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Abstract

Periodic stimuli are known to induce chaotic oscillations in the squid giant axon for a

certain range of frequencies, a behaviour modelled by the Hodgkin-Huxley equations. In

the presence of chaotic oscillations, similarity between neural responses depends on their

temporal nature as firing times and amplitudes together reflect the true dynamics of the

neuron. This thesis presents a method to estimate similarity between neural responses

exhibiting chaotic oscillations by using both amplitude fluctuations and firing times. It is

observed that identical stimuli have similar effect on the neural dynamics and therefore,

as the temporal inputs to the neuron are identical, the occurrence of similar dynamical

patterns result in a high estimate of similarity, which correlates with the observed

temporal similarity.

The information about a neural activity is encoded in a neural response and usually the

underlying stimulus that triggers the activity is unknown. Thus, this thesis also presents a

numerical solution to reconstruct stimuli from Hodgkin-Huxley neural responses while

retrieving the neural dynamics. The stimulus is reconstructed by first retrieving the

maximal conductances of the ion channels and then solving the Hodgkin-Huxley equations

for the stimulus. The results show that the reconstructed stimulus is a good approximation

of the original stimulus, while the retrieved the neural dynamics, which represent the

voltage-dependent changes in the ion channels, help to understand the changes in neural

biochemistry. As high non-linearity of neural dynamics renders analytical inversion of a

neuron an arduous task, a numerical approach provides a local solution to the problem of

stimulus reconstruction and neural dynamics retrieval.
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1

1 Introduction

1.1 Background

The human nervous system is the most complex and delicate of all body systems and is

composed of two parts, a) the Central Nervous System (CNS) and b) the Peripheral

Nervous System (PNS). The CNS comprises of all the nerves in the brain and the spinal

cord and covers all the nerves from the brain to the tailbone. Given the organ weight to

body weight ratio of 2%, the average human brain is the most efficient organ considering

the vast amount of work done by it. The PNS represents the nerves spreading out from the

brain and the spinal cord, which connect the CNS to the limbs and organs (Brazier, 1977).

The nervous system is a collection of nerve cells commonly known as neurons that are its

fundamental and constitutional elements, which process information throughout the body.

1.1.1 Neuroscience: The Early Years

The earliest recorded observations of a neuron are around 1863-1869 by Otto Friedrich

Karl Deiters using chromic acid and carmine red (Nicholls et. al., 1992). The anatomical

studies of Deiters however, were limited due to the lack of localised staining methods.

Thus the processes, the projections or outgrowths of the neuron emanating from the

neural cell body, were not identified until advancement in physiology. In the year 1873,

Italian physician Camillo Golgi discovered a nervous tissue staining technique, which

consisted of staining the neural membrane by silver chromate particles using a reaction

between silver nitrate and potassium dichromate. Golgi aptly named the staining

technique ‘the black reaction’ as it resulted in a deep black deposit on the neuron against a

well-contrasted yellow background. This staining technique (now known as Golgi

staining) aided the identification of the neural soma, axons and the dendrites. In 1888, the
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Spanish anatomist Santiago Ramón y Cajal (1899) revealed the existence of neurons as

functional units of the nervous system.

The formal identification of the neuron by Ramón y Cajal impressed German anatomist

Waldeyer-Hartz and in the year 1891 led to the formulation of the ‘neuron doctrine’ – a

fundamental idea that the nervous system is made up of discrete individual cells.

Waldeyer-Hartz coined the term ‘neuron’. The neuron doctrine was based on Ramón y

Cajal’s conclusion about the propagation of signals in neuronal networks. Ramón y Cajal

defined the ‘Law of Dynamic Polarisation’, which stated that neural signals always

propagated from the dendrites to the axons and then to the dendrites or soma of other

neurons (Sabbatini, 2003). The principal tenets of the neuron doctrine defined the neuron

as

1) the structural and functional unit of the nervous system;

2) an individual cell. The neurons were identified as discrete anatomical structures;

3) having three parts: the dendrites, soma (cell body) and axon. The interneuronal

connections were possible due to axon branches making close contacts with the

dendrites or the soma of other neurons;

4) a unidirectional unit. The conduction takes place in the direction from the

dendrites to the soma and then to the branches of the axon.

Golgi and Ramón y Cajal shared the 1906 Nobel Prize in Physiology or Medicine in

recognition for their work on the structure of the nervous system. By the early twentieth

century, the anatomy of the neuron was well defined, with Ramón y Cajal describing the

‘spines’ on the dendrites as a potential requirement for interneuronal communication.

Around 1918, the British physiologist Charles Scott Sherrington identified these dendritic

spines as receptors of synapses in dendrites and was awarded the 1932 Nobel Prize in

Physiology or Medicine.
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1.1.2 Neuroscience: 20th Century and Beyond

Since the pioneering work of Ramón y Cajal and the establishment of the neuron doctrine,

twentieth century neuroscience focused on the physiology of neuron function. The

physiological properties of the neuron were yet unidentified and required the study of

isolated neurons. By 1940, physiologists were able to isolate individual neurons for

functional studies and it was firmly established that electrical stimulation of a nerve cell

produced a response (Brazier, 1977; Nicholls et. al., 1992; Kingsley, 2000). To understand

the neural response and identify the physiology of neural spiking required laboured

laboratory-based work, which defined the next phase of research.

During the next decade, significant advances were made towards understanding the

neuron as a logical model. Warren McCulloch and Walter Pitts (1943) suggested a

simplistic neuron model with a linear threshold gate, which gave a binary output as a

function of weighted inputs. Donald Hebb (1949) described the basic mechanism for

synaptic plasticity to explain associative learning in a network of neurons. While these

logical models were important to the formation of ‘Neural Networks’ and ‘Hebbian

Learning’, the biochemistry and physiology of neural spiking was still unknown.

In 1952, two British physiologists Alan Lloyd Hodgkin and Andrew Fielding Huxley

isolated a squid’s giant axon and through their experiments explained the formation of a

neural response. Hodgkin and Huxley described the elegant biophysics of a neuron in a

series of mathematical equations that led to the first computational model of a neuron.

Their meticulous study involved effective measurements of the various ion concentrations

within the neuron and the extracellular fluid to define the state of equilibrium of a neuron.

They discovered that a change in neural biophysics due to electrical excitability caused a

shift from the equilibrium and resulted in the neuron firing a spike. The spiking of the

neuron was identified as a physiological change in the membrane potential due to influx-

efflux of ions across the cell membrane. Hodgkin and Huxley were the first to demonstrate

the physiology of a neural spike using mathematical equations that defined the neural
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dynamics (the influx-efflux of ions) of the cell membrane (Hodgkin and Huxley, 1952). The

Australian neurophysiologist John Carew Eccles, through his work on the synapse

(electrical or chemical stimulation of a nerve cell) contributed greatly towards the

understanding the phenomenon of neural spiking (Eccles, 1964). In recognition for their

research, Hodgkin, Huxley and Eccles shared the 1963 Nobel Prize in Physiology or

Medicine.

The physiology of the neuron, documented by Hodgkin and Huxley in the form of ordinary

differential equations, gave rise to ‘Computational Neuroscience’. With the advent of

computational techniques to solve ordinary differential equations, the work of Hodgkin

and Huxley was transformed into a computational neural model. This model, known as the

Hodgkin-Huxley neuron model (described in detail in Chapter 2) is a well-known

representation of a biological neuron that shows the fundamental physiological changes in

ionic concentrations during a neural spike. These changes, referred to as the ‘neural

dynamics’ of the initiation and propagation of a neural spike are adopted in the spiking

mechanism of the recent computational models like the Morris-Lecar (Morris and Lecar,

1981), FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et. al., 1961), Wilson model of

neocortical neuron (Wilson, 1999b), and the Hindmarsh-Rose (Hindmarsh and Rose,

1984). The work of Hodgkin and Huxley was derived from physiological observations in

their laboratory; hence, the Hodgkin-Huxley model is physiologically relevant.

1.2 Motivation

The term ‘computational neuroscience’ identifies the ability to simulate a neuron model

and predict a neural response to a stimulus, while contributing to classical neuroscience,

computational biology and computational neurophysiology (Trappenberg, 2002). This

ability to predict a neural response is physiologically precise in comparison with

neurophysiological experiments, which has brought together computer scientists,

physiologists and biologists to form a truly interdisciplinary field of study. While

laboratory based experiments take weeks for completion, these in silico experiments
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(computational simulations) take significantly less time. In addition to accurate

predictions, computational simulations offer the advantage of flexible adjustment of

environment variables to gather a broad range of data. On the other hand, laboratory-

based measurement of neural responses at various ion concentrations require weeks of

neuronal culturing and preparation of individual cultures for experiments.

Philip Strange (1992) explains that an imbalance in the neural biochemistry is responsible

for various neural disorders like Parkinson’s disease (PD), Huntington’s disease,

Alzheimer’s disease (AD), schizophrenia, affective disorders like depression and mania,

and anxiety. In addition, previous research suggests that there is a possible link between

degeneration of motor neurons and the glutamate transporters in the brain, which cause

changes in chemical concentrations (Brooks, 1986; Foran and Trotti, 2009). Hence, it is

conceivable that the basis of a neural disorder is due to dysfunction at a neuronal level.

Neural disorders are often clinically diagnosed using studies on body fluid and blood cells,

biopsy of samples of the brain, post-mortem brain examination, imaging of living brains,

neurophysiological testing or behavioural studies of drugs with defined biochemical

properties. However, the clinical diagnosis is usually post-symptomatic and post onset of a

disorder. The motivation for this research arises from the existing knowledge of neural

modelling, the computational ability to predict a neural response and the objective of

aiding clinicians and biologists to understand neural disorders in more physiological

detail.

The biophysical properties of a neuron define the ionic basis of a neural spike, which

represent neural function. These spikes present vast information to the clinicians about

the state of a neuron, i.e. the nature of spiking activity, the strength of the stimulus or

whether they deviate from normalcy (as in the Electroencephalogram, EEG). Estimating

the similarity between neural spikes therefore helps to identify distinct neural responses

caused by different stimuli. Since observations like the EEG convey information on neural
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spiking patterns, studying the stimulus-response relationship and understanding neural

response similarity can offer some insight into neural processing.

These neural spikes, however, do not describe the physiological state of the neuron or the

nature of stimuli that evoke neural responses, which is often unknown. To understand

neural disorders, retrieving information about the neural stimulus and the biochemistry

will be beneficial. The exact physiological changes in a neuron can be traced using

computational neural modelling that can recreate the neural biophysics and the external

stimulus from a neural response. Using a phenomenological neural model such as the

Hodgkin-Huxley for studying this objective can help to provide an understanding of the

biophysical changes in neural disorders.

This thesis contributes towards a general foundation for recreating neural biophysics and

the external stimulus with a view towards enhancing our understanding of neural

functions. Identifying biochemical changes in a particular neural disorder using a

computational study of neural biophysics will help in identifying the onset and remains a

future objective.

Figure 1.1: Understanding the onset of neural degeneration.
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Fig. 1.1 represents transition of a neuron from a healthy state towards gradual decay. This

transition in commonly observed for individual neurons in most disorders like Motor

Neuron Diseases (MND), PD and AD. At disease onset, when the biochemistry of a neuron

starts to drift from normalcy, it is reflected by a change in neural spiking and its function,

which can be observed in the neural dynamics (Strange, 1992). Studying such neural

responses and recreating the neural biophysics can contribute towards understanding and

predicting onset of neural disorders. Currently, post-onset restorative neurology aims to

transplant embryonic neurons using stem cells to replace decaying neurons (Nogradi and

Szabo, 2009; Silani et. al., 2004). The computational ability to identify the early onset can

help prolong the life of a neuron by determining biochemical changes that initiate

degeneration.

1.3 Aims and Objectives of this Research

The classification of neural responses based on similarity provides important information

about neural stimulation to the clinicians. Populations of neurons, under similar

stimulation, exhibit identical biophysics and display highly correlated firing patterns. This

unique stimulus-response relationship is also observed for individual neurons (Davies et.

al., 2006, Chechik et. al., 2006).

A neural response is dependent on the temporal nature of the stimulus indicating that a

variation in the shape or form of the stimulus results in a change in the firing pattern of a

neuron. For instance, two similar neurons stimulated by non-identical stimuli generate

responses that are distinct and stimulus-dependent (fig 1.2-1.3). This stimulus-dependent

nature of a neural response is physiologically relevant to neural spiking and is the basis of

all neural activities. The dependence of neural responses on the temporal nature of

stimulation is shown in fig. 1.4. Stimulus 1 and Stimulus 2 are two distinct stimuli that

stimulate identical neurons Neuron 1 and Neuron 2. Due to the nature of each stimulus, the

corresponding neuron is excited at different times, thus creating independent neuronal

dynamics.
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The vertical line in fig. 1.4 shows that at a specific time t, Stimulus 1 is at its peak while

Stimulus 2 is around its lowest value. The strength of the Stimulus 1 is maximum therefore

the chances of the Neuron 1 depolarization are higher while Neuron 2 will be

hyperpolarized due to a weak external stimulus, thus the neuronal dynamics would differ

for either neuron. The corresponding responses of the two neurons at time t therefore,

will be non-identical and conversely, identical stimuli will result in similar neural

responses.

Figure 1.2: Neuron 1 stimulated by Stimulus 1 evokes a response exhibiting neural spikes.

Figure 1.3: Neuron 2 stimulated by Stimulus 2 evokes a response non-identical to Neuron 1.
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Figure 1.4: The temporal influence of distinct stimuli, Stimulus 1 – blue and Stimulus 2 - red

Classification of neural responses requires similarity estimation of individual neural

spikes to differentiate identical from non-identical spikes. For individual neurons,

similarity measures that aid this classification rely either on firing times of neural spikes,

the time at which a neuron depolarizes, or the rate at which a neuron fires (Joeken and

Schwegler, 1995; Kistler et. al., 1997). On the other hand, spike- sorting is implemented to

associate neural spikes to a specific neuron within a population of neurons (Herbst et. al.,

2008). This thesis considers an individual bipolar neuron (Hodgkin-Huxley neuron); and

therefore, a similarity measure rather than a spike-sorting algorithm is required to

identify similarity between neural responses.

One of the main objectives of this research is to understand whether similarity estimation

of neural responses is physiologically plausible and mathematically accurate. An accurate

estimate of similarity between neural response pairs helps to understand the effect of

corresponding stimulation. Neural stimulation plays an active role in neural excitability

and the nature of this stimulation is vital to neural firing. A change in stimulation reflects

in neural excitability and is observed in corresponding neural responses. The relationship

between neural excitability and external stimulation is governed by the neural dynamics

whose retrieval from neural responses defines the next objective.

As discussed in section 1.2, this thesis aims to combine computational and mathematical

knowledge with physiology and medicine to provide an approach to reconstruct the

unknown stimulus of a neuron. More specifically, this thesis aims to retrieve the stimulus
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and time-dependent changes in a neuron from its response. The temporal changes in a

neuron represent its depolarizing and hyperpolarizing states, the opening and closing of

ion channels and the conductance of ionic gates. The ability to retrieve this information

from a neural response can be beneficial towards intrinsic studies in neurology and neural

disorders.

1.3.1 Summary of Aims and Objectives

To summarise, the four major aims and their corresponding objectives are listed below

1) To study the effect of distinct temporal nature of stimuli on neural responses of a

bipolar neuron by

 Identifying the similarity between neural responses using an existing

similarity measure

 Understanding the effect of temporal pattern of neural responses on

similarity estimation

2) To develop a similarity measure that estimates similarity between neural

responses from the understanding of temporal patterns

 To assess the accuracy and quantify the estimated similarity

3) To perform comparison of this similarity measure with an existing classification

approach

 To assess the applicability of this similarity measure to model validation

4) Reconstruct unknown stimuli from the existing knowledge of a bipolar neuron

model

 To understand time-dependent changes in ion channels and retrieve the

neural biophysics during the neural stimulus reconstruction



Chapter 1: Introduction

11

 To demonstrate how a change in neural biochemistry reflects on the neural

biophysics

1.4 Thesis Outline

The thesis is organised with a view of providing the required and necessary information to

understand the chapters and their content. Considering the vast interdisciplinary

knowledge in the field of computational neuroscience, this thesis hopes contribute a

differential increment, but nevertheless a significant one. Certainly, in this regard, some of

the questions pertaining to a broader arena and applications are beyond the scope of this

thesis and the interested reader is directed to rich and valuable resources of information,

these are cited in the chapters.

Each chapter introduces the problem and explains the motivation behind the research,

followed by a literature review and revisiting existing approaches, if any, a problem

definition, the approach and results ending with a chapter summary. The organisation of

the chapters follows the aims and objectives defined in section 1.3 and are interlinked to

provide a flow of information.

1.4.1 Chapter Outlines

The breakdown of the chapters is as follows

Chapter 2 introduces the reader to the biological neuron, the anatomy and the physiology

with precise information on the neuron function. The reader is provided with a brief

account of the internal structure of a neuron, neural biochemistry, neuron signalling and

communication via synapses and neurotransmitters. The physiology of neural spiking is

explained in detail considering the neural biophysics and external stimulation. With the

advent of computational ability, the transition to computational modelling including

mathematical equations, neural dynamics and physiological relevance is described in

detail. A short account of existing computational models is given to provide the reader

with an in depth information on physiological relevance in neural modelling.
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Chapter 3 describes the effect of temporal nature of stimulus on a neural response, its

dynamics and similarity estimation. The chapter explains the need for a new similarity

measure in view of certain inconsistencies observed in an existing similarity measure. The

experimental results demonstrate how nature of a stimulus affects the neural dynamics

and it response. The results presented in the chapter are physiologically relevant and

corroborate with the observations of physiologists. The existing similarity measure, has

inconsistencies due to implicit assumptions about the neural dynamics, this chapter

suggests possible changes to improve similarity estimation.

Chapter 4 describes the changes necessary for accurate similarity estimation and

formulates a new similarity measure, which considers the temporal variations in the

neural responses. To assess consistency, the similarity between neural responses

generated by various types of stimuli is estimated using this similarity measure. The

chapter exemplifies comparison between these similarity estimates and that of Chapter 3

to determine the efficiency of the similarity measure. The results of comparison are

detailed in this chapter.

Chapter 5 describes the possibility of applying this similarity measure to validate

computational neuron models, neural responses with minimal temporal variations and the

efficiency of a similarity measure to capture absolute difference between two neural

responses. This chapter introduces a detailed Integrate and Fire neuron model and

describes validating its neural responses using the similarity measure. This chapter

further describes a concept of energy content and its application to a neural response and

its relationship with similarity measures.

Chapter 6 describes the reconstruction of unknown neural stimuli and neural dynamics

from known neural responses. Chapters 3-5 establish the difference in neural responses in

relation to a change in stimulation and the ability to reconstruct the stimulation can help

to understand physiological changes in neuron. The chapter provides an account of the
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existing approaches to reconstructions and their limitations followed by a detailed

algorithm to reconstruct neural stimuli and dynamics, which is supported by well-

illustrated results that aim to contribute towards the motivation of this research.

Chapter 7 summarises the thesis by highlighting the important results and discusses

stimulating areas and possibilities of future work.

The author has intentionally kept the thesis precise and attached additional related work

as Appendices with Appendix A describing the software platform, design, implementation,

testing and algorithms used in each chapter and Appendix B describing a sample test case

cluster formation.
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2 The Neuron: From Physiology to a
Computational Model

2.1 Introduction

The brain consists of many nerve cells that are well-defined tiny regions in the brain. De

Wilde estimates that the human brain has approximately 10ଵଵ such nerve cells (De Wilde,

1997). Neurons are specialised cells and exhibit characteristics common to all cells. They

have a nucleus and cytoplasm that is bound by a distinct cell membrane. The cytoplasm

contains intracellular organelles like the endoplasmic reticulum, Golgi bodies,

mitochondria, peroxisomes, ribosomes, endosomes, lysosomes and lipofuscin bodies

(Kingsley, 2000; Levitan and Kaczmarek, 1997). A typical neuron has three anatomically

distinct parts: the soma or the cell body, which represents the central part of the neuron,

and the two different types of protrusions of the soma, the dendrite and the axon (fig. 2.1).

Figure 2.1: A typical neuron with its dendrites, the soma (cell body) and the axon (EruptingMind,
2010).

Neurons are generally classified based on the number of processes (projections or

outgrowths of the neuron) they exhibit. Unipolar neurons have a single process, bipolar

neurons exhibit two processes and multipolar neurons have more than two processes (fig.
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2.2). Multipolar neurons are the most common type of neurons in the human nervous

system while true bipolar neurons in the adult mammal are associated with the first,

second and eighth cranial nerves. On the other hand, true unipolar neurons are common in

invertebrates but are not present in the adult mammalian nervous system, which contains

pseudounipolar neurons instead, where the single process originating from the neuron

almost immediately divides into two (Kingsley, 2000).

Figure 2.2: The classification of neurons based on the number of processes of the soma (Hollet, 2008).

2.2 Anatomy of the Neuron

The neurons are the principal cells of the nervous system. The anatomy of a typical neuron

is described below

2.2.1 The Soma

The soma (fig. 2.3), a compact and globular structure, is the central part of the neuron and

it contains the ultrastructural organelles that perform many of the cell’s metabolic

functions as well as those necessary for protein synthesis. The soma mostly has the same

cellular components as a secretory cell and produces an extensive variety of proteins. The

nucleus and the nucleolus are the most prominent structures within the soma and the

DNA is mostly in the extended form allowing for its transcription. As neurons produce an

extraordinary amount of proteins, the soma consists of a larger number of ribosomes,

which synthesise soluble proteins that will remain within the cell. Along with this, the

soma also contains a complex set of internal membranes where the newly synthesised
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proteins undergo modifications necessary to generate functional proteins. The internal

membrane complex encompasses the rough endoplasmic reticulum (rER) which is

studded with ribosomes on its cytosolic surface and is involved in the synthesis of proteins

destined for export or secretion. On synthesis, the precursor protein is extruded through

the membrane into the lumen of the rER. From here, the proteins are carried in small

membrane-bound transport vesicles to the luminal cavity of the membrane-limited

organelle-the Golgi complex. The precursor proteins undergo various modifications within

the rER and Golgi complex, including addition of carbohydrate moieties and proteolytic

cleavage to release functional proteins. The proteins are finally carried to their

destinations by membrane-bound vesicles that pinch off from the Golgi complex and are

transported to the various locations within the neuron or even down the axon. More

modifications of the proteins may occur within these transport vesicles depending on the

structure and destination of the proteins (Kingsley, 2000; Nicholls et. al., 1992).

Figure 2.3: The internal membrane system of neurons (Sakshat Virtual Labs, 2010)
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2.2.2 The Dendrites

The dendrites (fig. 2.1-2.2) form a tree-like structure as they branch out of the soma. They

are larger at the point of attachment to the soma and get narrower as they ramify and

extend away from the soma. The dendrites provide the surface for synaptic contacts from

other neurons and by increasing the surface area of the neuron, they facilitate a larger

number of such synaptic inputs received by the cell. The larger and more extensive the

dendritic branches the greater the number and diversity of the synaptic contacts on them.

Thus, the extent and variety of the synaptic connections is determined by the physical

structure and arrangement of the dendrites (Kingsley, 2000; Nicholls et. al., 1992).

2.2.3 The Axon

Axons are generally longer than dendrites and transmit the signals received by them. The

axons usually maintain a constant radius along their entire length until they branch out at

their distal end just before they terminate. The axonal branches terminate by making

synaptic contacts with a small group of neighbouring cells or with a single cell. In some

cases, the axons can have major branches that extend out to different groups of cells

before each of them finally sprouts many subordinate branches that establish the synaptic

contacts (fig. 2.4 and fig. 2.5). The axon usually can be divided into three regions: a) the

initial segment, b) the axon proper and c) the synaptic bouton.

Figure 2.4: The synaptic transmission between two neurons via neurotransmitter channels (Eulo,
2008).
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Figure 2.5: The information processing and signal flow in a typical neuron (Eulo, 2008).

2.2.3.1 The Initial Segment

In some large neurons, a conical region within the soma fails to stain with basic dyes and

lacks free ribosomes and rER. This region is referred to as the axon hillock (fig. 2.3) and it

contains long parallel bundles of neurotubules and neurofilaments. These filaments

remain bundled for the first 20 to 50 µm of the axon length, a region called the initial

segment. Here, one finds a layer of dense material undercoating the plasma membrane

that makes the membrane in this region appear thicker under low-power electron

micrographs. Voltage-sensitive sodium gates are abundantly distributed in the initial

segment and the electron dense material, as seen under an electron microscope, may be

due to the presence of these channels. The length of the initial segment is highly variable

and is easily recognised in myelinated axons, where the distal ends of the initial segments

correspond to the start of the first segment of the myelin sheath. The initial segment of the

axon is the primary site of initiation and propagation of action potentials (Peters et. al.,

1991; Kingsley, 2000; Patestas and Gartner, 2006).

2.2.3.2 The Axon Proper

As the name suggests, the axon proper is the main body of the axon and is a long process

whose diameter remains roughly constant throughout its length. Myelinated axons have
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the myelin sheath beginning at the axon proper and ending at the axon terminal. In the

CNS, the myelin sheath is produced by the glial cells while the Schwann cells make the

myelin covering in the PNS. Discontinuous segments characterise the myelin sheath,

where each myelin segment is called an internode and the discontinuities between them

are referred to as nodes of Ranvier. The cytoplasm of the axon proper contains the usual

cellular organelles except for free ribosomes and rER. Thus, proteins manufactured within

the soma need to be continuously transported into the axoplasm (Patestas and Gartner,

2006; Nicholls et. al., 1992).

2.2.3.3 The Synaptic Bouton

The synaptic bouton is a specialised structure formed by the terminal ending of an axon. It

lies in close apposition to the plasma membrane of the target cell and permits the

presynaptic cell to communicate with the postsynaptic or target cell. The synaptic boutons

contain mitochondria, synaptic vesicles, enzymes and neurochemicals. In response to

incoming electrochemical impulses, neurotransmitter molecules contained in the synaptic

vesicles are released from the synaptic bouton into the synapses, specialised structures

between two neurons.

Synaptic boutons usually form synapses with the dendrites or their spines of other

neurons or directly onto the soma of a neighbouring neuron. These types of synapses are

referred to as axodendritic and axosomatic synapses respectively, and are the most

common types of synapses seen in the CNS. Less frequently, synaptic contacts are also

seen between the synaptic bouton and the axon of the neighbouring neuron in which case

the synapse is called an axoaxonic synapse (Kingsley, 2000; Patestas and Gartner, 2006).

2.3 Signal flow and Synaptic transmission

The axons and the dendrites are functionally differentiable. The synaptic boutons at the

end of axon branches are used for transmitting information between neurons. The

neurons are highly interconnected as their dendrites are surrounded by the synaptic
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boutons of other neurons thus having about 104 synaptic connections between neurons

(Arbib, 1995; De Wilde, 1997). Within a neuron, the dendrites initiate a flow (fig. 2.4) by

taking stimulus signals from other neurons and passing them to the soma. The information

is processed and the resulting output in the form of neural signals is carried by the axon to

its terminals (synaptic boutons). Due to multiple synaptic connections between neurons

(fig. 2.5), interneuron signal transmission (also known as synaptic transmission) occurs

as signal is passed to surrounding neurons.

2.3.1 Synapses

The synapse, which derives its name from the Greek words ‘syn’ meaning together and

‘haptein’ meaning to clasp is responsible for the intercellular communication.

Figure 2.6: A schematic of an axodendritic chemical synapse shows how neurotransmitters bind to
receptors on a dendrite after an action potential (Wong, 2009).

A chemical synapse between a presynaptic axon and a postsynaptic dendrite involves the

release of neurotransmitters from the axon’s synaptic bouton and their binding on

dendritic receptors (fig. 2.6). In a neuron, the synaptic transmission initiates when an

action potential reaches the synaptic bouton. The calcium channels open allowing the

calcium ions (ାାܽܥ) to rush into the bouton. The influx of these ାାܽܥ ions causes the

synaptic vesicles to fuse with the cell membrane and release the stored neurotransmitter
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molecules in the synaptic bouton by exocytosis. The released neurotransmitter molecules

diffuse across the synaptic cleft and are received by the neurotransmitter receptors on the

postsynaptic dendrite.

If the neurotransmitter molecule received by the postsynaptic receptor is excitatory, the

sodium (ܰܽା) channels open and allow ܰܽା ions to rush into the cell causing a

depolarization resulting in an action potential of the postsynaptic cell. If the

neurotransmitter binds a different receptor and potassium ( (ାܭ ions diffuse outward

hyperpolarizing the membrane, it inhibits the action potential in the postsynaptic cell.

Each neuron in the brain and the spinal cord, may receive hundreds of excitatory and

inhibitory synapses. The neuron summates the information from neurotransmitter

potentials and transmits the impulse across the synapse if the summation is excitatory. In

order to keep the signal duration short, enzymes in the synaptic cleft and postsynaptic

membranes rapidly decompose some neurotransmitters. The remaining transmitters are

reabsorbed back by the synaptic bouton via the neurotransmitter re-uptake pump.

2.3.2 Synaptic Interactions

The resting potential of the neural membrane is between -40mV and -90mV, which

represents the period of no external stimulation. On external stimulation, a nerve impulse,

travels along the length of the axon in the form of an action potential or a neural spike.

These action potentials propagate as a wave and branch out along the axon without a

change in the form the neural spikes.

Synaptic interactions occur between coupled neurons when the action potential reaches a

synapse. At the synapse, the arrival of an action potential at the presynaptic cell releases

neurotransmitters, which bind to the receptors and create a passage for ion-flow across

the synaptic cleft into the dendrite of the postsynaptic cell (Arbib, 1995). The dendrite of

the postsynaptic neuron also has a membrane potential thus an ion flow leads to an

excitatory or inhibitory post-synaptic potential. If the ion channel between the synaptic
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bouton and the dendrite is permeable to Na+ and K+ ions, it is classed as excitatory. An

inhibitory postsynaptic potential prevents the membrane potential of the axon to generate

a spike by releasing neurotransmitters that activate chloride (Cl-) or K+ ions (Eccles 1964).

There are ten thousand millions of neurons in the human brain. The axodendritic

connections are of the magnitude of the number of stars in the galaxy. This shows that the

human brain has a very complex underlying signalling mechanism. Each individual neuron

constitutes a fundamental unit of this system making an understanding of this type of cell

very important to neural information processing.

2.4 Physiology of Neural Spiking

Neural spiking or the action potential is the fundamental expression of a neural activity.

This action potential is a nerve impulse, which is evoked by an external stimulation of a

neuron. Physiological studies show that this electrical activity depends on the movement

of charge across the plasma membrane of the neuron. The charge carriers, the ions, are

responsible for this action potential, which is a result of transmembrane ion flow (Levitan

and Kaczmarek, 1997).

The phospholipid bilayer of the plasma membrane acts as an electrical insulator and in the

absence of an external stimulus, maintains equilibrium between the inside and outside of

the cell. This state of rest, represented by a voltage, is known as the equilibrium potential

or the resting potential of the neuron and is between -40mV and -90mV. This potential is

expressed relative to the extracellular fluid, where a negative resting potential indicates

that the inside of the cell membrane is more negatively charged than the outside. A cell is

said to be depolarized if the membrane potential is less negative than the resting potential,

while a cell is hyperpolarized if the membrane potential is more negative than the resting

potential.

Highly specialised proteins that form hydrophilic pores are distributed along the plasma

membrane that aid in selective transmembrane ion flow. These proteins act as regulated
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ion channels and are responsible for the generation of an action potential. As the plasma

membrane acts an as insulator, a strong electromotive force is required to open the ion

channels for ion flow and elicit the action potential. The regulated activation and

inactivation of these ion channels is gated by a voltage gradient across the membrane that

allows passage of sodium (ܰܽା) and potassium (ାܭ) ions..

Figure 2.7: Ion exchange across ion channels. The transmembrane ion flow is fundamental for the
action potential (Sakshat Virtual Labs, 2010).

At resting potential, the concentration of ାܭ ions is higher inside the cell than the

extracellular fluid while the concentration of ܰܽା ions is higher outside compared to the

inside of the cell (fig. 2.7a). The extracellular fluid also contains the chloride (ି݈ܥ) ions.

The sodium pump in the cell membrane actively exports 3 ܰܽା ions out of the cell for

every 2 ାܭ ions that it imports into the cell (fig. 2.7b). This creates a potential difference of

approximately -70 mV across the membrane. As the inside of the cell become less negative,

it increases the probability that ion channels will open. With the decrease in

transmembrane potential difference, a strong electromotive force causes the ion channels

to open, the voltage drops further, causing more channels to open until the membrane

depolarizes. The ion channels are voltage-dependent with ܰܽା channels being more

sensitive to voltage change than ାܭ channels and so they open more rapidly. During

depolarization, the ܰܽା ions will rush in faster than the ାܭ ions moving outwards causing
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a sudden depolarization and a potential difference of approximately +30 mV. The ାܭ ion

channels open slowly and allow ାܭ ions to flow out, which ends the action potential. The

ܰܽା ion channels initiate the action potential, while the ାܭ ion channels terminate it.

Finally, the ion channels close when the sodium pump restores the resting potential of -70

mV. These pumps transfer ions against their concentration level to restore the

concentration gradient across the membrane. This restoration of ion concentration

accounts for about 70% of the total metabolic consumption of a neuron (Trappenberg,

2002). Amino acids act as gates and changes in membrane potential result in

conformational changes in the ion channel proteins resulting in them opening or closing.

2.4.1 The Action Potential

Figure 2.8: The action potential or a neural spike is the result of a transmembrane ion flow (adapted
from Mann, 2008).

For instance, consider a neuron at rest (-6omV) i.e. there is no external stimulus and the

plasma membrane is at equilibrium with the extracellular fluid. If an external stimulus is

applied to the neuron, it disturbs the state of equilibrium by increasing the external

positive charge. This depolarizing stimulus creates a strong electromotive force, which if

exceeds the threshold, opens the ܰܽା channels. The opening of the ܰܽା channels due to a

supra-threshold stimulus depolarizes the neuron and the inside of the cell becomes more
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positive than the outside. The ାܭ channels open slowly to balance the charge with an

efflux of ାܭ ions while the ܰܽା channels, being more sensitive to voltage changes, close

allowing the neuron to hyperpolarize. The ାܭ channels close after the membrane

potential drops below the threshold. The neuron then enters a refractory period and does

not fire another action potential for a few milliseconds. Once the charges are balanced, the

membrane reaches the equilibrium potential, the neuron comes back to rest and a

depolarizing stimulus can re-evoke another action potential (fig. 2.8).

2.5 The Computational Model – Hodgkin Huxley Neuron

The British physiologists Alan Lloyd Hodgkin and Andrew Fielding Huxley first

demonstrated through their experiments how action potentials initiate and propagate

along the giant axon of a squid (Hodgkin and Huxley, 1952). They put forth these results in

the form of mathematical equations that explained the role of ion channels in neural

spiking. This set of nonlinear ordinary differential equations replicate the elegant

biophysics and accurately simulate a real biological neuron (Abbott et. al., 1990; Agüera y

Arcas et. al., 2003a; Hasegawa, 2000; Izhikevich, 2006; Izhikevich, 2003; Kepler et. al.,

1992; Kistler et. al,. 1997; Lundström, 1974; Maršálek, 2000; Moore and Ramon, 1974;

Offner, 1974; Shriki et. al,. 2003; Wang and Buzsáki, 1996). Hodgkin and Huxley received

the 1963 Nobel Prize in Physiology or Medicine for their work on ion channels and action

potential. This model known as the Hodgkin-Huxley (HH) neuron model considers the

resting potential of the neuron at 0mV for mathematical simplicity. Physiological studies

later revealed the actual resting potential to be -65mV and the HH computational model

uses this as the resting potential.

2.5.1 The HH Neuron Model

The HH neuron model is derived from the physiology of a neuron with each component

having a biophysical analog (refer to section 2.2). The phospholipid bilayer of the plasma

membrane, which acts as an electrical insulator, is represented as a capacitance .ܥ The

voltage-gated ion channels determine the ionic currents that pass through the membrane.
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These ionic currents depend on the conductance of the specific ion channel. The rate of

flow of ions across the plasma membrane is determined by a combination of factors a) the

concentration gradient of the ions, b) the transmembrane voltage difference and c) the

conductance of the ion channels. The HH model therefore can be represented as a

Resistor-Capacitor (RC) circuit (fig. 2.9)

Figure 2.9: A schematic of the neural membrane represented as a RC circuit (adapted from
Trappenberg, 2002).

The plasma membrane has hydrophilic pores that act as ion channels. If ܴே, ܴ and ܴ

are the resistances of the sodium, potassium and the chlorine channels respectively, the

number of open ion channels is proportional to electrical conductivity (inverse of

resistance) and is represented by ே݃, ݃ and ݃ respectively. The conductance of an ion

channel determines the amount of ions that flow across the membrane. The ionic current

flowing through each channel is therefore represented by ,ேܫ ܫ and .ܫ The leak current

consists mainly of ି݈ܥ ions. The membrane potential ܸ, is expressed relative to the resting

potential and ,ேܧ ܧ and ܧ represent the equilibrium potentials for the three ion

channels, which are expressed relative to the resting potential of the neuron and

represented as a battery (fig. 2.9).

The equilibrium potential is the voltage required to oppose the flow of any given ion. Thus,

,ேܧ ܧ and ܧ are the voltages required to stop the transmembrane ion exchange and

avoid a potential difference due to ionic concentration gradient. Let ܺା be an ion whose

concentration is represented by ሾܺ ା]ை for outside and ሾܺ ା]ூfor inside of the cell. The
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equilibrium potential has been defined by Walther Nernst and is also known as the Nernst

equilibrium potential.
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where ܴ is the gas constant, ܶ is the temperature in Kelvin, isݖ the charge on the ion and ܨ

is Faraday’s constant, which is the charge in Coulombs carried by a mole of monovalent

ions.

Goldman (Goldman, 1943) attempted to find the resting potential of a neuron by using the

Nernst equation as a base. Hodgkin and Katz (Hodgkin and Katz, 1949) used Goldman’s

equation to calculate the resting potentials of cells. This equation, known as the Goldman-

Hodgkin-Katz equation, gives the resting potential of a neuron (2.2).
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where ,ே  and represent the permeability of ܰ ,ܽ ܭ and ܥ (݈Levitan and Kaczmarek,

1997).

2.5.2 Equations of the HH neuron

The current passing through an ion channel is given by Ohm’s Law

)( ionionion EVgI 
(2.3)

where ܸ is the resting potential, ܧ is the equilibrium potential of the ion and ݃ is the

conductance of the ion channel. As discussed above, the generation of an action potential

is governed by the voltage-dependent ܰܽା and ାܭ ions so Hodgkin and Huxley introduced

empirically three dynamic variables, ,݊ ݉ and ℎ. The variable ݊describes the activation of

potassium channel, ݉ describes the activation of the sodium channel and ℎ describes the

inactivation of the sodium channel. These variables, known as gating variables, give the
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probability of an ion channel being open. The HH model considers that there are four

potassium channels, three sodium channels and a leakage channel. The probability that all

gates for an ion being open is ݊ସ, ݉ ଷ and ℎ respectively.

The variables ݉ and ℎ control the activation and inactivation of the sodium channels,

hence the current passing through the sodium channel is

)(3
NaNaNa EVghmI 

(2.4)

The current passing through the potassium channel is

)(4
KKK EVgnI  (2.5)

while the leakage current is

)( LLL EVgI  (2.6)

By applying Kirchoff’s Law of conservation of electric charge to fig. 2.9, we get


ion

ionC tItItI )()()(
(2.7)

where (ݐ)ܫ is the external current.

From the definition of capacity,

vQC / (2.8)

where ܳ is a charge and ݒ is the voltage across the capacitor. The charging current

through the capacitor is

dt

dv
CIC 

(2.9)
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An action potential is the rate of change of membrane potential with time. Therefore, 2.7

can be rewritten as

)()( tItI
dt

dv
C

ion
ion   (2.10)

Expanding 2.10, we have
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The gating variables ݉ , ݊ and ℎ evolve according to the differential equations 2.12-2.14.

mmm m
dt

dm
  )( (2.12)

hhh h
dt

dh
  )( (2.13)

nnn n
dt

dn
  )( (2.14)

The functions ߙ and ߚ are empirical functions of adjustedݒ by Hodgkin and Huxley. For a

better understanding, the equations 2.12-2.14 can be written in a common form

)]([
)(

1
0 vxx

vdt

dx

x




(2.15)

where ݔ is either ݉ , ݊or ℎ. The gating variables approach their asymptotic values of ݉ ,

݊ and ℎ with a time constant ߬ ,(ݒ) ߬(ݒ) and ߬(ݒ) respectively. The asymptotic values

and the time constants are given by equations 2.16-2.17.
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The physical values calculated by Hodgkin and Huxley are described in the form of

equations 2.18-2.23

]1/[)40(1.0 10/)40(  V
m eV (2.18)

20/)65(07.0  V
h e (2.19)

]1/[)55(01.0 10/)55(  V
n eV (2.20)

18/)65(4  V
m e (2.21)

]1/[1 10/)35(  V
h e (2.22)

80/)65(125.0  V
n e (2.23)

Hodgkin wrote of Huxley’s arduous task of fitting the derived biophysics to the equations

by saying that it took three weeks on a desktop, hand-cranked calculator to complete the

calculation of an action potential (Hodgkin, 1976; Rinzel, 1990). The work of Hodgkin and

Huxley revealed the effect of ion permeability in voltage-gated ion channels and thus the

initiation and propagation of an action potential. Their work established the fundamental

concept behind an action potential and earned them a Nobel Prize for Physiology or

Medicine in 1963.
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2.5.3 Neural Dynamics of the HH Neuron

Figure 2.10: The neural dynamics of the HH neuron during an action potential very clearly describe the
opening and closing of ion channels.

The open-close mechanism of the ion channels is responsible for creating an ionic

concentration gradient, which initiates an action potential. The above section describes

the probabilities in the form of gating variables, which effect this activation and

inactivation of the ion channels. The HH model elaborately details the interplay of the

gating variables, known as the neural dynamics. The neural dynamics clearly describe the

time and voltage-dependence of the ion-channels during an action potential.

As observed physiologically, the time constant of the sodium channels is very small,

approximately 1ms. The potassium channels, however, have a slower time constant, which

in comparison with sodium channels is large (fig. 2.10). This shows that the sodium

channels control the initiation of an action potential (depolarization) and the potassium

channels control the termination (hyperpolarization). The dynamics traced out by the

gating variables ݉ , ݊ and ℎ are between 0 and 1 and outline the change in the permeability

of ions in voltage-gated ion channels.
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2.6 Extended Computational Models based on the HH neuron

The interplay of the gating variables that shape the formation of the action potential are

defined as nonlinear ordinary differential equations. These highly nonlinear equations are

of the fourth order with ݉ , ,݊ ℎ and ܸ varying with time. Since 1952, the HH neural

dynamics have been the basis of numerous computational models like the Wilson model of

cortical neurons (Wilson, 1999b), the Wang-Buzsaki model (Wang and Buzsaki, 1996), the

Spike Response Model (Gernster and Kistler, 2002), the Izhikevich models of spiking

neurons (Izhikevich, 2003; Izhikevich, 2006) to name a few. This section describes briefly

two such computational models a) the Wilson model of cortical neurons and b) the

Integrate and Fire neuron model that mimic physiological behaviour of neurons.

2.6.1 The Wilson Model of Human and Mammalian Neocortical Neurons

Hugh R Wilson (1999b) presented an approximation to the neocortical neurons based on

ion permeability studies of Hodgkin and Huxley (Hodgkin and Huxley, 1952). The Wilson

model incorporates four simulated ion currents namely the sodium current ,ேܫ the

potassium current ܫ , the calcium current ܫ் and a slow calcium mediated potassium

hyperpolarizing current .ுܫ In addition to ܰܽା and ାܭ , the model has ଶାܽܥ equilibrium

potentials due to the presence calcium channels in cortical neurons.

Figure 2.11: A schematic of Wilson’s model of human and mammalian cortical neuron based on the HH
neuron model.
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Wilson noted that his model produced good approximation to spike forms, firing rates and

bursting behaviour throughout the physiological range. It is observed that the fast

currents ேܫ) and (ܫ are responsible for spike generation while the slower currents ܫ்)

and (ுܫ produce spike frequency adaptation and bursting via firing modulation. Wilson

incorporated biophysical inactivation of ேܫ and ܫ் currents rather than an inactivation

variable. The inactivation is done by the hyperpolarization currents ܫ and .ுܫ The

equations of the Wilson model are

IVHgVTgVRVm
dt

dV
C HT   )95.0()2.1()95.0(26)5.0( (2.24)
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1
TH

dt
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 (2.27)

where ܶ and ܪ are the model conductance variables for ܫ் and .ுܫ The activation of the

ାܭ channel is given by a time constant ோ߬ with equilibrium state ܴஶ (ܸ). ܴ represents that

it is a recovery variable. The activation of the ܰܽା channel is given by ݉ ஶ (ܸ).

28.336.478.17)( VVVm  (2.28)

22.37.324.1)( VVVR  (2.29)

2)725.0(8)(  VVT (2.30)

The Wilson model is considered more realistic in simulating neocortical spiking in

comparison with FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et. al., 1962) or the

Hindmarsh-Rose (Hindmarsh and Rose, 1984) models.
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2.6.2 The Integrate and Fire Neuron Model

Since its proposition 1952, the HH neuron model has achieved the status of a classic

neuron model. The relative complexity of the neural dynamics makes is mathematically

difficult to study a large network of HH neurons. The Integrate and Fire (IF), which derives

its name from the ability to integrate the membrane voltage until it reaches the threshold

potential and subsequently firing of a spike, is a phenomenological model that replicates

the behaviour of the HH neuron.

2.6.2.1 Reduction of the HH neuron

The HH neuron has four time-dependent dynamical variables ܸ, ݉ , ݊ and ℎ. For the ease of

mathematical analysis, Abbott and Kepler (Abbott and Kepler, 1990) show a reduction of

the HH neuron to an IF neuron. From physiological observation and the dynamics of the

HH neuron, the time constant ߬ of ܰܽା activation, ݉ , is smaller than ℎ and .݊ Thus, ݉

reaches its asymptotic value ഥ݉(ܸ) faster than other changes in the model. Replacing ݉ by

its asymptotic value ഥ݉(ܸ) reduces the number of HH dynamic variables from four to three.

)(Vmm  (2.31)

FnhVmVFnhmVF  ),),(,(),,,( (2.32)

The variables ℎ and ݊have longer time constants, therefore replacing them with their

asymptotic values at an auxiliary voltage variable ܷ rather than ܸ causes the dynamics to

lag behind ܸ but approach it asymptotically.

)()( UnnUhh  (2.33)

so that

),())(),(),(,(),,,( UVfUnUhVmVFnhmVF  (2.34)
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After evaluating, Abbott and Kepler derived a reduced two-dimensional version of the HH

model

IUVf
dt

dV
C  ),( (2.35)

),( UVg
dt

dU
 (2.36)

where

B

A
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where
డி

డ
and

డி

డ
are to be evaluated at ℎ = ℎത(ܷ) and ݊ = �݊ത(ܷ) . ܷ approaches ܸ

asymptotically when ܷ = ܸ as ݃(ܸ,ܷ) = 0.

2.6.2.2 Formulation of the IF Neuron

The differential equation for ܸ represents the capacitive properties of the cell while the

differential equation in ܷ reproduces the time dependence of the membrane conductance.

ܸ represents the integrative behaviour of the capacitive cell membrane while ܷ represents

the refractory period. IF neuron models drop the ܷ variable, hence they do not

approximate the refractory behaviour of a cell. The IF neuron can be derived from section

2.6.2.1 by eliminating the dynamics of the ܷ variable.
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Abbott and Kepler (Abbott and Kepler, 1990) treat ܷ = −65 (based on the resting

potential of a neuron). The approximation of the capacitive cell is

IVf
dt

dV
C  )65,( (2.40)

Abbott and Kepler found (݂ܸ, −65) to be roughly nonlinear and the higher the value of ܸ

for which ݂= 0, defines the threshold potential. They used curve fitting to derive the

nonlinear IF model

Ivvv
dt

dv
C  32 008.0083.0250.0 (2.41)

with ௧௦ௗݒ = 2.5. The parameters for the IF neuron model are derived from the HH

model and curve fitting (Kepler et. al., 1992). Refer to Chapter 5 for the computational

implementation of an IF neuron.

2.7 Chapter Summary

The neuron constitutes a fundamental unit of the nervous system therefore; its

understanding is significant to neural processing. A neuron processes external stimulation

in the form of spikes that represent the basis of a neural activity and it is believed that

these spikes are involved in neural processing. The physiology of the neuron can be

broadly classified into three parts a) the soma or the central body, b) the axon and c) the

dendrites. The axon and dendrites are the protrusions of the soma and remain functionally

differentiable. Together, they branch out to form an inter-neuronal network by forming

either axo-axonic, axo-dendritic or dendro-dendritic synapses. This synaptic transmission

occurs due to the release and binding of neurotransmitters between the pre-synaptic and

post-synaptic neurons and causes the neuron to spike.

The study of the physiology of neural spiking revealed that this electrical activity occurred

because of the movement of charge across the plasma membrane of a neuron. This
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transmembrane flow is due to the ions, which act as carriers of charge. Hodgkin and

Huxley (Hodgkin and Huxley, 1952) studied the giant axon of a squid and explained in the

form of mathematical equations, the role of ion channels in neural spiking. This set of

nonlinear ordinary differential equations, which replicate the elegant biophysics and

accurately simulate a real biological neuron, also explain the dynamics of the ion channels.

Computational studies reveal the voltage-dependent temporal changes in the ܰܽା and ାܭ

channels, which explain the depolarizing and hyperpolarizing phase of a neuron. As the

HH neuron has a biophysical analog, the model has been extended to more complex

neurons such as the cortical neuron. Wilson (1999b), introduced a model of a neocortical

neuron based on the ion permeability studies of Hodgkin and Huxley. The Wilson model

incorporates four simulated ion currents namely the sodium current ,ேܫ the potassium

current ܫ , the calcium current ܫ் and a slow calcium mediated potassium hyperpolarizing

current .ுܫ In addition to ܰܽା and ାܭ channels, as observed in the HH neuron model,

the Wilson model has ଶାܽܥ equilibrium potentials due to the presence calcium channels in

cortical neurons.

The ease of mathematical analysis is inversely proportional to the complexity of neurons.

It is mathematically difficult to study a large network of HH neurons due to the relative

complexity of their neural dynamics. The Integrate and Fire (IF), which derives its name

from the ability to integrate the membrane voltage until it reaches the threshold potential

and subsequently firing of a spike, is a phenomenological model that replicates the

behaviour of the HH neuron. The IF neuron, which is a reduced-order model, loses its

plasticity (refractoriness) due to the reduction of the ܰܽା activation variable, ݉ , to its

asymptotic value. In brief, this chapter covers the evolution of computational neuroscience

through literature and more specifically, the development of a computational neural

model from physiological observations.

The next chapter focuses on the effect of synaptic stimuli on the neural responses and

dynamics of HH neurons.
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3 Chaotic Oscillations in a Hodgkin-
Huxley neuron: Similarity Estimation of
Neural Responses

3.1 Introduction

The intrinsically inseparable relationship of a neural stimulus and its response is

fundamental for any neural activity. Each neural activity constitutes a neuron, an external

stimulus and a corresponding response. This biologically important relationship is a

subject of intensive research (Lundström 1974; Abbott and Kepler 1990; Davies et. al.,

2006; Diba et. al., 2006; Izhikevich 2006) and several computational neuron models like

the Hodgkin-Huxley (Hodgkin and Huxley, 1952), Integrate and Fire (Abbott and Kepler

1990), Wilson (Wilson, 1999b) and Izhikevich (Izhikevich 2003; Izhikevich, 2006) embody

this fundamental relationship, which governs the basis of any neural activity. These

models can be used to predict the neural response for a pre-defined stimulus. This chapter

describes the effect of temporal variation in stimulation on neural responses and

investigates whether similarity between stimuli can be predicted from neural responses.

This objective aims to be physiologically relevant in situations where the neural responses

are known but information regarding their stimuli is unknown. This chapter approaches

this objective with a well-known computational model of a bipolar neuron, the Hodgkin-

Huxley (HH) neuron (see Chapter 2, section 2.5).

The steady state response of the HH neuron to a constant-current stimulus is a series of

action potentials that are approximately the same amplitude with precise Inter-Spike

Intervals (ISI). However, on injection of a periodic or sinusoidal stimulus this steady state

response is no longer preserved (Guttman et. al., 1980; Matsumoto et. al., 1980; Aihara et.
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al., 1984; Matsumoto et. al., 1984; Hayashi et. al., 1985; Holden 1987; Hasegawa 2008;

Kaplan and Glass 1995; Wilson 1999). The self-excited oscillations of a HH neuron may

become chaotic i.e. the neural responses have irregular ISI and varying amplitudes, when a

sinusoidal stimulus is applied with proper choices of magnitude and frequency (Aihara et.

al., 1984; Matsumoto et. al., 1984; Kaplan and Glass 1995; Wilson 1999). Physiological

experiments on squid giant axons (Guttman et. al., 1980; Matsumoto et. al., 1980) and

Onchidium neurons (Hayashi et. al., 1985) have confirmed the occurrence of chaotic

oscillations. The nature of a periodic stimulus is responsible for inducing these chaotic

oscillations in a biological neuron resulting in neural responses displaying irregular ISI

and fluctuating amplitudes, which are the characteristics of chaotic oscillations and are

absent in steady state neural responses generated by constant-current stimuli. The

simulations carried out in this chapter are explained in the form of an algorithm in

Appendix A, section A.5.1.

3.2 Neural Stimuli

A stimulus acts as a trigger for any neural activity that results in a neural response

characterised by the temporal nature of the stimulus (Wilson and Cowan, 1973; Hasegawa,

2000; Gernster and Kistler, 2002). This stimulus can be a step-current, a constant-current,

a time-varying stimulus or a periodical pulse current based on biological synapses. The

following section presents examples of constant-current and periodic stimuli that trigger a

neural response.

3.2.1 Constant-Current Stimuli

A constant-current stimulus is a static offset applied externally to the neuron. It is

required that the selected static offset needs to be supra-threshold (substantial enough to

evoke an action potential, see Chapter 2, section 2.4). The HH neuron responds to an

external supra-threshold external stimulus, =�ܫ ܣߤ25 , with a typical display of precise

firing times and constant amplitudes (fig. 3.1). Similar responses have been studied by

researchers and are important as an indicator of a computational neuron model’s ability to
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reproduce a firing pattern similar to that of a biological neuron (Davies et. al. 2006;

Fourcaud-Trocmé et. al. 2003; Kaske and Maass 2006; Kepecs and Lisman 2006; Klien et.

al. 2006; Li and Ascoli 2006). Previous research suggests that either the firing rate or

firing time of individual spikes carries specific information of the neuronal response

(Rinzel 1985, Gabbiani et. al., 1999, Panzeri et. al., 1999, Bialek et.al., 1991). This applies to

all steady state responses of a neuron when a constant-current stimulus is applied.

Figure 3.1: Response of the HH neuron to a constant-current stimulus. Top: A constant-current
stimulus (with stochastic variations) of 25µA injected into the neuron. Bottom: Neural response to a
constant-current stimulus.

3.2.2 Periodical Synaptic Stimuli

Biological synapses form an integral part of the interneuron communication channels and

signal transmission and their computational representations of neuron coupling are very

accurate (Nicholls et.al., 1992; Gernster and Kistler, 2002). The stimulation of a HH neuron

by a periodical stimulus based on synaptic modelling (Hasegawa 2000, Park and Kim

1996) is described below.

A periodical stimulus is a composite of a static offset and a periodical pulse. A presynaptic

spike train injected through a synapse generates a periodical pulse train; a static offset

added to this pulse train represents the synaptic periodical stimulus.

 
n

fai ttVtU )()(  (3.1)
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where ܸ is the membrane resting potential, (ݐ)ߜ is the delta-function which defines

presynaptic spikes and ݐ is the firing time defined as

Ttt ffnext  (3.2)

0)1( ft (3.3)

ܶ represents the ISI of the input spike train and can be varied to generate a different pulse

current. This spike train is injected through a synapse to give the pulse current .ܫ

)()( syna
n

fsynP VVttgI  
(3.4)

௦݃௬ and ௦ܸ௬ represent the conductance and reversal potential of the synapse

respectively, ܸ is the membrane resting potential. The −ߙ ݊ݑ݂ ݊ݐܿ݅ is defined as
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where, ߬is the time constant of the synapse and Θ(ݐ) is the Heaviside step function (Park

and Kim 1996). ܸ = 30ܸ݉, ௦߬௬ = ,ݏ2݉ ௦݃௬ = 0.5݉ /ܵܿ݉ ଶ and ௦ܸ௬ = −50ܸ݉.

The total external stimulus (௫௧ܫ) applied to the neuron is a composite of the pulse current

(3.4) and a static offset.

 PSext III (3.6)

where, ௌܫ is the static offset and ܫ is the pulse current. isߝ the random Gaussian noise

with mean =ߤ 0 and standard deviation ߪ = 0.025.

3.2.2.1 Biological relevance of the periodical stimulus

The transmitter-activated ion channels involved in synaptic transmission release

neurotransmitters into the synaptic cleft following the activation of a presynaptic neuron.

These transmitter molecules diffuse to the other side of the cleft and activate receptors
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that are located in the postsynaptic membrane (Nicholls et.al., 1992; Hille, 1992; see

Chapter 2, section 2.3). Thus, activation of the postsynaptic receptor results in the opening

of certain ion channels and results in an postsynaptic current. For more detail on synaptic

transmission, refer to Chapter 2, section 2.3.

The time-dependent conductivity ௦݃௬(ݐ) of the transmitter-activated ion channel opens

the ion channels at the arrival of a presynaptic spike. Using Ohm’s Law, the current

passing through these channels depends on the difference of its reversal potential ௦௬ܧ

and the actual value of the membrane potential (Gernster and Kistler, 2002).

))(()( synsynsyn EutgtI 
(3.7)

௦௬ܧ and ௦݃௬(ݐ) characterise different type of synapses and ݑ is the membrane resting

potential.

3.2.2.1.1 GABA

GABA aminobutyric-ߛ) acid), a neurotransmitter associated with the fast inhibitory

neurons in the central nervous system of higher vertebrates, can be mathematically

modelled as

)()( )(/)( )( ftt

f
synsyn ttegtg
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(3.8)

݃ҧ௦௬(ݐ) represents the conductance of the inhibitory synapses described by a simple

exponential decay with a time constant ߬(Gernster and Kistler, 2002).

3.2.2.1.2 AMPA

A single excitatory synapse in the central nervous system has more than one type of

glutamate receptors, usually NMDA (N-methyl-D-aspartate) and non-NMDA, which are

classified by certain amino acids.. The most prominent non-NMDA receptor, AMPA (α-
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amino-3-hydroxyl-5-methyl-4-isoxazole-propionate), can be modelled by the time course

of its postsynaptic conductivity as

)(][)( )()()( /)(/)(
ftttt

AMPAAMPA tteegtg
risefdecayf

  

(3.9)

where ܰ = 1.273 is a constant.

Ion channels controlled by AMPA-receptors are characterised by a fast response to

presynaptic spikes and a quickly decaying postsynaptic current (Gernster and Kistler,

2002).

3.2.2.2 Response of the HH neuron to periodic stimulus

A sinusoidal stimulus with proper choices of magnitude and frequency induces self-

excited oscillations in the HH neuron, which may become chaotic (Matsumoto et. al., 1984,

Aihara et. al., 1984, Kaplan and Glass 1995, Wilson 1999). Physiological experiments on

squid giant axons (Guttman et. al., 1980, Matsumoto et. al., 1980), Onchidium neurons

(Hayashi et. al., 1985) and epileptic seizures (Milton and Jung, 2003) have confirmed the

occurrence of chaotic oscillations due to sinusoidal or periodic stimulation.

The injection of a periodic or sinusoidal stimulus does not preserve the steady state

dynamics therefore the corresponding neural response exhibits varying amplitudes and

irregular firing times. Both these features are exclusive to periodic and sinusoidal

stimulation and are absent in steady state responses generated by constant current

stimuli. It is clear that there is significant temporal difference between neural responses

generated by constant current (fig. 3.1) and periodic or sinusoidal stimuli (fig. 3.2d).

The static current of the periodic stimulus, ௌܫ = ܣߤ25 , is based on experiments carried out

by Hasegawa (Hasegawa 2000). The results below (fig. 3.2) are consistent with Hasegawa

and conform to physiological observations (Guttman et. al., 1980, Matsumoto et. al., 1980,

Matsumoto et. al., 1984, Aihara et. al., 1984, Hayashi et. al., 1985, Holden 1987, Hasegawa

2008).
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Figure 3.2: Response of a HH neuron to a synaptic input a) The pre-synaptic spike train generated by
(3.1), b) The post-synaptic pulse current, c) The total external periodic stimulus (with static
component and stochastic fluctuations) d) The response of the neuron to synaptic input in c.

3.3 Chaotic Oscillations and their effect on Neural Dynamics

Periodic and non-periodic neural responses of the membrane of squid giant axon to

sinusoidal stimulation have elucidated the dynamical structure of the axon. The state of

repetitive firing of action potentials corresponds to that of a dissipative structure with a

stable limit-cycle (Matsumoto et.al., 1984; Kaplan and Glass, 1995; Guckenheimer and

Labouriau, 1993).

The complex non-periodic oscillations of membrane potentials found in squid giant axons

under repetitive firing on injection of sinusoidal current with certain frequency and

amplitude are also observed in the HH neuron (Hasegawa, 2000) (fig. 3.3). Studies show

that these oscillations might be due to chaotic responses of the membrane potentials to

the sinusoidal current stimulation (Matsumoto et. al., 1980).

Matsumoto studied the exact nonlinear properties of the complex oscillations using

stroboscopic and Lorenz plots which show that there is a complicated attractor, given as a

߱-limiting set by the stroboscopic plot (Matsumoto et. al., 1984). This strange attractor
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evidently differs from other ordinary attractors consisting of a point, N points and a closed

curve.

Figure 3.3: The stroboscopic plot of the HH neural dynamics shows the occurrence of chaotic
oscillations in the membrane for periodic or sinusoidal stimulation. The effect of these oscillations is
evident on the neural dynamics with the neural responses exhibiting fluctuating amplitudes and
irregular firing times (fig. 3.2d).

In the Lorenz plot (see Matsumoto et. al., 1980; Hasegawa, 2000), two curves with upward

peaks are superposed and appear asymptotically. The power spectrum analysis conducted

by Matsumoto (Matsumoto et. al., 1980) reveals that there are two main components, each

of which is a band indicating that spectral broadening occurs. The characteristics in the

stroboscopic plots, the Lorenz plot and the power spectrum analysis, show that the

complex oscillations of the membrane potentials exhibited due to sinusoidal stimulation

are chaotic.

3.3.1 Neural Dynamics and their effect on Neural Response Similarity Estimation

As discussed above, the response of a HH neuron is dependent on the temporal nature of

the stimulus, which defines its underlying dynamics. These neural dynamics represent the

regulated activation and inactivation of the ion channels, which results in the

depolarization or hyperpolarization of the neural membrane on application of an external

stimulus. This physiological relevance requires consideration for all neural responses
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generating from sinusoidal or periodic stimuli. Estimating similarity between neural

responses therefore requires an implicit understanding of the neural dynamics.

The existing similarity estimation technique of neural responses is based on firing times of

neural spikes, which holds for all steady state responses of a neuron when a constant-

current stimulus is applied (Joeken and Schwegler, 1995). In addition, there exist other

types of stimuli, which are temporally distinct from constant-current stimuli and the effect

of these stimuli on the neural dynamics differs from constant-current stimulation. A

constant-current stimulus causes regulated depolarization and hyperpolarization of the

neural membrane due to constant strength of the stimulation. On the other hand, periodic

stimuli have a varying temporal nature causing irregular alternating cycle of activation-

inactivation of the ion channels, which results in irregular ISI and fluctuating amplitudes

in the neural responses. In view of these stimulus-dependent dynamics, it is necessary to

consider if amplitudes are required for similarity estimation (Sarangdhar and

Kambhampati 2008a,b, Sarangdhar and Kambhampati 2009).

To understand the requirement of amplitude fluctuations for similarity estimation,

similarity between neural responses exhibiting chaotic oscillations is first estimated using

only the firing times of neural spikes. This similarity estimation is based on the principle of

relative coincidences without coincidences by chance also known as ‘coincidence factor’

and is denoted by Γ (Joeken and Schwegler, 1995; Kistler et. al., 1997).

3.4 Similarity Measure based on Neural Firing Times

Coincidence factor (Γ) is a similarity measure that estimates similarity based on firing

time precision of individual neural spikes.

Consider two HH neurons ଵܪܪ and ଶܪܪ with neural responses ܴଵ and ܴଶ and

corresponding number of spikes ܰଵ�and ܰଶ�respectively. In the event that the firing times

of all spikes in ܴଵ coincide with the corresponding firing times of spikes in ܴଶ with a
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precision of Δms, Γ returns a similarity estimate of 1. If Γ = 0, it indicates that ܴଵ and ܴଶ

are highly dissimilar. The coincidence factor is defined as

NNN

NN coinccoinc 1

)(2/1 21 


 (3.10)

where, ܰଵ�and ܰଶ are the number of spikes in the two neural responses ܴଵ�and ܴଶ. ܰ

is the number of coincidences with a precision Δ = 2ms between ܴଵ�and ܴଶ. 〈ܰ〉 =

ΔNଵߥ2 is the number of expected coincidences generated by a homogeneous Poisson

process with the same rate (ߥ) as the spike train to be compared. ܰ = 1 − Δߥ2 is the

normalising factor.

Coincidence factor defines the similarity of the firing precision of a computational neuron

compared to a biological neuron (Joeken and Schwegler 1995, Kistler et. al., 1997).

3.4.1 Estimating Similarity using Neural Firing Times

For a bipolar neuron, distinct periodic stimuli generated by varying the ISI (ܶ) in (3.2)

invoke neural responses that are unique to the stimulus (Davies et. al., 2006; Chechik et.

al., 2006). This unique stimulus-responses relationship, which arises from the

independent neural dynamics due to the chaotic oscillations in membrane of the HH

neurons (fig. 3.5), is observed by injecting ଵܪܪ with a periodic stimulus of ܶ = andݏ14݉

comparing the response with that of ଶܪܪ which is stimulated by periodic stimulus of

ܶ = fig)ݏ15݉ 3.4).

The results agree with physiological observations (Davies et. al., 2006; Chechik et. al.,

2006; Hasegawa, 2000) and this unique stimulus-response relationship is also observed in

other pair of neural responses generated by periodic stimuli with ܶ = andݏ15݉

ܶ = .fig)ݏ16݉ 3.6). The chaotic oscillations induced by these two synaptic stimuli have a

distinct influence on the neural dynamics and therefore the neural responses display non-

identical firing patterns and amplitudes. This 1ms difference in the ISI is sufficient for a
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change in the neural dynamics, which could possibly affect the information content of a

neural response (fig. 3.7) (Wilson, 1999a).

Figure 3.4: Comparison of neural responses of .ࡴࡴ�ࢊࢇ�ࡴࡴ (a) The corresponding magnitude of
spikes for the responses at T=14ms and T=15ms. (b) A difference of 1ms in the ISI is sufficient to
invoke characteristically different neural dynamics.

Figure 3.5: The chaotic oscillations in ࡴࡴ�ࢊࢇ�ࡴࡴ are distinct. The effect of dissimilar periodic
stimulation is clearly observed in the neural dynamics.

Unlike constant-current stimuli, this small change in the strength (static offset) or ISI of

periodic stimuli effects a corresponding change in the neural dynamics, which results in

stimulus-dependent neural responses.
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Figure 3.6: Comparison of neural responses of .ࡴࡴ�ࢊࢇ�ࡴࡴ (a) The corresponding magnitude of
spikes for the responses at T=15ms and T=16ms. (b) A difference of 1ms in the ISI is sufficient to
invoke characteristically different neural dynamics.

Figure 3.7: The underlying chaotic oscillations in ࡴࡴ�ࢊࢇ�ࡴࡴ are dissimilar, indicating that the
effect of the periodic stimulation is distinct and the neural responses evoked as a result are non-
identical. The attractor traced by ࡴࡴ is denser than .ࡴࡴ

Computational neuroscientists accept 2ms as a biologically relevant neural firing precision

time based on the refractory nature of an action potential. As discussed in Chapter 2, an

action potential is initiated by the opening of sodium channels. The sodium channels have

a very small time-constant and they shut within 1ms. This sudden depolarization, which

causes the neuron to spike will stop after the sodium channels close. The subsequent

opening of the potassium channels, which have a higher time-constant than sodium,

eventually bring the neuron to its resting potential via hyperpolarization. The time for a

neuron to fire and return to its resting potential is approximately 2ms.
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It is seen that a tiny change in the ISI (ܶ) of stimulation leads to dissimilar neural

dynamics, so to determine similarity between stimulus-dependent neural responses, two

HH neurons ଵܪܪ) and (ܪܪ are stimulated using periodic stimuli by minimally varying

.ܶ ଵܪܪ is stimulated by varying ܶ between 14ms-16ms (set I), 13ms-15ms (set II) and

15ms-17ms (set III) and similarity is estimated by comparing its responses with the

response ܴ of ܪܪ for each set. ܪܪ is stimulated by a periodic stimulus with a

fixed ISI( ܶ ) which is 15ms for set I, 14ms for set II and 16ms for set III.

3.4.1.1 Set I: Similarity Estimation, 14ms-16ms

ܶ = representsݏ15݉ the ISI of the periodic stimulus which stimulates .ܪܪ The

corresponding ܴଵହ is considered as a reference neural response for set I. As the neural

dynamics are sensitive to change in stimulation, ܶ is varied in small increments between

14ms and 16ms to stimulate .ଵܪܪ Each response of ଵܪܪ is compared against ܴଵହ and

similarity is estimated by coincidence factor Γ. As discussed above, Γ estimates similarity

based on firing time precision of individual neural spikes.

If ܰଵ�and ܰଶ are the number of spikes in ܴଵହ and any ଵܪܪ response respectively, ܰ

represents the number of firing time coincidences with a precision Δ = 2ms. 〈ܰ〉 =

ΔNଵߥ2 gives the number of expected coincidences generated by a homogeneous Poisson

process with the same rate ߥ as the neural response to be compared (i.e. .(ଵܪܪ

ܰ = 1 − Δߥ2 is the normalising factor that bounds the similarity estimate between 0 and

1.

Let ߚ be the difference between the corresponding ISIs of the stimuli such that

ߚ = ܶ− �ܶ  (3.11)

where ܶand �ܶ represent the ISI of periodic stimuli stimulating ଵܪܪ and ܪܪ

respectively.
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Figure 3.8: Similarity estimates based on firing times for  ࢙ ࢀ   and࢙ ࢌࢋ࢘ࢀ ൌ  .࢙ It is

expected that similarity between neural responses generated by identical stimuli will be high. This is
highlighted by the green circle. It indicates that the two neural responses are an exact match.
Interestingly, when ࢼ ൌ �, the resulting similarity between responses is high. This is seen as a false
positive in view of temporal dependency, which defines a neuron’s underlying dynamics.

At ߚ ൌ െͳ, ܶ ൌ ͳͶ݉ andݏ ܶ ൌ ͳͷ݉ ,ݏ the pre-synaptic spike trains and their resulting

postsynaptic periodic stimuli generated by ܶ and ܶ are 1ms apart therefore having

distinct temporal effect on the neural dynamics of ଵܪܪ and ܪܪ respectively. This is

reflected by the different firing times and amplitudes of the neural responses (fig. 3.9). Γ

estimates the similarity between the neural responses as 0.1987 (fig. 3.8). This low

coincidence factor indicates the responses are very dissimilar to each other, possibly due

to irregular firing of spikes and the fluctuation in the amplitudes.

At ߚ ൌ Ͳ, ܶ ൌ ͳͷ݉ andݏ ܶ ൌ ͳͷ݉ ,ݏ both stimuli are identical and the estimated

similarity Γ = 1 indicates that corresponding neural responses are an exact match (fig.

3.10). This result is expected from a mathematical and signal transmission standpoint and

conforms to physiological observations (Davies et. al., 2006, Chechik et. al., 2006;

Hasegawa, 2000). Hence, ߚ ൌ Ͳ, also indicates that the periodic stimuli are identical as

they have equal ISI. ߚ ൌ ͳrepresents ܶ ൌ ͳ݉ andݏ ܶ ൌ ͳͷ݉ andݏ it is seen for these

ISI values of stimulation (fig. 3.11), the neural responses show a similarity Γ = 1 (fig. 3.8).

This high coincidence factor is unexpected and it is important to note that as both stimuli

are non-identical they have distinct effect on the neural dynamics and an exact match
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between neural responses is unlikely. This result therefore, is a false positive and it

incorrectly indicates that the two neurons ଵܪܪ and ܪܪ have identical stimulation.

Figure 3.9: Effect of temporal variation of periodic stimuli on neural dynamics is seen in the
dissimilarity between responses of ࡴࡴ and ࢌࢋ࢘ࡴࡴ . Stimuli are generated with ࢀ ൌ  and࢙

ࢌࢋ࢘ࢀ ൌ  and࢙ correspond to ࢼ ൌ െ.

Figure 3.10: Identical stimuli have similar effect on the neural dynamics therefore resulting in exactly
matching neural responses. Periodic stimuli generated with ࢀ ൌ  and࢙ ࢌࢋ࢘ࢀ ൌ  correspond࢙ to

ࢼ ൌ .
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Figure 3.11: The periodic stimuli are generated with ࢀ ൌ  and࢙ ࢌࢋ࢘ࢀ ൌ  and࢙ correspond to

ࢼ ൌ . The distinct pulse widths of the stimuli are responsible for dissimilar chaotic oscillations in
the membrane. The resulting neural responses differ in corresponding firing times and amplitudes.

Across the range of stimulation for set I, the estimated similarity increases with an

increase in ߚ from -1 to -0.5. For values of ߚ between -0.5 to -0.35, the similarity decreases

with increase in whileߚ similarity for െͲǤ͵ͷ� ߚ  �ͲǤʹͷdecreases with the increase in .ߚ

An inconsistent trend of similarity estimates is observed for ͲǤʹͷ�൏ ߚ  �ͳ, which can be

attributed to the underlying chaotic oscillations in the neural membrane caused by

periodic stimulation resulting in irregular firing times and fluctuating amplitudes. In

summary, the existence of false positive in set I is the result of coincidence factor

estimating similarity using only firing times coincidences.

3.4.1.2 Set II: Similarity Estimation, 13ms-15ms

In set II, the ISI is varied between 13ms-15ms to further study the effect of ISI variation on

neural responses. ܪܪ stimulated by periodic stimulus with ISI, ܶ ൌ ͳͶ݉ ,ݏ generates

the reference response ܴଵସ while ܶ is varied between 13ms-15ms to stimulate .ଵܪܪ

Each response of ଵܪܪ is compared against ܴଵସ.
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Figure 3.12: Similarity estimates based on firing times for  ࢙ ࢀ   and࢙ ࢌࢋ࢘ࢀ ൌ  .࢙

Identical stimuli ࢼ) ൌ ) generate exactly matching neural responses. This is highlighted by the green
circle. For െǤ� �൏ࢼ , neural responses exhibit very high similarities. These represent false
positives in view of temporal dependency which defines a neuron’s underlying dynamics (red dashed
circle).

For ߚ ൏ Ͳ, approximately 40% of dissimilar neural response pairs are incorrectly shown

to be identical as Γ = 1 for െͲǤͷ ߚ ൏ Ͳ(fig. 3.12). These false positives are a result of

coincidence factor considering only firing times of neural spikes to estimate similarity.

These neural responses have spikes that fire within a precision of 2ms, however, there

exist amplitude fluctuations and if the neural responses were identical, their neural

dynamics (opening/closing of ion channels) would be regulated at similar time intervals.

The observed fluctuations in the amplitudes indicate ion channels do not follow identical

activation-inactivation cycles. Hence, these high similarity estimates are termed as false

positives. As discussed in the above section, unless ߚ ൌ Ͳ, each pair of stimuli have

distinct effect on the neural dynamics and an exact match of neural responses is unlikely.

3.4.1.3 Set III: Similarity Estimation, 15ms-17ms

The ISI of the periodic stimulus is varied between 15ms-17ms while ܶ ൌ ͳ݉ isݏ used

to stimulate ܪܪ , the reference response ܴଵ acts as a reference for estimating

similarity in set III. ܶ is varied between 15ms and 17ms to stimulate ଵܪܪ and each

response of ଵܪܪ is compared against ܴଵ.
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Figure 3.13: Similarity estimates based on firing times for  ࢙ ࢀ  ૠ and࢙ ࢌࢋ࢘ࢀ ൌ  .࢙

Identical stimuli ࢼ) ൌ ) generate exactly matching neural responses. This is highlighted by the green
circle. For െ� �ࢼ െǤૡ, neural responses exhibit very high similarities. The false positives are
represented by red dashed circle. For � �ࢼ , the similarity estimated by ડdecreases with an
increase in .ࢼ

The results (fig. 3.13) show that false positives also exist in set III. The similarity estimated

by Γ decreases between െͲǤͅͷ ߚ  �െͲǤͷ and െͲǤͷ൏ ߚ  �െͲǤʹͷ while Γ increases

between െͲǤͷ൏ ߚ  �െͲǤͷͲ and െͲǤʹͷ൏ ߚ  �Ͳ . When ܶ ൌ ͳͷ݉ ݏ and �ܶ ൌ ͳ݉ ,ݏ

ߚ ൌ െͳ, the two periodic stimuli have non-identical pulse widths. This temporal variation

in the stimuli has a significant role in shaping the neural dynamics (see section 3.3), which

results in dissimilar corresponding firing times and amplitudes due to non-identical

oscillations (fig. 3.7). The similarity estimated for this pair of neural responses is 1 and

classifies the two neural responses as identical. As discussed earlier, this too is a false

positive.

The similarity for ߚ ൌ െͳ in set III is exactly similar to ߚ ൌ ͳ in set I as they both

correspond to ISIs ͳͷ݉ andݏ ͳ݉ .ݏ This establishes that similarity estimated by Γ is

consistent for the same pair of neural responses across different sets, however, as seen in

the three sets, the approach based on firing time coincidences cannot be scaled to neural

responses exhibiting chaotic oscillations especially in view of the false positives. These

false positives incorrectly identify two neural responses as identical and for a bipolar

neuron, it leads to inaccurate classification of stimuli being similar.
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These results show that in cases where significant fluctuations in membrane voltages

exist, this one-dimensional approach of firing times coincidences is not sufficient to

establish similarity between neural responses. Two key observations derived from

sections 3.4.1.1-3.4.1.3 are a) coincidence factor generates false positives for some pairs of

neural responses and b) for a single neuron, a false positive incorrectly indicates that the

underlying neural stimuli are identical. The false positives show that formulation of

coincidence factor did not consider temporal variations, which are dependent on the

neural dynamics. It is therefore concluded that coincidence factor is insufficient to

estimate similarity between neural responses exhibiting chaotic oscillations and was first

outlined by Sarangdhar and Kambhampati (2008a,b; 2009).

3.5 Analysis of Neural Responses

The results in the previous sections show that the temporal nature of periodic stimuli

influences the neural dynamics which are responsible for irregular firing times and

fluctuating magnitudes of spikes. This section aims to identify the existence of any

relationships between the intrinsic parameters of the neural responses, such as the rate of

fire, variations in amplitudes, the mean and standard deviation of neural responses, the

relationship between ISI of the stimulus and corresponding neural response and their

effect on similarity estimation.

3.5.1 Set I: Analysis, 14ms-16ms

Unlike constant-current stimuli, neural responses generated by periodic stimuli exhibit

fluctuating amplitudes that are due to underlying chaotic oscillations in the neural

membrane. It is seen (fig. 3.14) that mean amplitudes vary between 18.60mV for ܴଵସ

(response with ܶ = (ݏ14݉ to 19.26mV for ܴଵ with corresponding standard deviation

ߪ భర = 3.03 for ܴଵସ and ߪ భల = 3.58 for ܴଵ. The maximum mean amplitude ߤ ெ ௫

is 19.68mV for ܴଵହ.ହ and maximum mean standard deviation ߪ ெ ௫ is 4.75 forܴଵହ.ହ.

These results suggest that the mean amplitudes, ߤ , tend to increase with the ISI,

possibly suggesting that the increase in the ISI causes more depolarization. However, it is
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observed that a few neural responses show a decrease in ߤ  with an increase in the ISI.

The alternating activation-inactivation of ion channels is not regulated at specific time

intervals as seen in steady state neural responses, this decrease in ߤ  is due to the

hyperpolarization induced by the opening of the potassium channels and the refractory

nature of a neuron. The standard deviation, ߪ , increases with ߤ  and vice-versa. The

increase in ߤ  can be attributed to the increase in the period (ISI) of the stimuli which

acts as a sustained supra-threshold current.

Figure 3.14: The effect of periodic stimulus on the amplitude of neural spikes of ࡴࡴ and .ࢌࢋ࢘ࡴࡴ a) The

mean amplitudes, ࣆ , of neural responses for various ISIs (ࢀ) of stimuli. b) The standard deviation

in the amplitudes for each neural response corresponding to .ࢀ The neural responses exhibit
fluctuating amplitudes across the entire set with standard deviation Ǥ ൏ ࣌  ൏ Ǥૠ.

The mean ISI of the neural responses (ೀೠ்ߤ) is recorded across the set shows that a

change in the period ܶ of the stimuli has little or no effect on the output ISI, ைܶ௨௧, of the

neural responses. This is confirmed by the minimal variation in ೀೠ்ߤ and corresponding

ߪ்
ೀೠ

and is consistent with the observations of Hasegawa (Hasegawa 2000). The ratio,

ൌ ೀೠȀ்ܶߤ�  , gives the relative change of response ISI to the stimulus ISI. As ܶ increases,

ைܶ௨௧remains almost unchanged therefore the value of ݇decreases along the set. Similarity
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estimate of 1 for ߚ ൌ Ͳ is observed for ݇ൌ ͲǤͷ(fig. 3.15) indicating that ைܶ௨௧ is lower

than ܶ.

Figure 3.15: The effect of periodic stimulus on the firing times of a HH neuron. a) The variation in the
mean ISI (࢚࢛ࡻࢀࣆ) of neural responses is minimal, Ǥ�൏ ࢚࢛ࡻࢀࣆ ൏ Ǥ. b) The corresponding

standard deviation in ISI for each neural response is low, Ǥ ൏ ࢚࢛ࡻࢀ࣌� ൏ Ǥ. c) The ratio (k) of ࢚࢛ࡻࢀࣆ
to ࢀ confirms that the output ISI, ,࢚࢛ࡻࢀ is almost constant and marginally relies on .ࢀ d) Similarity
estimates based on firing times.

3.5.2 Set II: Analysis, 13ms-15ms

The mean amplitudes, ߤ , show variation with increase in the period of stimuli. It is

seen (fig. 3.16) that mean amplitudes vary between 18.70mV for ܴଵଷ to 18.74mV for ܴଵହ

with standard deviation ߪ భయ = 3.69 for ܴଵଷ and ߪ భఱ = 3.10 for ܴଵହ. The maximum

mean amplitude ߤ ெ ௫ is 18.99mV for ܴଵସǤହ and maximum mean standard deviation

ߪ ெ ௫ is 3.74 for ܴଵଷǤଵହ. The effect of underlying chaotic oscillations is evident in set II

as an increase or decrease in ߤ  is not directly attributed to a change in ܶ.
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Figure 3.16: Effect of periodic stimuli on the amplitude of neural spikes of ࡴࡴ and .ࢌࢋ࢘ࡴࡴ a) The mean

amplitudes, ࣆ , of neural responses for various ISIs (ࢀ) of stimuli. b) The standard deviation in the

amplitudes for each neural response corresponding to .ࢀ The neural responses exhibit fluctuating
amplitudes across the entire set with standard deviation Ǥ ൏ ࣌  ൏ Ǥૠ.

Figure 3.17: a) Increase in the period (ࢀ) of the synaptic stimuli has minimal effect on Ǥ,࢚࢛ࡻࢀࣆ ൏

࢚࢛ࡻࢀࣆ ൏ Ǥ�b) Corresponding minimal variation in the ,࢚࢛ࡻࢀ Ǥ ൏ ࢚࢛ࡻࢀ࣌ ൏ Ǥ. c) The ratio (k)

confirms that the is࢚࢛ࡻࢀ always lower than .ࢀ d) Similarity estimates based on firing times.
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The change in ܶ cannot force the HH neuron to respond with significantly distant spikes

and as seen in fig. 3.17, the rate of fire varies between 10.30ms and 10.63ms across the set.

In addition, the standard deviation in the firing rate, ߪ்
ೀೠ

, is within 1.03ms and 1.20ms.

Biological precision is limited to 2ms, therefore, this change in firing rate is considered as

minimal and the rate of fire of the neuron can be regarded as constant. These results

suggest that the false positives of high similarity, which exist in set II, are due to this small

variation in ைܶ௨௧not considered by coincidence factor while estimating similarity. A

correct estimate of high similarity for ߚ ൌ Ͳ is observed for ݇ ൌ ͲǤͳͶͳ (fig. 3.17)

indicating that ைܶ௨௧ is lower than ܶ.

3.5.3 Set III: Analysis, 15ms-17ms

In general for set III (fig 3.18), an increase in ܶ along the set increases ߤ . It is

observed that the mean amplitudes vary between 18.74mV for ܴଵହ to 19.81mV for ܴଵ

with standard deviation ߪ భఱ = 3.10 for ܴଵହ and ߪ భళ = 3.41 for ܴଵ. The maximum

mean amplitude ߤ ெ ௫ is 19.81mV for ܴଵ and maximum mean standard deviation

ߪ ெ ௫ is 4.75 for ܴଵହǤ଼ ହ.

Figure 3.18: a) The mean amplitudes, ࣆ , of neural responses for show a general increase along with

.ࢀ ࣆ  decreases between Ǥ ൏ ࢀ ൏ . b) The standard deviation in the amplitudes for each

neural response corresponding to .ࢀ ࣌  is pronounced between Ǥ ൏ ࢀ ൏ but almost

constant for  ൏ ࢀ ൏ ૠ. The standard deviation across the entire set is Ǥ ൏ ࣌  ൏ Ǥૠ.
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Figure 3.19: a) Increase in the period (ࢀ) of the synaptic stimuli has minimal effect on Ǥ,࢚࢛ࡻࢀࣆ ൏

࢚࢛ࡻࢀࣆ ൏ Ǥ�b) Corresponding minimal variation in the ,࢚࢛ࡻࢀ Ǥ ൏ ࢚࢛ࡻࢀ࣌ ൏ Ǥ. c) The ratio (k)

confirms that the is࢚࢛ࡻࢀ always lower than .ࢀ d) Similarity estimates based on firing times.

The increase in the period ( ܶ) of the stimuli has limited effect on firing rate as ೀೠ்ߤ

remains almost constant and the rate of fire of the neuron varies between 10.20ms and

10.51ms across the set. In addition, the standard deviation in the firing rate, ߪ்
ೀೠ

, is

within 0.55ms and 1.33ms. A correct estimate of high similarity for ߚ ൌ Ͳ is observed for

݇ ൌ ͲǤͳͻ͵(fig. 3.19) indicating that ைܶ௨௧ is lower than ܶ.

Sections 3.4.1-3.4.3 indicate that exactly matching neural responses occur with

௦݇௧�ூ= 0.6577 for ܶ ൌ ͳͷ݉ ,ݏ ௦݇௧�ூூ= 0.7141 for ܶ ൌ ͳͶ݉ ݏ and ௦݇௧�ூூூ= 0.6193 for

ܶ ൌ ͳ݉ .ݏ It is observed that the increase in ܶ has little or no effect on the rate of fire

of the neuron. This observation contrasts with a neuron stimulated by a constant-current

stimulus. Sections 3.3 and 3.4 show evidence that periodic stimuli causing chaotic

oscillations shape the neural dynamics and resultant neural responses display temporal

patterns uncommon to steady state neural responses. In addition, based on these results

estimating similarity by neural firing time coincidences is insufficient in view of a) false

positives and b) incorrect inference about neural stimuli. It is therefore suggested that as
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both irregular firing times and fluctuating amplitudes reflect the true dynamics of the

neuron, similarity estimates should be based on a composite measure of firing time and

amplitude coincidences in view of periodic or sinusoidal stimulation (Sarangdhar and

Kambhampati, 2008a,b, Sarangdhar and Kambhampati, 2009).

3.6 Binary Clustering – Identifying dissimilarity

The similarity estimates of coincidence factor are accurate for neural responses with

constant amplitudes but these estimates of similarity do not extend to neural responses

with underlying chaotic oscillations. The results in the above sections show that two

visually and temporally distinct (amplitude fluctuations) neural responses would generate

a high coincidence factor if similarity is estimated using only firing time coincidences of

neural spikes. Therefore, from the results in sections 3.4 and 3.5, eliminating false

positives for such neural responses requires both firing time and amplitude information.

This section further demonstrates this requirement by using a binary clustering algorithm

to show that the clustering solution is unique to each neural response, therefore aiding

distinguishability. An example of false positive is considered for which a pair of neural

responses are incorrectly classified as identical by coincidence factor. Refer section 3.4.1.1

and fig. 3.11.

3.6.1 Binary Clustering - False Positive

The peak of each spike in a neural response is considered an object (ܱܾ݆ ) and is defined as

point in 2D space with a firing time and corresponding amplitude. Therefore, the number

of objects for each neural response is equal to the number of spikes. The X co-ordinate of

ܱܾ݆ is the firing time and Y co-ordinate is the amplitude or magnitude of the action

potential.

],[ AmplitudeFiringtimeObj  (3.12)
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The Euclidean distances between each pair of objects are calculated using (3.13) where rN

, SN are the objects in the spike train. Once the distance between each pair of objects is

determined, the objects are clustered based on the nearest neighbour approach using

(3.14) where sr nn , are the number of objects in the respective clusters. The binary

clusters are plotted to form a hierarchical tree whose vertical links indicate the distance

between two objects (spikes) linked to form a cluster.

A number is assigned to each cluster as soon as it is formed. Clusters are numbered from

ሺ݉  ͳሻ, until no more clusters can be formed; where ݉ ൌ ݉ݑ݊ ܾ݁ ݂�ݎ ܾ�݊ܽ� ݆݁ .ݐܿ (See

Appendix B for a sample test case cluster formation)

'2 ))(( srsrrs NNNNd 
(3.13)









),...,1(),,...,1(

))(min(),(

sr

sjri

njni

NNdistsrd

(3.14)

Figure 3.20: a) Clustering solution for ࢀ ൌ  and࢙ ࢀ ൌ  indicating࢙ objects being clustered
are different from each other. b) The distance between the objects being clustered (y-axis) are
unequal. This demonstrates that the two neural responses are intrinsically dissimilar and the estimate
of similarity given by coincidence factor is a false positive.

The false positive (Γ = 1) observed in section 3.4.1.1 for this pair of neural responses

indicates that they are identical. The clustering trees (fig. 3.20) show that these responses

are intrinsically dissimilar from each other by a margin not captured by the coincidence
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factor. The corresponding green and red circles show that a) the objects clustered together

are different for each response and b) the distances between these objects differ for each

neural response. It is also observed from the clustering solutions that the shape, form,

heights as well as linkages are dissimilar for the two neural responses.

These results indicate that the two neural responses are inherently distinct and there is

additional information besides the firing times which is not considered by Γ. This explains

the existence of false positives in similarity estimation of neural responses evoked by

periodic stimuli. Hence, it is suggested that though determining firing time coincidences is

crucial, additional consideration of the varying amplitudes is necessary for estimating

similarity between neural responses with fluctuating membrane voltages (Sarangdhar and

Kambhampati, 2008a,b; Sarangdhar and Kambhampati, 2009).

3.7 Chapter Summary

A synaptic sinusoidal or periodic stimulus induces oscillations in the membrane voltage of

the HH neuron (Matsumoto et. al., 1980; Hasegawa, 2000). These oscillations are absent in

steady state neural responses which are stimulated by a constant-current stimulus. Due to

the presence of oscillations, the temporal nature of the neural responses stimulated by

sinusoidal or periodic stimuli differs significantly from those generated by constant-

current stimulus. Studies show that these oscillations are chaotic and also physiologically

observed (Guttman et. al., 1980; Aihara et. al., 1984; Hayashi et. al., 1985; Holden 1987;

Kaplan and Glass 1995; Matsumoto et.al., 1980; Matsumoto et.al., 1984).

The effect of these chaotic oscillations is very prominent on the neural dynamics and

result in neural spikes having irregular firing times and fluctuating amplitudes. It observed

that due to the underlying oscillations the steady state of the neural response is not

preserved, hence these responses differ from steady state responses. The results show

that the similarity estimated using only the firing times of neural spikes leads to a) false

positives and b) incorrect inference about neural stimuli similarity. These similarity
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estimates based on firing time coincidences of neural spikes classify non-identical neural

responses as identical (false positives) which indicate that they are generated by similar

stimuli. It is already known that identical stimuli evoke similar neural dynamics therefore

corresponding neural responses exhibit high similarity (Davies et. al., 2006, Chechik et. al.,

2006; Hasegawa, 2000). Analysis of these neural responses has revealed that the ISI ( ܶ)

of the stimulus has little or no effect on the ISI ( ܶ௨௧) of the neural response. This relation

between ܶ and ܶ௨௧has also been observed by Hasegawa (Hasegawa, 2000). Further

analysis carried out in this chapter indicates that ܶ has an effect on the amplitude

fluctuations of the neural responses. The results show that the mean amplitude ߤ 

increases with ܶ for most neural responses, however, ߤ  shows a decrease with an

increase in ܶ for a few cases, this is attributed to the refractory nature of the neuron and

longer hyperpolarization caused by the underlying chaotic oscillations.

Hence, in these cases, the similarity between neural responses cannot be estimated

exclusively by the firing times of neural spikes as due to the effect of the chaotic

oscillations, the firing times and amplitudes together reflect the true dynamics of the

neuron. This is supported by a clustering algorithm, which identifies the requirement of

amplitude fluctuations, in addition to irregular firing times in order to estimate neural

response similarity. Therefore, similarity estimation of neural responses exhibiting chaotic

oscillations should consider both these features (Sarangdhar and Kambhampati, 2008a,b;

Sarangdhar and Kambhampati, 2009).

The next chapter presents a framework to establish similarity between neural responses

exhibiting chaotic oscillations.
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4 Similarity Estimation based on Neural

Dynamics: Formulation of

4.1 Introduction

The temporal nature of a periodic stimulus responsible for inducing chaotic oscillations in

a biological neuron causes irregular ISI and fluctuating amplitudes, which are absent in

steady state responses generated by constant current stimuli. The results in Chapter 3

show that estimating similarity between neural responses based only on firing times

(coincidence factor) is insufficient in view of a) false positives and b) as stimuli similarity

can be derived from neural response comparison, coincidence factor gives incorrect

inference about neural stimuli similarity. It is observed that the firing times of neural

spikes are adequate to estimate similarity of steady state responses. However, in the

presence of chaotic oscillations or when the amplitudes of a neural response fluctuate,

amplitude and firing time collectively reflect the true dynamics of a neuron and therefore

both should feature in similarity estimation (Sarangdhar and Kambhampati, 2008a,b;

Sarangdhar and Kambhampati, 2009).

As identified by the false positives in Chapter 3, estimating similarity between neural

responses exhibiting chaotic oscillations requires a new similarity measure. Therefore,

this chapter presents a mathematical framework to determine similarity between neural

responses generated by periodic, excitatory and inhibitory stimuli by considering the

effect of neural dynamics. This similarity measure estimates similarity between neural

response pairs by considering the amplitude distribution and the firing times of neural

responses when chaotic oscillations occur. To eliminate the false positives, it is suggested

that estimate of similarity based on both firing time and amplitude coincidences will be
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more realistic than similarity based on either firing time or amplitude coincidences alone

and the similarity between two neural responses thus obtained will relate to respective

stimuli. Identical stimuli have very similar effect on the neural dynamics and therefore, as

the temporal inputs to the neuron are identical, the occurrence of identical dynamics

result in a high estimate of similarity for the neural responses exhibiting chaotic

oscillations (Sarangdhar and Kambhampati, 2010a, b).

The amplitudes of a neural response exhibiting chaotic oscillations are considered to fit a

Normal distribution and using the properties of Normal distribution, it is possible to

determine amplitude coincidences. Similarity between these responses is estimated by a

composite similarity measure based on amplitude and firing time coincidences. The effect

of distinct periodic stimuli is evident in the dissimilar chaotic patterns displayed in the

neural responses (see Chapter 3, section 3.3). It indicates that neural responses with high

similarity originate from very similar periodic stimuli. This agrees with the physiological

observations that initial representation of a neural response is unique to the stimulus

(Davies et. al., 2006, Chechik et. al., 2006, Sarangdhar and Kambhampati, 2008a,b;

Sarangdhar and Kambhampati, 2009). The simulations carried out in this chapter are

explained in the form of an algorithm in Appendix A, section A.5.2.

4.2 Definitions

Let ),( NNn afsp be a neural response generated by a Hodgkin-Huxley (HH) neuron in

response to a periodic stimulus nS . Each spike
insp of a neural response is represented by

its firing time )( if and corresponding amplitude )( ia . The total number of spikes in a

spike train is given by N and Ni1 represents the thi incident of firing of an action

potential. The firing times of the spikes occur either at regular or irregular intervals of

time i.e. they can have fixed or variable Inter-Spike Interval (ISI) depending on the

stimulation. The amplitudes in nsp , generated by a periodic stimulus nS have a Normal

distribution .
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Definition 1:

A Firing Time Set (FTS) is a set of successive firing times for a given neural response such

that }/{  ii ffFTS where if is the firing time of a neural spike. If a neural response

nsp has N firing times, then the FTS for nsp is given by

},...,...,{ 21 Ni ffffFTS 
(4.1)

Definition 2:

An amplitude set (AS) is a set of successive non-negative peaks for a given neural response

such that };0/{  iii aaaAS where ia represents the amplitude. If a neural

response nsp has N amplitudes, then the AS for nsp is given by

},...,...,{ 21 Ni aaaaAS 
(4.2)

Definition 3:

A neural response is represented by a tuple ),( ii af where Ni ...3,2,1 . Thus, the Spike

Train Set (STS) is given by

)},),...(,),...(,(),,{( 2211 NNii afafafafSTS 
(4.3)

where amplitudes },...,...,{ 21 Ni aaaa occur at corresponding firing times },...,...,{ 21 Ni ffff

Definition 4:

rn C is the total number of combinations of ‘r’ objects selected from ‘n’ where

(4.4)
)!(!

!

rnr

n
C

r

n
rn
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Definition 5: Conditional Expectation or Conditional Mean

If X and Y have joint density function  yxf , , then the conditional density function of Y

given X is      xfyxfxyf 1/,|  where  xf1 is the marginal density function of X .

The conditional expectation or conditional mean of Y given X can be defined by

   dyxyfyxXYE 




 ||

(4.5)

Definition 6: Similarity of Spikes

Let ),( 11
1 ii afsp and ),( 22

2 ii afsp be any two neural responses represented by their spike

train sets ‘STS1’and ‘STS2’. The ݅௧ spike in 1sp is said to be similar to the ݅௧ spike in 2sp

if  21
ii ff and  21

ii aa
(4.6)

where ∆ is the precision of firing time coincidence and ߜ is the precision of amplitude

coincidence.

If i , (4.6) holds then 1sp is said to be similar to 2sp .

Definition 7: Similarity of Stimuli

Let the neural responses ),( 11
1 ii afsp and ),( 22

2 ii afsp be generated by periodic stimuli

‘S1’ and ‘S2’ respectively. If ‘sp1’ and ‘sp2’ are similar, it implies that the periodic stimuli ‘S1’

and ‘S2’ are identical.

For a single bipolar neuron such as the HH, similar periodic stimuli influence the neural

dynamics in identical patterns and therefore the underlying oscillations in ‘sp1’ and ‘sp2’

are within precision of similarity (Sarangdhar and Kambhampati, 2008a,b; Sarangdhar

and Kambhampati, 2009).
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Definition 8:

Let Γ௧be a similarity measure that estimates similarity between neural responses

exhibiting chaotic oscillations.

1sp is said to be completely similar to 2sp if chaotic = 1. If chaotic = 0, then the two spike

trains 1sp and 2sp are said to be dissimilar. When 0< chaotic <1, 1sp and 2sp are partially

similar.

4.3 Formulating chaotic

Let 1sp and 2sp be two neural responses with underlying chaotic oscillations generated by

periodic stimuli 1S and 2S where 21 SS  . Studies have focused on firing times of neural

spikes because it is thought that the information in a spike train can be encoded either in

the firing times or the firing rate; this is possible for all steady state responses where the

stimulus is non-periodic (Rinzel, 1985; Gabbiani et. al., 1999; Panzeri et. al., 1999; Bialek

et. al., 1991). If the stimulus is periodic or sinusoidal, chaotic oscillations occur, which do

not exhibit a fixed pattern and estimating similarity between responses using only the

firing times of neural spikes eliminates one aspect of chaotic dynamics (i.e. amplitude

fluctuations) by treating the neural responses as steady state with varying or irregular ISI.

In order to establish similarity between such responses similarity estimation requires

considering the variance of both firing times and amplitudes.

The neural spikes are the result of a stimulus-dependent open-close mechanism of the ion

channels that regulate the membrane voltage (see Chapter 2, section 2.4). To understand

this stimulus-dependent nature of the membrane voltage it is necessary to consider the

amplitude variations caused by chaotic oscillations. Determining similarity requires that

a) firing times coincide, b) given that firing times coincide, corresponding amplitudes

coincide. This similarity is based on relative number of coincidences without coincidences

by chance. Coincidence by chance is a probability concept also known as ‘mathematical
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expectation’ or ‘expected number of coincidences’. The following sections describe the

derivation of the expected number of amplitude and firing time coincidences. The

mathematical expectation is an absolute number, which remains constant for a pair of

neural responses.

4.3.1 Determining amplitude coincidences by chance

Let 1N and 2N be the total number of spikes in the neural responses 1sp and 2sp

respectively. Hence, there are
1Nf and

2Nf firing times with corresponding amplitudes
1Na

and
2Na represented by their Spike Train Sets 1STS and 2STS . The amplitudes of these

neural responses are Normally Distributed and for a large number of samples, the

amplitude distribution would fit a normal curve with mean  and standard deviation .

Therefore, let 1 and 2 be the Normal distributions for the amplitudes of 1sp and 2sp

with means, 1 , 2 and respective standard deviations 1 and 2 .

Consider the Normal distribution 1 , applying the Empirical rule for a Normal

distribution, 68.27% of amplitudes lie within 11 1  . In addition, almost all i.e. 99.73%

of the amplitudes of the spikes will lie within three standard deviations i.e. 11 3  . The

probability that an amplitude lies within a given Normal distribution is calculated using

the Z-scores and a Z-table (Normal table).

Let ia be any amplitude from 1AS ; the probability that ia lies in 1 is given by the Z-score

for ia

1

1




 i

i

a
z (4.7)

where ;01 

The probability that ia will lie in 1 can be found from the Z-score of ia in the Z-table.
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tableZfromii zzp


)( (4.8)

Figure 4.1: The Normal distribution 1 with mean 1 and standard deviation 1 . The probability of an

amplitude ia to lie within 1 can be found using the Z-table.

Figure 4.2: The probability of an amplitude that lies within ia and 1 is shown by the shaded area.

The area between ia' and 1 is exactly the same due to symmetry of the Normal distribution.

The Normal distribution in fig. 4.1 shows the likelihood of an amplitude ia from 1AS lying

in 1 . As the Normal distribution is symmetrical about the mean, the probability that

another amplitude ia' lying in the negative half of 1 is identical to the probability of ia

(4.8).

The probability of any amplitude anya lying between ia and 1 , is given by

-σ1 +σ1
µ1

aia’i

-σ1 +σ1

µ1

aia’i
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)()()( 1papap iany 
(4.9)

where, )( 1p is the probability of 1 and is represented by the shaded area (fig. 4.2).

Using equations (4.7-4.9), the probability that an amplitude from 2AS lying within 1 can

also be calculated. This indicates that the probability of coincidence of two amplitudes

from 1 and 2 can be found from the shaded area in fig. 4.2. In order to find that an

amplitude from 2 coincides with an amplitude from 1 , the corresponding Z-scores are

calculated

1

1




 x

x

a
z

(4.10)

where, xa is any amplitude from the distribution 2 and xz is the corresponding Z-score

for xa . The probability that xa will coincide with an amplitude from 1 is obtained from

(4.10) and (4.11)

tableZfromtableZfromxx pzzp


 )()( 1 (4.11)

The mean probability of coincidence of any amplitude from 2 with an amplitude from

1 can be approximated using the mean of 2 .

1

12



 
meanz

(4.12)

tableZfromtableZfrommeanmeanmean pzzpz


 )()( 1 (4.13)

where meanz is the mean probability of coincidence. (4.12) and (4.13) give the mean

probability than an amplitude from 2 will lie within 1 and coincide with an amplitude
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from 1 (fig. 4.3). The expected number of amplitude coincidences for any two neural

responses generated by periodic stimuli is therefore 1Nzmean , where 1N is the number of

spikes in 1sp .

Figure 4.3: The mean probability that any amplitude from 2 that will coincide with an amplitude

from 1 is shown by the shaded area.

Thus for any two neural responses, the mean probability that amplitudes from each

distribution will coincide can be determined using (4.13) and is represented by the shaded

area (fig. 4.3) bounded by the means of either distribution.

4.3.2 Determining firing time coincidences by chance

As discussed above, there are
1Nf and

2Nf firing times represented by their firing time sets

1FTS and 2FTS and corresponding amplitudes
1Na and

2Na . The firing time coincidences

generated for neural responses exhibiting steady state or chaotic oscillations using this

approach are consistent with Kistler (Kistler et. al., 1997) on steady state neural

responses.

Let the total simulation time ( ௧ܶ௧) be divided into ‘K’ bins of 4ms each. A time window of

4ms guarantees that a bin can have at most one firing time from the HH neuron (due to

refractoriness). If the
1Nf firing times are spread within these K bins, the number of bins

filled is
1Nf while the number of empty bins is

1NfK  . If the
2Nf firing times are

-σ1 +σ1

µ1

μ2μ’2
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sequentially allocated to the
1NfK  bins such that each bin receives at most one firing

time – a firing time coincidence is generated if a bin has one
1Nf and one

2Nf firing time.

The coincidence generation is governed by a hyper-geometric distribution and the

probability of encountering ftcoincN firing time coincidences is therefore given by








































2

2

11

)(

N

ftcoincN

N

ftcoinc

N

ftcoinc

f

K

Nf

fK

N

f

Np

(4.14)

Using definition 4, the probability of ftcoincN firing time coincidences can be calculated. The

mean of this hyper-geometric distribution is given by

K

ff
N

NN

ftcoinc
21

(4.15)

The mean gives the expected number of firing time coincidences for any two neural

responses 1sp and 2sp .

4.3.3 Similarity based on amplitude and firing time coincidences

The similarity between neural responses exhibiting chaotic dynamics can be estimated

using both firing time and amplitude coincidences. The probability of encountering firing

time coincidences is given by (4.14) while a mathematical relation between two normal

distributions to determine amplitude coincidences is described by (4.10) and (4.11). A

mathematical framework to estimate similarity between neural responses exhibiting

chaotic oscillations can be derived from related work by Kistler (Kistler et. al., 1997) on

steady state neural responses.

This similarity can be determined by the difference between the actual coincidences and

the coincidences by chance relative to the average number of spikes in the two neural
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responses. This similarity normalised by a normalising factor gives an estimate between 0

(total dissimilarity) and 1 (exact match).

The number of spikes in 1sp and 2sp is 1N and 2N , therefore the number of firing times

are
1Nf and

2Nf . As
11 NfN  and

22 NfN  ; let pcoincN be the number of conditional

coincidences (amplitude coincidence given firing time coincidence) between the two spike

trains, pcoincN be the conditional mean or expected coincidences (average number of

amplitude coincidences given firing time coincidences) and chaotic be the normalising

factor for the similarity measure.

The mean of the hyper-geometric distribution in (4.15) can be written as

K

NN
N ftcoinc

21
(4.16)

where, K is the total number of bins each of 4ms and ms2 is the firing time precision,

then

4

21

tot
ftcoinc T

NN
N  (4.17)

24 NN ftcoinc  (4.18)

where,
totT

N1 is the rate of fire of the neural response 1sp .

22 NN ftcoinc  
(4.19)
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This expected number of firing time coincidences ftcoincN is consistent with (Jolivet et. al.,

2004). Using definition 5, the conditional mean pcoincN or the expected coincidences by

chance is given by

meanftcoincpcoinc zNN 
(4.20)

meanpcoinc zNN 22  
(4.21)

The normalising factor chaotic normalises the estimate of similarity to a value between 0

(dissimilarity) and 1(exact match)

meanchaotic z 21
(4.22)

The similarity between neural responses exhibiting chaotic oscillations can be determined

using chaotic

chaotic

pcoincpcoinc

chaotic

NN

NN







1

)(
2

1
21

(4.23)

This formulation is based on the concept of ‘coincidence’ (Joeken and Schwegler, 1995)

where similarity based on firing times was estimated through relative number of

coincidences without coincidences by chance. Similarity based only on firing times can be

determined from (4.23) by omitting the amplitude considerations in pcoincN , (4.21) and

(4.22). The similarity estimates of firing times are consistent with Jolivet’s work on

similarity estimation (Jolivet et. al., 2004).

chaotic estimates similarity through difference between the actual coincidences pcoincN and

the expected number of coincidences pcoincN relative to the average number of spikes in
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the two spike trains. This similarity is normalised between 0 and 1 by a normalising factor

chaotic .

From definition 8, two neural responses are partially similar if chaotic  0 and chaotic  1. If

15.0  chaotic , there is a higher degree of similarity while low degree of similarity exists

for 5.00  chaotic . If two neural responses 1sp and 2sp are completely similar, all the

corresponding firing times coincide i.e. NNNN pcoinc  21 and the amplitude

distributions of 1sp and 2sp have identical means. Hence, pcoincN reduces to zero,

indicating that there are no coincidences by chance and due to identical means of

amplitude distributions, chaotic is maximised to unity. Hence, the value of chaotic in (4.23)

is unity if the neural responses are similar.

4.4 Computational Results - I

Chaotic oscillations occur in the neuronal membrane in response to a periodic stimulus.

Periodic stimuli with variable ISI (ܶ) are injected into the HH neurons ଵܪܪ) and (ܪܪ to

induce chaotic oscillations in the neurons. Let ܶ be a reference ISI that stimulates ܪܪ

to generate a chaotic neural response ܴ. ܶ is varied to generate a range of potential

periodic stimuli that stimulate ଵܪܪ and each response of ଵܪܪ is compared with ܴ to

determine similarity. Similarity is estimated for three cases where ܶ is equal to, greater

than and less than ܶ used for stimulating .ଵܪܪ Let ߚ be the difference between the

corresponding ISIs of the stimuli such that

ߚ = ܶ− �ܶ  (4.24)

4.4.1 Case I: ࢌࢋ࢘ࢀ = ,ࢀ ࢼ = 

ܶ = ܶ = ݏ15݉
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Figure 4.4: The periodic stimuli (top) with both �andࢀ ࢌࢋ࢘ࢀ� = 15ms generate neural responses

exhibiting chaotic oscillations (below). The neural dynamics have the same temporal input from the
periodic stimuli. The resulting neural dynamics are identical and this is reflected in the temporal
pattern of the neural responses.

It is observed that chaotic neural responses generated by identical periodic stimuli have

similar firing times and amplitudes (fig. 4.4) and the similarity estimated by firing time

coincidences of coincidence factor is 1. This indicates that these two neural responses are

an exact match as all firing times coincide. This approach, however, does not consider one

aspect of chaotic dynamics – fluctuating amplitudes; the similarity between these neural

responses is very high, as the degree of overlap is maximum. The similarity between the

two responses using both amplitudes and firing time coincidences gives a similarity

estimate Γ௧ = 1. This result indicates that the underlying oscillations are identical

and hence corresponding firing times and amplitudes of ଵܪܪ and ܪܪ are an exact

match. This result indicates that the two neurons ଵܪܪ and ܪܪ are stimulated by

identical stimuli. As the temporal input to the neuron is similar, the occurrence of identical

chaotic patterns justifies the estimate of similarity Γ௧ = 1, hence this result is a true

positive.

4.4.2 Case II: ࢌࢋ࢘ࢀ  ,ࢀ ࢼ ൏ 

ܶ ൌ ͳͷ݉ ǡݏ ܶ ൌ �ͳͶ݉ ݏ
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Figure 4.5: The periodic stimuli (top) with ࢀ ൌ  and࢙ ࢌࢋ࢘ࢀ ൌ  generate࢙ neural responses

exhibiting chaotic oscillations (below). The stimuli are distinct and influence the neuronal dynamics
differently. The resulting chaotic dynamics are temporally distinct and this is reflected in both firing
times and amplitudes of ࡴࡴ and .ࢌࢋ࢘ࡴࡴ

The distinct periodic stimuli ܶ ൌ ͳͷ݉ andݏ ܶ ൌ ͳͶ݉ induceݏ chaotic oscillations in

ଵܪܪ and ܪܪ (fig. 4.5) (for the chaotic oscillations, refer to Chapter 3, section 3.4.1, fig.

3.5). Coincidence factor estimates similarity between the two responses based on firing

times is 0.120671. A low similarity is due to distinct temporal influence on the neural

dynamics by the periodic stimuli. The similarity using both firing times and amplitude

coincidences is determined by a conditional probability as in (4.23) which gives Γ௧=

0.119016. The similarity based on both firing times and amplitudes is expectedly lower

than similarity based on firing time coincidences alone.

4.4.3 Case III: ࢌࢋ࢘ࢀ ൏ ,ࢀ ࢼ  

ܶ ൌ ͳͷ݉ ǡݏ ܶ ൌ �ͳ݉ ݏ

The firing time similarity estimated by coincidence factor for this pair of neural responses

is very high, Γ = 1 indicating that the responses are an exact match and therefore

generated by identical stimuli (false positive, see Chapter 3, section 3.4.1.1). However,

Γ௧= 0.272938 indicates that a high firing time similarity does not essentially affect
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amplitude coincidences. There is a sharp contrast in estimated similarity by Γ = 1 (based

on firing times alone) and Γ௧ = 0.272938 (a realistic estimate considering the neural

dynamics) as a result of amplitude variation. In the event of steady state responses, firing

time comparison is sufficient, however, in the cases outlined in this section, the responses

are chaotic and as the steady state is not preserved, both firing times and amplitudes of

neural spikes reflect the dynamics and are required to estimate similarity.

Figure 4.6: The periodic stimuli (top) with ࢌࢋ࢘ࢀ ൌ � and࢙ ࢀ ൌ  generate࢙ neural responses

exhibiting chaotic oscillations (below). The stimuli are distinct and influence the neuronal dynamics
differently. The resulting chaotic dynamics are temporally distinct and this is reflected in both firing
times and amplitudes of ࡴࡴ and .ࢌࢋ࢘ࡴࡴ The pulse width of each stimulus is different and has an

important role in effecting the neural dynamics.

4.4.4 Discussion

To understand the effect of amplitude fluctuations on similarity estimation, it is required

to find the amplitude coincidences, which is carried out using (4.23) and omitting the

firing time considerations. Irregular ISI and varying amplitudes represent underlying

chaotic oscillations therefore similarity estimation considering both these characteristics

becomes necessary. The aim is to understand the similarity between two neural responses

in view of periodic stimulation. The results tabulated (table 4.1) show the similarity based

on firing time coincidences, amplitude coincidences and similarity estimated using Γ௧
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(4.23). It is observed that for case I that chaotic is 1 indicating that the neural responses are

an exact match. This result is justified by the high similarity of firing time coincidences and

amplitude coincidences. In case II, chaotic is 0.119016, which indicates low partial

similarity. The corresponding firing time and amplitude similarity is low which expectedly

lowers the estimate of similarity for case II. Case III is of special interest and is one of the

objectives behind the formulation of chaotic . If the similarity is estimated considering only

the firing time coincidences of neural spikes, the two responses are an exact match.

However, as the neural responses exhibit chaotic oscillations, the chaotic dynamics are

reflected in the amplitude fluctuations. The number of amplitude coincidences specifically

answers how similar the responses are in the presence of chaotic oscillations. It is

observed that though all firing times coincide for case III, the amplitude similarity is low

i.e. 0.240947. This justifies a low similarity estimate chaotic = 0.272938. As chaotic is based

on conditional coincidence (i.e. amplitude coincidence given firing time coincidence), it is

neither commutative nor additive of amplitude coincidences and firing time coincidences.

Similarity
estimated by
Firing-time

coincidences

Similarity
estimated by

Amplitude
coincidences

Similarity
estimated by

Γ௧

Similarity
estimated

by Γ

ܶ = ܶ

1.0000 1.0000 1.0000 1.0000

ܶ > ܶ

0.120671 0.193823 0.119016 0.120671

ܶ < ܶ

1.0000 0.240947 0.272938 1.0000

Table 4.1: Comparison of similarity estimates using a) firing time coincidences, b) amplitude
coincidences, c) a composite similarity estimate ડࢉ࢚ࢇࢎࢉbased on amplitude coincidences given firing
time coincidences.
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4.5 Computational Results – II

As established in Chapter 3, due to the nature of periodic stimuli and the presence of

chaotic oscillations, estimating similarity between neural responses based on firing times

is inaccurate in view of a) false positives and b) incorrect inference about stimuli

similarity. To understand the effect of a broad range ISI on neural response similarity, two

HH neurons ଵܪܪ) and (ܪܪ are stimulated using periodic stimuli. ଵܪܪ is stimulated by

varying the stimulus ISI (ܶ) within a limit of 2ms and ܪܪ is stimulated by a periodic

stimulus with fixed ISI ( ܶ). ଵܪܪ is stimulated by varying ܶ between 14ms-16ms (set I),

13ms-15ms (set II) and 15ms-17ms (set III) and similarity is estimated by comparing

these responses with the response of ܪܪ for each set. ܶ for the each set is 15ms for

set I, 14ms for set II and 16ms for set III. A comparison of the similarity estimates of

coincidence factor (Γ) and Γ௧ is described in the following sections.

4.5.1 Set I: Evaluating Similarity Estimates of ડand ડࢉ࢚ࢇࢎࢉ, 14ms-16ms

ߚ represents the difference between ܶ and ܶ as defined in (4.24). If ߚ ≠ 0, it indicates

that the neural stimuli have dissimilar ISI and their respective influence on neural

dynamics is distinct. As discussed above, neural responses with underlying chaotic

oscillations display amplitude fluctuations and irregular firing times, which are not

considered by coincidence factor for similarity estimation. It is observed that the false

positive obtained by coincidence factor at ߚ = +1 is eliminated using both amplitude and

firing time coincidences (fig. 4.7). The similarity between pairs of neural responses

estimated by chaotic is lesser in comparison with Γ due to a composite consideration of

amplitude fluctuations and firing times.
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Figure 4.7: Similarity between neural responses generated by periodic stimuli with  ࢙ ࢀ   ࢙
and ࢌࢋ࢘ࢀ ൌ  .࢙ ડ represents the similarity estimated by coincidence factor and ડࢉ࢚ࢇࢎࢉ is the

similarity based on firing times and amplitudes coincidences. The use of amplitude fluctuations to
estimate similarity eliminates false positive (circled) at ࢼ ൌ .

If ܶ is the ISI of the periodic stimulus to ଵܪܪ and ܶ ൌ ͳͷ݉ isݏ the ISI of the periodic

stimulus to ܪܪ , then their responses are denoted as ்ܴ and ܴଵହ respectively. Table

(4.2) gives a clear comparison of firing time and amplitude coincidences for the pairs of

neural responses in Set I. At ߚ ൌ �െͳ, half of the neural spikes from ܴଵସ and ܴଵହ

coincide with a precision of οൌ ʹ݉ .ݏ However, only 20.83% of the amplitudes coincide

with a precision of ൌߜ ʹ݉ ܸ. This is characteristic of neural responses exhibiting chaotic

oscillations – a small change in the stimulus reflects on the neural dynamics. Absolute

coincidences are conditional coincidences i.e. number of amplitude coincidences given that

corresponding firing times coincide. The number of absolute coincidences obtained is

16.67%, which implies that in ܴଵସ and ܴଵହ, only 16.67% pairs of neural responses

exhibit amplitude and firing time coincidences. The similarity estimated by Γ௧ is

0.161 and it accurately reflects the absolute coincidences. In addition, Γ௧ considers

coincidences by chance or the expected coincidences, which renders the similarity

estimated by Γ௧ unique to a pair of neural responses.
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ߚ
Firing time

Coincidences
(%)

Amplitude
Coincidences

(%)

Absolute
Coincidences

(%)
Γ௧

-1 50 20.83333 16.6667 0.161

75 29.1677 25 0.2489

79.1667 37.5 29.1667 0.2908

83.3333 12.5 8.3333 0.0753

79.1667 25 20.8333 0.1997

87.5 29.1667 20.8333 0.1984

ߚ = 0 100 100 100 1

91.6667 50 45.8333 0.4513

79.1667 33.3333 25 0.2392

87.5 16.6667 16.6667 0.1312

37.5 12.5 4.1667 0.0003

+1 100 29.1667 29.1667 0.2729

Table 4.2: Firing time, amplitude and absolute coincidences for various values of ࢼ in set I. ડࢉ࢚ࢇࢎࢉ
represents the similarity between pairs of neural responses. Firing time coincidence precision is
∆=  ,࢙ amplitude coincidence precision is =ࢾ  ࢂ and absolute coincidence is a conditional
coincidence of amplitudes given that corresponding firing times coincide. ડࢉ࢚ࢇࢎࢉ accurately estimates
similarity and this is correlated with the percentage of absolute coincidences.

At ߚ = 0, both stimuli have the same ISI (ܶ = ,ݏ15݉ ܶ = .(ݏ15݉ It is observed from

Table 4.2, that all neural spikes coincide in firing times and amplitudes. The absolute

coincidences confirm that the neural responses are an exact match, hence, the similarity

estimated by Γ௧ = 1. At ߚ = +1, as all neural spikes show firing time coincidences,

coincidence factor classifies these neural responses, ܴଵ and ܴଵହ, as identical. This

result is a ‘false positive’ as indicated by the number of amplitude fluctuations. Though all

neural spikes coincide in firing times, only 29.17% of amplitudes coincide, hence the

absolute coincidences are 29.17%. The corresponding estimate of similarity by

Γ௧ = 0.2729 is substantially lower than 1 (estimated by coincidence factor Γ) and

also confirms it as a false positive. The consideration of amplitude fluctuations in addition
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to firing time information successfully eliminates this false positive (Sarangdhar and

Kambhampati, 2010a,b).

4.5.2 Set II: Evaluating Similarity Estimates of ડand ડࢉ࢚ࢇࢎࢉ, 13ms-15ms

Figure 4.8: Similarity between neural responses generated by periodic stimuli with  ࢙ ࢀ   ࢙
and ࢌࢋ࢘ࢀ ൌ  .࢙ ડ represents the similarity estimated by coincidence factor and ડࢉ࢚ࢇࢎࢉ is the

similarity based on firing times and amplitudes coincidences. ડࢉ࢚ࢇࢎࢉ eliminates false positives
(circled) between െǤ  ࢼ ൏ .

The false positives estimated by coincidence factor Γ (see Chapter 3, section 3.4.1.2),

shown in fig. 4.8., occur between െͲǤͷ ߚ� ൏ Ͳ. Table 4.3 shows that firing time

coincidences are 100% between െͲǤͷ ߚ� ൏ Ͳ. Naturally, based on firing times, these

pairs of neural responses are classified as identical by Γ. However, the corresponding

amplitude coincidences are 12.5%, 33.33% and 29.17% which indicate that though all

firing times coincide, the corresponding amplitude fluctuations are not identical, hence

these coincidences are termed as false positives. These non-identical amplitude

fluctuations are due to dissimilar ISI of periodic stimuli and underlying oscillations. The

corresponding absolute coincidences for the false positives are 12.5%, 33.33% and

29.17%. The similarity estimated by Γ௧ is 0.1224, 0.3302 and 0.2846 respectively,

which correlates with the observed absolute coincidences. The composite consideration of

the irregular firing times and varying amplitudes helps differentiate these neural

responses and relate this obtained dissimilarity to corresponding stimuli.
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ߚ
Firing time

Coincidences
(%)

Amplitude
Coincidences

(%)

Absolute
Coincidences

(%)
Γ௧

-1 75 16.6667 12.5 0.1204

75 25 20.8333 0.2044

83.3333 37.5 33.3333 0.3272

100 12.5 12.5 0.1224

100 33.3333 33.3333 0.3302

100 29.1667 29.1667 0.2846

ߚ = 0 100 100 100 1

87.5 37.5 29.1667 0.2857

79.1667 16.6667 12.5 0.1178

58.3333 8.3333 4.1667 0.0263

41.6667 33.3333 4.1667 0.0243

45.8333 45.8333 12.5 0.1075

+1 45.8333 20.8333 12.5 0.1188

Table 4.3: Firing time, amplitude and absolute coincidences for various values of ࢼ in set II. ડࢉ࢚ࢇࢎࢉ
eliminates the false positives occurring between −. ≤ ࢼ < . The similarity estimated by ડࢉ࢚ࢇࢎࢉ
correlates with the percentage of absolute coincidences.

At ߚ = 0, the neural responses are generated by identical stimuli (ܶ = andݏ14݉

ܶ = .(ݏ14݉ These identical stimuli cause similar oscillations in the neural dynamics

resulting in neural responses, which are an exact match. This is seen in table 4.3 and fig.

4.8, at ߚ = 0, the firing time coincidences, amplitude coincidences and the absolute

coincidences are 100%. This justifies that the neural responses are an exact match and are

generated by identical stimuli, hence Γ௧ = 1. The similarity determined by Γ௧ for

other neural response pairs is also consistent in correlation with the observed absolute

coincidences.
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4.5.3 Set III: Evaluating Similarity Estimates of ડand ડࢉ࢚ࢇࢎࢉ, 15ms-17ms

Figure 4.9: Similarity between neural responses generated by periodic stimuli with  ࢙ ࢀ  ૠ ࢙
and ࢌࢋ࢘ࢀ ൌ  .࢙ ડ represents the similarity estimated by coincidence factor and ડࢉ࢚ࢇࢎࢉ is the

similarity based on firing times and amplitudes. The incorporation of amplitude fluctuations to
estimate similarity helps ડࢉ࢚ࢇࢎࢉ eliminate false positives (circled) for െ  ࢼ  െǤૠ.

Set III exhibits false positives between െͳ ߚ  െͲǤͷ(fig. 4.9, see Chapter 3, section

3.4.1.3). Table 4.4 shows that the corresponding firing time coincidences are 100%, which

results in coincidence factor Γ classifying the pairs of neural responses as identical.

However, the amplitude coincidences are 29.17% and 20.83% indicating that the

underlying oscillations are non-identical. The corresponding similarity determined by

Γ௧ is 0.2754 and 0.1992. As Γ௧ ≠ 1, it can be concluded that the neural responses

do not match and they are generated by dissimilar stimuli.

At ߚ ൌ Ͳ, the neural responses are generated by identical stimuli (ܶ ൌ ͳ݉ andݏ

ܶ ൌ ͳ݉ (ݏ and Γ௧ identifies the highly similar neural responses (Γ௧ = 1).

Dissimilar periodic stimuli ߚ) ് Ͳ) causing non-identical chaotic oscillations are correctly

identified and similarity estimates correlate with the observed absolute coincidences. For

ߚ  Ͳ, Γ௧decreases with an increase in ߚ indicating that similarity between the

neural responses decreases with an increase in the difference in the ISI of two stimuli. Any

change in the ISI of a stimulus causes a temporal variation and effects on neural dynamics

which is evident in the dissimilarity (1-similarity) estimated by Γ௧.
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ߚ
Firing time

Coincidences
(%)

Amplitude
Coincidences

(%)

Absolute
Coincidences

(%)
Γ௧

-1 100 29.1667 29.1667 0.2754

100 20.8333 20.8333 0.1992

70.8333 25 16.6667 0.1581

83.3333 33.3333 33.3333 0.3243

58.3333 12.5 8.3333 0.0666

41.6667 12.5 8.3333 0.0704

ߚ = 0 100 100 100 1

95.8333 33.3333 29.1667 0.2851

87.5 20.8333 16.6667 0.1558

75 16.6667 12.5 0.1124

+1 58.3333 37.5 8.3333 0.0617

Table 4.4: Firing time, amplitude and absolute coincidences for various values of ࢼ in set III. The false
positives determined by coincidence factor between − ≤ ࢼ ≤ −.ૠ are eliminated. Similarity
between neural response pairs estimated by ડࢉ࢚ࢇࢎࢉ correlates with the percentage of absolute
coincidences.

4.6 Computational Results – III

In the previous sections, neural responses generated by characteristic periodic stimuli

were compared to estimate similarity. New distinct stimuli were generated by varying the

ISI (ܶ) of the pre-synaptic spike train. In addition, there are other physiologically relevant

types of stimuli that trigger a neural activity. This section estimates similarity between

neural responses generated by excitatory and inhibitory stimuli. The temporal nature of

an excitatory stimulus is dissimilar from an inhibitory stimulus (Luk and Aihara, 2000),

therefore corresponding neural dynamics induced are distinct and an exact match

between neural responses is not possible. More specifically, a cortical neuron has more

than one dendritic input and it summates the total inhibitory and excitatory synapses,

firing only if the summation in excitatory. This physiological relevance explains that the

neural stimuli vary temporally and have distinct effects on neural dynamics (see Chapter

2, section 2.3).
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Excitatory and inhibitory stimuli are generated by varying ܶ of their pre-synaptic spike

trains (see Chapter 3, section 3.2.2). Two HH neurons, ா௫ܪܪ and ூܪܪ are stimulated

using excitatory and inhibitory stimuli respectively with identical ISI ߚ) ൌ Ͳ). ܶ is varied

between 14ms-16ms and corresponding neural responses are compared to estimate

similarity.

Figure 4.10: Comparison of similarity between excitatory (ࢉ࢞ࡱࡴࡴ) and inhibitory (ࢎࡵࡴࡴ) neural
responses estimated by ડand ડࢉ࢚ࢇࢎࢉ. Coincidence factor generates false positives (circled) for neural
responses with ISI between 15.25ms-15.75ms. The corresponding similarity estimated by ડࢉ࢚ࢇࢎࢉ is
lower indicating that the neural responses classified as identical are false positives. The temporal
nature of an excitatory stimulus is distinct from an inhibitory stimulus and neural dynamics evoked by
each stimulus is different, hence, an identical match is not possible.

It is observed (fig. 4.10) that coincidence factor (Γ) yields false positives between

ͳͷǤʹͷ ܶ  ͳͷǤͷ. These false positives indicate that each neural response pair is an

exact match even though the neural responses are generated by different type of stimuli.

As Γ = 1 for all false positives, it indicates that excitatory and inhibitory stimuli are

identical between 15.25ms and 15.75ms. These estimates of similarity are incorrect and

disagree with biological and medical studies, e.g. stretch-reflex actions of muscles (MND

References). It is known that inhibitory and excitatory stimuli are distinct temporally and

functionally (Hille, 1992; Gernster and Kistler, 2002)and the false positives indicated by Γ

contradict physiological evidence.
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These incorrect estimates of similarity generated by Γ are eliminated by Γୡ୦ୟ୭୲୧ୡ as

estimates of similarity based on firing time and amplitude coincidences help identify

dissimilar neural responses effectively and provide a feedback about corresponding

stimuli.

4.7 Chapter Summary

The nonlinear neural dynamics can exhibit both steady state and chaotic responses

depending on the nature of the stimulus. A neuron exhibits a steady state response on

injection of a constant current stimulus. On the other hand, a chaotic behaviour is

observed in response to a periodic stimulus. A neural response with underlying chaotic

oscillations is characterised by irregular ISI and amplitude fluctuations; a phenomenon

not exhibited by steady state responses.

To understand the chaotic dynamics and derive inference about corresponding stimuli,

relative study of response dynamics is required. Chaos can be determined by the

amplitude fluctuations and can be represented theoretically using return-maps. The

amplitudes of these neural responses are considered to fit a Normal distribution and using

the Empirical Rule of Normal distribution, 68.27% of the amplitudes lie within   ,

where  is the mean and  is the standard deviation. Using the principle of Z-score, the

probability of an amplitude coincidence can be calculated. A mean value of amplitude

coincidence is given by the area under the curve bounded by means of either distribution.

A mathematically realisable composite similarity measure considering firing time

coincidences and amplitude coincidences is demonstrated through various cases of neural

response comparison. The ISI of the periodic stimuli is varied so that three relations

between ISI arise – ISI1 = ISI2, ISI1 > ISI2 and ISI1 < ISI2. In addition, neural responses from

excitatory and inhibitory stimuli are also compared to estimate similarity. Determining the

similarity between chaotic responses is based on conditional coincidences, which is the

number of amplitude coincidences given firing time coincidences. The resulting similarity
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measure gives a value between 0 (total dissimilarity) and 1 (exact match). The results

show that this estimate of similarity is realistic and unbiased. In the absence of chaotic

oscillations, 1meanz and pcoincN equals ftcoincN while chaotic = therefore reducing

Γୡ୦ୟ୭୲୧ୡ to Γ, which is consistent with the observations of Kistler (Kistler et. al., 1997).

Estimating similarity for neural responses exhibiting chaotic oscillations requires that the

means of two distributions be close to each other. The periodic stimuli used to induce

chaotic behaviour in the neuron are similar in nature and hence means of their responses

are within close proximity. A further limiting condition requires 121   ; this

guarantees that the amplitude coincidences are bounded by a magnitude lesser than the

standard deviation. According to the Empirical rule of Normal distribution, the sample size

used for comparison is only 68.27%, however, the farther we go from the mean, the higher

the amplitude deviates, so limiting the means within one standard deviation guarantees

that amplitudes coincide with a precision that is biologically acceptable.

The results show that the similarity estimated using both firing times and amplitudes can

be quantified by analyzing the number of absolute coincidences. Absolute coincidences are

the number of spikes that coincide with respect to both firing times and amplitudes with a

pre-defined precision .ߜ It is observed that similarity estimated by Γୡ୦ୟ୭୲୧ୡcorrelates with

the number of absolute coincidences. If the number of absolute coincidences are 25%,

then the similarity estimated by Γୡ୦ୟ୭୲୧ୡ is approximately 0.25. This quantification ensures

that the estimated similarity is realistic and mathematically realizable (Sarangdhar and

Kambhampati, 2010a,b). The results show that Γ௧ correctly identifies excitatory from

inhibitory neural responses and eliminates all false positives obtained using coincidence

factor (Γ).
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5 : Model Validation, Energy
Content and Energy Difference

5.1 Introduction

In the previous chapters, it is shown that due to the periodic nature of the synaptic stimuli,

estimating the similarity between corresponding HH neural responses requires both

amplitude and firing time information. Thus, a new similarity measure was developed to

distinguish HH neural responses with underlying chaotic oscillations caused by periodic or

sinusoidal stimuli. In the absence of chaotic oscillations, coincidence factor – which

estimates similarity based only on firing times, is sufficient to compare neural responses.

Hence, coincidence factor is adequate for model validation of reduced-order neuron

models against biological neurons in the absence of chaotic oscillations. Firstly, this

chapter discusses the application of Γ௧ for validating reduced order models. It is also

observed that Γ௧ reduces to coincidence factor in the absence of amplitude

fluctuations in the neural responses. This chapter also investigates the possibility of

considering the energy content of neural responses as a unique method of estimating

similarity by application of Slepian’s principle (Slepian 1976).

The complex non-linear dynamics of the HH neuron have been studied both theoretically

and physiologically in recent years to extend the understanding of its underlying neural

dynamics (Lundström 1974; Abbott and Kepler 1990; Hasegawa 2000; Agüera et. al.,

2003a, b; Fourcaud-Trocmé 2003; Kepecs and Lisman 2003; Bokil et. al., 2006; Davies et.

al., 2006; Diba et. al., 2006; Dimitrov and Gedeon, 2006; Izhikevich 2006; Li and Ascoli

2006). Spikes or action potentials are evoked when a supra-threshold external stimulus is

applied to the neuron. This complexity in the neural dynamics arises from the
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probabilities associated with the open-close mechanism of the gating channels - m, n and

h. The m and h are Na+ activated while n is K+ activated. As the HH neuron has three m, one

h and four n channels, the equations of the HH neuron are highly nonlinear and therefore

limit the mathematical analysis. In order to simplify the analysis, reduced-order neuron

models such as the Integrate and Fire (IF) neuron, have been proposed and adopted

(Abbott and Kepler, 1990, Izhikevich 2003). The aim of reduced neuron models is to

approximate the neural response of a biological neuron in view of such reductions.

It has been shown that for the HH neuron, in the presence of chaotic oscillations or when

the amplitudes of a neural response fluctuate, amplitude and firing time collectively reflect

the true dynamics of a neuron and therefore both should feature in similarity estimation

(Sarangdhar and Kambhampati 2008a,b; Sarangdhar and Kambhampati 2009). Similarity

estimation is based on the principle of relative coincidences without coincidences by

chance (Joeken and Schwegler, 1995), using a composite similarity measure based on

amplitude and firing time coincidences (Sarangdhar and Kambhampati 2010a, b).

This chapter investigates the use of Γ௧ to determine the similarity between the HH

and IF neural responses for periodic and time-varying stimuli. The IF is a reduced order

neuron model (see Chapter 2, section 2.6.2 for reduction) and it can fire spikes

comparable to HH neural response. The aim of this comparison is to ascertain the efficacy

of Γ௧ for reduced order neuron’s responses. This similarity estimation is based on

conditional coincidences, which are amplitude coincidences given firing time coincidences.

It is observed that the IF and HH neurons can fire at similar times for certain strength of

stimuli but due to different neural dynamics, their amplitudes do not coincide. The initial

representation of a neural response is unique to its stimulus (Diba et. al., 2006; Chechik et.

al., 2006) thus, this chapter investigates if Γ௧ can distinguish neural responses from

different types of neurons. In addition, this chapter describes whether the similarity

estimated by Γ௧ for steady state neural responses is comparable and consistent with

coincidence factor.
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The absolute difference between neural responses can be defined by a fundamental

concept known as ‘energy content of a wave’. This principle states that two neural

responses are distinguishable if the difference of their energies is greater than a certain

energy-difference minimum, ߝ  (Slepian 1976). This ߝ  can provide a benchmark to

compare similarity estimates for neural responses against absolute difference. This

principle is applied to neural response similarity estimation to compare Γ௧ and Γ to

see if absolute difference is estimated by either similarity measure. This chapter also

determines if Γ௧ compares effectively against ߝ , by correctly identifying dissimilar

neural responses and showing a realistic and mathematically realisable estimate of

similarity. The simulations carried out in this chapter are explained in the form of an

algorithm in Appendix A, section A.5.3. Section A.5.3.1 describes the approach to model

validation, section A.5.3.2 explains the use of Γ௧ as a similarity measure for neural

responses generated by constant current stimuli and section A.5.3.3 describes the

application of Slepian’s principle for estimating neural response similarity.

5.2 The Integrate and Fire (IF) Neuron

Hodgkin and Huxley first entailed the complexity of a biological neuron in the form of

mathematical equations (Hodgkin and Huxley, 1952). However, this mathematical

complexity limited the analysis of the neuronal dynamics, which prompted computational

neuroscientists to consider simpler reduced-order neuron models. To assess the accuracy

of the reduced-order models, their responses are compared with the responses of a

sophisticated neuron model. Model validation has gained significant importance over the

years as increasing effort is laboured to understand and decode the neuronal dynamics

(Abbott and Kepler, 1990; Rinzel 1985; Joeken and Schwegler, 1995; Kistler et. al., 1997;

Izhikevich, 2003; Izhikevich, 2006).

The reduced-order model - an Integrate and Fire (IF) neuron (see Chapter 2, section 2.6.2

for reduction) generates neural responses that are comparable to a sophisticated neuron

model like the HH. The HH neuron is based on physiological evidence of the complex
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open-close mechanism of the ion channels. This makes the mathematical analysis of HH

equations complex and limits the understanding of its neural dynamics. In order to

analyse the dynamics, the HH equations are reduced to create lower order neuron models

such as the IF model. The reduction is carried out by treating the Na+-activating variable as

instantaneous and replacing it with its asymptotic value; defining a linear relation

between Na+-deactivating and K+-activating variables and therefore represented by a

function of one variable alone. Reduced order models use this as a basis for reduction. The

IF neuron treats the Na+-activating as a constant therefore loses the physiological

refractoriness of a biological neuron (Abbott and Kepler, 1990). However, the IF neuron

can still be comparable to a HH neuron as the IF neuron offers the advantage of a fixed

reset and a variable threshold.

5.2.1 Computational Model of the IF Neuron

The IF neuron is a basic representation of a biological neuron that can generate

comparable neural responses (Abbott and Kepler, 1990; Gernster and Kistler, 2002). As

the name suggests, the IF neuron is based on integrating the neural voltage until the firing

threshold is reached. This represents physiological relevance such that only supra-

threshold stimuli can generate a neural response. The basic differential equation of the IF

neuron is given by

uIRE
dt

du


(5.1)

where, τ is the time constant, E is the resting potential, R is the membrane resistance, I is

the external current and u is the initial membrane voltage. Expressing the derivative
dt

du

by a difference, we get

t

ttutu

dt

du
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Using indices for convenience and calculating the derivative
dt

du i 1 at time 1it from values

at time it

)(: ii tuu 
(5.3)
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For each integration step, calculate 1iu from the known value of iu and the derivative.
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(5.6)

tuuu iii   1

.

1 (5.7)

Selecting t gives good convergence. The parameters used for the simulation are E =

-70mV, R=10MOhm, Vreset = -80mV, Vthreshold = -54mV and τ = 20ms. 

5.2.2 Stimulus for the IF Neuron

The supra-threshold stimulus applied to the IF neuron is given by

).sin().sin(_ 2211 tataaextI staticIF   (5.8)

where, astatic is a static offset. The value of a0 is provides the supra-threshold strength to

the pre-synaptic spike train. The values of variables are a0 = 3.95, a1 = 0.25, a2=0.25, ω1 =

0.05 and ω2 = 0.125. The values of the variables in (5.8) are chosen such that the IF neural

responses are comparable for model validation.
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5.2.3 Stimulus for the HH neuron

The synaptic stimulus applied to the HH neuron is based on (5.8) and is given by

)sin()sin(_ 2211 tataaextI dynamicHH   (5.9)

where, adynamic is a dynamically updated variable. The value of a0 is dependent on the ISI of

the pre-synaptic spike train. The values of variables are a0 = ISI/1.5, a1 = 0.75, a2=0.75, ω1

= 0.05 and ω2 = 0.125.

Due to the reduction from the HH nonlinearity, the IF neuron has different neural

dynamics hence it cannot mimic the exact behaviour of the HH neuron. (5.8) and (5.9)

represent external stimuli that evoke an IF and HH neural spike at approximately similar

times. The irregular ISI and fluctuating amplitudes observed in the HH neural responses

are a result of the ܰܽା gating channel (݉ ) largely contributing to refractoriness. As the IF

neuron approximates the instantaneous value of ݉ to its asymptotic value, there is a loss

in physiological refractoriness. This is modelled in the IF neuron using a variable

threshold and a fixed reset.

5.3 Similarity estimates for the IF and HH Neuron

The IF and HH neuron are stimulated by a periodic and a time-varying stimulus with

variable noise respectively. This ensures temporal similarity for both responses which are

compared using a) coincidence factor (Γ) and b) Γ௧. The aim of using this comparison

of similarity estimates is to understand and determine if Γ௧ can distinguish neural

responses generated by different types of neurons.

As already discussed, a small change in neural stimulus is sufficient to induce distinct

dynamics in a neuron, the noise in the external stimulus (5.8) and (5.9) is minimally varied

between 0.05 and 0.50 to generate new stimuli for the IF and HH neurons. This synaptic

stimulation causes fluctuations in the membrane voltage of the HH neuron and forces it to

oscillate. These self-sustained oscillations in the neuronal dynamics result in varying
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amplitudes and irregular ISI. The time-varying stimulus applied to the IF neuron evokes a

series of action potentials that are compared with the responses of the HH neuron. The

responses of the neurons plotted along with their corresponding stimuli with noise show

that a small change in the temporal nature of the stimulus affects the neural dynamics that

are responsible for the neural responses (fig. 5.1a-d). Table 5.1 below shows the similarity

estimated for each pair of neural responses for each simulation.

Γ௧ estimates the similarity by comparing amplitude variations along with individual

firing times. This approach implicitly considers the neural dynamics (chaos and resultant

varying amplitudes) therefore, it has a two-dimensional approach to comparison.

However, Γ estimates similarity using firing time information alone; firing time

information is sufficient when the neural dynamics are non-chaotic or the responses of the

neuron are steady state.

Fig. 5.1(a)
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Fig. 5.1(b)

Fig. 5.1(c)
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Fig. 5.1(d)

Figure 5.1: Responses of the IF (in dash) and HH (in bold) neuron to time-varying stimuli and periodic
stimuli with varying noise. (a) injected stimulus having minimum noise, (b)injected stimulus with
medium-high noise, (c) injected stimulus with medium-low noise, (d) injected stimulus with very high
noise. In each of the sub-plots, the responses are plotted for their corresponding stimuli (below the
responses). The neural responses plotted are generated for different neural stimuli. The
corresponding stimuli are shown - bold for HH and dashed for the IF neuron.

Γ Γ௧ ܨ% ܶ ܣ% %ܰ

(a) 0.8016 0.4195 85.7143 61.9048 47.6190

(b) 0.7354 0.5712 80.9524 76.1905 61.9048

(c) 0.8016 0.5153 85.7143 71.4286 57.1429

(d) 0.5370 0.3805 66.6667 66.6667 42.8571

Table 5.1: The corresponding similarity for neural responses in fig. 5.1 is estimated by Γ and ડࢉ࢚ࢇࢎࢉ for
IF and HH neurons. The similarity estimated by ડࢉ࢚ࢇࢎࢉ is consistent with the number of conditional
coincidences. ,ࢉࢉࢀࡲ ࢉࢉ and ࢉࢉࡺ represent the number of firing time, amplitude and conditional
coincidences respectively.

It is observed from table 5.1 that the similarity estimated by Γ௧ is lower than Γ for (a),

(b), (c) & (d). These values represent the comparative likeness between corresponding IF

and HH neural responses. Γ represents the similarity based on firing time coincidences

while Γ௧ estimates similarity based on firing times and amplitudes. The percentage

of firing time coincidences (Ψܨ ܶ), amplitude coincidences (Ψܣ) and conditional

coincidences (amplitude coincidences given firing times coincide) Ψܰ represented in

table 5.1 show that the estimated similarity Γ௧ is consistent with the percentage of
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conditional coincidences. In (a), 85.7143% of the IF spikes coincide with corresponding

HH spikes, only 61.9048% of them coincide with respect to amplitudes. Hence, the

percentage of conditional coincidences is 47.6190. The corresponding similarity estimated

by Γ௧ is 0.4195. A similar relationship is seen for other neural response pairs. The

results show that Γ௧ correlates with the percentage of conditional coincidences

(%ܰ) and is evident throughout table 5.1. These observations of Γ௧ correlating

with absolute coincidences are also seen in Chapter 4.

The HH neuron under self-sustained oscillations has fluctuations in the membrane voltage.

This phenomenon cannot be accurately replicated by an IF neuron due to a reduction to a

lower order. In some cases, injection of a time-varying stimulus can establish IO

equivalence (i.e. both neurons fire at approximately similar times) between IF and HH

neuron (Lazar, 2006). However, an IO equivalence has not been chosen so as to retain

individuality between the IF and HH neuron. A time-varying periodic stimulus is known to

induce chaotic dynamics in the HH neuron and the IF neuron can generate responses that

are temporally similar. The results in this section outline that as the underlying dynamics

are independent and distinct, the responses of the two neurons will be different. Γ௧

considers amplitude fluctuations arising due to periodic stimuli therefore has lower

similarity estimates than Γ. It is worthwhile to mention that Γ does differentiate between

the responses, however, in the presence of chaotic oscillations an exact estimate of

similarity is given by Γ௧ as it considers additional temporal information.

5.4 Constant Current Stimulus and ડࢉ࢚ࢇࢎࢉ

Γ௧ is formulated to estimate similarity of neural responses exhibiting chaotic

oscillations generated by time-varying periodic stimuli. In this section, performance of

Γ௧ is evaluated for neural responses generated with a constant current stimuli. A

constant current stimulus does not induce fluctuations in the membrane voltage hence,

resulting in a steady state response. A constant current (௦௧௧ܫ) with noise (ߟ) is

injected into two HH neurons at independent times ଵݐ and ଵݐ
ᇱ. The corresponding neural
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responses ܴଵand �ܴ ଵ
ᇱare compared using Γ௧. The noise (ߟ) has a Normal distribution

with mean =ߤ 0 and standard deviation ߪ = 0.025.

The injected current is slowly increased in strength from 8μA to 10μA to get neural 

responses for comparison. Similarity is estimated using Γ௧ for each pair of responses.

It is observed that Γ௧is unity for all pairs of neural responses indicating that each pair

is an exact match. These results are consistent with Γ (Table 5.2)

The HH neurons fire at precise intervals with approximately the same amplitude (within a

precision for similarity). For each simulation (fig. 5.2 a-c), the neural responses overlap

such that they fall within the firing time precision of Γ௧. All the corresponding spikes

in each neural response coincide with respect to firing time and amplitude hence, the

conditional coincidences equate to 100%, which correlates to Γ௧ = 1.

The results in table 5.2 indicate that Γ௧performs in consistence with Γ. These results

indicate that in the absence of amplitude variations, Γ௧ reduces to Γ.

Stimulus Strength Γ Γ௧

(a) ܣߤ8 1 1

(b) ܣߤ9 1 1

(c) ܣߤ10 1 1

Table 5.2: Performance of ડࢉ࢚ࢇࢎࢉ compared with ડ for HH neurons stimulated with a constant current
stimulus. The strength of the stimulus is increased by ࣆ from a-c. All spikes in the steady state
responses of the HH neuron coincide with respect to firing times and amplitudes. Hence, conditional
coincidences are 100%. This correlates to ડࢉ࢚ࢇࢎࢉ = .
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Figure 5.2: The responses of the two HH neurons to constant current stimulus. The responses of the
neurons for stimulus 8μA-10μA are shown in (a), (b) & (c) respectively. The responses overlap to a 
high degree as indicated in (d).

5.5 Energy Content of a Spike Train and its role in Neural Response

Differentiation

Chapters 3 and 4 explain the need for the formulation of Γ௧ and outline the biological

relevance of a neural activity exhibiting chaotic oscillations. The previous sections

described the application of Γ௧ to validate reduced-order neuron models and steady

state neural responses. Due to the varying temporal nature of neural responses, there

exists an ‘absolute difference’ between them. This absolute difference is implemented as an

application of Slepian’s principle (Slepian, 1976) and is used as a benchmark to assess the

similarity estimates of Γ௧ and Γ.
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Each neural response is a function of time, therefore, according to Slepian (Slepian, 1976),

a neural response can be considered as a signal and two signals of time (ݐ݂) and (ݐ)݃ are

distinguishable if their difference has sufficient energy (Ε) i.e.

min

2
)()( 





tgtf

(5.10)

where, ߝ  is the energy-difference minimum required for two neural responses to be

distinguishable. Assuming that all responses are distinct and distinguishable i.e. any two

neural responses are different from each other, it follows that their energy difference is

greater than ߝ . This energy-difference minimum for differentiating two responses is

not defined therefore a simple but realistic threshold ߝ  for distinction is considered.

The principal square root of a non-negative real number is always less than the number

itself (except if the number is less than 1). This principle serves in defining the energy-

difference minimum. Let the energy-difference minimum ߝ  be the square root of the

energy difference between two neural responses (5.11).







2

min )()( tgtf

(5.11)

This ensures that any two given spike trains are dissimilar from each other and ߝ  acts

as a threshold for differentiation. The only exception being a spike train compared to itself

– where (ݐ݂) = (ݐ)݃ and therefore Ε = ߝ  = 0. In Chapters 3 and 4, it is shown that two

neural responses (ݐ݂) and�݃ (ݐ) are identical only if they are generated by the same

stimulus. The minimum energy-difference required for two neural responses to be

classified as distinct is given by ߝ  which is normalised between 0 and 1.

5.5.1 Slepian’s Principle – HH neurons

The results in Chapter 4 show that the similarity between neural responses exhibiting

chaotic oscillations is well approximated by Γ௧. This section investigates the
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similarity estimates of Γ௧ against the ‘absolute difference’ in neural responses and

whether Γ௧ essentially captures the ‘energy-difference minimum’ ߝ . The aim of this

section is to outline and identify if Γ௧ can determine similarity with an implicit

consideration of Slepian’s principle.

5.5.1.1 Energy Difference

The HH neurons ଵܪܪ) and (ܪܪ are stimulated by periodic stimuli (Park and Kim, 1996)

and a variation in the ISI of the periodic stimuli generate neural responses across a broad

range of ISI, as seen in Chapter 4.

ଵܪܪ is stimulated by varying the ISI of the periodic stimulus between 13ms-15ms to

generate various neural responses. ܪܪ is stimulated by a periodic stimulus with ISI =

14ms ( ܶ) to generate ܴଵସ and each ଵܪܪ neural response is compared against ܴଵସ.

The difference in the energy of each pair of neural responses is calculated using (5.10) and

the threshold for differentiation ߝ‘ ’ is determined using (5.11). Sample ߝ  values for

ISI varied between 13-15ms are shown in Table 5.3.

ܶ(ms) ܶ (ms) ߝ 

13.00 14.00 0.8649

13.25 14.00 0.7971

13.50 14.00 0.8074

13.75 14.00 0.7652

14.00 14.00 0

14.25 14.00 0.6303

14.50 14.00 0.8140

14.75 14.00 0.9357

15.00 14.00 1.0000

Table 5.3: Sample ઽ  values for responses to stimuli generated with ISI varying between 13ms-15ms.

Table 5.3 shows the normalised energy-difference minimum ߝ  in comparison with

Γ௧ and Γ. Any two neural responses are distinguishable if the difference between
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their energies is greater than ߝ . It is observed that this ߝ  is unique for each pair of

ISI. It implies that each neural response is characterised by the stimulus ISI (ܶ) as it

influences the temporal pattern of the resulting neural responses. Thus, ܶ remains

intrinsic to response comparison.

In order for the neural responses generated by periodic stimuli having ISI ܶ = ݏ14.25݉

and ܶ = toݏ14݉ be distinguished, the difference between them needs to have

sufficient energy i.e. greater than ߝ  = 0.6303. If both ܶ = �ܶ , it implies that stimuli

are identical. As discussed in Chapters 3 and 4, identical stimuli generate exactly matching

neural responses and the energy-difference between these neural responses is zero

therefore, ߝ  = 0. Hence, the value of ߝ  for ܶ = andݏ14݉ ܶ = isݏ14݉ zero.

ߝ  = 0 indicates that the two neural responses have a zero energy-difference and they

are an exact match.

Similarly, ଵܪܪ is stimulated by varying the ISI (ܶ) between 14ms-16ms (set II) and 15ms-

17ms (set III) while the corresponding stimulus to ܪܪ is fixed with ܶ = set)ݏ14݉

II) and ܶ = set)ݏ15݉ III). It is observed for each of the three sets, ߝ  = 0 between

two identical neural responses. Also, as all neural responses are assumed to be distinct, for

dissimilar neural responses ߝ  ≠ 0. These results indicate that two neural responses

with ‘zero’ energy difference are an ‘exact-match’ (fig. 5.3-5.5).

5.5.1.2 Evaluating similarity estimates of ࢉ࢚ࢇࢎࢉࢣ , ࢿ  and ࢣ

To evaluate the efficacy of Γ௧ for any two neural responses, it should implicitly

identify the difference in their energies, which should be greater than ߝ . As the

similarity estimates from Γ௧ and Γ are between 0 and 1, they are compared against

the normalised value of ߝ . Slepian’s principle is used to distinguish neural responses

while Γ௧ and Γ are similarity measures. Hence, for the purpose of evaluation, the

dissimilarity indices for Γ௧ and Γ are calculated.
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Let Γ௧′ and  Γ′ be the corresponding dissimilarity indices of Γ௧ and  Γ. The

dissimilarity indices are obtained by subtracting the corresponding similarities from unity.

For Γ௧′ to correctly identify ߝ , the dissimilarity estimated by Γ௧′ should be

higher than ߝ . The dissimilarity indices and ߝ  are calculated for each set of neural

responses in which the ISI (ܶ) is varied between 13ms-15ms (set I), 14ms-16ms (set II)

and 15ms-17ms (set III).

The results show that Γ௧′ identifies the energy-difference minimum ߝ  for most

pairs of neural responses across the three sets. It is discussed in Chapter 4 that Γ௧

evaluates similarity more accurately than Γ as it uses both amplitude and firing time

information to estimate similarity. Therefore, the dissimilarity index of Γ௧ is more

accurate than Γ estimating ߝ .

Figure 5.3: Performance of ડࢉ࢚ࢇࢎࢉ' in comparison to normalised values of ε_min and ࢣ' for ISI varied
between 13ms-15ms. ࢿ  represents the energy-difference minimum.ડࢉ࢚ࢇࢎࢉ'correctly identifies the
dissimilarity in the neural responses. An exact match between neural responses is observed at
ISI=14ms. This is also correctly identified by ડࢉ࢚ࢇࢎࢉԢ�ൌ .

Figures 5.3-5.5 show that Γ௧′ distinguishes neural responses with a higher degree of

accuracy than Γ′ and the plots of Γ௧′ and Γ′ are separated by the energy-difference
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minimum ߝ . The dissimilarity between neural response pairs estimated by Γ௧′ is

higher than ߝ  indicating that the neural response pairs are distinguishable. Also, it is

seen that all the neural response pairs are dissimilar except when ߝ  = 0. At ߝ  = 0,

the neural responses are an exact match and it is already established that Γ௧

accurately identifies similarity. Hence, the corresponding dissimilarity index Γ௧
ᇱ = 0.

It is discussed in Chapters 3 and 4 that for a single bipolar neuron, such as the HH, only

identical stimuli can generate exactly matching neural responses. This result is consistent

with understanding that all neural responses are distinct except if they are generated by

the same or identical stimuli (Davies et. al., 2006, Chechik et. al., 2006).

Figure 5.4: Performance of ડࢉ࢚ࢇࢎࢉ' in comparison to normalised values of ࢿ  and Γ' for ISI varied 
between 14ms-16ms. ࢿ  represents the energy-difference minimum. ડࢉ࢚ࢇࢎࢉ' correctly identifies the
dissimilarity in the neural responses. An exact match between neural responses is observed at
ISI=15ms. This is also correctly identified by ડࢉ࢚ࢇࢎࢉ' = 0. All dissimilar neural responses are correctly
identified.

On the contrary, the dissimilarity estimated by Γ′ is less than ߝ , which indicates that the

minimum energy difference cannot be estimated by Γ′. As Γ is only utilises firing times of

the neural spikes, it can be concluded that the energy-difference minimum ߝ  cannot be

determined based on firing time alone. Γ௧ estimates similarity using firing times and
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amplitudes of neural spikes and hence captures this threshold of differentiation. It is

evident from the results that due to the firing-times limitation, Γ′ cannot capture ߝ .

Figure 5.5: Performance of ડࢉ࢚ࢇࢎࢉ' in comparison to normalised values of ࢿ  and Γ' for ISI varied 
between 15ms-17ms. ࢿ  represents the energy-difference minimum. ડࢉ࢚ࢇࢎࢉ' correctly identifies the
dissimilarity in most neural responses. An exact match between neural responses is observed at
ISI=16ms. This is also correctly identified by ડࢉ࢚ࢇࢎࢉ' = 0.

In medical diagnosis where the temporal pattern of the neural response is crucial, such as

Epilepsy (Kumar et. al., 2009; Milton and Jung, 2003), there remains a possibility of

absolute difference between neural responses being utilised as a framework for

comparison. Γ௧ is therefore more applicable to estimate similarity of neural

responses in presence of chaotic oscillations or when amplitudes fluctuate and estimating

dissimilarity in accordance with the energy-difference minimum ߝ  as defined by

Slepian.

5.6 Chapter Summary

The complex nonlinearity of the HH neuron limits the understanding of its neural

dynamics leading to reduced-order models of neurons, which aid mathematical analysis

by simplifying the neural dynamics. This chapter considers stimulation of HH neurons

with periodic stimuli and compares their responses with an IF neuron. Due to the periodic
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nature of the stimulus, the HH neuron displays self-sustained oscillations, which are

characterised by irregular firing times and fluctuating amplitudes. The IF neuron, due to a

reduction in the nonlinearity of its dynamics, cannot model such chaotic oscillations.

In the presence of chaotic oscillations or fluctuations in the amplitudes of a neural

response, both firing times and amplitudes reflect the true dynamics of the internal state

of a neuron. Therefore, both firing times and amplitudes should feature in similarity

estimation (Sarangdhar and Kambhampati, 2008a,b; Sarangdhar and Kambhampati,

2009). The similarity thus obtained by Γ௧ correlates with the number of spikes that

coincide with respect to both firing times and amplitudes. The results show that the

similarity estimated by Γ௧ is approximately equal to the number of conditional

coincidences - amplitude coincidences given firing time coincidences (Sarangdhar and

Kambhampati, 2010a,b). In addition, in the absence of chaotic oscillations, Γ௧ reduces

to Γ.

Two neural responses are distinguishable if the difference between their energies is

greater than ߝ  (Slepian, 1976). In other words, identical neural responses will have

similar energies and hence ߝ  = 0. If two neural responses are dissimilar, their energy-

difference minimum ߝ  ≠ 0. Considering a simple but realistic ߝ , it is seen that the

dissimilarity index Γ௧′ distinguishes all neural responses in accordance with ߝ . On

the other hand, the estimation of ߝ is rather less accurate using Γ′ (dissimilarity index of

Γ) as Γ is based only on firing times of neural spikes. The results suggest that both firing

times and amplitude are required to capture ߝ  .

It is worthwhile to mention that the energy-difference minimum ߝ  considered in this

chapter is simple realistic threshold. It is chosen such that each neural response can be

unique and future work is aimed at establishing a relationship that can quantify ߝ  in

terms of neural response parameters.
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6 Stimulus Reconstruction from a
Hodgkin-Huxley Neural Response

6.1 Introduction

Neural responses are the fundamental expressions of any neural activity, its nature

determines the information carried by a neural response. In majority of cases, the

underlying stimulus that triggers this activity remains largely unknown. Recent studies to

reconstruct the stimulus from a neural response show that the high non-linearity of neural

dynamics renders analytical inversion of a neuron a challenging task (Abbott and Kepler

1990; Saggar et. al., 2007; Lazar 2004; Lazar 2007a,b). This chapter presents a numerical

solution rather than an analytical one to reconstruct stimuli from Hodgkin-Huxley (HH)

neural responses. The stimulus is reconstructed by first retrieving the maximal

conductances of the ionic gating channels and then numerically solving the Hodgkin-

Huxley equations for the stimulus. By considering a numerical solution, the retrieval of

neural dynamics is possible, hence, this reconstruction approach also retrieves the neural

dynamics for which an analytical solution does not currently exist. The ability to

reconstruct neural dynamics offers an advantage in understanding the timeline changes in

the neural mechanism for brain disorders like Motor Neuron Disease (MND), Parkinson’s

Disease (PD) and Epilepsy. This chapter shows the reconstruction of constant-current and

periodic stimuli along with the retrieval of neural dynamics using this approach. The

simulations carried out in this chapter are explained in the form of an algorithm in

Appendix A, section A.5.4.



Chapter 6: Stimulus Reconstruction from a Hodgkin-Huxley Neural Response

113

6.2 Related Research on Stimulus Construction

A stimulus represents a trigger for a neural activity, which underlines any neural

response. This relationship between a neural response and its stimulus has been studied

in the recent years to understand the encoding and decoding mechanisms adopted by

neurons (Panzeri et.al., 1999; Stanley and SeyedBoloori, 2001; Sanger, 2002; Kohn and

Vieira, 2002; Nelken and Chechik, 2005; Cozzi et. al., 2006). Not much is known about how

neurons specifically encode and decode information. It is thought that either the firing

time or the rate of fire of a neuron carries specific neural response information (Rinzel

1985; Panzeri et. al., 1999; Gabbiani and Metzner, 1999). On the other hand, research

suggests that reconstruction of the stimulus from a neural response can aid our

understanding of neural coding (Wilson, 1999a,b). The ability to reconstruct a stimulus

hence offers to retrieve stimulus parameters that can help extend our understanding of

neuronal encoding and decoding.

Research on input reconstruction has been carried out across many fields like digital

filters, neural networks, algorithms and complexity, and digital signal processing (Das et.

al., 2006; Saggar et. al., 2007; Stanley and SeyedBoloori, 2001; Stanley 2001; Lazar and

Pnevmatikakis, 2009; Lazar 2007a,b; Lazar 2006; Lazar et. al., 2006; Lazar 2004). Similar

approach can be considered for stimulus reconstruction however, due to the high non-

linearity of neural dynamics, it is very difficult to obtain an analytical solution that can

recreate neural dynamics. Periodic signals, unlike aperiodic signals, can be recovered

using conventional filters (Das et. al., 2006). Artificial neural networks are used to treat

the HH neuron as a black box and reconstruct the stimulus by learning the dynamics

(Saggar et. al., 2007). Other implementations use a reverse filter that predicts the sensory

input from neuronal activity and recursive algorithms to reconstruct stimulus from an

ensemble of neurons (Stanley and SeyedBoloori, 2001; Stanley 2001). The principles of

Time Encoding and Decoding Machines for signal recovery have been explored to

reconstruct a neural stimulus whereas, a more direct approach to recover stimulus
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focuses to make the HH neuron Input-Output (IO) equivalent to an Integrate and Fire (IF)

neuron (Lazar and Pnevmatikakis, 2009; Lazar 2007a,b; Lazar 2006; Lazar et. al., 2006;

Lazar 2004). These approaches establish a relationship between the neural response and

the stimulus but are not designed to capture or retrieve the neural dynamics. In other

words, they offer some starting point for stimulus reconstruction but it remains quite a

challenge to analytically invert a neuron. However, it is possible to reconstruct stimulus

from a neural response and retrieve neural dynamics using numerical approximations and

small time-steps for integration; this offers a local solution to the problem of stimulus

reconstruction.

This chapter aims to reconstruct constant-current and periodic stimuli by a) extracting the

maximal conductances from a trace of neural response and b) solving the neural equations

for the stimulus. To reconstruct the stimulus, it is imperative that linearization is carried

out. The above approach is demonstrated in this chapter using a Hodgkin-Huxley (HH)

neuron and Euler integration. This reconstruction involves solving the neural equations

for a small time-step ,ߜ such that the maximal conductances are extracted accurately. Also,

the reconstructed stimulus matches the original stimulus accurately. As reconstruction of

the stimulus involves solving the neural equations, this approach can replicate the neural

dynamics, the time-dependent changes in the voltage-gated channels of Na+, K+ and Cl-.

This technique, though computationally iterative, offers a local solution to the problem of

inverting a neural response (Sarangdhar and Kambhampati, 2010c, d, e).

6.3 Stimulus Reconstruction of HH neuron

Let (ݐ)ܸ be the neural response of the HH neuron to a synaptic stimulus (ݐ)ܫ with ionic

conductances ே݃, ݃and ݃. Assuming that (ݐ)ܫ is unknown and only the neural response

(ݐ)ܸ and the reversal potential ܸ are known, the aim is to reconstruct the stimulus (ݐ)′ܫ

such that (ݐ)ܫ and (ݐ)′ܫ are identical. The reversal potential is the membrane voltage at

which there is no net flow of ions from one side of the membrane to the other. In order to

reconstruct ,(ݐ)′ܫ the conductance parameters of the ions need to be retrieved first.
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Therefore the primary target is to retrieve ′݃ே, ′݃and ′݃ and based on the equations of

the HH model, reconstruct (ݐ)′ܫ without any information of .(ݐ)ܫ

6.3.1 Extracting the maximal conductances

The equations 2.11-2.23 from Chapter 2 show that the gating variables ݉ , ݊ and ℎ only

depend on the instantaneous voltage at time .ݐ The instantaneous voltage at time isݐ given

by
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Reconstruction of the stimulus is based on accurate retrieval of the maximal conductances

of the ion channels of the HH neuron. The three ionic conductances can be retrieved by re-

writing equation (6.1) to form three linear equations in three unknowns (ionic

conductances). The formulation of these equations is proposed as an algorithm by

Shepardson (Shepardson 2009). Solving these equations will yield the conductances for

Na+, K+ and Cl-.

Consider a small voltage trace (ݐ)ݒ of the HH neuron for time andݐ select three times ,ݐ

݅= 1, 2, 3. As the voltage trace (ݐ)ݒ is known over all ,ݐ (ݐ)ݒ is known for ݅= 1, 2, 3.

Let functions 3,2,1),( jtf j be defined as
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(6.2-6.4) are obtained by splitting (6.1) for each ion channel ( )݆ of the HH neuron.

Let (ݐܾ) be defined as


t

dttIvtvtb
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(6.5)

Hence combining (6.1-6.5), we have

)(')(')(')( 321 tfgtfgtfgtb LKNa 
(6.6)

The aim is to retrieve the maximal conductances ′݃ே, ′݃and ′݃. Let the conductances be

represented by ଶݔ,ଵݔ and .ଷݔ If 
t

dttI
0

')'( is a known analytic function, the value of )(tb is

known for all values of .ݐ Hence, for a voltage trace (ݐ)ݒ and external stimulus ,(ݐ)ܫ

approximations to the gating variables, ݉ , ݊ and ℎ are obtained by integrating the HH

equations. If ݉ ′, ′݊ and ℎ′ are the estimates of the gating variables and ݂ᇱ(ݐ) is the

resultant approximation of ݂(ݐ), then retrieving the maximal conductances can be defined

as a solution to the linear system
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This is an overdetermined system of linear equations in the form =ݔܣ .ܾ An approximate

solution can be obtained by using the entire set of voltages from (ݐ)ݒ generated during

the integration of the HH equations and treating (6.7) as a linear least squares problem.

Hence, the best fit solution in the linear least squares sense is obtained by solving
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If ܣ ℝ߳ே×ଷis the matrix whose entries are ܽ, = ݂ᇱ(ݐ),݅= 1 …ܰ and ܾ߳ ℝே , (6.5) can be

rewritten as

2
min bAx

x
 (6.9)

As the equations =ݔܣ ܾare linear in ,ݔ a solution is obtainable using linear regression.

6.3.2 Reconstructing the Stimulus

The approach defined above requires the knowledge of both voltage (ݐ)ݒ and the external

stimulus ,(ݐ)ܫ for all time .ݐ In principle, it is unrealistic to know the stimulus for all times ݐ

and in majority of biological cases, the stimulus (ݐ)ܫ remains unknown. Therefore,

retrieving the maximal conductances using the equations (6.2-6.9) is specific when all

parameters are known.

In order to reconstruct the stimulus entirely without any knowledge of corresponding (ݐ)ܫ

for a neural response ,(ݐ)ܸ a two-fold approach is adopted. As the type of the neuron and

the reversal potential for Na+, K+ and Cl- is known, this algorithm shows that the neural

stimulus can be reconstructed without the knowledge of the original stimulus .(ݐ)ܫ The

algorithm computes the approximate estimates of maximal conductances and uses these

approximations to reconstruct the unknown neural stimulus.

The algorithm described below (6.2.2.1) shows that the reconstructed stimulus (ݐ)′ܫ can

be obtained from the voltage trace of a known neuron.

6.3.2.1 Algorithm for Stimulus Reconstruction and Neural Dynamics Retrieval

1) For a known neuron, record any neural response (ݐ)ܸ whose stimulus, say ,(ݐ)ܫ

requires to be reconstructed
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2) Inject a supra-threshold stimulus, (௦ݐ)௦ܫ for a small time duration ௦ݐ

3) Record the corresponding voltage trace generated, (௦ݐ)௦ݒ

4) Retrieve the maximal conductances using ,(௦ݐ)௦ݒ equations (6.2-6.9) and (௦ݐ)௦ܫ as

the external stimulus

5) Using the approximated maximal conductances, ′݃ே, ′݃and ′݃, solve the HH

equations using the recorded original neural response (ݐ)ܸ and the stimulus as the

only unknown to get the reconstructed stimulus (ݐ)′ܫ

6.3.2.2 Numerical Solution

The HH equations can be re-written as
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where, ′݃ே, ′݃and ′݃ are the approximated maximal conductances calculated from

(௦ݐ)௦ݒ and ݉ ′, ′݊ and ℎ′ are the estimates of the gating variables ݉ , ݊ and ℎ respectively.

As (ݐ)ܸ is known for all times ,ݐ the rate of change of voltage (
ௗ௩

ௗ௧
) can be numerically

approximated. The retrieved neural dynamics are given by the following equations
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This approach provides a local solution for reconstructing the neural stimulus of a HH

neuron by approximating the gating variables. In addition to retrieval of stimulus

parameters, it also estimates the neural dynamics, which are important, which help

identify the open-close mechanism of ionic gates. The estimation of neural dynamics from

a neural response is key to understanding the effect of brain biochemistry on neural

disorders.

6.4 Computational Results

The above algorithm to reconstruct an unknown stimulus is applied to the HH neuron. In

the process of extracting the maximal conductance of the ionic channels, the algorithm

also retrieves approximations of the gating variables ݉ ′, ′݊ and ℎ′ which represent the

neural dynamics. This approach is scalable to accommodate any number of ion channels,

therefore it can also be used for higher-level neurons e.g. Cortical neurons (Wilson

1999a,b; Wilson and Cowan, 1973; Wilson and Cowan, 1972).

6.4.1 Generating a Voltage Trace

Let ௦beܫ a small supra-threshold step current that evokes an action potential. The

resultant voltage trace ௦ݒ is sufficient to retrieve the maximal conductance values.
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Figure 6.1: The voltage trace generated࢙࢜ by a small step-current .࢙ࡵ This small trace of neural voltage
is sufficient to retrieve the maximal conductances.

6.4.2 Retrieving Maximal Conductances

Given the voltage trace ௦andݒ the corresponding external stimulus ,௦ܫ near approximation

of the maximal conductance values can be obtained using equations (6.2-6.9). Let beߜ the

time-step of the Euler integration. It is observed that the accuracy of the approximated

conductances is dependent on .ߜ The accuracy increases if the time-step of integration (ߜ)

is close to 0. These approximated conductances are consistent with the observations of

Shepardson (Shepardson, 2009). As (6.8) is an overdetermined system of linear equations,

an exact solution cannot be obtained for all values of .ߜ

Original↓/Retrieved→ =ߜ 0.01 =ߜ 0.001 =ߜ 0.0001

ே݃ = 120 ′݃ே = 120.49 ′݃ே = 120.05 ′݃ே = 120

݃ = 36 ′݃ = 36 ′݃ = 36 ′݃ = 36

݃ = 0.30 ′݃ = 0.33 ′݃ = 0.30 ′݃ = 0.30

Table 6.1: Retrieved maximal conductance values for various values of .ࢾ The conductances are highly
accurate as becomesࢾ close to 0.

The relative error of the approximations decreases as becomesߜ close to 0.
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ߜ Relative error (ߝ)

0.01 0.0037

0.001 0.00038

0.0001 0

Table 6.2: The relative error decreasesࢿ as becomesࢾ close to 0.

Fig. 6.2(a)

Fig. 6.2(b)

Figure 6.2: (a) The reconstructed voltage traces using the approximated maximal conductance values
for different time-steps .ࢾ (b) As becomesࢾ close to 0, the approximations approach the actual
conductance values. For ࢾ ൌ Ǥ, the approximated conductance values are equal to the original
values. Hence the trace generated by ൌࢾ Ǥoverlaps with the original trace which࢙࢜ can be
considered as ൌࢾ . Due to the near exact overlap, the trace generated by ൌࢾ Ǥand the original
trace are indiscernible.
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In order to assess the accuracy of the estimated maximal conductance values, the voltage

trace is reconstructed using the approximated conductances from table 6.1. It is observed

that the estimated maximal conductance values produce a good fit to the original trace ௦ݒ

(fig. 6.2). A smaller time-step of integration (ߜ) gives accurate estimates of ionic

conductances (table 6.2) which can replicate the actual neural voltage trace. The degree of

overlap between the actual and predicted voltage traces (fig. 6.2) confirms that the

accuracy of prediction is dependent on the choice of .ߜ

6.4.3 Stimulus Reconstruction

The retrieval of maximal conductance values and a good fit of the original voltage trace

indicate that the approximations are nearly accurate. Using equations (6.10-6.19),

stimulus reconstruction can be carried out by linearising the equations of the HH neuron.

6.4.3.1 Constant-Current Stimulus

Let us assume that the HH neuron is stimulated by an unknown step-current ௦௧ܫ such

that it evokes a series of action potentials ௦ܸ௧. The aim is to recreate an approximation of

the stimulus, ,௦௧ܫ to trace the trigger for the neural activity. In order to reconstruct ,௦௧ܫ

the ionic conductance values need to be retrieved. The maximal conductances are

approximated using the approach described in section 6.3.2 and the retrieved values for

different integration time-step (ߜ) are shown in table 6.1. The stimulus is reconstructed

using these retrieved conductance values for different values of ߜ (fig. 6.3 and fig.6.4). As

the accuracy of retrieving conductance values depends on ,ߜ the precision in the ability of

reconstructing an unknown stimulus also depends on .ߜ This also indicates that a tiny

change in ionic conductance effects a change in the neural dynamics, which is reflected in

the response of the HH neuron.
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Figure 6.3: The reconstructed stimulus is good fit to the original stimulus. The original stimulus is very
well approximated if chosen ࢾ is close to 0, ̱�ࢾ �Ǥ.

Figure 6.4: The approximated stimulus is less accurate if ࢾ is higher, ̱�ࢾ �Ǥ.

Results show that if the time-step of Euler integration is sufficiently small i.e. ̱�ߜ �ͲǤͲͲͲͳ,

the maximal conductances can be accurately retrieved. The stimulus reconstructed using

these maximal conductance values, is a near approximation of the original unknown

stimulus, .௦௧ܫ
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6.4.3.2 Periodic Stimulus

If the HH neuron is stimulated by an unknown periodic stimulus ,ௗܫ the resultant

neural response is ܸௗ and the temporal variations in ܸௗ are influenced by the

nature of .ௗܫ These temporal variations could result a change in the conductance

values of the ion channels, difference in the potential (ion concentrations) across the

membrane or a physical change in a neuron (Tuckwell, 1988). In either case, the approach

detailed in section 6.3.2 is applicable even in the presence of periodic stimuli. Using the

algorithm (6.3.2) the maximal conductance values are retrieved for different integration

time-steps, ߜ (table 6.1) by generating a voltage trace (6.3.1). The unknown periodic

stimulus can therefore be reconstructed using these retrieved maximal conductance

values (6.10-6.19).

Figure 6.5: The reconstructed periodic stimulus for ࢾ close to 0. For ࢾ ൌ Ǥ, the reconstructed
stimulus is a near-fit of the original stimulus.
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Figure 6.6: The approximation of the reconstructed stimulus becomes less accurate with an increase in
ࢾ ࢾ̱) Ǥ). The numerical approximation of the derivatives causes some jitters.

Figure 6.7: Due to the presence of noise in original stimulus, the reconstructed noise cannot be an
exact match. The jitters are due to the numerical approximation of the rate of change of voltage.
However, the reconstruction is very close to the original stimulus for ࢾ close to 0.

It is observed that the unknown periodic stimulus can be predicted accurately if ߜ is small

and close to 0 (fig. 6.5). The accuracy of the reconstructed stimulus is dependent on the ߜ

hence at times the reconstruction can be time-consuming. However, this approach

provides a local solution to reconstructing unknown stimuli using the knowledge about

the computational model of a neuron. If the time-step of integration ߜ is large ߜ̱) ͲǤͲͳെ
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0.001), the approximation of the neural stimulus is less accurate (fig. 6.6 and fig. 6.7). It is

observed that the prediction of the neural stimulus becomes less accurate due to the

numerical approximations during the linearization of the HH equations.

6.4.4 Retrieval of Neural Dynamics

The study of neural dynamics is significant as they carry a lot of information about neural

biochemistry and retrieval of neural dynamics can be of great help in assessing a neural

disorder. One significant advantage in using this numerical approach to reconstructing

neural stimulus is the ability to reconstruct the internal state of the neuron during the

activity, which cannot be retrieved by a purely analytical approach (fig. 6.8).

Figure 6.8: The reconstructed neural dynamics. This numerical solution can retrieve the gating
variables  ǡࢎ�ࢊࢇ� and their time constants ࣎ ǡࢎ࣎�ࢊࢇ�࣎.

The neural dynamics represent the open-close mechanism of the ion channels in a neuron.

The HH neuron has three ion channels ܰܽାǡܭାandି݈ܥ�� . The probability that a channel is

open is defined by the variables ݉ , ݊ and ℎ. The combined action of ݉ and ℎ controls ܰܽା

while the ାܭ gates are controlled by .݊ The time constants of the three gating variables are

defined by ߬ ǡ߬ �ܽ݊݀�߬. Fig. 6.8 shows the reconstructed neural dynamics for the HH

neuron stimulated by a periodic stimulus (section 6.3.3.2). It represents a timeline of the

internal state of the neuron during a neural activity. For a neuron, which has undergone a
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physical change due to attrition or deformation (e.g. Motor Neuron Disease) due to

physical changes of pressure, the ionic conductance changes (Gonzalez de Aguilar et. al.,

2007; Fischer and Glass, 2007; Tuckwell, 2003). The recreated neural dynamics of such

neurons will exhibit a different open-close mechanism of the ion channels. More

specifically, the time-constants of the gating variables will differ compared to a normally

functioning fit neuron. Future work aims to quantify this difference by using a diseased

neuron and studying the change in its ionic conductance over time.

6.4.4.1 Effect of Conductance Variation on Neural Dynamics

The effect of conductance variation is evident in the influx of ions passing through the ion

channels and a change in conductance effectively affects the Nernst potential that governs

the equilibrium of the neural membrane. The open-close mechanism of the ion channels

adopted by such a neuron will differ compared to a similar-type neuron with different

ionic conductance values. It can be said that the neural dynamics of a neuron are

conductance-specific.

It is observed that a small variation in the ionic conductance can significantly change the

neural dynamics. To exemplify this effect, consider the retrieved conductances for

=ߜ 0.01 in Table 6.1. The actual conductance values in ݉ܵ ܿ݉ ଶ⁄ are ே݃ = 120, ݃ = 36

and ݃ = 0.30 while the retrieved values are ′݃ே = 120.49, ′݃ = 36 and ′݃ = 0.33. This

tiny variation from the actual values affects the gating variables ݉ ′, ′݊ and ℎ′ , which trace

different timeline plots compared to the original gating variables ݉ , ݊ and ℎ.

Let the subscript ܦ represent a ‘defect’ in the neuron that caused the change in the

conductance. If the retrieved dynamics described above are from a defective neuron, the

change in the neural excitability is distinct (fig. 6.9). As the ܰܽା conductance in the

defective neuron is higher than the actual original conductance value, it is observed that

the m-gate closes quicker than normal. This is indicated by the small time constant of ݉  .
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The variable ݉ is responsible for the depolarization of the neuron. The change in the

conductance indicates that the neuron depolarizes quicker than normal and therefore due

to refractoriness, hyperpolarization occurs when ݊െ ݃ ݐܽ݁ opens. However, as the

conductance of the leakage is higher, the neuron has a faster hyperpolarization that the

normal neuron. The cycle repeats for the entire time duration of neural stimulation. Hence,

the corresponding firing times of these neurons will be different, and the amplitudes will

be governed by their respective time constants ߬ and ߬ , which determine the point of

hyperpolarization of the action potential. It is evident that this tiny variation has a

significant effect on the neural cycle (fig. 6.9).

Figure 6.9: The effect of conductance variation on neural dynamics is demonstrated by a tiny change in
the conductance of ାࢇࡺ and ି . The subscript ࡰ represents the ‘defect’, which causes a change in the
conductance of a neuron. The dotted lines show the effect of the variation in conductance on the gating
variables and their time constants.

6.5 Chapter Summary

The neural dynamics of the HH neuron have been the subject of research for many years

now. The dynamics put forth by Hodgkin and Huxley have been well studied and

replicated by many researchers. In much the same way, inverting the HH neural equations
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has attracted interest in recent years. The equations of the HH neuron are highly non-

linear due to the incorporation of probability of the gating variables ݉ ,݊�ܽ݊݀�ℎ, which

regulate the open-close mechanism of ionic channels.

Previous research has addressed the problem of inverting this non-linear neuron by using

digital filters, neural networks, algorithms and complexity, and digital signal processing.

Other approaches point to the use of reconstruction algorithms, time encoding/decoding

machines or an IF neuron. These approaches establish a relationship between the neural

response and the stimulus but they are not designed to capture or retrieve the neural

dynamics. The neural dynamics represent the timeline changes in the gating variables of

the ion channels over the period of neural stimulation. It is therefore important to be able

to retrieve dynamics from the response of a neuron, which can help to understand the

changes in the internal state of a diseased neuron.

The approach described in this chapter provides a numerical solution to reconstruct an

unknown neural stimulus. An unknown stimulus is shown to be reconstructed by

1) Recording any neural response (ݐ)ܸ whose stimulus, say ,(ݐ)ܫ requires to be

reconstructed

2) Injecting a supra-threshold stimulus, (௦ݐ)௦ܫ for a small time duration ௦ݐ

3) Recording the corresponding voltage trace generated, (௦ݐ)௦ݒ

4) Retrieving the maximal conductances using equations (6.2-6.9) and (௦ݐ)௦ܫ as the

external stimulus

5) Using the approximated maximal conductances, ′݃ே, ′݃and ′݃, solve the HH

equations using the recorded neural response and(ݐ)ܸ the stimulus as the only

unknown to get the reconstructed stimulus (ݐ)′ܫ
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It is observed that the accuracy of maximal conductances retrieved by solving an

overdetermined system of linear equations depends on the time-step (ߜ) of Euler

integration. A small value of 0.0001~ߜ can reproduce almost exact maximal conductances.

The accurate conductance values help reconstruct a near-fit approximation of the original

stimulus. Due to the nature of numerical approximation and the inherent non-linearity in

the neural dynamics, the reconstructed stimulus shows some jitters. In addition, it is

noticed that if the original stimulus carries any noise, an exact match of the stimulus

cannot be reconstructed. However, the reconstructed stimulus still matches the original

stimulus to a high degree of accuracy. The choice of ߜ is very important and there is a

trade-off between computational time and accuracy. The accuracy increases with a

decrease in ߜ (Sarangdhar and Kambhampati, 2010c, d, e). Since the physiological neural

responses recorded in labs are continuous signals, sampling or discretising these signals

to a sufficiently small ~�ߜ 0.0001 is realisable.

The approached described here can reconstruct very good approximations of the original

stimuli. The results show that the unknown periodic and constant current stimuli are well

approximated by this reconstruction method. It is also worth mentioning that although

establishing an IO relationship can provide some information of the stimulus parameters,

the current approach can accurately reconstruct the neural dynamics in addition to an

unknown stimulus. This ability of neural dynamics retrieval is significant to study the

timeline changes in the conductance of ion channels of a diseased neuron. Future work is

focused on studying these variations in the conductances in higher order models of

mammalian neurons.
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7 Conclusions

This thesis contributes towards the development of a framework for the understanding

and prediction of early onset of neural disorders based on a computational study of the

neural biophysics. The responses obtained by stimulating a neuron depend on the

biochemistry while prediction of an onset requires the comparison of neural responses in

order to understand changes in the underlying biochemistry. Understanding the onset of a

neural disorder requires the study of neural biophysics, voltage-dependent activation-

deactivation of ion channels and their effect on neural responses. More specifically, the

study requires understanding

1) the deviation of neural spiking from normalcy that results from changes in ionic

concentrations effected by disorders, which can be done using neural response

comparison

2) the exact changes in the biochemistry governed by the ion concentrations and

conductance of ion channels.

Studying a particular neural disorder and its biophysics is a future objective. Thus, the

framework developed in this thesis helps the understanding of such an onset by

 developing a similarity measure for neural response comparison

 developing an algorithm for reconstructing the unknown neural stimulus

 and retrieving the neural dynamics that show voltage-gated changes of ion

channels
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The deviation of neural spiking patterns from normalcy results either from a change in the

underlying neurobiochemistry or the stimulus, both of which can be traced using the

approaches described in this thesis.

7.1 Research Contributions

The effect of the temporal nature of a stimulus on a neural response highlights the

requirement of a new similarity measure as physiological observations show the existence

of more types of stimuli such as periodic, excitatory and inhibitory besides constant-

current stimuli. The neural responses evoked by these types of stimulations are distinct in

comparison with steady state neural responses generated by constant-current stimuli.

Neural response comparison carried out using similarity estimation approach used for

steady state responses yields false positives due to implicit assumptions about the neural

dynamics. For instance, excitatory and inhibitory stimuli have distinct functional roles in

the nervous system and differ in the nature of electrical excitability (Brazier, 1977;

Chapter 3, section 3.2.2). These stimuli also have different shape and form; hence, they

cannot generate identical responses. Therefore, a false positive for an inhibitory-

excitatory neural response pair, which indicates that the two responses are identical and

generated by similar stimuli, is not physiologically relevant. As the ion channel activation-

deactivation of the neural membrane depends on the potential difference created by the

external stimulation, the nature of the stimulus imparts a distinct firing pattern to a

neuron (see Chapter 2 and Chapter 3). The existence of false positives may affect the

detection of onset by missing the deviation from normalcy.

The formulation of the new similarity measure Γୡ୦ୟ୭୲୧ୡ is based on the temporal nature of

the neural response rather than just firing times of spikes. The consideration of amplitude

variation in addition to firing time information ensures that false positives are eliminated

and neural responses with temporal deviations beyond physiological precision are

classified as distinct (see Chapter 4). The similarity estimated by Γୡ୦ୟ୭୲୧ୡ correlates with

the total number of coincidences in corresponding neural responses; hence, Γୡ୦ୟ୭୲୧ୡ is
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mathematically realisable. This further establishes that classification of neural responses

with temporal variations requires consideration of amplitude coincidences in addition to

firing times coincidences.

Establishing similarity between neural responses using Γ௧, as discussed in Chapters

3-5, identifies whether the neuron had identical or non-identical stimulation. In a

physiological setting, this stimulus is largely unknown apart from the knowledge that it is

supra-threshold. The voltage-gated ion channels responsible for the neural excitability

exhibit timeline changes and present a valuable source of information about the neural

spiking and biochemistry that results in an action potential. In particular, the ability to

retrieve and understand these changes from the neural response will be beneficial

towards understanding neural disorders. An algorithm to reconstruct unknown stimuli and

retrieval of the neural dynamics of a Hodgkin-Huxley (HH, see Chapter 2) neuron is

described in Chapter 6. The HH neuron has sodium, potassium and chloride ion channels

that regulate the action potential and represents the spiking mechanism of most neurons

in the nervous system. The models of cortical neurons (such as the Wilson model) are

based on the physiology of HH neuron and have two additional ion currents compared to

the HH neuron (see Chapter 2), which makes this approach scalable to neurons of higher

complexity. The results show that the accuracy of the reconstructed stimulus and

retrieved neural dynamics depends on the time step of integration .ߜ It is observed that

the accuracy of prediction increases if ߜ is small. The neural responses obtained

physiologically are continuous signals and sampling the signal with a small makesߜ this

algorithm scalable to physiological observations.

Thus, by observing the similarity estimate given by Γ௧ one can determine the degree

of deviation of a neural response from normalcy. In addition, by using the approach

defined in Chapter 6, it is possible to reconstruct a near approximation of the stimulus, the

changes in ion conductances and the exact timeline variations in the voltage-dependent

ion channels.
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7.2 Discussion and Future Work

7.2.1 Studying Neural Disorder using a Computational Neural Model

The transition of a neuron from a healthy to a diseased or unhealthy state follows the

trajectory of gradual decay. This course of transition in commonly observed for individual

neurons in most disorders like Motor Neuron Diseases (MND), Parkinson’s Disease (PD)

and Alzhiemer’s Disease (AD). At disease onset, the biochemistry of a neuron starts to drift

from normalcy and it is reflected by a change in neural spiking and its function, which can

be observed in the neural dynamics (Strange, 1992). Estimating the extent of this drift

from normalcy is possible by studying the responses using the similarity measure, Γ௧,

developed in Chapter 4. This approach helps to estimate the gradual decay by comparing

neural responses observed at successive stages of degeneration. Studying such neural

responses and recreating the neural biophysics can contribute towards understanding and

predicting onset of neural disorders. Using the approach to reconstruct stimuli, which is

discussed in Chapter 6, it is possible to reconstruct the stimulation while retrieving the

neural dynamics. This retrieval of neural dynamics recreates the timeline changes in the

gating variables of the ion channels over the period of neural stimulation. This provides

the researcher to study the internal function of a neuron over the course of degeneration,

which could help understanding disease-onset clinically and possibly provide new ideas in

medicine. It is also worthwhile to mention that studying the recreated neural dynamics

can also reveal the effect of stimulation on certain ion channels. Also, in a network of

neurons, this approach can be applied to locate a failing pathway by adopting an iterative

application of the above process. It is expected that this computational ability to identify

the early onset can help to prolong the life of a neuron by determining biochemical

changes that initiate degeneration and timely clinical intervention.

7.2.2 Rate of Fire and Information Content

Studies of neural spiking activity have focused on firing times of neural spikes because it is

thought that the information in a neural response could be encoded in either the firing
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times or the firing rate (Rinzel, 1985; Gabbiani et. al., 1999; Panzeri et. al., 1999; Bialek et.

al., 1991). The results in Chapter 3, section 3.5 show that a change in the ISI of periodic

stimulation does not change the rate of fire of the neuron. Based on the current study, it

might be argued that these neural responses have the same information content; however,

this thought on information content and rate of fire has not been quantified so far. This

thesis demonstrates that similarity between neural responses can be determined using

firing time and amplitude coincidences while the rate of fire is used to calculate the

coincidence by chance (see Chapter 4, section 4.3.2). In addition, it must be noted that

irrespective of the rate of fire, model validation is carried out using coincidence factor

(Kistler and Gernster, 2002; Kistler et. al., 1997; Jolivet et. al., 2004). This opens the

possibility for future work on establishing the nature of information encoded in the neural

responses generated by periodic stimuli. The information content can reveal the similarity

between the neural responses and more specifically, answer if biological precisions of 2ms

and 2mV conform to that of information content.

7.2.3 Stimulus Reconstruction of Mammalian Neocortical Neurons

The computational model of a mammalian neocortical neuron is an extension of the

biophysics of the HH neuron (see Chapter 2, section 2.6.1) with an addition of calcium and

calcium mediated potassium currents. The stimulus reconstruction and neural dynamics

retrieval algorithm described in Chapter 6 can be extended to this neuronal model by

scaling equation 6.1. Studying the timeline changes in the cortical neurons may help to

understand neural disorders and the effect of drug concentrations on cortical spiking.

Future work aims to scale up this research by implementing a population of cortical

neurons coupled together via synapses to replicate a biological pathway.

7.3 Concluding Remarks

It is conceivable that the neuron, which is a constitutional and fundamental unit of the

nervous system, represents a neural disorder to some extent. Classically, a network of

neurons is collectively responsible for a neural activity however; an individual neuron
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presents equal importance towards the proper functioning of the network. This thesis

addresses some limitations with existing approaches and proposes a new and improved

approach for identifying similarity between neural responses. In a broader context, this

thesis aims to help predict the onset of a neural disorder by way of stimulus

reconstruction and neural dynamics retrieval. This retrieved information can be of

immense importance towards the understanding of neural disorders.

This thesis considers some of the existing debates in computational neuroscience such as

rate of fire of a neuron and information content of a neural response while raising the

possibility of future work on understanding the nature of information encoded in neural

responses leading to neural communication. The research presented in this thesis

contributes in part towards the field of computational neuroscience by implementing

scalable approaches to address existing limitations with respect to neural response

comparison, stimulus reconstruction and neural dynamics retrieval. It is expected that

during the course of the future work, the approaches described in this thesis will be

applied to neural models of higher complexity and necessary modifications based on

scalability to be implemented as required.
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Appendices

A Neuron Design

A.1 Sofware Platform

Matlab™ (versions 7.1-7.6) was used as the software platform for the computational

simulations in this thesis. The choice of Matlab was based on its efficiency, speed, memory

allocation and numeric data handling and prior experience of scripting in Matlab. A PC

with Windows XP operating on a Pentium IV 3GHz processor and 4GB of RAM was used

for this research.

A.2 Design

The computational design of the neuron is defined by its ion concentrations, physiological

and biochemical properties as described in literature (Hodgkin and Huxley, 1952;

Hasegawa, 2000; Trappenberg, 2002).

A.3 Implementation

The neuron simulations, implemented as a time series, follow the norm to compute neural

responses for various stimuli. The output neural voltage was computed over a time-

window with iterations every 0.01ms. A sample code that shows the computation of

neural output is shown below:

%Matlab code simulation of the Hodgkin Huxley Model

%Experiment conducted as Hideo Hasegawa - Responses of a Hodgkin Huxley

%neuron to various types of spike-train inputs

clear; % clears the workspace
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clf; % clears the figures

% Maximal conductance (in units of mS/cm^2);1=K+, 2= Na+, 3= Leakage;

g(1)=36;

g(2)=120;

g(3)=0.3;

% Equilibrium potential for ions

E(1)=-77;

E(2)=50;

E(3)=-54.5;

% Initialization of variables

I_ext=0;

V=-10;

x=zeros(1,3);

x(3)=1;

t_rec=0;

% Time step for Integration

dt=0.01;

% Integration with Euler Method

for t=-30:dt:100

if t==10; I_ext=10+random('Normal',0,0.025); end % turn on external current at t=10

if t==295; I_ext=0; end % turn off external current at t=40

%alpha functions used in the model

alpha(1)=0.01*(V+55)/(1-exp(-(V+55)/10));

alpha(2)=0.1*(V+40)/(1-exp(-(V+40)/10));

alpha(3)=0.07*exp(-(V+65)/20);

%beta functions used in the model

beta(1)=0.125*exp(-(V+65)/80);

beta(2)=4*exp(-(V+65)/18);

beta(3)=1/(1+exp(-(V+35)/10));

%time constant Tau_x and the equilibrium value x_infty

tau=1./(alpha+beta);

x_infty=alpha.*tau;

%Integration with Euler Method

x=(1-dt./tau).*x+dt./tau.*x_infty;
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%Calculate the actual conductance g with given n,m,h

gnmh(1)=g(1)*x(1)^4;

gnmh(2)=g(2)*x(2)^3*x(3);

gnmh(3)=g(3);

%The internal ion current

I=gnmh.*(V-E);

%Update the membrane voltage

V=V+dt*(I_ext-sum(I));

%Record some variables for plotting after equilibration

if t>=0;

t_rec=t_rec+1;

x_plot(t_rec)=t;

y_plot(t_rec)=V;

end

end % the end of the time loop

plot(x_plot,y_plot); xlabel('Time'); ylabel('Voltage');

This Matlab™ script computes the neural voltage over a 130ms time-window. The neuron

enters into an asymptotic state within the first few milliseconds, which is required for the

steady-state analysis of the gating variables.

A.4 Testing

The neural response is a plot of the neural voltage against time (fig. A.1). The script in

section A.3 generates the plot given below, which identifies the correct implementation of

the neuron. See Trappenberg (2002) for identical results.
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Figure A.1: The neural voltage for a constant-current stimulus shows that neuron exhibiting
alternating depolarized (upward rise)-hyperpolarized (downward slope) states.

A.5 Algorithms

The algorithms for computational simulations in each chapter are listed as individual

sections below. These algorithms explain the logical approach used to perform in silico

experiments.

A.5.1 Chapter 3

1) Start

2) Stimulate two identical Hodgkin-Huxley (HH) neurons ଵܪ and ,ଶܪ using synaptic

periodical stimuli ଵܲ (variable ISI) and ଶܲ (fixed ISI).

3) Record corresponding neural responses ܴଵ and ܴଶ.

4) Estimate similarity using neural firing times (coincidence factor).

5) Plot coincidence factor against the ISI of ଵܲ.

6) Repeat steps 2-5 across the time window. The objective is to get a plot of similarity

estimates using the coincidence factor approach, where the coincidence factor for

each pair of neural responses is plotted against the ISI of ଵܲ. As the ISI of ଶܲ is fixed

across the entire time window, the plot is consistent for all ଵܲ stimuli.
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7) End.

A.5.2 Chapter 4

1) Start

2) Stimulate two identical Hodgkin-Huxley (HH) neurons ଵܪ and ,ଶܪ using synaptic

periodical stimuli ଵܲ (variable ISI) and ଶܲ (fixed ISI).

3) Record corresponding neural responses ܴଵ and ܴଶ.

4) Estimate similarity using both amplitude and firing time coincidences (Γ௧).

5) Plot Γ௧ against the ISI of ଵܲ. Compare this estimate of similarity against the

corresponding estimate given by coincidence factor in Chapter 3.

6) Repeat steps 2-5 across the time window. The objective is to get a plot of similarity

estimates using the coincidence factor and Γ௧, which will aid comparison

between corresponding similarities for a pair of neural responses.

7) End.

A.5.3 Chapter 5

A.5.3.1 : Model Validation

1) Start

2) Stimulate an IF neuron by a supra-threshold stimulus as in eq. (5.8).

3) Stimulate an HH neuron by a synaptic stimulus as given by eq. (5.9).

4) Compare the responses of the IF and HH neuron using a) coincidence factor (Γ)

and b) Γ௧.

5) Repeat steps 2-4 by varying the noise in the stimuli.

6) End
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A.5.3.2 : Constant current stimulus and ડࢉ࢚ࢇࢎࢉ

1) Start

2) Stimulate two identical Hodgkin-Huxley (HH) neurons ଵܪ and ,ଶܪ using constant

current stimuli with strength 8µA.

3) Compare the responses of the two neurons using a) coincidence factor (Γ) and b)

Γ௧.

4) Repeat steps 2 and 3 by increasing the strength of the stimuli by 1µA .

5) End

A.5.3.3 : Energy Content

1) Start

2) Stimulate two identical Hodgkin-Huxley (HH) neurons ଵܪ and ,ଶܪ using synaptic

periodical stimuli ଵܲ (variable ISI) and ଶܲ (fixed ISI).

3) Record corresponding neural responses ܴଵ and ܴଶ.

4) Calculate the Energy Difference Minimum ߝ) ) using eq. (5.10).

5) Repeat steps 2-4 across the time window. This, according to Slepian’s principle,

gives the minimum difference in the energy required to classify the two neural

responses as distinct.

6) End

A.5.4 Chapter 6

1) Start

2) For a known neuron, record any neural response (ݐ)ܸ whose stimulus, say ,(ݐ)ܫ

requires to be reconstructed
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3) Inject a supra-threshold stimulus, (௦ݐ)௦ܫ for a small time duration ௦ݐ

4) Record the corresponding voltage trace generated, (௦ݐ)௦ݒ

5) Retrieve the maximal conductances using ,(௦ݐ)௦ݒ equations (6.2-6.9) and (௦ݐ)௦ܫ as

the external stimulus

6) Using the approximated maximal conductances, ′݃ே, ′݃and ′݃, solve the HH

equations using the recorded original neural response (ݐ)ܸ and the stimulus as the

only unknown to get the reconstructed stimulus .(ݐ)′ܫ

7) End

B Binary Clustering

 Two independent supra-threshold stimulating currents (10μA/cm2 + a random value 

from a Gaussian distribution with zero mean and standard deviation 0.025, fig. 1) injected

into the HH neuron generate neural responses (fig. 2). The ion conductances of the neuron

are as listed below.

Max.
conductance

(mS/cm2)

Reversal
Potential (mV)

Potassium (K) 36 12

Sodium (Na) 120 115

Leakage (Cl) 0.3 10.613

Table 1: The maximal conductances and reversal potentials of the ion channels.
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Figure 1: The left panel shows the two currents superimposed with Current 1 dash-dotted (blue) and
Current 2 is dashed (red). The right panel shows a magnified version of a section in the left panel.
Notice how distinct the two currents are. Both currents are turned on at time t = 10ms and turned off at
t = 85ms.The two currents generate two independent spike trains as shown in fig. 2.

The neural responses evoked by these similar stimuli are shown below in fig.2

Figure 2: Identical stimuli generate similar neural responses. The neural responses superimposed (left
panel) show a high degree of overlap (right panel). The difference in firing times is approximately
0.0006ms

B.1 Cluster Formation

The amplitudes (Amp in mV) and the firing times (Fir in ms) for the two neural responses

shown in fig. 2 are

Amp1 = [105.6974 96.4448 96.0727 96.0438 96.039 96.0427]

Amp2 = [105.6962 96.4472 96.0737 96.0486 96.0422 96.0369]

Fir1 = [1210 2696 4154 5610 7066 8522]
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Fir2 = [1210 2696 4154 5610 7066 8522]

Normalising the values by using a standard approach

ܼ =
ି ()

௦௧ௗௗ�ௗ௩௧�()
(1)

where X is the input vector, gives a centred scaled version of X, known as the Z-scores of

X.

Table 2 shows the original and the normalised values of the spike amplitudes and the

neural firing times.

Spikes Original Values Normalised Values

Amp1 Fir1 Amp2 Fir2 Amp1 Fir1 Amp2 Fir2

1 105.6974 1210 105.6962 1210 2.0396 -1.3416 2.0395 -1.3416

2 96.4448 2696 96.4472 2696 -0.3270 -0.7978 -0.3267 -0.7978

3 96.0727 4154 96.0737 4154 -0.4222 -0.2643 -0.4222 -0.2643

4 96.0438 5610 96.0486 5610 -0.4296 -0.2685 -0.4287 -0.2685

5 96.039 7066 96.0422 7066 -0.4308 0.8012 -0.4303 0.8012

6 96.0427 8522 96.0369 8522 -0.4299 1.3340 -0.4317 1.3340

Table 2: Transformation spike points to a normalised scale

The spike points are represented as Objects in space. The spike train set for each train is

represented as a two-dimensional array of amplitudes and firing times.

B.2 Spike Train Set 1

ଵܺ = [2.0395 -1.3416;-0.3270 -0.7978;-0.4222 -0.2643;-0.4296 -0.2685;-0.4308 0.8012;-

0.4299 1.3340]

The Euclidean distance between each of these Objects is given by
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'2 ))(( srsrrs xxxxd  (2)

where rx and sx represent the spike points and the matrix 1Y with each element

represents the distance between a pair of objects.

1Y =

Columns 1 through 8

2.4282 2.6871 2.6922 3.2702 3.6410 0.5419 0.5392 1.6024

Columns 9 through 15

2.1343 0.0085 1.0655 1.5983 1.0697 1.6025 0.5328

The value in the first column, 2.4282, is the distance of spike point 1 from spike point 2,

the value in column 2 is the distance between spike point 1 and spike point 3 and so on.

The following matrix will give a clear picture of the individual distances between the spike

points.

ans =

1 2 3 4 5 6

1 0 2.4282 2.6871 2.6922 3.2702 3.6410

2 2.4282 0 0.5419 0.5392 1.6024 2.1343

3 2.6871 0.5419 0 0.0085 1.0655 1.5983

4 2.6922 0.5392 0.0085 0 1.0697 1.6025

5 3.2702 1.6024 1.0655 1.0697 0 0.5328

6 3.6410 2.1343 1.5983 1.6025 0.5328 0
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The distance between spike point 1 and itself is zero. Similarly, the distance between spike

point 5 and spike point 6 is 0.5328 (5th row and 6th column)

B.2.1 Formation of Clusters

Once the proximity between the spike points in the data set has been computed, the spike

points can be grouped into clusters using the nearest neighbour approach as follows

),...1(),,...,1()),,(min(),( srsjri njnixxdistsrd 
(3)

where, rn is the number of spike points in cluster r and sn is the number of spike points in

cluster s , and rix is the thi object in cluster r .

The matrix ଵܼdepicts the cluster information

ଵܼ =

3.0000 4.0000 0.0085

5.0000 6.0000 0.5328

2.0000 7.0000 0.5392

8.0000 9.0000 1.0655

1.0000 10.0000 2.4282

Cluster formation takes place systematically. Column 1 and 2 are the spike points, which

have been linked whereas column 3 represents the distance between them. Spike points 3

and 4 are grouped together. This cluster is numbered as 7. Spike points 5 & 6 are linked

together by 0.5328. This cluster is numbered as 8 and so on. When two objects are

clustered into a new cluster, it must assign the cluster a new unique index value starting

with the value m+1, where m is the number of objects in the original data set. The nearest

neighbour approach is adopted to calculate the distances between old and new clusters.
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B.2.2 Plotting the Cluster Tree

The hierarchical, binary cluster tree created above is most easily understood when viewed

graphically. In fig. 3, the numbers along the horizontal axis represent the indices of the

objects/spike-points in the original data set. The links between objects are represented as

upside-down U-shaped lines. The height of the U indicates the distance between the

objects. For example, the link representing the cluster containing objects 3 and 4 has a

height of 0.0085. The link representing the cluster that groups object 2 together with

objects 3, 4, and 2, (which are already clustered as object 9) has a height of 0.5392. The

height represents the distance computed between objects 2 and 8.

B.2.3 Evaluating Cluster Information

After linking the objects in a data set into a hierarchical cluster tree, it is required to verify

that the distances (that is, heights) in the tree reflect the original distances accurately and

investigate the natural divisions that exist among links between objects. This can be

understood by determining the cophenetic correlation coefficient and inconsistency

coefficient.

Figure 3: Cluster information for spike train 1
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In a hierarchical cluster tree, any two objects in the original data set are eventually linked

together at some level. The height of the link represents the distance between the two

clusters that contain those two objects. This height is known as the cophenetic distance

between the two objects. One way to measure how well the cluster tree generated reflects

the data is to compare the cophenetic distances with the original distance data generated.

If the clustering is valid, the linking of objects in the cluster tree should have a strong

correlation with the distances between objects in the distance vector. The cophenet

function in MATLAB compares these two sets of values and computes their correlation,

returning a value called the cophenetic correlation coefficient. The closer the value of the

cophenetic correlation coefficient is to 1, the more accurately the clustering solution

reflects your data.

C1=cophenet(Z1,Y1)

C1 =

0.9362

This shows that the clustering solution is very accurate. One way to determine the natural

cluster divisions in a data set is to compare the height of each link in a cluster tree with the

heights of neighbouring links below it in the tree. A link that is approximately the same

height as the links below it indicates that there are no distinct divisions between the

objects joined at this level of the hierarchy. These links are said to exhibit a high level of

consistency, because the distance between the objects being joined is approximately the

same as the distances between the objects they contain. On the other hand, a link whose

height differs noticeably from the height of the links below it indicates that the objects

joined at this level in the cluster tree are much farther apart from each other than their

components were when they were joined. This link is said to be inconsistent with the links

below it.
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In cluster analysis, inconsistent links can indicate the border of a natural division in a data

set. The relative consistency of each link in a hierarchical cluster tree can be quantified

and expressed as the inconsistency coefficient. This value compares the height of a link in

a cluster hierarchy with the average height of links below it. Links that join distinct

clusters have a low inconsistency coefficient; links that join indistinct clusters have a high

inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, use

the inconsistent function in MATLAB By default, the inconsistent function compares each

link in the cluster hierarchy with adjacent links that are less than two levels below it in the

cluster hierarchy, known as the depth of the comparison. The objects at the bottom of the

cluster tree, called leaf nodes, that have no further objects below them, have an

inconsistency coefficient of zero. Clusters that join two leaves also have a zero

inconsistency coefficient.

I1 =

0.0085 0 1.0000 0

0.5328 0 1.0000 0

0.2738 0.3752 2.0000 0.7071

0.7125 0.3058 3.0000 1.1546

1.7469 0.9635 2.0000 0.7071

The inconsistent function returns data about the links in an (m-1)-by-4 matrix, whose

columns are described in table 3. In the sample output, the first row represents the link

between objects 3 and 4. This cluster is assigned the index 7. Because both 3 and 4 are leaf

nodes, the inconsistency coefficient for the cluster is zero. The second row represents the
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link between objects 5 and 6, both of which are also leaf nodes. This cluster is assigned the

index 8.

Column Description

1 Mean of the heights of all the links included in the
calculation

2 Standard deviation of all the links included in the
calculation

3 Number of links included in the calculation

4 Inconsistency coefficient

Table 3: Description of columns returned by the inconsistent function in MATLAB

The third row evaluates the link that connects these two clusters, objects 2 and 7. (This

new cluster is assigned index 9 in the linkage output). Column 3 indicates that two links

are considered in the calculation. Column 1 represents the mean of the heights of these

links. The inconsistent function uses the height information output by the linkage function

to calculate the mean. Column 2 represents the standard deviation between the links. The

last column contains the inconsistency value for these links, 0.7071. It is the difference

between the current link height and the mean, normalized by the standard deviation:

(0.5392 - 0.2738) / 0.3752

ans =

0.7071

B.3 Spike Train 2 – Cluster Formation

The spike train set for the train is

ܺଶ = [2.0395 -1.3416;-0.3267 -0.7978;-0.4222 -0.2643;-0.4287 -0.2685;-0.4303 0.8012;-

0.4317 1.3340]

The distance matrix 2Y is
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ଶܻ =

0 2.4279 2.6871 2.6914 3.2698 3.6422

2.4279 0 0.5420 0.5390 1.6024 2.1344

2.6871 0.5420 0 0.0077 1.0655 1.5983

2.6914 0.5390 0.0077 0 1.0697 1.6025

3.2698 1.6024 1.0655 1.0697 0 0.5328

3.6422 2.1344 1.5983 1.6025 0.5328 0

The matrix ଶܼ that depicts the cluster information

ଶܼ =

3.0000 4.0000 0.0077

5.0000 6.0000 0.5328

2.0000 7.0000 0.5390

8.0000 9.0000 1.0655

1.0000 10.0000 2.4279
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Figure 4: Cluster information for spike train 2

B.3.1 Cophenetic correlation coefficient for Spike Train 2

C2=cophenet(Z2,Y2)

C2 =

0.9361

This shows that the clustering solution is very accurate. Also, C2 is very close to spike train

1’s cophenet correlation coefficient.

B.3.2 Inconsistency Coefficient

I2 =

0.0077 0 1.0000 0

0.5328 0 1.0000 0

0.2734 0.3757 2.0000 0.7071

0.7125 0.3058 3.0000 1.1546

1.7467 0.9633 2.0000 0.7071
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This is same as I1 (inconsistency coefficient for spike train1). This shows a similarity

between the two spike trains. In addition, the same spike points are grouped together in

clusters for both the trains.

Figure 5: Clustering information for spike trains 1 & 2 indicating almost identical features.

The table below shows the spike points/objects used to form clusters for both the spike

trains. The same spike points are used for clustering indicating a similarity in the spike

train.

Spike train 1 Spike train 2

Spike
points used

to form
clusters

3 4 3 4

5 6 5 6

2 7 {3 & 4} 2 7 {3 & 4}

8 {5 & 6} 9 {2 & 7} 8 {5 & 6} 9 {2 & 7}

1 10 {8 & 9} 1 10 {8 & 9}

Table 4: Cluster Solution and Linkages


