
THE UNIVERSITY OF HULL 

Aspects of Automation 

in the 

Shoe Industry 

being a Thesis submitted for 

Doctor of Philosophy 

in the University of Hull 

by 

Frederick Mark Hudman, B. Eng (Hons. ) 

March 1997 



Contents. 

Abstract i 
Acknowledgments iii 
Abbreviations iv 

Chapter 1. Introduction 1 
1.0 Introduction 1 

1.1 The shoe making process 1 

1.1.1 ̀ Clicking' 4 

1.1.2 ̀ Preparation' 6 

1.1.3 ̀ Closing' 7 

1.1.4 ̀ Making' 7 

1.1.5 ̀ Finishing' 10 

1.2 Process automation 10 

1.2.1 Vision systems for automation 13 

1.3 Project background and historical development 18 

1.4 The research 22 

Chapter 2. The Morphology and properties of skin and leather 24 

2.0 Introduction 24 

2.1 Properties of skin 25 

2.2 The structure of leather 26 

2.3 An investigation into the collagen structure of a typical calf hide 31 

2.3.1 Variations in collagen bundle size 31 

2.3.2 Variations in net collagen bundle orientation 34 

2.4 Stretch and strength in relation to collagen structure 35 

2.5 Conclusions 36 

Chapter 3 Leather handling and manipulation 38 
3.0 Introduction 38 

3.1 The B. U. S. M `Autoscan' 39 

3.2 Types of movement 40 

3.2.1 Drift 40 

3.2.2 Slip 46 

3.2.3 Rotation 48 



3.3 External causes of error 48 

3.3.1 Needle drag 48 

3.3.2 Thread drag 49 

3.4 Autoscan redevelopment 53 

3.4.1 Types of belt mechanism 54 

3.4.2 Belt handling mechanism 54 

3.5 Belt characteristics 56 

3.5.1 Determination of required holding forces 57 

3.5.2 Initial drive surface characteristics 60 

3.5.3 Compliant surface construction 61 

3.5.4 Belt tensioning 65 

3.6 System evaluation 67 

3.7 Pinned belts 69 

3.7.1 Effect of a pin array on sample leathers 69 

3.7.2 Determination of required holding force for pinned belts 71 

3.7.3 Measurement of workpiece movement for pinned belts 76 

3.7.4 Movement results for flat samples 77 

3.7.5 Movement results for compound samples 80 

3.8 Conclusions on leather handling 83 

Chapter 4. The pre-tacking of shoe components into 85 
three dimensional structures 

4.0 Introduction 85 

4.1 Pre-tacking of lamina 86 

4.2 Pre-tacking into three dimensions 87 

4.2.1 Pre-tacking principle 87 

4.2.2 3-D Pre-tacking hypothesis 88 

4.2.3 Limited contact points 89 

4.2.4 The manipulation process 92 

4.3 An experimental pre-tack system 93 

4.4 The pre-tack medium 97 

4.5 The gripping mechanism 97 

4.5.1 Physical gripping mechanisms 98 

4.5.2 Vacuum gripping mechanisms 99 

4.5.3 Magnatak gripping 100 

4.6 Results 103 

4.7 Discussion 107 



Chapter 5. Edge following 109 

5.0 Introduction 109 

5.1 The implementation of lasers 109 

5.2 Laser triangulation 110 

5.3 Simple edge following using laser triangulation 112 

5.3.1 Edge characteristic extraction 112 

5.3.2 Limitations of simple edge following 114 

5.4 Edge position determination for complex edges 117 

5.4.1 Accurate edge extraction of square cut edges 117 

5.5 Edge determination for folded parts 120 

5.5.1 Characteristic extraction 120 

5.5.2 Tightly folded edges 122 

5.5.3 Edge profile representation 124 

5.5.4 Closed fold edge determination 126 

5.5.5 Results of edge profile extraction 128 

5.6 Conclusions on edge following 131 

Chapter 6.3-D profile extraction for Making processes 134 

6.0 Introduction 134 

6.1 Lasting 134 

6.1.1 Upper topography 135 

6.1.2 Characteristic extraction 137 

6.1.3 Profile matching 144 

6.1.4 Discussion on lasting 146 

6.2 Bottoming applications 147 

6.2.1 Path determination 147 

6.2.2 Edge extraction 148 

6.2.3 Sole line determination and correction 152 

6.2.4 Results of sole line determination 153 

6.2.5 Z-axis profile for depth control 157 

6.3 Roughing and cementing 159 

6.4 Shoe soling applications 160 

6.5 Discussion on automation in shoe bottoming 161 

Chapter 7. Discussion and Conclusions 164 

7.0 Discussion and conclusions 164 

References 168 



Appendices 

Appendix A. Results obtained from Scanning Electron Microscope 172 

observations of a vegetable tanned, buffalo calf hide 

Appendix B. Four-bar-link simulation results 182 

Appendix C. Foam compression test results. Holding properties of pinned belts 195 

Appendix D. A summary of experimental procedures implemented for analyzing 205 

workpiece movement 

Appendix E. Drift / slip results for the Autoscan. 213 

Original roller configuration 

Appendix F. Drift / slip results for the Autoscan. 217 

Carborundum belts 

Appendix G. Drift / slip results for the Autoscan. 

Flat components 

228 

Appendix H. Drift / slip results for the Autoscan. 237 

Compound components 

Appendix I. Determination of required sample size 245 

Appendix J. Examples of pre-tacking various materials 251 

Appendix K. Laser line-stripe characteristics and example images 255 

Appendix L. Laser line-stripe investigations into characteristic extraction 262 

for edge following 

Appendix M. 3-D Topography for lasting 269 

Appendix N. 3-D Topography 281 



Figures. 

Chapter 1 
1.1 Component parts that can be found in the construction of a typical shoe 2 

1.2 Flow chart summary of the shoe making process 3 

1.3 Schematic showing the variation in leather quality across a typical hide 5 

1.4 Schematic drawing of the B. U. S. M Vector stitcher 12 

Chapter 2 
2.1 Cross-section of a typical hide 27 

2.2 Location of samples taken for SEM observation 31 

2.3 Results of SEM observations into collagen fibre bundle size 32 

2.4 Results of SEM observations into net collagen fibre orientation 33 

Chapter 3 
3.1 Schematic of the 'Autoscan' 41 

3.2 Typical results for a leather sample demonstrating a cyclical drift 43 
pattern as described by D. L. Smithill 

3.3 The effects of compression on a compliant material 45 

3.4 The effect of coarse rollers 47 

3.5 Thread tensioning cycles for a cantilever mechanism 51 

3.6 Typical Pfaff 4-bar-link configuration 52 

3.7 Belt handling mechanism 55 

3.8 Schematic representation of a complete belt handling mechanism 56 

3.9 MPCS DC. Servo motor control profile 57 

3.10 Resultant force vector diagram of the forces exerted by the Autoscan 59 
during stitching 

3.11 Effects of compound belt construction 63 

3.12 Plot showing the compression characteristics for three selected foams 64 

3.13 Cross-section through a compliant tensioned pulley 66 

3.14 Example of drift using Carborundum coated belts 68 

3.15 Quick test of pins on sample leathers 70 

3.16 Slip against applied force for leather samples on a pinned belt 72 

3.17 Pinned belt construction 75 

3.18 Typical movement results measured by the line-scan camera 78 
for Sample DWFL8 

3.19 Edge flapping causing the appearance of drift 79 



3.20 Typical movement measurements obtained by the line-scan camera 82 
for sample BROGUE shoe component 

3.21 Statistical comparison of flat and compound parts tested 84 

Chapter 4 

4.1 Reduction in required points resolution by considering physical properties 88 

4.2 Three dimensional pre-tacking 90 

4.3 The effects created by controlling gripper rotation on the edge of a part 91 
during 3-D pre-tacking 

4.4 Pre-tacking and upper component 94 

4.5 Limited contact pre-tacking 95 

4.6 Schematic representation of a complete pre-tacking system 96 
4.7 Pre-tack gripping mechanism 102 

4.8 Component used to test pre-tack principle 104 

4.9 Average misalignment error measured after final stitching 106 

4.10 Chart showing the error distribution across the test samples 106 

Chapter 5 
5.1 Simple laser triangulation configuration 

5.2 Results obtained for a square cut edge using laser triangulation 113 

5.3 Results obtained for a Brogue component edge 115 

5.4 Information loss due to obstructions 116 

5.5 Image processing techniques for edge characteristic extraction 118 

5.6 Characteristic points and distances used to determine the edge profile 121 
of a folded part 

5.7 Roll-off compensation for a folded edge 123 

5.8 The results of processing for a folded edge 125 

5.9 Determination of closed edge position for a folded part 126 

5.10 Graphical representation of edge profile characteristics 127 

5.11 Determination of roll-off angle for an incident laser light 130 

5.12 Possible stitching effects observable for folded edges 132 

Chapter 6 
6.1 Scanning configuration for Lasting applications 136 

6.2 Determination of last alignment 138 

6.3 Examples of last alignment errors for a Brogue style upper 140 

6.4 Moccasin type shoe with extracted forepart characteristics 142 

6.5 Moccasin style shoe with full characteristics extracted 143 

6.6 Results of line-stripe comparison 145 



6.7 Scanning configuration for bottoming operations 148 

6.8 Insole position determination 149 

6.9 Ideal angles for edge co-ordinates extracted from a lady's court shoe 150 

6.10 Sole line points extracted from a lady's court shoe 151 

6.11 Point error correction using cubic spline interpolation 153 

6.12 Plan view of sole line extraction for a lady's court shoe 155 

6.13 3-D plot of extracted sole line before and after processing 156 

6.14 The effect of varying object height on the camera image 157 

6.15 Depth profiles extracted from a lady's court shoe 158 

6.16 Plan view of sole line extraction for a gentleman's sole 162 

6.17 Gentleman's shoe sole image 163 

Plates. 

Plate 1. B. U. S. M last digitiser 16 

Plate 2. Prototype decorative stitching machine (Hull University 1990) 21 

Plate 3. SEM slide of dermis collagen fibres 30 

Plate 4. SEM slide of a vertical cross-section taken form a vegetable tanned 30 
calf leather 

Plate 5. The B. U. S. M 'Autoscan', showing the rollers and a component 42 
during stitching 

Plate 6. The compliant and pinned belt configuration used during the testing 73 

of the Autoscan for drift 

Plate 7. General views of the Autoscan configured for drift measurements 74 



Abstract. 

The shoe manufacturing industry has undergone a revolution during the last 50 

years, due to the introduction of task specific machinery. Great technological strides 

have been made in the areas of shoe manufacture prior to actual component assembly. 

Computer systems are now becoming the norm for the design of shoes for today's 

market place. Technological innovations have also started to be applied in the assembly 

and construction processes of modern shoes. Computer controlled cutting machines 

calculate the optimum usage of leather from any given hide, new machines allow 

decorative stitch patterns to be associated with a given shape and size of component and 

automatically stitched on to the presented workpiece. However the majority of assembly 

operations have remained predominantly manual with technology playing a secondary 

role to the human operator due to complexities either in manipulation, control or sensing. 

In these machines electronic and mechanical innovations have been used to add new 

features to often simple machines and in some cases to simplify some of the more 

complex operations, thus increasing productivity but reducing the required dexterity and 

knowledge of an operator. Modern preferences in industry are to utilise fully automated 

machines, that are as operator independent as possible, thus improving quality, 

consistency and production speed whilst at the same time reducing production costs. 

Due to the nature of the shoe manufacturing industry and the complex operations 

that have to be performed in order to construct a shoe, machinery manufacturers who 

have ventured into this field of automation have generally struggled to gain acceptance 
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from the shoe makers as the machinery is generally complex and slow in operation. This 

together with the fact that a large proportion of the world's main footwear production is 

centred in the far east, with their correspondingly low labour costs, has held back the 

automation of the shoe manufacturing industry. 

This thesis examines a selection of operations encountered in the construction of 

a typical shoe. These include operations for processing single flat component parts as 

well as more complex three-dimensional operations encountered when lasting and soling 

a shoe. The aim of the research was to develop an understanding of processes 

encountered in specific areas within the shoe manufacturing industry in order to identify 

areas where further advances in automation could be achieved. This understanding has 

been applied to produce proposals and in some cases hardware, to allow for the 

development of working systems. 
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2-D Two dimensional. 
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Introduction 

Chapter 1 

Introduction 

1.0 Introduction. 

As the shoe making process is not generally understood and consists of numerous 

operations. This chapter begins with a brief description of the practices and terminology 

used within the industry. The chapter concludes with a resume of the thesis history and 

its significance within a larger area of ongoing research. 

1.1 The shoe making process. 

The shoe making process can be subdivided into four distinct stages from the 

point where the hide has been prepared and tanned. However the operations that can 

take place at any stage are numerous and those that are performed on any given shoe will 

vary greatly from style to style. Some shoes are complex in construction, being made up 

of a considerable number of components, Figure 1.1, others such as a lady's court shoe 

are comparatively simple and require fewer operations. The following is intended to give 

the reader an insight into the main operations performed in the construction of a typical 

shoe. It is in no way intended to offer a comprehensive guide to shoe making. Figure 1.2 

shows a summary of the operations performed during shoe making. 
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'Clicking' 
:- Component parts are prepared 

0 

'Preparation' 
:- Application of stitch marking 

Parts are skived 
Decorative stitching 

`Closing' 
:- Components stitched together 

Linings and stiffeners are sewn in. 
Upper is closed resulting in a 3-D part. 

1ý 

'Making' 
:- Upper is Lasted, Roughed and soled. 

'Finishing' 
:- Polishing and inspection. 

Figure 1.2 Flow chart summary of the shoe making process. 
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Introduction 

1.1.1 ̀ Clicking' 

The first operations in shoe making take place in the 'Clicking Room'. Here the 

individual shoe components are cut from the basic materials that will make up the shoe. 

Traditionally this was performed manually by cutting around the edge of a template with 

a scalpel. Although there are now some automated systems that implement high pressure 

water cutting methods, these are expensive and limited in the materials they can cut. 

Consequently the majority of component cutting is now achieved by the use of pre- 

formed dice. Each die is made from a steel strip that has a ground, hardened edge and 

has been formed in to the shape of the shoe component required. Support plates, or 

cross-members are then welded into place resulting in a strong, sharp device capable of 

cutting cleanly through the materials. The material is laid out on the flat bed of a high 

pressure press, the die is placed onto its surface and the press activated, forcing the knife 

through the material. For man-made materials often multiple thickness can be cut in one 

stroke without any degradation in component quality. In addition to cutting the 

components from the material, holes can be punched to assist in their alignment during 

further processes, or simply to give a decorative appearance. For synthetic materials the 

cutting pattern can be arranged in such a manner as to optimise the material usage by 

ensuring the shapes to be punched are arranged so that they inter-lock. For hides the 

Vickers' need to be very skilled in order to maintain the quality of the leather from 

which individual parts of the shoe are cut. The best parts of the hide, around the butt 

region, are generally reserved for the forepart of the shoe, whilst less critical parts can be 

cut from the poorer quality leather at the neck and belly, Figure 1.3. 
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Introduction 

1.1.2 ̀ Preparation' 

After 'Clicking' comes preparation, this includes such operations as marking and 

skiving. Marking is performed for a variety of reasons which play an important role in 

ensuring the quality of the final shoe. Parts may be temporarily marked to indicate 

stitching lines, alignment or ornamentation. Additional permanent markings are made to 

convey size and style. Skiving is the removal of a wedge of leather from the flesh, nap, 

side of a leather component either by a band-knife or a rotating cutter. This is generally 

performed for two reasons. The `underlay skive' is performed so as to remove step edges 

resulting on the inside of the upper after closing. An example being on the tongue where 

a ridge would make the final shoe uncomfortable to wear. The second type of skive is the 

`turning-in skive', here the edge of the leather is rolled over and glued in place, after 

skiving, by a subsequent operation called folding. 

This type of skive is implemented generally around the top-line of the upper as it 

allows for the fixing of reinforcing tape whilst resulting in a pleasant and smooth edge 

not much broader than the thickness of the leather itself. In addition, other operations 

that are based on 2-D workpieces can be performed. These include joining and 

decorative stitching, which is analogous to embroidery, although in certain factories 

these may be done in the `closing room' 
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Introduction 

1.1.3 ̀ Closing' 

In the `closing room', the flat component parts that will make up the shoe upper 

are taken and sewn together in such a manner as to produce a three-dimensional part 

called the 'Closed Upper'. Closing also covers the stitching and attaching of the shoe 

lining, which can consist of facings, stiffeners, backstraps and other components. Before 

final closing the shoe upper is essentially flat and as such is still relatively simple to 

manipulate. This then allows for operations such as top-line stitching to be carried out 

with comparative ease thus finishing off the earlier turned-in skive. This operation has 

had to wait until this point as the complete top-line encompasses several components 

which would not have been assembled together until closing. 

The closing operation itself is generally performed by sewing along the line of 

disparate curves at the heeltt5l The main example of this is the closing of the heel which 

transforms the flat upper into a 3-D workpiece ready for lasting. This can either be 

performed by laying the two parts one on top of the other, grain sides together, and 

sewing along the curve in the flat, resulting in an tucked join once the closed upper has 

been turned right side out, or by using a machine similar to the Pfaff 418-49" ', where 

the sewing head zig-zags from one workpiece to another forming a'butt' join. 

1.1.4 'Making' 

The final process in the construction of a shoe is that of `making', this is where 

the closed upper is lasted and soled. Lasting is the complex task of deforming the closed 

upper around a former called a last and bonding it to an insole board. Lasting consists of 
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three operations, toe, side and seat and often includes tacking. In toe lasting the last 

which has the insole board attached to its base and the shoe upper on it is loaded into a 

machine by locating the margin around the perimeter of the upper into a series of pincers, 

typically seven or nine, which are then gripped. The leather is then tensioned by lifting 

the last against the pull of the pincers by a pneumatic ram called a last post. Additional 

support is then provided by another pneumatic ram which presses against the heel of the 

shoe. At this point an operator can adjust the position of the upper on the last by altering 

the height of the pincers by means of a series of levers. Once satisfied with the 

orientation of the upper, adhesive is applied to the insole board and a series of plates 

wipe the leather of the upper over the adhesive. In order to achieve this the pincers are 

released and retracted from the plane of the wipers in order to prevent any damage 

occurring to them. Once this process, known as over-wiping, is achieved, a high pressure 

is applied to the top of the last, forcing it down onto the wiper plates and thus ensuring a 

good bond between the material of the upper and the insole board. The seat and side 

lasting is achieved in a similar way, with adhesive being applied to the insole board and 

the upper material being rolled or wiped over the adhesive in order to form the bond. 

The shoe then passes on to a heat setter to set the upper material to the last form. Other 

operations that are common within lasting include tacking. This is where a series of tacks 

are driven through the highly tensioned upper into the base of the shoe for added 

strength. This has until recently been a subsidiary operation to side and seat lasting. A 

new family of B. U. S. M. machines implement individual pneumatic rams which are 

capable of driving in only a few pins each whilst performing the lasting operation. The 

length of the tack is crucial. The ideal tack will pass through both the upper and the 
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insole board and the tip of the tack upon hitting the metal underside of the last will bend 

over locking the tack tightly into place. If the tack is too short it will fail to reach the last 

and thus will not become locked in place. In certain circumstances, after some wear, the 

tacks can work loose and start to penetrate through the shoe inner lining and into the 

wearer's foot. If the tack is too long it will not bend correctly resulting in a loose tack. 

Once the upper has been fully lasted the sole has to be attached. Before this can 

be achieved the bottom of the lasted upper has to be `scoured' in order to flatten any 

pleats that have been introduced by the folding of the upper material around the curved 

profile of the last. In order to achieve a good bond surface for the cement the bottom is 

then `roughed' by using abrasive wheels generally in the form of wire brushes rotating at 

high speeds. These brushes, when brought into contact, grind away any protrusions and 

the surface of the leather in order to produce a relatively flat surface for the sole to be 

bonded to. Adhesive is then applied to the base of the shoe and to the sole. This adhesive 

is generally of a reactivatable form and is often applied to the soles sometime in advance 

of actual bonding. The actual attaching of the sole involves a process known as 

`spotting'. Once the adhesive has been reactivated the sole is presented to the bottom 

firstly at the toe and then at the heel as these are the most important areas from a 

cosmetic viewpoint. The shoe is then placed into a press which forces the sole onto the 

bottom of the shoe under high pressure. Finally the shoe is passed through a chiller in 

order to ensure a good bond. 
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1.1.5 ̀ Finishing' 

Before the shoes are packaged and sent to the retailers they are `finished'. This 

process includes the removal of any loose threads that may have resulted from earlier 

stitching processes and the polishing of the shoes. The shoes are then inspected to ensure 

they are of sufficient quality and presentation. 

1.2 Process automation. 

Automation within the shoe manufacturing industry has been ongoing since the 

birth of the sewing machine itself. Indeed the introduction of the sewing machine greatly 

simplified the stitching process, but more importantly vastly increased the speed at which 

shoes could be made. This meant that the mass production of shoes, as with other sewn 

articles became a reality. The principle of the sewing machine has changed very little 

since its early days, except for the addition of motors to provide a constant and effortless 

source of needle actuation. In more recent years a major development in automated 

stitching came with the introduction of the M. P. C. S. [14,161, (Micro-Processor Controlled 

Stitching). The M. P. C. S. is a decorative stitching and joining mechanism for flat 

workpieces. It utilises a series of pallets to hold the workpieces whilst leaving the area to 

be stitched exposed. The pallets clamp the workpieces between them with workpiece 

alignment ensured by guide pins passing through punched holes. Stitching is accurate to 

within 0.06mm (0.002"), regardless of stitching speed. This machine can not be said to be 

fully automated as an operator is still required to both load and unload the palettes which 

hold the workpieces. The majority of machinery now taking its place on the shop floors 
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Introduction 

of the shoemakers factories, although often complex, can rarely be described as 

automated. Both the International Shoe Machine Corporation and B. U. S. M, for 

example, are major suppliers of shoe making machinery, but by far the majority of their 

machines still require an operator to load, manipulate and/or extract the part(s) from 

them. It is due to this factor that the `Autoscan', a fully automated decorative stitching 

machine, is such an advance in automated shoe machinery. Here the workpieces are fed 

into the machine, via an automated device such as a conveyer belt, at any orientation. 

The component is then passed over a back-lit light source which is viewed by the line- 

scan camera system building up the shape of the part in a raster manner. The extracted 

shape is then compared against those in a data base, regardless of orientation. If the 

workpiece corresponds to a known part the associated stitch pattern is rotated in order 

to correctly align with the presented workpiece. The machine then has the ability to 

perform the required operations to produce the required stitch pattern by manipulating 

the workpiece with the rollers and base table under the needle. As a result the Autoscan, 

which, once it has been taught a shape and its associated stitch pattern, either by an 

operator or by down loading the information directly from a CAD package such as 

CRISPIN(141, can be regarded as fully automated. 

Both Pfaff and B. U. S. M[31j have investigated the feasibility of producing a 

vectored stitching device, Figure 1.4. This is where the stitching head and bobbin are 

rotated to ensure a constant direction of stitching. This is desired to ensure a high quality 

of lock-stitch and prevent the bobbin mechanism introducing an extra twist in the upper 

thread if the material is fed in the opposite direction. This extra twist, called `half- 

hitching', results in a visually unacceptable stitch. 
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Figure 1.4 Schematic drawing of the B. U. S. M Vector stitcher. 

In manual stitching operations the operator turns the workpiece as a curve or 

corner is encountered in order to ensure the material is correctly fed through the feed 

mechanism. However, in automated stitching such as the M. P. C. S. the palette is moved 

in pre-taught X and Y movements only, with no rotation of the workpiecc, as a 

consequence half-hitching occurs when stitching at certain angles. 

Early attempts employed a mechanical linkage to maintain the essential link 

between the needle mechanism and the bobbin but these were found to be complex and 

failed to produce commercial machines. In an attempt to overcome this problem 

B. U. S. M began a research programme jointly between the Universities of Hull and 

Durham to develop a vector stitcher where the bobbin and needle mechanism were 

individually driven by stepper motors under computer control' "1. To date this machine 

has not been adopted for the commercial market, but shows potential for the future. 
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Introduction 

Automation in the 'clicking room' has been achieved to a great extent with the 

implementation of computers, which are used to calculate cut-out orientations and for 

the control of punching machines. High powered computer systems are implemented 

throughout the industry by shoe designers to allow for ideas to be quickly transferred 

into 3-D computer models. These models can then be adjusted to cater for variations in 

style and size at a touch of a button. Once the design is complete the computer systems 

are able to generate information required to produce lasts, knives and the stitch patterns 

required to construct the shoe. Engineers at B. U. S. M have developed a computer aided 

design suite called CRISPIN which has the capability of producing a complete CAD- 

CAM system when coupled with semi-automated machinery such as the M. P. C. S. 

It is in the areas of preparation, closing and finishing where automation can 

potentially provide the largest rewards. However these are also the areas where the 

greatest complications lie, the majority of parts during these stages are joined and/or in 

3-D, as a consequence automation in these areas has been slow to develop. 

Developments have been made in the areas of stitch marking, electronic pulling, lasting, 

roughing, cementing, and automated stitching, however few have made it through to the 

market place due to their complexity and cost. 

1.2.1 Vision systems for automation 

A large number of automated machines have been developed for general purpose 

stitching. The majority of these operate in an open loop manner, once the part has been 

loaded into the machine. These typically are used where the edges of 2-D components 
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are to be stitched[33). However a number of 3-D handling devicest34'351 have also been 

attempted over the years, but, due to their inherent complexity and slow operating 

speeds, these have failed to become commercial. Some effort has been made to close the 

loop on such machines and enable them to follow edges of flat parts and 3-D parts in an 

automated manner by implementing simple vision, (optical) techniques. These include the 

implementation of an LED and receiver to detect the edge of a workpiece136J or, more 

recently, a low resolution line-scan camera and computer control1". 

Vision systems are generally expensive and require large amounts of computer 

processing power if the images are to be processed at speeds sufficient to be of practical 

value. The types of camera that can be used vary greatly depending on the function that 

they are being asked to perform, from the relatively simple charged coupled device 

(CCD), line-scan type to the more sophisticated high-resolution colour area cameras. 

Camera technology is generally not a problem as there is an extensive range to choose 

from. Problems are more likely to arise in dealing with the image once it has been 

captured and in the resources required in extracting as much information as possible 

within acceptable time scales. To this end a whole specialist area has developed, that of 

image processing. 

Techniques have been developed which achieve edge detection, image 

enhancement18"°1, line thinningt1l1, shape recognition, and many more. Which techniques 

are implemented depends, like the use of lighting and camera type, on the specific 

aspects under investigation. This then has a tendency to lead to vary task specific 

systems[3'5,6,121 
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With the introduction of automation into the shoe industry, a number of specific 

areas have been identified where the implementation of vision systems could prove 

beneficial. One such area that has been exploited is that of last digitisation. When a new 

shoe design is to be designed the working surface, (last), must be described within the 

CAD package being implemented. As it has proved difficult to create a last directly on 

CAD the lasts are generally hand made in the first instance and their topology then 

converted into CAD data. To this end a number of mechanisms have been developed to 

perform this digitisation process, generally through laser triangulation. This process 

allows existing lasts to be recreated accurately within the environment of a 3-D CAD 

package. Example manufacturers of such scanning systems include CY LAN 3-D128 and 

Romans CADt29]. Plate 1, shows the B. U. S. M last digitiserI1°ý. In this system two line- 

scan cameras are used to detect the apparent horizontal movement of a laser spot as the 

last is rotated through 360°. By altering the position of the last in the Z axis and 

repeating the procedure a 3-D representation of the last is obtained. Two cameras have 

to be used in order to reduce the risk of occlusion by protuberances on the last. 
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Camera systems have been used to monitor for missed stitchesl6l, inspect surface 

texture[12l, or more commonly to determine the shape and orientation of a presented 

workpiece. Often in order to enhance the information that can be obtained by a camera 

structured lighting is used to illuminate the scene. The term 'structured lighting' covers a 

wide range of possible mechanisms, from daylight to infrared lasers or even more 

complicated mechanisms like those of colour fringe projectionl51. The type of lighting 

used depends on the characteristics of the subject to be viewed and what properties are 

to be observed. 

A number of mechanisms have been investigated over the years for the purpose 

of edge following, all based on the same basic principle. If there is an edge to be 

followed as opposed to simply a line, there must be some physical characteristics that 

define the edge, generally this is a change in surface contour. The simplest mechanism for 

edge following is where the edge of a single part is to be followed, this can be achieved 

by using back lighting and a line-scan camera, the edge being defined by the point at 

which a light/dark transition occurst11. Most edges to be followed however, can be 

classed as internal, in that they lie within the body of a larger part and not at its 

perimeter. It is here where edge characteristics can be utilised to define an edge. Most 

systems for following internal edges use an angled light source behind the edge so that a 

shadow is produced which can be detected due to a light/dark(shadow)/light transition. 

The B. U. S. M. line-scan system (14,371 for workpiece recognition has been 

implemented on a number of automated systems, however they are not alone in 

recognising the importance of vision in shoe manufacture. Oriso1116.321 of Israel, have 
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constructed a machine for the automatic sewing of 2-D parts by performing on-line 

vision analysis. The parts are held in a pallet during stitching, with the vision system only 

providing minor corrections to a previously taught stitch pattern. The system employs 

four light sources and twin area cameras so as to effectively see around the needle. By 

illuminating the light source that lies behind the edge, a shadow is produced which the 

cameras then detects. The images are processed and the information required to define 

the edge extracted. Torielli of Italy exhibited a vision controlled toe lasting machine at 

the SIMAC shoe fair, (Italy), in 1992. On this machine a CCD camera was used to look 

for a contrast change between the shoe upper and the last 130j. The contrast was created 

by high intensity light sources and selected uppers and lasts. Once the neckline of the 

upper was identified using image processing techniques, the computer issued commands 

to a series of actuators in order to correctly align the topline to a previously taught 

model. Due to the limitation of having to be able to see the last and the requirement that 

the last must have a significant contrast to the colour of the upper, only a small range of 

shoes could be successfully lasted. 

1.3 Project background and historical development 

The British United Shoe Machinery, the British subsidiary of the multi-national 

USM Texon, have been investigating automating aspects of shoe making machinery in 

conjunction with an expanding number of Universities for a number of years. B. U. S. M. 

started work in 1977 with a development project headed by Dr L. Norton-Wayne [211 at 

City University. This eventually led to a line-scan camera system for the recognition of 

flat components capable of pin pointing the edge of a scanned part to a precision of 125 
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microns. By 1982 the system was implemented on a PDPI 1 processor and initially took 

in the order of 20 minutes to produce the required data. By 1985 the processor had been 

exchanged for multiple Z8002 processors and was now capable of performing shape 

recognition within 2 seconds. It was at this time that research began at the Universities of 

Hull and Durham which would make use of this technology. Having achieved the ability 

to recognise the shape and orientation of a workpiece it became possible to automate a 

number of operations which are performed on flat shoe components. 

At Durham the research was primarily concerned with operations on single flat 

components with the main research activities concentrating on stitch marking 1221, and 

skiving[231, (Section 1.1.2). The work at Hull concentrated on automating stitching 

processes for both 2-D and 3-D workpieces as well as the construction of joined, 

(compound), components. Early work, E. Adams(2 , looked at the construction of 

compound shoe components from several flat parts. This work combined the previously 

developed image recognition system and a dynamic store capable of holding all the 

component parts required for shoe assembly. Parts were retrieved from the dynamic 

store via a gantry and vacuum gripper. The final compound component was constructed 

from a number of flat components with orientation being ensured by repositioning the 

construction area in X, Y and 0. Each part would have been treated with an adhesive in 

order to produce a temporary join, resulting in a two-dimensional compound part which 

could be regarded as a single component during subsequent manual or automated 

operations. The primary area of research at Hull however, was concerned with generic 

research into the handling of flat leather shoe components for automated decorative 

stitchingE". Building on work previously performed by B. U. S. M. ["1 a machine capable of 
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stitching a taught pattern onto a flat leather shoe components was developed. The system 

scans the workpiece utilising the line-scan camera system previously developed by 

B. U. S. M and Dr L. Norton-Wayne in order to determine both the parts shape and 

orientation. The stitch pattern data is rotated to match that of the presented workpiece 

which is then guided about the stitching head, using rectangular positioning. The 

workpiece handling mechanism comprised a set of rollers either side of the needle, both 

above and below the workpiece, resulting in the workpiece being sandwiched between 

pairs of rollers. The rotation of the rollers provides movement in one axis, Y, with the 

motion of the roller table perpendicular to the roller rotation providing the X axis. Plate 

2 shows the original Hull University decorative stitching mechanism that later evolved 

into the `Autoscan'. 

In addition to the work on two-dimensional workpieces an investigation was 

made into the handling of simple three-dimensional workpiecesUll. Both of the above will 

be discussed in greater detail in subsequent chapters as further research has been 

undertaken in these areas. 
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1.4 The research 

The research described in this thesis formed part of a series of projects carried 

out jointly between B. U. S. M and the University of Hull. This work concentrated 

primarily on the automation of certain closing room operations beginning with decorative 

stitching and moving through flat constructional stitching to three dimensional 

construction and stitching. 

The author's work was initially concentrated on aspects of both two and three 

dimensional constructive stitching. Building on a concept of pre-tacking to form a single, 

2-D part, it was proposed to use the Autoscan approach, (developed for decorative 

stitching and described in Section 1.2 above), for flat constructional stitching. Pre- 

tacking being the temporary joining of multiple flat parts in order to produce a single, 

compound, workpiece and thus simplify subsequent handling operations. Initial 

investigation of this concept demonstrated the need for a better understanding of material 

behaviour during manipulation in the Autoscan system and hence an investigation was 

carried out into the morphological properties of leather. 

Chapter 2 contains the results of the investigation into the morphological 

properties of this exceedingly complex and limp material whose structure varies not only 

from animal to animal but across a single hide. This chapter offers for the first time an 

understanding of why particular leather components behave during manipulation as they 

do. Consequently the knowledge gained offered pointers in how to overcome the 

material properties of a component in order to ensure correct handling. 
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Chapter 3 describes an implementation of the knowledge gained in Chapter 2, to 

manipulate flat workpieces made from both leathers and synthetic materials. This chapter 

covers an investigation into a surface capable of holding and manipulating these 

workpieces for the purpose of decorative and constructional stitching. A novel 

mechanism is proposed, tested and verified across a spectrum of the materials that can be 

expected to be encountered in the shoe industry. 

Moving forward to 3-D operations, an investigation was carried out into the 

feasibility of using the pre-tack approach for these. Chapter 4 describes this novel 

approach and carries on from work undertaken by E. Adams121 

Many of the operations carried out in the constructional stitching work 

highlighted the need for robust and reliable edge following techniques in order to ensure 

correct stitching lines are maintained. In Chapter 5 vision systems relevant to this are 

considered. This section moves on from the simple white light mechanisms evaluated by 

D. L. SmithW'" to investigations into laser triangulation methods. Mechanisms arc proposed 

and investigated so as to determine the profile of an edge being followed. 

Chapter 6 implements the knowledge gained in Chapter 5. This is clearly also of 

value in other areas where topographical information is required. A number of proposals 

were made and investigated including mechanisms for determining last profile and 

orientation in order to automate the complex 3-D making operations. 

Chapter 7 concludes the thesis by examining the generic and industrial 

implications that have arisen from the work. 
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Chapter 2 

The morphology and properties of skin and leather 

2.0 Introduction. 

Leather components, or workpieces as they are often termed, require numerous 

operations to be performed on them before they form part of a complete shoe. In order 

for these to be successfully carried out, the workpieces need to be manipulated in one of 

two ways. 

The traditional method is to perform the tasks manually. This is both labour and 

time intensive. It does, however, allow for accurate manipulation of the workpicce 

during complex operations, as the operator can determine and correct for any small 

errors that may arise due to the material properties. Hand manipulation of components is 

something that industry in general has been trying to eliminate for a great many years 

through automation. 

In areas of manufacture where the material properties of the workpiecc need not 

be considered automated or semi-automated machines are becoming widely used. 

However, where complex materials such as those displaying limp properties arc to be 

manipulated research is still continuing. Some successes have arisen where fabrics arc to 

be handled, as their structure and properties are better understood. This in cloth is made 

simpler as it is made from a repetition of a basic number of operations, thus resulting in a 

regular and well understood weave. The nature of leather is far more complex as it has 
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been produced from the hide of a living beast. As a result its structure is non-uniform, 

leading to difficulties in predicting its behaviour under manipulation. If leather 

workpieces are to be manipulated in a fully automated fashion it is important to 

understand the basic components that make up the hide and the properties that they may 

exhibit. 

What follows is a brief discussion of an investigation into the nature and 

properties of leather made by the author and makes significant references to work 

conducted in this region by Spearman'391, Wilsont401, Harrison & Korn1411, and Roberts, 

Worcester & Cuttifordt311. It is not intended to provide the reader with a comprehensive 

biological understanding of the structure of leather. 

2.1 Properties of skin. 

Skin is a complex organ covering 100% of the body providing an clastic and 

compliant barrier against the hostilities of the outside world. It is equipped with a 

sensory structure which relays information on changes in the external and internal 

environment. This is achieved by a dense network of nerves which provide a sense of 

touch capable of detecting fine textures as well as temperature and pain. One of the most 

important functions of the skin is to maintain the body of its host at a near constant 

temperature. This is achieved by allowing evaporation of water from the surface in order 

to dissipate heat, should the body get to warm, and altering the blood supply to the 

surface should the need arise to preserve heat. In order for this to happen it has to be 

supplied with glands, ducts, muscles and blood vessels. 
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Variations in the properties of skin occur due to animal type, age and habitat but 

also across the body of a single animal. This is due to many individual and intricate parts 

being grouped together to form skin. These are exceedingly complex in structure and 

chemistry, in order to cater for the different demands made on particular regions of the 

body. 

2.2 The structure of leather. 

The major component of skin is protein. In forming leather, however, some of 

these proteins need to be removed in a series of treatments. These frequently include the 

use of alkali, enzymes, or bacteria, and the interaction of the remainder with the tanning 

materials, oils, soaps, emulsions, mordants, dyestuffs, gums, resins, and other 

complicated agents (40 During these reactions the basic structure and property of the skin 

must be maintained, and if possible improved. The tanning process enhances the 

hydrothermal stability of the collagen by up to 100% for chrome tanned Ieather1401 as well 

as providing a resistance to bacterial attack. In addition lubricants, called fat liquors, arc 

incorporated in order to replace the natural oils of the skin. These minimise the formation 

of 'inter-fibre' [431 adhesions that may occur during drying, ensuring that the leather 

remains supple. Figure 2.1 shows a labelled cross section of a typical calf hide and should 

be used for reference. 

In crude terms the skin can be divided into two layers. A relatively thin layer of 

epithelial tissue, known as the epidermis, and a much thicker layer of connective tissues 

called the derma or dermis. The skin is a major organ for the storage of water, with the 

dermis containing up to a quarter of the body's water. 

-26- 



Leather morphology 

1:, kislin 
Iihrrs 

Sweat/oil 

II CT iýhil 
I; ivrr 

Artery 

Collagen 
1-ihres 

I": Iastin 

i1dIposc (I' tI " 

Figure 2.1 Cross-section of a typical calf hide 
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In between these two layers exists a thin interfacial region called the basal 

lamina which is rich in acid mucopolysaccharides and also contains a network of 

exceedingly fine collagen filamentst39J. Here, however, the author will restrict the 

investigation to the dominant layers of the skin, the epidermis and the dcrmis. 

The epidermis is made up of a cellular structure with no blood vessels of its own 

and constitutes only about 1% of the total skin thickness. The chief constituent of the 

epidermal system including the epidermis, hair, and epithelial cells of the glands, is the 

protein known as keratin. The portion of the epidermis in contact with the derma is a 

layer of living epithelial cells. In reproducing each of these cells splits into two, one 

above the other. The older cells are pushed outwards and eventually are unable to 

reproduce as they become dehydrated. These cells then die and can easily be dislodged 

from the surface of the skin. This layer also contains cells containing a pigment known as 

melanin. This pigment is responsible for skin colour and changes in response to 

variations in the external environment. 

Histological preparations have shown the dermis to be subdivided into two 

further layers, the superficial and deep (reticular) Iaycrs''91. The superficial dcrmis 

contains more cells than the deep dermis and finer collagen fibres. Wilson140) called this 

layer, when combined with the epidermis, the thermal layer due to one of its dominant 

functions. A network of elastin fibres which surround the hair follicles and glands are 

also present. Elastin always takes on the form of fine distinct fibres found beneath the 

epidermis and around the epidermal appendages. Elastin fibres exhibit both tensile 

strength and elasticity and, although they are predominantly located in the superficial 

dermis, they can also be found within the deep dermis. It should also be noted that the 

elastic properties of the elastin fibres are relatively unaltered by the tanning process. 
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Hair follicles appear to penetrate through the epidermis and the superficial dermis 

into the deep dermis, however they are always surrounded by a layer of superficial 

dermis. The dermis itself consists of broader diameter collagen fibres, (, *5µm Plate 3), 

and scattered elastin fibres. It also contains blood vessels, lymphatic vessels and nerve 

fibres. The dermis as a whole is often referred to as the true skin and it is this part of the 

skin that is used to make leather. The portion of the derma immediately in contact with 

the epidermis has been called the `grain membrane', this is because it is this layer which 

forms the surface of the finished leather. 

The dermis is chiefly made up of collagen fibres which form the connective tissue. 

The fibres of the connective tissue appear finer as they near the grain surface where they 

become extremely fine and generally run parallel to the surface. This effect can be seen in 

Plate 4. Quality leather can only be produced from hides where collagen fibres are well 

developed and abundant. A skin containing high levels of fat cells would produce a 

spongy leather as the fat would have been destroyed during the tanning processes leaving 

empty pockets forming a honeycomb structure. Beneath the deep dermis is the 

subcutaneous tissue called the hypodermis. This layer is of variable depth and contains 

the collagen fibres known as the adipose tissue that bind the skin to the underlying 

muscle. It is here also that subcutaneous fat accumulates in order to store food and 

provide insulation. It should be noted that this layer is removed during the production of 

leather by processes known as fleshing and flaying. 
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2.3 An investigation into the collagen structure of a typical calf hide. 

The orientation, size and density of the collagen fibres within the dermis largely 

determines the leathers properties of stretch, strength and flexibility. In order to observe 

the dermis structure a typical vegetable tanned, buffalo calf hide, was divided in to 25 

segments, Figure 2.2, and cross-section samples taken. The specimens were examined 

using a scanning electron microscopetas, a>>, (SEM). Appendix A. 1, contains a brief 

description of SEM principles. Measurements of collagen bundle size and net orientation 

were then determined in an attempt to directly related these to the varying properties of 

leather over a typical hide. 

Backbone 
Butt 

1 23 4 5 
................. .................... ............ ............. ....................... 

j... 
.................... 

6 78 9 10 Neck 
.................. .............................................. ..................... ................. 

11 12 13 14 15 
Hind shank .......... .................. ................................................. ...................... 

16 
17 18 19 20 

............ .................................................... .................................... 21 i 22 23 24 25 Fore shank 
Belly 

Figure 2.2 Location of samples taken for SEM observation 

2.3.1 Variations in collagen bundle size. 

The collagen fibres appeared to vary in size and group together to form bundles 

of fibres similar to that of rope, thus allowing for varying stretch and flexibility 

characteristics to exist. Figure 2.3 shows the results obtained from the SEM slides for 

the average bundle size within the dermis across the sample hide. Example slides can be 

seen in Appendix A. 3. 
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It can be seen from Figure 2.3 that the hide can be divided according to the 

bundle size in to three groups. Those fibre bundles around the hind quarters are generally 

large, (typically >14µm in diameter), and are made up from only a few large individual 

collagen fibres. Around the shoulders, flanks and belly region, these fibre bundles 

decrease in diameter but appear to contain a greater number of finer fibres. At the neck 

and fore shank area the fibre bundles become very small, (<7µm in diameter), with the 

individual collagen fibres greatly increasing in number and density. The mechanical 

properties of regions of a hide were investigated by D. L. Smith"I and should be read for 

reference. 

2.3.2 Variations in net collagen bundle orientation. 

Figure 2.4 shows the results observed for net collagen fibre direction across the 

sample hide. The results demonstrate that a number of distinct regions exist. The fibre 

bundle directions can be divided in to two classes, transverse and longitudinal. 

Transverse fibres run around the girth of the animal, whilst the longitudinal fibre bundles 

run along the length of the animal from head to tail. Example slides can be seen in 

Appendix A. 4. 

Around the butt region of the hide there is approximately a 50/50 divide between 

the transverse and longitudinal fibres. Conversely around the neck and hind shanks the 

net fibre direction is dominantly transverse. Significantly, however, there is a region 

across the belly and up to the anus where although the net fibre direction remains 

transverse, a high proportion of longitudinal fibre bundles appear. It is hypothesised that 

these may have physiological significance. 
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2.4 Stretch and strength in relation to collagen structure. 

Where the legs join the body a great deal of movement is demanded from the skin 

in order to facilitate walking. Consequently the skin has to exhibit considerable elastic 

properties both behind the forelegs and in front of the hind legs. Similarly flexibility is 

required in the regions of the neck and tail. In regions where little movement occurs, 

such as the butt, along the backbone and down the legs, there is very little stretch but a 

high degree of tensile strength. Wilson [401 showed that hide leather over the backbone 

exhibits a high tensile strength with elasticity remaining low until the hide reaches the 

side of the animal whilst the belly region is of high elasticity and low tensile strength. 

The results obtained in Sections 2.3.1 and 2.3.2 correlate directly with this. The 

variation in the orientation of the collagen fibres results in differing stretch and strain 

characteristics for a given workpiece, depending where on the hide it was taken. Where 

flexibility is required, (eg, for upper components), the net fibre bundle direction is 

predominantly transverse with the bundle size becoming smaller where a degree of 

elasticity is also demanded. Across the butt where very little flexibility is required, (eg, 

for soling leather), the dermis is constructed from large bundles of crossing collagen 

fibres. This leads to a tough leather which exhibits little elastic ability. 

In addition to the leathers structure, different tanning methods can effect the 

stretch and strain properties of a hide significantly. Certain tanning agcnts contain 

hardeners to reduce the elastic potential of the hide in order, for example, to make 

leather soles. Others contain little or no hardener resulting in a highly flexible, strctchy, 

leather. 
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2.5 Conclusions. 

Although the prior discussion and measurement of the structure of skin and in 

particular leather, has only scratched the surface with regards to its structure, enough has 

been learnt to identify the chief components that will affect its handling. These are the 

collagen and elastin fibres which combine to provide the dermis with its tensile strength 

and elasticity. For any given hide the properties of the tanned skin or leather will vary 

greatly. The butt region is generally much thicker and has a greater solidity than any 

other part. The shanks, (top of the legs), are firm, but thin, whilst the flanks arc typically 

thick, but spongy. The reticular layer at the butt can be three times thicker than in the 

hind shank, whilst the shoulder has a thinner layer than the butt and consists of finer 

fibres. In the belly region, the fibres run nearly parallel to the grain surface and offer little 

resistance to any vertical force. In contrast the fibres at the butt run both transversely and 

longitudinally with some randomly orientated, resulting in a region of hide very resistant 

to distortion. It should be noted, perhaps with surprise, that the thickness of the 

thermostat or superficial layer of the dermis remains roughly constant across a hide. As a 

consequence for finer grades of leather this region will occupy a greater proportion of 

the leather's thickness and have a greater effect on its handling properties. This is due to 

the high percentage of elastin fibres and the finer nature of the collagen fibres which 

appear to be broken up into individual fibrils. Thus thin leathers that have the thermal 

layer forming a high percentage of its thickness are often very elastic and limp in nature. 

This means that they are easily prone to stretching from a handling mechanism whilst at 

the same time unlikely to suffer greatly from compression problems. Conversely thicker 

leathers could suffer from both stretching and compression effects, depending on the net 
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direction and density of the now dominant collagen fibres. The thermal layer in this case 

will play a lesser role merely stretching or recovering to accommodate the effects of the 

collagen. This will if its elastic limit has not been exceeded resume its original state once 

the deforming force has been removed. 

Consequently this highly complex natural structure is exceedingly hard to model 

due to is anisotropy, indeed the same component cut from the same place at a different 

orientation, were this possible, would exhibit different handling properties. Even so a 

number of models have been proposed"'. These models possess a number of 

characteristics leather workpieces demonstrate when manipulated using a series of 

rollers. They do not however predict how a component cut from a given location on a 

hide will behave. Spearman [291, describes the dermis which is the component of skin used 

for making leather as `behaving in life as a hydrated fibrous gel'. It will be seen in the 

following sections on leather handling that components when manipulated by a series of 

rollers or belts exhibit a number of fluid like characteristics. 

These investigations have shown that a model capable of predicting the behaviour 

of a workpiece during handling, in addition to being complex, would require information 

about the hide and the location from which the part was cut. As this knowledge is not 

available the material characteristics need to be negated by the handling mechanism. This 

has been traditionally achieved by clamping devices or pallets, however having gained an 

insight into structure of leathers an alternative method will be discussed in the following 

chapter. 
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Chapter 3 

Leather handling and manipulation 

3.0 Introduction. 

The following sections discuss the handling properties of the B. U. S. M 

`Autoscan' decorative stitcher and its limitations. By considering the leather structure 

and its behaviour, when rolled, a mechanism to overcome these limitations will be 

proposed and verified. 

The majority of handling tasks that take place on shoe uppers occur before the 

upper is closed. As a result the handling procedures are relatively simple as the parts are 

two dimensional. Two of these operations, decorative and constructional stitching, were 

to have been covered by the `Autoscan'. Constructional stitching is the process of joining 

two or more flat parts together permanently by applying a series of stitches resulting in a 

2.5-D compound part. This has previously either been performed by hand or by clamping 

the parts into pallets before stitching on an automated machine such as the M. P. C. S. The 

implementation of pallets unfortunately has high overheads both in operator time in 

loading and unloading, and for the need to manufacture, maintain and store the 

considerable number of pallets that are required for each style. With separate pallets 

being required for each foot, and with a pallet only catering for around two sizes, the 

desire for a palletless stitching device is clear. The `Autoscan' however was unable to 

perform these operations successfully across a wide variety of leathers, both man-made 
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and synthetic due to effects known as `drift' and `slip'. An example of this effect could 

be seen if it was attempted to stitch a closed circle. The result may well appear slightly 

elliptical with the ends of the stitch line failing to meet. This effect becomes accentuated 

for composite components where there is a step variation in thickness over the surface. 

Consequently the Autoscan is unable to perform constructional stitching to a high degree 

of accuracy due to the ridges that occur when two or more components are joined. 

3.1 The B. U. S. M `Autoscan'. 

The `Autoscan' comprises a set of 16 rollers divided into two sets of four roller 

pairs either side of the needle. The workpiece is held between each set of roller pairs and 

fed through the system in the Y direction by the action of the rollers. Positioning in the X 

axis is achieved by the roller configuration being mounted on a carriage that can be 

moved along rails by a pair of DC servo motors. Figure 3.1, shows a schematic 

representation of the `Autoscan'. Both the roller configuration and the position of the 

camera can be clearly seen, in addition the convention used to define the X and Y axis is 

labelled. 

The Autoscan is based on the control system for the MPCS and the Intel 8086 

micro-processor. In addition an SGS Thompson T800 transputer is used to perform the 

image analysis. In addition it incorporates a 80Mbyte hard disk to hold the shape 

recognition files and their associated stitch patterns. This depending on the part, and 

complexity of the stitch design, allows for approximately 300 separate styles to be stored 

at any time. 
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3.2 Types of movement. 

During the manipulation of a workpiece through the rolling mechanism a number 

of types of undesired movement can be observed, include slip, drift and rotation. All of 

which are due to a combination of the material properties and the mechanical limitations 

of the handling system. It should be noted that the Autoscan stitcher, which will be 

considered here, operates as an open-loop system. Consequently once the reference 

position has been determined by the line scan camera system any subsequent movement 

of the workpiece will result in stitch position errors as there is no further positional 

sensing. 

3.2.1 Drift. 

Drift is the term used to describe the movement of a workpiece from a known 

reference position perpendicular to the direction of manipulation. This occurs due to the 

material properties and the forces acting upon it. Both D. L. Smith"1 and N. Tout1421 

demonstrated drift characteristics of various leathers and synthetic materials by observing 

the movements of circular discs during their manipulation. 
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The discs are divided into 22.5° segments by lines intersecting through the centre, 

with one line arbitrarily being chosen as a reference, (0°). The discs are then presented to 

the handling mechanism at each of the marked orientations and measurements of drift 

recorded whilst cycling the part backwards and forwards through the rollers. The results 

of these experiments showed that for the majority of samples the drift displayed a cyclical 

profile through a 360° rotation of the reference, Figure 3.2. 

Error (xO. 22mm) 
Measured values 

10 T 

s- 

o- 

-5 

-ion 

-Is - 

. 20 

Figure 3.2. Typical result for a leather sample demonstrating a cyclical drift 

pattern as described by D. L. Smith"'. 

This is as would be expected from the analysis of leather, providing that the net 

fibre direction was constant over the surface of the disc. In an attempt to reduce the drift 

to an acceptable level, a variety of roller coating materials were investigated resulting in 

a coarse 'Emery' type paper being wound around the rollers. This was later replaced by 

N. Tout with tungsten carbide particles heat bonded to a steel roller resulting in a 
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significant increase in performance. It was however in the former state that an Autoscan 

was returned to Hull for further research in 1992. Plate 5, shows the Autoscan fitted 

with tungsten carbide coated rollers. 

When rolling a compliant or elastic material a compressive wave, or bulge, is 

induced behind the rollers, Figure 3.3a. This is due to the gap between the roller pair 

being less than the workpiece thickness in order to achieve grip. This effect can be seen 

more clearly and on a larger scale when pastry is being rolled. For rigid components, the 

trailing edge remains in plane as it passes between the rollers, however with 

elastic/compliant materials the trailing edge becomes heavily distorted. This is due to 

compressive forces being distributed over the remainder of the surface, due to the 

connecting material, following the path of least resistance. As a result, to some extent, 

this effect is shape as well as material dependant. Figure 3.3c shows the effects observed 

when rolling a simple vamp component. The workpiece has two side lobes, that extend 

from the body of the part, which distort during rolling. This effect is a direct result of 

the compressive force that is required in order to hold the workpiece during stitching 

and, within limits, increases with an increase in clamping force. The resulting localised 

distortion of the workpiece when combined with the induced material bulge, which offers 

an increase in resistance to the pull of the rollers, materialises in a complex drift effect. 
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3.2.2 Slip. 

It has been shown that in order to reduce the drift caused by the rolling action, 

compressive forces need to be reduced. However, in so doing the possibility of slip 

increases. Slip being the undesired movement of the workpiece due to the inertial forces 

of the workpiece. This is also described as the inability of the handling mechanism to 

hold the workpiece in the direction of manipulation. This can manifest itself as a loss in 

positional accuracy due to the workpiece not correctly accelerating from rest, or due to 

overshoot where the workpiece continues to move after the driving force has stopped. 

Slip, therefore, generally results in movement in the Y axis, however as both the driving 

surface and the workpiece can have varying frictional properties across its surface some 

`drift' and ̀ rotation' can also often be observed. 

The 'Autoscan' by implementing highly abrasive rollers so as to grip and 

manipulate the workpiece during stitching can contribute to the slip effect at low holding 

pressures. The greater the abrasive characteristics the less surface contact area exists 

between the roller and the surface of the workpiece, Figure 3.4. This leads to a slip/grip 

effect occurring at low holding pressures, and can be observed on certain materials as 

small scratch marks on the grain side of the workpiece. Experiments have shown that for 

a single roller driving a flat workpiece a degree of rotation as well as drift occurs as a 

result of some net slip effect along a given axis. This is due to an uneven distribution of 

protruding particles over the length of the roller during manufacture. When this effect is 

expanded to a full roller configuration, it is proposed that at any given moment in time 

along a given line of drive, some of the rollers will be slipping whilst others will be 
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gripping the workpiece. This results in some parts of the workpiece being actively pulled 

through the rollers, whilst others will be dragged through by the connecting material. As 

a result, forces will be induced in the material other than along the desired line of drive. 

Consequently this will result in the workpiece trying to rotate in order to align itself with 

the acting force. Furthermore, due to variations in surface characteristics from roller to 

roller, the workpiece may stretch or become compressed between two or more 

consecutive roller pairs. This could then in itself, after a degree of rolling, compound too 

give small displacement errors. 

O 

Grip 

Figure 3.4 The effect of coarse rollers. 
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3.2.3 Rotation. 

The previous consideration of drift and slip can, after a number of operations, 

compound to give small rotational errors, it is however, the mechanical properties of the 

handling device that predominantly cause rotation, the chief factor being that of roller 

deformation. When a workpiece enters the system it does so at a random orientation and 

anywhere within the cameras field of view, Figure 3.1. As a result the workpiece is 

generally some distance to the left of the centre of the rollers. The rollers are spring 

loaded so as to maintain pressure on the workpiece, but allow for a degree of vertical 

movement. The physical presence of the workpiece causes one end of the rollers to be 

deflected further than the other, with this displacement being dependant on the 

characteristics of the workpiece. As a result the workpiece is effectively being driven in 

an arc. 

3.3 External causes of error. 

There are two significant external effects that can result in the appearance of 

drift, these are needle drag and thread tensioning. 

3.3.1 Needle drag. 

The 'Autoscan' control system is based on the MPCS system mentioned in 

Chapter 1, as a result a number of its characteristics still remain. One such characteristic 

is that of needle dwell. The dwell, is how far into the workpiece the needle can be and 
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movement of the workpiece still be performed. On the MPCS the components to be 

stitched are clamped in pallets, so that they are unable to move. Consequently by having 

a dwell period, greater time is available to reposition the pallet during a stitch cycle 

allowing for higher stitching speeds. However on the 'Autoscan' the workpiece is held far 

less rigidly by the rollers and as a result any dwell will only act to retard the motion of 

the workpiece and is particularly noticeable when stitching close to an edge. The net 

effect can materialise as either drift or rotation with the needle acting as the focus. 

3.3.2 Thread drag. 

The second effect is similar to that of needle drag, but this time the thread itself 

acts to retard, or indeed accentuate the motion of the workpiece. The thread drag is most 

evident when the workpiece is being moved at the same time as the thread is being 

tensioned in order to complete a stitch. The force exerted by the tensioning cantilever is 

considerable as it has to pull the complete thread loop that was formed by the bobbin 

hook back through the workpiece. The resulting knot lying between the surfaces of the 

workpiece. Indeed for a standard Pfaff bobbin this can be as much as 39mm. This force at 

approximately 5N is quite considerable and as such deserves further consideration. 

In a traditional sewing machine the workpiece is securely held between the dog 

and presser-foot during normal stitching operations. However, when this conventional 

advancement mechanism is replaced with the roller positioning system, the holding force 

is greatly reduced allowing the tensioning force to disrupt the workpieces positional 

accuracy. Two forms of tensioning mechanism are in common use. The first is the 
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implementation of a cam shaft, the rotation of which causes a cantilever to provide 

tensioning. The cam shaft has a profile cut into it which defines the profile of the 

tensioning cycle. This mechanism is generally employed in applications where the 

machines are to be used comparatively infrequently and under low load conditions. 

Where heavy materials are to be sewn in an industrial environment a 4-bar-link is 

preferred. 

If we regard the needle position at any time to be describing a sinusoid 

(y = sin(x)), with the plane of the workpiece lying at dy/dx = max, then the workpiece 

can only be moved when the needle position is in the positive cycle period. i. e. the 

needle is clear of the workpiece. Figure 3.5 shows the tensioner profile of a typical 

cantilever mechanism with respect to the needle position. It can be seen that the thread is 

being tensioned well into the workpiece movement phase, which can result in unwanted 

workpiece displacement in the direction of the applied tensioning force. In order to best 

understand the thread effects during stitching a computer simulation of the 4-bar-link 

employed on the `Autoscan' was programmed. Figure 3.6 shows the 4-bar-link 

arrangement used in the simulation. The links that make up the `four bars' of the 4-bar- 

link are shown as Ll-L4, (Pfaff specificationII31), the other dimensions used in the 

simulation to calculate the thread tensioner profile are also shown. It can be seen from 

Figure 3.5b that the second half of the needle cycle, (needle in the workpiece), is 

unmodified. This is due to the complexity of the interaction between the needle and 

bobbin prohibiting the posibility of making simple modifications. 
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Figure 3.5 Thread tensioning cycles for a cantilever mechanism. 
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Figure 3.6 Typical 4-bar-link configuration. 
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If the thread tensioning phase could be adjusted so that minimal forces were 

exerted, or indeed slack created during the workpiece advancement phase, then the 

effects of thread drag could be vastly reduced or even eliminated. The desired tensioner 

cycle is shown in Figure 3.5b. Here it can be seen that the tensioning action in the 

negative part of the needles sinusoidal action need not be effected. However, during the 

positive needle cycle component the thread tensioning is altered so that the tensioning 

forces are nearly eliminated during the movement phase. 

The ideal profile although achievable with the cam and cantilever mechanism is 

not obtainable for a 4-bar-link configuration. It is however possible to determine an 

optimum configuration for the mechanism from the results of the computer simulation, 

Appendix B. The results show that the thread tensioning forces can be reduced to a 

minimum by setting y= 90°, with further improvements occurring if L7 is also increased. 

3.4 Autoscan redevelopment. 

The `Autoscan' in its initial configuration consisted of the 8 roller pairs mounted 

as previously described, with all the rollers coated in a medium grade, abrasive, Emery 

paper type material. The rollers themselves were 12.4mm in diameter and made from 

carbon fibre. All the rollers were driven via a complex belt structure by a single DC servo 

motor with positional feedback. Due to an understanding of the effects of slip and 

compression on the degree of drift that a given workpiece exhibits when rolled an 

alternative mechanism implementing belts was considered. In so doing, the contacting 

surface between the drive mechanism and the workpiece increases from 8 linear lines to a 
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significant surface area, consequently the pressure on any point would be reduced for a 

given compressive force. Furthermore, the complexity of the drive system is reduced 

from having to actuate 16 rollers to a maximum of 8, or more conveniently to 4 central 

driving rollers. The penalty however for implementing a belt handling mechanism is in the 

increase in motor power required. 

3.4.1 Types of belt mechanisms. 

Two types of belt mechanism were investigated, firstly, wide belts replacing each 

bank of 4 rollers, and secondly the implementation of a series of narrow belts separated 

by small spacers. The former offers considerable resistance to being driven if belt tension 

is to be maintained across its surface, and also suffers from local surface deformations 

due to the way the belt material relaxes when removed from the mandrel on which it was 

formed. Consequently, a mechanism comprising of a number of narrow belts was 

selected for further investigation as they also significantly reduced the edge curling and 

tensioning problems. 

3.4.2 Belt handling mechanism. 

The prototype 'Autoscan' was to act as the base machine with the roller 

mechanism being directly replaced by belts. The belts themselves have to be positively 

driven so as to ensure that no positional errors occur. To this end Synchroflex[18I timing 

belts were selected as they suited the fixed dimensions and provided positive drive when 
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combined with pulleys of 1 1.13mm PCD. These belts are polyurethane based with steel 

wire reinforcement inserts offering a low degree of stretch under high loads. The belts 

themselves are 12mm wide and 138mm long, presenting a possible surface contact area of' 

6.18cm` per belt to the workpiece. 

The handling mechanism consists of 80 belts mounted in banks of 20, each hank 

replacing 4 rollers. 

Bearings 

N Support plate 

Figure 3.7 Belt handling mechanism. 

Each of the belts are seated into pulleys fixed onto a drive shaft and separated by 

PTFE washers. The pulleys on the inner edge, nearest to the needle, are driven by a U(' 

Servo motor with positional feedback, whilst the outer pulleys are free to rotate upon a 

support shaft. The shafts in turn are mounted in bearings to ensure as low a resistance to 

rotation as possible. In order to support the belts against the workpiece during 

manipulation a central support plate is included. This has an additional set of bearings to 

support the shafts and reduce the possibility of a variation in belt tension. The resultant 

system configuration can be seen below, Figure 3.8. 

PTFE spacers 
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Figure 3.8 Schematic representation of complete belt handling mechanism. 

3.5 Belt characteristics. 

It has already been stated that the aim of the research is to produce a mechanism 

capable of not only handling 2-D workpieces for decorative stitching, but also, the 

handling of pre-tacked compound 2.5-D parts for constructional stitching. Both of' these 

should be handled without suffering from the various drift effects and to a high degree of 

accuracy. An acceptable accuracy being loosely defined as, no stitch should h greater 

than Imm from its ideal location, regardless of stitch pattern complexity, I' Or the 

maximum number of materials'. In order to try and obtain this specification the lower 

pair of belt modules act as the drive surface, as rough handling of the nap, (flesh), side 

of a workpieces can soon recover, unlike the highly shiny and smooth grain surl'accs of' 

patent leathers. In contrast a compliant substrate forms the upper surface, this is due to 

its ability to cater for possible variations in the surface contour of a compound part. 
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3.5.1 Determination of required holding forces. 

It has already been stated that the needle tensioning force is the dominant force 

acting on the workpiece during processing at around 5N. The other chief acting force, if 

dwell is eliminated, is that of the roller actuation when accelerating between stitches. In 

order for these effects not to cause mechanically induced slip effects the handling 

mechanism must be capable of withstanding the maximum resultant component of these 

two forces. Consequently the forces acting on a workpiece during manipulation need to 

be determined. 

In order to determine this the control properties of the MPCS upon which the 

`Autoscan' is based can be analysed. The acceleration/deceleration profile used to 

control the DC. servo motors for the MPCS is shown in Figure 3.9. M. Colls1aa1 

V 

V 

2 

Figure 3.9 MPCS DC. Servo motor control profile. 
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The control system ramps up the servos to a maximum velocity over 1/3 of the 

distance to be travelled, held constant for a further 1/3 before ramping down over the 

remaining 1/3. Of course motion does not occur instantaneously due to the static friction 

and masses involved. However for the purposes of this analysis the characteristics shown 

in the above figure will be considered as holding. 

Total time taken to travel a distance S. 

T=2t+t+2t=5t 

A cycle is defined as a 25mm movement forward followed by 25mm backwards, 

consequently the motors have to accelerate and decelerate twice in order to complete the 

action. Considering a half cycle and timing it to achieve a measure for T, t can also be 

found. 

Total time for a half cycle, T=0.35 seconds. 

Therefore, 

t_0.35 _ 0.07 seconds 5 

and 

2t = 0.14 seconds 

now, v= 
distance 

, and v occurs at 3S , ffmx 

we have, 
s V _- nmx 6t 
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hence, 

_S_ 
25x103 

0.06mS Vmax 33 x0.14 

Consequently for a large workpiece with a mass of 100 grams, the resultant force 

generated by the acceleration of the handling mechanism producing a change in 

workpiece momentum would be, 

F_ 
0.1 x0.06 

= 0.043KgmS -220.43N 
0.14 

Consequently any handling mechanism would need to ensure that the workpiece 

remained stationary relative to the belt surface during manipulation. The resultant force 

of the combined thread tensioning, vertically up through the workfoot and component 

movement, Figure 3.10, show the thread tensioning effect to be the main consideration. 

Thread tensioning 5N I 
force 

/02N 

-i. Motion induced 
0.43N force 

Figure 3.10 Resultant Force vector diagram of the forces exerted 
by the Autoscan during stitching. 
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3.5.2 Initial drive surface characteristics. 

The choice of materials that could be bonded to the belts in order to provide 

characteristics capable of holding the workpiece during processing is potentially very 

large. This is due to the number of specialist manufacturers, such as Fenners1191, who deal 

with belting technology. However, many of the common belting materials are specifically 

designed for industrial conveyor systems and as such have physical properties that make 

them unsuitable for smaller scale work. As a result materials not normally associated 

with manipulation applications need to be considered. The roller system demonstrated 

that abrasive mechanisms could be implemented to hold the workpieces during stitching, 

without any deterioration in workpiece surface quality. Experiments were conducted 

using Emery cloths and papers to determine their suitability as a drive surface. The 

papers proved too brittle when negotiating the tight radius at the pulleys, however, the 

cloths returned more favourable results. 

Fine abrasive surfaces produced poor drive properties due to the loose collagen 

fibres on the nap side of the leather acting as little rollers. Highly abrasive coatings 

tended to wear very quickly with the nodules forming the abrasive being dislodged due 

to insufficient bonding. As a compromise a medium grade cloth was initially selected to 

provide the grip for the driving surface. 

A number of attempts were made at producing a continuous loop of abrasive 

material and bonding it to the polyurethane belt substrate, however these proved 

unsuccessful. Consequently 3Mt20' were contacted, and agreed to supply continuous 
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samples of Carborundum coated cloth to a specification that would fit the dimensions of 

the belt substrate. The bonding of these abrasive material loops to the polyurethane 

substrate proved difficult due to the effective change in centres that arises when bonding 

one semi-rigid substrate to another. This effect can not be noticed until after the 

compound belt is rotated around the pulley radius, Figure 3.1 la. A number of adhesives 

were investigated, most either dried hard producing a solid ridge at the bond or, were 

unable to form a successful join. The best results obtained from the implementation of 

adhesives came from a contact type capable of providing a partially elastic bond, with the 

bond only being made at a few points. This allowed for some relative movement to occur 

between the two belt materials. However even this type of bond soon failed under 

operation resulting in the need for an alternative bonding mechanism. This was achieved 

by making a physical link between the belt substrate and the material loop by stapling. 

Four staples, (size No. 10-IM), per belt were implemented and inserted between the 

teeth of the belt substrate. On the upper, or drive, surface the staples are flattened to 

reduce their effects on the handling properties. The resolution/spacing of the staples 

being defined by the pulley diameter in order to ensure that a maximum of only one 

staple can be affecting by the meshing properties of the belt and pulley at any point in 

time. This mechanism provided a reliable bond whilst allowing for a degree of flexibility. 

3.5.3 Compliant surface construction. 

The upper or supporting surface was selected to have a compliant nature so as to 

mould around any small fluctuations caused by the edges of overlaid parts. Again there 
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were a wide selection of materials available, with Neoprene, Nercoprene, EPDM and 

PVC foam being the ones selected for further investigation. The tight radius at the 

pulleys imposed a maximum compliance thickness of the order of 3mm, if the belts were 

to run smoothly. Figure 3.1lb shows how, as the compliant material negotiates the 

radius it becomes stretched due to the increase in path length. This causes an inward 

force on the pulleys, resulting in a pinching action. In addition as the compliant surface is 

thicker than the abrasive surface, a differential velocity occurs between the upper and 

lower belts around the pulleys. The linear part of the belts which act to hold the 

workpiece during manipulation do not however suffer from this effect. 

Figure 3.12 contains a summary of results obtained during an investigation into 

the compliant characteristics of selected foams, additional information is contained in 

Appendix C. The experiment measures the repulsive force generated by the foams for a 

given surface deflection. It can be seen from Figure 3.12 that the foams allow for 

deflections to be made close to the foam's actual thickness. The Nercoprene and 

Neoprene based foams offer an almost linear response over the first 1.75mm of deflection 

which relates approximately to a compressive force of 5N, (close to that of the maximum 

load exerted by the Autoscan calculated previously). The support surface was 

constructed using Nercoprene foam due to its extra thickness, which would allow for the 

better handling of compound parts in later experiments. It also had the benefit of a self- 

adhesive backing, making bonding to the Synchroflex belts particularly easy. 

-62- 



I landling and manipulation 

Initial 
state 

Bulge 
Abrasive material 

Rotation 
ofrollers 

a) Substrate peeling 

X>X 

b) Effect of compliance 

º': 

X 

Figure 3.11. Effects of compound belt construction. 
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3.5.4 Belt tensioning. 

The Synchroflex timing belts used as the substrate for both the support and drive 

surfaces are made to within a circumference tolerance of t0.4mm resulting in a possible 

error of 0.8mm between any two belts. To overcome this and ensure that no undesired 

movement can occur tensioning must be provided. Conventional tensioning mechanisms 

are cumbersome and would be difficult to apply to a situation where 80 belts are in close 

proximity to each other. As a result a mechanism of compliant tensioning was developed. 

This mechanism replaces the free pulleys with ones with a compliant material around 

their centre, Figure 3.13. The belt compresses the material, whose reaction forces pushes 

back, tensioning the belt. Positive drive is not lost as the belt is taunt at all times with the 

second pulley providing the belt rotational drive. Pulleys were constructed from a PTFE 

substrate with an EPDM foam providing the compliant medium. 

The belts remain well tensioned even after considerable use as the belt teeth 

eventually bed into the compliant material forming a tooth gear of the ideal dimensions. 

A side effect of tensioning the belts is an increase in the power requirement needed to 

drive them successfully. To overcome this problem a second motor was modified so that 

it could be mechanically linked to the drive motor in order to provide the additional 

power required. 
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Figure 3.13 Cross-section through a compliant tensioned pulley. 
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3.6 System evaluation. 

In order to evaluate the narrow belt configuration with an abrasive driving 

surface and a neoprene compliant upper support substrate the Autoscan was configured 

to enable a number of experiments to be performed. Appendix D, defines the methods 

used to measure undesired workpiece movement. These belts demonstrated a significant 

improvement over the handling properties of the original roller configuration, 

(Appendix E). However there were still significant positional errors occurring of the 

order of 1-2mm, Figure 3.14, (Appendix F). This is due to a combination of slip and drift 

effects. The slip effects could be seen as small scuff marks on the under side of a number 

of test discs caused by the abrasive action of the drive surface moving relative to that of 

the disc. A closer inspection of the carborundum surface using a microscope showed that 

it was not as coarse or potentially invasive as desired. The surface area between the 

carborundum particles was in fact filled with adhesive which had the effect of smoothing 

the surface. What is needed is a mechanism of penetrating the fleshy nap side of the 

leather without damaging the cosmetic characteristics of the grain surface. In order to 

achieve this a redesign using a pin array is to be considered. 
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3.7 Pinned belts 

The investigation into the properties of leather demonstrated the complex nature 

of the material and highlighted a number of the problems that were later manifested in 

positional errors occurring during manipulation. If these problems were to be overcome 

and positional accuracy assured a method of overcoming the material properties, chiefly 

that of the collagen fibres, is required. The Autoscan had demonstrated at an early stage 

that manipulation could be achieved using abrasive rollers and later by the use of 

carborundum belts, which by their very nature bed into the nap of the leather. This 

proved that the idea for a semi-intrusive drive medium was one that could potentially 

provide accurate manipulation. What was needed was to take this idea one step further 

and use a series of short pins which are capable of piercing their way into the nap of the 

leather as opposed to bedding into the nap surface. The concern is that the grain surface 

should not be damaged. As a result a quick experiment was conducted to observe the 

effects of a pin array on leather strips, before continuing. 

3.7.1 Effect of a pin array on sample leathers. 

In order to test the effects of pins on a number of leathers a sample pin array was 

constructed by punching a series of staples through a leather substrate. The substrate was 

then glued to a wooden surface to both secure the pins and to provide a solid surface. 

Each of the protruding legs of the staples were then cut short at an angle of 

approximately 45° to leave a short sharp pin about 0.3-0.5mm high. Figure 3.15. 
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Applied force 

Sample 

Pins 

Wooden surface 

Figure 3.15 Quick test of pins on sample leathers. 

The staples were inserted approximately 10mm apart in order to allow the sample 

leather to dip between pin pairs as opposed to a higher density which would cause the 

sample to ride on the tops of the pins. This ensured that the pins bedded well in to the 

samples. 

A number of leather samples were cut into strips 150mm x 20mm and in turn 

placed onto the pin array nap side down. Pressure was applied to the grain surface 

forcing the sample to bed into the pins which were `wiggled' to ensure the pins 

penetrated into the leather sample. A number of samples showed slight marking where 

the pins entered the nap and one very thin stiff leather displayed evidence of the pins 

position on the grain surface in the form of small bumps. However in all instances the 

leather recovered from these effects after brushing or flexing. The force was applied by 
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hand pressing hard down onto a cardboard medium placed on the sample. These results 

encouraged further investigations to be made into the holding forces required to prevent 

slip on a pinned belt. 

3.7.2 Determination of required holding force for pinned belts. 

It can be hypothesised that the pinned belts will hold the workpieces far more 

rigidly for a given holding force/pressure than for previous materials such as the 

carborundum belts. However to prove this a series of measurements were taken using a 

cross-section of leathers in order to determine the holding properties of the pins when an 

adverse external force is applied. Appendix C. 3, describes the experiment and contains 

the results obtained. A summary of the results can be seen in Figure 3.16. 

Recalling from Section 3.5.1 that a possible pulling force of 5.2N can occur 

during the operation of the Autoscan, it can be seen from Figure 3.16 that the 

corresponding minimum holding force is less than I Kg, or approximately ION. 

Consequently a required holding force of 1.5Kg, (15N), will be adopted to allow for a 

reasonable safety margin. With reference to Appendix C and Figure 3.12 it can be seen 

that the Nercoprene foam offers excellent compliant properties and that for a holding 

force in the order of 15N, (applied over an 8mm diameter area), a compression of 

approximately 2.7mm is obtained. 
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Plate 6. Thre Autoscan configured for testing the compliant and pinned 
belt combination. 
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The drive belts on the Autoscan were replaced by pinned belts. The pins were 

made by inserting staples through the belts between the teeth approximately 10mm apart. 

The pins were then bent as in Figure 3.17 to ensure they were firmly secured into the belt 

substrate. 

Figure 3.17 Pinned belt construction. 

Plate 6. shows a head on view of the assembled configuration of pinned and 

compliant belts actually used on the Autoscan during evaluation. 

Plate 7. contains general views of the Autoscan configured for measuring 

handling performances using the line-scan camera method. 
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3.7.3 Measurement of workpiece movement for pinned belts. 

Once the new belts were assembled on the Autoscan and performance 

measurements taken it soon became apparent that no movement could be detected using 

either the method employed by D. L. Smithl'1 or N. Tout1421. Consequently an alternative 

mechanism for measuring the movement of a sample workpiece during testing was 

required. This resulted in the development of a line-scan camera system which provided 

an excellent method by which to monitor the edge position without having to stop the 

machine. 

The camera, a 128 pixel line-scan type is capable of being focused to give a 

resolution of 0.078mm per pixel. This allows for highly accurate measurements to be 

taken rapidly and in a fully automated manner. 

In order to evaluate the pin array belts to a high degree of confidence 9, (5 flat 

and 4 compound), sets of samples were tested. This resulted in a total of 63 different 

parts, covering a wide range of leathers, suede, synthetics and shoe components being 

tested. Each sample underwent 100 cycles, each cycle consisting of 2x 25mm 

movements. A reversal of direction was made as the end of the first movement so that 

the second movement should restore the sample to its original position. A measurement 

was taken by the camera at the end of each cycle so that a record could be made of the 

sample's behaviour. The full procedure is described in Appendix D. Table 3.1 shows the 

types of samples used. 
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Example measurements results, taken using the line-scan camera can be seen in 

Appendices G-H for flat and compound parts respectively. 

Symbol I Type I Samples I Description 

DWFL Flat 17 Leather discs 170mm diameter 

DWF Flat 7 Leather discs 110mm diameter 

DWFS Flat 6 Suede discs 170mm diameter 

DWFI Flat 9 Imitation leather discs 170mm diameter 

INSOLE Flat 8 Suede insole shoe components 

DWCR 2.5D 5 Compound part with long straight step 
DWCS 2.5D 5 Compound square part with straight step 
DWCC 2.5D 5 Compound part complex step profile 
Brogue 2.5D 1 Compound actual shoe upper 

Total 63 

Table 3.1 Samples used during the performance analysis of pin array 
belts using the line-scan camera method. 

3.7.4 Movement results for flat samples. 

The implementation of the line-scan camera allowed for the degree of slip to be 

accurately measured for large number of cycles without the need to stop the machine. 

Figure 3.18a shows a typical result for a flat component, whilst Figure 3.18b shows the 

slip measured per cycle. It can be seen that there is no net movement over the 100 cycles 

the sample was tested. When movement does occur, it was observed that the edge of the 

component was ̀ flapping' as it changed direction between cycles, Figure 3.19. 
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a) A typical example of results obtained for a flat leather disk. 
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Figure 3.18 Typical movement results measured by the line-scan 
camera for sample DWFL8. 

-78- 

0T1IiIIII+1h 

1 10 19 28 37 46 55 64 73 82 91 100 

No. of cycles (2x25mm) 



I landling and niaººilýulaýiýýn 

True edge 
position 4 ; IP 

" 

Apparew 
I111)VCII1C111 

Figure 3.19 Edge flapping causing the appearance of slip. 

This results in an apparent movement in the edge of the girt being detected by hie 

camera. However on subsequent cycles the edge lies flat producing a true edge reading. 

Figure 3.1 8b shows this effect over the test cycles. Appendix G, Figure (ý. 6 shows ihr 

symmetrical positional error distribution for flat harts, about 1CR), ikinoMstratiin this 

effect across all the flat parts tested. 

For each of the flat sample types the sample mean, (x nm), and standard (levi, ºtIon, 

can he calculated based on the "Icasurccl movement per cycle. 'fahle 3.2. 

Sample 

DWFL DWF DWI'I I)WI'S INtiOI. F 

O00O0.22 

ßý, 0.52 0.30 0.44 0.67 I. 78 

Table 3.2. Movement figures obtained f Or Flat samples 

These figures demonstrate a high degree of handling ahility 1'0r pinned I IIS witIi 

positional accuracy being maintained across the range of sample"'. indeed approxinritely 

90% of ineasurements show no movement of the sample at all. 
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The INSOLE components exhibit a higher degree of positional error than any of 

the other flat samples. This is largely due to their limp nature being unable to be 

supported between the front and rear belt systems and not due to workpiece movement 

within the handling mechanism. Appendix G, describes this in greater detail. 

3.7.5 Movement results for compound samples. 

The object for the research was to develop a handling mechanism capable of 

manipulating not only flat parts for decorative stitching but also compound 2.5D parts in 

order to perform constructional stitching. To test the handling ability of the pin array 

belts on compound parts a number of test samples, Appendix D, were constructed and 

manipulated in the same manner as for the flat components. 

For each of the sample types, the sample mean, (xco,,, p d), and standard 

deviation, (ß compound), can be calculated based on the measured movement per cycle. 

Table 3.3. 

Sample 

DWCC DWCR DWCS BROGUE 

X compound 
0000.10 

Q compound 
0.22 0 0.20 1.52 

Table 3.3. Slip figures obtained for Compound samples. 

These figures are very similar to those obtained for flat parts, indeed they are 

slightly better. This is most likely due to the nature of the materials from which the 
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compound parts were made. All the parts were made from high quality leathers and 

consequently did not cover the range of material properties tested for flat parts. 

Once again, approximately 90% of cycles show no movement of the sample 

demonstrating that the handling mechanism is equally capable of handling compound and 

flat parts. 

The only movement that can be seen in the results, is for the brogue shoe sample. 

This is believed to be due to its large and complex shape catching on the support table 

early in the testing cycles, at certain orientations. Once the pins have become bedded into 

the nap of the sample, after 5 to 10 cycles, this early handling error can be seen to be 

eliminated, Figure 3.20. Appendix H, contains additional examples for the other 

compound parts tested as well as further examples of tests performed on the brogue 

component showing how the apparent handling error can be eliminated at certain 

orientations. 
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a) A worst case result obtained for a BROGUE shoe component. 
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Figure 3.20 Typical movement measurements obtained by the line-scan 
camera for sample BROGUE shoe component. 
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3.8 Conclusions on leather handling. 

The Carborundum coated belts were able to bed into the nap of the leather but 

were not capable of penetrating into the Collagen layer, and as such were only partially 

able to hold the workpieces during manipulation. Results obtained using this type of 

abrasive material bonded to the belts, although not in themselves providing a solution to 

the problems of drift and slip did however demonstrate the validity of a semi-intrusive 

medium. The plurality of pins provided a mechanism by which the driving surface could 

physically lock itself into the workpiece and as such eliminate the material properties 

from causing movement during manipulation. The results in Appendices G-H, and 

described previously show this to be the case across a wide spectrum of leathers and 

synthetics. However the most encouraging results were gained from the compound parts 

which had considerable variations in sample thickness as well as presenting significant 

step functions, (>2mm), to the handling mechanism. 

Defining the population of flat parts to be all flat parts tested and similarly, the 

population of compound parts to be all compound parts tested, it can be seen from 

Figure 3.21, that the statistical properties of mean movement and standard deviation for 

the two populations are very similar. Appendix I calculates that in order to be 95% 

confident that a cycle will not result in a positional error of greater than 0.2mm from the 

population mean, for both flat and compound parts, only three samples, (cycles), need be 

performed. The level of 95% confidence was stipulated by D. C. Reedman117 for industry 

acceptance. This demonstrates a high degree of positional accuracy by the handling 

mechanism, regardless of workpiece type. It is however, important to recognise the 
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limitations of the handling mechanism that were demonstrated by the Ilat shoe insole 

components and the complex compound brogue workpieces. 
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Figure 3.2I Statistical comparison of' flat and compound parts tested. 

Further developments will need to be made into determining the uptinniin 

handling area and support table dimensions in order to overCOn1e these liniit, itions. The 

technology transfer of the pin array type belts has been mac from I lull t Inivcrsity to 

B. U. S. M Leicester by the author. The mechanism is scheduled I'M- evaluation and further 

development on a fully operational Autoscan at some point in the future, depending on 

commercial pressures. 

The idea of implementing a belt mechanism has already been inihlemented at 

ß. U. S. M using a single wide belts to replace each original roller Net. 't'hese were initially 

Subject to local distortions causing "soli spots" on the belt as well as severe problems 

with the power required to drive them. The belts were coated with small Carboni nduIII 

particles and produced rcasonahlc results t-or the majority of work pieces. It IS however 

still very limited with regards to the constructional stitching of conmpound parts. 
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Pre-tacking of Shoe Components 

Chapter 4 

The pre-tacking of shoe components 

into three dimensional structures 

4.0 Introduction. 

Pre-tacking is the joining of two or more individual workpieces, in order to 

greatly simplify the manipulation process that may follow by allowing the resultant part 

to be treated as a single object. This process generally involves using a temporary means 

to form a join, although a more permanent mechanism can be used if required. 

Traditionally pre-tacking has been used in garment manufacture where the limp nature of 

fabrics makes handling particularly difficult. The join is typically formed by the 

implementation of loose stitches, these stitches being removed after subsequent 

operations have formed a permanent bond between the components. 

Pre-tacking is generally regarded as a manual operation as it requires great 

dexterity and adds the overhead of an additional operation to the assembly process. As a 

consequence modern manufacturing processes have largely eliminated the need for pre- 

tacking by altering garment design and by the introduction of task specific machinery. 

This chapter aims to outline the operations and principles behind the pre-tacking of 

separate leather components for shoe upper assembly. These principles will then be 

applied in a proposal for pre-tacking a number of 2-D, components in such a manner that 

the resultant, compound, part is three dimensional. 
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4.1 Pre-tacking of lamina. 

To the best of the author's knowledge automated pre-tacking has not been 

applied to shoe manufacture in any commercial machine. E. Adams(2) produced a 

prototype 2-D pre-tacking system at the University of Hull in conjunction with B. U. S. M 

in 1990. Here the shoe components to be joined had previously had a re-activatable 

adhesive applied to the contacting surfaces. The components were then selected, 

correctly orientated and the adhesive re-activated. By pressing the components together 

they became joined and resulted in a workpiece that could be treated as a single part. 

The case for using adhesives for pre-tacking leather components, as opposed to 

stitches, is a strong one. The application of stitches requires complex handling and could 

severely damage the cosmetic appearance of the finished Upper. The stitches have the 

added complication of having to be removed at a later date, thus, introducing a further 

complex operation. Adhesives in contrast only need be applied to the contacting surfaces 

and consequently cause no detriment to the cosmetic appearance of the finished part. 

Certain types of adhesive do, however, set hard and as such can interfere with 

subsequent stitching operations. 

Individual shoe components are generally quite small and flat requiring two 

points of contact to be maintained for any component part. A number of exceptions to 

this rule exist, the most obvious being circular parts that are axially aligned, these only 

require a single point to be placed at the centre. Other exceptions arise when more than 

two components are to be joined to form the pre-tacked part. As a result it simplifies 

matters if the pre-tacking of multiple components is considered to be the repeated joining 

of only two lamina. Where three components constitute the final part, two components 
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could be joined using two points. The resulting part can then be treated as a single 

component for the next operation. Consequently quite complex parts can be constructed 

from a number of basic components in a relatively simple manner. 

4.2 Pre-tacking into three dimensions. 

The 3-D shape of a shoe upper prior to lasting is constructed out of a 2.5-D part, 

assembled from a number of parts by the sewing together of disparate curves at the heel, 

in a process called closing. This still requires complex manual manipulation of the 

workpieces to be joined as few mechanisms for automating this process exist. The 

curved edges of the workpiece need to be brought together in a controlled manner, 

whilst at the same time either stitching along the overlap join, or zigzagging from part to 

part across the edges to form a'Butt' join using machines similar to the Pfaff 418-491131. 

If parts could be pre-tacked together prior to the final joining process, the final 

stitching of such workpieces would be greatly simplified, as the resultant pre-tacked 

component could be treated as a single workpiece. 

4.2.1 Pre-tacking principles. 

In general the edge of a part can be described as a series of polynomials and as 

such can be mathematically complex to define. This mathematical description of the edge 

profile of the part equally well describes a line which has no physical constraints. 

However, the components to be joined have physical properties such as area, thickness 
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and mass. As a result this model can be simplified f Or real components as a number of 

restrictions exist on the possible locus of the edge of the pat. 

1 

a) Physical component h) I. ine in space 

Figure 4.1 Reduction in required points resolution by considering physical properties. 

For example the edge of the part cannot move so that it would He outside the 

body of the part when that part is in its 2-D, (flat), state. If it were to (1o so, the part 

would either have stretched or, in the limit, torn. If' the line of the edge is to rcni. ain in 

plane and only the body of the component is allowed to become dct, ºrnued froin the flat, 

then the problem of defining the points at which the pre-tacking honet need he made in 

order to ensure accurate results is further simplified. 

By considering such boundary conditions a hypothesis which describes the edge 

behaviour of a part given a degree of deformation can be proposed. 

4.2.2 3-D pre-tacking hypothesis. 

Consider a 2-D part which has finite area, such that it call not he 1j)p1'OXiiimt , (j 100 

a line and whose edge profile can he described as a series of ellipses. II' its edge points 
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are to be constrained to the same plane, then only three points on the edge of the part for 

each ellipse need be defined for the edge of the part between these points to be similarly 

defined. This is providing no singularities are introduced and no part of the body of the 

workpiece lies in the plane of the edge points; Figure 4.2a. 

However, if part of the body of the workpiece is to lie in the same plane as the 

edge points, then the distance between the points where this body enters and leaves the 

plane, (the plane points), must be a maximum if the points along the edge are to remain 

in the defined plane; Figure 4.2b. In a material such as leather, there can then be said to 

be a line of force between these two points of such magnitude as to hold the points of the 

body along the line connecting the plane points in plane. As a result if the body that is to 

he in the defined plane is known, then the remaining edge points are known if they are 

also restricted to the said plane. Consequently, if the whole of the body of the part is to 

remain in a defined plane, then any two points on the body of the part will define the 

edge points. I. e. the general rule for 2-D pre-tacking. 

4.2.3 Limited contact points. 

The hypothesis leads to the possibility of using limited contact points to perform 

an accurate pre-tack and that a continuous join need not be required in order to 

accurately align the workpieces. Hence, for the accurate alignment of two separate parts 

only a finite number of points need to be matched if the conditions for the hypothesis are 

met. 
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Figure 4.2 Three dimensional pre-tacking. 
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The minimum number of points required to perform this task is three, as three 

points are needed to define a plane. This minimum requirement works well for the simple 

components typically encountered during shoe assembly, however like 2-D pre-tacking 

additional points may be required if the shapes become large or complex. Some complex 

curves which would require two ellipses and thus mathematically up to 6 points to define 

can be created during the manipulation of the 2-D component into the final 3-D shape. 

This is achieved prior to performing the actual bond, by controlling the orientation of the 

selected pre-tack, (control), points. Figure 4.3 shows a simple case where a part lying 

flat has a profile (a). For simplicity one possible manipulation point is fixed and the other 

is rotated through known angles, (b & c), relative to the reference. In order to achieve 

these results the body of the part must leave the plane to which the edge has been 

restricted. Such manipulations as well as being restricted by the properties of the material 

handled can result in undesirable effects such as creases. 

xed 

ferei 

fixed 

a) b) c) 

'fixed 

Figure 4.3 The effects created by controlling gripper rotation 
on the edge of a part during 3-D pre-tacking. 
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This method of orientation is analogous to Bezier curves which implement 

control points. These control the height and slope of a curve by their distance and angle 

relative to the node from which they extend. Here the loacation of the control points is 

limited by the physical properties as the part and can not be located anywhere in space as 

with Bezier curves. The distance to the control point is thus determined by the rotation 

of the manipulated point with respect to the reference angle and must be in such a 

position that the edge of the part remains in the defined plane. Consequently such curves 

can be calculated in advance and incorporated into component design. A manipulator can 

then be programmed to automatically perform the operations required to deform a 2-D 

lamina into a 3-D component whose edges follow known paths. 

4.2.4 The manipulation process. 

Where two simple parts such as those in Figure 4.4a, are to be joined, both of 

which initially lie in the 2-D plane but will result in a 3-D component after joining, only 

three points need be defined. 

The three points are selected on one of the two component parts, e. g. part [a], 

such that when manipulated they match similar points on the second part [b], the 

resultant workpiece being of the required 3-D form. As a result if part [a] is gripped at 

these three points when in its 2-D state and then deformed by moving two of the points 

relative to the third in the 2-D plane, the body of the part becomes distorted into 3-D. 

Once the three points are correctly located in X and Y, (Z remaining constant), the 

points can be rotated to affect the line of the edge. The second part [b], in its 2-D plane 

can then be lowered to make contact with the now deformed part [a] and a join made at 
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the three plane points. The edge points of part [a] become restricted to the plane defined 

by the second part and are therefore defined. This results in a single 3-D part as depicted 

in Figure 4.4b. Once the bond has taken place the resulting 3-D part can be removed 

from the pre-tacking manipulator and allowed to relax. This often results in the part that 

had remained flat during the whole process becoming deformed into the 3-D plane due to 

the stresses generated in the leather during the pre-tacking operation. 

4.3 An experimental pre-tack system. 

Figure 4.5, shows a diagram of the simple experimental manipulator constructed 

to test the hypothesis on simple workpieces. Two of the grippers are able to be moved in 

the X and Y directions under computer control. The third gripper remains fixed 

providing a reference point from which the grippers can be positioned relatively within 

the plane. The plane of the join is defined by the height of the three manipulators. 

The mechanism for loading, performing the actual join and unloading the 

completed, now 3-D workpiece is depicted in Figure 4.6, which shows the 

implementation of a gantry carrying a vacuum plate as described by E. Adamst21. This 

system was originally constructed to perform pre-tacking of 2-D workpieces but is 

equally suited for the construction 3-D parts. This is due to both of the parts initially 

being 2-D and even after the joining process has taken place, the second part still remains 

in its 2-D state with the deformed first part lying below it whilst still being held by the 

manipulator. As a result the vacuum plate is capable of attaching itself to the completed 

part using the undeformed part to achieve a hold. 
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(b] 

-ý Control points 

Perform join 

a) Performing the pre-tack 

Figure 4.4 Pre-tacking an upper component. 
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Figure 4.5 Limited contact pre-tacking. 
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Figure 4.6 Schematic representation of a complete pre-tacking system. 
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4.4 The pre-tack medium. 

Generally in garment manufacture pre-tacking is performed by placing a small 

stitch to hold the separate parts together, however, for shoe making this is not desirable. 

This is due to the complexity it would add to the pre-tacking system which would then 

require some form of stitching head. This could be overcome by using staples to form the 

join, however both mechanisms pierce the surface of the parts leaving ugly holes after 

their removal, thus affecting the cosmetic appearance of the finish part. As a result a fast 

acting contact adhesive was implemented as the pre-tacking medium as this does not 

effect the final appearance of the workpiece or require removal after final joining. The 

adhesive used for experimental purposes was a `super glue' type gel. This had the 

beneficial property of not soaking into the leather components too quickly after 

application, thus allowing time for the manipulation process. Although the gel worked 

well in experiments, for practical reasons it may prove an advantage to implement a re- 

activatable adhesive to the part(s) some time prior to the actual pre-tack operation. 

4.5 The gripping mechanism. 

Considerable difficulties exist in devising a gripping mechanism to hold the 

workpieces during the manipulation process. One proposed solution is to locate the parts 

onto pins located at the gripper heads. This would ensure that no lateral slippage of the 

part could occur whilst it was being deformed. This however, is not a feasible solution as 

it damages the surfaces of the components being handled and does not provide a means 
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of securely holding the point in a manner so as to allow for it to be rotated.. As a result a 

number of non-destructive methods for gripping the components have to be considered. 

these being :- 

" Physical gripping, 

" Vacuum suction, 

" Magnatak adhesive compound. 
Nb. Electrostatic gripping was also briefly investigated. However the surface area 
required to hold a part securely prohibited its use for this application. 

4.5.1 Physical gripping mechanisms. 

The physical method can be sub-divided into two categories, the first being a 

method by which the part is clamped between an upper and lower surface. This was 

found to have a number of limitations. The predominant problem being that the part 

could only be gripped near to the edge and access was required to both sides of the part 

by the gripper. Furthermore, as the pre-tacking medium was a fast acting contact 

adhesive, the gripper itself often became glued to the part. 

The second method involves pinching the part from one side only using three 

steel points to ensure stability at the gripping position. This eliminated the problem of 

gluing the gripper to the part as no part of the gripper was exposed on the bonding side. 

For some workpiece types however, the surface of the part at the points of contact 

became damaged. No serious damage occurred on very soft leathers or suede's which 

had the ability to be deflected by the gripping points and then recover after being 

released. For the majority of cases such damage would not be seen as it would be hidden 

within the pre-tack join. However if the manipulation were required to take place on the 

grain, (best), side it would be unacceptable. As a result surface pinching as a gripping 

-98- 



Pre-tacking of Shoe Components 

mechanism is far too inflexible to be employed in a general 3-D pre-tacking system. It 

might however, find a use in a more specific area where only suede is to be handled, or 

where the slight surface marking will be covered by another part. 

Both of these mechanisms require a high degree of actuation, which for a simple 

system with only a few points to control may well be acceptable. For more complex 

systems with more points the control workspace could become highly congested. 

Consequently more compact mechanisms capable of perfoming the manipulation are 

required. 

4.5.2 Vacuum gripping mechanisms. 

To overcome the access problem to both sides of the part and remove the need to 

operate close to its edges, vacuum systems were investigated as they are both clean and 

simple to control. However, although the vacuum could generally hold a part prior to 

deformation it was found that for a large number of cases (materials that are not readily 

pliable or whose surface can be described as 'rough'), the shear forces introduced by the 

deforming process caused the part either to slip or become completely detached from the 

vacuum grippers. It should also be noted, that even for the more pliable materials, initial 

holding often failed due to the porous nature of the material. This was due to the contact 

area between the gripper and the component having to be kept to a minimum in order 

not to restrict the movement of the component during the manipulation process. 

A method which significantly reduces the slippage due to the lateral motion of the 

gripping head when manipulating the part is to make the surface of the gripper around 

the point where the vacuum is applied to have very high friction, with respect to the 
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surface of the workpiece. One such medium was to found to be `Blue-Tak' which is 

partially adhesive in its own right and as such provides an extra gripping force. Indeed it 

was found that the Blue-Tak on its own could hold well enough to perform operations 

on paper and some fabrics. In addition to its tacky property it is also compliant allowing 

it to fill any small gaps between the vacuum gripper and workpiece surface when the 

component was pressed down onto the manipulating head. This ensured the suction 

power of the vacuum was directed solely at the surface of the workpiece. A further 

support mechanism that proved effective was the implementation of a ring of pins fixed 

around the vacuum gripper. The pins were stood slightly proud (-1 mm), in order to 

ensure they did not penetrate so deeply through the component as to cause damage that 

could be seen, or in the case of dense materials prevent the component from being seated 

correctly onto the vacuum head. This mechanism eliminated the effects of drift during 

manipulation but was still unable to maintain grip across a wide range of leathers. In 

addition the pins had to be constantly adjusted to cater for leather thickness and density. 

4.5.3 Magnatak gripping. 

The final method considered was Magnatak 7000. Magnatak is a form of 

adhesive which when set provides a tacky surface which can provide a firm hold whilst at 

the same time not producing a permanent bond. After manipulation the part can be 

cleanly separated from the gripper with no Magnatak residue being left on the part. 

A problem arises in that unlike the physical and vacuum methods, the tackiness of 

the Magnatak is exhaustible especially when the nap side of the leather is to be 

manipulated. This flesh side often contains a large number of loose fibres that are able to 
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break away from the leathers surface and adhere to the gripper, thus quickly clogging up 

the Magnatak compound. 

It is possible to rejuvenate its properties to a large extent, so long as it has not 

become completely clogged, by gently wiping its surface with a damp cloth and allowing 

a small drying time. Initial experiments showed a refresh rate of once every 100 

operations to ensure reliability when operating on the grain side, with this rate having to 

be increased ten fold if the flesh side is to be gripped. Unlike the vacuum and physical 

methods the gripping mechanism cannot be switched off by the control system in order 

to release the completed workpiece, as a result the workpiece needs to be peeled from 

the Magnatak in order for the part to be removed from the grippers. Figure 4.7 shows 

the gripping heads that were designed to perform this task. The implementation of 

solenoids allowed the gripping surface to be retracted through a collar which acted to 

peel the workpiece from the Magnatak compound. 

The experimental system implemented the Magnatak compound to provide the 

gripping mechanism. This was done in order to minimise the complexity of the 

mechanical and control systems as much as possible as three grippers were required. The 

object of the exercise being to determine the validity of limited contact points as a 

method of pre-tacking into 3-D, rather than produce a commercial standard pre-tacking 

system. 
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4.6 Results. 

Once the components have been pre-tacked together they must undergo final 

stitching to provide a permanent join. The ultimate proof of whether or not pre-tacking 

of components into 3-D is of value, depends on how greatly it simplifies the operations 

which are to follow. In order to stitch the parts so that the edges remain correctly 

aligned, either component that makes up the resultant workpiece, must remain in the 2-D 

plane so as to ensure stability. This is generally the part that had remained flat during the 

pre-tack operation. The actual sewing operation can then be performed on a standard flat 

bed sewing machine, the bed acting as a solid plane upon which the part is supported and 

kept flat. Care must be taken not to distort the natural line of the edge as this would 

result in misalignment errors being introduced. 

In order to test the ability of the three point pre-tacking proto-type system 

outlined, a simple shape whose characteristics can be easily represented mathematically 

was used, Figure 4.8. By implementing such a test sample the desired locations of the 

edges of both workpieces are well defined both before pre-tacking and after final 

stitching. Consequently measurements can be taken to record the accuracy of the pre- 

tacking processes. The parts consist of a circular disc 130mm in diameter, (part [a]), and 

a larger semi-circular component with a diameter of 148mm, (part [b]). The line of 

stitching is 6mm from the edge of the pre-tacked part. The location of the control points 

are also illustrated. 
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Figure 4.8 Component used to test pre-tack principle. 
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Part [b] is loaded into the pre-tack system and held at the selected control points. 

These are then manipulated to align with similar points on part [a]. Adhesive is then 

applied to part [a] before part [b] is lowered to form the bond. Once the adhesive has set 

the pre-tacked part is then released resulting in a 3-D compound, pocket shaped, 

component. 

Twenty paper samples were produced so as to measure the effects of pre-tacking. 

Paper was used for a number of reasons. Firstly it allowed for the exact cutting pattern to 

be printed directly onto the sample thus resulting in a well defined cutting pattern. 

Accurate leather samples were difficult to produce and had edges that were subject to 

fraying, resulting in difficulties in obtaining accurate measurements. Paper samples also 

have the added property that the edge can only be flexible in one direction at a time, thus 

removing any benefits that may be gained from the flexibility of leather components. 

Measurements were taken of the discrepancy between the edges of the joined 

parts, after stitching, at the 27 points shown in Figure 4.8 using a travelling microscope. 

Figure 4.9 contains a plot of the average misalignment errors for the twenty 

samples for each measurement position. These results show that at the control points, 

where manipulation occurs, the alignment errors are very low,. Those that do occur are 

due either to mechanical limitations of the handling mechanism, or incorrect cutting of 

the samples. Experiments showed that the cutting of the patterns could produce errors of 

around 0.5mm in extreme cases. Between control points the degree of misalignment 

increases to a maximum, with the largest observed error on any sample being 1.2mm. 

Generally however, the positional errors are very low. In excess of 60% of 

measurements show no measurable misalignment, Figure 4.10. 
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A number of other component shapes, including representations of shoe 

components, made from leathers and fabrics have been similarly pre-tacked using the 

experimental set-up. Although the positional accuracy is hard to quantify all the samples 

provided visually satisfactory results after stitching. Appendix J, contains the results 

obtained from the paper samples as well as information on other samples investigated. 

The Author has attempted to stitch the same components directly, without pre- 

tacking, with little or no success. It was found that even with the desired component 

position marked onto the plane to which it was to be stitched, it was difficult to 

manipulate the components correctly during stitching. By implementing the pre-tack 

system, components were successfully assembled quickly, in a highly repeatable and 

accurate manner across the range of materials tested. 

4.7 Discussion. 

The object of this research was to produce a basic mechanism for pre-tacking 

two, 2-D components together in such a manner that the resultant part was three 

dimensional. To achieve this, it is either required to produce a continuous bond along the 

lines of contact between the two components, or to select a number of key points to join, 

which after final stitching, will produce the desired result. The operations required to 

manipulate a component to produce a continuous join would be very complex and if such 

an operation could be performed, then it should be implemented to produce a final join 

and not a pre-tack. This approach was investigated by J. Grantham(15l, at Hull University 

in 1992-3, for the constructional stitching of disparate curves. This machine was both 

complex in operation and slow due to the component becoming unstable at stitching 
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speeds in excess of 200 stitches/min. Consequently it was preferred to pursue the 

mechanisms that are employed for 2-D pre-tacking and determine a set of conditions that 

could be applied for manipulation into 3-D. This produced the minimum requirement of 

three points for stability, these capable of being orientated in X, Y and 0. The prototype 

system proved effective for simple and indeed some quite complex manipulations across 

a wide range of leathers and additional materials. 

Pre-tacking adds an operation to the processing of a component and due to its 

complexity has rarely, if ever, been implemented in commercial machines. However, by 

its very nature it assembles the component parts to a reference position and as such may 

remove the need for the stitch marking operation that would normally have to be 

performed in order to guide an operator during stitching. Thus rather than being 

regarded as an additional operation it may in certain cases be regarded as a replacement 

for stitch marking. The outlined method demonstrates that complex handling mechanisms 

need not be required for a relatively wide range of parts. pre-tacking into 3-D can be 

performed simply and quickly with the actual manipulation and bonding process taking 

under 2 seconds to complete. This provides the possibility to fully automate a pre- 

tacking system capable of assembling complex parts from their basic components. It is 

envisaged that such complex parts could form the input to automated handling and 

stitching machines. These machines currently either incorporate complex manipulators or 

are very task specific[33"361. By pre-tacking the components prior to final joining a far 

greater variety of parts could be assembled in an automated manner. 
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Chapter 5 

Edge Following 

5.0 Introduction. 

Shoe uppers are constructed from many separate components, a number of which 

need to be stitched together to form larger, more complex workpieces. This process 

either being performed manually or by machines similar to the M. P. C. S. introduced in 

Chapter 1. Here the parts are clamped in to pallets, which are manipulated according to a 

previously taught stitch pattern under a sewing head. The Autoscan, described in some 

detail in Chapter 3, was designed to eliminate the need for the pallets, however the 

stitching process is still performed open-loop based on a template. Consequently there is 

no ability to counteract for any positional or structural variations in the presented part. 

A number of mechanisms which can visually obtain information about an edge 

during manipulation, in order to allow for closed loop feedback, will be discussed in the 

following sections. 

5.1 The implementation of lasers. 

Traditional edge following methods use either back or top-lighting combined 

with a light detector, generally in the form of a camera. These systems determine the 

edge position by detecting a change in contrast across the observed image. In the case of 

backlighting the contrast variation results from the edge to be followed obscuring part of 
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the light source from the camera. Where top-lighting is implemented the light source is 

angled across the edge from behind the topography of the edge producing a shadow. The 

resulting light-dark(shadow)-light pattern is then observed, enabling the edge position to 

be estimated. Such edge determination methods are cheap, safe and convenient, however 

they do not provide a great deal of information about the actual topography of the edge. 

They are also susceptible to ambient and material variations. Modern developments into 

laser technology offer an alternative to white light methods and provide greater potential 

to maximise the amount of information that can be extracted from a given component. 

5.2 Laser triangulation. 

Laser triangulation can performed by projecting a light stripe on to a surface 

which is being viewed by an area camera offset from the laser axis. The line-stripe, as 

perceived by the camera, becomes distorted according to the profile of the surface and 

the camera and laser angles. 

For edge following, a typical triangulation configuration can be seen in Figure 

5.1. Here the laser is projected at an angle of 90° to the surface of the edge, with the area 

camera viewing this area at an angle 0. This ensures that the line-stripe represents a 

cross-section of the edge in the vertical plane only, with the angle of the camera allowing 

the effect of the edge profile to be viewed. 
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5.3 Simple edge following using laser triangulation. 

When the triangulation arrangement in Figure 5.1 is implemented the image 

viewed by the camera contains a deformed line, with the main feature being a 

discontinuity in the line-stripe caused by the change profile. Where a simple 

approximation to the edge position is required this discontinuity can be located with 

simple image processing methods. Figure 5.2a contains an image obtained from a square 

cut edge. It can be seen that the line-stripe has been broken into two distinct parts, 

vertically offset from each other, with the discontinuity occurring at the edge. 

5.3.1 Edge characteristic extraction. 

Once an image of the line-stripe has been obtained, it requires further processing 

in order to extract a value for the edge position. This can be achieved in a number of 

ways, such as region growing'501. However the implementation of histograms provides 

both a simple and informative mechanism. By calculating histograms for average pixel 

intensity for each line in both the X and Y axis of the image (Figure 5.2b) information as 

to the thickness of the edge in addition to its position, can be obtained. The histograms 

are lightly smoothed before processing in order to reduce specular effects. The observed 

edge thickness being a function of the actual edge thickness and the camera angle, ©. 

Assuming that the laser and camera are correctly aligned, the Y axis histogram shows 

two peaks which correspond to the perceived positions of the line-stripe. The X axis 

histogram shows a drop in intensity at the edge. Appendix K, shows the effects observed 

due to camera or laser misalignment. 
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a) Grcy scale image obtained by a camera for a square cut cd, ". cc. 
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h) Result o1' histogram analysis to determine edge characteristics. 

Figure 5.2 Results obtained for a square cut edge using laser triangulation. 
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In order to determine both the location of the edge of the part and its thickness, t, 

a threshold level is required. This level will determine from what point on the histograms 

measurements will be calculated. 

For a square edge, where the parts of the laser line-stripe, as perceived by the 

camera, remain horizontal, the peak values of the Y axis histogram can be used to 

determine an approximation to the thickness of the edge. This is due to the gaussian 

distribution of light intensity over the line-stripe, (Appendix K). The actual edge position 

being determined by the inflection point in the X axis histogram caused by a drop in 

intensity at the edge. 

5.3.2 Limitations of simple edge following. 

The simple method for extracting the edge of a part described above allows for a 

number of edge characteristics to be determined both quickly and simply, as would be 

required for closed loop edge following on stitching machines. However, where the edge 

characteristics are more complex, such as those created by folding, or where some 

misalignment exists between the camera, laser and the edge, then further processing is 

required. In addition where the surfaces do not lie flat, or complex edges, such as those 

found on an Oxford brogue, arise (a zig-zag cut edge with decorative holes punched 

close to the edge), the histograms are not well behaved. 

Figure 5.3 shows a number of effects that can be observed for a brogue vamp 

component with an edge thickness of 1.6mm. The X axis histogram has been lightly 

smoothed using pixel averaging in order to remove the effects of the punched holes. 
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Figure 5.3 Results ohtaincd f-oor a1 n)gue C"uIlli)Oncnt edge. 
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It can be seen from Figure 5.3 that the edge of the part is not lying flat and 

consequently the Y axis histogram peaks, previously seen for an ideal square cut edge, 

have merged. This means that the edge thickness of the part cannot be determined for 

this type of image using this simple approach. 

Figure 5.3b demonstrates how the topography of the edge can cause uncertainty 

to arise as to the position of the edge. This effect is a result of the camera being 

orientated at an angle to the workpiece. If an obstruction exists between the camera and 

the point at which the laser crosses the workpiece then the line-stripe cannot be 

observed. Figure 5.4. 

0 
Laser 

xmera 

Obstruction 

Figure 5.4 Information loss due to obstructions. 

The actual edge for the image in Figure 5.3b, could lie anywhere between the 

histogram limits, E and S. Furthermore the smoothing operation performed on the X axis 

histogram results in the position of point S occurring well within the observed second 

part of the line-stripe. In cases such as these, a representation of the edge position can be 

obtained by selecting a threshold level which is mid-way between the upper and lower 
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histogram limits resulting in a maximum error, for this type of edge, in the order of 

0.6mm. 

In order to overcome some of these limitations and regain the lost information as 

to workpiece thickness, additional processing can be performed. 

5.4 Edge position determination for complex edges. 

Where an edge is well defined, square cut, but complex due to the nature of the 

workpiece (e. g. irregular or non-flat) information can still be obtained in addition to the 

component's edge position. The implementation of histograms is still used in the early 

stages of processing to determine the location of the line-stripe within the image as well 

as determining a threshold level that will be used to perform line thinning. 

5.4.1 Accurate edge extraction of square cut edges. 

The region of interest is determined firstly by calculating aY axis histogram as 

before. This allows for the background intensity threshold level, Tb, to be calculated. By 

reapplying this to the histogram the location of the line-stripe within the image in the Y 

axis can be found (Figure 5.5). An X axis histogram could similarly be calculated. 

However as the line-stripe generally covers the majority of the camera's X axis field of 

view this is regarded by the author as an unnecessary computational overhead. 

The located line-stripe is then thresholded and thinned into a single pixel line. 

This is achieved by selecting a second threshold level, Ti, which corresponds to the laser 

intensity on the workpiece. T, is selected so that pixels whose intensity lies within the top 

third of the Y axis histogram will be regarded as on, (1), with all others being 
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Figure 5.5 Image processing techniques for edge characteristic extraction. 
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off (0). This level could be determined by calculating a histogram of number of pixels 

against intensity, this would however not provide information as to the location of the 

line-stripe. 

The thresholding and line-thinning is performed in one pass starting at the top 

left-hand corner, (0,0), of the determined area of interest and scanning down the image 

to Y. before incrementing in X. When a pixel is encountered whose intensity exceeds 

T, a count is started. The count continues for each consecutive pixel whose intensity is 

also above the threshold level. If a pixel is detected to have a value below T, then the 

count is terminated. The location of the pixel in the centre of the 'on' region is then 

recorded, the Y search reset to zero and X increased, this process being repeated across 

the width of the image. However, in order to eliminate specular effects, if the count is 

less than T3 (the number of pixels required to define an edge), these pixels are ignored 

and the scanning process is allowed to continue. T3 can vary from material to material 

depending on its surface characteristics, however the author found experimentally that a 

value of four was adequate for the samples investigated. 

This results in an series of rectangular co-ordinates representing the thinned line- 

stripe. This is processed to locate the discontinuity and the ends, E&S, of the line-stripe 

sections, thus defining the region in which the edge must lie. In addition, the vertical 

distance between the line-stripe sections at E and S, allows for the edge thickness to be 

determined. 

This mechanism is more robust than using histograms alone, as it is not affected 

by small misalignment errors. It also provides the ability to determine the edge thickness 

with little additional overhead regardless of the histogram shape. 
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5.5 Edge determination for folded parts. 

Where components are to be joined to form a single workpiece the individual 

part's edges are either square cut, or folded. The case for square cut edges has already 

been considered, however where the edges are formed by folding additional factors have 

to be considered. A folded edge is formed by skiving, (ref. Chapter 1, Section 1.2), a 

percentage of the material from around the edge. Adhesive is applied and the edge folded 

over to produce a clean `rounded' edge. 

Using the approach discussed in section 5.4, further information relating to the 

cross-sectional profile of the edge can be obtained. Hence, a square cut edge and its 

thickness could be differentiated from a folded edge, which in turn could have its degree 

of pear-shaping, (the blooming effect caused by folding), defined. In addition the 

information gained could be used for corrective edge following or position identification. 

This would be achieved by detecting certain characteristics along the edge, such as a 

joins or seams. 

5.5.1 Characteristic extraction. 

Once an image has been obtained and processed, as before, to a series of 

rectangular co-ordinates, representing the thinned laser line-stripe image this information 

can be processed to obtain a number of key points and distances, Figure 5.6. These can 

be used in order to enable an approximation of the edge profile to be made. 
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With reference to Figure 5.6 the distance d5 enables a measurement to be made as 

to the material's thickness, if it is assumed that at this point the thickness observed is 

twice that of a single skived thickness. The degree of the fold (amount of pear shaping) is 

given by the distance d4 which is quoted as a percentage of the material thickness. 

The edge of the workpiece can be said to lie between ptO. x and pt L., with the gap, 

(pt L. -ptO. x) resulting from misalignment errors and/or the effect of light roll-off over the 

curved edge. The true edge is defined as the position of the edge within this gap. 

In the following sections a mechanism will be discussed to allow for the true edge 

position and profile to be determined regardless of the degree of pear-shaping or the roll- 

off characteristics. In order to achieve this two assumptions have to be made. 

Assumptions :- 

1. The material thickness is given by 
d5 
2 

2. The profile at the fold, once pear-shaping is removed, is semi-circular with the 

radius of curvature being that of the material thickness. 

5.5.2 Tightly folded edges. 

Where tightly folded edges are to be followed the true edge position can be 

approximated by fitting an ellipse to the extracted edge profile in order to eliminate the 

effects of roll-off, Figure 5.7. 
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Figure 5.7 Roll-off compensation for a folded edge. 

where, 
b is given by (d5+d4)/2 
e is the error from the true edge 
a is calculated by substitution using the co-ordinates from Pt. 1. 

The equation of an ellipse is given by, 

x2 y2 

a2 
+ b2 =1 ................................... Equ. I 

rearranging gives, 

I 
bzx2 

y2 .................................. 
Equ. 2 a=b2 

Therefore, the length `a' for the major axis of the ellipse can be calculated using 

Equ. 2, by translating the co-ordinate origin to lie at the centre of the ellipse, and by 

substituting the values for Pt I. 

Hence, 

x= Pt2. X - Pt 1. x ,y= Pt2. y - Pt Ly+b............ Equ. 3 
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The error distance ̀ e' is then given by, 

e=a -x........................................ Equ. 4 

By adjusting the perceived edge by the calculated roll-off error the true edge 

position can be identified, thus allowing for fluctuations in the accuracy of the fold to be 

automatically compensated for. The accuracy of ellipse fit to the profile of the edge can 

be seen in Figure 5.8(a). 

5.5.3 Edge profile representation. 

From the extracted information the surface profile of the edge can approximated. 

In order to complete the cross-sectional representation of the fold and high-light the 

pear-shaping effect the inner profile has to be determined. This is achieved by selecting a 

number of points that are the thickness of the part inside the known outer edges. A series 

of cubic splines are then fitted through these points. 

Points used for inner profile determination: - 

1. Pt3. x, Pt3. y + 
2S 

2. Pt2. x, Pt2. y+ 
ds 
2 

d5+d4 
3. Ptl. x-e, Pt2. y+ 2 

4. PtO. x, PtO.. v -d5 2 
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a) Result of fitting an ellipse to extracted line-stripe information 
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b) Result of combining the inside and outside spline methods 
to represent the cross-section of a folded edge 

Figure 5.8 The results of processing for a folded edge. 
Pear-shaping = 9.0% of component edge thickness. 
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Figure 5.8(b), shows how, combining the inside spline representation and surface 

profile, a graphical representation of the fold cross-section can be made. 

Where corrective stitching is to be performed, or where the true edge position, 

after the pear-shaping effect has been removed, is required, some additional processing is 

needed. 

5.5.4 Closed fold edge determination. 

The position of the closed folded edge can be similarly plotted in order to achieve 

a full understanding of the edge profile. This is achieved using assumption 2 (page 122). 

(I. e. the fold once pear-shaping has been removed is semi-circular with a radius of 
2s 

However in order to determine where the closed edge is positioned the length of the path 

between points A to D has to be calculated. Figure 5.9. 

B 

C 

Figure 5.9 Determination of closed edge position for a folded part. 

A 

D 
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The distance C-D is a straight line whose length is determined from the 

previously extracted points. The length of the arc B-C is determined by the ellipse used 

to approximate the edge profile in its natural, pear-shaped, state. The remaining distance 

A-B can be approximated by cubic splines through calculated points between Q and A, 

thus ensuring a close fit to the original data. Cubic splines have the effect of smoothing 

out the extracted profile, thus eliminating any noise that may be present due to surface 

characteristics or image processing. 

As the total profile length A-D remains constant even when the profile is 

`flattened, by subtracting the length of the arc for a tight fold, 

can be defined, with respect to the arbitrary reference as, 

AD - itds Pt4.. - 2 

Thus the position of the closed edge is given by, 

Pt4s- 
AD-d5(n-1) 

2 

Closed x=138 

True x=143 

Perceived x=153 

; tds, the start of curvature 2 

Figure 5.10 Graphical representation of edge profile characteristics. 
Pear-shaping = 9.0% of component edge thickness. 
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5.5.5 Results on edge profile extraction. 

In order to evaluate the effects of folded edges on edge following, 5 samples 

were processed to extract the perceived, true and closed edge positions. Table 5.1, 

shows the results obtained from these samples. 

Sample Perceived edge 
(Pixels) 

True edge 
(Pixels) 

Closed edge 
(Pixels) 

Pear 
shaping 
(%dS/2) 

1 153 143 138 9 

2 150 140 133 15 

3 116 107 95 72 

4 156 140 138 15 

5 114 109 95 72 

Table 5.1 Edge position results for test samples 1-5. 

The experimental configuration was calibrated such that a single pixel 

represented approximately 25µm. Consequently the variation of 16 pixels from perceived 

to closed edge position for sample 3 equates to a displacement in the edge of the part of 

0.525mm. This may in certain circumstances result in visible variations in stitching 

accuracy. 

It can be seen from these results that the error in edge position from the 

perceived to the true edge fluctuates and does not directly relate to the degree of pcar- 

shaping. This is most likely due to component-camera misalignment and variations in 

light roll-off angle, both of which can be estimated. 
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The edge-camera misalignment, M is, 

M= Pt. O, - Edge. ............................... Equ. 5 

The roll off angle, a, (Figure 5.11) can be calculated from the equation of the 

ellipse used to approximate the edge profile. This is achieved by differentiating the ellipse 

equation with respect to `x'. 

Equation for an ellipse 

x2 y2 

2 +b2- =1 ................................................ Equ. 6 
a 

Solving for y, 

x2 y- 1- 2 . b2 
a 

.............................................. Equ. 7 

Differentiating w. r. t. x, 

d 
1- zz. bz - -b z 

dx az xz ' az 

az .. Equ. 8 

Thus the roll-off angle is defined by the arctangent of Equ. 8. 

F -b x arctan 
x 2. aZ-a 

1-- 
az 

....................................... Equ. 9 
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i 
Pt2 

Pt l 
Spline 

b 
Ellipse 

4 00 
a 

Figure 5.11Determination of roll-off angle for incident laser light. 

Consequently by substituting the co-ordinate value for the furthest well defined 

spline point, Pt I, into Equ. 9, a value for the light roll-off angle can be ascertained. Table 

5.2 contains results obtained from samples 1-5 for roll-off angle and edge misalignment. 

Sample a 
(Pixels) 

b 
(Pixels) 

cc 
(degrees) 

M 
(Pixels) 

Pear 
shaping 
(%ds/2) 

1 46 57 57.3 -5 9 

2 46 58 57.8 -2 15 

3 51 57 58.4 6 72 

4 49 58 47.2 -2 15 

5 41 55 67.9 2 72 

Table 5.2 Roll-off and alignment errors for test samples 1-5. 

The results show that there is no correlation between the degree of the fold 

(pear-shaping) and the roll-off angle. This is to be expected as the samples had varying 

surface properties with respect to reflectance of the laser light. Appendix L contains the 

processed images for these samples. 
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5.6 Conclusions on edge following. 

A number of mechanisms for edge following have been investigated from simple 

square cut to complex folded edges with each mechanism having its own merits. 

Consequently the selection of which mechanism should be used for any one application 

would have to be evaluated against the system performance requirements. 

For the purpose of following simple edges, where the need for characterisation of 

the edge profile is not required and where components have no lining, the traditional 

back lighting mechanisms still have their place. However, if additional detailed 

information is required about the profile of the edge then the laser line-stripe methods 

offer greater rewards. Unfortunately the major disadvantage of laser triangulation 

methods is that they require a considerable amount of processing to be performed. In 

addition such systems are costly as they require both a laser and a high definition area 

camera, together with a powerful processing environment. 

Applications for profile extraction of folded edges are mainly limited to 

corrective edge following, where the edge position after stitching is determined in 

advance, so as to ensure a smooth stitch line, Figure 5.12(c). If the edge were to be 

followed without this correction, the resultant stitch line quality may be poor for high 

degrees of pear shaping and effects similar to those in Figure 5.12(d) may occur. 

Figure 5.12(e) shows a possible application where it may be wished to maintain 

the pear shaping effect. Here the stitch position is selected so as to maintain a consistent 

fold in order for a lace or top-line tape to be sewn in. 
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a) Ideal tight fold 

b) A badly pear-shaped fold 

d) Incorrect choice of stitching position 

e) Stitching to maintain a consistent pear-shaped fold 

Figure 5.12 Possible stitching effects observable for folded edges. 
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When an edge is placed in the field of view the laser line-stripe appears to be 

discontinuous with the shape of the line being dependent on the topology of the edge. 

However even if an edge is not present the same arrangement can provide some very 

useful information, namely that of the workpiece thickness. If an image of the stripe is 

taken with no part present, i. e. the line-stripe is incident on the base table (reference 

plane), its position in the vertical plane of the camera can be recorded. When a part is 

placed in the field of view the line-stripe will remain continuous, but will be displaced 

from the reference position due to the part's thickness. Such a system could be used to 

monitor the consistency of a part's thickness after a thinning process such as skiving. 

In contrast the application of lasers for topographic applications can be taken 

even further with regards to 3-D applications within the shoe making industry. The final 

operations of roughing, lasting, and soling to be performed in the construction of a shoc, 

require a high degree of three dimensional information. The following chapter contains 

an investigation into laser triangulation techniques that could be used to automate these 

operations. 
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Chapter 6 

3D profile extraction for making processes 

6.0 Introduction. 

Once the upper has been assembled in the closing room only the 'making' 

processes remain. These give the shoe its final three dimensional shape. The research into 

topography for `making' is a natural progression from the laser line-stripe work on edge 

following. Here operations which are still manually dependent, (lasting, roughing, 

cementing and soling) will be discussed with a view to automation. 

The object is scanned in a raster manner allowing for a surface map to be 

constructed. Features are then extracted according to the operation to be performed. 

6.1 Lasting. 

Lasting, as described in Chapter 1, is the complex task of deforming an upper on 

a last so as to take a sole and define the final shape of the shoe. Here operator skill is 

required to ensure correct component alignment before the leather is finally cemented, 

and / or nailed to an insole 'rib'. The rib acts as the base of the shoe until it is soled, as 

well as providing support to the wearer when the shoe is complete. The edges of the 

upper are gripped by a series of pincers which can be manipulated to pull parts of the 
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upper so that it becomes orientated on the last to the operator's satisfaction. This is a 

highly skilled task as the result determines the symmetry of a pair of shoes. Consequently 

lasting operators are amongst the most respected and highly paid shoe makers. 

In order to automate the lasting process the vision system has to be capable of 

detecting small fluctuations in pattern. To achieve this an accurate representation of the 

upper, when on the last, is required. It should be noted that it is beyond the scope of this 

thesis to develop mechanisms capable of performing adjustments to the orientation of the 

presented objects. 

6.1.1 Upper topography. 

In order to view the whole width of a presented shoe, the laser line-stripe has to 

have a length in the order of 120mm, with the camera configured to observe this area. 

Consequently to be able to detect features on the upper the camera has to have sufficient 

resolution. The camera implemented consisted of a 512 x 512 pixel array, giving 

approximately 4 pixels per millimetre. 

In order to scan the surface of the upper on the last, whilst it is held in the pincers 

of the lasting machine, the laser has to be moved relative to the shoe as the orientation of 

the last is fixed. Figure 6.1 shows how this is achieved by stepping the laser through 

small angles. For a very large shoe the required scanning distance could be in the order 

of 200mm. Hence, with the laser located some 500mm above the shoe, this results in a 

total angular movement of approximately 11.3° either side of the vertical. To achieve a 
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high scanning resolution the laser was coupled through a I()()- I gearbox tu a 1.8" Steppol- 

motor. This resulted in a single steh of' the ºººtOr (producing a scanning, iººuvcnºcnt (, I' 

0. I bnnn on the reference plane. 

Laser 

i 

it 

Figure 6.1 Scanning configuration For Lasting applicatiunti. 

This resolution is far in excess of any practical value, as processing tinie" has to he 

kept to a minimum. In a shoe factory the Will round tink' heiwrrn shoes is tylpirally Six 

seconds, with three seconds being `bedding time', (i. e. the tine taken to cnsure the 

adhesive forms a strong, permanent bond). I lowever, to he ahlr to cover it sue ringe, 

the scanning resolution has to he graded in accordance tt) the shoo . su . 
"I'hus a nxodcl 
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size 8 may have a scanning resolution of 5mm, however, if a size 5 was loaded the laser 

movement would have to be graded to give a resolution of approximately 4.5mm in order 

for the same features to be extracted. 

6.1.2 Characteristic extraction. 

Every style of shoe has its own characteristics some of which can be very 

complex. If the shoe is to be lasted correctly these characteristics have to be extracted 

and their position relative to the orientation of the last determined. These parameters can 

then be compared to a template to enable the required manipulations to be performed. 

The template is derived using the same techniques as those described in the following 

sections. 

The first feature to be extracted is the orientation of the last. This is required to 

determine if the last has been presented correctly to the machine. It also forms a 

reference to allow comparisons to be made with the template. This is determined by 

considering each line-stripe in turn. The depth of the image, d, is divided into three and 

the width, w, of the image across the top third measured. The mid point of this value is 

then said to be the centre of the last. Figure 6.2 shows how this performed. This method 

cuts off the ends of the line-stripe thus removing any edge effects that may be present 

due to misalignment. 

- 137 - 



Vision systems - 3-D Topography 

X 

A-11 
Mid point 

I= _------------ --"----- 3 Y 

iId 
w 

Figure 6.2 Determination of Last alignment. 

By repeating this procedure for the line-stripes over the forepart of the last a 

series of co-ordinates can be determined. A line of best fit is then made through these 

points in order to compensate for fluctuations in the images. The angle this line makes 

with the reference defines the angle of the last. Figure 6.3a-b shows an image of a brogue 

upper with the reference and calculated centre lines. The reference is perpendicular with 

respect to the camera and starts at the mid point of the toe. The toe position being well 

defined by the mechanics of the lasting machine. 

The value for last angle can be interrogated to decide if it has been presented to 

the machine within an acceptable tolerance. This value was selected to be 3° as this 

corresponds to a maximum vertical, Y, displacement of approximately 0.25mm or I 

pixel. If the last alignment is outside this value it is rejected and must be re-loaded. Even 

within this tolerance this can produce horizontal, X, positional errors with respect to the 

template, in the order of 8mm. Consequently the data points need to be adjusted such 

that the angles for the template and the current last match. This is achieved by adjusting 

the template data such that the perceived last angle is zero before saving. By similarly 

adjusting the image under investigation a match can be made. The data can only be 

- 138- 



Vision systems - 3-D Topography 

moved in the X direction as a true rotation would result in the line-stripes becoming 

skewed. Figure 6.3c shows the effect of compensating for last misalignment. 

This method of last angle determination, although it does not identify the true 

centre of the last, it is highly consistent from style to style. As the template is derived in 

exactly the same manner there is a constant reference within any given style. Appendix 

M. 1, contains examples of last alignment determination and correction for a variety of 

shoe styles. The results show that the points extracted in order to calculate the centre 

line of the last, have very little deviation about this line. This is especially true over the 

forepart of the last where there are no significant topographic changes. For this reason 

the points used to calculate the centre line are restricted to those located within the first 

third of the shoe length. The remaining points are displayed for reference only. 

Once the line-stripe data has been corrected, it has to be compared to the 

template data in an attempt to determine the manipulations required to align the features. 

Two possible methods of comparing the extracted data against that of the template will 

be considered. Those of `feature extraction', and `positional comparison'. The first 

method requires that there are a number of identifiable features present on the upper. It 

then uses the location of these features to determine the degree of manipulation required 

to locate them correctly with respect to the orientation of the last. The positional 

comparison method considers the general form of the line-stripe without regard to 

particular upper characteristics. 
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The features to be identified have to posses characteristics capable of being 

detected above those of background noise. The `noise' is a result of the material finish, 

which may contain decorative stitching, punched holes or decorative coatings. Thus to 

achieve satisfactory results, this method is restricted to styles where the upper has 

significant changes in contour. These are located by interrogating the linc-stripes for 

certain gradient characteristics. The most effective of which is a positive-negative- 

positive gradient which locates ridges within the image. Figure 6.4 contains the image of 

a moccasin type shoe after processing. The figure shows the image as perceived by the 

camera and with the data rotated to represent a view from above, (visual aid only), high- 

lighting the profile defined by the extracted points. In this instance only the forepart, 

(approximately 40% of the shoe length), is processed as this is the critical region for this 

type of shoe. It is often the case that only the forepart can be processed as the uppers are 

generally laced during lasting to prevent undue movement of the upper on the last. 

Figure 6.5 shows the same image after full processing. Here the whole image has 

been searched with both positive and negative gradient features displayed. In addition the 

highest point for each stripe has been recorded. A quick measure of comparison between 

the observed image and that of the template can be made by scoring. This procedure 

counts the number of features on each line-stripe. If there is a high degree of variation 

between the scores of the image and the template, the wrong style may have been loaded 

and should be rejected. 
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Figure 6.5b has the extracted points plotted with respect to the pincers used to 

perform the alignment manipulation. By comparing the relative positions of these points 

to those of the template the degree of required manipulation can be obtained. Appendix 

M. 2-3, contains further examples of feature extraction for a number of shoe styles. 

6.1.3 Profile matching. 

This method performs a comparison between the extracted line-stripe and the 

template. As the upper can be manipulated by the pincers from both sides each line-stripe 

is divided into two about the extracted centre line. Before the comparison can be 

performed the object line-stripe has to be adjusted vertically, to correspond to that of the 

template, to ensure the best possible match. If this stage is omitted then the subsequent 

comparison can be highly inaccurate. The extracted line-stripe section is then passed 

across the respective template section and the degree to which the stripes match 

measured. The comparison histogram can then be examined in order to define a value for 

the positional accuracy of the line-stripe. From these values the required degree of 

manipulation can be determined for each pincer. The histogram is a measure of the 

number of matching points between the template and the specimen line stripes. 

It can be seen from Figure 6.6, that the results obtained, for the brogue sample 

demonstrate a high degree of alignment. (Figure 6.6a shows the results of correlating the 

template data with itself). In this particular case the upper is well aligned to the template, 

however, should there be a poor match then the shoe could be rejected. 
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a) Perfect match 

Specimen stripe 

Template stripe 

b) Typical results 

Figure 6.6 Results of line-stripe comparison. 

Appendix M. 4, contains further examples of line-stripc comparison 

measurements, including comparisons made between different shoe styles. 

This method is subject to errors as the location of any single pixel is not well 

defined. The same shoe can be scanned several times, each producing slightly different 

results. This could to some extent be overcome by `smudging' the template image. }fiere, 

the single pixel line would be increased by two or three pixels, thus increasing the band 

where a match occurs. 
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6.1.4 Discussion on lasting. 

Feature extraction methods require a significant topographical characteristic such 

as moccasins, as previously illustrated. In this case the information required for 

manipulation can be readily extracted. This method also offers the benefit of requiring 

little data to be stored in the form of the template. Only the type of feature, the region to 

scan and the co-ordinates of the extracted features need be recorded. 

The implementation of the positional comparison method is dependant on the 

accurate loading of the shoe into the machine and scanning of the object, although sonic 

degree of misalignment can be compensated for by additional processing. It is also liable 

to give false information due to the features of the upper generally covering only a small 

percentage of the line-stripe. Consequently the comparison histograms tend to be 

strongest when the edges of the shoe align, and not the upper features. Appendix M, 

Section 3, contains examples of the problems encountered using this method. 

The aim of the research in this chapter was to investigate the difficulties involved 

in implementing vision techniques to enable automation of the lasting process. This 

proves to be an area where automation will be difficult to implement for general purpose 

work. However by increasing the resolution of the image system it may be possible to 

implement feature extraction for a sub-set of shoe styles. Of the methods investigated it 

is not believed that the positional comparison measurement, discussed in section 6.1.3, 

although simpler to implement could produce results accurate enough to be viable. 

However an understanding of the problems involved in performing automated lasting 

based around a vision guided system has been achieved. 
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6.2 Bottoming applications. 

Once the shoe has been lasted, defining its three dimensional shape, it passes on 

to the bottoming section, for the remaining operations to be performed. Bottoming 

encompasses a number of operations, the chief ones being roughing, cementing and 

soling. The requirements of a vision system for these operations are essentially the same. 

Currently these operations are semi-automated, with the machines performing open loop 

based on a manually taught template. Here methods for removing the need for a template 

will be discussed. 

6.2.1 Path determination. 

The same principles to extract the raw line-stripe data are applied for bottoming 

applications as those described for lasting in the previous section. However in this case 

the laser is held stationary and the shoe is passed beneath it. Figure 6.7, shows the 

experimental set-up used for the purpose. 

By moving the shoe through known movements under the laser, a raster style 

image can be built up of the shoe topography. This method of scanning the shoe is 

particularly suited for bottoming machines where the shoe is currently loaded in a similar 

fashion. Once the base of the shoe has been scanned the image line-stripes can be 

processed to extract the information required for automation. 
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Figure 6.7 Scanning configuration f, OF bottoming operations. 

6.2.2 Edge extraction. 

From the lint-stripe data the points defining the sole line have to Ix' detrrniinrdl. 

This can he very suhjective for certain types of shoe, (e. g. lady's courts), a nog ck'ar 

edges exist across the instep. This prohibits determination oI the edge by k okin; g l or a 

specific change in gradient. However, in all cases the edges arc still gencrallY well 

defined around the regions cif the heel and toe. As a result a nICIII()ti capable uI detect tii 

the instep is required. This can then act as an input into a f, 0rniula for cxlFactinz thc" sole 

line edge co-ordinates. 
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Figure 6.8 Insole position determination. 

Figure 6.8 shows extracted line-stripes and shows how the depth of the image 

varies along the length of the shoe. Where the edges are well defined at the heel and toe, 

the roll-off at the edge is quite steep resulting in a shallow image, (dh and Q. However at 

the instep, the roll-off is very gentle resulting in a much deeper image, (d, ). 

Consequently, 

di »dhor d, 
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Thus by measuring the depth of the image the location of the instep can be 

determined. Figure 6.9 shows a graph of extracted roll-off angle against image depth for 

a lady's court shoe. The values were extracted by manually selecting the sole line edge 

on each line-stripe and the software reporting the angle at that point. 
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Figure 6.9 Ideal angles for edge co-ordinates extracted from a lady's court shoe. 

It can be seen that the angle for roll-off against image depth can be approximated 

to a straight line. For the above example, the equation for this line is given by, 

Roll off angle = -0.802 x Image depth + 72.256 degrees 

Thus, by applying this formula an approximation can be made as to the location 

of the points which will be used to define the sole line. Figure 6.10 shows a plan view of 

the extracted sole line points taken from a lady's court shoe. 
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Figure 6.10 Sole line points extracted from a lady's court shoe. 

It can be seen from Figure 6.10, that the majority of extracted points follow quite 

closely the shape of a shoe bottom. However, due to the uneven nature of the material 

and a join in the upper material at the instep, a number of points appear miss-placed. In 

order to overcome these effects, a method of effectively smoothing the line through these 

points is required. 
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6.2.3 Sole line determination and correction. 

Even after taking precautions to determine as accurately as possible the edge 

position, errors can still occur. Once the whole part has been scanned the data can then 

be analysed in an attempt to reduce these errors by the use of point interpolation. Here a 

number of points are considered to determine the line of the edge. To achieve this it must 

be assumed that the majority of the extracted edge points are correct. This will allow for 

erroneous points to be adjusted so as to fall into line. 

The method employs cubic splines to trace around the points, starting at the well 

defined region around the heel. The splines are calculated across four points, two points 

either side of the point under investigation. The distance between this point and the 

calculated point, as defined by the cubic spline equation, is calculated, d. (Figure 6.11 

shows the region of the instep in Figure 6.10). This result can then be compared with a 

defined tolerance level. Should the point be within this tolerance it can be passed over, if 

it is outside the tolerance level it must be corrected. This can be achieved by moving 

directly to the calculated position, or by moving a percentage of the distance, d. The 

latter allows for some fluctuations in the surrounding points. It should be noted that the 

current point's adjusted co-ordinates will be used as an input for the next iteration of the 

of the spline process. 
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Extracted point Calculated point 

dT 
Line of the laser 
line-stripe 

Figure 6.11 Point error correction using cubic spline interpolation. 

Sole line determination is achieved by moving the spline iteratively around the 

extracted points until all points the are within an experimentally determined tolerance. 

This has the effect of smoothing any large irregularities. In an effort to achieve maximum 

accuracy a mechanism to `lock' points whose positional error was less than the selected 

tolerance was investigated. Once locked a point cannot be moved by a future iterations. 

6.2.4 Results of sole line determination. 

Figures 6.12 shows the results of processing on a court shoe in plan view, whilst 

Figure 6.13 plots the sole line onto the 3-D line stripe data. (The acceptance tolerance 

level for point accuracy was set to 2 pixels, (-I mm)). In order to test the effects of point 

locking and determine the degree by which points should be adjusted, a series of images 

were processed with varying parameters. The results of this can be seen in Appendix 

N. 1. When the points were locked, it was observed that the irregularities that existed in 

the original data were largely removed irrespective of the degree of correction, (how far 

a given point was moved towards its calculated position on a single iteration). In addition 
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the overall shape of the profile remained true. However, when the points were unlocked 

poor quality results were obtained. This was particularly true for points adjusted by 50%, 

or more, of the calculated error distance. In these examples the sole profile became 

narrowed around at the region around the `ball' of the foot due to excessive smoothing. 

The experimental results lead to the conclusion that the procedure of locking 

points within the given tolerance increases the accuracy of the processing. This can be 

further enhanced by adjusting erroneous points by 25% of the calculated error. The 

tolerance level of 2 pixels was determined experimentally also. Values of higher tolerance 

resulted in high numbers of iterations having to be performed for no perceivable gain. If 

the value was too low then little correction occurred. 

The information calculated so far for the line of the sole is only two dimensional. 

Consequently there is a need to extract further information, with respect to the vertical 

variations of the shoe bottom, in order for automated operations to be performed. This 

information can be simply extracted from the line-stripes during processing. 
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Vision systems - 3-I)'I'opogiapliv 

6.2.5 Z-axis profile for depth control. 

The prof-11c of' shoes can vary consiclcrahly frone style Io siylr. Men's shoes ; ucc 

generally flat prior to soling which may acid a small heel. I IUwever, lady's shoes call vary 

Eirom the flat into extreme Contours in order to have a high lied attached. 'I'Iºis 

information can be extracted from the line-stripes as they are processed. 

Due to the camera being at an angle to the laser. (typically 45") Ilie lau"r line 

stripe over the base of the shoe, as perceived by the camera, rcivescmits a cross section of 

the shoe. In addition the location of the perceived stripe, 1' moves up and down the 

cameras held of view depending on the height of the ohjcct, I), (Figure 6. I. 1). 

Laser 

Ohjert 

Camera image 

,t 1> 

Figure 6.14 'I'he effect cif' varying Object height on 1Ihe cailicra iniat'e. 
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Thus by calibrating the perceived height, using known object dimensions, a value 

corresponding to the Z-axis profile can be obtained. However, the point on the stripe 

selected to measure against must be selected carefully. There are two chief candidates for 

this task. The first being the point defined by the sole line calculated previously. 

Unfortunately, due to the pleats introduced by the lasting process the contour can vary 

significantly from point to point. Due to the base of the shoe being approximately flat 

across its width, a more accurate position on which to base a depth profile is along the 

centre line of the last. Figure 6.15 shows a depth image extracted from the lady's court 

shoe processed in Figure 6.13. The images were taken using screen capture techniques 

direct from the processing software. 

Figure 6.15 Depth profiles extracted from a lady's court shoe. 
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Vision systems - 3-D Topography 

Figure 6.15, shows both the raw depth data and the same data after smoothing. 

The smoothing is performed in the same manner as that previously described for 

extracting the sole line. Additional images are contained in Appendix N. 2. 

The methods discussed in Section 6.2 allow for the determination of control 

parameters in three dimensions suitable for the majority of bottoming operations. The 

following sections outline how this information could be used for a numbcr of specific 

areas of potential automation within the field of bottoming. 

6.3 Roughing and cementing. 

The process known as `roughing' follows immediately after the lasting process 

and is concerned with removing the pleats formed in the upper material. This is 

performed by a machine that automatically follows a manually taught path and uses a 

rotating wire brush to scour off excess material, each style having its own manually 

taught parameters. By implementing a vision system significant advancements in 

automation could be made. There are two possibilities as to how this may be achieved. 

The first method requires mounting the vision system onto the head of the 

rougher, thus effectively edge following. The same principles as those described could be 

implemented to extract information for brush manipulation, however it would not be 

possible to interpolate to reduce errors. This could be overcome in one of two ways. 

Either by navigating the edge twice, once to build up an image of the shoe bottom and 

once to perform the operation. Or by having a teach cycle to allow the machine to learn 
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the shape of the shoe and save it as a template. This would effectively replace the current 

manual method. A mechanism capable of performing such an operation would be 

complex and bulky and either time consuming or still open loop in operation. 

A second preferable alternative has already been mentioned in Section 6.2.1. 

Here the shoe is scanned as it is loaded into the machine. This then allows for the 

orientation of the laser and the camera to remain fixed. In addition every shoe would be 

scanned and processed on an individual basis, removing the requirement for templates 

and teaching. 

Cementing is the application of adhesive to the roughed base of the shoe to 

enable bonding to the sole. Consequently the line of the cement can match that of the 

rougher, the only addition being a line of cement down the centre of the last. Indeed, a 

new generation of B. U. S. M machines combining roughing and cementing arc already 

under development. In this event only a single vision system is required to cover both 

roughing and cementing so long as information is retained between the processes. 

6.4 Shoe soling applications. 

Currently the majority of shoe soling is performed manually using a technique 

know as `spotting'. Here the operator ensures that the location of the toe is correct 

before locating the heel. The shoe is then placed in to a press to perform the final 

bonding. By employing vision technology to this area both components could be scanned 

and the process of spotting automated. The mechanisms outlined for lasting and 
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bottoming operations to be performed on the last are equally valid for soles. Figure 6.16 

contains the processed image of a gentleman's sole, before and after edge smoothing. 

Figure 6.17 shows a three dimensional view of the same sole. It would be expected that 

the inside surface of the sole should be scanned as it is required to mate with the shoe 

bottom. However, the inside surfaces of soles can be very complex so as to provide 

cushioning for the user. On a sports boot there can also be high walls which are difficult 

for vision systems to perceive. Consequently it was found that scanning the outside of 

the sole gave better results as the edges, particularly at the toe and heel are well defined. 

Appendix N. 3 contains examples of processed sole images. 

6.5 Discussion on Automation in shoe bottoming. 

The investigations into vision applications for shoe bottoming have determined 

areas where such systems could be of practical value. In addition methods for extracting 

information to enable the automation of these operations has been determined. The areas 

of roughing and cementing would be best addressed in a single machine capable of 

scanning each shoe as it is presented. This would in turn result in a fully automated 

machine, requiring little additional taught data. 

The application of vision technology to soling would provide the largest step 

forward in this field since the sole press. Unfortunately, due to the need for a vision 

system and a mechanism capable of performing the required manipulations the 

complexity of the machine would vastly increase. 
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Conclusions 

Chapter 7 

Discussion and conclusions 

7.0 Discussion and conclusions. 

This thesis describes the processes that may be performed in the construction of a 

typical shoe. It covers operations on flat and three dimensional workpicccs which require 

a great deal of manual input. In order to approach these operations with a view to 

automation, it is required that there is an understanding of the characteristics of the 

materials to be handled. Chapter 2 contains the results of an investigation into the 

morphology of leather. This showed the complex and variable structure of leather as a 

natural material. It also demonstrated how the properties of an individual leather 

component, and hence how it would handle, vary according to the location on the hide 

from which it was taken. The information derived in this chapter proved of grcat value in 

Chapters 3 and 4 where the effects observed during manipulation could be directly 

related to the material structure. This allowed for mechanisms to overcome or utilise 

these properties to be determined. 

Chapter 3, forms the main part of the thesis and was concerned with the handling 

of flat leather workpieces pre-dominantly for decorative and constructional stitching. The 

object of the study was to determine an accurate mechanism for manipulating the 

workpieces under the stitching head and eliminate the existing high degree of 'drift' 

previously observed. The research developed a series of belts capable of covering a wide 
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range of material types and properties by implementing a combination of a compliant 

upper belt substrate and an intrusive lower belt surface. The very nature of the lower 

surface gave a novel approach to material handling. The studies showed how such a 

surface made from a series of short sharp pins could penetrate the surface of the 

workpiece, without permanent damage, and at the same time overcome the materials 

variable properties, (Chapter 2). The initial goal of the research was to perform accurate 

decorative stitching. However, the mechanism developed proved not only capable of this 

task, but also of performing constructional stitching to the same high degree of accuracy, 

thus allowing pre-tacked compound parts to be joined in a fully automated manner. This 

operation is currently only possible on machines such as the M. P. C. S. made by B. U. S. M. 

which require a large amount of bespoke tooling and labour. Thus, by automating the 

process, significant savings can be made within this area in both time and cost. To this 

end a technology transfer has been made to B. U. S. M who are now investigating the 

results with a view to commercial adoption on their Auto-scan stitching machines. This 

work also resulted in a patent application (261 being filed by B. U. S. M and an invcntion 

disclosure [271 for a novel tensioning mechanism. 

The proposed mechanism orientates the workpiece beneath a stitching head open 

loop, positioning being based on an original scan of the part. In order to improve the 

accuracy of stitching still further in the case of constructional stitching a means of 

detecting the edge would be required. This would then effectively close the loop and 

allow for fluctuations in the edge path to be compensated for. This requirement resulted 

in Chapter 5 on vision mechanisms for edge following. 
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In Chapter 4 the process known as pre-tacking was investigated. This work 

resulted in an invention disclosure[241 being filed at B. U. S. M. The results show that a 

number of components which are initially flat can be joined so as to result in a thrcc 

dimensional compound part. This part can then be stitched to form a permanent join 

using conventional mechanisms in a greatly simplified manner. The study also 

demonstrated the limitations of such a system especially when performed in an 

automated fashion. However, the principle of limited contact points is still of value and 

for certain components types such mechanisms may be valid. 

Chapter 5 investigated mechanisms using laser triangulation for the determination 

of edge position and form, for the purpose of stitching. The use of lasers enables a 

significant amount of information to be derived using relatively simple techniques. 

Methods for following both square cut and folded edges have been addressed and the 

limitations of these methods discussed. The research demonstrated that for folded cdgcs 

care is required where the fold is not well defined as this uncertainty is cchocd in the 

perceived position of the edge. The research demonstrates how the characteristics of the 

fold can be determined and consequently how the position of the true and closed, (tightly 

folded), edge can be defined. This work has resulted in a patent application 125 into the 

use of laser triangulation in shoe machinery. In addition the work resulted in a contract 

being instigated at Leeds Metropolitan University into a vision based constructional 

stitching machine based on an M. P. C. S. The use of laser scanning for topography 

determination is not limited to applications such as edge following, but can be expanded 

to encompass complex three-dimensional objects. This, therefore, means there is a niche 

for vision systems in the final operations of shoe manufacture. 
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Chapter 6 used the knowledge and experience gained and reported in Chapter 5 

in order to develop techniques to extract the surface topography of the finished upper on 

the last for the operations of lasting, roughing, cementing and soling. These are all areas 

where early automated equipment was subject to errors and as such subsequently found 

it hard to become established within the industry. By implementing vision technology the 

possibility of damaging a workpiece or not performing the task to a suitable standard 

could be vastly reduced. The results contained within this chapter show how the lasting 

operation, which requires knowledge of the topography of the upper, once on the last, is 

exceedingly complex due to the lack of identifiable features in many cases. It is bclievcd 

that further, extensive, research will be required if vision lasting is to become a reality. 

Consequently it is expected that this will be the last area in which automation will occur 

within the shoe making industry. In contrast, where the bottom of the shoe requires 

interrogation for roughing, cementing and soling it is possible to extract the desired 

information. This has resulted in new research contracts being placed both at Bradford 

University and Hull University in order to look at roughing and soling respectively. 

The objective of the thesis, (to investigate methods of automating processes 

within the shoe industry), has, the author believes, been achieved. This is born out by the 

patent applications and new contracts that have arisen directly as a result of this research. 

With further research ongoing, chiefly in bottoming and stitching applications, it will not 

be long before a new generation of automated machinery becomes available to the shoe 

making industry. B. U. S. M are in addition are to start development on a combined 

roughing and cementing machine which will have an inspection vision system capable of 

determining the quality of the roughing process prior to cementing. 
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Appendix A 

Results obtained from Scanning Electron Microscope 

observations of a vegetable tanned, buffalo calf hide 
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Appendix A 

Al. The Scanning Electron microscope 

Traditional light and transmission electron microscopes use a broad beam of 

either photons or electrons which pass through the specimen. A magnified image is then 

produced by passing the emergent beam through a series of lenses, either glass or 

electromagnetic. The SEM however uses a totally different approach to produce highly 

magnified images1471, that of electronic amplification. The surface of the specimen is 

coated with atoms of a metal, such as gold, before being irradiated by a very narrow 

beam of electrons resulting in low energy, (secondary) electrons being released. These 

are then collected by an anode, (positively charged plate), producing an electronic signal 

proportional to the number of electrons collected. This number is determined by the 

angle of the surface below the electron beam and the amount of ejected electrons 

absorbed by the surrounding protuberances on the surface of the specimen. The signal 

generated by the secondary electrons is then amplified and used to modulate the intensity 

of a spot on a cathode ray tube. Thus by scanning the tight electron beam and the spot 

on the cathode tube synchronously in a raster manner a magnified image of the specimen 

surface can be generated by the cathode ray tube. 

The depth of focus of a scanning electron microscope is several millimetres, with 

an effective magnification range from approximately x20 to greater than x20,000. 
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A2. Experimental procedure. 

In order to determine the orientation, density and collagen bundle size variations 

across a hide a vegetable tanned, buffalo calf half hide was provided by B. U. S. M. 

This was subdivided in to 25 regions, Figure A. 1. Preparations were then cut 

from the centre of each of these regions, by removing a section approximately 10mm x 

4mm, such that they followed the line of the backbone. The samples were then mounted 

and coated in atoms of gold to allow for SEM micrographs, (pictures), to be taken of the 

dermal layer. All observations were made in the same direction relative to the backbone. 

This process was conducted by J. Halder[451 of the scanning electron microscopy suite at 

the University of Hull. 

Backbone 
Butt 

123 
...................................................................... 

678 

................................................. .......................... ......... 
11 12 13 

Hind shank ........................................................... 
16 

17 18 19 

....... ................. ..................................................... ................................... 21 22 23 24 

Belly 

45 
................................... 
9 10 cNeck 

................:...................... 
14 15 
................ ......................... 20 

25 Fore shank 

Figure A. I Location of samples taken for SEM observation 
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A3. Example SEM micrographs 

This section contains plates depicting the observed variations in collagen bundle 

orientaion, size and density discussed in Chapter 2. 

Plates A. 1-3, show how the average collagen bundle size varies depending on the 

location on the hide from where the specimen was taken. Plate A. 1, depicts an average 

collagen bundle size of less than 6.6µm taken from the neck region, (sample 5). Plate 

A. 2, shows a micrograph taken from the belly region, (sample 19) where the average 

bundle size has increased to between 10-13.2µm. Sample 16, taken from the hind shank 

is shown in Plate A. 3. Here the collagen fibre bundle size has increased to greater than 

20µm, but contains only a few large individual fibres. 

Plates A. 4-6, are examples of how the orientation of the collagen bundles vary 

according to the flexibility requirements demanded of the hide. Plate A. 4 is taken from 

the area at the butt, (sample 1) where little flexibility is required. Consequently there is a 

mix of transverse and longitudinal collagen bundles seemingly randomly inter mixed. 

Where greater flexibility is demanded the percentage of transverse bundles increases as in 

Plate A. 5, (sample 11). Regions requiring a high degree of flexibility, predominantly 

around the neck and shoulders, require an even greater percentage, (>80%), of 

transverse collagen bundles, Plate A. 6, (sample 8). 

- 175 - 



Appcn(fi\ A 

Plate A. I Sample S, Showing . rn avýrag calla en I, rrnýllý Si/L" O 
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Plate A. 2 Sample 19, Showing an average Collagen hurdle sues between 10 I3-411, 
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Plate A. 3 Sample 16, Showing an average collagen hunnlle size in e' cc' ý OI 20)11n 
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Plate A. 4 Sample I, Showing an approximate 50 50 nºix ui transvc iýý 

sind longitudinal collagen Iilves. 
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Plate A. 5 Sample 11, Showing containing piedoniinantIV Iransvcru colI; º. 'c'n 

fibres but with a high degree longitudinal I ihres , ºI, o. 
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Plate A. 6 Sample K. Showing a COnil)Irtr (1()niinanCr ul U'atiý\'rrsr 

collagen fibres, (>80%Yo). 
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Four-bar-link simulation results. 
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Appendix B 

B. 1 Four-bar-link simulation results 

This appendix contains examples of the results obtained from the simulation of a 

four-bar-link in an attempt to identify the causes of thread drag discussed in Chapter 3. 

The four-bar-link configuration shown in Chapter 3, as Figure 3.6, has been 

duplicated here as Figure B. I for ease of reference. Figure B. 2, shows the resultant 

movements associated with the default settings. The horizontal dashed line represents the 

plane of the workpiece, assuming that it lies half way through the needle's cycle and is 

included for reference purposes. 

The vertical dashed line pin-points the tensioner position at the point whcrc the 

needle leaves the workpiece. Ideally, for reduced thread drag, the tensioncr should be 

relaxing at this point. It can be seen in Figures B. 2-5 that this is not the case. However, 

at 90°, (Figure B. 6), the tensioner has passed its peak and is starting to relax. Figures 

B. 7-8, show the effect of too great an eccentric length, with the resultant needle motion 

being drastically reduced. This identifies 90° as the optimum eccentric angle (y). Figure 

B. 8 shows the standard eccentric length (L7) at this optimum angle of 90°. It can be seen 

that the tensioner cycle is still active at the time the needle leaves the workpicce surface. 

As a result the length of the eccentric must then play an important part in adjusting the 

needle to tensioner relationship. By increasing this length, (Figures B. 6, B. 10-11), the 

needle cycle can be displaced with respect to the tensioner cycle to produce the desired 

effects. However, by increasing the eccentric length the vertical distance the needle has 

to travel also increases. This results in higher needle velocities and accelerations, the 

effect of which has to be determined experimentally. 
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Tensioner 
path 

/ 
4(-" 

Typical Dimensions 

L1 - 35 - 38mm 

1-2 -16mm 
1-; - 28mm 

14 " 32mm 
L5 - 34mm 
L6 - 70mm 

L7 -3-4mm 

45" 

Any 

Figure B. 1 Typical Pfaff 4-bar-link configuration 
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Foam compression test results 
Holding properties of pinned belts 
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C. 1 Introduction. 

This appendix is divided into two sections. The first contains results of 

experiments made to determine the effects of compression on a number of foam type 

materials believed to be suitable as a compliant medium for the Autoscan. The second 

section contains the results obtained during the investigation into the holding properties 

of the pinned belts, a summary of which can be seen in Figure 3.14, Chapter 3. 

C. 2 Compression characteristics for selected foams. 

Samples investigated. 

1. EPDM 

2. Nercoprene 

3. Neoprene 

The results were obtained by cutting 10mm square samples from each of the three 

foams selected. Five sets of readings were made for each sample to alleviate the possible 

effects of local properties within the foam. The following charts use the mean values 

obtained. A force sensor with a 8mm diameter probe was advanced towards the sample in 

0.1mm steps. This was performed by mounting the force sensor on a linear track driven 

by a stepper motor. This allows for the compressive force to be plotted against surface 

deflection. 
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Force sensor 
Sample 

Stepper 

niulur 

Support frame 

Figure C. I Experimental set-up for the determination cif" foam characteristics 

C. 2.1 Results of compression experiments 

Figures C. 2 - C. 4 show measurements cif' instantaneous force readings, iiieasurrd 

for each deflection. These were obtained by utilising an option provided by the Iurce 

sensor to record the maximum exerted force. The experiments were performed five 

times, can fresh samples, and the average values plotted. 

- 197 - 



Appendix C 

EPDM Foam (3.5mm thickness) 
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Figure C. 2 Compression characteristics for EPDM 

Neoprene Foam (3mm thickness) 
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Figure C. 3 Compression characteristics for Neoprene 
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Nercoprene NE22 Foam (3.5mm thickness) 
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Figure C. 4 Compression characteristics for Nercoprene 
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C. 3 Investigation into the holding properties of pinned belts 

The forces generated on a typical workpiece during manipulation are discussed in 

Chapter 3. In order to determine the required holding force needed to overcome these 

forces the properties of the pinned belts need to be investigated. This section contains the 

results obtained during this investigation. 

C. 3.1 Experimental procedure 

In order to reproduce the dimensions that would be needed to put such a belt on 

the Autoscan a length of polyurethane belt 51.5 x 12mm with 5 pairs of pins was 

constructed and glued again to a wooden base. Five strips of leather were cut 190 x 

12mm from a selection of leathers supplied by B. U. S. M representing a cross-section of 

leathers used within the shoe making industry. A hole punched into one end of the strip 

allowed for the attaching of a force sensor. The force sensor was configured to display 

the peak force measured during each test, this ensured that the force being applied at the 

point of slip was being measured. Measurements of the required pulling force to cause 

slip were then taken for normal holding forces of 10 - 80N, (1 - 8Kg). 
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C. 3.2 Holding properties of pinned belts 

The following are the results of the force experiments described above. They are 

expressed graphically in order to highlight a number of effects that occurred in addition 

to slippage. Notably, sample 2 started to stretch under a 5Kg holding force when a 

pulling force of approximately 3.2Kg was applied before tearing completely. Sample 3 

also tore before the maximum measurable pulling force of 5Kg could be applied. In 

contrast samples 1 and 5 showed no sign of slippage at the maximum conditions. These 

results show that the pins provide a very secure method for holding leather parts even 

under high adverse forces. 
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Sample 1 
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Figure C. 5 Slipping force V Load for Sample 1 
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Figure C. 6 Slipping force V Load for Sample 2 
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Sample 3 
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Figure C. 8 Slipping force V Load for Sample 4 
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Sample 5 
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Figure C. 9 Slipping force V Load for Sample 5 
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A summary of experimental procedures implemented 
for analysing workpiece movement. 
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D. 1 Introduction 

The Autoscan was originally designed with a view to handling compound 

workpieces, as well a single flat components. However it was soon discovered that the 

roller mechanism employed in controlling the workpiece during stitching was unable to 

cope with varying thickness across a single part. 

In an effort to eliminate the effects of drift on single workpieces as well as 

handling more complex compound parts, the rollers were replaced with a series of 

narrow belts. To evaluate this approach and determine its performance compared to that 

of the original roller mechanism a series of drift experiments need to be performed. 

D. 2 Description of samples used during drift tests. 

A number of differing sample types were used during the drift experiments, 

however they all fall into two categories, single flat components or 2.5-D compound 

parts. 

D. 2.1 Flat (2-D) parts. 

The majority of flat parts used were the original 170mm discs used by D. L. 

Smith"'. These cover the spectrum of leathers, suedes and synthetic materials expected 

to be handled by the Autoscan. In addition to the disc samples a shoe insole component 
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was also tested as it had previously been shown to be difficult to handle. The insole 

component is made from a suede material and backed with a cotton fabric in order to 

reduce its elastic properties, however it is still limp and compliant. 

D. 2.2 Compound (2.5D) parts. 

The compound parts, (2.5-D), are made by overlapping and bonding together 

two flat parts in order to form a single component for the purposes of handling. The term 

could also be expanded to workpieces consisting of a single part but with significant 

surface contour fluctuations, such as highly embossed cowboy boot components. For the 

experiments all the compound parts were formed using the overlapping method and 

corresponded to one of three shapes shown in Figure D. 1. The parts can be diffcrentiated 

from each other by the reference letters associated to them as follows. 

1. CR = Compound ridged 

2. CS = Compound squares 

3. CC = compound complex 
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90mm 

190mm 

DWCR DWCS 

Figure D. I Compound samples used during the drift experiments. 

D. 3 Mechanisms for measuring drift. 

A method for evaluating the lateral component drift of a workpiece was first 

devised by D. L. Smith"'. This method used circular discs cut from a wide selection of 

leathers, synthetic leathers and some additional complex materials. Discs were used so as 

to remove the effects of workpiece orientation on the manipulation and reduce edge 

effects. Additional methods implementing real-world shoe components were devised by 

Dr. N. Tout[421 of B. U. S. M. Both methods of evaluating drift for flat parts were 

implemented so as to allow the belt handling mechanism to be compared to the 

Autoscan's original configuration. 
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D. 3.1 D. L. Smith's drift measurement method. 

The circular discs were divided into eight equal sections, Figure D. 2, with one 

dividing line being selected as the reference (0°). The discs were then placed in the 

handling mechanism for each 45° angle. The disc was then moved forwards 25mm and 

then back 25mm, forming a cycle containing a total manipulation distance of 50mm. A 

number of bedding in cycles were employed (approximately 20-25), in order for a steady 

drift condition to be achieved. The reference position was then recorded before 

additional cycles were performed. The degree of drift was then measured with a 

travelling microscope. Measurements were taken at each dividing angle, including both 

0° and 360° to give an indication of repeatability. 

"0 

2700 

1800 

900 

Figure D. 2 Segmented disc with reference. 
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D. 3.2 N. Tout's drift measurement method. 

This method was originally developed in order to give a quick comparison 

between differing shoe insole components and roller types, it is however equally valid for 

other forms of sample. Two points, A and B, are taught onto the sample to be tcste(l. 

Points A and B are selected so that when the needle is positioned above point A, the heel 

section of the workpiece protrudes out of the handling mechanism. Similarly when Ihr 

needle is positioned at point B, the toe section protrudes. TWO pieces of gr. ºIph paper arc 

fixed to the base table and the toe and heel traced onto it when at points A and I3 

respectively, Figure D. 3. TI workpiece is then cycled between points A and B 'O times. 

before the new positions of the toe and heel are traced onto the same graph paper. 

Graph 

paper 

Figure D. 3 Tracing drift effects unto graph paper. 
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This method is cruder than the previous method, but produces a quick and casily 

visible display of the drift effects, clearly showing both lateral drift and rotation. If 

perfect handling were to be achieved, the resultant outlines would be superimposed 

directly onto the originals. 

D. 3.3 Drift measurement using a vision system. 

Once the Autoscan was configured with the pinned belts and the Nercoprene 

compliant upper substrate it quickly became evident that the degree of drift, (if any), was 

very small. Consequently it proved impossible to obtain measurements for drift using 

either of the previously outlined methods. In order to obtain a quantitative drift 

measurement a line-scan camera was used. 

The camera, a 128 pixel line-scan had a focal length of 70mm resulting in a 

window of 10mm. This gives a resolution of 0.078mm per pixel, consequently allowing 

for a measurement of the edge positional accuracy to be made to within 0.1 mm. The 

camera was positioned such that the edge of the samples entered the window at the 

turning point of each cycle. In addition the normal Aluminium support table located in 

front of the belts had to be replaced with a perspex sheet in order for a Halogen light 

source to be located below so as to provide the backlighting required to provide the 

contrast for the camera. 
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Line-scan camera 

Field of 
view sample 

ý-O 

Halogen light 
source 

Handling 
mechanism 

Figure D. 4 Line-scan camera configuration for the measurement of drift 

This method also gives the added benefit that the machine does not need to be 

stopped for measurements to be taken, but allows for the edge position to be recorded 

dynamically. 
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Appendix E 

Drift / Slip results for the Autoscan 

Original roller configuration 
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E. 1 Original Autoscan configuration. 

The original Autoscan setup comprised 4 banks of 4 rollers, each coated by 

wrapping an `Emery' type paper around them in a spiral. This coating was intended to 

provide significant holding properties during the manipulation of a workpiece during 

stitching. This section contains examples of typical drift measurements obtained with this 

mechanism and clearly shows how the degree of workpiece movement is dependent on 

the orientation of the workpiece when presented to the handling mechanism. When a 

workpiece is loaded such that the mean nap direction is parallel to the axis of the rollers 

very little movement occurs. However if the mean nap direction is normal to the rollers 

maximum movement occurs. This then supports the evidence of a sinusoidal drift profile 

proposed by D. L. Smith1'l and is a consequence of the material's structure as discussed 

in Chapter 2. Consequently any pair of movement measurements taken 180° apart should 

demonstrate similar properties. It should also be noted that the majority of imitation 

leathers and suedes have a synthetic nap inorder to create the right `feel'. This has a 

natural bias due to its method of manufacture and is far more even across a sample that 

can be found naturally in leathers. 

In addition to the profile of each of the drift results, the degree of movement 

should also be noted. These results were obtained using D. L. Smith's method described in 

Appendix D. Consequently they only provide a measure of movement for a single 

2x25mm cycle after a degree of bedding in, (previous cycles) has been performed. It is 

therefore reasonable to assume that the workpiece would continue to move during 

subsequent cycles. 
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Figure E. 1 Drift against load angle for an imitation suede sample 
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Figure E. 2 Drift against load angle for a moss backed suede sample 
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Figure E. 3 Drift against load angle for a leather sample 
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Appendix F 

Drift / Slip results for the Autoscan 

Carborundum belts 
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F. 1 Carborundum belts. 

The results included in this section are derived from measurements taken using 

the quick drift test method outlined in Appendix D. In order to highlight the movement 

that occured due to the handling mechanism, 5 cycles were performed between each 

recorded measurement. 

Figures F. 1-F. 8 show results recorded for a typical leather disc (110mm dia. ). It 

can be seen from the results that a fairly high degree of drift still occuring, which 

increases as the test cycles progess. The direction of workpiece movement is reasonably 

constant over all the measured angles and does not follow the sinusoidal pattern exibited 

for rollers. The holding pressure applied during this test could be described as firm, as 

any increase in holding pressure would result in bending of the belt's support plate, 

highlighting a limitation in the mechanics of the handling mechanism. Lower holding 

pressures, however, resulted in considerable workpiece slipping. 

Figure F. 9 shows an example of a drift recording made using a shoe insole 

component. This part was identified by B. U. S. M as a particularly dificult workpiece to 

handle. The result shows approximately 30mm of movement after only 10 cycles, far 

greater than could be tolerated in commercial machine. 

For the purpose of inclusion in this thesis the results were scanned into a 

computer before being enhanced. A scale is included on each plot so as to negate any 

scaling effects that may have occured during this process. 
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Appendix G 

Drift / Slip results for the Autoscan 

Flat components. 
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G. 1 Introduction. 

The results included in this section of workpiece movement are taken from a 

wide variety of flat samples and show a significant improvement over both the roller and 

carborundum belt handling mechanisms. Little or no movement occurs for the majority 

of samples tested, furthermore the sample orientation during each of the tests 

demonstrated no noticeable effect on the results. Consequently the samples were tested 

at random orientations reflecting how workpieces would be presented to a commercial 

machine. 

G. 2 Pinned belts on flat components. 

Figures G. 1-G. 5, show an example result for each of the samples tested. Part (a) 

of the figures show the raw camera data extracted during the movement measurement 

tests. These show the trend of any movement that may be occurring, particularly in the 

case of the shoe insole component. Part (b), of the figures show the actual edge 

displacement as measured from one cycle to the next. Here a trend is evident showing 

that a movement in one direction is generally compensated for on the next cycle, 

resulting in no net effect. This can be best seen in Figure G. 6. 

Figure G. 6 contains an analysis into the handling characteristics across the range 

of flat parts tested. The author believes this demonstrates the `flapping' effects that could 

be observed at the edge of the samples as it changes direction between cycles. It should 

be noted that occasional deviations occur outside the range covered by Figure G. 6, 
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however these are very rare, (Figure G. 5) and could not be seen if included. These large 

losses of position occur invariably at the start of testing for, either the insole components 

or, the brogue shoe components that will be discussed in Appendix H. This, in the case 

of the insole components, is due to its limp nature which enables the part to drop 

between the front and rear belt sets at certain orientations putting an undue load onto the 

workpiece. Once the pins have bedded in however (5-10 cycles) no further net 

movement is evident. 
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(a) Edge positional variation measured by the line-scan camera. 

2 

1.5 

0.5 
00 
O0 
Ö 

-0.5 

-t 

-1.5 

-2 

Cycle number 

(b) Degree of movement measured per cycle. 

Figure G. I Movement measurements obtained for sample DWLF8 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure G. 2 Movement measurements obtained for sample DWF7 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure G. 3 Movement measurements obtained for sample DWFI2 
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(a) Edge positional variation measured by the line-scan camera. 

2 

1.5 

I 
0.5 

00 
t- 

, : Z; 0 
X 

-0.5 
A 

-ý 

-1.5 

-2 

Cycle number 

(b) Degree of movement measured per cycle. 

Figure G. 4 Movement measurements obtained for sample DWFS5 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure G. 5 Movement measurements obtained for sample INSOLE6 
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Figure G. 6 Error distribution for Flat samples tested. 
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Appendix H 

Drift / Slip results for the Autoscan 

Compound components. 
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H. 1 Introduction. 

The results included in this section on workpiece mvement, were observed for the 

samples described in Appendix D. 2. In addition to these test samples, a brogue, upper 

component, was also tested. This workpiece represents a typical shoe part that may 

require structural stitching. 

H. 2 Pinned belts on compound components. 

Figures H. 1-H. 4, show an example result for each of the compound samples 

tested. Similar to Appendix G, part (a) of the figures show the raw camera data extracted 

during the movement measurement tests. This shows the trend of any movement that 

may be occurring, particularly in the case of the brogue shoe upper component. Part (b), 

of the figures show the actual edge displacement as measured from one cycle to the next. 

Similar to the results for flat parts, a trend is evident showing that a displaccmcnt 

(movement), in one direction is generally compensated for on the next cycle, resulting in 

no net effect. Figure H. 5 is a second example of results obtained for the brogue 

component. This result was taken with the part inserted at 90° to that shown in Figure 

H. 4. The result shows an apparent high degree of movement during the initial cycics, 

before settling down to a steady, zero net movement, condition. These apparent Iargc 

errors only occured at certain orientations where the part was able to catch on the edge 

of the feed table highlighting a limitation in the handling mechanism. 

Figure H. 6 contains an analysis into the drift / slip distribution across the range of 

compound parts tested. 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure H. 1 Movement measurements obtained for sample DWCC 1 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure H. 2 Movement measurements obtained for sample DWCR4 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure H. 3 Movement measurements obtained for sample DWCS2 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure H. 4 Movement measurements obtained for sample BROGUE (00) 
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(a) Edge positional variation measured by the line-scan camera. 
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(b) Degree of movement measured per cycle. 

Figure H. 5 Movement measurements obtained for sample BROGUE (90°) 
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Figure H. 6 Errror distribution for Compound samples tested. 
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Determination of required sample size 
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1.1 Determination of sample size required. 

As the formulas for standard error and confidence intervals all involve knowing 

the number of samples tested during the experiment it is apparent that if the number of 

samples, (n), tested increases, the accuracy of such calculations similarly increases. 

However there comes a point when for a given degree of confidcncc the error bounds 

can be said to be within acceptable limits. Therefore there is little to be gained by taking 

far more samples than is required to reach this point. Here, with reference to 

Bhattacharyya and Johnson1481, we will determine the number of samples required to 

achieve a high degree of confidence within the given specification for parts tcstcd using 

the pinned belt configuration. 

1.2 Calculation of n. 

Assume that a value for the population standard deviation, (Q), is known. Whcre 

the population is all leather and synthetic types used in shoemaking. 

The formula for a 100(1-a)% error bound for the estimation of t by is given by, 

n 
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In order to be 100(1-a)% sure that a degree of error d is not exceeded we now have, 

Zdz Q 
=d ............................... (2) T 

Solving for n, the number of samples required gives, 

Zd2Q 2 
(3) ............................. 

This solution is valid if n is large or if the population distribution is normal. 

However where this is not the case a conservative estimate for n can be determined by 

implementing the Chebyshev inequality. 

For a random number X with a mean µ, for every distribution we can obtain a 

probability bound that X is no more than d units from µ. 

PIX_1 d SVar(X) 

Note, 

Var(X)= 
z 

........................... (5) 
n 

Hence, 

P[) X- p15 d] z 1- Ci () 
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2 

, 2- to the desired assurance 1-a, the sample size n is given by, so by equating I- 

QZ 

ad2 

In summary, 

To be 100(1-a)% sure that the error 17-PI does not exceed d, the required 

sample size is given by, 

Z'rzo 2 
n=a.................................. (8) 

However if n is small and the population is non-normal a conservative cstimatc of 

the upper bound for the sample size can be found using, 

C2 
tyd2 

with n being rounded up to the next highest integer. 

1.3 Determination of confidence levels 

As the materials that exist in shoe manufacturing as varied and often have 

inherently complex structures it is reasonable to assume that the population distribution 
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is non-normal. Consequently the second method for determining the sample size will be 

used in order to give a conservative estimate for n. 

If the population is subdivided into two categories, 

1. Flat components tcstcd 

2. Compound components tested 

the number of samples required to give a sample mean no greater than 5 units, (d=2.5 is 

approximately 0.2mm), from the population mean with at least 95% probability, 

(a = 0.05), can be determined. 

Table J, contains the results obtained from the drift experimcnts taken using the 

pinned belts using the line-scan camera method. 

All Flat Parts All Compound Parts 

Mean (X) 0.044 0.038 

Standard deviation (o) 1 0.871 0.910 

Table I. Statistical results obtained for populations of flat and compound parts 

Using the information contained in Table J and cquation 9, the number of 

components, n fl,,, and ncomp . u�d can be calculated, 

nn. = 2.79, ncompound = 2.65 
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Therefore, rounding up to the next highest integer gives, 

nn., = ncompound =3 (minimum) 

These values are exceedingly low, demonstrating the accuracy of the handling 

mechanism and the repeatibility of the results, regardless of component type, (flat or 

compound). The result also demonstrates that the number of samples actually taken, (46 

flat, and 16 compound parts), was greater than actually required to achieve a 95% 

confidence limit for d=2.5. 
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Appendix J 

Examples of pre-tacking various materials. 
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J. 1. Pre-tack examples using the test component shape. 

This section contains example results obtained by implementing the procedures 

outlined in Chapter 4. Figures J. I -J. 4, show the measured edge positional discrepancies 

from the desired position after final stitching. In order to produce these samples the test 

pattern had to be photocopied onto thin cardboard to form a template. This was thcn 

placed on top of the sample material and drawn around to produce the cutting pattern. 

This resulted in large possible errors being introduced into the edge position even before 

pre-tacking and final stitching. Consequently these results arc included in this appendix 

as additional information only as it is difficult to discriminatc bctwccn the human and 

process errors. 

The samples tested and shown here arc; 

Figure J. 1, Paper, this has been included as a rcfcrcncc. 
Figure J. 2, Denim. 

Figure J. 3, Patent leather. 

Figure J. 4, Calf leather. 

The figures show that the edges of the line of the edges for the non-parer 

samples are far more irregular than the paper samplc(s). This is due to the difficulties in 

sample construction. However, the statistics for the three non-paper samples show that 

there is a strong trend for the edges to remain closely aligned after final stitching. 
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Figure J. 1. Edge misalignment errors after final stitching for a paper sample 
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Figure J. 2. Edge misalignment errors after final stitching for a Dcnim sample 
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Figure J. 3. Edge misalignment errors after final stitching for a patent leather sample 
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Figure J. 4. Edge misalignment errors after final stitching for a calf leather sample 
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Appendix K 

Laser line-stripe characteristics and example images. 
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K. Laser line-stripe investigations for edge following. 

This appendix contains examples of images taken using an area camera of laser 

line-stripes incident on typical workpicce edges. The images have also been inverted to 

aid clarity. 

K. 1Gaussian distribution of light intensity over a laser line-stripe. 

Figure K. I shows histograms extracted from a complete line-stripe image. It can 

be seen from this image that the light intensity both along the length and across the width 

of the stripe vary according to the laws of Gausian distribution. This is a well understood 

effect, however there are now laser optics which compensate for this effect, giving an 

even intensity distribution. This figure has therefore been included to demonstrate the 

characteristics of the laser used during the investigations made in this thesis. 

K. 2 Examples of typical images obtained. 

Figure K. 2, shows a typical image extracted from a 'neat' square cut edge. 
Figure K. 3, shows a typical image extracted from a folded edge with a high 

degree of pear-shaping at the fold. 

K. 3 Examples of typical images obtained. 

Figures K. 4 and K. 5 show examples of camera or lascr misalignment. 
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Appendix L 

Laser line-stripe investigations into characteristic 

extraction for edge following. 
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L. Laser line-stripe investigations for edge following. 

This appendix contains the processed images of samples 1 to 5 referred to in 

Chapter 5, Section 5.5.5. These images were taken using screen capture techniques 

direct from the PC screen and includes the extracted values for :- 

" Degree of fold, (pear-shaping) 

" Perceived edge position 

" True edge position 

" Closed fold edge position 

" Angle of light roll-off, (a) 

" Component misalignment, (M) 

" Calculated ellipse parameters (a and b) 

All co-ordinate measurements are made with respect to an arbitrary rcfcrcnce 

position. This was taken for simplicity to be the screen origin, (top-left corner). 
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Appendix M 

3-D Topography for Lasting. 

Last alignment 
Feature extraction 
Profile matching 
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M. 1 3-D Topography for Lasting. 

This appendix contains images taken using screen capture techniques. Fivc 

samples were supplied by B. U. S. M so as to cover a cross-section of shoe types. 

Sample 1: A gentleman's maroon brogue shoe. 

Sample 2: A gentleman's black and brown `slip on' shoe, with decorative tassels. 

Sample 3: A gentleman's matt black moccasin style shoe. 
Sample 4: A light blue maids sandal. 

Sample 5: A youths black sports boot. 

M. 2 Angular correction for last misalignment. 

This section contains results of angular correction discussed in Section 6.1.2 for 

samples 2-5. Sample 1 is included in Chapter 6, Figure 6.3, as the workcd example. 

Table M. 1 contains a summary of the last angles measured before and after 

processing. 

Sample Perceived last angle Corrected last angle 

1 8.12° 0.00° 

2 1.990 0.00° 

3 -0.74° 0.00° 

4 3.27° 0.00° 

5 6.910 0.01 0 

Table M. 1 Summary of results for angular correction. Samples 1-5. 
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r 

i 

Figure M. I Sample 2, before and after angular correction. 

Before = -0.74° 

Figure M. 2 Sample 3, before and after angular correction. 
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Figure M. 3 Sample 4, before and after angular correction. 

Figure M. 4 Sample 4, before and after angular correction. 
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M. 3 Feature extraction. 

This section contains the results of performing full feature extraction, as 

discussed in Chapter 6, on shoe samples 1-5. (Sample 3, is included in Chapter 6 as 

Figure 6.5). 

Sample 1, contains no features over the forepart of the upper, as shown by a 

score count of 1. The features that make a brougue style shoe can be seen by careful 

examination of the figure. However these features are too faint to be extracted by the 

processing methods implemented here. If the camera resolution was increase to, 2048 x 

2048 pixels, it may be possible to produce algorithms capable of detecting these features. 

Sample 2, demonstrates how decorative features can significantly cffcct 

obtainable results. The tassles are not well defined and can vary considerably in position 

from shoe to shoe. The score count indicates that this shoe is a 'slip on' in style by 

returning to 1 after line-stripe number 20. 

Sample 3 provided the best results obtained using this form of processing. The 

ridge around the forepart of the shoe has been clearly extracted. It is the position of this 

ridge that would be used in lasting and as such the extracted information is of value. 

Sample 4 also provides information that could be used to automate lasting of this 

kind of shoe. In contrast to sample 2, the ridge is created by the edge of the upper 

exposing the last below. 

Sample 5, the sports boot, like that of the brogue sample provides very little 

information. The features extracted are those of the lacing wings and the padded tongue. 
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M. 4 Profile matching. 

This section contains the results of performing alignment matching on selected 

line-stripe images as discussed in Chapter 6. Four examples are included here to highlight 

the various effects observed when testing this method. 

Figure M. 9, shows a good match between the template data, (sample 2), and that 

of a second shoe of the same type. This result is as would be expected due to the same 

styles being compared. 

Figure M. 10, compares sample 2 with sample 3. Even though different shot 

styles are used, there is still a strong match. The additional feature of the ridge in the 

specimen stripe, (sample 3), have been overpowered by their similarity in basic form. 

Figure M. 11, demonstrates the effects observed when similar styles of different 

feet are compared. Here there is little or no similarity as the form of the stripe is 

mirrored. 

Figure M. 12, shows the result of comparing sample 4 with sample 3, two very 

different shoe types. The results show no match between the samples 

The use of characteristic matching as a mechanism for determining parameters to 

enable automated lasting is limited. This is shown by the effects demonstrated by Figures 

M. 10 and discussed in Chapter 6. However, this method does appear to be able to 

differentiate between styles of differing types. As a result it may be of valuc in 

automating the selection of a template by matching a presented style with thosc already 

taught. It may therefore still have a value in the automation process. 
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Figure M. 9 Sample 2 compared with similar (stripe number 13) 
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Figure M. 10 Sample 3 compared with Sample 2, (stripe number 10). 
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Figure M. 1 I Sample 4 compared with similar left foot (stripe numbcr 13) 
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Figure M. 12 Sample 4 compared with Sample 3, (stripe numbcr 17). 
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3-D Topography. 

Effects of point locking 

Depth information extraction 
Sole contour extraction 
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N. 1 Effects of point locking. 

This section contains examples of the results obtained whilst investigating the 

effects of point locking as described in Section 6.2.3. When the distance between and 

extracted point and its interpolated position, derived using cubic splines from the 

surrounding points, is within an experimentally determined tolerance then the point can 

be locked to ensure it is not moved by future iterations. 

It can be seen from Figures N. 1,3,5, where point locking is applied, that despite 

varying the degree of correction, how far an erroneous point is movcd towards the its 

interpolated position, the processed result remains true to the original overall profile. 

However, in Figures N. 2,4 ,6 where point locking is disabled, as the degree by which an 
erroneous point is corrected increases so the overall profile becomes distorted. This is 

due to even correct points being moved to produce an ever increasingly smooth profile. 

The best results seem to occur when point locking is implemented in conjunction 

with 50% error correction. 

N. 2 Depth information extraction. 

This section contains example depth profiles extracted from samples supplied by 

B. U. S. M. Figures N. 7-10 contain profiles extracted from the base of a lasted shoe, whilst 

Figures N. 11-12 show examples of depth profiles extracted from soles. 

The same mechanism for erroneous point correction has been applied to these 

images as that described for sole profile extracted. However, as the centre region of the 
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insole is fairly well defined no significant enhancements were obtained. Consequently for 

this type of measurement the raw extracted data may provide sufficient information for 

control purposes without the need for further processing. 

N. 3. Sole contour extraction. 

This section contains examples of contour maps extracted for three styles of sole. 

Figure N. 13 shows a simple man's sole incorporating minimal grip and a 

significant heel height of approximately 25mm. 

Figure N. 14 contains an image of a lady's gym type sole. The sole is generally 

smooth with a slight heel. 

Figure N. 15 once again is of a man's sole. This time is has a high dcgrcc of grip 

in addition to a significant heel height 30mm. It can be seen from the image that the grip 

is restricted to the central region of the sole, the outer rim remaining smooth. In addition 

the heel support ridges can be seen. 

Note. 

All these images were obtained using screen capture techniques from the author's 

purpose written software. 
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