with 

tris(2-carboxyethyl)phosphine (TCEP) and catalase. 

 

To measure LOOH concentration, previously prepared lithium heparinised plasma (100 µl, 

described in 3.6) was added to three eppendorfs, one served as a sample (X), one as blank 

(Y) and one as recovery (Z) while 100 µl of water was added to three vials servings as 

calibrator (A), reagent blank (B) and reducing reagent blank (C). An aliquot (5 µl) of 

catalase was added to all eppendorfs, vortexed and incubated for 10 min at room 

temperature. An aliquot (500 µl) of methanol-butylated hydroxytoluene (BHT) solution 

was added to all eppendorfs, vortexed and centrifuged at 10,000 x g for 5 min. An aliquot 

(10 µl) of water was added to all B and X eppendorfs while 10 µl of TCEP reagent was 

added to all C and Y eppendorfs and 10 µl of calibrator was added to all A and Z 

eppendorfs. All eppendorfs were incubated one hour at room temperature followed by the 

addition of 50 µl of XOF reagent (1:1 mixture of xylenol orange and iron) to all 

eppendorfs. Samples were vortexed and incubated one hour at room temperature. 

Following centrifugation at 10,000 x g for 5 min a 180 µl aliquot of supernatant from each 

eppendorfs was added in duplicate to a 96 well microplate and read at an absorbance of 560 

nm. LOOH concentration in the reaction mix was calculated using the following equation: 

            
     

    
 

          

     
 

where AA-AB is the absorbance of the calibrator (A) minus the absorbance of the reagent 

blank (B), έ560 is the measured absorbance divided by the concentration of LOOH 
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multiplied by the path length (1 cm), AX is the sample (X) absorbance, AY is the sample 

blank (Y), AZ is the calibrated sample (Z) and AB-C is the absorbance of the reagent blank 

(B) minus the absorbance of the reduced reagent blank (C). The inter- and intra-assay 

coefficients of variation for LOOH quantification were 10.82% and 7.02%, respectively. 

 

3.9. Measurement of Plasma Glycerol 

Many studies that employ the use of glycerol fail to provide blood concentrations, therefore 

in the third experiment plasma glycerol concentration was measured using a commercially 

available kit (Glycerol Assay Kit, Item No: 10010755, Cayman Chemicals, Cambridge 

Bioscience, Cambridge, UK). A 10 µl aliquot of previously prepared K3EDTA plasma 

(described in 3.6) was added to each sample well of a 96-well plate. A reaction was 

initiated by adding 150 µl of glycerol enzyme mixture (including glycerol kinase, glycerol 

phosphate oxidase, and peroxidise) to each well. The plate was incubated at room 

temperature for 15 min then the absorbance was read at 540 nm on a microplate reader. All 

samples and standards were analysed in duplicate. Glycerol concentration was calculated 

using the following equation: 

Glycerol (mg L)  
   y intercept

     
 

where the corrected absorbance (CA) was calculated by subtracting the absorbance value of 

the standard with 0 mg/L of glycerol from all standards and samples and y-intercept and 

slope were obtained from a graph of the standard curve (glycerol concentrations of 0-1000 

mg/L). The inter- and intra-assay coefficients of variation for LOOH quantification were 

1.94% and 3.02%, respectively. 
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3.10. Plasma Volume Changes 

Because changes in plasma volume can effect blood concentrations of biochemical markers 

(Kargotich et al., 1997), all concentrations of blood oxidative stress markers, as well as 

concentrations of glucose and glycerol were corrected for plasma volume changes. In the 

first two experimental chapters haematocrit and haemoglobin were measured by automated 

blood gas analyser (ABL800 Basic, Radiometer Medical, Brønshøj, Denmark), however 

because these machines can inaccurately quantify these markers, for the final study 

capillary blood samples were collected for measurement of haematocrit (Micro 

Haematocrit Reader, Hawksley, UK) and haemoglobin (Hemocue 201, Hemocue, Ltd, 

Sheffield, UK). All measurements were taken in triplicate. For all three experiments, 

plasma volume changes were calculated using the methods of Dill and Costill (1974) using 

the following equation: 

                 
Hbb

Hba
) 
1  Hcta 100 

1  Hctb 100 
      

 

Oxidative stress markers, glucose and glycerol concentrations were corrected for these 

plasma volume changes using the following equation: 
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Chapter 4. Experiment 1: Exercise-induced dehydration during prolonged exercise 

results in increased oxidative stress. 

 

This experimental chapter has formed the basis of the publication detailed below: 

Hillman AR, Vince RV, Taylor L, McNaughton L, Mitchell N and Siegler J. (2011) 

Exercise-induced dehydration with and without environmental heat stress results in 

increased oxidative stress. Appl Physiol, Nutr and Metab, 36, 698-706. 
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Abstract 

While in vitro work has revealed dehydration and hyperthermia can elicit increased cellular 

and oxidative stress, in vivo research linking dehydration, hyperthermia and oxidative stress 

is limited. The purpose of this experiment was to investigate the effects of exercise-induced 

dehydration with and without hyperthermia on oxidative stress. Seven healthy male trained 

cyclists (mean ± SD) age: 36 ± 6 yrs, height: 177.4 ± 6.5 cm, weight: 72.8 ± 7.0 kg, and 

power output (PO) at lactate threshold (LT): 199.3 ± 19.0 Watts (W) completed 90 min 

cycling exercise at 95% LT followed by a 5 km time trial (TT) in four trials: euhydration in 

a warm environment (EU-W), dehydration in a warm environment (DE-W), euhydration in 

a thermoneutral environment (EU-T), and dehydration in a thermoneutral environment 

(DE-T) (W: 33.9 ± 0.9°C; T: 23.0 ± 1.0°C). Whole blood oxidised glutathione (GSSG) 

increased significantly post exercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 

0.03), and while not significant total glutathione (TGSH) and thiobarbituric acid reactive 

substances (TBARS) tended to increase post exercise in dehydration trials (p = 0.08 for 

both). Intracellular monocyte heat shock protein 72 (HSP72) concentration was increased 

(p = 0.01) while Intracellular lymphocyte HSP32 concentration was decreased for all trials 

(p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while 

maintenance of euhydration attenuated these increases regardless of environmental 

condition. Additionally, we found evidence of increased cellular stress (measured via HSP) 

during all trials independent of hydration status and environment. Finally, total distance 

covered and 90 min PO were decreased, while 5 km TT completion time was slower during 

the DE-W vs. all other trials. These findings highlight the importance of fluid consumption 

during exercise to attenuate thermal and oxidative stress during prolonged exercise in the 

heat. 
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4.1. Introduction 

Exercising for prolonged periods in the heat without adequate fluid intake can lead to 

dehydration (Sawka et al., 2007) and oxidative stress (Paik et al., 2009), both of which are 

believed to have a negative impact upon performance. A primary cause of decreased 

performance as a result of dehydration is believed to culminate from a progressive increase 

in cardiovascular and thermal strain, which can be exacerbated when exercising in a 

hyperthermic environment (Cheuvront et al., 2010, Montain and Coyle, 1992). On a 

cellular level, dehydration has been shown to cause hyperosmolality and cellular shrinkage 

(Schliess and Haussinger, 2002). The extent of the dehydration, as with performance, may 

dictate the degree of cellular susceptibility to oxidative damage and apoptosis (Schliess and 

Haussinger, 2002). Additionally, altering the hyperthermic environment under such 

conditions may further influence the vulnerability of the cell (Flanagan et al., 1995), 

however this has yet to be documented in humans. 

 

The oxidative damage occurring during exercise is derived primarily from reactive oxygen 

species (ROS). Although ROS are produced at low levels under normal physiological 

conditions and are an important component to many signalling pathways, the increase in 

ROS observed during exercise can lead to oxidative stress (Alessio, 1993), measurable via 

the formation of by-products (thiobarbituric acid reactive substances (TBARS) or the 

antioxidant defence systems (glutathione)). Specifically, oxidative damage often occurs to 

the lipid membranes of cells, the by-products of such events becoming harmful radicals that 

may further initiate protein and DNA damage (Powers and Jackson, 2008). If excessive 

ROS production continues, ultimately, normal cell function will fail (Fisher-Wellman and 

Bloomer, 2009), leading to activation of inflammatory and cell death pathways (Mattson, 
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2006), as well as decreased force production during exercise (Reid, 2001). The degree of 

oxidative damage, in relation to exercise, has been shown to be intensity and duration 

dependent (Goto et al., 2003, Knez et al., 2007). Presumably the damage may be 

exacerbated further if these conditions coincide with extreme environmental conditions (i.e. 

heat stress), however this has not been investigated in vivo and warrants further elucidation. 

 

While in vitro research has shown increased cellular susceptibility to oxidative damage and 

apoptosis (Schliess and Haussinger, 2002), decreased cell-stress tolerance (evidenced by 

decreased HSP72 expression (Kurz et al., 1998)) and increased DNA damage (Martins and 

Meneghini, 1994) as a direct result of dehydration, there is limited in vivo research linking 

exercise-induced oxidative stress and hydration. To our knowledge, only one previous 

study has investigated the effects of dehydration on oxidative stress in vivo (Paik et al., 

2009). Although the authors reported an increase in oxidative stress as a result of passive 

dehydration, methodological limitations may have confounded their results as heat stress 

alone has been shown to increase oxidative stress (Laitano et al., 2010). Alternatively, 

while there are studies that have used hyperthermia as a means of investigating changes in 

oxidative stress, these investigations have not accounted for the hydration status of their 

participants (McAnulty et al., 2005, Ohtsuka et al., 1994)  even though dehydration has 

been shown to increase oxidative stress (Paik et al., 2009, Saha et al., 1992). Therefore, the 

purpose of this investigation was to determine the effect of exercise-induced dehydration 

with and without hyperthermia on oxidative and cellular stress. It was hypothesised that 

exercise-induced dehydration would increase oxidative stress and in conjunction with 

hyperthermia would augment the level of stress compared to exercise-induced dehydration 

without hyperthermia. 
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4.2. Methods 

Subjects 

Seven competitive male cyclists, unacclimatised to heat, participated in this study. Physical 

characteristics (mean ± SD) were age: 36 ± 6 yrs, height: 177.4 ± 6.5 cm, weight: 72.8 ± 

7.0 kg, and power output (PO) at lactate threshold (LT): 199.3 ± 19.0 Watts (W). Subjects 

were free of any cardiac or metabolic diseases, did not smoke, and refrained from 

supplementation of all kinds (i.e., vitamins, ergogenic aids, etc.) during the testing period. 

A sample size of 7 was not dictated by power analysis but rather due to time and budgetary 

constraints. 

 

Preliminary Measurements 

All subjects underwent initial lactate threshold (LT) testing as described in section 3.3  

 

Experimental Design 

The remaining four visits consisted of exercise trials in either a warm environment (33.9 ± 

0.9˚C) with (DE-W) or without dehydration (EU-W), or a thermoneutral environment (23.0 

± 1.0˚C) with (DE-T) or without dehydration (EU-T). All trials were completed in an 

environmentally controlled greenhouse and separated by at least one week. Trials were 

randomised by environment only (i.e., they started in either warm or thermoneutral 

environment and always started with a dehydration trial) as it was necessary to estimate the 

volume of fluid subjects would need in order to maintain euhydration during the EU-W and 

EU-T trials. On trial days, subjects reported to the laboratory 2 hours postprandial and 

having consumed 500 ml water in accordance with the ACSM position stand (Sawka et al., 
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2007). Subjects were asked to keep a food diary and consume the same diet prior to and on 

all trial days. Additionally, they were requested to refrain from caffeine or alcohol 

consumption and strenuous exercise for the 24 hour period prior to each trial. 

 

Upon arrival to the laboratory subjects rested in an inclined-supine position for 20 min 

prior to collection of pre blood samples (described below). To assure subjects were in a 

euhydrated state prior to exercise, urine (UOsm) and serum osmolality (SOsm) were 

measured in triplicate by freeze-point depression (Advanced Instruments Model 3320, 

Advanced Instruments Inc, Massachusetts, USA). Subjects self-measured their nude weight 

(±100 g) (TANITA WB-100 Yiewsley, UK) then placed a rectal thermometer (Grant 

Instrument REC 100 mm) 10 cm past the anal sphincter and positioning of a recordable 

heart rate monitor (S810i, Polar Electro, OY, Finland). All exercise protocols were 

completed on a Velotron cycle ergometer (RacerMate, Seattle, WA, USA), which has been 

validated for continuous exercise (Abbiss et al., 2009) and has been shown to provide 

highly reproducible performance data in competitive cyclists (Sporer and McKenzie, 2007). 

The Velotron was factory calibrated and the zero-point was reset before beginning the 

study. Subjects completed a 5 min warm up at 70 W and 80 rpm followed by completion of 

90 min of exercise at 95% of each individual’s LT, with a pause at 45 min for collection of 

blood. The authors designed this protocol to ensure > 2% dehydration was achieved during 

both environmental conditions. The protocol also is similar to previous research 

investigating changes in redox status, particularly glutathione (Gohil et al., 1988, Morillas-

Ruiz et al., 2005, Viguie et al., 1993). During the 90 min protocol subjects were instructed 

to maintain their pace by following a computer pacer set to 95% of each individual’s LT. 

After completion of the 90 min exercise a rest period of 15 min was use to facilitate blood 
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draw and prepare the cyclists for the TT. During the 5 km TT subjects were asked to 

complete the trial as quickly as possible while being blinded to the elapsed time. The 

addition of the 5 km TT after the 90 min ride was to ensure subjects were adequately 

stressed to provide changes in redox status. Rest periods and TT were conducted in the 

same environment as exercise at 95% LT. A final blood collection and nude weight were 

taken after completion of the 5 km TT. 

 

In line with previous investigations (Gonzalez-Alonso et al., 2000, Greenleaf and Castle, 

1971, Kenefick et al., 2009), core temperature (Tc), ratings of perceived exertion (RPE, 

Borg scale), room temperature, and humidity were recorded every 5 min during exercise. 

HR and PO were recorded every 5 sec; this data was then averaged over 5 min to match the 

recording times of the other variables. Fluid was prohibited during dehydration trials, while 

during euhydration trials subjects consumed the same quantity of water as body weight lost 

during the dehydration trial (1 kg BM = 1 L water).  

 

Blood Collection and Analysis 

Blood was drawn from a vein in the antecubital region pre-exercise, at 45 min, post 90 min, 

and post TT; however only blood samples from pre-exercise and post TT were analysed 

due to budgetary constraints. HSP analysis was conducted live (see general methods 

section 3.7) while TGSH, GSSG (see general methods section 3.8.1) and plasma TBARS 

(see general methods section 3.8.2) were conducted retrospectively. Haematocrit and 

haemoglobin were measured from whole blood immediately after draw (ABL800 Basic, 

Radiometer Medical, Brønshøj, Denmark) and used to calculate plasma volume changes. 
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All oxidative stress markers were corrected for plasma volume changes (see general 

methods section 3.10.).  

 

Statistical Analysis 

All data are represented as mean ± SEM. Statistical analysis was completed using Linear 

Mixed Models for repeated measures (SPSS 18.0, Chicago, IL, USA) which allows for 

modelling with both fixed and random effects, as well as missing or incomplete data. 

Different covariance structures were assumed and the one that minimised the Hurvich and 

Tsai’s criterion was chosen for the final model. Where a significant F ratio was observed, 

post hoc comparisons with Sidak-adjusted p values were used to identify which pairs of 

means were significantly different. Two-tailed statistical significance was accepted as p < 

0.05. Data for glutathione and HSP changes are represented as percent change from 

baseline, which is in accordance with previous literature (Gohil et al., 1988, Morton et al., 

2007). 

 

4.3. Results 

Thermoregulation 

Table 4.1 represents the urine, haemodynamic and fluid changes for all trials. UOsm 

significantly increased post exercise in all trials (p < 0.01) while SOsm increased post 

exercise in dehydration trials only (p< 0.01). Body mass loss was significantly greater in 

DE-W vs. all other trials and PV change was significantly less in EU-T vs. all other trials.  
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Table 4.1. Presented are mean ± SEM (n = 7) data for changes observed in urine (UOsm) 

and serum (SOsm) osmolality (mOsm·kg
-1

), body mass loss (BML in kg), percent BML 

(%BML), plasma volume (PV∆ as a %), and total fluid consumption (TFC in litres) after 

both 90 min of exercise and the 5 km time trial. 

 

 Thermoneutral Warm 

 
Dehydration 

(DE-T) 

Euhydration 

(EU-T) 

Dehydration 

(DE-W) 

Euhydration 

(EU-W) 

 Pre Post Pre Post Pre Post Pre Post 

UOsm 226±71 481±95
*
 179±17 298±51

*
 206±21 463±72

*
 269±35 383±77

*
 

SOsm 291±1 303±1
*
 292±1 290±1 291±1 305±1

*
 289±2 288±1 

BML -- 2.1±0.2 -- 0.1±0.2 -- 2.7±0.2 -- 0.2±0.4 

%BML -- 3.0±0.3 -- 0.1±0.2 -- 3.8±0.3
†
 -- 0.2±0.2 

PV∆ -- -7.1±1.0 -- -1.9±1.2
‡
 -- -6.3±1.5 -- -3.1±0.9 

TFC -- -- -- 2.1±0.1 -- -- -- 2.7±0.2 

 

*Significantly increased vs. pre (p < 0.01) 

†Significantly greater vs. DE-T (p < 0.01) 

‡Significantly less than all other trials (p < 0.01) 

 

 

Figure 4.1 represents the Tc and HR data for the 90 min exercise bout. HR and Tc 

significantly increased post exercise for all trials (p < 0.01). Additionally, Tc and HR were 

significantly higher post exercise in the warm vs. thermoneutral trials (p < 0.01 for both). 

During the TT, there was a main effect for condition (F = 3.08; p = 0.05) with lower Tc in 

EU-T vs. DE-T only. Additionally, while HR was increased post TT from resting 

conditions, there was no significant difference in average HR between trials (F = 1.43; p = 

0.27). 
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Figure 4.1. Presented are mean (n = 7) data for average heart rate (HR) and core 

temperature (Tc) during 90 min exercise in a thermoneutral environment with (DE-T) and 

without dehydration (EU-T), and a warm environment with (DE-W) and without (EU-W) 

dehydration. HR and Tc significantly increased post exercise for all trials (p < 0.01). 
a
Significantly higher HR post exercise in warm vs. thermoneutral trials (p < 0.01). 

b
Significantly higher Tc post exercise in warm vs. thermoneutral trials (p < 0.01). Error 

bars were omitted for clarity. 

 

Cellular Stress 

TGSH/GSSG 

There was a significant interaction (condition x time) for GSSG (F = 9.32; p < 0.01) and a 

main effect for time (F = 8.71; p = 0.02), with an increase in GSSG post exercise for 

dehydration trials only (DE-W: p < 0.01, DE-T: p < 0.05). There was no main effect for 

condition (F = 0.39; p = 0.77) for GSSG pre to post exercise (Figure 4.2). 

 

There was no significant interaction (condition x time) for TGSH (F = 1.08; p = 0.37). 

Similarly, there was no main effect for time (F = 4.42; p = 0.08) or condition pre to post 
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exercise (F = 0.05; p = 0.98). Assessing TGSH via relative changes (percent change pre to 

post) did not provide additional insight (F = 0.97; p = 0.43; Figure 4.2).  

 

 
Figure 4.2. Presented are mean ± SEM (n = 7) data for baseline (pre) and percent change 

(pre to post) in total (TGSH) (A) & oxidised (GSSG) glutathione (B) pre to post exercise in 

a thermoneutral environment with (DE-T) and without dehydration (EU-T), and a warm 

environment with (DE-W) and without (EU-W) dehydration. 
a
Significantly increased vs. 

baseline (p < 0.01). 

 

TBARS 

There was no significant interaction (condition x time) for TBARS (F = 0.75; p = 0.53). 

Similarly, there was no main effect for time (F = 2.36; p = 0.13) or condition (F = 2.38; p = 

0.08; Table 4.2). 
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Table 4.2. Presented are mean ± SEM (n = 7) data for changes observed in oxidised 

(GSSG) and total (TGSH) glutathione expressed in pmol, thiobarbituric acid reactive 

substances (TBARS) in MDA equivalents (nmol
.
ml

-1
), monocyte HSP72 (mHSP72), 

lymphocyte HSP72 (lHSP72), monocyte HSP32 (mHSP32), and lymphocyte HSP32 

(lHSP32) as mean fluorescence intensity after both 90 min of exercise and the 5 km time 

trial. 

 

 Thermoneutral Warm 

 
Dehydration 

(DE-T) 
Euhydration 

(EU-T) 
Dehydration 

(DE-W) 
Euhydration 

(EU-W) 

 Pre Post Pre Post Pre Post Pre Post 

GSSG 91±9 115±13
* 93±13 93±13 86±16 108±16

* 96±15 96±17 

TGSH 3342±181 3568±242 3432±200 3488±223 3377±193 3561±263 3425±185 3432±180 

TBARS 16.4±1.7 23.7±5.4 17.0±3.6 18.1±1.9 15.6±1.1 23.6±6.4 11.9±1.2 13.4±1.3 

mHSP72 3.6±0.6 4.6±0.6
* 4.5±0.9 5.9±0.8

* 3.3±0.5 4.4±0.2
* 4.1±0.7 5.2±0.5

* 

lHSP72 1.9±0.5 1.9±0.3 1.8±0.6 2.1±1.2 1.6±0.3 1.9±0.2 1.7±0.2 1.9±0.3 

mHSP32 26.8±9.0 26.2±13.1 36.2±12.4 32.8±9.8 32.4±4.6 27.0±5.2 36.7±17.2 30.6±10.2 

lHSP32 25.8±2.6 22.5±2.5
† 28.3±3.8 23.8±2.7

† 26.0±1.5 24.0±3.0
† 28.2±4.9 22.5±2.5

† 

 

*Significantly increased vs. pre (p < 0.05) 

†Significantly decreased vs. pre (p < 0.05) 

 

HSP 

For HSP72 concentration in both monocytes and lymphocytes there was no significant 

interaction (condition x time) (monocytes: F = 0.09; p = 0.97; lymphocytes: F = 0.87; p = 

0.49). Of the two cell types, only monocytes changed over time (F = 15.59; p < 0.01), with 

increased concentration post exercise but no there was difference apparent between 

conditions (F = 1.56; p = 0.23). For HSP32 concentration in monocytes, there was no 

significant interaction (condition x time) (F = 0.82; p = 0.49), nor was there any difference 

between time (F = 0.60; p = 0.45) or condition (F = 1.10; p = 0.38). However, for HSP32 

concentration in lymphocytes, while there was no significant interaction (condition x time) 

(F = 0.22; p = 0.88), there was a significant main effect for time (F = 5.10; p = 0.03), with 

significant decreases in HSP32 concentration post exercise. Similar to monocytes, there 

was no main effect for condition (F = 0.20; p = 0.89; Table 4.2 and Figures 4.3-4.4). 
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Figure 4.3. Presented are mean ± SEM (n = 7) data for baseline (pre) and percent change 

(pre to post) in monocyte (A), and lymphocyte HSP72 (B) concentration pre to post 

exercise in a thermoneutral environment with (DE-T) and without dehydration (EU-T), and 

a warm environment with (DE-W) and without (EU-W) dehydration. 
a
Significantly 

increased from baseline. 

 

 
Figure 4.4. Presented are mean ± SEM (n = 7) data for baseline (pre) and percent change 

(pre to post) in monocyte (A), and lymphocyte HSP32 (B) concentration pre to post 

exercise in a thermoneutral environment with (DE-T) and without dehydration (EU-T), and 

a warm environment with (DE-W) and without (EU-W) dehydration. 
a
Significantly 

decreased from baseline. 
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90 min Exercise and 5 km TT Performance 

Table 4.3 represents the performance characteristics for 90 min exercise and 5 km TT. 

Total distance covered during 90 min was less in DE-W vs. DE-T and EU-T (p < 0.01). 

Additionally, PO during the 90 min and 5 km TT were significantly less vs. all other trials 

(p < 0.02 and p < 0.03, respectively). Finishing time for the TT was slower in DE-W vs. all 

other trials (p < 0.01; Figure 4.5). 

 

Table 4.3. Presented are mean ± SEM (n = 7) data for the performance results of total 

distance covered (TDC) in kilometres (km), power output (PO) in watts (W), and rating of 

perceived exertion (RPE) after both 90 min of exercise and the 5 km time trial. 

 

 Thermoneutral Warm 

 
Dehydration 

(DE-T) 

Euhydration 

(EU-T) 

Dehydration 

(DE-W) 

Euhydration 

(EU-W) 

90 min TDC 48.5 ± 1.3 49.6 ± 0.9 45.6 ± 1.1
*
 47.1 ± 1.4 

90 min PO 190 ± 8 194 ± 8 172 ± 11
†
 177 ± 13 

5 km PO 268 ± 12 282 ± 14 229 ± 12
‡
 262 ± 16 

90 min RPE 13 ± 2 13 ± 2 15 ± 3 14 ± 2 

 

*Significantly different from DE-T and EU-T (p < 0.01) 

†Significantly different from all other trials (p < 0.03) 

‡Significantly different from all other trials (p < 0.02) 
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Figure 4.5. Presented are mean ± SEM (n = 7) data for 5 km time trial (TT) completion 

time (sec) in a thermoneutral environment with (DE-T) and without dehydration (EU-T), 

and a warm environment with (DE-W) and without (EU-W) dehydration. 
a
Significantly 

slower vs. all other trials. 

 

4.4. Discussion 

The purpose of this investigation was to examine the effect of exercise-induced dehydration 

with or without environmental heat stress on oxidative and cellular stress. Firstly, we found 

increased whole blood GSSG concentration after exercise-induced dehydration, while 

maintenance of euhydration attenuated these increases regardless of environmental 

condition. Secondly, although cellular stress measured via monocyte HSP72 concentration 

was augmented after exercise, neither exercise-induced dehydration nor environmental heat 

stress had any additional influence on the stress response. Finally, the ability to both sustain 

exercise at 95% LT and perform during a 5km TT was reduced only during the heat 

dehydration (DE-W) trial. This reduction in performance occurred seemingly independent 

of increased cellular stress levels. 
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Endurance exercise (Gohil et al., 1988, Viguie et al., 1993), as well as passive and exercise 

hyperthermia (Laitano et al., 2010), are known to elicit increases in GSSG production. We 

observed a mean increase of 29% in GSSG concentration during dehydration trials; 

however by maintaining euhydration we were able to attenuate the increase in GSSG 

concentration irrespective of exercise or environmental heat stress (Figure 4.2). This 

finding is in contrast with those of Gohil et al. (1988) and Viguie et al. (1993), who 

reported an increase in whole blood GSSG concentration from prolonged cycling exercise 

at 65% VO2max. While the authors of these investigations (Gohil et al., 1988, Viguie et al., 

1993) allowed subjects to consume fluid ad libitum during their protocols, they did not 

report the total volume of fluid consumed or the thermoregulatory or body mass changes in 

their subjects, making it difficult to determine if the increases in GSSG were a result of the 

exercise alone or whether the hydration status of the subjects may have perpetuated the 

changes. It is also possible that GSSG concentrations may have been influenced by the 

haemoconcentration associated with levels of dehydration observed in the current study. 

However, Laitano et al. (2010) have previously reported that decreases in plasma volume 

could explain only less than 10% of the increase in GSSG concentration during passive and 

exercise hyperthermia. In the current study, GSSG concentration increased 27% and 30% 

while PV declined 7% and 6% during DE-T and DE-W, respectively. While we 

acknowledge the decrease in PV may have played a role in the increased GSSG 

concentration, we believe this to be minimal. If this were not the case, then we would have 

expected to see a rise in GSSG concentration during the euhydration trials when PV was 

also decreased (2% and 3% in thermoneutral and warm, respectively).  
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While the addition of heat to the exercise model in the current study was used to induce a 

greater dehydration in subjects, we acknowledge previous research has shown increased 

oxidative stress from passive (Laitano et al., 2010, Ohtsuka et al., 1994) and exercise 

hyperthermia (Laitano et al., 2010). Recently, Laitano et al. (2010) found heat stress 

increased whole blood GSSG levels at rest and during exercise when Tc had been passively 

elevated to a similar degree as the current study (~2°C). Similarly, Ohtsuka et al. (1994) 

used a 10 min passive heating protocol in 42˚C hot water bath to induce a significant 

decrease in GSH. However, the influence of heat on changes in glutathione concentration 

was not evident in our study. It is possible that the short duration of these protocols did not 

allow for the antioxidant defences to react to the insult in such a short time period (Ohtsuka 

et al., 1994). Alternatively, the higher training status of our subjects vs. the recreationally 

active subjects of the other two studies could have led to positive adaptations in our 

subject’s antioxidant defence systems, enabling them to tolerate the exercise induced 

oxidative stress more effectively, as shown previously elsewhere (Falone et al., 2010, 

Miyazaki et al., 2001, Niess et al., 1996). While the human research investigating the 

effects of exercise (Gohil et al., 1988), hyperthermia (Ohtsuka et al., 1994) and dehydration 

on glutathione changes has been scarce, in vitro animal models examining the effect of 

dehydration on the glutathione system have shown hyperosmotic treatment to rat 

hepatocytes results in cellular shrinkage and increased production of GSSG (Hussinger et 

al., 1990, Saha et al., 1992). It has been concluded from these animal models that cellular 

shrinkage results in a net oxidation and loss of GSH and that cellular swelling (hypotonic 

treatment) attenuates the formation of GSSG (Saha et al., 1992). Therefore, coupled with 

our findings from the current study, it is plausible that the act of consuming fluids during 
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exercise at a rate matching sweat loss can decrease the oxidative stress potential via 

maintenance of hydration and the antioxidant defence systems. 

 

Although not directly influencing GSSG production in the current study, the influence of 

hyperthermia on other markers of oxidative stress, such as lipid peroxidation measured via 

F2-Isoprostanes (FIP) and malondialdehyde (MDA), have been reported (McAnulty et al., 

2005, Paik et al., 2009). McAnulty et al., (2005) found increased lipid peroxidation (via 

FIP) from exercise that was augmented by the addition of hyperthermia (35°C). However, 

the authors failed to take into account the hydration status of the subjects, who had become 

dehydrated by ~3%. Paik et al. (2009) found dehydration of 3% induced by passive heating 

resulted in a significant increase in MDA. While in the current study TBARS (an indirect 

measure of MDA) tended to increase during dehydration (p = 0.08), the increases in MDA 

from Paik et al., (2009) were similar to GSSG increases in our own study. Our 

contradictory findings to the literature is most likely due to a myriad of factors including 

lower stress levels incurred during cycle exercise rather than running (Byrne et al., 2004), 

shorter duration of exposure to heat (Lovell et al., 2007), increased scavenging activity of 

catalase (Mena et al., 1991), or lack of specificity of the TBARS assay (Fisher-Wellman 

and Bloomer, 2009). However, the current study and previous work (Paik et al., 2009) 

implies that hydration state can influence markers of lipid peroxidation, warranting further 

investigation. 

 

Another common marker used to assess the body’s tolerance to stress-induced changes in 

whole-body homeostasis is through heat shock protein expression (HSP). Increased 

expression of HSP’s is known to result from both exercise (Fehrenbach et al., 2000a) and 
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hyperthermia (Cairo et al., 1985). In the current study we chose to measure HSP 

concentration in monocyte and lymphocyte populations due to their intrinsic links with 

oxidative stress and immune system function (Kalmar and Greensmith, 2009). HSP 

concentration is widely accepted to be increased to a greater extent post exercise in 

monocytes (Fehrenbach et al., 2003b). However, investigations involving HSP32 have 

additionally focused on lymphocyte populations because of the protection shown by the 

inducible isoform heme oxygenase (HO-1) to these cells (Speit et al., 2000). We found that 

exercise in both a thermoneutral & warm environment with and without dehydration led to 

an increase in concentration of HSP72 in monocytes, while concurrently causing a decline 

in HSP32 concentration in lymphocytes (Figures 4.3 and 4.3, respectively). It appears the 

increased HSP72 concentration was stimulated by physical exercise regardless of exercise 

intensity, environment or hydration status of the subjects, likely because of the exercise-

induced hyperthermia, as evidenced by an increase > 1°C in Tc during all trials (Fehrenbach 

et al., 2000b, Oehler et al., 2001). The effect of hydration on HSP expression (both 72 & 

32) in vivo is unknown. However, in vitro research on cultured rat hepatocytes has shown 

reduced HSP72 expression as a result of hyperosmotic treatment (Kurz et al., 1998), while 

there has been no research focused on hydration and HSP32 expression. While in vitro 

research has linked dehydration with decreased HSP72 expression (Kurz et al., 1998), we 

could not make this same inference. It appears the influence of increased oxidative stress 

(Kalmar and Greensmith, 2009) may have been larger than the influence of dehydration on 

increasing HSP72 concentration. Additionally, the added benefit of positive training 

adaptations concurrent with increased levels of hyperthermia and cellular stress may have 

outweighed the effects of dehydration thus leading to increased HSP72 concentration 

(Fehrenbach et al., 2000b). 
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The reason for the decrease in lymphocyte HSP32 concentration is harder to discern. 

Research concerning HSP32 has shown increased expression post exercise in mono- and 

lymphocytes from prolonged running (Fehrenbach et al., 2003a, Niess et al., 1999, 

Thompson et al., 2005) while intermittent treadmill running (Markovitch et al., 2007), 

exhaustive running and eccentric exercise (Fehrenbach et al., 2003a) have failed to induce 

increased HSP32 expression. In fact, while not statistically significant, decreases in HSP32 

expression have been seen as a result of prolonged running (Thompson et al., 2005) and 

eccentric exercise (Fehrenbach et al., 2003a). Interestingly, the fluid loss reported in the 

Thompson study (1.7 ± 0.1 L) may have been the reason for decreased HSP32 expression, 

similar to the decrease observed in the current study (Figure 4.4). Alternatively, 

Markovitch et al. (2007) found decreased ex vivo HSP32 expression in lymphocytes treated 

with hydrogen peroxide two hours after a previous bout of exercise. While subjects were 

asked to refrain from exercise in the 24 hours prior to their trial in the current study, it is 

possible that the exercise training they performed in the days prior to their trials could have 

led to adaptive responses (Markovitch et al., 2007) or possibly delayed HSP induction 

(Fernandez et al., 2003). Additionally, we speculate the decrease in HSP32 concentration in 

our study may be as a result of the lower basal HSP32 expression in trained compared to 

untrained subjects (Niess et al., 1999) and that this, in combination with a high level of 

oxidative stress, resulted in less bio-available HSP32 (Sandstrom et al., 2009). 

 

In conclusion, the current study found increased GSSG concentration after exercise-

induced dehydration, while maintenance of euhydration attenuated these increases. 

Additionally, exercise-induced dehydration did not influence the increase of cellular HSP 
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concentration post exercise. While we found increased oxidative and cellular stress as a 

result of exercise and dehydration, the occurrence of these stress markers was not amplified 

as a result of the environmental heat stress. These findings highlight the importance of fluid 

consumption and maintenance of euhydration during prolonged exercise to attenuate 

thermal and oxidative stress during prolonged exercise in the heat. 
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Chapter 5. Experiment 2: Effects of hydration status on oxidative and cellular stress 

expression in untrained subjects during normothermic and hyperthermic aerobic 

exercise. 

 

This experimental chapter has formed the basis of the publication detailed below: 

Hillman AR, Taylor L, Turner MC, McNaughton L, and Siegler J. (2011) Effects of 

hydration status on oxidative and cellular stress expression in untrained subjects during 

prolonged normothermic and hyperthermic aerobic exercise. Journal of Science and 

Medicine in Sport, In Review 
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Abstract 

Oxidative stress has long been associated with varying degrees of aerobic fitness and most 

recently with hyperthermia and hydration status. The purpose of the current experiment 

was to investigate the effect of prolonged exercise-induced dehydration with and without 

hyperthermia on oxidative stress markers in untrained individuals, to serve as a comparison 

to the results of the first experimental chapter. Seven untrained males (mean ± SD) age: 21 

± 3 yrs, height: 181.1 ± 9.2 cm, weight: 76.8 ± 8.8 kg, and PO at LT 100.0 ± 13.0 W 

completed 90 min of exercise at 95% LT followed by a 5 km time trial (TT) in four trials: 

euhydration in a warm (EU-W) or thermoneutral (EU-T) environment and dehydration in a 

warm (DE-W) or thermoneutral (DE-T) environment (W: 33.9 ± 1.0°C; T: 22.9 ± 1.0°C). 

Increases in whole blood oxidised glutathione (GSSG) (32%, p < 0.01) and intracellular 

monocyte heat shock protein 72 (HSP72) (14%, p < 0.01) concentration were found 

regardless of hydration status and environmental stress. Additionally we noted a 

relationship between GSSG concentration and body mass loss (r
2
 = 0.5, p = 0.05), and 

HSP72 with body temperature and heat storage (r
2
 = 0.5, p = 0.01). Similar to the trained 

individuals in experiment one, PO during the 90 min (7%, p < 0.01) and TT (14%, p < 

0.01) were decreased while thermoregulation was impaired during DE-W only. These 

results demonstrate the increased level of stress in untrained subjects as a result of exercise, 

highlighting the importance of regular physical activity to aid in positive cellular 

adaptations leading to superior antioxidant defences to aid in disease prevention. 
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5.1. Introduction 

In the first experimental chapter it was observed that dehydration resulted in augmented 

oxidative stress (GSSG) while maintaining euhydration attenuated this stress. Additionally, 

the superimposition of hyperthermia did not appear to intensify the stress, which we believe 

was likely due to enhanced thermoregulation of trained individuals. However, this ‘trained’ 

response to the imposed exercise and environmental condition may not be the same for all 

individuals. It has been noted that untrained individuals who maintain sedentary lifestyles 

have higher basal (Miyazaki et al., 2001) and exercise-induced (Falone et al., 2010, 

Miyazaki et al., 2001, Niess et al., 1996) oxidative stress as well as greater potential for 

development of many diseases (Chen et al., 1994, Laaksonen et al., 1996, Nishiyama et al., 

1998, Valko et al., 2004). Therefore the addition of dehydration and hyperthermia during 

endurance exercise could be exacerbated in sedentary individuals because of their inferior 

antioxidant defences (Alessio, 1993) and impaired thermotolerance (Greenhaff, 1989), 

although this has yet to be documented. Accordingly, the purpose of the second experiment 

was to investigate the effect of prolonged exercise-induced dehydration with and without 

hyperthermia on cellular and oxidative stress in sedentary individuals. It was hypothesised 

that exercise would result in augmented oxidative and cellular stress, which would be 

amplified by the addition of dehydration and hyperthermia. Additionally, it was believed 

that the level of oxidative stress would be amplified in the untrained vs. the trained 

participants. 
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5.2. Methods 

Subjects 

Seven untrained male university students, unacclimatised to heat, participated in this study. 

Physical characteristics (mean ± SD) were age: 21 ± 3 yrs, height: 181.1 ± 9.2 cm, weight: 

76.8 ± 8.8 kg, and power output (PO) at lactate threshold (LT): 100 ± 13 Watts (W). 

Subjects were free of any cardiac or metabolic diseases, did not smoke, and refrained from 

supplementation of all kinds (i.e., vitamins, ergogenic aids, etc.) during the testing period. 

Before participation each subject gave written informed consent and completed a medical 

health questionnaire. The study was approved by the Departmental Human Ethics 

Committee following the principles outlined in the Declaration of Helsinki. 

 

Preliminary Measurements 

A preliminary measurement of the LT was carried out and is detailed in the general 

methodologies (section 3.3.).  

 

Experimental Design 

Experimental design of the study was identical to that of experiment one, with the addition 

of skin temperature measurement, the methods of which are detailed in section 3.5. 

 

Statistical Analysis 

All data are represented as mean ± SEM. Statistical analysis was completed using Linear 

Mixed Models for repeated measures (SPSS 18.0, Chicago, IL, USA). Different covariance 

structures were assumed and the one that minimised the Hurvich and Tsai’s criterion was 

chosen for the final model. Where a significant F ratio was observed, post hoc comparisons 
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with Sidak-adjusted p values were used to identify which pairs of means were significantly 

different. Pearson’s correlations (r
2
) were conducted to evaluate the relationship between 

body mass loss, Tc, Tb, and oxidative stress variables. Two-tailed statistical significance 

was accepted as p < 0.05. 

 

5.3. Results 

Cellular Stress 

TGSH/GSSG 

While there was no significant interaction (condition x time) (F = 2.03; p = 0.15), GSSG 

increased pre to post exercise for all trials (F = 12.78; p = 0.01), however there was no 

main effect between conditions (F = 0.59, p = 0.64; Figure 5.1). The correlation between 

GSSG concentration and body mass loss was strong (r
2
 = 0.5; p < 0.01) however, a 

relationship with GSSG was not evident for HS (r
2
 = 0.1; p = 0.60) or Tb (r

2
 = 0.1; p = 

0.63). 

 

Similar to GSSG, there was no significant interaction (condition x time) for TGSH (F = 

1.60; p = 0.22). However unlike GSSG, TGSH did not increase over time (F = 3.37; p = 

0.08) and was not significantly different between trials (F = 1.42; p = 0.27; Figure 5.1). 

Evaluating the relationship between TGSH concentration and body mass loss, we found an 

r
2
 of 0.4 (p < 0.01) indicating a moderate relationship. Similar to GSSG, there was no 

relationship between TGSH concentration and HS (r
2
 = 0.02; p = 0.35) and Tb (r

2
 = 0.01; p 

= 0.50). 
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Figure 5.1. Presented are mean ± SEM (n = 7) data for percent change in total (TGSH) and 

oxidised glutathione (GSSG) pre to post exercise in a thermoneutral environment with (DE-

T) and without dehydration (EU-T), and a warm environment with (DE-W) and without 

(EU-W) dehydration. 
a
GSSG concentration was significantly increased post exercise (p < 

0.01). 

 

TBARS 

There was no significant interaction (condition x time) for TBARS (F = 1.12; p = 0.36). 

Similarly, TBARS concentration did not increase with time (F = 2.51; p = 0.13) and was 

not different between conditions (F = 0.38; p = 0.77) pre to post exercise (% change from 

baseline DE-T: 91.5 ± 8.1%, EU-T: 129.0 ± 16.4%, DE-W: 133.5 ± 28.4%, EU-W: 122.1 ± 

17.1%). TBARS was moderately correlated with body mass (r
2
 = 0.5; p < 0.01). 

 

HSP 

In monocytes there was no significant interaction (condition x time) for HSP72 (F = 0.16; p 

= 0.93). However, HSP72 concentration increased pre to post exercise for all trials (F = 

8.33; p < 0.01) with no differences between conditions (F = 0.04; p = 0.99). Similarly, for 

lymphocytes there was no significant interaction (condition x time) for HSP72 (F = 0.36; p 

= 0.79). There was also no significant increase in HSP72 concentration pre to post exercise 
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(F = 0.77; p = 0.41) and no indication of a trend between conditions (F = 0.76; p = 0.53; 

Figure 5.2). There was a strong relationship between HSP72 concentration and HS and Tb, 

(r
2
 = 0.5, p = 0.01 for both), however there was no relationship between HSP72 

concentration and body mass loss (r
2
 = 0.1, p = 0.60). 

 
Figure 5.2. Presented are mean ± SEM (n = 7) data for percent change in (A) monocyte 

heat shock protein 72 (mHSP72) and (B) lymphocyte (lHSP72) concentration pre to post 

exercise in a thermoneutral environment with (DE-T) and without dehydration (EU-T), and 

a warm environment with (DE-W) and without (EU-W) dehydration. 
a
mHSP72 

concentration was significantly increased post exercise for all trials (p < 0.01). 

 

Table 5.1 represents a comparison of the oxidative stress markers between trained 

participants from experiment one and the current experiment. Resting and post exercise 

GSSG, TGSH, and TBARS were all elevated in untrained vs. trained participants (p < 

0.01). Additionally, post exercise GSH was lower in untrained vs. trained (p < 0.01). There 

was no difference in HSP72 concentration at any time between the participants. 
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Table 5.1. Comparison between trained participants of experiment one and the untrained 

participants of experiment two (mean ± SEM) for pre and post exercise concentrations of 

total (TGSH), oxidised (GSSG) and reduced (GSH) glutathione in pmol, heat shock protein 

72 (HSP72 mean fluorescent intensity (MFI)), and thiobarbituric acid reactive substances 

(TBARS in malondialdehyde equivalents (nmol
.
ml

-1
)). 

 

 Untrained Trained 

 Pre Post Pre Post 

TGSH 4035 ± 364
*
 4163 ± 329

*
 3394 ± 190 3689 ±239 

GSSG 1010 ± 78
*
 1290 ± 148

*
 92 ± 13 108 ± 16 

GSH 3025 ± 323 2873 ± 298
†
 3302 ± 183 3581 ± 228 

HSP72 4.2 ± 0.7 5.0 ± 0.9 3.9 ± 0.6 5.0 ± 0.5 

TBARS 25.4 ± 3.8
*
 28.5 ± 4.5

*
 15.2 ± 1.9 20.7 ± 4.0 

 

*Greater vs. corresponding time in trained subjects (all p < 0.01) 

†Less vs. corresponding time in trained subjects (p < 0.01) 

 

Thermoregulation 

Table 5.2 represents the urine, haemodynamic and fluid changes for all trials. UOsm and 

SOsm significantly increased post exercise in dehydration trials only (p < 0.01). Figure 5.3 

represents the Tc, Ts and HR changes pre to post 90 min exercise. HR significantly 

increased post exercise for all trials (p < 0.01) and was higher post exercise in DE-W vs. 

DE-T & EU-T (p < 0.01) and EU-W vs. EU-T (p = 0.03). Ts was significantly higher post 

exercise in warm vs. thermoneutral trials (p < 0.01). Tc was significantly higher post 

exercise in DE-W vs. DE-T & EU-T (p < 0.01) & dehydration vs. euhydration trials (p < 

0.01). Thermoregulation during DE-W was impaired showing significant main effects for 

Tb (F = 40.19, p < 0.01), HS (F = 10.30, p < 0.01), and PSI (F = 9.11, p < 0.01) which 

resulted in greater Tb in warm trials vs. thermoneutral trials (p < 0.01 for all), significantly 

greater HS in DE-W vs. EU-T (p < 0.03) and significantly higher PSI in DE-W vs. EU-T 

and EU-W (p < 0.01 and p = 0.02, respectively; Figure 5.4). 
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Table 5.2. Presented are mean ± SEM (n = 7) data for changes in urine (UOsm) and serum 

(SOsm) osmolality (mOsm·kg
-1

), total body mass loss (BML, kg), percent BML (%BML), 

plasma volume change (PV∆, %), and total fluid consumed (TFC in litres) during 90 min 

exercise and 5 km time trial (TT). 

 

 Thermoneutral Warm 

 
Dehydration 

(DE-T) 

Euhydration 

(EU-T) 

Dehydration 

(DE-W) 

Euhydration 

(EU-W) 

 Pre Post Pre Post Pre Post Pre Post 

UOsm 405±6 571±7
*
 406±6 408±8 418±9 717±8

*
 425±9 461±9 

SOsm 290±1 302±1
*
 290±1 291±1 290±1 304±1

*
 290±1 291±1 

BML -- 0.9±0.1 -- 0.2±0.1 -- 1.2±0.1 -- 0.2±0.1 

%BML -- 1.2±0.1 -- 0.1±0.1 -- 1.5±0.1 -- 0.2±0.1 

PV∆ -- -4.9±1.1 -- -4.9±1.4 -- -1.2±1.7 -- -2.8±0.8 

TFC -- -- -- 0.9±0.01 -- -- -- 1.2±0.01 

 

*Significantly increased vs. pre (p < 0.01). 

 
Figure 5.3. Presented are mean (n = 7) data for average heart rate (HR), core temperature 

(Tc) and skin temperature (Ts) pre to post exercise in a thermoneutral environment with 

(DE-T) and without dehydration (EU-T), and a warm environment with (DE-W) and 

without (EU-W) dehydration. 
a
Significantly increased HR pre to post exercise for all trials 

(p < 0.01) and higher post exercise HR in DE-W vs. DE-T & EU-T (p < 0.01) and EU-W 

vs. EU-T (p = 0.03). 
b
Tc significantly higher post exercise in DE-W vs. DE-T & EU-T (p < 

0.01) & dehydration vs. euhydration trials (p < 0.01).
c
Significantly higher Ts post exercise 

in warm trials vs. thermoneutral trials (p < 0.01). Error bars were omitted for clarity. 
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Figure 5.4. Presented are mean ± SEM (n = 7) data (A) for mean body temp (Tb), (B) heat 

storage (HS) and (C) physiological strain index (PSI) pre to post exercise in a 

thermoneutral environment with (DE-T) and without dehydration (EU-T), and a warm 

environment with (DE-W) and without (EU-W) dehydration. 
a
Significantly higher Tb in 

warm trials vs. thermoneutral trials (p < 0.01). 
b
Significantly greater HS for DE-W vs. EU-

T only (p < 0.01). 
c
Significantly higher PSI in DE-W vs. EU-T and EU-W only (p < 0.01 

and p = 0.02, respectively). 

 

90 min Exercise and 5km TT Performance 

The DE-W trial resulted in a multitude of performance decrements including a tendency for 

decreased PO during the 90 min (F = 2.99; p = 0.06) and a significant decrease during the 

TT (F = 3.58; p = 0.03). Additionally, total distance covered was less (p < 0.01 and p = 

0.05, vs. EU-T and EU-W, respectively) while TT completion time was slower (p = 0.04) 

in the DE-W trial vs. the EU-T and EU-W trials (Table 5.3). 

 

 

 

 

 

 



100 

Table 5.3. Presented are mean ± SEM (n = 7) data for the performance results of total 

distance covered (TDC, km), power output (PO, W), and rating of perceived exertion 

(RPE) after both 90 min of exercise and the 5 km time trial and TT completion time (sec). 

 

 Thermoneutral Warm 

 
Dehydration 

(DE-T) 

Euhydration 

(EU-T) 

Dehydration 

(DE-W) 

Euhydration 

(EU-W) 

TDC (km) 36 ± 1 38 ± 1 35 ± 1
*
 37 ± 1 

90 min PO (W) 100 ± 5 103 ± 6 96 ± 6 100 ± 5 

5 km PO (W) 197 ± 7 214 ± 11 175 ± 14
†
 201 ± 11 

90 min RPE 10 ± 2 9 ± 1 12 ± 2 10 ± 2 

5 km RPE 17 ± 2 15 ± 3 18 ± 2 16 ± 3 

TT time 568 ± 21 544 ± 19 595 ± 23
‡
 545 ± 12 

 

*Significantly less distance covered in DE-W vs. EU-T and EU-W (p < 0.01 and p = 0.05, 

respectively). 

†Significantly lower PO vs. EU-T (p = 0.03). 

‡Significantly slower TT time in DE-W vs. EU-T and EU-W (p = 0.04). 

 

5.4. Discussion 

The purpose of this investigation was to investigate the effect of exercise-induced 

dehydration with or without environmental heat stress on oxidative and cellular stress in 

untrained participants. A secondary aim of this experiment was to compare the resting and 

post exercise oxidative stress of the untrained participants to the responses of the trained 

participants from experiment one. Firstly, exercise led to an increase in GSSG 

concentration independent of hydration status or environmental heat stress. Secondly, 

HSP72 concentration was increased as a result of exercise, seemingly independent of 

hydration and environmental heat stress. Finally, exercise performance during 90 min and 

TT were diminished during only the DE-W condition. This decrease in performance was 

likely as a result of the interaction between dehydration and thermal stress (r
2
 = 0.6, p < 

0.01), as HS and PSI were also augmented during this trial alone. Additionally, 

comparisons between the responses of the participants in the current experiment to those of 
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experiment one revealed oxidative stress markers tended to be lower pre and post exercise 

in trained participants (Table 5.1). 

 

In the current experiment, we observed an average increase of 34% in GSSG concentration 

post exercise in both normo- and hyperthermic environments, while fluid consumption 

during exercise did not significantly attenuate cellular stress levels ((% are increases from 

baseline) DE-T: 38%, EU-T: 25%, DE-W: 31% and EU-W: 27%; Figure 5.1). While we 

anticipated an exaggerated stress response from our untrained subjects, previous data led 

the author to also expect this increase to be exacerbated when coupled with thermal stress 

(Laitano et al., 2010, Ohtsuka et al., 1994). However, the response was not indicative of a 

proliferation in oxidative stress during hyperthermic conditions and in some instances even 

quantifiably less than under the normothermic conditions (mean difference: 6% between 

warm and hyperthermic trials; Figure 5.1). This most likely resulted from the lower 

intensity maintained by the participants during the heat trials (20 W lower PO in warm vs. 

thermoneutral) even though HS was elevated. 

 

The subjects’ perception of exercising in the heat or under a fluid restricted condition does 

not appear to have influenced these cellular stress findings, as there was no meaningful 

difference between conditions for both the performance parameters and RPE (Table 5.3). 

This suggests that absolute exercise intensity may play a more predominant role than 

exercise duration in the production of oxidative stress in untrained individuals. Indeed, 

while it has been reported that prolonged exercise results in augmented oxidative stress 

compared to shorter duration bouts (Bloomer et al., 2007a), it has also been shown that 

oxidative stress is increased to a greater degree as a result of high-intensity compared to 
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lower intensity exercise (Quindry et al., 2003, Wang and Huang, 2005). Although the 

author acknowledges these findings may result from the self-paced nature of the exercise 

protocol, during pilot work it was discovered that by fixing the intensity for 90 min 

(coupled with the sedentary nature of our participants) a majority of our participants were 

unable to finish the prescribed exercise time. Ultimately, the author felt it more important 

to provide consistent heat exposure durations rather than have subjects exercise for 

different time periods. The ability to self-pace also likens the exercise protocol to a typical 

training session. As a result, and to provide greater ecological validity, the author decided 

upon the self-paced pacer protocol and accepted the different intensities as a limitation.   

 

Although the relationship between GSSG formation and HS in the current study is tenuous 

(r
2
 = 0.10), the data indicates increased GSSG concentration may be intrinsically linked 

with hydration status. While the level of dehydration in this study was modest (mean of 

1.3% of body mass), after correcting for plasma volume changes, GSSG concentrations 

were 8% greater during the dehydration trials compared to the euhydration trials (Figure 

5.1). Unfortunately, this was not a significant as was the case in the first experiment and is 

likely due to the sedentary nature of the subjects. 

 

As previously addressed, sedentary individuals are known to have increased basal 

(Miyazaki et al., 2001) and exercise-induced (Douris et al., 2009, Niess et al., 1999) 

production of free radicals, as well as lower resting GSH concentration (Elokda and 

Nielsen, 2007) and greater resting GSSG concentration (Douris et al., 2009, Tessier et al., 

1995) compared to their trained counterparts. Indeed, resting GSSG concentration of the 

subjects in the experiment was 10-fold greater while TGSH concentration was 16% greater 
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(mean difference of 918 pmol and 641 pmol, respectively) compared to the trained cyclists 

recruited for experiment one. This resulted in a lower basal GSH concentration in the 

sedentary population compared to the trained subjects (mean difference of 227 pmol Table 

5.1). 

 

An average increase of 14% in monocyte HSP72 concentration as a result of exercise, 

regardless of body mass loss, environmental temperature or exercise intensity was found in 

the current experiment (Figure 5.2); results that are in line with the first experiment and the 

literature (Febbraio and Koukoulas, 2000, Febbraio et al., 2002). While there was no 

significant influence of body mass loss on HSP72 concentration (Figure 5.2), there appears 

to be a relationship between HS and HSP72 concentration, which was greatest during DE-

W (r
2
 = 0.7). Interestingly, Tc, Tb, HS, and PSI were also significantly increased (Figure 

5.4) while performance was significantly decreased during this trial (Table 5.3), 

demonstrating a relationship between thermoregulation and HSP72 expression during 

exercise. This is in contrast to the oxidative response (GSSG), and may indicate that HSP72 

expression is more intrinsically linked with exercise in combination with environmental 

heat stress compared to exercise, heat shock or dehydration alone in sedentary individuals. 

Additionally, although not statistically significant, the untrained subjects of the current 

investigation had higher basal HSP72 expression compared to the participants of the first 

experiment (Table 5.1), in line with previous studies (Fehrenbach et al., 2000a). 

 

Similar to the first experiment, the current study did not find any significant changes in 

plasma TBARS levels. This was unexpected and could be due to methodological 

constraints that only allowed for measurement of TBARS pre and immediately post-
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exercise, as previous investigations have reported no change in TBARS levels until after 20 

min (Groussard et al., 2003) and even up to an hour (Peart et al., 2011) into the recovery 

period. Additionally, the lack of significant findings might be a result of the reported lack 

of specificity of the assay (Fisher-Wellman and Bloomer, 2009) as previous studies using 

similar exercise modes and subjects to this have found increases in other markers of lipid 

peroxidation (Wang and Huang, 2005). Comparison of TBARS levels between the 

untrained and trained participants revealed higher resting and post exercise TBARS 

concentrations in the untrained participants (Table 5.1), findings that are in line with the 

literature (Miyazaki et al., 2001). 

 

In summary, the current study found an increase in GSSG and HSP72 concentrations in 

untrained individuals as a result of prolonged cycling regardless of body mass loss and 

environmental heat stress. While there were no differences as a result of hydration or 

environment, the author noted a relationship between GSSG concentration and body mass 

loss, while HSP72 was correlated with body temperature and levels of heat storage. 

Additionally, basal and post exercise concentrations of oxidative stress markers (GSSG, 

TGSH, and TBARS) were augmented in untrained compared to trained subjects, while 

there was no difference in HSP72 concentration, confirming other reports that oxidative 

stress levels are dependent upon training status. 
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Chapter 6. Experiment 3: The effect of glycerol hyperhydration on markers of 

oxidative stress during prolonged cycling in the heat 

 

This experimental chapter has formed the basis of the publication detailed below: 

Hillman AR, Turner MC, Peart DJ, Bray JW, Taylor L, and Siegler J. (2011) A comparison 

of hyperhydration vs. ad libitum fluid intake strategies on measures of thermoregulation 

and endurance performance – Applied Physiology, Nutrition and Metabolism, In Review
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Abstract 

In light of the findings from the first experimental chapter that dehydration can 

significantly influence oxidative stress in trained subjects, the purpose of the third 

experimental chapter was to compare pre-exercise hyperhydration with plain water (W) or 

water with glycerol (G) to no hyperhydration (C) on markers of oxidative stress prior to 

and after a 90 min TT. Seven trained male cyclists and triathletes (age: 28 ± 8 yrs, height: 

178.4 ± 7.8 cm, and mass: 73.2 ± 9.6 kg) covered as much distance as possible during a 90 

min cycle after G, W or C. Blood was collected pre ingestion (PRE), post ingestion/pre 

exercise (PI), immediately post exercise (PE) and 1 hour post exercise (1HR) and analysed 

for whole blood TGSH, GSSG, and plasma levels of lipid hydroperoxides (LOOH) and 

protein carbonyls (PC TGSH concentration increased post exercise in W and C (p < 0.01) 

while PC concentration increased post exercise during C only (p = 0.03). Additionally, 

GSSG concentration was greater PI and PE in C compared to G (p = 0.05, and p < 0.01, 

respectively), likely due to the inferior amount of fluid retained during C compared to the G 

and W trials. Therefore, it appears that both pre exercise hyperhydration with ad libitum 

fluid ingestion during exercise is sufficient to attenuate rises in exercise-induced oxidative 

stress. 
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6.1. Introduction 

In the first experimental chapter it was demonstrated that dehydration increased GSSG 

concentrations in trained cyclists however, in the second experimental chapter while there 

was a similar trend, GSSG concentration was not significantly affected by changes in body 

mass loss. These disparate findings are likely a result of the training status of the subjects 

with trained participants possessing superior antioxidant defence systems that provide 

enhanced protection and are likely aided by euhydration. As a result of the attenuation in 

oxidative stress from water ingestion during exercise the author rationalised that 

manipulation of hydration prior to exercise (increasing total body water via glycerol 

hyperhydration) would likely result in augmentation of this attenuation in stress. Therefore, 

the third experimental chapter utilised trained participants to investigate the effects of pre 

exercise hyperhydration on oxidative stress. 

 

As previously discussed, in vitro hyperosmolality (dehydration) creates oxidative stress 

(Saha et al., 1992) while hypoosmolality (hyperhydration) attenuates DNA damage 

(Martins and Meneghini, 1994). Glycerol is often employed prior to exercise to 

hyperhydrate participants by increasing plasma volume (Hitchins et al., 1999), decreasing 

urine volume (Goulet et al., 2006), and increasing water retention (Montner et al., 1999). 

Following ingestion, glycerol is evenly distributed among the intra- and extracellular 

compartments (Lin, 1977), which would likely result in cellular hypotonicity and 

presumably maintain cellular integrity providing cellular protection against oxidative stress. 

Additionally, glycerol ingestion has been shown to augment blood glucose concentrations 

(Maughan and Gleeson, 1988), which has been shown previously to attenuate the oxidative 

(McAnulty et al., 2007a, McAnulty et al., 2007b, McAnulty et al., 2003) and immune 
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(Nieman et al., 2005, Nieman et al., 2006) response to exercise; however the mechanism 

behind this needs further elucidation. 

 

Therefore, it was the purpose of this experiment to compare pre-exercise hyperhydration 

with glycerol or water to no hyperhydration on markers of oxidative stress. We 

hypothesised that glycerol hyperhydration would result in superior maintenance of 

hydration and attenuation of oxidative stress compared to water and control. 

 

6.2. Methods 

Subjects 

Seven trained male cyclists and triathletes, unacclimatised to heat, participated in this 

study. Physical characteristics (mean ± SD) were age: 28 ± 8 yrs, height: 178.4 ± 7.8 cm, 

and weight: 73.2 ± 9.6 kg. Subjects participated in an average of 15 hrs endurance training, 

riding 371 ± 121 km per week. Subjects were free of any cardiac or metabolic diseases, did 

not smoke, and refrained from supplementation of all kinds (i.e., vitamins, ergogenic aids, 

anti-inflammatory medicines, etc.) during the testing period. Before participation each 

subject gave written informed consent and completed a medical health questionnaire. The 

study was approved by the Departmental Human Ethics Committee following the 

principles outlined in the Declaration of Helsinki. 

 

Experimental Design 

Each subject visited the lab on four occasions, an initial familiarisation followed by three 

experimental trials. All trials were completed in an environmentally controlled chamber 

(Model SSR60-20H, Design Environmental, Gwent, Wales, UK; 35˚C and 40% relative 
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humidity), separated by at least one week, and administered in a randomised fashion. 

During the familiarisation trial subjects were asked to keep a food diary and consume the 

same diet prior to and on all trial days. Additionally, they were requested to refrain from 

caffeine, alcohol and anti-inflammatory consumption and strenuous exercise for the 24 

hour period prior to each trial. 

 

Subjects reported to the laboratory at 9 am in a euhydrated state and two hours 

postprandial. Following resting nude weight measurement, urine and blood sample 

collection, subjects completed either a hyperhydration protocol or a control trial (C). 

Hyperhydration was achieved by consuming either 1.2 g of glycerol per kg of body weight 

in 26 ml of water per kg of body weight (G), or an equal volume of aspartame flavoured 

water (W) at a temperature of 16˚C. Drinks were evenly administered every 30 min for a 

120 min period prior to exercise while participants rated symptoms on a questionnaire 

anchored at 0 (none) to 10 (maximal) for physiological parameters (dizziness, headache, 

stomach fullness, and nausea). For C trial subjects came to the lab at 9 am and rested for 

120 min (duration of hyperhydration period). Following the 120 min in hyperhydration and 

C trials, a blood sample was collected along with nude weight measurement, placement of a 

rectal thermometer and positioning of a recordable HR monitor and skin thermistors. After 

preliminary measurements were complete subjects entered the environmental chamber for 

completion of the exercise task. 

 

In the first two experimental studies the exercise of the participants during the 90 min was 

prescribed at a fixed intensity to facilitate comparison of performance. However, because 

the participants were unable to maintain the prescribed exercise intensity, in this 
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experiment participants were asked to cycle for the same duration but were allowed to self 

pace in an effort to be more ecologically valid. All exercise protocols were completed on a 

Wattbike cycle ergometer (Wattbike Ltd, Nottingham, UK), which has been validated for 

continuous exercise (Hopker et al., 2010). Subjects completed a 5 min warm up at 70 W 

and 80 rpm followed by a 90 min cycle where they were asked to cover as much distance as 

possible in that time. During the 90 min cycle subjects were allowed to consume water 

(16˚C) ad libitum. A final nude weight was taken after completion of exercise along with a 

blood sample and one further blood sample 60 min post exercise. All urine was collected 

during the experimental period for measurement of total urine volume (UV). 

 

Tc, Ts, HR, RPE, thermal sensation, and sweating sensation were recorded at 5 min 

intervals. Mean Ts, mean body temperature (Tb) and heat storage (HS) were calculated 

according to the methods in section 3.5. 

 

Blood Collection and Analysis 

Blood was drawn from a vein in the antecubital region pre-ingestion (PRE), post-

ingestion/pre-exercise (PI), post exercise (PE), and one hour post exercise (1HR) into four 

different Vacuette tubes and analysed for glycerol concentration, SOsm, total (TGSH) and 

oxidised (GSSG) glutathione concentration, protein carbonyl (PC) concentration, and lipid 

hydroperoxide (LOOH) concentration according to manufacturer’s instructions. Assay 

procedures are outlined in sections 3.8.1 through 3.9. Plasma blood glucose (BG) 

concentration was measured in duplicate from K3EDTA plasma on the first thaw (YSI 2300 

Stat, YSI Inc., Yellow Springs, OH, USA). Capillary blood samples were collected for 

measurement of haematocrit (Micro Hematocrit Reader, Hawksley, UK) and haemoglobin 
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(Hemocue 201, Hemocue, Ltd, Sheffield, UK) for calculation of plasma volume changes. 

All blood parameters were corrected for plasma volume changes (see section 3.10). 

 

Statistical Analysis 

Data are represented as mean ± SEM. Statistical analysis was completed using Linear 

Mixed Models for repeated measures (SPSS 18.0, Chicago, IL, USA). Different covariance 

structures were assumed and the one that minimised the Hurvich and Tsai criterion was 

chosen for the final model. Where a significant F ratio was observed, post hoc comparisons 

with Sidak-adjusted p values were used to identify which pairs of means were significantly 

different. Pearson’s correlations (r
2
) were conducted to evaluate the relationship between 

body mass loss, Tb, BG, and oxidative stress variables. Two-tailed statistical significance 

was accepted as p < 0.05. 

 

6.3. Results 

Cellular Stress 

Figure 6.1 presents the changes in TGSH and GSSG concentration throughout the protocol. 

For TGSH there was a significant main effect for time (F = 14.90, p < 0.01), however there 

was no main effect for condition (F = 0.29, p = 0.70; Figure 6.1). For GSSG there was no 

main effect for time (F = 3.38, p = 0.07) however there was a main effect for condition (F = 

4.71, p < 0.05; Figure 6.1). For PC there was a main effect for time (F = 9.41, p < 0.01) 

however there was no main effect for condition (F = 0.70, p = 0.51; Figure 6.2). Finally, 

there was no main effect for time (F = 0.74, p = 0.53) or condition (F = 1.66, p = 0.24; 

Figure 6.3) for LOOH concentration. 
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Figure 6.1. Presented are mean ± SEM (n = 7) data for (A) total (TGSH) and (B) oxidised 

(GSSG) glutathione pre ingestion (PRE), post ingestion/pre exercise (PI), post exercise 

(PE) and one hour post exercise (1HR) during glycerol hyperhydration (G, ■), water 

hyperhydration (W, ▲) or control (C, ○). 
a
Significantly increased PE vs. PRE and PI (p = 

0.04 and p < 0.01, respectively) in W trial. 
b
Significantly greater in PE vs. PI and HR (p = 

0.01 for both) in C trial. 
c
Significantly greater concentration in C vs. G PI and PE (p = 0.05 

and p < 0.01, respectively).
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Figure 6.2. Presented are mean (n = 7) data for protein carbonyls (PC) pre ingestion 

(PRE), post ingestion/pre exercise (PI), post exercise (PE) and one hour post exercise 

(1HR) during glycerol hyperhydration (G, ■), water hyperhydration (W, ▲) or control (C, 

○). 
a
PE greater vs. PI and HR for C (p < 0.01). 
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Figure 6.3. Presented are mean ± SEM (n = 7) data for lipid hydroperoxides (LOOH) pre 

ingestion (PRE), post ingestion/pre exercise (PI), post exercise (PE) and one hour post 

exercise (1HR) during glycerol hyperhydration (G, ■), water hyperhydration (W, ▲) or 

control (C, ○). 

 

 

The relationship between GSSG, TGSH, LOOH, PC, body mass loss, Tb, and BG via 

Pearson’s correlations are summarised in Table 6.1. Table 6.2 presents the data for fluid 

changes during hyperhydration as well as pre to post exercise. Total fluid consumed was 

greater in C vs. G and W (p = 0.03), however urine volume was greater during C vs. G and 

W (p < 0.01) which resulted in less fluid retained in C vs. G and W (p < 0.01). Plasma 

glycerol (mmol/l) increased PI in G (p < 0.01) and remained elevated throughout the trial (p 

< 0.01). Additionally, plasma glycerol concentration increased PE in C (p<0.01). Plasma 

glucose concentration (mg/dL) increased PI during G trial (p = 0.04) as well as PE during 

G and C trials (p < 0.01 for both; Figure 6.4). 
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Table 6.1. Presented are the Pearson’s correlations between oxidised (GSSG) and total 

(TGSH) glutathione, lipid hydroperoxides (LOOH), protein carbonyls (PC), body mass loss 

(BM), mean body temperature (Tb), and blood glucose (BG) pre to post ingestion (PRE to 

PI), post ingestion to post exercise (PI to PE) and pre ingestion to post exercise (PRE to 

PE). 

 

PRE to PI PI to PE PRE to PE 

PC & TGSH r
2
=0.4

*
 PC & Tb r

2
=0.4

†
 PC & Tb r

2
=0.4

‡
 

PC & LOOH r
2
=0.5

*
 PC & BG r

2
=0.6

∂
 PC & BG r

2
=0.4

*
 

PC & BM r
2
=0.4

*
 PC & BM r

2
=0.4

†
 GSSG & LOOH r

2
=0.5

∂
 

GSSG & LOOH r
2
=0.4

†
 GSSG & LOOH r

2
=0.5

∂
   

GSSG & BG r
2
=0.3

†
 GSSG & BG r

2
=0.3

†
   

 

*
p = 0.01 
†
p = 0.04 
‡
p = 0.03 
∂
p < 0.01 

 

Table 6.2. Presented are mean ± SEM (n = 7) data for body mass changes (BM∆), plasma 

volume changes (PV∆), total fluid ingested (TFI in litres), and total urine volume (UV in 

litres) during hyperhydration and post exercise, and percent dehydration (%BML) and total 

fluid retained (TFR in litres) post exercise during the glycerol, water and control trials.  

 

 Glycerol (G) Water (W) Control (C) 

 Hyperhydration Exercise Hyperhydration Exercise Exercise 

BM∆ 0.67 ± 0.24 -0.06 ± 0.21 0.50 ± 0.15 -0.44 ± 0.38 -0.19 ± 0.38 

PV∆  6.75 ± 0.80 -5.16 ± 1.31 5.50 ± 0.65 -5.46 ± 1.53 -5.69 ± 0.47 

TFI 1.90 ± 0.10 1.39 ± 0.10 1.90 ± 0.10 1.49 ± 0.19 2.00 ± 0.23
*
 

UV 1.12 ± 0.05 0.27 ± 0.03 1.30 ± 0.07 0.38 ± 0.04 0.84 ± 0.02
†
 

%BML -- -0.11 ± 0.32 -- -0.66 ± 0.52 -0.20 ± 0.23 

TFR -- 1.90 ± 0.10 -- 1.71 ± 0.19 1.16 ± 0.15
‡
 

 

*Significantly greater vs. G and W (p = 0.03) 
†
Significantly greater vs. G and W (p < 0.01) 
‡
Significantly less vs. G and W (p < 0.01 for both) 
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Figure 6.4. Presented are mean (n = 7) data for (A) plasma glycerol and (B) glucose 

concentrations pre ingestion (PRE), post ingestion/pre exercise (PI), post exercise (PE) and 

one hour post exercise (1HR) during glycerol hyperhydration (G, ■), water hyperhydration 

(W, ▲) or control (C, ○). 
a
PRE lower vs. PI, PE and HR for G trial (p < 0.01 for all). 

b
G 

greater than corresponding time in W and C trials (p < 0.01). 
c
PE greater vs. PRE, PI and 

HR for C trial (p < 0.01). 
d
Greater vs. PRE for G (p = 0.04 and p < 0.01 for PI and PE, 

respectively). 
e
PE greater vs. PI for C (p < 0.01). 

f
PE C greater vs. W (p = 0.02). 

 

 

Thermoregulation 

HR increased with exercise (F = 272.52, p < 0.01) however there was no difference 

between trials at any point (F = 1.13, p = 0.35). Tc (F = 105.62, p < 0.01), Ts (F = 36.57, p 

< 0.01), and Tb (F = 208.14, p < 0.01) increased post exercise, however there were no 

differences between conditions (Figure 6.5). While all ratings were increased pre to post 

exercise (P < 0.01), there were no significant differences between trials for RPE, thermal 

sensation or sweating sensation (P > 0.05 for all). 
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Figure 6.5. Presented are mean (n = 7) data for (A) core temperature (Tc) (B) mean body 

temperature (Tb) and (C) heat storage (HS) during glycerol hyperhydration (G, ■), water 

hyperhydration (W, ▲) or control (C, ○). 
a
Tc and Tb significantly lower after 60 min in G 

(p < 0.01). 

 

 

Exercise Performance 

There was no significant difference between trials for either total distance covered (G: 51 

±2 km, W: 51 ±2 km, C: 50 ±1 km; F = 1.43, p = 0.28) or PO (G: 159 ±15 Watts, W: 160 

±14 Watts, C: 156 ±13 Watts; F = 0.50, p = 0.62) during the 90 min exercise. 

 

6.4. Discussion 

The major finding of the current experiment is that oxidative stress appears to have been 

attenuated by fluid consumption prior to and during exercise, in particular glycerol 

hyperhydration maintained significantly lower GSSG concentrations pre and post exercise 
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compared to control trial. Additionally, hyperhydration (glycerol and water) was superior 

to control trial for attenuating increased PC concentration post exercise.  

 

While there were minimal difference between the pre exercise hydration interventions, 

there does appear to be an influence of hydration on all markers. Hyperhydration 

maintained significantly lower levels of GSSG and tended to maintain lower PC 

concentration compared to control throughout the protocol (Figures 6.1 and 6.2, 

respectively). Interestingly, glycerol hyperhydration resulted in a 10% increase in LOOH 

post ingestion (Figure 6.3), which is likely due to increased lipid formation during glycerol 

metabolism (Robergs and Griffin, 1998). This result is likely physiologically insignificant 

because additional markers of stress show a decrease (GSSG, PC) or no change (TGSH) 

during this same period and LOOH levels returned to below baseline PE. Additionally, 

GSSG, TGSH, PC, and LOOH concentrations tended to be higher PE during C compared 

to G and W (Figures 6.1-6.3). This was possibly due to the inferior amount of fluid 

retained during C compared to the G and W trials (Table 6.2). However, because only one 

of the oxidative stress markers was significantly increased PE (PC concentration), it is 

plausible that because subjects drank more fluid during exercise in C compared to G and W 

(Table 6.2) this facilitated attenuation of oxidative stress in a similar manner to pre exercise 

hyperhydration. Therefore, it appears that both pre exercise hyperhydration as well as fluid 

ingestion during exercise to match sweat losses are sufficient to blunt rises in exercise-

induced oxidative stress; the mechanism of this attenuation, however, remains to be 

elucidated. 
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While in vitro work indicates euhydration is vital to attenuating oxidative stress (Martins 

and Meneghini, 1994, Rios et al., 2011, Saha et al., 1992, Zhang et al., 2004) only one 

previous in vivo investigation has directly investigated the relationship between 

dehydration and oxidative stress (Paik et al., 2009). In this study, the authors found a 

significant attenuation in oxidative stress when participants rehydrated with both water and 

sports drink (CHO) and that this attenuation was significantly greater in participants 

consuming CHO. They concluded this resulted from faster recovery of plasma volume and 

lower degree of dehydration with consumption of CHO compared to water, which has been 

previously described (Criswell et al., 1992, Maughan and Gleeson, 1988, Shi and Gisolfi, 

1998). Indeed, in the current study BG levels and body mass loss were strongly correlated 

throughout the protocol (average r
2
 = 0.60, p < 0.01). However, additional research has also 

noted a significant attenuation in lipid peroxidation by-products from ingestion of CHO by 

way of increased or maintained BG levels (McAnulty et al., 2007b, McAnulty et al., 2003). 

After ingestion, approximately 70-90% of glycerol is metabolised to glyceraldehyde 3-

phosphate and used in gluconeogenesis (Stryer 2005; Figure 2.5) and should thus aid in 

maintaining adequate glucose levels. While the majority of investigations utilising glycerol 

have found no change, we found a significant rise in BG post glycerol ingestion, as well as 

post exercise with and without glycerol ingestion, but not during water ingestion (Figure 

6.4). Although stress was attenuated as a result of fluid ingestion in all trials, BG was only 

increased in two of the three trials; therefore it is unlikely the increase in BG was the sole 

reason for the decreased stress in the current study. However, there was a moderate 

relationship between BG and PC concentration after hyperhydration and exercise ( r
2
 = 0.6, 

p < 0.01, r
2
 = 0.4, p = 0.01, respectively) therefore it is likely that both increased BG 
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concentration as well as increased hydration played a role in attenuating the oxidative 

stress. 

 

It is also important to note that these studies comparing CHO and water ingestion on 

oxidative stress were limited in that they did not include a control trial or a hydration 

measurement (i.e., blood and urine osmolality, body mass changes, etc.) making it unclear 

whether fluid ingestion per se or CHO ingestion is responsible for attenuation of oxidative 

stress. Similarly, in the current study the participants were allowed to drink fluid ad libitum 

during all trials, making it difficult to discern whether the hyperhydration had any effect 

alone, therefore future work should aim to disseminate the effects of pre exercise 

hyperhydration independent of additional fluid consumption on oxidative stress as well as 

thoroughly address with proper controls the effect of CHO ingestion on oxidative stress. 

 

In conclusion, the current study found attenuation of oxidative stress as a result of pre 

exercise hyperhydration and ad libitum fluid consumption during exercise and may be due 

in part to increased BG levels. 
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Chapter 7: General Discussion and Conclusions 
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7.1. General Discussion 

To draw this thesis to a close it is pertinent to revisit the experimental goals set in the 

general introduction section. These objectives are reiterated below with a statement 

regarding how such goals have, or have not, been satisfied. 

 

Experiment 1  

i) Investigate the effect of dehydration on oxidative and cellular stress markers.  

- Dehydration significantly increased GSSG concentration while euhydration 

attenuated these increases. 

ii) Investigate the effect of hyperthermia on oxidative and cellular stress markers. 

- Hyperthermia alone had no effect on any of the markers of oxidative or cellular 

stress. 

iii) Investigate the combined effect of dehydration and hyperthermia on oxidative and 

cellular stress markers. 

- The superimposition of hyperthermia during dehydration did not result in 

augmented levels of oxidative or cellular stress. 

 

Experiment 2  

i) Investigate the effect of dehydration and hyperthermia individually, as well in tandem, on 

oxidative and cellular stress markers in untrained individuals. 

- GSSG and HSP72 concentrations were increased as a result of exercise 

regardless of body mass loss or environmental stress. However, there was a relationship 

between GSSG concentration and body mass loss as well as a relationship between HSP72 

concentration and HS. 
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ii) Compare the oxidative and cellular stress response in untrained participants to the 

trained participants in experiment 1. 

- Untrained subjects showed greater basal and post exercise GSSG, TGSH, GSH, 

and TBARS concentrations. There was no difference between trained and untrained 

subjects in resting or post exercise HSP72 concentration.  

 

Experiment 3 

i) Investigate the effect of pre-exercise glycerol or water hyperhydration on oxidative stress 

markers. 

- Glycerol hyperhydration maintained significantly lower GSSG concentrations pre 

and post exercise compared to control trial. Additionally, hyperhydration (glycerol and 

water) was superior to control trial for attenuating increased PC concentration post 

exercise. 

 

ii) Investigate the effect of pre-exercise glycerol or water hyperhydration on exercise 

thermoregulation and performance 

- Pre-exercise glycerol hyperhydration resulted in enhanced thermoregulation via 

decreased Tb and Tc after 60 min of exercise, however, there was no effect of either water 

or glycerol hyperhydration on exercise performance. 

 

At the time this research was undertaken there had been no previous investigations, and 

since there has been one published work into the effects of altered hydration state on 

markers of oxidative and cellular stress during exercise (Paik et al., 2009). Additionally, 

while there has been limited investigation into the effect of hyperthermia on markers of 
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oxidative and cellular stress (Laitano et al., 2010, McAnulty et al., 2005, Ohtsuka et al., 

1994), only one of these investigations has not been flawed by confounding variables such 

as altered hydration status, however the exercise used in this study is impractical and not 

applicable to daily physical activity (Laitano et al., 2010). Finally, no previous work has 

investigated the combined effects of exercise-induced dehydration with and without 

thermal stress on markers of oxidative and cellular stress, which was the aim of the present 

work.  

 

In the first experimental study the author aimed to investigate the effects of dehydration on 

oxidative stress in trained cyclists. Previous in vitro investigations have demonstrated 

increased cellular susceptibility to damage as well as a net oxidation of GSH that occurs 

from dehydration-induced cellular shrinkage (Saha et al., 1992). Therefore, it was 

hypothesised that dehydration would result in augmented oxidative stress and that this 

phenomenon would be amplified when combined with hyperthermia. Indeed a significant 

influence of hydration on oxidative stress was found; GSSG concentration increased by a 

mean of 29% post exercise as a result of dehydration, while euhydration actually reduced 

GSSG concentration. However, there was no additive effect of hyperthermia on changes in 

GSSG concentration. Additionally, it was hypothesised that HSP concentrations would be 

diminished as a result of dehydration, in conjunction with previous in vitro investigations 

(Kurz et al., 1998). However, on the contrary HSP72 concentration was augmented while 

HSP32 concentration was decreased, but neither appeared to be by affected by hydration or 

environment. The author suspects the augmentation in HSP72 concentration was a result of 

the increased oxidative stress ensuing from exercise. The decrease in HSP32 concentration 

was at first perplexing; however, upon further examination of exercise induced changes in 
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HSP32 it was found that many other investigations have also noted similar decreases in 

HSP32 concentrations (Fehrenbach et al., 2003a, Thompson et al., 2005), making our 

results unremarkable; however, the mechanism for this decline is still unclear. The author 

attributes the attenuation in oxidative stress and HSP expression to the enhanced aerobic 

capacity of our subjects who were highly trained competitive cyclists. 

 

As a result of the findings of the first experiment the author decided to pursue a follow up 

study using untrained participants, to compare the physiological responses to those of the 

trained cyclists. Interestingly, in contrast to the trained subjects of the first experiment, 

oxidative stress in the participants of the second study was not hydration-dependent; 

oxidative stress increased as a result of exercise, regardless of hydration status or 

environmental heat stress. However, there was no relationship between hydration status and 

GSSG but there was a trend for GSSG concentration to be higher during dehydration trials. 

These results are likely due to the inferior antioxidant defences of the untrained participants 

(Alessio, 1993), which was confirmed by augmented resting and post exercise 

concentrations of oxidative stress markers (TGSH, GSSG, and TBARS) in the untrained 

compared to the trained participants. Matching the findings of the first experiment, HSP72 

concentration increased as a result of exercise, regardless of hydration or thermal stress. 

Additionally, there was a significant relationship between HS and HSP72. Unfortunately, 

this relationship could not be established for the first study because Ts was not measured 

therefore Tb and HS could not be calculated. However, the author suspects that as a result 

of their greater aerobic fitness levels, HSP72 expression in the trained participants would 

be less dependent upon HS and Tb. 
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Finally, because oxidative stress was attenuated by fluid ingestion during exercise in the 

trained cyclists, the author decided to alter the pre-exercise hydration status of participants, 

as many athletes do, to understand the effect this would have on oxidative stress during 

exercise. Accordingly, hyperhydration was attained using either glycerol or water two 

hours prior to exercise, while participants were allowed to consume fluid ad libitum during 

exercise trials. These trials were all completed in a hot environment because the use of 

glycerol hyperhydration would realistically have no impact on thermoregulation and 

performance in normothermic environment and the first two experimental chapters 

demonstrated that oxidative stress was not altered by hyperthermic exposure, contrary to 

other reports (Laitano et al., 2010, McAnulty et al., 2005, Ohtsuka et al., 1994). The 

primary finding of the third experiment was that oxidative stress appears to have been 

attenuated by fluid consumption prior to and during exercise. There was no difference 

between glycerol and water interventions for attenuating rises in PC concentration, 

however glycerol hyperhydration was superior to water for attenuating rises in GSSG 

concentration. Additionally, similar to the first experiment, fluid consumption during 

exercise without hyperhydration (control) attenuated oxidative stress (no significant 

increases in GSSG or LOOH post exercise). While there was no significant difference 

between the pre exercise hydration interventions, there does appear to be an influence of 

hydration on all markers. Additionally, while not significant, oxidative stress tended to be 

greater in the control trial compared to the hyperhydration trials, likely due to the inferior 

amount of fluid retained during the control trial. However, it is possible that because 

subjects drank more fluid during exercise in the control compared to the hyperhydration 

trials, this facilitated attenuation of oxidative stress to the same extent as pre exercise 

hyperhydration.  



127 

 

Taken together, the findings of these three experiments appear to show that both pre 

exercise hyperhydration as well as fluid ingestion during exercise are sufficient to blunt 

rises in exercise-induced oxidative stress; the mechanism of this attenuation, however, 

remains to be elucidated. In vivo research has shown an increase in cellular susceptibility to 

ROS attack during dehydration, however no human cellular in vivo experiments have 

investigated the relationship between cellular dehydration and oxidative stress; therefore it 

is difficult to say if this is the mechanism by which oxidative stress is attenuated with fluid 

consumption. It is possible that oxidative stress is simply attenuated by the increase in cell 

volume and maintenance of cell wall integrity. Additionally, it is possible that because the 

markers of oxidative stress were measured in blood, the concentrations were altered by 

plasma volume shifts and thus may not accurately depict the stress levels. However, all 

oxidative stress marker concentrations have been corrected for plasma volume shifts 

therefore the author believes the concentrations do accurately reflect the oxidative stress. 

Future investigations are needed to elucidate further the relationship between hydration 

status and oxidative stress. 

 

7.2. Experimental Limitations 

Notably lacking from this thesis are power calculations for appropriate sample sizes. This is 

due to a variety of reasons, most important of which was lack of data to base a power 

sample on. Few studies previously used flow cytometric analysis of HSP making it difficult 

to calculate a necessary sample size based on that data. Additionally, no previous published 

investigations exist using the glutathione assay kit we employed, therefore no data exists to 

use in a power calculation. Additionally, the particular kit used to measures glutathione 
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concentrations in pmol, while most published literature report their concentrations in 

µmol/l or nmol/l. After many attempts through Enzo Life Sciences technical support to 

convert our data to those of the literature failed, the author determined it would not be 

possible to make the conversions that would aid in not only a power calculation, but also in 

making our data more analogous to the literature. Finally, power calculations for the final 

study were not completed because the study size was dictated by the cost of sample 

analysis and failure to recruit more subjects. Although the author sought to utilise more 

participants, recruitment of trained cyclists who were in training for the upcoming cycling 

season and financial constraints only allowed for the use of seven participants. 

 

The studies in this thesis are also limited by the oxidative stress markers used, particularly 

the use of the TBARS assay for the first two experiments. Although TBARS has been 

reported to lack specificity for MDA (Oh-ishi et al., 2000), the assay is a straightforward 

and cost effective marker for lipid peroxidation. However, as the thesis evolved it became 

clear that the use of more sensitive assays was necessary. Thus, in the final study the author 

chose to measure a marker of lipid peroxidation (LOOH), a marker of protein oxidation, 

(PC) and a marker of redox status (GSSG). Additional measurement of F2-isoprostanes 

(FIP) and DNA damage were sought, however, they were expensive and technically 

complex and therefore excluded. Also excluded was the measurement of HSP72 as this did 

not show any relationship with body mass loss or oxidative stress in the first two 

experiments. To further improve upon the changes made in the final experiment, future 

studies involving the topics laid out in this thesis may also venture to measure HSP27, 

which has been linked with glutathione homeostasis (Arrigo et al., 2005) and may aid in 

clarifying its role in oxidative stress. Additionally, use of superior techniques, such as 
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HPLC for measurement of glutathione, TBARS, and FIP would make these markers more 

sensitive and accurate; however, this technique is also expensive. 

 

It is important to note that the controls for the final experiment were not complete, 

impeding the determination of the effect pre-exercise hyperhydration and ad libitum fluid 

intake during exercise had on oxidative stress. Because the first experimental study 

demonstrated that fluid ingestion during exercise results in attenuated stress, the author 

concedes there should have been a trial(s) without fluid ingestion during exercise. 

However, because this is not practical and would not have real world applications, the 

author did not choose this scenario. 

 

7.3. Future recommendations 

As a result of the novel findings and also the limitations of the current thesis, the author 

believes there is a plethora of future research that could be sought to further clarify the 

relationship between body mass loss and oxidative stress. Most importantly the literature is 

lacking any data on the effects of non-exercise, non-thermal stress induced dehydration on 

markers of oxidative stress. Such a scenario would be common, especially in those 

participating in physical activity where rehydration and refuelling do not return body fluids 

to resting levels, which may take up to 24 hours when 2-5% of body mass is lost (Burke, 

2007) or individuals who simply do not consume enough fluid throughout the day. 

Additionally, for the sake of maintaining real world applicability, measurement of 

oxidative stress markers in individuals participating in competitions would be appealing. 

This may reveal whether the oxidative stress is detrimental or whether it impacts 

performance. Finally, given the link between aging, oxidative stress and cardiac disease, it 
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would be relevant to investigate the effects of hydration changes in older adults, with or 

without cardiac disease, on oxidative stress, particularly those who are taking medicines for 

blood pressure, which would alter body fluid status. 

 

7.4. Conclusions 

It is clear that hydration status plays a role in the production of oxidative stress during 

exercise in trained individuals. Maintenance of euhydration as well as pre-exercise 

hyperhydration attenuated rises in oxidative stress. However, oxidative stress in untrained 

individuals did not appear to respond to changes in hydration status, likely because of their 

inferior antioxidant defences. Additionally, HSP72 concentration appears to be intrinsically 

linked with exercise hyperthermia and does not appear to be affected by changes in body 

mass loss. These findings highlight the importance of proper fluid intake prior to and 

during exercise, as well as participation in regular physical activity to attain systemic 

adaptation and hormesis. 
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